164 lines
9.8 KiB
Plaintext
164 lines
9.8 KiB
Plaintext
|
srun: Job time limit was unset; set to partition default of 60 minutes
|
||
|
srun: ################################################################################
|
||
|
srun: # Please note that the oasis compute nodes have aarch64 architecture CPUs. #
|
||
|
srun: # All submission nodes and all other compute nodes have x86_64 architecture #
|
||
|
srun: # CPUs. Programs, environments, or other software that was built on x86_64 #
|
||
|
srun: # nodes may need to be rebuilt to properly execute on these nodes. #
|
||
|
srun: ################################################################################
|
||
|
srun: job 3394139 queued and waiting for resources
|
||
|
srun: job 3394139 has been allocated resources
|
||
|
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
|
||
|
).to_sparse_csr().type(torch.float)
|
||
|
tensor(crow_indices=tensor([ 0, 13, 21, ..., 116047, 116051,
|
||
|
116056]),
|
||
|
col_indices=tensor([ 250, 251, 757, ..., 23334, 23553, 24050]),
|
||
|
values=tensor([ 14900., 33341., 20255., ..., 164227., 52413.,
|
||
|
16949.]), size=(24115, 24115), nnz=116056,
|
||
|
layout=torch.sparse_csr)
|
||
|
tensor([0.4207, 0.3943, 0.6543, ..., 0.2191, 0.5415, 0.1575])
|
||
|
Shape: torch.Size([24115, 24115])
|
||
|
NNZ: 116056
|
||
|
Density: 0.0001995689928120616
|
||
|
Time: 0.36042284965515137 seconds
|
||
|
|
||
|
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/de2010.mtx 100':
|
||
|
|
||
|
59.88 msec task-clock:u # 0.016 CPUs utilized
|
||
|
0 context-switches:u # 0.000 /sec
|
||
|
0 cpu-migrations:u # 0.000 /sec
|
||
|
3,313 page-faults:u # 55.328 K/sec
|
||
|
58,169,777 cycles:u # 0.971 GHz (61.49%)
|
||
|
57,993,431 instructions:u # 1.00 insn per cycle (81.67%)
|
||
|
<not supported> branches:u
|
||
|
341,266 branch-misses:u
|
||
|
31,858,781 L1-dcache-loads:u # 532.049 M/sec
|
||
|
467,486 L1-dcache-load-misses:u # 1.47% of all L1-dcache accesses
|
||
|
<not supported> LLC-loads:u
|
||
|
<not supported> LLC-load-misses:u
|
||
|
30,461,310 L1-icache-loads:u # 508.711 M/sec
|
||
|
294,156 L1-icache-load-misses:u # 0.97% of all L1-icache accesses
|
||
|
43,828,130 dTLB-loads:u # 731.940 M/sec (40.26%)
|
||
|
47,836 dTLB-load-misses:u # 0.11% of all dTLB cache accesses (25.52%)
|
||
|
0 iTLB-loads:u # 0.000 /sec (2.73%)
|
||
|
<not counted> iTLB-load-misses:u (0.00%)
|
||
|
|
||
|
3.824054028 seconds time elapsed
|
||
|
|
||
|
15.099361000 seconds user
|
||
|
28.830417000 seconds sys
|
||
|
|
||
|
|
||
|
|
||
|
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
|
||
|
).to_sparse_csr().type(torch.float)
|
||
|
tensor(crow_indices=tensor([ 0, 13, 21, ..., 116047, 116051,
|
||
|
116056]),
|
||
|
col_indices=tensor([ 250, 251, 757, ..., 23334, 23553, 24050]),
|
||
|
values=tensor([ 14900., 33341., 20255., ..., 164227., 52413.,
|
||
|
16949.]), size=(24115, 24115), nnz=116056,
|
||
|
layout=torch.sparse_csr)
|
||
|
tensor([0.0456, 0.2095, 0.0276, ..., 0.4209, 0.6824, 0.5475])
|
||
|
Shape: torch.Size([24115, 24115])
|
||
|
NNZ: 116056
|
||
|
Density: 0.0001995689928120616
|
||
|
Time: 0.3598823547363281 seconds
|
||
|
|
||
|
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/de2010.mtx 100':
|
||
|
|
||
|
330,494 BR_MIS_PRED_RETIRED:u # 0.0 per branch branch_misprediction_ratio
|
||
|
20,578,427 BR_RETIRED:u
|
||
|
|
||
|
3.781234836 seconds time elapsed
|
||
|
|
||
|
14.965545000 seconds user
|
||
|
29.444131000 seconds sys
|
||
|
|
||
|
|
||
|
|
||
|
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
|
||
|
).to_sparse_csr().type(torch.float)
|
||
|
tensor(crow_indices=tensor([ 0, 13, 21, ..., 116047, 116051,
|
||
|
116056]),
|
||
|
col_indices=tensor([ 250, 251, 757, ..., 23334, 23553, 24050]),
|
||
|
values=tensor([ 14900., 33341., 20255., ..., 164227., 52413.,
|
||
|
16949.]), size=(24115, 24115), nnz=116056,
|
||
|
layout=torch.sparse_csr)
|
||
|
tensor([0.9882, 0.5477, 0.6307, ..., 0.1179, 0.6903, 0.1235])
|
||
|
Shape: torch.Size([24115, 24115])
|
||
|
NNZ: 116056
|
||
|
Density: 0.0001995689928120616
|
||
|
Time: 0.29088521003723145 seconds
|
||
|
|
||
|
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/de2010.mtx 100':
|
||
|
|
||
|
27,982,097 L1I_TLB:u # 0.0 per TLB access itlb_walk_ratio
|
||
|
6,614 ITLB_WALK:u
|
||
|
17,270 DTLB_WALK:u # 0.0 per TLB access dtlb_walk_ratio
|
||
|
37,728,899 L1D_TLB:u
|
||
|
|
||
|
3.576632300 seconds time elapsed
|
||
|
|
||
|
14.864601000 seconds user
|
||
|
29.274547000 seconds sys
|
||
|
|
||
|
|
||
|
|
||
|
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
|
||
|
).to_sparse_csr().type(torch.float)
|
||
|
tensor(crow_indices=tensor([ 0, 13, 21, ..., 116047, 116051,
|
||
|
116056]),
|
||
|
col_indices=tensor([ 250, 251, 757, ..., 23334, 23553, 24050]),
|
||
|
values=tensor([ 14900., 33341., 20255., ..., 164227., 52413.,
|
||
|
16949.]), size=(24115, 24115), nnz=116056,
|
||
|
layout=torch.sparse_csr)
|
||
|
tensor([0.3952, 0.0475, 0.1125, ..., 0.3481, 0.1290, 0.3495])
|
||
|
Shape: torch.Size([24115, 24115])
|
||
|
NNZ: 116056
|
||
|
Density: 0.0001995689928120616
|
||
|
Time: 0.30365920066833496 seconds
|
||
|
|
||
|
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/de2010.mtx 100':
|
||
|
|
||
|
29,754,926 L1I_CACHE:u # 0.0 per cache access l1i_cache_miss_ratio
|
||
|
278,786 L1I_CACHE_REFILL:u
|
||
|
454,742 L1D_CACHE_REFILL:u # 0.0 per cache access l1d_cache_miss_ratio
|
||
|
31,173,246 L1D_CACHE:u
|
||
|
|
||
|
3.730995381 seconds time elapsed
|
||
|
|
||
|
15.213930000 seconds user
|
||
|
30.995070000 seconds sys
|
||
|
|
||
|
|
||
|
|
||
|
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
|
||
|
).to_sparse_csr().type(torch.float)
|
||
|
tensor(crow_indices=tensor([ 0, 13, 21, ..., 116047, 116051,
|
||
|
116056]),
|
||
|
col_indices=tensor([ 250, 251, 757, ..., 23334, 23553, 24050]),
|
||
|
values=tensor([ 14900., 33341., 20255., ..., 164227., 52413.,
|
||
|
16949.]), size=(24115, 24115), nnz=116056,
|
||
|
layout=torch.sparse_csr)
|
||
|
tensor([0.7266, 0.7537, 0.9729, ..., 0.3349, 0.3523, 0.6532])
|
||
|
Shape: torch.Size([24115, 24115])
|
||
|
NNZ: 116056
|
||
|
Density: 0.0001995689928120616
|
||
|
Time: 0.2798902988433838 seconds
|
||
|
|
||
|
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/de2010.mtx 100':
|
||
|
|
||
|
543,243 LL_CACHE_MISS_RD:u # 1.0 per cache access ll_cache_read_miss_ratio
|
||
|
560,716 LL_CACHE_RD:u
|
||
|
162,281 L2D_TLB:u # 0.1 per TLB access l2_tlb_miss_ratio
|
||
|
19,847 L2D_TLB_REFILL:u
|
||
|
300,577 L2D_CACHE_REFILL:u # 0.2 per cache access l2_cache_miss_ratio
|
||
|
1,696,278 L2D_CACHE:u
|
||
|
|
||
|
3.819959836 seconds time elapsed
|
||
|
|
||
|
15.346035000 seconds user
|
||
|
29.199873000 seconds sys
|
||
|
|
||
|
|
||
|
|