ampere_research/pytorch/output/altra_2_2_vt2010_100.output

159 lines
9.7 KiB
Plaintext
Raw Normal View History

2024-12-03 00:20:09 -05:00
srun: Job time limit was unset; set to partition default of 60 minutes
srun: ################################################################################
srun: # Please note that the oasis compute nodes have aarch64 architecture CPUs. #
srun: # All submission nodes and all other compute nodes have x86_64 architecture #
srun: # CPUs. Programs, environments, or other software that was built on x86_64 #
srun: # nodes may need to be rebuilt to properly execute on these nodes. #
srun: ################################################################################
srun: job 3394143 queued and waiting for resources
srun: job 3394143 has been allocated resources
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
).to_sparse_csr().type(torch.float)
tensor(crow_indices=tensor([ 0, 4, 7, ..., 155588, 155592,
155598]),
col_indices=tensor([ 131, 561, 996, ..., 32237, 32238, 32570]),
values=tensor([79040., 7820., 15136., ..., 2828., 17986., 2482.]),
size=(32580, 32580), nnz=155598, layout=torch.sparse_csr)
tensor([0.9170, 0.7306, 0.1175, ..., 0.0616, 0.0147, 0.6403])
Shape: torch.Size([32580, 32580])
NNZ: 155598
Density: 0.00014658915806621921
Time: 0.4440653324127197 seconds
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/vt2010.mtx 100':
61.63 msec task-clock:u # 0.016 CPUs utilized
0 context-switches:u # 0.000 /sec
0 cpu-migrations:u # 0.000 /sec
3,304 page-faults:u # 53.611 K/sec
64,734,203 cycles:u # 1.050 GHz (50.46%)
53,597,991 instructions:u # 0.83 insn per cycle (70.10%)
<not supported> branches:u
347,389 branch-misses:u (91.95%)
31,363,842 L1-dcache-loads:u # 508.915 M/sec
482,780 L1-dcache-load-misses:u # 1.54% of all L1-dcache accesses
<not supported> LLC-loads:u
<not supported> LLC-load-misses:u
30,027,001 L1-icache-loads:u # 487.223 M/sec
288,023 L1-icache-load-misses:u # 0.96% of all L1-icache accesses
44,333,825 dTLB-loads:u # 719.368 M/sec (48.58%)
74,525 dTLB-load-misses:u # 0.17% of all dTLB cache accesses (16.71%)
<not counted> iTLB-loads:u (0.00%)
<not counted> iTLB-load-misses:u (0.00%)
3.811654040 seconds time elapsed
15.616953000 seconds user
30.906234000 seconds sys
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
).to_sparse_csr().type(torch.float)
tensor(crow_indices=tensor([ 0, 4, 7, ..., 155588, 155592,
155598]),
col_indices=tensor([ 131, 561, 996, ..., 32237, 32238, 32570]),
values=tensor([79040., 7820., 15136., ..., 2828., 17986., 2482.]),
size=(32580, 32580), nnz=155598, layout=torch.sparse_csr)
tensor([0.5548, 0.3514, 0.6283, ..., 0.5672, 0.1575, 0.4493])
Shape: torch.Size([32580, 32580])
NNZ: 155598
Density: 0.00014658915806621921
Time: 0.44233155250549316 seconds
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/vt2010.mtx 100':
330,777 BR_MIS_PRED_RETIRED:u # 0.0 per branch branch_misprediction_ratio
20,357,034 BR_RETIRED:u
3.835342404 seconds time elapsed
15.497637000 seconds user
28.676763000 seconds sys
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
).to_sparse_csr().type(torch.float)
tensor(crow_indices=tensor([ 0, 4, 7, ..., 155588, 155592,
155598]),
col_indices=tensor([ 131, 561, 996, ..., 32237, 32238, 32570]),
values=tensor([79040., 7820., 15136., ..., 2828., 17986., 2482.]),
size=(32580, 32580), nnz=155598, layout=torch.sparse_csr)
tensor([0.0953, 0.5790, 0.0112, ..., 0.9540, 0.3173, 0.4731])
Shape: torch.Size([32580, 32580])
NNZ: 155598
Density: 0.00014658915806621921
Time: 0.43302106857299805 seconds
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/vt2010.mtx 100':
27,381,387 L1I_TLB:u # 0.0 per TLB access itlb_walk_ratio
6,248 ITLB_WALK:u
17,636 DTLB_WALK:u # 0.0 per TLB access dtlb_walk_ratio
37,436,110 L1D_TLB:u
3.828586094 seconds time elapsed
15.518057000 seconds user
31.389361000 seconds sys
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
).to_sparse_csr().type(torch.float)
tensor(crow_indices=tensor([ 0, 4, 7, ..., 155588, 155592,
155598]),
col_indices=tensor([ 131, 561, 996, ..., 32237, 32238, 32570]),
values=tensor([79040., 7820., 15136., ..., 2828., 17986., 2482.]),
size=(32580, 32580), nnz=155598, layout=torch.sparse_csr)
tensor([0.5456, 0.8708, 0.2037, ..., 0.8669, 0.9122, 0.2046])
Shape: torch.Size([32580, 32580])
NNZ: 155598
Density: 0.00014658915806621921
Time: 0.4426534175872803 seconds
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/vt2010.mtx 100':
32,505,993 L1I_CACHE:u # 0.0 per cache access l1i_cache_miss_ratio
303,849 L1I_CACHE_REFILL:u
467,426 L1D_CACHE_REFILL:u # 0.0 per cache access l1d_cache_miss_ratio
34,241,110 L1D_CACHE:u
3.811299200 seconds time elapsed
15.932195000 seconds user
30.887870000 seconds sys
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
).to_sparse_csr().type(torch.float)
tensor(crow_indices=tensor([ 0, 4, 7, ..., 155588, 155592,
155598]),
col_indices=tensor([ 131, 561, 996, ..., 32237, 32238, 32570]),
values=tensor([79040., 7820., 15136., ..., 2828., 17986., 2482.]),
size=(32580, 32580), nnz=155598, layout=torch.sparse_csr)
tensor([0.5024, 0.2304, 0.7925, ..., 0.1397, 0.5558, 0.6450])
Shape: torch.Size([32580, 32580])
NNZ: 155598
Density: 0.00014658915806621921
Time: 0.3671383857727051 seconds
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/vt2010.mtx 100':
550,075 LL_CACHE_MISS_RD:u # 1.0 per cache access ll_cache_read_miss_ratio
562,829 LL_CACHE_RD:u
199,285 L2D_TLB:u # 0.1 per TLB access l2_tlb_miss_ratio
24,424 L2D_TLB_REFILL:u
310,155 L2D_CACHE_REFILL:u # 0.2 per cache access l2_cache_miss_ratio
1,783,824 L2D_CACHE:u
3.824434783 seconds time elapsed
15.754438000 seconds user
28.226523000 seconds sys