ampere_research/pytorch/output/altra_10_30_p2p-Gnutella25_1000.output

159 lines
9.5 KiB
Plaintext
Raw Normal View History

2024-12-03 00:20:09 -05:00
srun: Job time limit was unset; set to partition default of 60 minutes
srun: ################################################################################
srun: # Please note that the oasis compute nodes have aarch64 architecture CPUs. #
srun: # All submission nodes and all other compute nodes have x86_64 architecture #
srun: # CPUs. Programs, environments, or other software that was built on x86_64 #
srun: # nodes may need to be rebuilt to properly execute on these nodes. #
srun: ################################################################################
2024-12-03 08:53:39 -05:00
srun: job 3394994 queued and waiting for resources
srun: job 3394994 has been allocated resources
2024-12-03 00:20:09 -05:00
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
).to_sparse_csr().type(torch.float)
tensor(crow_indices=tensor([ 0, 9, 9, ..., 54704, 54704, 54705]),
col_indices=tensor([ 1, 2, 3, ..., 17949, 22685, 144]),
values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(22687, 22687),
nnz=54705, layout=torch.sparse_csr)
2024-12-03 08:53:39 -05:00
tensor([0.1465, 0.4354, 0.7334, ..., 0.2837, 0.5913, 0.9525])
Matrix: p2p-Gnutella25
2024-12-03 00:20:09 -05:00
Shape: torch.Size([22687, 22687])
NNZ: 54705
Density: 0.00010628522108964806
2024-12-03 08:53:39 -05:00
Time: 1.4786670207977295 seconds
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/p2p-Gnutella25.mtx 1000':
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
48.61 msec task-clock:u # 0.010 CPUs utilized
2024-12-03 00:20:09 -05:00
0 context-switches:u # 0.000 /sec
0 cpu-migrations:u # 0.000 /sec
2024-12-03 08:53:39 -05:00
3,308 page-faults:u # 68.054 K/sec
60,072,179 cycles:u # 1.236 GHz (53.26%)
70,991,785 instructions:u # 1.18 insn per cycle (71.54%)
2024-12-03 00:20:09 -05:00
<not supported> branches:u
2024-12-03 08:53:39 -05:00
371,197 branch-misses:u
32,964,378 L1-dcache-loads:u # 678.165 M/sec
465,448 L1-dcache-load-misses:u # 1.41% of all L1-dcache accesses
2024-12-03 00:20:09 -05:00
<not supported> LLC-loads:u
<not supported> LLC-load-misses:u
2024-12-03 08:53:39 -05:00
31,435,424 L1-icache-loads:u # 646.710 M/sec
293,561 L1-icache-load-misses:u # 0.93% of all L1-icache accesses
56,761,270 dTLB-loads:u # 1.168 G/sec (30.54%)
2024-12-03 00:20:09 -05:00
<not counted> dTLB-load-misses:u (0.00%)
<not counted> iTLB-loads:u (0.00%)
<not counted> iTLB-load-misses:u (0.00%)
2024-12-03 08:53:39 -05:00
4.700046411 seconds time elapsed
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
16.235801000 seconds user
28.396327000 seconds sys
2024-12-03 00:20:09 -05:00
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
).to_sparse_csr().type(torch.float)
tensor(crow_indices=tensor([ 0, 9, 9, ..., 54704, 54704, 54705]),
col_indices=tensor([ 1, 2, 3, ..., 17949, 22685, 144]),
values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(22687, 22687),
nnz=54705, layout=torch.sparse_csr)
2024-12-03 08:53:39 -05:00
tensor([0.7780, 0.3388, 0.1540, ..., 0.2989, 0.3682, 0.9160])
Matrix: p2p-Gnutella25
2024-12-03 00:20:09 -05:00
Shape: torch.Size([22687, 22687])
NNZ: 54705
Density: 0.00010628522108964806
2024-12-03 08:53:39 -05:00
Time: 1.4235138893127441 seconds
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/p2p-Gnutella25.mtx 1000':
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
331,765 BR_MIS_PRED_RETIRED:u # 0.0 per branch branch_misprediction_ratio
19,906,014 BR_RETIRED:u
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
4.757340585 seconds time elapsed
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
16.412311000 seconds user
29.238029000 seconds sys
2024-12-03 00:20:09 -05:00
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
).to_sparse_csr().type(torch.float)
tensor(crow_indices=tensor([ 0, 9, 9, ..., 54704, 54704, 54705]),
col_indices=tensor([ 1, 2, 3, ..., 17949, 22685, 144]),
values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(22687, 22687),
nnz=54705, layout=torch.sparse_csr)
2024-12-03 08:53:39 -05:00
tensor([0.4944, 0.8057, 0.8211, ..., 0.5137, 0.3388, 0.6316])
Matrix: p2p-Gnutella25
2024-12-03 00:20:09 -05:00
Shape: torch.Size([22687, 22687])
NNZ: 54705
Density: 0.00010628522108964806
2024-12-03 08:53:39 -05:00
Time: 1.4664146900177002 seconds
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/p2p-Gnutella25.mtx 1000':
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
28,194,337 L1I_TLB:u # 0.0 per TLB access itlb_walk_ratio
5,083 ITLB_WALK:u
17,916 DTLB_WALK:u # 0.0 per TLB access dtlb_walk_ratio
37,944,713 L1D_TLB:u
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
4.844329421 seconds time elapsed
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
16.081022000 seconds user
28.021902000 seconds sys
2024-12-03 00:20:09 -05:00
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
).to_sparse_csr().type(torch.float)
tensor(crow_indices=tensor([ 0, 9, 9, ..., 54704, 54704, 54705]),
col_indices=tensor([ 1, 2, 3, ..., 17949, 22685, 144]),
values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(22687, 22687),
nnz=54705, layout=torch.sparse_csr)
2024-12-03 08:53:39 -05:00
tensor([0.0963, 0.5806, 0.0397, ..., 0.1604, 0.5700, 0.8103])
Matrix: p2p-Gnutella25
2024-12-03 00:20:09 -05:00
Shape: torch.Size([22687, 22687])
NNZ: 54705
Density: 0.00010628522108964806
2024-12-03 08:53:39 -05:00
Time: 1.3717434406280518 seconds
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/p2p-Gnutella25.mtx 1000':
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
31,162,212 L1I_CACHE:u # 0.0 per cache access l1i_cache_miss_ratio
270,684 L1I_CACHE_REFILL:u
465,467 L1D_CACHE_REFILL:u # 0.0 per cache access l1d_cache_miss_ratio
32,857,500 L1D_CACHE:u
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
4.598461782 seconds time elapsed
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
15.609727000 seconds user
30.606837000 seconds sys
2024-12-03 00:20:09 -05:00
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
).to_sparse_csr().type(torch.float)
tensor(crow_indices=tensor([ 0, 9, 9, ..., 54704, 54704, 54705]),
col_indices=tensor([ 1, 2, 3, ..., 17949, 22685, 144]),
values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(22687, 22687),
nnz=54705, layout=torch.sparse_csr)
2024-12-03 08:53:39 -05:00
tensor([0.9137, 0.5009, 0.7507, ..., 0.6623, 0.8760, 0.2991])
Matrix: p2p-Gnutella25
2024-12-03 00:20:09 -05:00
Shape: torch.Size([22687, 22687])
NNZ: 54705
Density: 0.00010628522108964806
2024-12-03 08:53:39 -05:00
Time: 1.4291880130767822 seconds
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/p2p-Gnutella25.mtx 1000':
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
541,118 LL_CACHE_MISS_RD:u # 1.0 per cache access ll_cache_read_miss_ratio
564,199 LL_CACHE_RD:u
194,022 L2D_TLB:u # 0.1 per TLB access l2_tlb_miss_ratio
23,932 L2D_TLB_REFILL:u
311,476 L2D_CACHE_REFILL:u # 0.2 per cache access l2_cache_miss_ratio
1,783,574 L2D_CACHE:u
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
4.792239951 seconds time elapsed
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
15.902307000 seconds user
28.747620000 seconds sys
2024-12-03 00:20:09 -05:00