2024-12-03 00:20:09 -05:00
srun: Job time limit was unset; set to partition default of 60 minutes
srun: ################################################################################
srun: # Please note that the oasis compute nodes have aarch64 architecture CPUs. #
srun: # All submission nodes and all other compute nodes have x86_64 architecture #
srun: # CPUs. Programs, environments, or other software that was built on x86_64 #
srun: # nodes may need to be rebuilt to properly execute on these nodes. #
srun: ################################################################################
2024-12-03 08:53:39 -05:00
srun: job 3394981 queued and waiting for resources
srun: job 3394981 has been allocated resources
2024-12-03 00:20:09 -05:00
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
).to_sparse_csr().type(torch.float)
tensor(crow_indices=tensor([ 0, 29, 124, ..., 545669, 545669,
545671]),
col_indices=tensor([ 1, 2, 3, ..., 81869, 81699, 81863]),
values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(81871, 81871),
nnz=545671, layout=torch.sparse_csr)
2024-12-03 08:53:39 -05:00
tensor([0.6780, 0.5234, 0.1205, ..., 0.2995, 0.6275, 0.1399])
Matrix: soc-sign-Slashdot090216
2024-12-03 00:20:09 -05:00
Shape: torch.Size([81871, 81871])
NNZ: 545671
Density: 8.140867447881048e-05
2024-12-03 08:53:39 -05:00
Time: 30.653191089630127 seconds
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/soc-sign-Slashdot090216.mtx 1000':
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
67.66 msec task-clock:u # 0.002 CPUs utilized
2024-12-03 00:20:09 -05:00
0 context-switches:u # 0.000 /sec
0 cpu-migrations:u # 0.000 /sec
2024-12-03 08:53:39 -05:00
3,317 page-faults:u # 49.022 K/sec
41,915,850 cycles:u # 0.619 GHz (57.88%)
84,471,787 instructions:u # 2.02 insn per cycle (88.19%)
2024-12-03 00:20:09 -05:00
<not supported> branches:u
2024-12-03 08:53:39 -05:00
375,016 branch-misses:u
32,438,527 L1-dcache-loads:u # 479.407 M/sec
499,618 L1-dcache-load-misses:u # 1.54% of all L1-dcache accesses
2024-12-03 00:20:09 -05:00
<not supported> LLC-loads:u
<not supported> LLC-load-misses:u
2024-12-03 08:53:39 -05:00
30,998,693 L1-icache-loads:u # 458.127 M/sec
306,445 L1-icache-load-misses:u # 0.99% of all L1-icache accesses
34,294,934 dTLB-loads:u # 506.842 M/sec (18.86%)
2024-12-03 00:20:09 -05:00
<not counted> dTLB-load-misses:u (0.00%)
<not counted> iTLB-loads:u (0.00%)
<not counted> iTLB-load-misses:u (0.00%)
2024-12-03 08:53:39 -05:00
34.340632995 seconds time elapsed
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
149.743244000 seconds user
2355.852109000 seconds sys
2024-12-03 00:20:09 -05:00
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
).to_sparse_csr().type(torch.float)
tensor(crow_indices=tensor([ 0, 29, 124, ..., 545669, 545669,
545671]),
col_indices=tensor([ 1, 2, 3, ..., 81869, 81699, 81863]),
values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(81871, 81871),
nnz=545671, layout=torch.sparse_csr)
2024-12-03 08:53:39 -05:00
tensor([0.9875, 0.2031, 0.7260, ..., 0.5908, 0.1575, 0.7971])
Matrix: soc-sign-Slashdot090216
2024-12-03 00:20:09 -05:00
Shape: torch.Size([81871, 81871])
NNZ: 545671
Density: 8.140867447881048e-05
2024-12-03 08:53:39 -05:00
Time: 13.671181440353394 seconds
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/soc-sign-Slashdot090216.mtx 1000':
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
344,452 BR_MIS_PRED_RETIRED:u # 0.0 per branch branch_misprediction_ratio
20,610,765 BR_RETIRED:u
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
17.331425967 seconds time elapsed
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
83.136180000 seconds user
1069.027469000 seconds sys
2024-12-03 00:20:09 -05:00
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
).to_sparse_csr().type(torch.float)
tensor(crow_indices=tensor([ 0, 29, 124, ..., 545669, 545669,
545671]),
col_indices=tensor([ 1, 2, 3, ..., 81869, 81699, 81863]),
values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(81871, 81871),
nnz=545671, layout=torch.sparse_csr)
2024-12-03 08:53:39 -05:00
tensor([0.2046, 0.3645, 0.7960, ..., 0.6490, 0.4098, 0.5342])
Matrix: soc-sign-Slashdot090216
2024-12-03 00:20:09 -05:00
Shape: torch.Size([81871, 81871])
NNZ: 545671
Density: 8.140867447881048e-05
2024-12-03 08:53:39 -05:00
Time: 19.569235801696777 seconds
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/soc-sign-Slashdot090216.mtx 1000':
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
27,276,117 L1I_TLB:u # 0.0 per TLB access itlb_walk_ratio
6,358 ITLB_WALK:u
17,361 DTLB_WALK:u # 0.0 per TLB access dtlb_walk_ratio
36,565,837 L1D_TLB:u
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
23.323243037 seconds time elapsed
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
108.830923000 seconds user
1521.834565000 seconds sys
2024-12-03 00:20:09 -05:00
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
).to_sparse_csr().type(torch.float)
tensor(crow_indices=tensor([ 0, 29, 124, ..., 545669, 545669,
545671]),
col_indices=tensor([ 1, 2, 3, ..., 81869, 81699, 81863]),
values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(81871, 81871),
nnz=545671, layout=torch.sparse_csr)
2024-12-03 08:53:39 -05:00
tensor([0.4164, 0.2188, 0.5460, ..., 0.1057, 0.5277, 0.0624])
Matrix: soc-sign-Slashdot090216
2024-12-03 00:20:09 -05:00
Shape: torch.Size([81871, 81871])
NNZ: 545671
Density: 8.140867447881048e-05
2024-12-03 08:53:39 -05:00
Time: 26.337355375289917 seconds
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/soc-sign-Slashdot090216.mtx 1000':
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
32,022,662 L1I_CACHE:u # 0.0 per cache access l1i_cache_miss_ratio
293,044 L1I_CACHE_REFILL:u
458,939 L1D_CACHE_REFILL:u # 0.0 per cache access l1d_cache_miss_ratio
33,505,164 L1D_CACHE:u
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
30.017812847 seconds time elapsed
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
131.976276000 seconds user
2029.636174000 seconds sys
2024-12-03 00:20:09 -05:00
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
).to_sparse_csr().type(torch.float)
tensor(crow_indices=tensor([ 0, 29, 124, ..., 545669, 545669,
545671]),
col_indices=tensor([ 1, 2, 3, ..., 81869, 81699, 81863]),
values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(81871, 81871),
nnz=545671, layout=torch.sparse_csr)
2024-12-03 08:53:39 -05:00
tensor([0.7679, 0.9196, 0.3474, ..., 0.5624, 0.0163, 0.8596])
Matrix: soc-sign-Slashdot090216
2024-12-03 00:20:09 -05:00
Shape: torch.Size([81871, 81871])
NNZ: 545671
Density: 8.140867447881048e-05
2024-12-03 08:53:39 -05:00
Time: 29.926054000854492 seconds
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/soc-sign-Slashdot090216.mtx 1000':
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
553,814 LL_CACHE_MISS_RD:u # 1.0 per cache access ll_cache_read_miss_ratio
567,372 LL_CACHE_RD:u
199,301 L2D_TLB:u # 0.1 per TLB access l2_tlb_miss_ratio
25,193 L2D_TLB_REFILL:u
313,278 L2D_CACHE_REFILL:u # 0.2 per cache access l2_cache_miss_ratio
1,796,299 L2D_CACHE:u
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
33.553779692 seconds time elapsed
2024-12-03 00:20:09 -05:00
2024-12-03 08:53:39 -05:00
154.498461000 seconds user
2293.574463000 seconds sys
2024-12-03 00:20:09 -05:00