From 0def30ded2a73f11161da0ae100df6bdb9578472 Mon Sep 17 00:00:00 2001 From: cephi Date: Tue, 17 Dec 2024 19:30:42 -0500 Subject: [PATCH] More data --- ..._csr_10_10_10_synthetic_100000_0.0001.json | 1 + ...sr_10_10_10_synthetic_100000_0.0001.output | 65 + ...6_csr_10_10_10_synthetic_100000_0.001.json | 1 + ...csr_10_10_10_synthetic_100000_0.001.output | 45 + ...6_csr_10_10_10_synthetic_100000_1e-05.json | 1 + ...csr_10_10_10_synthetic_100000_1e-05.output | 65 + ...6_csr_10_10_10_synthetic_100000_5e-05.json | 1 + ...csr_10_10_10_synthetic_100000_5e-05.output | 65 + ...6_csr_10_10_10_synthetic_10000_0.0001.json | 1 + ...csr_10_10_10_synthetic_10000_0.0001.output | 81 + ...16_csr_10_10_10_synthetic_10000_0.001.json | 1 + ..._csr_10_10_10_synthetic_10000_0.001.output | 65 + ..._16_csr_10_10_10_synthetic_10000_0.01.json | 1 + ...6_csr_10_10_10_synthetic_10000_0.01.output | 45 + ..._16_csr_10_10_10_synthetic_10000_0.05.json | 1 + ...6_csr_10_10_10_synthetic_10000_0.05.output | 45 + ...a_16_csr_10_10_10_synthetic_10000_0.1.json | 1 + ...16_csr_10_10_10_synthetic_10000_0.1.output | 45 + ...a_16_csr_10_10_10_synthetic_10000_0.2.json | 1 + ...16_csr_10_10_10_synthetic_10000_0.2.output | 45 + ...a_16_csr_10_10_10_synthetic_10000_0.3.json | 1 + ...16_csr_10_10_10_synthetic_10000_0.3.output | 45 + ...16_csr_10_10_10_synthetic_10000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_10000_1e-05.output | 1307 +++++++ ...16_csr_10_10_10_synthetic_10000_5e-05.json | 1 + ..._csr_10_10_10_synthetic_10000_5e-05.output | 81 + ..._csr_10_10_10_synthetic_500000_0.0001.json | 1 + ...sr_10_10_10_synthetic_500000_0.0001.output | 47 + ...6_csr_10_10_10_synthetic_500000_1e-05.json | 1 + ...csr_10_10_10_synthetic_500000_1e-05.output | 68 + ...6_csr_10_10_10_synthetic_500000_5e-05.json | 1 + ...csr_10_10_10_synthetic_500000_5e-05.output | 47 + ...6_csr_10_10_10_synthetic_50000_0.0001.json | 1 + ...csr_10_10_10_synthetic_50000_0.0001.output | 65 + ...16_csr_10_10_10_synthetic_50000_0.001.json | 1 + ..._csr_10_10_10_synthetic_50000_0.001.output | 45 + ..._16_csr_10_10_10_synthetic_50000_0.01.json | 1 + ...6_csr_10_10_10_synthetic_50000_0.01.output | 45 + ...16_csr_10_10_10_synthetic_50000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_50000_1e-05.output | 81 + ...16_csr_10_10_10_synthetic_50000_5e-05.json | 1 + ..._csr_10_10_10_synthetic_50000_5e-05.output | 65 + ...16_csr_10_10_10_synthetic_5000_0.0001.json | 1 + ..._csr_10_10_10_synthetic_5000_0.0001.output | 81 + ..._16_csr_10_10_10_synthetic_5000_0.001.json | 1 + ...6_csr_10_10_10_synthetic_5000_0.001.output | 81 + ...a_16_csr_10_10_10_synthetic_5000_0.01.json | 1 + ...16_csr_10_10_10_synthetic_5000_0.01.output | 65 + ...a_16_csr_10_10_10_synthetic_5000_0.05.json | 1 + ...16_csr_10_10_10_synthetic_5000_0.05.output | 45 + ...ra_16_csr_10_10_10_synthetic_5000_0.1.json | 1 + ..._16_csr_10_10_10_synthetic_5000_0.1.output | 45 + ...ra_16_csr_10_10_10_synthetic_5000_0.2.json | 1 + ..._16_csr_10_10_10_synthetic_5000_0.2.output | 45 + ...ra_16_csr_10_10_10_synthetic_5000_0.3.json | 1 + ..._16_csr_10_10_10_synthetic_5000_0.3.output | 45 + ..._16_csr_10_10_10_synthetic_5000_1e-05.json | 1 + ...6_csr_10_10_10_synthetic_5000_1e-05.output | 437 +++ ..._16_csr_10_10_10_synthetic_5000_5e-05.json | 1 + ...6_csr_10_10_10_synthetic_5000_5e-05.output | 81 + ..._csr_10_10_10_synthetic_100000_0.0001.json | 1 + ...sr_10_10_10_synthetic_100000_0.0001.output | 85 + ...6_csr_10_10_10_synthetic_100000_0.001.json | 1 + ...csr_10_10_10_synthetic_100000_0.001.output | 65 + ...6_csr_10_10_10_synthetic_100000_1e-05.json | 1 + ...csr_10_10_10_synthetic_100000_1e-05.output | 85 + ...6_csr_10_10_10_synthetic_100000_5e-05.json | 1 + ...csr_10_10_10_synthetic_100000_5e-05.output | 85 + ...6_csr_10_10_10_synthetic_10000_0.0001.json | 1 + ...csr_10_10_10_synthetic_10000_0.0001.output | 81 + ...16_csr_10_10_10_synthetic_10000_0.001.json | 1 + ..._csr_10_10_10_synthetic_10000_0.001.output | 86 + ..._16_csr_10_10_10_synthetic_10000_0.01.json | 1 + ...6_csr_10_10_10_synthetic_10000_0.01.output | 105 + ..._16_csr_10_10_10_synthetic_10000_0.05.json | 1 + ...6_csr_10_10_10_synthetic_10000_0.05.output | 85 + ...p_16_csr_10_10_10_synthetic_10000_0.1.json | 1 + ...16_csr_10_10_10_synthetic_10000_0.1.output | 85 + ...p_16_csr_10_10_10_synthetic_10000_0.2.json | 1 + ...16_csr_10_10_10_synthetic_10000_0.2.output | 85 + ...p_16_csr_10_10_10_synthetic_10000_0.3.json | 1 + ...16_csr_10_10_10_synthetic_10000_0.3.output | 65 + ...16_csr_10_10_10_synthetic_10000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_10000_1e-05.output | 1414 ++++++++ ...16_csr_10_10_10_synthetic_10000_5e-05.json | 1 + ..._csr_10_10_10_synthetic_10000_5e-05.output | 81 + ..._csr_10_10_10_synthetic_500000_0.0001.json | 1 + ...sr_10_10_10_synthetic_500000_0.0001.output | 89 + ...6_csr_10_10_10_synthetic_500000_1e-05.json | 1 + ...csr_10_10_10_synthetic_500000_1e-05.output | 89 + ...6_csr_10_10_10_synthetic_500000_5e-05.json | 1 + ...csr_10_10_10_synthetic_500000_5e-05.output | 89 + ...6_csr_10_10_10_synthetic_50000_0.0001.json | 1 + ...csr_10_10_10_synthetic_50000_0.0001.output | 125 + ...16_csr_10_10_10_synthetic_50000_0.001.json | 1 + ..._csr_10_10_10_synthetic_50000_0.001.output | 85 + ..._16_csr_10_10_10_synthetic_50000_0.01.json | 1 + ...6_csr_10_10_10_synthetic_50000_0.01.output | 65 + ...16_csr_10_10_10_synthetic_50000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_50000_1e-05.output | 81 + ...16_csr_10_10_10_synthetic_50000_5e-05.json | 1 + ..._csr_10_10_10_synthetic_50000_5e-05.output | 85 + ...16_csr_10_10_10_synthetic_5000_0.0001.json | 1 + ..._csr_10_10_10_synthetic_5000_0.0001.output | 81 + ..._16_csr_10_10_10_synthetic_5000_0.001.json | 1 + ...6_csr_10_10_10_synthetic_5000_0.001.output | 81 + ...p_16_csr_10_10_10_synthetic_5000_0.01.json | 1 + ...16_csr_10_10_10_synthetic_5000_0.01.output | 85 + ...p_16_csr_10_10_10_synthetic_5000_0.05.json | 1 + ...16_csr_10_10_10_synthetic_5000_0.05.output | 85 + ...3p_16_csr_10_10_10_synthetic_5000_0.1.json | 1 + ..._16_csr_10_10_10_synthetic_5000_0.1.output | 85 + ...3p_16_csr_10_10_10_synthetic_5000_0.2.json | 1 + ..._16_csr_10_10_10_synthetic_5000_0.2.output | 85 + ...3p_16_csr_10_10_10_synthetic_5000_0.3.json | 1 + ..._16_csr_10_10_10_synthetic_5000_0.3.output | 85 + ..._16_csr_10_10_10_synthetic_5000_1e-05.json | 1 + ...6_csr_10_10_10_synthetic_5000_1e-05.output | 464 +++ ..._16_csr_10_10_10_synthetic_5000_5e-05.json | 1 + ...6_csr_10_10_10_synthetic_5000_5e-05.output | 81 + ..._csr_10_10_10_synthetic_100000_0.0001.json | 1 + ...r_10_10_10_synthetic_100000_0.0001.output} | 59 +- ...6_csr_10_10_10_synthetic_100000_0.001.json | 1 + ...sr_10_10_10_synthetic_100000_0.001.output} | 60 +- ...6_csr_10_10_10_synthetic_100000_1e-05.json | 1 + ...csr_10_10_10_synthetic_100000_1e-05.output | 85 + ...6_csr_10_10_10_synthetic_100000_5e-05.json | 1 + ...csr_10_10_10_synthetic_100000_5e-05.output | 65 + ...6_csr_10_10_10_synthetic_10000_0.0001.json | 1 + ...csr_10_10_10_synthetic_10000_0.0001.output | 81 + ...16_csr_10_10_10_synthetic_10000_0.001.json | 1 + ..._csr_10_10_10_synthetic_10000_0.001.output | 85 + ..._16_csr_10_10_10_synthetic_10000_0.01.json | 1 + ...6_csr_10_10_10_synthetic_10000_0.01.output | 65 + ..._16_csr_10_10_10_synthetic_10000_0.05.json | 1 + ...6_csr_10_10_10_synthetic_10000_0.05.output | 65 + ...6_16_csr_10_10_10_synthetic_10000_0.1.json | 1 + ...16_csr_10_10_10_synthetic_10000_0.1.output | 65 + ...6_16_csr_10_10_10_synthetic_10000_0.2.json | 1 + ...16_csr_10_10_10_synthetic_10000_0.2.output | 65 + ...6_16_csr_10_10_10_synthetic_10000_0.3.json | 1 + ...16_csr_10_10_10_synthetic_10000_0.3.output | 45 + ...16_csr_10_10_10_synthetic_10000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_10000_1e-05.output | 1521 ++++++++ ...16_csr_10_10_10_synthetic_10000_5e-05.json | 1 + ..._csr_10_10_10_synthetic_10000_5e-05.output | 81 + ..._csr_10_10_10_synthetic_500000_0.0001.json | 1 + ...sr_10_10_10_synthetic_500000_0.0001.output | 47 + ...6_csr_10_10_10_synthetic_500000_1e-05.json | 1 + ...csr_10_10_10_synthetic_500000_1e-05.output | 68 + ...6_csr_10_10_10_synthetic_500000_5e-05.json | 1 + ...csr_10_10_10_synthetic_500000_5e-05.output | 68 + ...6_csr_10_10_10_synthetic_50000_0.0001.json | 1 + ...csr_10_10_10_synthetic_50000_0.0001.output | 85 + ...16_csr_10_10_10_synthetic_50000_0.001.json | 1 + ..._csr_10_10_10_synthetic_50000_0.001.output | 65 + ..._16_csr_10_10_10_synthetic_50000_0.01.json | 1 + ...6_csr_10_10_10_synthetic_50000_0.01.output | 45 + ...16_csr_10_10_10_synthetic_50000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_50000_1e-05.output | 81 + ...16_csr_10_10_10_synthetic_50000_5e-05.json | 1 + ..._csr_10_10_10_synthetic_50000_5e-05.output | 85 + ...16_csr_10_10_10_synthetic_5000_0.0001.json | 1 + ..._csr_10_10_10_synthetic_5000_0.0001.output | 81 + ..._16_csr_10_10_10_synthetic_5000_0.001.json | 1 + ...6_csr_10_10_10_synthetic_5000_0.001.output | 81 + ...6_16_csr_10_10_10_synthetic_5000_0.01.json | 1 + ...16_csr_10_10_10_synthetic_5000_0.01.output | 85 + ...6_16_csr_10_10_10_synthetic_5000_0.05.json | 1 + ...16_csr_10_10_10_synthetic_5000_0.05.output | 85 + ...16_16_csr_10_10_10_synthetic_5000_0.1.json | 1 + ..._16_csr_10_10_10_synthetic_5000_0.1.output | 65 + ...16_16_csr_10_10_10_synthetic_5000_0.2.json | 1 + ..._16_csr_10_10_10_synthetic_5000_0.2.output | 67 + ...16_16_csr_10_10_10_synthetic_5000_0.3.json | 1 + ..._16_csr_10_10_10_synthetic_5000_0.3.output | 65 + ..._16_csr_10_10_10_synthetic_5000_1e-05.json | 1 + ...6_csr_10_10_10_synthetic_5000_1e-05.output | 329 ++ ..._16_csr_10_10_10_synthetic_5000_5e-05.json | 1 + ...6_csr_10_10_10_synthetic_5000_5e-05.output | 81 + ..._csr_10_10_10_synthetic_100000_0.0001.json | 2 +- ...sr_10_10_10_synthetic_100000_0.0001.output | 64 +- ...1_csr_10_10_10_synthetic_100000_0.001.json | 2 +- ...csr_10_10_10_synthetic_100000_0.001.output | 44 +- ...1_csr_10_10_10_synthetic_100000_1e-05.json | 2 +- ...csr_10_10_10_synthetic_100000_1e-05.output | 54 +- ...1_csr_10_10_10_synthetic_100000_5e-05.json | 1 + ...csr_10_10_10_synthetic_100000_5e-05.output | 65 + ...1_csr_10_10_10_synthetic_10000_0.0001.json | 2 +- ...csr_10_10_10_synthetic_10000_0.0001.output | 73 +- ..._1_csr_10_10_10_synthetic_10000_0.001.json | 2 +- ..._csr_10_10_10_synthetic_10000_0.001.output | 54 +- ...a_1_csr_10_10_10_synthetic_10000_0.01.json | 2 +- ...1_csr_10_10_10_synthetic_10000_0.01.output | 64 +- ...a_1_csr_10_10_10_synthetic_10000_0.05.json | 2 +- ...1_csr_10_10_10_synthetic_10000_0.05.output | 44 +- ...ra_1_csr_10_10_10_synthetic_10000_0.1.json | 2 +- ..._1_csr_10_10_10_synthetic_10000_0.1.output | 44 +- ...ra_1_csr_10_10_10_synthetic_10000_0.2.json | 1 + ..._1_csr_10_10_10_synthetic_10000_0.2.output | 45 + ...ra_1_csr_10_10_10_synthetic_10000_0.3.json | 1 + ..._1_csr_10_10_10_synthetic_10000_0.3.output | 45 + ..._1_csr_10_10_10_synthetic_10000_1e-05.json | 2 +- ..._csr_10_10_10_synthetic_10000_1e-05.output | 2457 +++++++------ ..._1_csr_10_10_10_synthetic_10000_5e-05.json | 1 + ..._csr_10_10_10_synthetic_10000_5e-05.output | 81 + ..._csr_10_10_10_synthetic_500000_0.0001.json | 1 + ...sr_10_10_10_synthetic_500000_0.0001.output | 47 + ...1_csr_10_10_10_synthetic_500000_1e-05.json | 2 +- ...csr_10_10_10_synthetic_500000_1e-05.output | 44 +- ...1_csr_10_10_10_synthetic_500000_5e-05.json | 1 + ...csr_10_10_10_synthetic_500000_5e-05.output | 47 + ...1_csr_10_10_10_synthetic_50000_0.0001.json | 2 +- ...csr_10_10_10_synthetic_50000_0.0001.output | 54 +- ..._1_csr_10_10_10_synthetic_50000_0.001.json | 2 +- ..._csr_10_10_10_synthetic_50000_0.001.output | 64 +- ...a_1_csr_10_10_10_synthetic_50000_0.01.json | 1 + ...1_csr_10_10_10_synthetic_50000_0.01.output | 45 + ..._1_csr_10_10_10_synthetic_50000_1e-05.json | 2 +- ..._csr_10_10_10_synthetic_50000_1e-05.output | 68 +- ..._1_csr_10_10_10_synthetic_50000_5e-05.json | 1 + ..._csr_10_10_10_synthetic_50000_5e-05.output | 65 + ..._1_csr_10_10_10_synthetic_5000_0.0001.json | 2 +- ..._csr_10_10_10_synthetic_5000_0.0001.output | 68 +- ...a_1_csr_10_10_10_synthetic_5000_0.001.json | 2 +- ...1_csr_10_10_10_synthetic_5000_0.001.output | 73 +- ...ra_1_csr_10_10_10_synthetic_5000_0.01.json | 2 +- ..._1_csr_10_10_10_synthetic_5000_0.01.output | 54 +- ...ra_1_csr_10_10_10_synthetic_5000_0.05.json | 2 +- ..._1_csr_10_10_10_synthetic_5000_0.05.output | 64 +- ...tra_1_csr_10_10_10_synthetic_5000_0.1.json | 2 +- ...a_1_csr_10_10_10_synthetic_5000_0.1.output | 64 +- ...tra_1_csr_10_10_10_synthetic_5000_0.2.json | 1 + ...a_1_csr_10_10_10_synthetic_5000_0.2.output | 45 + ...tra_1_csr_10_10_10_synthetic_5000_0.3.json | 1 + ...a_1_csr_10_10_10_synthetic_5000_0.3.output | 45 + ...tra_1_csr_10_10_10_synthetic_5000_0.4.json | 1 + ...a_1_csr_10_10_10_synthetic_5000_0.4.output | 45 + ...tra_1_csr_10_10_10_synthetic_5000_0.5.json | 1 + ...a_1_csr_10_10_10_synthetic_5000_0.5.output | 45 + ...a_1_csr_10_10_10_synthetic_5000_1e-05.json | 2 +- ...1_csr_10_10_10_synthetic_5000_1e-05.output | 609 ++-- ...a_1_csr_10_10_10_synthetic_5000_5e-05.json | 1 + ...1_csr_10_10_10_synthetic_5000_5e-05.output | 81 + ..._csr_10_10_10_synthetic_100000_0.0001.json | 2 +- ...sr_10_10_10_synthetic_100000_0.0001.output | 78 +- ...1_csr_10_10_10_synthetic_100000_0.001.json | 2 +- ...csr_10_10_10_synthetic_100000_0.001.output | 64 +- ...1_csr_10_10_10_synthetic_100000_1e-05.json | 2 +- ...csr_10_10_10_synthetic_100000_1e-05.output | 74 +- ...1_csr_10_10_10_synthetic_100000_5e-05.json | 1 + ...csr_10_10_10_synthetic_100000_5e-05.output | 85 + ...1_csr_10_10_10_synthetic_10000_0.0001.json | 2 +- ...csr_10_10_10_synthetic_10000_0.0001.output | 68 +- ..._1_csr_10_10_10_synthetic_10000_0.001.json | 2 +- ..._csr_10_10_10_synthetic_10000_0.001.output | 88 +- ...p_1_csr_10_10_10_synthetic_10000_0.01.json | 2 +- ...1_csr_10_10_10_synthetic_10000_0.01.output | 80 +- ...p_1_csr_10_10_10_synthetic_10000_0.05.json | 2 +- ...1_csr_10_10_10_synthetic_10000_0.05.output | 60 +- ...3p_1_csr_10_10_10_synthetic_10000_0.1.json | 2 +- ..._1_csr_10_10_10_synthetic_10000_0.1.output | 64 +- ...3p_1_csr_10_10_10_synthetic_10000_0.2.json | 1 + ..._1_csr_10_10_10_synthetic_10000_0.2.output | 65 + ...3p_1_csr_10_10_10_synthetic_10000_0.3.json | 1 + ..._1_csr_10_10_10_synthetic_10000_0.3.output | 65 + ..._1_csr_10_10_10_synthetic_10000_1e-05.json | 2 +- ..._csr_10_10_10_synthetic_10000_1e-05.output | 2778 ++++++++------- ..._1_csr_10_10_10_synthetic_10000_5e-05.json | 1 + ..._csr_10_10_10_synthetic_10000_5e-05.output | 81 + ..._csr_10_10_10_synthetic_500000_0.0001.json | 1 + ...sr_10_10_10_synthetic_500000_0.0001.output | 89 + ...1_csr_10_10_10_synthetic_500000_1e-05.json | 2 +- ...csr_10_10_10_synthetic_500000_1e-05.output | 64 +- ...1_csr_10_10_10_synthetic_500000_5e-05.json | 1 + ...csr_10_10_10_synthetic_500000_5e-05.output | 68 + ...1_csr_10_10_10_synthetic_50000_0.0001.json | 2 +- ...csr_10_10_10_synthetic_50000_0.0001.output | 74 +- ..._1_csr_10_10_10_synthetic_50000_0.001.json | 2 +- ..._csr_10_10_10_synthetic_50000_0.001.output | 60 +- ...p_1_csr_10_10_10_synthetic_50000_0.01.json | 1 + ...1_csr_10_10_10_synthetic_50000_0.01.output | 65 + ..._1_csr_10_10_10_synthetic_50000_1e-05.json | 2 +- ..._csr_10_10_10_synthetic_50000_1e-05.output | 68 +- ..._1_csr_10_10_10_synthetic_50000_5e-05.json | 1 + ..._csr_10_10_10_synthetic_50000_5e-05.output | 85 + ..._1_csr_10_10_10_synthetic_5000_0.0001.json | 2 +- ..._csr_10_10_10_synthetic_5000_0.0001.output | 112 +- ...p_1_csr_10_10_10_synthetic_5000_0.001.json | 2 +- ...1_csr_10_10_10_synthetic_5000_0.001.output | 68 +- ...3p_1_csr_10_10_10_synthetic_5000_0.01.json | 2 +- ..._1_csr_10_10_10_synthetic_5000_0.01.output | 74 +- ...3p_1_csr_10_10_10_synthetic_5000_0.05.json | 2 +- ..._1_csr_10_10_10_synthetic_5000_0.05.output | 80 +- ...13p_1_csr_10_10_10_synthetic_5000_0.1.json | 2 +- ...p_1_csr_10_10_10_synthetic_5000_0.1.output | 60 +- ...13p_1_csr_10_10_10_synthetic_5000_0.2.json | 1 + ...p_1_csr_10_10_10_synthetic_5000_0.2.output | 65 + ...13p_1_csr_10_10_10_synthetic_5000_0.3.json | 1 + ...p_1_csr_10_10_10_synthetic_5000_0.3.output | 65 + ...13p_1_csr_10_10_10_synthetic_5000_0.4.json | 1 + ...p_1_csr_10_10_10_synthetic_5000_0.4.output | 65 + ...13p_1_csr_10_10_10_synthetic_5000_0.5.json | 1 + ...p_1_csr_10_10_10_synthetic_5000_0.5.output | 65 + ...p_1_csr_10_10_10_synthetic_5000_1e-05.json | 2 +- ...1_csr_10_10_10_synthetic_5000_1e-05.output | 560 +-- ...p_1_csr_10_10_10_synthetic_5000_5e-05.json | 1 + ...1_csr_10_10_10_synthetic_5000_5e-05.output | 81 + ..._csr_10_10_10_synthetic_100000_0.0001.json | 2 +- ...sr_10_10_10_synthetic_100000_0.0001.output | 80 +- ...1_csr_10_10_10_synthetic_100000_0.001.json | 2 +- ...csr_10_10_10_synthetic_100000_0.001.output | 64 +- ...1_csr_10_10_10_synthetic_100000_1e-05.json | 2 +- ...csr_10_10_10_synthetic_100000_1e-05.output | 74 +- ...1_csr_10_10_10_synthetic_100000_5e-05.json | 1 + ...csr_10_10_10_synthetic_100000_5e-05.output | 85 + ...1_csr_10_10_10_synthetic_10000_0.0001.json | 2 +- ...csr_10_10_10_synthetic_10000_0.0001.output | 68 +- ..._1_csr_10_10_10_synthetic_10000_0.001.json | 2 +- ..._csr_10_10_10_synthetic_10000_0.001.output | 74 +- ...6_1_csr_10_10_10_synthetic_10000_0.01.json | 2 +- ...1_csr_10_10_10_synthetic_10000_0.01.output | 80 +- ...6_1_csr_10_10_10_synthetic_10000_0.05.json | 2 +- ...1_csr_10_10_10_synthetic_10000_0.05.output | 64 +- ...16_1_csr_10_10_10_synthetic_10000_0.1.json | 2 +- ..._1_csr_10_10_10_synthetic_10000_0.1.output | 64 +- ...16_1_csr_10_10_10_synthetic_10000_0.2.json | 1 + ..._1_csr_10_10_10_synthetic_10000_0.2.output | 65 + ...16_1_csr_10_10_10_synthetic_10000_0.3.json | 1 + ..._1_csr_10_10_10_synthetic_10000_0.3.output | 45 + ..._1_csr_10_10_10_synthetic_10000_1e-05.json | 2 +- ..._csr_10_10_10_synthetic_10000_1e-05.output | 2538 ++++++------- ..._1_csr_10_10_10_synthetic_10000_5e-05.json | 1 + ..._csr_10_10_10_synthetic_10000_5e-05.output | 81 + ..._csr_10_10_10_synthetic_500000_0.0001.json | 1 + ...sr_10_10_10_synthetic_500000_0.0001.output | 47 + ...1_csr_10_10_10_synthetic_500000_1e-05.json | 2 +- ...csr_10_10_10_synthetic_500000_1e-05.output | 67 +- ...1_csr_10_10_10_synthetic_500000_5e-05.json | 1 + ...csr_10_10_10_synthetic_500000_5e-05.output | 68 + ...1_csr_10_10_10_synthetic_50000_0.0001.json | 2 +- ...csr_10_10_10_synthetic_50000_0.0001.output | 74 +- ..._1_csr_10_10_10_synthetic_50000_0.001.json | 2 +- ..._csr_10_10_10_synthetic_50000_0.001.output | 102 +- ...6_1_csr_10_10_10_synthetic_50000_0.01.json | 1 + ...1_csr_10_10_10_synthetic_50000_0.01.output | 65 + ..._1_csr_10_10_10_synthetic_50000_1e-05.json | 2 +- ..._csr_10_10_10_synthetic_50000_1e-05.output | 73 +- ..._1_csr_10_10_10_synthetic_50000_5e-05.json | 1 + ..._csr_10_10_10_synthetic_50000_5e-05.output | 85 + ..._1_csr_10_10_10_synthetic_5000_0.0001.json | 2 +- ..._csr_10_10_10_synthetic_5000_0.0001.output | 68 +- ...6_1_csr_10_10_10_synthetic_5000_0.001.json | 2 +- ...1_csr_10_10_10_synthetic_5000_0.001.output | 68 +- ...16_1_csr_10_10_10_synthetic_5000_0.01.json | 2 +- ..._1_csr_10_10_10_synthetic_5000_0.01.output | 74 +- ...16_1_csr_10_10_10_synthetic_5000_0.05.json | 2 +- ..._1_csr_10_10_10_synthetic_5000_0.05.output | 80 +- ...216_1_csr_10_10_10_synthetic_5000_0.1.json | 2 +- ...6_1_csr_10_10_10_synthetic_5000_0.1.output | 80 +- ...216_1_csr_10_10_10_synthetic_5000_0.2.json | 1 + ...6_1_csr_10_10_10_synthetic_5000_0.2.output | 65 + ...216_1_csr_10_10_10_synthetic_5000_0.3.json | 1 + ...6_1_csr_10_10_10_synthetic_5000_0.3.output | 65 + ...216_1_csr_10_10_10_synthetic_5000_0.4.json | 1 + ...6_1_csr_10_10_10_synthetic_5000_0.4.output | 65 + ...216_1_csr_10_10_10_synthetic_5000_0.5.json | 1 + ...6_1_csr_10_10_10_synthetic_5000_0.5.output | 65 + ...6_1_csr_10_10_10_synthetic_5000_1e-05.json | 2 +- ...1_csr_10_10_10_synthetic_5000_1e-05.output | 558 +-- ...6_1_csr_10_10_10_synthetic_5000_5e-05.json | 1 + ...1_csr_10_10_10_synthetic_5000_5e-05.output | 81 + ..._csr_10_10_10_synthetic_100000_0.0001.json | 1 + ...r_10_10_10_synthetic_100000_0.0001.output} | 42 +- ...1_csr_10_10_10_synthetic_100000_0.001.json | 1 + ...csr_10_10_10_synthetic_100000_0.001.output | 45 + ...1_csr_10_10_10_synthetic_100000_1e-05.json | 1 + ...sr_10_10_10_synthetic_100000_1e-05.output} | 52 +- ...1_csr_10_10_10_synthetic_10000_0.0001.json | 1 + ...csr_10_10_10_synthetic_10000_0.0001.output | 62 + ..._1_csr_10_10_10_synthetic_10000_0.001.json | 1 + ..._csr_10_10_10_synthetic_10000_0.001.output | 65 + ...a_1_csr_10_10_10_synthetic_10000_0.01.json | 1 + ...1_csr_10_10_10_synthetic_10000_0.01.output | 45 + ...a_1_csr_10_10_10_synthetic_10000_0.05.json | 1 + ...1_csr_10_10_10_synthetic_10000_0.05.output | 45 + ...ra_1_csr_10_10_10_synthetic_10000_0.1.json | 1 + ..._1_csr_10_10_10_synthetic_10000_0.1.output | 45 + ..._1_csr_10_10_10_synthetic_10000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_10000_1e-05.output | 1307 +++++++ ...1_csr_10_10_10_synthetic_500000_1e-05.json | 1 + ...csr_10_10_10_synthetic_500000_1e-05.output | 47 + ...1_csr_10_10_10_synthetic_50000_0.0001.json | 1 + ...sr_10_10_10_synthetic_50000_0.0001.output} | 53 +- ..._1_csr_10_10_10_synthetic_50000_0.001.json | 1 + ...csr_10_10_10_synthetic_50000_0.001.output} | 42 +- ..._1_csr_10_10_10_synthetic_50000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_50000_1e-05.output | 81 + ..._1_csr_10_10_10_synthetic_5000_0.0001.json | 1 + ..._csr_10_10_10_synthetic_5000_0.0001.output | 81 + ...a_1_csr_10_10_10_synthetic_5000_0.001.json | 1 + ...1_csr_10_10_10_synthetic_5000_0.001.output | 62 + ...ra_1_csr_10_10_10_synthetic_5000_0.01.json | 1 + ..._1_csr_10_10_10_synthetic_5000_0.01.output | 65 + ...ra_1_csr_10_10_10_synthetic_5000_0.05.json | 1 + ..._1_csr_10_10_10_synthetic_5000_0.05.output | 45 + ...tra_1_csr_10_10_10_synthetic_5000_0.1.json | 1 + ...a_1_csr_10_10_10_synthetic_5000_0.1.output | 45 + ...a_1_csr_10_10_10_synthetic_5000_1e-05.json | 1 + ...1_csr_10_10_10_synthetic_5000_1e-05.output | 356 ++ ..._csr_20_10_10_synthetic_100000_0.0001.json | 1 - ..._csr_20_10_10_synthetic_100000_0.0005.json | 1 - ...sr_20_10_10_synthetic_100000_0.0005.output | 45 - ...1_csr_20_10_10_synthetic_100000_0.001.json | 1 - ...csr_20_10_10_synthetic_100000_0.001.output | 45 - ...1_csr_20_10_10_synthetic_100000_0.005.json | 1 - ...csr_20_10_10_synthetic_100000_0.005.output | 45 - ...1_csr_20_10_10_synthetic_100000_1e-05.json | 1 - ...1_csr_20_10_10_synthetic_300000_1e-05.json | 0 ...csr_20_10_10_synthetic_300000_1e-05.output | 1 - ...1_csr_20_10_10_synthetic_30000_0.0001.json | 1 - ...csr_20_10_10_synthetic_30000_0.0001.output | 62 - ...1_csr_20_10_10_synthetic_30000_0.0005.json | 1 - ...csr_20_10_10_synthetic_30000_0.0005.output | 65 - ..._1_csr_20_10_10_synthetic_30000_0.001.json | 1 - ..._csr_20_10_10_synthetic_30000_0.001.output | 65 - ..._1_csr_20_10_10_synthetic_30000_0.005.json | 1 - ..._csr_20_10_10_synthetic_30000_0.005.output | 45 - ...a_1_csr_20_10_10_synthetic_30000_0.01.json | 1 - ...1_csr_20_10_10_synthetic_30000_0.01.output | 45 - ...a_1_csr_20_10_10_synthetic_30000_0.05.json | 1 - ...1_csr_20_10_10_synthetic_30000_0.05.output | 45 - ...ra_1_csr_20_10_10_synthetic_30000_0.1.json | 1 - ..._1_csr_20_10_10_synthetic_30000_0.1.output | 45 - ..._1_csr_20_10_10_synthetic_30000_1e-05.json | 1 - ..._csr_20_10_10_synthetic_30000_1e-05.output | 62 - ...1_csr_20_10_10_synthetic_50000_0.0001.json | 1 - ...1_csr_20_10_10_synthetic_50000_0.0005.json | 1 - ...csr_20_10_10_synthetic_50000_0.0005.output | 45 - ..._1_csr_20_10_10_synthetic_50000_0.001.json | 1 - ..._1_csr_20_10_10_synthetic_50000_0.005.json | 1 - ..._csr_20_10_10_synthetic_50000_0.005.output | 45 - ...a_1_csr_20_10_10_synthetic_50000_0.01.json | 1 - ...1_csr_20_10_10_synthetic_50000_0.01.output | 45 - ..._1_csr_20_10_10_synthetic_50000_1e-05.json | 1 - ..._csr_20_10_10_synthetic_50000_1e-05.output | 62 - ..._csr_10_10_10_synthetic_100000_0.0001.json | 1 + ...sr_10_10_10_synthetic_100000_0.0001.output | 65 + ...1_csr_10_10_10_synthetic_100000_0.001.json | 1 + ...csr_10_10_10_synthetic_100000_0.001.output | 45 + ...1_csr_10_10_10_synthetic_100000_1e-05.json | 1 + ...sr_10_10_10_synthetic_100000_1e-05.output} | 52 +- ...1_csr_10_10_10_synthetic_10000_0.0001.json | 1 + ...csr_10_10_10_synthetic_10000_0.0001.output | 81 + ..._1_csr_10_10_10_synthetic_10000_0.001.json | 1 + ..._csr_10_10_10_synthetic_10000_0.001.output | 85 + ...p_1_csr_10_10_10_synthetic_10000_0.01.json | 1 + ...1_csr_10_10_10_synthetic_10000_0.01.output | 65 + ...p_1_csr_10_10_10_synthetic_10000_0.05.json | 1 + ...1_csr_10_10_10_synthetic_10000_0.05.output | 65 + ...3p_1_csr_10_10_10_synthetic_10000_0.1.json | 1 + ..._1_csr_10_10_10_synthetic_10000_0.1.output | 45 + ..._1_csr_10_10_10_synthetic_10000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_10000_1e-05.output | 1307 +++++++ ...1_csr_10_10_10_synthetic_500000_1e-05.json | 1 + ...sr_10_10_10_synthetic_500000_1e-05.output} | 60 +- ...1_csr_10_10_10_synthetic_50000_0.0001.json | 1 + ...sr_10_10_10_synthetic_50000_0.0001.output} | 52 +- ..._1_csr_10_10_10_synthetic_50000_0.001.json | 1 + ...csr_10_10_10_synthetic_50000_0.001.output} | 58 +- ..._1_csr_10_10_10_synthetic_50000_1e-05.json | 1 + ...csr_10_10_10_synthetic_50000_1e-05.output} | 64 +- ..._1_csr_10_10_10_synthetic_5000_0.0001.json | 1 + ..._csr_10_10_10_synthetic_5000_0.0001.output | 81 + ...p_1_csr_10_10_10_synthetic_5000_0.001.json | 1 + ...1_csr_10_10_10_synthetic_5000_0.001.output | 81 + ...3p_1_csr_10_10_10_synthetic_5000_0.01.json | 1 + ..._1_csr_10_10_10_synthetic_5000_0.01.output | 65 + ...3p_1_csr_10_10_10_synthetic_5000_0.05.json | 1 + ..._1_csr_10_10_10_synthetic_5000_0.05.output | 65 + ...13p_1_csr_10_10_10_synthetic_5000_0.1.json | 1 + ...p_1_csr_10_10_10_synthetic_5000_0.1.output | 65 + ...p_1_csr_10_10_10_synthetic_5000_1e-05.json | 1 + ...1_csr_10_10_10_synthetic_5000_1e-05.output | 329 ++ ..._csr_20_10_10_synthetic_1000000_1e-05.json | 1 - ...sr_20_10_10_synthetic_1000000_1e-05.output | 47 - ..._csr_20_10_10_synthetic_100000_0.0001.json | 1 - ..._csr_20_10_10_synthetic_100000_0.0005.json | 1 - ...sr_20_10_10_synthetic_100000_0.0005.output | 65 - ...1_csr_20_10_10_synthetic_100000_0.001.json | 1 - ...1_csr_20_10_10_synthetic_100000_0.005.json | 1 - ...csr_20_10_10_synthetic_100000_0.005.output | 45 - ...1_csr_20_10_10_synthetic_100000_1e-05.json | 1 - ..._csr_20_10_10_synthetic_3000000_1e-05.json | 1 - ...sr_20_10_10_synthetic_3000000_1e-05.output | 51 - ..._csr_20_10_10_synthetic_300000_0.0001.json | 1 - ...sr_20_10_10_synthetic_300000_0.0001.output | 68 - ..._csr_20_10_10_synthetic_300000_0.0005.json | 1 - ...sr_20_10_10_synthetic_300000_0.0005.output | 47 - ...1_csr_20_10_10_synthetic_300000_0.001.json | 1 - ...csr_20_10_10_synthetic_300000_0.001.output | 47 - ...1_csr_20_10_10_synthetic_300000_1e-05.json | 1 - ...csr_20_10_10_synthetic_300000_1e-05.output | 68 - ...1_csr_20_10_10_synthetic_30000_0.0001.json | 1 - ...csr_20_10_10_synthetic_30000_0.0001.output | 62 - ...1_csr_20_10_10_synthetic_30000_0.0005.json | 1 - ...csr_20_10_10_synthetic_30000_0.0005.output | 65 - ..._1_csr_20_10_10_synthetic_30000_0.001.json | 1 - ..._csr_20_10_10_synthetic_30000_0.001.output | 65 - ..._1_csr_20_10_10_synthetic_30000_0.005.json | 1 - ..._csr_20_10_10_synthetic_30000_0.005.output | 65 - ...p_1_csr_20_10_10_synthetic_30000_0.01.json | 1 - ...1_csr_20_10_10_synthetic_30000_0.01.output | 65 - ...p_1_csr_20_10_10_synthetic_30000_0.05.json | 1 - ...1_csr_20_10_10_synthetic_30000_0.05.output | 45 - ...3p_1_csr_20_10_10_synthetic_30000_0.1.json | 1 - ..._1_csr_20_10_10_synthetic_30000_0.1.output | 45 - ..._1_csr_20_10_10_synthetic_30000_1e-05.json | 1 - ..._csr_20_10_10_synthetic_30000_1e-05.output | 81 - ..._csr_20_10_10_synthetic_500000_0.0001.json | 1 - ...sr_20_10_10_synthetic_500000_0.0001.output | 47 - ...1_csr_20_10_10_synthetic_500000_1e-05.json | 1 - ...1_csr_20_10_10_synthetic_50000_0.0001.json | 1 - ...1_csr_20_10_10_synthetic_50000_0.0005.json | 1 - ...csr_20_10_10_synthetic_50000_0.0005.output | 65 - ..._1_csr_20_10_10_synthetic_50000_0.001.json | 1 - ..._1_csr_20_10_10_synthetic_50000_0.005.json | 1 - ..._csr_20_10_10_synthetic_50000_0.005.output | 65 - ...p_1_csr_20_10_10_synthetic_50000_0.01.json | 1 - ...1_csr_20_10_10_synthetic_50000_0.01.output | 45 - ..._1_csr_20_10_10_synthetic_50000_1e-05.json | 1 - ..._csr_10_10_10_synthetic_100000_0.0001.json | 1 + ...r_10_10_10_synthetic_100000_0.0001.output} | 58 +- ...1_csr_10_10_10_synthetic_100000_0.001.json | 1 + ...sr_10_10_10_synthetic_100000_0.001.output} | 42 +- ...1_csr_10_10_10_synthetic_100000_1e-05.json | 1 + ...sr_10_10_10_synthetic_100000_1e-05.output} | 52 +- ...1_csr_10_10_10_synthetic_10000_0.0001.json | 1 + ...csr_10_10_10_synthetic_10000_0.0001.output | 81 + ..._1_csr_10_10_10_synthetic_10000_0.001.json | 1 + ..._csr_10_10_10_synthetic_10000_0.001.output | 65 + ...6_1_csr_10_10_10_synthetic_10000_0.01.json | 1 + ...1_csr_10_10_10_synthetic_10000_0.01.output | 65 + ...6_1_csr_10_10_10_synthetic_10000_0.05.json | 1 + ...1_csr_10_10_10_synthetic_10000_0.05.output | 45 + ...16_1_csr_10_10_10_synthetic_10000_0.1.json | 1 + ..._1_csr_10_10_10_synthetic_10000_0.1.output | 45 + ..._1_csr_10_10_10_synthetic_10000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_10000_1e-05.output | 1307 +++++++ ...1_csr_10_10_10_synthetic_500000_1e-05.json | 1 + ...csr_10_10_10_synthetic_500000_1e-05.output | 47 + ...1_csr_10_10_10_synthetic_50000_0.0001.json | 1 + ...sr_10_10_10_synthetic_50000_0.0001.output} | 52 +- ..._1_csr_10_10_10_synthetic_50000_0.001.json | 1 + ...csr_10_10_10_synthetic_50000_0.001.output} | 58 +- ..._1_csr_10_10_10_synthetic_50000_1e-05.json | 1 + ...csr_10_10_10_synthetic_50000_1e-05.output} | 52 +- ..._1_csr_10_10_10_synthetic_5000_0.0001.json | 1 + ..._csr_10_10_10_synthetic_5000_0.0001.output | 81 + ...6_1_csr_10_10_10_synthetic_5000_0.001.json | 1 + ...1_csr_10_10_10_synthetic_5000_0.001.output | 81 + ...16_1_csr_10_10_10_synthetic_5000_0.01.json | 1 + ..._1_csr_10_10_10_synthetic_5000_0.01.output | 65 + ...16_1_csr_10_10_10_synthetic_5000_0.05.json | 1 + ..._1_csr_10_10_10_synthetic_5000_0.05.output | 65 + ...216_1_csr_10_10_10_synthetic_5000_0.1.json | 1 + ...6_1_csr_10_10_10_synthetic_5000_0.1.output | 65 + ...6_1_csr_10_10_10_synthetic_5000_1e-05.json | 1 + ...1_csr_10_10_10_synthetic_5000_1e-05.output | 329 ++ ..._csr_20_10_10_synthetic_1000000_1e-05.json | 1 - ...sr_20_10_10_synthetic_1000000_1e-05.output | 47 - ..._csr_20_10_10_synthetic_100000_0.0001.json | 1 - ..._csr_20_10_10_synthetic_100000_0.0005.json | 1 - ...sr_20_10_10_synthetic_100000_0.0005.output | 65 - ...1_csr_20_10_10_synthetic_100000_0.001.json | 1 - ...1_csr_20_10_10_synthetic_100000_0.005.json | 1 - ...csr_20_10_10_synthetic_100000_0.005.output | 45 - ...1_csr_20_10_10_synthetic_100000_1e-05.json | 1 - ..._csr_20_10_10_synthetic_3000000_1e-05.json | 0 ...sr_20_10_10_synthetic_3000000_1e-05.output | 10 - ..._csr_20_10_10_synthetic_300000_0.0001.json | 1 - ...sr_20_10_10_synthetic_300000_0.0001.output | 47 - ..._csr_20_10_10_synthetic_300000_0.0005.json | 1 - ...sr_20_10_10_synthetic_300000_0.0005.output | 47 - ...1_csr_20_10_10_synthetic_300000_0.001.json | 0 ...csr_20_10_10_synthetic_300000_0.001.output | 10 - ...1_csr_20_10_10_synthetic_300000_1e-05.json | 1 - ...csr_20_10_10_synthetic_300000_1e-05.output | 68 - ...1_csr_20_10_10_synthetic_30000_0.0001.json | 1 - ...csr_20_10_10_synthetic_30000_0.0001.output | 62 - ...1_csr_20_10_10_synthetic_30000_0.0005.json | 1 - ...csr_20_10_10_synthetic_30000_0.0005.output | 65 - ..._1_csr_20_10_10_synthetic_30000_0.001.json | 1 - ..._csr_20_10_10_synthetic_30000_0.001.output | 65 - ..._1_csr_20_10_10_synthetic_30000_0.005.json | 1 - ..._csr_20_10_10_synthetic_30000_0.005.output | 65 - ...6_1_csr_20_10_10_synthetic_30000_0.01.json | 1 - ...1_csr_20_10_10_synthetic_30000_0.01.output | 45 - ...6_1_csr_20_10_10_synthetic_30000_0.05.json | 0 ...1_csr_20_10_10_synthetic_30000_0.05.output | 10 - ...16_1_csr_20_10_10_synthetic_30000_0.1.json | 0 ..._1_csr_20_10_10_synthetic_30000_0.1.output | 10 - ..._1_csr_20_10_10_synthetic_30000_1e-05.json | 1 - ..._csr_20_10_10_synthetic_30000_1e-05.output | 81 - ..._csr_20_10_10_synthetic_500000_0.0001.json | 1 - ...sr_20_10_10_synthetic_500000_0.0001.output | 47 - ...1_csr_20_10_10_synthetic_500000_1e-05.json | 1 - ...csr_20_10_10_synthetic_500000_1e-05.output | 68 - ...1_csr_20_10_10_synthetic_50000_0.0001.json | 1 - ...1_csr_20_10_10_synthetic_50000_0.0005.json | 1 - ...csr_20_10_10_synthetic_50000_0.0005.output | 65 - ..._1_csr_20_10_10_synthetic_50000_0.001.json | 1 - ..._1_csr_20_10_10_synthetic_50000_0.005.json | 1 - ..._csr_20_10_10_synthetic_50000_0.005.output | 45 - ...6_1_csr_20_10_10_synthetic_50000_0.01.json | 1 - ...1_csr_20_10_10_synthetic_50000_0.01.output | 45 - ..._1_csr_20_10_10_synthetic_50000_1e-05.json | 1 - ..._csr_10_10_10_synthetic_100000_0.0001.json | 2 +- ...sr_10_10_10_synthetic_100000_0.0001.output | 64 +- ...x_csr_10_10_10_synthetic_100000_0.001.json | 2 +- ...csr_10_10_10_synthetic_100000_0.001.output | 46 +- ...x_csr_10_10_10_synthetic_100000_1e-05.json | 2 +- ...csr_10_10_10_synthetic_100000_1e-05.output | 74 +- ...x_csr_10_10_10_synthetic_100000_5e-05.json | 1 + ...csr_10_10_10_synthetic_100000_5e-05.output | 65 + ...x_csr_10_10_10_synthetic_10000_0.0001.json | 2 +- ...csr_10_10_10_synthetic_10000_0.0001.output | 73 +- ...ax_csr_10_10_10_synthetic_10000_0.001.json | 2 +- ..._csr_10_10_10_synthetic_10000_0.001.output | 74 +- ...max_csr_10_10_10_synthetic_10000_0.01.json | 2 +- ...x_csr_10_10_10_synthetic_10000_0.01.output | 64 +- ...max_csr_10_10_10_synthetic_10000_0.05.json | 2 +- ...x_csr_10_10_10_synthetic_10000_0.05.output | 44 +- ..._max_csr_10_10_10_synthetic_10000_0.1.json | 2 +- ...ax_csr_10_10_10_synthetic_10000_0.1.output | 44 +- ..._max_csr_10_10_10_synthetic_10000_0.2.json | 1 + ...ax_csr_10_10_10_synthetic_10000_0.2.output | 45 + ..._max_csr_10_10_10_synthetic_10000_0.3.json | 1 + ...ax_csr_10_10_10_synthetic_10000_0.3.output | 45 + ...ax_csr_10_10_10_synthetic_10000_1e-05.json | 2 +- ..._csr_10_10_10_synthetic_10000_1e-05.output | 2538 ++++++------- ...ax_csr_10_10_10_synthetic_10000_5e-05.json | 1 + ..._csr_10_10_10_synthetic_10000_5e-05.output | 81 + ..._csr_10_10_10_synthetic_500000_0.0001.json | 1 + ...sr_10_10_10_synthetic_500000_0.0001.output | 47 + ...x_csr_10_10_10_synthetic_500000_1e-05.json | 2 +- ...csr_10_10_10_synthetic_500000_1e-05.output | 109 +- ...x_csr_10_10_10_synthetic_500000_5e-05.json | 1 + ...csr_10_10_10_synthetic_500000_5e-05.output | 47 + ...x_csr_10_10_10_synthetic_50000_0.0001.json | 2 +- ...csr_10_10_10_synthetic_50000_0.0001.output | 80 +- ...ax_csr_10_10_10_synthetic_50000_0.001.json | 2 +- ..._csr_10_10_10_synthetic_50000_0.001.output | 84 +- ...max_csr_10_10_10_synthetic_50000_0.01.json | 1 + ...x_csr_10_10_10_synthetic_50000_0.01.output | 45 + ...ax_csr_10_10_10_synthetic_50000_1e-05.json | 2 +- ..._csr_10_10_10_synthetic_50000_1e-05.output | 107 +- ...ax_csr_10_10_10_synthetic_50000_5e-05.json | 1 + ..._csr_10_10_10_synthetic_50000_5e-05.output | 85 + ...ax_csr_10_10_10_synthetic_5000_0.0001.json | 2 +- ..._csr_10_10_10_synthetic_5000_0.0001.output | 68 +- ...max_csr_10_10_10_synthetic_5000_0.001.json | 2 +- ...x_csr_10_10_10_synthetic_5000_0.001.output | 68 +- ..._max_csr_10_10_10_synthetic_5000_0.01.json | 2 +- ...ax_csr_10_10_10_synthetic_5000_0.01.output | 68 +- ..._max_csr_10_10_10_synthetic_5000_0.05.json | 2 +- ...ax_csr_10_10_10_synthetic_5000_0.05.output | 84 +- ...a_max_csr_10_10_10_synthetic_5000_0.1.json | 2 +- ...max_csr_10_10_10_synthetic_5000_0.1.output | 64 +- ...a_max_csr_10_10_10_synthetic_5000_0.2.json | 1 + ...max_csr_10_10_10_synthetic_5000_0.2.output | 45 + ...a_max_csr_10_10_10_synthetic_5000_0.3.json | 1 + ...max_csr_10_10_10_synthetic_5000_0.3.output | 45 + ...a_max_csr_10_10_10_synthetic_5000_0.4.json | 1 + ...max_csr_10_10_10_synthetic_5000_0.4.output | 45 + ...a_max_csr_10_10_10_synthetic_5000_0.5.json | 1 + ...max_csr_10_10_10_synthetic_5000_0.5.output | 45 + ...max_csr_10_10_10_synthetic_5000_1e-05.json | 2 +- ...x_csr_10_10_10_synthetic_5000_1e-05.output | 664 ++-- ...max_csr_10_10_10_synthetic_5000_5e-05.json | 1 + ...x_csr_10_10_10_synthetic_5000_5e-05.output | 81 + ..._csr_10_10_10_synthetic_100000_0.0001.json | 2 +- ...sr_10_10_10_synthetic_100000_0.0001.output | 98 +- ...x_csr_10_10_10_synthetic_100000_0.001.json | 2 +- ...csr_10_10_10_synthetic_100000_0.001.output | 80 +- ...x_csr_10_10_10_synthetic_100000_1e-05.json | 2 +- ...csr_10_10_10_synthetic_100000_1e-05.output | 68 +- ...x_csr_10_10_10_synthetic_100000_5e-05.json | 1 + ...csr_10_10_10_synthetic_100000_5e-05.output | 85 + ...x_csr_10_10_10_synthetic_10000_0.0001.json | 2 +- ...csr_10_10_10_synthetic_10000_0.0001.output | 68 +- ...ax_csr_10_10_10_synthetic_10000_0.001.json | 2 +- ..._csr_10_10_10_synthetic_10000_0.001.output | 74 +- ...max_csr_10_10_10_synthetic_10000_0.01.json | 2 +- ...x_csr_10_10_10_synthetic_10000_0.01.output | 142 +- ...max_csr_10_10_10_synthetic_10000_0.05.json | 2 +- ...x_csr_10_10_10_synthetic_10000_0.05.output | 76 +- ..._max_csr_10_10_10_synthetic_10000_0.1.json | 2 +- ...ax_csr_10_10_10_synthetic_10000_0.1.output | 76 +- ..._max_csr_10_10_10_synthetic_10000_0.2.json | 1 + ...ax_csr_10_10_10_synthetic_10000_0.2.output | 65 + ..._max_csr_10_10_10_synthetic_10000_0.3.json | 1 + ...ax_csr_10_10_10_synthetic_10000_0.3.output | 85 + ...ax_csr_10_10_10_synthetic_10000_1e-05.json | 2 +- ..._csr_10_10_10_synthetic_10000_1e-05.output | 3131 +++++++++-------- ...ax_csr_10_10_10_synthetic_10000_5e-05.json | 1 + ..._csr_10_10_10_synthetic_10000_5e-05.output | 81 + ..._csr_10_10_10_synthetic_500000_0.0001.json | 1 + ...sr_10_10_10_synthetic_500000_0.0001.output | 68 + ...x_csr_10_10_10_synthetic_500000_1e-05.json | 2 +- ...csr_10_10_10_synthetic_500000_1e-05.output | 82 +- ...x_csr_10_10_10_synthetic_500000_5e-05.json | 1 + ...csr_10_10_10_synthetic_500000_5e-05.output | 68 + ...x_csr_10_10_10_synthetic_50000_0.0001.json | 2 +- ...csr_10_10_10_synthetic_50000_0.0001.output | 88 +- ...ax_csr_10_10_10_synthetic_50000_0.001.json | 2 +- ..._csr_10_10_10_synthetic_50000_0.001.output | 76 +- ...max_csr_10_10_10_synthetic_50000_0.01.json | 1 + ...x_csr_10_10_10_synthetic_50000_0.01.output | 65 + ...ax_csr_10_10_10_synthetic_50000_1e-05.json | 2 +- ..._csr_10_10_10_synthetic_50000_1e-05.output | 85 +- ...ax_csr_10_10_10_synthetic_50000_5e-05.json | 1 + ..._csr_10_10_10_synthetic_50000_5e-05.output | 85 + ...ax_csr_10_10_10_synthetic_5000_0.0001.json | 2 +- ..._csr_10_10_10_synthetic_5000_0.0001.output | 68 +- ...max_csr_10_10_10_synthetic_5000_0.001.json | 2 +- ...x_csr_10_10_10_synthetic_5000_0.001.output | 68 +- ..._max_csr_10_10_10_synthetic_5000_0.01.json | 2 +- ...ax_csr_10_10_10_synthetic_5000_0.01.output | 68 +- ..._max_csr_10_10_10_synthetic_5000_0.05.json | 2 +- ...ax_csr_10_10_10_synthetic_5000_0.05.output | 76 +- ...p_max_csr_10_10_10_synthetic_5000_0.1.json | 2 +- ...max_csr_10_10_10_synthetic_5000_0.1.output | 76 +- ...p_max_csr_10_10_10_synthetic_5000_0.2.json | 1 + ...max_csr_10_10_10_synthetic_5000_0.2.output | 85 + ...p_max_csr_10_10_10_synthetic_5000_0.3.json | 1 + ...max_csr_10_10_10_synthetic_5000_0.3.output | 85 + ...p_max_csr_10_10_10_synthetic_5000_0.4.json | 1 + ...max_csr_10_10_10_synthetic_5000_0.4.output | 65 + ...p_max_csr_10_10_10_synthetic_5000_0.5.json | 1 + ...max_csr_10_10_10_synthetic_5000_0.5.output | 85 + ...max_csr_10_10_10_synthetic_5000_1e-05.json | 2 +- ...x_csr_10_10_10_synthetic_5000_1e-05.output | 589 ++-- ...max_csr_10_10_10_synthetic_5000_5e-05.json | 1 + ...x_csr_10_10_10_synthetic_5000_5e-05.output | 81 + ..._csr_10_10_10_synthetic_100000_0.0001.json | 2 +- ...sr_10_10_10_synthetic_100000_0.0001.output | 78 +- ...x_csr_10_10_10_synthetic_100000_0.001.json | 2 +- ...csr_10_10_10_synthetic_100000_0.001.output | 60 +- ...x_csr_10_10_10_synthetic_100000_1e-05.json | 2 +- ...csr_10_10_10_synthetic_100000_1e-05.output | 68 +- ...x_csr_10_10_10_synthetic_100000_5e-05.json | 1 + ...csr_10_10_10_synthetic_100000_5e-05.output | 85 + ...x_csr_10_10_10_synthetic_10000_0.0001.json | 2 +- ...csr_10_10_10_synthetic_10000_0.0001.output | 68 +- ...ax_csr_10_10_10_synthetic_10000_0.001.json | 2 +- ..._csr_10_10_10_synthetic_10000_0.001.output | 68 +- ...max_csr_10_10_10_synthetic_10000_0.01.json | 2 +- ...x_csr_10_10_10_synthetic_10000_0.01.output | 96 +- ...max_csr_10_10_10_synthetic_10000_0.05.json | 2 +- ...x_csr_10_10_10_synthetic_10000_0.05.output | 80 +- ..._max_csr_10_10_10_synthetic_10000_0.1.json | 2 +- ...ax_csr_10_10_10_synthetic_10000_0.1.output | 80 +- ..._max_csr_10_10_10_synthetic_10000_0.2.json | 1 + ...ax_csr_10_10_10_synthetic_10000_0.2.output | 65 + ..._max_csr_10_10_10_synthetic_10000_0.3.json | 1 + ...ax_csr_10_10_10_synthetic_10000_0.3.output | 105 + ...ax_csr_10_10_10_synthetic_10000_1e-05.json | 2 +- ..._csr_10_10_10_synthetic_10000_1e-05.output | 2728 +++++++------- ...ax_csr_10_10_10_synthetic_10000_5e-05.json | 1 + ..._csr_10_10_10_synthetic_10000_5e-05.output | 81 + ..._csr_10_10_10_synthetic_500000_0.0001.json | 1 + ...sr_10_10_10_synthetic_500000_0.0001.output | 89 + ...x_csr_10_10_10_synthetic_500000_1e-05.json | 2 +- ...csr_10_10_10_synthetic_500000_1e-05.output | 87 +- ...x_csr_10_10_10_synthetic_500000_5e-05.json | 1 + ...csr_10_10_10_synthetic_500000_5e-05.output | 68 + ...x_csr_10_10_10_synthetic_50000_0.0001.json | 2 +- ...csr_10_10_10_synthetic_50000_0.0001.output | 68 +- ...ax_csr_10_10_10_synthetic_50000_0.001.json | 2 +- ..._csr_10_10_10_synthetic_50000_0.001.output | 78 +- ...max_csr_10_10_10_synthetic_50000_0.01.json | 1 + ...x_csr_10_10_10_synthetic_50000_0.01.output | 86 + ...ax_csr_10_10_10_synthetic_50000_1e-05.json | 2 +- ..._csr_10_10_10_synthetic_50000_1e-05.output | 85 +- ...ax_csr_10_10_10_synthetic_50000_5e-05.json | 1 + ..._csr_10_10_10_synthetic_50000_5e-05.output | 85 + ...ax_csr_10_10_10_synthetic_5000_0.0001.json | 2 +- ..._csr_10_10_10_synthetic_5000_0.0001.output | 88 +- ...max_csr_10_10_10_synthetic_5000_0.001.json | 2 +- ...x_csr_10_10_10_synthetic_5000_0.001.output | 68 +- ..._max_csr_10_10_10_synthetic_5000_0.01.json | 2 +- ...ax_csr_10_10_10_synthetic_5000_0.01.output | 68 +- ..._max_csr_10_10_10_synthetic_5000_0.05.json | 2 +- ...ax_csr_10_10_10_synthetic_5000_0.05.output | 76 +- ...6_max_csr_10_10_10_synthetic_5000_0.1.json | 2 +- ...max_csr_10_10_10_synthetic_5000_0.1.output | 80 +- ...6_max_csr_10_10_10_synthetic_5000_0.2.json | 1 + ...max_csr_10_10_10_synthetic_5000_0.2.output | 85 + ...6_max_csr_10_10_10_synthetic_5000_0.3.json | 1 + ...max_csr_10_10_10_synthetic_5000_0.3.output | 85 + ...6_max_csr_10_10_10_synthetic_5000_0.4.json | 1 + ...max_csr_10_10_10_synthetic_5000_0.4.output | 85 + ...6_max_csr_10_10_10_synthetic_5000_0.5.json | 1 + ...max_csr_10_10_10_synthetic_5000_0.5.output | 85 + ...max_csr_10_10_10_synthetic_5000_1e-05.json | 2 +- ...x_csr_10_10_10_synthetic_5000_1e-05.output | 616 ++-- ...max_csr_10_10_10_synthetic_5000_5e-05.json | 1 + ...x_csr_10_10_10_synthetic_5000_5e-05.output | 81 + ..._csr_10_10_10_synthetic_100000_0.0001.json | 1 + ...sr_10_10_10_synthetic_100000_0.0001.output | 45 + ...x_csr_10_10_10_synthetic_100000_0.001.json | 1 + ...csr_10_10_10_synthetic_100000_0.001.output | 47 + ...x_csr_10_10_10_synthetic_100000_1e-05.json | 1 + ...csr_10_10_10_synthetic_100000_1e-05.output | 65 + ...x_csr_10_10_10_synthetic_10000_0.0001.json | 1 + ...csr_10_10_10_synthetic_10000_0.0001.output | 62 + ...ax_csr_10_10_10_synthetic_10000_0.001.json | 1 + ..._csr_10_10_10_synthetic_10000_0.001.output | 65 + ...max_csr_10_10_10_synthetic_10000_0.01.json | 1 + ...x_csr_10_10_10_synthetic_10000_0.01.output | 45 + ...max_csr_10_10_10_synthetic_10000_0.05.json | 1 + ...x_csr_10_10_10_synthetic_10000_0.05.output | 45 + ..._max_csr_10_10_10_synthetic_10000_0.1.json | 1 + ...ax_csr_10_10_10_synthetic_10000_0.1.output | 45 + ...ax_csr_10_10_10_synthetic_10000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_10000_1e-05.output | 1414 ++++++++ ...x_csr_10_10_10_synthetic_500000_1e-05.json | 1 + ...csr_10_10_10_synthetic_500000_1e-05.output | 47 + ...x_csr_10_10_10_synthetic_50000_0.0001.json | 1 + ...csr_10_10_10_synthetic_50000_0.0001.output | 45 + ...ax_csr_10_10_10_synthetic_50000_0.001.json | 1 + ..._csr_10_10_10_synthetic_50000_0.001.output | 45 + ...ax_csr_10_10_10_synthetic_50000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_50000_1e-05.output | 81 + ...ax_csr_10_10_10_synthetic_5000_0.0001.json | 1 + ..._csr_10_10_10_synthetic_5000_0.0001.output | 81 + ...max_csr_10_10_10_synthetic_5000_0.001.json | 1 + ...x_csr_10_10_10_synthetic_5000_0.001.output | 81 + ..._max_csr_10_10_10_synthetic_5000_0.01.json | 1 + ...ax_csr_10_10_10_synthetic_5000_0.01.output | 85 + ..._max_csr_10_10_10_synthetic_5000_0.05.json | 1 + ...ax_csr_10_10_10_synthetic_5000_0.05.output | 45 + ...a_max_csr_10_10_10_synthetic_5000_0.1.json | 1 + ...max_csr_10_10_10_synthetic_5000_0.1.output | 45 + ...max_csr_10_10_10_synthetic_5000_1e-05.json | 1 + ...x_csr_10_10_10_synthetic_5000_1e-05.output | 383 ++ ..._csr_10_10_10_synthetic_100000_0.0001.json | 1 + ...sr_10_10_10_synthetic_100000_0.0001.output | 85 + ...x_csr_10_10_10_synthetic_100000_0.001.json | 1 + ...csr_10_10_10_synthetic_100000_0.001.output | 65 + ...x_csr_10_10_10_synthetic_100000_1e-05.json | 1 + ...csr_10_10_10_synthetic_100000_1e-05.output | 85 + ...x_csr_10_10_10_synthetic_10000_0.0001.json | 1 + ...csr_10_10_10_synthetic_10000_0.0001.output | 81 + ...ax_csr_10_10_10_synthetic_10000_0.001.json | 1 + ..._csr_10_10_10_synthetic_10000_0.001.output | 65 + ...max_csr_10_10_10_synthetic_10000_0.01.json | 1 + ...x_csr_10_10_10_synthetic_10000_0.01.output | 105 + ...max_csr_10_10_10_synthetic_10000_0.05.json | 1 + ...x_csr_10_10_10_synthetic_10000_0.05.output | 85 + ..._max_csr_10_10_10_synthetic_10000_0.1.json | 1 + ...ax_csr_10_10_10_synthetic_10000_0.1.output | 85 + ...ax_csr_10_10_10_synthetic_10000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_10000_1e-05.output | 1414 ++++++++ ...x_csr_10_10_10_synthetic_500000_1e-05.json | 1 + ...csr_10_10_10_synthetic_500000_1e-05.output | 89 + ...x_csr_10_10_10_synthetic_50000_0.0001.json | 1 + ...csr_10_10_10_synthetic_50000_0.0001.output | 105 + ...ax_csr_10_10_10_synthetic_50000_0.001.json | 1 + ..._csr_10_10_10_synthetic_50000_0.001.output | 85 + ...ax_csr_10_10_10_synthetic_50000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_50000_1e-05.output | 100 + ...ax_csr_10_10_10_synthetic_5000_0.0001.json | 1 + ..._csr_10_10_10_synthetic_5000_0.0001.output | 81 + ...max_csr_10_10_10_synthetic_5000_0.001.json | 1 + ...x_csr_10_10_10_synthetic_5000_0.001.output | 81 + ..._max_csr_10_10_10_synthetic_5000_0.01.json | 1 + ...ax_csr_10_10_10_synthetic_5000_0.01.output | 85 + ..._max_csr_10_10_10_synthetic_5000_0.05.json | 1 + ...ax_csr_10_10_10_synthetic_5000_0.05.output | 85 + ...p_max_csr_10_10_10_synthetic_5000_0.1.json | 1 + ...max_csr_10_10_10_synthetic_5000_0.1.output | 85 + ...max_csr_10_10_10_synthetic_5000_1e-05.json | 1 + ...x_csr_10_10_10_synthetic_5000_1e-05.output | 356 ++ ..._csr_10_10_10_synthetic_100000_0.0001.json | 1 + ...sr_10_10_10_synthetic_100000_0.0001.output | 65 + ...x_csr_10_10_10_synthetic_100000_0.001.json | 1 + ...csr_10_10_10_synthetic_100000_0.001.output | 65 + ...x_csr_10_10_10_synthetic_100000_1e-05.json | 1 + ...csr_10_10_10_synthetic_100000_1e-05.output | 85 + ...x_csr_10_10_10_synthetic_10000_0.0001.json | 1 + ...csr_10_10_10_synthetic_10000_0.0001.output | 81 + ...ax_csr_10_10_10_synthetic_10000_0.001.json | 1 + ..._csr_10_10_10_synthetic_10000_0.001.output | 85 + ...max_csr_10_10_10_synthetic_10000_0.01.json | 1 + ...x_csr_10_10_10_synthetic_10000_0.01.output | 85 + ...max_csr_10_10_10_synthetic_10000_0.05.json | 1 + ...x_csr_10_10_10_synthetic_10000_0.05.output | 65 + ..._max_csr_10_10_10_synthetic_10000_0.1.json | 1 + ...ax_csr_10_10_10_synthetic_10000_0.1.output | 65 + ...ax_csr_10_10_10_synthetic_10000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_10000_1e-05.output | 1521 ++++++++ ...x_csr_10_10_10_synthetic_500000_1e-05.json | 1 + ...csr_10_10_10_synthetic_500000_1e-05.output | 68 + ...x_csr_10_10_10_synthetic_50000_0.0001.json | 1 + ...csr_10_10_10_synthetic_50000_0.0001.output | 85 + ...ax_csr_10_10_10_synthetic_50000_0.001.json | 1 + ..._csr_10_10_10_synthetic_50000_0.001.output | 65 + ...ax_csr_10_10_10_synthetic_50000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_50000_1e-05.output | 81 + ...ax_csr_10_10_10_synthetic_5000_0.0001.json | 1 + ..._csr_10_10_10_synthetic_5000_0.0001.output | 81 + ...max_csr_10_10_10_synthetic_5000_0.001.json | 1 + ...x_csr_10_10_10_synthetic_5000_0.001.output | 81 + ..._max_csr_10_10_10_synthetic_5000_0.01.json | 1 + ...ax_csr_10_10_10_synthetic_5000_0.01.output | 85 + ..._max_csr_10_10_10_synthetic_5000_0.05.json | 1 + ...ax_csr_10_10_10_synthetic_5000_0.05.output | 85 + ...6_max_csr_10_10_10_synthetic_5000_0.1.json | 1 + ...max_csr_10_10_10_synthetic_5000_0.1.output | 65 + ...max_csr_10_10_10_synthetic_5000_1e-05.json | 1 + ...x_csr_10_10_10_synthetic_5000_1e-05.output | 383 ++ 923 files changed, 47937 insertions(+), 16658 deletions(-) create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_0.0001.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_0.0001.output create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_0.001.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_0.001.output create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_1e-05.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_1e-05.output create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_5e-05.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_5e-05.output create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.0001.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.0001.output create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.001.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.001.output create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.01.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.01.output create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.05.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.05.output create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.1.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.1.output create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.2.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.2.output create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.3.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.3.output create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_1e-05.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_1e-05.output create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_5e-05.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_5e-05.output create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_500000_0.0001.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_500000_0.0001.output create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_500000_1e-05.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_500000_1e-05.output create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_500000_5e-05.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_500000_5e-05.output create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_0.0001.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_0.0001.output create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_0.001.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_0.001.output create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_0.01.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_0.01.output create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_1e-05.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_1e-05.output create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_5e-05.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_5e-05.output create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.0001.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.0001.output create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.001.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.001.output create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.01.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.01.output create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.05.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.05.output create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.1.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.1.output create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.2.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.2.output create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.3.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.3.output create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_1e-05.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_1e-05.output create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_5e-05.json create mode 100644 pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_5e-05.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.0001.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.0001.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.001.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.001.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_1e-05.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_1e-05.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_5e-05.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_5e-05.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.0001.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.0001.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.001.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.001.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.01.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.01.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.05.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.05.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.1.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.1.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.2.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.2.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.3.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.3.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_1e-05.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_1e-05.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_5e-05.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_5e-05.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_500000_0.0001.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_500000_0.0001.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_500000_1e-05.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_500000_1e-05.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_500000_5e-05.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_500000_5e-05.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.0001.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.0001.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.001.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.001.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.01.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.01.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_1e-05.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_1e-05.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_5e-05.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_5e-05.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.0001.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.0001.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.001.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.001.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.01.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.01.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.05.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.05.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.1.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.1.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.2.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.2.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.3.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.3.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_1e-05.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_1e-05.output create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_5e-05.json create mode 100644 pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_5e-05.output create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_0.0001.json rename pytorch/{output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0001.output => output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_0.0001.output} (51%) create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_0.001.json rename pytorch/{output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.001.output => output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_0.001.output} (50%) create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_1e-05.json create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_1e-05.output create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_5e-05.json create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_5e-05.output create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.0001.json create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.0001.output create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.001.json create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.001.output create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.01.json create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.01.output create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.05.json create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.05.output create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.1.json create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.1.output create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.2.json create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.2.output create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.3.json create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.3.output create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_1e-05.json create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_1e-05.output create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_5e-05.json create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_5e-05.output create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_500000_0.0001.json create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_500000_0.0001.output create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_500000_1e-05.json create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_500000_1e-05.output create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_500000_5e-05.json create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_500000_5e-05.output create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_0.0001.json create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_0.0001.output create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_0.001.json create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_0.001.output create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_0.01.json create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_0.01.output create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_1e-05.json create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_1e-05.output create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_5e-05.json create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_5e-05.output create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.0001.json create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.0001.output create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.001.json create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.001.output create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.01.json create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.01.output create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.05.json create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.05.output create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.1.json create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.1.output create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.2.json create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.2.output create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.3.json create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.3.output create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_1e-05.json create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_1e-05.output create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_5e-05.json create mode 100644 pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_5e-05.output create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_5e-05.json create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_5e-05.output create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.2.json create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.2.output create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.3.json create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.3.output create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_5e-05.json create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_5e-05.output create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_0.0001.json create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_0.0001.output create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_5e-05.json create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_5e-05.output create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.01.json create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.01.output create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_5e-05.json create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_5e-05.output create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.2.json create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.2.output create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.3.json create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.3.output create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.4.json create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.4.output create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.5.json create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.5.output create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_5e-05.json create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_5e-05.output create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_5e-05.json create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_5e-05.output create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.2.json create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.2.output create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.3.json create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.3.output create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_5e-05.json create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_5e-05.output create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_0.0001.json create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_0.0001.output create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_5e-05.json create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_5e-05.output create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.01.json create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.01.output create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_5e-05.json create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_5e-05.output create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.2.json create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.2.output create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.3.json create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.3.output create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.4.json create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.4.output create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.5.json create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.5.output create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_5e-05.json create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_5e-05.output create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_5e-05.json create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_5e-05.output create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.2.json create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.2.output create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.3.json create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.3.output create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_5e-05.json create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_5e-05.output create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_0.0001.json create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_0.0001.output create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_5e-05.json create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_5e-05.output create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.01.json create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.01.output create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_5e-05.json create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_5e-05.output create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.2.json create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.2.output create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.3.json create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.3.output create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.4.json create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.4.output create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.5.json create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.5.output create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_5e-05.json create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_5e-05.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_100000_0.0001.json rename pytorch/output_synthetic_1core_old/{altra_1_csr_20_10_10_synthetic_100000_0.0001.output => altra_1_csr_10_10_10_synthetic_100000_0.0001.output} (53%) create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_100000_0.001.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_100000_0.001.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_100000_1e-05.json rename pytorch/output_synthetic_1core_old/{altra_1_csr_20_10_10_synthetic_100000_1e-05.output => altra_1_csr_10_10_10_synthetic_100000_1e-05.output} (59%) create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.0001.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.0001.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.001.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.001.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.01.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.01.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.05.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.05.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.1.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.1.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_1e-05.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_1e-05.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_500000_1e-05.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_500000_1e-05.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_50000_0.0001.json rename pytorch/output_synthetic_1core_old/{altra_1_csr_20_10_10_synthetic_50000_0.0001.output => altra_1_csr_10_10_10_synthetic_50000_0.0001.output} (57%) create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_50000_0.001.json rename pytorch/output_synthetic_1core_old/{altra_1_csr_20_10_10_synthetic_50000_0.001.output => altra_1_csr_10_10_10_synthetic_50000_0.001.output} (51%) create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_50000_1e-05.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_50000_1e-05.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.0001.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.0001.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.001.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.001.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.01.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.01.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.05.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.05.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.1.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.1.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_1e-05.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_1e-05.output delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0001.json delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0005.json delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0005.output delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.001.json delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.001.output delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.005.json delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.005.output delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_1e-05.json delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_300000_1e-05.json delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_300000_1e-05.output delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0001.json delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0001.output delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0005.json delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0005.output delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.001.json delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.001.output delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.005.json delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.005.output delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.01.json delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.01.output delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.05.json delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.05.output delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.1.json delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.1.output delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_1e-05.json delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_1e-05.output delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0001.json delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0005.json delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0005.output delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.001.json delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.005.json delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.005.output delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.01.json delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.01.output delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_1e-05.json delete mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_1e-05.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.0001.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.0001.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.001.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.001.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_100000_1e-05.json rename pytorch/output_synthetic_1core_old/{epyc_7313p_1_csr_20_10_10_synthetic_100000_1e-05.output => epyc_7313p_1_csr_10_10_10_synthetic_100000_1e-05.output} (58%) create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.0001.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.0001.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.001.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.001.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.01.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.01.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.05.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.05.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.1.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.1.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_1e-05.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_1e-05.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_500000_1e-05.json rename pytorch/output_synthetic_1core_old/{epyc_7313p_1_csr_20_10_10_synthetic_500000_1e-05.output => epyc_7313p_1_csr_10_10_10_synthetic_500000_1e-05.output} (56%) create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.0001.json rename pytorch/output_synthetic_1core_old/{epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0001.output => epyc_7313p_1_csr_10_10_10_synthetic_50000_0.0001.output} (58%) create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.001.json rename pytorch/output_synthetic_1core_old/{epyc_7313p_1_csr_20_10_10_synthetic_50000_0.001.output => epyc_7313p_1_csr_10_10_10_synthetic_50000_0.001.output} (55%) create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_50000_1e-05.json rename pytorch/output_synthetic_1core_old/{epyc_7313p_1_csr_20_10_10_synthetic_50000_1e-05.output => epyc_7313p_1_csr_10_10_10_synthetic_50000_1e-05.output} (58%) create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.0001.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.0001.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.001.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.001.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.01.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.01.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.05.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.05.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.1.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.1.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_1e-05.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_1e-05.output delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_1000000_1e-05.json delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_1000000_1e-05.output delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0001.json delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0005.json delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0005.output delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.001.json delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.005.json delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.005.output delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_1e-05.json delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_3000000_1e-05.json delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_3000000_1e-05.output delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0001.json delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0001.output delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0005.json delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0005.output delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.001.json delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.001.output delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_1e-05.json delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_1e-05.output delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0001.json delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0001.output delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0005.json delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0005.output delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.001.json delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.001.output delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.005.json delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.005.output delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.01.json delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.01.output delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.05.json delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.05.output delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.1.json delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.1.output delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_1e-05.json delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_1e-05.output delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_0.0001.json delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_0.0001.output delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_1e-05.json delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0001.json delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0005.json delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0005.output delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.001.json delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.005.json delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.005.output delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.01.json delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.01.output delete mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_1e-05.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_100000_0.0001.json rename pytorch/output_synthetic_1core_old/{xeon_4216_1_csr_20_10_10_synthetic_100000_0.0001.output => xeon_4216_1_csr_10_10_10_synthetic_100000_0.0001.output} (57%) create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_100000_0.001.json rename pytorch/output_synthetic_1core_old/{xeon_4216_1_csr_20_10_10_synthetic_100000_0.001.output => xeon_4216_1_csr_10_10_10_synthetic_100000_0.001.output} (55%) create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_100000_1e-05.json rename pytorch/output_synthetic_1core_old/{xeon_4216_1_csr_20_10_10_synthetic_100000_1e-05.output => xeon_4216_1_csr_10_10_10_synthetic_100000_1e-05.output} (54%) create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.0001.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.0001.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.001.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.001.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.01.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.01.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.05.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.05.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.1.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.1.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_1e-05.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_1e-05.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_500000_1e-05.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_500000_1e-05.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_50000_0.0001.json rename pytorch/output_synthetic_1core_old/{xeon_4216_1_csr_20_10_10_synthetic_50000_0.0001.output => xeon_4216_1_csr_10_10_10_synthetic_50000_0.0001.output} (53%) create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_50000_0.001.json rename pytorch/output_synthetic_1core_old/{xeon_4216_1_csr_20_10_10_synthetic_50000_0.001.output => xeon_4216_1_csr_10_10_10_synthetic_50000_0.001.output} (56%) create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_50000_1e-05.json rename pytorch/output_synthetic_1core_old/{xeon_4216_1_csr_20_10_10_synthetic_50000_1e-05.output => xeon_4216_1_csr_10_10_10_synthetic_50000_1e-05.output} (57%) create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.0001.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.0001.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.001.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.001.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.01.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.01.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.05.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.05.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.1.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.1.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_1e-05.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_1e-05.output delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_1000000_1e-05.json delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_1000000_1e-05.output delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0001.json delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0005.json delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0005.output delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.001.json delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.005.json delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.005.output delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_1e-05.json delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_3000000_1e-05.json delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_3000000_1e-05.output delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0001.json delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0001.output delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0005.json delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0005.output delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.001.json delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.001.output delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_1e-05.json delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_1e-05.output delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0001.json delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0001.output delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0005.json delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0005.output delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.001.json delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.001.output delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.005.json delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.005.output delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.01.json delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.01.output delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.05.json delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.05.output delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.1.json delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.1.output delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_1e-05.json delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_1e-05.output delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_0.0001.json delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_0.0001.output delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_1e-05.json delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_1e-05.output delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0001.json delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0005.json delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0005.output delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.001.json delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.005.json delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.005.output delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.01.json delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.01.output delete mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_1e-05.json create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_5e-05.json create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_5e-05.output create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.2.json create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.2.output create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.3.json create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.3.output create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_5e-05.json create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_5e-05.output create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_0.0001.json create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_0.0001.output create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_5e-05.json create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_5e-05.output create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.01.json create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.01.output create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_5e-05.json create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_5e-05.output create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.2.json create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.2.output create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.3.json create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.3.output create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.4.json create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.4.output create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.5.json create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.5.output create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_5e-05.json create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_5e-05.output create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_5e-05.json create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_5e-05.output create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.2.json create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.2.output create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.3.json create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.3.output create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_5e-05.json create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_5e-05.output create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_0.0001.json create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_0.0001.output create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_5e-05.json create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_5e-05.output create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.01.json create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.01.output create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_5e-05.json create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_5e-05.output create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.2.json create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.2.output create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.3.json create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.3.output create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.4.json create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.4.output create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.5.json create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.5.output create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_5e-05.json create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_5e-05.output create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_5e-05.json create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_5e-05.output create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.2.json create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.2.output create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.3.json create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.3.output create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_5e-05.json create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_5e-05.output create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_0.0001.json create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_0.0001.output create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_5e-05.json create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_5e-05.output create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.01.json create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.01.output create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_5e-05.json create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_5e-05.output create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.2.json create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.2.output create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.3.json create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.3.output create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.4.json create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.4.output create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.5.json create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.5.output create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_5e-05.json create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_5e-05.output create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_100000_0.0001.json create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_100000_0.0001.output create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_100000_0.001.json create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_100000_0.001.output create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_100000_1e-05.json create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_100000_1e-05.output create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.0001.json create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.0001.output create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.001.json create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.001.output create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.01.json create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.01.output create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.05.json create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.05.output create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.1.json create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.1.output create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_1e-05.json create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_1e-05.output create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_500000_1e-05.json create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_500000_1e-05.output create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_50000_0.0001.json create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_50000_0.0001.output create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_50000_0.001.json create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_50000_0.001.output create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_50000_1e-05.json create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_50000_1e-05.output create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.0001.json create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.0001.output create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.001.json create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.001.output create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.01.json create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.01.output create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.05.json create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.05.output create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.1.json create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.1.output create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_1e-05.json create mode 100644 pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_1e-05.output create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.0001.json create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.0001.output create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.001.json create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.001.output create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_100000_1e-05.json create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_100000_1e-05.output create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.0001.json create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.0001.output create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.001.json create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.001.output create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.01.json create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.01.output create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.05.json create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.05.output create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.1.json create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.1.output create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_1e-05.json create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_1e-05.output create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_500000_1e-05.json create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_500000_1e-05.output create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.0001.json create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.0001.output create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.001.json create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.001.output create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_50000_1e-05.json create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_50000_1e-05.output create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.0001.json create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.0001.output create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.001.json create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.001.output create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.01.json create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.01.output create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.05.json create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.05.output create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.1.json create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.1.output create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_1e-05.json create mode 100644 pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_1e-05.output create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_100000_0.0001.json create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_100000_0.0001.output create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_100000_0.001.json create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_100000_0.001.output create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_100000_1e-05.json create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_100000_1e-05.output create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.0001.json create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.0001.output create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.001.json create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.001.output create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.01.json create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.01.output create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.05.json create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.05.output create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.1.json create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.1.output create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_1e-05.json create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_1e-05.output create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_500000_1e-05.json create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_500000_1e-05.output create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_50000_0.0001.json create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_50000_0.0001.output create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_50000_0.001.json create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_50000_0.001.output create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_50000_1e-05.json create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_50000_1e-05.output create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.0001.json create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.0001.output create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.001.json create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.001.output create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.01.json create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.01.output create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.05.json create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.05.output create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.1.json create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.1.output create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_1e-05.json create mode 100644 pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_1e-05.output diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_0.0001.json new file mode 100644 index 0000000..980d684 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1755, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.253487825393677, "TIME_S_1KI": 5.842443205352523, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 467.2838370990753, "W": 31.934101368331916, "J_1KI": 266.2585966376497, "W_1KI": 18.196069155744684, "W_D": 16.879101368331916, "J_D": 246.98773149132728, "W_D_1KI": 9.617721577397104, "J_D_1KI": 5.480183234984104} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_0.0001.output new file mode 100644 index 0000000..365e810 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_0.0001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 5.980836629867554} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 11, 22, ..., 999980, + 999989, 1000000]), + col_indices=tensor([ 6100, 13265, 27848, ..., 84407, 91090, 94721]), + values=tensor([0.4400, 0.3445, 0.5606, ..., 0.5861, 0.7102, 0.2795]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.6757, 0.5029, 0.1898, ..., 0.2612, 0.6123, 0.0844]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 5.980836629867554 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1755 -ss 100000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.253487825393677} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 18, ..., 999983, + 999994, 1000000]), + col_indices=tensor([22305, 51740, 53616, ..., 72974, 76091, 88145]), + values=tensor([0.7756, 0.0657, 0.7358, ..., 0.9841, 0.0331, 0.5251]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.4750, 0.6821, 0.2847, ..., 0.3502, 0.4038, 0.5877]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 10.253487825393677 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 18, ..., 999983, + 999994, 1000000]), + col_indices=tensor([22305, 51740, 53616, ..., 72974, 76091, 88145]), + values=tensor([0.7756, 0.0657, 0.7358, ..., 0.9841, 0.0331, 0.5251]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.4750, 0.6821, 0.2847, ..., 0.3502, 0.4038, 0.5877]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 10.253487825393677 seconds + +[16.48, 16.16, 16.52, 16.48, 16.48, 16.48, 16.72, 16.72, 16.84, 17.12] +[17.08, 17.16, 17.96, 19.72, 22.2, 27.16, 34.52, 39.08, 43.72, 45.96, 46.32, 46.32, 46.2, 46.28] +14.632753610610962 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1755, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.253487825393677, 'TIME_S_1KI': 5.842443205352523, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 467.2838370990753, 'W': 31.934101368331916} +[16.48, 16.16, 16.52, 16.48, 16.48, 16.48, 16.72, 16.72, 16.84, 17.12, 16.72, 16.8, 16.96, 17.0, 17.04, 16.88, 16.8, 16.88, 16.76, 16.84] +301.1 +15.055000000000001 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1755, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.253487825393677, 'TIME_S_1KI': 5.842443205352523, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 467.2838370990753, 'W': 31.934101368331916, 'J_1KI': 266.2585966376497, 'W_1KI': 18.196069155744684, 'W_D': 16.879101368331916, 'J_D': 246.98773149132728, 'W_D_1KI': 9.617721577397104, 'J_D_1KI': 5.480183234984104} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_0.001.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_0.001.json new file mode 100644 index 0000000..0a97dfa --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 57.53653693199158, "TIME_S_1KI": 57.53653693199158, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2684.526071929932, "W": 41.311972802980506, "J_1KI": 2684.526071929932, "W_1KI": 41.311972802980506, "W_D": 26.003972802980506, "J_D": 1689.784782156945, "W_D_1KI": 26.003972802980506, "J_D_1KI": 26.003972802980506} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_0.001.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_0.001.output new file mode 100644 index 0000000..01b19d4 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_0.001.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 0.001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 57.53653693199158} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 92, 190, ..., 9999802, + 9999900, 10000000]), + col_indices=tensor([ 766, 3080, 3658, ..., 98863, 99077, 99078]), + values=tensor([0.0329, 0.7493, 0.2063, ..., 0.1215, 0.3807, 0.7288]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.3516, 0.3347, 0.9443, ..., 0.8917, 0.2195, 0.8723]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 57.53653693199158 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 92, 190, ..., 9999802, + 9999900, 10000000]), + col_indices=tensor([ 766, 3080, 3658, ..., 98863, 99077, 99078]), + values=tensor([0.0329, 0.7493, 0.2063, ..., 0.1215, 0.3807, 0.7288]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.3516, 0.3347, 0.9443, ..., 0.8917, 0.2195, 0.8723]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 57.53653693199158 seconds + +[17.2, 17.2, 16.8, 16.8, 17.0, 16.88, 16.88, 17.0, 17.0, 16.6] +[16.88, 16.84, 17.36, 19.48, 20.16, 21.92, 24.16, 24.88, 27.6, 33.04, 37.56, 43.08, 47.0, 46.96, 47.68, 47.76, 47.76, 47.48, 47.4, 46.92, 47.28, 47.04, 47.56, 48.36, 48.0, 47.68, 47.44, 46.16, 45.68, 46.04, 46.32, 47.44, 47.76, 47.84, 47.64, 47.36, 47.08, 46.96, 46.96, 47.16, 46.68, 46.24, 46.2, 46.44, 46.56, 47.0, 48.08, 48.0, 48.12, 48.44, 48.48, 48.2, 47.64, 47.32, 47.2, 47.2, 47.56, 47.52, 47.68, 47.8, 47.8, 48.0] +64.98179316520691 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 57.53653693199158, 'TIME_S_1KI': 57.53653693199158, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2684.526071929932, 'W': 41.311972802980506} +[17.2, 17.2, 16.8, 16.8, 17.0, 16.88, 16.88, 17.0, 17.0, 16.6, 17.12, 17.12, 17.04, 17.0, 17.0, 16.96, 16.88, 16.92, 17.32, 17.8] +306.16 +15.308000000000002 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 57.53653693199158, 'TIME_S_1KI': 57.53653693199158, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2684.526071929932, 'W': 41.311972802980506, 'J_1KI': 2684.526071929932, 'W_1KI': 41.311972802980506, 'W_D': 26.003972802980506, 'J_D': 1689.784782156945, 'W_D_1KI': 26.003972802980506, 'J_D_1KI': 26.003972802980506} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_1e-05.json new file mode 100644 index 0000000..9a23625 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 11928, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.779903888702393, "TIME_S_1KI": 0.9037478109240772, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 428.71311614990236, "W": 29.263266081724595, "J_1KI": 35.94174347333186, "W_1KI": 2.4533254595677896, "W_D": 14.015266081724594, "J_D": 205.326650100708, "W_D_1KI": 1.1749887727803985, "J_D_1KI": 0.09850677169520444} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_1e-05.output new file mode 100644 index 0000000..0a26541 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_1e-05.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.8802759647369385} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 99998, 99998, + 100000]), + col_indices=tensor([50190, 32056, 73796, ..., 55938, 31334, 37461]), + values=tensor([0.0722, 0.7116, 0.8310, ..., 0.7930, 0.8115, 0.4149]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.5168, 0.3496, 0.0063, ..., 0.9888, 0.0960, 0.5324]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 0.8802759647369385 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 11928 -ss 100000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.779903888702393} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 3, ..., 99995, 99996, + 100000]), + col_indices=tensor([15079, 22431, 71484, ..., 38240, 57604, 63673]), + values=tensor([0.6856, 0.2309, 0.0261, ..., 0.6883, 0.7108, 0.1151]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.6131, 0.6051, 0.4027, ..., 0.3545, 0.9505, 0.4978]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 10.779903888702393 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 3, ..., 99995, 99996, + 100000]), + col_indices=tensor([15079, 22431, 71484, ..., 38240, 57604, 63673]), + values=tensor([0.6856, 0.2309, 0.0261, ..., 0.6883, 0.7108, 0.1151]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.6131, 0.6051, 0.4027, ..., 0.3545, 0.9505, 0.4978]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 10.779903888702393 seconds + +[17.04, 17.24, 17.0, 17.0, 16.8, 16.64, 16.64, 16.68, 16.92, 16.84] +[16.64, 16.52, 16.72, 17.8, 20.04, 25.4, 30.88, 34.96, 39.88, 41.96, 42.28, 42.44, 42.56, 42.56] +14.650214195251465 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 11928, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.779903888702393, 'TIME_S_1KI': 0.9037478109240772, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 428.71311614990236, 'W': 29.263266081724595} +[17.04, 17.24, 17.0, 17.0, 16.8, 16.64, 16.64, 16.68, 16.92, 16.84, 16.84, 16.84, 17.0, 17.0, 16.92, 17.0, 17.16, 17.0, 17.16, 17.2] +304.96000000000004 +15.248000000000001 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 11928, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.779903888702393, 'TIME_S_1KI': 0.9037478109240772, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 428.71311614990236, 'W': 29.263266081724595, 'J_1KI': 35.94174347333186, 'W_1KI': 2.4533254595677896, 'W_D': 14.015266081724594, 'J_D': 205.326650100708, 'W_D_1KI': 1.1749887727803985, 'J_D_1KI': 0.09850677169520444} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_5e-05.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_5e-05.json new file mode 100644 index 0000000..6ac986d --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 3268, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.551287174224854, "TIME_S_1KI": 3.2286680459684374, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 514.9588033294677, "W": 35.14704993762719, "J_1KI": 157.57613320975145, "W_1KI": 10.754911241623986, "W_D": 16.333049937627187, "J_D": 239.30451817512508, "W_D_1KI": 4.997873297927536, "J_D_1KI": 1.5293369944698703} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_5e-05.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_5e-05.output new file mode 100644 index 0000000..c2c09d9 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_100000_5e-05.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 5e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 3.21274733543396} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 10, ..., 499991, 499996, + 500000]), + col_indices=tensor([ 6819, 16249, 65142, ..., 35181, 90238, 95591]), + values=tensor([0.9907, 0.7784, 0.8470, ..., 0.0401, 0.4552, 0.5172]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.1211, 0.3699, 0.8120, ..., 0.3387, 0.3308, 0.0427]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 3.21274733543396 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 3268 -ss 100000 -sd 5e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.551287174224854} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 10, ..., 499988, 499994, + 500000]), + col_indices=tensor([ 4698, 29712, 45324, ..., 47109, 54294, 79244]), + values=tensor([0.0467, 0.0395, 0.2018, ..., 0.4601, 0.1623, 0.8954]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.1366, 0.5632, 0.5706, ..., 0.2593, 0.9938, 0.0917]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 10.551287174224854 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 10, ..., 499988, 499994, + 500000]), + col_indices=tensor([ 4698, 29712, 45324, ..., 47109, 54294, 79244]), + values=tensor([0.0467, 0.0395, 0.2018, ..., 0.4601, 0.1623, 0.8954]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.1366, 0.5632, 0.5706, ..., 0.2593, 0.9938, 0.0917]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 10.551287174224854 seconds + +[20.52, 20.48, 20.56, 20.6, 20.6, 20.88, 21.08, 21.04, 21.04, 20.92] +[20.68, 20.64, 20.84, 22.28, 23.8, 29.96, 35.72, 42.6, 47.2, 50.88, 50.56, 50.96, 50.68, 50.8] +14.651551246643066 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 3268, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.551287174224854, 'TIME_S_1KI': 3.2286680459684374, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 514.9588033294677, 'W': 35.14704993762719} +[20.52, 20.48, 20.56, 20.6, 20.6, 20.88, 21.08, 21.04, 21.04, 20.92, 20.72, 21.08, 21.16, 21.16, 21.24, 21.28, 21.16, 20.88, 20.68, 20.56] +376.28 +18.814 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 3268, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.551287174224854, 'TIME_S_1KI': 3.2286680459684374, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 514.9588033294677, 'W': 35.14704993762719, 'J_1KI': 157.57613320975145, 'W_1KI': 10.754911241623986, 'W_D': 16.333049937627187, 'J_D': 239.30451817512508, 'W_D_1KI': 4.997873297927536, 'J_D_1KI': 1.5293369944698703} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.0001.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.0001.json new file mode 100644 index 0000000..47534f3 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 32824, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.612937211990356, "TIME_S_1KI": 0.3233285770165232, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 275.6484677696228, "W": 19.42651909848855, "J_1KI": 8.397771989081855, "W_1KI": 0.5918388709020398, "W_D": 4.498519098488551, "J_D": 63.83078154373167, "W_D_1KI": 0.13704969225227123, "J_D_1KI": 0.004175289186335341} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.0001.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.0001.output new file mode 100644 index 0000000..0d66d25 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.0001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.3622722625732422} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 4, ..., 9997, 10000, 10000]), + col_indices=tensor([2430, 5032, 1477, ..., 758, 3153, 4599]), + values=tensor([0.8038, 0.4543, 0.3152, ..., 0.6785, 0.4391, 0.0535]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.9594, 0.1900, 0.3074, ..., 0.8950, 0.9459, 0.6732]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 0.3622722625732422 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 28983 -ss 10000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.27123761177063} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 10000, 10000, 10000]), + col_indices=tensor([1532, 2817, 884, ..., 2356, 6175, 1948]), + values=tensor([0.3809, 0.2852, 0.7235, ..., 0.6592, 0.2563, 0.7726]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.6771, 0.1497, 0.5070, ..., 0.8092, 0.9643, 0.7887]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 9.27123761177063 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 32824 -ss 10000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.612937211990356} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 9999, 9999, 10000]), + col_indices=tensor([3350, 4490, 6839, ..., 6784, 8596, 8737]), + values=tensor([0.3991, 0.5600, 0.2439, ..., 0.8859, 0.9485, 0.6345]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.2861, 0.2741, 0.4038, ..., 0.8389, 0.9796, 0.7969]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.612937211990356 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 9999, 9999, 10000]), + col_indices=tensor([3350, 4490, 6839, ..., 6784, 8596, 8737]), + values=tensor([0.3991, 0.5600, 0.2439, ..., 0.8859, 0.9485, 0.6345]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.2861, 0.2741, 0.4038, ..., 0.8389, 0.9796, 0.7969]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.612937211990356 seconds + +[16.64, 16.84, 16.96, 16.88, 16.84, 16.72, 17.08, 16.96, 16.92, 16.92] +[17.08, 16.72, 16.76, 21.08, 22.52, 24.76, 25.6, 23.4, 22.04, 20.32, 20.04, 20.0, 20.0, 20.12] +14.189287662506104 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 32824, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.612937211990356, 'TIME_S_1KI': 0.3233285770165232, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 275.6484677696228, 'W': 19.42651909848855} +[16.64, 16.84, 16.96, 16.88, 16.84, 16.72, 17.08, 16.96, 16.92, 16.92, 16.36, 16.04, 15.84, 15.92, 16.12, 16.28, 16.36, 16.68, 16.72, 16.88] +298.56 +14.928 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 32824, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.612937211990356, 'TIME_S_1KI': 0.3233285770165232, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 275.6484677696228, 'W': 19.42651909848855, 'J_1KI': 8.397771989081855, 'W_1KI': 0.5918388709020398, 'W_D': 4.498519098488551, 'J_D': 63.83078154373167, 'W_D_1KI': 0.13704969225227123, 'J_D_1KI': 0.004175289186335341} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.001.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.001.json new file mode 100644 index 0000000..650d27e --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 4599, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.21649432182312, "TIME_S_1KI": 2.2214599525599303, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 276.3690100479126, "W": 19.391688491473598, "J_1KI": 60.09328333287945, "W_1KI": 4.2165010853389, "W_D": 4.4646884914736, "J_D": 63.630433167457575, "W_D_1KI": 0.9707954971675582, "J_D_1KI": 0.21108838816428752} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.001.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.001.output new file mode 100644 index 0000000..7a35653 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 2.282747268676758} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 15, 26, ..., 99983, 99992, + 100000]), + col_indices=tensor([ 746, 1254, 2691, ..., 5665, 9904, 9986]), + values=tensor([0.7024, 0.2927, 0.8116, ..., 0.2675, 0.5863, 0.1724]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.2042, 0.3555, 0.3767, ..., 0.6038, 0.4952, 0.0036]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 2.282747268676758 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 4599 -ss 10000 -sd 0.001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.21649432182312} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 18, ..., 99975, 99989, + 100000]), + col_indices=tensor([5193, 5456, 6247, ..., 5100, 5946, 8330]), + values=tensor([0.7086, 0.0012, 0.4180, ..., 0.5448, 0.8405, 0.8114]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.0495, 0.0946, 0.7654, ..., 0.8976, 0.3544, 0.9283]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.21649432182312 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 18, ..., 99975, 99989, + 100000]), + col_indices=tensor([5193, 5456, 6247, ..., 5100, 5946, 8330]), + values=tensor([0.7086, 0.0012, 0.4180, ..., 0.5448, 0.8405, 0.8114]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.0495, 0.0946, 0.7654, ..., 0.8976, 0.3544, 0.9283]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.21649432182312 seconds + +[16.44, 16.28, 16.32, 16.56, 16.56, 16.6, 16.76, 16.76, 16.72, 16.68] +[16.52, 16.48, 16.6, 20.0, 22.08, 24.8, 25.56, 23.6, 23.04, 20.28, 20.28, 20.04, 20.16, 20.2] +14.251931190490723 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4599, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.21649432182312, 'TIME_S_1KI': 2.2214599525599303, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 276.3690100479126, 'W': 19.391688491473598} +[16.44, 16.28, 16.32, 16.56, 16.56, 16.6, 16.76, 16.76, 16.72, 16.68, 16.4, 16.48, 16.68, 16.36, 16.44, 16.64, 16.64, 16.8, 16.8, 16.76] +298.53999999999996 +14.926999999999998 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4599, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.21649432182312, 'TIME_S_1KI': 2.2214599525599303, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 276.3690100479126, 'W': 19.391688491473598, 'J_1KI': 60.09328333287945, 'W_1KI': 4.2165010853389, 'W_D': 4.4646884914736, 'J_D': 63.630433167457575, 'W_D_1KI': 0.9707954971675582, 'J_D_1KI': 0.21108838816428752} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.01.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.01.json new file mode 100644 index 0000000..d799afd --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 21.366477489471436, "TIME_S_1KI": 21.366477489471436, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 489.4337509441374, "W": 19.31282985940674, "J_1KI": 489.4337509441374, "W_1KI": 19.31282985940674, "W_D": 4.539829859406739, "J_D": 115.05025275492645, "W_D_1KI": 4.539829859406739, "J_D_1KI": 4.539829859406739} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.01.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.01.output new file mode 100644 index 0000000..7e1dd33 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.01.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.01 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 21.366477489471436} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 93, 201, ..., 999801, + 999899, 1000000]), + col_indices=tensor([ 106, 113, 159, ..., 9934, 9937, 9966]), + values=tensor([0.1214, 0.4144, 0.1866, ..., 0.5194, 0.7412, 0.0565]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.4749, 0.5757, 0.5717, ..., 0.5026, 0.5396, 0.1085]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 21.366477489471436 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 93, 201, ..., 999801, + 999899, 1000000]), + col_indices=tensor([ 106, 113, 159, ..., 9934, 9937, 9966]), + values=tensor([0.1214, 0.4144, 0.1866, ..., 0.5194, 0.7412, 0.0565]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.4749, 0.5757, 0.5717, ..., 0.5026, 0.5396, 0.1085]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 21.366477489471436 seconds + +[16.76, 16.8, 16.72, 16.6, 16.36, 16.12, 16.0, 16.04, 16.28, 16.36] +[16.48, 16.48, 16.36, 17.76, 18.4, 22.04, 22.96, 22.96, 22.68, 21.88, 20.28, 20.28, 20.36, 20.0, 20.0, 19.8, 19.72, 19.84, 19.96, 20.12, 20.32, 20.36, 20.56, 20.72, 20.6] +25.34241509437561 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 21.366477489471436, 'TIME_S_1KI': 21.366477489471436, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 489.4337509441374, 'W': 19.31282985940674} +[16.76, 16.8, 16.72, 16.6, 16.36, 16.12, 16.0, 16.04, 16.28, 16.36, 16.6, 16.56, 16.28, 16.28, 16.28, 16.24, 16.56, 16.68, 16.52, 16.56] +295.46000000000004 +14.773000000000001 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 21.366477489471436, 'TIME_S_1KI': 21.366477489471436, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 489.4337509441374, 'W': 19.31282985940674, 'J_1KI': 489.4337509441374, 'W_1KI': 19.31282985940674, 'W_D': 4.539829859406739, 'J_D': 115.05025275492645, 'W_D_1KI': 4.539829859406739, 'J_D_1KI': 4.539829859406739} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.05.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.05.json new file mode 100644 index 0000000..c5bc81a --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 106.56549715995789, "TIME_S_1KI": 106.56549715995789, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2685.1749729537964, "W": 24.108298502680796, "J_1KI": 2685.1749729537964, "W_1KI": 24.108298502680796, "W_D": 5.534298502680798, "J_D": 616.4084881644253, "W_D_1KI": 5.534298502680798, "J_D_1KI": 5.534298502680798} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.05.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.05.output new file mode 100644 index 0000000..1729b52 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.05.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 106.56549715995789} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 506, 1012, ..., 4998963, + 4999486, 5000000]), + col_indices=tensor([ 12, 18, 20, ..., 9951, 9962, 9995]), + values=tensor([0.8717, 0.8420, 0.2460, ..., 0.1141, 0.5771, 0.8192]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.3519, 0.6034, 0.3549, ..., 0.4924, 0.0253, 0.7056]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 106.56549715995789 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 506, 1012, ..., 4998963, + 4999486, 5000000]), + col_indices=tensor([ 12, 18, 20, ..., 9951, 9962, 9995]), + values=tensor([0.8717, 0.8420, 0.2460, ..., 0.1141, 0.5771, 0.8192]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.3519, 0.6034, 0.3549, ..., 0.4924, 0.0253, 0.7056]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 106.56549715995789 seconds + +[20.96, 20.76, 20.72, 20.52, 20.44, 20.56, 20.84, 20.84, 20.6, 20.6] +[20.64, 20.64, 21.08, 23.16, 24.52, 27.56, 29.68, 29.72, 28.4, 27.2, 27.2, 24.36, 24.36, 24.36, 24.84, 24.88, 24.76, 24.96, 24.72, 24.4, 24.36, 24.16, 24.12, 24.12, 24.24, 24.64, 24.72, 24.76, 24.88, 24.76, 24.4, 24.4, 24.32, 24.32, 24.24, 24.24, 24.44, 24.36, 24.16, 24.16, 24.2, 24.24, 24.4, 24.68, 24.56, 24.6, 24.52, 24.48, 24.48, 24.24, 24.36, 24.36, 24.44, 24.52, 24.52, 24.32, 24.44, 24.28, 24.04, 23.96, 23.96, 24.04, 24.16, 24.28, 24.36, 24.44, 24.48, 24.56, 24.64, 24.56, 24.48, 24.24, 24.24, 24.24, 24.2, 24.28, 24.36, 24.2, 24.4, 24.12, 24.16, 24.24, 24.48, 24.48, 24.8, 24.8, 24.92, 24.92, 24.96, 24.84, 24.72, 24.88, 24.72, 24.68, 24.48, 24.28, 24.0, 24.04, 24.04, 24.16, 24.32, 24.28, 24.32, 24.32, 24.48, 24.4, 24.68, 24.8, 24.64, 24.48] +111.37969660758972 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 106.56549715995789, 'TIME_S_1KI': 106.56549715995789, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2685.1749729537964, 'W': 24.108298502680796} +[20.96, 20.76, 20.72, 20.52, 20.44, 20.56, 20.84, 20.84, 20.6, 20.6, 20.64, 20.6, 20.6, 20.72, 20.8, 20.6, 20.52, 20.28, 20.68, 20.6] +371.47999999999996 +18.573999999999998 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 106.56549715995789, 'TIME_S_1KI': 106.56549715995789, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2685.1749729537964, 'W': 24.108298502680796, 'J_1KI': 2685.1749729537964, 'W_1KI': 24.108298502680796, 'W_D': 5.534298502680798, 'J_D': 616.4084881644253, 'W_D_1KI': 5.534298502680798, 'J_D_1KI': 5.534298502680798} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.1.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.1.json new file mode 100644 index 0000000..f711a9d --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.1.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 213.33555269241333, "TIME_S_1KI": 213.33555269241333, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 5226.200544624329, "W": 24.133137838334523, "J_1KI": 5226.200544624329, "W_1KI": 24.133137838334523, "W_D": 5.8551378383345245, "J_D": 1267.97123376751, "W_D_1KI": 5.8551378383345245, "J_D_1KI": 5.8551378383345245} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.1.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.1.output new file mode 100644 index 0000000..dc4c095 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.1.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.1 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 213.33555269241333} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1053, 2094, ..., 9997974, + 9998964, 10000000]), + col_indices=tensor([ 7, 12, 13, ..., 9961, 9986, 9993]), + values=tensor([0.1704, 0.0678, 0.1172, ..., 0.2208, 0.7370, 0.2820]), + size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.7446, 0.0915, 0.8679, ..., 0.5982, 0.0596, 0.6566]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000000 +Density: 0.1 +Time: 213.33555269241333 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1053, 2094, ..., 9997974, + 9998964, 10000000]), + col_indices=tensor([ 7, 12, 13, ..., 9961, 9986, 9993]), + values=tensor([0.1704, 0.0678, 0.1172, ..., 0.2208, 0.7370, 0.2820]), + size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.7446, 0.0915, 0.8679, ..., 0.5982, 0.0596, 0.6566]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000000 +Density: 0.1 +Time: 213.33555269241333 seconds + +[20.4, 20.4, 20.4, 20.36, 20.36, 20.16, 20.32, 20.2, 20.2, 20.28] +[20.32, 20.48, 21.4, 22.68, 24.52, 24.52, 27.12, 28.4, 28.88, 28.48, 27.56, 25.92, 24.36, 24.48, 24.52, 24.56, 24.56, 24.24, 24.24, 24.2, 23.96, 23.92, 24.16, 24.36, 24.48, 24.52, 24.56, 24.56, 24.36, 24.28, 24.28, 24.48, 24.36, 24.36, 24.6, 24.36, 24.24, 24.2, 24.24, 24.12, 24.16, 24.12, 24.24, 24.24, 24.36, 24.48, 24.48, 24.56, 24.4, 24.4, 24.24, 24.56, 24.84, 24.76, 24.76, 24.76, 24.84, 24.52, 24.64, 24.64, 24.64, 24.64, 24.52, 24.52, 24.52, 24.4, 24.36, 24.36, 24.36, 24.32, 24.24, 24.44, 24.2, 24.08, 24.2, 24.0, 23.92, 23.88, 23.84, 24.08, 24.08, 24.4, 24.6, 24.72, 24.8, 24.68, 24.4, 24.36, 24.24, 24.12, 24.16, 24.2, 24.04, 24.04, 24.0, 24.12, 24.32, 24.36, 24.32, 24.4, 24.16, 24.08, 24.12, 24.32, 24.32, 24.32, 24.44, 24.56, 24.32, 24.36, 24.56, 24.68, 24.44, 24.48, 24.52, 24.44, 24.56, 24.56, 24.68, 24.6, 24.2, 24.6, 24.16, 24.24, 24.32, 24.56, 24.28, 24.48, 24.8, 24.68, 24.68, 24.84, 24.84, 24.84, 24.88, 24.56, 24.84, 24.68, 24.48, 24.76, 24.64, 24.64, 24.64, 24.52, 24.8, 24.68, 24.52, 24.68, 24.6, 24.44, 24.68, 24.76, 24.76, 24.64, 24.6, 24.6, 24.56, 24.44, 24.4, 24.52, 24.48, 24.44, 24.44, 24.32, 24.44, 24.28, 24.44, 24.44, 24.36, 24.16, 24.04, 24.0, 24.12, 24.0, 24.12, 24.4, 24.4, 24.32, 24.28, 24.28, 24.28, 24.2, 24.32, 24.32, 24.4, 24.6, 24.44, 24.56, 24.76, 24.84, 24.72, 24.72, 24.72, 24.56, 24.52, 24.56, 24.64, 24.6, 24.36, 24.44, 24.4, 24.4, 24.56, 24.72, 24.72, 24.6, 24.48, 24.36, 24.24, 24.24, 24.28, 24.44, 24.56, 24.56] +216.55702543258667 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 213.33555269241333, 'TIME_S_1KI': 213.33555269241333, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 5226.200544624329, 'W': 24.133137838334523} +[20.4, 20.4, 20.4, 20.36, 20.36, 20.16, 20.32, 20.2, 20.2, 20.28, 20.2, 19.96, 20.08, 20.24, 20.24, 20.28, 20.48, 20.6, 20.64, 20.4] +365.55999999999995 +18.278 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 213.33555269241333, 'TIME_S_1KI': 213.33555269241333, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 5226.200544624329, 'W': 24.133137838334523, 'J_1KI': 5226.200544624329, 'W_1KI': 24.133137838334523, 'W_D': 5.8551378383345245, 'J_D': 1267.97123376751, 'W_D_1KI': 5.8551378383345245, 'J_D_1KI': 5.8551378383345245} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.2.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.2.json new file mode 100644 index 0000000..1e2c2f4 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.2.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 424.4943735599518, "TIME_S_1KI": 424.4943735599518, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 10473.538437499996, "W": 24.301530579701517, "J_1KI": 10473.538437499996, "W_1KI": 24.301530579701517, "W_D": 5.865530579701517, "J_D": 2527.942006835934, "W_D_1KI": 5.865530579701517, "J_D_1KI": 5.865530579701517} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.2.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.2.output new file mode 100644 index 0000000..a51b684 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.2.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.2 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 424.4943735599518} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1949, 3966, ..., 19996026, + 19998069, 20000000]), + col_indices=tensor([ 7, 21, 26, ..., 9986, 9990, 9999]), + values=tensor([0.4961, 0.8613, 0.9281, ..., 0.1556, 0.7430, 0.8560]), + size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) +tensor([0.5082, 0.3131, 0.5448, ..., 0.5922, 0.3726, 0.5476]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 20000000 +Density: 0.2 +Time: 424.4943735599518 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1949, 3966, ..., 19996026, + 19998069, 20000000]), + col_indices=tensor([ 7, 21, 26, ..., 9986, 9990, 9999]), + values=tensor([0.4961, 0.8613, 0.9281, ..., 0.1556, 0.7430, 0.8560]), + size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) +tensor([0.5082, 0.3131, 0.5448, ..., 0.5922, 0.3726, 0.5476]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 20000000 +Density: 0.2 +Time: 424.4943735599518 seconds + +[20.56, 20.4, 20.48, 20.48, 20.56, 20.8, 20.96, 20.68, 20.68, 20.52] +[20.4, 20.4, 20.84, 23.24, 23.96, 25.96, 29.08, 30.08, 29.8, 30.04, 30.84, 27.8, 27.8, 27.2, 26.24, 24.6, 24.44, 24.32, 24.24, 24.32, 24.2, 24.44, 24.6, 24.6, 24.72, 24.72, 24.84, 24.88, 24.92, 24.96, 24.6, 24.48, 24.36, 24.16, 24.36, 24.64, 24.68, 24.68, 24.72, 24.68, 24.52, 24.52, 24.4, 24.44, 24.24, 24.36, 24.4, 24.48, 24.44, 24.44, 24.44, 24.24, 24.28, 24.24, 24.44, 24.4, 24.28, 24.24, 24.28, 24.24, 24.48, 24.84, 24.84, 24.56, 24.64, 24.6, 24.88, 24.68, 24.56, 24.56, 24.4, 24.4, 24.32, 24.36, 24.44, 24.44, 24.36, 24.48, 24.64, 24.8, 24.68, 24.92, 24.88, 24.76, 24.88, 24.68, 24.36, 24.36, 24.4, 24.44, 24.68, 24.76, 24.56, 24.64, 24.24, 24.32, 24.72, 24.6, 24.96, 24.96, 25.12, 25.04, 24.44, 24.36, 24.28, 24.16, 24.4, 24.44, 24.56, 24.68, 24.72, 24.48, 24.48, 24.4, 24.36, 24.24, 24.2, 24.52, 24.64, 24.84, 24.8, 24.56, 24.28, 24.16, 24.16, 24.16, 24.28, 24.4, 24.6, 24.64, 24.52, 24.56, 24.44, 24.36, 24.56, 24.84, 24.64, 24.64, 24.84, 24.72, 24.48, 24.6, 24.64, 24.68, 24.6, 24.4, 24.4, 24.16, 24.12, 24.12, 24.28, 24.4, 24.48, 24.76, 24.6, 24.44, 24.28, 24.32, 24.24, 24.32, 24.4, 24.4, 24.56, 24.48, 24.48, 24.28, 24.68, 24.52, 24.32, 24.4, 24.56, 24.28, 24.4, 24.72, 24.72, 24.76, 24.76, 24.72, 24.64, 24.56, 24.6, 24.56, 24.64, 24.48, 24.44, 24.4, 24.4, 24.36, 24.32, 24.48, 24.48, 24.48, 24.32, 24.4, 24.08, 24.16, 24.28, 24.44, 24.48, 24.48, 24.6, 24.56, 24.44, 24.4, 24.44, 24.44, 24.64, 24.72, 24.44, 24.48, 24.32, 24.32, 24.4, 24.28, 24.52, 24.56, 24.68, 24.68, 24.72, 24.88, 24.96, 25.04, 24.84, 24.84, 24.84, 24.6, 24.64, 24.6, 24.6, 24.6, 24.36, 24.28, 24.32, 24.48, 24.48, 24.44, 24.44, 24.56, 24.56, 24.84, 24.72, 24.8, 24.72, 24.6, 24.56, 24.68, 24.88, 24.88, 24.88, 24.88, 24.48, 24.48, 24.32, 24.32, 24.36, 24.36, 24.44, 24.32, 24.36, 24.44, 24.32, 24.32, 24.28, 24.64, 24.8, 24.8, 24.96, 24.76, 24.8, 24.68, 24.52, 24.64, 24.48, 24.48, 24.56, 24.48, 24.32, 24.28, 24.32, 24.36, 24.28, 24.36, 24.4, 24.28, 24.36, 24.36, 24.32, 24.16, 24.04, 24.2, 24.2, 24.32, 24.36, 24.52, 24.36, 24.44, 24.56, 24.64, 24.64, 24.84, 24.8, 24.8, 24.64, 24.48, 24.52, 24.4, 24.6, 24.32, 24.24, 24.2, 24.2, 24.16, 24.2, 24.56, 24.56, 24.68, 24.8, 24.8, 24.68, 24.64, 24.68, 24.6, 24.64, 24.64, 24.6, 24.6, 24.4, 24.28, 24.36, 24.4, 24.48, 24.44, 24.48, 24.52, 24.36, 24.36, 24.44, 24.32, 24.24, 24.44, 24.44, 24.68, 24.56, 24.4, 24.52, 24.4, 24.24, 24.24, 24.4, 24.44, 24.48, 24.6, 24.76, 24.76, 24.64, 24.72, 24.44, 24.48, 24.6, 24.56, 24.56, 24.64, 24.72, 24.56, 24.4, 24.24, 24.2, 24.16, 24.08, 24.04, 24.12, 24.32, 24.32, 24.36, 24.36, 24.6, 24.56, 24.52, 24.76, 24.6, 24.68, 24.56, 24.76, 24.8, 24.76, 24.76, 24.88, 24.64, 24.76, 24.52, 24.44, 24.2, 24.68, 24.48, 24.84, 25.0, 25.12, 25.12, 24.96, 24.84, 24.52, 24.28, 24.2, 24.48, 24.48, 24.52, 24.52, 24.56, 24.6, 24.6, 24.76, 24.76, 25.0, 24.88, 24.92, 24.88, 24.64, 24.72, 24.64, 24.68, 24.68, 24.56, 24.56, 24.36, 24.28, 24.32] +430.982666015625 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 424.4943735599518, 'TIME_S_1KI': 424.4943735599518, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 10473.538437499996, 'W': 24.301530579701517} +[20.56, 20.4, 20.48, 20.48, 20.56, 20.8, 20.96, 20.68, 20.68, 20.52, 20.2, 20.36, 20.48, 20.56, 20.28, 20.2, 20.2, 20.24, 20.52, 20.4] +368.72 +18.436 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 424.4943735599518, 'TIME_S_1KI': 424.4943735599518, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 10473.538437499996, 'W': 24.301530579701517, 'J_1KI': 10473.538437499996, 'W_1KI': 24.301530579701517, 'W_D': 5.865530579701517, 'J_D': 2527.942006835934, 'W_D_1KI': 5.865530579701517, 'J_D_1KI': 5.865530579701517} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.3.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.3.json new file mode 100644 index 0000000..25c5266 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.3.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 637.8268127441406, "TIME_S_1KI": 637.8268127441406, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 15996.775521488189, "W": 24.370595996658984, "J_1KI": 15996.775521488189, "W_1KI": 24.370595996658984, "W_D": 5.917595996658985, "J_D": 3884.2896906743035, "W_D_1KI": 5.917595996658985, "J_D_1KI": 5.917595996658985} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.3.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.3.output new file mode 100644 index 0000000..294dece --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_0.3.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.3 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 637.8268127441406} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2961, 5942, ..., 29993896, + 29996981, 30000000]), + col_indices=tensor([ 2, 5, 14, ..., 9994, 9995, 9996]), + values=tensor([0.0155, 0.6045, 0.5805, ..., 0.2136, 0.4050, 0.0107]), + size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) +tensor([0.2173, 0.9101, 0.0107, ..., 0.2401, 0.6161, 0.6478]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 30000000 +Density: 0.3 +Time: 637.8268127441406 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2961, 5942, ..., 29993896, + 29996981, 30000000]), + col_indices=tensor([ 2, 5, 14, ..., 9994, 9995, 9996]), + values=tensor([0.0155, 0.6045, 0.5805, ..., 0.2136, 0.4050, 0.0107]), + size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) +tensor([0.2173, 0.9101, 0.0107, ..., 0.2401, 0.6161, 0.6478]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 30000000 +Density: 0.3 +Time: 637.8268127441406 seconds + +[20.6, 20.64, 20.76, 20.6, 20.44, 20.44, 20.48, 20.64, 20.64, 20.88] +[20.96, 21.0, 21.0, 25.76, 26.8, 28.52, 29.6, 31.28, 31.2, 30.36, 31.16, 30.84, 30.84, 29.04, 28.4, 28.24, 27.2, 26.12, 24.68, 24.6, 24.44, 24.4, 24.4, 24.64, 24.72, 24.72, 24.96, 24.92, 24.64, 24.76, 24.76, 25.12, 25.12, 25.2, 24.92, 24.68, 24.48, 24.48, 24.6, 24.52, 24.44, 24.6, 24.48, 24.28, 24.24, 24.2, 24.32, 24.48, 24.6, 24.6, 24.56, 24.48, 24.4, 24.24, 24.28, 24.52, 24.4, 24.56, 24.56, 24.32, 24.48, 24.48, 24.48, 24.4, 24.64, 24.84, 24.76, 24.76, 24.8, 24.64, 24.56, 24.52, 24.28, 24.4, 24.4, 24.48, 24.72, 24.76, 24.68, 24.76, 24.76, 24.64, 24.64, 24.36, 24.2, 24.36, 24.36, 24.28, 24.48, 24.6, 24.4, 24.24, 24.4, 24.32, 24.36, 24.4, 24.52, 24.12, 24.36, 24.36, 24.6, 24.72, 24.56, 24.92, 24.48, 24.56, 24.56, 24.56, 24.16, 24.24, 24.24, 24.24, 24.36, 24.4, 24.56, 24.52, 24.72, 24.68, 24.8, 24.8, 24.76, 24.76, 24.64, 24.64, 24.64, 24.68, 24.52, 24.48, 24.56, 24.4, 24.6, 24.56, 24.6, 24.76, 24.76, 24.84, 24.84, 25.0, 24.92, 24.68, 24.72, 24.68, 24.84, 24.84, 24.72, 24.8, 24.64, 24.52, 24.52, 24.76, 24.8, 24.64, 24.6, 24.6, 24.56, 24.8, 25.0, 24.92, 24.8, 24.76, 24.52, 24.52, 24.44, 24.64, 24.76, 24.76, 24.64, 24.36, 24.36, 24.52, 24.56, 24.72, 24.96, 24.96, 24.76, 24.72, 24.84, 24.68, 24.52, 24.76, 24.68, 24.44, 24.52, 24.48, 24.52, 24.92, 24.92, 24.76, 24.52, 24.8, 24.68, 24.52, 24.72, 24.92, 24.6, 24.48, 24.44, 24.52, 24.52, 24.24, 24.4, 24.4, 24.4, 24.24, 24.28, 24.48, 24.44, 24.48, 24.8, 24.64, 24.64, 24.72, 24.8, 24.64, 24.52, 24.48, 24.28, 24.24, 24.2, 24.36, 24.4, 24.44, 24.44, 24.44, 24.72, 24.72, 24.76, 24.72, 24.8, 24.48, 24.24, 24.36, 24.36, 24.4, 24.64, 24.64, 24.76, 24.64, 24.56, 24.24, 24.32, 24.32, 24.4, 24.64, 24.76, 24.76, 24.92, 24.92, 24.96, 25.04, 24.76, 25.0, 24.8, 24.76, 24.72, 24.52, 24.52, 24.44, 24.6, 24.6, 24.6, 24.6, 24.64, 24.68, 24.68, 24.84, 25.0, 25.0, 24.88, 24.72, 24.56, 24.4, 24.4, 24.48, 24.52, 24.56, 24.44, 24.64, 24.56, 24.44, 24.36, 24.56, 24.72, 24.64, 24.92, 24.92, 24.84, 24.64, 24.68, 24.64, 24.68, 24.68, 24.8, 24.88, 24.88, 24.76, 24.96, 24.96, 24.76, 24.8, 24.64, 24.84, 24.68, 24.56, 24.72, 24.56, 24.56, 24.44, 24.28, 24.28, 24.36, 24.2, 24.04, 24.2, 24.32, 24.32, 24.52, 24.52, 24.4, 24.48, 24.72, 24.68, 24.68, 24.6, 24.68, 24.52, 24.52, 24.72, 24.64, 24.68, 24.8, 24.48, 24.6, 24.84, 24.84, 24.56, 24.56, 24.28, 24.24, 24.2, 24.32, 24.32, 24.16, 24.28, 24.44, 24.4, 24.4, 24.68, 24.84, 24.84, 24.76, 24.64, 24.6, 24.4, 24.56, 24.4, 24.4, 24.68, 24.8, 24.8, 24.72, 24.72, 24.56, 24.36, 24.48, 24.64, 24.72, 24.84, 24.88, 24.64, 24.6, 24.6, 24.56, 24.44, 24.44, 24.56, 24.6, 24.64, 24.48, 24.56, 24.28, 24.36, 24.44, 24.28, 24.28, 24.16, 24.24, 24.4, 24.36, 24.6, 24.64, 24.6, 24.6, 24.72, 24.84, 24.76, 24.76, 24.68, 24.68, 24.6, 24.52, 24.52, 24.48, 24.36, 24.32, 24.24, 24.2, 24.4, 24.4, 24.48, 24.52, 24.72, 24.68, 24.88, 24.88, 24.8, 24.92, 24.84, 24.76, 24.6, 24.44, 24.44, 24.4, 24.28, 24.24, 24.32, 24.16, 24.4, 24.52, 24.4, 24.28, 24.28, 24.2, 24.2, 24.08, 24.16, 24.28, 24.32, 24.4, 24.28, 24.24, 24.04, 24.04, 24.12, 24.16, 24.16, 24.4, 24.4, 24.48, 24.6, 24.76, 24.68, 24.6, 24.64, 24.48, 24.36, 24.36, 24.44, 24.44, 24.48, 24.72, 24.88, 24.64, 24.8, 24.64, 24.64, 24.6, 24.48, 24.48, 24.64, 24.64, 24.88, 24.64, 24.48, 24.36, 24.52, 24.48, 24.68, 24.88, 24.8, 24.92, 24.88, 24.88, 24.88, 25.04, 24.64, 24.8, 24.92, 24.8, 24.72, 24.72, 24.6, 24.4, 24.44, 24.52, 24.52, 24.36, 24.44, 24.6, 24.56, 24.48, 24.8, 24.72, 24.8, 24.72, 24.92, 24.68, 24.68, 24.52, 24.52, 24.48, 24.44, 24.36, 24.4, 24.36, 24.44, 24.4, 24.4, 24.32, 24.24, 24.24, 24.2, 24.12, 24.2, 24.36, 24.36, 24.52, 24.52, 24.4, 24.24, 24.24, 24.32, 24.32, 24.16, 24.2, 24.24, 24.28, 24.24, 24.44, 24.6, 24.44, 24.32, 24.4, 24.48, 24.48, 24.36, 24.68, 24.6, 24.52, 24.52, 24.52, 24.68, 24.48, 24.56, 24.44, 24.32, 24.28, 24.28, 24.24, 24.44, 24.4, 24.36, 24.24, 24.36, 24.72, 24.8, 24.64, 24.68, 24.44, 24.44, 24.44, 24.52, 24.68, 24.68, 24.84, 24.76, 24.96, 24.92, 24.92, 25.04, 25.48, 25.48, 25.16, 25.16, 24.76, 24.24, 24.32, 24.2, 24.32, 24.36, 24.4, 24.44, 24.56, 24.72, 24.72, 24.72, 24.64, 24.76, 24.6, 24.28, 24.12, 24.2, 24.24, 24.44, 25.04, 25.12, 25.12, 25.04, 25.08, 24.96, 24.64, 24.68, 24.88, 24.96, 25.12, 25.16, 25.16, 24.88, 25.08, 25.08, 25.12, 25.08, 24.84, 24.76, 24.56, 24.44, 24.68, 24.84, 24.64, 24.84, 24.76, 24.76, 24.56, 24.56, 24.8, 24.96, 24.96, 25.08, 24.92, 24.8, 24.76, 24.84, 24.76, 24.76, 24.8, 24.84, 24.72, 24.52, 24.6] +656.396565914154 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 637.8268127441406, 'TIME_S_1KI': 637.8268127441406, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 15996.775521488189, 'W': 24.370595996658984} +[20.6, 20.64, 20.76, 20.6, 20.44, 20.44, 20.48, 20.64, 20.64, 20.88, 20.28, 20.44, 20.44, 20.64, 20.68, 20.44, 20.36, 20.36, 20.12, 20.12] +369.06 +18.453 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 637.8268127441406, 'TIME_S_1KI': 637.8268127441406, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 15996.775521488189, 'W': 24.370595996658984, 'J_1KI': 15996.775521488189, 'W_1KI': 24.370595996658984, 'W_D': 5.917595996658985, 'J_D': 3884.2896906743035, 'W_D_1KI': 5.917595996658985, 'J_D_1KI': 5.917595996658985} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_1e-05.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_1e-05.json new file mode 100644 index 0000000..7258aa7 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 141920, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.197850227355957, "TIME_S_1KI": 0.0718563291104563, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 278.53162281036373, "W": 19.575620643059622, "J_1KI": 1.9625959893627658, "W_1KI": 0.1379341928062262, "W_D": 4.584620643059623, "J_D": 65.2322524514198, "W_D_1KI": 0.032304260449969154, "J_D_1KI": 0.00022762303022808028} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_1e-05.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_1e-05.output new file mode 100644 index 0000000..5a62a56 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_1e-05.output @@ -0,0 +1,1307 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.08288788795471191} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 999, 1000, 1000]), + col_indices=tensor([8276, 8512, 1857, 9453, 5594, 1786, 645, 6447, 5709, + 9757, 8196, 1491, 9162, 8503, 189, 10, 1296, 6876, + 119, 8563, 749, 1550, 2318, 8246, 5733, 8006, 6329, + 7471, 3720, 9382, 1064, 3289, 8282, 2516, 8872, 2976, + 6001, 4221, 9050, 2, 6851, 1283, 8840, 7445, 9952, + 3963, 7775, 4665, 7671, 1625, 7201, 7423, 9095, 4003, + 9039, 8222, 4002, 4851, 2216, 6397, 2573, 1155, 1658, + 5402, 1265, 1882, 3515, 3745, 1128, 1774, 309, 5274, + 84, 2261, 875, 7389, 8770, 9055, 1245, 4813, 5184, + 2172, 1801, 9623, 6859, 2196, 1926, 1262, 2389, 9131, + 4836, 349, 6978, 9280, 3446, 5839, 9885, 3634, 6691, + 6641, 6961, 8613, 9421, 2247, 8553, 789, 6806, 4532, + 3327, 6426, 7167, 5921, 1683, 7786, 6904, 6367, 1125, + 9619, 9609, 8436, 4889, 8881, 3076, 6406, 2789, 4771, + 2473, 5921, 8649, 8808, 7551, 2275, 7532, 4047, 4956, + 5524, 4175, 8896, 4876, 8812, 1107, 9810, 8830, 3587, + 136, 2620, 31, 3149, 3602, 2128, 2913, 8880, 726, + 7360, 1751, 1097, 2482, 144, 3484, 7883, 399, 5282, + 6192, 617, 8440, 5826, 8493, 582, 6530, 6362, 9475, + 8907, 7405, 6669, 1159, 3728, 5359, 1439, 8034, 9646, + 4353, 7554, 6570, 5321, 5696, 6269, 7260, 7711, 2189, + 5467, 325, 2394, 1067, 3162, 962, 7835, 314, 776, + 6740, 6522, 5597, 7108, 5973, 3994, 4684, 1352, 9931, + 3211, 8724, 1338, 7817, 6195, 3455, 5915, 5511, 3061, + 4751, 4079, 855, 2750, 867, 3028, 909, 1327, 4954, + 3595, 1917, 91, 504, 6823, 8015, 2422, 1403, 4497, + 5229, 4813, 2971, 8367, 8880, 1956, 3166, 5488, 9128, + 6641, 7389, 1943, 8532, 4925, 7368, 3456, 4332, 7488, + 2324, 6868, 2121, 7163, 7046, 8735, 121, 8887, 9517, + 183, 1044, 2494, 5670, 5007, 6137, 6582, 303, 2805, + 3015, 7091, 3855, 7442, 4578, 3251, 4654, 5804, 5413, + 2177, 6177, 9913, 1625, 687, 1292, 8586, 2035, 982, + 755, 6758, 8888, 6048, 6343, 4633, 5897, 8444, 8150, + 7781, 725, 9438, 5710, 9382, 2574, 6058, 2513, 1778, + 122, 5128, 3907, 7410, 714, 8662, 6688, 8127, 2969, + 3345, 2095, 8474, 4307, 7012, 4768, 8186, 9653, 2657, + 2922, 365, 1018, 5800, 2932, 4696, 53, 4859, 6082, + 3621, 7055, 5341, 3697, 8788, 5491, 9475, 5441, 8426, + 468, 4496, 9637, 2301, 6187, 8587, 7515, 9602, 474, + 8388, 4988, 1646, 4000, 1983, 6870, 1879, 6888, 8175, + 5903, 9721, 4513, 6443, 1310, 1878, 3545, 9708, 3759, + 4145, 3434, 3654, 9428, 7967, 9740, 6844, 1449, 7083, + 1834, 5218, 6245, 5070, 2311, 7720, 5551, 5987, 6790, + 8087, 9122, 7936, 8051, 8437, 8069, 5792, 3862, 8013, + 8124, 4516, 9113, 4585, 1855, 712, 9434, 2244, 3421, + 4542, 6206, 2077, 2592, 7046, 1572, 7802, 3200, 77, + 6437, 48, 1913, 9201, 7000, 8497, 9838, 3928, 3446, + 7826, 5623, 7464, 4422, 5549, 9989, 7594, 978, 1027, + 6384, 3539, 9787, 925, 7836, 8272, 9420, 3565, 8139, + 2606, 3726, 8508, 2076, 9512, 7264, 1105, 7456, 5922, + 436, 5531, 390, 2872, 3410, 7077, 3257, 3900, 6181, + 5454, 2692, 5017, 7524, 23, 8143, 6664, 4624, 2842, + 2670, 1422, 8225, 5272, 1575, 8020, 5275, 6922, 6385, + 4869, 9485, 2381, 2187, 6952, 4575, 1420, 1739, 4554, + 5624, 1084, 6261, 9289, 1978, 8620, 1011, 8635, 7344, + 382, 3903, 3275, 7645, 2123, 214, 9598, 1316, 1120, + 2758, 2802, 7016, 8168, 6862, 1434, 5271, 3562, 7784, + 3573, 1026, 3030, 3397, 4904, 3559, 3831, 4325, 2931, + 6053, 4715, 4402, 5494, 5195, 4357, 7489, 4384, 5428, + 4227, 6900, 7913, 5278, 4013, 2964, 4776, 8792, 3615, + 7657, 8348, 7496, 3765, 8272, 7356, 7651, 2612, 6825, + 9694, 7320, 6793, 1758, 1804, 3531, 7520, 6794, 3575, + 4660, 3318, 7366, 7252, 3513, 8003, 1227, 4245, 740, + 1978, 5598, 4116, 9710, 2221, 9171, 3774, 7468, 3136, + 7275, 7997, 662, 9678, 6614, 8059, 2192, 9061, 5551, + 4200, 4515, 7372, 3749, 3276, 2792, 7457, 2381, 6612, + 7249, 7320, 6891, 9247, 1261, 9238, 7375, 339, 9753, + 7589, 42, 2877, 8207, 6655, 9620, 3940, 9667, 8842, + 5016, 5306, 133, 1644, 3110, 7972, 8268, 1236, 3030, + 3019, 6866, 1577, 9822, 1764, 678, 9569, 3249, 4696, + 18, 7170, 8217, 2029, 7944, 6850, 6037, 8945, 6928, + 7526, 4511, 2970, 5334, 9872, 9778, 3374, 3290, 9601, + 7633, 8431, 4263, 6931, 4613, 5918, 5854, 3669, 5964, + 8766, 9373, 1519, 897, 7762, 3322, 317, 2004, 4986, + 2838, 1416, 6403, 9000, 5671, 5891, 6742, 6946, 9606, + 1593, 9057, 2615, 5046, 5323, 4070, 7686, 887, 7814, + 7112, 1506, 1176, 1966, 6574, 6725, 9003, 3522, 1536, + 721, 968, 2645, 3006, 1202, 8059, 4357, 257, 5956, + 8291, 3587, 1324, 4026, 5017, 6089, 3533, 4487, 4336, + 4372, 523, 6809, 2865, 106, 8919, 2101, 5588, 9401, + 3615, 294, 5552, 1273, 4483, 2278, 6780, 8548, 8854, + 6295, 6334, 610, 1787, 2551, 2927, 7034, 1297, 9805, + 5095, 9343, 1737, 5095, 5412, 4606, 4112, 4125, 8521, + 240, 5569, 7517, 719, 4246, 9580, 3217, 607, 7225, + 8130, 9863, 59, 3517, 5417, 3027, 1563, 5660, 5670, + 134, 2586, 4182, 5906, 6707, 5824, 6326, 9832, 7981, + 1245, 7038, 2749, 9123, 1573, 7744, 9273, 3171, 6936, + 8920, 9094, 1562, 7017, 8555, 6399, 214, 9350, 1242, + 9441, 6024, 8234, 2555, 3841, 4838, 5524, 6282, 2049, + 5804, 2937, 8104, 8373, 3557, 1729, 75, 3087, 5017, + 6320, 7348, 3083, 3813, 2460, 1915, 6617, 9077, 5280, + 7414, 2772, 8800, 8002, 7643, 517, 7232, 1736, 2354, + 3354, 3614, 7610, 1724, 1872, 3047, 5536, 498, 8083, + 6992, 3529, 4235, 790, 8660, 5410, 4700, 674, 2734, + 6580, 8218, 3383, 800, 694, 1064, 6285, 2980, 3993, + 1143, 7009, 5232, 6283, 4927, 9228, 4526, 9337, 1565, + 1843, 8745, 4576, 5017, 8330, 565, 1296, 2370, 3236, + 1490, 8360, 4005, 1703, 7955, 922, 8095, 8868, 6378, + 9202, 5596, 7385, 3993, 6695, 5210, 3534, 9358, 4634, + 2010, 3022, 4876, 2404, 9761, 5559, 2165, 255, 7891, + 4079, 5756, 4511, 1871, 3057, 6381, 2383, 8869, 5138, + 1577, 1723, 1186, 3546, 3866, 1005, 6690, 1524, 9037, + 9232, 1927, 9957, 9615, 306, 2669, 6217, 4611, 1726, + 604, 1333, 3992, 1237, 545, 671, 9514, 993, 3862, + 8762, 9011, 665, 2875, 5108, 4200, 9504, 532, 6855, + 4348, 4716, 4934, 5606, 6782, 7589, 2798, 8991, 9289, + 6406, 607, 3680, 7537, 1575, 6436, 5327, 5806, 4006, + 7679, 3762, 721, 3215, 8429, 3165, 9396, 5645, 5117, + 9584, 6594, 9927, 4550, 5236, 1966, 1697, 6465, 3372, + 3084, 279, 6182, 2834, 2239, 2312, 4050, 7053, 6341, + 2787, 2419, 3190, 2698, 5971, 4594, 4787, 50, 5176, + 8465]), + values=tensor([0.1245, 0.3818, 0.2094, 0.1577, 0.3656, 0.7612, 0.6327, + 0.6604, 0.2965, 0.4693, 0.5770, 0.7401, 0.9832, 0.4056, + 0.5757, 0.4783, 0.0984, 0.4679, 0.7672, 0.1199, 0.5875, + 0.4548, 0.4261, 0.7656, 0.8501, 0.6874, 0.2179, 0.3269, + 0.1971, 0.0899, 0.3434, 0.6804, 0.2757, 0.7906, 0.0273, + 0.1203, 0.7662, 0.1366, 0.8859, 0.3751, 0.5143, 0.5055, + 0.7621, 0.4188, 0.1528, 0.5383, 0.2740, 0.1571, 0.8247, + 0.0143, 0.5848, 0.8785, 0.1587, 0.2973, 0.5407, 0.9462, + 0.2767, 0.3658, 0.6420, 0.1081, 0.1550, 0.4887, 0.3542, + 0.4467, 0.8817, 0.7810, 0.4989, 0.6946, 0.1755, 0.1838, + 0.0013, 0.0832, 0.2867, 0.5049, 0.4506, 0.4576, 0.3050, + 0.8657, 0.2519, 0.7953, 0.4007, 0.8761, 0.8492, 0.1099, + 0.7929, 0.3747, 0.0524, 0.4391, 0.3472, 0.8201, 0.0424, + 0.8252, 0.8114, 0.1823, 0.6663, 0.6930, 0.5818, 0.4644, + 0.4318, 0.7739, 0.0173, 0.6102, 0.6665, 0.3372, 0.7108, + 0.1573, 0.3062, 0.2868, 0.1402, 0.6120, 0.2102, 0.5513, + 0.5413, 0.9452, 0.4056, 0.1381, 0.7432, 0.0571, 0.3706, + 0.4822, 0.5782, 0.1239, 0.0775, 0.5319, 0.3228, 0.6896, + 0.2726, 0.1341, 0.5306, 0.9142, 0.9096, 0.5020, 0.9514, + 0.9017, 0.5102, 0.0340, 0.7420, 0.4322, 0.8736, 0.4773, + 0.0061, 0.8970, 0.2282, 0.1135, 0.4735, 0.7641, 0.6684, + 0.7803, 0.5548, 0.7874, 0.7264, 0.5921, 0.4576, 0.0450, + 0.0638, 0.0382, 0.2119, 0.8834, 0.6833, 0.8537, 0.2833, + 0.3744, 0.7613, 0.7596, 0.0793, 0.7556, 0.3236, 0.5321, + 0.9360, 0.4142, 0.7940, 0.3038, 0.0240, 0.4817, 0.9965, + 0.9610, 0.0716, 0.2156, 0.2327, 0.3825, 0.2509, 0.9412, + 0.7528, 0.5792, 0.8462, 0.3324, 0.5622, 0.9454, 0.0244, + 0.4780, 0.3934, 0.1591, 0.2852, 0.2205, 0.9671, 0.9748, + 0.3564, 0.4950, 0.6302, 0.1186, 0.5454, 0.5686, 0.4811, + 0.2045, 0.4676, 0.4340, 0.3804, 0.9345, 0.2026, 0.5164, + 0.3309, 0.8805, 0.8710, 0.4757, 0.6928, 0.9663, 0.4633, + 0.1033, 0.2782, 0.5097, 0.1747, 0.0522, 0.4778, 0.9716, + 0.5347, 0.5449, 0.6951, 0.7746, 0.6695, 0.9769, 0.1496, + 0.1827, 0.7502, 0.3151, 0.6496, 0.0381, 0.8213, 0.4136, + 0.7596, 0.1014, 0.0237, 0.5817, 0.3057, 0.6599, 0.3209, + 0.1791, 0.4293, 0.2334, 0.8138, 0.1052, 0.1613, 0.2399, + 0.7322, 0.1756, 0.3117, 0.4917, 0.6137, 0.8067, 0.1741, + 0.3133, 0.3665, 0.2732, 0.0524, 0.5998, 0.1848, 0.7671, + 0.1991, 0.4054, 0.5139, 0.9878, 0.0305, 0.7011, 0.3081, + 0.9427, 0.6765, 0.3244, 0.6294, 0.5028, 0.9150, 0.4199, + 0.6526, 0.5757, 0.2641, 0.5860, 0.0452, 0.8240, 0.1926, + 0.8869, 0.4359, 0.6882, 0.7532, 0.9317, 0.9139, 0.5780, + 0.8631, 0.2248, 0.6258, 0.9840, 0.4124, 0.7692, 0.2864, + 0.0444, 0.9926, 0.9374, 0.3794, 0.4518, 0.6429, 0.3953, + 0.8250, 0.1534, 0.5111, 0.0795, 0.3267, 0.9581, 0.3156, + 0.7268, 0.8133, 0.8663, 0.7222, 0.2367, 0.3868, 0.0399, + 0.7807, 0.0074, 0.9426, 0.1418, 0.0064, 0.3379, 0.9855, + 0.8657, 0.5112, 0.8864, 0.5991, 0.3144, 0.3511, 0.0243, + 0.9685, 0.5134, 0.3114, 0.5038, 0.7213, 0.4452, 0.7423, + 0.6360, 0.6354, 0.9825, 0.0279, 0.1208, 0.7218, 0.7425, + 0.7616, 0.1573, 0.6443, 0.7731, 0.4128, 0.0865, 0.6156, + 0.7669, 0.8044, 0.0235, 0.5931, 0.6874, 0.9140, 0.4077, + 0.0687, 0.7123, 0.7951, 0.8856, 0.8880, 0.1863, 0.9067, + 0.5306, 0.8132, 0.8043, 0.3196, 0.4647, 0.4612, 0.9179, + 0.7496, 0.2101, 0.0530, 0.2839, 0.5042, 0.2441, 0.7641, + 0.3206, 0.4726, 0.2974, 0.7204, 0.4526, 0.5767, 0.2708, + 0.8534, 0.4637, 0.8968, 0.1213, 0.9959, 0.4052, 0.0078, + 0.0658, 0.5272, 0.0316, 0.4140, 0.4811, 0.1680, 0.5471, + 0.6979, 0.8319, 0.7834, 0.2648, 0.5388, 0.4331, 0.4875, + 0.8169, 0.4048, 0.2791, 0.7377, 0.2582, 0.6781, 0.0955, + 0.5159, 0.1713, 0.1085, 0.5551, 0.3083, 0.3436, 0.7631, + 0.1028, 0.3923, 0.3445, 0.7995, 0.4349, 0.0777, 0.6485, + 0.0491, 0.8348, 0.3699, 0.0058, 0.7453, 0.5659, 0.6523, + 0.9968, 0.3097, 0.7458, 0.8322, 0.5862, 0.0936, 0.6042, + 0.8788, 0.2508, 0.2797, 0.3842, 0.5270, 0.6266, 0.2776, + 0.8671, 0.3005, 0.1594, 0.8424, 0.9687, 0.1043, 0.5038, + 0.4791, 0.4092, 0.5708, 0.0590, 0.7282, 0.6973, 0.5168, + 0.7962, 0.7980, 0.9092, 0.8486, 0.2280, 0.4549, 0.9124, + 0.1570, 0.5221, 0.0479, 0.0369, 0.8882, 0.6277, 0.4187, + 0.6274, 0.2305, 0.4948, 0.8926, 0.6738, 0.7183, 0.7407, + 0.6741, 0.6388, 0.9883, 0.0987, 0.2665, 0.9773, 0.6037, + 0.5178, 0.6422, 0.8373, 0.3511, 0.8642, 0.8879, 0.5537, + 0.7700, 0.4488, 0.4880, 0.6921, 0.1486, 0.6546, 0.3013, + 0.7849, 0.6191, 0.4842, 0.1815, 0.7591, 0.4614, 0.1535, + 0.3979, 0.8546, 0.4054, 0.2999, 0.0048, 0.1366, 0.3412, + 0.8072, 0.6366, 0.6288, 0.1982, 0.9033, 0.0954, 0.9062, + 0.0513, 0.1147, 0.0631, 0.2263, 0.8361, 0.0565, 0.3142, + 0.4270, 0.0695, 0.5763, 0.6962, 0.3865, 0.7696, 0.2598, + 0.0060, 0.7960, 0.9025, 0.7023, 0.8571, 0.2155, 0.8520, + 0.9719, 0.7297, 0.2123, 0.4489, 0.2584, 0.5603, 0.3917, + 0.2858, 0.4662, 0.9411, 0.0181, 0.2832, 0.4354, 0.4500, + 0.0128, 0.1405, 0.3871, 0.9958, 0.1200, 0.4749, 0.7452, + 0.8394, 0.3346, 0.7561, 0.3818, 0.0145, 0.0460, 0.9487, + 0.1402, 0.1902, 0.0543, 0.1052, 0.0981, 0.5798, 0.3034, + 0.6376, 0.9449, 0.1583, 0.5504, 0.1919, 0.1303, 0.3605, + 0.9440, 0.0620, 0.4890, 0.6488, 0.3940, 0.0067, 0.4663, + 0.6567, 0.3770, 0.5054, 0.1380, 0.2497, 0.6100, 0.0902, + 0.1967, 0.9021, 0.3610, 0.1279, 0.3340, 0.8779, 0.4824, + 0.7443, 0.9637, 0.3980, 0.3829, 0.6872, 0.5466, 0.0185, + 0.5055, 0.6057, 0.4788, 0.5933, 0.8939, 0.9818, 0.6818, + 0.6749, 0.7665, 0.9848, 0.1299, 0.4256, 0.5598, 0.6809, + 0.8879, 0.1537, 0.1813, 0.7981, 0.5256, 0.9639, 0.4583, + 0.4319, 0.6998, 0.9903, 0.7229, 0.4589, 0.6796, 0.6045, + 0.7007, 0.8420, 0.9619, 0.3304, 0.0617, 0.4075, 0.7436, + 0.2040, 0.4557, 0.5995, 0.4210, 0.1320, 0.0195, 0.8479, + 0.7959, 0.7938, 0.5863, 0.3990, 0.1914, 0.9004, 0.6627, + 0.5619, 0.8791, 0.7615, 0.9836, 0.4387, 0.5637, 0.6659, + 0.0086, 0.7805, 0.4991, 0.9871, 0.4798, 0.8041, 0.0192, + 0.2124, 0.5684, 0.8468, 0.9113, 0.6212, 0.5698, 0.8014, + 0.3065, 0.3411, 0.0734, 0.3332, 0.1320, 0.9902, 0.1724, + 0.5897, 0.9345, 0.5116, 0.2368, 0.3790, 0.1573, 0.8815, + 0.0944, 0.0525, 0.5771, 0.9508, 0.6884, 0.2247, 0.0927, + 0.2997, 0.8991, 0.4303, 0.0318, 0.7181, 0.8480, 0.2590, + 0.2112, 0.7754, 0.2854, 0.1226, 0.5505, 0.9374, 0.7026, + 0.1723, 0.5362, 0.9042, 0.9043, 0.2444, 0.0024, 0.4516, + 0.1736, 0.8349, 0.7438, 0.8713, 0.3333, 0.9702, 0.0976, + 0.3725, 0.8106, 0.5712, 0.7101, 0.9500, 0.8201, 0.1752, + 0.0728, 0.1177, 0.2203, 0.7342, 0.9231, 0.8108, 0.6705, + 0.8900, 0.7335, 0.2987, 0.4853, 0.9568, 0.7158, 0.1787, + 0.8435, 0.4204, 0.6816, 0.2429, 0.7845, 0.3783, 0.9300, + 0.1803, 0.9735, 0.1494, 0.0737, 0.0658, 0.8234, 0.2687, + 0.1869, 0.6593, 0.7727, 0.6024, 0.7869, 0.2111, 0.2790, + 0.3397, 0.8180, 0.2802, 0.8573, 0.7564, 0.2726, 0.4840, + 0.5071, 0.2160, 0.6845, 0.3046, 0.3110, 0.0319, 0.2883, + 0.8756, 0.8700, 0.9477, 0.7582, 0.0312, 0.7275, 0.5753, + 0.4665, 0.0331, 0.4322, 0.1182, 0.2475, 0.4723, 0.8688, + 0.3075, 0.8869, 0.2497, 0.5244, 0.5040, 0.7162, 0.7628, + 0.7902, 0.8786, 0.6224, 0.7451, 0.8022, 0.4326, 0.9537, + 0.1995, 0.5730, 0.6864, 0.6112, 0.2079, 0.1363, 0.6884, + 0.8766, 0.7722, 0.9711, 0.4384, 0.7103, 0.9813, 0.6983, + 0.6490, 0.5048, 0.9815, 0.5532, 0.3076, 0.5743, 0.8792, + 0.2884, 0.4181, 0.9345, 0.2975, 0.8904, 0.8585, 0.7041, + 0.7858, 0.9509, 0.9913, 0.9947, 0.1505, 0.7515, 0.5658, + 0.3947, 0.2227, 0.5169, 0.1156, 0.4560, 0.4151, 0.8225, + 0.8598, 0.6976, 0.0313, 0.4616, 0.0585, 0.1294, 0.0517, + 0.1040, 0.5525, 0.5945, 0.8019, 0.2127, 0.5916, 0.2221, + 0.8648, 0.6361, 0.6550, 0.4248, 0.1319, 0.4808, 0.4100, + 0.3212, 0.5505, 0.1283, 0.1416, 0.6578, 0.7816, 0.0779, + 0.1876, 0.4334, 0.8940, 0.6358, 0.3036, 0.4683, 0.8709, + 0.5340, 0.2787, 0.2064, 0.9470, 0.4341, 0.0752, 0.1006, + 0.5759, 0.2817, 0.9669, 0.8867, 0.9491, 0.4506, 0.8648, + 0.1579, 0.2283, 0.8323, 0.1121, 0.5750, 0.3976, 0.9212, + 0.1706, 0.8255, 0.1475, 0.5604, 0.4833, 0.5802, 0.3597, + 0.7856, 0.9771, 0.2688, 0.4479, 0.9486, 0.8916, 0.8197, + 0.3055, 0.2577, 0.8058, 0.8715, 0.8602, 0.0761, 0.6514, + 0.3807, 0.4425, 0.3380, 0.6201, 0.9309, 0.3440, 0.9225, + 0.7987, 0.0785, 0.2455, 0.9692, 0.9564, 0.3172, 0.1983, + 0.4076, 0.3450, 0.7906, 0.8020, 0.6271, 0.1755, 0.8210, + 0.0990, 0.0570, 0.0300, 0.7859, 0.5313, 0.6641, 0.6688, + 0.2322, 0.1610, 0.1823, 0.1078, 0.6360, 0.4913, 0.4992, + 0.9529, 0.3422, 0.7400, 0.0826, 0.4553, 0.9529, 0.0415, + 0.7348, 0.0743, 0.9889, 0.5217, 0.7483, 0.5876, 0.0144, + 0.8254, 0.8920, 0.2868, 0.2736, 0.3612, 0.1545]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.4940, 0.1637, 0.9163, ..., 0.2332, 0.8903, 0.4879]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 0.08288788795471191 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 126677 -ss 10000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.372220277786255} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([4171, 3057, 7209, 2948, 4077, 8602, 6723, 7385, 3185, + 1979, 4898, 5146, 6082, 3916, 3357, 1239, 1865, 5288, + 7084, 3669, 8567, 390, 222, 7937, 7436, 7536, 100, + 9939, 953, 6752, 4459, 1164, 7573, 5755, 4330, 1051, + 6926, 4784, 6452, 173, 7327, 2769, 9411, 547, 7184, + 1803, 2735, 3553, 2593, 8603, 9787, 409, 5628, 6192, + 968, 7416, 6382, 1295, 829, 5935, 257, 823, 2011, + 1692, 9205, 9876, 7722, 8228, 3769, 5411, 4265, 6838, + 3788, 5377, 1539, 121, 7640, 6556, 2886, 373, 633, + 3388, 2063, 2691, 1816, 4562, 4715, 1544, 5746, 4224, + 9753, 3302, 257, 5030, 1700, 5572, 5488, 8810, 44, + 3892, 6196, 680, 9235, 3771, 3078, 9652, 8313, 8340, + 8194, 9811, 6858, 7697, 1051, 6425, 3442, 9895, 8537, + 6956, 3173, 2655, 5724, 9506, 1362, 5282, 7899, 4034, + 717, 6956, 2074, 8234, 9231, 8400, 1721, 8096, 8058, + 1564, 2837, 5525, 6467, 9105, 8508, 2425, 8050, 3104, + 4383, 807, 8898, 4439, 9565, 3772, 5003, 435, 7644, + 1652, 1914, 2238, 1718, 8446, 8758, 3283, 6522, 4570, + 7929, 5444, 633, 5009, 5898, 6412, 6138, 7641, 8023, + 3779, 6596, 1843, 4611, 5333, 3629, 1447, 5379, 4896, + 2089, 9462, 7859, 9196, 1537, 6884, 3472, 9048, 9935, + 3380, 3192, 8628, 3425, 8179, 6368, 2038, 9136, 8061, + 4989, 8687, 552, 2271, 3149, 9135, 582, 9927, 9097, + 2493, 9502, 7584, 4043, 4133, 6860, 691, 8767, 6168, + 9739, 5803, 3262, 4083, 3153, 7197, 5661, 4584, 5627, + 5286, 6261, 3581, 5434, 706, 8759, 9491, 8376, 5759, + 3936, 7006, 5446, 611, 6403, 7493, 2501, 344, 9152, + 150, 9135, 7259, 2392, 2575, 860, 4372, 1162, 1538, + 2024, 4841, 4854, 4474, 8570, 9195, 6099, 1575, 7604, + 2154, 4244, 6565, 6969, 3326, 3755, 4895, 8572, 6142, + 2184, 8551, 118, 8884, 795, 1091, 9777, 3962, 6775, + 5235, 8730, 9354, 5232, 6956, 7770, 9887, 4021, 5102, + 7542, 7149, 8658, 8721, 993, 4855, 8263, 7566, 4198, + 9643, 9042, 1412, 6406, 201, 8489, 2307, 9064, 2555, + 9663, 9159, 2978, 360, 4929, 5940, 6745, 3315, 7591, + 5668, 6700, 5879, 7321, 7180, 3279, 4488, 8581, 958, + 7425, 7701, 2088, 1418, 8898, 556, 6955, 8597, 1909, + 2715, 6282, 9823, 3990, 1424, 2696, 2113, 1383, 7011, + 3430, 8570, 4503, 3770, 1789, 3311, 9299, 9464, 6616, + 8873, 1240, 2624, 4370, 5836, 8559, 7737, 358, 9586, + 7848, 2968, 7333, 9753, 5901, 7252, 4963, 3089, 4167, + 474, 858, 6778, 1967, 4227, 9344, 2784, 6491, 1519, + 5597, 6764, 523, 1385, 6925, 2974, 4181, 3929, 5908, + 6560, 1590, 1699, 7323, 6440, 7896, 46, 3088, 6798, + 9850, 5931, 1626, 7674, 4915, 5518, 7943, 1927, 1848, + 9685, 9157, 2844, 4061, 1680, 534, 7745, 4726, 1978, + 6642, 1627, 1780, 6356, 796, 3636, 2194, 1594, 4485, + 5547, 5732, 991, 7922, 4644, 5251, 8603, 8177, 3055, + 3092, 864, 1671, 625, 6335, 872, 6033, 3915, 9704, + 2838, 5280, 6839, 1107, 8192, 9854, 10, 7358, 5729, + 7672, 9018, 7999, 9886, 3903, 332, 6039, 2718, 486, + 9338, 4888, 642, 2641, 8493, 9074, 7037, 4121, 2857, + 7670, 437, 3150, 3472, 6363, 1462, 9423, 2752, 9604, + 6126, 1966, 967, 6018, 6151, 6956, 9567, 1377, 2627, + 3339, 7453, 8116, 8505, 1963, 320, 1354, 8233, 2890, + 4712, 5923, 7507, 1168, 4122, 4404, 7181, 1991, 2191, + 8275, 7285, 2794, 9311, 4057, 4194, 9595, 7009, 5312, + 7563, 3003, 262, 4441, 3726, 4811, 590, 214, 3678, + 4769, 7922, 9858, 9078, 4474, 5472, 2117, 9957, 4905, + 4210, 9118, 2443, 4337, 559, 429, 5091, 7411, 2322, + 2740, 970, 7099, 7791, 9424, 2375, 6748, 5364, 3376, + 759, 6765, 6563, 7009, 5917, 8033, 103, 2556, 9654, + 7379, 1825, 1993, 7549, 4098, 3695, 8920, 8903, 9769, + 1722, 6589, 8831, 183, 6202, 1828, 7236, 5919, 4066, + 7989, 8517, 9644, 5713, 6870, 1471, 3063, 5308, 1800, + 4028, 398, 6076, 49, 5584, 6701, 874, 7580, 7109, + 7567, 7489, 165, 216, 2596, 2574, 8422, 5803, 4359, + 7017, 1094, 5107, 6174, 3445, 6851, 9183, 7690, 4452, + 8138, 4660, 3624, 4709, 9349, 5515, 101, 6164, 8143, + 1521, 1313, 1392, 4319, 521, 2718, 7242, 2894, 8876, + 7894, 8783, 5732, 5611, 8956, 4200, 5663, 8786, 4299, + 9359, 3300, 7300, 262, 8236, 3471, 8269, 3654, 7419, + 6, 3744, 8175, 6445, 7372, 7446, 9800, 761, 6696, + 415, 9859, 8573, 6158, 5109, 3984, 7163, 2377, 9369, + 7478, 5206, 1692, 4134, 7467, 9029, 431, 562, 4095, + 1381, 2986, 3374, 522, 4253, 4868, 5790, 8736, 7209, + 1524, 9247, 4314, 1512, 3044, 7263, 7101, 7578, 3761, + 9421, 4055, 8908, 8447, 6895, 3233, 6594, 7225, 8934, + 1620, 8931, 6629, 1371, 1481, 9971, 8892, 8055, 6339, + 2626, 3951, 2540, 7730, 8105, 1818, 9698, 6348, 8238, + 8909, 92, 9679, 5649, 6994, 8423, 9617, 8893, 7878, + 139, 4894, 3194, 6365, 3139, 8540, 8124, 8207, 7468, + 3137, 9027, 4981, 9129, 8139, 7731, 869, 9157, 8972, + 754, 7007, 3578, 658, 5120, 8944, 8958, 1363, 7546, + 5022, 8634, 9033, 4340, 1112, 5028, 4052, 5410, 9972, + 5272, 7759, 9481, 6252, 2832, 4357, 7820, 3555, 4324, + 20, 1504, 9542, 713, 1188, 1948, 3456, 1550, 136, + 2414, 5911, 6860, 4407, 6346, 7014, 5031, 6493, 2142, + 1672, 3712, 1898, 8437, 9729, 3991, 167, 4352, 5778, + 8900, 1295, 7690, 1238, 7305, 1352, 3474, 4757, 448, + 4751, 7038, 5655, 3913, 2112, 3311, 2122, 7321, 1658, + 9669, 1257, 6025, 4153, 3492, 4168, 843, 4347, 5234, + 4124, 3706, 6196, 9808, 5421, 5783, 5258, 2911, 5185, + 5334, 7727, 8197, 3498, 5897, 6029, 9707, 5802, 2571, + 7156, 7850, 7317, 249, 6660, 9594, 8499, 6553, 367, + 452, 2085, 3023, 7242, 2596, 6241, 3814, 4512, 3007, + 6430, 8255, 3146, 7416, 5434, 5823, 2994, 627, 262, + 5259, 1903, 4724, 1430, 729, 5769, 4005, 3066, 7263, + 5434, 2017, 9296, 466, 1984, 9099, 2145, 2980, 9331, + 7656, 3853, 4124, 4440, 4606, 4994, 3593, 5296, 6185, + 2913, 2613, 1513, 7347, 1102, 7495, 7027, 2473, 5744, + 394, 6818, 7551, 8928, 2745, 6186, 2232, 8871, 5872, + 2457, 5632, 8334, 406, 2307, 4965, 8901, 8286, 7300, + 1451, 785, 7023, 5972, 2973, 2951, 2860, 2555, 3468, + 5575, 2968, 6407, 4850, 4514, 934, 1371, 5509, 5185, + 6086, 2474, 120, 192, 3431, 9336, 8993, 2772, 1393, + 752, 6364, 7216, 2822, 8956, 1582, 2682, 3898, 4597, + 8811, 3172, 7041, 265, 5793, 7404, 4892, 9652, 5243, + 951, 6585, 8400, 7544, 5140, 5368, 7880, 3221, 1693, + 6758, 7073, 7494, 687, 4440, 7953, 9316, 1257, 3158, + 7707, 5424, 2405, 5820, 1689, 6718, 6603, 4211, 9517, + 9615]), + values=tensor([0.4415, 0.6013, 0.5126, 0.9698, 0.1034, 0.0639, 0.4558, + 0.2905, 0.4310, 0.2619, 0.9778, 0.6823, 0.9070, 0.1229, + 0.8548, 0.3336, 0.0404, 0.9142, 0.8199, 0.0542, 0.7053, + 0.4688, 0.8485, 0.2928, 0.6756, 0.2645, 0.9947, 0.2741, + 0.5856, 0.1620, 0.4957, 0.3399, 0.5914, 0.2897, 0.1526, + 0.1693, 0.5980, 0.2886, 0.5541, 0.3334, 0.5449, 0.4062, + 0.5414, 0.6879, 0.2033, 0.0945, 0.6450, 0.7402, 0.2638, + 0.2943, 0.5515, 0.1512, 0.9724, 0.4802, 0.3050, 0.3013, + 0.9225, 0.9783, 0.5092, 0.7142, 0.1530, 0.1832, 0.4581, + 0.1377, 0.4616, 0.9132, 0.5714, 0.8993, 0.1126, 0.6871, + 0.5589, 0.3161, 0.4140, 0.9816, 0.6789, 0.6752, 0.7765, + 0.8042, 0.3426, 0.8369, 0.8937, 0.5076, 0.7416, 0.8606, + 0.2242, 0.5767, 0.8912, 0.6587, 0.9801, 0.3691, 0.7054, + 0.2320, 0.7870, 0.6422, 0.3693, 0.6632, 0.7760, 0.1448, + 0.4345, 0.0515, 0.3358, 0.9018, 0.5133, 0.2405, 0.4186, + 0.9543, 0.9360, 0.7747, 0.6893, 0.7048, 0.9897, 0.5550, + 0.9691, 0.4907, 0.4556, 0.6844, 0.3056, 0.0603, 0.0778, + 0.8454, 0.6882, 0.7264, 0.8823, 0.6269, 0.5507, 0.1535, + 0.3271, 0.4840, 0.1687, 0.2816, 0.3788, 0.0525, 0.8448, + 0.4092, 0.6448, 0.0704, 0.0081, 0.9023, 0.5796, 0.6260, + 0.4056, 0.6689, 0.4193, 0.6796, 0.5630, 0.9806, 0.2222, + 0.5558, 0.2750, 0.8217, 0.1518, 0.6088, 0.3728, 0.6107, + 0.7218, 0.7832, 0.0315, 0.1777, 0.4923, 0.6962, 0.5172, + 0.2135, 0.9904, 0.7255, 0.8147, 0.2772, 0.5359, 0.5445, + 0.6578, 0.1756, 0.7465, 0.9196, 0.8367, 0.8344, 0.1261, + 0.5996, 0.8036, 0.3773, 0.7719, 0.0903, 0.3028, 0.2725, + 0.9127, 0.9162, 0.5408, 0.6634, 0.6958, 0.5282, 0.5569, + 0.4442, 0.2693, 0.5361, 0.4599, 0.3625, 0.0550, 0.1984, + 0.5349, 0.2482, 0.6378, 0.0691, 0.8641, 0.3287, 0.3415, + 0.4697, 0.9585, 0.0278, 0.0861, 0.0753, 0.5865, 0.7297, + 0.7984, 0.7314, 0.7714, 0.3176, 0.0359, 0.8791, 0.6106, + 0.9543, 0.1131, 0.3027, 0.3898, 0.1352, 0.1799, 0.1900, + 0.9195, 0.4614, 0.3998, 0.1611, 0.2860, 0.0189, 0.1376, + 0.0642, 0.6253, 0.3117, 0.6206, 0.2776, 0.7335, 0.0215, + 0.1020, 0.0450, 0.8422, 0.1455, 0.6809, 0.3764, 0.1098, + 0.5745, 0.6518, 0.6141, 0.7556, 0.0799, 0.6027, 0.9244, + 0.2771, 0.9147, 0.3379, 0.8431, 0.7801, 0.1199, 0.8711, + 0.3760, 0.5248, 0.4262, 0.0309, 0.0502, 0.0138, 0.5777, + 0.5941, 0.7357, 0.9003, 0.1504, 0.5942, 0.0234, 0.9430, + 0.3015, 0.5012, 0.3805, 0.7971, 0.2703, 0.2556, 0.4135, + 0.9302, 0.7793, 0.8013, 0.2127, 0.1854, 0.8157, 0.9489, + 0.5990, 0.6312, 0.5622, 0.3686, 0.8562, 0.4716, 0.4828, + 0.4596, 0.1787, 0.8020, 0.5056, 0.5302, 0.5941, 0.1504, + 0.1235, 0.0377, 0.2361, 0.5933, 0.4742, 0.6778, 0.2338, + 0.1840, 0.7674, 0.9783, 0.7128, 0.0084, 0.4766, 0.8942, + 0.6541, 0.0450, 0.8813, 0.8581, 0.6083, 0.3958, 0.5902, + 0.6407, 0.3035, 0.5362, 0.6238, 0.0892, 0.0057, 0.4585, + 0.6267, 0.1433, 0.2999, 0.2599, 0.8013, 0.1761, 0.8615, + 0.3483, 0.3247, 0.1179, 0.2298, 0.6436, 0.1866, 0.2388, + 0.4454, 0.7344, 0.5541, 0.4582, 0.3439, 0.7475, 0.6069, + 0.9289, 0.9691, 0.3224, 0.0400, 0.6214, 0.2663, 0.8787, + 0.6913, 0.2276, 0.2654, 0.2824, 0.9542, 0.4508, 0.7718, + 0.5819, 0.7007, 0.7532, 0.2890, 0.5844, 0.4034, 0.4560, + 0.5721, 0.3861, 0.4393, 0.4255, 0.7961, 0.8238, 0.6457, + 0.5584, 0.9889, 0.2485, 0.1868, 0.6329, 0.4246, 0.0722, + 0.2295, 0.5590, 0.5341, 0.5840, 0.5867, 0.2096, 0.2893, + 0.6630, 0.5421, 0.6229, 0.5147, 0.3445, 0.0323, 0.1572, + 0.7699, 0.5255, 0.4444, 0.2885, 0.7488, 0.7088, 0.2912, + 0.7436, 0.7915, 0.0733, 0.9105, 0.6975, 0.6753, 0.9628, + 0.0220, 0.9450, 0.7152, 0.6484, 0.2016, 0.7266, 0.4621, + 0.9244, 0.3208, 0.1924, 0.5143, 0.1364, 0.2001, 0.4960, + 0.0313, 0.3327, 0.3586, 0.1335, 0.6516, 0.0035, 0.3676, + 0.9186, 0.7489, 0.2595, 0.4232, 0.1239, 0.4474, 0.2603, + 0.1655, 0.0450, 0.7379, 0.4038, 0.2505, 0.5416, 0.6372, + 0.8776, 0.1829, 0.7521, 0.4974, 0.9526, 0.5187, 0.0162, + 0.0784, 0.6127, 0.7950, 0.8684, 0.1502, 0.2616, 0.0109, + 0.7618, 0.5504, 0.4625, 0.5130, 0.3349, 0.2075, 0.7484, + 0.2322, 0.9482, 0.0557, 0.2593, 0.8634, 0.2678, 0.7997, + 0.1470, 0.8854, 0.1792, 0.3971, 0.4395, 0.2147, 0.8617, + 0.7653, 0.9522, 0.6222, 0.1151, 0.7874, 0.6605, 0.9141, + 0.5394, 0.0543, 0.9805, 0.6427, 0.6026, 0.5450, 0.3987, + 0.2173, 0.7257, 0.9467, 0.3590, 0.8305, 0.9851, 0.7266, + 0.7210, 0.4619, 0.9947, 0.4160, 0.9266, 0.9716, 0.3095, + 0.6290, 0.7516, 0.0773, 0.3839, 0.5656, 0.5713, 0.8387, + 0.5951, 0.8347, 0.8002, 0.6353, 0.6676, 0.8665, 0.1704, + 0.1516, 0.2652, 0.7229, 0.2765, 0.1121, 0.9817, 0.8564, + 0.3469, 0.3504, 0.3072, 0.2632, 0.5895, 0.5174, 0.4026, + 0.1364, 0.5608, 0.7744, 0.7937, 0.8143, 0.5205, 0.4612, + 0.0113, 0.0541, 0.3102, 0.5930, 0.9411, 0.5533, 0.6919, + 0.6365, 0.8476, 0.0198, 0.0366, 0.9327, 0.7269, 0.3586, + 0.7745, 0.0834, 0.0832, 0.6023, 0.7883, 0.7545, 0.9670, + 0.4813, 0.6739, 0.0831, 0.5227, 0.7484, 0.4197, 0.4165, + 0.1262, 0.5130, 0.3426, 0.2503, 0.2406, 0.0887, 0.5780, + 0.6191, 0.0626, 0.5445, 0.1171, 0.4482, 0.9651, 0.6499, + 0.4185, 0.9964, 0.8638, 0.7514, 0.7064, 0.6449, 0.1740, + 0.2789, 0.9708, 0.0411, 0.0976, 0.3315, 0.1025, 0.3725, + 0.3011, 0.0041, 0.4219, 0.9494, 0.9327, 0.5777, 0.0742, + 0.3001, 0.5165, 0.7896, 0.2761, 0.7934, 0.8226, 0.0769, + 0.4508, 0.9088, 0.9363, 0.3806, 0.7336, 0.2494, 0.8425, + 0.1188, 0.3084, 0.8034, 0.6387, 0.5120, 0.0964, 0.4423, + 0.0326, 0.5969, 0.3875, 0.7015, 0.1614, 0.0456, 0.3080, + 0.4419, 0.5501, 0.4593, 0.6924, 0.3353, 0.4249, 0.6182, + 0.6731, 0.0665, 0.4382, 0.1282, 0.8806, 0.5417, 0.1511, + 0.8967, 0.1791, 0.7341, 0.7820, 0.3063, 0.1693, 0.2448, + 0.5324, 0.8764, 0.8032, 0.6217, 0.7666, 0.0290, 0.5756, + 0.5368, 0.6837, 0.8425, 0.9269, 0.8851, 0.7297, 0.4100, + 0.0830, 0.7274, 0.6707, 0.7886, 0.6064, 0.6168, 0.8794, + 0.2459, 0.2226, 0.7328, 0.0671, 0.9354, 0.1578, 0.9391, + 0.7607, 0.6549, 0.3751, 0.8607, 0.8558, 0.5714, 0.1929, + 0.4860, 0.1420, 0.1337, 0.1905, 0.9881, 0.1650, 0.2729, + 0.1906, 0.0516, 0.3917, 0.7651, 0.2976, 0.1600, 0.3865, + 0.8835, 0.2804, 0.2193, 0.9395, 0.5070, 0.3572, 0.0397, + 0.8047, 0.7010, 0.1034, 0.0082, 0.2831, 0.4944, 0.8787, + 0.4122, 0.0980, 0.0169, 0.0079, 0.0244, 0.7492, 0.9822, + 0.5642, 0.8464, 0.4997, 0.6173, 0.0653, 0.9125, 0.0781, + 0.4155, 0.9481, 0.6939, 0.2718, 0.4249, 0.8118, 0.3439, + 0.5777, 0.9966, 0.3292, 0.1202, 0.7200, 0.2519, 0.8671, + 0.0653, 0.3801, 0.1987, 0.0712, 0.4025, 0.2125, 0.8575, + 0.8190, 0.0269, 0.7551, 0.9860, 0.5051, 0.2462, 0.7202, + 0.9788, 0.6497, 0.9001, 0.7066, 0.2703, 0.2680, 0.1810, + 0.0814, 0.5232, 0.3867, 0.1370, 0.9077, 0.4343, 0.7542, + 0.7324, 0.8975, 0.6439, 0.4352, 0.7082, 0.8315, 0.9360, + 0.7744, 0.7737, 0.3185, 0.7683, 0.7204, 0.6797, 0.1381, + 0.0680, 0.8863, 0.4171, 0.9753, 0.7834, 0.6247, 0.4415, + 0.3685, 0.6455, 0.4171, 0.4496, 0.6336, 0.5676, 0.3524, + 0.0609, 0.3024, 0.8095, 0.3386, 0.4790, 0.6576, 0.2983, + 0.5918, 0.3457, 0.5714, 0.4836, 0.5379, 0.2760, 0.4745, + 0.8249, 0.5231, 0.2518, 0.1107, 0.7531, 0.9927, 0.6691, + 0.5479, 0.8661, 0.1062, 0.2639, 0.8719, 0.4872, 0.7824, + 0.4431, 0.6183, 0.3399, 0.5890, 0.0408, 0.2008, 0.6868, + 0.1677, 0.8079, 0.7914, 0.5275, 0.5099, 0.8609, 0.7195, + 0.7869, 0.2394, 0.6218, 0.0175, 0.7397, 0.5786, 0.2749, + 0.5056, 0.3739, 0.1506, 0.3525, 0.9063, 0.1263, 0.7479, + 0.4609, 0.6911, 0.5454, 0.6017, 0.9923, 0.0775, 0.5711, + 0.0871, 0.9472, 0.5472, 0.4527, 0.7268, 0.4719, 0.0237, + 0.5548, 0.3452, 0.5147, 0.5543, 0.3881, 0.6377, 0.4363, + 0.8582, 0.1181, 0.4029, 0.1913, 0.7190, 0.0104, 0.9330, + 0.7107, 0.5703, 0.5688, 0.0687, 0.2854, 0.1080, 0.1319, + 0.6260, 0.3483, 0.0434, 0.6685, 0.9786, 0.1326, 0.9894, + 0.7212, 0.3212, 0.3659, 0.3632, 0.8856, 0.1125, 0.3702, + 0.4390, 0.3271, 0.9685, 0.8393, 0.6468, 0.3694, 0.8215, + 0.8256, 0.0243, 0.8467, 0.6851, 0.5169, 0.2961, 0.3100, + 0.4346, 0.9920, 0.8174, 0.4419, 0.9220, 0.7491, 0.9513, + 0.9558, 0.2557, 0.0819, 0.6161, 0.3992, 0.4513, 0.3794, + 0.2566, 0.9818, 0.1875, 0.6689, 0.9989, 0.6274, 0.1447, + 0.7124, 0.9271, 0.5618, 0.3250, 0.0051, 0.0734, 0.6607, + 0.4316, 0.8575, 0.9087, 0.3760, 0.5591, 0.5008, 0.1099, + 0.7937, 0.4907, 0.5126, 0.1552, 0.8388, 0.0713, 0.2170, + 0.5683, 0.3341, 0.5338, 0.8690, 0.0444, 0.5187, 0.8890, + 0.5402, 0.5834, 0.6082, 0.8602, 0.8437, 0.4723, 0.7593, + 0.8109, 0.2675, 0.3399, 0.6022, 0.0546, 0.7369, 0.0541, + 0.5651, 0.6738, 0.4614, 0.6944, 0.2561, 0.0901, 0.2038, + 0.5369, 0.1848, 0.5378, 0.5862, 0.0851, 0.9818]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.9110, 0.9462, 0.7927, ..., 0.0987, 0.6084, 0.0709]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 9.372220277786255 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 141920 -ss 10000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.197850227355957} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([7056, 919, 9795, 9151, 2044, 7967, 5705, 2623, 1627, + 6717, 8708, 775, 127, 1374, 5044, 4299, 6342, 2263, + 5929, 5936, 1548, 2847, 6130, 6554, 2239, 7163, 1692, + 5793, 7119, 1287, 7508, 865, 1459, 7418, 3194, 4266, + 5780, 5575, 180, 8863, 8594, 4896, 438, 2537, 9988, + 4607, 5188, 6211, 6192, 6056, 7097, 5429, 1839, 2821, + 5784, 5246, 8081, 948, 4779, 1850, 1043, 9101, 2658, + 6891, 8025, 4761, 559, 865, 7629, 6085, 5946, 6354, + 9409, 9347, 7997, 4210, 3579, 999, 6644, 8129, 3149, + 6858, 4041, 4647, 7223, 2236, 7192, 9546, 9793, 3327, + 3171, 2565, 5976, 7978, 3677, 2920, 144, 9344, 6975, + 2500, 5379, 6794, 7366, 5322, 1940, 4044, 8778, 8972, + 3256, 9932, 4555, 9183, 8216, 4060, 4031, 360, 1944, + 7355, 8202, 9688, 593, 6710, 7830, 6044, 3654, 5591, + 7924, 1626, 5386, 2008, 4406, 634, 5326, 8955, 8209, + 5178, 2353, 3613, 9298, 6923, 1330, 2295, 8418, 4016, + 6041, 3493, 2023, 3116, 9349, 4002, 5551, 6028, 3519, + 6478, 8114, 4566, 1480, 1179, 4402, 6390, 2641, 4788, + 5490, 7082, 2181, 7781, 5904, 491, 2224, 8974, 482, + 7270, 9130, 6779, 3453, 7281, 6000, 9094, 1080, 96, + 3235, 2362, 7656, 6780, 2699, 3796, 1691, 106, 5591, + 2247, 1360, 4408, 8461, 5554, 962, 5012, 1178, 665, + 8966, 149, 3510, 466, 7726, 3308, 1620, 3276, 3031, + 3091, 7257, 8304, 7811, 2312, 9044, 4159, 2417, 6077, + 5309, 1633, 575, 3648, 8105, 8542, 7301, 3395, 9379, + 2616, 5588, 3562, 5579, 6202, 1237, 1076, 4693, 5863, + 4521, 8863, 2402, 4796, 8453, 8138, 8938, 9681, 8822, + 3016, 4280, 6174, 1987, 2265, 9622, 8422, 8024, 2552, + 7142, 6196, 3924, 6374, 3611, 5004, 6476, 3085, 3871, + 7485, 3089, 5859, 3123, 8069, 3938, 8070, 3319, 4967, + 6032, 3132, 8882, 8168, 9948, 9153, 5960, 4617, 2269, + 9592, 3316, 8405, 7722, 5455, 3568, 9972, 3178, 7732, + 3073, 9461, 3455, 1563, 3313, 5518, 1888, 5013, 9499, + 7686, 8128, 3614, 58, 6450, 6598, 9327, 2675, 6405, + 1465, 5960, 4, 919, 8839, 74, 8303, 7367, 985, + 1714, 972, 3691, 196, 2221, 5916, 9621, 719, 7868, + 6821, 1399, 599, 7980, 2535, 2710, 8687, 3504, 500, + 8756, 2206, 3927, 9619, 5296, 3265, 3270, 8220, 9811, + 8515, 3994, 4320, 3608, 6591, 3810, 1151, 5003, 1681, + 9535, 5842, 20, 673, 3013, 3128, 9579, 416, 4669, + 1672, 5675, 7857, 9285, 3183, 9934, 3384, 3124, 6569, + 9838, 4601, 323, 9366, 3658, 3481, 8266, 106, 4724, + 9925, 449, 231, 1193, 8640, 6487, 4395, 7873, 2975, + 371, 4139, 2769, 51, 7434, 3992, 2930, 3651, 8635, + 2260, 5356, 167, 5798, 384, 6039, 7889, 8913, 9072, + 4191, 8932, 4779, 1901, 9554, 5285, 2097, 2772, 9175, + 6725, 2156, 148, 5, 476, 3156, 6607, 7786, 8502, + 1087, 2367, 867, 1415, 3356, 4022, 2905, 4640, 6433, + 1986, 3092, 5931, 6521, 8577, 8053, 2869, 6427, 3755, + 6368, 9012, 2562, 8601, 9397, 1396, 3615, 1144, 9404, + 4843, 3491, 1114, 7468, 9175, 5343, 2695, 6775, 3132, + 763, 2580, 5472, 6555, 5197, 7683, 7083, 9461, 6717, + 3416, 4535, 7651, 8103, 5254, 5119, 4843, 7481, 9740, + 875, 8435, 1895, 4149, 1288, 2687, 4563, 8844, 5497, + 6857, 8265, 5805, 7507, 6505, 6546, 761, 9841, 4528, + 9297, 3090, 2401, 1436, 8521, 3201, 3280, 647, 6053, + 9778, 5421, 2338, 7895, 9657, 4768, 4164, 346, 6739, + 5802, 3214, 837, 1345, 161, 7417, 6331, 4380, 8050, + 5202, 8517, 4660, 8461, 3874, 4103, 9836, 4667, 1660, + 1906, 1376, 4340, 1934, 9527, 6941, 331, 4783, 1013, + 8971, 6772, 975, 1578, 3459, 408, 1053, 7816, 3059, + 6639, 3329, 9285, 4169, 206, 4382, 9903, 2838, 624, + 6682, 7989, 5248, 6652, 4925, 1208, 2515, 3523, 7868, + 5124, 932, 3036, 2610, 9397, 6019, 4365, 3159, 7967, + 6712, 4292, 9634, 2506, 2306, 6880, 1422, 5592, 3014, + 2127, 2108, 7692, 2917, 5954, 9346, 9190, 5918, 9056, + 1095, 6544, 2601, 8317, 1507, 8478, 427, 8983, 7403, + 1403, 9463, 9521, 1040, 2364, 4790, 3646, 1839, 5831, + 2407, 5569, 8636, 3161, 4775, 5244, 6918, 2550, 2648, + 9459, 505, 4866, 459, 3616, 1899, 4865, 6781, 645, + 8187, 4087, 8269, 527, 142, 3293, 2115, 9227, 4492, + 4310, 5673, 305, 9750, 3677, 3525, 7465, 7997, 3251, + 3987, 3609, 7768, 9505, 2837, 6841, 9179, 2234, 5163, + 4220, 1985, 3135, 228, 4791, 5638, 6344, 6055, 1786, + 6558, 448, 7423, 7966, 6313, 1661, 2565, 5057, 6400, + 9258, 4995, 104, 6131, 2357, 478, 9553, 4258, 9824, + 7655, 1162, 7233, 6219, 4197, 5671, 698, 3933, 5858, + 5825, 1485, 2940, 1221, 3277, 8498, 517, 4954, 4571, + 3551, 3811, 2162, 1085, 4990, 2770, 5124, 3331, 2642, + 4071, 9626, 4506, 3366, 3577, 4151, 3800, 2366, 4168, + 3825, 9342, 9534, 8100, 1320, 5092, 3157, 2094, 6070, + 8057, 5993, 2362, 411, 8733, 397, 7089, 7206, 2945, + 3064, 5117, 3443, 470, 608, 3384, 8567, 5110, 4565, + 6431, 5474, 8783, 7927, 5169, 4863, 7172, 8183, 1224, + 9394, 692, 7991, 536, 2135, 5294, 8037, 8526, 1190, + 63, 849, 9116, 6147, 7935, 7112, 6626, 226, 5579, + 9554, 4960, 2909, 3565, 5132, 4287, 1865, 5728, 7111, + 4986, 5695, 7077, 5616, 8771, 9145, 8441, 9676, 1058, + 6430, 6079, 4862, 6083, 1292, 6175, 658, 1311, 8075, + 3408, 4717, 4970, 3386, 6451, 4509, 1589, 2526, 3046, + 4015, 115, 606, 6816, 9023, 74, 3707, 8570, 3733, + 7439, 8010, 2330, 2707, 7997, 6578, 6530, 9528, 1545, + 1828, 6104, 2474, 5308, 5222, 6365, 8862, 4445, 3256, + 8596, 7733, 4546, 4298, 3962, 1735, 405, 9446, 2765, + 5223, 1245, 1928, 1613, 1076, 3386, 5499, 7117, 7236, + 1089, 5676, 7344, 5770, 9734, 6262, 6225, 7764, 2961, + 5070, 7253, 556, 1687, 3579, 9804, 7261, 2963, 8905, + 7732, 2949, 3331, 8106, 4114, 6793, 2309, 6606, 2474, + 1922, 3120, 8805, 7588, 3625, 3473, 6466, 7065, 4574, + 1985, 4989, 8004, 6734, 5981, 3660, 7778, 125, 7384, + 6141, 1158, 4521, 6919, 144, 914, 7797, 4111, 6086, + 6673, 8442, 7879, 7713, 9248, 4408, 1097, 7867, 1626, + 2747, 651, 2532, 5546, 1372, 589, 1653, 7492, 6806, + 1244, 9203, 2206, 5006, 203, 739, 5153, 6454, 4270, + 4396, 3640, 2150, 9255, 9834, 7708, 1267, 1636, 5030, + 795, 8742, 7543, 566, 6397, 3605, 8166, 8086, 4077, + 8364, 3818, 1834, 6488, 7143, 7438, 5866, 8540, 856, + 7785, 7368, 3461, 1705, 3376, 6688, 1751, 642, 9424, + 2608, 4435, 1836, 3463, 6828, 5152, 1957, 8354, 4656, + 6595, 4201, 9042, 3819, 3824, 5439, 7490, 1010, 4810, + 9972, 7566, 955, 751, 8629, 3365, 7594, 1053, 2299, + 7870]), + values=tensor([5.2060e-01, 5.8752e-01, 7.2713e-01, 1.0305e-01, + 9.3686e-01, 4.5302e-01, 7.9066e-01, 3.3889e-01, + 9.1304e-01, 7.1777e-01, 8.2105e-01, 1.2503e-01, + 3.7067e-02, 6.7818e-01, 7.9631e-01, 1.5332e-01, + 4.2909e-02, 3.6354e-01, 7.8473e-02, 3.9129e-01, + 5.0385e-01, 2.7311e-01, 2.8426e-01, 9.8490e-01, + 4.6471e-01, 1.8436e-01, 2.9210e-01, 7.6968e-01, + 9.8680e-01, 6.5393e-01, 6.5447e-01, 7.6587e-01, + 5.1696e-01, 3.0301e-01, 1.2974e-01, 4.9850e-01, + 9.5414e-01, 3.3815e-01, 1.2515e-01, 6.9570e-01, + 2.4680e-01, 5.9705e-01, 6.2698e-01, 7.7985e-01, + 6.0484e-01, 4.0524e-01, 6.3660e-01, 3.4506e-01, + 8.0482e-01, 7.8297e-02, 6.1842e-01, 5.7868e-01, + 6.3483e-01, 6.6108e-01, 9.3584e-04, 7.4347e-01, + 6.9134e-01, 8.5039e-01, 7.7178e-01, 3.8597e-01, + 1.9561e-01, 2.9964e-01, 5.3888e-01, 7.9254e-01, + 8.6409e-01, 7.5097e-01, 3.3689e-01, 7.8610e-02, + 4.5323e-01, 8.5126e-01, 6.9200e-01, 1.9498e-02, + 8.3003e-01, 8.6298e-01, 4.3806e-01, 7.1679e-01, + 8.1194e-01, 9.9720e-01, 8.2151e-01, 9.6087e-01, + 6.3853e-01, 3.4560e-01, 5.5284e-01, 4.4640e-01, + 3.7580e-01, 3.2438e-01, 8.9706e-01, 2.8604e-01, + 2.9762e-01, 2.8814e-01, 6.0684e-01, 4.1394e-01, + 6.2215e-01, 9.4551e-01, 4.0044e-01, 8.6963e-01, + 5.5266e-01, 5.9098e-01, 5.9783e-01, 1.7437e-01, + 3.4636e-01, 2.4680e-01, 2.3300e-01, 1.5789e-01, + 7.2572e-01, 4.7658e-01, 7.9251e-01, 5.5119e-01, + 3.4901e-01, 1.8926e-01, 7.2681e-02, 4.1166e-01, + 2.3574e-01, 9.2902e-01, 4.2647e-01, 4.2048e-01, + 7.6334e-01, 2.7562e-01, 1.2457e-01, 8.0447e-01, + 2.7298e-01, 2.6366e-01, 9.0147e-01, 9.8730e-01, + 4.8371e-01, 4.3424e-01, 8.9082e-01, 9.3669e-02, + 2.4573e-01, 1.7890e-01, 7.0955e-01, 7.5968e-01, + 4.4304e-01, 7.1779e-01, 7.2909e-01, 7.9905e-01, + 2.0894e-01, 1.6586e-01, 7.5174e-02, 4.0334e-01, + 1.0341e-01, 7.8773e-01, 8.5689e-01, 8.9735e-01, + 1.9547e-01, 8.9818e-01, 8.1080e-01, 5.8252e-01, + 6.2795e-01, 2.4733e-02, 3.7285e-01, 7.4750e-01, + 4.5329e-01, 5.4283e-01, 1.3581e-01, 8.2036e-01, + 3.3337e-02, 6.6711e-01, 2.7268e-01, 5.5912e-01, + 5.5669e-01, 3.5501e-01, 6.2792e-01, 9.7736e-01, + 3.5615e-01, 8.9429e-03, 5.2671e-01, 1.1444e-01, + 7.5357e-02, 8.8607e-01, 8.5215e-01, 8.6159e-01, + 3.1847e-01, 1.4552e-01, 6.4152e-01, 7.1863e-01, + 3.3005e-01, 3.2445e-02, 1.0168e-01, 8.4233e-01, + 8.8000e-01, 2.7047e-01, 7.1423e-01, 7.8187e-01, + 8.9146e-02, 4.9672e-01, 5.9046e-01, 1.9515e-01, + 9.8528e-01, 5.0321e-01, 5.8000e-01, 7.4168e-01, + 3.5260e-02, 1.2683e-01, 4.5738e-01, 6.8617e-01, + 4.4433e-01, 4.8514e-01, 5.5207e-01, 3.5556e-01, + 8.9692e-01, 3.6084e-01, 3.8720e-01, 5.8634e-01, + 7.0358e-01, 3.0095e-01, 1.3903e-01, 1.1694e-01, + 9.7711e-01, 3.7841e-01, 2.3352e-01, 4.5329e-01, + 8.2085e-01, 3.0580e-01, 4.8927e-01, 3.0347e-01, + 5.1485e-02, 5.2444e-02, 3.0794e-01, 5.9206e-01, + 8.3589e-01, 1.7323e-01, 3.1820e-01, 7.0798e-01, + 1.5440e-01, 1.9361e-01, 1.0835e-01, 8.1042e-01, + 7.1437e-02, 4.4926e-01, 8.1084e-01, 6.5975e-01, + 2.3167e-01, 9.5539e-01, 9.0418e-01, 1.8474e-01, + 8.4342e-01, 2.5289e-01, 6.3702e-01, 3.5397e-01, + 1.1201e-01, 4.5470e-01, 1.3388e-01, 2.6199e-01, + 8.1948e-01, 6.9816e-01, 9.3318e-01, 6.6708e-02, + 2.6242e-01, 4.7858e-02, 6.7194e-01, 4.8540e-01, + 5.6054e-01, 6.7286e-01, 8.0291e-01, 7.4681e-02, + 5.2165e-01, 3.6455e-01, 2.6177e-01, 2.8656e-01, + 4.8881e-01, 1.5495e-01, 8.1151e-01, 6.4157e-01, + 4.6118e-01, 9.8777e-02, 3.7165e-01, 7.8764e-01, + 6.8295e-01, 2.4347e-01, 1.6075e-01, 8.7591e-01, + 3.4120e-01, 5.4312e-01, 2.2322e-01, 7.3732e-01, + 9.2524e-02, 8.0737e-01, 4.2221e-01, 6.0497e-02, + 2.2442e-01, 1.6638e-01, 9.3025e-01, 3.6644e-01, + 9.7051e-01, 2.6113e-01, 3.3298e-01, 5.5566e-01, + 8.4633e-01, 2.1670e-02, 3.4866e-01, 4.1243e-01, + 4.3974e-02, 5.1011e-02, 9.7001e-01, 9.2475e-01, + 6.8789e-01, 4.8683e-01, 8.8514e-01, 2.8747e-01, + 8.3000e-01, 5.9514e-01, 1.9359e-01, 9.9127e-01, + 4.6767e-01, 9.0117e-02, 3.1439e-01, 7.7717e-01, + 3.2578e-01, 7.6461e-01, 4.9560e-01, 7.0813e-01, + 8.9512e-01, 3.4294e-01, 7.9012e-01, 2.1834e-01, + 9.9954e-01, 8.4021e-01, 5.2415e-01, 5.5913e-01, + 6.0001e-01, 4.0800e-01, 9.2418e-01, 9.8484e-02, + 1.2325e-01, 9.2593e-01, 8.8126e-01, 2.1903e-01, + 8.6474e-02, 5.6159e-01, 1.6813e-01, 3.7588e-01, + 1.1257e-01, 7.7701e-01, 6.1191e-01, 9.3067e-01, + 1.7717e-01, 6.9689e-01, 4.1894e-01, 3.1744e-01, + 6.8942e-01, 5.4469e-01, 6.9142e-01, 5.9683e-01, + 4.4063e-01, 7.9936e-01, 7.7242e-01, 2.8988e-01, + 9.4011e-01, 6.2090e-01, 4.0644e-01, 4.6521e-01, + 6.9337e-01, 9.9796e-02, 8.2484e-01, 6.9345e-01, + 6.1383e-01, 7.4834e-01, 4.0722e-01, 9.9024e-01, + 8.5334e-01, 8.8771e-01, 5.0253e-01, 7.2537e-01, + 6.4116e-01, 4.1841e-01, 9.1987e-01, 6.3601e-02, + 6.2845e-01, 9.8979e-01, 3.2048e-02, 4.9481e-01, + 7.6203e-01, 8.4482e-01, 1.8315e-01, 9.7150e-01, + 6.4234e-01, 3.9806e-01, 3.1906e-01, 8.5592e-01, + 2.7348e-01, 1.0324e-01, 3.3822e-01, 1.0261e-01, + 7.8657e-01, 4.1245e-02, 6.2280e-01, 1.5594e-01, + 1.4057e-01, 9.3217e-01, 5.3651e-01, 3.1414e-01, + 7.4943e-01, 1.8062e-01, 6.8355e-01, 1.7011e-01, + 7.9311e-01, 5.6505e-01, 1.7516e-01, 3.2628e-01, + 7.4869e-01, 3.6292e-02, 7.7730e-01, 5.6876e-01, + 7.4365e-01, 3.1819e-01, 2.9167e-01, 8.0054e-01, + 5.2095e-02, 8.4271e-01, 9.4201e-01, 2.6332e-01, + 4.1440e-01, 2.8004e-01, 6.3749e-01, 8.2784e-01, + 3.8989e-01, 4.8344e-01, 6.1792e-01, 7.7696e-01, + 2.9025e-01, 3.0195e-01, 1.6203e-02, 4.9882e-02, + 9.5260e-01, 3.8574e-02, 8.6137e-01, 1.0206e-01, + 1.8185e-01, 3.7184e-01, 1.8011e-01, 5.8471e-01, + 9.0896e-01, 7.8819e-01, 1.2554e-01, 9.1937e-01, + 4.7326e-01, 8.1565e-01, 4.0860e-01, 9.5624e-01, + 6.4546e-01, 2.1755e-01, 1.8583e-01, 7.2313e-01, + 5.0034e-01, 9.6810e-01, 1.1208e-01, 3.3256e-01, + 1.0626e-01, 8.2704e-01, 9.0571e-01, 9.1930e-01, + 5.0810e-01, 2.9139e-02, 4.8153e-01, 8.3425e-01, + 7.7208e-01, 2.0930e-01, 7.7873e-01, 1.9398e-01, + 4.6583e-01, 7.2143e-01, 7.7072e-01, 8.8225e-01, + 5.6393e-01, 4.5270e-01, 4.5709e-01, 3.4438e-02, + 8.3723e-01, 8.7398e-01, 7.7789e-01, 3.1834e-01, + 6.7630e-01, 7.2696e-01, 6.2046e-01, 8.7032e-01, + 7.5275e-01, 1.2652e-01, 1.6913e-01, 8.9638e-01, + 8.4284e-01, 6.7028e-01, 1.6150e-01, 4.8858e-01, + 5.2657e-01, 2.6709e-01, 5.3737e-01, 7.9635e-02, + 4.6502e-01, 6.6489e-01, 3.3302e-02, 6.7807e-03, + 3.2601e-01, 6.2838e-01, 8.8805e-01, 6.4081e-01, + 8.3664e-01, 2.1253e-01, 9.9560e-01, 1.0008e-01, + 8.1128e-01, 7.1759e-02, 1.9140e-01, 3.9544e-01, + 2.0466e-01, 1.0560e-01, 5.0978e-01, 4.3684e-01, + 1.8097e-02, 5.2480e-01, 1.3644e-01, 6.5843e-01, + 4.7603e-01, 3.9206e-01, 2.5961e-01, 4.4991e-01, + 2.7612e-01, 5.3666e-01, 1.0518e-02, 8.5692e-01, + 2.4882e-01, 9.3487e-01, 5.1282e-01, 9.4781e-01, + 6.6273e-01, 7.0853e-01, 2.2742e-01, 9.1791e-01, + 6.9906e-01, 3.2979e-01, 5.6041e-01, 8.6281e-01, + 9.5303e-01, 7.5565e-01, 4.3419e-01, 8.3829e-01, + 2.4070e-01, 6.8860e-01, 5.5668e-01, 1.8449e-01, + 9.9667e-01, 7.7594e-01, 5.3148e-01, 4.1552e-01, + 5.1947e-01, 1.3992e-01, 4.4856e-01, 7.4868e-01, + 6.3705e-01, 3.5783e-01, 1.2134e-01, 6.9568e-01, + 1.2509e-01, 1.7793e-01, 3.2242e-02, 4.1301e-01, + 5.9646e-01, 1.6615e-01, 3.1664e-01, 8.1783e-02, + 2.9824e-02, 2.1237e-01, 5.2911e-01, 5.1732e-01, + 1.9451e-01, 3.5512e-01, 2.9795e-01, 5.1951e-01, + 1.9558e-01, 3.7898e-01, 5.9402e-01, 4.2044e-01, + 8.7643e-01, 6.5956e-01, 7.4035e-01, 4.6048e-01, + 1.2749e-02, 9.2360e-01, 3.6981e-01, 9.4150e-01, + 9.7784e-01, 5.7582e-01, 3.1385e-01, 3.8101e-01, + 9.2912e-01, 4.3789e-01, 7.2061e-01, 5.2086e-01, + 7.3528e-01, 8.5192e-01, 3.5126e-01, 7.6776e-01, + 2.8613e-01, 6.3526e-02, 2.8596e-01, 6.3501e-01, + 4.9176e-02, 8.7348e-01, 5.2000e-01, 5.8496e-01, + 4.8855e-01, 7.2483e-01, 3.5412e-01, 6.6161e-01, + 5.5561e-01, 5.4683e-02, 9.0732e-01, 7.5460e-02, + 3.1367e-01, 7.3793e-01, 3.5729e-01, 2.8849e-01, + 8.9432e-01, 9.7713e-02, 1.1743e-01, 4.3089e-01, + 8.1021e-01, 8.8355e-01, 1.9843e-01, 6.1349e-02, + 8.3824e-01, 6.2155e-02, 2.0617e-01, 4.8812e-01, + 9.8256e-01, 8.8490e-02, 5.0411e-01, 9.5740e-01, + 9.7775e-02, 5.1726e-01, 7.1232e-01, 4.7675e-02, + 2.2480e-02, 3.7611e-01, 5.9660e-01, 6.2244e-01, + 4.4880e-01, 8.5892e-01, 1.9312e-01, 3.0721e-01, + 6.9925e-01, 6.7802e-01, 9.2157e-01, 8.5335e-01, + 4.1058e-01, 1.3666e-01, 3.9121e-01, 4.7478e-02, + 7.7467e-01, 5.8273e-03, 7.4476e-01, 1.9062e-01, + 7.5316e-02, 8.1639e-01, 5.2018e-01, 5.6018e-01, + 9.6970e-01, 3.0172e-02, 6.0521e-01, 4.0407e-02, + 5.7990e-01, 9.5453e-01, 8.8848e-01, 3.7532e-01, + 9.6133e-01, 7.7502e-01, 4.0087e-01, 6.8611e-01, + 3.2210e-02, 2.8094e-01, 7.3871e-01, 9.1462e-01, + 1.9356e-01, 2.6926e-01, 1.8582e-01, 5.4929e-02, + 9.1024e-01, 2.6956e-01, 5.5420e-01, 3.6135e-01, + 3.5875e-01, 6.0498e-01, 3.7275e-01, 9.8664e-01, + 8.8819e-01, 2.7405e-01, 1.1934e-01, 7.3250e-01, + 8.9712e-01, 8.8231e-01, 3.3160e-01, 9.5892e-01, + 8.4187e-01, 2.7689e-01, 1.6102e-02, 9.3174e-01, + 7.5817e-01, 9.0117e-01, 2.4771e-01, 2.6531e-01, + 5.1327e-01, 3.8035e-01, 4.0058e-01, 4.0599e-04, + 9.2180e-01, 9.3958e-01, 5.5013e-01, 6.4800e-01, + 1.1731e-01, 5.7797e-01, 2.5301e-01, 6.8211e-01, + 9.6611e-01, 2.1744e-01, 2.7821e-01, 3.8118e-01, + 6.2557e-01, 8.9564e-01, 9.8076e-01, 4.2087e-01, + 1.3319e-02, 1.8018e-01, 6.2599e-01, 1.4615e-01, + 7.4026e-01, 9.7573e-01, 1.0896e-01, 4.9573e-01, + 7.0308e-01, 6.3058e-01, 1.5012e-01, 5.9222e-01, + 6.5591e-01, 4.5450e-01, 1.3452e-01, 1.1006e-01, + 6.2072e-01, 1.7700e-01, 3.2033e-01, 7.1407e-01, + 9.3104e-01, 7.3480e-01, 7.5735e-01, 5.3846e-01, + 1.2357e-01, 6.0479e-01, 5.0554e-01, 7.2641e-01, + 7.1854e-01, 3.9348e-02, 4.3940e-02, 5.5093e-01, + 1.1556e-02, 4.5159e-01, 8.0712e-01, 7.2793e-01, + 9.4343e-01, 4.6801e-01, 6.8975e-01, 6.8837e-01, + 5.9669e-02, 7.6994e-01, 4.3286e-01, 7.1974e-01, + 4.6165e-01, 5.8672e-01, 5.0695e-01, 4.7555e-01, + 6.9675e-01, 3.7575e-01, 7.2625e-01, 6.6386e-01, + 3.0499e-01, 7.8592e-01, 5.7412e-01, 1.8771e-01, + 2.0747e-02, 9.7205e-01, 1.9993e-01, 4.5722e-01, + 9.2382e-02, 3.5018e-01, 5.2392e-01, 1.1923e-01, + 8.3795e-01, 3.4123e-02, 2.8436e-01, 1.9208e-01, + 6.4406e-02, 7.8742e-01, 2.0108e-01, 9.3581e-01, + 1.7748e-01, 8.9101e-01, 1.2175e-01, 8.8756e-01, + 7.8316e-01, 4.0800e-01, 5.6851e-01, 9.2774e-01, + 3.7604e-01, 5.3144e-01, 8.0134e-02, 6.2059e-02, + 8.7489e-03, 2.6598e-01, 6.7003e-01, 8.4602e-01, + 6.0322e-01, 6.8827e-01, 3.2298e-01, 7.1255e-01, + 9.5221e-01, 9.1295e-01, 2.3726e-01, 8.5325e-02, + 3.8353e-01, 7.7125e-01, 7.3426e-01, 5.3143e-01, + 8.0892e-01, 8.7041e-01, 5.8474e-01, 8.7437e-01, + 3.1761e-01, 8.3607e-01, 2.6952e-01, 6.1480e-01, + 7.6446e-01, 6.1953e-01, 4.9927e-01, 7.5728e-01, + 9.1551e-01, 2.2186e-01, 7.1374e-01, 2.5784e-01, + 8.5969e-01, 9.0881e-01, 1.8012e-01, 9.8941e-02, + 6.1818e-01, 2.8776e-01, 9.6763e-01, 2.0033e-01, + 8.2090e-01, 1.9388e-01, 1.7567e-01, 4.4690e-01, + 2.0662e-01, 1.0745e-01, 9.3569e-01, 8.0811e-01, + 9.1073e-02, 3.4629e-01, 7.8523e-01, 1.1764e-01, + 2.8677e-01, 7.0343e-01, 8.7211e-01, 3.6672e-01, + 9.7703e-01, 5.2406e-01, 4.9980e-01, 5.4475e-01, + 8.9090e-01, 4.3209e-02, 4.4884e-01, 9.0686e-01, + 1.1154e-01, 1.0570e-01, 4.1471e-01, 9.7202e-01, + 3.8561e-01, 2.0579e-01, 4.4916e-01, 1.9721e-01, + 5.1959e-01, 7.6768e-01, 9.2048e-01, 2.2598e-01, + 9.6825e-01, 5.9095e-01, 2.7735e-02, 9.8780e-01, + 5.5600e-01, 6.4011e-01, 4.9115e-01, 1.5679e-01, + 9.0323e-01, 1.9041e-01, 8.5013e-01, 1.2025e-01, + 1.1804e-01, 6.8892e-01, 2.0461e-01, 1.9657e-01, + 7.0597e-01, 5.5451e-01, 1.8591e-01, 6.9899e-01, + 5.3076e-01, 7.3978e-01, 9.5676e-01, 4.0627e-01, + 8.3752e-01, 3.1046e-01, 5.6607e-01, 4.4132e-01, + 5.2029e-01, 8.5109e-01, 6.6508e-01, 2.6182e-01, + 6.7981e-01, 8.4438e-01, 4.1711e-01, 3.6277e-01, + 9.2177e-01, 3.6580e-02, 5.1418e-02, 4.5413e-01, + 5.0643e-01, 1.2991e-01, 7.2776e-01, 6.5957e-01, + 6.6907e-01, 4.4236e-01, 5.5565e-01, 1.1326e-01, + 6.2352e-01, 4.1680e-02, 8.5603e-01, 7.0539e-01, + 3.5385e-01, 5.1926e-01, 6.4794e-02, 6.4126e-01, + 3.0824e-01, 8.7537e-01, 3.8092e-03, 1.4017e-01, + 7.9757e-01, 2.7307e-01, 7.7809e-01, 5.3453e-01, + 3.5741e-01, 8.3152e-01, 9.6330e-01, 4.5118e-01, + 6.9011e-01, 8.9458e-01, 5.3158e-01, 8.2853e-01, + 1.8923e-01, 6.5167e-01, 3.8821e-01, 5.7283e-01, + 1.9550e-01, 4.8766e-01, 5.8973e-01, 6.6654e-01, + 3.4043e-01, 3.0734e-01, 7.2507e-01, 4.5141e-01, + 8.7825e-01, 1.8915e-01, 9.1650e-01, 2.5972e-01, + 1.2721e-02, 4.2352e-01, 6.5855e-01, 4.8197e-01, + 6.3384e-01, 1.1340e-01, 9.1519e-02, 7.2253e-01, + 7.7717e-01, 7.7128e-01, 7.9797e-01, 9.5449e-01, + 1.9479e-01, 9.4967e-01, 6.5866e-01, 2.6908e-01, + 6.6522e-01, 9.9513e-01, 6.4628e-01, 3.2376e-01, + 6.8241e-01, 2.0082e-01, 6.7192e-01, 6.3818e-01, + 8.3533e-01, 1.4580e-01, 6.7572e-01, 3.1304e-02, + 5.6257e-01, 6.4916e-01, 4.5939e-01, 1.6735e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.0747, 0.3561, 0.1255, ..., 0.0664, 0.4841, 0.3262]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.197850227355957 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([7056, 919, 9795, 9151, 2044, 7967, 5705, 2623, 1627, + 6717, 8708, 775, 127, 1374, 5044, 4299, 6342, 2263, + 5929, 5936, 1548, 2847, 6130, 6554, 2239, 7163, 1692, + 5793, 7119, 1287, 7508, 865, 1459, 7418, 3194, 4266, + 5780, 5575, 180, 8863, 8594, 4896, 438, 2537, 9988, + 4607, 5188, 6211, 6192, 6056, 7097, 5429, 1839, 2821, + 5784, 5246, 8081, 948, 4779, 1850, 1043, 9101, 2658, + 6891, 8025, 4761, 559, 865, 7629, 6085, 5946, 6354, + 9409, 9347, 7997, 4210, 3579, 999, 6644, 8129, 3149, + 6858, 4041, 4647, 7223, 2236, 7192, 9546, 9793, 3327, + 3171, 2565, 5976, 7978, 3677, 2920, 144, 9344, 6975, + 2500, 5379, 6794, 7366, 5322, 1940, 4044, 8778, 8972, + 3256, 9932, 4555, 9183, 8216, 4060, 4031, 360, 1944, + 7355, 8202, 9688, 593, 6710, 7830, 6044, 3654, 5591, + 7924, 1626, 5386, 2008, 4406, 634, 5326, 8955, 8209, + 5178, 2353, 3613, 9298, 6923, 1330, 2295, 8418, 4016, + 6041, 3493, 2023, 3116, 9349, 4002, 5551, 6028, 3519, + 6478, 8114, 4566, 1480, 1179, 4402, 6390, 2641, 4788, + 5490, 7082, 2181, 7781, 5904, 491, 2224, 8974, 482, + 7270, 9130, 6779, 3453, 7281, 6000, 9094, 1080, 96, + 3235, 2362, 7656, 6780, 2699, 3796, 1691, 106, 5591, + 2247, 1360, 4408, 8461, 5554, 962, 5012, 1178, 665, + 8966, 149, 3510, 466, 7726, 3308, 1620, 3276, 3031, + 3091, 7257, 8304, 7811, 2312, 9044, 4159, 2417, 6077, + 5309, 1633, 575, 3648, 8105, 8542, 7301, 3395, 9379, + 2616, 5588, 3562, 5579, 6202, 1237, 1076, 4693, 5863, + 4521, 8863, 2402, 4796, 8453, 8138, 8938, 9681, 8822, + 3016, 4280, 6174, 1987, 2265, 9622, 8422, 8024, 2552, + 7142, 6196, 3924, 6374, 3611, 5004, 6476, 3085, 3871, + 7485, 3089, 5859, 3123, 8069, 3938, 8070, 3319, 4967, + 6032, 3132, 8882, 8168, 9948, 9153, 5960, 4617, 2269, + 9592, 3316, 8405, 7722, 5455, 3568, 9972, 3178, 7732, + 3073, 9461, 3455, 1563, 3313, 5518, 1888, 5013, 9499, + 7686, 8128, 3614, 58, 6450, 6598, 9327, 2675, 6405, + 1465, 5960, 4, 919, 8839, 74, 8303, 7367, 985, + 1714, 972, 3691, 196, 2221, 5916, 9621, 719, 7868, + 6821, 1399, 599, 7980, 2535, 2710, 8687, 3504, 500, + 8756, 2206, 3927, 9619, 5296, 3265, 3270, 8220, 9811, + 8515, 3994, 4320, 3608, 6591, 3810, 1151, 5003, 1681, + 9535, 5842, 20, 673, 3013, 3128, 9579, 416, 4669, + 1672, 5675, 7857, 9285, 3183, 9934, 3384, 3124, 6569, + 9838, 4601, 323, 9366, 3658, 3481, 8266, 106, 4724, + 9925, 449, 231, 1193, 8640, 6487, 4395, 7873, 2975, + 371, 4139, 2769, 51, 7434, 3992, 2930, 3651, 8635, + 2260, 5356, 167, 5798, 384, 6039, 7889, 8913, 9072, + 4191, 8932, 4779, 1901, 9554, 5285, 2097, 2772, 9175, + 6725, 2156, 148, 5, 476, 3156, 6607, 7786, 8502, + 1087, 2367, 867, 1415, 3356, 4022, 2905, 4640, 6433, + 1986, 3092, 5931, 6521, 8577, 8053, 2869, 6427, 3755, + 6368, 9012, 2562, 8601, 9397, 1396, 3615, 1144, 9404, + 4843, 3491, 1114, 7468, 9175, 5343, 2695, 6775, 3132, + 763, 2580, 5472, 6555, 5197, 7683, 7083, 9461, 6717, + 3416, 4535, 7651, 8103, 5254, 5119, 4843, 7481, 9740, + 875, 8435, 1895, 4149, 1288, 2687, 4563, 8844, 5497, + 6857, 8265, 5805, 7507, 6505, 6546, 761, 9841, 4528, + 9297, 3090, 2401, 1436, 8521, 3201, 3280, 647, 6053, + 9778, 5421, 2338, 7895, 9657, 4768, 4164, 346, 6739, + 5802, 3214, 837, 1345, 161, 7417, 6331, 4380, 8050, + 5202, 8517, 4660, 8461, 3874, 4103, 9836, 4667, 1660, + 1906, 1376, 4340, 1934, 9527, 6941, 331, 4783, 1013, + 8971, 6772, 975, 1578, 3459, 408, 1053, 7816, 3059, + 6639, 3329, 9285, 4169, 206, 4382, 9903, 2838, 624, + 6682, 7989, 5248, 6652, 4925, 1208, 2515, 3523, 7868, + 5124, 932, 3036, 2610, 9397, 6019, 4365, 3159, 7967, + 6712, 4292, 9634, 2506, 2306, 6880, 1422, 5592, 3014, + 2127, 2108, 7692, 2917, 5954, 9346, 9190, 5918, 9056, + 1095, 6544, 2601, 8317, 1507, 8478, 427, 8983, 7403, + 1403, 9463, 9521, 1040, 2364, 4790, 3646, 1839, 5831, + 2407, 5569, 8636, 3161, 4775, 5244, 6918, 2550, 2648, + 9459, 505, 4866, 459, 3616, 1899, 4865, 6781, 645, + 8187, 4087, 8269, 527, 142, 3293, 2115, 9227, 4492, + 4310, 5673, 305, 9750, 3677, 3525, 7465, 7997, 3251, + 3987, 3609, 7768, 9505, 2837, 6841, 9179, 2234, 5163, + 4220, 1985, 3135, 228, 4791, 5638, 6344, 6055, 1786, + 6558, 448, 7423, 7966, 6313, 1661, 2565, 5057, 6400, + 9258, 4995, 104, 6131, 2357, 478, 9553, 4258, 9824, + 7655, 1162, 7233, 6219, 4197, 5671, 698, 3933, 5858, + 5825, 1485, 2940, 1221, 3277, 8498, 517, 4954, 4571, + 3551, 3811, 2162, 1085, 4990, 2770, 5124, 3331, 2642, + 4071, 9626, 4506, 3366, 3577, 4151, 3800, 2366, 4168, + 3825, 9342, 9534, 8100, 1320, 5092, 3157, 2094, 6070, + 8057, 5993, 2362, 411, 8733, 397, 7089, 7206, 2945, + 3064, 5117, 3443, 470, 608, 3384, 8567, 5110, 4565, + 6431, 5474, 8783, 7927, 5169, 4863, 7172, 8183, 1224, + 9394, 692, 7991, 536, 2135, 5294, 8037, 8526, 1190, + 63, 849, 9116, 6147, 7935, 7112, 6626, 226, 5579, + 9554, 4960, 2909, 3565, 5132, 4287, 1865, 5728, 7111, + 4986, 5695, 7077, 5616, 8771, 9145, 8441, 9676, 1058, + 6430, 6079, 4862, 6083, 1292, 6175, 658, 1311, 8075, + 3408, 4717, 4970, 3386, 6451, 4509, 1589, 2526, 3046, + 4015, 115, 606, 6816, 9023, 74, 3707, 8570, 3733, + 7439, 8010, 2330, 2707, 7997, 6578, 6530, 9528, 1545, + 1828, 6104, 2474, 5308, 5222, 6365, 8862, 4445, 3256, + 8596, 7733, 4546, 4298, 3962, 1735, 405, 9446, 2765, + 5223, 1245, 1928, 1613, 1076, 3386, 5499, 7117, 7236, + 1089, 5676, 7344, 5770, 9734, 6262, 6225, 7764, 2961, + 5070, 7253, 556, 1687, 3579, 9804, 7261, 2963, 8905, + 7732, 2949, 3331, 8106, 4114, 6793, 2309, 6606, 2474, + 1922, 3120, 8805, 7588, 3625, 3473, 6466, 7065, 4574, + 1985, 4989, 8004, 6734, 5981, 3660, 7778, 125, 7384, + 6141, 1158, 4521, 6919, 144, 914, 7797, 4111, 6086, + 6673, 8442, 7879, 7713, 9248, 4408, 1097, 7867, 1626, + 2747, 651, 2532, 5546, 1372, 589, 1653, 7492, 6806, + 1244, 9203, 2206, 5006, 203, 739, 5153, 6454, 4270, + 4396, 3640, 2150, 9255, 9834, 7708, 1267, 1636, 5030, + 795, 8742, 7543, 566, 6397, 3605, 8166, 8086, 4077, + 8364, 3818, 1834, 6488, 7143, 7438, 5866, 8540, 856, + 7785, 7368, 3461, 1705, 3376, 6688, 1751, 642, 9424, + 2608, 4435, 1836, 3463, 6828, 5152, 1957, 8354, 4656, + 6595, 4201, 9042, 3819, 3824, 5439, 7490, 1010, 4810, + 9972, 7566, 955, 751, 8629, 3365, 7594, 1053, 2299, + 7870]), + values=tensor([5.2060e-01, 5.8752e-01, 7.2713e-01, 1.0305e-01, + 9.3686e-01, 4.5302e-01, 7.9066e-01, 3.3889e-01, + 9.1304e-01, 7.1777e-01, 8.2105e-01, 1.2503e-01, + 3.7067e-02, 6.7818e-01, 7.9631e-01, 1.5332e-01, + 4.2909e-02, 3.6354e-01, 7.8473e-02, 3.9129e-01, + 5.0385e-01, 2.7311e-01, 2.8426e-01, 9.8490e-01, + 4.6471e-01, 1.8436e-01, 2.9210e-01, 7.6968e-01, + 9.8680e-01, 6.5393e-01, 6.5447e-01, 7.6587e-01, + 5.1696e-01, 3.0301e-01, 1.2974e-01, 4.9850e-01, + 9.5414e-01, 3.3815e-01, 1.2515e-01, 6.9570e-01, + 2.4680e-01, 5.9705e-01, 6.2698e-01, 7.7985e-01, + 6.0484e-01, 4.0524e-01, 6.3660e-01, 3.4506e-01, + 8.0482e-01, 7.8297e-02, 6.1842e-01, 5.7868e-01, + 6.3483e-01, 6.6108e-01, 9.3584e-04, 7.4347e-01, + 6.9134e-01, 8.5039e-01, 7.7178e-01, 3.8597e-01, + 1.9561e-01, 2.9964e-01, 5.3888e-01, 7.9254e-01, + 8.6409e-01, 7.5097e-01, 3.3689e-01, 7.8610e-02, + 4.5323e-01, 8.5126e-01, 6.9200e-01, 1.9498e-02, + 8.3003e-01, 8.6298e-01, 4.3806e-01, 7.1679e-01, + 8.1194e-01, 9.9720e-01, 8.2151e-01, 9.6087e-01, + 6.3853e-01, 3.4560e-01, 5.5284e-01, 4.4640e-01, + 3.7580e-01, 3.2438e-01, 8.9706e-01, 2.8604e-01, + 2.9762e-01, 2.8814e-01, 6.0684e-01, 4.1394e-01, + 6.2215e-01, 9.4551e-01, 4.0044e-01, 8.6963e-01, + 5.5266e-01, 5.9098e-01, 5.9783e-01, 1.7437e-01, + 3.4636e-01, 2.4680e-01, 2.3300e-01, 1.5789e-01, + 7.2572e-01, 4.7658e-01, 7.9251e-01, 5.5119e-01, + 3.4901e-01, 1.8926e-01, 7.2681e-02, 4.1166e-01, + 2.3574e-01, 9.2902e-01, 4.2647e-01, 4.2048e-01, + 7.6334e-01, 2.7562e-01, 1.2457e-01, 8.0447e-01, + 2.7298e-01, 2.6366e-01, 9.0147e-01, 9.8730e-01, + 4.8371e-01, 4.3424e-01, 8.9082e-01, 9.3669e-02, + 2.4573e-01, 1.7890e-01, 7.0955e-01, 7.5968e-01, + 4.4304e-01, 7.1779e-01, 7.2909e-01, 7.9905e-01, + 2.0894e-01, 1.6586e-01, 7.5174e-02, 4.0334e-01, + 1.0341e-01, 7.8773e-01, 8.5689e-01, 8.9735e-01, + 1.9547e-01, 8.9818e-01, 8.1080e-01, 5.8252e-01, + 6.2795e-01, 2.4733e-02, 3.7285e-01, 7.4750e-01, + 4.5329e-01, 5.4283e-01, 1.3581e-01, 8.2036e-01, + 3.3337e-02, 6.6711e-01, 2.7268e-01, 5.5912e-01, + 5.5669e-01, 3.5501e-01, 6.2792e-01, 9.7736e-01, + 3.5615e-01, 8.9429e-03, 5.2671e-01, 1.1444e-01, + 7.5357e-02, 8.8607e-01, 8.5215e-01, 8.6159e-01, + 3.1847e-01, 1.4552e-01, 6.4152e-01, 7.1863e-01, + 3.3005e-01, 3.2445e-02, 1.0168e-01, 8.4233e-01, + 8.8000e-01, 2.7047e-01, 7.1423e-01, 7.8187e-01, + 8.9146e-02, 4.9672e-01, 5.9046e-01, 1.9515e-01, + 9.8528e-01, 5.0321e-01, 5.8000e-01, 7.4168e-01, + 3.5260e-02, 1.2683e-01, 4.5738e-01, 6.8617e-01, + 4.4433e-01, 4.8514e-01, 5.5207e-01, 3.5556e-01, + 8.9692e-01, 3.6084e-01, 3.8720e-01, 5.8634e-01, + 7.0358e-01, 3.0095e-01, 1.3903e-01, 1.1694e-01, + 9.7711e-01, 3.7841e-01, 2.3352e-01, 4.5329e-01, + 8.2085e-01, 3.0580e-01, 4.8927e-01, 3.0347e-01, + 5.1485e-02, 5.2444e-02, 3.0794e-01, 5.9206e-01, + 8.3589e-01, 1.7323e-01, 3.1820e-01, 7.0798e-01, + 1.5440e-01, 1.9361e-01, 1.0835e-01, 8.1042e-01, + 7.1437e-02, 4.4926e-01, 8.1084e-01, 6.5975e-01, + 2.3167e-01, 9.5539e-01, 9.0418e-01, 1.8474e-01, + 8.4342e-01, 2.5289e-01, 6.3702e-01, 3.5397e-01, + 1.1201e-01, 4.5470e-01, 1.3388e-01, 2.6199e-01, + 8.1948e-01, 6.9816e-01, 9.3318e-01, 6.6708e-02, + 2.6242e-01, 4.7858e-02, 6.7194e-01, 4.8540e-01, + 5.6054e-01, 6.7286e-01, 8.0291e-01, 7.4681e-02, + 5.2165e-01, 3.6455e-01, 2.6177e-01, 2.8656e-01, + 4.8881e-01, 1.5495e-01, 8.1151e-01, 6.4157e-01, + 4.6118e-01, 9.8777e-02, 3.7165e-01, 7.8764e-01, + 6.8295e-01, 2.4347e-01, 1.6075e-01, 8.7591e-01, + 3.4120e-01, 5.4312e-01, 2.2322e-01, 7.3732e-01, + 9.2524e-02, 8.0737e-01, 4.2221e-01, 6.0497e-02, + 2.2442e-01, 1.6638e-01, 9.3025e-01, 3.6644e-01, + 9.7051e-01, 2.6113e-01, 3.3298e-01, 5.5566e-01, + 8.4633e-01, 2.1670e-02, 3.4866e-01, 4.1243e-01, + 4.3974e-02, 5.1011e-02, 9.7001e-01, 9.2475e-01, + 6.8789e-01, 4.8683e-01, 8.8514e-01, 2.8747e-01, + 8.3000e-01, 5.9514e-01, 1.9359e-01, 9.9127e-01, + 4.6767e-01, 9.0117e-02, 3.1439e-01, 7.7717e-01, + 3.2578e-01, 7.6461e-01, 4.9560e-01, 7.0813e-01, + 8.9512e-01, 3.4294e-01, 7.9012e-01, 2.1834e-01, + 9.9954e-01, 8.4021e-01, 5.2415e-01, 5.5913e-01, + 6.0001e-01, 4.0800e-01, 9.2418e-01, 9.8484e-02, + 1.2325e-01, 9.2593e-01, 8.8126e-01, 2.1903e-01, + 8.6474e-02, 5.6159e-01, 1.6813e-01, 3.7588e-01, + 1.1257e-01, 7.7701e-01, 6.1191e-01, 9.3067e-01, + 1.7717e-01, 6.9689e-01, 4.1894e-01, 3.1744e-01, + 6.8942e-01, 5.4469e-01, 6.9142e-01, 5.9683e-01, + 4.4063e-01, 7.9936e-01, 7.7242e-01, 2.8988e-01, + 9.4011e-01, 6.2090e-01, 4.0644e-01, 4.6521e-01, + 6.9337e-01, 9.9796e-02, 8.2484e-01, 6.9345e-01, + 6.1383e-01, 7.4834e-01, 4.0722e-01, 9.9024e-01, + 8.5334e-01, 8.8771e-01, 5.0253e-01, 7.2537e-01, + 6.4116e-01, 4.1841e-01, 9.1987e-01, 6.3601e-02, + 6.2845e-01, 9.8979e-01, 3.2048e-02, 4.9481e-01, + 7.6203e-01, 8.4482e-01, 1.8315e-01, 9.7150e-01, + 6.4234e-01, 3.9806e-01, 3.1906e-01, 8.5592e-01, + 2.7348e-01, 1.0324e-01, 3.3822e-01, 1.0261e-01, + 7.8657e-01, 4.1245e-02, 6.2280e-01, 1.5594e-01, + 1.4057e-01, 9.3217e-01, 5.3651e-01, 3.1414e-01, + 7.4943e-01, 1.8062e-01, 6.8355e-01, 1.7011e-01, + 7.9311e-01, 5.6505e-01, 1.7516e-01, 3.2628e-01, + 7.4869e-01, 3.6292e-02, 7.7730e-01, 5.6876e-01, + 7.4365e-01, 3.1819e-01, 2.9167e-01, 8.0054e-01, + 5.2095e-02, 8.4271e-01, 9.4201e-01, 2.6332e-01, + 4.1440e-01, 2.8004e-01, 6.3749e-01, 8.2784e-01, + 3.8989e-01, 4.8344e-01, 6.1792e-01, 7.7696e-01, + 2.9025e-01, 3.0195e-01, 1.6203e-02, 4.9882e-02, + 9.5260e-01, 3.8574e-02, 8.6137e-01, 1.0206e-01, + 1.8185e-01, 3.7184e-01, 1.8011e-01, 5.8471e-01, + 9.0896e-01, 7.8819e-01, 1.2554e-01, 9.1937e-01, + 4.7326e-01, 8.1565e-01, 4.0860e-01, 9.5624e-01, + 6.4546e-01, 2.1755e-01, 1.8583e-01, 7.2313e-01, + 5.0034e-01, 9.6810e-01, 1.1208e-01, 3.3256e-01, + 1.0626e-01, 8.2704e-01, 9.0571e-01, 9.1930e-01, + 5.0810e-01, 2.9139e-02, 4.8153e-01, 8.3425e-01, + 7.7208e-01, 2.0930e-01, 7.7873e-01, 1.9398e-01, + 4.6583e-01, 7.2143e-01, 7.7072e-01, 8.8225e-01, + 5.6393e-01, 4.5270e-01, 4.5709e-01, 3.4438e-02, + 8.3723e-01, 8.7398e-01, 7.7789e-01, 3.1834e-01, + 6.7630e-01, 7.2696e-01, 6.2046e-01, 8.7032e-01, + 7.5275e-01, 1.2652e-01, 1.6913e-01, 8.9638e-01, + 8.4284e-01, 6.7028e-01, 1.6150e-01, 4.8858e-01, + 5.2657e-01, 2.6709e-01, 5.3737e-01, 7.9635e-02, + 4.6502e-01, 6.6489e-01, 3.3302e-02, 6.7807e-03, + 3.2601e-01, 6.2838e-01, 8.8805e-01, 6.4081e-01, + 8.3664e-01, 2.1253e-01, 9.9560e-01, 1.0008e-01, + 8.1128e-01, 7.1759e-02, 1.9140e-01, 3.9544e-01, + 2.0466e-01, 1.0560e-01, 5.0978e-01, 4.3684e-01, + 1.8097e-02, 5.2480e-01, 1.3644e-01, 6.5843e-01, + 4.7603e-01, 3.9206e-01, 2.5961e-01, 4.4991e-01, + 2.7612e-01, 5.3666e-01, 1.0518e-02, 8.5692e-01, + 2.4882e-01, 9.3487e-01, 5.1282e-01, 9.4781e-01, + 6.6273e-01, 7.0853e-01, 2.2742e-01, 9.1791e-01, + 6.9906e-01, 3.2979e-01, 5.6041e-01, 8.6281e-01, + 9.5303e-01, 7.5565e-01, 4.3419e-01, 8.3829e-01, + 2.4070e-01, 6.8860e-01, 5.5668e-01, 1.8449e-01, + 9.9667e-01, 7.7594e-01, 5.3148e-01, 4.1552e-01, + 5.1947e-01, 1.3992e-01, 4.4856e-01, 7.4868e-01, + 6.3705e-01, 3.5783e-01, 1.2134e-01, 6.9568e-01, + 1.2509e-01, 1.7793e-01, 3.2242e-02, 4.1301e-01, + 5.9646e-01, 1.6615e-01, 3.1664e-01, 8.1783e-02, + 2.9824e-02, 2.1237e-01, 5.2911e-01, 5.1732e-01, + 1.9451e-01, 3.5512e-01, 2.9795e-01, 5.1951e-01, + 1.9558e-01, 3.7898e-01, 5.9402e-01, 4.2044e-01, + 8.7643e-01, 6.5956e-01, 7.4035e-01, 4.6048e-01, + 1.2749e-02, 9.2360e-01, 3.6981e-01, 9.4150e-01, + 9.7784e-01, 5.7582e-01, 3.1385e-01, 3.8101e-01, + 9.2912e-01, 4.3789e-01, 7.2061e-01, 5.2086e-01, + 7.3528e-01, 8.5192e-01, 3.5126e-01, 7.6776e-01, + 2.8613e-01, 6.3526e-02, 2.8596e-01, 6.3501e-01, + 4.9176e-02, 8.7348e-01, 5.2000e-01, 5.8496e-01, + 4.8855e-01, 7.2483e-01, 3.5412e-01, 6.6161e-01, + 5.5561e-01, 5.4683e-02, 9.0732e-01, 7.5460e-02, + 3.1367e-01, 7.3793e-01, 3.5729e-01, 2.8849e-01, + 8.9432e-01, 9.7713e-02, 1.1743e-01, 4.3089e-01, + 8.1021e-01, 8.8355e-01, 1.9843e-01, 6.1349e-02, + 8.3824e-01, 6.2155e-02, 2.0617e-01, 4.8812e-01, + 9.8256e-01, 8.8490e-02, 5.0411e-01, 9.5740e-01, + 9.7775e-02, 5.1726e-01, 7.1232e-01, 4.7675e-02, + 2.2480e-02, 3.7611e-01, 5.9660e-01, 6.2244e-01, + 4.4880e-01, 8.5892e-01, 1.9312e-01, 3.0721e-01, + 6.9925e-01, 6.7802e-01, 9.2157e-01, 8.5335e-01, + 4.1058e-01, 1.3666e-01, 3.9121e-01, 4.7478e-02, + 7.7467e-01, 5.8273e-03, 7.4476e-01, 1.9062e-01, + 7.5316e-02, 8.1639e-01, 5.2018e-01, 5.6018e-01, + 9.6970e-01, 3.0172e-02, 6.0521e-01, 4.0407e-02, + 5.7990e-01, 9.5453e-01, 8.8848e-01, 3.7532e-01, + 9.6133e-01, 7.7502e-01, 4.0087e-01, 6.8611e-01, + 3.2210e-02, 2.8094e-01, 7.3871e-01, 9.1462e-01, + 1.9356e-01, 2.6926e-01, 1.8582e-01, 5.4929e-02, + 9.1024e-01, 2.6956e-01, 5.5420e-01, 3.6135e-01, + 3.5875e-01, 6.0498e-01, 3.7275e-01, 9.8664e-01, + 8.8819e-01, 2.7405e-01, 1.1934e-01, 7.3250e-01, + 8.9712e-01, 8.8231e-01, 3.3160e-01, 9.5892e-01, + 8.4187e-01, 2.7689e-01, 1.6102e-02, 9.3174e-01, + 7.5817e-01, 9.0117e-01, 2.4771e-01, 2.6531e-01, + 5.1327e-01, 3.8035e-01, 4.0058e-01, 4.0599e-04, + 9.2180e-01, 9.3958e-01, 5.5013e-01, 6.4800e-01, + 1.1731e-01, 5.7797e-01, 2.5301e-01, 6.8211e-01, + 9.6611e-01, 2.1744e-01, 2.7821e-01, 3.8118e-01, + 6.2557e-01, 8.9564e-01, 9.8076e-01, 4.2087e-01, + 1.3319e-02, 1.8018e-01, 6.2599e-01, 1.4615e-01, + 7.4026e-01, 9.7573e-01, 1.0896e-01, 4.9573e-01, + 7.0308e-01, 6.3058e-01, 1.5012e-01, 5.9222e-01, + 6.5591e-01, 4.5450e-01, 1.3452e-01, 1.1006e-01, + 6.2072e-01, 1.7700e-01, 3.2033e-01, 7.1407e-01, + 9.3104e-01, 7.3480e-01, 7.5735e-01, 5.3846e-01, + 1.2357e-01, 6.0479e-01, 5.0554e-01, 7.2641e-01, + 7.1854e-01, 3.9348e-02, 4.3940e-02, 5.5093e-01, + 1.1556e-02, 4.5159e-01, 8.0712e-01, 7.2793e-01, + 9.4343e-01, 4.6801e-01, 6.8975e-01, 6.8837e-01, + 5.9669e-02, 7.6994e-01, 4.3286e-01, 7.1974e-01, + 4.6165e-01, 5.8672e-01, 5.0695e-01, 4.7555e-01, + 6.9675e-01, 3.7575e-01, 7.2625e-01, 6.6386e-01, + 3.0499e-01, 7.8592e-01, 5.7412e-01, 1.8771e-01, + 2.0747e-02, 9.7205e-01, 1.9993e-01, 4.5722e-01, + 9.2382e-02, 3.5018e-01, 5.2392e-01, 1.1923e-01, + 8.3795e-01, 3.4123e-02, 2.8436e-01, 1.9208e-01, + 6.4406e-02, 7.8742e-01, 2.0108e-01, 9.3581e-01, + 1.7748e-01, 8.9101e-01, 1.2175e-01, 8.8756e-01, + 7.8316e-01, 4.0800e-01, 5.6851e-01, 9.2774e-01, + 3.7604e-01, 5.3144e-01, 8.0134e-02, 6.2059e-02, + 8.7489e-03, 2.6598e-01, 6.7003e-01, 8.4602e-01, + 6.0322e-01, 6.8827e-01, 3.2298e-01, 7.1255e-01, + 9.5221e-01, 9.1295e-01, 2.3726e-01, 8.5325e-02, + 3.8353e-01, 7.7125e-01, 7.3426e-01, 5.3143e-01, + 8.0892e-01, 8.7041e-01, 5.8474e-01, 8.7437e-01, + 3.1761e-01, 8.3607e-01, 2.6952e-01, 6.1480e-01, + 7.6446e-01, 6.1953e-01, 4.9927e-01, 7.5728e-01, + 9.1551e-01, 2.2186e-01, 7.1374e-01, 2.5784e-01, + 8.5969e-01, 9.0881e-01, 1.8012e-01, 9.8941e-02, + 6.1818e-01, 2.8776e-01, 9.6763e-01, 2.0033e-01, + 8.2090e-01, 1.9388e-01, 1.7567e-01, 4.4690e-01, + 2.0662e-01, 1.0745e-01, 9.3569e-01, 8.0811e-01, + 9.1073e-02, 3.4629e-01, 7.8523e-01, 1.1764e-01, + 2.8677e-01, 7.0343e-01, 8.7211e-01, 3.6672e-01, + 9.7703e-01, 5.2406e-01, 4.9980e-01, 5.4475e-01, + 8.9090e-01, 4.3209e-02, 4.4884e-01, 9.0686e-01, + 1.1154e-01, 1.0570e-01, 4.1471e-01, 9.7202e-01, + 3.8561e-01, 2.0579e-01, 4.4916e-01, 1.9721e-01, + 5.1959e-01, 7.6768e-01, 9.2048e-01, 2.2598e-01, + 9.6825e-01, 5.9095e-01, 2.7735e-02, 9.8780e-01, + 5.5600e-01, 6.4011e-01, 4.9115e-01, 1.5679e-01, + 9.0323e-01, 1.9041e-01, 8.5013e-01, 1.2025e-01, + 1.1804e-01, 6.8892e-01, 2.0461e-01, 1.9657e-01, + 7.0597e-01, 5.5451e-01, 1.8591e-01, 6.9899e-01, + 5.3076e-01, 7.3978e-01, 9.5676e-01, 4.0627e-01, + 8.3752e-01, 3.1046e-01, 5.6607e-01, 4.4132e-01, + 5.2029e-01, 8.5109e-01, 6.6508e-01, 2.6182e-01, + 6.7981e-01, 8.4438e-01, 4.1711e-01, 3.6277e-01, + 9.2177e-01, 3.6580e-02, 5.1418e-02, 4.5413e-01, + 5.0643e-01, 1.2991e-01, 7.2776e-01, 6.5957e-01, + 6.6907e-01, 4.4236e-01, 5.5565e-01, 1.1326e-01, + 6.2352e-01, 4.1680e-02, 8.5603e-01, 7.0539e-01, + 3.5385e-01, 5.1926e-01, 6.4794e-02, 6.4126e-01, + 3.0824e-01, 8.7537e-01, 3.8092e-03, 1.4017e-01, + 7.9757e-01, 2.7307e-01, 7.7809e-01, 5.3453e-01, + 3.5741e-01, 8.3152e-01, 9.6330e-01, 4.5118e-01, + 6.9011e-01, 8.9458e-01, 5.3158e-01, 8.2853e-01, + 1.8923e-01, 6.5167e-01, 3.8821e-01, 5.7283e-01, + 1.9550e-01, 4.8766e-01, 5.8973e-01, 6.6654e-01, + 3.4043e-01, 3.0734e-01, 7.2507e-01, 4.5141e-01, + 8.7825e-01, 1.8915e-01, 9.1650e-01, 2.5972e-01, + 1.2721e-02, 4.2352e-01, 6.5855e-01, 4.8197e-01, + 6.3384e-01, 1.1340e-01, 9.1519e-02, 7.2253e-01, + 7.7717e-01, 7.7128e-01, 7.9797e-01, 9.5449e-01, + 1.9479e-01, 9.4967e-01, 6.5866e-01, 2.6908e-01, + 6.6522e-01, 9.9513e-01, 6.4628e-01, 3.2376e-01, + 6.8241e-01, 2.0082e-01, 6.7192e-01, 6.3818e-01, + 8.3533e-01, 1.4580e-01, 6.7572e-01, 3.1304e-02, + 5.6257e-01, 6.4916e-01, 4.5939e-01, 1.6735e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.0747, 0.3561, 0.1255, ..., 0.0664, 0.4841, 0.3262]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.197850227355957 seconds + +[16.64, 16.64, 16.92, 16.76, 17.12, 17.2, 17.04, 17.0, 16.76, 16.88] +[16.68, 16.88, 19.88, 22.24, 22.24, 24.24, 24.56, 25.08, 21.56, 20.04, 19.4, 19.68, 19.88, 19.92] +14.228495121002197 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 141920, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.197850227355957, 'TIME_S_1KI': 0.0718563291104563, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 278.53162281036373, 'W': 19.575620643059622} +[16.64, 16.64, 16.92, 16.76, 17.12, 17.2, 17.04, 17.0, 16.76, 16.88, 16.16, 16.08, 16.16, 16.12, 16.12, 16.24, 16.56, 16.84, 16.88, 17.08] +299.82 +14.991 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 141920, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.197850227355957, 'TIME_S_1KI': 0.0718563291104563, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 278.53162281036373, 'W': 19.575620643059622, 'J_1KI': 1.9625959893627658, 'W_1KI': 0.1379341928062262, 'W_D': 4.584620643059623, 'J_D': 65.2322524514198, 'W_D_1KI': 0.032304260449969154, 'J_D_1KI': 0.00022762303022808028} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_5e-05.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_5e-05.json new file mode 100644 index 0000000..282c250 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 52721, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 11.043588876724243, "TIME_S_1KI": 0.20947229522816796, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 310.41147632598876, "W": 21.8334966893401, "J_1KI": 5.8878146530981725, "W_1KI": 0.4141328254270613, "W_D": 3.2964966893401026, "J_D": 46.86699609327319, "W_D_1KI": 0.06252720337892116, "J_D_1KI": 0.0011860018470613448} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_5e-05.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_5e-05.output new file mode 100644 index 0000000..2fcd1ba --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_10000_5e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 5e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.24570083618164062} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 5000, 5000, 5000]), + col_indices=tensor([7274, 1823, 9481, ..., 3720, 7669, 6157]), + values=tensor([0.0699, 0.4403, 0.9366, ..., 0.7220, 0.3462, 0.9666]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.3652, 0.9468, 0.8818, ..., 0.3143, 0.5478, 0.8274]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 0.24570083618164062 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 42734 -ss 10000 -sd 5e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 8.510959386825562} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 4999, 4999, 5000]), + col_indices=tensor([3889, 8009, 975, ..., 383, 3476, 3024]), + values=tensor([0.2888, 0.9236, 0.0703, ..., 0.2234, 0.4670, 0.5913]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.8206, 0.5304, 0.1258, ..., 0.8056, 0.8493, 0.1547]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 8.510959386825562 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 52721 -ss 10000 -sd 5e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 11.043588876724243} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 4999, 5000, 5000]), + col_indices=tensor([3785, 9007, 8216, ..., 3831, 7720, 5051]), + values=tensor([0.5982, 0.6190, 0.5749, ..., 0.7670, 0.1287, 0.1052]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.6986, 0.7258, 0.0612, ..., 0.6419, 0.7078, 0.3008]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 11.043588876724243 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 4999, 5000, 5000]), + col_indices=tensor([3785, 9007, 8216, ..., 3831, 7720, 5051]), + values=tensor([0.5982, 0.6190, 0.5749, ..., 0.7670, 0.1287, 0.1052]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.6986, 0.7258, 0.0612, ..., 0.6419, 0.7078, 0.3008]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 11.043588876724243 seconds + +[20.64, 20.64, 20.64, 20.64, 20.48, 20.52, 20.4, 20.52, 20.6, 20.56] +[20.56, 20.6, 20.72, 22.44, 23.64, 25.6, 26.32, 25.84, 25.0, 23.2, 23.28, 23.24, 23.44, 23.44] +14.217213153839111 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 52721, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 11.043588876724243, 'TIME_S_1KI': 0.20947229522816796, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 310.41147632598876, 'W': 21.8334966893401} +[20.64, 20.64, 20.64, 20.64, 20.48, 20.52, 20.4, 20.52, 20.6, 20.56, 20.36, 20.48, 20.48, 20.44, 20.56, 20.68, 20.88, 20.96, 20.72, 20.64] +370.74 +18.537 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 52721, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 11.043588876724243, 'TIME_S_1KI': 0.20947229522816796, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 310.41147632598876, 'W': 21.8334966893401, 'J_1KI': 5.8878146530981725, 'W_1KI': 0.4141328254270613, 'W_D': 3.2964966893401026, 'J_D': 46.86699609327319, 'W_D_1KI': 0.06252720337892116, 'J_D_1KI': 0.0011860018470613448} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_500000_0.0001.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_500000_0.0001.json new file mode 100644 index 0000000..8015441 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_500000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 78.25872588157654, "TIME_S_1KI": 78.25872588157654, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 4354.838327121737, "W": 46.22946318790178, "J_1KI": 4354.838327121737, "W_1KI": 46.22946318790178, "W_D": 27.22746318790178, "J_D": 2564.8405165128734, "W_D_1KI": 27.22746318790178, "J_D_1KI": 27.22746318790178} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_500000_0.0001.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_500000_0.0001.output new file mode 100644 index 0000000..f9d34b2 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_500000_0.0001.output @@ -0,0 +1,47 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 500000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 78.25872588157654} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 62, 108, ..., 24999902, + 24999957, 25000000]), + col_indices=tensor([ 8122, 13146, 17492, ..., 475877, 485043, + 496973]), + values=tensor([0.3209, 0.8894, 0.3965, ..., 0.0269, 0.4047, 0.8747]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.9161, 0.4114, 0.3584, ..., 0.3416, 0.2120, 0.9282]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 78.25872588157654 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 62, 108, ..., 24999902, + 24999957, 25000000]), + col_indices=tensor([ 8122, 13146, 17492, ..., 475877, 485043, + 496973]), + values=tensor([0.3209, 0.8894, 0.3965, ..., 0.0269, 0.4047, 0.8747]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.9161, 0.4114, 0.3584, ..., 0.3416, 0.2120, 0.9282]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 78.25872588157654 seconds + +[21.04, 21.2, 21.24, 21.2, 21.44, 21.2, 21.08, 21.04, 20.84, 20.8] +[20.96, 20.88, 21.6, 21.6, 22.56, 24.32, 26.6, 27.68, 30.32, 31.76, 31.8, 31.36, 31.8, 32.64, 38.12, 43.32, 49.08, 53.24, 53.16, 52.56, 52.56, 52.56, 52.6, 52.28, 52.68, 53.0, 53.04, 53.24, 53.08, 53.48, 53.36, 53.16, 53.16, 52.68, 52.84, 52.88, 53.12, 52.96, 52.88, 53.2, 53.16, 53.0, 53.0, 52.96, 53.12, 52.84, 52.76, 53.08, 52.96, 52.84, 52.96, 52.92, 53.12, 53.2, 53.04, 53.28, 53.16, 53.12, 52.68, 52.96, 52.88, 52.72, 53.04, 53.08, 52.76, 52.76, 52.92, 53.32, 53.28, 53.32, 53.44, 53.28, 53.32, 53.4, 53.48, 53.48, 53.4, 53.4, 53.44, 53.12, 53.32, 53.44, 53.56, 53.52, 53.4, 53.36, 53.12, 53.12, 53.12, 53.16] +94.20049524307251 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 78.25872588157654, 'TIME_S_1KI': 78.25872588157654, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 4354.838327121737, 'W': 46.22946318790178} +[21.04, 21.2, 21.24, 21.2, 21.44, 21.2, 21.08, 21.04, 20.84, 20.8, 21.64, 21.52, 21.28, 21.2, 21.12, 20.8, 20.84, 20.76, 21.0, 21.08] +380.03999999999996 +19.002 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 78.25872588157654, 'TIME_S_1KI': 78.25872588157654, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 4354.838327121737, 'W': 46.22946318790178, 'J_1KI': 4354.838327121737, 'W_1KI': 46.22946318790178, 'W_D': 27.22746318790178, 'J_D': 2564.8405165128734, 'W_D_1KI': 27.22746318790178, 'J_D_1KI': 27.22746318790178} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_500000_1e-05.json new file mode 100644 index 0000000..35c105f --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_500000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1484, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.88543152809143, "TIME_S_1KI": 7.335196447500964, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 480.2575412559509, "W": 32.95171788766838, "J_1KI": 323.6236800916111, "W_1KI": 22.204661649372223, "W_D": 16.90171788766838, "J_D": 246.33548707246783, "W_D_1KI": 11.389297767970607, "J_D_1KI": 7.67472895415809} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_500000_1e-05.output new file mode 100644 index 0000000..2875e7e --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_500000_1e-05.output @@ -0,0 +1,68 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 500000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.073613166809082} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 13, ..., 2499990, + 2499995, 2500000]), + col_indices=tensor([ 8141, 69274, 149925, ..., 390687, 407872, + 439375]), + values=tensor([0.4271, 0.3560, 0.2859, ..., 0.3294, 0.0849, 0.5690]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.1896, 0.3447, 0.8973, ..., 0.8957, 0.5716, 0.6993]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 7.073613166809082 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1484 -ss 500000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.88543152809143} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 10, 15, ..., 2499994, + 2500000, 2500000]), + col_indices=tensor([ 19808, 30523, 42041, ..., 253465, 473291, + 475423]), + values=tensor([0.2655, 0.1335, 0.5252, ..., 0.0072, 0.8874, 0.1974]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.7673, 0.2797, 0.0430, ..., 0.8352, 0.7956, 0.1250]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 10.88543152809143 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 10, 15, ..., 2499994, + 2500000, 2500000]), + col_indices=tensor([ 19808, 30523, 42041, ..., 253465, 473291, + 475423]), + values=tensor([0.2655, 0.1335, 0.5252, ..., 0.0072, 0.8874, 0.1974]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.7673, 0.2797, 0.0430, ..., 0.8352, 0.7956, 0.1250]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 10.88543152809143 seconds + +[20.16, 19.76, 19.4, 19.48, 19.12, 18.68, 18.6, 18.12, 18.12, 17.68] +[17.44, 17.16, 17.36, 21.36, 23.28, 27.36, 35.28, 38.6, 44.16, 47.92, 48.84, 48.56, 48.96, 49.04] +14.574582815170288 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1484, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.88543152809143, 'TIME_S_1KI': 7.335196447500964, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 480.2575412559509, 'W': 32.95171788766838} +[20.16, 19.76, 19.4, 19.48, 19.12, 18.68, 18.6, 18.12, 18.12, 17.68, 16.68, 16.56, 16.56, 16.56, 16.72, 16.64, 16.76, 17.08, 17.04, 17.08] +321.0 +16.05 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1484, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.88543152809143, 'TIME_S_1KI': 7.335196447500964, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 480.2575412559509, 'W': 32.95171788766838, 'J_1KI': 323.6236800916111, 'W_1KI': 22.204661649372223, 'W_D': 16.90171788766838, 'J_D': 246.33548707246783, 'W_D_1KI': 11.389297767970607, 'J_D_1KI': 7.67472895415809} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_500000_5e-05.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_500000_5e-05.json new file mode 100644 index 0000000..e64af38 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_500000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 37.50764799118042, "TIME_S_1KI": 37.50764799118042, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2045.1465811538696, "W": 43.475713756728496, "J_1KI": 2045.1465811538699, "W_1KI": 43.475713756728496, "W_D": 24.798713756728496, "J_D": 1166.5594483480452, "W_D_1KI": 24.798713756728496, "J_D_1KI": 24.798713756728496} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_500000_5e-05.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_500000_5e-05.output new file mode 100644 index 0000000..c540d96 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_500000_5e-05.output @@ -0,0 +1,47 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 500000 -sd 5e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 37.50764799118042} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 37, 66, ..., 12499959, + 12499977, 12500000]), + col_indices=tensor([ 2833, 12397, 17330, ..., 457394, 482426, + 493028]), + values=tensor([0.7637, 0.4211, 0.1191, ..., 0.6468, 0.8330, 0.4871]), + size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.3810, 0.7581, 0.5448, ..., 0.8790, 0.4682, 0.1184]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 12500000 +Density: 5e-05 +Time: 37.50764799118042 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 37, 66, ..., 12499959, + 12499977, 12500000]), + col_indices=tensor([ 2833, 12397, 17330, ..., 457394, 482426, + 493028]), + values=tensor([0.7637, 0.4211, 0.1191, ..., 0.6468, 0.8330, 0.4871]), + size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.3810, 0.7581, 0.5448, ..., 0.8790, 0.4682, 0.1184]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 12500000 +Density: 5e-05 +Time: 37.50764799118042 seconds + +[21.08, 20.96, 20.88, 20.72, 20.6, 20.6, 20.64, 20.2, 20.28, 20.6] +[20.72, 20.68, 21.2, 23.0, 24.88, 26.4, 29.84, 29.72, 30.96, 36.72, 36.72, 41.28, 45.64, 50.76, 52.76, 52.48, 53.28, 52.92, 52.8, 52.76, 52.48, 52.52, 52.68, 52.72, 53.4, 53.44, 53.4, 53.36, 53.12, 53.4, 53.2, 53.0, 53.0, 53.24, 53.08, 52.92, 53.0, 52.72, 52.8, 52.64, 52.8, 52.96, 52.8, 52.8, 52.68] +47.04112720489502 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 37.50764799118042, 'TIME_S_1KI': 37.50764799118042, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2045.1465811538696, 'W': 43.475713756728496} +[21.08, 20.96, 20.88, 20.72, 20.6, 20.6, 20.64, 20.2, 20.28, 20.6, 20.92, 21.12, 21.0, 20.84, 20.92, 20.72, 20.72, 20.56, 21.0, 20.96] +373.54 +18.677 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 37.50764799118042, 'TIME_S_1KI': 37.50764799118042, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2045.1465811538696, 'W': 43.475713756728496, 'J_1KI': 2045.1465811538699, 'W_1KI': 43.475713756728496, 'W_D': 24.798713756728496, 'J_D': 1166.5594483480452, 'W_D_1KI': 24.798713756728496, 'J_D_1KI': 24.798713756728496} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_0.0001.json new file mode 100644 index 0000000..0acd95a --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 3392, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.727018594741821, "TIME_S_1KI": 3.1624465196762443, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 423.8805270671845, "W": 29.00744018011372, "J_1KI": 124.96477802688223, "W_1KI": 8.55172175121277, "W_D": 13.914440180113719, "J_D": 203.32922177100187, "W_D_1KI": 4.102134487061827, "J_D_1KI": 1.2093556860441705} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_0.0001.output new file mode 100644 index 0000000..f123524 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_0.0001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 3.0953831672668457} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 13, ..., 249985, 249991, + 250000]), + col_indices=tensor([ 782, 10679, 21591, ..., 21721, 25862, 26402]), + values=tensor([0.1080, 0.2599, 0.9753, ..., 0.8598, 0.0309, 0.7621]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.0624, 0.3415, 0.4601, ..., 0.0482, 0.7737, 0.1465]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 3.0953831672668457 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 3392 -ss 50000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.727018594741821} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 6, ..., 249992, 249997, + 250000]), + col_indices=tensor([29888, 37512, 45145, ..., 10362, 27481, 28096]), + values=tensor([0.5987, 0.4413, 0.1210, ..., 0.9023, 0.1888, 0.1246]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.0260, 0.0462, 0.3716, ..., 0.4992, 0.3586, 0.2225]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.727018594741821 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 6, ..., 249992, 249997, + 250000]), + col_indices=tensor([29888, 37512, 45145, ..., 10362, 27481, 28096]), + values=tensor([0.5987, 0.4413, 0.1210, ..., 0.9023, 0.1888, 0.1246]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.0260, 0.0462, 0.3716, ..., 0.4992, 0.3586, 0.2225]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.727018594741821 seconds + +[16.52, 16.28, 16.24, 16.16, 16.44, 16.44, 16.6, 16.52, 16.56, 16.68] +[16.44, 16.64, 17.44, 19.52, 22.44, 27.08, 32.32, 35.8, 38.92, 39.84, 40.12, 40.12, 40.24, 40.6] +14.612820863723755 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 3392, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.727018594741821, 'TIME_S_1KI': 3.1624465196762443, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 423.8805270671845, 'W': 29.00744018011372} +[16.52, 16.28, 16.24, 16.16, 16.44, 16.44, 16.6, 16.52, 16.56, 16.68, 16.84, 16.68, 16.84, 17.24, 17.32, 17.48, 17.4, 17.24, 16.96, 16.88] +301.86 +15.093 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 3392, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.727018594741821, 'TIME_S_1KI': 3.1624465196762443, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 423.8805270671845, 'W': 29.00744018011372, 'J_1KI': 124.96477802688223, 'W_1KI': 8.55172175121277, 'W_D': 13.914440180113719, 'J_D': 203.32922177100187, 'W_D_1KI': 4.102134487061827, 'J_D_1KI': 1.2093556860441705} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_0.001.json new file mode 100644 index 0000000..3f36d4c --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 29.441463470458984, "TIME_S_1KI": 29.441463470458984, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1067.5749865341186, "W": 32.87033016720936, "J_1KI": 1067.5749865341186, "W_1KI": 32.87033016720936, "W_D": 17.51733016720936, "J_D": 568.9344591989515, "W_D_1KI": 17.51733016720936, "J_D_1KI": 17.51733016720936} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_0.001.output new file mode 100644 index 0000000..c095d19 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_0.001.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 0.001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 29.441463470458984} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 37, 79, ..., 2499907, + 2499951, 2500000]), + col_indices=tensor([ 2466, 3763, 4276, ..., 47502, 48879, 49149]), + values=tensor([0.0148, 0.9908, 0.2997, ..., 0.9281, 0.7443, 0.4383]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.6700, 0.5614, 0.5608, ..., 0.8928, 0.8615, 0.5607]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 29.441463470458984 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 37, 79, ..., 2499907, + 2499951, 2500000]), + col_indices=tensor([ 2466, 3763, 4276, ..., 47502, 48879, 49149]), + values=tensor([0.0148, 0.9908, 0.2997, ..., 0.9281, 0.7443, 0.4383]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.6700, 0.5614, 0.5608, ..., 0.8928, 0.8615, 0.5607]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 29.441463470458984 seconds + +[16.92, 17.36, 17.08, 16.84, 17.2, 17.28, 17.4, 17.44, 17.36, 17.36] +[17.08, 17.24, 17.08, 21.52, 22.36, 25.24, 29.48, 32.12, 34.64, 38.4, 38.76, 38.64, 38.8, 39.0, 39.0, 39.44, 39.4, 39.28, 39.32, 39.32, 39.24, 39.12, 39.0, 39.08, 39.32, 39.36, 39.28, 39.28, 39.16, 38.92, 39.08] +32.47837734222412 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 29.441463470458984, 'TIME_S_1KI': 29.441463470458984, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1067.5749865341186, 'W': 32.87033016720936} +[16.92, 17.36, 17.08, 16.84, 17.2, 17.28, 17.4, 17.44, 17.36, 17.36, 16.68, 16.88, 16.76, 16.92, 16.84, 17.04, 17.0, 17.0, 16.68, 17.0] +307.06000000000006 +15.353000000000003 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 29.441463470458984, 'TIME_S_1KI': 29.441463470458984, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1067.5749865341186, 'W': 32.87033016720936, 'J_1KI': 1067.5749865341186, 'W_1KI': 32.87033016720936, 'W_D': 17.51733016720936, 'J_D': 568.9344591989515, 'W_D_1KI': 17.51733016720936, 'J_D_1KI': 17.51733016720936} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_0.01.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_0.01.json new file mode 100644 index 0000000..cc8d9c0 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 324.79648518562317, "TIME_S_1KI": 324.79648518562317, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 11877.425473241823, "W": 35.646067141867775, "J_1KI": 11877.425473241823, "W_1KI": 35.646067141867775, "W_D": 16.970067141867776, "J_D": 5654.50059192373, "W_D_1KI": 16.970067141867776, "J_D_1KI": 16.970067141867776} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_0.01.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_0.01.output new file mode 100644 index 0000000..b2a5634 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_0.01.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 0.01 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 324.79648518562317} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 495, 976, ..., 24999061, + 24999546, 25000000]), + col_indices=tensor([ 151, 490, 496, ..., 49361, 49363, 49505]), + values=tensor([0.8177, 0.6830, 0.3837, ..., 0.7178, 0.0658, 0.9045]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.7632, 0.2578, 0.8207, ..., 0.6267, 0.5426, 0.4264]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 324.79648518562317 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 495, 976, ..., 24999061, + 24999546, 25000000]), + col_indices=tensor([ 151, 490, 496, ..., 49361, 49363, 49505]), + values=tensor([0.8177, 0.6830, 0.3837, ..., 0.7178, 0.0658, 0.9045]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.7632, 0.2578, 0.8207, ..., 0.6267, 0.5426, 0.4264]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 324.79648518562317 seconds + +[20.76, 20.6, 20.88, 20.96, 20.84, 20.88, 20.88, 20.68, 20.8, 20.88] +[21.16, 21.04, 21.12, 26.2, 28.16, 29.12, 31.64, 29.84, 30.96, 30.96, 31.32, 31.32, 31.52, 31.84, 31.92, 33.6, 35.32, 36.84, 37.0, 36.88, 36.84, 36.12, 36.76, 36.76, 36.4, 37.24, 37.32, 37.12, 37.84, 37.0, 37.76, 37.32, 37.0, 35.96, 36.28, 35.4, 35.8, 36.36, 37.12, 37.12, 38.8, 38.96, 38.72, 38.44, 37.4, 38.36, 38.0, 38.04, 37.84, 37.56, 36.92, 36.92, 36.84, 36.48, 36.64, 36.64, 36.52, 35.64, 36.12, 36.84, 37.56, 37.52, 38.6, 37.96, 37.32, 37.44, 36.76, 37.36, 37.44, 37.76, 37.8, 37.8, 38.68, 38.12, 37.96, 37.72, 37.88, 37.92, 37.84, 36.92, 36.6, 36.4, 36.48, 36.4, 37.2, 37.04, 37.16, 36.8, 36.8, 36.72, 37.72, 38.0, 37.96, 37.76, 37.08, 37.48, 36.64, 36.8, 36.88, 37.2, 37.24, 37.44, 37.48, 38.04, 38.04, 38.16, 38.68, 37.96, 38.24, 37.16, 36.68, 36.84, 36.88, 37.16, 37.76, 37.92, 37.76, 37.56, 36.52, 36.0, 37.0, 36.44, 36.36, 36.68, 37.08, 37.4, 37.24, 37.32, 36.6, 36.2, 37.16, 37.32, 37.6, 37.6, 37.6, 37.56, 37.56, 37.24, 36.48, 36.28, 36.48, 36.64, 37.68, 38.24, 37.72, 37.64, 38.24, 37.6, 37.0, 37.0, 36.88, 36.88, 37.28, 38.48, 39.08, 38.28, 38.04, 37.48, 36.64, 36.72, 36.84, 36.84, 37.2, 37.36, 37.76, 37.96, 38.24, 37.88, 37.88, 37.12, 37.6, 36.76, 37.52, 37.68, 36.76, 37.72, 37.48, 38.04, 37.88, 37.6, 37.56, 36.96, 37.0, 37.0, 37.92, 37.08, 37.44, 36.8, 36.84, 36.08, 36.52, 36.48, 36.56, 36.84, 37.2, 37.36, 36.52, 37.0, 36.12, 36.12, 37.0, 36.68, 36.88, 37.56, 37.72, 38.36, 38.2, 38.48, 38.72, 38.36, 38.28, 37.96, 37.76, 36.36, 37.0, 36.48, 36.52, 36.52, 37.16, 36.6, 36.52, 36.6, 37.52, 37.12, 37.8, 37.88, 37.04, 36.64, 36.44, 36.04, 36.32, 37.68, 37.88, 37.88, 38.04, 38.04, 37.68, 37.92, 37.96, 36.92, 37.64, 36.4, 36.32, 36.4, 36.32, 36.2, 37.04, 37.16, 37.68, 37.64, 37.64, 38.12, 38.04, 37.64, 37.24, 36.56, 36.48, 37.28, 36.6, 36.44, 37.08, 37.08, 36.56, 37.48, 38.08, 37.2, 37.2, 36.96, 36.72, 36.64, 36.24, 37.32, 37.96, 38.2, 38.28, 38.36, 38.36, 37.88, 38.36, 37.64, 36.88, 36.88, 37.2, 36.4, 36.52, 37.2, 37.52, 37.44, 36.8, 37.48, 36.92, 37.32, 38.0, 37.76, 36.72, 37.84, 37.64, 37.64, 38.32, 38.32, 37.88, 38.16, 38.24, 37.64, 37.76, 37.12, 37.04, 36.24, 36.68, 36.4, 36.6, 36.6, 36.64, 37.16, 38.08, 37.28, 37.28, 37.24, 36.52, 36.4, 36.88, 36.2, 36.92] +333.20437359809875 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 324.79648518562317, 'TIME_S_1KI': 324.79648518562317, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 11877.425473241823, 'W': 35.646067141867775} +[20.76, 20.6, 20.88, 20.96, 20.84, 20.88, 20.88, 20.68, 20.8, 20.88, 20.44, 20.44, 20.64, 20.68, 20.68, 20.68, 20.68, 20.84, 20.88, 20.88] +373.52 +18.676 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 324.79648518562317, 'TIME_S_1KI': 324.79648518562317, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 11877.425473241823, 'W': 35.646067141867775, 'J_1KI': 11877.425473241823, 'W_1KI': 35.646067141867775, 'W_D': 16.970067141867776, 'J_D': 5654.50059192373, 'W_D_1KI': 16.970067141867776, 'J_D_1KI': 16.970067141867776} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_1e-05.json new file mode 100644 index 0000000..719c8cd --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 20098, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.650188207626343, "TIME_S_1KI": 0.5299128374776765, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 402.8303679275513, "W": 27.52967890413959, "J_1KI": 20.04330619601708, "W_1KI": 1.3697720621026763, "W_D": 12.350678904139592, "J_D": 180.72235947370535, "W_D_1KI": 0.6145227835674988, "J_D_1KI": 0.030576315233729664} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_1e-05.output new file mode 100644 index 0000000..b0c7cd1 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_1e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.648245096206665} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 24997, 24999, 25000]), + col_indices=tensor([ 889, 16856, 49649, ..., 20622, 24354, 47394]), + values=tensor([0.8512, 0.0995, 0.9072, ..., 0.9114, 0.3857, 0.4483]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.8531, 0.5584, 0.8209, ..., 0.8853, 0.7506, 0.6837]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 0.648245096206665 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 16197 -ss 50000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 8.461615800857544} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 25000, 25000, 25000]), + col_indices=tensor([37259, 33129, 13575, ..., 31298, 24333, 9136]), + values=tensor([0.0302, 0.8728, 0.1875, ..., 0.5590, 0.6136, 0.6206]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.6191, 0.3887, 0.4199, ..., 0.2754, 0.8424, 0.8817]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 8.461615800857544 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 20098 -ss 50000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.650188207626343} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 24999, 25000, 25000]), + col_indices=tensor([ 35, 8013, 35741, ..., 26171, 43365, 6398]), + values=tensor([0.7135, 0.5997, 0.1893, ..., 0.8752, 0.2236, 0.9882]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.7523, 0.4685, 0.7648, ..., 0.0829, 0.9708, 0.7467]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.650188207626343 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 24999, 25000, 25000]), + col_indices=tensor([ 35, 8013, 35741, ..., 26171, 43365, 6398]), + values=tensor([0.7135, 0.5997, 0.1893, ..., 0.8752, 0.2236, 0.9882]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.7523, 0.4685, 0.7648, ..., 0.0829, 0.9708, 0.7467]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.650188207626343 seconds + +[16.64, 16.56, 16.56, 16.96, 17.08, 17.16, 16.88, 16.96, 16.48, 16.36] +[16.44, 16.44, 16.68, 18.12, 19.04, 22.72, 28.64, 33.16, 36.92, 39.76, 39.32, 39.28, 39.68, 39.6] +14.632585048675537 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 20098, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.650188207626343, 'TIME_S_1KI': 0.5299128374776765, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 402.8303679275513, 'W': 27.52967890413959} +[16.64, 16.56, 16.56, 16.96, 17.08, 17.16, 16.88, 16.96, 16.48, 16.36, 17.12, 16.92, 16.68, 16.88, 16.76, 16.8, 16.8, 17.12, 17.32, 17.2] +303.58 +15.178999999999998 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 20098, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.650188207626343, 'TIME_S_1KI': 0.5299128374776765, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 402.8303679275513, 'W': 27.52967890413959, 'J_1KI': 20.04330619601708, 'W_1KI': 1.3697720621026763, 'W_D': 12.350678904139592, 'J_D': 180.72235947370535, 'W_D_1KI': 0.6145227835674988, 'J_D_1KI': 0.030576315233729664} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_5e-05.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_5e-05.json new file mode 100644 index 0000000..f5cb3fd --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 6265, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.399809837341309, "TIME_S_1KI": 1.6599856085141753, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 409.2376235961914, "W": 30.158092261325162, "J_1KI": 65.32124877832264, "W_1KI": 4.813741781536339, "W_D": 11.570092261325161, "J_D": 157.0032023506164, "W_D_1KI": 1.846782483850784, "J_D_1KI": 0.2947777308620565} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_5e-05.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_5e-05.output new file mode 100644 index 0000000..80257e9 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_50000_5e-05.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 5e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 1.6757559776306152} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 4, ..., 124996, 124997, + 125000]), + col_indices=tensor([11324, 36531, 41582, ..., 26561, 37075, 42675]), + values=tensor([0.0907, 0.5500, 0.9495, ..., 0.7742, 0.3202, 0.5187]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.4295, 0.8994, 0.1269, ..., 0.0289, 0.7051, 0.4729]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 1.6757559776306152 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 6265 -ss 50000 -sd 5e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.399809837341309} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 6, ..., 124998, 125000, + 125000]), + col_indices=tensor([ 5059, 34750, 35724, ..., 34703, 6591, 31118]), + values=tensor([0.4217, 0.1867, 0.1593, ..., 0.5339, 0.2274, 0.5888]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.7798, 0.1756, 0.8709, ..., 0.5047, 0.8577, 0.3016]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 10.399809837341309 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 6, ..., 124998, 125000, + 125000]), + col_indices=tensor([ 5059, 34750, 35724, ..., 34703, 6591, 31118]), + values=tensor([0.4217, 0.1867, 0.1593, ..., 0.5339, 0.2274, 0.5888]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.7798, 0.1756, 0.8709, ..., 0.5047, 0.8577, 0.3016]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 10.399809837341309 seconds + +[20.92, 20.84, 20.96, 20.84, 20.68, 20.64, 20.84, 20.76, 20.84, 21.08] +[21.08, 21.16, 21.84, 21.84, 23.04, 26.04, 31.36, 35.8, 40.08, 43.12, 43.68, 43.84, 43.84] +13.569745063781738 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 6265, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.399809837341309, 'TIME_S_1KI': 1.6599856085141753, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 409.2376235961914, 'W': 30.158092261325162} +[20.92, 20.84, 20.96, 20.84, 20.68, 20.64, 20.84, 20.76, 20.84, 21.08, 20.04, 19.96, 20.16, 20.28, 20.56, 20.88, 20.76, 20.68, 20.68, 20.76] +371.76000000000005 +18.588 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 6265, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.399809837341309, 'TIME_S_1KI': 1.6599856085141753, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 409.2376235961914, 'W': 30.158092261325162, 'J_1KI': 65.32124877832264, 'W_1KI': 4.813741781536339, 'W_D': 11.570092261325161, 'J_D': 157.0032023506164, 'W_D_1KI': 1.846782483850784, 'J_D_1KI': 0.2947777308620565} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.0001.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.0001.json new file mode 100644 index 0000000..c3c7f57 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 96690, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.663233041763306, "TIME_S_1KI": 0.11028268736956569, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 262.53495136260995, "W": 18.48739374467239, "J_1KI": 2.7152234084456506, "W_1KI": 0.19120274841940624, "W_D": 3.6973937446723912, "J_D": 52.505783147812, "W_D_1KI": 0.038239670541652615, "J_D_1KI": 0.0003954873362462779} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.0001.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.0001.output new file mode 100644 index 0000000..61cae4f --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.0001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.11520600318908691} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 2498, 2498, 2500]), + col_indices=tensor([4712, 1560, 1507, ..., 2651, 244, 3781]), + values=tensor([0.1646, 0.3564, 0.3355, ..., 0.5785, 0.6935, 0.4198]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.6842, 0.2217, 0.0992, ..., 0.1824, 0.3701, 0.4149]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 0.11520600318908691 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 91141 -ss 5000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.897401094436646} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 2499, 2500, 2500]), + col_indices=tensor([1451, 2006, 3586, ..., 3975, 4446, 2086]), + values=tensor([0.6609, 0.8356, 0.1353, ..., 0.7408, 0.3224, 0.8471]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.2892, 0.1223, 0.3419, ..., 0.7884, 0.7802, 0.0113]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 9.897401094436646 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 96690 -ss 5000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.663233041763306} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 2, ..., 2499, 2499, 2500]), + col_indices=tensor([2205, 2444, 2425, ..., 3761, 2544, 2990]), + values=tensor([0.2656, 0.9114, 0.3983, ..., 0.8675, 0.7517, 0.7885]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.1659, 0.6941, 0.7553, ..., 0.7483, 0.8019, 0.7277]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 10.663233041763306 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 2, ..., 2499, 2499, 2500]), + col_indices=tensor([2205, 2444, 2425, ..., 3761, 2544, 2990]), + values=tensor([0.2656, 0.9114, 0.3983, ..., 0.8675, 0.7517, 0.7885]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.1659, 0.6941, 0.7553, ..., 0.7483, 0.8019, 0.7277]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 10.663233041763306 seconds + +[16.32, 16.04, 16.32, 16.56, 16.56, 16.64, 16.96, 16.96, 16.76, 16.76] +[16.76, 16.88, 17.08, 18.96, 20.48, 21.96, 22.64, 22.36, 21.0, 19.8, 19.8, 19.6, 19.72, 19.8] +14.20075511932373 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 96690, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.663233041763306, 'TIME_S_1KI': 0.11028268736956569, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 262.53495136260995, 'W': 18.48739374467239} +[16.32, 16.04, 16.32, 16.56, 16.56, 16.64, 16.96, 16.96, 16.76, 16.76, 16.48, 16.4, 16.2, 16.28, 16.28, 16.12, 16.12, 16.28, 16.36, 16.36] +295.79999999999995 +14.789999999999997 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 96690, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.663233041763306, 'TIME_S_1KI': 0.11028268736956569, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 262.53495136260995, 'W': 18.48739374467239, 'J_1KI': 2.7152234084456506, 'W_1KI': 0.19120274841940624, 'W_D': 3.6973937446723912, 'J_D': 52.505783147812, 'W_D_1KI': 0.038239670541652615, 'J_D_1KI': 0.0003954873362462779} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.001.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.001.json new file mode 100644 index 0000000..810fc32 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 17852, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.54783010482788, "TIME_S_1KI": 0.5908486502816425, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 261.2027643966674, "W": 18.408959018952206, "J_1KI": 14.6315686979984, "W_1KI": 1.0311986902841253, "W_D": 3.4579590189522076, "J_D": 49.0646132674217, "W_D_1KI": 0.19370149109075777, "J_D_1KI": 0.010850408418707023} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.001.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.001.output new file mode 100644 index 0000000..5d5c1f0 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.6220724582672119} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 4, ..., 24988, 24993, 25000]), + col_indices=tensor([2208, 3192, 3630, ..., 2657, 2751, 4682]), + values=tensor([0.3516, 0.9043, 0.4344, ..., 0.9354, 0.2858, 0.8708]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.1847, 0.5253, 0.6086, ..., 0.9552, 0.0514, 0.1920]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 0.6220724582672119 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 16879 -ss 5000 -sd 0.001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 9.927400827407837} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 7, 17, ..., 24988, 24992, 25000]), + col_indices=tensor([1765, 1880, 2380, ..., 3402, 4335, 4928]), + values=tensor([0.8113, 0.6065, 0.0419, ..., 0.8515, 0.2786, 0.9879]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.6729, 0.2847, 0.7618, ..., 0.5837, 0.8359, 0.7138]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 9.927400827407837 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 17852 -ss 5000 -sd 0.001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.54783010482788} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 10, ..., 24988, 24991, 25000]), + col_indices=tensor([ 732, 2237, 2424, ..., 1459, 1662, 4133]), + values=tensor([0.5131, 0.9715, 0.7721, ..., 0.9714, 0.5730, 0.7149]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.7581, 0.5458, 0.9932, ..., 0.3205, 0.5744, 0.9847]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 10.54783010482788 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 10, ..., 24988, 24991, 25000]), + col_indices=tensor([ 732, 2237, 2424, ..., 1459, 1662, 4133]), + values=tensor([0.5131, 0.9715, 0.7721, ..., 0.9714, 0.5730, 0.7149]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.7581, 0.5458, 0.9932, ..., 0.3205, 0.5744, 0.9847]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 10.54783010482788 seconds + +[16.36, 16.36, 16.32, 16.6, 16.8, 17.04, 17.2, 17.08, 16.8, 16.52] +[16.48, 16.4, 17.36, 19.52, 19.52, 21.32, 21.84, 22.56, 21.0, 20.28, 19.68, 19.84, 19.92, 19.92] +14.188893795013428 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 17852, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.54783010482788, 'TIME_S_1KI': 0.5908486502816425, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 261.2027643966674, 'W': 18.408959018952206} +[16.36, 16.36, 16.32, 16.6, 16.8, 17.04, 17.2, 17.08, 16.8, 16.52, 16.4, 16.36, 16.32, 16.32, 16.76, 16.96, 16.72, 16.44, 16.2, 16.2] +299.02 +14.950999999999999 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 17852, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.54783010482788, 'TIME_S_1KI': 0.5908486502816425, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 261.2027643966674, 'W': 18.408959018952206, 'J_1KI': 14.6315686979984, 'W_1KI': 1.0311986902841253, 'W_D': 3.4579590189522076, 'J_D': 49.0646132674217, 'W_D_1KI': 0.19370149109075777, 'J_D_1KI': 0.010850408418707023} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.01.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.01.json new file mode 100644 index 0000000..cca3281 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1933, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.477078676223755, "TIME_S_1KI": 5.420113127896407, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 268.2967868804932, "W": 18.818848497168876, "J_1KI": 138.79813082281075, "W_1KI": 9.7355656995183, "W_D": 3.947848497168877, "J_D": 56.283734206199696, "W_D_1KI": 2.0423427300408057, "J_D_1KI": 1.0565663373206444} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.01.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.01.output new file mode 100644 index 0000000..3224ea8 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.01.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.01 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 5.431562900543213} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 36, 79, ..., 249900, 249941, + 250000]), + col_indices=tensor([ 80, 388, 404, ..., 4737, 4807, 4857]), + values=tensor([0.4885, 0.5213, 0.1721, ..., 0.5810, 0.1625, 0.7107]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.1545, 0.4718, 0.9539, ..., 0.2261, 0.6017, 0.7355]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 5.431562900543213 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1933 -ss 5000 -sd 0.01 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.477078676223755} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 40, 89, ..., 249917, 249964, + 250000]), + col_indices=tensor([ 165, 177, 195, ..., 4656, 4719, 4927]), + values=tensor([0.2100, 0.9405, 0.2582, ..., 0.7931, 0.5258, 0.8197]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.9173, 0.2185, 0.4076, ..., 0.3362, 0.1795, 0.2923]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 10.477078676223755 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 40, 89, ..., 249917, 249964, + 250000]), + col_indices=tensor([ 165, 177, 195, ..., 4656, 4719, 4927]), + values=tensor([0.2100, 0.9405, 0.2582, ..., 0.7931, 0.5258, 0.8197]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.9173, 0.2185, 0.4076, ..., 0.3362, 0.1795, 0.2923]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 10.477078676223755 seconds + +[17.04, 17.04, 16.96, 17.04, 16.64, 16.4, 16.44, 16.32, 16.24, 16.36] +[16.44, 16.52, 17.76, 19.52, 21.52, 21.52, 22.36, 22.76, 21.68, 21.36, 19.84, 20.04, 20.0, 20.08] +14.25681209564209 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1933, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.477078676223755, 'TIME_S_1KI': 5.420113127896407, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 268.2967868804932, 'W': 18.818848497168876} +[17.04, 17.04, 16.96, 17.04, 16.64, 16.4, 16.44, 16.32, 16.24, 16.36, 16.4, 16.24, 16.32, 16.36, 16.36, 16.48, 16.68, 16.56, 16.4, 16.08] +297.41999999999996 +14.870999999999999 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1933, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.477078676223755, 'TIME_S_1KI': 5.420113127896407, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 268.2967868804932, 'W': 18.818848497168876, 'J_1KI': 138.79813082281075, 'W_1KI': 9.7355656995183, 'W_D': 3.947848497168877, 'J_D': 56.283734206199696, 'W_D_1KI': 2.0423427300408057, 'J_D_1KI': 1.0565663373206444} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.05.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.05.json new file mode 100644 index 0000000..8f974e7 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 26.830852508544922, "TIME_S_1KI": 26.830852508544922, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 724.3529372215271, "W": 23.831275335163394, "J_1KI": 724.3529372215271, "W_1KI": 23.831275335163394, "W_D": 5.2862753351633955, "J_D": 160.67663237214092, "W_D_1KI": 5.2862753351633955, "J_D_1KI": 5.2862753351633955} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.05.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.05.output new file mode 100644 index 0000000..e6b75ff --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.05.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 26.830852508544922} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 229, 490, ..., 1249494, + 1249740, 1250000]), + col_indices=tensor([ 18, 28, 58, ..., 4928, 4934, 4938]), + values=tensor([0.5574, 0.5312, 0.0435, ..., 0.2785, 0.4540, 0.5116]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.0667, 0.4882, 0.3630, ..., 0.8923, 0.8020, 0.4280]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 26.830852508544922 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 229, 490, ..., 1249494, + 1249740, 1250000]), + col_indices=tensor([ 18, 28, 58, ..., 4928, 4934, 4938]), + values=tensor([0.5574, 0.5312, 0.0435, ..., 0.2785, 0.4540, 0.5116]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.0667, 0.4882, 0.3630, ..., 0.8923, 0.8020, 0.4280]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 26.830852508544922 seconds + +[20.52, 20.64, 20.8, 20.76, 20.84, 20.84, 20.8, 20.88, 20.8, 20.88] +[20.64, 20.72, 20.92, 24.36, 26.68, 28.84, 29.6, 27.08, 27.08, 26.84, 23.8, 24.0, 24.32, 24.44, 24.48, 24.52, 24.36, 24.12, 24.24, 24.2, 24.2, 24.28, 24.28, 24.28, 24.2, 24.28, 24.16, 24.12, 24.08, 24.08] +30.395055532455444 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 26.830852508544922, 'TIME_S_1KI': 26.830852508544922, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 724.3529372215271, 'W': 23.831275335163394} +[20.52, 20.64, 20.8, 20.76, 20.84, 20.84, 20.8, 20.88, 20.8, 20.88, 20.44, 20.56, 20.56, 20.6, 20.6, 20.48, 20.32, 20.2, 20.2, 20.2] +370.9 +18.544999999999998 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 26.830852508544922, 'TIME_S_1KI': 26.830852508544922, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 724.3529372215271, 'W': 23.831275335163394, 'J_1KI': 724.3529372215271, 'W_1KI': 23.831275335163394, 'W_D': 5.2862753351633955, 'J_D': 160.67663237214092, 'W_D_1KI': 5.2862753351633955, 'J_D_1KI': 5.2862753351633955} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.1.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.1.json new file mode 100644 index 0000000..db59bda --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.1.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 52.60684037208557, "TIME_S_1KI": 52.60684037208557, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1396.747187700272, "W": 24.19749919495284, "J_1KI": 1396.747187700272, "W_1KI": 24.19749919495284, "W_D": 5.574499194952839, "J_D": 321.77565171742464, "W_D_1KI": 5.574499194952839, "J_D_1KI": 5.574499194952839} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.1.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.1.output new file mode 100644 index 0000000..919a009 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.1.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.1 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 52.60684037208557} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 495, 1009, ..., 2499036, + 2499501, 2500000]), + col_indices=tensor([ 3, 5, 7, ..., 4975, 4989, 4996]), + values=tensor([0.3153, 0.9204, 0.9402, ..., 0.8644, 0.1243, 0.2567]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.0882, 0.6551, 0.2953, ..., 0.5102, 0.2382, 0.8339]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 52.60684037208557 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 495, 1009, ..., 2499036, + 2499501, 2500000]), + col_indices=tensor([ 3, 5, 7, ..., 4975, 4989, 4996]), + values=tensor([0.3153, 0.9204, 0.9402, ..., 0.8644, 0.1243, 0.2567]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.0882, 0.6551, 0.2953, ..., 0.5102, 0.2382, 0.8339]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 52.60684037208557 seconds + +[20.32, 20.32, 20.52, 20.36, 20.68, 20.64, 20.64, 20.84, 20.84, 20.64] +[21.04, 20.8, 23.84, 25.56, 28.32, 28.32, 30.0, 30.76, 27.04, 26.12, 23.96, 24.04, 23.96, 24.4, 24.48, 24.44, 24.4, 24.4, 24.4, 24.44, 24.52, 24.64, 24.44, 24.48, 24.36, 24.52, 24.36, 24.36, 24.28, 24.28, 24.2, 24.2, 24.04, 24.12, 24.04, 24.04, 24.08, 24.16, 24.12, 23.96, 24.0, 24.04, 24.04, 23.92, 23.92, 24.16, 24.32, 24.52, 24.68, 24.64, 24.24, 24.12, 24.2, 24.2, 24.2, 24.36, 24.36] +57.72279095649719 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 52.60684037208557, 'TIME_S_1KI': 52.60684037208557, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1396.747187700272, 'W': 24.19749919495284} +[20.32, 20.32, 20.52, 20.36, 20.68, 20.64, 20.64, 20.84, 20.84, 20.64, 20.48, 20.4, 20.44, 20.76, 20.76, 20.96, 21.12, 21.08, 21.0, 20.76] +372.46000000000004 +18.623 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 52.60684037208557, 'TIME_S_1KI': 52.60684037208557, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1396.747187700272, 'W': 24.19749919495284, 'J_1KI': 1396.747187700272, 'W_1KI': 24.19749919495284, 'W_D': 5.574499194952839, 'J_D': 321.77565171742464, 'W_D_1KI': 5.574499194952839, 'J_D_1KI': 5.574499194952839} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.2.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.2.json new file mode 100644 index 0000000..72274ad --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.2.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 105.2479407787323, "TIME_S_1KI": 105.2479407787323, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2877.626370677949, "W": 24.097306664358964, "J_1KI": 2877.626370677949, "W_1KI": 24.097306664358964, "W_D": 5.6223066643589625, "J_D": 671.3985984718811, "W_D_1KI": 5.6223066643589625, "J_D_1KI": 5.6223066643589625} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.2.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.2.output new file mode 100644 index 0000000..f4956b7 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.2.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.2 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 105.2479407787323} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 987, 1961, ..., 4998062, + 4998993, 5000000]), + col_indices=tensor([ 2, 8, 14, ..., 4993, 4994, 4998]), + values=tensor([0.2058, 0.7964, 0.8021, ..., 0.0689, 0.5253, 0.0161]), + size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.1259, 0.8957, 0.2222, ..., 0.6970, 0.5570, 0.6933]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 5000000 +Density: 0.2 +Time: 105.2479407787323 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 987, 1961, ..., 4998062, + 4998993, 5000000]), + col_indices=tensor([ 2, 8, 14, ..., 4993, 4994, 4998]), + values=tensor([0.2058, 0.7964, 0.8021, ..., 0.0689, 0.5253, 0.0161]), + size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.1259, 0.8957, 0.2222, ..., 0.6970, 0.5570, 0.6933]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 5000000 +Density: 0.2 +Time: 105.2479407787323 seconds + +[20.6, 20.48, 20.6, 20.6, 20.72, 20.72, 20.68, 20.68, 20.52, 20.76] +[20.8, 20.6, 20.6, 24.4, 25.4, 28.96, 30.96, 31.56, 28.6, 27.8, 25.4, 24.24, 24.24, 24.24, 24.24, 24.24, 24.16, 24.04, 24.12, 24.2, 24.2, 24.28, 24.36, 24.2, 24.32, 24.4, 24.56, 24.56, 24.56, 24.44, 24.44, 24.24, 24.2, 24.16, 24.04, 24.32, 24.24, 24.32, 24.4, 24.4, 24.36, 24.4, 24.6, 24.8, 24.72, 24.88, 24.88, 24.64, 24.48, 24.48, 24.2, 24.12, 24.12, 24.28, 24.48, 24.56, 24.56, 24.6, 24.28, 24.16, 24.16, 24.04, 24.08, 24.24, 24.24, 24.64, 24.72, 24.6, 24.48, 24.12, 24.16, 24.08, 24.16, 24.2, 23.84, 23.92, 23.92, 23.92, 23.76, 24.2, 24.16, 24.28, 24.64, 24.44, 24.36, 24.52, 24.36, 24.4, 24.48, 24.48, 24.56, 24.56, 24.56, 24.36, 24.36, 24.2, 24.32, 24.08, 24.16, 24.24, 24.4, 24.4, 24.44, 24.68, 24.56, 24.4, 24.28, 24.4, 24.32, 24.4, 24.6, 24.48, 24.44, 24.6, 24.6, 24.48, 24.28, 24.24] +119.4169294834137 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 105.2479407787323, 'TIME_S_1KI': 105.2479407787323, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2877.626370677949, 'W': 24.097306664358964} +[20.6, 20.48, 20.6, 20.6, 20.72, 20.72, 20.68, 20.68, 20.52, 20.76, 20.2, 20.32, 20.2, 20.12, 20.32, 20.24, 20.6, 20.72, 20.8, 20.8] +369.5 +18.475 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 105.2479407787323, 'TIME_S_1KI': 105.2479407787323, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2877.626370677949, 'W': 24.097306664358964, 'J_1KI': 2877.626370677949, 'W_1KI': 24.097306664358964, 'W_D': 5.6223066643589625, 'J_D': 671.3985984718811, 'W_D_1KI': 5.6223066643589625, 'J_D_1KI': 5.6223066643589625} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.3.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.3.json new file mode 100644 index 0000000..46e1ba0 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.3.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 171.51510739326477, "TIME_S_1KI": 171.51510739326477, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 4017.952876434326, "W": 24.359705854077962, "J_1KI": 4017.9528764343263, "W_1KI": 24.359705854077962, "W_D": 5.79370585407796, "J_D": 955.6288257770532, "W_D_1KI": 5.79370585407796, "J_D_1KI": 5.79370585407796} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.3.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.3.output new file mode 100644 index 0000000..2f85bb6 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_0.3.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.3 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 171.51510739326477} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1461, 2933, ..., 7497082, + 7498527, 7500000]), + col_indices=tensor([ 0, 1, 3, ..., 4992, 4997, 4999]), + values=tensor([0.2348, 0.4295, 0.7390, ..., 0.0266, 0.0621, 0.6356]), + size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) +tensor([0.3584, 0.9157, 0.1902, ..., 0.2272, 0.0135, 0.3908]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 7500000 +Density: 0.3 +Time: 171.51510739326477 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1461, 2933, ..., 7497082, + 7498527, 7500000]), + col_indices=tensor([ 0, 1, 3, ..., 4992, 4997, 4999]), + values=tensor([0.2348, 0.4295, 0.7390, ..., 0.0266, 0.0621, 0.6356]), + size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) +tensor([0.3584, 0.9157, 0.1902, ..., 0.2272, 0.0135, 0.3908]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 7500000 +Density: 0.3 +Time: 171.51510739326477 seconds + +[21.16, 20.96, 20.88, 20.76, 20.72, 20.72, 20.72, 20.6, 20.56, 20.56] +[20.6, 20.48, 20.88, 21.96, 23.44, 26.4, 27.84, 28.8, 28.48, 27.04, 25.6, 24.28, 24.28, 24.48, 24.64, 24.64, 24.6, 24.6, 24.4, 24.24, 24.36, 24.48, 24.44, 24.52, 24.6, 24.6, 24.96, 25.04, 25.04, 25.12, 24.68, 24.56, 24.64, 24.6, 24.68, 24.92, 24.84, 24.84, 24.56, 24.48, 24.8, 24.56, 24.76, 24.76, 24.68, 24.64, 24.72, 24.64, 24.6, 24.6, 24.68, 24.68, 24.56, 24.48, 24.6, 24.48, 24.48, 24.56, 24.64, 24.52, 24.48, 24.6, 24.6, 24.52, 24.24, 24.32, 24.44, 24.32, 24.44, 24.44, 24.64, 24.84, 24.6, 24.76, 24.76, 24.8, 24.92, 25.08, 25.04, 24.92, 24.52, 24.6, 24.56, 24.6, 24.48, 24.6, 24.56, 24.56, 24.4, 24.36, 24.48, 24.48, 24.64, 24.64, 24.52, 24.56, 24.52, 24.44, 24.52, 24.52, 24.52, 24.48, 24.32, 24.52, 24.84, 25.04, 25.04, 25.0, 24.92, 24.68, 24.36, 24.36, 24.36, 24.24, 24.36, 24.36, 24.8, 24.72, 24.84, 24.68, 24.44, 24.56, 24.64, 24.72, 24.72, 25.16, 25.56, 25.68, 25.56, 25.36, 24.88, 24.8, 24.72, 24.52, 24.48, 24.6, 24.6, 24.6, 24.44, 24.44, 24.36, 24.44, 24.56, 24.56, 24.76, 24.64, 24.48, 24.72, 24.72, 24.72, 24.56, 24.92, 24.8, 24.56, 24.72, 24.8, 24.88, 24.88, 24.96, 24.84, 24.6, 24.6, 24.16] +164.9425859451294 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 171.51510739326477, 'TIME_S_1KI': 171.51510739326477, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 4017.952876434326, 'W': 24.359705854077962} +[21.16, 20.96, 20.88, 20.76, 20.72, 20.72, 20.72, 20.6, 20.56, 20.56, 20.0, 20.24, 20.64, 20.6, 20.8, 20.76, 20.44, 20.48, 20.4, 20.36] +371.32000000000005 +18.566000000000003 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 171.51510739326477, 'TIME_S_1KI': 171.51510739326477, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 4017.952876434326, 'W': 24.359705854077962, 'J_1KI': 4017.9528764343263, 'W_1KI': 24.359705854077962, 'W_D': 5.79370585407796, 'J_D': 955.6288257770532, 'W_D_1KI': 5.79370585407796, 'J_D_1KI': 5.79370585407796} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_1e-05.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_1e-05.json new file mode 100644 index 0000000..aba0d5e --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 293134, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.89356017112732, "TIME_S_1KI": 0.03716239048055606, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 278.4485914421082, "W": 19.57952781791354, "J_1KI": 0.9499020633638819, "W_1KI": 0.06679377969772711, "W_D": 4.613527817913537, "J_D": 65.610893910408, "W_D_1KI": 0.01573863085794735, "J_D_1KI": 5.3690908792386244e-05} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_1e-05.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_1e-05.output new file mode 100644 index 0000000..ebedd90 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_1e-05.output @@ -0,0 +1,437 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.04628562927246094} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([ 683, 1119, 1321, 2450, 3482, 3631, 1761, 3022, 756, + 3517, 37, 3468, 4655, 1287, 913, 1692, 3561, 1823, + 1971, 4332, 175, 242, 3518, 2634, 2163, 1929, 1347, + 4194, 4673, 3242, 1554, 3336, 2363, 4819, 1624, 2276, + 4446, 1440, 2278, 2820, 2808, 2194, 1293, 3294, 2532, + 2630, 3533, 2517, 2068, 4492, 3196, 31, 2012, 3028, + 3263, 1298, 1827, 4518, 2739, 383, 2502, 2163, 2983, + 275, 3460, 724, 4585, 3927, 4513, 2645, 242, 1435, + 3115, 1351, 1335, 3004, 3671, 2087, 2361, 3470, 3033, + 1776, 2762, 2985, 544, 2787, 1009, 4955, 757, 4621, + 3559, 4933, 3451, 2535, 2363, 1115, 250, 284, 3453, + 4194, 4788, 4427, 434, 2792, 219, 1976, 286, 1619, + 3123, 2185, 100, 1443, 2614, 3193, 4750, 1625, 61, + 2975, 2813, 3271, 969, 1209, 2770, 2904, 1769, 343, + 239, 3167, 403, 2400, 1507, 4176, 1210, 627, 332, + 3526, 2019, 4707, 4667, 3689, 1411, 474, 2037, 1559, + 3233, 2371, 3442, 4237, 1757, 4685, 2495, 737, 562, + 4385, 4537, 1150, 2708, 4099, 4510, 4059, 58, 3153, + 2292, 1450, 3200, 4511, 1556, 237, 2082, 3442, 4661, + 3624, 407, 1680, 104, 2285, 3192, 1818, 2013, 2874, + 4274, 1703, 393, 4638, 3642, 1595, 4200, 2976, 747, + 1685, 436, 4175, 3319, 2858, 4687, 1967, 1550, 4498, + 5, 3295, 2892, 3076, 2947, 1470, 2928, 4594, 372, + 1505, 3795, 2014, 3988, 420, 2057, 4772, 3022, 3131, + 376, 1473, 4703, 771, 759, 172, 3505, 2361, 168, + 3559, 881, 3500, 894, 4238, 842, 291, 2606, 4128, + 2513, 4919, 1689, 1039, 4346, 4963, 184, 2438, 3794, + 631, 3050, 4745, 3174, 1910, 3181, 4415]), + values=tensor([0.5133, 0.9500, 0.6089, 0.1299, 0.0389, 0.7021, 0.0545, + 0.1504, 0.2775, 0.3654, 0.5414, 0.7066, 0.5062, 0.9276, + 0.5403, 0.1473, 0.0619, 0.8013, 0.5229, 0.9618, 0.3595, + 0.9768, 0.4894, 0.9436, 0.2586, 0.3228, 0.7550, 0.4654, + 0.5557, 0.6099, 0.1466, 0.3234, 0.9559, 0.4861, 0.6590, + 0.2645, 0.3128, 0.2881, 0.8916, 0.9625, 0.3287, 0.6208, + 0.1989, 0.4749, 0.6654, 0.5023, 0.5464, 0.6484, 0.8692, + 0.5946, 0.3095, 0.4520, 0.2934, 0.1142, 0.3825, 0.0692, + 0.4451, 0.9095, 0.2024, 0.8392, 0.4692, 0.1054, 0.2753, + 0.1688, 0.2684, 0.5848, 0.9464, 0.6200, 0.5357, 0.5307, + 0.7002, 0.6351, 0.9452, 0.4196, 0.3107, 0.9700, 0.4879, + 0.0926, 0.0442, 0.1064, 0.9432, 0.8436, 0.3680, 0.1497, + 0.1266, 0.6045, 0.6916, 0.0824, 0.1706, 0.8211, 0.8262, + 0.7835, 0.0310, 0.3323, 0.1890, 0.5250, 0.8324, 0.5975, + 0.0174, 0.0556, 0.9553, 0.6279, 0.3153, 0.4085, 0.9318, + 0.3588, 0.1032, 0.7200, 0.2145, 0.8631, 0.4178, 0.0372, + 0.7636, 0.4317, 0.2105, 0.2684, 0.0231, 0.6996, 0.0880, + 0.2381, 0.6281, 0.3203, 0.4143, 0.7477, 0.1347, 0.5900, + 0.7586, 0.5291, 0.6348, 0.4495, 0.3601, 0.9398, 0.3999, + 0.2033, 0.1346, 0.0706, 0.9911, 0.9515, 0.0420, 0.6637, + 0.2691, 0.3435, 0.7224, 0.4624, 0.4390, 0.3084, 0.3677, + 0.2556, 0.8927, 0.7015, 0.4402, 0.6275, 0.9141, 0.3633, + 0.0870, 0.2460, 0.1945, 0.8036, 0.3884, 0.5353, 0.6776, + 0.4646, 0.1680, 0.4783, 0.9893, 0.5596, 0.0460, 0.9167, + 0.8564, 0.2217, 0.2454, 0.6476, 0.0091, 0.6634, 0.6906, + 0.5109, 0.0619, 0.8391, 0.3721, 0.4015, 0.1086, 0.8568, + 0.0263, 0.0960, 0.2106, 0.8204, 0.3496, 0.0650, 0.0530, + 0.2300, 0.7920, 0.0833, 0.8839, 0.6947, 0.7490, 0.6930, + 0.4034, 0.9770, 0.5568, 0.5813, 0.4457, 0.4409, 0.3165, + 0.4290, 0.8018, 0.4890, 0.7248, 0.5066, 0.4197, 0.9251, + 0.4526, 0.8257, 0.6029, 0.9210, 0.8099, 0.1966, 0.6605, + 0.5583, 0.0851, 0.2553, 0.8703, 0.6237, 0.8267, 0.9769, + 0.6623, 0.5390, 0.0172, 0.1684, 0.4788, 0.5289, 0.0477, + 0.8018, 0.0914, 0.3275, 0.7127, 0.1031, 0.8096, 0.1163, + 0.3143, 0.8185, 0.2797, 0.8908, 0.1307, 0.5822, 0.2044, + 0.6227, 0.4853, 0.6034, 0.6732, 0.0321]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.7002, 0.3467, 0.9676, ..., 0.8135, 0.6463, 0.9360]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 0.04628562927246094 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 226852 -ss 5000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 8.58342981338501} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 250, 250, 250]), + col_indices=tensor([2568, 3647, 442, 965, 263, 2383, 651, 4423, 3036, + 1922, 4223, 1539, 1097, 1063, 4112, 2393, 2048, 391, + 3893, 324, 2099, 2458, 2688, 682, 96, 2079, 4917, + 1561, 2320, 1455, 2135, 3126, 2991, 4240, 1021, 4993, + 3258, 3975, 1172, 1489, 4782, 364, 2199, 94, 1257, + 4686, 607, 1510, 89, 4888, 4165, 3842, 3018, 4662, + 3670, 3231, 4131, 746, 49, 680, 3901, 1594, 359, + 3311, 2321, 3005, 4317, 2855, 829, 3097, 2418, 1365, + 3858, 1930, 3446, 1588, 4464, 2454, 3676, 2837, 1569, + 2885, 1556, 3076, 4363, 2721, 3030, 172, 2121, 2698, + 3156, 442, 947, 2541, 828, 1038, 4897, 3795, 2214, + 609, 3658, 77, 3238, 2356, 89, 2253, 2806, 2065, + 2259, 579, 2660, 1688, 2237, 2605, 1390, 4025, 2509, + 2831, 635, 2338, 2347, 3405, 393, 82, 2030, 4203, + 4365, 3211, 1439, 3151, 1397, 476, 3123, 1758, 2491, + 252, 1078, 102, 4624, 527, 163, 2201, 1415, 53, + 3597, 2281, 1819, 1693, 3944, 4697, 560, 1457, 1677, + 2072, 2996, 1150, 4324, 2498, 4491, 2244, 3104, 2934, + 632, 2182, 4187, 1162, 422, 1444, 3294, 1160, 1691, + 2846, 266, 3519, 3656, 2923, 1457, 1651, 1147, 1014, + 671, 3331, 4535, 2766, 1343, 680, 3907, 3255, 700, + 2823, 4644, 4966, 3493, 4426, 2084, 2312, 2388, 1167, + 2294, 2501, 1866, 3421, 4059, 858, 4657, 794, 658, + 2225, 1411, 1995, 2476, 795, 2719, 1100, 685, 3038, + 1607, 4350, 2782, 410, 2489, 2516, 1183, 2789, 4067, + 4708, 2699, 3392, 4757, 4834, 2136, 1271, 2790, 3056, + 2835, 3630, 2085, 603, 3829, 4234, 710, 378, 2071, + 1558, 4206, 4361, 1063, 3780, 352, 168]), + values=tensor([6.8562e-01, 9.9314e-01, 3.4074e-01, 1.7233e-01, + 1.4522e-02, 6.3720e-01, 5.5464e-02, 7.3826e-01, + 1.5940e-01, 1.2632e-01, 2.2414e-01, 7.6966e-01, + 6.9475e-01, 9.2958e-01, 3.8229e-01, 7.5368e-01, + 7.6972e-01, 6.6374e-01, 5.6166e-01, 6.7113e-01, + 2.6640e-01, 3.1404e-01, 8.1747e-01, 7.0390e-01, + 3.3211e-02, 4.2381e-01, 1.8457e-01, 3.9280e-01, + 7.9738e-01, 4.8542e-01, 5.6000e-01, 2.0755e-01, + 7.0598e-01, 8.6707e-01, 1.7337e-01, 7.0748e-01, + 9.7389e-01, 7.9562e-01, 6.7701e-01, 4.6490e-01, + 5.4665e-01, 4.9560e-02, 5.8946e-01, 3.8658e-01, + 3.0672e-01, 2.5947e-01, 8.6455e-01, 8.5056e-02, + 3.3869e-01, 3.9093e-01, 5.9721e-01, 6.2207e-01, + 8.8265e-01, 8.1640e-01, 1.7680e-01, 2.4072e-01, + 3.6980e-01, 2.2490e-01, 6.0225e-01, 7.0554e-01, + 8.5790e-01, 7.4936e-01, 1.7010e-01, 2.0063e-01, + 1.1246e-01, 6.8727e-01, 6.8037e-01, 8.9757e-01, + 3.8505e-01, 6.5721e-01, 9.3013e-01, 4.9507e-01, + 7.9582e-01, 3.6413e-01, 6.2028e-01, 2.8858e-01, + 2.8115e-01, 4.5974e-01, 9.8822e-01, 1.1635e-01, + 5.8307e-01, 5.1420e-02, 1.1202e-01, 5.4531e-01, + 7.6023e-01, 9.0514e-01, 5.3398e-01, 1.7667e-01, + 9.2343e-01, 9.0805e-01, 9.6041e-01, 5.0364e-01, + 2.4720e-01, 1.5194e-01, 2.2205e-01, 3.0452e-01, + 6.8304e-02, 7.0941e-02, 2.3679e-01, 2.9428e-01, + 2.6988e-01, 2.9905e-01, 9.7067e-01, 3.9498e-01, + 4.5558e-01, 6.9955e-01, 5.3969e-02, 3.5860e-01, + 7.2397e-01, 7.1675e-01, 8.0095e-01, 4.8315e-01, + 4.1035e-01, 3.9824e-01, 5.0060e-01, 5.6947e-01, + 2.5338e-01, 1.2799e-01, 9.1108e-01, 7.6016e-02, + 8.5394e-01, 4.5257e-01, 4.8350e-01, 1.3291e-01, + 2.2106e-01, 8.0845e-01, 6.7657e-01, 4.4898e-01, + 6.6830e-01, 4.0859e-01, 8.4227e-01, 7.7311e-01, + 5.4753e-01, 3.9804e-01, 9.4899e-01, 8.2056e-01, + 7.7146e-01, 6.3508e-01, 6.2972e-01, 7.4169e-01, + 7.8963e-01, 1.0699e-01, 5.7796e-01, 7.2429e-01, + 6.3979e-02, 4.5238e-02, 6.3144e-01, 9.8512e-01, + 5.1816e-01, 3.2546e-01, 8.7580e-01, 9.7697e-01, + 4.6167e-01, 2.4042e-01, 1.1377e-01, 9.7747e-01, + 7.4258e-01, 6.3887e-01, 7.3930e-01, 2.3402e-01, + 4.1461e-01, 4.8691e-01, 2.7849e-01, 5.9673e-01, + 8.6946e-02, 9.5615e-01, 9.7242e-01, 8.9092e-01, + 4.1164e-01, 3.3893e-01, 9.4485e-01, 3.2960e-01, + 7.1004e-01, 4.1240e-01, 1.1151e-01, 7.6114e-01, + 5.5779e-01, 9.3723e-01, 2.2015e-01, 9.0422e-01, + 2.5683e-01, 4.6041e-01, 3.3427e-01, 4.3355e-02, + 3.1777e-01, 6.8533e-01, 4.9880e-01, 7.0528e-01, + 6.2605e-01, 9.9580e-01, 3.8253e-02, 1.0464e-02, + 6.2010e-02, 4.9009e-02, 8.8508e-01, 8.3043e-01, + 9.5592e-01, 8.5708e-01, 5.1611e-01, 1.7460e-01, + 4.5394e-01, 4.2516e-01, 8.0836e-01, 5.2242e-01, + 8.0860e-01, 5.1184e-01, 7.3172e-01, 9.2625e-01, + 3.8652e-01, 8.6518e-01, 6.9408e-01, 2.5732e-01, + 6.0297e-01, 2.2091e-01, 1.2658e-02, 7.6721e-01, + 9.6888e-02, 6.6146e-01, 4.4139e-01, 1.9043e-01, + 1.1703e-04, 3.3229e-01, 3.7446e-01, 3.2871e-01, + 5.5144e-01, 4.6404e-01, 7.9360e-01, 3.2754e-01, + 9.8665e-01, 3.2413e-01, 4.6510e-01, 6.8652e-01, + 9.6619e-01, 4.0817e-01, 5.0618e-01, 8.0048e-01, + 3.4373e-01, 9.9556e-01, 1.4700e-01, 1.2820e-01, + 8.0477e-01, 2.3035e-01, 5.4135e-01, 3.8689e-01, + 1.8548e-01, 9.7019e-01, 2.2577e-01, 3.2056e-01, + 4.1451e-02, 1.3423e-01]), size=(5000, 5000), nnz=250, + layout=torch.sparse_csr) +tensor([0.0595, 0.8939, 0.2592, ..., 0.5348, 0.8468, 0.6804]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 8.58342981338501 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 277505 -ss 5000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.940149784088135} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([3014, 4957, 1583, 2867, 2783, 475, 2139, 2382, 3400, + 1371, 4277, 2356, 2363, 809, 3070, 166, 954, 1491, + 2451, 1189, 312, 609, 4247, 23, 459, 898, 2311, + 4831, 338, 2271, 1779, 2454, 4584, 3113, 487, 1534, + 2828, 4851, 633, 1451, 3532, 1285, 3207, 3942, 1871, + 1291, 465, 1879, 4867, 2362, 2141, 1675, 4085, 954, + 3823, 3407, 284, 572, 14, 2939, 2313, 3750, 1562, + 2613, 2778, 2860, 3224, 2726, 239, 3475, 2082, 2253, + 3516, 1146, 3276, 4995, 2558, 345, 3127, 2150, 75, + 826, 1135, 4736, 4690, 2556, 910, 1899, 2387, 947, + 695, 304, 2013, 2, 897, 3875, 3772, 1882, 451, + 3308, 1440, 3959, 2068, 783, 1822, 1945, 4659, 2440, + 4920, 2894, 4923, 1763, 2739, 4990, 4910, 2298, 1281, + 1642, 4403, 354, 879, 3935, 4111, 1373, 3061, 948, + 4840, 4778, 2992, 2315, 2233, 3168, 3973, 2138, 2299, + 4743, 1438, 4906, 254, 4427, 953, 1389, 2612, 1867, + 4913, 4975, 2438, 2961, 96, 3956, 1648, 4671, 3511, + 2332, 4616, 3807, 1099, 2689, 951, 1859, 3672, 4327, + 4946, 755, 3445, 807, 2050, 4470, 819, 3494, 4764, + 1487, 2681, 1451, 1828, 600, 2998, 2378, 1446, 2079, + 873, 270, 4942, 3757, 4929, 2560, 3562, 3539, 1466, + 871, 1762, 750, 1346, 533, 2678, 341, 1486, 2504, + 3221, 679, 2068, 2145, 3144, 834, 1808, 3153, 3407, + 2103, 1634, 1022, 1783, 3740, 3527, 3470, 3178, 4350, + 3648, 2120, 4578, 1596, 135, 2530, 1745, 608, 4825, + 4913, 4142, 3012, 1856, 2018, 3602, 264, 275, 4814, + 1938, 4047, 1223, 3103, 4868, 3533, 4726, 3018, 1931, + 379, 2338, 475, 3665, 4431, 938, 707]), + values=tensor([0.8419, 0.4424, 0.5698, 0.2999, 0.9295, 0.4679, 0.3442, + 0.3474, 0.7467, 0.0757, 0.0276, 0.8208, 0.7200, 0.1976, + 0.3319, 0.9583, 0.8463, 0.9566, 0.3073, 0.6760, 0.4346, + 0.2886, 0.9486, 0.0795, 0.8036, 0.5111, 0.4404, 0.5873, + 0.2286, 0.4238, 0.6160, 0.9372, 0.8314, 0.1765, 0.9714, + 0.5934, 0.0764, 0.5254, 0.7722, 0.8765, 0.7821, 0.7165, + 0.7425, 0.1690, 0.9418, 0.7089, 0.3090, 0.3146, 0.3776, + 0.3970, 0.7107, 0.4232, 0.2742, 0.1785, 0.3661, 0.7381, + 0.7677, 0.2922, 0.0118, 0.5142, 0.3228, 0.6287, 0.6950, + 0.5212, 0.9233, 0.5583, 0.3402, 0.9655, 0.1707, 0.5180, + 0.7601, 0.0519, 0.3853, 0.1663, 0.4842, 0.9445, 0.1159, + 0.1236, 0.2320, 0.4008, 0.3127, 0.0194, 0.2149, 0.2742, + 0.3828, 0.5264, 0.2515, 0.8214, 0.1769, 0.1933, 0.8188, + 0.5274, 0.2875, 0.2494, 0.8088, 0.9923, 0.5445, 0.3175, + 0.6285, 0.6236, 0.2042, 0.2625, 0.5051, 0.4802, 0.6055, + 0.2595, 0.3970, 0.4291, 0.2183, 0.7748, 0.7343, 0.0474, + 0.5801, 0.6534, 0.2948, 0.0363, 0.3237, 0.2880, 0.2211, + 0.1790, 0.3192, 0.9079, 0.1088, 0.8037, 0.5242, 0.3090, + 0.6078, 0.5167, 0.1361, 0.1093, 0.6079, 0.0095, 0.5118, + 0.3018, 0.1316, 0.6571, 0.0073, 0.3654, 0.4280, 0.8191, + 0.3184, 0.2360, 0.6869, 0.0155, 0.5085, 0.4025, 0.0799, + 0.7194, 0.4048, 0.5539, 0.2632, 0.0734, 0.9784, 0.3601, + 0.9418, 0.0499, 0.8840, 0.6116, 0.9865, 0.6081, 0.4861, + 0.7266, 0.7795, 0.1224, 0.6387, 0.9470, 0.4315, 0.0825, + 0.8006, 0.5528, 0.3202, 0.1662, 0.3257, 0.8268, 0.0860, + 0.4786, 0.2279, 0.0058, 0.4003, 0.0577, 0.1538, 0.9729, + 0.3529, 0.3205, 0.9176, 0.5843, 0.6548, 0.1570, 0.8380, + 0.7278, 0.2116, 0.1503, 0.0103, 0.8089, 0.9813, 0.7760, + 0.2123, 0.9690, 0.9240, 0.5892, 0.4778, 0.5100, 0.0404, + 0.6261, 0.6426, 0.9521, 0.0053, 0.5755, 0.0743, 0.7500, + 0.3281, 0.4225, 0.6900, 0.0916, 0.8990, 0.2711, 0.5755, + 0.5712, 0.7556, 0.0051, 0.6971, 0.0437, 0.5565, 0.4256, + 0.2960, 0.6043, 0.6836, 0.9303, 0.4472, 0.6016, 0.6132, + 0.9503, 0.8339, 0.2697, 0.0658, 0.7983, 0.4874, 0.1771, + 0.9875, 0.2001, 0.2752, 0.5608, 0.4997, 0.6797, 0.1612, + 0.9007, 0.9904, 0.7264, 0.3981, 0.6661]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.5019, 0.1367, 0.6742, ..., 0.0249, 0.2703, 0.5698]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 9.940149784088135 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 293134 -ss 5000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.89356017112732} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([3878, 1793, 196, 4523, 2590, 2367, 223, 4753, 811, + 1344, 3831, 3891, 1471, 342, 75, 2706, 3424, 2402, + 4777, 1498, 772, 4383, 2094, 2326, 2946, 1126, 2886, + 1923, 932, 4969, 3541, 896, 863, 2668, 4869, 4410, + 1937, 3764, 94, 3879, 1282, 4972, 2002, 1481, 4954, + 2173, 3425, 2770, 4498, 897, 827, 829, 4189, 4991, + 1934, 1179, 1128, 2114, 2395, 2017, 3561, 4691, 2694, + 1416, 4554, 620, 4382, 4973, 3582, 230, 4891, 3107, + 1979, 140, 933, 4466, 308, 3556, 3173, 4882, 4797, + 1238, 3925, 3354, 291, 1290, 414, 2445, 3042, 2325, + 2660, 1731, 777, 3782, 2858, 3541, 2112, 2412, 4004, + 942, 1750, 1450, 45, 960, 1184, 3190, 4107, 4960, + 4877, 4158, 1493, 3953, 2210, 1987, 3321, 3595, 1029, + 1281, 3168, 3718, 1747, 2899, 1694, 1765, 2658, 2297, + 2811, 4794, 2166, 3385, 3144, 590, 756, 1857, 2472, + 2864, 4092, 2483, 1698, 3039, 4797, 2893, 4815, 1160, + 92, 3486, 728, 546, 1233, 1206, 3098, 284, 3217, + 1908, 3538, 556, 1018, 3457, 4789, 3509, 986, 1353, + 3714, 674, 3739, 3917, 378, 4295, 1240, 678, 634, + 156, 182, 2959, 787, 2431, 894, 4155, 1278, 4710, + 115, 3800, 3528, 4651, 4055, 3457, 4797, 3790, 2898, + 2898, 1677, 2106, 3532, 1869, 3926, 1788, 4954, 1802, + 3662, 3116, 1672, 1899, 2743, 4402, 201, 2790, 4915, + 3309, 2448, 4340, 71, 1083, 3547, 1833, 4517, 4811, + 4522, 4837, 4905, 1773, 2748, 2712, 2488, 4842, 2297, + 377, 2695, 2905, 534, 1022, 2504, 1436, 3486, 3980, + 4913, 361, 4684, 2741, 722, 1718, 3274, 513, 1785, + 4555, 575, 662, 3842, 1584, 2198, 215]), + values=tensor([0.8076, 0.3370, 0.6780, 0.9299, 0.5410, 0.0897, 0.3343, + 0.8017, 0.5673, 0.5602, 0.9800, 0.8553, 0.3447, 0.6119, + 0.3490, 0.5758, 0.1388, 0.7568, 0.7228, 0.2456, 0.6799, + 0.7488, 0.1368, 0.7230, 0.3714, 0.8061, 0.2178, 0.6691, + 0.7090, 0.6240, 0.5615, 0.6385, 0.8034, 0.6963, 0.9896, + 0.1078, 0.2316, 0.3754, 0.7350, 0.4907, 0.3665, 0.2209, + 0.4611, 0.7569, 0.4815, 0.7270, 0.4688, 0.5127, 0.0439, + 0.4951, 0.3454, 0.1899, 0.8750, 0.1915, 0.8080, 0.6042, + 0.7305, 0.2510, 0.4960, 0.3143, 0.3207, 0.3323, 0.5478, + 0.3218, 0.1649, 0.9155, 0.2697, 0.4415, 0.6177, 0.1457, + 0.9256, 0.6524, 0.8106, 0.1943, 0.2636, 0.7375, 0.5837, + 0.4529, 0.4107, 0.4337, 0.4074, 0.1673, 0.9988, 0.7338, + 0.1243, 0.9778, 0.4221, 0.2348, 0.5442, 0.1259, 0.4222, + 0.6127, 0.0857, 0.6974, 0.0596, 0.3553, 0.4614, 0.5799, + 0.4404, 0.3360, 0.3314, 0.9445, 0.7231, 0.9851, 0.8853, + 0.4987, 0.3871, 0.5069, 0.6349, 0.9384, 0.3450, 0.4613, + 0.2127, 0.4994, 0.0034, 0.9538, 0.3203, 0.8248, 0.5140, + 0.0568, 0.3913, 0.0456, 0.0790, 0.1457, 0.8710, 0.7025, + 0.5191, 0.7160, 0.2410, 0.7547, 0.7169, 0.9282, 0.0473, + 0.4454, 0.5093, 0.4795, 0.3417, 0.5014, 0.0605, 0.9341, + 0.8068, 0.8325, 0.0916, 0.8219, 0.9882, 0.3617, 0.8114, + 0.3412, 0.2133, 0.4138, 0.2870, 0.1987, 0.5576, 0.8136, + 0.4067, 0.6195, 0.5018, 0.5513, 0.5252, 0.0402, 0.7889, + 0.3122, 0.6215, 0.9385, 0.7669, 0.1080, 0.2818, 0.0494, + 0.0251, 0.3317, 0.4666, 0.5981, 0.5539, 0.1688, 0.7416, + 0.8841, 0.4123, 0.1102, 0.1371, 0.7232, 0.6598, 0.7427, + 0.8150, 0.1180, 0.3866, 0.1447, 0.4442, 0.5099, 0.1417, + 0.2917, 0.8599, 0.3553, 0.2307, 0.1388, 0.1482, 0.8529, + 0.3988, 0.9926, 0.3184, 0.2404, 0.4847, 0.5288, 0.0738, + 0.0517, 0.1797, 0.1796, 0.7215, 0.5955, 0.6432, 0.0017, + 0.6486, 0.6664, 0.4487, 0.7630, 0.7774, 0.9276, 0.9518, + 0.4507, 0.3399, 0.7495, 0.4581, 0.6140, 0.0659, 0.8137, + 0.4343, 0.4836, 0.5681, 0.7947, 0.1417, 0.8229, 0.0824, + 0.2070, 0.8783, 0.3511, 0.9580, 0.1053, 0.3375, 0.2396, + 0.0513, 0.5334, 0.3977, 0.6765, 0.1035, 0.8974, 0.8093, + 0.7238, 0.8002, 0.6243, 0.9654, 0.2803]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.4617, 0.6014, 0.4133, ..., 0.3579, 0.3877, 0.5185]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 10.89356017112732 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([3878, 1793, 196, 4523, 2590, 2367, 223, 4753, 811, + 1344, 3831, 3891, 1471, 342, 75, 2706, 3424, 2402, + 4777, 1498, 772, 4383, 2094, 2326, 2946, 1126, 2886, + 1923, 932, 4969, 3541, 896, 863, 2668, 4869, 4410, + 1937, 3764, 94, 3879, 1282, 4972, 2002, 1481, 4954, + 2173, 3425, 2770, 4498, 897, 827, 829, 4189, 4991, + 1934, 1179, 1128, 2114, 2395, 2017, 3561, 4691, 2694, + 1416, 4554, 620, 4382, 4973, 3582, 230, 4891, 3107, + 1979, 140, 933, 4466, 308, 3556, 3173, 4882, 4797, + 1238, 3925, 3354, 291, 1290, 414, 2445, 3042, 2325, + 2660, 1731, 777, 3782, 2858, 3541, 2112, 2412, 4004, + 942, 1750, 1450, 45, 960, 1184, 3190, 4107, 4960, + 4877, 4158, 1493, 3953, 2210, 1987, 3321, 3595, 1029, + 1281, 3168, 3718, 1747, 2899, 1694, 1765, 2658, 2297, + 2811, 4794, 2166, 3385, 3144, 590, 756, 1857, 2472, + 2864, 4092, 2483, 1698, 3039, 4797, 2893, 4815, 1160, + 92, 3486, 728, 546, 1233, 1206, 3098, 284, 3217, + 1908, 3538, 556, 1018, 3457, 4789, 3509, 986, 1353, + 3714, 674, 3739, 3917, 378, 4295, 1240, 678, 634, + 156, 182, 2959, 787, 2431, 894, 4155, 1278, 4710, + 115, 3800, 3528, 4651, 4055, 3457, 4797, 3790, 2898, + 2898, 1677, 2106, 3532, 1869, 3926, 1788, 4954, 1802, + 3662, 3116, 1672, 1899, 2743, 4402, 201, 2790, 4915, + 3309, 2448, 4340, 71, 1083, 3547, 1833, 4517, 4811, + 4522, 4837, 4905, 1773, 2748, 2712, 2488, 4842, 2297, + 377, 2695, 2905, 534, 1022, 2504, 1436, 3486, 3980, + 4913, 361, 4684, 2741, 722, 1718, 3274, 513, 1785, + 4555, 575, 662, 3842, 1584, 2198, 215]), + values=tensor([0.8076, 0.3370, 0.6780, 0.9299, 0.5410, 0.0897, 0.3343, + 0.8017, 0.5673, 0.5602, 0.9800, 0.8553, 0.3447, 0.6119, + 0.3490, 0.5758, 0.1388, 0.7568, 0.7228, 0.2456, 0.6799, + 0.7488, 0.1368, 0.7230, 0.3714, 0.8061, 0.2178, 0.6691, + 0.7090, 0.6240, 0.5615, 0.6385, 0.8034, 0.6963, 0.9896, + 0.1078, 0.2316, 0.3754, 0.7350, 0.4907, 0.3665, 0.2209, + 0.4611, 0.7569, 0.4815, 0.7270, 0.4688, 0.5127, 0.0439, + 0.4951, 0.3454, 0.1899, 0.8750, 0.1915, 0.8080, 0.6042, + 0.7305, 0.2510, 0.4960, 0.3143, 0.3207, 0.3323, 0.5478, + 0.3218, 0.1649, 0.9155, 0.2697, 0.4415, 0.6177, 0.1457, + 0.9256, 0.6524, 0.8106, 0.1943, 0.2636, 0.7375, 0.5837, + 0.4529, 0.4107, 0.4337, 0.4074, 0.1673, 0.9988, 0.7338, + 0.1243, 0.9778, 0.4221, 0.2348, 0.5442, 0.1259, 0.4222, + 0.6127, 0.0857, 0.6974, 0.0596, 0.3553, 0.4614, 0.5799, + 0.4404, 0.3360, 0.3314, 0.9445, 0.7231, 0.9851, 0.8853, + 0.4987, 0.3871, 0.5069, 0.6349, 0.9384, 0.3450, 0.4613, + 0.2127, 0.4994, 0.0034, 0.9538, 0.3203, 0.8248, 0.5140, + 0.0568, 0.3913, 0.0456, 0.0790, 0.1457, 0.8710, 0.7025, + 0.5191, 0.7160, 0.2410, 0.7547, 0.7169, 0.9282, 0.0473, + 0.4454, 0.5093, 0.4795, 0.3417, 0.5014, 0.0605, 0.9341, + 0.8068, 0.8325, 0.0916, 0.8219, 0.9882, 0.3617, 0.8114, + 0.3412, 0.2133, 0.4138, 0.2870, 0.1987, 0.5576, 0.8136, + 0.4067, 0.6195, 0.5018, 0.5513, 0.5252, 0.0402, 0.7889, + 0.3122, 0.6215, 0.9385, 0.7669, 0.1080, 0.2818, 0.0494, + 0.0251, 0.3317, 0.4666, 0.5981, 0.5539, 0.1688, 0.7416, + 0.8841, 0.4123, 0.1102, 0.1371, 0.7232, 0.6598, 0.7427, + 0.8150, 0.1180, 0.3866, 0.1447, 0.4442, 0.5099, 0.1417, + 0.2917, 0.8599, 0.3553, 0.2307, 0.1388, 0.1482, 0.8529, + 0.3988, 0.9926, 0.3184, 0.2404, 0.4847, 0.5288, 0.0738, + 0.0517, 0.1797, 0.1796, 0.7215, 0.5955, 0.6432, 0.0017, + 0.6486, 0.6664, 0.4487, 0.7630, 0.7774, 0.9276, 0.9518, + 0.4507, 0.3399, 0.7495, 0.4581, 0.6140, 0.0659, 0.8137, + 0.4343, 0.4836, 0.5681, 0.7947, 0.1417, 0.8229, 0.0824, + 0.2070, 0.8783, 0.3511, 0.9580, 0.1053, 0.3375, 0.2396, + 0.0513, 0.5334, 0.3977, 0.6765, 0.1035, 0.8974, 0.8093, + 0.7238, 0.8002, 0.6243, 0.9654, 0.2803]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.4617, 0.6014, 0.4133, ..., 0.3579, 0.3877, 0.5185]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 10.89356017112732 seconds + +[16.36, 16.36, 16.4, 16.6, 16.6, 16.96, 16.96, 16.88, 16.88, 16.48] +[16.32, 16.28, 19.04, 20.36, 23.52, 24.24, 24.96, 24.96, 22.16, 21.36, 19.68, 19.76, 19.8, 19.64] +14.221415042877197 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 293134, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.89356017112732, 'TIME_S_1KI': 0.03716239048055606, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 278.4485914421082, 'W': 19.57952781791354} +[16.36, 16.36, 16.4, 16.6, 16.6, 16.96, 16.96, 16.88, 16.88, 16.48, 16.6, 16.64, 16.68, 16.76, 16.68, 16.56, 16.4, 16.4, 16.52, 16.64] +299.32000000000005 +14.966000000000003 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 293134, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.89356017112732, 'TIME_S_1KI': 0.03716239048055606, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 278.4485914421082, 'W': 19.57952781791354, 'J_1KI': 0.9499020633638819, 'W_1KI': 0.06679377969772711, 'W_D': 4.613527817913537, 'J_D': 65.610893910408, 'W_D_1KI': 0.01573863085794735, 'J_D_1KI': 5.3690908792386244e-05} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_5e-05.json b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_5e-05.json new file mode 100644 index 0000000..c47b89b --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 151147, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.619585275650024, "TIME_S_1KI": 0.07025998051995755, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 328.34527337074286, "W": 23.06683265939357, "J_1KI": 2.1723571977660345, "W_1KI": 0.15261191197571614, "W_D": 4.6928326593935665, "J_D": 66.80021679544454, "W_D_1KI": 0.031048136313612352, "J_D_1KI": 0.00020541682146263144} diff --git a/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_5e-05.output b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_5e-05.output new file mode 100644 index 0000000..b0a08a7 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/altra_16_csr_10_10_10_synthetic_5000_5e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 5e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.07715368270874023} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1250, 1250, 1250]), + col_indices=tensor([4186, 604, 2911, ..., 3524, 2664, 807]), + values=tensor([0.1303, 0.5472, 0.9541, ..., 0.4453, 0.4813, 0.2933]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.2363, 0.5745, 0.8536, ..., 0.3028, 0.7626, 0.7945]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 0.07715368270874023 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 136092 -ss 5000 -sd 5e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 9.454103946685791} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1250, 1250, 1250]), + col_indices=tensor([2642, 3295, 3317, ..., 552, 1688, 3754]), + values=tensor([0.5853, 0.8410, 0.7758, ..., 0.7543, 0.4171, 0.3907]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.4145, 0.1634, 0.4401, ..., 0.9903, 0.7928, 0.8495]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 9.454103946685791 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 151147 -ss 5000 -sd 5e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.619585275650024} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1250, 1250, 1250]), + col_indices=tensor([2120, 4070, 3230, ..., 2901, 3405, 168]), + values=tensor([0.1519, 0.7232, 0.6282, ..., 0.2528, 0.5199, 0.9452]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.2553, 0.4766, 0.2217, ..., 0.4056, 0.3500, 0.9553]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 10.619585275650024 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1250, 1250, 1250]), + col_indices=tensor([2120, 4070, 3230, ..., 2901, 3405, 168]), + values=tensor([0.1519, 0.7232, 0.6282, ..., 0.2528, 0.5199, 0.9452]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.2553, 0.4766, 0.2217, ..., 0.4056, 0.3500, 0.9553]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 10.619585275650024 seconds + +[20.44, 20.36, 20.28, 20.16, 20.04, 20.16, 20.28, 20.32, 20.56, 20.56] +[20.72, 20.76, 20.8, 24.32, 26.28, 28.48, 29.36, 29.52, 26.16, 23.92, 23.8, 23.64, 23.64, 23.56] +14.234519243240356 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 151147, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.619585275650024, 'TIME_S_1KI': 0.07025998051995755, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 328.34527337074286, 'W': 23.06683265939357} +[20.44, 20.36, 20.28, 20.16, 20.04, 20.16, 20.28, 20.32, 20.56, 20.56, 20.24, 20.2, 20.36, 20.68, 20.96, 20.8, 20.68, 20.4, 20.44, 20.36] +367.48 +18.374000000000002 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 151147, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.619585275650024, 'TIME_S_1KI': 0.07025998051995755, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 328.34527337074286, 'W': 23.06683265939357, 'J_1KI': 2.1723571977660345, 'W_1KI': 0.15261191197571614, 'W_D': 4.6928326593935665, 'J_D': 66.80021679544454, 'W_D_1KI': 0.031048136313612352, 'J_D_1KI': 0.00020541682146263144} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.0001.json new file mode 100644 index 0000000..f73c7ea --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 63031, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.264819622039795, "TIME_S_1KI": 0.16285351052719765, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1907.2002365589144, "W": 143.8, "J_1KI": 30.25813070646054, "W_1KI": 2.2814170804842067, "W_D": 106.65425000000002, "J_D": 1414.5411045202616, "W_D_1KI": 1.6920919864828419, "J_D_1KI": 0.026845393322061237} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.0001.output new file mode 100644 index 0000000..b2fc454 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.0001.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.20868682861328125} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 11, 23, ..., 999975, + 999990, 1000000]), + col_indices=tensor([ 1102, 1885, 5689, ..., 70464, 82505, 82637]), + values=tensor([0.9145, 0.6563, 0.0210, ..., 0.3467, 0.9517, 0.4307]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.3954, 0.8531, 0.4592, ..., 0.1653, 0.9288, 0.8508]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 0.20868682861328125 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '50314', '-ss', '100000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 8.38151502609253} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 9, 15, ..., 999976, + 999987, 1000000]), + col_indices=tensor([ 9326, 16949, 19479, ..., 70135, 76689, 93251]), + values=tensor([0.2491, 0.4486, 0.5526, ..., 0.3620, 0.8491, 0.1510]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.1294, 0.2549, 0.0676, ..., 0.6377, 0.6452, 0.0657]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 8.38151502609253 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '63031', '-ss', '100000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.264819622039795} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 17, ..., 999978, + 999986, 1000000]), + col_indices=tensor([ 1906, 11602, 20474, ..., 94634, 95193, 99629]), + values=tensor([0.7595, 0.5479, 0.3671, ..., 0.3196, 0.4186, 0.5082]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.5397, 0.2720, 0.7091, ..., 0.7919, 0.2241, 0.5973]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 10.264819622039795 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 17, ..., 999978, + 999986, 1000000]), + col_indices=tensor([ 1906, 11602, 20474, ..., 94634, 95193, 99629]), + values=tensor([0.7595, 0.5479, 0.3671, ..., 0.3196, 0.4186, 0.5082]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.5397, 0.2720, 0.7091, ..., 0.7919, 0.2241, 0.5973]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 10.264819622039795 seconds + +[40.75, 39.66, 39.67, 39.19, 39.32, 45.15, 39.35, 39.19, 39.95, 39.54] +[143.8] +13.262866735458374 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 63031, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.264819622039795, 'TIME_S_1KI': 0.16285351052719765, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1907.2002365589144, 'W': 143.8} +[40.75, 39.66, 39.67, 39.19, 39.32, 45.15, 39.35, 39.19, 39.95, 39.54, 40.42, 44.44, 57.71, 39.25, 40.02, 40.75, 39.74, 39.58, 39.68, 39.82] +742.915 +37.14575 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 63031, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.264819622039795, 'TIME_S_1KI': 0.16285351052719765, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1907.2002365589144, 'W': 143.8, 'J_1KI': 30.25813070646054, 'W_1KI': 2.2814170804842067, 'W_D': 106.65425000000002, 'J_D': 1414.5411045202616, 'W_D_1KI': 1.6920919864828419, 'J_D_1KI': 0.026845393322061237} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.001.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.001.json new file mode 100644 index 0000000..47e1eaa --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 4290, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.725477457046509, "TIME_S_1KI": 2.500111295348837, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2014.465433692932, "W": 126.69, "J_1KI": 469.57236216618463, "W_1KI": 29.53146853146853, "W_D": 91.17699999999999, "J_D": 1449.7822625923156, "W_D_1KI": 21.25337995337995, "J_D_1KI": 4.954167821300688} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.001.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.001.output new file mode 100644 index 0000000..2b06cc0 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 2.4475483894348145} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 108, 211, ..., 9999795, + 9999912, 10000000]), + col_indices=tensor([ 147, 1138, 2699, ..., 95915, 96101, 99505]), + values=tensor([0.5370, 0.7637, 0.8320, ..., 0.1671, 0.6910, 0.1145]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.0022, 0.6683, 0.3307, ..., 0.4747, 0.3475, 0.4636]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 2.4475483894348145 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '4290', '-ss', '100000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.725477457046509} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 113, 209, ..., 9999816, + 9999914, 10000000]), + col_indices=tensor([ 524, 3053, 3097, ..., 98248, 99944, 99996]), + values=tensor([0.2951, 0.6504, 0.4617, ..., 0.6241, 0.9747, 0.0943]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.1529, 0.0141, 0.4287, ..., 0.1937, 0.2308, 0.9820]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 10.725477457046509 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 113, 209, ..., 9999816, + 9999914, 10000000]), + col_indices=tensor([ 524, 3053, 3097, ..., 98248, 99944, 99996]), + values=tensor([0.2951, 0.6504, 0.4617, ..., 0.6241, 0.9747, 0.0943]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.1529, 0.0141, 0.4287, ..., 0.1937, 0.2308, 0.9820]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 10.725477457046509 seconds + +[39.92, 39.19, 39.59, 39.28, 39.81, 39.63, 39.63, 39.45, 39.41, 39.18] +[126.69] +15.900745391845703 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4290, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.725477457046509, 'TIME_S_1KI': 2.500111295348837, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2014.465433692932, 'W': 126.69} +[39.92, 39.19, 39.59, 39.28, 39.81, 39.63, 39.63, 39.45, 39.41, 39.18, 40.85, 39.15, 39.3, 39.24, 39.74, 39.48, 39.55, 39.09, 39.1, 39.29] +710.26 +35.513 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4290, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.725477457046509, 'TIME_S_1KI': 2.500111295348837, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2014.465433692932, 'W': 126.69, 'J_1KI': 469.57236216618463, 'W_1KI': 29.53146853146853, 'W_D': 91.17699999999999, 'J_D': 1449.7822625923156, 'W_D_1KI': 21.25337995337995, 'J_D_1KI': 4.954167821300688} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_1e-05.json new file mode 100644 index 0000000..7f413fc --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 102924, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.60866904258728, "TIME_S_1KI": 0.103072840567674, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1542.0244372987747, "W": 115.47, "J_1KI": 14.982165843717448, "W_1KI": 1.121895767750962, "W_D": 79.97325000000001, "J_D": 1067.989138565898, "W_D_1KI": 0.7770126501107615, "J_D_1KI": 0.00754938255519375} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_1e-05.output new file mode 100644 index 0000000..fb29049 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_1e-05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.12978029251098633} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 4, ..., 99999, 100000, + 100000]), + col_indices=tensor([21616, 77637, 85619, ..., 53732, 81470, 6094]), + values=tensor([0.4857, 0.1991, 0.9153, ..., 0.9203, 0.8308, 0.8562]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.0197, 0.8164, 0.2872, ..., 0.9903, 0.3891, 0.9778]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 0.12978029251098633 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '80905', '-ss', '100000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 8.253613233566284} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 3, ..., 99999, 99999, + 100000]), + col_indices=tensor([18950, 61338, 17160, ..., 57514, 79997, 96494]), + values=tensor([0.7220, 0.1840, 0.6067, ..., 0.9597, 0.4652, 0.5228]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.0221, 0.6414, 0.1516, ..., 0.3018, 0.8902, 0.3461]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 8.253613233566284 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '102924', '-ss', '100000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.60866904258728} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 99999, 99999, + 100000]), + col_indices=tensor([ 4611, 80501, 8771, ..., 95435, 27789, 45343]), + values=tensor([0.8274, 0.0201, 0.6109, ..., 0.4116, 0.6491, 0.0785]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.0461, 0.3256, 0.3375, ..., 0.6234, 0.9526, 0.7301]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 10.60866904258728 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 99999, 99999, + 100000]), + col_indices=tensor([ 4611, 80501, 8771, ..., 95435, 27789, 45343]), + values=tensor([0.8274, 0.0201, 0.6109, ..., 0.4116, 0.6491, 0.0785]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.0461, 0.3256, 0.3375, ..., 0.6234, 0.9526, 0.7301]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 10.60866904258728 seconds + +[39.93, 39.22, 39.43, 40.14, 39.51, 39.36, 39.3, 39.3, 39.26, 39.1] +[115.47] +13.354329586029053 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 102924, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.60866904258728, 'TIME_S_1KI': 0.103072840567674, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1542.0244372987747, 'W': 115.47} +[39.93, 39.22, 39.43, 40.14, 39.51, 39.36, 39.3, 39.3, 39.26, 39.1, 41.76, 39.08, 39.78, 39.45, 39.66, 39.16, 39.27, 39.06, 39.08, 38.96] +709.935 +35.49675 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 102924, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.60866904258728, 'TIME_S_1KI': 0.103072840567674, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1542.0244372987747, 'W': 115.47, 'J_1KI': 14.982165843717448, 'W_1KI': 1.121895767750962, 'W_D': 79.97325000000001, 'J_D': 1067.989138565898, 'W_D_1KI': 0.7770126501107615, 'J_D_1KI': 0.00754938255519375} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_5e-05.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_5e-05.json new file mode 100644 index 0000000..4188099 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 85448, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.79839825630188, "TIME_S_1KI": 0.12637391461826936, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1847.2158340501787, "W": 132.18, "J_1KI": 21.618011352520583, "W_1KI": 1.5469057204381613, "W_D": 96.35400000000001, "J_D": 1346.5473935093883, "W_D_1KI": 1.127633180413819, "J_D_1KI": 0.013196718242835633} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_5e-05.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_5e-05.output new file mode 100644 index 0000000..be89160 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_100000_5e-05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.157515287399292} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 8, ..., 499988, 499996, + 500000]), + col_indices=tensor([50162, 75153, 30191, ..., 32389, 47580, 60210]), + values=tensor([0.9007, 0.9447, 0.0410, ..., 0.6472, 0.2952, 0.4267]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.3259, 0.8902, 0.7186, ..., 0.8330, 0.5312, 0.8917]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 0.157515287399292 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '66660', '-ss', '100000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 8.191283702850342} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 8, ..., 499990, 499997, + 500000]), + col_indices=tensor([ 3937, 41482, 51345, ..., 57028, 62776, 96568]), + values=tensor([0.3669, 0.7790, 0.6636, ..., 0.0088, 0.3191, 0.1015]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.1888, 0.6317, 0.9833, ..., 0.5078, 0.6417, 0.5906]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 8.191283702850342 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '85448', '-ss', '100000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.79839825630188} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 13, ..., 499988, 499995, + 500000]), + col_indices=tensor([ 3698, 26087, 35796, ..., 95832, 96289, 98226]), + values=tensor([0.4478, 0.6896, 0.5878, ..., 0.3885, 0.0788, 0.0500]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.6913, 0.6407, 0.8664, ..., 0.8625, 0.1823, 0.9429]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 10.79839825630188 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 13, ..., 499988, 499995, + 500000]), + col_indices=tensor([ 3698, 26087, 35796, ..., 95832, 96289, 98226]), + values=tensor([0.4478, 0.6896, 0.5878, ..., 0.3885, 0.0788, 0.0500]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.6913, 0.6407, 0.8664, ..., 0.8625, 0.1823, 0.9429]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 10.79839825630188 seconds + +[40.27, 39.58, 39.76, 40.26, 40.31, 39.92, 40.36, 39.5, 39.65, 39.54] +[132.18] +13.975002527236938 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 85448, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.79839825630188, 'TIME_S_1KI': 0.12637391461826936, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1847.2158340501787, 'W': 132.18} +[40.27, 39.58, 39.76, 40.26, 40.31, 39.92, 40.36, 39.5, 39.65, 39.54, 40.41, 39.45, 40.31, 39.36, 39.58, 39.39, 39.62, 39.75, 39.86, 39.5] +716.52 +35.826 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 85448, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.79839825630188, 'TIME_S_1KI': 0.12637391461826936, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1847.2158340501787, 'W': 132.18, 'J_1KI': 21.618011352520583, 'W_1KI': 1.5469057204381613, 'W_D': 96.35400000000001, 'J_D': 1346.5473935093883, 'W_D_1KI': 1.127633180413819, 'J_D_1KI': 0.013196718242835633} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.0001.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.0001.json new file mode 100644 index 0000000..cb11125 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 278690, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.3841392993927, "TIME_S_1KI": 0.0372605378714439, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1292.3170569992064, "W": 98.52, "J_1KI": 4.63711312569237, "W_1KI": 0.3535110696472783, "W_D": 63.16824999999999, "J_D": 828.5973095390796, "W_D_1KI": 0.2266613441458251, "J_D_1KI": 0.0008133099291177477} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.0001.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.0001.output new file mode 100644 index 0000000..26aaa7d --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.0001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.05305743217468262} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 9999, 9999, 10000]), + col_indices=tensor([2207, 830, 7633, ..., 2513, 8541, 2972]), + values=tensor([0.9417, 0.1071, 0.2127, ..., 0.2034, 0.4535, 0.3737]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.2095, 0.5712, 0.5435, ..., 0.2564, 0.5818, 0.1577]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 0.05305743217468262 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '197898', '-ss', '10000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 7.456049680709839} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 2, ..., 10000, 10000, 10000]), + col_indices=tensor([7930, 9951, 4041, ..., 9045, 6420, 8503]), + values=tensor([0.2418, 0.2435, 0.4116, ..., 0.5201, 0.9725, 0.0713]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.5895, 0.0291, 0.5304, ..., 0.4324, 0.9976, 0.6205]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 7.456049680709839 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '278690', '-ss', '10000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.3841392993927} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 9996, 9998, 10000]), + col_indices=tensor([9574, 4944, 2003, ..., 2641, 7523, 8416]), + values=tensor([0.4157, 0.2537, 0.8916, ..., 0.3966, 0.1591, 0.0732]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.4368, 0.0363, 0.2687, ..., 0.3029, 0.2331, 0.6830]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.3841392993927 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 9996, 9998, 10000]), + col_indices=tensor([9574, 4944, 2003, ..., 2641, 7523, 8416]), + values=tensor([0.4157, 0.2537, 0.8916, ..., 0.3966, 0.1591, 0.0732]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.4368, 0.0363, 0.2687, ..., 0.3029, 0.2331, 0.6830]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.3841392993927 seconds + +[40.74, 38.88, 38.93, 39.04, 38.99, 38.97, 39.42, 39.32, 39.26, 38.71] +[98.52] +13.11730670928955 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 278690, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.3841392993927, 'TIME_S_1KI': 0.0372605378714439, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1292.3170569992064, 'W': 98.52} +[40.74, 38.88, 38.93, 39.04, 38.99, 38.97, 39.42, 39.32, 39.26, 38.71, 39.37, 39.1, 39.73, 39.04, 39.15, 38.73, 39.2, 38.61, 38.78, 44.95] +707.0350000000001 +35.35175 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 278690, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.3841392993927, 'TIME_S_1KI': 0.0372605378714439, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1292.3170569992064, 'W': 98.52, 'J_1KI': 4.63711312569237, 'W_1KI': 0.3535110696472783, 'W_D': 63.16824999999999, 'J_D': 828.5973095390796, 'W_D_1KI': 0.2266613441458251, 'J_D_1KI': 0.0008133099291177477} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.001.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.001.json new file mode 100644 index 0000000..9de9eeb --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 181643, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.058825254440308, "TIME_S_1KI": 0.05537689453730839, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1334.3994569778442, "W": 108.0, "J_1KI": 7.346275149484671, "W_1KI": 0.5945728709611711, "W_D": 72.86524999999999, "J_D": 900.2902780792116, "W_D_1KI": 0.4011453785722543, "J_D_1KI": 0.002208427401949177} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.001.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.001.output new file mode 100644 index 0000000..62ff1c2 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.001.output @@ -0,0 +1,86 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.07387351989746094} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 11, 20, ..., 99983, 99988, + 100000]), + col_indices=tensor([2080, 2520, 2867, ..., 8307, 8901, 9286]), + values=tensor([0.8261, 0.1055, 0.9939, ..., 0.1447, 0.1951, 0.2617]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.7373, 0.8108, 0.8070, ..., 0.3032, 0.8916, 0.0356]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 0.07387351989746094 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '142134', '-ss', '10000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 8.216149806976318} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 16, ..., 99977, 99988, + 100000]), + col_indices=tensor([ 929, 1145, 1167, ..., 7253, 9439, 9881]), + values=tensor([3.5267e-01, 8.9746e-01, 4.0379e-01, ..., + 8.5718e-04, 5.6681e-01, 4.6851e-01]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.4055, 0.0658, 0.7904, ..., 0.2959, 0.0826, 0.7426]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 8.216149806976318 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '181643', '-ss', '10000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.058825254440308} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 10, 23, ..., 99984, 99996, + 100000]), + col_indices=tensor([2026, 2065, 2399, ..., 4623, 7297, 9355]), + values=tensor([0.4157, 0.6883, 0.2119, ..., 0.3441, 0.2622, 0.5721]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.4888, 0.3451, 0.6891, ..., 0.9797, 0.8702, 0.1612]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.058825254440308 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 10, 23, ..., 99984, 99996, + 100000]), + col_indices=tensor([2026, 2065, 2399, ..., 4623, 7297, 9355]), + values=tensor([0.4157, 0.6883, 0.2119, ..., 0.3441, 0.2622, 0.5721]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.4888, 0.3451, 0.6891, ..., 0.9797, 0.8702, 0.1612]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.058825254440308 seconds + +[40.01, 39.91, 39.26, 39.32, 39.03, 38.69, 39.03, 38.68, 38.9, 38.67] +[108.0] +12.355550527572632 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 181643, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.058825254440308, 'TIME_S_1KI': 0.05537689453730839, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1334.3994569778442, 'W': 108.0} +[40.01, 39.91, 39.26, 39.32, 39.03, 38.69, 39.03, 38.68, 38.9, 38.67, 40.03, 39.23, 39.15, 39.23, 38.85, 38.69, 38.72, 38.72, 38.62, 38.62] +702.6950000000002 +35.13475000000001 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 181643, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.058825254440308, 'TIME_S_1KI': 0.05537689453730839, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1334.3994569778442, 'W': 108.0, 'J_1KI': 7.346275149484671, 'W_1KI': 0.5945728709611711, 'W_D': 72.86524999999999, 'J_D': 900.2902780792116, 'W_D_1KI': 0.4011453785722543, 'J_D_1KI': 0.002208427401949177} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.01.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.01.json new file mode 100644 index 0000000..37875a8 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 104114, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.469164609909058, "TIME_S_1KI": 0.10055482077250953, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1774.261237783432, "W": 135.86, "J_1KI": 17.041524077294426, "W_1KI": 1.304915765410992, "W_D": 100.35275000000001, "J_D": 1310.5549420725108, "W_D_1KI": 0.9638737345601938, "J_D_1KI": 0.009257868630157269} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.01.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.01.output new file mode 100644 index 0000000..0c99b95 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.01.output @@ -0,0 +1,105 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.14159297943115234} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 124, 236, ..., 999773, + 999882, 1000000]), + col_indices=tensor([ 35, 69, 144, ..., 9773, 9862, 9873]), + values=tensor([0.1838, 0.7773, 0.5109, ..., 0.8192, 0.8376, 0.6812]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.0358, 0.2032, 0.7087, ..., 0.4931, 0.1706, 0.1726]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 0.14159297943115234 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '74156', '-ss', '10000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 7.9134438037872314} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 93, 199, ..., 999798, + 999892, 1000000]), + col_indices=tensor([ 57, 323, 325, ..., 9719, 9779, 9889]), + values=tensor([0.3339, 0.1610, 0.8675, ..., 0.7107, 0.3615, 0.1870]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.9536, 0.3002, 0.1616, ..., 0.3121, 0.8413, 0.9505]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 7.9134438037872314 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '98394', '-ss', '10000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 9.923112392425537} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 97, 191, ..., 999779, + 999891, 1000000]), + col_indices=tensor([ 18, 52, 269, ..., 9883, 9995, 9999]), + values=tensor([0.5511, 0.2767, 0.8168, ..., 0.6887, 0.5827, 0.0686]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.2767, 0.4380, 0.7945, ..., 0.2102, 0.5547, 0.8740]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 9.923112392425537 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '104114', '-ss', '10000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.469164609909058} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 112, 221, ..., 999805, + 999915, 1000000]), + col_indices=tensor([ 402, 501, 665, ..., 9291, 9326, 9607]), + values=tensor([0.0486, 0.5637, 0.4384, ..., 0.7973, 0.3634, 0.8351]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.7936, 0.9785, 0.9590, ..., 0.6005, 0.0137, 0.6516]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.469164609909058 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 112, 221, ..., 999805, + 999915, 1000000]), + col_indices=tensor([ 402, 501, 665, ..., 9291, 9326, 9607]), + values=tensor([0.0486, 0.5637, 0.4384, ..., 0.7973, 0.3634, 0.8351]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.7936, 0.9785, 0.9590, ..., 0.6005, 0.0137, 0.6516]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.469164609909058 seconds + +[42.04, 39.8, 39.79, 39.52, 39.3, 39.73, 39.12, 39.49, 39.14, 38.98] +[135.86] +13.059482097625732 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 104114, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.469164609909058, 'TIME_S_1KI': 0.10055482077250953, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1774.261237783432, 'W': 135.86} +[42.04, 39.8, 39.79, 39.52, 39.3, 39.73, 39.12, 39.49, 39.14, 38.98, 39.91, 39.55, 39.06, 39.42, 39.43, 39.34, 38.96, 39.36, 38.94, 39.46] +710.145 +35.50725 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 104114, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.469164609909058, 'TIME_S_1KI': 0.10055482077250953, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1774.261237783432, 'W': 135.86, 'J_1KI': 17.041524077294426, 'W_1KI': 1.304915765410992, 'W_D': 100.35275000000001, 'J_D': 1310.5549420725108, 'W_D_1KI': 0.9638737345601938, 'J_D_1KI': 0.009257868630157269} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.05.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.05.json new file mode 100644 index 0000000..5302269 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 27894, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.822905540466309, "TIME_S_1KI": 0.3880012024258374, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2101.6757108688353, "W": 151.95, "J_1KI": 75.34508176915593, "W_1KI": 5.447408044740804, "W_D": 116.03349999999999, "J_D": 1604.90153732872, "W_D_1KI": 4.159801390980138, "J_D_1KI": 0.14912889477952743} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.05.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.05.output new file mode 100644 index 0000000..3e6dd10 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 0.4579291343688965} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 485, 1001, ..., 4998993, + 4999541, 5000000]), + col_indices=tensor([ 5, 20, 61, ..., 9897, 9942, 9998]), + values=tensor([0.7241, 0.0945, 0.6836, ..., 0.9220, 0.2796, 0.2745]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.6528, 0.9454, 0.7224, ..., 0.5670, 0.2826, 0.8750]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 0.4579291343688965 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '22929', '-ss', '10000', '-sd', '0.05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 8.630967855453491} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 483, 987, ..., 4998961, + 4999465, 5000000]), + col_indices=tensor([ 47, 67, 96, ..., 9993, 9994, 9997]), + values=tensor([0.9705, 0.3882, 0.2458, ..., 0.5796, 0.8899, 0.6056]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.2409, 0.7584, 0.7571, ..., 0.5444, 0.5564, 0.6333]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 8.630967855453491 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '27894', '-ss', '10000', '-sd', '0.05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.822905540466309} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 505, 994, ..., 4999000, + 4999548, 5000000]), + col_indices=tensor([ 26, 89, 94, ..., 9963, 9967, 9969]), + values=tensor([0.5738, 0.3729, 0.9664, ..., 0.7914, 0.9130, 0.5932]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.2560, 0.0745, 0.3692, ..., 0.2024, 0.4618, 0.6540]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 10.822905540466309 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 505, 994, ..., 4999000, + 4999548, 5000000]), + col_indices=tensor([ 26, 89, 94, ..., 9963, 9967, 9969]), + values=tensor([0.5738, 0.3729, 0.9664, ..., 0.7914, 0.9130, 0.5932]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.2560, 0.0745, 0.3692, ..., 0.2024, 0.4618, 0.6540]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 10.822905540466309 seconds + +[41.38, 40.1, 39.88, 40.17, 39.72, 39.62, 39.69, 39.64, 39.9, 39.73] +[151.95] +13.831363677978516 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 27894, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.822905540466309, 'TIME_S_1KI': 0.3880012024258374, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2101.6757108688353, 'W': 151.95} +[41.38, 40.1, 39.88, 40.17, 39.72, 39.62, 39.69, 39.64, 39.9, 39.73, 40.26, 39.63, 39.55, 39.93, 41.22, 40.33, 39.48, 39.56, 39.48, 39.49] +718.3299999999999 +35.9165 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 27894, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.822905540466309, 'TIME_S_1KI': 0.3880012024258374, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2101.6757108688353, 'W': 151.95, 'J_1KI': 75.34508176915593, 'W_1KI': 5.447408044740804, 'W_D': 116.03349999999999, 'J_D': 1604.90153732872, 'W_D_1KI': 4.159801390980138, 'J_D_1KI': 0.14912889477952743} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.1.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.1.json new file mode 100644 index 0000000..a6d8fa4 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.1.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 4679, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 11.427535057067871, "TIME_S_1KI": 2.4423028546843066, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1873.982270450592, "W": 124.72, "J_1KI": 400.5091409383612, "W_1KI": 26.655268219705064, "W_D": 88.71, "J_D": 1332.9134638524054, "W_D_1KI": 18.959179311818765, "J_D_1KI": 4.051972496648593} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.1.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.1.output new file mode 100644 index 0000000..a87f9d5 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.1.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.1', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 2.382111072540283} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1024, 2032, ..., 9997994, + 9998974, 10000000]), + col_indices=tensor([ 25, 59, 80, ..., 9969, 9975, 9986]), + values=tensor([0.6759, 0.5147, 0.7066, ..., 0.5276, 0.4088, 0.2550]), + size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.6863, 0.6243, 0.0191, ..., 0.9166, 0.1487, 0.8503]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000000 +Density: 0.1 +Time: 2.382111072540283 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '4407', '-ss', '10000', '-sd', '0.1', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 9.887728929519653} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 980, 2002, ..., 9998027, + 9998983, 10000000]), + col_indices=tensor([ 0, 5, 25, ..., 9979, 9984, 9986]), + values=tensor([0.6732, 0.9055, 0.4649, ..., 0.1468, 0.7629, 0.6148]), + size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.4732, 0.0327, 0.4956, ..., 0.7189, 0.9869, 0.4026]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000000 +Density: 0.1 +Time: 9.887728929519653 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '4679', '-ss', '10000', '-sd', '0.1', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 11.427535057067871} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1053, 2097, ..., 9998095, + 9999109, 10000000]), + col_indices=tensor([ 10, 15, 24, ..., 9977, 9991, 9995]), + values=tensor([0.4155, 0.1468, 0.0149, ..., 0.0226, 0.9383, 0.4708]), + size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.3975, 0.8045, 0.4645, ..., 0.1781, 0.4097, 0.1046]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000000 +Density: 0.1 +Time: 11.427535057067871 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1053, 2097, ..., 9998095, + 9999109, 10000000]), + col_indices=tensor([ 10, 15, 24, ..., 9977, 9991, 9995]), + values=tensor([0.4155, 0.1468, 0.0149, ..., 0.0226, 0.9383, 0.4708]), + size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.3975, 0.8045, 0.4645, ..., 0.1781, 0.4097, 0.1046]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000000 +Density: 0.1 +Time: 11.427535057067871 seconds + +[40.62, 41.67, 40.6, 39.62, 39.77, 39.59, 39.62, 40.85, 40.24, 40.01] +[124.72] +15.02551531791687 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4679, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 11.427535057067871, 'TIME_S_1KI': 2.4423028546843066, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1873.982270450592, 'W': 124.72} +[40.62, 41.67, 40.6, 39.62, 39.77, 39.59, 39.62, 40.85, 40.24, 40.01, 40.22, 39.64, 40.11, 39.47, 39.58, 39.84, 39.97, 39.93, 39.51, 39.53] +720.2 +36.010000000000005 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4679, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 11.427535057067871, 'TIME_S_1KI': 2.4423028546843066, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1873.982270450592, 'W': 124.72, 'J_1KI': 400.5091409383612, 'W_1KI': 26.655268219705064, 'W_D': 88.71, 'J_D': 1332.9134638524054, 'W_D_1KI': 18.959179311818765, 'J_D_1KI': 4.051972496648593} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.2.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.2.json new file mode 100644 index 0000000..4f270a6 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.2.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 2251, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.887785911560059, "TIME_S_1KI": 4.83686624236342, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2027.23151884079, "W": 120.43, "J_1KI": 900.591523252239, "W_1KI": 53.500666370501996, "W_D": 84.27900000000001, "J_D": 1418.6917311000825, "W_D_1KI": 37.44069302532208, "J_D_1KI": 16.632915604319006} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.2.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.2.output new file mode 100644 index 0000000..c0dab55 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.2.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.2', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 4.959461212158203} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1995, 4040, ..., 19996024, + 19998015, 20000000]), + col_indices=tensor([ 0, 11, 12, ..., 9985, 9992, 9995]), + values=tensor([0.1207, 0.1695, 0.9340, ..., 0.6555, 0.7804, 0.2569]), + size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) +tensor([0.9596, 0.9534, 0.3471, ..., 0.1162, 0.8421, 0.0589]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 20000000 +Density: 0.2 +Time: 4.959461212158203 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '2117', '-ss', '10000', '-sd', '0.2', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 9.870691061019897} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2060, 4088, ..., 19995982, + 19997996, 20000000]), + col_indices=tensor([ 3, 8, 18, ..., 9972, 9995, 9999]), + values=tensor([0.9088, 0.2769, 0.7723, ..., 0.9463, 0.8275, 0.8743]), + size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) +tensor([0.1663, 0.5238, 0.4734, ..., 0.4751, 0.9551, 0.4862]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 20000000 +Density: 0.2 +Time: 9.870691061019897 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '2251', '-ss', '10000', '-sd', '0.2', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.887785911560059} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1987, 4056, ..., 19996028, + 19998022, 20000000]), + col_indices=tensor([ 5, 19, 20, ..., 9991, 9993, 9995]), + values=tensor([0.9673, 0.5215, 0.1097, ..., 0.0767, 0.9506, 0.8361]), + size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) +tensor([0.1308, 0.6150, 0.9184, ..., 0.0574, 0.4962, 0.6674]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 20000000 +Density: 0.2 +Time: 10.887785911560059 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1987, 4056, ..., 19996028, + 19998022, 20000000]), + col_indices=tensor([ 5, 19, 20, ..., 9991, 9993, 9995]), + values=tensor([0.9673, 0.5215, 0.1097, ..., 0.0767, 0.9506, 0.8361]), + size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) +tensor([0.1308, 0.6150, 0.9184, ..., 0.0574, 0.4962, 0.6674]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 20000000 +Density: 0.2 +Time: 10.887785911560059 seconds + +[40.74, 39.87, 40.58, 40.31, 40.56, 40.27, 40.45, 40.39, 39.9, 40.0] +[120.43] +16.833276748657227 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 2251, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.887785911560059, 'TIME_S_1KI': 4.83686624236342, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2027.23151884079, 'W': 120.43} +[40.74, 39.87, 40.58, 40.31, 40.56, 40.27, 40.45, 40.39, 39.9, 40.0, 40.84, 39.74, 40.34, 40.47, 40.2, 40.2, 39.72, 39.73, 39.66, 39.68] +723.02 +36.150999999999996 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 2251, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.887785911560059, 'TIME_S_1KI': 4.83686624236342, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2027.23151884079, 'W': 120.43, 'J_1KI': 900.591523252239, 'W_1KI': 53.500666370501996, 'W_D': 84.27900000000001, 'J_D': 1418.6917311000825, 'W_D_1KI': 37.44069302532208, 'J_D_1KI': 16.632915604319006} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.3.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.3.json new file mode 100644 index 0000000..0f6b467 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.3.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 1475, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.550647735595703, "TIME_S_1KI": 7.152981515658104, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2246.3171599555017, "W": 116.09, "J_1KI": 1522.9268881054247, "W_1KI": 78.7050847457627, "W_D": 80.02975, "J_D": 1548.5588830385805, "W_D_1KI": 54.25745762711865, "J_D_1KI": 36.78471703533467} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.3.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.3.output new file mode 100644 index 0000000..d7eb761 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.3.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.3', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 7.117977619171143} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2996, 5947, ..., 29993941, + 29997016, 30000000]), + col_indices=tensor([ 2, 4, 5, ..., 9994, 9995, 9997]), + values=tensor([0.7643, 0.7440, 0.4862, ..., 0.6436, 0.3641, 0.9418]), + size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) +tensor([0.8566, 0.8595, 0.2293, ..., 0.0057, 0.7338, 0.0583]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 30000000 +Density: 0.3 +Time: 7.117977619171143 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1475', '-ss', '10000', '-sd', '0.3', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.550647735595703} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2975, 5983, ..., 29994011, + 29997029, 30000000]), + col_indices=tensor([ 7, 9, 13, ..., 9994, 9995, 9998]), + values=tensor([0.9780, 0.9139, 0.8008, ..., 0.7340, 0.6785, 0.0713]), + size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) +tensor([0.9158, 0.5873, 0.3730, ..., 0.5358, 0.1305, 0.5051]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 30000000 +Density: 0.3 +Time: 10.550647735595703 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2975, 5983, ..., 29994011, + 29997029, 30000000]), + col_indices=tensor([ 7, 9, 13, ..., 9994, 9995, 9998]), + values=tensor([0.9780, 0.9139, 0.8008, ..., 0.7340, 0.6785, 0.0713]), + size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) +tensor([0.9158, 0.5873, 0.3730, ..., 0.5358, 0.1305, 0.5051]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 30000000 +Density: 0.3 +Time: 10.550647735595703 seconds + +[41.39, 39.87, 39.86, 40.02, 39.88, 39.87, 40.22, 40.42, 40.2, 40.31] +[116.09] +19.349790334701538 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 1475, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.550647735595703, 'TIME_S_1KI': 7.152981515658104, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2246.3171599555017, 'W': 116.09} +[41.39, 39.87, 39.86, 40.02, 39.88, 39.87, 40.22, 40.42, 40.2, 40.31, 41.51, 39.76, 39.79, 39.7, 39.79, 40.38, 40.29, 39.67, 39.96, 39.84] +721.2049999999999 +36.060249999999996 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 1475, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.550647735595703, 'TIME_S_1KI': 7.152981515658104, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2246.3171599555017, 'W': 116.09, 'J_1KI': 1522.9268881054247, 'W_1KI': 78.7050847457627, 'W_D': 80.02975, 'J_D': 1548.5588830385805, 'W_D_1KI': 54.25745762711865, 'J_D_1KI': 36.78471703533467} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_1e-05.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_1e-05.json new file mode 100644 index 0000000..6beae0d --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 355068, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.454679489135742, "TIME_S_1KI": 0.029444161369472165, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1283.4049695920944, "W": 97.06, "J_1KI": 3.614532905224054, "W_1KI": 0.27335608953777873, "W_D": 61.48125, "J_D": 812.9542735084892, "W_D_1KI": 0.17315345229646154, "J_D_1KI": 0.0004876627921875853} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_1e-05.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_1e-05.output new file mode 100644 index 0000000..f912c9b --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_1e-05.output @@ -0,0 +1,1414 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.1263408660888672} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([6511, 7342, 6569, 9549, 4200, 6366, 6222, 7592, 169, + 4880, 5467, 9729, 3186, 7579, 7366, 6461, 1569, 540, + 4760, 8910, 3523, 1918, 8918, 3090, 6190, 499, 9266, + 7460, 2296, 3773, 5490, 884, 9714, 1811, 1020, 9037, + 8808, 4866, 6500, 7251, 3472, 4368, 6660, 7858, 2942, + 5413, 1404, 5690, 9364, 8617, 6277, 1831, 560, 3190, + 1663, 819, 9507, 4286, 7801, 2558, 3419, 9656, 3132, + 7435, 3025, 8945, 7422, 9343, 1144, 3849, 1843, 8839, + 6036, 1338, 5977, 5948, 8060, 2140, 9438, 3733, 4406, + 5939, 9926, 2756, 7803, 4028, 4889, 5230, 7472, 8834, + 3528, 4118, 8239, 1176, 9979, 731, 8697, 6303, 596, + 6780, 2484, 641, 8003, 4632, 6436, 9612, 7360, 8016, + 621, 8128, 463, 4301, 2226, 5312, 7004, 6810, 3999, + 4752, 5969, 34, 4043, 3161, 9457, 286, 6473, 2546, + 2948, 1709, 8722, 220, 6967, 9215, 550, 2682, 1046, + 1411, 5120, 1681, 795, 7027, 1138, 7720, 5262, 9156, + 6114, 3094, 5529, 9897, 5383, 2658, 5925, 4585, 1891, + 5947, 1641, 3669, 2374, 4271, 1873, 3950, 8634, 9898, + 2804, 4238, 6088, 7480, 3866, 2931, 158, 762, 7315, + 3431, 9534, 8813, 8729, 7588, 5653, 2233, 8886, 2117, + 5788, 7121, 687, 4736, 1055, 4450, 4608, 65, 8244, + 2012, 6731, 5872, 7793, 1928, 6136, 4684, 8489, 8964, + 3740, 2505, 3086, 567, 7565, 6980, 8106, 6069, 7130, + 6970, 9760, 2913, 3403, 1406, 7675, 386, 5541, 6017, + 9133, 5436, 8960, 7368, 6345, 3739, 2407, 5067, 8091, + 3266, 3124, 5929, 6713, 6112, 8945, 2328, 7728, 4986, + 8539, 2814, 6319, 705, 1165, 9519, 3981, 5584, 6598, + 2738, 5532, 5237, 6331, 6207, 8710, 995, 1064, 3408, + 6852, 23, 6885, 9749, 2209, 7966, 1743, 7553, 7522, + 7688, 3322, 2692, 4077, 524, 1297, 4398, 4096, 1166, + 5811, 9504, 9733, 2814, 8085, 4424, 3816, 2029, 7548, + 8169, 3026, 1340, 5158, 5626, 7898, 9054, 3947, 2974, + 8879, 2439, 4906, 5376, 7674, 5565, 4834, 1951, 8992, + 2602, 4891, 1422, 7414, 4875, 8525, 5441, 9284, 999, + 7732, 4808, 2724, 1701, 1389, 3674, 4863, 3129, 2538, + 6570, 3018, 4218, 7797, 9608, 1867, 6688, 2972, 1313, + 6883, 6461, 1346, 4019, 3075, 3279, 8085, 7848, 9504, + 3827, 2046, 5854, 837, 9356, 3800, 7458, 9224, 1721, + 4056, 5289, 942, 2304, 5616, 3284, 4339, 5079, 870, + 9407, 2635, 5239, 2058, 2138, 7880, 4585, 3515, 9934, + 866, 9761, 8919, 2186, 800, 572, 8912, 8785, 4800, + 5094, 6357, 8393, 6810, 1477, 5566, 9893, 349, 3779, + 8545, 1987, 7795, 9938, 6031, 9207, 8810, 6010, 4262, + 5989, 7188, 9196, 6390, 7391, 9696, 2839, 9975, 2181, + 2674, 1526, 8229, 3221, 2082, 4838, 7371, 86, 8603, + 1062, 8643, 4915, 5544, 7520, 8254, 9621, 153, 2491, + 8229, 4372, 2665, 4480, 3338, 4223, 3871, 8012, 4932, + 8756, 3433, 2881, 6190, 3712, 7183, 4288, 7905, 7231, + 8297, 6210, 5179, 8257, 6157, 3488, 6273, 9080, 4379, + 5031, 8844, 157, 4802, 414, 188, 6362, 490, 9145, + 8499, 4374, 6930, 3177, 8307, 8277, 6077, 290, 2856, + 6353, 3841, 363, 9590, 8189, 5238, 5239, 3246, 7783, + 5125, 1355, 7133, 8323, 9928, 5054, 1300, 7618, 7017, + 20, 6323, 9040, 4476, 3660, 9493, 2606, 5099, 8989, + 4686, 4749, 8776, 7509, 5402, 8359, 4880, 1488, 5157, + 230, 5242, 2209, 1343, 2485, 558, 5693, 1249, 4396, + 2349, 6899, 7592, 9403, 4311, 564, 7436, 7000, 380, + 9168, 6194, 2637, 2512, 3205, 2559, 7975, 9819, 6809, + 3325, 1840, 4305, 5238, 9210, 2227, 6924, 8354, 3045, + 3286, 3664, 6276, 8603, 6294, 1616, 3859, 5674, 2042, + 4316, 8399, 3534, 2694, 6067, 6420, 9170, 8993, 3488, + 8272, 5531, 4465, 9064, 8332, 990, 5946, 5090, 3858, + 8019, 8546, 3535, 1789, 3116, 6602, 8289, 9270, 3315, + 3607, 5332, 5665, 4255, 9462, 3870, 5110, 7175, 59, + 8950, 4474, 898, 3887, 9586, 3479, 624, 2157, 8013, + 5204, 446, 1227, 6497, 4047, 2825, 4969, 207, 9153, + 3558, 2821, 5665, 1108, 8779, 8273, 3826, 1024, 2831, + 8755, 975, 6214, 8135, 9347, 2576, 7238, 260, 9515, + 4303, 1860, 3449, 78, 2060, 4646, 1178, 3266, 5040, + 6785, 4432, 9084, 9287, 1308, 6562, 2916, 5846, 4040, + 6006, 6431, 2614, 6680, 3035, 7241, 3980, 3829, 4911, + 4244, 8881, 3409, 5409, 2501, 2137, 7118, 7535, 5989, + 4552, 6736, 6133, 8836, 5682, 7420, 4597, 727, 7253, + 9952, 4260, 141, 3937, 6286, 8262, 9299, 9258, 6831, + 1516, 2229, 9027, 1604, 2300, 5677, 7863, 2419, 2434, + 9276, 3042, 9104, 1277, 9737, 4965, 2010, 6398, 1957, + 4962, 6889, 9183, 5585, 4081, 3764, 4701, 887, 3733, + 6586, 1585, 2197, 3497, 4488, 5454, 6304, 4370, 7000, + 1732, 5777, 1564, 182, 7312, 843, 2073, 2825, 5082, + 2427, 5637, 5250, 785, 6753, 8646, 5170, 7589, 4599, + 6101, 5880, 4216, 4352, 6075, 8934, 4178, 4278, 9476, + 891, 1828, 2805, 9509, 7190, 8284, 7824, 2775, 8561, + 5451, 4644, 949, 2504, 4485, 5019, 3536, 9441, 2681, + 8020, 7135, 6954, 6223, 583, 5238, 9792, 400, 4350, + 4042, 5751, 5273, 2704, 4637, 9449, 3036, 8020, 1070, + 6190, 1221, 7658, 4998, 4039, 1857, 1515, 8470, 2112, + 1220, 6720, 3909, 7827, 2681, 8993, 1851, 8559, 9233, + 8270, 6492, 8370, 3880, 4016, 9974, 5286, 5908, 7345, + 3932, 9971, 7065, 5706, 2639, 3132, 0, 8702, 3654, + 8031, 308, 9810, 4042, 1066, 5288, 9302, 4605, 7758, + 7079, 7715, 7788, 4493, 9273, 652, 1168, 8880, 764, + 2023, 3145, 561, 9693, 6664, 9707, 2412, 9229, 3856, + 5206, 6758, 7833, 2140, 552, 4704, 8527, 9171, 931, + 1092, 2464, 730, 5373, 8715, 2647, 248, 317, 8578, + 5853, 5045, 2023, 2493, 9990, 4722, 4406, 672, 5484, + 6323, 4636, 760, 2773, 5211, 9856, 7135, 8638, 5261, + 9754, 8020, 9297, 4374, 1483, 4463, 9669, 822, 6952, + 4495, 4359, 4772, 3852, 6538, 3023, 7911, 7905, 474, + 649, 7884, 7257, 1371, 4902, 8997, 1667, 7606, 6008, + 8525, 7525, 4626, 8980, 102, 385, 9820, 3167, 1481, + 6318, 5842, 3074, 2300, 4285, 2257, 8773, 3591, 8972, + 60, 9528, 3412, 3530, 7559, 1661, 6470, 9349, 6549, + 5932, 5012, 7259, 9868, 1051, 7359, 5205, 6204, 4945, + 9902, 3225, 241, 2345, 7259, 6271, 4175, 1082, 8824, + 1547, 6383, 7680, 9555, 9178, 8067, 7267, 8856, 7869, + 3762, 119, 911, 8077, 4179, 3785, 853, 5695, 7309, + 7532, 7067, 1393, 4072, 5209, 5182, 3120, 4904, 2492, + 1193, 2101, 6396, 91, 3022, 9202, 3980, 6136, 770, + 2588, 5106, 4044, 935, 4047, 659, 7690, 8988, 3826, + 2975, 8835, 4878, 2590, 451, 8796, 2172, 2353, 4221, + 2312, 3478, 3018, 8148, 35, 1239, 3737, 276, 1484, + 5891]), + values=tensor([0.0306, 0.2996, 0.3526, 0.5136, 0.1960, 0.0494, 0.4248, + 0.9003, 0.3088, 0.8066, 0.0284, 0.9628, 0.6970, 0.3929, + 0.9036, 0.7489, 0.7075, 0.5515, 0.0416, 0.3000, 0.2939, + 0.4662, 0.0532, 0.2066, 0.1559, 0.5483, 0.1194, 0.6794, + 0.0379, 0.2707, 0.3144, 0.3029, 0.5991, 0.1291, 0.8872, + 0.0571, 0.4748, 0.2201, 0.3840, 0.3049, 0.2970, 0.9700, + 0.8529, 0.1435, 0.5565, 0.5637, 0.9930, 0.1648, 0.4519, + 0.4565, 0.0369, 0.8511, 0.6180, 0.7898, 0.5871, 0.6839, + 0.8964, 0.3177, 0.0872, 0.3846, 0.9044, 0.4366, 0.0388, + 0.1350, 0.2187, 0.1852, 0.7787, 0.4795, 0.4954, 0.8048, + 0.2045, 0.8960, 0.4052, 0.7941, 0.0725, 0.2621, 0.1305, + 0.0902, 0.6241, 0.3014, 0.2140, 0.6118, 0.6453, 0.1158, + 0.4621, 0.4834, 0.0720, 0.4786, 0.0461, 0.4857, 0.9225, + 0.9337, 0.8788, 0.7328, 0.6734, 0.8209, 0.0647, 0.5804, + 0.9201, 0.3337, 0.6402, 0.5754, 0.8922, 0.7688, 0.9684, + 0.5926, 0.4561, 0.5474, 0.5628, 0.6181, 0.1490, 0.7242, + 0.4347, 0.6384, 0.2571, 0.2733, 0.0772, 0.6448, 0.1181, + 0.8618, 0.7749, 0.1412, 0.3808, 0.4841, 0.8504, 0.2451, + 0.7311, 0.5086, 0.5760, 0.3132, 0.1736, 0.1022, 0.0208, + 0.2411, 0.1662, 0.6587, 0.2256, 0.4538, 0.6212, 0.5927, + 0.7335, 0.3971, 0.7881, 0.9087, 0.8888, 0.5215, 0.0362, + 0.2192, 0.6024, 0.3066, 0.5152, 0.7761, 0.6246, 0.5107, + 0.7204, 0.0928, 0.2938, 0.2239, 0.8240, 0.8958, 0.7616, + 0.6198, 0.8798, 0.1372, 0.8344, 0.7621, 0.6427, 0.7246, + 0.1530, 0.8750, 0.0458, 0.4190, 0.4886, 0.3299, 0.9645, + 0.3283, 0.9267, 0.2549, 0.8204, 0.8857, 0.4233, 0.5398, + 0.8946, 0.3813, 0.9383, 0.3632, 0.7251, 0.4935, 0.4827, + 0.2048, 0.0825, 0.0035, 0.9126, 0.1871, 0.9901, 0.9622, + 0.7775, 0.0560, 0.9785, 0.3158, 0.2838, 0.7572, 0.3187, + 0.9800, 0.2588, 0.4971, 0.2998, 0.0798, 0.3656, 0.8817, + 0.7570, 0.9729, 0.9450, 0.3333, 0.6794, 0.8595, 0.0825, + 0.5629, 0.1961, 0.2346, 0.7490, 0.4658, 0.0661, 0.7833, + 0.9724, 0.8115, 0.6330, 0.9629, 0.6885, 0.2121, 0.4325, + 0.7806, 0.0604, 0.5040, 0.6010, 0.3542, 0.7338, 0.6247, + 0.5156, 0.0422, 0.2923, 0.7305, 0.0072, 0.0523, 0.0874, + 0.3459, 0.6271, 0.2483, 0.5689, 0.5708, 0.6442, 0.9101, + 0.1929, 0.8536, 0.1759, 0.7602, 0.2479, 0.8308, 0.1534, + 0.8999, 0.5372, 0.4067, 0.1885, 0.6555, 0.8109, 0.1402, + 0.4547, 0.0892, 0.0917, 0.4601, 0.4577, 0.0414, 0.4292, + 0.7770, 0.6217, 0.1772, 0.7251, 0.2974, 0.3561, 0.1741, + 0.9519, 0.1043, 0.1386, 0.2005, 0.3308, 0.6261, 0.5583, + 0.6958, 0.9562, 0.1163, 0.7202, 0.0189, 0.6769, 0.8101, + 0.2518, 0.0598, 0.0523, 0.9468, 0.5857, 0.4039, 0.1540, + 0.6184, 0.6548, 0.6415, 0.1325, 0.2674, 0.2857, 0.1560, + 0.2794, 0.1789, 0.4609, 0.4847, 0.0643, 0.2217, 0.1603, + 0.9383, 0.8847, 0.1370, 0.6934, 0.7808, 0.4786, 0.2836, + 0.2882, 0.3049, 0.8279, 0.1760, 0.4565, 0.6898, 0.4354, + 0.2369, 0.0678, 0.5112, 0.3915, 0.2665, 0.0071, 0.3329, + 0.7702, 0.5882, 0.2246, 0.8406, 0.4273, 0.5306, 0.5471, + 0.0205, 0.2945, 0.3046, 0.8992, 0.5360, 0.5760, 0.5236, + 0.8603, 0.1486, 0.5646, 0.8488, 0.1589, 0.4986, 0.7975, + 0.6924, 0.8408, 0.1090, 0.6127, 0.7986, 0.1942, 0.7795, + 0.6241, 0.8583, 0.0902, 0.4669, 0.0031, 0.7487, 0.2235, + 0.8146, 0.4574, 0.3400, 0.3504, 0.0333, 0.4419, 0.8370, + 0.0392, 0.2485, 0.1795, 0.7482, 0.2109, 0.0408, 0.7418, + 0.9292, 0.6846, 0.3690, 0.4878, 0.6072, 0.6460, 0.4085, + 0.6894, 0.9867, 0.4649, 0.1809, 0.1338, 0.6634, 0.7284, + 0.8447, 0.2901, 0.8729, 0.3228, 0.7217, 0.0421, 0.3467, + 0.3500, 0.0319, 0.6448, 0.0298, 0.7700, 0.7140, 0.6676, + 0.7898, 0.8129, 0.6835, 0.3724, 0.9770, 0.8145, 0.9149, + 0.6854, 0.0386, 0.9383, 0.7113, 0.0544, 0.2496, 0.4624, + 0.2901, 0.2225, 0.8862, 0.3230, 0.0831, 0.5192, 0.8215, + 0.8609, 0.5748, 0.2582, 0.5818, 0.6447, 0.9069, 0.4974, + 0.5823, 0.5074, 0.7554, 0.2160, 0.6916, 0.9777, 0.0044, + 0.7248, 0.6742, 0.4187, 0.4874, 0.0607, 0.8419, 0.6519, + 0.7998, 0.5744, 0.6496, 0.7756, 0.5558, 0.0928, 0.3968, + 0.1019, 0.3508, 0.3882, 0.9473, 0.6436, 0.8376, 0.5488, + 0.6926, 0.5539, 0.1858, 0.0264, 0.5272, 0.2740, 0.8661, + 0.5169, 0.0795, 0.0521, 0.9982, 0.2502, 0.8618, 0.6245, + 0.7443, 0.7449, 0.2283, 0.4514, 0.6829, 0.0254, 0.4974, + 0.3757, 0.0356, 0.0300, 0.0553, 0.2861, 0.3189, 0.8406, + 0.1083, 0.9209, 0.6242, 0.1608, 0.0338, 0.3084, 0.9249, + 0.8197, 0.5299, 0.9741, 0.7855, 0.8666, 0.4031, 0.7025, + 0.5839, 0.0050, 0.7304, 0.3322, 0.1087, 0.2762, 0.7511, + 0.7594, 0.0724, 0.5264, 0.0240, 0.0994, 0.3068, 0.4204, + 0.7297, 0.3932, 0.5193, 0.2475, 0.7232, 0.8687, 0.3627, + 0.8627, 0.7280, 0.1720, 0.7801, 0.8422, 0.2665, 0.3902, + 0.9385, 0.1567, 0.6750, 0.0872, 0.6728, 0.7000, 0.6708, + 0.1144, 0.5964, 0.2046, 0.0215, 0.1444, 0.1121, 0.3866, + 0.0141, 0.0182, 0.0820, 0.4020, 0.2046, 0.0760, 0.7010, + 0.8371, 0.6363, 0.1601, 0.8386, 0.4834, 0.6240, 0.7109, + 0.5248, 0.1620, 0.2978, 0.5724, 0.7957, 0.5286, 0.9592, + 0.1891, 0.3098, 0.1183, 0.8406, 0.4345, 0.2746, 0.2381, + 0.9283, 0.9912, 0.1328, 0.9612, 0.5342, 0.7093, 0.7239, + 0.5647, 0.8151, 0.7272, 0.5546, 0.5172, 0.9452, 0.9265, + 0.5730, 0.6891, 0.8507, 0.0152, 0.3641, 0.6091, 0.0281, + 0.8430, 0.4602, 0.4083, 0.2670, 0.4846, 0.8166, 0.6608, + 0.4757, 0.2061, 0.0230, 0.3786, 0.0203, 0.3579, 0.1856, + 0.9697, 0.6122, 0.1104, 0.4051, 0.6621, 0.7210, 0.4887, + 0.7662, 0.4987, 0.3552, 0.8317, 0.6462, 0.2954, 0.8946, + 0.6938, 0.8724, 0.8605, 0.5661, 0.2432, 0.6532, 0.7869, + 0.5082, 0.1430, 0.1744, 0.4959, 0.2427, 0.6615, 0.1468, + 0.6222, 0.5168, 0.1504, 0.6478, 0.0760, 0.6906, 0.5515, + 0.6555, 0.1942, 0.5614, 0.9788, 0.0980, 0.0822, 0.0901, + 0.3375, 0.1551, 0.9099, 0.1875, 0.4951, 0.8701, 0.2417, + 0.3607, 0.9100, 0.2254, 0.8664, 0.4507, 0.7583, 0.3452, + 0.1628, 0.8842, 0.4641, 0.8382, 0.1592, 0.1465, 0.7834, + 0.1113, 0.8527, 0.7883, 0.0078, 0.7042, 0.5069, 0.0265, + 0.4437, 0.7457, 0.3947, 0.2779, 0.1135, 0.0400, 0.7033, + 0.6583, 0.9688, 0.5398, 0.0529, 0.7115, 0.4981, 0.4662, + 0.1089, 0.2302, 0.4077, 0.1243, 0.1202, 0.6002, 0.2944, + 0.5434, 0.8171, 0.2524, 0.1311, 0.2229, 0.6672, 0.7868, + 0.3712, 0.2741, 0.2983, 0.0211, 0.9064, 0.2443, 0.2039, + 0.1587, 0.0714, 0.1602, 0.5244, 0.6179, 0.1098, 0.8545, + 0.4409, 0.8691, 0.7805, 0.7046, 0.1708, 0.2781, 0.9514, + 0.9829, 0.8609, 0.8372, 0.7281, 0.1977, 0.5304, 0.8741, + 0.9262, 0.4102, 0.3512, 0.1301, 0.6785, 0.7435, 0.8077, + 0.0054, 0.4434, 0.2501, 0.4500, 0.1285, 0.3015, 0.7139, + 0.3419, 0.9442, 0.0252, 0.9060, 0.2412, 0.9194, 0.6338, + 0.9581, 0.4535, 0.9501, 0.2388, 0.0183, 0.7894, 0.8822, + 0.2473, 0.1064, 0.3979, 0.4847, 0.1764, 0.6258, 0.6423, + 0.3027, 0.0291, 0.5673, 0.6365, 0.2921, 0.8467, 0.9302, + 0.1491, 0.4870, 0.1244, 0.1446, 0.6191, 0.4937, 0.4839, + 0.1760, 0.6423, 0.3785, 0.0507, 0.0136, 0.9314, 0.0413, + 0.3361, 0.4356, 0.5253, 0.6406, 0.4027, 0.9081, 0.1976, + 0.3900, 0.0793, 0.7130, 0.8448, 0.5262, 0.7891, 0.7115, + 0.6106, 0.6129, 0.7191, 0.5413, 0.0599, 0.7188, 0.5771, + 0.0563, 0.3318, 0.9427, 0.2488, 0.9866, 0.3747, 0.0846, + 0.0192, 0.4736, 0.2442, 0.1761, 0.6562, 0.5303, 0.6790, + 0.1108, 0.2154, 0.1110, 0.8123, 0.5187, 0.6447, 0.0812, + 0.9661, 0.6681, 0.7909, 0.7698, 0.3579, 0.0744, 0.7481, + 0.7668, 0.1431, 0.3334, 0.7738, 0.6145, 0.1853, 0.3382, + 0.9412, 0.2181, 0.4791, 0.9681, 0.4770, 0.7934, 0.5690, + 0.8437, 0.3696, 0.3543, 0.2772, 0.9915, 0.2554, 0.9890, + 0.8207, 0.6499, 0.3341, 0.5876, 0.3016, 0.6988, 0.6689, + 0.3669, 0.6637, 0.1413, 0.9395, 0.0606, 0.9514, 0.3260, + 0.5061, 0.3513, 0.7068, 0.0974, 0.3633, 0.4546, 0.4583, + 0.7655, 0.9906, 0.2955, 0.9989, 0.3375, 0.3790, 0.8979, + 0.7939, 0.5902, 0.8694, 0.1432, 0.9009, 0.8808, 0.4242, + 0.5135, 0.6896, 0.0119, 0.4685, 0.6706, 0.4189, 0.9546, + 0.3617, 0.0920, 0.5116, 0.4792, 0.7116, 0.0251, 0.0758, + 0.8562, 0.6360, 0.7029, 0.1478, 0.9535, 0.5155, 0.1408, + 0.0802, 0.2040, 0.4593, 0.1577, 0.2618, 0.9670, 0.0535, + 0.4637, 0.0191, 0.9906, 0.0035, 0.4768, 0.3059, 0.5236, + 0.8961, 0.9634, 0.9692, 0.1734, 0.8440, 0.6503, 0.5804, + 0.0330, 0.2159, 0.9849, 0.0927, 0.0050, 0.5841, 0.8372, + 0.4469, 0.6234, 0.3858, 0.3558, 0.2944, 0.5086, 0.3990, + 0.0024, 0.2265, 0.9175, 0.2927, 0.9591, 0.5760, 0.7312, + 0.8004, 0.8632, 0.6707, 0.3346, 0.8718, 0.4368, 0.8040, + 0.7086, 0.4515, 0.4407, 0.9257, 0.9829, 0.8739, 0.9325, + 0.3778, 0.1118, 0.7555, 0.1293, 0.6795, 0.0619, 0.8626, + 0.7469, 0.8528, 0.2420, 0.3647, 0.2182, 0.8272, 0.9530, + 0.5556, 0.3834, 0.2160, 0.8095, 0.1449, 0.1013]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.7754, 0.7775, 0.1646, ..., 0.9136, 0.8074, 0.4658]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 0.1263408660888672 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '83108', '-ss', '10000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 2.457648515701294} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([4728, 8270, 5747, 4190, 8816, 3485, 4267, 3845, 4253, + 2618, 2135, 6577, 5998, 3566, 6668, 6250, 1667, 8462, + 7617, 2323, 1453, 8003, 978, 8366, 6285, 648, 5463, + 899, 962, 5301, 3365, 7884, 106, 876, 6897, 4624, + 3877, 5749, 885, 9596, 3094, 5238, 2047, 6203, 1988, + 6479, 5863, 8063, 9929, 1527, 7334, 5835, 7266, 1117, + 88, 7369, 187, 9919, 4908, 7345, 2216, 1390, 4360, + 1957, 6131, 5807, 1391, 6755, 403, 7788, 1046, 7242, + 8970, 3414, 2560, 3707, 1132, 5998, 2036, 626, 2206, + 662, 803, 355, 8106, 9004, 6769, 794, 1420, 1896, + 164, 6812, 8998, 3729, 4484, 9825, 9211, 80, 6244, + 171, 4461, 8160, 1174, 8528, 3606, 3793, 2231, 4130, + 8667, 3710, 7197, 8752, 5434, 288, 6181, 7067, 2653, + 6236, 4202, 2795, 9441, 988, 6792, 6650, 3693, 8141, + 633, 4796, 5947, 1017, 4612, 8207, 7600, 8820, 4805, + 5145, 5635, 7409, 2070, 2726, 9324, 4538, 4774, 6228, + 6405, 6664, 101, 8899, 9017, 2316, 5471, 6613, 9928, + 3154, 3872, 1358, 6338, 598, 6342, 2583, 372, 2809, + 8751, 6740, 414, 5987, 811, 4894, 8831, 2958, 849, + 4717, 5526, 5955, 4799, 9595, 2203, 2336, 2864, 900, + 517, 3162, 9187, 5832, 79, 1363, 8975, 4939, 4776, + 3026, 126, 7583, 1393, 3238, 9223, 4283, 6288, 4095, + 9555, 5898, 7504, 294, 2051, 3299, 7802, 1236, 8275, + 9057, 482, 5171, 9240, 610, 9718, 1315, 6804, 5988, + 9836, 8876, 3060, 6067, 5389, 9613, 7797, 1833, 8290, + 3253, 9124, 772, 905, 2464, 1648, 1802, 9539, 1938, + 9314, 5521, 1856, 9872, 7296, 4233, 1675, 4423, 3765, + 530, 1445, 7731, 8494, 7965, 0, 4426, 2768, 1429, + 5780, 4619, 4566, 5778, 8756, 5631, 6012, 3678, 195, + 4299, 8811, 827, 4862, 5158, 779, 257, 9859, 496, + 8123, 4212, 8989, 7565, 832, 2190, 6349, 8903, 8585, + 9454, 7152, 2491, 2068, 3034, 6396, 4013, 4079, 2129, + 1057, 3425, 7658, 3901, 323, 2106, 7522, 8996, 214, + 6051, 521, 8387, 8594, 951, 7288, 1886, 798, 8073, + 5756, 962, 648, 2200, 6621, 2408, 8644, 820, 5897, + 1302, 7386, 5499, 7248, 4268, 9998, 8174, 48, 1222, + 911, 5368, 7298, 3994, 9752, 5709, 9631, 2037, 4076, + 147, 8400, 9031, 6673, 7864, 3772, 4943, 2120, 7990, + 749, 8147, 9103, 6842, 7112, 347, 6916, 2387, 1033, + 8333, 137, 9028, 8664, 609, 4033, 9225, 9988, 7227, + 6350, 2396, 5202, 959, 3458, 7981, 2845, 7704, 7620, + 2366, 3506, 5248, 1328, 5219, 1396, 8032, 5060, 9027, + 6404, 4256, 13, 7415, 492, 5018, 9275, 7320, 8740, + 1212, 8342, 203, 7700, 1872, 8033, 3202, 5665, 5618, + 5243, 1992, 1313, 9776, 4244, 4659, 8572, 8384, 1900, + 2452, 309, 8732, 9325, 6127, 3754, 5287, 2908, 9968, + 1564, 8645, 1458, 5251, 2397, 6743, 2787, 1107, 8412, + 1912, 1868, 5064, 2697, 6044, 9958, 9120, 3637, 752, + 2395, 4893, 8307, 3191, 2132, 6579, 7573, 678, 1757, + 934, 7799, 8651, 9099, 1608, 6252, 2496, 1751, 964, + 3799, 7058, 8019, 6968, 2001, 8981, 8280, 2655, 1332, + 5288, 3116, 5327, 9741, 2200, 7246, 4826, 6568, 941, + 4296, 424, 9268, 5983, 6867, 5616, 615, 6917, 2807, + 4522, 4363, 9180, 2468, 5136, 5360, 1996, 9623, 8213, + 1353, 4959, 5038, 9143, 8657, 3806, 4254, 3978, 8856, + 9028, 9345, 7894, 9103, 8376, 2325, 4728, 3288, 5244, + 817, 1115, 8090, 8514, 7061, 1694, 9988, 3140, 4508, + 8374, 3717, 6894, 5623, 3924, 8919, 2712, 1905, 7855, + 101, 603, 6800, 6088, 9794, 902, 5124, 2720, 194, + 4409, 9393, 5764, 382, 5189, 9606, 8711, 3326, 2054, + 2346, 8955, 8304, 4253, 857, 871, 877, 7772, 6261, + 5351, 3769, 1919, 1190, 4603, 6432, 4804, 8328, 6405, + 6260, 8139, 3784, 4728, 3745, 6229, 4272, 3048, 3739, + 391, 1317, 2263, 1528, 4045, 6698, 2408, 7600, 1641, + 5468, 5010, 6595, 9797, 4417, 4678, 5642, 3473, 6802, + 7679, 6581, 1250, 3250, 7679, 9306, 9173, 8943, 1361, + 5871, 6491, 8139, 2569, 8640, 6095, 3558, 9320, 5441, + 4058, 8414, 8001, 5789, 1378, 236, 3166, 7474, 9358, + 1872, 9802, 1836, 9444, 4942, 2817, 2221, 1498, 3015, + 9081, 6724, 3663, 9949, 8181, 7882, 5444, 4451, 5151, + 2938, 8122, 7057, 760, 6565, 522, 3456, 114, 2176, + 1409, 3297, 6255, 382, 6867, 4469, 6249, 9488, 6695, + 4525, 1513, 1456, 4932, 5896, 5431, 6658, 618, 7608, + 7059, 4493, 5078, 9747, 1254, 8432, 2209, 6437, 287, + 7845, 6774, 1536, 5778, 8752, 9981, 3357, 7627, 8514, + 9749, 5745, 709, 9181, 7127, 7219, 9135, 8960, 7086, + 8500, 3343, 4421, 2198, 9137, 7200, 9677, 758, 4403, + 1663, 263, 5301, 2340, 2528, 3341, 9896, 754, 303, + 4338, 6663, 4676, 8299, 8165, 4111, 6099, 6910, 9133, + 149, 7699, 7265, 3192, 12, 4893, 4274, 3845, 5434, + 4857, 6744, 6474, 8679, 8435, 64, 1372, 8713, 2383, + 5222, 1429, 227, 9064, 3808, 7218, 4259, 6870, 4121, + 964, 3758, 6339, 5151, 5529, 1206, 7793, 3379, 5407, + 2115, 621, 3265, 5029, 6979, 6753, 3468, 1953, 973, + 3884, 4597, 2650, 5951, 3194, 6637, 9203, 775, 3106, + 6543, 7319, 8082, 4365, 4317, 9668, 5644, 4484, 9470, + 9345, 6258, 5267, 258, 8022, 2268, 7033, 9730, 1344, + 2632, 3400, 8195, 7331, 308, 940, 6777, 6684, 955, + 1662, 1609, 1001, 7894, 4010, 8682, 5171, 3529, 2249, + 6606, 7341, 7061, 2498, 7431, 3350, 4368, 187, 2790, + 6143, 1806, 2057, 948, 2664, 2863, 5457, 9485, 166, + 7599, 2042, 6286, 6956, 2830, 3383, 521, 3429, 1612, + 2530, 8834, 7882, 6081, 9589, 4022, 3337, 896, 9604, + 1379, 2096, 2994, 3646, 4656, 6269, 9000, 9623, 4417, + 2530, 1580, 3685, 9445, 4234, 6915, 2366, 1795, 5960, + 9972, 9148, 2563, 677, 6974, 8126, 4242, 3908, 709, + 812, 9816, 5895, 9741, 6441, 4207, 9611, 2366, 9999, + 3859, 28, 2022, 5040, 3596, 9298, 4397, 8833, 1782, + 2546, 4531, 8457, 4288, 9450, 751, 1368, 4486, 3134, + 820, 1634, 3781, 6687, 5351, 2267, 5285, 4353, 2826, + 842, 5552, 3176, 6735, 7289, 5790, 1641, 2185, 3872, + 6922, 1185, 539, 4195, 7745, 5818, 1148, 5206, 406, + 2739, 2292, 4567, 307, 5392, 2594, 6093, 6301, 2671, + 5525, 3581, 9253, 8828, 120, 8598, 9352, 8586, 9282, + 6935, 2049, 4984, 2928, 237, 1648, 1531, 4395, 163, + 9717, 2686, 7274, 9365, 2344, 691, 207, 9076, 9804, + 3773, 763, 3434, 6002, 9369, 3942, 9958, 6602, 6695, + 3089, 1216, 9129, 5343, 878, 277, 9132, 9713, 7572, + 6990, 6272, 8328, 9531, 6351, 6810, 943, 9876, 2301, + 1427, 3214, 7959, 636, 7815, 6985, 7948, 4, 2286, + 4963, 2772, 2512, 140, 6356, 3274, 6636, 7009, 3163, + 3441]), + values=tensor([5.7349e-02, 6.0520e-01, 7.4610e-01, 4.9648e-01, + 6.6084e-01, 8.4281e-01, 9.8351e-01, 1.1932e-01, + 7.9624e-01, 3.1631e-02, 4.8731e-01, 2.7670e-01, + 1.4398e-01, 5.7083e-01, 6.6021e-01, 9.3176e-01, + 8.4064e-01, 2.6199e-01, 8.0614e-01, 7.1364e-01, + 3.8717e-01, 8.7973e-01, 2.2513e-01, 7.5757e-01, + 7.1990e-01, 7.4262e-01, 1.6723e-01, 2.6194e-01, + 1.6880e-01, 1.5329e-01, 9.5630e-01, 9.0724e-01, + 5.7985e-01, 3.6528e-01, 1.4746e-01, 2.3785e-01, + 5.7477e-01, 9.9097e-01, 7.3309e-01, 4.9341e-01, + 7.5995e-01, 5.2460e-01, 1.1234e-01, 7.6582e-01, + 1.9802e-01, 5.0065e-01, 9.0415e-01, 9.0624e-01, + 2.7270e-01, 8.7014e-01, 8.7173e-01, 8.4816e-01, + 3.7082e-01, 2.3076e-01, 6.3971e-01, 9.6196e-01, + 7.6304e-01, 4.5946e-01, 6.8993e-01, 1.8872e-01, + 8.5552e-02, 6.7591e-01, 3.1363e-01, 7.4996e-01, + 6.1732e-01, 2.0616e-01, 8.1042e-01, 1.5502e-01, + 7.4401e-01, 5.6555e-01, 2.3709e-01, 1.6243e-03, + 4.0712e-01, 8.2553e-01, 6.8817e-01, 8.8626e-01, + 1.9201e-01, 8.9392e-01, 3.7456e-01, 1.5467e-01, + 4.6341e-01, 8.7956e-01, 8.7951e-01, 8.1808e-01, + 6.2855e-01, 2.0562e-01, 8.4727e-01, 2.3024e-01, + 9.8194e-01, 1.3180e-01, 9.4571e-01, 5.5181e-01, + 2.5577e-01, 6.3354e-02, 5.6363e-01, 5.7728e-01, + 8.6215e-01, 3.6134e-01, 1.0993e-01, 6.9147e-01, + 7.0548e-01, 2.0109e-01, 8.0350e-01, 9.1127e-02, + 8.8324e-01, 8.5007e-01, 9.7385e-01, 3.2630e-01, + 9.1510e-02, 6.2704e-01, 9.6498e-01, 4.3122e-01, + 1.8876e-01, 1.8546e-01, 1.5921e-01, 6.0448e-01, + 2.6401e-02, 7.6600e-01, 7.7403e-01, 6.8782e-01, + 2.2167e-01, 6.9738e-01, 6.9051e-01, 4.0731e-01, + 9.5390e-01, 8.2240e-01, 2.5268e-01, 6.1971e-01, + 2.2285e-01, 3.5261e-01, 6.1576e-01, 3.8103e-01, + 1.7878e-01, 6.9825e-01, 7.4642e-01, 1.3243e-01, + 7.6438e-01, 5.2666e-01, 3.5198e-01, 3.9390e-01, + 3.4830e-01, 4.2415e-01, 6.7425e-01, 5.0800e-01, + 6.9370e-01, 1.3284e-01, 8.2518e-01, 5.5404e-01, + 1.9060e-01, 5.3190e-01, 7.7345e-01, 4.7333e-01, + 5.5131e-01, 5.6819e-01, 1.9312e-01, 1.9793e-01, + 8.0842e-01, 9.1269e-01, 4.3852e-01, 8.2275e-01, + 5.9302e-01, 4.8414e-01, 7.0946e-01, 6.3678e-01, + 3.0012e-01, 1.3387e-01, 1.0296e-01, 3.8371e-01, + 3.1823e-02, 1.3170e-01, 5.5641e-01, 2.4509e-01, + 2.8726e-01, 5.6142e-01, 3.5921e-01, 6.3419e-01, + 4.5296e-01, 3.9137e-01, 8.7153e-01, 6.4410e-01, + 3.4242e-01, 5.8550e-02, 8.3537e-01, 6.9325e-03, + 2.1655e-01, 2.0812e-01, 5.8923e-01, 6.2286e-01, + 6.0295e-01, 4.3688e-01, 3.0794e-01, 8.1413e-01, + 9.1541e-01, 5.0398e-01, 7.6450e-01, 9.3853e-01, + 2.1574e-01, 9.5748e-01, 5.0510e-02, 6.5968e-01, + 3.6976e-02, 1.3826e-01, 3.5605e-02, 8.1983e-01, + 2.9555e-01, 8.9177e-01, 2.7546e-01, 9.0976e-01, + 2.4686e-01, 6.5916e-01, 1.7223e-01, 6.4443e-01, + 4.2233e-01, 7.4591e-01, 4.9411e-01, 7.3164e-03, + 6.4142e-01, 1.8610e-01, 8.3657e-02, 9.4015e-01, + 6.3847e-01, 3.6196e-01, 7.9346e-02, 1.4634e-01, + 2.2837e-01, 7.4911e-01, 4.2836e-01, 1.3955e-01, + 6.8993e-01, 1.1877e-01, 8.1097e-01, 9.2462e-01, + 7.2318e-01, 5.8865e-01, 2.8308e-01, 7.7808e-01, + 7.0938e-02, 6.9274e-01, 2.6040e-01, 2.8821e-01, + 6.2277e-01, 3.3750e-01, 9.5916e-02, 5.6025e-01, + 1.8587e-01, 1.3430e-01, 8.1898e-01, 2.6743e-02, + 6.4900e-01, 5.8362e-01, 4.0559e-01, 2.9547e-01, + 6.7433e-01, 5.2823e-01, 4.7262e-01, 9.3995e-01, + 8.9339e-02, 1.6943e-01, 5.8800e-01, 4.4367e-05, + 2.2097e-01, 3.7423e-01, 2.2539e-01, 4.4003e-01, + 9.8915e-01, 4.4091e-01, 1.0656e-01, 1.5344e-01, + 7.2519e-01, 5.9699e-01, 7.1965e-02, 4.0052e-01, + 2.7171e-01, 4.7895e-01, 9.1613e-01, 4.6335e-01, + 4.5974e-01, 1.2335e-01, 4.4615e-01, 3.5254e-01, + 4.5704e-01, 4.1470e-01, 1.5857e-01, 7.0657e-01, + 9.5276e-01, 3.0298e-01, 3.9274e-01, 7.8468e-01, + 8.8958e-01, 1.9448e-01, 7.1879e-01, 4.1030e-02, + 9.0238e-01, 6.3671e-01, 9.5405e-02, 1.0168e-01, + 4.1058e-01, 9.0160e-01, 6.4259e-01, 5.0151e-01, + 2.6655e-01, 7.4902e-03, 7.2363e-02, 8.7077e-01, + 5.8534e-01, 7.2233e-01, 8.6421e-01, 3.8163e-01, + 9.6462e-01, 3.3331e-01, 5.8701e-01, 5.4928e-02, + 8.2445e-01, 9.2590e-01, 3.6658e-01, 8.8588e-02, + 7.3756e-01, 9.0145e-01, 4.9996e-02, 1.5543e-01, + 9.8218e-01, 2.2848e-02, 8.4637e-01, 6.8505e-01, + 1.2738e-01, 6.5202e-01, 4.3422e-01, 3.4103e-01, + 9.1012e-01, 2.6009e-01, 6.6379e-01, 3.7802e-01, + 8.9283e-01, 1.3918e-01, 2.3091e-01, 6.8330e-01, + 2.3452e-01, 1.6740e-01, 2.1514e-01, 7.5849e-03, + 2.0830e-01, 8.2586e-02, 5.3533e-01, 2.5587e-01, + 9.5023e-02, 3.7023e-01, 8.7677e-01, 4.8681e-01, + 5.3719e-01, 4.3967e-01, 8.1698e-02, 7.3267e-01, + 5.7365e-01, 3.3573e-02, 2.2364e-01, 2.5862e-01, + 9.2231e-01, 5.1216e-02, 7.3406e-01, 8.4074e-01, + 4.5638e-01, 7.2777e-02, 1.4137e-01, 3.8913e-01, + 8.1923e-01, 1.7828e-01, 9.2424e-02, 7.2027e-01, + 2.0692e-01, 2.7893e-01, 8.8651e-01, 7.4276e-01, + 4.1232e-01, 8.8395e-01, 4.0159e-01, 5.2647e-02, + 1.9717e-01, 8.8898e-02, 3.1357e-01, 7.5650e-02, + 9.4360e-01, 7.7138e-01, 2.5687e-01, 1.0858e-01, + 9.6672e-01, 8.5342e-01, 9.8925e-01, 5.5603e-01, + 5.3944e-01, 9.9116e-01, 6.8455e-01, 7.3095e-01, + 1.9429e-01, 8.9368e-01, 3.9650e-01, 4.0964e-01, + 2.9362e-01, 6.9302e-01, 3.7717e-01, 1.2692e-01, + 1.2605e-01, 9.5997e-01, 8.7540e-01, 2.8375e-01, + 8.5874e-01, 1.4864e-01, 2.6346e-01, 6.0958e-01, + 5.7458e-01, 6.7394e-01, 6.0050e-01, 2.3763e-01, + 6.6314e-01, 3.3365e-01, 6.1765e-01, 4.0620e-01, + 8.7438e-01, 9.8532e-01, 5.9766e-01, 6.7120e-01, + 1.7506e-02, 5.4051e-01, 4.9830e-01, 6.5003e-02, + 7.8513e-01, 3.9005e-01, 9.8076e-01, 3.3505e-02, + 9.6726e-01, 9.1984e-01, 3.9086e-01, 1.7735e-01, + 1.6361e-01, 6.1098e-01, 9.0407e-01, 5.5329e-01, + 8.2079e-01, 1.0082e-01, 3.4522e-01, 9.9419e-01, + 6.2236e-01, 1.9698e-01, 9.9778e-01, 1.7484e-01, + 5.3118e-02, 5.1942e-01, 2.2343e-01, 6.0286e-01, + 7.0850e-01, 2.4440e-02, 9.6202e-01, 8.4690e-01, + 6.2085e-01, 8.2319e-01, 5.1762e-01, 1.5657e-01, + 1.7979e-01, 3.6044e-01, 2.1564e-01, 4.1937e-01, + 7.9791e-01, 9.2225e-02, 5.0107e-01, 1.9959e-02, + 7.0551e-01, 9.0273e-01, 4.2007e-01, 6.4904e-01, + 2.5778e-01, 3.0008e-01, 3.0499e-01, 1.2697e-01, + 7.6639e-01, 8.6367e-01, 1.6151e-01, 7.9701e-01, + 7.5332e-01, 7.4266e-01, 8.8710e-01, 7.2489e-01, + 4.5146e-02, 8.1022e-02, 5.1179e-01, 7.7185e-01, + 8.8204e-01, 4.5546e-01, 1.4545e-01, 2.3573e-01, + 5.2241e-01, 4.8154e-01, 4.6868e-01, 1.8867e-01, + 9.4973e-01, 4.1278e-01, 5.4941e-01, 8.8122e-01, + 6.2457e-01, 8.8240e-01, 8.5057e-01, 8.0378e-01, + 7.0767e-01, 5.8087e-02, 2.2950e-01, 6.0973e-01, + 2.8229e-01, 6.0527e-01, 8.2599e-01, 6.3028e-01, + 7.4384e-01, 3.7934e-02, 4.6792e-02, 9.4567e-01, + 1.8478e-02, 1.9046e-01, 3.5354e-01, 7.0889e-01, + 8.0807e-01, 7.8863e-01, 4.0104e-02, 9.9163e-01, + 1.0451e-01, 9.8761e-01, 3.8392e-01, 7.1545e-01, + 6.4733e-02, 7.6189e-01, 6.4056e-01, 5.3299e-01, + 2.5434e-01, 1.6542e-01, 6.6668e-01, 7.0847e-01, + 6.5601e-01, 3.2315e-01, 6.8014e-01, 4.3103e-01, + 8.1626e-01, 4.3562e-01, 2.8644e-01, 1.1637e-01, + 5.0225e-01, 1.0793e-01, 6.6681e-01, 5.5534e-01, + 9.7527e-01, 2.1960e-01, 5.8603e-01, 7.2856e-01, + 1.3710e-01, 9.0989e-01, 7.7713e-01, 1.0524e-01, + 9.3601e-01, 3.8951e-01, 3.7576e-01, 7.8278e-01, + 2.4394e-01, 9.4350e-02, 8.1028e-01, 3.9615e-01, + 2.4646e-01, 5.8460e-01, 6.2453e-01, 4.7787e-01, + 9.6104e-01, 8.6966e-01, 9.2255e-01, 5.1309e-01, + 3.4540e-01, 8.6788e-01, 9.6635e-01, 3.5763e-01, + 6.3967e-01, 4.3588e-01, 6.5554e-01, 9.3966e-01, + 8.0961e-01, 4.6060e-01, 3.5694e-01, 6.5838e-01, + 7.2948e-01, 9.2952e-01, 8.8462e-01, 9.8863e-01, + 2.7250e-01, 3.8098e-01, 4.2554e-01, 6.4624e-01, + 3.3367e-01, 4.5869e-01, 2.0218e-01, 4.8516e-01, + 9.1256e-01, 8.1345e-01, 3.4407e-02, 3.8499e-01, + 4.7365e-01, 9.8248e-01, 2.4915e-01, 7.9528e-01, + 9.3202e-01, 4.4084e-01, 8.0428e-01, 9.8393e-01, + 7.2865e-01, 3.9531e-01, 1.3198e-01, 8.7497e-01, + 7.3354e-01, 4.7996e-01, 7.4129e-01, 8.9665e-01, + 6.5044e-01, 9.2218e-01, 1.3893e-01, 1.5238e-01, + 9.1674e-01, 6.4542e-01, 6.5605e-01, 9.1138e-01, + 6.7099e-01, 1.4650e-01, 6.7595e-01, 9.1416e-01, + 5.8905e-01, 7.4013e-01, 3.2994e-01, 7.1220e-01, + 2.2133e-01, 7.4522e-01, 2.8559e-01, 6.9445e-01, + 4.3987e-01, 5.6830e-01, 2.1607e-01, 5.5145e-01, + 6.3936e-01, 6.6648e-01, 5.1068e-01, 7.8827e-01, + 4.5319e-01, 4.9099e-01, 4.3654e-01, 1.7597e-01, + 7.3977e-01, 6.5678e-01, 3.5071e-01, 1.7823e-01, + 1.9225e-03, 2.3355e-01, 7.5460e-01, 8.5149e-01, + 5.0014e-01, 7.4755e-01, 7.8464e-01, 5.6952e-01, + 3.8927e-01, 1.6926e-01, 9.4110e-01, 1.4769e-01, + 4.9230e-01, 2.2608e-01, 9.5321e-01, 3.1963e-01, + 7.3129e-01, 8.8107e-01, 7.8814e-01, 1.3253e-01, + 3.5124e-01, 6.1196e-01, 2.3859e-02, 5.7859e-01, + 5.2680e-01, 9.4944e-01, 6.6865e-01, 1.7788e-02, + 9.7777e-02, 8.4559e-01, 4.6765e-01, 9.7345e-01, + 3.5074e-01, 4.2051e-01, 5.1999e-01, 5.5933e-02, + 8.9492e-01, 6.0676e-01, 7.5846e-01, 6.9766e-01, + 8.4243e-02, 3.6752e-01, 6.4419e-01, 7.2871e-01, + 5.2863e-01, 4.7718e-01, 6.2234e-01, 7.5486e-01, + 8.2678e-01, 2.6559e-01, 3.7937e-01, 6.2271e-01, + 6.1191e-01, 2.2419e-01, 1.1080e-01, 8.5299e-01, + 2.1380e-01, 5.0685e-01, 1.7212e-01, 7.9519e-01, + 3.0855e-01, 5.6472e-01, 2.4490e-01, 5.7116e-01, + 2.1887e-01, 8.7629e-01, 2.2446e-01, 7.5860e-01, + 1.1173e-01, 9.9116e-01, 4.0299e-01, 2.4565e-02, + 4.6394e-01, 8.2716e-01, 3.1623e-01, 9.6053e-01, + 4.2343e-01, 7.5982e-01, 7.1614e-01, 8.9924e-01, + 5.9298e-01, 2.7547e-01, 1.3911e-02, 4.9724e-02, + 7.8454e-01, 5.4003e-01, 2.6747e-01, 2.8900e-01, + 6.0666e-01, 8.2443e-01, 1.7262e-01, 1.9843e-01, + 6.7698e-01, 2.2390e-01, 3.3380e-01, 8.8920e-01, + 1.8312e-01, 4.9051e-01, 5.5171e-01, 4.6751e-01, + 1.6009e-01, 1.7873e-01, 2.7351e-01, 8.2085e-01, + 4.3688e-01, 2.9450e-01, 1.5102e-01, 9.0274e-01, + 5.8125e-01, 3.3812e-01, 7.1143e-02, 4.9248e-02, + 6.7488e-01, 8.4185e-01, 6.7579e-01, 3.0722e-01, + 8.1113e-01, 1.3143e-01, 3.4878e-02, 8.7344e-01, + 5.2302e-01, 2.0611e-01, 1.1065e-01, 3.1310e-01, + 9.7115e-01, 1.7777e-01, 6.8523e-01, 4.0319e-02, + 2.5683e-01, 9.1754e-01, 5.2761e-01, 2.3040e-01, + 1.4104e-01, 4.3748e-01, 1.7774e-01, 7.8482e-01, + 6.3153e-01, 6.8113e-01, 1.1915e-01, 8.8419e-01, + 7.0372e-02, 5.8728e-02, 1.3189e-01, 3.7442e-01, + 3.4836e-01, 1.6173e-01, 7.1367e-01, 5.7775e-01, + 8.4291e-02, 9.1419e-01, 3.8721e-01, 7.2911e-01, + 3.6578e-01, 8.4340e-02, 6.7193e-01, 6.4038e-01, + 6.6484e-01, 6.7190e-01, 3.3007e-01, 6.8112e-01, + 6.6154e-01, 4.0065e-01, 9.2030e-01, 2.9421e-01, + 7.1666e-01, 7.6127e-01, 4.4054e-01, 4.6397e-02, + 3.9147e-01, 9.5775e-01, 9.4039e-01, 9.2082e-01, + 7.7141e-01, 4.9383e-01, 5.5952e-01, 4.2341e-01, + 1.2114e-01, 3.4486e-01, 3.0565e-01, 7.3858e-01, + 3.2649e-01, 2.1871e-01, 5.1476e-02, 1.2585e-01, + 6.7879e-01, 2.2109e-01, 5.7336e-02, 1.0944e-01, + 4.5828e-01, 9.5739e-01, 8.8833e-01, 2.6773e-01, + 4.2673e-01, 9.7341e-01, 6.5900e-01, 9.1656e-01, + 1.9783e-01, 9.3794e-01, 4.7842e-01, 2.3651e-01, + 2.0630e-01, 1.7482e-01, 4.8137e-01, 9.4729e-01, + 5.9278e-01, 2.0579e-01, 5.7233e-01, 5.8067e-01, + 7.1405e-01, 2.8675e-01, 1.4210e-01, 3.3760e-01, + 9.5835e-01, 4.1999e-01, 9.5016e-01, 4.9618e-01, + 2.0561e-01, 5.5421e-01, 7.9957e-01, 2.9215e-01, + 8.8780e-02, 7.2738e-01, 2.8825e-01, 8.3364e-01, + 8.1758e-01, 8.1613e-01, 5.7465e-01, 3.4749e-01, + 2.6068e-01, 5.0085e-02, 4.0493e-02, 4.0561e-01, + 9.9517e-01, 4.5374e-01, 5.6224e-01, 5.8467e-01, + 3.3923e-01, 8.5094e-01, 5.8962e-01, 9.0608e-01, + 8.1241e-01, 4.1188e-01, 4.4184e-01, 4.8829e-01, + 2.0133e-01, 3.0879e-01, 7.5869e-01, 3.6173e-01, + 8.2590e-01, 9.7541e-01, 5.9211e-02, 7.2655e-01, + 8.4075e-01, 4.1180e-01, 8.2284e-01, 4.3276e-01, + 9.1362e-01, 6.3286e-01, 4.8679e-01, 5.2383e-01, + 3.0250e-01, 3.1090e-01, 7.1126e-01, 1.1967e-01, + 2.8672e-01, 9.4853e-01, 7.6572e-01, 9.9962e-01, + 8.0372e-01, 5.2288e-02, 7.3023e-01, 3.8461e-02, + 6.7985e-01, 7.0171e-01, 3.4371e-01, 5.5361e-01, + 2.1542e-01, 5.2181e-01, 4.7751e-02, 4.6895e-01, + 9.3919e-01, 6.5012e-02, 9.1724e-01, 4.2956e-01, + 9.7120e-01, 8.3026e-01, 8.2377e-01, 3.5846e-01, + 2.5343e-01, 7.3931e-01, 6.9367e-01, 5.4053e-01, + 5.3158e-01, 9.9439e-01, 2.2552e-01, 6.7537e-01, + 2.7969e-02, 6.2516e-01, 6.7665e-04, 9.6077e-01, + 1.8786e-02, 4.7861e-01, 5.1413e-01, 3.7258e-02, + 8.7413e-01, 7.4163e-01, 4.3697e-01, 4.5234e-01, + 9.3942e-01, 6.8835e-01, 6.8624e-01, 2.9234e-01, + 4.5552e-01, 8.5784e-01, 3.4883e-02, 6.1283e-01, + 5.9439e-01, 6.0411e-01, 5.3983e-01, 3.1071e-01, + 6.3268e-01, 3.8947e-01, 4.3129e-01, 2.2361e-01, + 7.1195e-01, 5.3228e-01, 5.4826e-01, 7.8709e-02, + 8.6637e-01, 2.1416e-01, 8.5027e-01, 9.4266e-01, + 7.0691e-01, 3.1370e-01, 6.6442e-01, 4.7991e-01, + 2.8416e-01, 5.1812e-01, 6.1281e-01, 2.3190e-01, + 2.7740e-01, 2.0817e-01, 4.0091e-01, 2.2402e-01, + 6.0020e-01, 5.5782e-01, 7.3112e-01, 8.1508e-01, + 7.3674e-01, 5.8085e-01, 3.4811e-01, 4.7061e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.8610, 0.2031, 0.4276, ..., 0.7862, 0.1485, 0.1233]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 2.457648515701294 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '355068', '-ss', '10000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.454679489135742} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([ 992, 6197, 9017, 9363, 9552, 813, 7391, 7914, 9771, + 3659, 3074, 9783, 1812, 3296, 6743, 6738, 702, 3841, + 3424, 7401, 8317, 3607, 6860, 362, 9639, 2551, 6043, + 7518, 3032, 3130, 3636, 7660, 8439, 4568, 5092, 2436, + 3187, 8837, 3544, 4899, 7429, 2524, 4785, 2134, 2572, + 6350, 9886, 256, 2298, 8028, 70, 8411, 4974, 7198, + 862, 3332, 6593, 8182, 7945, 9825, 6160, 4988, 2031, + 6068, 6614, 9084, 2004, 1721, 3147, 3182, 3118, 5709, + 8746, 4710, 9620, 9376, 140, 8642, 3065, 3887, 1723, + 6936, 4731, 2055, 6480, 1766, 8773, 4579, 5639, 2215, + 5779, 5381, 4350, 7435, 8765, 6377, 799, 8953, 5360, + 9549, 3017, 8743, 487, 1241, 3723, 8122, 2611, 4227, + 6659, 2898, 5722, 11, 7624, 8169, 4785, 7800, 4631, + 3130, 4863, 9634, 5871, 800, 3594, 8741, 4205, 3101, + 403, 2763, 6841, 5270, 2637, 4779, 7008, 3042, 8955, + 2132, 3726, 4189, 3779, 5125, 687, 8127, 1804, 800, + 4029, 5445, 9633, 4529, 3236, 8927, 7147, 154, 8438, + 5636, 8527, 2578, 3718, 5040, 103, 1957, 7063, 2451, + 2886, 8775, 5823, 4409, 7988, 4492, 8452, 3536, 6016, + 1726, 2580, 5789, 8639, 54, 8903, 8623, 9065, 418, + 1054, 6406, 6818, 9993, 9619, 1884, 7180, 8499, 5628, + 4305, 3227, 510, 9047, 1678, 8341, 5598, 4299, 1692, + 8734, 8635, 2110, 8248, 9893, 1356, 6575, 7421, 6363, + 4297, 3484, 1169, 1241, 1425, 4649, 5883, 6180, 8669, + 4201, 788, 1097, 4297, 6034, 8866, 2786, 645, 1246, + 167, 6015, 4888, 6451, 9244, 1083, 9764, 2561, 5089, + 8184, 4035, 1167, 3589, 3443, 7780, 2766, 3560, 6969, + 8333, 8748, 9457, 3481, 2796, 4766, 3738, 4973, 1369, + 9893, 5697, 1546, 5501, 8115, 5773, 2637, 7430, 7145, + 9082, 312, 559, 9552, 9655, 1249, 329, 3273, 2053, + 2825, 1961, 5469, 2719, 2587, 9942, 8019, 2559, 124, + 6716, 2095, 5210, 2684, 8843, 6904, 8672, 3894, 1387, + 9061, 9272, 6124, 2456, 8493, 1887, 9266, 3449, 7919, + 6211, 5260, 5307, 416, 9086, 9227, 2089, 7248, 8083, + 736, 7718, 2907, 6348, 379, 6932, 4292, 5415, 9040, + 6461, 7684, 161, 2395, 2926, 8759, 4212, 7577, 2170, + 2842, 7996, 7763, 7275, 6393, 6387, 7037, 6038, 3200, + 9689, 5174, 7963, 922, 2697, 4385, 7305, 2388, 2882, + 7902, 8391, 9072, 465, 842, 8275, 3927, 402, 6723, + 4395, 7064, 1153, 6667, 4093, 515, 9382, 8872, 80, + 6685, 107, 2838, 695, 5247, 6095, 4724, 4280, 7476, + 2216, 2653, 7304, 8752, 7937, 4352, 5517, 6003, 2890, + 5868, 3874, 1071, 5868, 504, 8200, 5663, 2083, 8059, + 5885, 2704, 6554, 3795, 8168, 5707, 1435, 5436, 547, + 4674, 6558, 8024, 9883, 2937, 8276, 708, 3652, 9117, + 6415, 1746, 4168, 7306, 1890, 7445, 8049, 4043, 6422, + 8028, 4753, 279, 552, 1928, 7780, 3761, 9126, 5063, + 8243, 8819, 9608, 8907, 7215, 3984, 3222, 232, 6482, + 5518, 1304, 2970, 6697, 8420, 6280, 3556, 2455, 4432, + 7836, 2142, 8294, 4706, 2188, 3414, 4993, 2971, 749, + 8344, 4214, 7934, 8210, 701, 4237, 5917, 8563, 1985, + 2163, 1461, 3724, 4049, 4376, 5458, 6579, 1327, 2486, + 8667, 105, 2470, 425, 8314, 425, 9772, 4139, 6257, + 1691, 5611, 9904, 7172, 4768, 7051, 311, 7563, 2588, + 4556, 1076, 5750, 9387, 6607, 3505, 7299, 5162, 3677, + 6232, 3623, 8118, 4209, 6379, 2137, 7114, 2750, 727, + 1150, 9020, 6095, 8781, 964, 3401, 4498, 8869, 8433, + 4064, 657, 9799, 1100, 900, 968, 103, 252, 4771, + 8818, 5131, 9850, 7676, 9736, 7043, 6168, 1582, 4069, + 6126, 658, 3236, 5817, 4964, 9455, 1229, 1018, 2768, + 8936, 2667, 5314, 9838, 2738, 7500, 5606, 5093, 8502, + 6298, 1310, 4420, 1366, 445, 8350, 1331, 9081, 6878, + 6716, 5203, 9542, 600, 2635, 5221, 473, 3212, 9608, + 6118, 6306, 2169, 4202, 1311, 65, 4991, 1280, 9130, + 4214, 4841, 4766, 9189, 9111, 831, 6351, 3710, 7914, + 8990, 6031, 2495, 4023, 664, 4119, 8829, 3665, 7182, + 834, 5668, 3157, 6886, 7474, 7456, 7457, 5700, 5968, + 8752, 8280, 3581, 3363, 1028, 7420, 7605, 8189, 121, + 6923, 5205, 8333, 1027, 9553, 996, 9473, 6716, 3807, + 6199, 1329, 9080, 5266, 9046, 7133, 2644, 4177, 1736, + 5969, 6489, 8323, 8156, 4535, 3154, 6753, 2311, 1301, + 9560, 5364, 1311, 5827, 817, 1581, 9851, 6340, 4555, + 4149, 2665, 4030, 4378, 9486, 2986, 7488, 8663, 1098, + 8643, 9528, 5753, 3076, 1923, 6655, 4701, 2564, 2759, + 2614, 8312, 5369, 8644, 4278, 1089, 5880, 7934, 5654, + 9290, 529, 8307, 6094, 8613, 9753, 1317, 8719, 190, + 7897, 5396, 3284, 1788, 5467, 3357, 9704, 5015, 9457, + 9250, 4832, 8383, 5572, 6280, 1996, 88, 956, 9998, + 1522, 9106, 5381, 3536, 8254, 7345, 5671, 8230, 5557, + 7077, 4918, 3339, 425, 2028, 3163, 2588, 2424, 8060, + 4231, 8290, 1425, 1292, 1812, 7720, 2121, 440, 4305, + 3592, 3508, 6973, 1918, 3252, 1660, 7498, 5382, 4944, + 5506, 9328, 4854, 3012, 7765, 3368, 8118, 2049, 2553, + 9755, 5902, 6417, 1245, 6475, 5125, 6931, 355, 9409, + 765, 4975, 1840, 7347, 9096, 357, 2097, 7182, 9205, + 7495, 5566, 9152, 8183, 4955, 5578, 7022, 5514, 5444, + 6267, 8614, 5088, 3022, 6603, 9398, 7901, 9286, 3676, + 22, 1556, 106, 2739, 2806, 5294, 1354, 758, 8713, + 7422, 9061, 3417, 6963, 6041, 7734, 6184, 3868, 9643, + 5902, 6482, 1297, 4950, 9725, 9931, 7629, 8271, 9486, + 27, 9302, 9426, 8838, 7517, 2974, 1849, 2435, 6414, + 9829, 5071, 1041, 7434, 2451, 9172, 1803, 6122, 7707, + 6607, 6135, 3951, 3504, 6516, 4155, 1980, 6024, 8612, + 5327, 6044, 2155, 1648, 2058, 6766, 6976, 7736, 467, + 6836, 6292, 7090, 356, 9671, 9450, 5630, 9326, 3917, + 2056, 2251, 5784, 7410, 5124, 2541, 5740, 6770, 416, + 5387, 4977, 7567, 7754, 3358, 3577, 5938, 8258, 7308, + 6329, 4625, 8734, 2615, 2718, 5600, 116, 3518, 1951, + 5520, 8934, 148, 8573, 4159, 3406, 6214, 3760, 6900, + 1693, 2034, 3016, 9088, 8300, 9059, 2264, 3846, 3681, + 4154, 8527, 1029, 1780, 2482, 6046, 4466, 99, 4992, + 2888, 7277, 8577, 3498, 7469, 3793, 8496, 7986, 601, + 3094, 7023, 7883, 7345, 1271, 9517, 1909, 7362, 9121, + 1135, 7623, 2399, 4704, 7096, 5341, 4961, 5464, 2648, + 4405, 2528, 6055, 2121, 4870, 9037, 1532, 2739, 7180, + 3297, 9018, 4479, 7484, 2676, 2125, 5337, 1610, 4725, + 3239, 3524, 1732, 4592, 9536, 2480, 9753, 9282, 5967, + 7240, 8320, 8032, 3929, 2959, 4292, 8204, 2208, 6636, + 1874, 3136, 5027, 385, 4087, 9579, 4067, 3660, 1477, + 4241, 5719, 9858, 422, 1706, 8163, 1620, 4996, 2023, + 1900, 6432, 6172, 184, 1375, 9699, 1668, 252, 7117, + 5147]), + values=tensor([4.3537e-01, 3.9981e-01, 3.9884e-01, 6.8960e-01, + 4.8973e-01, 1.4335e-01, 5.3666e-01, 3.0947e-01, + 5.1729e-01, 5.7026e-01, 7.4978e-01, 2.6557e-01, + 2.1578e-01, 9.6159e-01, 3.3602e-02, 1.9291e-01, + 3.4528e-01, 7.2294e-01, 8.8444e-01, 7.8295e-01, + 2.1309e-01, 6.4920e-01, 1.7645e-01, 1.5566e-01, + 6.3153e-01, 3.7064e-01, 6.8757e-01, 1.3889e-01, + 8.4305e-01, 2.6216e-01, 4.0551e-01, 7.0589e-01, + 9.3137e-01, 4.2583e-01, 4.6336e-01, 2.6140e-01, + 7.3049e-01, 6.7786e-01, 1.8448e-01, 1.6195e-01, + 2.9220e-01, 3.2207e-01, 1.0179e-01, 8.4428e-01, + 5.1327e-01, 2.5118e-01, 4.7234e-01, 9.2641e-01, + 9.1870e-01, 7.5642e-01, 6.0164e-01, 8.1116e-01, + 4.0225e-01, 6.1931e-01, 9.5682e-01, 7.2107e-01, + 3.5447e-01, 8.2000e-01, 6.7449e-01, 7.6617e-01, + 6.7468e-01, 3.9826e-02, 1.8946e-01, 8.3726e-02, + 8.4893e-01, 5.4004e-01, 5.3572e-03, 1.5513e-01, + 3.2889e-01, 6.7577e-01, 4.1663e-01, 1.3433e-01, + 2.1308e-01, 4.0621e-01, 1.7773e-01, 4.6669e-01, + 7.0394e-01, 9.5283e-01, 9.6965e-01, 3.5330e-01, + 7.8285e-01, 9.6208e-01, 8.1898e-01, 3.8443e-01, + 7.3563e-01, 1.5837e-01, 4.3445e-01, 2.2030e-01, + 1.1584e-01, 2.8973e-01, 4.9374e-01, 1.8947e-01, + 2.0179e-01, 4.4464e-01, 2.9576e-02, 8.4870e-01, + 9.1479e-01, 1.2898e-01, 3.7882e-01, 9.1046e-01, + 9.8325e-01, 2.1736e-01, 8.3977e-01, 2.4636e-02, + 5.9983e-01, 4.8508e-01, 1.0133e-01, 9.2427e-01, + 3.8742e-01, 9.1992e-01, 2.1236e-01, 3.7146e-02, + 4.4093e-01, 1.4010e-01, 5.5600e-01, 9.8858e-01, + 3.9218e-01, 5.6724e-01, 4.2599e-01, 5.8652e-01, + 9.5954e-01, 2.4908e-01, 6.9651e-01, 1.5425e-01, + 3.0458e-01, 9.4539e-01, 2.6284e-01, 1.7345e-02, + 7.5959e-01, 8.9099e-01, 3.1513e-01, 4.9067e-01, + 2.5794e-01, 8.9944e-01, 6.1980e-02, 9.2183e-01, + 4.6175e-01, 9.7935e-01, 1.7864e-01, 6.2861e-01, + 1.1111e-01, 1.0233e-01, 2.3174e-02, 3.6532e-01, + 7.6410e-01, 9.0695e-01, 3.9577e-01, 6.8919e-01, + 9.8700e-01, 3.1611e-01, 8.0436e-02, 1.9359e-01, + 5.1339e-01, 5.3702e-01, 7.5160e-01, 8.1859e-01, + 5.0804e-02, 3.9069e-01, 2.6045e-01, 7.6514e-01, + 2.5050e-01, 9.1500e-01, 5.6797e-01, 5.5091e-01, + 4.2969e-01, 4.9864e-01, 8.4568e-01, 8.8357e-01, + 2.4968e-01, 7.3277e-02, 2.8443e-01, 7.5808e-01, + 9.4787e-01, 7.9605e-01, 8.9312e-01, 9.9357e-01, + 9.0836e-01, 3.4784e-01, 7.5111e-01, 7.1483e-01, + 2.9800e-01, 1.6662e-01, 7.0094e-01, 3.6745e-01, + 1.2262e-01, 7.3403e-01, 9.2937e-01, 3.8392e-01, + 5.4464e-01, 5.1342e-01, 8.9046e-01, 9.8258e-01, + 5.2964e-01, 6.4014e-01, 8.1913e-01, 6.2432e-01, + 9.6651e-01, 4.7961e-01, 5.0049e-01, 7.8570e-01, + 1.7991e-01, 3.4938e-01, 2.3127e-01, 7.4863e-01, + 2.9275e-01, 6.4424e-04, 4.4849e-01, 5.8097e-01, + 7.3619e-01, 7.2211e-01, 2.5817e-01, 4.3577e-01, + 7.5637e-01, 2.9790e-01, 5.4852e-01, 8.1898e-02, + 4.6703e-01, 9.8959e-01, 5.2950e-01, 6.1777e-01, + 1.1500e-01, 7.0529e-01, 3.6459e-01, 9.7895e-01, + 3.2305e-01, 2.5527e-01, 8.7675e-01, 1.0971e-01, + 5.0946e-01, 3.9227e-01, 9.7367e-01, 6.3673e-01, + 9.5168e-02, 7.2298e-01, 1.3574e-01, 5.7008e-01, + 9.6100e-01, 5.5062e-01, 8.5493e-01, 2.6996e-01, + 7.2852e-01, 5.0724e-03, 7.0486e-01, 3.7174e-01, + 4.6905e-01, 1.6221e-01, 6.1008e-01, 1.7684e-01, + 7.1183e-01, 5.0400e-01, 2.9966e-01, 7.0806e-01, + 1.9128e-01, 1.0265e-01, 2.0013e-01, 9.0258e-01, + 4.2371e-01, 3.9347e-01, 3.4903e-01, 4.3909e-01, + 7.1615e-01, 8.3353e-02, 8.2383e-01, 1.3046e-01, + 1.6372e-02, 5.4070e-01, 8.6800e-01, 5.0743e-01, + 9.6013e-01, 3.3358e-01, 4.5913e-01, 6.2492e-01, + 1.7392e-01, 8.0187e-01, 9.5935e-01, 8.0293e-01, + 7.3448e-01, 9.6838e-01, 4.6566e-01, 7.5415e-01, + 1.7773e-01, 4.6671e-01, 1.9277e-01, 1.9528e-01, + 3.7586e-01, 9.7197e-01, 7.1717e-01, 7.5047e-01, + 2.4187e-01, 1.9655e-01, 9.9432e-01, 9.7618e-01, + 2.8431e-01, 6.9296e-01, 1.9736e-01, 9.6645e-01, + 1.6096e-02, 3.4791e-01, 4.1191e-01, 2.0523e-01, + 6.2665e-01, 4.2102e-01, 2.3025e-02, 1.6970e-01, + 9.9316e-01, 7.6355e-01, 2.0605e-02, 1.2488e-01, + 4.0790e-01, 5.6708e-01, 8.2480e-01, 7.9370e-01, + 9.2119e-01, 8.2742e-01, 7.5665e-01, 2.5768e-01, + 4.3114e-01, 6.6583e-01, 7.7116e-01, 7.6309e-01, + 7.1228e-01, 8.7464e-01, 8.7019e-01, 9.3966e-01, + 4.2135e-01, 5.7594e-01, 6.2870e-01, 9.1797e-01, + 9.6945e-01, 7.2933e-01, 8.8178e-01, 1.8302e-01, + 2.9607e-01, 4.6905e-02, 8.6133e-01, 6.0869e-02, + 1.5112e-02, 3.4687e-01, 5.7238e-01, 2.9485e-01, + 9.3423e-01, 7.1957e-01, 1.0934e-01, 7.9192e-01, + 6.5331e-01, 4.3923e-01, 6.0516e-01, 5.7033e-01, + 6.0523e-01, 8.7734e-01, 9.9250e-01, 4.1305e-01, + 7.8645e-01, 5.1140e-01, 4.3184e-01, 4.2612e-01, + 2.3541e-01, 6.0161e-01, 2.3674e-01, 6.7388e-01, + 8.0508e-01, 6.7986e-01, 8.2585e-01, 8.4326e-01, + 5.9880e-01, 2.6417e-01, 2.6762e-01, 1.7359e-01, + 3.0395e-01, 6.5434e-02, 8.1628e-01, 9.8237e-01, + 3.0332e-01, 8.1081e-01, 9.1721e-01, 5.4623e-04, + 7.0012e-01, 5.1769e-01, 6.0702e-01, 3.4591e-01, + 2.2090e-01, 4.2492e-01, 7.1125e-01, 9.1429e-03, + 3.3527e-01, 8.6846e-01, 6.7073e-01, 7.9698e-01, + 5.3968e-01, 7.8654e-01, 4.4203e-03, 3.3520e-01, + 3.0764e-01, 7.6575e-01, 2.1197e-02, 5.3096e-01, + 3.9667e-01, 7.2879e-03, 2.9349e-01, 4.5592e-01, + 1.5381e-01, 9.7142e-01, 6.6952e-01, 3.8729e-01, + 8.1140e-01, 6.7995e-01, 7.1422e-01, 2.4486e-01, + 7.5636e-01, 2.3310e-01, 9.5289e-01, 4.8022e-01, + 8.5813e-01, 5.9732e-01, 5.3636e-01, 3.9112e-01, + 1.2996e-01, 3.2122e-01, 4.8399e-01, 2.6184e-01, + 2.1104e-01, 4.9276e-01, 3.8299e-01, 7.5953e-01, + 3.4044e-01, 3.1825e-02, 1.5820e-01, 8.7087e-01, + 4.3387e-02, 6.2383e-01, 4.5976e-01, 4.9470e-01, + 1.0368e-01, 9.6785e-01, 7.1734e-01, 2.4049e-01, + 8.7258e-02, 7.1240e-01, 8.6015e-01, 1.8576e-01, + 5.0698e-01, 6.5363e-01, 3.8025e-01, 8.7343e-01, + 5.1193e-01, 5.3928e-01, 1.8814e-01, 2.6343e-02, + 7.7821e-01, 1.7044e-01, 4.0618e-02, 4.1934e-01, + 6.3190e-01, 9.4536e-01, 6.1824e-01, 9.8729e-01, + 2.7125e-01, 2.6378e-03, 1.0222e-01, 2.1086e-01, + 6.0947e-01, 3.0901e-01, 5.5343e-01, 8.9244e-01, + 8.2691e-01, 3.0989e-01, 8.3851e-02, 8.8393e-01, + 7.4166e-01, 8.8516e-01, 7.3579e-01, 2.6421e-01, + 3.2478e-01, 9.1496e-02, 8.1097e-01, 4.7135e-01, + 6.3379e-01, 3.0775e-01, 2.7515e-01, 5.6137e-01, + 3.0909e-02, 5.1584e-01, 7.5795e-01, 2.7899e-01, + 8.0581e-01, 6.4873e-01, 7.2416e-01, 7.1340e-01, + 2.0196e-01, 3.9555e-01, 2.0446e-01, 2.4934e-01, + 1.5430e-01, 7.4440e-01, 8.0057e-01, 6.0388e-01, + 7.1343e-01, 3.5035e-01, 4.2040e-01, 8.6602e-01, + 9.4478e-02, 5.4928e-01, 4.0094e-01, 7.7335e-01, + 3.0423e-01, 1.3574e-02, 2.3620e-01, 7.1720e-01, + 9.1173e-01, 2.1903e-01, 8.9596e-01, 4.5128e-01, + 3.5343e-01, 2.1663e-01, 6.2211e-01, 4.7255e-01, + 3.7282e-01, 6.8342e-01, 9.0827e-01, 4.2800e-01, + 1.9686e-01, 3.0599e-01, 1.4444e-01, 8.8002e-01, + 4.9084e-01, 8.8924e-01, 6.3872e-01, 8.2477e-01, + 9.7932e-02, 4.9532e-01, 1.8488e-01, 2.9399e-01, + 8.4609e-01, 4.2726e-01, 7.2259e-01, 1.8113e-01, + 5.6825e-01, 6.8508e-02, 6.4229e-01, 2.9274e-01, + 2.6580e-01, 4.9086e-01, 7.3508e-01, 6.2433e-02, + 6.8630e-01, 6.1930e-01, 5.2008e-01, 2.3177e-01, + 9.0737e-01, 5.2188e-02, 8.9481e-01, 9.4065e-01, + 7.5609e-01, 5.2533e-01, 7.8363e-01, 2.1739e-01, + 7.1809e-01, 5.5801e-01, 2.6908e-01, 2.2939e-03, + 5.4688e-01, 4.5970e-01, 3.0997e-01, 1.0388e-01, + 3.7488e-03, 1.3490e-01, 7.4331e-01, 6.6803e-01, + 2.2280e-01, 8.7632e-01, 7.6913e-01, 8.4630e-01, + 6.0233e-01, 5.3270e-01, 3.2736e-01, 9.5029e-01, + 4.2112e-02, 1.4441e-01, 5.9972e-01, 6.4757e-01, + 7.4805e-01, 6.0193e-01, 1.2325e-01, 8.1393e-01, + 6.0128e-01, 9.4638e-01, 7.9005e-02, 2.7930e-01, + 5.6736e-01, 8.5472e-01, 8.2769e-01, 7.6410e-01, + 1.2565e-02, 4.7651e-01, 9.0884e-02, 4.3338e-01, + 3.5385e-01, 2.3199e-01, 8.4134e-01, 6.4207e-01, + 9.5298e-01, 9.7793e-01, 2.2580e-01, 9.9070e-01, + 6.2713e-01, 6.2690e-01, 7.4899e-01, 1.3724e-01, + 1.4670e-01, 9.2675e-01, 5.3520e-01, 1.8449e-01, + 2.0527e-01, 2.8306e-01, 3.1045e-01, 5.8558e-01, + 3.1540e-01, 1.1982e-01, 8.8444e-01, 7.3545e-01, + 4.2022e-01, 8.1509e-03, 3.1302e-01, 8.7632e-01, + 7.9319e-01, 1.7007e-01, 1.1811e-01, 8.2777e-01, + 5.1290e-02, 3.3333e-02, 3.9343e-01, 8.2624e-01, + 8.3659e-01, 9.0654e-01, 5.0174e-01, 8.3985e-01, + 3.9016e-01, 8.3937e-01, 2.7243e-01, 5.7402e-01, + 9.3932e-01, 8.4938e-01, 7.6935e-01, 1.0589e-01, + 6.0844e-01, 1.3969e-01, 4.8714e-01, 2.3100e-01, + 1.6273e-01, 1.8331e-01, 6.7573e-01, 3.2264e-01, + 4.1490e-01, 1.0348e-01, 8.0008e-01, 2.9827e-01, + 9.1387e-01, 1.0812e-01, 4.5369e-01, 4.3080e-01, + 8.4733e-01, 1.7047e-01, 7.7975e-01, 2.8628e-01, + 5.4017e-01, 2.9737e-01, 6.4224e-01, 8.3954e-01, + 4.7604e-01, 4.3814e-02, 6.9739e-01, 4.8277e-01, + 7.6740e-01, 9.8853e-01, 6.9194e-01, 3.4640e-01, + 3.0884e-01, 9.5212e-01, 3.2579e-01, 6.1841e-01, + 4.0543e-01, 9.3466e-01, 4.8328e-02, 7.5863e-01, + 9.6793e-01, 9.2495e-01, 2.8997e-01, 2.9497e-01, + 1.9820e-02, 2.5772e-01, 2.8827e-01, 8.1536e-01, + 4.1273e-01, 9.0435e-01, 3.4102e-01, 2.8340e-01, + 5.2361e-01, 8.9342e-01, 9.9789e-01, 9.4787e-01, + 4.5467e-02, 4.3271e-01, 6.5239e-01, 5.8289e-01, + 8.7290e-01, 6.7020e-01, 6.4508e-01, 4.1572e-01, + 6.3199e-01, 1.3701e-01, 4.8627e-01, 5.3563e-01, + 9.9708e-01, 3.9874e-01, 8.7427e-01, 3.5048e-01, + 5.0099e-01, 6.8373e-02, 8.5572e-02, 9.7413e-01, + 9.1182e-01, 3.6097e-01, 1.5867e-01, 1.1895e-02, + 6.6486e-01, 7.5586e-01, 3.0038e-01, 7.0781e-01, + 7.0691e-01, 9.3527e-01, 8.7719e-01, 6.8604e-01, + 5.9175e-02, 1.8325e-01, 3.0814e-01, 2.1317e-01, + 1.4056e-01, 3.1655e-02, 2.9670e-01, 3.2601e-01, + 3.5245e-01, 1.1448e-01, 7.1016e-01, 5.8561e-01, + 7.2949e-01, 4.6438e-02, 9.4722e-01, 8.1716e-01, + 8.3412e-01, 8.6405e-01, 7.0565e-01, 2.2713e-01, + 3.2024e-01, 8.6006e-01, 9.1130e-01, 7.1546e-01, + 1.1726e-01, 2.6812e-01, 7.0313e-01, 9.0525e-01, + 6.6813e-01, 6.0951e-01, 4.2406e-01, 6.6197e-01, + 3.4051e-01, 5.0594e-01, 5.6568e-01, 6.5500e-01, + 3.9133e-02, 6.8784e-02, 1.6962e-01, 1.9637e-01, + 3.6856e-01, 8.2962e-01, 7.4094e-01, 2.4617e-01, + 9.3733e-01, 3.7437e-01, 3.0715e-01, 2.8827e-02, + 9.9026e-01, 9.8403e-01, 8.8298e-01, 6.6462e-03, + 5.4973e-01, 6.3904e-01, 6.8939e-01, 7.5675e-01, + 6.4261e-01, 1.9556e-01, 3.6342e-01, 9.3446e-02, + 5.8282e-01, 9.4687e-01, 8.8520e-01, 2.8238e-01, + 7.1927e-01, 5.7538e-01, 1.2304e-01, 4.4104e-01, + 5.8638e-01, 4.4160e-01, 7.9530e-01, 4.3712e-01, + 8.3982e-01, 3.7432e-01, 4.7695e-01, 4.5874e-01, + 8.8004e-01, 7.2230e-01, 1.1009e-01, 6.5993e-01, + 9.8603e-01, 3.2649e-01, 4.1843e-01, 9.7294e-01, + 2.0848e-01, 9.6740e-01, 4.9238e-01, 6.1925e-01, + 5.1499e-01, 5.4071e-01, 9.9466e-01, 8.4870e-01, + 2.2469e-01, 7.3287e-02, 1.1009e-01, 9.8605e-01, + 1.3893e-01, 5.6160e-01, 9.1012e-01, 1.6216e-01, + 5.4134e-01, 6.9990e-02, 4.5429e-01, 8.4017e-02, + 9.5044e-02, 8.9018e-01, 4.5031e-01, 5.0410e-01, + 9.2543e-01, 5.2699e-01, 3.1440e-01, 9.0484e-01, + 3.5531e-01, 6.7819e-03, 4.4191e-01, 7.3541e-01, + 1.3631e-01, 6.0004e-01, 1.8558e-01, 5.0108e-01, + 1.6921e-01, 7.4587e-01, 5.7250e-01, 9.1504e-01, + 5.2848e-01, 4.3565e-01, 5.2381e-01, 3.2068e-01, + 4.2602e-01, 1.7899e-01, 1.6693e-01, 4.4754e-01, + 8.0900e-01, 7.0461e-01, 2.9947e-01, 2.6865e-01, + 7.7782e-01, 5.2593e-01, 3.3560e-01, 2.9390e-01, + 1.0731e-01, 5.9751e-01, 3.5259e-01, 8.0940e-01, + 5.4338e-02, 6.2392e-01, 9.8973e-01, 7.3598e-01, + 5.6690e-01, 9.7288e-01, 4.5821e-02, 6.3232e-01, + 6.6311e-01, 5.3438e-01, 1.0203e-01, 9.2045e-01, + 4.1039e-01, 6.9228e-01, 4.8738e-01, 8.0095e-01, + 8.7185e-01, 8.3497e-01, 6.7328e-02, 7.6656e-01, + 2.6182e-01, 4.5312e-01, 5.0198e-01, 2.1211e-02, + 3.8491e-01, 9.4217e-01, 5.0357e-01, 8.3401e-02, + 7.1052e-01, 4.2509e-01, 7.7683e-01, 3.7078e-01, + 5.1501e-01, 2.7444e-01, 9.1630e-01, 7.4677e-01, + 7.2155e-01, 4.0998e-01, 6.4794e-02, 1.7857e-01, + 3.9293e-01, 9.5205e-01, 9.1388e-01, 6.5620e-01, + 5.1912e-01, 1.6899e-01, 8.5856e-01, 4.4368e-01, + 1.5869e-01, 2.2263e-01, 7.5465e-01, 3.6280e-01, + 4.7400e-02, 9.5410e-01, 4.2697e-02, 6.7796e-01, + 9.8275e-01, 2.7874e-01, 2.6106e-01, 3.9901e-01, + 5.5379e-01, 9.3950e-02, 4.9186e-01, 1.1764e-03, + 7.2495e-01, 5.8979e-01, 6.2882e-01, 1.1772e-01, + 5.5400e-01, 3.5765e-01, 7.8510e-01, 3.2378e-01, + 8.8910e-01, 1.5997e-02, 5.5679e-02, 8.9152e-01, + 3.8640e-01, 3.8910e-01, 2.3145e-01, 3.6510e-02, + 9.5621e-01, 1.5088e-01, 4.7550e-02, 6.2587e-01, + 2.8134e-01, 4.9615e-01, 4.5673e-01, 6.4038e-01, + 9.8951e-01, 3.9053e-01, 7.4142e-02, 7.8090e-01, + 2.9839e-01, 2.9025e-01, 9.5796e-01, 1.8690e-01, + 8.4195e-01, 6.6466e-01, 1.0805e-01, 7.5828e-01, + 6.7259e-01, 5.1823e-01, 8.8034e-01, 7.2995e-02, + 5.6715e-01, 5.7986e-01, 1.6088e-01, 1.6596e-02, + 9.6255e-02, 5.8882e-01, 1.3704e-01, 1.8041e-02, + 7.3056e-01, 6.9725e-01, 3.9527e-01, 4.4598e-01, + 9.7556e-01, 3.1195e-01, 1.4884e-01, 1.9870e-01, + 1.2136e-01, 2.2091e-01, 6.2259e-01, 8.8417e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.1885, 0.9110, 0.8668, ..., 0.5988, 0.5354, 0.4490]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.454679489135742 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([ 992, 6197, 9017, 9363, 9552, 813, 7391, 7914, 9771, + 3659, 3074, 9783, 1812, 3296, 6743, 6738, 702, 3841, + 3424, 7401, 8317, 3607, 6860, 362, 9639, 2551, 6043, + 7518, 3032, 3130, 3636, 7660, 8439, 4568, 5092, 2436, + 3187, 8837, 3544, 4899, 7429, 2524, 4785, 2134, 2572, + 6350, 9886, 256, 2298, 8028, 70, 8411, 4974, 7198, + 862, 3332, 6593, 8182, 7945, 9825, 6160, 4988, 2031, + 6068, 6614, 9084, 2004, 1721, 3147, 3182, 3118, 5709, + 8746, 4710, 9620, 9376, 140, 8642, 3065, 3887, 1723, + 6936, 4731, 2055, 6480, 1766, 8773, 4579, 5639, 2215, + 5779, 5381, 4350, 7435, 8765, 6377, 799, 8953, 5360, + 9549, 3017, 8743, 487, 1241, 3723, 8122, 2611, 4227, + 6659, 2898, 5722, 11, 7624, 8169, 4785, 7800, 4631, + 3130, 4863, 9634, 5871, 800, 3594, 8741, 4205, 3101, + 403, 2763, 6841, 5270, 2637, 4779, 7008, 3042, 8955, + 2132, 3726, 4189, 3779, 5125, 687, 8127, 1804, 800, + 4029, 5445, 9633, 4529, 3236, 8927, 7147, 154, 8438, + 5636, 8527, 2578, 3718, 5040, 103, 1957, 7063, 2451, + 2886, 8775, 5823, 4409, 7988, 4492, 8452, 3536, 6016, + 1726, 2580, 5789, 8639, 54, 8903, 8623, 9065, 418, + 1054, 6406, 6818, 9993, 9619, 1884, 7180, 8499, 5628, + 4305, 3227, 510, 9047, 1678, 8341, 5598, 4299, 1692, + 8734, 8635, 2110, 8248, 9893, 1356, 6575, 7421, 6363, + 4297, 3484, 1169, 1241, 1425, 4649, 5883, 6180, 8669, + 4201, 788, 1097, 4297, 6034, 8866, 2786, 645, 1246, + 167, 6015, 4888, 6451, 9244, 1083, 9764, 2561, 5089, + 8184, 4035, 1167, 3589, 3443, 7780, 2766, 3560, 6969, + 8333, 8748, 9457, 3481, 2796, 4766, 3738, 4973, 1369, + 9893, 5697, 1546, 5501, 8115, 5773, 2637, 7430, 7145, + 9082, 312, 559, 9552, 9655, 1249, 329, 3273, 2053, + 2825, 1961, 5469, 2719, 2587, 9942, 8019, 2559, 124, + 6716, 2095, 5210, 2684, 8843, 6904, 8672, 3894, 1387, + 9061, 9272, 6124, 2456, 8493, 1887, 9266, 3449, 7919, + 6211, 5260, 5307, 416, 9086, 9227, 2089, 7248, 8083, + 736, 7718, 2907, 6348, 379, 6932, 4292, 5415, 9040, + 6461, 7684, 161, 2395, 2926, 8759, 4212, 7577, 2170, + 2842, 7996, 7763, 7275, 6393, 6387, 7037, 6038, 3200, + 9689, 5174, 7963, 922, 2697, 4385, 7305, 2388, 2882, + 7902, 8391, 9072, 465, 842, 8275, 3927, 402, 6723, + 4395, 7064, 1153, 6667, 4093, 515, 9382, 8872, 80, + 6685, 107, 2838, 695, 5247, 6095, 4724, 4280, 7476, + 2216, 2653, 7304, 8752, 7937, 4352, 5517, 6003, 2890, + 5868, 3874, 1071, 5868, 504, 8200, 5663, 2083, 8059, + 5885, 2704, 6554, 3795, 8168, 5707, 1435, 5436, 547, + 4674, 6558, 8024, 9883, 2937, 8276, 708, 3652, 9117, + 6415, 1746, 4168, 7306, 1890, 7445, 8049, 4043, 6422, + 8028, 4753, 279, 552, 1928, 7780, 3761, 9126, 5063, + 8243, 8819, 9608, 8907, 7215, 3984, 3222, 232, 6482, + 5518, 1304, 2970, 6697, 8420, 6280, 3556, 2455, 4432, + 7836, 2142, 8294, 4706, 2188, 3414, 4993, 2971, 749, + 8344, 4214, 7934, 8210, 701, 4237, 5917, 8563, 1985, + 2163, 1461, 3724, 4049, 4376, 5458, 6579, 1327, 2486, + 8667, 105, 2470, 425, 8314, 425, 9772, 4139, 6257, + 1691, 5611, 9904, 7172, 4768, 7051, 311, 7563, 2588, + 4556, 1076, 5750, 9387, 6607, 3505, 7299, 5162, 3677, + 6232, 3623, 8118, 4209, 6379, 2137, 7114, 2750, 727, + 1150, 9020, 6095, 8781, 964, 3401, 4498, 8869, 8433, + 4064, 657, 9799, 1100, 900, 968, 103, 252, 4771, + 8818, 5131, 9850, 7676, 9736, 7043, 6168, 1582, 4069, + 6126, 658, 3236, 5817, 4964, 9455, 1229, 1018, 2768, + 8936, 2667, 5314, 9838, 2738, 7500, 5606, 5093, 8502, + 6298, 1310, 4420, 1366, 445, 8350, 1331, 9081, 6878, + 6716, 5203, 9542, 600, 2635, 5221, 473, 3212, 9608, + 6118, 6306, 2169, 4202, 1311, 65, 4991, 1280, 9130, + 4214, 4841, 4766, 9189, 9111, 831, 6351, 3710, 7914, + 8990, 6031, 2495, 4023, 664, 4119, 8829, 3665, 7182, + 834, 5668, 3157, 6886, 7474, 7456, 7457, 5700, 5968, + 8752, 8280, 3581, 3363, 1028, 7420, 7605, 8189, 121, + 6923, 5205, 8333, 1027, 9553, 996, 9473, 6716, 3807, + 6199, 1329, 9080, 5266, 9046, 7133, 2644, 4177, 1736, + 5969, 6489, 8323, 8156, 4535, 3154, 6753, 2311, 1301, + 9560, 5364, 1311, 5827, 817, 1581, 9851, 6340, 4555, + 4149, 2665, 4030, 4378, 9486, 2986, 7488, 8663, 1098, + 8643, 9528, 5753, 3076, 1923, 6655, 4701, 2564, 2759, + 2614, 8312, 5369, 8644, 4278, 1089, 5880, 7934, 5654, + 9290, 529, 8307, 6094, 8613, 9753, 1317, 8719, 190, + 7897, 5396, 3284, 1788, 5467, 3357, 9704, 5015, 9457, + 9250, 4832, 8383, 5572, 6280, 1996, 88, 956, 9998, + 1522, 9106, 5381, 3536, 8254, 7345, 5671, 8230, 5557, + 7077, 4918, 3339, 425, 2028, 3163, 2588, 2424, 8060, + 4231, 8290, 1425, 1292, 1812, 7720, 2121, 440, 4305, + 3592, 3508, 6973, 1918, 3252, 1660, 7498, 5382, 4944, + 5506, 9328, 4854, 3012, 7765, 3368, 8118, 2049, 2553, + 9755, 5902, 6417, 1245, 6475, 5125, 6931, 355, 9409, + 765, 4975, 1840, 7347, 9096, 357, 2097, 7182, 9205, + 7495, 5566, 9152, 8183, 4955, 5578, 7022, 5514, 5444, + 6267, 8614, 5088, 3022, 6603, 9398, 7901, 9286, 3676, + 22, 1556, 106, 2739, 2806, 5294, 1354, 758, 8713, + 7422, 9061, 3417, 6963, 6041, 7734, 6184, 3868, 9643, + 5902, 6482, 1297, 4950, 9725, 9931, 7629, 8271, 9486, + 27, 9302, 9426, 8838, 7517, 2974, 1849, 2435, 6414, + 9829, 5071, 1041, 7434, 2451, 9172, 1803, 6122, 7707, + 6607, 6135, 3951, 3504, 6516, 4155, 1980, 6024, 8612, + 5327, 6044, 2155, 1648, 2058, 6766, 6976, 7736, 467, + 6836, 6292, 7090, 356, 9671, 9450, 5630, 9326, 3917, + 2056, 2251, 5784, 7410, 5124, 2541, 5740, 6770, 416, + 5387, 4977, 7567, 7754, 3358, 3577, 5938, 8258, 7308, + 6329, 4625, 8734, 2615, 2718, 5600, 116, 3518, 1951, + 5520, 8934, 148, 8573, 4159, 3406, 6214, 3760, 6900, + 1693, 2034, 3016, 9088, 8300, 9059, 2264, 3846, 3681, + 4154, 8527, 1029, 1780, 2482, 6046, 4466, 99, 4992, + 2888, 7277, 8577, 3498, 7469, 3793, 8496, 7986, 601, + 3094, 7023, 7883, 7345, 1271, 9517, 1909, 7362, 9121, + 1135, 7623, 2399, 4704, 7096, 5341, 4961, 5464, 2648, + 4405, 2528, 6055, 2121, 4870, 9037, 1532, 2739, 7180, + 3297, 9018, 4479, 7484, 2676, 2125, 5337, 1610, 4725, + 3239, 3524, 1732, 4592, 9536, 2480, 9753, 9282, 5967, + 7240, 8320, 8032, 3929, 2959, 4292, 8204, 2208, 6636, + 1874, 3136, 5027, 385, 4087, 9579, 4067, 3660, 1477, + 4241, 5719, 9858, 422, 1706, 8163, 1620, 4996, 2023, + 1900, 6432, 6172, 184, 1375, 9699, 1668, 252, 7117, + 5147]), + values=tensor([4.3537e-01, 3.9981e-01, 3.9884e-01, 6.8960e-01, + 4.8973e-01, 1.4335e-01, 5.3666e-01, 3.0947e-01, + 5.1729e-01, 5.7026e-01, 7.4978e-01, 2.6557e-01, + 2.1578e-01, 9.6159e-01, 3.3602e-02, 1.9291e-01, + 3.4528e-01, 7.2294e-01, 8.8444e-01, 7.8295e-01, + 2.1309e-01, 6.4920e-01, 1.7645e-01, 1.5566e-01, + 6.3153e-01, 3.7064e-01, 6.8757e-01, 1.3889e-01, + 8.4305e-01, 2.6216e-01, 4.0551e-01, 7.0589e-01, + 9.3137e-01, 4.2583e-01, 4.6336e-01, 2.6140e-01, + 7.3049e-01, 6.7786e-01, 1.8448e-01, 1.6195e-01, + 2.9220e-01, 3.2207e-01, 1.0179e-01, 8.4428e-01, + 5.1327e-01, 2.5118e-01, 4.7234e-01, 9.2641e-01, + 9.1870e-01, 7.5642e-01, 6.0164e-01, 8.1116e-01, + 4.0225e-01, 6.1931e-01, 9.5682e-01, 7.2107e-01, + 3.5447e-01, 8.2000e-01, 6.7449e-01, 7.6617e-01, + 6.7468e-01, 3.9826e-02, 1.8946e-01, 8.3726e-02, + 8.4893e-01, 5.4004e-01, 5.3572e-03, 1.5513e-01, + 3.2889e-01, 6.7577e-01, 4.1663e-01, 1.3433e-01, + 2.1308e-01, 4.0621e-01, 1.7773e-01, 4.6669e-01, + 7.0394e-01, 9.5283e-01, 9.6965e-01, 3.5330e-01, + 7.8285e-01, 9.6208e-01, 8.1898e-01, 3.8443e-01, + 7.3563e-01, 1.5837e-01, 4.3445e-01, 2.2030e-01, + 1.1584e-01, 2.8973e-01, 4.9374e-01, 1.8947e-01, + 2.0179e-01, 4.4464e-01, 2.9576e-02, 8.4870e-01, + 9.1479e-01, 1.2898e-01, 3.7882e-01, 9.1046e-01, + 9.8325e-01, 2.1736e-01, 8.3977e-01, 2.4636e-02, + 5.9983e-01, 4.8508e-01, 1.0133e-01, 9.2427e-01, + 3.8742e-01, 9.1992e-01, 2.1236e-01, 3.7146e-02, + 4.4093e-01, 1.4010e-01, 5.5600e-01, 9.8858e-01, + 3.9218e-01, 5.6724e-01, 4.2599e-01, 5.8652e-01, + 9.5954e-01, 2.4908e-01, 6.9651e-01, 1.5425e-01, + 3.0458e-01, 9.4539e-01, 2.6284e-01, 1.7345e-02, + 7.5959e-01, 8.9099e-01, 3.1513e-01, 4.9067e-01, + 2.5794e-01, 8.9944e-01, 6.1980e-02, 9.2183e-01, + 4.6175e-01, 9.7935e-01, 1.7864e-01, 6.2861e-01, + 1.1111e-01, 1.0233e-01, 2.3174e-02, 3.6532e-01, + 7.6410e-01, 9.0695e-01, 3.9577e-01, 6.8919e-01, + 9.8700e-01, 3.1611e-01, 8.0436e-02, 1.9359e-01, + 5.1339e-01, 5.3702e-01, 7.5160e-01, 8.1859e-01, + 5.0804e-02, 3.9069e-01, 2.6045e-01, 7.6514e-01, + 2.5050e-01, 9.1500e-01, 5.6797e-01, 5.5091e-01, + 4.2969e-01, 4.9864e-01, 8.4568e-01, 8.8357e-01, + 2.4968e-01, 7.3277e-02, 2.8443e-01, 7.5808e-01, + 9.4787e-01, 7.9605e-01, 8.9312e-01, 9.9357e-01, + 9.0836e-01, 3.4784e-01, 7.5111e-01, 7.1483e-01, + 2.9800e-01, 1.6662e-01, 7.0094e-01, 3.6745e-01, + 1.2262e-01, 7.3403e-01, 9.2937e-01, 3.8392e-01, + 5.4464e-01, 5.1342e-01, 8.9046e-01, 9.8258e-01, + 5.2964e-01, 6.4014e-01, 8.1913e-01, 6.2432e-01, + 9.6651e-01, 4.7961e-01, 5.0049e-01, 7.8570e-01, + 1.7991e-01, 3.4938e-01, 2.3127e-01, 7.4863e-01, + 2.9275e-01, 6.4424e-04, 4.4849e-01, 5.8097e-01, + 7.3619e-01, 7.2211e-01, 2.5817e-01, 4.3577e-01, + 7.5637e-01, 2.9790e-01, 5.4852e-01, 8.1898e-02, + 4.6703e-01, 9.8959e-01, 5.2950e-01, 6.1777e-01, + 1.1500e-01, 7.0529e-01, 3.6459e-01, 9.7895e-01, + 3.2305e-01, 2.5527e-01, 8.7675e-01, 1.0971e-01, + 5.0946e-01, 3.9227e-01, 9.7367e-01, 6.3673e-01, + 9.5168e-02, 7.2298e-01, 1.3574e-01, 5.7008e-01, + 9.6100e-01, 5.5062e-01, 8.5493e-01, 2.6996e-01, + 7.2852e-01, 5.0724e-03, 7.0486e-01, 3.7174e-01, + 4.6905e-01, 1.6221e-01, 6.1008e-01, 1.7684e-01, + 7.1183e-01, 5.0400e-01, 2.9966e-01, 7.0806e-01, + 1.9128e-01, 1.0265e-01, 2.0013e-01, 9.0258e-01, + 4.2371e-01, 3.9347e-01, 3.4903e-01, 4.3909e-01, + 7.1615e-01, 8.3353e-02, 8.2383e-01, 1.3046e-01, + 1.6372e-02, 5.4070e-01, 8.6800e-01, 5.0743e-01, + 9.6013e-01, 3.3358e-01, 4.5913e-01, 6.2492e-01, + 1.7392e-01, 8.0187e-01, 9.5935e-01, 8.0293e-01, + 7.3448e-01, 9.6838e-01, 4.6566e-01, 7.5415e-01, + 1.7773e-01, 4.6671e-01, 1.9277e-01, 1.9528e-01, + 3.7586e-01, 9.7197e-01, 7.1717e-01, 7.5047e-01, + 2.4187e-01, 1.9655e-01, 9.9432e-01, 9.7618e-01, + 2.8431e-01, 6.9296e-01, 1.9736e-01, 9.6645e-01, + 1.6096e-02, 3.4791e-01, 4.1191e-01, 2.0523e-01, + 6.2665e-01, 4.2102e-01, 2.3025e-02, 1.6970e-01, + 9.9316e-01, 7.6355e-01, 2.0605e-02, 1.2488e-01, + 4.0790e-01, 5.6708e-01, 8.2480e-01, 7.9370e-01, + 9.2119e-01, 8.2742e-01, 7.5665e-01, 2.5768e-01, + 4.3114e-01, 6.6583e-01, 7.7116e-01, 7.6309e-01, + 7.1228e-01, 8.7464e-01, 8.7019e-01, 9.3966e-01, + 4.2135e-01, 5.7594e-01, 6.2870e-01, 9.1797e-01, + 9.6945e-01, 7.2933e-01, 8.8178e-01, 1.8302e-01, + 2.9607e-01, 4.6905e-02, 8.6133e-01, 6.0869e-02, + 1.5112e-02, 3.4687e-01, 5.7238e-01, 2.9485e-01, + 9.3423e-01, 7.1957e-01, 1.0934e-01, 7.9192e-01, + 6.5331e-01, 4.3923e-01, 6.0516e-01, 5.7033e-01, + 6.0523e-01, 8.7734e-01, 9.9250e-01, 4.1305e-01, + 7.8645e-01, 5.1140e-01, 4.3184e-01, 4.2612e-01, + 2.3541e-01, 6.0161e-01, 2.3674e-01, 6.7388e-01, + 8.0508e-01, 6.7986e-01, 8.2585e-01, 8.4326e-01, + 5.9880e-01, 2.6417e-01, 2.6762e-01, 1.7359e-01, + 3.0395e-01, 6.5434e-02, 8.1628e-01, 9.8237e-01, + 3.0332e-01, 8.1081e-01, 9.1721e-01, 5.4623e-04, + 7.0012e-01, 5.1769e-01, 6.0702e-01, 3.4591e-01, + 2.2090e-01, 4.2492e-01, 7.1125e-01, 9.1429e-03, + 3.3527e-01, 8.6846e-01, 6.7073e-01, 7.9698e-01, + 5.3968e-01, 7.8654e-01, 4.4203e-03, 3.3520e-01, + 3.0764e-01, 7.6575e-01, 2.1197e-02, 5.3096e-01, + 3.9667e-01, 7.2879e-03, 2.9349e-01, 4.5592e-01, + 1.5381e-01, 9.7142e-01, 6.6952e-01, 3.8729e-01, + 8.1140e-01, 6.7995e-01, 7.1422e-01, 2.4486e-01, + 7.5636e-01, 2.3310e-01, 9.5289e-01, 4.8022e-01, + 8.5813e-01, 5.9732e-01, 5.3636e-01, 3.9112e-01, + 1.2996e-01, 3.2122e-01, 4.8399e-01, 2.6184e-01, + 2.1104e-01, 4.9276e-01, 3.8299e-01, 7.5953e-01, + 3.4044e-01, 3.1825e-02, 1.5820e-01, 8.7087e-01, + 4.3387e-02, 6.2383e-01, 4.5976e-01, 4.9470e-01, + 1.0368e-01, 9.6785e-01, 7.1734e-01, 2.4049e-01, + 8.7258e-02, 7.1240e-01, 8.6015e-01, 1.8576e-01, + 5.0698e-01, 6.5363e-01, 3.8025e-01, 8.7343e-01, + 5.1193e-01, 5.3928e-01, 1.8814e-01, 2.6343e-02, + 7.7821e-01, 1.7044e-01, 4.0618e-02, 4.1934e-01, + 6.3190e-01, 9.4536e-01, 6.1824e-01, 9.8729e-01, + 2.7125e-01, 2.6378e-03, 1.0222e-01, 2.1086e-01, + 6.0947e-01, 3.0901e-01, 5.5343e-01, 8.9244e-01, + 8.2691e-01, 3.0989e-01, 8.3851e-02, 8.8393e-01, + 7.4166e-01, 8.8516e-01, 7.3579e-01, 2.6421e-01, + 3.2478e-01, 9.1496e-02, 8.1097e-01, 4.7135e-01, + 6.3379e-01, 3.0775e-01, 2.7515e-01, 5.6137e-01, + 3.0909e-02, 5.1584e-01, 7.5795e-01, 2.7899e-01, + 8.0581e-01, 6.4873e-01, 7.2416e-01, 7.1340e-01, + 2.0196e-01, 3.9555e-01, 2.0446e-01, 2.4934e-01, + 1.5430e-01, 7.4440e-01, 8.0057e-01, 6.0388e-01, + 7.1343e-01, 3.5035e-01, 4.2040e-01, 8.6602e-01, + 9.4478e-02, 5.4928e-01, 4.0094e-01, 7.7335e-01, + 3.0423e-01, 1.3574e-02, 2.3620e-01, 7.1720e-01, + 9.1173e-01, 2.1903e-01, 8.9596e-01, 4.5128e-01, + 3.5343e-01, 2.1663e-01, 6.2211e-01, 4.7255e-01, + 3.7282e-01, 6.8342e-01, 9.0827e-01, 4.2800e-01, + 1.9686e-01, 3.0599e-01, 1.4444e-01, 8.8002e-01, + 4.9084e-01, 8.8924e-01, 6.3872e-01, 8.2477e-01, + 9.7932e-02, 4.9532e-01, 1.8488e-01, 2.9399e-01, + 8.4609e-01, 4.2726e-01, 7.2259e-01, 1.8113e-01, + 5.6825e-01, 6.8508e-02, 6.4229e-01, 2.9274e-01, + 2.6580e-01, 4.9086e-01, 7.3508e-01, 6.2433e-02, + 6.8630e-01, 6.1930e-01, 5.2008e-01, 2.3177e-01, + 9.0737e-01, 5.2188e-02, 8.9481e-01, 9.4065e-01, + 7.5609e-01, 5.2533e-01, 7.8363e-01, 2.1739e-01, + 7.1809e-01, 5.5801e-01, 2.6908e-01, 2.2939e-03, + 5.4688e-01, 4.5970e-01, 3.0997e-01, 1.0388e-01, + 3.7488e-03, 1.3490e-01, 7.4331e-01, 6.6803e-01, + 2.2280e-01, 8.7632e-01, 7.6913e-01, 8.4630e-01, + 6.0233e-01, 5.3270e-01, 3.2736e-01, 9.5029e-01, + 4.2112e-02, 1.4441e-01, 5.9972e-01, 6.4757e-01, + 7.4805e-01, 6.0193e-01, 1.2325e-01, 8.1393e-01, + 6.0128e-01, 9.4638e-01, 7.9005e-02, 2.7930e-01, + 5.6736e-01, 8.5472e-01, 8.2769e-01, 7.6410e-01, + 1.2565e-02, 4.7651e-01, 9.0884e-02, 4.3338e-01, + 3.5385e-01, 2.3199e-01, 8.4134e-01, 6.4207e-01, + 9.5298e-01, 9.7793e-01, 2.2580e-01, 9.9070e-01, + 6.2713e-01, 6.2690e-01, 7.4899e-01, 1.3724e-01, + 1.4670e-01, 9.2675e-01, 5.3520e-01, 1.8449e-01, + 2.0527e-01, 2.8306e-01, 3.1045e-01, 5.8558e-01, + 3.1540e-01, 1.1982e-01, 8.8444e-01, 7.3545e-01, + 4.2022e-01, 8.1509e-03, 3.1302e-01, 8.7632e-01, + 7.9319e-01, 1.7007e-01, 1.1811e-01, 8.2777e-01, + 5.1290e-02, 3.3333e-02, 3.9343e-01, 8.2624e-01, + 8.3659e-01, 9.0654e-01, 5.0174e-01, 8.3985e-01, + 3.9016e-01, 8.3937e-01, 2.7243e-01, 5.7402e-01, + 9.3932e-01, 8.4938e-01, 7.6935e-01, 1.0589e-01, + 6.0844e-01, 1.3969e-01, 4.8714e-01, 2.3100e-01, + 1.6273e-01, 1.8331e-01, 6.7573e-01, 3.2264e-01, + 4.1490e-01, 1.0348e-01, 8.0008e-01, 2.9827e-01, + 9.1387e-01, 1.0812e-01, 4.5369e-01, 4.3080e-01, + 8.4733e-01, 1.7047e-01, 7.7975e-01, 2.8628e-01, + 5.4017e-01, 2.9737e-01, 6.4224e-01, 8.3954e-01, + 4.7604e-01, 4.3814e-02, 6.9739e-01, 4.8277e-01, + 7.6740e-01, 9.8853e-01, 6.9194e-01, 3.4640e-01, + 3.0884e-01, 9.5212e-01, 3.2579e-01, 6.1841e-01, + 4.0543e-01, 9.3466e-01, 4.8328e-02, 7.5863e-01, + 9.6793e-01, 9.2495e-01, 2.8997e-01, 2.9497e-01, + 1.9820e-02, 2.5772e-01, 2.8827e-01, 8.1536e-01, + 4.1273e-01, 9.0435e-01, 3.4102e-01, 2.8340e-01, + 5.2361e-01, 8.9342e-01, 9.9789e-01, 9.4787e-01, + 4.5467e-02, 4.3271e-01, 6.5239e-01, 5.8289e-01, + 8.7290e-01, 6.7020e-01, 6.4508e-01, 4.1572e-01, + 6.3199e-01, 1.3701e-01, 4.8627e-01, 5.3563e-01, + 9.9708e-01, 3.9874e-01, 8.7427e-01, 3.5048e-01, + 5.0099e-01, 6.8373e-02, 8.5572e-02, 9.7413e-01, + 9.1182e-01, 3.6097e-01, 1.5867e-01, 1.1895e-02, + 6.6486e-01, 7.5586e-01, 3.0038e-01, 7.0781e-01, + 7.0691e-01, 9.3527e-01, 8.7719e-01, 6.8604e-01, + 5.9175e-02, 1.8325e-01, 3.0814e-01, 2.1317e-01, + 1.4056e-01, 3.1655e-02, 2.9670e-01, 3.2601e-01, + 3.5245e-01, 1.1448e-01, 7.1016e-01, 5.8561e-01, + 7.2949e-01, 4.6438e-02, 9.4722e-01, 8.1716e-01, + 8.3412e-01, 8.6405e-01, 7.0565e-01, 2.2713e-01, + 3.2024e-01, 8.6006e-01, 9.1130e-01, 7.1546e-01, + 1.1726e-01, 2.6812e-01, 7.0313e-01, 9.0525e-01, + 6.6813e-01, 6.0951e-01, 4.2406e-01, 6.6197e-01, + 3.4051e-01, 5.0594e-01, 5.6568e-01, 6.5500e-01, + 3.9133e-02, 6.8784e-02, 1.6962e-01, 1.9637e-01, + 3.6856e-01, 8.2962e-01, 7.4094e-01, 2.4617e-01, + 9.3733e-01, 3.7437e-01, 3.0715e-01, 2.8827e-02, + 9.9026e-01, 9.8403e-01, 8.8298e-01, 6.6462e-03, + 5.4973e-01, 6.3904e-01, 6.8939e-01, 7.5675e-01, + 6.4261e-01, 1.9556e-01, 3.6342e-01, 9.3446e-02, + 5.8282e-01, 9.4687e-01, 8.8520e-01, 2.8238e-01, + 7.1927e-01, 5.7538e-01, 1.2304e-01, 4.4104e-01, + 5.8638e-01, 4.4160e-01, 7.9530e-01, 4.3712e-01, + 8.3982e-01, 3.7432e-01, 4.7695e-01, 4.5874e-01, + 8.8004e-01, 7.2230e-01, 1.1009e-01, 6.5993e-01, + 9.8603e-01, 3.2649e-01, 4.1843e-01, 9.7294e-01, + 2.0848e-01, 9.6740e-01, 4.9238e-01, 6.1925e-01, + 5.1499e-01, 5.4071e-01, 9.9466e-01, 8.4870e-01, + 2.2469e-01, 7.3287e-02, 1.1009e-01, 9.8605e-01, + 1.3893e-01, 5.6160e-01, 9.1012e-01, 1.6216e-01, + 5.4134e-01, 6.9990e-02, 4.5429e-01, 8.4017e-02, + 9.5044e-02, 8.9018e-01, 4.5031e-01, 5.0410e-01, + 9.2543e-01, 5.2699e-01, 3.1440e-01, 9.0484e-01, + 3.5531e-01, 6.7819e-03, 4.4191e-01, 7.3541e-01, + 1.3631e-01, 6.0004e-01, 1.8558e-01, 5.0108e-01, + 1.6921e-01, 7.4587e-01, 5.7250e-01, 9.1504e-01, + 5.2848e-01, 4.3565e-01, 5.2381e-01, 3.2068e-01, + 4.2602e-01, 1.7899e-01, 1.6693e-01, 4.4754e-01, + 8.0900e-01, 7.0461e-01, 2.9947e-01, 2.6865e-01, + 7.7782e-01, 5.2593e-01, 3.3560e-01, 2.9390e-01, + 1.0731e-01, 5.9751e-01, 3.5259e-01, 8.0940e-01, + 5.4338e-02, 6.2392e-01, 9.8973e-01, 7.3598e-01, + 5.6690e-01, 9.7288e-01, 4.5821e-02, 6.3232e-01, + 6.6311e-01, 5.3438e-01, 1.0203e-01, 9.2045e-01, + 4.1039e-01, 6.9228e-01, 4.8738e-01, 8.0095e-01, + 8.7185e-01, 8.3497e-01, 6.7328e-02, 7.6656e-01, + 2.6182e-01, 4.5312e-01, 5.0198e-01, 2.1211e-02, + 3.8491e-01, 9.4217e-01, 5.0357e-01, 8.3401e-02, + 7.1052e-01, 4.2509e-01, 7.7683e-01, 3.7078e-01, + 5.1501e-01, 2.7444e-01, 9.1630e-01, 7.4677e-01, + 7.2155e-01, 4.0998e-01, 6.4794e-02, 1.7857e-01, + 3.9293e-01, 9.5205e-01, 9.1388e-01, 6.5620e-01, + 5.1912e-01, 1.6899e-01, 8.5856e-01, 4.4368e-01, + 1.5869e-01, 2.2263e-01, 7.5465e-01, 3.6280e-01, + 4.7400e-02, 9.5410e-01, 4.2697e-02, 6.7796e-01, + 9.8275e-01, 2.7874e-01, 2.6106e-01, 3.9901e-01, + 5.5379e-01, 9.3950e-02, 4.9186e-01, 1.1764e-03, + 7.2495e-01, 5.8979e-01, 6.2882e-01, 1.1772e-01, + 5.5400e-01, 3.5765e-01, 7.8510e-01, 3.2378e-01, + 8.8910e-01, 1.5997e-02, 5.5679e-02, 8.9152e-01, + 3.8640e-01, 3.8910e-01, 2.3145e-01, 3.6510e-02, + 9.5621e-01, 1.5088e-01, 4.7550e-02, 6.2587e-01, + 2.8134e-01, 4.9615e-01, 4.5673e-01, 6.4038e-01, + 9.8951e-01, 3.9053e-01, 7.4142e-02, 7.8090e-01, + 2.9839e-01, 2.9025e-01, 9.5796e-01, 1.8690e-01, + 8.4195e-01, 6.6466e-01, 1.0805e-01, 7.5828e-01, + 6.7259e-01, 5.1823e-01, 8.8034e-01, 7.2995e-02, + 5.6715e-01, 5.7986e-01, 1.6088e-01, 1.6596e-02, + 9.6255e-02, 5.8882e-01, 1.3704e-01, 1.8041e-02, + 7.3056e-01, 6.9725e-01, 3.9527e-01, 4.4598e-01, + 9.7556e-01, 3.1195e-01, 1.4884e-01, 1.9870e-01, + 1.2136e-01, 2.2091e-01, 6.2259e-01, 8.8417e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.1885, 0.9110, 0.8668, ..., 0.5988, 0.5354, 0.4490]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.454679489135742 seconds + +[39.64, 44.74, 39.71, 38.92, 39.06, 38.91, 39.09, 38.87, 39.14, 39.48] +[97.06] +13.222800016403198 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 355068, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.454679489135742, 'TIME_S_1KI': 0.029444161369472165, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1283.4049695920944, 'W': 97.06} +[39.64, 44.74, 39.71, 38.92, 39.06, 38.91, 39.09, 38.87, 39.14, 39.48, 40.2, 40.78, 38.95, 38.87, 38.88, 38.91, 39.42, 39.12, 39.01, 39.07] +711.575 +35.57875 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 355068, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.454679489135742, 'TIME_S_1KI': 0.029444161369472165, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1283.4049695920944, 'W': 97.06, 'J_1KI': 3.614532905224054, 'W_1KI': 0.27335608953777873, 'W_D': 61.48125, 'J_D': 812.9542735084892, 'W_D_1KI': 0.17315345229646154, 'J_D_1KI': 0.0004876627921875853} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_5e-05.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_5e-05.json new file mode 100644 index 0000000..b4ec291 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 307566, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.194913387298584, "TIME_S_1KI": 0.033147075383165185, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1254.457565395832, "W": 97.91, "J_1KI": 4.078661378032136, "W_1KI": 0.3183381778219959, "W_D": 62.19175, "J_D": 796.8227075141073, "W_D_1KI": 0.2022061931422849, "J_D_1KI": 0.0006574400068352317} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_5e-05.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_5e-05.output new file mode 100644 index 0000000..037a253 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_10000_5e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.04550504684448242} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 4998, 5000, 5000]), + col_indices=tensor([9281, 526, 5110, ..., 4172, 680, 4833]), + values=tensor([0.9710, 0.4177, 0.1273, ..., 0.7621, 0.2431, 0.8030]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.6244, 0.3231, 0.3638, ..., 0.2586, 0.1943, 0.4038]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 0.04550504684448242 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '230743', '-ss', '10000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 7.877320289611816} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 4996, 4999, 5000]), + col_indices=tensor([5149, 830, 3827, ..., 6947, 7825, 8143]), + values=tensor([0.7974, 0.8672, 0.6352, ..., 0.0945, 0.9729, 0.8206]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.8724, 0.1762, 0.3345, ..., 0.8958, 0.7321, 0.5036]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 7.877320289611816 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '307566', '-ss', '10000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.194913387298584} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 5000, 5000, 5000]), + col_indices=tensor([6013, 2562, 3841, ..., 8262, 3270, 1424]), + values=tensor([0.2685, 0.3885, 0.6243, ..., 0.1198, 0.9466, 0.9233]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.2690, 0.9597, 0.8597, ..., 0.6996, 0.9887, 0.3737]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 10.194913387298584 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 5000, 5000, 5000]), + col_indices=tensor([6013, 2562, 3841, ..., 8262, 3270, 1424]), + values=tensor([0.2685, 0.3885, 0.6243, ..., 0.1198, 0.9466, 0.9233]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.2690, 0.9597, 0.8597, ..., 0.6996, 0.9887, 0.3737]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 10.194913387298584 seconds + +[40.9, 39.57, 39.65, 39.48, 39.52, 39.37, 39.42, 39.88, 40.21, 39.84] +[97.91] +12.81235384941101 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 307566, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.194913387298584, 'TIME_S_1KI': 0.033147075383165185, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1254.457565395832, 'W': 97.91} +[40.9, 39.57, 39.65, 39.48, 39.52, 39.37, 39.42, 39.88, 40.21, 39.84, 41.61, 39.93, 39.26, 40.39, 39.17, 39.17, 39.39, 39.38, 39.35, 40.1] +714.365 +35.71825 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 307566, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.194913387298584, 'TIME_S_1KI': 0.033147075383165185, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1254.457565395832, 'W': 97.91, 'J_1KI': 4.078661378032136, 'W_1KI': 0.3183381778219959, 'W_D': 62.19175, 'J_D': 796.8227075141073, 'W_D_1KI': 0.2022061931422849, 'J_D_1KI': 0.0006574400068352317} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_500000_0.0001.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_500000_0.0001.json new file mode 100644 index 0000000..f4ead28 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_500000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 1316, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.480877876281738, "TIME_S_1KI": 7.964192915107703, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2349.371359462738, "W": 119.72, "J_1KI": 1785.2365953364272, "W_1KI": 90.9726443768997, "W_D": 83.6515, "J_D": 1641.5673093559742, "W_D_1KI": 63.564969604863215, "J_D_1KI": 48.3016486359143} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_500000_0.0001.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_500000_0.0001.output new file mode 100644 index 0000000..a121e20 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_500000_0.0001.output @@ -0,0 +1,89 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 8.476217031478882} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 58, 110, ..., 24999904, + 24999948, 25000000]), + col_indices=tensor([ 6107, 36475, 44542, ..., 455197, 482838, + 484709]), + values=tensor([0.8741, 0.1087, 0.7265, ..., 0.9387, 0.2139, 0.8984]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.2008, 0.1464, 0.5363, ..., 0.5258, 0.1478, 0.0153]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 8.476217031478882 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1238', '-ss', '500000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.872223138809204} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 42, 103, ..., 24999895, + 24999951, 25000000]), + col_indices=tensor([ 1782, 32597, 35292, ..., 490788, 494408, + 495086]), + values=tensor([0.7532, 0.4055, 0.7849, ..., 0.0826, 0.2837, 0.9366]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.6389, 0.8135, 0.6286, ..., 0.0387, 0.4513, 0.2151]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 9.872223138809204 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1316', '-ss', '500000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.480877876281738} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 49, 93, ..., 24999907, + 24999956, 25000000]), + col_indices=tensor([ 1315, 9605, 36829, ..., 467295, 483577, + 490282]), + values=tensor([0.4504, 0.6377, 0.8962, ..., 0.8735, 0.2973, 0.1824]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.1673, 0.3950, 0.6065, ..., 0.2020, 0.8580, 0.9739]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 10.480877876281738 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 49, 93, ..., 24999907, + 24999956, 25000000]), + col_indices=tensor([ 1315, 9605, 36829, ..., 467295, 483577, + 490282]), + values=tensor([0.4504, 0.6377, 0.8962, ..., 0.8735, 0.2973, 0.1824]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.1673, 0.3950, 0.6065, ..., 0.2020, 0.8580, 0.9739]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 10.480877876281738 seconds + +[40.78, 40.23, 40.39, 40.14, 40.33, 40.17, 39.83, 39.85, 39.79, 39.68] +[119.72] +19.623883724212646 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 1316, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.480877876281738, 'TIME_S_1KI': 7.964192915107703, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2349.371359462738, 'W': 119.72} +[40.78, 40.23, 40.39, 40.14, 40.33, 40.17, 39.83, 39.85, 39.79, 39.68, 41.19, 39.75, 40.31, 41.27, 39.67, 39.76, 39.72, 39.58, 39.67, 40.17] +721.3699999999999 +36.06849999999999 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 1316, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.480877876281738, 'TIME_S_1KI': 7.964192915107703, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2349.371359462738, 'W': 119.72, 'J_1KI': 1785.2365953364272, 'W_1KI': 90.9726443768997, 'W_D': 83.6515, 'J_D': 1641.5673093559742, 'W_D_1KI': 63.564969604863215, 'J_D_1KI': 48.3016486359143} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_500000_1e-05.json new file mode 100644 index 0000000..98c0109 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_500000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 21497, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.492619514465332, "TIME_S_1KI": 0.488096921173435, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2075.744820713997, "W": 155.25, "J_1KI": 96.55974418356035, "W_1KI": 7.221937944829511, "W_D": 119.6075, "J_D": 1599.1925838553905, "W_D_1KI": 5.5639158952411965, "J_D_1KI": 0.25882290064851826} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_500000_1e-05.output new file mode 100644 index 0000000..4dbd4ff --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_500000_1e-05.output @@ -0,0 +1,89 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.5443899631500244} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 7, 13, ..., 2499984, + 2499993, 2500000]), + col_indices=tensor([ 29642, 73796, 205405, ..., 362365, 387524, + 440531]), + values=tensor([0.6565, 0.4150, 0.8341, ..., 0.7997, 0.8212, 0.8706]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.3188, 0.4041, 0.2486, ..., 0.5189, 0.6175, 0.2446]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 0.5443899631500244 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '19287', '-ss', '500000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.420541286468506} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 12, ..., 2499994, + 2499998, 2500000]), + col_indices=tensor([131466, 192610, 285983, ..., 398857, 7127, + 216070]), + values=tensor([0.3766, 0.1095, 0.0818, ..., 0.7673, 0.9998, 0.7256]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.6672, 0.9862, 0.6354, ..., 0.4943, 0.9100, 0.2548]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 9.420541286468506 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '21497', '-ss', '500000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.492619514465332} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 10, 12, ..., 2499992, + 2499996, 2500000]), + col_indices=tensor([124091, 157764, 160136, ..., 120950, 171105, + 490445]), + values=tensor([0.1739, 0.8424, 0.0842, ..., 0.2028, 0.9911, 0.7243]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.9645, 0.6044, 0.9036, ..., 0.9779, 0.7664, 0.8298]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 10.492619514465332 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 10, 12, ..., 2499992, + 2499996, 2500000]), + col_indices=tensor([124091, 157764, 160136, ..., 120950, 171105, + 490445]), + values=tensor([0.1739, 0.8424, 0.0842, ..., 0.2028, 0.9911, 0.7243]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.9645, 0.6044, 0.9036, ..., 0.9779, 0.7664, 0.8298]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 10.492619514465332 seconds + +[41.35, 39.34, 39.96, 39.31, 39.6, 39.93, 39.84, 39.39, 39.3, 39.31] +[155.25] +13.370337009429932 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 21497, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.492619514465332, 'TIME_S_1KI': 0.488096921173435, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2075.744820713997, 'W': 155.25} +[41.35, 39.34, 39.96, 39.31, 39.6, 39.93, 39.84, 39.39, 39.3, 39.31, 40.05, 40.08, 39.33, 39.83, 39.32, 39.88, 39.28, 39.25, 39.29, 39.13] +712.85 +35.6425 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 21497, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.492619514465332, 'TIME_S_1KI': 0.488096921173435, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2075.744820713997, 'W': 155.25, 'J_1KI': 96.55974418356035, 'W_1KI': 7.221937944829511, 'W_D': 119.6075, 'J_D': 1599.1925838553905, 'W_D_1KI': 5.5639158952411965, 'J_D_1KI': 0.25882290064851826} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_500000_5e-05.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_500000_5e-05.json new file mode 100644 index 0000000..340d1c5 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_500000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 2443, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 11.091211557388306, "TIME_S_1KI": 4.5399965441622205, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2093.1614422798157, "W": 125.74, "J_1KI": 856.7996079737272, "W_1KI": 51.469504707327054, "W_D": 89.3905, "J_D": 1488.0606641173363, "W_D_1KI": 36.59046254604994, "J_D_1KI": 14.977676031948402} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_500000_5e-05.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_500000_5e-05.output new file mode 100644 index 0000000..6a66c91 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_500000_5e-05.output @@ -0,0 +1,89 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 4.620434761047363} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 28, 55, ..., 12499942, + 12499972, 12500000]), + col_indices=tensor([ 19855, 24177, 33309, ..., 430292, 468270, + 470726]), + values=tensor([0.1735, 0.2720, 0.9086, ..., 0.2697, 0.0473, 0.0416]), + size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.2844, 0.4487, 0.9137, ..., 0.5004, 0.3000, 0.1233]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 12500000 +Density: 5e-05 +Time: 4.620434761047363 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '2272', '-ss', '500000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 9.761992931365967} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 25, 50, ..., 12499939, + 12499968, 12500000]), + col_indices=tensor([ 35309, 102593, 109410, ..., 438712, 452154, + 489935]), + values=tensor([0.4991, 0.7582, 0.4985, ..., 0.8355, 0.6986, 0.3665]), + size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.1755, 0.5499, 0.0031, ..., 0.2944, 0.6143, 0.3232]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 12500000 +Density: 5e-05 +Time: 9.761992931365967 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '2443', '-ss', '500000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 11.091211557388306} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 29, 54, ..., 12499940, + 12499966, 12500000]), + col_indices=tensor([ 15104, 53699, 66016, ..., 451008, 478949, + 498027]), + values=tensor([0.3834, 0.0166, 0.8269, ..., 0.7083, 0.6634, 0.5753]), + size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.3028, 0.2567, 0.4384, ..., 0.4923, 0.2329, 0.9462]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 12500000 +Density: 5e-05 +Time: 11.091211557388306 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 29, 54, ..., 12499940, + 12499966, 12500000]), + col_indices=tensor([ 15104, 53699, 66016, ..., 451008, 478949, + 498027]), + values=tensor([0.3834, 0.0166, 0.8269, ..., 0.7083, 0.6634, 0.5753]), + size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.3028, 0.2567, 0.4384, ..., 0.4923, 0.2329, 0.9462]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 12500000 +Density: 5e-05 +Time: 11.091211557388306 seconds + +[41.47, 41.03, 39.87, 40.83, 39.9, 40.09, 40.23, 40.2, 39.74, 39.65] +[125.74] +16.646742820739746 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 2443, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 11.091211557388306, 'TIME_S_1KI': 4.5399965441622205, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2093.1614422798157, 'W': 125.74} +[41.47, 41.03, 39.87, 40.83, 39.9, 40.09, 40.23, 40.2, 39.74, 39.65, 40.36, 39.88, 39.75, 39.86, 39.72, 40.13, 40.1, 39.56, 45.29, 40.14] +726.99 +36.3495 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 2443, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 11.091211557388306, 'TIME_S_1KI': 4.5399965441622205, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2093.1614422798157, 'W': 125.74, 'J_1KI': 856.7996079737272, 'W_1KI': 51.469504707327054, 'W_D': 89.3905, 'J_D': 1488.0606641173363, 'W_D_1KI': 36.59046254604994, 'J_D_1KI': 14.977676031948402} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.0001.json new file mode 100644 index 0000000..c71ff3b --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 91834, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.82576298713684, "TIME_S_1KI": 0.11788404062914433, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1647.9860616016388, "W": 116.97, "J_1KI": 17.945271485524305, "W_1KI": 1.273711261624235, "W_D": 80.83175, "J_D": 1138.8355760867596, "W_D_1KI": 0.8801941546703835, "J_D_1KI": 0.009584621759592129} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.0001.output new file mode 100644 index 0000000..504044c --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.0001.output @@ -0,0 +1,125 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.14647722244262695} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 8, ..., 249988, 249995, + 250000]), + col_indices=tensor([ 544, 6056, 19594, ..., 16208, 31107, 37035]), + values=tensor([0.8576, 0.5005, 0.2810, ..., 0.0063, 0.7171, 0.8258]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.4318, 0.7107, 0.2576, ..., 0.8496, 0.3705, 0.3608]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 0.14647722244262695 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '71683', '-ss', '50000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.233005046844482} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 7, 10, ..., 249988, 249994, + 250000]), + col_indices=tensor([ 4979, 12449, 23825, ..., 32585, 40358, 48594]), + values=tensor([0.7825, 0.8569, 0.5029, ..., 0.3250, 0.4106, 0.3303]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.8033, 0.4755, 0.5204, ..., 0.8611, 0.9528, 0.0172]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 9.233005046844482 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '81519', '-ss', '50000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.805182695388794} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 11, ..., 249983, 249992, + 250000]), + col_indices=tensor([ 7422, 17911, 31055, ..., 30707, 32021, 38558]), + values=tensor([0.7718, 0.8036, 0.8293, ..., 0.2159, 0.0251, 0.0647]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.3183, 0.3041, 0.1046, ..., 0.2603, 0.8118, 0.2097]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 9.805182695388794 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '87295', '-ss', '50000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.980920553207397} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 5, ..., 249989, 249993, + 250000]), + col_indices=tensor([19530, 21432, 40127, ..., 33319, 45642, 48654]), + values=tensor([0.8438, 0.0330, 0.2387, ..., 0.6115, 0.5796, 0.5067]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.1992, 0.5617, 0.3460, ..., 0.4818, 0.9372, 0.6597]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 9.980920553207397 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '91834', '-ss', '50000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.82576298713684} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 7, 12, ..., 249987, 249995, + 250000]), + col_indices=tensor([ 2714, 5631, 18387, ..., 39061, 48792, 49070]), + values=tensor([0.1970, 0.9435, 0.9859, ..., 0.7944, 0.6863, 0.0587]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.5128, 0.8861, 0.8900, ..., 0.3721, 0.4809, 0.7353]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.82576298713684 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 7, 12, ..., 249987, 249995, + 250000]), + col_indices=tensor([ 2714, 5631, 18387, ..., 39061, 48792, 49070]), + values=tensor([0.1970, 0.9435, 0.9859, ..., 0.7944, 0.6863, 0.0587]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.5128, 0.8861, 0.8900, ..., 0.3721, 0.4809, 0.7353]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.82576298713684 seconds + +[40.37, 39.3, 39.3, 39.19, 39.7, 39.15, 40.14, 44.33, 39.43, 39.81] +[116.97] +14.088963508605957 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 91834, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.82576298713684, 'TIME_S_1KI': 0.11788404062914433, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1647.9860616016388, 'W': 116.97} +[40.37, 39.3, 39.3, 39.19, 39.7, 39.15, 40.14, 44.33, 39.43, 39.81, 40.26, 39.09, 41.97, 44.11, 39.87, 39.01, 40.55, 38.99, 38.97, 38.89] +722.7650000000001 +36.138250000000006 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 91834, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.82576298713684, 'TIME_S_1KI': 0.11788404062914433, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1647.9860616016388, 'W': 116.97, 'J_1KI': 17.945271485524305, 'W_1KI': 1.273711261624235, 'W_D': 80.83175, 'J_D': 1138.8355760867596, 'W_D_1KI': 0.8801941546703835, 'J_D_1KI': 0.009584621759592129} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.001.json new file mode 100644 index 0000000..3676d30 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 46775, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.762548208236694, "TIME_S_1KI": 0.2300918911434889, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2033.0924378275872, "W": 149.27, "J_1KI": 43.46536478519695, "W_1KI": 3.1912346338856232, "W_D": 113.87475, "J_D": 1551.0008245763183, "W_D_1KI": 2.434521646178514, "J_D_1KI": 0.052047496444222636} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.001.output new file mode 100644 index 0000000..3112aac --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.001.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.29659008979797363} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 46, 83, ..., 2499888, + 2499946, 2500000]), + col_indices=tensor([ 2168, 2264, 3614, ..., 46868, 47216, 48811]), + values=tensor([0.2788, 0.0512, 0.3475, ..., 0.9281, 0.1898, 0.0144]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.5080, 0.1629, 0.0847, ..., 0.6599, 0.4582, 0.2341]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 0.29659008979797363 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '35402', '-ss', '50000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 7.946921348571777} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 54, 117, ..., 2499905, + 2499953, 2500000]), + col_indices=tensor([ 1300, 1442, 2491, ..., 47415, 49147, 49910]), + values=tensor([0.1149, 0.9707, 0.0968, ..., 0.7933, 0.6392, 0.9343]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.2903, 0.7408, 0.0968, ..., 0.3344, 0.5691, 0.3821]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 7.946921348571777 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '46775', '-ss', '50000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.762548208236694} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 65, 117, ..., 2499903, + 2499954, 2500000]), + col_indices=tensor([ 2232, 2981, 3015, ..., 49447, 49836, 49877]), + values=tensor([0.3281, 0.9452, 0.1004, ..., 0.4282, 0.2346, 0.1167]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.5238, 0.6081, 0.9163, ..., 0.2866, 0.2457, 0.9117]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 10.762548208236694 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 65, 117, ..., 2499903, + 2499954, 2500000]), + col_indices=tensor([ 2232, 2981, 3015, ..., 49447, 49836, 49877]), + values=tensor([0.3281, 0.9452, 0.1004, ..., 0.4282, 0.2346, 0.1167]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.5238, 0.6081, 0.9163, ..., 0.2866, 0.2457, 0.9117]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 10.762548208236694 seconds + +[41.04, 39.15, 39.26, 39.11, 39.17, 39.29, 39.32, 39.24, 39.56, 39.01] +[149.27] +13.620234727859497 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 46775, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.762548208236694, 'TIME_S_1KI': 0.2300918911434889, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2033.0924378275872, 'W': 149.27} +[41.04, 39.15, 39.26, 39.11, 39.17, 39.29, 39.32, 39.24, 39.56, 39.01, 39.97, 39.18, 39.31, 39.08, 39.46, 39.32, 39.13, 39.45, 39.15, 39.43] +707.905 +35.39525 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 46775, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.762548208236694, 'TIME_S_1KI': 0.2300918911434889, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2033.0924378275872, 'W': 149.27, 'J_1KI': 43.46536478519695, 'W_1KI': 3.1912346338856232, 'W_D': 113.87475, 'J_D': 1551.0008245763183, 'W_D_1KI': 2.434521646178514, 'J_D_1KI': 0.052047496444222636} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.01.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.01.json new file mode 100644 index 0000000..032b229 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 1728, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.847445249557495, "TIME_S_1KI": 6.277456741642069, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2262.675802116394, "W": 116.47, "J_1KI": 1309.418866965506, "W_1KI": 67.40162037037037, "W_D": 80.83224999999999, "J_D": 1570.3372207918164, "W_D_1KI": 46.7779224537037, "J_D_1KI": 27.070556975522976} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.01.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.01.output new file mode 100644 index 0000000..44057a0 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.01.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 6.073575019836426} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 511, 999, ..., 24998996, + 24999515, 25000000]), + col_indices=tensor([ 50, 140, 163, ..., 49849, 49891, 49909]), + values=tensor([0.6896, 0.4241, 0.6835, ..., 0.3809, 0.0330, 0.1679]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.8743, 0.1159, 0.4633, ..., 0.1043, 0.2471, 0.3798]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 6.073575019836426 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1728', '-ss', '50000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.847445249557495} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 553, 1047, ..., 24998955, + 24999507, 25000000]), + col_indices=tensor([ 47, 133, 262, ..., 49731, 49773, 49776]), + values=tensor([0.8665, 0.6889, 0.7366, ..., 0.8541, 0.3572, 0.3739]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.0392, 0.1826, 0.6698, ..., 0.4937, 0.5808, 0.8286]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 10.847445249557495 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 553, 1047, ..., 24998955, + 24999507, 25000000]), + col_indices=tensor([ 47, 133, 262, ..., 49731, 49773, 49776]), + values=tensor([0.8665, 0.6889, 0.7366, ..., 0.8541, 0.3572, 0.3739]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.0392, 0.1826, 0.6698, ..., 0.4937, 0.5808, 0.8286]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 10.847445249557495 seconds + +[40.17, 39.47, 39.62, 39.58, 39.57, 39.35, 40.27, 39.27, 39.48, 39.51] +[116.47] +19.427112579345703 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 1728, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.847445249557495, 'TIME_S_1KI': 6.277456741642069, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2262.675802116394, 'W': 116.47} +[40.17, 39.47, 39.62, 39.58, 39.57, 39.35, 40.27, 39.27, 39.48, 39.51, 40.76, 39.62, 39.66, 39.43, 39.52, 39.33, 39.97, 39.4, 39.29, 39.41] +712.7550000000001 +35.637750000000004 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 1728, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.847445249557495, 'TIME_S_1KI': 6.277456741642069, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2262.675802116394, 'W': 116.47, 'J_1KI': 1309.418866965506, 'W_1KI': 67.40162037037037, 'W_D': 80.83224999999999, 'J_D': 1570.3372207918164, 'W_D_1KI': 46.7779224537037, 'J_D_1KI': 27.070556975522976} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_1e-05.json new file mode 100644 index 0000000..efee96e --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 128043, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.502545356750488, "TIME_S_1KI": 0.08202358080293722, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1345.7720102190972, "W": 103.43, "J_1KI": 10.510313021556017, "W_1KI": 0.8077755129136307, "W_D": 68.14325000000001, "J_D": 886.6409990850092, "W_D_1KI": 0.532190357926634, "J_D_1KI": 0.004156340900530557} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_1e-05.output new file mode 100644 index 0000000..1baca85 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_1e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.1170039176940918} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 2, ..., 25000, 25000, 25000]), + col_indices=tensor([20669, 48572, 15521, ..., 4942, 37440, 49163]), + values=tensor([0.4805, 0.0794, 0.3246, ..., 0.3038, 0.8605, 0.6038]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.4235, 0.9189, 0.0697, ..., 0.8234, 0.9093, 0.0251]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 0.1170039176940918 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '89740', '-ss', '50000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.3589677810668945} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 24998, 24999, 25000]), + col_indices=tensor([42797, 39277, 20964, ..., 31232, 43143, 42518]), + values=tensor([0.7162, 0.4091, 0.9127, ..., 0.7828, 0.7816, 0.8353]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.2017, 0.4349, 0.5577, ..., 0.2868, 0.8229, 0.7966]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 7.3589677810668945 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '128043', '-ss', '50000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.502545356750488} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 24999, 24999, 25000]), + col_indices=tensor([18076, 25567, 40242, ..., 19386, 42443, 43843]), + values=tensor([0.1613, 0.4932, 0.9378, ..., 0.7394, 0.5576, 0.1832]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.1994, 0.9899, 0.9038, ..., 0.7869, 0.4416, 0.9952]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.502545356750488 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 24999, 24999, 25000]), + col_indices=tensor([18076, 25567, 40242, ..., 19386, 42443, 43843]), + values=tensor([0.1613, 0.4932, 0.9378, ..., 0.7394, 0.5576, 0.1832]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.1994, 0.9899, 0.9038, ..., 0.7869, 0.4416, 0.9952]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.502545356750488 seconds + +[40.3, 39.43, 39.29, 39.36, 38.95, 39.04, 39.78, 38.84, 39.12, 39.2] +[103.43] +13.011428117752075 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 128043, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.502545356750488, 'TIME_S_1KI': 0.08202358080293722, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1345.7720102190972, 'W': 103.43} +[40.3, 39.43, 39.29, 39.36, 38.95, 39.04, 39.78, 38.84, 39.12, 39.2, 40.2, 39.28, 39.13, 39.22, 38.89, 38.97, 38.85, 39.3, 39.03, 38.81] +705.7349999999999 +35.28675 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 128043, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.502545356750488, 'TIME_S_1KI': 0.08202358080293722, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1345.7720102190972, 'W': 103.43, 'J_1KI': 10.510313021556017, 'W_1KI': 0.8077755129136307, 'W_D': 68.14325000000001, 'J_D': 886.6409990850092, 'W_D_1KI': 0.532190357926634, 'J_D_1KI': 0.004156340900530557} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_5e-05.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_5e-05.json new file mode 100644 index 0000000..e2a64dc --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 110048, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.860910654067993, "TIME_S_1KI": 0.09869248558872486, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1513.3099088716508, "W": 110.42, "J_1KI": 13.751362213503661, "W_1KI": 1.0033803431230008, "W_D": 74.49324999999999, "J_D": 1020.9325608499645, "W_D_1KI": 0.6769159821168944, "J_D_1KI": 0.006151097540317811} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_5e-05.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_5e-05.output new file mode 100644 index 0000000..99bfaff --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_50000_5e-05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.1521902084350586} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 4, ..., 124998, 124999, + 125000]), + col_indices=tensor([28568, 23377, 33207, ..., 35070, 20237, 35086]), + values=tensor([0.0970, 0.0746, 0.1789, ..., 0.4665, 0.3762, 0.5874]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.5202, 0.5834, 0.5039, ..., 0.2581, 0.4110, 0.2043]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 0.1521902084350586 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '68992', '-ss', '50000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 6.582725286483765} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 4, ..., 124994, 124996, + 125000]), + col_indices=tensor([13407, 30849, 37582, ..., 4235, 7510, 16049]), + values=tensor([0.4132, 0.1824, 0.9780, ..., 0.4864, 0.4697, 0.1823]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.9509, 0.2372, 0.8108, ..., 0.6237, 0.0261, 0.7128]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 6.582725286483765 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '110048', '-ss', '50000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.860910654067993} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 6, ..., 124995, 124996, + 125000]), + col_indices=tensor([ 8770, 24657, 47529, ..., 37234, 42798, 47480]), + values=tensor([0.5915, 0.6574, 0.6205, ..., 0.3170, 0.3438, 0.3659]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.7258, 0.6385, 0.7203, ..., 0.8359, 0.3176, 0.3735]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 10.860910654067993 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 6, ..., 124995, 124996, + 125000]), + col_indices=tensor([ 8770, 24657, 47529, ..., 37234, 42798, 47480]), + values=tensor([0.5915, 0.6574, 0.6205, ..., 0.3170, 0.3438, 0.3659]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.7258, 0.6385, 0.7203, ..., 0.8359, 0.3176, 0.3735]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 10.860910654067993 seconds + +[40.58, 39.41, 39.64, 39.39, 39.67, 39.83, 39.65, 39.43, 39.45, 39.8] +[110.42] +13.705034494400024 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 110048, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.860910654067993, 'TIME_S_1KI': 0.09869248558872486, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1513.3099088716508, 'W': 110.42} +[40.58, 39.41, 39.64, 39.39, 39.67, 39.83, 39.65, 39.43, 39.45, 39.8, 40.29, 39.44, 40.08, 39.34, 39.59, 39.49, 39.42, 44.77, 39.96, 39.28] +718.5350000000001 +35.926750000000006 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 110048, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.860910654067993, 'TIME_S_1KI': 0.09869248558872486, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1513.3099088716508, 'W': 110.42, 'J_1KI': 13.751362213503661, 'W_1KI': 1.0033803431230008, 'W_D': 74.49324999999999, 'J_D': 1020.9325608499645, 'W_D_1KI': 0.6769159821168944, 'J_D_1KI': 0.006151097540317811} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.0001.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.0001.json new file mode 100644 index 0000000..4891577 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 435807, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.511547565460205, "TIME_S_1KI": 0.024119730902578906, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1232.545183532238, "W": 96.09, "J_1KI": 2.828190422669296, "W_1KI": 0.2204875093791518, "W_D": 60.76, "J_D": 779.3677318286896, "W_D_1KI": 0.1394195136838096, "J_D_1KI": 0.0003199111388385446} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.0001.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.0001.output new file mode 100644 index 0000000..0251f49 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.0001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.040769100189208984} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 2499, 2500, 2500]), + col_indices=tensor([4125, 1116, 4300, ..., 690, 2880, 3382]), + values=tensor([0.0653, 0.6541, 0.1575, ..., 0.5764, 0.0907, 0.6553]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.7803, 0.2089, 0.7573, ..., 0.7596, 0.3125, 0.6078]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 0.040769100189208984 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '257547', '-ss', '5000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 6.205128908157349} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 2500, 2500, 2500]), + col_indices=tensor([1273, 2247, 4850, ..., 2520, 1394, 3793]), + values=tensor([0.8733, 0.7089, 0.0515, ..., 0.3445, 0.4099, 0.0495]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.0086, 0.7636, 0.4685, ..., 0.9955, 0.7657, 0.7966]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 6.205128908157349 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '435807', '-ss', '5000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.511547565460205} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 2499, 2499, 2500]), + col_indices=tensor([4068, 4690, 1058, ..., 2571, 4364, 3391]), + values=tensor([0.9209, 0.6933, 0.9201, ..., 0.0738, 0.0357, 0.7845]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.3918, 0.7384, 0.9927, ..., 0.9998, 0.6009, 0.1634]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 10.511547565460205 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 2499, 2499, 2500]), + col_indices=tensor([4068, 4690, 1058, ..., 2571, 4364, 3391]), + values=tensor([0.9209, 0.6933, 0.9201, ..., 0.0738, 0.0357, 0.7845]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.3918, 0.7384, 0.9927, ..., 0.9998, 0.6009, 0.1634]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 10.511547565460205 seconds + +[39.78, 39.82, 44.51, 38.6, 40.39, 38.56, 38.63, 38.62, 38.67, 38.55] +[96.09] +12.826987028121948 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 435807, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.511547565460205, 'TIME_S_1KI': 0.024119730902578906, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1232.545183532238, 'W': 96.09} +[39.78, 39.82, 44.51, 38.6, 40.39, 38.56, 38.63, 38.62, 38.67, 38.55, 39.31, 38.89, 38.76, 38.73, 39.09, 38.53, 38.74, 39.13, 38.76, 38.7] +706.6000000000001 +35.330000000000005 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 435807, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.511547565460205, 'TIME_S_1KI': 0.024119730902578906, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1232.545183532238, 'W': 96.09, 'J_1KI': 2.828190422669296, 'W_1KI': 0.2204875093791518, 'W_D': 60.76, 'J_D': 779.3677318286896, 'W_D_1KI': 0.1394195136838096, 'J_D_1KI': 0.0003199111388385446} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.001.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.001.json new file mode 100644 index 0000000..fe8abca --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 245735, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.373013734817505, "TIME_S_1KI": 0.042212194985726516, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1260.703432407379, "W": 98.11, "J_1KI": 5.130337283689255, "W_1KI": 0.39925122591409445, "W_D": 62.99425, "J_D": 809.4696483225822, "W_D_1KI": 0.2563503367448674, "J_D_1KI": 0.0010431983101506395} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.001.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.001.output new file mode 100644 index 0000000..79cf966 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.05801510810852051} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 14, ..., 24987, 24992, 25000]), + col_indices=tensor([2155, 3530, 3567, ..., 2695, 4305, 4878]), + values=tensor([0.7077, 0.9384, 0.0254, ..., 0.2116, 0.4863, 0.3277]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.5025, 0.8306, 0.5455, ..., 0.1180, 0.7485, 0.4884]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 0.05801510810852051 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '180987', '-ss', '5000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 7.7333667278289795} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 9, ..., 24993, 24997, 25000]), + col_indices=tensor([ 162, 480, 815, ..., 2232, 2732, 2847]), + values=tensor([0.8302, 0.2791, 0.7518, ..., 0.7674, 0.4968, 0.3066]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.5831, 0.9483, 0.7910, ..., 0.0226, 0.1378, 0.9053]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 7.7333667278289795 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '245735', '-ss', '5000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.373013734817505} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 13, ..., 24990, 24995, 25000]), + col_indices=tensor([1389, 1769, 1783, ..., 2323, 3077, 3881]), + values=tensor([0.3893, 0.4927, 0.3928, ..., 0.2440, 0.9871, 0.0384]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.3455, 0.7497, 0.7321, ..., 0.5403, 0.0178, 0.6295]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 10.373013734817505 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 13, ..., 24990, 24995, 25000]), + col_indices=tensor([1389, 1769, 1783, ..., 2323, 3077, 3881]), + values=tensor([0.3893, 0.4927, 0.3928, ..., 0.2440, 0.9871, 0.0384]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.3455, 0.7497, 0.7321, ..., 0.5403, 0.0178, 0.6295]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 10.373013734817505 seconds + +[40.07, 38.96, 38.85, 38.93, 38.85, 39.21, 39.52, 38.55, 38.74, 38.71] +[98.11] +12.849897384643555 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 245735, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.373013734817505, 'TIME_S_1KI': 0.042212194985726516, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1260.703432407379, 'W': 98.11} +[40.07, 38.96, 38.85, 38.93, 38.85, 39.21, 39.52, 38.55, 38.74, 38.71, 40.05, 38.72, 38.65, 39.11, 38.9, 39.03, 39.06, 38.96, 38.91, 39.9] +702.3149999999999 +35.11575 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 245735, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.373013734817505, 'TIME_S_1KI': 0.042212194985726516, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1260.703432407379, 'W': 98.11, 'J_1KI': 5.130337283689255, 'W_1KI': 0.39925122591409445, 'W_D': 62.99425, 'J_D': 809.4696483225822, 'W_D_1KI': 0.2563503367448674, 'J_D_1KI': 0.0010431983101506395} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.01.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.01.json new file mode 100644 index 0000000..65befab --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 145666, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.058181524276733, "TIME_S_1KI": 0.06904961709854553, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1397.6345458984374, "W": 116.8, "J_1KI": 9.594789078428992, "W_1KI": 0.80183433333791, "W_D": 81.52975, "J_D": 975.5889993019105, "W_D_1KI": 0.5597033624867849, "J_D_1KI": 0.0038423747647823438} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.01.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.01.output new file mode 100644 index 0000000..930f25a --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.01.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.10852384567260742} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 51, 93, ..., 249898, 249945, + 250000]), + col_indices=tensor([ 121, 263, 268, ..., 4347, 4657, 4780]), + values=tensor([0.9155, 0.4457, 0.5767, ..., 0.8561, 0.2482, 0.9078]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.9909, 0.5337, 0.2877, ..., 0.9413, 0.4687, 0.7116]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 0.10852384567260742 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '96752', '-ss', '5000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 6.974123954772949} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 54, 108, ..., 249899, 249958, + 250000]), + col_indices=tensor([ 30, 44, 230, ..., 4553, 4620, 4987]), + values=tensor([0.7207, 0.9659, 0.8009, ..., 0.1897, 0.2795, 0.9074]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.9275, 0.8053, 0.7107, ..., 0.1305, 0.9789, 0.9894]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 6.974123954772949 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '145666', '-ss', '5000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.058181524276733} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 49, 108, ..., 249901, 249948, + 250000]), + col_indices=tensor([ 207, 226, 430, ..., 4797, 4906, 4947]), + values=tensor([0.9242, 0.6665, 0.8223, ..., 0.0998, 0.8618, 0.4766]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.6439, 0.4458, 0.8465, ..., 0.5021, 0.5940, 0.7614]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 10.058181524276733 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 49, 108, ..., 249901, 249948, + 250000]), + col_indices=tensor([ 207, 226, 430, ..., 4797, 4906, 4947]), + values=tensor([0.9242, 0.6665, 0.8223, ..., 0.0998, 0.8618, 0.4766]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.6439, 0.4458, 0.8465, ..., 0.5021, 0.5940, 0.7614]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 10.058181524276733 seconds + +[39.46, 38.8, 39.74, 39.98, 38.95, 39.2, 39.78, 38.76, 39.24, 38.86] +[116.8] +11.966049194335938 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 145666, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.058181524276733, 'TIME_S_1KI': 0.06904961709854553, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1397.6345458984374, 'W': 116.8} +[39.46, 38.8, 39.74, 39.98, 38.95, 39.2, 39.78, 38.76, 39.24, 38.86, 39.39, 39.72, 39.13, 38.67, 39.47, 39.2, 39.27, 38.58, 38.78, 38.56] +705.405 +35.27025 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 145666, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.058181524276733, 'TIME_S_1KI': 0.06904961709854553, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1397.6345458984374, 'W': 116.8, 'J_1KI': 9.594789078428992, 'W_1KI': 0.80183433333791, 'W_D': 81.52975, 'J_D': 975.5889993019105, 'W_D_1KI': 0.5597033624867849, 'J_D_1KI': 0.0038423747647823438} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.05.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.05.json new file mode 100644 index 0000000..11bcfb3 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 92460, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.897745609283447, "TIME_S_1KI": 0.1178644344503942, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1737.196626586914, "W": 132.16, "J_1KI": 18.788628883700127, "W_1KI": 1.4293748648064026, "W_D": 96.69825, "J_D": 1271.0644196190835, "W_D_1KI": 1.0458387410772227, "J_D_1KI": 0.011311256122401284} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.05.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.05.output new file mode 100644 index 0000000..f6c9fdd --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 0.15929031372070312} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 260, 503, ..., 1249486, + 1249755, 1250000]), + col_indices=tensor([ 4, 17, 88, ..., 4971, 4985, 4987]), + values=tensor([0.6362, 0.8148, 0.9153, ..., 0.4566, 0.5649, 0.0413]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.3069, 0.3781, 0.2833, ..., 0.0090, 0.7599, 0.7166]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 0.15929031372070312 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '65917', '-ss', '5000', '-sd', '0.05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 7.485628128051758} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 243, 508, ..., 1249492, + 1249760, 1250000]), + col_indices=tensor([ 22, 30, 57, ..., 4895, 4917, 4934]), + values=tensor([0.3367, 0.7320, 0.6215, ..., 0.3721, 0.4144, 0.7665]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.8371, 0.0930, 0.7011, ..., 0.7680, 0.1649, 0.0938]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 7.485628128051758 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '92460', '-ss', '5000', '-sd', '0.05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.897745609283447} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 258, 501, ..., 1249501, + 1249766, 1250000]), + col_indices=tensor([ 3, 26, 36, ..., 4973, 4974, 4975]), + values=tensor([0.1574, 0.4230, 0.3584, ..., 0.2058, 0.0488, 0.1761]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.1704, 0.2409, 0.1947, ..., 0.5321, 0.6051, 0.5827]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 10.897745609283447 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 258, 501, ..., 1249501, + 1249766, 1250000]), + col_indices=tensor([ 3, 26, 36, ..., 4973, 4974, 4975]), + values=tensor([0.1574, 0.4230, 0.3584, ..., 0.2058, 0.0488, 0.1761]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.1704, 0.2409, 0.1947, ..., 0.5321, 0.6051, 0.5827]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 10.897745609283447 seconds + +[39.99, 38.92, 38.9, 38.99, 39.15, 39.51, 39.42, 41.37, 39.31, 39.41] +[132.16] +13.144647598266602 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 92460, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.897745609283447, 'TIME_S_1KI': 0.1178644344503942, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1737.196626586914, 'W': 132.16} +[39.99, 38.92, 38.9, 38.99, 39.15, 39.51, 39.42, 41.37, 39.31, 39.41, 40.8, 39.06, 39.17, 39.04, 39.15, 39.09, 39.05, 39.4, 39.89, 39.43] +709.2349999999999 +35.461749999999995 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 92460, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.897745609283447, 'TIME_S_1KI': 0.1178644344503942, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1737.196626586914, 'W': 132.16, 'J_1KI': 18.788628883700127, 'W_1KI': 1.4293748648064026, 'W_D': 96.69825, 'J_D': 1271.0644196190835, 'W_D_1KI': 1.0458387410772227, 'J_D_1KI': 0.011311256122401284} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.1.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.1.json new file mode 100644 index 0000000..0b5b4c3 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.1.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 53552, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.574474811553955, "TIME_S_1KI": 0.19746180929851276, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1844.3806961250305, "W": 137.23, "J_1KI": 34.44093023836702, "W_1KI": 2.562556020316701, "W_D": 101.71924999999999, "J_D": 1367.113758830547, "W_D_1KI": 1.8994481998804897, "J_D_1KI": 0.03546922990514808} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.1.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.1.output new file mode 100644 index 0000000..ab97b45 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.1.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.1', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 0.24988102912902832} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 499, 1048, ..., 2499022, + 2499519, 2500000]), + col_indices=tensor([ 0, 10, 32, ..., 4963, 4977, 4991]), + values=tensor([0.6726, 0.1161, 0.9278, ..., 0.2840, 0.7697, 0.2554]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.1233, 0.5107, 0.9675, ..., 0.9055, 0.5032, 0.4140]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 0.24988102912902832 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '42019', '-ss', '5000', '-sd', '0.1', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 8.238577604293823} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 520, 1002, ..., 2498984, + 2499504, 2500000]), + col_indices=tensor([ 4, 20, 21, ..., 4945, 4966, 4991]), + values=tensor([0.6805, 0.1607, 0.7488, ..., 0.5436, 0.2045, 0.6809]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.8501, 0.5629, 0.1238, ..., 0.7287, 0.6927, 0.0708]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 8.238577604293823 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '53552', '-ss', '5000', '-sd', '0.1', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.574474811553955} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 495, 1006, ..., 2499053, + 2499503, 2500000]), + col_indices=tensor([ 5, 23, 39, ..., 4985, 4986, 4988]), + values=tensor([0.9333, 0.4318, 0.5588, ..., 0.9224, 0.9203, 0.9677]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.4521, 0.6662, 0.5969, ..., 0.4716, 0.4029, 0.2909]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 10.574474811553955 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 495, 1006, ..., 2499053, + 2499503, 2500000]), + col_indices=tensor([ 5, 23, 39, ..., 4985, 4986, 4988]), + values=tensor([0.9333, 0.4318, 0.5588, ..., 0.9224, 0.9203, 0.9677]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.4521, 0.6662, 0.5969, ..., 0.4716, 0.4029, 0.2909]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 10.574474811553955 seconds + +[40.03, 39.26, 39.99, 39.12, 39.6, 39.27, 39.21, 40.1, 39.2, 39.55] +[137.23] +13.440069198608398 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 53552, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.574474811553955, 'TIME_S_1KI': 0.19746180929851276, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1844.3806961250305, 'W': 137.23} +[40.03, 39.26, 39.99, 39.12, 39.6, 39.27, 39.21, 40.1, 39.2, 39.55, 39.94, 39.28, 39.24, 39.36, 39.26, 39.73, 39.25, 39.64, 39.4, 39.09] +710.2149999999999 +35.510749999999994 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 53552, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.574474811553955, 'TIME_S_1KI': 0.19746180929851276, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1844.3806961250305, 'W': 137.23, 'J_1KI': 34.44093023836702, 'W_1KI': 2.562556020316701, 'W_D': 101.71924999999999, 'J_D': 1367.113758830547, 'W_D_1KI': 1.8994481998804897, 'J_D_1KI': 0.03546922990514808} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.2.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.2.json new file mode 100644 index 0000000..3628bb4 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.2.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 28750, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.407469034194946, "TIME_S_1KI": 0.3619989229285199, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1928.9614020395277, "W": 139.14, "J_1KI": 67.09430963615748, "W_1KI": 4.839652173913042, "W_D": 103.18299999999998, "J_D": 1430.47307996726, "W_D_1KI": 3.588973913043478, "J_D_1KI": 0.12483387523629487} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.2.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.2.output new file mode 100644 index 0000000..de85415 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.2.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.2', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 0.43890881538391113} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1013, 1983, ..., 4997973, + 4999012, 5000000]), + col_indices=tensor([ 4, 12, 14, ..., 4994, 4995, 4999]), + values=tensor([0.7248, 0.5151, 0.3464, ..., 0.0289, 0.6444, 0.6982]), + size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.8578, 0.9750, 0.0786, ..., 0.8483, 0.5183, 0.1076]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 5000000 +Density: 0.2 +Time: 0.43890881538391113 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '23922', '-ss', '5000', '-sd', '0.2', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 8.73651671409607} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1001, 1993, ..., 4997975, + 4998974, 5000000]), + col_indices=tensor([ 0, 6, 7, ..., 4986, 4993, 4997]), + values=tensor([0.9981, 0.9465, 0.8571, ..., 0.5801, 0.6800, 0.5830]), + size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.7841, 0.9192, 0.6592, ..., 0.6410, 0.6781, 0.3236]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 5000000 +Density: 0.2 +Time: 8.73651671409607 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '28750', '-ss', '5000', '-sd', '0.2', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.407469034194946} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 962, 2002, ..., 4997962, + 4998964, 5000000]), + col_indices=tensor([ 3, 4, 7, ..., 4990, 4997, 4999]), + values=tensor([0.7874, 0.2567, 0.8616, ..., 0.3490, 0.8581, 0.1320]), + size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.5757, 0.3666, 0.5675, ..., 0.4574, 0.0199, 0.8861]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 5000000 +Density: 0.2 +Time: 10.407469034194946 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 962, 2002, ..., 4997962, + 4998964, 5000000]), + col_indices=tensor([ 3, 4, 7, ..., 4990, 4997, 4999]), + values=tensor([0.7874, 0.2567, 0.8616, ..., 0.3490, 0.8581, 0.1320]), + size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.5757, 0.3666, 0.5675, ..., 0.4574, 0.0199, 0.8861]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 5000000 +Density: 0.2 +Time: 10.407469034194946 seconds + +[40.02, 39.78, 39.89, 39.91, 39.49, 39.87, 40.34, 39.56, 39.63, 39.54] +[139.14] +13.863456964492798 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 28750, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.407469034194946, 'TIME_S_1KI': 0.3619989229285199, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1928.9614020395277, 'W': 139.14} +[40.02, 39.78, 39.89, 39.91, 39.49, 39.87, 40.34, 39.56, 39.63, 39.54, 42.22, 40.02, 39.42, 39.79, 40.33, 39.7, 39.95, 40.8, 39.86, 39.82] +719.1400000000001 +35.95700000000001 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 28750, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.407469034194946, 'TIME_S_1KI': 0.3619989229285199, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1928.9614020395277, 'W': 139.14, 'J_1KI': 67.09430963615748, 'W_1KI': 4.839652173913042, 'W_D': 103.18299999999998, 'J_D': 1430.47307996726, 'W_D_1KI': 3.588973913043478, 'J_D_1KI': 0.12483387523629487} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.3.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.3.json new file mode 100644 index 0000000..b67d5e2 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.3.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 18993, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.31110143661499, "TIME_S_1KI": 0.5428895612391402, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1973.4541555023193, "W": 138.56, "J_1KI": 103.90428871175271, "W_1KI": 7.295319328173537, "W_D": 102.64975000000001, "J_D": 1461.9989585650565, "W_D_1KI": 5.404609593007951, "J_D_1KI": 0.2845579736222793} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.3.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.3.output new file mode 100644 index 0000000..95ac928 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.3.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.3', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 0.6186671257019043} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1447, 2956, ..., 7496936, + 7498490, 7500000]), + col_indices=tensor([ 4, 5, 6, ..., 4990, 4991, 4998]), + values=tensor([0.3748, 0.3720, 0.6580, ..., 0.1069, 0.0058, 0.6452]), + size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) +tensor([0.1517, 0.2007, 0.5208, ..., 0.9824, 0.7905, 0.4002]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 7500000 +Density: 0.3 +Time: 0.6186671257019043 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '16971', '-ss', '5000', '-sd', '0.3', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 9.381728649139404} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1500, 3040, ..., 7497021, + 7498445, 7500000]), + col_indices=tensor([ 1, 5, 9, ..., 4989, 4995, 4997]), + values=tensor([0.5527, 0.4050, 0.9810, ..., 0.2200, 0.7595, 0.4370]), + size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) +tensor([0.0260, 0.1554, 0.7193, ..., 0.7760, 0.7155, 0.7186]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 7500000 +Density: 0.3 +Time: 9.381728649139404 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '18993', '-ss', '5000', '-sd', '0.3', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.31110143661499} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1505, 3034, ..., 7497030, + 7498523, 7500000]), + col_indices=tensor([ 3, 4, 6, ..., 4987, 4992, 4993]), + values=tensor([0.4621, 0.5996, 0.9420, ..., 0.5197, 0.1170, 0.3387]), + size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) +tensor([0.7133, 0.0520, 0.6752, ..., 0.8724, 0.9726, 0.0718]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 7500000 +Density: 0.3 +Time: 10.31110143661499 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1505, 3034, ..., 7497030, + 7498523, 7500000]), + col_indices=tensor([ 3, 4, 6, ..., 4987, 4992, 4993]), + values=tensor([0.4621, 0.5996, 0.9420, ..., 0.5197, 0.1170, 0.3387]), + size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) +tensor([0.7133, 0.0520, 0.6752, ..., 0.8724, 0.9726, 0.0718]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 7500000 +Density: 0.3 +Time: 10.31110143661499 seconds + +[41.45, 39.54, 41.3, 40.23, 39.52, 39.85, 39.55, 39.54, 39.68, 39.47] +[138.56] +14.24259638786316 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 18993, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.31110143661499, 'TIME_S_1KI': 0.5428895612391402, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1973.4541555023193, 'W': 138.56} +[41.45, 39.54, 41.3, 40.23, 39.52, 39.85, 39.55, 39.54, 39.68, 39.47, 40.91, 39.98, 39.59, 39.45, 39.99, 39.93, 40.26, 39.5, 39.6, 39.56] +718.2049999999999 +35.91025 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 18993, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.31110143661499, 'TIME_S_1KI': 0.5428895612391402, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1973.4541555023193, 'W': 138.56, 'J_1KI': 103.90428871175271, 'W_1KI': 7.295319328173537, 'W_D': 102.64975000000001, 'J_D': 1461.9989585650565, 'W_D_1KI': 5.404609593007951, 'J_D_1KI': 0.2845579736222793} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_1e-05.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_1e-05.json new file mode 100644 index 0000000..f4429df --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 491380, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.363765478134155, "TIME_S_1KI": 0.021091142248634776, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1327.781383190155, "W": 95.12, "J_1KI": 2.7021477943549903, "W_1KI": 0.1935772721722496, "W_D": 60.282000000000004, "J_D": 841.4772638926506, "W_D_1KI": 0.12267898571370427, "J_D_1KI": 0.00024966214683891136} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_1e-05.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_1e-05.output new file mode 100644 index 0000000..5c32150 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_1e-05.output @@ -0,0 +1,464 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.0375218391418457} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([4395, 1896, 1016, 4725, 4287, 4964, 4709, 2475, 4723, + 2193, 4334, 4011, 1534, 947, 2980, 1276, 2745, 2145, + 4595, 3295, 1907, 4436, 575, 2869, 2437, 1774, 103, + 4181, 1510, 1361, 4237, 4144, 4620, 1378, 4923, 2023, + 170, 2835, 1311, 2663, 3014, 105, 2833, 4415, 2179, + 2930, 693, 1558, 1071, 3383, 2339, 3436, 478, 4648, + 3106, 1411, 4257, 307, 1671, 1884, 1213, 4984, 642, + 1762, 3957, 2642, 3601, 1788, 779, 952, 1165, 4886, + 1883, 1290, 3845, 617, 3725, 3513, 4081, 2223, 1340, + 3232, 3261, 4162, 1911, 3991, 2182, 2166, 4202, 2629, + 1539, 1110, 990, 1798, 3362, 92, 4378, 3447, 4318, + 1039, 2930, 1879, 4375, 2295, 3990, 746, 3339, 2924, + 1503, 2112, 2677, 3879, 2287, 1293, 3194, 3630, 2849, + 3363, 1715, 457, 1006, 888, 2409, 2177, 4389, 4129, + 1812, 2617, 4717, 2316, 4949, 4158, 4435, 1917, 1201, + 1815, 715, 270, 923, 1913, 3452, 2985, 4782, 1099, + 4541, 1002, 2896, 4712, 4267, 2282, 628, 3973, 2938, + 376, 3252, 94, 2656, 4853, 4987, 1689, 1656, 463, + 3165, 992, 2823, 3447, 1273, 2259, 3674, 3345, 2191, + 1553, 3931, 925, 4111, 4050, 2652, 4860, 4434, 4407, + 4679, 4167, 4708, 2520, 3526, 2887, 3132, 3816, 2503, + 1957, 3455, 1933, 2402, 1540, 2844, 1178, 2305, 1831, + 1888, 1548, 3851, 4681, 615, 1793, 720, 2902, 503, + 2399, 4452, 2482, 1672, 109, 4558, 522, 4488, 4193, + 4882, 4297, 3385, 3297, 4242, 2939, 945, 273, 1189, + 1168, 4866, 495, 4965, 2390, 1391, 2738, 4804, 1124, + 3476, 3768, 384, 2163, 1378, 1422, 3827, 12, 4549, + 4524, 1374, 4468, 1024, 3152, 985, 3013]), + values=tensor([0.3589, 0.1660, 0.5969, 0.5688, 0.7752, 0.6324, 0.0921, + 0.8083, 0.2140, 0.4448, 0.7196, 0.7942, 0.0476, 0.7765, + 0.8012, 0.3506, 0.5836, 0.4105, 0.9051, 0.1137, 0.9336, + 0.6799, 0.2082, 0.3357, 0.2380, 0.0294, 0.3136, 0.6271, + 0.0480, 0.8189, 0.3762, 0.4307, 0.7550, 0.2975, 0.8129, + 0.6595, 0.2962, 0.6547, 0.2906, 0.5665, 0.2166, 0.0083, + 0.8507, 0.4177, 0.3111, 0.7802, 0.8212, 0.9638, 0.3557, + 0.0980, 0.2482, 0.5366, 0.7901, 0.2480, 0.2830, 0.7633, + 0.5347, 0.7196, 0.5079, 0.6330, 0.0116, 0.5729, 0.0163, + 0.3271, 0.1166, 0.7494, 0.8340, 0.1356, 0.0263, 0.4976, + 0.5250, 0.2124, 0.2063, 0.9876, 0.3997, 0.7903, 0.7881, + 0.3414, 0.4348, 0.0748, 0.0069, 0.4733, 0.7388, 0.7424, + 0.3306, 0.5022, 0.7748, 0.6669, 0.3713, 0.6478, 0.6388, + 0.2317, 0.6064, 0.6536, 0.7202, 0.1361, 0.2493, 0.4139, + 0.3712, 0.5295, 0.2695, 0.1631, 0.6452, 0.1880, 0.6974, + 0.2683, 0.9017, 0.1561, 0.7046, 0.4239, 0.3874, 0.9700, + 0.0969, 0.1337, 0.7109, 0.6092, 0.5278, 0.2182, 0.9419, + 0.1230, 0.0570, 0.8053, 0.7324, 0.3831, 0.6385, 0.6323, + 0.1642, 0.2573, 0.2933, 0.0240, 0.6775, 0.2145, 0.7747, + 0.7540, 0.1746, 0.4005, 0.6380, 0.0383, 0.0075, 0.4765, + 0.6191, 0.5223, 0.3245, 0.6164, 0.9290, 0.7803, 0.7819, + 0.8932, 0.7100, 0.6960, 0.3784, 0.1869, 0.3217, 0.0764, + 0.2134, 0.0336, 0.4501, 0.8327, 0.9741, 0.2640, 0.8758, + 0.2835, 0.3411, 0.2947, 0.0888, 0.7701, 0.5229, 0.9266, + 0.0848, 0.6607, 0.1111, 0.4010, 0.5304, 0.7457, 0.6466, + 0.5183, 0.6236, 0.8001, 0.5880, 0.2006, 0.1409, 0.4395, + 0.5142, 0.7264, 0.5640, 0.9227, 0.8507, 0.0543, 0.7639, + 0.4626, 0.9840, 0.9821, 0.7239, 0.8139, 0.7906, 0.7453, + 0.9443, 0.9108, 0.4282, 0.6493, 0.3251, 0.2113, 0.5069, + 0.2668, 0.6773, 0.2164, 0.4803, 0.1428, 0.5884, 0.9624, + 0.2800, 0.1414, 0.8042, 0.8031, 0.1028, 0.1173, 0.0795, + 0.0760, 0.4125, 0.2705, 0.8781, 0.8291, 0.9000, 0.5426, + 0.0626, 0.4498, 0.1347, 0.0120, 0.0110, 0.1303, 0.5281, + 0.8963, 0.0447, 0.5862, 0.0936, 0.4003, 0.0188, 0.9347, + 0.9400, 0.0108, 0.8998, 0.5855, 0.1393, 0.5266, 0.4851, + 0.4774, 0.1186, 0.4945, 0.1561, 0.6695]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.1727, 0.0592, 0.5429, ..., 0.7822, 0.3152, 0.8983]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 0.0375218391418457 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '279837', '-ss', '5000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 6.313635349273682} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([1000, 776, 2038, 1918, 4703, 1006, 4783, 345, 4138, + 3890, 4809, 2179, 2654, 39, 3277, 4397, 222, 2644, + 2751, 2925, 4735, 3220, 3118, 2167, 634, 4745, 1720, + 1787, 1820, 1926, 473, 4992, 3200, 1675, 2855, 1802, + 1163, 3602, 1443, 3413, 1710, 3667, 710, 2344, 517, + 391, 713, 190, 1392, 2043, 4585, 625, 4376, 675, + 2895, 3693, 1220, 3427, 1249, 2791, 1410, 4832, 399, + 4671, 1556, 854, 3021, 1498, 4986, 3565, 408, 836, + 665, 2782, 351, 4429, 75, 2826, 2951, 2393, 4532, + 3245, 2288, 2902, 2022, 286, 18, 633, 1739, 1345, + 793, 3242, 1720, 741, 64, 3142, 2934, 4827, 3950, + 3991, 4310, 1432, 1925, 3941, 4723, 3084, 4330, 746, + 137, 294, 384, 3827, 745, 1424, 1461, 4954, 1830, + 44, 2741, 256, 4697, 1693, 4846, 724, 3317, 1459, + 3982, 3106, 1079, 1976, 1040, 1694, 3341, 1005, 3602, + 4265, 468, 3692, 3883, 2013, 2499, 2240, 197, 333, + 4890, 1103, 1367, 971, 9, 2617, 23, 2576, 3485, + 3475, 1094, 2503, 3587, 3228, 2141, 4874, 4780, 4139, + 1118, 4510, 2959, 1803, 1379, 4711, 1070, 1400, 798, + 3550, 1131, 4486, 1422, 239, 651, 4998, 1567, 1515, + 4080, 2218, 4949, 747, 3327, 4701, 733, 1212, 419, + 63, 3878, 2875, 4861, 4483, 644, 592, 3560, 3073, + 4937, 789, 208, 3509, 3077, 4039, 4563, 1839, 362, + 2824, 2672, 4373, 1492, 1152, 3845, 328, 2405, 4091, + 2931, 2541, 2530, 3217, 4233, 1852, 2606, 3892, 380, + 2119, 1221, 1290, 592, 3077, 4909, 282, 3215, 863, + 1452, 3214, 1592, 795, 193, 4254, 3986, 1847, 2461, + 4353, 1361, 3013, 1482, 4277, 3046, 277]), + values=tensor([0.1993, 0.0335, 0.2936, 0.2778, 0.6825, 0.6252, 0.3746, + 0.6011, 0.3211, 0.0488, 0.6153, 0.4477, 0.3116, 0.5339, + 0.8158, 0.9445, 0.2638, 0.2848, 0.0424, 0.7741, 0.0547, + 0.0033, 0.5605, 0.2034, 0.9731, 0.4334, 0.6773, 0.7018, + 0.1534, 0.3665, 0.8519, 0.3002, 0.6885, 0.4688, 0.2572, + 0.6610, 0.5022, 0.8309, 0.6908, 0.4905, 0.2911, 0.9203, + 0.1018, 0.0930, 0.0540, 0.4357, 0.3509, 0.7870, 0.0358, + 0.8075, 0.3342, 0.2290, 0.0496, 0.3593, 0.2995, 0.8746, + 0.4914, 0.4993, 0.3891, 0.1546, 0.8356, 0.6696, 0.4824, + 0.2231, 0.1034, 0.1057, 0.9353, 0.7565, 0.0205, 0.6134, + 0.2384, 0.3674, 0.3962, 0.9296, 0.6846, 0.4976, 0.1741, + 0.5769, 0.7161, 0.8852, 0.4021, 0.6679, 0.8123, 0.7585, + 0.4922, 0.4006, 0.7864, 0.5428, 0.2744, 0.6398, 0.5713, + 0.5059, 0.5864, 0.9374, 0.2614, 0.5042, 0.9384, 0.6001, + 0.6641, 0.9381, 0.7652, 0.8431, 0.3189, 0.3689, 0.1936, + 0.2802, 0.9156, 0.2338, 0.8578, 0.8112, 0.0258, 0.5958, + 0.3193, 0.8350, 0.4442, 0.6220, 0.0680, 0.3877, 0.0287, + 0.0452, 0.0470, 0.9809, 0.1556, 0.9905, 0.7569, 0.6043, + 0.3024, 0.2231, 0.5911, 0.7279, 0.1875, 0.4016, 0.8539, + 0.8317, 0.9058, 0.9818, 0.9295, 0.7640, 0.2727, 0.6203, + 0.1544, 0.4062, 0.9584, 0.7373, 0.5273, 0.9229, 0.0078, + 0.4057, 0.6887, 0.2597, 0.9070, 0.0464, 0.2160, 0.1271, + 0.9922, 0.5976, 0.8143, 0.2235, 0.4892, 0.2001, 0.4528, + 0.1225, 0.4565, 0.8621, 0.9634, 0.9838, 0.1175, 0.1191, + 0.3323, 0.5146, 0.3230, 0.2640, 0.7803, 0.1440, 0.3733, + 0.5784, 0.4250, 0.8408, 0.1600, 0.2238, 0.8622, 0.6312, + 0.1334, 0.8781, 0.5698, 0.6408, 0.9350, 0.2941, 0.4688, + 0.7220, 0.4646, 0.9861, 0.0500, 0.4193, 0.0556, 0.5709, + 0.7646, 0.4955, 0.8941, 0.2442, 0.8406, 0.6412, 0.9435, + 0.4433, 0.6774, 0.7909, 0.0668, 0.2898, 0.6302, 0.4354, + 0.5554, 0.1307, 0.3038, 0.5817, 0.3553, 0.0957, 0.1830, + 0.0409, 0.7005, 0.4236, 0.5500, 0.1534, 0.6689, 0.3917, + 0.6300, 0.3524, 0.5544, 0.7816, 0.9821, 0.6097, 0.7965, + 0.4709, 0.7898, 0.8168, 0.4400, 0.9718, 0.6481, 0.1531, + 0.2683, 0.6283, 0.0070, 0.5412, 0.3329, 0.0354, 0.8301, + 0.9730, 0.0239, 0.4507, 0.6650, 0.1805]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.7126, 0.1651, 0.2523, ..., 0.5242, 0.8574, 0.9519]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 6.313635349273682 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '465387', '-ss', '5000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.944559097290039} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([3699, 186, 998, 2786, 4646, 2125, 3758, 4753, 3164, + 2363, 875, 4485, 3467, 1146, 3713, 40, 3541, 4449, + 4355, 2987, 2483, 619, 973, 1036, 3097, 3292, 1211, + 2063, 4539, 4771, 731, 3646, 2815, 768, 3249, 2575, + 2960, 363, 3877, 2937, 63, 415, 487, 1370, 4864, + 2020, 2769, 2052, 1779, 3036, 1442, 3834, 769, 3436, + 2189, 3115, 684, 1261, 3554, 1491, 3600, 1655, 2428, + 3514, 792, 3919, 634, 3347, 2785, 3599, 785, 1340, + 4938, 4142, 605, 2442, 1836, 454, 2921, 2205, 4312, + 181, 1216, 3787, 581, 4008, 4443, 54, 218, 289, + 3888, 1643, 1803, 2145, 3434, 2861, 1581, 1923, 2613, + 1349, 2463, 1604, 2867, 1095, 4657, 931, 3380, 929, + 4999, 4668, 111, 3182, 838, 3317, 3428, 2012, 269, + 2099, 3052, 2433, 4600, 3901, 797, 3047, 2694, 392, + 612, 4059, 890, 2451, 1440, 3830, 4505, 1010, 683, + 4379, 1969, 1059, 4043, 1700, 4918, 4169, 4943, 4644, + 344, 3773, 2125, 3043, 2084, 4564, 3622, 4125, 3605, + 3620, 3969, 1469, 3232, 2350, 1746, 3483, 4665, 442, + 2281, 432, 3712, 4513, 1703, 4987, 1609, 4799, 4974, + 2930, 777, 1513, 2040, 3501, 924, 1312, 2761, 948, + 3882, 1800, 3270, 2810, 2360, 431, 325, 629, 2700, + 2385, 3741, 1991, 4920, 4732, 1712, 3784, 2538, 4236, + 4704, 1653, 472, 3253, 3463, 2914, 2140, 436, 935, + 765, 4469, 3079, 4283, 3904, 4286, 3503, 727, 4200, + 1701, 2666, 1961, 3779, 4941, 2916, 3776, 4130, 4512, + 1476, 2724, 2096, 1261, 329, 2574, 2829, 4425, 2766, + 1392, 2849, 4694, 1310, 3819, 2271, 220, 1555, 4415, + 4380, 4811, 1487, 4371, 1280, 1276, 2851]), + values=tensor([0.3089, 0.4336, 0.4888, 0.1926, 0.0728, 0.0243, 0.5274, + 0.6630, 0.9150, 0.7137, 0.4027, 0.4542, 0.9097, 0.1648, + 0.5277, 0.5028, 0.4187, 0.4809, 0.9495, 0.9227, 0.8070, + 0.4872, 0.3446, 0.8684, 0.3301, 0.9325, 0.3317, 0.0577, + 0.4077, 0.7212, 0.2245, 0.3196, 0.4084, 0.0026, 0.5069, + 0.0203, 0.9024, 0.9005, 0.2265, 0.0366, 0.5914, 0.1735, + 0.1170, 0.5798, 0.1354, 0.6739, 0.4242, 0.7100, 0.8828, + 0.2350, 0.1061, 0.7739, 0.9333, 0.1778, 0.6243, 0.7262, + 0.1337, 0.7381, 0.8993, 0.7142, 0.5462, 0.6796, 0.8532, + 0.3021, 0.1257, 0.1108, 0.2909, 0.1187, 0.8439, 0.5066, + 0.4898, 0.1147, 0.6201, 0.7106, 0.4508, 0.8557, 0.4904, + 0.5557, 0.3419, 0.5877, 0.9547, 0.2594, 0.1852, 0.0350, + 0.3573, 0.0073, 0.2921, 0.3868, 0.0717, 0.2638, 0.7715, + 0.2654, 0.7597, 0.8902, 0.4843, 0.0265, 0.2605, 0.7290, + 0.5883, 0.0284, 0.5260, 0.4294, 0.5088, 0.0923, 0.3560, + 0.9787, 0.3363, 0.6477, 0.5162, 0.2371, 0.5050, 0.3174, + 0.6755, 0.9371, 0.4029, 0.6291, 0.5378, 0.6016, 0.3741, + 0.4575, 0.7950, 0.1548, 0.4512, 0.4784, 0.3947, 0.6917, + 0.4337, 0.8695, 0.5511, 0.7730, 0.3604, 0.8313, 0.8321, + 0.1678, 0.2050, 0.7939, 0.9473, 0.7778, 0.3518, 0.5993, + 0.4048, 0.8949, 0.5428, 0.1845, 0.0665, 0.1550, 0.8858, + 0.8184, 0.3209, 0.1943, 0.3738, 0.7342, 0.8776, 0.4150, + 0.0843, 0.7937, 0.3737, 0.5068, 0.0092, 0.7933, 0.9316, + 0.9604, 0.9872, 0.9223, 0.4179, 0.0277, 0.0332, 0.3930, + 0.4059, 0.1792, 0.0113, 0.6697, 0.8110, 0.8809, 0.1653, + 0.5665, 0.2395, 0.2295, 0.0506, 0.8476, 0.6881, 0.7949, + 0.4503, 0.4586, 0.0727, 0.7405, 0.5349, 0.7008, 0.6280, + 0.8345, 0.3285, 0.7596, 0.7892, 0.6309, 0.7345, 0.5322, + 0.7826, 0.1455, 0.8185, 0.8804, 0.2134, 0.6699, 0.6927, + 0.7560, 0.1842, 0.8768, 0.4998, 0.8685, 0.7312, 0.6282, + 0.6567, 0.7052, 0.6029, 0.4550, 0.8792, 0.8789, 0.0886, + 0.4430, 0.3115, 0.8372, 0.3892, 0.9008, 0.8514, 0.6428, + 0.8764, 0.6919, 0.7104, 0.8790, 0.0593, 0.9565, 0.4781, + 0.3394, 0.5834, 0.8882, 0.5458, 0.1550, 0.9061, 0.0203, + 0.0355, 0.9846, 0.3746, 0.1614, 0.6948, 0.0117, 0.0137, + 0.0383, 0.7353, 0.3583, 0.0622, 0.0459]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.5720, 0.9223, 0.3340, ..., 0.6697, 0.2837, 0.3607]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 9.944559097290039 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '491380', '-ss', '5000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.363765478134155} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([1815, 573, 313, 4753, 4998, 3650, 708, 3756, 4632, + 3171, 1063, 2555, 1629, 3246, 3070, 2176, 3197, 2451, + 4183, 1276, 3956, 2941, 590, 310, 901, 582, 3400, + 3816, 854, 431, 4240, 4381, 4138, 3465, 1098, 4568, + 1899, 575, 4191, 2652, 1753, 2563, 2759, 4705, 3778, + 3664, 3914, 746, 477, 1085, 3621, 200, 1606, 1735, + 567, 4327, 4532, 959, 1950, 219, 1019, 4655, 3231, + 739, 2806, 3755, 920, 3178, 1203, 2773, 3742, 4216, + 3040, 3288, 1862, 3988, 3055, 2380, 386, 4811, 4992, + 2551, 454, 3476, 3586, 1425, 4793, 4634, 4563, 197, + 1634, 1276, 3200, 3036, 1449, 923, 3741, 1238, 917, + 13, 4497, 485, 2520, 1891, 1907, 2355, 3849, 1705, + 4617, 3918, 387, 152, 370, 3166, 1980, 3215, 2459, + 4636, 960, 2987, 498, 3413, 4946, 1982, 2382, 4484, + 67, 2842, 3291, 3435, 4345, 3653, 4720, 2468, 2052, + 1025, 1841, 1304, 2057, 4424, 4112, 134, 4127, 448, + 2737, 3483, 1455, 2363, 189, 1811, 740, 3821, 2568, + 4923, 4229, 447, 1138, 4148, 2122, 232, 3305, 3147, + 1717, 408, 644, 2055, 527, 3062, 248, 4109, 399, + 1356, 4770, 2528, 2684, 4997, 3795, 4694, 440, 3426, + 1710, 4340, 1612, 56, 646, 771, 1729, 765, 1920, + 4681, 3827, 3045, 4987, 598, 406, 2175, 1659, 4617, + 1246, 2976, 4027, 4995, 1783, 4600, 3838, 4759, 1930, + 3732, 234, 3852, 2906, 2962, 686, 832, 3809, 994, + 87, 19, 2535, 4315, 3169, 3549, 2170, 3920, 3910, + 2128, 3451, 3492, 42, 369, 863, 4827, 2245, 672, + 3029, 4444, 3612, 4409, 2915, 1931, 518, 3028, 4272, + 2556, 3052, 1905, 3640, 2925, 2354, 3707]), + values=tensor([1.9637e-01, 9.6917e-01, 6.9012e-01, 6.5144e-02, + 6.9969e-01, 6.0735e-01, 9.8413e-01, 5.5329e-01, + 4.9977e-01, 8.2849e-02, 6.0922e-01, 9.8307e-01, + 7.2683e-01, 6.2751e-01, 2.5140e-01, 6.5370e-01, + 9.8048e-01, 8.3008e-01, 9.4034e-01, 5.6135e-01, + 4.5053e-04, 8.4765e-01, 6.7162e-01, 6.6604e-01, + 7.6374e-01, 3.7730e-01, 7.9733e-01, 5.1905e-01, + 1.1698e-01, 6.2411e-01, 4.1882e-01, 9.2515e-01, + 7.1296e-01, 7.6621e-01, 9.1292e-01, 2.3384e-01, + 9.5049e-01, 2.9472e-01, 4.8881e-01, 7.8866e-01, + 3.0122e-01, 3.0501e-01, 9.5326e-02, 6.3170e-01, + 1.3931e-01, 8.2970e-01, 2.2371e-01, 7.9744e-01, + 4.4607e-01, 1.5447e-02, 1.0137e-01, 3.8368e-01, + 8.2513e-01, 8.9986e-01, 2.3061e-01, 9.8290e-01, + 4.3469e-01, 7.3495e-01, 1.5216e-01, 3.9507e-01, + 7.1334e-01, 7.7117e-01, 9.9550e-01, 9.2278e-01, + 3.0890e-01, 6.6914e-01, 1.2145e-01, 9.1632e-01, + 5.0784e-01, 6.2243e-01, 6.5077e-01, 6.2687e-01, + 2.0114e-01, 7.5097e-01, 2.0777e-01, 4.2757e-01, + 2.2520e-01, 5.5414e-01, 9.1256e-01, 1.3031e-01, + 1.5351e-01, 4.1244e-01, 2.4735e-01, 9.5465e-01, + 3.7976e-01, 3.1882e-01, 2.8598e-02, 8.3393e-01, + 7.4047e-01, 7.3298e-01, 9.7843e-01, 4.0729e-01, + 9.2998e-02, 4.3465e-01, 3.2636e-01, 9.5106e-02, + 4.8367e-02, 3.1339e-01, 4.7275e-01, 6.9317e-01, + 6.7922e-01, 7.2355e-01, 6.1366e-01, 7.6219e-01, + 2.1995e-01, 3.9216e-01, 8.5252e-01, 7.1761e-01, + 4.5198e-01, 9.8165e-01, 7.6941e-01, 8.2823e-01, + 7.6982e-01, 4.3963e-01, 2.2626e-01, 2.9003e-01, + 7.3718e-01, 8.0941e-01, 4.5213e-01, 1.9323e-01, + 3.6014e-01, 6.7950e-02, 2.6777e-01, 7.5770e-01, + 8.8988e-01, 1.1815e-01, 1.1244e-01, 9.2625e-01, + 7.6156e-01, 9.7142e-01, 2.3564e-01, 3.8882e-01, + 5.9567e-01, 4.8258e-01, 5.5462e-01, 2.7503e-01, + 2.0411e-01, 3.1168e-01, 7.6951e-01, 7.2732e-01, + 4.6023e-02, 4.7740e-01, 9.9557e-01, 7.3789e-02, + 6.2383e-02, 3.5543e-01, 1.8242e-01, 3.6846e-01, + 5.3628e-02, 5.3874e-01, 3.0038e-01, 9.6174e-01, + 9.6554e-01, 4.7430e-01, 2.2738e-01, 8.6557e-01, + 5.4122e-02, 8.5019e-01, 5.0852e-01, 5.3410e-01, + 1.7285e-01, 5.4149e-01, 8.0869e-01, 6.5103e-01, + 2.7217e-01, 7.0732e-01, 5.5532e-01, 9.9150e-01, + 7.5543e-01, 2.6834e-01, 2.8447e-01, 3.5912e-01, + 4.5601e-01, 7.0765e-01, 6.6949e-01, 5.9725e-01, + 4.8923e-01, 9.9235e-01, 7.6412e-02, 4.1164e-02, + 4.3938e-01, 9.1861e-01, 8.8739e-01, 9.4972e-01, + 4.9408e-01, 4.9347e-01, 3.4149e-01, 5.0322e-01, + 3.1901e-02, 5.2875e-01, 3.3499e-01, 9.5821e-01, + 5.2956e-01, 4.7216e-01, 2.0353e-01, 3.0726e-02, + 5.1848e-01, 2.6131e-01, 8.5289e-02, 4.9542e-01, + 1.5835e-01, 6.7945e-01, 7.8119e-01, 3.4856e-01, + 7.3888e-01, 4.3503e-01, 4.8394e-01, 1.0914e-01, + 5.9027e-01, 7.1288e-01, 9.8329e-01, 5.5542e-02, + 1.2536e-01, 1.9606e-01, 5.4455e-01, 4.3811e-01, + 5.8744e-01, 3.2588e-01, 6.3981e-02, 1.1337e-01, + 5.4324e-01, 8.4644e-01, 5.6165e-02, 5.0125e-01, + 1.5973e-01, 1.8614e-01, 7.8747e-01, 9.1964e-01, + 9.1086e-01, 5.6162e-01, 9.8390e-01, 1.9761e-01, + 4.5863e-01, 7.9353e-01, 3.8658e-02, 1.4135e-01, + 8.1843e-01, 3.0910e-01, 1.5630e-01, 6.8785e-01, + 4.2323e-01, 9.6230e-02, 7.4216e-01, 2.9855e-02, + 3.1890e-01, 2.8569e-01, 1.1579e-01, 7.3771e-01, + 8.3701e-01, 7.5848e-01]), size=(5000, 5000), nnz=250, + layout=torch.sparse_csr) +tensor([0.7970, 0.8043, 0.6125, ..., 0.7108, 0.2175, 0.0136]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 10.363765478134155 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([1815, 573, 313, 4753, 4998, 3650, 708, 3756, 4632, + 3171, 1063, 2555, 1629, 3246, 3070, 2176, 3197, 2451, + 4183, 1276, 3956, 2941, 590, 310, 901, 582, 3400, + 3816, 854, 431, 4240, 4381, 4138, 3465, 1098, 4568, + 1899, 575, 4191, 2652, 1753, 2563, 2759, 4705, 3778, + 3664, 3914, 746, 477, 1085, 3621, 200, 1606, 1735, + 567, 4327, 4532, 959, 1950, 219, 1019, 4655, 3231, + 739, 2806, 3755, 920, 3178, 1203, 2773, 3742, 4216, + 3040, 3288, 1862, 3988, 3055, 2380, 386, 4811, 4992, + 2551, 454, 3476, 3586, 1425, 4793, 4634, 4563, 197, + 1634, 1276, 3200, 3036, 1449, 923, 3741, 1238, 917, + 13, 4497, 485, 2520, 1891, 1907, 2355, 3849, 1705, + 4617, 3918, 387, 152, 370, 3166, 1980, 3215, 2459, + 4636, 960, 2987, 498, 3413, 4946, 1982, 2382, 4484, + 67, 2842, 3291, 3435, 4345, 3653, 4720, 2468, 2052, + 1025, 1841, 1304, 2057, 4424, 4112, 134, 4127, 448, + 2737, 3483, 1455, 2363, 189, 1811, 740, 3821, 2568, + 4923, 4229, 447, 1138, 4148, 2122, 232, 3305, 3147, + 1717, 408, 644, 2055, 527, 3062, 248, 4109, 399, + 1356, 4770, 2528, 2684, 4997, 3795, 4694, 440, 3426, + 1710, 4340, 1612, 56, 646, 771, 1729, 765, 1920, + 4681, 3827, 3045, 4987, 598, 406, 2175, 1659, 4617, + 1246, 2976, 4027, 4995, 1783, 4600, 3838, 4759, 1930, + 3732, 234, 3852, 2906, 2962, 686, 832, 3809, 994, + 87, 19, 2535, 4315, 3169, 3549, 2170, 3920, 3910, + 2128, 3451, 3492, 42, 369, 863, 4827, 2245, 672, + 3029, 4444, 3612, 4409, 2915, 1931, 518, 3028, 4272, + 2556, 3052, 1905, 3640, 2925, 2354, 3707]), + values=tensor([1.9637e-01, 9.6917e-01, 6.9012e-01, 6.5144e-02, + 6.9969e-01, 6.0735e-01, 9.8413e-01, 5.5329e-01, + 4.9977e-01, 8.2849e-02, 6.0922e-01, 9.8307e-01, + 7.2683e-01, 6.2751e-01, 2.5140e-01, 6.5370e-01, + 9.8048e-01, 8.3008e-01, 9.4034e-01, 5.6135e-01, + 4.5053e-04, 8.4765e-01, 6.7162e-01, 6.6604e-01, + 7.6374e-01, 3.7730e-01, 7.9733e-01, 5.1905e-01, + 1.1698e-01, 6.2411e-01, 4.1882e-01, 9.2515e-01, + 7.1296e-01, 7.6621e-01, 9.1292e-01, 2.3384e-01, + 9.5049e-01, 2.9472e-01, 4.8881e-01, 7.8866e-01, + 3.0122e-01, 3.0501e-01, 9.5326e-02, 6.3170e-01, + 1.3931e-01, 8.2970e-01, 2.2371e-01, 7.9744e-01, + 4.4607e-01, 1.5447e-02, 1.0137e-01, 3.8368e-01, + 8.2513e-01, 8.9986e-01, 2.3061e-01, 9.8290e-01, + 4.3469e-01, 7.3495e-01, 1.5216e-01, 3.9507e-01, + 7.1334e-01, 7.7117e-01, 9.9550e-01, 9.2278e-01, + 3.0890e-01, 6.6914e-01, 1.2145e-01, 9.1632e-01, + 5.0784e-01, 6.2243e-01, 6.5077e-01, 6.2687e-01, + 2.0114e-01, 7.5097e-01, 2.0777e-01, 4.2757e-01, + 2.2520e-01, 5.5414e-01, 9.1256e-01, 1.3031e-01, + 1.5351e-01, 4.1244e-01, 2.4735e-01, 9.5465e-01, + 3.7976e-01, 3.1882e-01, 2.8598e-02, 8.3393e-01, + 7.4047e-01, 7.3298e-01, 9.7843e-01, 4.0729e-01, + 9.2998e-02, 4.3465e-01, 3.2636e-01, 9.5106e-02, + 4.8367e-02, 3.1339e-01, 4.7275e-01, 6.9317e-01, + 6.7922e-01, 7.2355e-01, 6.1366e-01, 7.6219e-01, + 2.1995e-01, 3.9216e-01, 8.5252e-01, 7.1761e-01, + 4.5198e-01, 9.8165e-01, 7.6941e-01, 8.2823e-01, + 7.6982e-01, 4.3963e-01, 2.2626e-01, 2.9003e-01, + 7.3718e-01, 8.0941e-01, 4.5213e-01, 1.9323e-01, + 3.6014e-01, 6.7950e-02, 2.6777e-01, 7.5770e-01, + 8.8988e-01, 1.1815e-01, 1.1244e-01, 9.2625e-01, + 7.6156e-01, 9.7142e-01, 2.3564e-01, 3.8882e-01, + 5.9567e-01, 4.8258e-01, 5.5462e-01, 2.7503e-01, + 2.0411e-01, 3.1168e-01, 7.6951e-01, 7.2732e-01, + 4.6023e-02, 4.7740e-01, 9.9557e-01, 7.3789e-02, + 6.2383e-02, 3.5543e-01, 1.8242e-01, 3.6846e-01, + 5.3628e-02, 5.3874e-01, 3.0038e-01, 9.6174e-01, + 9.6554e-01, 4.7430e-01, 2.2738e-01, 8.6557e-01, + 5.4122e-02, 8.5019e-01, 5.0852e-01, 5.3410e-01, + 1.7285e-01, 5.4149e-01, 8.0869e-01, 6.5103e-01, + 2.7217e-01, 7.0732e-01, 5.5532e-01, 9.9150e-01, + 7.5543e-01, 2.6834e-01, 2.8447e-01, 3.5912e-01, + 4.5601e-01, 7.0765e-01, 6.6949e-01, 5.9725e-01, + 4.8923e-01, 9.9235e-01, 7.6412e-02, 4.1164e-02, + 4.3938e-01, 9.1861e-01, 8.8739e-01, 9.4972e-01, + 4.9408e-01, 4.9347e-01, 3.4149e-01, 5.0322e-01, + 3.1901e-02, 5.2875e-01, 3.3499e-01, 9.5821e-01, + 5.2956e-01, 4.7216e-01, 2.0353e-01, 3.0726e-02, + 5.1848e-01, 2.6131e-01, 8.5289e-02, 4.9542e-01, + 1.5835e-01, 6.7945e-01, 7.8119e-01, 3.4856e-01, + 7.3888e-01, 4.3503e-01, 4.8394e-01, 1.0914e-01, + 5.9027e-01, 7.1288e-01, 9.8329e-01, 5.5542e-02, + 1.2536e-01, 1.9606e-01, 5.4455e-01, 4.3811e-01, + 5.8744e-01, 3.2588e-01, 6.3981e-02, 1.1337e-01, + 5.4324e-01, 8.4644e-01, 5.6165e-02, 5.0125e-01, + 1.5973e-01, 1.8614e-01, 7.8747e-01, 9.1964e-01, + 9.1086e-01, 5.6162e-01, 9.8390e-01, 1.9761e-01, + 4.5863e-01, 7.9353e-01, 3.8658e-02, 1.4135e-01, + 8.1843e-01, 3.0910e-01, 1.5630e-01, 6.8785e-01, + 4.2323e-01, 9.6230e-02, 7.4216e-01, 2.9855e-02, + 3.1890e-01, 2.8569e-01, 1.1579e-01, 7.3771e-01, + 8.3701e-01, 7.5848e-01]), size=(5000, 5000), nnz=250, + layout=torch.sparse_csr) +tensor([0.7970, 0.8043, 0.6125, ..., 0.7108, 0.2175, 0.0136]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 10.363765478134155 seconds + +[39.35, 38.55, 38.58, 38.65, 38.55, 38.56, 38.58, 38.95, 38.97, 38.84] +[95.12] +13.95901370048523 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 491380, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.363765478134155, 'TIME_S_1KI': 0.021091142248634776, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1327.781383190155, 'W': 95.12} +[39.35, 38.55, 38.58, 38.65, 38.55, 38.56, 38.58, 38.95, 38.97, 38.84, 39.11, 38.56, 38.47, 38.42, 38.44, 38.49, 38.99, 38.76, 39.03, 39.12] +696.76 +34.838 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 491380, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.363765478134155, 'TIME_S_1KI': 0.021091142248634776, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1327.781383190155, 'W': 95.12, 'J_1KI': 2.7021477943549903, 'W_1KI': 0.1935772721722496, 'W_D': 60.282000000000004, 'J_D': 841.4772638926506, 'W_D_1KI': 0.12267898571370427, 'J_D_1KI': 0.00024966214683891136} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_5e-05.json b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_5e-05.json new file mode 100644 index 0000000..b474ab7 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 471062, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.751366138458252, "TIME_S_1KI": 0.022823675309106343, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1247.6856990122794, "W": 95.07, "J_1KI": 2.6486655663421788, "W_1KI": 0.20182056714402774, "W_D": 59.887249999999995, "J_D": 785.9520919130443, "W_D_1KI": 0.12713241569050357, "J_D_1KI": 0.0002698846769438069} diff --git a/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_5e-05.output b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_5e-05.output new file mode 100644 index 0000000..b89ee01 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/epyc_7313p_16_csr_10_10_10_synthetic_5000_5e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.06770849227905273} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1249, 1249, 1250]), + col_indices=tensor([ 631, 2604, 2210, ..., 3865, 405, 4638]), + values=tensor([0.5383, 0.4516, 0.3480, ..., 0.7821, 0.4439, 0.3322]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.7026, 0.4971, 0.6548, ..., 0.0098, 0.8140, 0.3691]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 0.06770849227905273 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '155076', '-ss', '5000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 3.4566495418548584} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1249, 1249, 1250]), + col_indices=tensor([2690, 1150, 3956, ..., 712, 3582, 778]), + values=tensor([0.8228, 0.9297, 0.1263, ..., 0.8170, 0.9056, 0.4551]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.8564, 0.8640, 0.2790, ..., 0.6413, 0.1958, 0.4583]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 3.4566495418548584 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '471062', '-ss', '5000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.751366138458252} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 1249, 1249, 1250]), + col_indices=tensor([1001, 2591, 823, ..., 591, 3447, 2958]), + values=tensor([0.9383, 0.1843, 0.8614, ..., 0.3843, 0.5733, 0.2218]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.8666, 0.6997, 0.8565, ..., 0.1580, 0.8946, 0.5984]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 10.751366138458252 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 1249, 1249, 1250]), + col_indices=tensor([1001, 2591, 823, ..., 591, 3447, 2958]), + values=tensor([0.9383, 0.1843, 0.8614, ..., 0.3843, 0.5733, 0.2218]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.8666, 0.6997, 0.8565, ..., 0.1580, 0.8946, 0.5984]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 10.751366138458252 seconds + +[39.99, 39.18, 38.82, 38.83, 39.11, 38.71, 39.17, 38.68, 38.75, 38.85] +[95.07] +13.123863458633423 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 471062, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.751366138458252, 'TIME_S_1KI': 0.022823675309106343, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1247.6856990122794, 'W': 95.07} +[39.99, 39.18, 38.82, 38.83, 39.11, 38.71, 39.17, 38.68, 38.75, 38.85, 39.95, 39.47, 39.27, 39.32, 39.37, 38.76, 39.37, 39.0, 39.09, 38.72] +703.655 +35.18275 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 471062, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.751366138458252, 'TIME_S_1KI': 0.022823675309106343, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1247.6856990122794, 'W': 95.07, 'J_1KI': 2.6486655663421788, 'W_1KI': 0.20182056714402774, 'W_D': 59.887249999999995, 'J_D': 785.9520919130443, 'W_D_1KI': 0.12713241569050357, 'J_D_1KI': 0.0002698846769438069} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_0.0001.json new file mode 100644 index 0000000..174f326 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 32214, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.624319791793823, "TIME_S_1KI": 0.3298044263920601, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1308.5074545145035, "W": 90.38, "J_1KI": 40.619216940290045, "W_1KI": 2.8056124666294155, "W_D": 74.09325, "J_D": 1072.7104442819953, "W_D_1KI": 2.30003259452412, "J_D_1KI": 0.07139854083703111} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_0.0001.output similarity index 51% rename from pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0001.output rename to pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_0.0001.output index a35639b..48c062d 100644 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0001.output +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_0.0001.output @@ -1,15 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 1.7099568843841553} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.3259446620941162} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 10, 20, ..., 999975, +tensor(crow_indices=tensor([ 0, 11, 22, ..., 999982, 999991, 1000000]), - col_indices=tensor([ 4154, 20798, 21409, ..., 65320, 83277, 90457]), - values=tensor([0.0206, 0.0188, 0.3875, ..., 0.2566, 0.8734, 0.4713]), + col_indices=tensor([10285, 14477, 16251, ..., 79839, 98536, 99886]), + values=tensor([0.0755, 0.8469, 0.4749, ..., 0.2250, 0.2555, 0.2499]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([2.2552e-01, 8.2165e-04, 8.9899e-01, ..., 7.1003e-01, 6.8443e-02, - 6.7507e-01]) +tensor([0.5289, 0.3805, 0.4649, ..., 0.7570, 0.9550, 0.1372]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -17,19 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 1.7099568843841553 seconds +Time: 0.3259446620941162 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '12281', '-ss', '100000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 21.43535876274109} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '32214', '-ss', '100000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.624319791793823} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 12, 20, ..., 999985, - 999994, 1000000]), - col_indices=tensor([ 2661, 16984, 17010, ..., 72407, 79760, 99948]), - values=tensor([0.6261, 0.1903, 0.4758, ..., 0.9266, 0.4335, 0.5751]), +tensor(crow_indices=tensor([ 0, 9, 15, ..., 999974, + 999991, 1000000]), + col_indices=tensor([ 27, 9769, 50112, ..., 53126, 61224, 82066]), + values=tensor([0.2467, 0.4042, 0.1080, ..., 0.3359, 0.4921, 0.7955]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.1330, 0.4019, 0.6390, ..., 0.8808, 0.7758, 0.9416]) +tensor([0.8754, 0.9877, 0.9510, ..., 0.4555, 0.1143, 0.3690]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -37,16 +36,16 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 21.43535876274109 seconds +Time: 10.624319791793823 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 12, 20, ..., 999985, - 999994, 1000000]), - col_indices=tensor([ 2661, 16984, 17010, ..., 72407, 79760, 99948]), - values=tensor([0.6261, 0.1903, 0.4758, ..., 0.9266, 0.4335, 0.5751]), +tensor(crow_indices=tensor([ 0, 9, 15, ..., 999974, + 999991, 1000000]), + col_indices=tensor([ 27, 9769, 50112, ..., 53126, 61224, 82066]), + values=tensor([0.2467, 0.4042, 0.1080, ..., 0.3359, 0.4921, 0.7955]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.1330, 0.4019, 0.6390, ..., 0.8808, 0.7758, 0.9416]) +tensor([0.8754, 0.9877, 0.9510, ..., 0.4555, 0.1143, 0.3690]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -54,13 +53,13 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 21.43535876274109 seconds +Time: 10.624319791793823 seconds -[39.05, 39.08, 38.77, 38.37, 38.41, 38.56, 38.82, 38.92, 43.8, 38.57] -[65.9] -23.442400455474854 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 12281, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 21.43535876274109, 'TIME_S_1KI': 1.7454082536227578, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1544.854190015793, 'W': 65.9} -[39.05, 39.08, 38.77, 38.37, 38.41, 38.56, 38.82, 38.92, 43.8, 38.57, 39.12, 38.73, 38.52, 39.3, 38.76, 38.93, 38.86, 38.9, 38.78, 38.34] -703.0500000000001 -35.1525 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 12281, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 21.43535876274109, 'TIME_S_1KI': 1.7454082536227578, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1544.854190015793, 'W': 65.9, 'J_1KI': 125.79221480464072, 'W_1KI': 5.366012539695466, 'W_D': 30.747500000000002, 'J_D': 720.7952080047131, 'W_D_1KI': 2.503664196726651, 'J_D_1KI': 0.20386484787286466} +[18.22, 17.55, 18.1, 17.52, 17.64, 17.6, 18.51, 17.5, 17.7, 17.75] +[90.38] +14.477843046188354 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 32214, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.624319791793823, 'TIME_S_1KI': 0.3298044263920601, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1308.5074545145035, 'W': 90.38} +[18.22, 17.55, 18.1, 17.52, 17.64, 17.6, 18.51, 17.5, 17.7, 17.75, 18.28, 17.75, 17.59, 17.7, 17.88, 17.82, 18.16, 18.33, 22.4, 17.72] +325.735 +16.28675 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 32214, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.624319791793823, 'TIME_S_1KI': 0.3298044263920601, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1308.5074545145035, 'W': 90.38, 'J_1KI': 40.619216940290045, 'W_1KI': 2.8056124666294155, 'W_D': 74.09325, 'J_D': 1072.7104442819953, 'W_D_1KI': 2.30003259452412, 'J_D_1KI': 0.07139854083703111} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_0.001.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_0.001.json new file mode 100644 index 0000000..be7a2cb --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 2697, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.332640647888184, "TIME_S_1KI": 3.8311607889833827, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1417.5436856460572, "W": 83.44, "J_1KI": 525.6001800689867, "W_1KI": 30.938079347423063, "W_D": 67.3325, "J_D": 1143.8969344890118, "W_D_1KI": 24.965702632554688, "J_D_1KI": 9.25684191047634} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.001.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_0.001.output similarity index 50% rename from pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.001.output rename to pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_0.001.output index 56baef1..d59582d 100644 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.001.output +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_0.001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 16.660033226013184} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 3.892810106277466} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 108, 211, ..., 9999825, - 9999911, 10000000]), - col_indices=tensor([ 2064, 2545, 2770, ..., 96472, 96974, 97481]), - values=tensor([0.9939, 0.7295, 0.6290, ..., 0.4583, 0.7573, 0.7957]), +tensor(crow_indices=tensor([ 0, 92, 187, ..., 9999795, + 9999888, 10000000]), + col_indices=tensor([ 1843, 1850, 4412, ..., 98725, 98752, 98846]), + values=tensor([0.9343, 0.4740, 0.0577, ..., 0.9099, 0.1721, 0.4592]), size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.0307, 0.5740, 0.3084, ..., 0.9686, 0.7857, 0.7900]) +tensor([0.5874, 0.0844, 0.8298, ..., 0.9009, 0.0712, 0.0168]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,19 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 10000000 Density: 0.001 -Time: 16.660033226013184 seconds +Time: 3.892810106277466 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1260', '-ss', '100000', '-sd', '0.001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 21.127803564071655} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '2697', '-ss', '100000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.332640647888184} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 87, 189, ..., 9999804, - 9999908, 10000000]), - col_indices=tensor([ 1134, 1351, 3464, ..., 96987, 97572, 98330]), - values=tensor([0.8017, 0.9469, 0.5440, ..., 0.1663, 0.6077, 0.2624]), +tensor(crow_indices=tensor([ 0, 99, 214, ..., 9999796, + 9999890, 10000000]), + col_indices=tensor([ 133, 206, 762, ..., 95508, 95519, 98505]), + values=tensor([0.7799, 0.5247, 0.9444, ..., 0.2262, 0.0403, 0.9029]), size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.9534, 0.2929, 0.7145, ..., 0.1886, 0.7155, 0.7573]) +tensor([0.3536, 0.8501, 0.0907, ..., 0.0431, 0.6064, 0.5575]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -36,16 +36,16 @@ Rows: 100000 Size: 10000000000 NNZ: 10000000 Density: 0.001 -Time: 21.127803564071655 seconds +Time: 10.332640647888184 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 87, 189, ..., 9999804, - 9999908, 10000000]), - col_indices=tensor([ 1134, 1351, 3464, ..., 96987, 97572, 98330]), - values=tensor([0.8017, 0.9469, 0.5440, ..., 0.1663, 0.6077, 0.2624]), +tensor(crow_indices=tensor([ 0, 99, 214, ..., 9999796, + 9999890, 10000000]), + col_indices=tensor([ 133, 206, 762, ..., 95508, 95519, 98505]), + values=tensor([0.7799, 0.5247, 0.9444, ..., 0.2262, 0.0403, 0.9029]), size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.9534, 0.2929, 0.7145, ..., 0.1886, 0.7155, 0.7573]) +tensor([0.3536, 0.8501, 0.0907, ..., 0.0431, 0.6064, 0.5575]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -53,13 +53,13 @@ Rows: 100000 Size: 10000000000 NNZ: 10000000 Density: 0.001 -Time: 21.127803564071655 seconds +Time: 10.332640647888184 seconds -[41.52, 38.75, 38.56, 39.98, 39.02, 38.4, 39.41, 44.36, 39.07, 39.11] -[77.88] -26.069287300109863 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1260, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 21.127803564071655, 'TIME_S_1KI': 16.768098066723535, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2030.2760949325561, 'W': 77.88} -[41.52, 38.75, 38.56, 39.98, 39.02, 38.4, 39.41, 44.36, 39.07, 39.11, 39.9, 38.94, 38.5, 38.44, 38.69, 38.62, 38.87, 38.86, 38.81, 38.75] -706.92 -35.346 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1260, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 21.127803564071655, 'TIME_S_1KI': 16.768098066723535, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2030.2760949325561, 'W': 77.88, 'J_1KI': 1611.3302340734572, 'W_1KI': 61.80952380952381, 'W_D': 42.534, 'J_D': 1108.8310660228728, 'W_D_1KI': 33.75714285714285, 'J_D_1KI': 26.791383219954643} +[18.26, 17.98, 17.82, 17.72, 17.76, 17.93, 17.75, 17.95, 17.83, 18.05] +[83.44] +16.988778591156006 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2697, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.332640647888184, 'TIME_S_1KI': 3.8311607889833827, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1417.5436856460572, 'W': 83.44} +[18.26, 17.98, 17.82, 17.72, 17.76, 17.93, 17.75, 17.95, 17.83, 18.05, 18.55, 18.9, 17.56, 17.66, 17.87, 17.73, 17.82, 17.88, 17.78, 17.56] +322.15 +16.107499999999998 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2697, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.332640647888184, 'TIME_S_1KI': 3.8311607889833827, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1417.5436856460572, 'W': 83.44, 'J_1KI': 525.6001800689867, 'W_1KI': 30.938079347423063, 'W_D': 67.3325, 'J_D': 1143.8969344890118, 'W_D_1KI': 24.965702632554688, 'J_D_1KI': 9.25684191047634} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_1e-05.json new file mode 100644 index 0000000..60a31fb --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 63032, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.23182988166809, "TIME_S_1KI": 0.1623275460348409, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1227.4584797358514, "W": 89.17, "J_1KI": 19.473576591824017, "W_1KI": 1.4146782586622668, "W_D": 73.15375, "J_D": 1006.9887940111756, "W_D_1KI": 1.1605811333925626, "J_D_1KI": 0.018412570335584508} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_1e-05.output new file mode 100644 index 0000000..14be47f --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_1e-05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.17937397956848145} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 4, ..., 99996, 100000, + 100000]), + col_indices=tensor([ 6463, 19403, 32975, ..., 50312, 73566, 75866]), + values=tensor([0.6504, 0.4570, 0.8704, ..., 0.7277, 0.1675, 0.6048]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.7096, 0.4020, 0.6001, ..., 0.3911, 0.2531, 0.2591]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 0.17937397956848145 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '58536', '-ss', '100000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.751020431518555} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 99998, 99998, + 100000]), + col_indices=tensor([64186, 21974, 57698, ..., 75952, 18460, 38945]), + values=tensor([0.5668, 0.1226, 0.0967, ..., 0.2541, 0.6343, 0.4356]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.9872, 0.9595, 0.0420, ..., 0.0153, 0.9518, 0.5571]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 9.751020431518555 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '63032', '-ss', '100000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.23182988166809} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 99998, 100000, + 100000]), + col_indices=tensor([35835, 88904, 80345, ..., 79801, 8127, 81515]), + values=tensor([0.8153, 0.8474, 0.9328, ..., 0.8046, 0.4857, 0.5161]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.1493, 0.1613, 0.9905, ..., 0.3209, 0.7704, 0.3686]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 10.23182988166809 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 99998, 100000, + 100000]), + col_indices=tensor([35835, 88904, 80345, ..., 79801, 8127, 81515]), + values=tensor([0.8153, 0.8474, 0.9328, ..., 0.8046, 0.4857, 0.5161]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.1493, 0.1613, 0.9905, ..., 0.3209, 0.7704, 0.3686]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 10.23182988166809 seconds + +[18.1, 17.83, 17.83, 17.64, 17.89, 17.76, 17.87, 17.83, 17.97, 17.52] +[89.17] +13.765374898910522 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 63032, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.23182988166809, 'TIME_S_1KI': 0.1623275460348409, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1227.4584797358514, 'W': 89.17} +[18.1, 17.83, 17.83, 17.64, 17.89, 17.76, 17.87, 17.83, 17.97, 17.52, 18.59, 17.72, 17.71, 17.51, 17.74, 17.62, 17.64, 18.03, 17.89, 17.48] +320.32500000000005 +16.016250000000003 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 63032, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.23182988166809, 'TIME_S_1KI': 0.1623275460348409, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1227.4584797358514, 'W': 89.17, 'J_1KI': 19.473576591824017, 'W_1KI': 1.4146782586622668, 'W_D': 73.15375, 'J_D': 1006.9887940111756, 'W_D_1KI': 1.1605811333925626, 'J_D_1KI': 0.018412570335584508} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_5e-05.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_5e-05.json new file mode 100644 index 0000000..b14656f --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 43635, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.050816535949707, "TIME_S_1KI": 0.23033841035750444, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1224.4814233660697, "W": 89.55, "J_1KI": 28.06190955347931, "W_1KI": 2.052251632863527, "W_D": 73.275, "J_D": 1001.9416671931745, "W_D_1KI": 1.679271227225851, "J_D_1KI": 0.03848450159793402} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_5e-05.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_5e-05.output new file mode 100644 index 0000000..fe4dfe5 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_100000_5e-05.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.24062752723693848} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 8, ..., 499990, 499993, + 500000]), + col_indices=tensor([25845, 82264, 90566, ..., 92820, 97145, 99590]), + values=tensor([0.6382, 0.4794, 0.9065, ..., 0.0565, 0.2096, 0.7456]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.3202, 0.7109, 0.9868, ..., 0.4243, 0.8639, 0.9226]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 0.24062752723693848 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '43635', '-ss', '100000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.050816535949707} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 11, ..., 499985, 499991, + 500000]), + col_indices=tensor([ 2943, 35530, 40183, ..., 77324, 82017, 92181]), + values=tensor([0.7176, 0.7408, 0.8709, ..., 0.2236, 0.1509, 0.6788]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.0661, 0.4747, 0.8915, ..., 0.6458, 0.7762, 0.4694]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 10.050816535949707 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 11, ..., 499985, 499991, + 500000]), + col_indices=tensor([ 2943, 35530, 40183, ..., 77324, 82017, 92181]), + values=tensor([0.7176, 0.7408, 0.8709, ..., 0.2236, 0.1509, 0.6788]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.0661, 0.4747, 0.8915, ..., 0.6458, 0.7762, 0.4694]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 10.050816535949707 seconds + +[18.28, 18.77, 17.89, 17.54, 18.06, 17.6, 17.83, 17.74, 18.0, 17.55] +[89.55] +13.673717737197876 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 43635, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.050816535949707, 'TIME_S_1KI': 0.23033841035750444, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1224.4814233660697, 'W': 89.55} +[18.28, 18.77, 17.89, 17.54, 18.06, 17.6, 17.83, 17.74, 18.0, 17.55, 18.31, 17.61, 17.7, 17.7, 17.86, 17.61, 17.69, 21.85, 18.07, 17.82] +325.5 +16.275 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 43635, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.050816535949707, 'TIME_S_1KI': 0.23033841035750444, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1224.4814233660697, 'W': 89.55, 'J_1KI': 28.06190955347931, 'W_1KI': 2.052251632863527, 'W_D': 73.275, 'J_D': 1001.9416671931745, 'W_D_1KI': 1.679271227225851, 'J_D_1KI': 0.03848450159793402} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.0001.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.0001.json new file mode 100644 index 0000000..05a227c --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 253876, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.530851364135742, "TIME_S_1KI": 0.041480294963429955, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1171.4377240467072, "W": 80.68, "J_1KI": 4.614212150997759, "W_1KI": 0.317792938284832, "W_D": 64.302, "J_D": 933.636446847439, "W_D_1KI": 0.2532811293702437, "J_D_1KI": 0.0009976568457445514} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.0001.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.0001.output new file mode 100644 index 0000000..04a16aa --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.0001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.05977439880371094} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 2, ..., 9999, 9999, 10000]), + col_indices=tensor([6615, 8991, 2810, ..., 6295, 8510, 7610]), + values=tensor([0.3885, 0.8426, 0.7862, ..., 0.5955, 0.1672, 0.2063]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.1595, 0.0624, 0.6993, ..., 0.5987, 0.7271, 0.9533]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 0.05977439880371094 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '175660', '-ss', '10000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 7.265056371688843} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 9997, 9998, 10000]), + col_indices=tensor([6157, 6465, 6955, ..., 9189, 5553, 9168]), + values=tensor([0.9492, 0.4977, 0.7776, ..., 0.2833, 0.2034, 0.6430]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.2429, 0.7570, 0.9101, ..., 0.6676, 0.5300, 0.9328]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 7.265056371688843 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '253876', '-ss', '10000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.530851364135742} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 9998, 9999, 10000]), + col_indices=tensor([ 868, 4014, 6169, ..., 4688, 7367, 6538]), + values=tensor([0.9131, 0.0133, 0.5134, ..., 0.5757, 0.9187, 0.1463]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.7710, 0.0750, 0.1717, ..., 0.8123, 0.4992, 0.1144]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.530851364135742 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 9998, 9999, 10000]), + col_indices=tensor([ 868, 4014, 6169, ..., 4688, 7367, 6538]), + values=tensor([0.9131, 0.0133, 0.5134, ..., 0.5757, 0.9187, 0.1463]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.7710, 0.0750, 0.1717, ..., 0.8123, 0.4992, 0.1144]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.530851364135742 seconds + +[18.32, 17.72, 17.73, 18.28, 18.02, 18.18, 17.93, 18.12, 17.89, 21.22] +[80.68] +14.51955533027649 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 253876, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.530851364135742, 'TIME_S_1KI': 0.041480294963429955, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1171.4377240467072, 'W': 80.68} +[18.32, 17.72, 17.73, 18.28, 18.02, 18.18, 17.93, 18.12, 17.89, 21.22, 18.16, 17.68, 17.59, 17.54, 18.03, 22.12, 17.56, 17.65, 17.87, 17.6] +327.56000000000006 +16.378000000000004 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 253876, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.530851364135742, 'TIME_S_1KI': 0.041480294963429955, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1171.4377240467072, 'W': 80.68, 'J_1KI': 4.614212150997759, 'W_1KI': 0.317792938284832, 'W_D': 64.302, 'J_D': 933.636446847439, 'W_D_1KI': 0.2532811293702437, 'J_D_1KI': 0.0009976568457445514} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.001.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.001.json new file mode 100644 index 0000000..fdd9d92 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 195071, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.382015228271484, "TIME_S_1KI": 0.05322172556798029, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1196.0013425803186, "W": 86.31, "J_1KI": 6.131107866265712, "W_1KI": 0.4424542858753992, "W_D": 70.10050000000001, "J_D": 971.3856113492252, "W_D_1KI": 0.35935890009278676, "J_D_1KI": 0.0018421954062509895} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.001.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.001.output new file mode 100644 index 0000000..5d9701a --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.001.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.06870174407958984} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 10, 25, ..., 99981, 99995, + 100000]), + col_indices=tensor([ 3, 150, 370, ..., 2691, 9535, 9749]), + values=tensor([0.2561, 0.9230, 0.8831, ..., 0.2203, 0.7623, 0.4185]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.1427, 0.1860, 0.4972, ..., 0.5058, 0.8744, 0.6551]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 0.06870174407958984 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '152834', '-ss', '10000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 8.226486682891846} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 9, 17, ..., 99982, 99990, + 100000]), + col_indices=tensor([ 560, 3215, 3961, ..., 6911, 7414, 7504]), + values=tensor([0.0904, 0.0706, 0.8224, ..., 0.0963, 0.3127, 0.0052]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.8141, 0.4563, 0.6350, ..., 0.0924, 0.8861, 0.1694]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 8.226486682891846 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '195071', '-ss', '10000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.382015228271484} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 10, ..., 99988, 99994, + 100000]), + col_indices=tensor([1742, 3653, 4110, ..., 7414, 9186, 9217]), + values=tensor([0.4393, 0.0633, 0.6988, ..., 0.9636, 0.3600, 0.6461]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.5362, 0.5145, 0.3988, ..., 0.1543, 0.7121, 0.2032]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.382015228271484 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 10, ..., 99988, 99994, + 100000]), + col_indices=tensor([1742, 3653, 4110, ..., 7414, 9186, 9217]), + values=tensor([0.4393, 0.0633, 0.6988, ..., 0.9636, 0.3600, 0.6461]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.5362, 0.5145, 0.3988, ..., 0.1543, 0.7121, 0.2032]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.382015228271484 seconds + +[18.32, 18.17, 18.0, 18.26, 17.83, 17.86, 19.18, 17.87, 17.68, 18.06] +[86.31] +13.85704255104065 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 195071, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.382015228271484, 'TIME_S_1KI': 0.05322172556798029, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1196.0013425803186, 'W': 86.31} +[18.32, 18.17, 18.0, 18.26, 17.83, 17.86, 19.18, 17.87, 17.68, 18.06, 18.29, 17.98, 17.81, 17.75, 18.0, 18.2, 17.75, 17.66, 17.87, 17.97] +324.18999999999994 +16.2095 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 195071, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.382015228271484, 'TIME_S_1KI': 0.05322172556798029, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1196.0013425803186, 'W': 86.31, 'J_1KI': 6.131107866265712, 'W_1KI': 0.4424542858753992, 'W_D': 70.10050000000001, 'J_D': 971.3856113492252, 'W_D_1KI': 0.35935890009278676, 'J_D_1KI': 0.0018421954062509895} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.01.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.01.json new file mode 100644 index 0000000..5933eb4 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 53507, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.015070676803589, "TIME_S_1KI": 0.18717309280661576, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1202.573525466919, "W": 88.64, "J_1KI": 22.47506915855718, "W_1KI": 1.6566056777617881, "W_D": 72.22725, "J_D": 979.9027376723885, "W_D_1KI": 1.3498654381669688, "J_D_1KI": 0.02522782884794455} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.01.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.01.output new file mode 100644 index 0000000..d725fe1 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.01.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.19623374938964844} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 102, 197, ..., 999814, + 999918, 1000000]), + col_indices=tensor([ 21, 221, 266, ..., 9711, 9962, 9983]), + values=tensor([0.8240, 0.1342, 0.9347, ..., 0.9531, 0.8710, 0.7315]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.2953, 0.0740, 0.7231, ..., 0.2507, 0.0704, 0.5422]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 0.19623374938964844 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '53507', '-ss', '10000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.015070676803589} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 117, 202, ..., 999813, + 999911, 1000000]), + col_indices=tensor([ 101, 231, 245, ..., 9677, 9872, 9873]), + values=tensor([0.6066, 0.1771, 0.9671, ..., 0.7083, 0.4630, 0.7862]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.1666, 0.0462, 0.0015, ..., 0.3047, 0.2438, 0.6174]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.015070676803589 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 117, 202, ..., 999813, + 999911, 1000000]), + col_indices=tensor([ 101, 231, 245, ..., 9677, 9872, 9873]), + values=tensor([0.6066, 0.1771, 0.9671, ..., 0.7083, 0.4630, 0.7862]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.1666, 0.0462, 0.0015, ..., 0.3047, 0.2438, 0.6174]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.015070676803589 seconds + +[18.69, 17.91, 17.85, 17.85, 22.65, 17.8, 18.01, 17.72, 17.94, 17.78] +[88.64] +13.56693959236145 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 53507, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.015070676803589, 'TIME_S_1KI': 0.18717309280661576, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1202.573525466919, 'W': 88.64} +[18.69, 17.91, 17.85, 17.85, 22.65, 17.8, 18.01, 17.72, 17.94, 17.78, 20.07, 19.06, 18.03, 17.54, 17.79, 18.03, 17.73, 17.66, 17.6, 17.63] +328.255 +16.41275 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 53507, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.015070676803589, 'TIME_S_1KI': 0.18717309280661576, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1202.573525466919, 'W': 88.64, 'J_1KI': 22.47506915855718, 'W_1KI': 1.6566056777617881, 'W_D': 72.22725, 'J_D': 979.9027376723885, 'W_D_1KI': 1.3498654381669688, 'J_D_1KI': 0.02522782884794455} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.05.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.05.json new file mode 100644 index 0000000..91f897d --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 8596, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.36475419998169, "TIME_S_1KI": 1.2057647975781398, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1373.4265056419372, "W": 84.46, "J_1KI": 159.77507045625143, "W_1KI": 9.825500232666355, "W_D": 68.352, "J_D": 1111.4900368652345, "W_D_1KI": 7.95160539785947, "J_D_1KI": 0.9250355279036144} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.05.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.05.output new file mode 100644 index 0000000..a70ca9f --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.05.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 1.2214851379394531} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 508, 1039, ..., 4998996, + 4999496, 5000000]), + col_indices=tensor([ 26, 30, 52, ..., 9932, 9973, 9998]), + values=tensor([0.9442, 0.4994, 0.3456, ..., 0.3930, 0.0474, 0.1408]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.1466, 0.3658, 0.5068, ..., 0.5229, 0.0306, 0.8484]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 1.2214851379394531 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '8596', '-ss', '10000', '-sd', '0.05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.36475419998169} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 466, 997, ..., 4998966, + 4999476, 5000000]), + col_indices=tensor([ 0, 1, 5, ..., 9962, 9965, 9989]), + values=tensor([0.4765, 0.8415, 0.0752, ..., 0.8745, 0.5765, 0.8508]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.2258, 0.4418, 0.4951, ..., 0.4808, 0.0990, 0.6508]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 10.36475419998169 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 466, 997, ..., 4998966, + 4999476, 5000000]), + col_indices=tensor([ 0, 1, 5, ..., 9962, 9965, 9989]), + values=tensor([0.4765, 0.8415, 0.0752, ..., 0.8745, 0.5765, 0.8508]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.2258, 0.4418, 0.4951, ..., 0.4808, 0.0990, 0.6508]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 10.36475419998169 seconds + +[18.03, 17.93, 17.79, 17.69, 17.86, 17.92, 18.02, 17.88, 17.82, 18.11] +[84.46] +16.261265754699707 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 8596, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.36475419998169, 'TIME_S_1KI': 1.2057647975781398, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1373.4265056419372, 'W': 84.46} +[18.03, 17.93, 17.79, 17.69, 17.86, 17.92, 18.02, 17.88, 17.82, 18.11, 18.58, 18.42, 17.91, 17.71, 17.91, 17.76, 17.61, 17.59, 17.81, 18.34] +322.15999999999997 +16.107999999999997 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 8596, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.36475419998169, 'TIME_S_1KI': 1.2057647975781398, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1373.4265056419372, 'W': 84.46, 'J_1KI': 159.77507045625143, 'W_1KI': 9.825500232666355, 'W_D': 68.352, 'J_D': 1111.4900368652345, 'W_D_1KI': 7.95160539785947, 'J_D_1KI': 0.9250355279036144} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.1.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.1.json new file mode 100644 index 0000000..06b2e69 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.1.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 2682, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.339906692504883, "TIME_S_1KI": 3.855297051642387, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1411.3430524110793, "W": 81.1, "J_1KI": 526.227834605175, "W_1KI": 30.2386278896346, "W_D": 64.94024999999999, "J_D": 1130.1229427785277, "W_D_1KI": 24.21336689038031, "J_D_1KI": 9.02810100312465} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.1.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.1.output new file mode 100644 index 0000000..fee56d8 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.1.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.1', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 3.9144444465637207} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1047, 2059, ..., 9998021, + 9999010, 10000000]), + col_indices=tensor([ 5, 8, 10, ..., 9982, 9985, 9996]), + values=tensor([0.6280, 0.3451, 0.1654, ..., 0.9055, 0.0155, 0.3514]), + size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.4839, 0.5284, 0.4128, ..., 0.3450, 0.9191, 0.1662]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000000 +Density: 0.1 +Time: 3.9144444465637207 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '2682', '-ss', '10000', '-sd', '0.1', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.339906692504883} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1046, 1985, ..., 9998014, + 9998990, 10000000]), + col_indices=tensor([ 17, 31, 38, ..., 9973, 9978, 9985]), + values=tensor([0.0174, 0.0178, 0.9247, ..., 0.4423, 0.5021, 0.4230]), + size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.8246, 0.4652, 0.0479, ..., 0.0955, 0.8235, 0.1184]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000000 +Density: 0.1 +Time: 10.339906692504883 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1046, 1985, ..., 9998014, + 9998990, 10000000]), + col_indices=tensor([ 17, 31, 38, ..., 9973, 9978, 9985]), + values=tensor([0.0174, 0.0178, 0.9247, ..., 0.4423, 0.5021, 0.4230]), + size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.8246, 0.4652, 0.0479, ..., 0.0955, 0.8235, 0.1184]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000000 +Density: 0.1 +Time: 10.339906692504883 seconds + +[18.32, 17.68, 17.65, 18.12, 17.79, 17.54, 17.66, 17.93, 19.1, 17.92] +[81.1] +17.402503728866577 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2682, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.339906692504883, 'TIME_S_1KI': 3.855297051642387, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1411.3430524110793, 'W': 81.1} +[18.32, 17.68, 17.65, 18.12, 17.79, 17.54, 17.66, 17.93, 19.1, 17.92, 18.28, 17.68, 17.82, 17.91, 18.12, 17.75, 18.95, 17.54, 17.87, 17.65] +323.195 +16.15975 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2682, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.339906692504883, 'TIME_S_1KI': 3.855297051642387, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1411.3430524110793, 'W': 81.1, 'J_1KI': 526.227834605175, 'W_1KI': 30.2386278896346, 'W_D': 64.94024999999999, 'J_D': 1130.1229427785277, 'W_D_1KI': 24.21336689038031, 'J_D_1KI': 9.02810100312465} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.2.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.2.json new file mode 100644 index 0000000..bd7f556 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.2.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 1445, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.100359916687012, "TIME_S_1KI": 6.98986845445468, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2160.905471148491, "W": 62.46, "J_1KI": 1495.4363122134887, "W_1KI": 43.22491349480969, "W_D": 46.34675, "J_D": 1603.4413327721954, "W_D_1KI": 32.07387543252595, "J_D_1KI": 22.196453586523152} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.2.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.2.output new file mode 100644 index 0000000..345e6fc --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.2.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.2', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 7.263561964035034} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1926, 3961, ..., 19995971, + 19997972, 20000000]), + col_indices=tensor([ 0, 6, 15, ..., 9987, 9993, 9997]), + values=tensor([0.0314, 0.6999, 0.8853, ..., 0.3076, 0.0508, 0.1862]), + size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) +tensor([0.4423, 0.2673, 0.1161, ..., 0.1117, 0.7670, 0.7166]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 20000000 +Density: 0.2 +Time: 7.263561964035034 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1445', '-ss', '10000', '-sd', '0.2', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.100359916687012} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2031, 4064, ..., 19995881, + 19997886, 20000000]), + col_indices=tensor([ 6, 7, 12, ..., 9992, 9994, 9996]), + values=tensor([0.1267, 0.2771, 0.5074, ..., 0.4122, 0.4435, 0.1814]), + size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) +tensor([0.2940, 0.6612, 0.2260, ..., 0.5354, 0.3344, 0.1796]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 20000000 +Density: 0.2 +Time: 10.100359916687012 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2031, 4064, ..., 19995881, + 19997886, 20000000]), + col_indices=tensor([ 6, 7, 12, ..., 9992, 9994, 9996]), + values=tensor([0.1267, 0.2771, 0.5074, ..., 0.4122, 0.4435, 0.1814]), + size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) +tensor([0.2940, 0.6612, 0.2260, ..., 0.5354, 0.3344, 0.1796]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 20000000 +Density: 0.2 +Time: 10.100359916687012 seconds + +[18.37, 18.02, 17.98, 17.77, 18.08, 17.81, 18.57, 18.23, 17.73, 17.95] +[62.46] +34.59662938117981 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1445, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.100359916687012, 'TIME_S_1KI': 6.98986845445468, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2160.905471148491, 'W': 62.46} +[18.37, 18.02, 17.98, 17.77, 18.08, 17.81, 18.57, 18.23, 17.73, 17.95, 18.39, 17.61, 17.65, 17.9, 17.98, 17.61, 17.59, 17.93, 17.63, 17.64] +322.265 +16.11325 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1445, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.100359916687012, 'TIME_S_1KI': 6.98986845445468, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2160.905471148491, 'W': 62.46, 'J_1KI': 1495.4363122134887, 'W_1KI': 43.22491349480969, 'W_D': 46.34675, 'J_D': 1603.4413327721954, 'W_D_1KI': 32.07387543252595, 'J_D_1KI': 22.196453586523152} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.3.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.3.json new file mode 100644 index 0000000..a3c7052 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.3.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 11.531069993972778, "TIME_S_1KI": 11.531069993972778, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 4119.280698208809, "W": 53.23, "J_1KI": 4119.280698208809, "W_1KI": 53.23, "W_D": 37.1785, "J_D": 2877.1121066758633, "W_D_1KI": 37.1785, "J_D_1KI": 37.1785} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.3.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.3.output new file mode 100644 index 0000000..b999f8b --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_0.3.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.3', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 11.531069993972778} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3017, 6060, ..., 29994067, + 29997064, 30000000]), + col_indices=tensor([ 8, 9, 10, ..., 9986, 9991, 9993]), + values=tensor([0.4919, 0.2111, 0.3595, ..., 0.1115, 0.4648, 0.4893]), + size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) +tensor([0.2808, 0.4380, 0.4720, ..., 0.7949, 0.9847, 0.6708]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 30000000 +Density: 0.3 +Time: 11.531069993972778 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3017, 6060, ..., 29994067, + 29997064, 30000000]), + col_indices=tensor([ 8, 9, 10, ..., 9986, 9991, 9993]), + values=tensor([0.4919, 0.2111, 0.3595, ..., 0.1115, 0.4648, 0.4893]), + size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) +tensor([0.2808, 0.4380, 0.4720, ..., 0.7949, 0.9847, 0.6708]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 30000000 +Density: 0.3 +Time: 11.531069993972778 seconds + +[18.81, 17.57, 18.39, 17.6, 17.66, 17.56, 18.03, 17.8, 17.96, 17.55] +[53.23] +77.38644933700562 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 11.531069993972778, 'TIME_S_1KI': 11.531069993972778, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 4119.280698208809, 'W': 53.23} +[18.81, 17.57, 18.39, 17.6, 17.66, 17.56, 18.03, 17.8, 17.96, 17.55, 18.93, 17.87, 17.97, 17.66, 17.7, 17.69, 17.69, 17.51, 17.83, 17.79] +321.03 +16.051499999999997 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 11.531069993972778, 'TIME_S_1KI': 11.531069993972778, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 4119.280698208809, 'W': 53.23, 'J_1KI': 4119.280698208809, 'W_1KI': 53.23, 'W_D': 37.1785, 'J_D': 2877.1121066758633, 'W_D_1KI': 37.1785, 'J_D_1KI': 37.1785} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_1e-05.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_1e-05.json new file mode 100644 index 0000000..a7f50f8 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 286739, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.441989183425903, "TIME_S_1KI": 0.036416354885194915, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1103.374533557892, "W": 79.9, "J_1KI": 3.8480099796605693, "W_1KI": 0.27865061955297327, "W_D": 63.605500000000006, "J_D": 878.3565568737985, "W_D_1KI": 0.22182367937392544, "J_D_1KI": 0.0007736083315277149} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_1e-05.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_1e-05.output new file mode 100644 index 0000000..03249c3 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_1e-05.output @@ -0,0 +1,1521 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.05496048927307129} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([9138, 88, 9925, 6110, 2605, 340, 5956, 3778, 8300, + 2766, 2415, 356, 3329, 6854, 5455, 793, 5522, 4476, + 5241, 1294, 7569, 8127, 9283, 6072, 8826, 6207, 2260, + 3124, 306, 7010, 7771, 4682, 3624, 7319, 82, 8448, + 4521, 4810, 3870, 1662, 7314, 1288, 1304, 5554, 9567, + 9579, 9692, 6033, 1049, 3607, 5801, 3226, 2607, 6224, + 5048, 5599, 9933, 3657, 199, 3603, 6580, 5494, 6052, + 8972, 727, 7003, 7712, 1465, 3313, 5370, 8225, 506, + 2132, 9159, 9298, 7883, 9321, 6558, 6192, 8563, 3021, + 5097, 6402, 3516, 4725, 3323, 5925, 7736, 934, 2152, + 415, 9779, 2459, 2032, 1017, 8577, 4353, 2307, 3707, + 7696, 2489, 6071, 6443, 6704, 9904, 2685, 4669, 5544, + 3959, 2983, 9040, 2033, 7320, 2161, 4481, 6668, 6026, + 7153, 9823, 4697, 1527, 5589, 6975, 8837, 3195, 644, + 7715, 2983, 8912, 5117, 1412, 537, 9828, 4072, 6000, + 2149, 554, 4346, 8996, 6426, 1022, 2966, 9384, 8537, + 9416, 5887, 6269, 5258, 4819, 9322, 4229, 6389, 6260, + 1541, 4070, 4003, 6524, 298, 6252, 7806, 4466, 5030, + 3423, 1169, 4895, 2782, 3384, 5163, 1707, 2179, 8192, + 4856, 4416, 8541, 1726, 6556, 5525, 641, 7685, 381, + 2461, 9802, 6078, 9726, 9306, 2118, 8753, 8575, 72, + 4711, 4403, 970, 5051, 2468, 8252, 3531, 859, 5120, + 2455, 4223, 8979, 470, 4221, 2490, 6986, 4019, 7557, + 9215, 798, 8794, 2097, 6389, 9800, 6503, 7889, 2311, + 3799, 8462, 8357, 7718, 7346, 188, 621, 2023, 2539, + 5495, 5438, 2018, 3425, 902, 3405, 3334, 1814, 7524, + 3720, 174, 5885, 5109, 7606, 980, 7935, 5490, 6670, + 4801, 67, 4661, 4738, 8527, 7468, 7340, 1660, 3760, + 1635, 4034, 8280, 4301, 5427, 4797, 8120, 1904, 3428, + 1341, 5108, 1943, 1285, 6206, 6232, 43, 320, 4474, + 1535, 6118, 6953, 9965, 80, 271, 3088, 5551, 6872, + 6949, 7239, 301, 1456, 8199, 8711, 3036, 5996, 958, + 2825, 1772, 1957, 5020, 487, 6842, 4166, 2955, 6492, + 17, 9760, 9135, 1765, 8481, 7530, 9891, 8597, 8556, + 5786, 1228, 1351, 1248, 8804, 1017, 7515, 2278, 5157, + 7588, 2633, 1729, 9878, 9927, 5939, 2378, 2550, 7075, + 4737, 7187, 5641, 3536, 3422, 4800, 9633, 813, 4145, + 9491, 5345, 6430, 9042, 887, 7605, 8283, 655, 5757, + 2626, 8734, 7264, 9682, 1062, 2309, 539, 2604, 5173, + 3568, 2970, 3578, 9495, 7355, 2235, 6445, 8654, 6372, + 608, 5409, 3440, 9396, 4059, 3336, 8176, 4379, 8456, + 1419, 7167, 6685, 2068, 4062, 4242, 7347, 4971, 6977, + 7281, 1182, 2411, 2287, 8877, 3821, 7978, 189, 6921, + 1884, 7608, 9661, 3998, 1182, 9277, 1249, 6224, 968, + 6355, 5060, 7903, 1166, 7823, 1212, 2431, 8400, 1271, + 9520, 6242, 9971, 4349, 938, 8969, 4270, 822, 5741, + 9394, 8293, 6301, 6981, 9908, 8255, 102, 7831, 5694, + 9414, 2284, 2590, 7248, 1466, 9859, 2377, 2143, 4535, + 4396, 5994, 2705, 2889, 5015, 3580, 8953, 2889, 4447, + 8786, 4942, 8218, 3896, 303, 2525, 247, 5833, 8258, + 2868, 2360, 9399, 9670, 3993, 9504, 1915, 919, 9928, + 1803, 4809, 1358, 7489, 9688, 7456, 4687, 7541, 3474, + 9779, 3007, 1683, 8615, 915, 2781, 8504, 9018, 3643, + 2290, 4220, 5519, 536, 6768, 24, 1161, 7604, 5855, + 39, 1761, 9899, 6103, 58, 6751, 2360, 8656, 3618, + 3212, 9556, 6123, 4185, 4460, 1357, 6925, 2551, 6573, + 4677, 154, 3766, 9863, 6079, 4532, 3616, 3110, 8315, + 4801, 2108, 8553, 3164, 9378, 6464, 595, 84, 474, + 2425, 9930, 399, 7869, 9698, 604, 5368, 9064, 4589, + 7633, 6312, 2970, 6489, 354, 773, 4003, 9913, 275, + 2849, 63, 7808, 7372, 9770, 9513, 4525, 4580, 3235, + 8544, 3833, 1302, 2568, 1970, 3174, 5901, 9943, 9832, + 235, 6570, 2725, 9042, 7813, 8730, 8969, 5958, 8913, + 5966, 6304, 8362, 9055, 4424, 4142, 5279, 7030, 5904, + 844, 8697, 734, 4613, 2966, 3356, 8238, 8366, 436, + 65, 984, 2844, 1847, 8328, 7443, 1253, 3985, 4330, + 9195, 2307, 2527, 1543, 2864, 5197, 4679, 328, 1120, + 6619, 4598, 1932, 6006, 6685, 3164, 9876, 7906, 8431, + 5737, 7724, 811, 2068, 8401, 4190, 4778, 9707, 3849, + 9387, 3280, 6050, 9898, 7004, 705, 6207, 6146, 9110, + 4514, 1880, 5102, 2440, 9719, 163, 9086, 9370, 9656, + 1567, 6024, 5289, 2489, 6082, 7211, 3889, 6975, 5002, + 6557, 375, 5863, 3640, 1925, 9842, 3159, 4914, 2750, + 7209, 9838, 4360, 3173, 9524, 2237, 1815, 5953, 43, + 3649, 9095, 774, 2795, 7, 6114, 6654, 440, 2827, + 761, 1411, 6825, 3090, 8856, 8355, 4804, 7164, 4684, + 4241, 810, 7302, 2782, 8059, 9235, 2523, 7832, 6608, + 9632, 2760, 2828, 9495, 9834, 6545, 257, 6386, 2900, + 9289, 3279, 2210, 7391, 2679, 4619, 8714, 550, 7613, + 4604, 4404, 6853, 3981, 6965, 7077, 1130, 5879, 2687, + 5429, 2819, 9333, 6926, 8259, 9706, 6593, 5588, 528, + 7685, 652, 9498, 3661, 4957, 7462, 9469, 2874, 8044, + 4397, 3011, 727, 1559, 7390, 2900, 5580, 8066, 9798, + 6182, 1555, 3257, 60, 8190, 8254, 597, 1516, 5695, + 8535, 1465, 9400, 7666, 1975, 6884, 287, 629, 1437, + 8969, 3725, 9466, 2595, 4269, 7965, 2948, 5212, 5251, + 4253, 7232, 3122, 9553, 9702, 6587, 9629, 1611, 4119, + 5654, 2677, 740, 2227, 9630, 4116, 4617, 8149, 2722, + 7825, 4599, 9413, 8923, 8264, 3267, 1948, 1366, 4183, + 1125, 434, 4634, 1781, 9113, 7808, 1594, 9332, 8888, + 8244, 8529, 8839, 5656, 2946, 9157, 5742, 2795, 5890, + 7056, 8353, 1065, 6737, 4715, 5752, 5285, 9265, 4485, + 357, 6187, 6936, 4388, 1372, 3404, 3737, 609, 1220, + 4090, 4155, 6031, 8841, 4568, 3455, 6307, 7126, 8160, + 4114, 1931, 6166, 9773, 4630, 1375, 8551, 7521, 5487, + 7930, 7327, 672, 6993, 5913, 2567, 3784, 5855, 526, + 9200, 9781, 1540, 7841, 4155, 4047, 9676, 1433, 3617, + 6628, 3109, 5877, 9679, 520, 5329, 6105, 9669, 1669, + 8437, 1775, 5363, 470, 404, 4948, 3208, 729, 6222, + 4480, 7058, 8542, 230, 5224, 7845, 4217, 6763, 4420, + 9187, 9965, 8691, 9222, 1176, 7124, 8517, 5433, 1730, + 2115, 9671, 8642, 6271, 5061, 1542, 4097, 866, 2675, + 6711, 2453, 1324, 7866, 7526, 8903, 2474, 9461, 4304, + 3845, 789, 4233, 8884, 2141, 6175, 6927, 3155, 5810, + 1369, 2205, 423, 7115, 506, 1652, 9547, 4630, 1558, + 1723, 4961, 397, 6480, 1563, 6211, 9295, 541, 6686, + 695, 4697, 6824, 7280, 5991, 8302, 4418, 6999, 6926, + 5960, 8158, 4528, 2341, 8197, 9543, 4560, 4949, 8473, + 3682, 6495, 6706, 5826, 2087, 2357, 4047, 2394, 3902, + 8306, 1129, 516, 8348, 4846, 9528, 9137, 6552, 3081, + 3850, 8060, 8811, 1105, 2938, 5556, 6295, 7391, 7753, + 5601]), + values=tensor([3.0546e-01, 5.0292e-01, 2.3257e-01, 7.6163e-01, + 1.3214e-01, 6.9043e-01, 1.2924e-01, 2.2895e-01, + 7.5991e-01, 4.5296e-01, 7.8851e-02, 8.0757e-01, + 8.4762e-01, 5.7022e-01, 9.7492e-01, 3.7199e-01, + 4.7085e-01, 3.6444e-01, 1.4732e-01, 8.5390e-01, + 7.6210e-01, 3.7304e-01, 6.6372e-01, 8.3452e-02, + 9.7907e-02, 7.9441e-01, 5.0442e-01, 5.3476e-01, + 2.5460e-01, 2.0463e-01, 5.2276e-02, 2.3757e-01, + 9.9098e-01, 2.4339e-02, 2.6705e-01, 2.7554e-01, + 5.2617e-01, 7.6818e-02, 4.1524e-01, 2.2617e-01, + 6.9888e-01, 5.1982e-01, 3.4986e-02, 8.2621e-01, + 6.4897e-01, 3.2938e-01, 6.1865e-01, 4.6707e-01, + 4.8730e-01, 5.9909e-01, 5.1563e-01, 6.1362e-01, + 9.9062e-01, 9.2120e-02, 1.7623e-01, 7.1483e-01, + 8.5852e-01, 4.3511e-01, 8.2575e-02, 3.5430e-01, + 3.9193e-01, 6.7349e-01, 6.9654e-01, 2.4910e-01, + 9.7526e-01, 9.2904e-02, 1.5211e-01, 2.2833e-01, + 2.7533e-03, 4.0291e-01, 6.8445e-01, 7.3628e-03, + 4.2183e-01, 7.4697e-01, 6.5569e-01, 8.1926e-01, + 2.9564e-01, 4.0009e-01, 6.3533e-01, 9.1378e-01, + 4.9246e-01, 1.1889e-01, 6.5282e-01, 7.5628e-01, + 3.3088e-01, 1.0018e-01, 5.2631e-01, 2.5813e-01, + 4.9862e-01, 2.0196e-02, 6.0420e-01, 9.1465e-01, + 3.0075e-01, 7.8392e-01, 8.4779e-01, 8.9399e-01, + 7.2792e-01, 5.9261e-02, 8.3345e-01, 4.8578e-01, + 5.5253e-01, 7.6723e-01, 9.4488e-01, 1.7353e-01, + 5.9492e-01, 9.6929e-01, 1.7141e-01, 4.1890e-01, + 5.2798e-01, 1.3193e-01, 9.9533e-01, 6.6182e-01, + 2.5471e-01, 6.5305e-01, 6.2762e-02, 8.6707e-01, + 7.1419e-01, 1.2133e-01, 4.3177e-01, 9.3699e-01, + 1.8417e-03, 7.5425e-01, 4.1020e-02, 9.4920e-02, + 1.3473e-02, 8.7261e-01, 7.1847e-01, 5.0429e-01, + 5.8822e-01, 6.9089e-01, 8.3394e-01, 4.9615e-01, + 6.0785e-01, 9.7205e-01, 8.1361e-01, 6.2625e-01, + 6.4523e-01, 8.2243e-01, 9.4970e-01, 2.6450e-01, + 3.8783e-01, 3.3954e-01, 2.2550e-01, 4.6048e-01, + 4.6912e-01, 6.6507e-02, 9.7823e-01, 9.6171e-01, + 3.6260e-01, 5.2658e-01, 5.2584e-01, 1.1201e-01, + 2.6101e-01, 7.8232e-01, 2.1812e-01, 9.1694e-01, + 4.0002e-01, 4.4305e-01, 9.7012e-01, 4.4321e-01, + 9.4755e-01, 7.2948e-01, 2.5811e-02, 3.3866e-01, + 4.2151e-01, 9.6390e-01, 9.4710e-01, 6.6181e-01, + 5.4910e-01, 4.8388e-01, 6.7655e-01, 8.2547e-01, + 4.2407e-01, 7.9124e-01, 2.9745e-01, 9.9058e-01, + 5.4692e-01, 2.1420e-01, 4.3865e-01, 4.6584e-01, + 6.6910e-01, 5.7028e-01, 9.4804e-01, 8.6551e-01, + 3.7726e-01, 2.7189e-01, 1.1550e-01, 8.0677e-01, + 6.0652e-01, 8.8394e-01, 7.8356e-01, 8.6341e-01, + 3.4722e-01, 8.4132e-01, 3.7332e-02, 1.0818e-01, + 7.4932e-01, 7.6341e-01, 5.0551e-01, 7.5321e-03, + 5.2469e-01, 3.6502e-01, 7.8288e-01, 4.7653e-01, + 4.6680e-01, 2.0783e-01, 9.7493e-01, 7.0423e-01, + 5.9691e-01, 3.5689e-01, 5.3460e-01, 4.1212e-01, + 5.2642e-01, 3.8752e-01, 7.1660e-01, 5.4532e-01, + 8.8719e-01, 1.8120e-01, 9.6824e-03, 7.5474e-01, + 1.7381e-01, 3.8886e-01, 1.4673e-01, 6.2935e-01, + 1.7229e-01, 9.5232e-01, 1.8018e-01, 8.2887e-01, + 6.1846e-01, 2.1702e-01, 9.0999e-01, 3.9455e-01, + 7.9801e-01, 9.7367e-01, 7.8526e-01, 4.4372e-01, + 2.2059e-01, 3.7747e-01, 5.0166e-01, 7.8276e-01, + 6.6970e-01, 6.5626e-01, 8.3801e-01, 1.5675e-01, + 1.1548e-01, 5.2576e-01, 7.5340e-01, 6.2927e-01, + 9.3639e-01, 5.7182e-01, 5.8135e-01, 6.3740e-01, + 1.5886e-01, 6.4819e-02, 8.5413e-01, 7.7295e-01, + 8.5744e-01, 4.5221e-01, 6.9424e-01, 1.7890e-02, + 6.1964e-01, 9.0600e-01, 2.3291e-01, 3.7068e-01, + 2.5649e-01, 2.3410e-01, 8.4699e-01, 8.1302e-01, + 8.4736e-01, 1.6048e-01, 6.7759e-01, 7.6442e-01, + 8.6527e-01, 9.7970e-01, 3.7073e-01, 3.3940e-01, + 7.6938e-01, 4.9124e-01, 8.5065e-01, 5.1735e-01, + 5.2195e-01, 1.4736e-01, 1.9850e-01, 4.9312e-01, + 4.8179e-01, 7.6481e-01, 6.5438e-01, 8.2282e-01, + 6.0339e-01, 8.0579e-01, 6.6200e-01, 1.9481e-01, + 9.8772e-01, 1.9110e-01, 3.2207e-01, 8.7963e-01, + 5.8877e-01, 2.4161e-01, 6.6151e-01, 2.9623e-01, + 3.4971e-01, 2.6078e-01, 3.3537e-01, 9.2709e-01, + 2.4880e-02, 4.4089e-01, 7.4854e-01, 5.3790e-01, + 5.2436e-01, 3.7063e-01, 5.7623e-01, 4.5259e-01, + 2.8959e-01, 9.0455e-01, 5.3153e-01, 8.5544e-01, + 8.6470e-01, 7.4891e-01, 9.4642e-01, 2.3182e-01, + 6.7584e-01, 7.1975e-01, 5.9854e-01, 7.6235e-01, + 8.9544e-01, 9.4037e-01, 9.0569e-01, 3.0626e-01, + 4.8516e-01, 3.7153e-01, 8.5329e-02, 7.5608e-02, + 6.3110e-01, 9.1665e-01, 7.6085e-02, 3.9318e-01, + 1.0273e-01, 3.4263e-01, 1.6887e-01, 2.9854e-01, + 8.9570e-01, 9.1980e-01, 4.6029e-01, 7.5297e-01, + 3.1607e-01, 9.6482e-01, 4.1780e-01, 5.3075e-01, + 6.3925e-01, 3.7261e-02, 6.5730e-01, 9.0225e-01, + 5.4019e-01, 3.3430e-01, 5.1348e-01, 2.5604e-01, + 2.8889e-01, 5.3161e-01, 7.9824e-01, 3.5820e-01, + 5.9880e-01, 8.8347e-01, 7.1055e-01, 1.8794e-01, + 9.1582e-01, 7.0727e-01, 1.6723e-01, 8.6642e-01, + 1.5342e-02, 5.4726e-02, 5.0492e-01, 5.5728e-01, + 2.5658e-01, 1.3191e-01, 4.2065e-01, 8.3828e-02, + 1.3786e-01, 5.8316e-01, 4.8969e-01, 9.7892e-01, + 5.2277e-02, 8.8689e-01, 9.1829e-01, 3.6404e-01, + 1.9245e-02, 4.5749e-01, 7.7959e-01, 4.6119e-01, + 4.2486e-01, 1.0301e-01, 2.2097e-01, 4.8645e-02, + 5.0412e-01, 6.5140e-01, 2.1781e-01, 1.7752e-01, + 7.4109e-01, 5.5933e-01, 7.8991e-01, 4.3416e-01, + 4.1863e-01, 1.0879e-01, 6.5186e-01, 5.2892e-01, + 3.9743e-01, 8.9794e-01, 3.4442e-01, 8.2869e-01, + 4.4873e-01, 2.7925e-04, 5.8907e-01, 1.5124e-02, + 1.3479e-01, 9.4760e-01, 7.6317e-01, 3.7230e-01, + 4.2500e-01, 1.1376e-01, 2.7854e-01, 7.8506e-01, + 9.3394e-01, 5.4152e-01, 6.3631e-01, 3.5839e-02, + 5.9531e-01, 2.9784e-01, 1.0418e-02, 7.6810e-03, + 1.1241e-01, 7.6110e-02, 6.9197e-02, 4.5353e-01, + 6.7057e-01, 5.2603e-01, 4.1057e-02, 7.7773e-01, + 4.3768e-01, 8.3132e-01, 2.8259e-01, 7.7937e-01, + 1.5139e-01, 9.9813e-01, 1.2777e-01, 2.5225e-01, + 6.3330e-01, 8.5029e-01, 4.4191e-01, 4.2503e-01, + 1.4328e-01, 1.4602e-01, 9.7526e-01, 1.5013e-01, + 7.7272e-01, 7.8392e-01, 1.1762e-01, 4.9639e-01, + 6.7972e-01, 5.5378e-01, 8.4642e-01, 3.9361e-02, + 5.7818e-01, 8.0488e-02, 8.9848e-01, 3.3267e-01, + 1.1292e-02, 5.9089e-01, 9.5134e-02, 8.4936e-01, + 3.4085e-01, 8.0495e-01, 2.6454e-01, 1.2924e-01, + 3.7618e-01, 4.0725e-01, 4.4484e-01, 5.2448e-01, + 4.2630e-01, 6.9288e-01, 4.2431e-01, 3.1540e-01, + 9.0537e-01, 4.3955e-01, 1.7328e-01, 5.8077e-01, + 1.3874e-01, 9.5254e-01, 4.8416e-01, 6.6566e-01, + 7.8665e-01, 6.1754e-01, 4.3441e-01, 8.8073e-01, + 5.3310e-01, 6.9216e-03, 1.7584e-01, 1.7340e-01, + 8.7511e-01, 6.6250e-01, 6.8190e-01, 8.4722e-01, + 9.0703e-01, 8.5408e-01, 6.3090e-01, 6.8000e-01, + 6.6170e-01, 2.0455e-03, 3.2688e-01, 8.2333e-01, + 1.2752e-01, 9.8958e-01, 2.7237e-01, 3.6839e-01, + 6.5476e-01, 5.2482e-01, 6.1125e-01, 3.1249e-01, + 8.4482e-01, 3.1180e-01, 5.8043e-01, 9.7963e-01, + 7.2669e-01, 8.9581e-01, 8.0359e-01, 2.6152e-01, + 2.1352e-01, 3.6305e-01, 5.7651e-01, 4.8231e-01, + 3.0981e-01, 3.8468e-01, 7.8548e-01, 7.9081e-01, + 9.8035e-01, 3.4162e-02, 7.6869e-01, 2.7208e-01, + 4.5993e-01, 7.4269e-01, 2.8992e-01, 5.3495e-01, + 7.9295e-01, 5.1936e-01, 7.6730e-01, 6.3963e-01, + 1.0063e-01, 7.9415e-01, 4.3675e-01, 1.3617e-01, + 8.6223e-02, 8.2227e-01, 4.8016e-01, 4.1606e-02, + 1.0678e-01, 1.4438e-01, 4.4704e-01, 9.4627e-01, + 1.2886e-01, 9.1496e-01, 3.4026e-01, 8.1768e-01, + 2.7796e-01, 7.0696e-01, 3.2645e-01, 6.5903e-01, + 6.5081e-01, 9.7303e-01, 6.1049e-01, 4.9549e-01, + 6.5319e-01, 6.3608e-01, 7.2694e-01, 9.2547e-01, + 5.3528e-01, 1.3038e-01, 6.3509e-01, 1.1397e-01, + 8.1481e-01, 3.5817e-01, 3.6134e-01, 5.3784e-01, + 5.3827e-01, 3.6388e-02, 7.9766e-01, 7.4626e-01, + 8.6300e-01, 3.9584e-01, 3.1814e-01, 2.9897e-01, + 2.5172e-01, 4.6373e-01, 2.8063e-01, 7.9467e-01, + 7.1274e-01, 4.5342e-01, 1.1660e-01, 1.7201e-01, + 2.8508e-01, 3.6230e-01, 1.2143e-01, 8.1280e-01, + 5.3614e-01, 2.2370e-01, 3.9702e-03, 8.1861e-01, + 3.2803e-01, 4.5384e-01, 7.4509e-02, 2.9656e-02, + 1.4092e-01, 8.1178e-01, 8.9354e-01, 9.5920e-01, + 6.9431e-01, 1.7812e-01, 2.6253e-01, 7.5330e-01, + 4.0264e-01, 4.7890e-01, 9.2839e-02, 7.5094e-01, + 8.4477e-01, 3.2959e-01, 2.3553e-01, 3.2271e-01, + 6.9121e-01, 1.2597e-01, 4.5588e-02, 4.9056e-01, + 5.3107e-01, 6.7603e-01, 3.9695e-01, 4.7252e-01, + 7.7230e-01, 1.9025e-01, 4.6398e-02, 7.3184e-02, + 4.1823e-01, 4.5858e-01, 1.3925e-01, 2.7749e-01, + 3.1086e-01, 7.3769e-01, 2.8863e-01, 1.6350e-01, + 5.8249e-01, 3.2862e-01, 8.6658e-01, 3.7424e-01, + 6.4688e-01, 8.8144e-01, 8.3387e-01, 2.4043e-01, + 3.0604e-01, 7.2186e-01, 9.8668e-01, 6.4301e-01, + 2.1333e-01, 2.1739e-01, 8.0956e-01, 8.4726e-01, + 5.4902e-01, 5.1985e-01, 4.3590e-01, 5.9178e-01, + 3.2764e-02, 8.0291e-01, 7.7345e-01, 8.8043e-01, + 6.8865e-01, 3.3215e-01, 5.7762e-01, 6.9598e-01, + 4.9078e-01, 8.2298e-01, 9.9004e-01, 2.2068e-02, + 2.8306e-01, 8.5364e-01, 4.1046e-02, 2.9296e-01, + 3.3647e-01, 2.1041e-01, 9.7390e-01, 3.9248e-01, + 2.9236e-01, 6.9974e-02, 4.4419e-01, 5.9413e-01, + 9.8070e-01, 6.2882e-01, 6.4546e-01, 7.3828e-01, + 3.5652e-01, 5.1730e-01, 9.6296e-02, 5.8745e-01, + 6.8194e-01, 8.4842e-01, 7.7397e-01, 6.8432e-01, + 4.9849e-01, 6.2490e-01, 1.3079e-01, 6.5648e-01, + 9.2427e-01, 1.3640e-01, 3.1600e-01, 2.3137e-01, + 1.7158e-01, 7.1635e-02, 6.5475e-01, 5.4606e-01, + 1.3754e-02, 5.3487e-01, 2.3732e-02, 3.5133e-01, + 2.8187e-01, 7.3303e-01, 5.2073e-01, 4.4826e-01, + 8.1048e-01, 6.7449e-01, 9.0832e-01, 4.1805e-01, + 8.0305e-01, 6.8775e-01, 3.7820e-01, 2.8105e-01, + 1.9347e-01, 2.9248e-03, 4.2067e-01, 5.6898e-01, + 5.5573e-01, 1.0322e-01, 6.8127e-02, 1.6413e-02, + 1.2364e-02, 6.8063e-01, 1.4124e-01, 6.6213e-01, + 4.5276e-01, 7.1009e-01, 2.9506e-01, 9.9728e-01, + 3.1321e-01, 5.2084e-02, 6.5518e-01, 5.7027e-01, + 5.5342e-01, 4.5039e-01, 8.3082e-01, 8.4419e-02, + 6.9061e-01, 1.4910e-01, 3.7919e-01, 6.9904e-01, + 2.7073e-01, 6.6293e-01, 6.3300e-01, 2.6337e-01, + 3.1362e-02, 3.2107e-03, 8.5961e-01, 7.4186e-01, + 8.9251e-01, 3.8121e-01, 2.8557e-02, 7.5863e-01, + 4.2271e-01, 7.7304e-01, 5.1314e-01, 3.3596e-01, + 1.5878e-02, 2.2314e-01, 8.6545e-01, 8.6219e-01, + 3.5144e-02, 7.3275e-01, 7.7644e-01, 6.9327e-02, + 2.8412e-01, 6.3838e-01, 5.2461e-02, 1.5141e-01, + 8.3297e-01, 8.3531e-01, 8.2986e-01, 2.8791e-01, + 4.3772e-01, 6.3906e-01, 7.3058e-01, 2.8604e-01, + 5.5652e-01, 4.1917e-01, 7.8109e-02, 8.7364e-01, + 3.2508e-01, 9.7158e-02, 7.0644e-01, 3.4530e-01, + 8.6102e-01, 7.0810e-01, 5.7266e-01, 1.7812e-01, + 2.4554e-01, 8.2889e-01, 8.9194e-01, 1.1344e-01, + 2.4368e-01, 7.7560e-02, 4.4172e-02, 8.8359e-01, + 8.2482e-01, 1.0655e-01, 8.7708e-01, 1.2792e-01, + 9.8616e-01, 4.6696e-01, 1.0845e-01, 1.3437e-01, + 2.1846e-02, 1.0611e-01, 9.9102e-02, 9.5604e-01, + 3.1153e-01, 4.8692e-01, 2.0342e-01, 1.2685e-01, + 9.5654e-01, 1.1792e-01, 5.1575e-01, 8.2682e-01, + 1.6512e-02, 3.1644e-01, 4.2779e-01, 8.7755e-01, + 5.2214e-01, 2.9411e-01, 1.6687e-01, 1.3020e-01, + 3.5626e-01, 6.3969e-01, 9.1821e-01, 6.3832e-01, + 5.5944e-02, 1.2907e-03, 3.3494e-01, 6.8836e-01, + 2.2071e-01, 1.3219e-02, 5.0061e-01, 3.6384e-01, + 1.8954e-01, 2.7547e-01, 1.5864e-01, 3.5372e-01, + 8.1700e-01, 3.6113e-01, 4.7142e-02, 5.4031e-02, + 6.9238e-02, 7.9583e-01, 7.9571e-02, 8.3656e-01, + 7.0337e-01, 4.2937e-01, 2.3133e-01, 1.1464e-01, + 3.0281e-01, 1.4357e-01, 5.9047e-01, 6.4976e-01, + 8.3026e-01, 6.6673e-01, 2.1384e-01, 2.3718e-01, + 5.5574e-02, 8.9535e-01, 5.1336e-01, 8.1470e-01, + 1.9989e-01, 7.3222e-01, 8.5078e-01, 8.6226e-01, + 2.6360e-01, 5.7030e-01, 4.2663e-01, 2.0116e-01, + 1.6326e-01, 2.2602e-02, 4.5302e-02, 5.7226e-01, + 1.3045e-01, 1.9958e-02, 7.3527e-02, 4.1662e-02, + 1.8889e-01, 8.5688e-01, 8.0053e-01, 4.1512e-01, + 7.1902e-01, 2.3940e-01, 3.0387e-01, 7.6819e-01, + 4.4629e-01, 1.5787e-01, 2.8335e-01, 9.7723e-01, + 5.6857e-02, 2.2885e-01, 6.2058e-02, 9.0482e-01, + 8.0187e-01, 5.2777e-01, 8.4498e-01, 4.7418e-01, + 6.9321e-01, 8.9847e-01, 2.5302e-01, 8.5480e-01, + 3.4442e-01, 3.0393e-01, 9.9281e-01, 2.9216e-01, + 7.4385e-03, 3.7192e-01, 5.0246e-01, 8.4051e-01, + 6.7121e-01, 9.1350e-01, 7.5249e-01, 7.3097e-02, + 4.3081e-01, 7.2258e-01, 3.9585e-01, 5.2846e-01, + 8.9372e-02, 1.5014e-02, 2.4111e-01, 6.7969e-03, + 7.4773e-01, 6.7682e-01, 8.9317e-01, 3.0863e-01, + 9.9853e-02, 1.3593e-01, 9.8550e-01, 7.6921e-01, + 1.7322e-01, 8.3813e-01, 6.3372e-01, 2.8917e-01, + 5.5668e-01, 1.0735e-01, 5.2302e-01, 1.1063e-01, + 6.7549e-01, 4.4770e-01, 1.4057e-02, 5.9494e-01, + 8.8817e-02, 8.4445e-01, 1.8611e-01, 2.3052e-01, + 6.1311e-01, 1.8401e-01, 1.9584e-01, 5.7546e-01, + 6.1910e-01, 2.9298e-01, 8.8160e-01, 1.5241e-01, + 9.1198e-01, 1.1290e-01, 6.5689e-02, 4.7480e-01, + 5.1616e-02, 1.8578e-01, 8.3774e-01, 9.4238e-01, + 3.5891e-01, 4.5842e-02, 1.2587e-01, 9.9257e-01, + 8.8057e-01, 1.8738e-01, 2.1821e-01, 2.5914e-01, + 7.3710e-03, 1.1278e-01, 9.4587e-01, 8.0280e-01, + 4.3127e-01, 7.8958e-01, 1.5023e-01, 5.9266e-01, + 4.6489e-01, 3.7186e-01, 4.7115e-01, 3.1902e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.0435, 0.9300, 0.8297, ..., 0.3222, 0.7823, 0.3267]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 0.05496048927307129 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '191046', '-ss', '10000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 6.995845317840576} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 1000, 1000, 1000]), + col_indices=tensor([7403, 728, 1285, 8550, 1815, 156, 5673, 7884, 804, + 2274, 8632, 558, 593, 2434, 9484, 9362, 4876, 1365, + 8726, 4434, 7468, 8388, 1142, 5354, 3450, 5015, 2167, + 5863, 8494, 4015, 1075, 3076, 5203, 7805, 8587, 6340, + 4721, 5410, 6601, 5936, 2358, 786, 8416, 3722, 7224, + 5416, 6954, 7430, 2080, 7410, 3608, 9068, 233, 5759, + 9777, 2647, 2414, 3959, 5249, 6789, 8618, 545, 1533, + 3253, 2595, 8333, 2258, 4520, 1162, 285, 8409, 3028, + 5291, 4349, 1073, 8045, 5220, 7737, 4880, 2756, 5810, + 1259, 3893, 4273, 4890, 7182, 1907, 6000, 4343, 5076, + 4585, 4488, 8537, 7870, 7713, 9502, 5846, 7896, 3564, + 1579, 5446, 9588, 1830, 3737, 9049, 4660, 8300, 3088, + 9875, 2180, 3118, 4817, 2026, 2159, 2896, 6145, 7437, + 5006, 2765, 5574, 6343, 9722, 9852, 1689, 5076, 1311, + 9122, 1883, 4106, 1720, 9328, 5882, 9768, 4762, 3098, + 5130, 8552, 3503, 7292, 5924, 4696, 6054, 3816, 9981, + 5211, 4445, 3287, 194, 5968, 675, 7691, 559, 8734, + 3360, 4551, 5634, 3143, 1346, 4016, 1356, 6510, 4609, + 9546, 8442, 654, 944, 2423, 2281, 267, 8782, 5027, + 2592, 3276, 9548, 425, 881, 5796, 3050, 1670, 1962, + 1441, 6040, 8321, 927, 1987, 6095, 3353, 3854, 9573, + 673, 1348, 8396, 7031, 9197, 7168, 3320, 8897, 1033, + 2188, 6451, 3907, 644, 5749, 6758, 8893, 959, 5264, + 1997, 5491, 2449, 7266, 4728, 7980, 3825, 198, 8545, + 6026, 6662, 5245, 4840, 448, 6283, 3877, 8879, 8978, + 9269, 8485, 231, 6825, 9514, 2279, 6392, 4293, 2300, + 5117, 8532, 5136, 9416, 4722, 3455, 5613, 1163, 1805, + 2844, 3695, 2372, 9138, 80, 4122, 3082, 5314, 5880, + 9027, 4915, 1798, 377, 7474, 6544, 6556, 7207, 1280, + 3832, 1703, 2970, 3046, 7797, 8443, 9061, 6639, 8642, + 7917, 6296, 2818, 8341, 4646, 8902, 7207, 4999, 7966, + 1512, 9785, 8126, 3762, 9839, 9481, 481, 5466, 4085, + 914, 7522, 5870, 8325, 3356, 9469, 3727, 9370, 1587, + 7291, 1660, 9622, 8806, 2694, 7061, 5895, 3123, 4575, + 5395, 5297, 8036, 3927, 8359, 9380, 1043, 7046, 942, + 5919, 6170, 9464, 1312, 8123, 8575, 6667, 713, 7311, + 9591, 3179, 2195, 7600, 1820, 4178, 6841, 6777, 6716, + 3925, 5310, 6497, 5108, 275, 563, 4119, 1120, 3800, + 2537, 6500, 4994, 7759, 9479, 6053, 613, 7128, 4781, + 7291, 5867, 6218, 8794, 4491, 4906, 4348, 45, 8652, + 3191, 3300, 9097, 4344, 928, 3139, 5368, 8972, 651, + 1667, 9007, 7260, 8298, 6067, 656, 930, 3773, 5706, + 8963, 6118, 3315, 7007, 3253, 1639, 5512, 7286, 2536, + 2949, 5825, 5608, 350, 4033, 5936, 4115, 4624, 4447, + 7819, 1222, 3789, 3404, 8968, 9433, 9983, 3532, 2350, + 3320, 5635, 9348, 3604, 4025, 158, 5249, 9966, 3682, + 4294, 6007, 621, 450, 9352, 3171, 8900, 2312, 5730, + 5756, 5828, 6209, 9360, 7909, 122, 6717, 8522, 367, + 6924, 9649, 8741, 6447, 4365, 117, 3939, 166, 4581, + 6628, 1635, 6595, 6205, 7942, 1530, 6926, 8307, 9018, + 518, 4477, 4186, 890, 8167, 3134, 5612, 1008, 1237, + 9767, 301, 8872, 3234, 1655, 9767, 7066, 6720, 646, + 3778, 7969, 7072, 2982, 8154, 5780, 7017, 9442, 3916, + 7338, 6654, 9506, 9386, 7911, 3439, 4488, 1318, 9278, + 2120, 5692, 8007, 8932, 1067, 3563, 406, 9736, 6429, + 2469, 5157, 8439, 6713, 2665, 4496, 2630, 5610, 1357, + 2167, 6597, 4229, 3422, 6037, 9839, 3006, 1669, 5295, + 1896, 8950, 897, 7260, 8424, 3342, 6261, 8823, 9847, + 81, 7207, 7928, 8508, 1180, 4322, 9610, 2700, 9270, + 2253, 4999, 2822, 799, 8895, 8943, 2494, 4665, 7481, + 6553, 6494, 4778, 9771, 8738, 6613, 3169, 7123, 7868, + 486, 6235, 4147, 9830, 2867, 4733, 9315, 2500, 5486, + 9660, 9562, 4813, 2022, 9928, 8445, 7193, 5662, 3995, + 4638, 9807, 3751, 3528, 5012, 7705, 7963, 8409, 9899, + 7720, 339, 6763, 6339, 4744, 4962, 9340, 662, 9729, + 9207, 2723, 2532, 358, 6880, 2101, 8578, 1727, 6383, + 684, 808, 3964, 526, 7427, 6064, 6196, 6614, 5677, + 7706, 3918, 1106, 8276, 5962, 2480, 1667, 2273, 1290, + 8432, 5456, 849, 206, 2265, 2455, 734, 2993, 2441, + 8922, 1369, 757, 9869, 9279, 5526, 7648, 6493, 7379, + 8031, 5455, 2619, 7722, 9544, 4602, 4835, 1730, 2276, + 8830, 7963, 390, 1845, 7449, 5996, 5864, 1101, 8071, + 2681, 7691, 9555, 7066, 9770, 3552, 8958, 8142, 1022, + 210, 9415, 4589, 5075, 9486, 1951, 4813, 5364, 7959, + 1651, 1539, 5573, 7617, 7645, 8080, 9190, 9014, 5227, + 6359, 8375, 1721, 452, 277, 572, 3324, 9266, 8706, + 2911, 4313, 108, 8824, 986, 2571, 9837, 7326, 9412, + 3860, 925, 4237, 8420, 483, 402, 3236, 9079, 3816, + 4506, 6161, 3338, 5889, 7859, 5541, 6135, 489, 8990, + 3725, 4563, 3462, 3303, 8536, 9548, 4181, 5827, 3982, + 3269, 3646, 297, 9534, 2316, 1541, 3523, 5814, 2238, + 1584, 5832, 4612, 136, 7639, 5518, 7889, 9816, 7827, + 7912, 3747, 8532, 2254, 9524, 9555, 8623, 9744, 1867, + 5645, 4826, 6467, 9779, 9419, 154, 1806, 2228, 8593, + 192, 1306, 5122, 2641, 5602, 275, 3868, 9202, 2138, + 352, 1080, 1620, 4867, 102, 4851, 2631, 7769, 1348, + 8068, 7624, 1115, 3211, 1976, 6103, 2512, 4767, 5585, + 6552, 253, 7092, 1637, 2359, 2280, 1944, 1937, 7161, + 5097, 7097, 6917, 1412, 3131, 923, 5544, 1044, 9853, + 2130, 422, 9618, 7896, 8489, 9926, 2957, 6244, 4986, + 3717, 9223, 6475, 1900, 7868, 7809, 7302, 1579, 9055, + 3280, 3718, 2669, 4188, 3507, 7928, 9427, 1259, 9928, + 561, 8471, 8745, 3811, 5135, 6274, 1078, 1056, 1275, + 8455, 9560, 5227, 8436, 4541, 2430, 7909, 6484, 3828, + 7217, 1558, 3143, 184, 4219, 4694, 1819, 4789, 8533, + 9749, 4639, 265, 4775, 8549, 3232, 3548, 4978, 8021, + 118, 9082, 6271, 5190, 7737, 7332, 4997, 2689, 4762, + 4116, 2253, 7100, 5906, 7437, 3678, 1299, 5659, 603, + 3513, 5385, 8361, 3560, 6174, 6509, 2095, 9081, 7288, + 3060, 5449, 1563, 9540, 5648, 2099, 4640, 4469, 9213, + 3458, 4363, 4687, 9325, 7205, 5051, 1383, 9720, 4880, + 6265, 759, 4202, 4331, 9088, 42, 4579, 3079, 2953, + 2367, 6110, 1228, 2187, 3983, 6551, 7849, 7307, 1087, + 6624, 4350, 9778, 4489, 1042, 518, 226, 4820, 5363, + 2688, 1416, 9167, 4319, 9005, 7753, 1017, 3305, 1055, + 172, 2840, 5680, 8252, 9837, 6305, 7483, 9510, 2281, + 6415, 8172, 9150, 1181, 9628, 6365, 8239, 6434, 1331, + 8292, 7326, 1890, 5694, 6982, 2358, 9428, 5946, 8542, + 3337, 9207, 5890, 4096, 7231, 2856, 5176, 8775, 5969, + 9243, 5152, 6215, 6321, 8749, 1753, 5522, 6434, 8223, + 5777, 8166, 536, 6813, 9761, 7396, 3652, 4437, 8870, + 2375]), + values=tensor([2.8230e-01, 5.3787e-01, 9.0316e-01, 8.6899e-01, + 3.5142e-01, 9.2070e-01, 6.6080e-01, 9.6886e-01, + 4.5757e-01, 9.8160e-01, 9.5205e-02, 2.5031e-01, + 3.5486e-01, 8.6237e-01, 6.0378e-01, 6.7704e-01, + 8.7432e-01, 1.7854e-02, 1.5057e-01, 9.1952e-01, + 5.5237e-01, 5.0374e-01, 8.2169e-01, 1.9191e-01, + 2.6186e-01, 7.3238e-01, 2.5831e-01, 2.2768e-01, + 8.9577e-01, 1.3629e-01, 7.4935e-01, 8.1262e-01, + 8.4277e-01, 8.0760e-01, 6.7226e-01, 3.5348e-01, + 2.2222e-01, 3.6301e-01, 8.2281e-01, 1.1419e-01, + 9.3289e-01, 2.9408e-01, 7.8503e-01, 6.7179e-01, + 5.3035e-02, 4.3059e-01, 3.9032e-01, 2.6405e-01, + 4.3534e-01, 6.6193e-01, 1.8458e-01, 9.3321e-01, + 3.9369e-01, 1.5642e-01, 5.6697e-01, 9.8146e-01, + 8.1174e-02, 8.3591e-01, 5.0625e-01, 6.2091e-01, + 3.4875e-01, 5.1572e-01, 8.5861e-01, 4.5264e-01, + 3.0169e-01, 2.4860e-01, 8.7848e-01, 2.1704e-01, + 2.3174e-01, 1.5844e-01, 6.4903e-01, 2.1421e-01, + 5.2656e-01, 4.5672e-01, 7.0355e-02, 4.9095e-01, + 5.5133e-01, 4.7274e-01, 9.2417e-01, 2.9473e-01, + 6.4978e-01, 9.4875e-01, 9.7030e-01, 1.8165e-01, + 9.5328e-01, 3.8524e-02, 4.4916e-02, 5.5294e-01, + 3.9613e-01, 4.3059e-01, 3.3924e-01, 2.7627e-02, + 3.2193e-01, 7.5578e-01, 5.1703e-01, 7.5168e-01, + 9.9840e-01, 9.8701e-01, 2.9976e-01, 4.1402e-02, + 4.1349e-01, 3.6650e-01, 3.6695e-01, 9.6976e-01, + 9.0391e-01, 9.9162e-01, 5.5791e-01, 9.1984e-02, + 6.2346e-01, 9.6193e-02, 6.6046e-01, 4.8892e-01, + 7.1733e-01, 4.4533e-01, 3.9615e-01, 1.8797e-01, + 4.1221e-01, 4.4789e-01, 1.9018e-01, 5.0749e-01, + 3.4543e-01, 1.1522e-01, 7.8096e-01, 5.1845e-01, + 9.0160e-01, 4.1666e-01, 1.8129e-01, 3.5302e-01, + 6.7895e-01, 6.2769e-01, 7.7233e-01, 5.2982e-01, + 6.1232e-01, 8.2022e-02, 4.7431e-01, 5.3530e-01, + 1.7521e-01, 3.8454e-01, 5.7823e-01, 3.2537e-01, + 5.4954e-01, 8.9358e-01, 8.1797e-01, 9.4123e-01, + 6.9884e-01, 1.7844e-01, 7.9125e-01, 8.2798e-01, + 5.6551e-01, 7.8310e-01, 8.4228e-01, 5.8557e-01, + 7.3096e-01, 5.3757e-01, 8.0687e-01, 5.3608e-01, + 9.7137e-01, 1.0411e-02, 4.1560e-01, 3.5703e-02, + 4.2274e-01, 3.2965e-03, 5.2300e-01, 1.8598e-01, + 8.4425e-01, 5.4561e-01, 6.6692e-01, 3.8831e-01, + 9.4335e-01, 5.0401e-01, 9.9745e-01, 4.4442e-01, + 6.9199e-01, 5.7018e-01, 5.8003e-01, 5.8966e-01, + 2.0870e-01, 6.8900e-01, 9.2247e-01, 9.5798e-01, + 7.7262e-01, 3.8366e-01, 2.4881e-01, 9.3450e-01, + 5.5886e-01, 1.9613e-01, 6.2664e-02, 9.9533e-01, + 8.5273e-02, 7.6192e-01, 9.8689e-01, 7.3898e-01, + 4.9975e-01, 5.8939e-01, 3.9308e-01, 9.4351e-02, + 1.9198e-01, 4.8111e-02, 7.6000e-01, 2.0746e-01, + 9.9383e-01, 5.0317e-01, 5.2760e-01, 3.0536e-01, + 9.6720e-01, 3.9620e-01, 1.0823e-01, 9.4807e-01, + 3.0499e-01, 4.4501e-01, 3.5625e-01, 1.2773e-01, + 4.7482e-02, 1.9498e-01, 4.5680e-01, 7.5560e-01, + 5.4493e-01, 3.1086e-01, 6.4490e-01, 9.3187e-01, + 3.5438e-01, 1.7700e-02, 1.5739e-02, 9.6099e-01, + 4.6738e-01, 5.5612e-01, 7.9348e-01, 9.7367e-01, + 3.9865e-01, 1.1288e-01, 2.2219e-02, 2.5582e-01, + 1.8013e-01, 8.8072e-01, 6.1261e-01, 4.2158e-01, + 3.6448e-01, 1.0854e-01, 3.4330e-01, 1.5254e-01, + 5.6236e-01, 6.1449e-02, 1.4463e-01, 9.9347e-01, + 8.9589e-01, 1.4066e-01, 8.4065e-01, 5.6322e-01, + 8.9380e-01, 1.8797e-02, 6.1893e-01, 9.1150e-01, + 5.5936e-01, 3.0968e-01, 3.0256e-01, 6.2585e-02, + 5.4710e-01, 5.6933e-01, 2.5988e-01, 6.2867e-01, + 6.1272e-01, 7.5780e-01, 4.6284e-01, 5.5982e-01, + 4.0855e-01, 3.3224e-01, 7.2796e-01, 8.2324e-01, + 4.7149e-01, 5.0106e-02, 5.3570e-01, 8.8603e-01, + 5.7756e-01, 2.4354e-01, 1.4955e-01, 9.2280e-01, + 8.8139e-01, 7.6525e-01, 9.1790e-01, 4.7411e-01, + 6.4076e-01, 1.8729e-01, 1.1207e-01, 6.1511e-01, + 4.4770e-01, 7.2418e-01, 2.3461e-01, 4.1290e-01, + 5.5197e-01, 8.6823e-01, 1.1988e-01, 8.1257e-01, + 3.2221e-01, 2.7063e-01, 8.2704e-01, 3.1990e-01, + 9.5619e-01, 8.0722e-01, 5.1394e-01, 8.0698e-01, + 5.5227e-01, 3.9684e-01, 7.4638e-01, 7.5519e-01, + 4.2651e-01, 3.7672e-01, 6.4270e-01, 3.5998e-01, + 6.6092e-01, 2.0814e-01, 1.1224e-01, 3.9653e-01, + 6.6199e-01, 4.9716e-01, 8.1779e-01, 7.1834e-01, + 9.4318e-01, 3.1778e-01, 7.4694e-01, 2.6639e-01, + 6.0868e-01, 7.9287e-01, 1.5927e-01, 4.0712e-01, + 5.3988e-01, 9.1454e-01, 8.9379e-02, 3.1543e-01, + 4.4029e-01, 3.6020e-01, 8.0943e-01, 2.4580e-01, + 3.0897e-01, 9.3469e-01, 8.1059e-01, 3.9868e-01, + 2.3106e-01, 5.3848e-01, 8.3832e-01, 8.3923e-01, + 5.2809e-01, 2.6115e-01, 7.4186e-02, 2.3872e-01, + 5.7522e-02, 4.8517e-01, 9.9668e-01, 5.6349e-01, + 4.2618e-01, 1.1280e-01, 4.1809e-01, 5.5704e-01, + 3.3944e-01, 2.4860e-01, 6.6615e-01, 1.0812e-01, + 7.6450e-01, 3.4114e-01, 8.2429e-01, 9.2346e-02, + 1.3097e-01, 5.6234e-01, 9.9781e-01, 6.8699e-02, + 4.3439e-01, 6.3050e-01, 2.7271e-01, 4.5312e-01, + 4.9182e-01, 8.9503e-01, 6.4194e-01, 2.9709e-01, + 8.7021e-01, 7.1784e-01, 6.8270e-01, 3.6942e-01, + 1.6561e-01, 6.6240e-01, 3.2360e-01, 8.2240e-01, + 6.8870e-01, 6.0278e-01, 9.9211e-01, 4.3589e-01, + 3.2636e-01, 8.1724e-01, 4.4169e-01, 1.0203e-01, + 3.6168e-01, 8.7661e-02, 4.0507e-01, 2.9383e-01, + 2.7115e-01, 4.6973e-01, 1.7735e-03, 9.6612e-01, + 4.4312e-01, 7.6621e-01, 1.8218e-01, 8.3507e-01, + 3.5109e-01, 2.6459e-01, 2.4844e-01, 2.4963e-01, + 3.0153e-01, 6.7972e-02, 6.4155e-01, 7.8728e-01, + 5.4841e-01, 8.3758e-01, 2.3422e-01, 8.1590e-01, + 9.2227e-01, 9.1343e-02, 8.8321e-01, 2.4270e-01, + 1.7708e-01, 1.1087e-01, 6.8447e-01, 3.0248e-01, + 5.3146e-01, 4.7859e-01, 1.1236e-01, 6.5350e-01, + 1.8996e-02, 6.1835e-01, 7.7411e-02, 2.4942e-01, + 3.3719e-01, 8.6763e-01, 5.2279e-01, 4.3488e-02, + 3.9154e-01, 4.6067e-01, 6.2581e-01, 8.6864e-01, + 7.0929e-01, 4.6582e-01, 2.9985e-01, 7.0105e-01, + 1.3644e-02, 1.2340e-01, 6.6567e-01, 9.8114e-01, + 2.1346e-01, 9.8781e-02, 7.3241e-01, 7.9594e-01, + 9.3850e-01, 4.5723e-01, 7.5320e-01, 8.0652e-01, + 4.9280e-01, 7.3869e-01, 9.4460e-01, 1.9219e-01, + 9.1108e-04, 8.2062e-01, 6.4154e-01, 5.8060e-01, + 2.6802e-01, 5.6534e-01, 1.3629e-02, 8.0096e-01, + 4.4681e-03, 1.3432e-01, 8.6326e-01, 3.5229e-01, + 4.1922e-01, 2.3116e-01, 4.8907e-01, 9.4010e-01, + 3.8584e-01, 3.9344e-01, 1.6084e-01, 8.2381e-01, + 4.3376e-01, 9.9305e-01, 9.5764e-02, 3.9798e-01, + 6.4945e-01, 4.5568e-02, 2.1547e-01, 8.6132e-01, + 5.5624e-01, 3.2310e-01, 1.6069e-01, 3.8394e-01, + 5.6633e-01, 4.6912e-01, 5.8230e-01, 7.0527e-01, + 5.1867e-01, 9.7576e-01, 2.9398e-01, 2.7352e-01, + 6.9329e-01, 1.6240e-01, 3.5226e-01, 6.1122e-01, + 3.0150e-01, 7.5510e-01, 5.8117e-01, 9.0081e-01, + 4.9601e-01, 5.6211e-02, 4.3973e-01, 1.2046e-01, + 9.6100e-01, 9.1511e-01, 3.6355e-01, 4.2499e-01, + 7.0139e-01, 9.2485e-03, 2.1730e-02, 5.5428e-01, + 7.7130e-01, 2.9907e-01, 9.4664e-02, 5.4725e-01, + 2.5707e-02, 6.3126e-01, 9.4471e-01, 4.3875e-01, + 8.7226e-01, 4.8046e-01, 4.2020e-01, 9.7338e-01, + 4.5294e-01, 7.2621e-01, 6.5641e-03, 2.0013e-01, + 5.0054e-01, 1.4999e-01, 4.5844e-01, 2.1320e-01, + 7.3521e-01, 5.5234e-01, 4.3196e-01, 4.5955e-01, + 7.4944e-01, 3.4281e-01, 2.4950e-01, 3.3971e-01, + 6.5536e-01, 4.9970e-01, 8.9743e-01, 5.7443e-01, + 9.8910e-01, 4.0661e-01, 5.0543e-01, 4.9067e-01, + 3.3417e-01, 7.1662e-01, 6.4197e-01, 3.9892e-01, + 7.1719e-01, 7.8083e-01, 5.8823e-01, 4.3577e-01, + 8.8006e-01, 6.9598e-01, 4.0056e-01, 1.2933e-01, + 5.8358e-01, 5.3340e-01, 6.9614e-01, 4.9337e-01, + 6.5904e-01, 9.5696e-01, 3.5189e-01, 8.2683e-01, + 2.5731e-01, 1.1868e-01, 1.0479e-01, 7.5226e-01, + 3.0903e-01, 7.3456e-01, 8.1586e-01, 1.6992e-01, + 6.4461e-02, 9.1855e-01, 1.9972e-01, 1.2567e-01, + 5.6581e-01, 9.4292e-01, 5.6080e-01, 8.3073e-01, + 6.2586e-01, 1.1142e-01, 4.1909e-01, 7.6041e-01, + 4.6996e-01, 5.8129e-01, 4.4302e-01, 8.7156e-01, + 1.6762e-01, 2.3036e-01, 8.3237e-02, 7.6133e-01, + 4.0479e-01, 7.7797e-01, 5.9596e-01, 3.2395e-01, + 5.0087e-01, 8.3374e-01, 9.5530e-01, 4.1306e-01, + 9.0357e-02, 1.2805e-01, 3.9607e-01, 7.3553e-01, + 5.7467e-01, 4.8834e-01, 6.6934e-02, 2.8103e-01, + 9.9274e-01, 4.5349e-01, 8.9209e-01, 2.8255e-01, + 2.6769e-01, 4.5655e-01, 4.3381e-01, 3.3164e-01, + 2.2435e-01, 7.1825e-01, 7.6762e-01, 5.8633e-01, + 4.4990e-01, 6.8736e-02, 6.4086e-01, 3.6746e-01, + 8.6449e-01, 4.1226e-02, 9.4499e-01, 6.1931e-01, + 6.5809e-01, 6.1511e-02, 3.9817e-01, 5.8898e-01, + 1.1640e-01, 1.8444e-01, 1.7129e-01, 1.3957e-01, + 5.0497e-01, 3.5269e-02, 8.3287e-01, 2.7613e-01, + 6.2228e-01, 3.9473e-01, 2.0126e-01, 2.8374e-01, + 8.8439e-01, 9.7131e-01, 6.2843e-01, 4.7693e-01, + 9.1883e-01, 5.0908e-01, 6.6146e-01, 8.6673e-01, + 2.6898e-01, 1.3334e-01, 6.1520e-01, 7.0400e-01, + 7.5991e-01, 1.3996e-01, 2.3457e-01, 3.8396e-02, + 9.4791e-01, 7.3823e-01, 4.9123e-02, 8.6286e-01, + 7.9549e-01, 3.0765e-01, 9.4513e-01, 5.8890e-01, + 3.4894e-01, 5.4304e-01, 2.5156e-01, 9.0338e-01, + 2.4495e-01, 6.8472e-01, 8.1935e-01, 2.3381e-01, + 4.9483e-01, 6.2551e-01, 3.7234e-01, 7.0448e-01, + 6.2310e-01, 2.8344e-01, 4.7395e-01, 5.9037e-01, + 2.4310e-01, 3.6817e-01, 9.0152e-01, 6.5760e-01, + 3.7778e-01, 8.5052e-01, 2.0082e-01, 7.5372e-01, + 4.9302e-01, 1.5876e-01, 5.7760e-01, 7.1324e-01, + 5.9721e-01, 8.6822e-01, 7.6822e-01, 2.0250e-01, + 4.7581e-02, 5.5039e-01, 3.2489e-01, 2.2342e-02, + 4.5940e-01, 5.6577e-01, 7.4127e-01, 7.7169e-01, + 3.6968e-01, 3.0514e-01, 3.3937e-01, 2.9788e-01, + 8.0180e-01, 5.4228e-01, 4.8803e-01, 6.8684e-01, + 2.7383e-02, 6.7660e-01, 5.9048e-01, 3.3204e-01, + 7.5358e-01, 6.8371e-01, 5.7914e-01, 4.9514e-03, + 9.5130e-01, 8.2896e-01, 1.4739e-01, 9.2714e-01, + 5.1794e-01, 8.3512e-01, 7.0925e-01, 5.6234e-02, + 3.2403e-02, 2.2621e-01, 2.5006e-01, 5.8868e-01, + 4.9311e-02, 7.5541e-01, 3.0749e-01, 2.6245e-01, + 6.6155e-01, 6.0573e-01, 4.6378e-01, 5.6330e-01, + 4.5337e-01, 3.2361e-01, 9.4007e-01, 6.7036e-01, + 9.8068e-01, 4.0231e-01, 3.2488e-02, 3.7037e-01, + 9.0509e-01, 4.0238e-01, 6.7454e-01, 7.3130e-01, + 8.6524e-02, 6.5598e-01, 1.6404e-01, 7.6128e-01, + 9.4613e-01, 5.8073e-01, 1.9589e-01, 6.8791e-01, + 8.4198e-01, 5.0929e-01, 4.7670e-02, 9.1999e-01, + 1.8910e-01, 8.0174e-01, 7.9824e-01, 1.4558e-01, + 1.2823e-01, 3.8654e-01, 7.4780e-01, 5.6556e-01, + 5.5206e-01, 8.0684e-01, 6.8299e-01, 3.2546e-01, + 7.2945e-01, 6.6192e-01, 3.2329e-01, 4.2399e-01, + 3.3985e-01, 9.9272e-01, 5.5675e-02, 8.7261e-01, + 6.3694e-03, 9.7629e-01, 2.0111e-01, 7.5176e-01, + 3.8167e-01, 1.2672e-01, 7.7416e-01, 1.7070e-01, + 2.0644e-01, 7.8767e-01, 8.9218e-01, 6.0558e-01, + 5.3327e-01, 5.6641e-01, 9.4370e-01, 1.6267e-01, + 1.9252e-01, 8.7195e-01, 6.1521e-01, 1.1721e-01, + 8.5444e-01, 2.7187e-01, 7.6550e-02, 7.4474e-01, + 7.2445e-01, 1.0476e-02, 8.0988e-01, 5.0372e-01, + 4.3200e-01, 6.2759e-01, 7.5095e-01, 2.7937e-02, + 7.4638e-01, 2.9933e-01, 9.7530e-01, 2.2081e-01, + 7.9240e-01, 1.6352e-01, 4.4792e-01, 2.4352e-01, + 7.4311e-01, 6.7548e-01, 4.5632e-01, 9.7318e-01, + 3.3698e-02, 6.5762e-01, 2.0938e-01, 2.4995e-01, + 4.9119e-01, 9.2264e-01, 8.9031e-01, 5.9815e-01, + 4.2057e-01, 2.3023e-01, 1.8825e-01, 1.3192e-01, + 3.9288e-01, 1.5796e-01, 7.5823e-01, 1.1544e-01, + 2.5045e-01, 7.2301e-01, 6.9550e-01, 5.5401e-01, + 1.8873e-01, 2.9939e-01, 3.9601e-02, 5.7007e-01, + 9.0702e-03, 4.0882e-01, 1.5415e-01, 5.8912e-01, + 1.7288e-02, 7.1645e-02, 6.1525e-01, 4.2975e-02, + 5.9958e-01, 5.8504e-01, 2.4112e-01, 9.1323e-01, + 4.5606e-01, 6.7429e-01, 9.8745e-01, 8.6021e-01, + 1.8142e-01, 1.7174e-01, 3.0004e-01, 4.1361e-01, + 8.4676e-01, 1.0392e-01, 8.1012e-01, 8.3536e-02, + 8.2639e-01, 3.7316e-01, 6.5078e-01, 3.9350e-01, + 6.8163e-02, 7.4110e-01, 3.7869e-01, 1.1714e-01, + 5.3909e-01, 7.1830e-01, 5.3985e-02, 9.0620e-02, + 1.1016e-01, 6.4977e-01, 4.2502e-01, 2.1501e-02, + 7.8835e-01, 3.7073e-01, 3.3476e-01, 9.8666e-01, + 6.2218e-01, 7.2765e-01, 5.9957e-01, 4.9871e-01, + 6.6661e-01, 4.0665e-01, 9.1455e-01, 2.7465e-01, + 2.4553e-01, 9.3303e-03, 6.8705e-01, 3.1716e-01, + 2.0975e-01, 4.1840e-01, 3.3576e-01, 3.4692e-01, + 9.1191e-01, 1.4705e-01, 7.5314e-01, 5.0550e-01, + 5.3977e-01, 9.1846e-01, 2.8283e-01, 6.9907e-02, + 2.1317e-02, 1.4722e-01, 9.6499e-01, 1.5081e-01, + 8.1423e-01, 7.4182e-01, 7.1844e-01, 3.9476e-02, + 7.8664e-02, 8.1219e-01, 8.8342e-01, 6.2100e-01, + 6.7191e-01, 4.7368e-01, 2.6861e-01, 9.3677e-02, + 3.2513e-01, 1.8817e-01, 5.7608e-01, 7.8823e-01, + 9.1581e-01, 7.6436e-01, 6.4218e-01, 5.8300e-01, + 5.9685e-01, 6.5916e-01, 7.8265e-01, 2.2609e-01, + 5.7788e-02, 6.1309e-01, 7.2349e-01, 6.1700e-01, + 7.9288e-01, 4.4908e-01, 6.2231e-01, 3.1993e-01, + 6.0491e-01, 3.5342e-01, 4.1608e-01, 5.1282e-01, + 4.7201e-01, 7.9027e-02, 9.3144e-01, 1.1720e-01, + 1.0942e-01, 5.6490e-01, 3.1483e-01, 3.4504e-01, + 2.1509e-01, 1.9644e-01, 8.9826e-01, 5.2693e-01, + 7.2234e-01, 4.5613e-01, 2.0993e-01, 3.8888e-01, + 3.4362e-01, 2.8391e-01, 4.7760e-01, 1.3578e-01, + 4.1355e-01, 5.4012e-01, 8.5277e-01, 2.8268e-01, + 2.1746e-01, 6.6617e-01, 3.8200e-01, 6.7181e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.7926, 0.8036, 0.9264, ..., 0.8315, 0.2335, 0.7753]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 6.995845317840576 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '286739', '-ss', '10000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.441989183425903} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 999, 1000, 1000]), + col_indices=tensor([6994, 9622, 3726, 4663, 3213, 8774, 6907, 1710, 9507, + 9063, 1177, 307, 2649, 3020, 5730, 348, 5131, 6359, + 8504, 4801, 4568, 6837, 9016, 8482, 4653, 2975, 3080, + 4702, 1162, 2867, 9079, 2978, 6909, 7908, 6001, 669, + 6371, 3485, 6275, 4253, 4720, 5707, 6535, 1953, 4011, + 2661, 8932, 9981, 7530, 1720, 6368, 6848, 4567, 8841, + 2627, 1161, 5134, 5413, 7960, 4391, 665, 2396, 6608, + 5733, 3484, 4971, 6121, 2312, 3666, 4281, 9424, 1980, + 9643, 9373, 7415, 1900, 9019, 8546, 7553, 8417, 4373, + 8130, 306, 3044, 8544, 6070, 624, 7124, 3983, 3400, + 4627, 4287, 7616, 3298, 7343, 5990, 9821, 2523, 7048, + 5830, 1403, 6233, 8985, 3175, 9364, 5853, 4072, 6366, + 4753, 1727, 9435, 1851, 44, 3040, 1326, 7076, 9651, + 4066, 4865, 6453, 1996, 8040, 329, 9927, 9673, 8524, + 1244, 8553, 442, 5027, 3135, 8060, 9329, 7526, 9796, + 5659, 4377, 3292, 2834, 6136, 3061, 7456, 161, 5999, + 3353, 8111, 5290, 5483, 5811, 5230, 1150, 3704, 746, + 3442, 1238, 6471, 9072, 1057, 739, 7167, 4646, 8968, + 2988, 7699, 3204, 5157, 9948, 7623, 3878, 8967, 4047, + 5067, 7682, 6449, 902, 8157, 5855, 2999, 277, 1240, + 5282, 8712, 210, 3306, 9191, 7693, 9401, 5920, 9695, + 4565, 3107, 3028, 8501, 4399, 270, 1536, 2767, 5311, + 4430, 3474, 7404, 5813, 4610, 264, 84, 3863, 8109, + 628, 315, 7160, 1931, 6079, 150, 1187, 9113, 9881, + 3157, 2458, 7923, 8536, 6368, 1416, 2818, 8122, 3131, + 6956, 9736, 5972, 2516, 3886, 1336, 3782, 3144, 145, + 6154, 3374, 5726, 2019, 5176, 3029, 1833, 512, 805, + 7854, 2374, 6926, 5039, 7581, 1084, 6788, 3567, 9085, + 5115, 8344, 1282, 694, 1416, 4928, 6205, 5066, 6172, + 4951, 2342, 9823, 4409, 453, 2737, 5221, 1182, 1349, + 6104, 1153, 4341, 155, 1744, 6045, 3402, 4537, 6425, + 7377, 9353, 2622, 6364, 5568, 8412, 5977, 8154, 5352, + 1014, 1489, 2546, 9921, 4972, 1344, 4570, 7259, 5658, + 9551, 1403, 4427, 7144, 9461, 8515, 8419, 8672, 8531, + 7797, 6642, 675, 2679, 7615, 8705, 7384, 8267, 6149, + 4211, 8074, 1628, 358, 1640, 228, 5022, 8976, 3921, + 9469, 3778, 3398, 8456, 5802, 1958, 2520, 2489, 1881, + 8614, 3680, 4323, 377, 8462, 5871, 306, 3186, 5351, + 7352, 2219, 9782, 6546, 2214, 3533, 4538, 9746, 3606, + 1981, 5289, 895, 4170, 5822, 348, 6276, 6640, 9900, + 1987, 7527, 3484, 1950, 3683, 214, 8776, 6746, 5717, + 9072, 9171, 1569, 7598, 3877, 3876, 2138, 2024, 1416, + 7752, 4390, 80, 5006, 5274, 9896, 1501, 9077, 5280, + 9121, 9705, 3846, 4311, 7818, 2418, 5744, 70, 755, + 8481, 65, 9496, 8688, 8913, 4086, 4497, 9328, 649, + 7040, 1646, 7888, 6578, 8377, 9319, 9462, 8922, 351, + 4888, 4474, 5081, 3249, 9700, 1729, 5652, 3555, 8733, + 3993, 2648, 2157, 3316, 7194, 4864, 2759, 5666, 9313, + 646, 1058, 9286, 107, 8347, 4296, 5597, 1128, 2987, + 8269, 5363, 8830, 1937, 8083, 6124, 9818, 4872, 1172, + 1916, 9823, 8685, 968, 7144, 4173, 2638, 7667, 2255, + 5893, 145, 2804, 9830, 3730, 2378, 5965, 8443, 924, + 7520, 4001, 8030, 3655, 8642, 637, 4875, 9776, 3422, + 3864, 669, 3034, 7460, 9790, 914, 5157, 7812, 6653, + 5620, 1888, 8250, 4575, 2821, 7519, 5789, 7492, 3910, + 9516, 2254, 109, 3644, 4900, 8347, 1943, 4680, 1973, + 8435, 1113, 456, 1927, 7879, 8357, 9307, 9711, 2787, + 3889, 7117, 5810, 4599, 3798, 3588, 9982, 2090, 9372, + 5907, 2625, 4618, 1365, 7855, 3966, 6642, 2806, 3282, + 1538, 1603, 9281, 6130, 9122, 5424, 4039, 1685, 7585, + 463, 1054, 377, 4412, 670, 3953, 829, 8297, 5284, + 8072, 8388, 5978, 2905, 5528, 8606, 9760, 3824, 3381, + 3569, 8800, 1093, 8598, 5326, 5098, 3325, 3476, 3574, + 5831, 6739, 3709, 3431, 8854, 5412, 1395, 8493, 8413, + 723, 7482, 7437, 8192, 4561, 3563, 7930, 3095, 1395, + 1702, 4680, 4164, 7646, 3073, 2135, 8064, 9233, 8734, + 8891, 1412, 4297, 327, 9444, 6261, 4124, 7080, 3150, + 499, 7634, 5504, 2709, 2323, 6259, 7701, 1590, 782, + 9214, 1434, 7842, 7154, 3406, 6314, 2490, 1995, 2869, + 9300, 7244, 2058, 4782, 9191, 7843, 9366, 3161, 5867, + 7670, 79, 8654, 4679, 6862, 6457, 3396, 3040, 8585, + 3782, 1459, 9368, 4901, 2433, 6705, 8973, 6929, 2667, + 7169, 1587, 5204, 8532, 6578, 9598, 8213, 9081, 6214, + 7437, 7012, 2856, 7632, 7138, 445, 7701, 4052, 6739, + 3480, 3311, 3082, 7805, 6404, 5363, 2870, 9509, 6167, + 7565, 8554, 8204, 832, 9129, 7469, 2782, 5167, 5838, + 3078, 7487, 3680, 6742, 2359, 4016, 7521, 9001, 6405, + 684, 4253, 806, 2076, 1259, 8434, 8503, 8586, 7923, + 4800, 1701, 4338, 6559, 6339, 6352, 1277, 9721, 8278, + 3394, 1222, 9331, 2813, 1759, 1393, 329, 3229, 5728, + 8721, 5742, 6894, 4045, 4303, 9790, 1095, 8299, 5200, + 5067, 4411, 7646, 150, 1925, 981, 1650, 729, 4988, + 39, 6418, 4585, 6285, 3017, 2737, 9097, 1945, 3287, + 5687, 1268, 2568, 5063, 1464, 1353, 8458, 2802, 7424, + 7900, 573, 4279, 1282, 9304, 8048, 5196, 4207, 1316, + 2021, 4121, 7278, 4538, 1620, 3410, 1337, 26, 1524, + 7522, 8145, 4092, 6346, 2473, 5819, 1406, 7284, 7069, + 8477, 7361, 3903, 7212, 8344, 4533, 1123, 5383, 6628, + 5346, 4870, 8614, 6605, 5113, 8241, 2239, 2169, 4658, + 3492, 2436, 6670, 5784, 3502, 9896, 2954, 1899, 1155, + 4148, 2121, 2395, 1045, 4965, 9274, 9110, 6156, 801, + 2656, 5820, 6227, 6325, 135, 209, 4673, 9324, 9454, + 260, 8365, 2431, 2800, 6755, 2430, 7387, 1961, 7463, + 9402, 3000, 2768, 757, 5088, 1602, 9085, 3251, 3315, + 4349, 8652, 5989, 3177, 1166, 3583, 3161, 7236, 4641, + 1623, 3315, 5326, 8408, 4234, 2598, 7670, 1383, 3904, + 372, 9975, 9339, 5246, 7358, 228, 845, 6253, 9078, + 8969, 941, 5589, 812, 3206, 9576, 7426, 9564, 250, + 5639, 2420, 4119, 3196, 3078, 9183, 2554, 867, 5100, + 1465, 9987, 2915, 5151, 9058, 273, 5338, 4182, 802, + 5524, 4895, 3055, 3478, 4538, 8413, 1383, 9768, 9291, + 7392, 8171, 2516, 6216, 7200, 1324, 9549, 2831, 6274, + 7046, 7793, 8156, 8922, 1536, 4903, 8438, 7980, 8795, + 3692, 1865, 2467, 2873, 1023, 8165, 4606, 9922, 7937, + 1789, 1830, 8242, 6979, 7067, 360, 8686, 4259, 417, + 1071, 8219, 513, 1913, 750, 2857, 4490, 9807, 4091, + 2519, 3644, 392, 5240, 341, 5422, 1252, 3012, 4481, + 2472, 8199, 5103, 2599, 3525, 5909, 78, 2754, 5345, + 3013, 6272, 5946, 3907, 4155, 8832, 5606, 7682, 1172, + 192, 7276, 8882, 698, 7468, 1013, 2117, 3917, 4641, + 4529, 2993, 5, 3925, 8235, 5401, 1760, 7427, 3417, + 1077]), + values=tensor([4.8059e-01, 2.6068e-01, 3.7083e-01, 5.4455e-01, + 5.5087e-01, 9.1571e-01, 3.0550e-01, 8.8604e-01, + 5.5442e-01, 3.9848e-01, 4.1127e-01, 2.3695e-01, + 8.8779e-01, 9.7368e-01, 3.7378e-01, 3.5178e-01, + 1.3697e-01, 7.5506e-01, 4.8064e-01, 3.7498e-03, + 7.9736e-01, 8.1659e-01, 6.1290e-01, 4.5901e-01, + 8.9740e-01, 2.9042e-01, 4.4829e-01, 7.0372e-01, + 3.3279e-01, 7.6293e-01, 6.6927e-02, 4.8552e-01, + 9.9505e-01, 7.0259e-02, 3.6985e-01, 1.1795e-01, + 6.8194e-01, 3.0421e-01, 4.1789e-01, 7.9479e-01, + 8.3575e-01, 6.1092e-01, 5.0699e-02, 2.0850e-01, + 2.8512e-01, 2.1458e-01, 1.9815e-01, 1.8111e-01, + 2.1230e-01, 8.7346e-01, 9.3908e-01, 5.0252e-02, + 5.9668e-01, 1.4455e-01, 1.3858e-01, 6.3809e-02, + 4.3928e-01, 3.1486e-02, 2.7234e-02, 7.4906e-02, + 3.5749e-01, 5.7851e-01, 5.2036e-01, 2.5703e-01, + 6.0030e-01, 1.7537e-01, 5.9778e-01, 1.5196e-01, + 3.6708e-01, 9.8464e-01, 5.9912e-01, 2.2195e-01, + 4.6650e-01, 9.6754e-01, 9.5639e-01, 1.5470e-01, + 1.5256e-01, 3.0298e-01, 2.4096e-02, 5.9170e-01, + 1.9686e-01, 1.1759e-01, 1.0457e-01, 5.9024e-01, + 7.4080e-01, 4.1405e-01, 1.2789e-01, 3.8225e-02, + 3.8505e-02, 4.8747e-01, 6.4712e-01, 5.4537e-01, + 7.2839e-01, 6.5434e-01, 4.7429e-01, 2.8609e-02, + 6.9941e-01, 5.0746e-01, 2.0928e-01, 4.3227e-01, + 5.0692e-01, 4.3792e-01, 4.9812e-01, 6.6989e-01, + 9.6967e-01, 9.7297e-01, 1.8827e-01, 7.4347e-01, + 1.5631e-01, 5.8115e-01, 8.2606e-01, 6.1017e-01, + 4.5324e-01, 6.1732e-01, 4.3508e-01, 2.7436e-01, + 8.6329e-01, 6.4097e-01, 1.0318e-01, 4.0200e-01, + 8.6444e-01, 4.3614e-01, 5.2110e-01, 7.7002e-01, + 7.8091e-01, 2.6182e-01, 9.3631e-01, 6.5569e-01, + 7.5455e-01, 1.1819e-01, 8.7432e-02, 8.5494e-01, + 7.9642e-01, 2.4008e-01, 9.6818e-01, 3.1184e-01, + 5.5783e-02, 1.7763e-01, 3.4710e-01, 3.1949e-01, + 1.1640e-01, 2.3357e-01, 7.4482e-01, 6.5708e-01, + 7.8686e-01, 5.7169e-01, 1.9176e-01, 7.4776e-01, + 8.8674e-01, 1.1710e-01, 8.7365e-02, 5.8070e-01, + 4.5757e-01, 2.3275e-01, 1.4821e-02, 5.4216e-01, + 4.2147e-01, 5.6869e-01, 6.9741e-01, 9.5911e-01, + 4.6716e-01, 7.6178e-01, 3.4794e-02, 9.5093e-01, + 5.1131e-01, 5.6037e-01, 7.2508e-01, 1.7181e-01, + 5.9834e-01, 2.8725e-01, 1.4470e-01, 8.5043e-01, + 3.4409e-01, 2.9904e-01, 2.4931e-01, 5.5706e-01, + 1.5667e-01, 2.9028e-01, 4.6574e-01, 7.5432e-01, + 1.1361e-01, 4.5574e-01, 1.8736e-01, 6.5302e-03, + 8.6205e-01, 8.7909e-01, 7.1674e-01, 7.1278e-01, + 9.9996e-01, 6.9678e-01, 9.3855e-01, 2.5683e-01, + 5.9314e-01, 2.0634e-01, 1.9915e-01, 1.7218e-01, + 3.0449e-01, 3.7677e-02, 9.2688e-01, 2.1308e-01, + 1.5730e-01, 9.2634e-01, 8.2956e-02, 6.1692e-01, + 5.1919e-01, 3.2704e-01, 4.0703e-01, 5.0143e-01, + 6.7723e-01, 8.1753e-01, 2.6635e-01, 1.3191e-02, + 8.9840e-01, 9.9355e-01, 8.7904e-01, 7.1659e-01, + 2.9610e-01, 4.5606e-01, 5.9045e-01, 8.9510e-02, + 8.4238e-01, 2.1662e-01, 7.1281e-01, 4.2497e-01, + 4.5220e-01, 6.1156e-02, 5.2940e-01, 5.8593e-01, + 2.5460e-01, 9.4797e-01, 6.6812e-01, 3.2547e-01, + 7.3813e-01, 7.9380e-01, 3.1305e-01, 5.2360e-01, + 5.7839e-01, 3.4606e-01, 7.0736e-01, 6.4167e-01, + 1.1426e-01, 7.1442e-01, 9.5551e-01, 3.4859e-01, + 6.8092e-04, 6.6756e-01, 2.2472e-01, 3.6603e-02, + 6.4753e-01, 4.6649e-01, 4.2337e-01, 5.1645e-02, + 6.0180e-02, 8.3215e-01, 2.8754e-02, 4.1647e-02, + 2.4904e-01, 4.0011e-01, 5.8432e-01, 5.0926e-01, + 8.2460e-01, 2.7598e-01, 4.5140e-01, 1.8915e-01, + 1.0612e-01, 4.0020e-01, 9.0858e-02, 4.2965e-01, + 3.1573e-01, 1.0305e-02, 9.4588e-01, 8.5378e-01, + 4.7280e-01, 9.4753e-01, 5.0855e-01, 6.0263e-01, + 5.3343e-02, 8.1332e-01, 1.6241e-01, 8.2746e-01, + 2.4580e-01, 6.0980e-02, 3.6788e-01, 9.0945e-02, + 5.2880e-01, 5.8751e-01, 3.6803e-01, 9.8383e-01, + 8.0574e-01, 2.9759e-01, 5.9896e-01, 5.5146e-01, + 9.8346e-02, 7.5541e-01, 9.0311e-01, 7.1468e-02, + 2.2938e-01, 7.1939e-01, 6.3102e-01, 9.3064e-01, + 9.9349e-01, 9.3896e-01, 2.8836e-01, 7.8170e-01, + 4.6400e-01, 1.4346e-01, 7.8384e-02, 5.9983e-01, + 6.5895e-01, 4.6100e-01, 4.6900e-01, 2.1629e-01, + 9.6051e-01, 6.5077e-01, 5.2054e-01, 4.7614e-01, + 7.6397e-02, 5.1015e-01, 7.9634e-01, 4.6907e-01, + 9.6766e-01, 8.1380e-01, 7.4731e-01, 9.8854e-01, + 3.5440e-02, 9.6596e-01, 5.3848e-01, 2.9996e-01, + 4.0293e-02, 6.8423e-01, 6.1380e-01, 3.3767e-01, + 9.1466e-01, 3.8488e-01, 5.0871e-01, 9.9911e-01, + 5.5936e-02, 5.3818e-01, 8.4011e-01, 4.9164e-01, + 9.0611e-01, 2.9127e-01, 7.7511e-02, 6.8092e-01, + 4.4948e-01, 8.0411e-01, 8.0856e-01, 1.7749e-01, + 6.0065e-01, 1.2962e-01, 5.3925e-01, 8.6809e-01, + 3.1247e-01, 5.4289e-01, 5.0400e-01, 8.6523e-01, + 6.1521e-01, 1.8618e-01, 6.4956e-01, 6.7938e-01, + 4.8913e-03, 8.8041e-01, 2.2916e-01, 2.9907e-01, + 2.4663e-01, 7.4980e-01, 7.8897e-01, 2.2230e-02, + 4.0795e-01, 6.5666e-02, 5.0611e-03, 8.6068e-01, + 9.0253e-01, 3.9248e-02, 9.1534e-01, 7.2456e-01, + 6.7679e-01, 3.8350e-01, 3.6286e-01, 8.5937e-01, + 1.8495e-01, 3.0385e-01, 5.7674e-01, 5.5443e-01, + 6.7577e-01, 3.2599e-01, 6.4667e-01, 7.7571e-01, + 5.4077e-01, 3.4173e-02, 6.6062e-01, 5.5497e-01, + 3.2429e-01, 2.3905e-01, 9.2743e-01, 8.2636e-01, + 6.2779e-01, 2.0618e-01, 6.5440e-01, 4.8835e-02, + 6.1570e-02, 7.9004e-01, 8.5253e-01, 6.4570e-01, + 4.3657e-01, 5.6724e-01, 6.6125e-01, 2.1790e-01, + 9.0854e-01, 1.0131e-02, 8.3074e-01, 8.0931e-02, + 1.2273e-01, 9.1632e-01, 7.5735e-01, 6.1709e-01, + 4.5239e-01, 7.6859e-01, 4.5898e-01, 7.7444e-01, + 2.2262e-01, 4.2228e-01, 6.4247e-04, 6.8685e-01, + 4.5280e-01, 9.8831e-01, 6.3551e-01, 2.4349e-01, + 6.3998e-01, 2.4863e-01, 7.4978e-01, 9.6525e-02, + 8.5432e-01, 2.8565e-01, 8.6400e-03, 6.9887e-01, + 9.8123e-01, 5.5568e-01, 6.5677e-02, 2.1300e-01, + 3.8626e-01, 1.7121e-01, 6.2299e-01, 8.5313e-01, + 9.7331e-01, 4.4678e-01, 6.2567e-01, 3.4985e-01, + 3.7997e-02, 1.7816e-01, 4.6951e-01, 2.5928e-01, + 8.1800e-01, 9.8585e-01, 9.9241e-01, 9.4591e-01, + 6.4886e-01, 6.6587e-01, 3.0200e-01, 1.9709e-01, + 6.9655e-01, 7.7186e-01, 4.6370e-01, 2.0512e-01, + 2.9187e-01, 6.5662e-01, 1.9881e-01, 1.8878e-01, + 8.3759e-01, 8.1497e-01, 3.8474e-01, 9.3922e-01, + 1.1980e-01, 7.9274e-01, 2.4139e-03, 4.0606e-01, + 9.4741e-01, 3.5579e-01, 7.3689e-01, 7.4013e-01, + 1.6341e-01, 4.0976e-01, 1.2106e-02, 6.9624e-01, + 3.4058e-01, 9.2252e-01, 5.7347e-01, 1.7341e-01, + 4.7453e-01, 5.3293e-01, 7.2677e-01, 7.6843e-01, + 5.5980e-01, 9.1006e-01, 6.5609e-01, 2.0080e-01, + 7.6444e-01, 7.5927e-01, 3.7025e-01, 2.2248e-01, + 2.7530e-01, 7.3119e-01, 4.2414e-01, 2.5233e-01, + 7.8818e-01, 2.3316e-01, 4.3970e-01, 9.2583e-02, + 1.2232e-01, 5.7076e-01, 5.1912e-01, 9.8308e-01, + 7.4081e-01, 1.3379e-01, 9.3796e-01, 9.1761e-01, + 5.4932e-01, 5.4914e-01, 6.8584e-01, 6.1119e-01, + 2.9282e-01, 8.8707e-01, 9.8210e-02, 7.5203e-01, + 5.7105e-02, 8.3390e-01, 4.3245e-01, 6.0756e-01, + 9.5487e-01, 1.4073e-01, 9.3377e-01, 5.3720e-01, + 2.9851e-01, 2.3323e-01, 5.7038e-01, 1.7177e-01, + 4.2263e-01, 3.6571e-01, 2.4465e-01, 2.3924e-01, + 7.4506e-01, 3.7908e-01, 1.0900e-01, 3.7748e-01, + 5.8194e-01, 1.9196e-01, 9.6828e-01, 6.5906e-01, + 5.4583e-01, 6.8981e-01, 3.3761e-01, 3.0262e-01, + 1.4093e-01, 8.9661e-01, 8.8664e-01, 3.6191e-01, + 7.2603e-01, 1.8928e-01, 1.5570e-01, 4.7355e-01, + 5.0235e-01, 7.0181e-01, 1.5485e-01, 6.3084e-01, + 6.8009e-01, 1.9700e-01, 5.5915e-01, 7.1118e-01, + 8.4480e-01, 8.8653e-01, 9.3805e-02, 8.1394e-01, + 7.6043e-01, 2.2537e-01, 3.5050e-01, 9.4824e-01, + 6.4804e-02, 8.9447e-02, 2.5136e-01, 8.4746e-01, + 4.4124e-01, 5.3570e-01, 7.2660e-01, 9.9153e-01, + 5.5409e-01, 5.7607e-01, 6.9001e-01, 6.8634e-01, + 6.5678e-01, 8.7622e-01, 6.9088e-01, 4.1804e-01, + 4.2696e-01, 7.1106e-01, 7.7869e-01, 9.0423e-01, + 5.0743e-01, 6.4079e-01, 3.9395e-01, 8.6100e-02, + 7.4019e-01, 4.5245e-01, 3.2098e-01, 7.4052e-01, + 5.5819e-03, 9.6355e-01, 4.3721e-01, 6.7750e-01, + 6.2113e-01, 4.9398e-01, 1.7439e-01, 1.9619e-01, + 6.3345e-01, 7.7621e-02, 5.8501e-01, 3.1614e-01, + 9.1062e-01, 2.9312e-01, 6.2033e-01, 7.4267e-01, + 8.8925e-01, 7.8148e-01, 6.9515e-01, 5.1877e-01, + 6.7792e-01, 8.1468e-01, 9.2343e-01, 9.2067e-01, + 5.8445e-01, 7.1713e-01, 7.6645e-01, 9.5688e-01, + 2.2005e-01, 5.8916e-02, 6.8496e-01, 2.7123e-01, + 5.3625e-01, 2.2256e-01, 1.1104e-01, 4.1722e-03, + 7.7575e-01, 3.4159e-01, 6.4283e-01, 9.6679e-01, + 1.7163e-01, 2.4263e-01, 6.1465e-01, 5.1415e-01, + 8.7361e-01, 6.0521e-01, 7.6585e-01, 3.6699e-01, + 4.6723e-01, 7.0614e-01, 5.9241e-01, 5.2480e-01, + 2.3362e-01, 2.8520e-01, 2.4362e-01, 1.8558e-01, + 7.9483e-01, 6.5965e-01, 4.1345e-01, 1.2104e-01, + 7.5543e-01, 9.2465e-01, 4.8631e-01, 1.8207e-01, + 7.4888e-01, 3.0846e-01, 9.4452e-01, 8.2471e-01, + 2.2609e-01, 8.6210e-01, 1.5446e-01, 5.2700e-01, + 1.4129e-01, 6.8153e-02, 7.1222e-01, 5.4379e-02, + 8.2369e-01, 6.7305e-02, 6.9326e-01, 9.5006e-01, + 7.8894e-01, 5.0686e-01, 1.0844e-02, 8.8476e-01, + 3.4081e-01, 7.1386e-01, 5.8332e-01, 8.0538e-02, + 1.2881e-01, 6.6073e-01, 6.6982e-01, 9.4311e-01, + 5.7920e-01, 3.4038e-01, 5.1929e-01, 6.6344e-01, + 3.6283e-01, 8.4071e-01, 8.3032e-02, 3.7224e-01, + 2.8825e-01, 2.1346e-01, 6.6572e-01, 9.1219e-01, + 7.5086e-01, 5.9660e-01, 6.4939e-01, 8.3636e-02, + 2.1276e-01, 8.1840e-01, 9.1241e-01, 4.1267e-01, + 1.2384e-01, 3.2306e-01, 1.8222e-01, 1.6973e-01, + 2.4016e-01, 5.0092e-02, 6.0148e-01, 2.9363e-01, + 7.7028e-01, 6.2133e-01, 4.0709e-01, 4.9819e-01, + 1.9079e-01, 8.4728e-01, 5.7285e-01, 4.6834e-01, + 2.6392e-01, 8.2958e-01, 9.0930e-01, 7.7450e-01, + 4.9029e-01, 6.0270e-02, 9.5693e-01, 2.5910e-01, + 4.3595e-01, 3.2220e-01, 7.7687e-02, 8.6974e-01, + 4.2140e-01, 9.3963e-01, 1.5046e-02, 1.9120e-01, + 6.3065e-01, 5.0110e-02, 8.6206e-01, 1.5593e-01, + 3.8009e-01, 9.0525e-01, 3.1360e-01, 2.8014e-01, + 8.6922e-01, 8.0054e-02, 1.5774e-01, 7.8264e-01, + 5.5830e-01, 8.2156e-01, 5.4363e-02, 6.1422e-01, + 6.4211e-01, 1.8056e-01, 4.8874e-01, 2.7600e-01, + 7.3967e-01, 6.3099e-01, 9.2851e-01, 2.9826e-01, + 7.2043e-02, 1.9501e-01, 2.0723e-01, 4.8988e-01, + 1.1743e-01, 6.0389e-01, 2.4019e-01, 5.3080e-01, + 2.4116e-01, 6.4832e-01, 1.3206e-01, 5.7881e-01, + 2.4751e-01, 2.5004e-01, 1.0644e-01, 6.4024e-02, + 8.1402e-01, 4.5228e-01, 6.7548e-01, 9.3771e-01, + 2.0818e-01, 4.7722e-01, 2.0221e-01, 6.3364e-01, + 2.8929e-01, 5.9029e-01, 4.2652e-01, 9.1620e-01, + 2.2454e-01, 6.7134e-01, 7.9748e-02, 3.2710e-01, + 8.1974e-01, 1.5549e-02, 4.9868e-01, 5.7492e-01, + 7.2008e-02, 7.9730e-01, 1.5602e-01, 2.0940e-01, + 5.3816e-01, 1.9379e-01, 2.7025e-02, 4.9766e-01, + 6.0189e-01, 3.2022e-01, 8.5769e-01, 6.5720e-01, + 3.0809e-01, 1.1742e-01, 9.2720e-01, 1.9132e-01, + 3.9789e-01, 3.7697e-02, 6.0352e-01, 3.9733e-01, + 4.4928e-01, 1.5419e-01, 9.8145e-01, 4.1892e-01, + 7.0064e-01, 3.8871e-01, 6.2793e-01, 7.7207e-01, + 4.4089e-01, 3.6800e-01, 4.9602e-01, 7.8104e-01, + 1.0657e-02, 8.0591e-01, 9.9727e-01, 1.3379e-01, + 5.4798e-01, 7.6658e-01, 6.3649e-01, 2.8939e-01, + 8.1990e-01, 7.9348e-01, 8.2543e-01, 6.7492e-01, + 6.7563e-02, 9.7314e-01, 2.2021e-01, 2.0069e-01, + 8.7506e-01, 7.2409e-01, 3.6865e-01, 1.9488e-01, + 7.4566e-01, 9.7425e-01, 9.4802e-01, 3.3832e-01, + 8.4433e-01, 4.1426e-02, 2.6255e-01, 1.7428e-01, + 1.8207e-01, 1.8488e-01, 8.2856e-03, 1.1348e-01, + 9.2197e-01, 9.2179e-01, 6.1482e-01, 1.7686e-01, + 6.5075e-02, 1.5011e-01, 7.1724e-01, 1.9623e-01, + 7.7691e-01, 8.8594e-01, 5.6303e-01, 7.3530e-01, + 9.8857e-01, 7.4483e-01, 8.5336e-01, 7.1468e-01, + 3.4586e-01, 6.2753e-01, 3.4994e-01, 9.4314e-01, + 5.9523e-01, 2.4831e-01, 6.7030e-01, 7.2279e-01, + 7.4167e-01, 3.7774e-01, 9.7774e-01, 2.7848e-01, + 5.9253e-01, 2.2646e-01, 7.3907e-02, 1.8840e-01, + 1.6017e-01, 9.0665e-01, 7.6825e-01, 1.7432e-01, + 5.2899e-02, 4.0457e-01, 9.7040e-01, 9.0688e-02, + 5.8056e-01, 2.6439e-01, 8.2605e-01, 9.1309e-01, + 6.8101e-01, 8.0757e-01, 6.2304e-01, 9.9518e-01, + 4.7896e-01, 3.1904e-01, 7.0082e-01, 4.5077e-01, + 1.7951e-01, 3.2747e-02, 1.3088e-01, 9.1100e-01, + 2.8097e-01, 7.7241e-01, 2.7702e-01, 8.9268e-01, + 7.4964e-02, 4.5346e-01, 3.5535e-01, 7.4730e-01, + 1.0795e-01, 9.2068e-01, 2.5310e-01, 9.3425e-01, + 8.6243e-03, 3.4566e-01, 1.2041e-01, 8.5141e-02, + 6.8159e-01, 6.3087e-01, 4.5251e-02, 3.5864e-01, + 2.6782e-01, 7.8826e-02, 8.7299e-01, 6.6518e-01, + 7.0044e-01, 1.8992e-01, 8.0560e-01, 7.7462e-01, + 3.8679e-01, 6.1189e-01, 1.5892e-01, 6.3252e-01, + 6.9613e-01, 3.5041e-01, 8.1632e-01, 4.0743e-01, + 7.7173e-01, 4.3097e-01, 4.1902e-01, 7.2770e-01, + 8.4816e-01, 2.2977e-01, 7.1589e-01, 9.0275e-01, + 9.9999e-01, 4.1852e-01, 2.2491e-02, 7.9153e-01, + 9.7639e-01, 3.3819e-01, 7.4342e-01, 8.5250e-01, + 9.9385e-01, 6.3891e-02, 9.7464e-01, 3.0992e-01, + 9.9006e-01, 1.1081e-01, 7.5155e-01, 8.4844e-01, + 7.0384e-01, 4.6698e-01, 1.6751e-01, 6.1651e-01, + 4.3979e-01, 6.1587e-01, 3.4869e-01, 4.9449e-01, + 9.1105e-02, 9.8166e-01, 3.3675e-02, 3.1123e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.1121, 0.3867, 0.9452, ..., 0.7986, 0.0788, 0.8344]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.441989183425903 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 999, 1000, 1000]), + col_indices=tensor([6994, 9622, 3726, 4663, 3213, 8774, 6907, 1710, 9507, + 9063, 1177, 307, 2649, 3020, 5730, 348, 5131, 6359, + 8504, 4801, 4568, 6837, 9016, 8482, 4653, 2975, 3080, + 4702, 1162, 2867, 9079, 2978, 6909, 7908, 6001, 669, + 6371, 3485, 6275, 4253, 4720, 5707, 6535, 1953, 4011, + 2661, 8932, 9981, 7530, 1720, 6368, 6848, 4567, 8841, + 2627, 1161, 5134, 5413, 7960, 4391, 665, 2396, 6608, + 5733, 3484, 4971, 6121, 2312, 3666, 4281, 9424, 1980, + 9643, 9373, 7415, 1900, 9019, 8546, 7553, 8417, 4373, + 8130, 306, 3044, 8544, 6070, 624, 7124, 3983, 3400, + 4627, 4287, 7616, 3298, 7343, 5990, 9821, 2523, 7048, + 5830, 1403, 6233, 8985, 3175, 9364, 5853, 4072, 6366, + 4753, 1727, 9435, 1851, 44, 3040, 1326, 7076, 9651, + 4066, 4865, 6453, 1996, 8040, 329, 9927, 9673, 8524, + 1244, 8553, 442, 5027, 3135, 8060, 9329, 7526, 9796, + 5659, 4377, 3292, 2834, 6136, 3061, 7456, 161, 5999, + 3353, 8111, 5290, 5483, 5811, 5230, 1150, 3704, 746, + 3442, 1238, 6471, 9072, 1057, 739, 7167, 4646, 8968, + 2988, 7699, 3204, 5157, 9948, 7623, 3878, 8967, 4047, + 5067, 7682, 6449, 902, 8157, 5855, 2999, 277, 1240, + 5282, 8712, 210, 3306, 9191, 7693, 9401, 5920, 9695, + 4565, 3107, 3028, 8501, 4399, 270, 1536, 2767, 5311, + 4430, 3474, 7404, 5813, 4610, 264, 84, 3863, 8109, + 628, 315, 7160, 1931, 6079, 150, 1187, 9113, 9881, + 3157, 2458, 7923, 8536, 6368, 1416, 2818, 8122, 3131, + 6956, 9736, 5972, 2516, 3886, 1336, 3782, 3144, 145, + 6154, 3374, 5726, 2019, 5176, 3029, 1833, 512, 805, + 7854, 2374, 6926, 5039, 7581, 1084, 6788, 3567, 9085, + 5115, 8344, 1282, 694, 1416, 4928, 6205, 5066, 6172, + 4951, 2342, 9823, 4409, 453, 2737, 5221, 1182, 1349, + 6104, 1153, 4341, 155, 1744, 6045, 3402, 4537, 6425, + 7377, 9353, 2622, 6364, 5568, 8412, 5977, 8154, 5352, + 1014, 1489, 2546, 9921, 4972, 1344, 4570, 7259, 5658, + 9551, 1403, 4427, 7144, 9461, 8515, 8419, 8672, 8531, + 7797, 6642, 675, 2679, 7615, 8705, 7384, 8267, 6149, + 4211, 8074, 1628, 358, 1640, 228, 5022, 8976, 3921, + 9469, 3778, 3398, 8456, 5802, 1958, 2520, 2489, 1881, + 8614, 3680, 4323, 377, 8462, 5871, 306, 3186, 5351, + 7352, 2219, 9782, 6546, 2214, 3533, 4538, 9746, 3606, + 1981, 5289, 895, 4170, 5822, 348, 6276, 6640, 9900, + 1987, 7527, 3484, 1950, 3683, 214, 8776, 6746, 5717, + 9072, 9171, 1569, 7598, 3877, 3876, 2138, 2024, 1416, + 7752, 4390, 80, 5006, 5274, 9896, 1501, 9077, 5280, + 9121, 9705, 3846, 4311, 7818, 2418, 5744, 70, 755, + 8481, 65, 9496, 8688, 8913, 4086, 4497, 9328, 649, + 7040, 1646, 7888, 6578, 8377, 9319, 9462, 8922, 351, + 4888, 4474, 5081, 3249, 9700, 1729, 5652, 3555, 8733, + 3993, 2648, 2157, 3316, 7194, 4864, 2759, 5666, 9313, + 646, 1058, 9286, 107, 8347, 4296, 5597, 1128, 2987, + 8269, 5363, 8830, 1937, 8083, 6124, 9818, 4872, 1172, + 1916, 9823, 8685, 968, 7144, 4173, 2638, 7667, 2255, + 5893, 145, 2804, 9830, 3730, 2378, 5965, 8443, 924, + 7520, 4001, 8030, 3655, 8642, 637, 4875, 9776, 3422, + 3864, 669, 3034, 7460, 9790, 914, 5157, 7812, 6653, + 5620, 1888, 8250, 4575, 2821, 7519, 5789, 7492, 3910, + 9516, 2254, 109, 3644, 4900, 8347, 1943, 4680, 1973, + 8435, 1113, 456, 1927, 7879, 8357, 9307, 9711, 2787, + 3889, 7117, 5810, 4599, 3798, 3588, 9982, 2090, 9372, + 5907, 2625, 4618, 1365, 7855, 3966, 6642, 2806, 3282, + 1538, 1603, 9281, 6130, 9122, 5424, 4039, 1685, 7585, + 463, 1054, 377, 4412, 670, 3953, 829, 8297, 5284, + 8072, 8388, 5978, 2905, 5528, 8606, 9760, 3824, 3381, + 3569, 8800, 1093, 8598, 5326, 5098, 3325, 3476, 3574, + 5831, 6739, 3709, 3431, 8854, 5412, 1395, 8493, 8413, + 723, 7482, 7437, 8192, 4561, 3563, 7930, 3095, 1395, + 1702, 4680, 4164, 7646, 3073, 2135, 8064, 9233, 8734, + 8891, 1412, 4297, 327, 9444, 6261, 4124, 7080, 3150, + 499, 7634, 5504, 2709, 2323, 6259, 7701, 1590, 782, + 9214, 1434, 7842, 7154, 3406, 6314, 2490, 1995, 2869, + 9300, 7244, 2058, 4782, 9191, 7843, 9366, 3161, 5867, + 7670, 79, 8654, 4679, 6862, 6457, 3396, 3040, 8585, + 3782, 1459, 9368, 4901, 2433, 6705, 8973, 6929, 2667, + 7169, 1587, 5204, 8532, 6578, 9598, 8213, 9081, 6214, + 7437, 7012, 2856, 7632, 7138, 445, 7701, 4052, 6739, + 3480, 3311, 3082, 7805, 6404, 5363, 2870, 9509, 6167, + 7565, 8554, 8204, 832, 9129, 7469, 2782, 5167, 5838, + 3078, 7487, 3680, 6742, 2359, 4016, 7521, 9001, 6405, + 684, 4253, 806, 2076, 1259, 8434, 8503, 8586, 7923, + 4800, 1701, 4338, 6559, 6339, 6352, 1277, 9721, 8278, + 3394, 1222, 9331, 2813, 1759, 1393, 329, 3229, 5728, + 8721, 5742, 6894, 4045, 4303, 9790, 1095, 8299, 5200, + 5067, 4411, 7646, 150, 1925, 981, 1650, 729, 4988, + 39, 6418, 4585, 6285, 3017, 2737, 9097, 1945, 3287, + 5687, 1268, 2568, 5063, 1464, 1353, 8458, 2802, 7424, + 7900, 573, 4279, 1282, 9304, 8048, 5196, 4207, 1316, + 2021, 4121, 7278, 4538, 1620, 3410, 1337, 26, 1524, + 7522, 8145, 4092, 6346, 2473, 5819, 1406, 7284, 7069, + 8477, 7361, 3903, 7212, 8344, 4533, 1123, 5383, 6628, + 5346, 4870, 8614, 6605, 5113, 8241, 2239, 2169, 4658, + 3492, 2436, 6670, 5784, 3502, 9896, 2954, 1899, 1155, + 4148, 2121, 2395, 1045, 4965, 9274, 9110, 6156, 801, + 2656, 5820, 6227, 6325, 135, 209, 4673, 9324, 9454, + 260, 8365, 2431, 2800, 6755, 2430, 7387, 1961, 7463, + 9402, 3000, 2768, 757, 5088, 1602, 9085, 3251, 3315, + 4349, 8652, 5989, 3177, 1166, 3583, 3161, 7236, 4641, + 1623, 3315, 5326, 8408, 4234, 2598, 7670, 1383, 3904, + 372, 9975, 9339, 5246, 7358, 228, 845, 6253, 9078, + 8969, 941, 5589, 812, 3206, 9576, 7426, 9564, 250, + 5639, 2420, 4119, 3196, 3078, 9183, 2554, 867, 5100, + 1465, 9987, 2915, 5151, 9058, 273, 5338, 4182, 802, + 5524, 4895, 3055, 3478, 4538, 8413, 1383, 9768, 9291, + 7392, 8171, 2516, 6216, 7200, 1324, 9549, 2831, 6274, + 7046, 7793, 8156, 8922, 1536, 4903, 8438, 7980, 8795, + 3692, 1865, 2467, 2873, 1023, 8165, 4606, 9922, 7937, + 1789, 1830, 8242, 6979, 7067, 360, 8686, 4259, 417, + 1071, 8219, 513, 1913, 750, 2857, 4490, 9807, 4091, + 2519, 3644, 392, 5240, 341, 5422, 1252, 3012, 4481, + 2472, 8199, 5103, 2599, 3525, 5909, 78, 2754, 5345, + 3013, 6272, 5946, 3907, 4155, 8832, 5606, 7682, 1172, + 192, 7276, 8882, 698, 7468, 1013, 2117, 3917, 4641, + 4529, 2993, 5, 3925, 8235, 5401, 1760, 7427, 3417, + 1077]), + values=tensor([4.8059e-01, 2.6068e-01, 3.7083e-01, 5.4455e-01, + 5.5087e-01, 9.1571e-01, 3.0550e-01, 8.8604e-01, + 5.5442e-01, 3.9848e-01, 4.1127e-01, 2.3695e-01, + 8.8779e-01, 9.7368e-01, 3.7378e-01, 3.5178e-01, + 1.3697e-01, 7.5506e-01, 4.8064e-01, 3.7498e-03, + 7.9736e-01, 8.1659e-01, 6.1290e-01, 4.5901e-01, + 8.9740e-01, 2.9042e-01, 4.4829e-01, 7.0372e-01, + 3.3279e-01, 7.6293e-01, 6.6927e-02, 4.8552e-01, + 9.9505e-01, 7.0259e-02, 3.6985e-01, 1.1795e-01, + 6.8194e-01, 3.0421e-01, 4.1789e-01, 7.9479e-01, + 8.3575e-01, 6.1092e-01, 5.0699e-02, 2.0850e-01, + 2.8512e-01, 2.1458e-01, 1.9815e-01, 1.8111e-01, + 2.1230e-01, 8.7346e-01, 9.3908e-01, 5.0252e-02, + 5.9668e-01, 1.4455e-01, 1.3858e-01, 6.3809e-02, + 4.3928e-01, 3.1486e-02, 2.7234e-02, 7.4906e-02, + 3.5749e-01, 5.7851e-01, 5.2036e-01, 2.5703e-01, + 6.0030e-01, 1.7537e-01, 5.9778e-01, 1.5196e-01, + 3.6708e-01, 9.8464e-01, 5.9912e-01, 2.2195e-01, + 4.6650e-01, 9.6754e-01, 9.5639e-01, 1.5470e-01, + 1.5256e-01, 3.0298e-01, 2.4096e-02, 5.9170e-01, + 1.9686e-01, 1.1759e-01, 1.0457e-01, 5.9024e-01, + 7.4080e-01, 4.1405e-01, 1.2789e-01, 3.8225e-02, + 3.8505e-02, 4.8747e-01, 6.4712e-01, 5.4537e-01, + 7.2839e-01, 6.5434e-01, 4.7429e-01, 2.8609e-02, + 6.9941e-01, 5.0746e-01, 2.0928e-01, 4.3227e-01, + 5.0692e-01, 4.3792e-01, 4.9812e-01, 6.6989e-01, + 9.6967e-01, 9.7297e-01, 1.8827e-01, 7.4347e-01, + 1.5631e-01, 5.8115e-01, 8.2606e-01, 6.1017e-01, + 4.5324e-01, 6.1732e-01, 4.3508e-01, 2.7436e-01, + 8.6329e-01, 6.4097e-01, 1.0318e-01, 4.0200e-01, + 8.6444e-01, 4.3614e-01, 5.2110e-01, 7.7002e-01, + 7.8091e-01, 2.6182e-01, 9.3631e-01, 6.5569e-01, + 7.5455e-01, 1.1819e-01, 8.7432e-02, 8.5494e-01, + 7.9642e-01, 2.4008e-01, 9.6818e-01, 3.1184e-01, + 5.5783e-02, 1.7763e-01, 3.4710e-01, 3.1949e-01, + 1.1640e-01, 2.3357e-01, 7.4482e-01, 6.5708e-01, + 7.8686e-01, 5.7169e-01, 1.9176e-01, 7.4776e-01, + 8.8674e-01, 1.1710e-01, 8.7365e-02, 5.8070e-01, + 4.5757e-01, 2.3275e-01, 1.4821e-02, 5.4216e-01, + 4.2147e-01, 5.6869e-01, 6.9741e-01, 9.5911e-01, + 4.6716e-01, 7.6178e-01, 3.4794e-02, 9.5093e-01, + 5.1131e-01, 5.6037e-01, 7.2508e-01, 1.7181e-01, + 5.9834e-01, 2.8725e-01, 1.4470e-01, 8.5043e-01, + 3.4409e-01, 2.9904e-01, 2.4931e-01, 5.5706e-01, + 1.5667e-01, 2.9028e-01, 4.6574e-01, 7.5432e-01, + 1.1361e-01, 4.5574e-01, 1.8736e-01, 6.5302e-03, + 8.6205e-01, 8.7909e-01, 7.1674e-01, 7.1278e-01, + 9.9996e-01, 6.9678e-01, 9.3855e-01, 2.5683e-01, + 5.9314e-01, 2.0634e-01, 1.9915e-01, 1.7218e-01, + 3.0449e-01, 3.7677e-02, 9.2688e-01, 2.1308e-01, + 1.5730e-01, 9.2634e-01, 8.2956e-02, 6.1692e-01, + 5.1919e-01, 3.2704e-01, 4.0703e-01, 5.0143e-01, + 6.7723e-01, 8.1753e-01, 2.6635e-01, 1.3191e-02, + 8.9840e-01, 9.9355e-01, 8.7904e-01, 7.1659e-01, + 2.9610e-01, 4.5606e-01, 5.9045e-01, 8.9510e-02, + 8.4238e-01, 2.1662e-01, 7.1281e-01, 4.2497e-01, + 4.5220e-01, 6.1156e-02, 5.2940e-01, 5.8593e-01, + 2.5460e-01, 9.4797e-01, 6.6812e-01, 3.2547e-01, + 7.3813e-01, 7.9380e-01, 3.1305e-01, 5.2360e-01, + 5.7839e-01, 3.4606e-01, 7.0736e-01, 6.4167e-01, + 1.1426e-01, 7.1442e-01, 9.5551e-01, 3.4859e-01, + 6.8092e-04, 6.6756e-01, 2.2472e-01, 3.6603e-02, + 6.4753e-01, 4.6649e-01, 4.2337e-01, 5.1645e-02, + 6.0180e-02, 8.3215e-01, 2.8754e-02, 4.1647e-02, + 2.4904e-01, 4.0011e-01, 5.8432e-01, 5.0926e-01, + 8.2460e-01, 2.7598e-01, 4.5140e-01, 1.8915e-01, + 1.0612e-01, 4.0020e-01, 9.0858e-02, 4.2965e-01, + 3.1573e-01, 1.0305e-02, 9.4588e-01, 8.5378e-01, + 4.7280e-01, 9.4753e-01, 5.0855e-01, 6.0263e-01, + 5.3343e-02, 8.1332e-01, 1.6241e-01, 8.2746e-01, + 2.4580e-01, 6.0980e-02, 3.6788e-01, 9.0945e-02, + 5.2880e-01, 5.8751e-01, 3.6803e-01, 9.8383e-01, + 8.0574e-01, 2.9759e-01, 5.9896e-01, 5.5146e-01, + 9.8346e-02, 7.5541e-01, 9.0311e-01, 7.1468e-02, + 2.2938e-01, 7.1939e-01, 6.3102e-01, 9.3064e-01, + 9.9349e-01, 9.3896e-01, 2.8836e-01, 7.8170e-01, + 4.6400e-01, 1.4346e-01, 7.8384e-02, 5.9983e-01, + 6.5895e-01, 4.6100e-01, 4.6900e-01, 2.1629e-01, + 9.6051e-01, 6.5077e-01, 5.2054e-01, 4.7614e-01, + 7.6397e-02, 5.1015e-01, 7.9634e-01, 4.6907e-01, + 9.6766e-01, 8.1380e-01, 7.4731e-01, 9.8854e-01, + 3.5440e-02, 9.6596e-01, 5.3848e-01, 2.9996e-01, + 4.0293e-02, 6.8423e-01, 6.1380e-01, 3.3767e-01, + 9.1466e-01, 3.8488e-01, 5.0871e-01, 9.9911e-01, + 5.5936e-02, 5.3818e-01, 8.4011e-01, 4.9164e-01, + 9.0611e-01, 2.9127e-01, 7.7511e-02, 6.8092e-01, + 4.4948e-01, 8.0411e-01, 8.0856e-01, 1.7749e-01, + 6.0065e-01, 1.2962e-01, 5.3925e-01, 8.6809e-01, + 3.1247e-01, 5.4289e-01, 5.0400e-01, 8.6523e-01, + 6.1521e-01, 1.8618e-01, 6.4956e-01, 6.7938e-01, + 4.8913e-03, 8.8041e-01, 2.2916e-01, 2.9907e-01, + 2.4663e-01, 7.4980e-01, 7.8897e-01, 2.2230e-02, + 4.0795e-01, 6.5666e-02, 5.0611e-03, 8.6068e-01, + 9.0253e-01, 3.9248e-02, 9.1534e-01, 7.2456e-01, + 6.7679e-01, 3.8350e-01, 3.6286e-01, 8.5937e-01, + 1.8495e-01, 3.0385e-01, 5.7674e-01, 5.5443e-01, + 6.7577e-01, 3.2599e-01, 6.4667e-01, 7.7571e-01, + 5.4077e-01, 3.4173e-02, 6.6062e-01, 5.5497e-01, + 3.2429e-01, 2.3905e-01, 9.2743e-01, 8.2636e-01, + 6.2779e-01, 2.0618e-01, 6.5440e-01, 4.8835e-02, + 6.1570e-02, 7.9004e-01, 8.5253e-01, 6.4570e-01, + 4.3657e-01, 5.6724e-01, 6.6125e-01, 2.1790e-01, + 9.0854e-01, 1.0131e-02, 8.3074e-01, 8.0931e-02, + 1.2273e-01, 9.1632e-01, 7.5735e-01, 6.1709e-01, + 4.5239e-01, 7.6859e-01, 4.5898e-01, 7.7444e-01, + 2.2262e-01, 4.2228e-01, 6.4247e-04, 6.8685e-01, + 4.5280e-01, 9.8831e-01, 6.3551e-01, 2.4349e-01, + 6.3998e-01, 2.4863e-01, 7.4978e-01, 9.6525e-02, + 8.5432e-01, 2.8565e-01, 8.6400e-03, 6.9887e-01, + 9.8123e-01, 5.5568e-01, 6.5677e-02, 2.1300e-01, + 3.8626e-01, 1.7121e-01, 6.2299e-01, 8.5313e-01, + 9.7331e-01, 4.4678e-01, 6.2567e-01, 3.4985e-01, + 3.7997e-02, 1.7816e-01, 4.6951e-01, 2.5928e-01, + 8.1800e-01, 9.8585e-01, 9.9241e-01, 9.4591e-01, + 6.4886e-01, 6.6587e-01, 3.0200e-01, 1.9709e-01, + 6.9655e-01, 7.7186e-01, 4.6370e-01, 2.0512e-01, + 2.9187e-01, 6.5662e-01, 1.9881e-01, 1.8878e-01, + 8.3759e-01, 8.1497e-01, 3.8474e-01, 9.3922e-01, + 1.1980e-01, 7.9274e-01, 2.4139e-03, 4.0606e-01, + 9.4741e-01, 3.5579e-01, 7.3689e-01, 7.4013e-01, + 1.6341e-01, 4.0976e-01, 1.2106e-02, 6.9624e-01, + 3.4058e-01, 9.2252e-01, 5.7347e-01, 1.7341e-01, + 4.7453e-01, 5.3293e-01, 7.2677e-01, 7.6843e-01, + 5.5980e-01, 9.1006e-01, 6.5609e-01, 2.0080e-01, + 7.6444e-01, 7.5927e-01, 3.7025e-01, 2.2248e-01, + 2.7530e-01, 7.3119e-01, 4.2414e-01, 2.5233e-01, + 7.8818e-01, 2.3316e-01, 4.3970e-01, 9.2583e-02, + 1.2232e-01, 5.7076e-01, 5.1912e-01, 9.8308e-01, + 7.4081e-01, 1.3379e-01, 9.3796e-01, 9.1761e-01, + 5.4932e-01, 5.4914e-01, 6.8584e-01, 6.1119e-01, + 2.9282e-01, 8.8707e-01, 9.8210e-02, 7.5203e-01, + 5.7105e-02, 8.3390e-01, 4.3245e-01, 6.0756e-01, + 9.5487e-01, 1.4073e-01, 9.3377e-01, 5.3720e-01, + 2.9851e-01, 2.3323e-01, 5.7038e-01, 1.7177e-01, + 4.2263e-01, 3.6571e-01, 2.4465e-01, 2.3924e-01, + 7.4506e-01, 3.7908e-01, 1.0900e-01, 3.7748e-01, + 5.8194e-01, 1.9196e-01, 9.6828e-01, 6.5906e-01, + 5.4583e-01, 6.8981e-01, 3.3761e-01, 3.0262e-01, + 1.4093e-01, 8.9661e-01, 8.8664e-01, 3.6191e-01, + 7.2603e-01, 1.8928e-01, 1.5570e-01, 4.7355e-01, + 5.0235e-01, 7.0181e-01, 1.5485e-01, 6.3084e-01, + 6.8009e-01, 1.9700e-01, 5.5915e-01, 7.1118e-01, + 8.4480e-01, 8.8653e-01, 9.3805e-02, 8.1394e-01, + 7.6043e-01, 2.2537e-01, 3.5050e-01, 9.4824e-01, + 6.4804e-02, 8.9447e-02, 2.5136e-01, 8.4746e-01, + 4.4124e-01, 5.3570e-01, 7.2660e-01, 9.9153e-01, + 5.5409e-01, 5.7607e-01, 6.9001e-01, 6.8634e-01, + 6.5678e-01, 8.7622e-01, 6.9088e-01, 4.1804e-01, + 4.2696e-01, 7.1106e-01, 7.7869e-01, 9.0423e-01, + 5.0743e-01, 6.4079e-01, 3.9395e-01, 8.6100e-02, + 7.4019e-01, 4.5245e-01, 3.2098e-01, 7.4052e-01, + 5.5819e-03, 9.6355e-01, 4.3721e-01, 6.7750e-01, + 6.2113e-01, 4.9398e-01, 1.7439e-01, 1.9619e-01, + 6.3345e-01, 7.7621e-02, 5.8501e-01, 3.1614e-01, + 9.1062e-01, 2.9312e-01, 6.2033e-01, 7.4267e-01, + 8.8925e-01, 7.8148e-01, 6.9515e-01, 5.1877e-01, + 6.7792e-01, 8.1468e-01, 9.2343e-01, 9.2067e-01, + 5.8445e-01, 7.1713e-01, 7.6645e-01, 9.5688e-01, + 2.2005e-01, 5.8916e-02, 6.8496e-01, 2.7123e-01, + 5.3625e-01, 2.2256e-01, 1.1104e-01, 4.1722e-03, + 7.7575e-01, 3.4159e-01, 6.4283e-01, 9.6679e-01, + 1.7163e-01, 2.4263e-01, 6.1465e-01, 5.1415e-01, + 8.7361e-01, 6.0521e-01, 7.6585e-01, 3.6699e-01, + 4.6723e-01, 7.0614e-01, 5.9241e-01, 5.2480e-01, + 2.3362e-01, 2.8520e-01, 2.4362e-01, 1.8558e-01, + 7.9483e-01, 6.5965e-01, 4.1345e-01, 1.2104e-01, + 7.5543e-01, 9.2465e-01, 4.8631e-01, 1.8207e-01, + 7.4888e-01, 3.0846e-01, 9.4452e-01, 8.2471e-01, + 2.2609e-01, 8.6210e-01, 1.5446e-01, 5.2700e-01, + 1.4129e-01, 6.8153e-02, 7.1222e-01, 5.4379e-02, + 8.2369e-01, 6.7305e-02, 6.9326e-01, 9.5006e-01, + 7.8894e-01, 5.0686e-01, 1.0844e-02, 8.8476e-01, + 3.4081e-01, 7.1386e-01, 5.8332e-01, 8.0538e-02, + 1.2881e-01, 6.6073e-01, 6.6982e-01, 9.4311e-01, + 5.7920e-01, 3.4038e-01, 5.1929e-01, 6.6344e-01, + 3.6283e-01, 8.4071e-01, 8.3032e-02, 3.7224e-01, + 2.8825e-01, 2.1346e-01, 6.6572e-01, 9.1219e-01, + 7.5086e-01, 5.9660e-01, 6.4939e-01, 8.3636e-02, + 2.1276e-01, 8.1840e-01, 9.1241e-01, 4.1267e-01, + 1.2384e-01, 3.2306e-01, 1.8222e-01, 1.6973e-01, + 2.4016e-01, 5.0092e-02, 6.0148e-01, 2.9363e-01, + 7.7028e-01, 6.2133e-01, 4.0709e-01, 4.9819e-01, + 1.9079e-01, 8.4728e-01, 5.7285e-01, 4.6834e-01, + 2.6392e-01, 8.2958e-01, 9.0930e-01, 7.7450e-01, + 4.9029e-01, 6.0270e-02, 9.5693e-01, 2.5910e-01, + 4.3595e-01, 3.2220e-01, 7.7687e-02, 8.6974e-01, + 4.2140e-01, 9.3963e-01, 1.5046e-02, 1.9120e-01, + 6.3065e-01, 5.0110e-02, 8.6206e-01, 1.5593e-01, + 3.8009e-01, 9.0525e-01, 3.1360e-01, 2.8014e-01, + 8.6922e-01, 8.0054e-02, 1.5774e-01, 7.8264e-01, + 5.5830e-01, 8.2156e-01, 5.4363e-02, 6.1422e-01, + 6.4211e-01, 1.8056e-01, 4.8874e-01, 2.7600e-01, + 7.3967e-01, 6.3099e-01, 9.2851e-01, 2.9826e-01, + 7.2043e-02, 1.9501e-01, 2.0723e-01, 4.8988e-01, + 1.1743e-01, 6.0389e-01, 2.4019e-01, 5.3080e-01, + 2.4116e-01, 6.4832e-01, 1.3206e-01, 5.7881e-01, + 2.4751e-01, 2.5004e-01, 1.0644e-01, 6.4024e-02, + 8.1402e-01, 4.5228e-01, 6.7548e-01, 9.3771e-01, + 2.0818e-01, 4.7722e-01, 2.0221e-01, 6.3364e-01, + 2.8929e-01, 5.9029e-01, 4.2652e-01, 9.1620e-01, + 2.2454e-01, 6.7134e-01, 7.9748e-02, 3.2710e-01, + 8.1974e-01, 1.5549e-02, 4.9868e-01, 5.7492e-01, + 7.2008e-02, 7.9730e-01, 1.5602e-01, 2.0940e-01, + 5.3816e-01, 1.9379e-01, 2.7025e-02, 4.9766e-01, + 6.0189e-01, 3.2022e-01, 8.5769e-01, 6.5720e-01, + 3.0809e-01, 1.1742e-01, 9.2720e-01, 1.9132e-01, + 3.9789e-01, 3.7697e-02, 6.0352e-01, 3.9733e-01, + 4.4928e-01, 1.5419e-01, 9.8145e-01, 4.1892e-01, + 7.0064e-01, 3.8871e-01, 6.2793e-01, 7.7207e-01, + 4.4089e-01, 3.6800e-01, 4.9602e-01, 7.8104e-01, + 1.0657e-02, 8.0591e-01, 9.9727e-01, 1.3379e-01, + 5.4798e-01, 7.6658e-01, 6.3649e-01, 2.8939e-01, + 8.1990e-01, 7.9348e-01, 8.2543e-01, 6.7492e-01, + 6.7563e-02, 9.7314e-01, 2.2021e-01, 2.0069e-01, + 8.7506e-01, 7.2409e-01, 3.6865e-01, 1.9488e-01, + 7.4566e-01, 9.7425e-01, 9.4802e-01, 3.3832e-01, + 8.4433e-01, 4.1426e-02, 2.6255e-01, 1.7428e-01, + 1.8207e-01, 1.8488e-01, 8.2856e-03, 1.1348e-01, + 9.2197e-01, 9.2179e-01, 6.1482e-01, 1.7686e-01, + 6.5075e-02, 1.5011e-01, 7.1724e-01, 1.9623e-01, + 7.7691e-01, 8.8594e-01, 5.6303e-01, 7.3530e-01, + 9.8857e-01, 7.4483e-01, 8.5336e-01, 7.1468e-01, + 3.4586e-01, 6.2753e-01, 3.4994e-01, 9.4314e-01, + 5.9523e-01, 2.4831e-01, 6.7030e-01, 7.2279e-01, + 7.4167e-01, 3.7774e-01, 9.7774e-01, 2.7848e-01, + 5.9253e-01, 2.2646e-01, 7.3907e-02, 1.8840e-01, + 1.6017e-01, 9.0665e-01, 7.6825e-01, 1.7432e-01, + 5.2899e-02, 4.0457e-01, 9.7040e-01, 9.0688e-02, + 5.8056e-01, 2.6439e-01, 8.2605e-01, 9.1309e-01, + 6.8101e-01, 8.0757e-01, 6.2304e-01, 9.9518e-01, + 4.7896e-01, 3.1904e-01, 7.0082e-01, 4.5077e-01, + 1.7951e-01, 3.2747e-02, 1.3088e-01, 9.1100e-01, + 2.8097e-01, 7.7241e-01, 2.7702e-01, 8.9268e-01, + 7.4964e-02, 4.5346e-01, 3.5535e-01, 7.4730e-01, + 1.0795e-01, 9.2068e-01, 2.5310e-01, 9.3425e-01, + 8.6243e-03, 3.4566e-01, 1.2041e-01, 8.5141e-02, + 6.8159e-01, 6.3087e-01, 4.5251e-02, 3.5864e-01, + 2.6782e-01, 7.8826e-02, 8.7299e-01, 6.6518e-01, + 7.0044e-01, 1.8992e-01, 8.0560e-01, 7.7462e-01, + 3.8679e-01, 6.1189e-01, 1.5892e-01, 6.3252e-01, + 6.9613e-01, 3.5041e-01, 8.1632e-01, 4.0743e-01, + 7.7173e-01, 4.3097e-01, 4.1902e-01, 7.2770e-01, + 8.4816e-01, 2.2977e-01, 7.1589e-01, 9.0275e-01, + 9.9999e-01, 4.1852e-01, 2.2491e-02, 7.9153e-01, + 9.7639e-01, 3.3819e-01, 7.4342e-01, 8.5250e-01, + 9.9385e-01, 6.3891e-02, 9.7464e-01, 3.0992e-01, + 9.9006e-01, 1.1081e-01, 7.5155e-01, 8.4844e-01, + 7.0384e-01, 4.6698e-01, 1.6751e-01, 6.1651e-01, + 4.3979e-01, 6.1587e-01, 3.4869e-01, 4.9449e-01, + 9.1105e-02, 9.8166e-01, 3.3675e-02, 3.1123e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.1121, 0.3867, 0.9452, ..., 0.7986, 0.0788, 0.8344]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.441989183425903 seconds + +[18.13, 22.04, 18.79, 17.71, 17.77, 17.9, 17.83, 17.54, 17.97, 17.85] +[79.9] +13.809443473815918 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 286739, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.441989183425903, 'TIME_S_1KI': 0.036416354885194915, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1103.374533557892, 'W': 79.9} +[18.13, 22.04, 18.79, 17.71, 17.77, 17.9, 17.83, 17.54, 17.97, 17.85, 18.13, 17.63, 18.09, 17.81, 17.93, 17.7, 17.59, 17.82, 17.87, 17.69] +325.89 +16.2945 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 286739, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.441989183425903, 'TIME_S_1KI': 0.036416354885194915, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1103.374533557892, 'W': 79.9, 'J_1KI': 3.8480099796605693, 'W_1KI': 0.27865061955297327, 'W_D': 63.605500000000006, 'J_D': 878.3565568737985, 'W_D_1KI': 0.22182367937392544, 'J_D_1KI': 0.0007736083315277149} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_5e-05.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_5e-05.json new file mode 100644 index 0000000..91b8311 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 269593, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.567216634750366, "TIME_S_1KI": 0.03919692512324269, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1116.8250253772735, "W": 79.97999999999999, "J_1KI": 4.142633619482974, "W_1KI": 0.29666942390937445, "W_D": 63.59324999999999, "J_D": 888.003663979411, "W_D_1KI": 0.23588613205832493, "J_D_1KI": 0.0008749712791442097} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_5e-05.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_5e-05.output new file mode 100644 index 0000000..271dd36 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_10000_5e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.056284427642822266} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 5000, 5000, 5000]), + col_indices=tensor([8618, 2157, 180, ..., 6301, 3776, 9276]), + values=tensor([0.6370, 0.4514, 0.1911, ..., 0.9917, 0.3039, 0.3760]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.3110, 0.1501, 0.3783, ..., 0.1317, 0.1435, 0.1761]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 0.056284427642822266 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '186552', '-ss', '10000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 7.265737533569336} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 4998, 4999, 5000]), + col_indices=tensor([3104, 929, 8564, ..., 6717, 8359, 928]), + values=tensor([0.4370, 0.1053, 0.0742, ..., 0.7004, 0.4944, 0.4492]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.3493, 0.4826, 0.4715, ..., 0.3349, 0.2581, 0.7669]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 7.265737533569336 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '269593', '-ss', '10000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.567216634750366} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 4999, 5000, 5000]), + col_indices=tensor([2457, 434, 2201, ..., 5356, 91, 9583]), + values=tensor([0.6200, 0.7893, 0.7607, ..., 0.6419, 0.6044, 0.8766]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.5913, 0.4546, 0.3506, ..., 0.4687, 0.7353, 0.8006]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 10.567216634750366 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 4999, 5000, 5000]), + col_indices=tensor([2457, 434, 2201, ..., 5356, 91, 9583]), + values=tensor([0.6200, 0.7893, 0.7607, ..., 0.6419, 0.6044, 0.8766]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.5913, 0.4546, 0.3506, ..., 0.4687, 0.7353, 0.8006]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 10.567216634750366 seconds + +[17.89, 17.35, 17.61, 17.72, 17.83, 17.6, 17.61, 17.87, 22.45, 17.59] +[79.98] +13.963803768157959 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 269593, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.567216634750366, 'TIME_S_1KI': 0.03919692512324269, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1116.8250253772735, 'W': 79.97999999999999} +[17.89, 17.35, 17.61, 17.72, 17.83, 17.6, 17.61, 17.87, 22.45, 17.59, 18.03, 17.7, 17.74, 17.72, 21.48, 17.84, 17.81, 17.57, 18.13, 17.9] +327.735 +16.38675 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 269593, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.567216634750366, 'TIME_S_1KI': 0.03919692512324269, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1116.8250253772735, 'W': 79.97999999999999, 'J_1KI': 4.142633619482974, 'W_1KI': 0.29666942390937445, 'W_D': 63.59324999999999, 'J_D': 888.003663979411, 'W_D_1KI': 0.23588613205832493, 'J_D_1KI': 0.0008749712791442097} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_500000_0.0001.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_500000_0.0001.json new file mode 100644 index 0000000..250b22c --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_500000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 15.963828563690186, "TIME_S_1KI": 15.963828563690184, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 3837.0465870952603, "W": 57.08, "J_1KI": 3837.0465870952603, "W_1KI": 57.08, "W_D": 41.032999999999994, "J_D": 2758.3309847280975, "W_D_1KI": 41.032999999999994, "J_D_1KI": 41.032999999999994} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_500000_0.0001.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_500000_0.0001.output new file mode 100644 index 0000000..8f6ef0a --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_500000_0.0001.output @@ -0,0 +1,47 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 15.963828563690186} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 49, 110, ..., 24999910, + 24999948, 25000000]), + col_indices=tensor([ 6869, 7642, 11671, ..., 455502, 470939, + 478512]), + values=tensor([0.8757, 0.6946, 0.8023, ..., 0.8472, 0.7183, 0.5606]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.4126, 0.9616, 0.6093, ..., 0.3863, 0.8636, 0.0433]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 15.963828563690186 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 49, 110, ..., 24999910, + 24999948, 25000000]), + col_indices=tensor([ 6869, 7642, 11671, ..., 455502, 470939, + 478512]), + values=tensor([0.8757, 0.6946, 0.8023, ..., 0.8472, 0.7183, 0.5606]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.4126, 0.9616, 0.6093, ..., 0.3863, 0.8636, 0.0433]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 15.963828563690186 seconds + +[18.28, 17.95, 18.0, 17.55, 17.82, 17.7, 17.82, 17.54, 17.77, 17.59] +[57.08] +67.22225975990295 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 15.963828563690186, 'TIME_S_1KI': 15.963828563690184, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3837.0465870952603, 'W': 57.08} +[18.28, 17.95, 18.0, 17.55, 17.82, 17.7, 17.82, 17.54, 17.77, 17.59, 18.37, 17.79, 17.89, 17.88, 18.0, 17.73, 17.87, 17.96, 17.67, 17.76] +320.94000000000005 +16.047000000000004 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 15.963828563690186, 'TIME_S_1KI': 15.963828563690184, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3837.0465870952603, 'W': 57.08, 'J_1KI': 3837.0465870952603, 'W_1KI': 57.08, 'W_D': 41.032999999999994, 'J_D': 2758.3309847280975, 'W_D_1KI': 41.032999999999994, 'J_D_1KI': 41.032999999999994} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_500000_1e-05.json new file mode 100644 index 0000000..d6eca5a --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_500000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 7939, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.723366260528564, "TIME_S_1KI": 1.350720022739459, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1313.216650083065, "W": 88.63, "J_1KI": 165.41335811601778, "W_1KI": 11.163874543393375, "W_D": 72.31174999999999, "J_D": 1071.4317284964918, "W_D_1KI": 9.108420455976821, "J_D_1KI": 1.1473007250254217} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_500000_1e-05.output new file mode 100644 index 0000000..2715834 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_500000_1e-05.output @@ -0,0 +1,68 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 1.3224358558654785} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 7, ..., 2499992, + 2499995, 2500000]), + col_indices=tensor([ 81446, 111347, 262323, ..., 95785, 329641, + 405148]), + values=tensor([0.7472, 0.0566, 0.1215, ..., 0.1323, 0.4741, 0.2377]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.0977, 0.7761, 0.5514, ..., 0.9913, 0.3768, 0.8332]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 1.3224358558654785 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '7939', '-ss', '500000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.723366260528564} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 9, ..., 2499990, + 2499995, 2500000]), + col_indices=tensor([185711, 60363, 105088, ..., 318731, 319175, + 323232]), + values=tensor([0.5920, 0.0659, 0.0171, ..., 0.3410, 0.9352, 0.3450]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.5701, 0.8906, 0.4066, ..., 0.2438, 0.9359, 0.5479]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 10.723366260528564 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 9, ..., 2499990, + 2499995, 2500000]), + col_indices=tensor([185711, 60363, 105088, ..., 318731, 319175, + 323232]), + values=tensor([0.5920, 0.0659, 0.0171, ..., 0.3410, 0.9352, 0.3450]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.5701, 0.8906, 0.4066, ..., 0.2438, 0.9359, 0.5479]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 10.723366260528564 seconds + +[18.35, 18.0, 17.81, 18.15, 20.9, 17.73, 17.87, 17.99, 18.01, 17.97] +[88.63] +14.81684136390686 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 7939, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.723366260528564, 'TIME_S_1KI': 1.350720022739459, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1313.216650083065, 'W': 88.63} +[18.35, 18.0, 17.81, 18.15, 20.9, 17.73, 17.87, 17.99, 18.01, 17.97, 18.83, 17.84, 18.13, 18.11, 17.94, 17.77, 17.81, 17.81, 18.09, 17.66] +326.365 +16.31825 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 7939, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.723366260528564, 'TIME_S_1KI': 1.350720022739459, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1313.216650083065, 'W': 88.63, 'J_1KI': 165.41335811601778, 'W_1KI': 11.163874543393375, 'W_D': 72.31174999999999, 'J_D': 1071.4317284964918, 'W_D_1KI': 9.108420455976821, 'J_D_1KI': 1.1473007250254217} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_500000_5e-05.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_500000_5e-05.json new file mode 100644 index 0000000..3709697 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_500000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 1325, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.266479253768921, "TIME_S_1KI": 7.748286229259563, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1511.6237173461914, "W": 78.72, "J_1KI": 1140.8480885631634, "W_1KI": 59.41132075471698, "W_D": 51.030249999999995, "J_D": 979.9102667950391, "W_D_1KI": 38.5133962264151, "J_D_1KI": 29.06671413314347} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_500000_5e-05.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_500000_5e-05.output new file mode 100644 index 0000000..4090da6 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_500000_5e-05.output @@ -0,0 +1,68 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 7.920783042907715} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 27, 58, ..., 12499955, + 12499976, 12500000]), + col_indices=tensor([ 1130, 30184, 52843, ..., 432238, 460389, + 464098]), + values=tensor([0.9711, 0.9391, 0.1931, ..., 0.2077, 0.5139, 0.7168]), + size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.7084, 0.4119, 0.9069, ..., 0.7058, 0.3504, 0.1364]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 12500000 +Density: 5e-05 +Time: 7.920783042907715 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1325', '-ss', '500000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.266479253768921} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 28, 47, ..., 12499960, + 12499984, 12500000]), + col_indices=tensor([105223, 111339, 112839, ..., 478264, 484121, + 494514]), + values=tensor([0.5455, 0.8774, 0.0623, ..., 0.6447, 0.0740, 0.9564]), + size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.8058, 0.5348, 0.2222, ..., 0.5938, 0.1996, 0.3404]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 12500000 +Density: 5e-05 +Time: 10.266479253768921 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 28, 47, ..., 12499960, + 12499984, 12500000]), + col_indices=tensor([105223, 111339, 112839, ..., 478264, 484121, + 494514]), + values=tensor([0.5455, 0.8774, 0.0623, ..., 0.6447, 0.0740, 0.9564]), + size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.8058, 0.5348, 0.2222, ..., 0.5938, 0.1996, 0.3404]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 12500000 +Density: 5e-05 +Time: 10.266479253768921 seconds + +[18.04, 18.12, 17.82, 17.66, 17.96, 17.84, 17.85, 17.56, 17.9, 17.9] +[78.72] +19.202537059783936 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1325, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.266479253768921, 'TIME_S_1KI': 7.748286229259563, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1511.6237173461914, 'W': 78.72} +[18.04, 18.12, 17.82, 17.66, 17.96, 17.84, 17.85, 17.56, 17.9, 17.9, 42.26, 43.36, 45.35, 45.57, 48.14, 42.56, 42.0, 41.9, 42.22, 41.77] +553.7950000000001 +27.689750000000004 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1325, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.266479253768921, 'TIME_S_1KI': 7.748286229259563, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1511.6237173461914, 'W': 78.72, 'J_1KI': 1140.8480885631634, 'W_1KI': 59.41132075471698, 'W_D': 51.030249999999995, 'J_D': 979.9102667950391, 'W_D_1KI': 38.5133962264151, 'J_D_1KI': 29.06671413314347} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_0.0001.json new file mode 100644 index 0000000..c8d8a61 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 78314, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.500975370407104, "TIME_S_1KI": 0.1340880988125636, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1246.381588702202, "W": 89.06, "J_1KI": 15.91518232630439, "W_1KI": 1.1372168450085551, "W_D": 72.72325000000001, "J_D": 1017.7511775273682, "W_D_1KI": 0.9286111040171617, "J_D_1KI": 0.0118575363794106} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_0.0001.output new file mode 100644 index 0000000..e0ea23e --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_0.0001.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.14957594871520996} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 15, ..., 249987, 249991, + 250000]), + col_indices=tensor([ 3249, 11393, 14942, ..., 33826, 38027, 48849]), + values=tensor([0.4435, 0.3887, 0.6766, ..., 0.7020, 0.9117, 0.7998]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.4072, 0.0290, 0.9610, ..., 0.4695, 0.4913, 0.1254]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 0.14957594871520996 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '70198', '-ss', '50000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.41176462173462} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 7, 12, ..., 249984, 249993, + 250000]), + col_indices=tensor([ 257, 837, 13772, ..., 26625, 34572, 42693]), + values=tensor([0.6771, 0.0630, 0.4952, ..., 0.2009, 0.3453, 0.0186]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.1005, 0.4396, 0.3760, ..., 0.8175, 0.2613, 0.1136]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 9.41176462173462 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '78314', '-ss', '50000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.500975370407104} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 13, ..., 249994, 249998, + 250000]), + col_indices=tensor([ 417, 3050, 28352, ..., 48782, 1625, 48386]), + values=tensor([0.9216, 0.4652, 0.6011, ..., 0.6170, 0.6564, 0.4691]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.8482, 0.9835, 0.6846, ..., 0.7970, 0.3559, 0.9710]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.500975370407104 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 13, ..., 249994, 249998, + 250000]), + col_indices=tensor([ 417, 3050, 28352, ..., 48782, 1625, 48386]), + values=tensor([0.9216, 0.4652, 0.6011, ..., 0.6170, 0.6564, 0.4691]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.8482, 0.9835, 0.6846, ..., 0.7970, 0.3559, 0.9710]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.500975370407104 seconds + +[18.34, 17.82, 17.88, 21.83, 18.66, 17.91, 17.8, 17.7, 17.85, 17.95] +[89.06] +13.994852781295776 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 78314, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.500975370407104, 'TIME_S_1KI': 0.1340880988125636, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1246.381588702202, 'W': 89.06} +[18.34, 17.82, 17.88, 21.83, 18.66, 17.91, 17.8, 17.7, 17.85, 17.95, 18.61, 18.02, 17.66, 18.02, 17.94, 17.65, 17.89, 18.0, 17.71, 17.89] +326.735 +16.336750000000002 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 78314, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.500975370407104, 'TIME_S_1KI': 0.1340880988125636, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1246.381588702202, 'W': 89.06, 'J_1KI': 15.91518232630439, 'W_1KI': 1.1372168450085551, 'W_D': 72.72325000000001, 'J_D': 1017.7511775273682, 'W_D_1KI': 0.9286111040171617, 'J_D_1KI': 0.0118575363794106} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_0.001.json new file mode 100644 index 0000000..2dcd593 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 16503, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.453594446182251, "TIME_S_1KI": 0.6334360083731595, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1283.8258463859559, "W": 88.2, "J_1KI": 77.7934827840972, "W_1KI": 5.344482821305218, "W_D": 72.15925, "J_D": 1050.3391179798841, "W_D_1KI": 4.372492880082409, "J_D_1KI": 0.2649513955088414} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_0.001.output new file mode 100644 index 0000000..eb8fa27 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_0.001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.6362464427947998} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 51, 104, ..., 2499889, + 2499946, 2500000]), + col_indices=tensor([ 554, 2346, 3623, ..., 48601, 49342, 49458]), + values=tensor([0.6346, 0.6039, 0.4681, ..., 0.0926, 0.5934, 0.5905]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.3504, 0.0589, 0.7648, ..., 0.3104, 0.5013, 0.0863]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 0.6362464427947998 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '16503', '-ss', '50000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.453594446182251} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 44, 95, ..., 2499888, + 2499946, 2500000]), + col_indices=tensor([ 29, 59, 1099, ..., 49158, 49549, 49729]), + values=tensor([0.6925, 0.1264, 0.7717, ..., 0.9011, 0.2629, 0.2267]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.0922, 0.7073, 0.7429, ..., 0.1285, 0.2485, 0.0697]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 10.453594446182251 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 44, 95, ..., 2499888, + 2499946, 2500000]), + col_indices=tensor([ 29, 59, 1099, ..., 49158, 49549, 49729]), + values=tensor([0.6925, 0.1264, 0.7717, ..., 0.9011, 0.2629, 0.2267]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.0922, 0.7073, 0.7429, ..., 0.1285, 0.2485, 0.0697]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 10.453594446182251 seconds + +[18.19, 17.67, 17.57, 17.63, 17.67, 17.54, 18.18, 18.16, 17.63, 17.67] +[88.2] +14.555848598480225 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 16503, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.453594446182251, 'TIME_S_1KI': 0.6334360083731595, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1283.8258463859559, 'W': 88.2} +[18.19, 17.67, 17.57, 17.63, 17.67, 17.54, 18.18, 18.16, 17.63, 17.67, 18.06, 18.43, 18.51, 17.47, 17.4, 17.92, 17.64, 17.73, 17.72, 17.97] +320.81500000000005 +16.040750000000003 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 16503, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.453594446182251, 'TIME_S_1KI': 0.6334360083731595, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1283.8258463859559, 'W': 88.2, 'J_1KI': 77.7934827840972, 'W_1KI': 5.344482821305218, 'W_D': 72.15925, 'J_D': 1050.3391179798841, 'W_D_1KI': 4.372492880082409, 'J_D_1KI': 0.2649513955088414} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_0.01.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_0.01.json new file mode 100644 index 0000000..aff89af --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.122996807098389, "TIME_S_1KI": 10.122996807098389, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 3257.7272432255745, "W": 53.79, "J_1KI": 3257.7272432255745, "W_1KI": 53.79, "W_D": 37.451750000000004, "J_D": 2268.2206038571003, "W_D_1KI": 37.451750000000004, "J_D_1KI": 37.451750000000004} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_0.01.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_0.01.output new file mode 100644 index 0000000..bbe283a --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_0.01.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.122996807098389} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 509, 1001, ..., 24999037, + 24999516, 25000000]), + col_indices=tensor([ 11, 136, 275, ..., 49665, 49739, 49958]), + values=tensor([0.3161, 0.2173, 0.0956, ..., 0.2198, 0.0588, 0.5951]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.4562, 0.2414, 0.7128, ..., 0.4854, 0.8312, 0.1880]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 10.122996807098389 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 509, 1001, ..., 24999037, + 24999516, 25000000]), + col_indices=tensor([ 11, 136, 275, ..., 49665, 49739, 49958]), + values=tensor([0.3161, 0.2173, 0.0956, ..., 0.2198, 0.0588, 0.5951]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.4562, 0.2414, 0.7128, ..., 0.4854, 0.8312, 0.1880]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 10.122996807098389 seconds + +[18.4, 17.81, 22.08, 19.0, 18.1, 17.63, 17.8, 17.68, 17.76, 17.81] +[53.79] +60.56380820274353 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.122996807098389, 'TIME_S_1KI': 10.122996807098389, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3257.7272432255745, 'W': 53.79} +[18.4, 17.81, 22.08, 19.0, 18.1, 17.63, 17.8, 17.68, 17.76, 17.81, 18.18, 18.11, 17.85, 17.68, 17.63, 17.92, 17.78, 17.67, 18.05, 18.04] +326.765 +16.33825 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.122996807098389, 'TIME_S_1KI': 10.122996807098389, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3257.7272432255745, 'W': 53.79, 'J_1KI': 3257.7272432255745, 'W_1KI': 53.79, 'W_D': 37.451750000000004, 'J_D': 2268.2206038571003, 'W_D_1KI': 37.451750000000004, 'J_D_1KI': 37.451750000000004} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_1e-05.json new file mode 100644 index 0000000..774716c --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 111170, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.608571290969849, "TIME_S_1KI": 0.09542656553899297, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1151.6899712467193, "W": 82.52, "J_1KI": 10.35971909010272, "W_1KI": 0.7422865881083026, "W_D": 66.40424999999999, "J_D": 926.7705861992239, "W_D_1KI": 0.5973216695151569, "J_D_1KI": 0.005373047310561814} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_1e-05.output new file mode 100644 index 0000000..05a9200 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_1e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.11198759078979492} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 3, ..., 24999, 25000, 25000]), + col_indices=tensor([42990, 31865, 45603, ..., 32, 31145, 42502]), + values=tensor([0.2680, 0.8494, 0.1049, ..., 0.3912, 0.0276, 0.1741]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.9789, 0.0522, 0.6759, ..., 0.0240, 0.3185, 0.8367]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 0.11198759078979492 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '93760', '-ss', '50000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 8.855576515197754} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 25000, 25000, 25000]), + col_indices=tensor([ 213, 39463, 2534, ..., 21769, 20293, 48702]), + values=tensor([0.6944, 0.6922, 0.1012, ..., 0.1071, 0.8204, 0.4025]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.8784, 0.5968, 0.0083, ..., 0.0039, 0.6938, 0.6481]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 8.855576515197754 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '111170', '-ss', '50000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.608571290969849} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 24999, 24999, 25000]), + col_indices=tensor([37263, 14810, 49193, ..., 22299, 19031, 40338]), + values=tensor([0.7995, 0.8033, 0.3510, ..., 0.6585, 0.0621, 0.7519]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.9318, 0.0252, 0.9296, ..., 0.2820, 0.1820, 0.1630]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.608571290969849 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 24999, 24999, 25000]), + col_indices=tensor([37263, 14810, 49193, ..., 22299, 19031, 40338]), + values=tensor([0.7995, 0.8033, 0.3510, ..., 0.6585, 0.0621, 0.7519]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.9318, 0.0252, 0.9296, ..., 0.2820, 0.1820, 0.1630]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.608571290969849 seconds + +[18.42, 17.72, 18.1, 17.98, 17.9, 18.19, 17.99, 17.99, 17.89, 17.81] +[82.52] +13.9564950466156 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 111170, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.608571290969849, 'TIME_S_1KI': 0.09542656553899297, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1151.6899712467193, 'W': 82.52} +[18.42, 17.72, 18.1, 17.98, 17.9, 18.19, 17.99, 17.99, 17.89, 17.81, 18.18, 17.91, 17.74, 18.05, 17.74, 17.64, 17.73, 17.76, 17.96, 17.64] +322.315 +16.11575 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 111170, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.608571290969849, 'TIME_S_1KI': 0.09542656553899297, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1151.6899712467193, 'W': 82.52, 'J_1KI': 10.35971909010272, 'W_1KI': 0.7422865881083026, 'W_D': 66.40424999999999, 'J_D': 926.7705861992239, 'W_D_1KI': 0.5973216695151569, 'J_D_1KI': 0.005373047310561814} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_5e-05.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_5e-05.json new file mode 100644 index 0000000..cda8c88 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 87647, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.566825151443481, "TIME_S_1KI": 0.12056117324544459, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1221.4293744707109, "W": 86.61000000000001, "J_1KI": 13.935780739451559, "W_1KI": 0.9881684484352005, "W_D": 70.62725000000002, "J_D": 996.0304559298756, "W_D_1KI": 0.8058148025602704, "J_D_1KI": 0.009193866333819417} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_5e-05.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_5e-05.output new file mode 100644 index 0000000..97cfaa9 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_50000_5e-05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.14960765838623047} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 124995, 124998, + 125000]), + col_indices=tensor([ 5328, 5758, 21245, ..., 40217, 2052, 16010]), + values=tensor([0.8699, 0.1385, 0.5605, ..., 0.3914, 0.4912, 0.7839]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.1699, 0.5973, 0.2081, ..., 0.0281, 0.7559, 0.8178]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 0.14960765838623047 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '70183', '-ss', '50000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 8.40775990486145} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 8, ..., 124997, 124999, + 125000]), + col_indices=tensor([ 5449, 14906, 26173, ..., 30325, 48181, 9186]), + values=tensor([0.5897, 0.0944, 0.5204, ..., 0.1014, 0.9614, 0.5057]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.5323, 0.2435, 0.2265, ..., 0.3258, 0.3469, 0.7874]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 8.40775990486145 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '87647', '-ss', '50000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.566825151443481} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 5, ..., 124995, 124996, + 125000]), + col_indices=tensor([14301, 36836, 2496, ..., 26599, 44389, 45216]), + values=tensor([0.0827, 0.6231, 0.3315, ..., 0.4386, 0.5843, 0.2734]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.3713, 0.0426, 0.5176, ..., 0.5970, 0.6758, 0.3745]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 10.566825151443481 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 5, ..., 124995, 124996, + 125000]), + col_indices=tensor([14301, 36836, 2496, ..., 26599, 44389, 45216]), + values=tensor([0.0827, 0.6231, 0.3315, ..., 0.4386, 0.5843, 0.2734]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.3713, 0.0426, 0.5176, ..., 0.5970, 0.6758, 0.3745]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 10.566825151443481 seconds + +[18.15, 17.58, 18.01, 17.67, 17.78, 17.59, 17.99, 17.46, 17.88, 17.7] +[86.61] +14.102636814117432 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 87647, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.566825151443481, 'TIME_S_1KI': 0.12056117324544459, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1221.4293744707109, 'W': 86.61000000000001} +[18.15, 17.58, 18.01, 17.67, 17.78, 17.59, 17.99, 17.46, 17.88, 17.7, 18.22, 17.6, 17.52, 17.68, 18.1, 17.84, 17.59, 17.63, 17.89, 17.62] +319.655 +15.98275 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 87647, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.566825151443481, 'TIME_S_1KI': 0.12056117324544459, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1221.4293744707109, 'W': 86.61000000000001, 'J_1KI': 13.935780739451559, 'W_1KI': 0.9881684484352005, 'W_D': 70.62725000000002, 'J_D': 996.0304559298756, 'W_D_1KI': 0.8058148025602704, 'J_D_1KI': 0.009193866333819417} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.0001.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.0001.json new file mode 100644 index 0000000..0ba39e0 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 323751, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.660384178161621, "TIME_S_1KI": 0.03292772587007182, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1091.8019851422312, "W": 79.43, "J_1KI": 3.3723509275407064, "W_1KI": 0.24534287152781, "W_D": 62.86500000000001, "J_D": 864.1084199416639, "W_D_1KI": 0.19417700640306904, "J_D_1KI": 0.0005997726845726161} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.0001.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.0001.output new file mode 100644 index 0000000..9a09fc6 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.0001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.04866957664489746} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 2500, 2500, 2500]), + col_indices=tensor([2014, 2333, 4073, ..., 1117, 3505, 2207]), + values=tensor([0.1339, 0.9980, 0.7024, ..., 0.3782, 0.0544, 0.2308]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.2751, 0.2895, 0.5101, ..., 0.3933, 0.2935, 0.0678]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 0.04866957664489746 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '215740', '-ss', '5000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 6.996948957443237} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 2497, 2498, 2500]), + col_indices=tensor([3059, 3492, 4969, ..., 3863, 1265, 1575]), + values=tensor([0.7839, 0.7068, 0.1359, ..., 0.6765, 0.7179, 0.7182]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.2637, 0.1133, 0.2354, ..., 0.5397, 0.9545, 0.7707]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 6.996948957443237 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '323751', '-ss', '5000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.660384178161621} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 2500, 2500, 2500]), + col_indices=tensor([4531, 3967, 1182, ..., 4005, 3234, 3449]), + values=tensor([0.1835, 0.1001, 0.2805, ..., 0.8615, 0.2040, 0.1828]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.2085, 0.7612, 0.9816, ..., 0.7337, 0.6921, 0.5494]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 10.660384178161621 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 2500, 2500, 2500]), + col_indices=tensor([4531, 3967, 1182, ..., 4005, 3234, 3449]), + values=tensor([0.1835, 0.1001, 0.2805, ..., 0.8615, 0.2040, 0.1828]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.2085, 0.7612, 0.9816, ..., 0.7337, 0.6921, 0.5494]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 10.660384178161621 seconds + +[18.46, 17.59, 17.71, 17.79, 18.06, 17.81, 22.16, 18.13, 17.88, 17.67] +[79.43] +13.745461225509644 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 323751, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.660384178161621, 'TIME_S_1KI': 0.03292772587007182, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1091.8019851422312, 'W': 79.43} +[18.46, 17.59, 17.71, 17.79, 18.06, 17.81, 22.16, 18.13, 17.88, 17.67, 18.24, 17.78, 22.87, 17.85, 17.88, 17.75, 18.09, 17.86, 17.93, 17.95] +331.3 +16.565 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 323751, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.660384178161621, 'TIME_S_1KI': 0.03292772587007182, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1091.8019851422312, 'W': 79.43, 'J_1KI': 3.3723509275407064, 'W_1KI': 0.24534287152781, 'W_D': 62.86500000000001, 'J_D': 864.1084199416639, 'W_D_1KI': 0.19417700640306904, 'J_D_1KI': 0.0005997726845726161} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.001.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.001.json new file mode 100644 index 0000000..9b486c5 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 244536, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.47565221786499, "TIME_S_1KI": 0.04283889577757463, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1122.3107054543495, "W": 80.61, "J_1KI": 4.589552071900863, "W_1KI": 0.32964471488860536, "W_D": 64.2855, "J_D": 895.0292129448652, "W_D_1KI": 0.2628876729806654, "J_D_1KI": 0.0010750469173482246} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.001.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.001.output new file mode 100644 index 0000000..a34514c --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.05913829803466797} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 10, ..., 24990, 24996, 25000]), + col_indices=tensor([ 91, 1225, 4183, ..., 1260, 1498, 1816]), + values=tensor([0.4538, 0.5289, 0.0869, ..., 0.3885, 0.0043, 0.2412]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.3917, 0.0968, 0.9015, ..., 0.9180, 0.2586, 0.0822]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 0.05913829803466797 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '177549', '-ss', '5000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 7.6236653327941895} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 10, ..., 24989, 24994, 25000]), + col_indices=tensor([ 412, 1102, 1155, ..., 695, 1250, 1499]), + values=tensor([0.5017, 0.7691, 0.1146, ..., 0.5300, 0.6967, 0.6559]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.7930, 0.9227, 0.2342, ..., 0.4335, 0.3949, 0.6803]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 7.6236653327941895 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '244536', '-ss', '5000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.47565221786499} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 8, ..., 24986, 24994, 25000]), + col_indices=tensor([ 194, 369, 2258, ..., 1755, 2835, 2987]), + values=tensor([0.8194, 0.2005, 0.5023, ..., 0.6221, 0.3751, 0.8448]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.5474, 0.2694, 0.2646, ..., 0.5254, 0.5763, 0.9998]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 10.47565221786499 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 8, ..., 24986, 24994, 25000]), + col_indices=tensor([ 194, 369, 2258, ..., 1755, 2835, 2987]), + values=tensor([0.8194, 0.2005, 0.5023, ..., 0.6221, 0.3751, 0.8448]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.5474, 0.2694, 0.2646, ..., 0.5254, 0.5763, 0.9998]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 10.47565221786499 seconds + +[18.33, 18.0, 17.95, 18.79, 18.11, 18.49, 17.87, 17.96, 17.71, 17.91] +[80.61] +13.922723054885864 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 244536, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.47565221786499, 'TIME_S_1KI': 0.04283889577757463, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1122.3107054543495, 'W': 80.61} +[18.33, 18.0, 17.95, 18.79, 18.11, 18.49, 17.87, 17.96, 17.71, 17.91, 18.2, 17.81, 17.83, 18.46, 18.26, 17.74, 18.1, 18.0, 17.87, 20.64] +326.49 +16.3245 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 244536, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.47565221786499, 'TIME_S_1KI': 0.04283889577757463, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1122.3107054543495, 'W': 80.61, 'J_1KI': 4.589552071900863, 'W_1KI': 0.32964471488860536, 'W_D': 64.2855, 'J_D': 895.0292129448652, 'W_D_1KI': 0.2628876729806654, 'J_D_1KI': 0.0010750469173482246} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.01.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.01.json new file mode 100644 index 0000000..6d5d9d5 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 162920, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.414216756820679, "TIME_S_1KI": 0.06392227324343652, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1267.1163623809814, "W": 89.2, "J_1KI": 7.7775372107843195, "W_1KI": 0.5475079793763811, "W_D": 72.96625, "J_D": 1036.5104178988934, "W_D_1KI": 0.44786551681807024, "J_D_1KI": 0.0027489904052177155} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.01.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.01.output new file mode 100644 index 0000000..548b49c --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.01.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.08090949058532715} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 56, 99, ..., 249898, 249957, + 250000]), + col_indices=tensor([ 27, 423, 607, ..., 4371, 4379, 4963]), + values=tensor([0.2630, 0.0898, 0.5767, ..., 0.9425, 0.5823, 0.3558]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.9446, 0.5109, 0.8342, ..., 0.1182, 0.7217, 0.5335]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 0.08090949058532715 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '129774', '-ss', '5000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 8.36373782157898} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 58, 109, ..., 249903, 249955, + 250000]), + col_indices=tensor([ 168, 371, 372, ..., 4708, 4876, 4879]), + values=tensor([0.3469, 0.2972, 0.5901, ..., 0.0640, 0.2331, 0.9267]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.6978, 0.0250, 0.3323, ..., 0.6356, 0.0847, 0.1678]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 8.36373782157898 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '162920', '-ss', '5000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.414216756820679} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 50, 103, ..., 249909, 249962, + 250000]), + col_indices=tensor([ 86, 107, 119, ..., 4571, 4629, 4973]), + values=tensor([0.3206, 0.5923, 0.4852, ..., 0.3807, 0.1641, 0.9581]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.7369, 0.6267, 0.7979, ..., 0.0231, 0.0899, 0.6643]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 10.414216756820679 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 50, 103, ..., 249909, 249962, + 250000]), + col_indices=tensor([ 86, 107, 119, ..., 4571, 4629, 4973]), + values=tensor([0.3206, 0.5923, 0.4852, ..., 0.3807, 0.1641, 0.9581]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.7369, 0.6267, 0.7979, ..., 0.0231, 0.0899, 0.6643]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 10.414216756820679 seconds + +[18.27, 17.91, 18.14, 17.62, 17.8, 17.9, 19.35, 17.84, 17.83, 17.75] +[89.2] +14.205340385437012 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 162920, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.414216756820679, 'TIME_S_1KI': 0.06392227324343652, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1267.1163623809814, 'W': 89.2} +[18.27, 17.91, 18.14, 17.62, 17.8, 17.9, 19.35, 17.84, 17.83, 17.75, 18.16, 17.99, 17.94, 17.95, 17.67, 17.72, 18.79, 18.01, 18.17, 17.91] +324.675 +16.23375 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 162920, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.414216756820679, 'TIME_S_1KI': 0.06392227324343652, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1267.1163623809814, 'W': 89.2, 'J_1KI': 7.7775372107843195, 'W_1KI': 0.5475079793763811, 'W_D': 72.96625, 'J_D': 1036.5104178988934, 'W_D_1KI': 0.44786551681807024, 'J_D_1KI': 0.0027489904052177155} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.05.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.05.json new file mode 100644 index 0000000..373bd0d --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 44182, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.514305114746094, "TIME_S_1KI": 0.2379771199752409, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1269.0750387310982, "W": 89.25, "J_1KI": 28.723802424767964, "W_1KI": 2.020053415418044, "W_D": 73.10575, "J_D": 1039.51465000242, "W_D_1KI": 1.6546500837445115, "J_D_1KI": 0.03745077370296753} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.05.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.05.output new file mode 100644 index 0000000..f73f661 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 0.25171899795532227} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 257, 510, ..., 1249508, + 1249742, 1250000]), + col_indices=tensor([ 10, 14, 18, ..., 4971, 4976, 4993]), + values=tensor([0.7215, 0.2673, 0.1887, ..., 0.2021, 0.2524, 0.6553]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.6580, 0.5682, 0.5133, ..., 0.8598, 0.8673, 0.3117]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 0.25171899795532227 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '41713', '-ss', '5000', '-sd', '0.05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 9.913089752197266} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 230, 476, ..., 1249535, + 1249754, 1250000]), + col_indices=tensor([ 26, 32, 49, ..., 4901, 4965, 4968]), + values=tensor([0.6798, 0.0159, 0.6379, ..., 0.7230, 0.8415, 0.2703]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.9905, 0.3660, 0.2565, ..., 0.2843, 0.2598, 0.4388]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 9.913089752197266 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '44182', '-ss', '5000', '-sd', '0.05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.514305114746094} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 234, 486, ..., 1249518, + 1249775, 1250000]), + col_indices=tensor([ 2, 39, 64, ..., 4915, 4964, 4987]), + values=tensor([0.0513, 0.5642, 0.6511, ..., 0.0332, 0.5293, 0.6294]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.8655, 0.6659, 0.2976, ..., 0.0599, 0.2467, 0.0329]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 10.514305114746094 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 234, 486, ..., 1249518, + 1249775, 1250000]), + col_indices=tensor([ 2, 39, 64, ..., 4915, 4964, 4987]), + values=tensor([0.0513, 0.5642, 0.6511, ..., 0.0332, 0.5293, 0.6294]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.8655, 0.6659, 0.2976, ..., 0.0599, 0.2467, 0.0329]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 10.514305114746094 seconds + +[18.16, 17.71, 17.62, 17.44, 17.74, 17.67, 17.83, 17.6, 17.55, 17.84] +[89.25] +14.219328165054321 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 44182, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.514305114746094, 'TIME_S_1KI': 0.2379771199752409, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1269.0750387310982, 'W': 89.25} +[18.16, 17.71, 17.62, 17.44, 17.74, 17.67, 17.83, 17.6, 17.55, 17.84, 18.13, 17.61, 17.91, 17.95, 20.68, 17.51, 17.88, 18.51, 17.79, 17.64] +322.885 +16.14425 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 44182, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.514305114746094, 'TIME_S_1KI': 0.2379771199752409, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1269.0750387310982, 'W': 89.25, 'J_1KI': 28.723802424767964, 'W_1KI': 2.020053415418044, 'W_D': 73.10575, 'J_D': 1039.51465000242, 'W_D_1KI': 1.6546500837445115, 'J_D_1KI': 0.03745077370296753} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.1.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.1.json new file mode 100644 index 0000000..6e5c014 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.1.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 19098, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.554213762283325, "TIME_S_1KI": 0.552634504256117, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1299.880751209259, "W": 88.77, "J_1KI": 68.06371092309452, "W_1KI": 4.64813069431354, "W_D": 72.8915, "J_D": 1067.3680046949385, "W_D_1KI": 3.8167085558697242, "J_D_1KI": 0.19984859963712034} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.1.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.1.output new file mode 100644 index 0000000..a64ec1d --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.1.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.1', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 0.5497848987579346} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 487, 1016, ..., 2499032, + 2499521, 2500000]), + col_indices=tensor([ 8, 18, 46, ..., 4955, 4960, 4970]), + values=tensor([0.9231, 0.4693, 0.9835, ..., 0.3329, 0.5539, 0.9296]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.7808, 0.5215, 0.8582, ..., 0.9627, 0.6165, 0.7692]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 0.5497848987579346 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '19098', '-ss', '5000', '-sd', '0.1', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.554213762283325} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 480, 948, ..., 2499011, + 2499537, 2500000]), + col_indices=tensor([ 1, 8, 11, ..., 4950, 4969, 4990]), + values=tensor([0.1158, 0.8497, 0.7920, ..., 0.6315, 0.2224, 0.2676]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.4700, 0.1718, 0.6444, ..., 0.1980, 0.7458, 0.7705]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 10.554213762283325 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 480, 948, ..., 2499011, + 2499537, 2500000]), + col_indices=tensor([ 1, 8, 11, ..., 4950, 4969, 4990]), + values=tensor([0.1158, 0.8497, 0.7920, ..., 0.6315, 0.2224, 0.2676]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.4700, 0.1718, 0.6444, ..., 0.1980, 0.7458, 0.7705]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 10.554213762283325 seconds + +[18.14, 17.83, 17.44, 17.66, 17.78, 17.6, 17.85, 17.79, 17.38, 17.41] +[88.77] +14.643243789672852 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 19098, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.554213762283325, 'TIME_S_1KI': 0.552634504256117, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1299.880751209259, 'W': 88.77} +[18.14, 17.83, 17.44, 17.66, 17.78, 17.6, 17.85, 17.79, 17.38, 17.41, 18.1, 17.72, 17.57, 17.35, 17.6, 17.54, 17.53, 17.37, 18.02, 17.43] +317.57000000000005 +15.878500000000003 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 19098, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.554213762283325, 'TIME_S_1KI': 0.552634504256117, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1299.880751209259, 'W': 88.77, 'J_1KI': 68.06371092309452, 'W_1KI': 4.64813069431354, 'W_D': 72.8915, 'J_D': 1067.3680046949385, 'W_D_1KI': 3.8167085558697242, 'J_D_1KI': 0.19984859963712034} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.2.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.2.json new file mode 100644 index 0000000..ae3e053 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.2.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 9068, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.657127857208252, "TIME_S_1KI": 1.175245683415114, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1354.9685973644257, "W": 87.3, "J_1KI": 149.42309190167904, "W_1KI": 9.62726069695633, "W_D": 71.26675, "J_D": 1106.11922435534, "W_D_1KI": 7.859147551830612, "J_D_1KI": 0.8666902902327539} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.2.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.2.output new file mode 100644 index 0000000..5903d4b --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.2.output @@ -0,0 +1,67 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.2', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 1.157815933227539} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 951, 1952, ..., 4997990, + 4999010, 5000000]), + col_indices=tensor([ 1, 2, 7, ..., 4975, 4984, 4994]), + values=tensor([0.2978, 0.3383, 0.4211, ..., 0.6173, 0.3619, 0.1875]), + size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.3712, 0.9173, 0.1615, ..., 0.0466, 0.6664, 0.8295]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 5000000 +Density: 0.2 +Time: 1.157815933227539 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '9068', '-ss', '5000', '-sd', '0.2', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.657127857208252} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1038, 2022, ..., 4998028, + 4999030, 5000000]), + col_indices=tensor([ 5, 8, 18, ..., 4988, 4996, 4999]), + values=tensor([0.3556, 0.0118, 0.2581, ..., 0.9541, 0.9641, 0.1138]), + size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) +tensor([2.9156e-01, 7.5281e-01, 6.6249e-01, ..., 5.6286e-01, 2.5839e-04, + 4.1914e-01]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 5000000 +Density: 0.2 +Time: 10.657127857208252 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1038, 2022, ..., 4998028, + 4999030, 5000000]), + col_indices=tensor([ 5, 8, 18, ..., 4988, 4996, 4999]), + values=tensor([0.3556, 0.0118, 0.2581, ..., 0.9541, 0.9641, 0.1138]), + size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) +tensor([2.9156e-01, 7.5281e-01, 6.6249e-01, ..., 5.6286e-01, 2.5839e-04, + 4.1914e-01]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 5000000 +Density: 0.2 +Time: 10.657127857208252 seconds + +[18.19, 17.62, 17.78, 17.94, 17.96, 17.76, 17.78, 17.85, 17.63, 17.71] +[87.3] +15.52083158493042 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 9068, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.657127857208252, 'TIME_S_1KI': 1.175245683415114, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1354.9685973644257, 'W': 87.3} +[18.19, 17.62, 17.78, 17.94, 17.96, 17.76, 17.78, 17.85, 17.63, 17.71, 18.05, 17.78, 17.91, 17.54, 18.13, 17.46, 18.2, 17.86, 17.68, 17.62] +320.6650000000001 +16.033250000000002 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 9068, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.657127857208252, 'TIME_S_1KI': 1.175245683415114, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1354.9685973644257, 'W': 87.3, 'J_1KI': 149.42309190167904, 'W_1KI': 9.62726069695633, 'W_D': 71.26675, 'J_D': 1106.11922435534, 'W_D_1KI': 7.859147551830612, 'J_D_1KI': 0.8666902902327539} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.3.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.3.json new file mode 100644 index 0000000..fca72d3 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.3.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 5664, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.680659770965576, "TIME_S_1KI": 1.8857097053258434, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1382.186832485199, "W": 86.06, "J_1KI": 244.0301611026128, "W_1KI": 15.194209039548022, "W_D": 70.05975000000001, "J_D": 1125.2110613200666, "W_D_1KI": 12.369306144067798, "J_D_1KI": 2.1838464237407833} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.3.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.3.output new file mode 100644 index 0000000..e9cfac6 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_0.3.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.3', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 1.8537497520446777} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1463, 2978, ..., 7496989, + 7498439, 7500000]), + col_indices=tensor([ 1, 2, 10, ..., 4991, 4992, 4997]), + values=tensor([0.5985, 0.8707, 0.1470, ..., 0.1515, 0.9789, 0.5190]), + size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) +tensor([0.7595, 0.9851, 0.8459, ..., 0.8698, 0.1337, 0.7899]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 7500000 +Density: 0.3 +Time: 1.8537497520446777 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '5664', '-ss', '5000', '-sd', '0.3', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.680659770965576} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1531, 3042, ..., 7497046, + 7498567, 7500000]), + col_indices=tensor([ 0, 1, 2, ..., 4993, 4996, 4997]), + values=tensor([0.2133, 0.5634, 0.4796, ..., 0.0244, 0.1739, 0.8367]), + size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) +tensor([0.6801, 0.4978, 0.3141, ..., 0.6717, 0.6784, 0.5569]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 7500000 +Density: 0.3 +Time: 10.680659770965576 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1531, 3042, ..., 7497046, + 7498567, 7500000]), + col_indices=tensor([ 0, 1, 2, ..., 4993, 4996, 4997]), + values=tensor([0.2133, 0.5634, 0.4796, ..., 0.0244, 0.1739, 0.8367]), + size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) +tensor([0.6801, 0.4978, 0.3141, ..., 0.6717, 0.6784, 0.5569]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 7500000 +Density: 0.3 +Time: 10.680659770965576 seconds + +[18.09, 17.53, 17.63, 17.45, 17.68, 17.68, 17.63, 17.31, 17.79, 17.45] +[86.06] +16.060734748840332 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 5664, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.680659770965576, 'TIME_S_1KI': 1.8857097053258434, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1382.186832485199, 'W': 86.06} +[18.09, 17.53, 17.63, 17.45, 17.68, 17.68, 17.63, 17.31, 17.79, 17.45, 18.18, 17.48, 18.72, 17.88, 18.28, 17.87, 17.95, 17.58, 17.89, 17.59] +320.00500000000005 +16.00025 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 5664, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.680659770965576, 'TIME_S_1KI': 1.8857097053258434, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1382.186832485199, 'W': 86.06, 'J_1KI': 244.0301611026128, 'W_1KI': 15.194209039548022, 'W_D': 70.05975000000001, 'J_D': 1125.2110613200666, 'W_D_1KI': 12.369306144067798, 'J_D_1KI': 2.1838464237407833} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_1e-05.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_1e-05.json new file mode 100644 index 0000000..5c599da --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 353197, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.226954936981201, "TIME_S_1KI": 0.0289553844935863, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1121.6130926513672, "W": 79.36, "J_1KI": 3.1756019803434548, "W_1KI": 0.22469047019085664, "W_D": 63.1995, "J_D": 893.2130374120474, "W_D_1KI": 0.1789355515477198, "J_D_1KI": 0.0005066168499384757} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_1e-05.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_1e-05.output new file mode 100644 index 0000000..bd4d211 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_1e-05.output @@ -0,0 +1,329 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.04602789878845215} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([ 578, 489, 2035, 2602, 4011, 1806, 4187, 4466, 1701, + 3439, 1855, 2207, 4634, 4913, 4351, 2699, 4950, 1482, + 1630, 4011, 847, 262, 526, 120, 2856, 4636, 1597, + 3213, 516, 2941, 2174, 769, 2517, 499, 1934, 2295, + 4580, 2315, 3877, 4302, 1055, 1440, 1706, 4670, 429, + 2051, 2186, 1313, 1143, 3111, 4634, 2695, 4779, 4363, + 1595, 4655, 1338, 4420, 4067, 1526, 282, 2445, 369, + 1772, 4270, 1668, 3875, 412, 4249, 1643, 914, 856, + 3381, 2292, 4030, 3967, 3653, 1168, 3730, 661, 3997, + 1557, 2874, 4414, 241, 2576, 1853, 4254, 862, 608, + 4068, 2069, 967, 859, 1460, 3895, 2418, 1568, 1236, + 2469, 4377, 1881, 774, 3150, 4962, 4438, 3334, 3370, + 3850, 469, 1930, 1600, 4349, 1435, 2755, 2777, 2752, + 1750, 2319, 2825, 2053, 4982, 3998, 1031, 158, 2744, + 1843, 2266, 4999, 4122, 250, 2042, 4015, 3394, 4312, + 559, 3260, 296, 3827, 4372, 2993, 1918, 3134, 621, + 557, 2314, 3437, 2519, 4868, 4567, 645, 1366, 3758, + 4230, 810, 851, 1555, 4001, 1607, 876, 3143, 3677, + 620, 2976, 4865, 2725, 1890, 514, 1960, 1749, 2271, + 3746, 3959, 4437, 4381, 2386, 2843, 3407, 4429, 2460, + 1759, 3731, 4851, 3169, 994, 1771, 4332, 2376, 2120, + 69, 919, 3516, 57, 1846, 3363, 4747, 3055, 4318, + 1028, 4163, 4665, 4823, 505, 247, 4342, 3354, 2982, + 3367, 3474, 1671, 2141, 1806, 254, 2129, 187, 1832, + 3940, 4918, 419, 4670, 303, 921, 39, 4798, 1396, + 2176, 2156, 2536, 266, 4518, 4967, 4630, 2593, 1182, + 2488, 2445, 979, 1019, 4241, 1675, 1170, 2324, 2271, + 3633, 2309, 4715, 1380, 4338, 2573, 2764]), + values=tensor([0.6984, 0.1478, 0.0323, 0.8260, 0.6827, 0.1000, 0.4915, + 0.6587, 0.0376, 0.3470, 0.7142, 0.7494, 0.0897, 0.2827, + 0.6630, 0.3710, 0.5106, 0.3028, 0.3002, 0.0863, 0.1240, + 0.1798, 0.6305, 0.3002, 0.5649, 0.4551, 0.6642, 0.1708, + 0.5500, 0.6807, 0.3124, 0.4343, 0.1155, 0.5562, 0.7660, + 0.5677, 0.3794, 0.3402, 0.7695, 0.1890, 0.5328, 0.3628, + 0.6604, 0.2382, 0.4320, 0.8974, 0.3878, 0.2382, 0.2066, + 0.8734, 0.7091, 0.8197, 0.8175, 0.2812, 0.4902, 0.1894, + 0.3966, 0.5276, 0.7667, 0.0175, 0.7037, 0.7601, 0.1810, + 0.4741, 0.3863, 0.8670, 0.4845, 0.6586, 0.0648, 0.8124, + 0.7536, 0.0293, 0.5547, 0.4571, 0.0817, 0.7764, 0.3555, + 0.5853, 0.3952, 0.4216, 0.4013, 0.1391, 0.8172, 0.9389, + 0.3613, 0.8906, 0.6121, 0.5615, 0.7545, 0.1340, 0.0792, + 0.8924, 0.1038, 0.5565, 0.0169, 0.8812, 0.4265, 0.0727, + 0.1083, 0.5669, 0.5957, 0.1631, 0.9558, 0.7748, 0.9411, + 0.7256, 0.5800, 0.4846, 0.9970, 0.8586, 0.7723, 0.4078, + 0.6823, 0.7466, 0.9258, 0.1331, 0.3558, 0.7864, 0.4232, + 0.6710, 0.9708, 0.0475, 0.1393, 0.7271, 0.7770, 0.3222, + 0.4988, 0.2948, 0.5044, 0.9371, 0.0161, 0.2536, 0.5990, + 0.3689, 0.2194, 0.9840, 0.0757, 0.2181, 0.9674, 0.1702, + 0.3378, 0.9217, 0.7196, 0.9431, 0.0238, 0.2739, 0.4274, + 0.2266, 0.8166, 0.3636, 0.1711, 0.9816, 0.7731, 0.9314, + 0.1464, 0.5983, 0.5403, 0.2869, 0.9912, 0.8860, 0.2927, + 0.0879, 0.5830, 0.5619, 0.8287, 0.6664, 0.8686, 0.3651, + 0.4784, 0.5559, 0.8167, 0.6136, 0.5106, 0.0184, 0.8321, + 0.7988, 0.2100, 0.3066, 0.2554, 0.2412, 0.6610, 0.3077, + 0.2061, 0.0284, 0.0567, 0.7554, 0.1226, 0.1847, 0.1023, + 0.5889, 0.1845, 0.3455, 0.6453, 0.2221, 0.4719, 0.2134, + 0.3242, 0.6794, 0.0360, 0.6922, 0.2624, 0.4100, 0.5084, + 0.0818, 0.0375, 0.1527, 0.6806, 0.3748, 0.6249, 0.4817, + 0.9505, 0.0887, 0.9942, 0.1910, 0.6323, 0.8143, 0.9940, + 0.2187, 0.9553, 0.7841, 0.3921, 0.6046, 0.0750, 0.3392, + 0.4333, 0.0760, 0.7016, 0.3358, 0.0964, 0.7961, 0.8524, + 0.6531, 0.3470, 0.9589, 0.2215, 0.3106, 0.8796, 0.7441, + 0.0627, 0.6404, 0.0703, 0.8970, 0.3227, 0.0864, 0.1787, + 0.7479, 0.4857, 0.1928, 0.9739, 0.1023]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.6347, 0.6451, 0.4713, ..., 0.2060, 0.2664, 0.4890]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 0.04602789878845215 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '228122', '-ss', '5000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 6.781703472137451} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 249, 249, 250]), + col_indices=tensor([4412, 3431, 2377, 4102, 3105, 469, 2716, 4410, 2733, + 2349, 109, 3862, 716, 2870, 2405, 4409, 3017, 152, + 1291, 2012, 2518, 1601, 808, 1197, 1818, 4054, 1727, + 338, 2366, 2141, 4163, 602, 909, 1404, 3638, 4853, + 4334, 3774, 2454, 2125, 993, 2793, 20, 3340, 493, + 3838, 1420, 1159, 1629, 2170, 2030, 2643, 3042, 750, + 3505, 1065, 53, 1925, 4323, 314, 2351, 3881, 3378, + 516, 4610, 4522, 2030, 1297, 4803, 2768, 1424, 2842, + 4885, 268, 4021, 4648, 2523, 1919, 3169, 805, 738, + 2589, 45, 1444, 1957, 223, 2481, 4394, 386, 2449, + 63, 2942, 4865, 2949, 3856, 1911, 4197, 1693, 1675, + 4639, 4564, 233, 3973, 3759, 1045, 484, 4027, 3720, + 1180, 3869, 701, 796, 3406, 3536, 4421, 2555, 3123, + 2911, 213, 4454, 3508, 1549, 2383, 1068, 4187, 1933, + 1065, 1293, 2519, 2363, 3252, 3060, 1708, 1125, 1222, + 792, 2489, 2625, 4980, 3534, 4557, 2587, 1504, 2523, + 4865, 3799, 697, 2081, 3495, 3792, 447, 3562, 1341, + 4862, 3634, 3761, 4281, 363, 243, 4562, 286, 2825, + 3913, 2972, 2700, 1419, 1430, 3352, 3317, 563, 848, + 2244, 1261, 353, 3757, 649, 2753, 1341, 974, 197, + 2980, 1854, 432, 2396, 3616, 49, 1220, 2936, 3180, + 1438, 2052, 3219, 4512, 4166, 642, 4875, 934, 3770, + 3666, 2272, 4170, 4061, 4308, 2711, 1697, 3362, 1307, + 1394, 3062, 4568, 1642, 2190, 3138, 2, 977, 97, + 4543, 198, 2355, 2473, 2444, 381, 2793, 3795, 82, + 621, 1709, 2950, 2181, 896, 3658, 1597, 3087, 77, + 4639, 116, 1322, 3984, 4640, 1253, 1197, 4103, 4814, + 4947, 1925, 1050, 735, 66, 1794, 677]), + values=tensor([0.8584, 0.2940, 0.8361, 0.6545, 0.0599, 0.3888, 0.5851, + 0.6940, 0.8362, 0.8362, 0.9462, 0.2506, 0.0683, 0.7589, + 0.7588, 0.1215, 0.5075, 0.0715, 0.7309, 0.7006, 0.3393, + 0.6062, 0.5675, 0.0991, 0.6421, 0.8285, 0.2411, 0.6192, + 0.7606, 0.0570, 0.3224, 0.8569, 0.9310, 0.1626, 0.5654, + 0.9357, 0.1546, 0.1781, 0.6544, 0.6109, 0.7147, 0.0506, + 0.5901, 0.5614, 0.8122, 0.3694, 0.6076, 0.1018, 0.7603, + 0.4975, 0.8669, 0.5965, 0.4565, 0.6649, 0.6463, 0.7871, + 0.1496, 0.1997, 0.4029, 0.6148, 0.0954, 0.9115, 0.5070, + 0.1492, 0.5094, 0.8294, 0.3206, 0.4740, 0.8681, 0.4774, + 0.4284, 0.5390, 0.3012, 0.1084, 0.4943, 0.6244, 0.2177, + 0.7785, 0.0851, 0.4084, 0.4411, 0.4278, 0.1858, 0.2899, + 0.9883, 0.8319, 0.3029, 0.9928, 0.0011, 0.8219, 0.6450, + 0.9238, 0.2393, 0.7397, 0.9537, 0.1430, 0.9063, 0.8994, + 0.7356, 0.5662, 0.3795, 0.1296, 0.3682, 0.9644, 0.9991, + 0.3763, 0.9169, 0.8616, 0.9415, 0.2403, 0.4748, 0.5073, + 0.7745, 0.4686, 0.2383, 0.8867, 0.7226, 0.4254, 0.8763, + 0.5133, 0.8457, 0.4420, 0.3749, 0.5921, 0.2344, 0.4320, + 0.7194, 0.0469, 0.9783, 0.0970, 0.8022, 0.9309, 0.8787, + 0.3357, 0.7904, 0.8963, 0.4849, 0.1787, 0.5132, 0.4628, + 0.5414, 0.9554, 0.3271, 0.3169, 0.2442, 0.2757, 0.5089, + 0.3495, 0.4214, 0.3725, 0.8627, 0.8227, 0.6433, 0.8876, + 0.3830, 0.5849, 0.0981, 0.0978, 0.2785, 0.4140, 0.2048, + 0.1636, 0.0621, 0.1099, 0.4695, 0.1663, 0.9375, 0.7340, + 0.9932, 0.1563, 0.6681, 0.4036, 0.6962, 0.7990, 0.9004, + 0.2559, 0.4308, 0.5817, 0.7744, 0.5854, 0.2835, 0.0025, + 0.6549, 0.6423, 0.7235, 0.2989, 0.5604, 0.4228, 0.9786, + 0.9508, 0.7948, 0.6501, 0.6846, 0.8831, 0.1362, 0.6745, + 0.3634, 0.1194, 0.7865, 0.3274, 0.6153, 0.1243, 0.8629, + 0.7042, 0.7027, 0.1577, 0.8610, 0.0174, 0.4922, 0.3920, + 0.9174, 0.0231, 0.0128, 0.8149, 0.0929, 0.1162, 0.7130, + 0.4659, 0.5103, 0.1249, 0.5040, 0.7310, 0.9342, 0.2365, + 0.3416, 0.1041, 0.7717, 0.6249, 0.9648, 0.2441, 0.8921, + 0.8343, 0.6811, 0.2402, 0.4086, 0.3764, 0.9013, 0.2993, + 0.8767, 0.3813, 0.1437, 0.1242, 0.1512, 0.2907, 0.4614, + 0.4486, 0.2404, 0.7355, 0.7961, 0.7130]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.8182, 0.2605, 0.1489, ..., 0.1484, 0.3699, 0.6778]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 6.781703472137451 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '353197', '-ss', '5000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.226954936981201} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([1961, 1566, 179, 628, 4168, 3230, 47, 1058, 848, + 1307, 863, 3163, 497, 3237, 3835, 4225, 1765, 2385, + 2578, 3624, 2513, 1168, 2630, 3631, 1864, 568, 4361, + 4779, 4022, 399, 4958, 2227, 3685, 929, 3248, 4399, + 3742, 2634, 1997, 92, 422, 3204, 3122, 339, 265, + 3708, 478, 2565, 4710, 4857, 937, 3612, 4449, 1275, + 3883, 720, 2924, 2672, 816, 3571, 2100, 2481, 4778, + 4274, 2449, 1483, 3559, 3509, 2069, 4491, 301, 3501, + 3355, 3144, 2461, 4209, 4595, 3120, 42, 339, 2378, + 677, 812, 4696, 2299, 2787, 3449, 4225, 795, 357, + 3876, 3155, 630, 1217, 467, 4920, 2116, 1865, 509, + 2607, 505, 639, 4966, 3789, 4209, 698, 4136, 4750, + 2065, 2749, 4384, 509, 3499, 4937, 4796, 3051, 552, + 774, 3789, 1722, 767, 2957, 1237, 2321, 4698, 2045, + 4243, 3205, 4990, 779, 4074, 4440, 1390, 3840, 4194, + 3980, 3010, 577, 724, 889, 4234, 2698, 2212, 2964, + 4694, 1090, 4209, 4557, 847, 1631, 4530, 2407, 4787, + 789, 927, 3820, 3586, 723, 3734, 3635, 4071, 1476, + 3647, 2541, 4116, 2412, 1162, 883, 651, 4351, 3454, + 4637, 602, 3838, 3759, 4938, 3880, 1311, 3214, 3977, + 4877, 2037, 1676, 3561, 2013, 1782, 2279, 1713, 2273, + 4556, 10, 2998, 564, 2394, 4714, 4432, 152, 1276, + 2893, 1660, 4751, 3614, 3802, 3684, 4922, 4957, 354, + 4042, 3162, 2717, 2866, 4789, 3665, 2555, 3305, 1695, + 647, 3279, 2845, 2963, 2699, 4805, 4132, 3345, 427, + 3911, 132, 4865, 27, 3182, 674, 856, 3414, 836, + 2173, 3550, 3891, 1058, 4695, 4487, 1810, 3555, 3979, + 4408, 2688, 366, 1825, 2362, 2165, 528]), + values=tensor([0.4900, 0.1519, 0.0910, 0.3336, 0.1203, 0.0899, 0.6181, + 0.4862, 0.1318, 0.9250, 0.1441, 0.0670, 0.4525, 0.3839, + 0.8394, 0.7346, 0.5373, 0.5064, 0.9776, 0.6275, 0.4349, + 0.6891, 0.1229, 0.7614, 0.8176, 0.5621, 0.6156, 0.1536, + 0.6722, 0.6064, 0.2625, 0.9808, 0.5748, 0.9150, 0.4568, + 0.6909, 0.1190, 0.8592, 0.4831, 0.2786, 0.9355, 0.9047, + 0.2710, 0.9935, 0.6258, 0.0847, 0.2480, 0.4761, 0.4988, + 0.5869, 0.3880, 0.6275, 0.2775, 0.2227, 0.6139, 0.7839, + 0.7203, 0.4507, 0.9394, 0.2396, 0.5645, 0.0507, 0.3048, + 0.2385, 0.6518, 0.7404, 0.0325, 0.8256, 0.0527, 0.3542, + 0.1592, 0.5500, 0.2905, 0.8845, 0.4741, 0.2973, 0.0174, + 0.5234, 0.2314, 0.9813, 0.0451, 0.4561, 0.7036, 0.8049, + 0.7589, 0.9746, 0.1814, 0.0845, 0.1329, 0.7672, 0.6622, + 0.7941, 0.1831, 0.9526, 0.7283, 0.6676, 0.5133, 0.1222, + 0.9044, 0.9700, 0.2020, 0.9254, 0.3948, 0.8395, 0.6783, + 0.0135, 0.0908, 0.7106, 0.9979, 0.7791, 0.6211, 0.9269, + 0.0715, 0.4671, 0.4465, 0.5092, 0.0890, 0.6377, 0.1978, + 0.5935, 0.9471, 0.6538, 0.5919, 0.8443, 0.4530, 0.0807, + 0.9258, 0.4523, 0.4554, 0.2932, 0.8921, 0.0589, 0.3042, + 0.4416, 0.9399, 0.0639, 0.1672, 0.2592, 0.9334, 0.7784, + 0.2523, 0.4009, 0.3271, 0.4901, 0.0985, 0.6126, 0.3137, + 0.5938, 0.4894, 0.3721, 0.8337, 0.3234, 0.9788, 0.2330, + 0.2625, 0.8031, 0.0536, 0.2237, 0.3051, 0.9123, 0.3222, + 0.8402, 0.3156, 0.2969, 0.2334, 0.9665, 0.7377, 0.6395, + 0.4451, 0.7617, 0.6622, 0.5325, 0.4459, 0.0092, 0.7370, + 0.4452, 0.8857, 0.5499, 0.2713, 0.3315, 0.9736, 0.3753, + 0.9983, 0.8451, 0.4842, 0.0958, 0.3583, 0.1831, 0.1567, + 0.8604, 0.6328, 0.2541, 0.3850, 0.8555, 0.4146, 0.1263, + 0.1834, 0.2208, 0.6295, 0.4250, 0.5900, 0.7980, 0.5475, + 0.9764, 0.2051, 0.6760, 0.3076, 0.0382, 0.6317, 0.2634, + 0.3634, 0.2930, 0.9653, 0.5672, 0.1508, 0.6672, 0.4422, + 0.7693, 0.8897, 0.4264, 0.4859, 0.4197, 0.0661, 0.6678, + 0.0402, 0.8927, 0.4292, 0.2572, 0.1798, 0.3259, 0.6416, + 0.0733, 0.9193, 0.7059, 0.2676, 0.4781, 0.7963, 0.9337, + 0.7706, 0.7962, 0.5827, 0.3612, 0.1219, 0.5026, 0.1788, + 0.6829, 0.9316, 0.0223, 0.3259, 0.0955]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.8734, 0.8080, 0.1055, ..., 0.8475, 0.7666, 0.2333]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 10.226954936981201 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([1961, 1566, 179, 628, 4168, 3230, 47, 1058, 848, + 1307, 863, 3163, 497, 3237, 3835, 4225, 1765, 2385, + 2578, 3624, 2513, 1168, 2630, 3631, 1864, 568, 4361, + 4779, 4022, 399, 4958, 2227, 3685, 929, 3248, 4399, + 3742, 2634, 1997, 92, 422, 3204, 3122, 339, 265, + 3708, 478, 2565, 4710, 4857, 937, 3612, 4449, 1275, + 3883, 720, 2924, 2672, 816, 3571, 2100, 2481, 4778, + 4274, 2449, 1483, 3559, 3509, 2069, 4491, 301, 3501, + 3355, 3144, 2461, 4209, 4595, 3120, 42, 339, 2378, + 677, 812, 4696, 2299, 2787, 3449, 4225, 795, 357, + 3876, 3155, 630, 1217, 467, 4920, 2116, 1865, 509, + 2607, 505, 639, 4966, 3789, 4209, 698, 4136, 4750, + 2065, 2749, 4384, 509, 3499, 4937, 4796, 3051, 552, + 774, 3789, 1722, 767, 2957, 1237, 2321, 4698, 2045, + 4243, 3205, 4990, 779, 4074, 4440, 1390, 3840, 4194, + 3980, 3010, 577, 724, 889, 4234, 2698, 2212, 2964, + 4694, 1090, 4209, 4557, 847, 1631, 4530, 2407, 4787, + 789, 927, 3820, 3586, 723, 3734, 3635, 4071, 1476, + 3647, 2541, 4116, 2412, 1162, 883, 651, 4351, 3454, + 4637, 602, 3838, 3759, 4938, 3880, 1311, 3214, 3977, + 4877, 2037, 1676, 3561, 2013, 1782, 2279, 1713, 2273, + 4556, 10, 2998, 564, 2394, 4714, 4432, 152, 1276, + 2893, 1660, 4751, 3614, 3802, 3684, 4922, 4957, 354, + 4042, 3162, 2717, 2866, 4789, 3665, 2555, 3305, 1695, + 647, 3279, 2845, 2963, 2699, 4805, 4132, 3345, 427, + 3911, 132, 4865, 27, 3182, 674, 856, 3414, 836, + 2173, 3550, 3891, 1058, 4695, 4487, 1810, 3555, 3979, + 4408, 2688, 366, 1825, 2362, 2165, 528]), + values=tensor([0.4900, 0.1519, 0.0910, 0.3336, 0.1203, 0.0899, 0.6181, + 0.4862, 0.1318, 0.9250, 0.1441, 0.0670, 0.4525, 0.3839, + 0.8394, 0.7346, 0.5373, 0.5064, 0.9776, 0.6275, 0.4349, + 0.6891, 0.1229, 0.7614, 0.8176, 0.5621, 0.6156, 0.1536, + 0.6722, 0.6064, 0.2625, 0.9808, 0.5748, 0.9150, 0.4568, + 0.6909, 0.1190, 0.8592, 0.4831, 0.2786, 0.9355, 0.9047, + 0.2710, 0.9935, 0.6258, 0.0847, 0.2480, 0.4761, 0.4988, + 0.5869, 0.3880, 0.6275, 0.2775, 0.2227, 0.6139, 0.7839, + 0.7203, 0.4507, 0.9394, 0.2396, 0.5645, 0.0507, 0.3048, + 0.2385, 0.6518, 0.7404, 0.0325, 0.8256, 0.0527, 0.3542, + 0.1592, 0.5500, 0.2905, 0.8845, 0.4741, 0.2973, 0.0174, + 0.5234, 0.2314, 0.9813, 0.0451, 0.4561, 0.7036, 0.8049, + 0.7589, 0.9746, 0.1814, 0.0845, 0.1329, 0.7672, 0.6622, + 0.7941, 0.1831, 0.9526, 0.7283, 0.6676, 0.5133, 0.1222, + 0.9044, 0.9700, 0.2020, 0.9254, 0.3948, 0.8395, 0.6783, + 0.0135, 0.0908, 0.7106, 0.9979, 0.7791, 0.6211, 0.9269, + 0.0715, 0.4671, 0.4465, 0.5092, 0.0890, 0.6377, 0.1978, + 0.5935, 0.9471, 0.6538, 0.5919, 0.8443, 0.4530, 0.0807, + 0.9258, 0.4523, 0.4554, 0.2932, 0.8921, 0.0589, 0.3042, + 0.4416, 0.9399, 0.0639, 0.1672, 0.2592, 0.9334, 0.7784, + 0.2523, 0.4009, 0.3271, 0.4901, 0.0985, 0.6126, 0.3137, + 0.5938, 0.4894, 0.3721, 0.8337, 0.3234, 0.9788, 0.2330, + 0.2625, 0.8031, 0.0536, 0.2237, 0.3051, 0.9123, 0.3222, + 0.8402, 0.3156, 0.2969, 0.2334, 0.9665, 0.7377, 0.6395, + 0.4451, 0.7617, 0.6622, 0.5325, 0.4459, 0.0092, 0.7370, + 0.4452, 0.8857, 0.5499, 0.2713, 0.3315, 0.9736, 0.3753, + 0.9983, 0.8451, 0.4842, 0.0958, 0.3583, 0.1831, 0.1567, + 0.8604, 0.6328, 0.2541, 0.3850, 0.8555, 0.4146, 0.1263, + 0.1834, 0.2208, 0.6295, 0.4250, 0.5900, 0.7980, 0.5475, + 0.9764, 0.2051, 0.6760, 0.3076, 0.0382, 0.6317, 0.2634, + 0.3634, 0.2930, 0.9653, 0.5672, 0.1508, 0.6672, 0.4422, + 0.7693, 0.8897, 0.4264, 0.4859, 0.4197, 0.0661, 0.6678, + 0.0402, 0.8927, 0.4292, 0.2572, 0.1798, 0.3259, 0.6416, + 0.0733, 0.9193, 0.7059, 0.2676, 0.4781, 0.7963, 0.9337, + 0.7706, 0.7962, 0.5827, 0.3612, 0.1219, 0.5026, 0.1788, + 0.6829, 0.9316, 0.0223, 0.3259, 0.0955]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.8734, 0.8080, 0.1055, ..., 0.8475, 0.7666, 0.2333]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 10.226954936981201 seconds + +[18.35, 17.76, 18.03, 17.72, 17.87, 18.0, 18.15, 17.7, 17.8, 17.85] +[79.36] +14.133229494094849 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 353197, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.226954936981201, 'TIME_S_1KI': 0.0289553844935863, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1121.6130926513672, 'W': 79.36} +[18.35, 17.76, 18.03, 17.72, 17.87, 18.0, 18.15, 17.7, 17.8, 17.85, 18.33, 17.94, 18.05, 17.86, 17.95, 18.18, 18.05, 17.92, 18.13, 17.67] +323.21 +16.1605 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 353197, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.226954936981201, 'TIME_S_1KI': 0.0289553844935863, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1121.6130926513672, 'W': 79.36, 'J_1KI': 3.1756019803434548, 'W_1KI': 0.22469047019085664, 'W_D': 63.1995, 'J_D': 893.2130374120474, 'W_D_1KI': 0.1789355515477198, 'J_D_1KI': 0.0005066168499384757} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_5e-05.json b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_5e-05.json new file mode 100644 index 0000000..4385053 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 355197, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.57451844215393, "TIME_S_1KI": 0.029770855165313703, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1141.788979816437, "W": 79.9, "J_1KI": 3.214523151424243, "W_1KI": 0.2249455935720178, "W_D": 63.777750000000005, "J_D": 911.3983993427754, "W_D_1KI": 0.17955599287156143, "J_D_1KI": 0.000505511006206588} diff --git a/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_5e-05.output b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_5e-05.output new file mode 100644 index 0000000..5fcc662 --- /dev/null +++ b/pytorch/output_synthetic_16core_old/xeon_4216_16_csr_10_10_10_synthetic_5000_5e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.04642629623413086} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 1249, 1249, 1250]), + col_indices=tensor([1959, 1786, 16, ..., 4660, 524, 2490]), + values=tensor([0.5665, 0.4844, 0.2984, ..., 0.5218, 0.3017, 0.5058]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.6773, 0.1820, 0.1692, ..., 0.1637, 0.2279, 0.2140]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 0.04642629623413086 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '226164', '-ss', '5000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 6.685633659362793} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 1250, 1250, 1250]), + col_indices=tensor([4154, 3836, 1179, ..., 2527, 1259, 153]), + values=tensor([0.7262, 0.5127, 0.2351, ..., 0.4025, 0.3877, 0.1384]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.5042, 0.5821, 0.3979, ..., 0.3479, 0.7780, 0.3728]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 6.685633659362793 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '355197', '-ss', '5000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.57451844215393} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1250, 1250, 1250]), + col_indices=tensor([2741, 2960, 2565, ..., 976, 304, 1232]), + values=tensor([0.5180, 0.1270, 0.6648, ..., 0.3095, 0.3853, 0.9447]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.1571, 0.5465, 0.3582, ..., 0.1118, 0.4116, 0.5757]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 10.57451844215393 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1250, 1250, 1250]), + col_indices=tensor([2741, 2960, 2565, ..., 976, 304, 1232]), + values=tensor([0.5180, 0.1270, 0.6648, ..., 0.3095, 0.3853, 0.9447]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.1571, 0.5465, 0.3582, ..., 0.1118, 0.4116, 0.5757]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 10.57451844215393 seconds + +[17.86, 17.95, 18.35, 17.84, 17.76, 17.65, 18.09, 17.61, 17.89, 17.57] +[79.9] +14.2902250289917 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 355197, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.57451844215393, 'TIME_S_1KI': 0.029770855165313703, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1141.788979816437, 'W': 79.9} +[17.86, 17.95, 18.35, 17.84, 17.76, 17.65, 18.09, 17.61, 17.89, 17.57, 18.28, 17.96, 17.74, 18.66, 18.09, 17.53, 17.73, 17.6, 18.05, 18.18] +322.44500000000005 +16.12225 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 355197, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.57451844215393, 'TIME_S_1KI': 0.029770855165313703, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1141.788979816437, 'W': 79.9, 'J_1KI': 3.214523151424243, 'W_1KI': 0.2249455935720178, 'W_D': 63.777750000000005, 'J_D': 911.3983993427754, 'W_D_1KI': 0.17955599287156143, 'J_D_1KI': 0.000505511006206588} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_0.0001.json index 59c1962..1bdafea 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_0.0001.json +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_0.0001.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 23.50609064102173, "TIME_S_1KI": 23.50609064102173, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 609.4492170715331, "W": 22.389903061636694, "J_1KI": 609.4492170715331, "W_1KI": 22.389903061636694, "W_D": 3.917903061636693, "J_D": 106.64463114929183, "W_D_1KI": 3.9179030616366926, "J_D_1KI": 3.9179030616366926} +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 426, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.062527418136597, "TIME_S_1KI": 23.62095638060234, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 310.93658995628357, "W": 22.910177826692795, "J_1KI": 729.8980984889287, "W_1KI": 53.77976015655585, "W_D": 4.4831778266927955, "J_D": 60.845622244596484, "W_D_1KI": 10.52389161195492, "J_D_1KI": 24.70397092008197} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_0.0001.output index 81f61e7..6496241 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_0.0001.output +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_0.0001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 0.0001 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 23.50609064102173} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 100000 -sd 0.0001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 2.4617955684661865} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 6, 16, ..., 999976, - 999990, 1000000]), - col_indices=tensor([35450, 44241, 45004, ..., 57756, 61659, 92730]), - values=tensor([0.6041, 0.1643, 0.4254, ..., 0.8911, 0.3600, 0.5834]), +tensor(crow_indices=tensor([ 0, 14, 23, ..., 999981, + 999993, 1000000]), + col_indices=tensor([ 4955, 8657, 25975, ..., 77712, 83219, 89598]), + values=tensor([0.6839, 0.0631, 0.2295, ..., 0.4308, 0.9509, 0.3745]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.3461, 0.8147, 0.1835, ..., 0.7972, 0.9198, 0.6224]) +tensor([0.8318, 0.0587, 0.7825, ..., 0.4905, 0.7506, 0.0148]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,16 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 23.50609064102173 seconds +Time: 2.4617955684661865 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 426 -ss 100000 -sd 0.0001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.062527418136597} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 6, 16, ..., 999976, - 999990, 1000000]), - col_indices=tensor([35450, 44241, 45004, ..., 57756, 61659, 92730]), - values=tensor([0.6041, 0.1643, 0.4254, ..., 0.8911, 0.3600, 0.5834]), +tensor(crow_indices=tensor([ 0, 9, 16, ..., 999978, + 999987, 1000000]), + col_indices=tensor([ 4266, 12843, 25231, ..., 84479, 87700, 95752]), + values=tensor([0.9986, 0.4680, 0.6719, ..., 0.1198, 0.1607, 0.3222]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.3461, 0.8147, 0.1835, ..., 0.7972, 0.9198, 0.6224]) +tensor([0.1538, 0.6601, 0.2448, ..., 0.8405, 0.0282, 0.7640]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -33,13 +36,30 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 23.50609064102173 seconds +Time: 10.062527418136597 seconds -[20.48, 20.4, 20.48, 20.48, 20.28, 20.4, 20.28, 20.28, 20.4, 20.44] -[20.28, 20.36, 20.36, 21.44, 23.4, 25.2, 26.04, 26.28, 25.2, 24.36, 24.32, 24.36, 24.52, 24.6, 24.68, 24.76, 24.68, 24.48, 24.52, 24.52, 24.48, 24.76, 24.72, 24.72, 24.64, 24.88] -27.219823837280273 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 23.50609064102173, 'TIME_S_1KI': 23.50609064102173, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 609.4492170715331, 'W': 22.389903061636694} -[20.48, 20.4, 20.48, 20.48, 20.28, 20.4, 20.28, 20.28, 20.4, 20.44, 20.6, 20.64, 20.72, 21.0, 20.92, 20.76, 20.68, 20.44, 20.28, 20.48] -369.44000000000005 -18.472 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 23.50609064102173, 'TIME_S_1KI': 23.50609064102173, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 609.4492170715331, 'W': 22.389903061636694, 'J_1KI': 609.4492170715331, 'W_1KI': 22.389903061636694, 'W_D': 3.917903061636693, 'J_D': 106.64463114929183, 'W_D_1KI': 3.9179030616366926, 'J_D_1KI': 3.9179030616366926} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 9, 16, ..., 999978, + 999987, 1000000]), + col_indices=tensor([ 4266, 12843, 25231, ..., 84479, 87700, 95752]), + values=tensor([0.9986, 0.4680, 0.6719, ..., 0.1198, 0.1607, 0.3222]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.1538, 0.6601, 0.2448, ..., 0.8405, 0.0282, 0.7640]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 10.062527418136597 seconds + +[20.6, 20.44, 20.32, 20.4, 20.44, 20.84, 21.0, 20.88, 20.52, 20.4] +[20.4, 20.24, 20.28, 24.24, 25.56, 27.32, 28.24, 28.56, 25.84, 24.76, 24.56, 24.68, 24.68] +13.571985006332397 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 426, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.062527418136597, 'TIME_S_1KI': 23.62095638060234, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 310.93658995628357, 'W': 22.910177826692795} +[20.6, 20.44, 20.32, 20.4, 20.44, 20.84, 21.0, 20.88, 20.52, 20.4, 20.64, 20.56, 20.4, 20.2, 20.36, 20.36, 20.12, 20.2, 20.4, 20.56] +368.53999999999996 +18.427 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 426, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.062527418136597, 'TIME_S_1KI': 23.62095638060234, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 310.93658995628357, 'W': 22.910177826692795, 'J_1KI': 729.8980984889287, 'W_1KI': 53.77976015655585, 'W_D': 4.4831778266927955, 'J_D': 60.845622244596484, 'W_D_1KI': 10.52389161195492, 'J_D_1KI': 24.70397092008197} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_0.001.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_0.001.json index 05631c7..9db277a 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_0.001.json +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_0.001.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 227.44817399978638, "TIME_S_1KI": 227.44817399978638, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 5651.356887254718, "W": 23.406634424755232, "J_1KI": 5651.356887254718, "W_1KI": 23.406634424755232, "W_D": 5.256634424755234, "J_D": 1269.1750817751913, "W_D_1KI": 5.256634424755234, "J_D_1KI": 5.256634424755234} +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 22.583206176757812, "TIME_S_1KI": 225.83206176757812, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 712.6889356327057, "W": 23.468990304831248, "J_1KI": 7126.889356327057, "W_1KI": 234.68990304831246, "W_D": 4.866990304831251, "J_D": 147.7971610636712, "W_D_1KI": 48.66990304831251, "J_D_1KI": 486.6990304831251} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_0.001.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_0.001.output index 4847746..1c6b2fe 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_0.001.output +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_0.001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 0.001 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 227.44817399978638} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 100000 -sd 0.001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 22.583206176757812} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 105, 212, ..., 9999786, - 9999896, 10000000]), - col_indices=tensor([ 310, 1031, 2044, ..., 96924, 97369, 99264]), - values=tensor([0.4389, 0.5701, 0.8338, ..., 0.1266, 0.7107, 0.7989]), +tensor(crow_indices=tensor([ 0, 115, 205, ..., 9999778, + 9999875, 10000000]), + col_indices=tensor([ 1402, 2097, 3965, ..., 98532, 99293, 99429]), + values=tensor([0.3375, 0.2900, 0.6603, ..., 0.1611, 0.9536, 0.6072]), size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.1044, 0.8564, 0.8953, ..., 0.3136, 0.0570, 0.9535]) +tensor([0.8425, 0.9618, 0.5102, ..., 0.7524, 0.4133, 0.9192]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,16 +16,16 @@ Rows: 100000 Size: 10000000000 NNZ: 10000000 Density: 0.001 -Time: 227.44817399978638 seconds +Time: 22.583206176757812 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 105, 212, ..., 9999786, - 9999896, 10000000]), - col_indices=tensor([ 310, 1031, 2044, ..., 96924, 97369, 99264]), - values=tensor([0.4389, 0.5701, 0.8338, ..., 0.1266, 0.7107, 0.7989]), +tensor(crow_indices=tensor([ 0, 115, 205, ..., 9999778, + 9999875, 10000000]), + col_indices=tensor([ 1402, 2097, 3965, ..., 98532, 99293, 99429]), + values=tensor([0.3375, 0.2900, 0.6603, ..., 0.1611, 0.9536, 0.6072]), size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.1044, 0.8564, 0.8953, ..., 0.3136, 0.0570, 0.9535]) +tensor([0.8425, 0.9618, 0.5102, ..., 0.7524, 0.4133, 0.9192]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -33,13 +33,13 @@ Rows: 100000 Size: 10000000000 NNZ: 10000000 Density: 0.001 -Time: 227.44817399978638 seconds +Time: 22.583206176757812 seconds -[20.56, 20.48, 20.48, 20.36, 20.4, 20.32, 20.32, 19.96, 20.0, 20.04] -[20.12, 20.12, 20.4, 21.88, 23.4, 25.08, 27.48, 28.24, 27.96, 27.08, 26.24, 25.68, 24.72, 24.48, 24.4, 24.28, 24.36, 24.4, 24.48, 24.68, 24.72, 24.72, 24.8, 24.88, 24.76, 24.68, 24.64, 24.48, 24.44, 24.28, 24.44, 24.64, 24.76, 24.8, 24.84, 24.72, 24.44, 24.36, 24.32, 24.48, 24.48, 24.6, 24.76, 24.76, 24.68, 24.64, 24.72, 24.64, 24.4, 24.4, 24.68, 24.52, 24.6, 24.56, 24.48, 24.28, 24.32, 24.28, 24.32, 24.52, 24.52, 24.64, 24.76, 24.76, 24.68, 24.68, 24.6, 24.56, 24.72, 24.52, 24.76, 24.76, 24.68, 24.56, 24.48, 24.24, 24.4, 24.6, 24.76, 24.76, 24.8, 24.64, 24.64, 24.56, 24.76, 24.72, 24.8, 24.8, 24.8, 24.8, 24.6, 24.56, 24.44, 24.68, 24.72, 24.72, 24.68, 24.72, 24.68, 24.88, 24.92, 24.84, 24.8, 24.8, 25.0, 25.08, 25.0, 24.92, 24.8, 24.8, 24.6, 24.72, 24.84, 25.0, 25.0, 24.88, 24.96, 24.92, 24.96, 24.92, 24.92, 24.64, 24.56, 24.44, 24.44, 24.36, 24.6, 24.44, 24.52, 24.88, 25.12, 25.12, 25.2, 25.32, 24.96, 24.96, 24.8, 24.56, 24.64, 24.52, 24.44, 24.48, 24.4, 24.28, 24.56, 24.52, 24.48, 24.6, 24.52, 24.6, 24.64, 24.88, 24.8, 24.8, 24.76, 24.76, 24.76, 24.4, 24.28, 24.28, 24.28, 24.32, 24.8, 25.04, 24.92, 24.8, 24.8, 24.56, 24.52, 24.52, 24.48, 24.64, 24.52, 24.64, 24.68, 24.68, 24.72, 24.56, 24.56, 24.96, 24.96, 24.88, 24.72, 24.4, 24.32, 24.36, 24.4, 24.64, 24.92, 24.8, 24.76, 24.72, 24.64, 24.52, 24.8, 24.72, 24.76, 24.76, 24.72, 25.04, 24.96, 24.64, 24.32, 24.16, 24.12, 24.36, 24.44, 24.32, 24.16, 24.04, 24.32, 24.68, 24.56, 24.68, 24.72, 24.28, 24.4, 24.36, 24.36, 24.36, 24.44, 24.44, 24.16, 24.32, 24.44, 24.36, 24.6, 24.68, 24.8, 24.76] -241.44252371788025 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 227.44817399978638, 'TIME_S_1KI': 227.44817399978638, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 5651.356887254718, 'W': 23.406634424755232} -[20.56, 20.48, 20.48, 20.36, 20.4, 20.32, 20.32, 19.96, 20.0, 20.04, 20.08, 20.32, 20.08, 20.0, 19.84, 19.84, 19.92, 20.08, 20.08, 20.36] -363.0 -18.15 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 227.44817399978638, 'TIME_S_1KI': 227.44817399978638, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 5651.356887254718, 'W': 23.406634424755232, 'J_1KI': 5651.356887254718, 'W_1KI': 23.406634424755232, 'W_D': 5.256634424755234, 'J_D': 1269.1750817751913, 'W_D_1KI': 5.256634424755234, 'J_D_1KI': 5.256634424755234} +[20.72, 21.0, 21.0, 21.04, 20.76, 20.44, 20.16, 20.32, 20.24, 20.52] +[20.4, 20.36, 21.96, 22.92, 24.92, 26.56, 28.48, 28.48, 28.88, 28.96, 27.92, 26.48, 25.56, 24.72, 24.64, 24.76, 24.96, 24.76, 24.6, 24.56, 24.6, 24.36, 24.76, 24.88, 24.92, 24.68, 24.6, 24.36, 24.04] +30.367260217666626 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 22.583206176757812, 'TIME_S_1KI': 225.83206176757812, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 712.6889356327057, 'W': 23.468990304831248} +[20.72, 21.0, 21.0, 21.04, 20.76, 20.44, 20.16, 20.32, 20.24, 20.52, 20.24, 20.24, 20.2, 20.4, 20.64, 21.08, 21.24, 21.12, 21.0, 20.84] +372.03999999999996 +18.601999999999997 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 22.583206176757812, 'TIME_S_1KI': 225.83206176757812, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 712.6889356327057, 'W': 23.468990304831248, 'J_1KI': 7126.889356327057, 'W_1KI': 234.68990304831246, 'W_D': 4.866990304831251, 'J_D': 147.7971610636712, 'W_D_1KI': 48.66990304831251, 'J_D_1KI': 486.6990304831251} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_1e-05.json index 4c6f614..21e4694 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_1e-05.json +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_1e-05.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 3195, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.793879747390747, "TIME_S_1KI": 3.3783661181191698, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 338.5230771541595, "W": 23.150052849773353, "J_1KI": 105.95401475873538, "W_1KI": 7.245712942026088, "W_D": 4.780052849773355, "J_D": 69.89868274450302, "W_D_1KI": 1.4961041783328186, "J_D_1KI": 0.46826421857052225} +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 3104, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.44502592086792, "TIME_S_1KI": 3.3650212373930155, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 348.514190454483, "W": 23.934119588627873, "J_1KI": 112.27905620311952, "W_1KI": 7.710734403552794, "W_D": 5.569119588627871, "J_D": 81.09415505290025, "W_D_1KI": 1.794175125202278, "J_D_1KI": 0.578020336727538} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_1e-05.output index a9ff479..9aacb6b 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_1e-05.output +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_1e-05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 1e-05 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 3.2854795455932617} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 100000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.3382716178894043} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 3, ..., 100000, 100000, +tensor(crow_indices=tensor([ 0, 1, 4, ..., 99999, 100000, 100000]), - col_indices=tensor([96494, 10713, 51050, ..., 77096, 58241, 39394]), - values=tensor([0.9472, 0.0468, 0.6571, ..., 0.2815, 0.5696, 0.0055]), + col_indices=tensor([91034, 37166, 45389, ..., 40200, 40353, 102]), + values=tensor([0.2917, 0.4189, 0.5553, ..., 0.7170, 0.1120, 0.1885]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.9254, 0.6847, 0.8457, ..., 0.6275, 0.7476, 0.1010]) +tensor([0.2165, 0.9661, 0.1946, ..., 0.3640, 0.8184, 0.1773]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,19 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 3.2854795455932617 seconds +Time: 0.3382716178894043 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 3195 -ss 100000 -sd 1e-05 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.793879747390747} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 3104 -ss 100000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.44502592086792} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 1, ..., 99997, 100000, +tensor(crow_indices=tensor([ 0, 0, 0, ..., 100000, 100000, 100000]), - col_indices=tensor([41532, 61839, 3968, ..., 19432, 54156, 77664]), - values=tensor([0.2018, 0.3494, 0.0819, ..., 0.4942, 0.5843, 0.6732]), + col_indices=tensor([ 252, 18132, 64781, ..., 90653, 85542, 48452]), + values=tensor([0.2676, 0.4026, 0.9927, ..., 0.1189, 0.3190, 0.1177]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.4618, 0.8259, 0.6206, ..., 0.7480, 0.2960, 0.5870]) +tensor([0.6783, 0.3478, 0.4100, ..., 0.2741, 0.0736, 0.8098]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -36,16 +36,16 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 10.793879747390747 seconds +Time: 10.44502592086792 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 1, ..., 99997, 100000, +tensor(crow_indices=tensor([ 0, 0, 0, ..., 100000, 100000, 100000]), - col_indices=tensor([41532, 61839, 3968, ..., 19432, 54156, 77664]), - values=tensor([0.2018, 0.3494, 0.0819, ..., 0.4942, 0.5843, 0.6732]), + col_indices=tensor([ 252, 18132, 64781, ..., 90653, 85542, 48452]), + values=tensor([0.2676, 0.4026, 0.9927, ..., 0.1189, 0.3190, 0.1177]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.4618, 0.8259, 0.6206, ..., 0.7480, 0.2960, 0.5870]) +tensor([0.6783, 0.3478, 0.4100, ..., 0.2741, 0.0736, 0.8098]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -53,13 +53,13 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 10.793879747390747 seconds +Time: 10.44502592086792 seconds -[20.88, 20.84, 20.52, 20.4, 20.32, 20.2, 20.2, 20.44, 20.48, 20.8] -[20.92, 20.8, 21.0, 22.96, 24.6, 25.56, 26.6, 27.0, 26.4, 25.96, 26.12, 26.12, 25.88, 25.88] -14.62299370765686 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 3195, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.793879747390747, 'TIME_S_1KI': 3.3783661181191698, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 338.5230771541595, 'W': 23.150052849773353} -[20.88, 20.84, 20.52, 20.4, 20.32, 20.2, 20.2, 20.44, 20.48, 20.8, 20.4, 20.4, 20.2, 20.36, 20.52, 20.36, 20.4, 20.36, 20.2, 20.32] -367.4 -18.369999999999997 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 3195, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.793879747390747, 'TIME_S_1KI': 3.3783661181191698, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 338.5230771541595, 'W': 23.150052849773353, 'J_1KI': 105.95401475873538, 'W_1KI': 7.245712942026088, 'W_D': 4.780052849773355, 'J_D': 69.89868274450302, 'W_D_1KI': 1.4961041783328186, 'J_D_1KI': 0.46826421857052225} +[20.36, 20.36, 20.36, 20.36, 20.36, 20.52, 20.6, 20.76, 20.96, 20.92] +[20.92, 20.6, 23.92, 25.4, 27.24, 28.24, 28.24, 29.08, 26.32, 25.76, 25.4, 25.2, 25.44, 25.64] +14.56139588356018 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 3104, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.44502592086792, 'TIME_S_1KI': 3.3650212373930155, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 348.514190454483, 'W': 23.934119588627873} +[20.36, 20.36, 20.36, 20.36, 20.36, 20.52, 20.6, 20.76, 20.96, 20.92, 20.24, 20.2, 20.48, 20.2, 20.2, 20.2, 20.12, 20.28, 20.28, 20.6] +367.30000000000007 +18.365000000000002 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 3104, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.44502592086792, 'TIME_S_1KI': 3.3650212373930155, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 348.514190454483, 'W': 23.934119588627873, 'J_1KI': 112.27905620311952, 'W_1KI': 7.710734403552794, 'W_D': 5.569119588627871, 'J_D': 81.09415505290025, 'W_D_1KI': 1.794175125202278, 'J_D_1KI': 0.578020336727538} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_5e-05.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_5e-05.json new file mode 100644 index 0000000..9e7c05a --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 868, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 11.049697399139404, "TIME_S_1KI": 12.730066128040788, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 347.2841278934479, "W": 23.818433138573972, "J_1KI": 400.0969215362303, "W_1KI": 27.44059117347232, "W_D": 5.198433138573975, "J_D": 75.79563728809362, "W_D_1KI": 5.988978270246515, "J_D_1KI": 6.899744550975249} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_5e-05.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_5e-05.output new file mode 100644 index 0000000..5c6adba --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_5e-05.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 100000 -sd 5e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 1.209580421447754} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 11, ..., 499991, 499997, + 500000]), + col_indices=tensor([ 8709, 33303, 39829, ..., 65447, 85964, 93697]), + values=tensor([0.2765, 0.3303, 0.4846, ..., 0.1571, 0.7749, 0.0327]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.2847, 0.7446, 0.1507, ..., 0.7274, 0.5755, 0.0187]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 1.209580421447754 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 868 -ss 100000 -sd 5e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 11.049697399139404} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 19, ..., 499985, 499993, + 500000]), + col_indices=tensor([ 930, 5720, 18229, ..., 18263, 29630, 53753]), + values=tensor([0.0983, 0.1468, 0.4729, ..., 0.5988, 0.3077, 0.5585]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.4408, 0.1732, 0.5273, ..., 0.8772, 0.6136, 0.9894]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 11.049697399139404 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 19, ..., 499985, 499993, + 500000]), + col_indices=tensor([ 930, 5720, 18229, ..., 18263, 29630, 53753]), + values=tensor([0.0983, 0.1468, 0.4729, ..., 0.5988, 0.3077, 0.5585]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.4408, 0.1732, 0.5273, ..., 0.8772, 0.6136, 0.9894]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 11.049697399139404 seconds + +[20.76, 20.76, 20.64, 20.6, 20.48, 20.24, 20.32, 20.36, 20.4, 20.64] +[20.8, 20.68, 23.8, 24.88, 26.88, 27.84, 27.84, 28.76, 26.08, 26.28, 25.56, 25.36, 25.48, 25.4] +14.580477476119995 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 868, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 11.049697399139404, 'TIME_S_1KI': 12.730066128040788, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 347.2841278934479, 'W': 23.818433138573972} +[20.76, 20.76, 20.64, 20.6, 20.48, 20.24, 20.32, 20.36, 20.4, 20.64, 20.68, 20.8, 20.6, 20.6, 20.92, 21.0, 21.0, 21.08, 21.04, 21.04] +372.4 +18.619999999999997 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 868, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 11.049697399139404, 'TIME_S_1KI': 12.730066128040788, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 347.2841278934479, 'W': 23.818433138573972, 'J_1KI': 400.0969215362303, 'W_1KI': 27.44059117347232, 'W_D': 5.198433138573975, 'J_D': 75.79563728809362, 'W_D_1KI': 5.988978270246515, 'J_D_1KI': 6.899744550975249} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.0001.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.0001.json index 8de09b8..669cf9a 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.0001.json +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.0001.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 32341, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.187894582748413, "TIME_S_1KI": 0.3150148289399961, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 322.80105960845947, "W": 22.074332714462717, "J_1KI": 9.981171256561623, "W_1KI": 0.6825494794367124, "W_D": 3.644332714462717, "J_D": 53.29241327524185, "W_D_1KI": 0.11268460203650836, "J_D_1KI": 0.0034842646187968327} +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 32669, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 11.073116302490234, "TIME_S_1KI": 0.33894873741131454, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 342.2707403564453, "W": 23.410284009847928, "J_1KI": 10.476927373242074, "W_1KI": 0.7165901622286549, "W_D": 4.943284009847925, "J_D": 72.2734280853271, "W_D_1KI": 0.15131421255159097, "J_D_1KI": 0.004631736892821665} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.0001.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.0001.output index a571cff..4a81d8b 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.0001.output +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.0001.output @@ -1,13 +1,13 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.0001 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.3246574401855469} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 0.0001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.03962588310241699} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 4, ..., 9996, 9998, 10000]), - col_indices=tensor([ 702, 590, 2393, ..., 5106, 4251, 5881]), - values=tensor([0.8131, 0.4443, 0.5032, ..., 0.0454, 0.7892, 0.7021]), +tensor(crow_indices=tensor([ 0, 1, 1, ..., 9995, 9999, 10000]), + col_indices=tensor([5736, 4740, 5169, ..., 5050, 7314, 6933]), + values=tensor([0.2904, 0.9920, 0.0901, ..., 0.6475, 0.2992, 0.6153]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.5617, 0.3540, 0.6665, ..., 0.2887, 0.4752, 0.2274]) +tensor([0.6798, 0.4263, 0.2506, ..., 0.2181, 0.0906, 0.7562]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -15,18 +15,18 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 0.3246574401855469 seconds +Time: 0.03962588310241699 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 32341 -ss 10000 -sd 0.0001 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.187894582748413} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 26497 -ss 10000 -sd 0.0001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 8.51607346534729} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 9996, 9998, 10000]), - col_indices=tensor([5513, 4819, 4488, ..., 7223, 1569, 1749]), - values=tensor([0.7502, 0.9864, 0.0219, ..., 0.7577, 0.3030, 0.6500]), +tensor(crow_indices=tensor([ 0, 0, 1, ..., 9996, 9998, 10000]), + col_indices=tensor([5374, 4189, 5897, ..., 9913, 4567, 8496]), + values=tensor([0.8167, 0.6460, 0.7856, ..., 0.9381, 0.0308, 0.1187]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.4735, 0.0629, 0.6403, ..., 0.2218, 0.6036, 0.6062]) +tensor([0.9083, 0.0911, 0.6427, ..., 0.4641, 0.3576, 0.6926]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -34,15 +34,18 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 10.187894582748413 seconds +Time: 8.51607346534729 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 32669 -ss 10000 -sd 0.0001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 11.073116302490234} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 9996, 9998, 10000]), - col_indices=tensor([5513, 4819, 4488, ..., 7223, 1569, 1749]), - values=tensor([0.7502, 0.9864, 0.0219, ..., 0.7577, 0.3030, 0.6500]), +tensor(crow_indices=tensor([ 0, 1, 5, ..., 9999, 10000, 10000]), + col_indices=tensor([2638, 262, 675, ..., 9893, 8606, 4272]), + values=tensor([0.0918, 0.5777, 0.8540, ..., 0.4523, 0.7955, 0.7135]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.4735, 0.0629, 0.6403, ..., 0.2218, 0.6036, 0.6062]) +tensor([0.1165, 0.4058, 0.2834, ..., 0.7342, 0.6568, 0.2677]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -50,13 +53,29 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 10.187894582748413 seconds +Time: 11.073116302490234 seconds -[20.16, 20.36, 20.44, 20.64, 20.64, 20.64, 20.68, 20.0, 19.96, 20.04] -[20.04, 20.36, 20.64, 22.2, 24.32, 25.36, 25.96, 26.0, 25.44, 24.12, 24.0, 23.8, 23.8, 23.84] -14.623366594314575 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 32341, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.187894582748413, 'TIME_S_1KI': 0.3150148289399961, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 322.80105960845947, 'W': 22.074332714462717} -[20.16, 20.36, 20.44, 20.64, 20.64, 20.64, 20.68, 20.0, 19.96, 20.04, 19.96, 20.28, 20.36, 20.44, 20.48, 20.48, 20.72, 20.76, 20.96, 21.36] -368.6 -18.43 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 32341, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.187894582748413, 'TIME_S_1KI': 0.3150148289399961, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 322.80105960845947, 'W': 22.074332714462717, 'J_1KI': 9.981171256561623, 'W_1KI': 0.6825494794367124, 'W_D': 3.644332714462717, 'J_D': 53.29241327524185, 'W_D_1KI': 0.11268460203650836, 'J_D_1KI': 0.0034842646187968327} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 5, ..., 9999, 10000, 10000]), + col_indices=tensor([2638, 262, 675, ..., 9893, 8606, 4272]), + values=tensor([0.0918, 0.5777, 0.8540, ..., 0.4523, 0.7955, 0.7135]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.1165, 0.4058, 0.2834, ..., 0.7342, 0.6568, 0.2677]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 11.073116302490234 seconds + +[20.76, 20.6, 20.6, 20.6, 20.44, 20.48, 20.48, 20.48, 20.48, 20.64] +[20.44, 20.4, 23.56, 25.72, 27.84, 28.36, 29.08, 29.08, 26.36, 24.68, 23.72, 23.68, 23.44, 23.32] +14.620529174804688 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 32669, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 11.073116302490234, 'TIME_S_1KI': 0.33894873741131454, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 342.2707403564453, 'W': 23.410284009847928} +[20.76, 20.6, 20.6, 20.6, 20.44, 20.48, 20.48, 20.48, 20.48, 20.64, 20.6, 20.88, 20.92, 20.76, 20.64, 20.48, 20.16, 20.16, 20.08, 20.2] +369.34000000000003 +18.467000000000002 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 32669, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 11.073116302490234, 'TIME_S_1KI': 0.33894873741131454, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 342.2707403564453, 'W': 23.410284009847928, 'J_1KI': 10.476927373242074, 'W_1KI': 0.7165901622286549, 'W_D': 4.943284009847925, 'J_D': 72.2734280853271, 'W_D_1KI': 0.15131421255159097, 'J_D_1KI': 0.004631736892821665} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.001.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.001.json index f0f5b59..3604623 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.001.json +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.001.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 4681, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.577015399932861, "TIME_S_1KI": 2.2595632129743346, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 334.1403603744507, "W": 22.94669291080223, "J_1KI": 71.38226028080554, "W_1KI": 4.902092055287809, "W_D": 4.40869291080223, "J_D": 64.19758366584783, "W_D_1KI": 0.9418271546255567, "J_D_1KI": 0.20120212660234066} +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 4348, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.135539293289185, "TIME_S_1KI": 2.3310807942247433, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 299.55518106460573, "W": 22.140804095253714, "J_1KI": 68.89493584742543, "W_1KI": 5.092181254658168, "W_D": 3.514804095253716, "J_D": 47.55372806835178, "W_D_1KI": 0.8083726070040745, "J_D_1KI": 0.1859182628804219} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.001.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.001.output index 7485b00..4918d44 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.001.output +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.001 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 2.242969274520874} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 0.001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.2414851188659668} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 10, 21, ..., 99980, 99990, +tensor(crow_indices=tensor([ 0, 9, 19, ..., 99982, 99991, 100000]), - col_indices=tensor([ 158, 243, 1021, ..., 9060, 9386, 9562]), - values=tensor([0.4026, 0.0672, 0.1618, ..., 0.9478, 0.4676, 0.6061]), + col_indices=tensor([ 302, 1349, 1385, ..., 9083, 9115, 9373]), + values=tensor([0.3908, 0.9700, 0.7778, ..., 0.9299, 0.7856, 0.5693]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.1276, 0.9367, 0.3121, ..., 0.3681, 0.2222, 0.5819]) +tensor([0.9198, 0.1049, 0.3911, ..., 0.9152, 0.2471, 0.8814]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,19 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 2.242969274520874 seconds +Time: 0.2414851188659668 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 4681 -ss 10000 -sd 0.001 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.577015399932861} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 4348 -ss 10000 -sd 0.001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.135539293289185} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 13, 23, ..., 99978, 99989, +tensor(crow_indices=tensor([ 0, 11, 23, ..., 99987, 99990, 100000]), - col_indices=tensor([1463, 2229, 2458, ..., 6913, 8671, 9837]), - values=tensor([0.1583, 0.2191, 0.0082, ..., 0.3537, 0.5043, 0.1355]), + col_indices=tensor([ 62, 627, 2703, ..., 9273, 9381, 9947]), + values=tensor([0.4329, 0.2872, 0.8964, ..., 0.9783, 0.1219, 0.9101]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.7982, 0.2389, 0.8535, ..., 0.4532, 0.2540, 0.6422]) +tensor([0.8278, 0.7584, 0.9132, ..., 0.6086, 0.4680, 0.0616]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -36,16 +36,16 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 10.577015399932861 seconds +Time: 10.135539293289185 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 13, 23, ..., 99978, 99989, +tensor(crow_indices=tensor([ 0, 11, 23, ..., 99987, 99990, 100000]), - col_indices=tensor([1463, 2229, 2458, ..., 6913, 8671, 9837]), - values=tensor([0.1583, 0.2191, 0.0082, ..., 0.3537, 0.5043, 0.1355]), + col_indices=tensor([ 62, 627, 2703, ..., 9273, 9381, 9947]), + values=tensor([0.4329, 0.2872, 0.8964, ..., 0.9783, 0.1219, 0.9101]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.7982, 0.2389, 0.8535, ..., 0.4532, 0.2540, 0.6422]) +tensor([0.8278, 0.7584, 0.9132, ..., 0.6086, 0.4680, 0.0616]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -53,13 +53,13 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 10.577015399932861 seconds +Time: 10.135539293289185 seconds -[20.84, 20.96, 20.84, 20.76, 20.88, 20.8, 20.72, 20.8, 20.8, 20.72] -[20.72, 21.0, 21.04, 25.64, 26.56, 27.96, 28.44, 25.92, 25.0, 24.0, 23.88, 24.12, 24.36, 24.36] -14.561591148376465 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4681, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.577015399932861, 'TIME_S_1KI': 2.2595632129743346, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 334.1403603744507, 'W': 22.94669291080223} -[20.84, 20.96, 20.84, 20.76, 20.88, 20.8, 20.72, 20.8, 20.8, 20.72, 20.52, 20.24, 20.24, 20.2, 20.44, 20.16, 20.56, 20.64, 20.52, 20.32] -370.76 -18.538 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4681, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.577015399932861, 'TIME_S_1KI': 2.2595632129743346, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 334.1403603744507, 'W': 22.94669291080223, 'J_1KI': 71.38226028080554, 'W_1KI': 4.902092055287809, 'W_D': 4.40869291080223, 'J_D': 64.19758366584783, 'W_D_1KI': 0.9418271546255567, 'J_D_1KI': 0.20120212660234066} +[20.76, 20.76, 21.0, 21.0, 20.84, 20.76, 20.68, 20.44, 20.6, 20.72] +[20.88, 20.96, 21.56, 22.88, 24.32, 25.12, 25.84, 25.2, 25.2, 24.92, 24.16, 24.04, 24.2] +13.529552936553955 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4348, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.135539293289185, 'TIME_S_1KI': 2.3310807942247433, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 299.55518106460573, 'W': 22.140804095253714} +[20.76, 20.76, 21.0, 21.0, 20.84, 20.76, 20.68, 20.44, 20.6, 20.72, 20.52, 20.44, 20.36, 20.68, 20.84, 20.96, 20.92, 20.68, 20.36, 20.4] +372.52 +18.625999999999998 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4348, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.135539293289185, 'TIME_S_1KI': 2.3310807942247433, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 299.55518106460573, 'W': 22.140804095253714, 'J_1KI': 68.89493584742543, 'W_1KI': 5.092181254658168, 'W_D': 3.514804095253716, 'J_D': 47.55372806835178, 'W_D_1KI': 0.8083726070040745, 'J_D_1KI': 0.1859182628804219} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.01.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.01.json index 7587c79..1a09527 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.01.json +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.01.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 21.648348808288574, "TIME_S_1KI": 21.648348808288574, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 597.1462204551697, "W": 23.932854010192194, "J_1KI": 597.1462204551697, "W_1KI": 23.932854010192194, "W_D": 5.369854010192196, "J_D": 133.98268443942072, "W_D_1KI": 5.369854010192196, "J_D_1KI": 5.369854010192196} +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 493, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.442772150039673, "TIME_S_1KI": 21.18209361062814, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 317.52540328025816, "W": 21.825092476629965, "J_1KI": 644.0677551323695, "W_1KI": 44.26996445563888, "W_D": 3.2900924766299617, "J_D": 47.86636948227874, "W_D_1KI": 6.673615571257529, "J_D_1KI": 13.536745580644075} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.01.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.01.output index ed3ac8e..449d7aa 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.01.output +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.01.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.01 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 21.648348808288574} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 0.01 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 2.1293396949768066} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 93, 181, ..., 999807, - 999904, 1000000]), - col_indices=tensor([ 20, 39, 173, ..., 9424, 9617, 9690]), - values=tensor([0.7771, 0.0078, 0.5851, ..., 0.0250, 0.0076, 0.8688]), +tensor(crow_indices=tensor([ 0, 94, 210, ..., 999806, + 999898, 1000000]), + col_indices=tensor([ 197, 225, 349, ..., 9664, 9718, 9909]), + values=tensor([0.2825, 0.4405, 0.0615, ..., 0.4764, 0.3721, 0.7741]), size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.6163, 0.0977, 0.8617, ..., 0.7477, 0.6432, 0.7227]) +tensor([0.2003, 0.0291, 0.9415, ..., 0.2751, 0.8368, 0.8186]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,16 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 1000000 Density: 0.01 -Time: 21.648348808288574 seconds +Time: 2.1293396949768066 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 493 -ss 10000 -sd 0.01 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.442772150039673} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 93, 181, ..., 999807, - 999904, 1000000]), - col_indices=tensor([ 20, 39, 173, ..., 9424, 9617, 9690]), - values=tensor([0.7771, 0.0078, 0.5851, ..., 0.0250, 0.0076, 0.8688]), +tensor(crow_indices=tensor([ 0, 103, 211, ..., 999799, + 999895, 1000000]), + col_indices=tensor([ 29, 259, 296, ..., 9649, 9833, 9895]), + values=tensor([0.6562, 0.6337, 0.8410, ..., 0.1779, 0.9179, 0.3279]), size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.6163, 0.0977, 0.8617, ..., 0.7477, 0.6432, 0.7227]) +tensor([0.2837, 0.1453, 0.4499, ..., 0.4322, 0.7993, 0.4344]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -33,13 +36,30 @@ Rows: 10000 Size: 100000000 NNZ: 1000000 Density: 0.01 -Time: 21.648348808288574 seconds +Time: 10.442772150039673 seconds -[20.48, 20.52, 20.6, 20.6, 20.6, 20.72, 20.48, 20.56, 20.64, 20.72] -[20.72, 21.08, 23.92, 25.96, 27.92, 28.72, 29.32, 26.52, 26.52, 25.36, 24.24, 24.4, 24.24, 24.44, 24.16, 24.12, 24.16, 24.12, 24.16, 24.2, 24.32, 24.36, 24.68, 24.72] -24.95089888572693 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 21.648348808288574, 'TIME_S_1KI': 21.648348808288574, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 597.1462204551697, 'W': 23.932854010192194} -[20.48, 20.52, 20.6, 20.6, 20.6, 20.72, 20.48, 20.56, 20.64, 20.72, 20.68, 20.72, 20.52, 20.52, 20.64, 20.76, 20.64, 20.8, 20.68, 20.64] -371.26 -18.563 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 21.648348808288574, 'TIME_S_1KI': 21.648348808288574, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 597.1462204551697, 'W': 23.932854010192194, 'J_1KI': 597.1462204551697, 'W_1KI': 23.932854010192194, 'W_D': 5.369854010192196, 'J_D': 133.98268443942072, 'W_D_1KI': 5.369854010192196, 'J_D_1KI': 5.369854010192196} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 103, 211, ..., 999799, + 999895, 1000000]), + col_indices=tensor([ 29, 259, 296, ..., 9649, 9833, 9895]), + values=tensor([0.6562, 0.6337, 0.8410, ..., 0.1779, 0.9179, 0.3279]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.2837, 0.1453, 0.4499, ..., 0.4322, 0.7993, 0.4344]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.442772150039673 seconds + +[20.48, 20.72, 20.88, 20.72, 20.92, 20.68, 20.44, 20.48, 20.4, 20.4] +[20.48, 20.48, 20.76, 21.64, 23.08, 24.24, 25.0, 25.48, 24.92, 24.24, 24.2, 24.12, 24.0, 23.96] +14.54863953590393 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 493, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.442772150039673, 'TIME_S_1KI': 21.18209361062814, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 317.52540328025816, 'W': 21.825092476629965} +[20.48, 20.72, 20.88, 20.72, 20.92, 20.68, 20.44, 20.48, 20.4, 20.4, 20.6, 20.6, 20.36, 20.32, 20.48, 20.48, 20.64, 20.64, 20.8, 20.8] +370.70000000000005 +18.535000000000004 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 493, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.442772150039673, 'TIME_S_1KI': 21.18209361062814, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 317.52540328025816, 'W': 21.825092476629965, 'J_1KI': 644.0677551323695, 'W_1KI': 44.26996445563888, 'W_D': 3.2900924766299617, 'J_D': 47.86636948227874, 'W_D_1KI': 6.673615571257529, 'J_D_1KI': 13.536745580644075} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.05.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.05.json index e29f054..ad31b62 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.05.json +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.05.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 106.87029075622559, "TIME_S_1KI": 106.87029075622559, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2633.659623832703, "W": 23.232350154828893, "J_1KI": 2633.659623832703, "W_1KI": 23.232350154828893, "W_D": 4.519350154828892, "J_D": 512.3213944957257, "W_D_1KI": 4.519350154828892, "J_D_1KI": 4.519350154828892} +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.699479103088379, "TIME_S_1KI": 106.99479103088379, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 372.40043621063234, "W": 23.7347384855202, "J_1KI": 3724.0043621063232, "W_1KI": 237.34738485520202, "W_D": 5.215738485520202, "J_D": 81.83546190547948, "W_D_1KI": 52.15738485520202, "J_D_1KI": 521.5738485520202} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.05.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.05.output index 5edda98..f0aea1a 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.05.output +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.05 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 106.87029075622559} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 0.05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.699479103088379} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 497, 970, ..., 4998958, - 4999495, 5000000]), - col_indices=tensor([ 3, 19, 30, ..., 9933, 9939, 9986]), - values=tensor([0.6521, 0.8632, 0.3100, ..., 0.6388, 0.4505, 0.0265]), +tensor(crow_indices=tensor([ 0, 534, 1091, ..., 4998975, + 4999490, 5000000]), + col_indices=tensor([ 4, 42, 44, ..., 9941, 9942, 9945]), + values=tensor([0.3387, 0.3479, 0.7697, ..., 0.0992, 0.1573, 0.7910]), size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.1776, 0.4739, 0.9893, ..., 0.4929, 0.9525, 0.7109]) +tensor([0.0536, 0.4974, 0.9494, ..., 0.5617, 0.8582, 0.7161]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,16 +16,16 @@ Rows: 10000 Size: 100000000 NNZ: 5000000 Density: 0.05 -Time: 106.87029075622559 seconds +Time: 10.699479103088379 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 497, 970, ..., 4998958, - 4999495, 5000000]), - col_indices=tensor([ 3, 19, 30, ..., 9933, 9939, 9986]), - values=tensor([0.6521, 0.8632, 0.3100, ..., 0.6388, 0.4505, 0.0265]), +tensor(crow_indices=tensor([ 0, 534, 1091, ..., 4998975, + 4999490, 5000000]), + col_indices=tensor([ 4, 42, 44, ..., 9941, 9942, 9945]), + values=tensor([0.3387, 0.3479, 0.7697, ..., 0.0992, 0.1573, 0.7910]), size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.1776, 0.4739, 0.9893, ..., 0.4929, 0.9525, 0.7109]) +tensor([0.0536, 0.4974, 0.9494, ..., 0.5617, 0.8582, 0.7161]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -33,13 +33,13 @@ Rows: 10000 Size: 100000000 NNZ: 5000000 Density: 0.05 -Time: 106.87029075622559 seconds +Time: 10.699479103088379 seconds -[20.76, 20.72, 20.52, 20.48, 20.68, 20.6, 20.6, 20.56, 20.68, 20.6] -[20.64, 20.72, 20.72, 24.72, 25.96, 28.32, 29.48, 30.12, 26.68, 25.6, 25.08, 24.6, 24.6, 24.6, 24.8, 24.8, 24.88, 24.92, 24.84, 24.8, 24.72, 24.52, 24.52, 24.52, 24.6, 24.56, 24.4, 24.48, 24.32, 24.16, 24.28, 24.36, 24.48, 24.64, 24.68, 24.64, 24.4, 24.68, 24.72, 24.72, 24.56, 24.64, 24.48, 24.32, 24.12, 24.12, 24.2, 24.52, 24.4, 24.56, 24.68, 24.48, 24.28, 24.24, 24.2, 24.04, 23.92, 24.04, 24.28, 24.12, 24.28, 24.36, 24.28, 24.44, 24.52, 24.6, 24.72, 24.72, 24.88, 24.84, 24.72, 24.44, 24.16, 24.2, 24.0, 24.2, 24.44, 24.32, 24.2, 24.2, 24.16, 24.12, 24.24, 24.2, 24.12, 24.16, 24.2, 24.16, 24.4, 24.4, 24.36, 24.2, 24.28, 24.52, 24.12, 24.36, 24.64, 24.6, 24.6, 24.52, 24.48, 24.2, 24.4, 24.4, 24.4, 24.52, 24.4, 24.16] -113.36173939704895 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 106.87029075622559, 'TIME_S_1KI': 106.87029075622559, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2633.659623832703, 'W': 23.232350154828893} -[20.76, 20.72, 20.52, 20.48, 20.68, 20.6, 20.6, 20.56, 20.68, 20.6, 20.52, 20.76, 20.76, 21.2, 21.2, 21.28, 21.12, 21.0, 20.88, 20.56] -374.26 -18.713 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 106.87029075622559, 'TIME_S_1KI': 106.87029075622559, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2633.659623832703, 'W': 23.232350154828893, 'J_1KI': 2633.659623832703, 'W_1KI': 23.232350154828893, 'W_D': 4.519350154828892, 'J_D': 512.3213944957257, 'W_D_1KI': 4.519350154828892, 'J_D_1KI': 4.519350154828892} +[20.52, 20.4, 20.48, 20.48, 20.48, 20.64, 20.76, 20.8, 20.8, 20.56] +[20.56, 20.2, 20.28, 23.96, 25.84, 29.28, 30.68, 31.08, 27.28, 26.24, 25.12, 24.52, 24.52, 24.32, 24.2] +15.69010066986084 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.699479103088379, 'TIME_S_1KI': 106.99479103088379, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 372.40043621063234, 'W': 23.7347384855202} +[20.52, 20.4, 20.48, 20.48, 20.48, 20.64, 20.76, 20.8, 20.8, 20.56, 20.6, 20.6, 20.6, 20.68, 20.68, 20.68, 20.56, 20.4, 20.28, 20.44] +370.38 +18.519 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.699479103088379, 'TIME_S_1KI': 106.99479103088379, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 372.40043621063234, 'W': 23.7347384855202, 'J_1KI': 3724.0043621063232, 'W_1KI': 237.34738485520202, 'W_D': 5.215738485520202, 'J_D': 81.83546190547948, 'W_D_1KI': 52.15738485520202, 'J_D_1KI': 521.5738485520202} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.1.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.1.json index 8cd094e..f0b391a 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.1.json +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.1.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 210.98000812530518, "TIME_S_1KI": 210.98000812530518, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 5224.394376831054, "W": 23.586192508859664, "J_1KI": 5224.394376831054, "W_1KI": 23.586192508859664, "W_D": 5.122192508859662, "J_D": 1134.5770933685287, "W_D_1KI": 5.122192508859662, "J_D_1KI": 5.122192508859662} +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 21.31538224220276, "TIME_S_1KI": 213.1538224220276, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 656.8145585250853, "W": 23.224732449579832, "J_1KI": 6568.145585250853, "W_1KI": 232.24732449579832, "W_D": 4.7157324495798285, "J_D": 133.36479693436596, "W_D_1KI": 47.157324495798285, "J_D_1KI": 471.57324495798287} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.1.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.1.output index d1e3dfe..f5c642e 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.1.output +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.1.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.1 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 210.98000812530518} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 0.1 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 21.31538224220276} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 993, 1975, ..., 9997956, - 9998997, 10000000]), - col_indices=tensor([ 19, 22, 26, ..., 9979, 9989, 9990]), - values=tensor([0.9746, 0.4059, 0.0503, ..., 0.3598, 0.3506, 0.0768]), +tensor(crow_indices=tensor([ 0, 941, 1920, ..., 9998069, + 9999051, 10000000]), + col_indices=tensor([ 4, 12, 19, ..., 9982, 9986, 9989]), + values=tensor([0.3288, 0.1903, 0.7853, ..., 0.1848, 0.4723, 0.3439]), size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.8784, 0.5931, 0.4456, ..., 0.6081, 0.2914, 0.4121]) +tensor([0.8250, 0.2999, 0.1337, ..., 0.5908, 0.0422, 0.7676]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,16 +16,16 @@ Rows: 10000 Size: 100000000 NNZ: 10000000 Density: 0.1 -Time: 210.98000812530518 seconds +Time: 21.31538224220276 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 993, 1975, ..., 9997956, - 9998997, 10000000]), - col_indices=tensor([ 19, 22, 26, ..., 9979, 9989, 9990]), - values=tensor([0.9746, 0.4059, 0.0503, ..., 0.3598, 0.3506, 0.0768]), +tensor(crow_indices=tensor([ 0, 941, 1920, ..., 9998069, + 9999051, 10000000]), + col_indices=tensor([ 4, 12, 19, ..., 9982, 9986, 9989]), + values=tensor([0.3288, 0.1903, 0.7853, ..., 0.1848, 0.4723, 0.3439]), size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.8784, 0.5931, 0.4456, ..., 0.6081, 0.2914, 0.4121]) +tensor([0.8250, 0.2999, 0.1337, ..., 0.5908, 0.0422, 0.7676]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -33,13 +33,13 @@ Rows: 10000 Size: 100000000 NNZ: 10000000 Density: 0.1 -Time: 210.98000812530518 seconds +Time: 21.31538224220276 seconds -[20.72, 20.64, 20.6, 20.6, 20.48, 20.44, 20.4, 20.36, 20.28, 20.28] -[20.2, 20.36, 21.16, 23.28, 25.44, 27.76, 29.48, 29.48, 28.08, 28.08, 26.32, 25.08, 24.24, 24.16, 24.44, 24.76, 24.64, 24.68, 24.72, 24.64, 24.56, 24.64, 24.68, 24.64, 24.76, 24.76, 24.64, 24.56, 24.52, 24.48, 24.6, 24.6, 24.64, 24.96, 24.88, 25.04, 24.84, 24.68, 24.6, 24.48, 24.64, 24.52, 24.56, 24.4, 24.6, 24.6, 24.68, 24.84, 25.0, 24.68, 24.68, 24.68, 24.68, 24.68, 24.92, 24.68, 24.96, 25.12, 24.88, 24.8, 24.92, 24.72, 24.6, 24.64, 24.64, 24.96, 25.12, 25.0, 24.92, 24.88, 24.6, 24.48, 24.32, 24.48, 24.52, 24.52, 24.6, 24.76, 24.84, 24.76, 25.0, 24.72, 24.6, 24.92, 24.88, 24.88, 24.84, 24.92, 25.12, 25.2, 25.2, 25.12, 24.96, 24.52, 24.52, 24.32, 24.4, 24.4, 24.48, 24.36, 24.32, 24.28, 24.2, 24.16, 24.0, 24.08, 24.32, 24.36, 24.88, 25.12, 25.12, 25.08, 24.76, 25.0, 25.2, 24.84, 25.24, 25.16, 24.96, 24.96, 25.08, 25.24, 25.04, 25.12, 25.24, 25.16, 25.12, 25.24, 25.44, 25.64, 25.68, 25.44, 26.16, 26.24, 26.0, 26.24, 26.4, 25.56, 25.68, 25.56, 25.4, 25.4, 25.32, 25.24, 25.4, 25.6, 25.36, 25.16, 24.84, 24.52, 24.4, 24.24, 24.44, 24.48, 24.4, 24.56, 24.36, 24.24, 24.24, 24.44, 24.52, 24.68, 24.72, 24.72, 24.88, 24.76, 24.64, 24.36, 24.68, 24.84, 24.6, 24.84, 24.56, 24.28, 24.36, 24.52, 24.32, 24.4, 24.36, 24.4, 24.44, 24.44, 24.72, 24.64, 24.76, 24.76, 24.64, 24.52, 24.76, 24.68, 24.56, 24.72, 24.36, 24.44, 24.48, 24.88, 24.88, 25.0, 25.0, 24.68, 24.4, 24.44, 24.52, 24.36, 24.6, 24.52, 24.56, 24.56, 24.56, 24.64, 24.32] -221.50223588943481 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 210.98000812530518, 'TIME_S_1KI': 210.98000812530518, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 5224.394376831054, 'W': 23.586192508859664} -[20.72, 20.64, 20.6, 20.6, 20.48, 20.44, 20.4, 20.36, 20.28, 20.28, 20.24, 20.44, 20.68, 20.92, 21.04, 20.8, 20.44, 20.28, 20.2, 20.12] -369.28000000000003 -18.464000000000002 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 210.98000812530518, 'TIME_S_1KI': 210.98000812530518, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 5224.394376831054, 'W': 23.586192508859664, 'J_1KI': 5224.394376831054, 'W_1KI': 23.586192508859664, 'W_D': 5.122192508859662, 'J_D': 1134.5770933685287, 'W_D_1KI': 5.122192508859662, 'J_D_1KI': 5.122192508859662} +[20.48, 20.28, 20.4, 20.48, 20.4, 20.6, 20.96, 20.96, 21.04, 20.88] +[20.92, 20.84, 20.88, 24.28, 26.48, 27.96, 29.4, 28.08, 28.12, 26.52, 25.88, 24.92, 24.44, 24.32, 24.56, 24.84, 24.84, 24.96, 24.88, 24.72, 24.72, 24.48, 24.56, 24.28, 24.16, 24.12, 24.48] +28.280823469161987 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 21.31538224220276, 'TIME_S_1KI': 213.1538224220276, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 656.8145585250853, 'W': 23.224732449579832} +[20.48, 20.28, 20.4, 20.48, 20.4, 20.6, 20.96, 20.96, 21.04, 20.88, 20.44, 20.52, 20.68, 20.36, 20.52, 20.4, 20.4, 20.4, 20.52, 20.72] +370.18000000000006 +18.509000000000004 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 21.31538224220276, 'TIME_S_1KI': 213.1538224220276, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 656.8145585250853, 'W': 23.224732449579832, 'J_1KI': 6568.145585250853, 'W_1KI': 232.24732449579832, 'W_D': 4.7157324495798285, 'J_D': 133.36479693436596, 'W_D_1KI': 47.157324495798285, 'J_D_1KI': 471.57324495798287} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.2.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.2.json new file mode 100644 index 0000000..6cc4360 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.2.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 42.396695137023926, "TIME_S_1KI": 423.96695137023926, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1244.9685798645019, "W": 23.740989470007165, "J_1KI": 12449.68579864502, "W_1KI": 237.40989470007165, "W_D": 5.275989470007168, "J_D": 276.6709081840517, "W_D_1KI": 52.75989470007168, "J_D_1KI": 527.5989470007169} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.2.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.2.output new file mode 100644 index 0000000..8c655a7 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.2.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 0.2 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 42.396695137023926} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1981, 3970, ..., 19995969, + 19997989, 20000000]), + col_indices=tensor([ 3, 4, 9, ..., 9978, 9982, 9987]), + values=tensor([0.8747, 0.4611, 0.0013, ..., 0.7048, 0.8145, 0.2728]), + size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) +tensor([0.1891, 0.5511, 0.0831, ..., 0.7428, 0.4718, 0.5050]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 20000000 +Density: 0.2 +Time: 42.396695137023926 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1981, 3970, ..., 19995969, + 19997989, 20000000]), + col_indices=tensor([ 3, 4, 9, ..., 9978, 9982, 9987]), + values=tensor([0.8747, 0.4611, 0.0013, ..., 0.7048, 0.8145, 0.2728]), + size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) +tensor([0.1891, 0.5511, 0.0831, ..., 0.7428, 0.4718, 0.5050]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 20000000 +Density: 0.2 +Time: 42.396695137023926 seconds + +[20.28, 20.48, 20.28, 20.48, 20.68, 20.72, 20.92, 20.84, 20.6, 20.6] +[20.68, 20.48, 20.48, 24.96, 25.96, 28.64, 31.0, 30.08, 29.88, 29.2, 29.04, 27.32, 26.6, 25.64, 24.48, 24.28, 24.48, 24.6, 24.64, 24.64, 24.8, 24.8, 24.96, 24.76, 25.0, 24.92, 24.88, 24.72, 24.76, 24.72, 24.68, 24.72, 24.56, 24.6, 24.6, 24.56, 24.72, 24.8, 24.76, 24.64, 24.64, 24.64, 24.68, 24.56, 24.52, 24.68, 24.44, 24.28, 24.24, 24.04] +52.43962478637695 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 42.396695137023926, 'TIME_S_1KI': 423.96695137023926, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1244.9685798645019, 'W': 23.740989470007165} +[20.28, 20.48, 20.28, 20.48, 20.68, 20.72, 20.92, 20.84, 20.6, 20.6, 20.92, 20.6, 20.68, 20.68, 20.32, 20.36, 20.28, 20.24, 20.16, 20.16] +369.29999999999995 +18.464999999999996 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 42.396695137023926, 'TIME_S_1KI': 423.96695137023926, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1244.9685798645019, 'W': 23.740989470007165, 'J_1KI': 12449.68579864502, 'W_1KI': 237.40989470007165, 'W_D': 5.275989470007168, 'J_D': 276.6709081840517, 'W_D_1KI': 52.75989470007168, 'J_D_1KI': 527.5989470007169} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.3.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.3.json new file mode 100644 index 0000000..33ea6fd --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.3.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 62.99070644378662, "TIME_S_1KI": 629.9070644378662, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1817.8575790786747, "W": 23.739082320260188, "J_1KI": 18178.57579078675, "W_1KI": 237.3908232026019, "W_D": 5.089082320260189, "J_D": 389.7044856929784, "W_D_1KI": 50.890823202601894, "J_D_1KI": 508.908232026019} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.3.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.3.output new file mode 100644 index 0000000..58e2c22 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.3.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 0.3 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 62.99070644378662} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2976, 6021, ..., 29993904, + 29996986, 30000000]), + col_indices=tensor([ 0, 1, 2, ..., 9993, 9995, 9997]), + values=tensor([0.2230, 0.6279, 0.9702, ..., 0.2815, 0.5420, 0.7025]), + size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) +tensor([0.3830, 0.2972, 0.7622, ..., 0.1887, 0.7379, 0.3841]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 30000000 +Density: 0.3 +Time: 62.99070644378662 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2976, 6021, ..., 29993904, + 29996986, 30000000]), + col_indices=tensor([ 0, 1, 2, ..., 9993, 9995, 9997]), + values=tensor([0.2230, 0.6279, 0.9702, ..., 0.2815, 0.5420, 0.7025]), + size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) +tensor([0.3830, 0.2972, 0.7622, ..., 0.1887, 0.7379, 0.3841]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 30000000 +Density: 0.3 +Time: 62.99070644378662 seconds + +[20.4, 20.36, 20.44, 20.44, 20.72, 20.96, 20.88, 21.12, 20.72, 20.36] +[20.44, 20.2, 23.44, 25.08, 27.68, 28.88, 31.04, 29.08, 29.08, 29.48, 28.4, 29.16, 28.52, 28.08, 27.8, 26.96, 25.8, 24.96, 24.8, 24.68, 24.76, 24.68, 24.72, 24.68, 24.52, 24.44, 24.4, 24.76, 24.6, 24.88, 24.88, 24.72, 24.44, 24.48, 24.24, 24.32, 24.24, 24.16, 24.36, 24.56, 24.28, 24.24, 24.28, 24.16, 23.76, 23.92, 24.36, 24.4, 24.52, 24.84, 24.76, 24.44, 24.44, 24.24, 24.32, 24.04, 24.08, 24.28, 24.08, 24.08, 24.0, 23.88, 24.04, 24.28, 24.16, 24.4, 24.48, 24.4, 24.48, 24.6, 24.52, 24.52, 24.52] +76.5765733718872 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 62.99070644378662, 'TIME_S_1KI': 629.9070644378662, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1817.8575790786747, 'W': 23.739082320260188} +[20.4, 20.36, 20.44, 20.44, 20.72, 20.96, 20.88, 21.12, 20.72, 20.36, 20.28, 20.84, 20.84, 20.8, 21.0, 21.12, 21.0, 20.52, 20.56, 20.32] +373.0 +18.65 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 62.99070644378662, 'TIME_S_1KI': 629.9070644378662, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1817.8575790786747, 'W': 23.739082320260188, 'J_1KI': 18178.57579078675, 'W_1KI': 237.3908232026019, 'W_D': 5.089082320260189, 'J_D': 389.7044856929784, 'W_D_1KI': 50.890823202601894, 'J_D_1KI': 508.908232026019} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_1e-05.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_1e-05.json index e2472aa..256b7e3 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_1e-05.json +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_1e-05.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 142368, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.641618490219116, "TIME_S_1KI": 0.07474726406368788, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 348.11982940673823, "W": 23.739150118754246, "J_1KI": 2.445211209026876, "W_1KI": 0.16674498566218704, "W_D": 4.927150118754245, "J_D": 72.25358322525018, "W_D_1KI": 0.03460855050821986, "J_D_1KI": 0.00024309220125463487} +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 147223, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.998100280761719, "TIME_S_1KI": 0.07470368271779354, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 332.2257844543456, "W": 22.66095026687019, "J_1KI": 2.256616048133414, "W_1KI": 0.15392262259884795, "W_D": 4.3619502668701955, "J_D": 63.94931951642035, "W_D_1KI": 0.029628184909084827, "J_D_1KI": 0.00020124698524744657} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_1e-05.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_1e-05.output index 4bc129d..a769041 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_1e-05.output +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_1e-05.output @@ -1,266 +1,917 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 1e-05 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.0838630199432373} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.015372514724731445} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 999, 1000, 1000]), + col_indices=tensor([3209, 9868, 3248, 6619, 340, 2292, 7833, 3392, 6373, + 1926, 8761, 7309, 7662, 7112, 9220, 3460, 9210, 9337, + 5270, 8671, 5002, 6954, 8836, 761, 7936, 5205, 4423, + 5866, 2140, 76, 8198, 3105, 6063, 2414, 5795, 8249, + 3229, 3225, 6597, 3776, 3375, 2931, 9809, 7037, 3178, + 6061, 4148, 6345, 6554, 2041, 7831, 9356, 1293, 5890, + 3788, 7939, 1779, 945, 7194, 3467, 8405, 3255, 8893, + 1669, 2661, 614, 6554, 8211, 1542, 4830, 2116, 6825, + 4028, 8188, 3362, 1229, 1014, 2629, 60, 4341, 8573, + 344, 2144, 7288, 8591, 1396, 212, 7483, 7941, 134, + 292, 9035, 5218, 3760, 5255, 8326, 5872, 9422, 5064, + 1086, 5137, 505, 3749, 1743, 2035, 8335, 8836, 193, + 9939, 568, 4682, 8836, 9271, 8548, 6366, 5833, 4592, + 9204, 1646, 9941, 8566, 6013, 5398, 3083, 5993, 1547, + 9892, 4995, 9172, 6435, 2837, 813, 4813, 1229, 5022, + 7573, 4340, 3946, 5005, 3375, 4969, 6442, 1642, 4944, + 719, 4401, 9666, 2565, 7859, 2383, 6897, 7942, 2904, + 1047, 3110, 6786, 88, 4488, 8747, 4203, 3652, 6051, + 2302, 7218, 9399, 7374, 5910, 928, 5333, 4890, 6792, + 6062, 9221, 9163, 4174, 2896, 9079, 9463, 4208, 5064, + 7724, 2493, 6553, 5557, 8081, 9830, 2788, 4152, 7234, + 544, 6509, 5692, 1300, 2830, 9380, 1684, 9089, 5782, + 393, 9511, 2834, 554, 2905, 5654, 8350, 1747, 8061, + 3684, 7688, 2628, 4287, 3328, 8038, 7059, 3207, 9644, + 6057, 9467, 5893, 7274, 1133, 4739, 5738, 3748, 7812, + 2444, 9074, 454, 761, 500, 6433, 3779, 8509, 8830, + 6164, 5825, 850, 1492, 145, 499, 2214, 7508, 3582, + 1886, 2390, 8118, 3401, 5635, 7260, 8422, 6823, 6262, + 9571, 4326, 2162, 8956, 5708, 7110, 4681, 462, 9728, + 2261, 2203, 2746, 5158, 8676, 7833, 4522, 1961, 7126, + 5692, 6002, 4837, 8636, 405, 1956, 8123, 5103, 7581, + 269, 8632, 135, 5524, 5948, 6685, 8043, 3706, 935, + 1445, 8185, 7972, 9341, 2312, 3081, 2043, 4519, 1533, + 9679, 8227, 9554, 3652, 824, 8035, 5846, 6458, 8139, + 5279, 1551, 3623, 2541, 6344, 2318, 9360, 8584, 9478, + 5672, 6142, 2286, 8123, 5498, 770, 7176, 456, 9177, + 9809, 2702, 1264, 7605, 5300, 2103, 3058, 2051, 1882, + 6297, 3562, 1383, 6913, 7884, 2698, 3990, 9715, 8693, + 2273, 6508, 3649, 6905, 2527, 2597, 2004, 3902, 8701, + 3289, 7304, 3591, 7249, 5558, 5443, 8985, 9103, 809, + 2290, 2274, 5849, 6456, 6694, 4646, 1044, 3808, 5972, + 584, 9153, 1314, 8076, 1874, 630, 9422, 7201, 7271, + 2554, 8484, 6762, 4360, 9672, 9206, 7238, 670, 261, + 7282, 4415, 8095, 5313, 556, 825, 8440, 6187, 3980, + 9374, 4645, 1791, 2944, 8696, 6211, 8269, 9169, 6448, + 1597, 8204, 1505, 8627, 9214, 6978, 3170, 6053, 7401, + 1622, 5348, 9321, 8871, 4197, 4724, 5006, 1208, 9868, + 5608, 2933, 4739, 2856, 6964, 5457, 9490, 2939, 8482, + 1706, 9462, 5508, 6207, 2528, 5845, 6687, 1429, 6904, + 6857, 5980, 1821, 3495, 7978, 717, 8671, 579, 3286, + 887, 9751, 6063, 3554, 478, 2346, 2715, 6230, 8314, + 9263, 8757, 6504, 1482, 9283, 6266, 2632, 8114, 9322, + 2614, 4650, 6056, 8492, 3113, 826, 1487, 9140, 7416, + 7679, 9789, 7142, 4923, 1585, 5093, 5772, 2033, 5245, + 8006, 9978, 5857, 1355, 851, 5200, 8304, 5704, 3358, + 8939, 7230, 1375, 6361, 6987, 2890, 847, 284, 5635, + 2950, 5927, 4878, 706, 5188, 2344, 5086, 7880, 7517, + 1759, 3646, 2795, 5560, 4430, 6312, 6067, 4770, 6312, + 7816, 2489, 4516, 4206, 8931, 9933, 7409, 5795, 3224, + 9549, 513, 4869, 3275, 8533, 1434, 7035, 5766, 8355, + 3615, 7273, 4810, 1822, 8987, 5862, 7804, 6291, 3123, + 8324, 910, 3823, 8563, 5832, 1345, 743, 9538, 1425, + 1584, 1245, 4705, 4281, 7546, 4065, 6171, 9291, 990, + 4041, 5597, 6554, 8240, 8238, 6185, 8030, 2085, 8194, + 9631, 1292, 3009, 3267, 1595, 2327, 1125, 1646, 4746, + 1415, 8714, 2232, 7073, 5930, 7011, 55, 989, 2475, + 5544, 2472, 4127, 1839, 5169, 2530, 1956, 7139, 3386, + 8181, 8523, 171, 1301, 5967, 548, 983, 9893, 5816, + 785, 9972, 7080, 7125, 1561, 326, 3497, 769, 7886, + 6549, 7277, 7031, 6240, 4002, 7102, 8726, 916, 4682, + 2949, 4811, 4044, 7673, 4734, 9767, 6661, 3130, 3538, + 3521, 4909, 9932, 861, 6634, 7437, 9719, 9476, 9830, + 4919, 9257, 8438, 5402, 3055, 7641, 9591, 2146, 858, + 7075, 8845, 1624, 3798, 8047, 3425, 4197, 3144, 8268, + 472, 8494, 4913, 2139, 8400, 8497, 4513, 89, 2209, + 8090, 2080, 3370, 2376, 3620, 2461, 6864, 494, 7285, + 1786, 2146, 1376, 4153, 3064, 5331, 3128, 7774, 4797, + 6823, 5809, 7554, 2423, 3053, 5382, 5543, 5683, 1277, + 4836, 9205, 7550, 6908, 2869, 2091, 2867, 5163, 7698, + 8343, 1967, 4007, 9458, 4283, 6112, 5901, 9866, 4663, + 8311, 5474, 5957, 9701, 7202, 5032, 1871, 8242, 1522, + 8481, 762, 5930, 8891, 7093, 2033, 9164, 152, 9198, + 4185, 4093, 4667, 5351, 6201, 7388, 6549, 8266, 7538, + 2670, 6818, 8834, 5685, 2671, 6016, 4286, 9742, 6121, + 4666, 6526, 6512, 259, 7033, 8244, 4223, 1085, 4469, + 1035, 7267, 9736, 8892, 5043, 9002, 4300, 8899, 8431, + 4947, 7717, 9483, 9531, 640, 9735, 136, 1004, 5963, + 2560, 1270, 1063, 6551, 6380, 9051, 6415, 2273, 8966, + 1448, 7975, 7104, 1638, 6895, 2796, 7076, 1607, 8593, + 8650, 4534, 4443, 8898, 3141, 730, 7859, 569, 4715, + 8107, 6041, 7589, 8647, 5268, 5224, 9357, 3430, 8808, + 12, 1062, 6461, 8940, 7168, 7178, 9954, 1483, 4577, + 6145, 3798, 5241, 3768, 4435, 9815, 4630, 4239, 3642, + 7610, 6283, 3620, 9310, 5539, 7589, 7924, 9409, 40, + 5336, 3123, 7751, 1910, 907, 9203, 6319, 755, 6279, + 6919, 5494, 5179, 9028, 1415, 5153, 7002, 7586, 3433, + 5870, 6467, 9059, 2416, 4341, 4715, 6133, 8530, 2254, + 5462, 9186, 7294, 4272, 1845, 4289, 5086, 9957, 5707, + 2498, 2610, 6779, 4816, 5544, 3242, 9052, 5820, 5426, + 475, 6174, 8032, 6228, 3859, 7942, 6852, 6841, 762, + 9084, 1360, 9518, 1399, 9474, 9073, 2698, 3992, 1688, + 6424, 4716, 9100, 9699, 7494, 4411, 8629, 5459, 3464, + 1277, 3163, 4665, 7812, 7685, 5789, 2468, 8083, 8019, + 2880, 7221, 4770, 2039, 4111, 4375, 8217, 9082, 7877, + 2202, 6073, 6164, 7099, 1964, 662, 7796, 1896, 7509, + 6563, 1763, 3395, 2316, 1045, 7898, 8435, 5923, 1093, + 4006, 5474, 2690, 3754, 7989, 9753, 5385, 2389, 2008, + 5223, 2679, 6615, 8933, 1776, 4320, 6999, 5312, 2814, + 7847, 7325, 670, 7203, 6195, 963, 5468, 6227, 8998, + 6214, 993, 9855, 2891, 1973, 3928, 3222, 2306, 3674, + 8093, 6359, 3072, 5055, 3934, 4856, 6132, 9135, 2922, + 5957]), + values=tensor([0.4275, 0.3881, 0.3139, 0.1808, 0.5310, 0.9604, 0.6046, + 0.8590, 0.0287, 0.6756, 0.8185, 0.6927, 0.6675, 0.9855, + 0.7208, 0.8799, 0.8629, 0.7190, 0.7258, 0.9361, 0.0339, + 0.8077, 0.0414, 0.6703, 0.6580, 0.3675, 0.6750, 0.5718, + 0.4038, 0.0553, 0.0413, 0.2273, 0.5506, 0.5477, 0.5624, + 0.2283, 0.5380, 0.3589, 0.2593, 0.3555, 0.2992, 0.1850, + 0.8180, 0.5232, 0.0988, 0.3425, 0.4717, 0.9349, 0.9395, + 0.6753, 0.8041, 0.9749, 0.8897, 0.6447, 0.0817, 0.5610, + 0.1896, 0.0161, 0.7003, 0.7673, 0.8307, 0.7283, 0.3245, + 0.7473, 0.8098, 0.7438, 0.5987, 0.9483, 0.2473, 0.6059, + 0.8590, 0.0578, 0.9300, 0.1277, 0.1910, 0.5390, 0.9923, + 0.4717, 0.2172, 0.2304, 0.7135, 0.7750, 0.1479, 0.7140, + 0.7426, 0.6959, 0.2516, 0.7713, 0.8673, 0.3328, 0.6887, + 0.0208, 0.8741, 0.0944, 0.9474, 0.4933, 0.1551, 0.9330, + 0.9766, 0.0714, 0.8864, 0.8490, 0.5548, 0.2259, 0.0151, + 0.2924, 0.3046, 0.3078, 0.5126, 0.0910, 0.6552, 0.9529, + 0.7444, 0.5430, 0.3329, 0.7363, 0.3272, 0.2064, 0.4308, + 0.1399, 0.3205, 0.6451, 0.2111, 0.5851, 0.8748, 0.5024, + 0.1107, 0.3502, 0.5846, 0.1250, 0.2751, 0.3449, 0.5057, + 0.2501, 0.6308, 0.3508, 0.6882, 0.9384, 0.9511, 0.0630, + 0.4802, 0.4548, 0.7968, 0.6334, 0.3897, 0.8817, 0.1901, + 0.5186, 0.8390, 0.1266, 0.4062, 0.8053, 0.1020, 0.6893, + 0.0686, 0.2855, 0.7574, 0.2385, 0.1315, 0.1501, 0.7480, + 0.6280, 0.4408, 0.8455, 0.1285, 0.1782, 0.6626, 0.6066, + 0.6225, 0.0217, 0.6914, 0.5402, 0.9870, 0.3813, 0.7033, + 0.7712, 0.4849, 0.9511, 0.0434, 0.4425, 0.9459, 0.2266, + 0.2372, 0.1136, 0.1849, 0.2397, 0.0967, 0.7983, 0.6073, + 0.4963, 0.1922, 0.1740, 0.8024, 0.3263, 0.6368, 0.5308, + 0.5142, 0.6581, 0.3418, 0.3095, 0.4538, 0.9619, 0.2867, + 0.0950, 0.5813, 0.8368, 0.3176, 0.9734, 0.7668, 0.2728, + 0.2680, 0.8861, 0.2565, 0.4795, 0.6296, 0.9507, 0.8958, + 0.6429, 0.7807, 0.0849, 0.2596, 0.2876, 0.2984, 0.4516, + 0.1776, 0.5252, 0.4818, 0.5382, 0.0378, 0.7754, 0.1815, + 0.5299, 0.4358, 0.7701, 0.9552, 0.7604, 0.5343, 0.8461, + 0.3733, 0.4748, 0.5019, 0.5319, 0.1950, 0.4915, 0.8982, + 0.8792, 0.4578, 0.6727, 0.5864, 0.0044, 0.3636, 0.0865, + 0.2878, 0.8889, 0.8029, 0.0564, 0.2779, 0.2583, 0.5323, + 0.1895, 0.5860, 0.2646, 0.8879, 0.0599, 0.9224, 0.7196, + 0.2286, 0.8550, 0.3374, 0.6693, 0.7673, 0.1370, 0.6482, + 0.0168, 0.4774, 0.5008, 0.7572, 0.1368, 0.1470, 0.6304, + 0.9706, 0.7405, 0.7412, 0.6298, 0.9122, 0.5157, 0.2650, + 0.2818, 0.6111, 0.7527, 0.0490, 0.1004, 0.1241, 0.4454, + 0.2894, 0.8228, 0.9204, 0.4938, 0.0564, 0.5710, 0.0400, + 0.2954, 0.8673, 0.1061, 0.7455, 0.9212, 0.6252, 0.7116, + 0.4632, 0.3277, 0.9426, 0.1467, 0.0608, 0.4242, 0.5067, + 0.2902, 0.2721, 0.6498, 0.6839, 0.5643, 0.4679, 0.4103, + 0.1304, 0.0703, 0.8222, 0.8881, 0.0527, 0.9839, 0.0318, + 0.0604, 0.9264, 0.4420, 0.3194, 0.8482, 0.7627, 0.6903, + 0.2123, 0.7648, 0.9926, 0.4948, 0.8455, 0.3602, 0.4169, + 0.8328, 0.4984, 0.5681, 0.5841, 0.1407, 0.5588, 0.2134, + 0.7507, 0.9645, 0.2482, 0.2182, 0.2073, 0.8998, 0.3807, + 0.6886, 0.2991, 0.4671, 0.6025, 0.2544, 0.5519, 0.8787, + 0.3819, 0.8798, 0.3104, 0.1937, 0.3473, 0.6897, 0.2116, + 0.3715, 0.4188, 0.9594, 0.7854, 0.5738, 0.0788, 0.2956, + 0.4393, 0.0205, 0.4497, 0.5799, 0.6998, 0.9907, 0.6955, + 0.3688, 0.5214, 0.6675, 0.4868, 0.9051, 0.2066, 0.5278, + 0.8434, 0.2920, 0.5001, 0.1687, 0.6222, 0.3592, 0.3402, + 0.8386, 0.9190, 0.2841, 0.6388, 0.8916, 0.7093, 0.0676, + 0.8268, 0.3857, 0.7248, 0.8444, 0.9262, 0.3228, 0.1858, + 0.0541, 0.0147, 0.3726, 0.7119, 0.3771, 0.7018, 0.0498, + 0.9764, 0.7213, 0.6857, 0.9076, 0.6930, 0.9925, 0.6796, + 0.9099, 0.8957, 0.7847, 0.7694, 0.5255, 0.5450, 0.8537, + 0.1109, 0.6083, 0.2595, 0.0732, 0.5598, 0.3732, 0.8030, + 0.2943, 0.5044, 0.8687, 0.1569, 0.7485, 0.8397, 0.0563, + 0.7580, 0.1302, 0.3220, 0.5738, 0.3028, 0.8634, 0.5299, + 0.5384, 0.7185, 0.0740, 0.0896, 0.9393, 0.1708, 0.1684, + 0.2457, 0.7029, 0.1009, 0.4980, 0.2762, 0.9245, 0.0022, + 0.2297, 0.4398, 0.5470, 0.7673, 0.7132, 0.8762, 0.6237, + 0.6368, 0.1300, 0.5274, 0.0913, 0.3842, 0.9630, 0.8184, + 0.7355, 0.5099, 0.4932, 0.6527, 0.8872, 0.4640, 0.0588, + 0.0306, 0.0236, 0.7435, 0.9265, 0.3932, 0.2464, 0.9514, + 0.8510, 0.0383, 0.3895, 0.0953, 0.4855, 0.1771, 0.7719, + 0.8612, 0.3632, 0.8694, 0.4383, 0.3873, 0.3076, 0.9881, + 0.4672, 0.6409, 0.8009, 0.0756, 0.2586, 0.8768, 0.1936, + 0.7249, 0.5557, 0.8572, 0.7169, 0.0050, 0.3295, 0.4291, + 0.4545, 0.4668, 0.5083, 0.2008, 0.3836, 0.4073, 0.4304, + 0.5879, 0.4421, 0.6393, 0.9889, 0.4650, 0.1876, 0.0798, + 0.1449, 0.8117, 0.9255, 0.7918, 0.1406, 0.4863, 0.3651, + 0.6067, 0.0364, 0.4333, 0.7822, 0.1643, 0.8343, 0.6051, + 0.6308, 0.5806, 0.0642, 0.7919, 0.6050, 0.3368, 0.7779, + 0.6713, 0.9857, 0.2853, 0.6567, 0.0967, 0.1455, 0.3512, + 0.6778, 0.9504, 0.2678, 0.9544, 0.9340, 0.7942, 0.7527, + 0.8358, 0.7805, 0.5659, 0.6318, 0.6349, 0.7939, 0.9928, + 0.5106, 0.8033, 0.2636, 0.1925, 0.5894, 0.1231, 0.2221, + 0.7313, 0.2019, 0.1380, 0.7432, 0.1575, 0.1695, 0.9626, + 0.8004, 0.5557, 0.4175, 0.9737, 0.1028, 0.5973, 0.2245, + 0.1568, 0.0148, 0.5338, 0.5531, 0.7419, 0.6821, 0.6004, + 0.5075, 0.2898, 0.0572, 0.6541, 0.9867, 0.3169, 0.1091, + 0.3007, 0.8230, 0.1327, 0.9676, 0.8384, 0.4791, 0.8642, + 0.9498, 0.1113, 0.9321, 0.2886, 0.8491, 0.4298, 0.3001, + 0.9524, 0.4168, 0.8559, 0.9356, 0.3367, 0.3858, 0.3719, + 0.5105, 0.6573, 0.6925, 0.8585, 0.6425, 0.0422, 0.4540, + 0.3811, 0.7744, 0.8488, 0.8536, 0.4800, 0.9205, 0.8820, + 0.7503, 0.7388, 0.7461, 0.1778, 0.5414, 0.8666, 0.9751, + 0.7892, 0.7263, 0.7718, 0.9065, 0.4577, 0.3046, 0.6991, + 0.4446, 0.7928, 0.1473, 0.3983, 0.1582, 0.8541, 0.4231, + 0.5913, 0.3400, 0.8006, 0.4155, 0.5300, 0.2295, 0.5802, + 0.4966, 0.0158, 0.5097, 0.7507, 0.4467, 0.6603, 0.6281, + 0.1152, 0.6784, 0.7820, 0.0012, 0.3761, 0.8898, 0.3791, + 0.9433, 0.1967, 0.8005, 0.7968, 0.3696, 0.5243, 0.0864, + 0.5603, 0.6699, 0.3078, 0.6225, 0.0752, 0.2391, 0.9255, + 0.2650, 0.4673, 0.0102, 0.8488, 0.0879, 0.5946, 0.5603, + 0.8401, 0.0314, 0.3946, 0.8748, 0.3681, 0.9390, 0.1692, + 0.0070, 0.7205, 0.1654, 0.3264, 0.1626, 0.1313, 0.4264, + 0.8391, 0.2851, 0.5610, 0.8789, 0.5540, 0.4573, 0.8763, + 0.8174, 0.9396, 0.8320, 0.3091, 0.2567, 0.5267, 0.9107, + 0.4557, 0.5158, 0.6588, 0.7481, 0.3435, 0.5032, 0.1494, + 0.2718, 0.9923, 0.0652, 0.5633, 0.2524, 0.1153, 0.8668, + 0.0841, 0.4940, 0.8535, 0.3145, 0.1873, 0.9043, 0.8521, + 0.2257, 0.4809, 0.4740, 0.4980, 0.5276, 0.9017, 0.9235, + 0.9432, 0.5306, 0.4201, 0.2755, 0.9923, 0.8605, 0.1183, + 0.9099, 0.3224, 0.9282, 0.7819, 0.8800, 0.4258, 0.6844, + 0.1727, 0.5079, 0.3511, 0.1414, 0.6247, 0.1502, 0.3955, + 0.8356, 0.2976, 0.3207, 0.8266, 0.7924, 0.8054, 0.2943, + 0.7693, 0.0348, 0.4802, 0.5128, 0.1271, 0.4537, 0.3203, + 0.9071, 0.7626, 0.0279, 0.0653, 0.7417, 0.8793, 0.3925, + 0.3770, 0.0111, 0.1162, 0.8992, 0.1358, 0.0867, 0.3383, + 0.0706, 0.8072, 0.4835, 0.2675, 0.0759, 0.3658, 0.8759, + 0.2284, 0.3000, 0.0818, 0.5543, 0.6464, 0.9176, 0.5691, + 0.4971, 0.2282, 0.3215, 0.4138, 0.8085, 0.5363, 0.5913, + 0.1304, 0.2349, 0.6791, 0.2305, 0.3800, 0.4937, 0.6027, + 0.6534, 0.4279, 0.4943, 0.0085, 0.1579, 0.4565, 0.1248, + 0.0451, 0.7534, 0.2521, 0.6142, 0.7396, 0.5206, 0.5054, + 0.5613, 0.0793, 0.7518, 0.6824, 0.6628, 0.6832, 0.8860, + 0.4838, 0.1172, 0.2289, 0.9153, 0.1052, 0.5633, 0.2296, + 0.0191, 0.7705, 0.1415, 0.7241, 0.1302, 0.8941, 0.8284, + 0.8306, 0.6027, 0.1602, 0.9703, 0.1293, 0.7369, 0.5368, + 0.4238, 0.6523, 0.3576, 0.1197, 0.1318, 0.1788, 0.5367, + 0.3701, 0.7941, 0.1745, 0.1459, 0.5116, 0.3561, 0.4053, + 0.8269, 0.1280, 0.7759, 0.6886, 0.1888, 0.5706, 0.1161, + 0.8356, 0.4561, 0.7736, 0.4631, 0.3148, 0.8575, 0.0637, + 0.0338, 0.5995, 0.4671, 0.3925, 0.0599, 0.4135, 0.6334, + 0.0196, 0.1795, 0.1793, 0.0102, 0.8458, 0.5380, 0.4059, + 0.0568, 0.6315, 0.2073, 0.7972, 0.9797, 0.0690, 0.3810, + 0.7467, 0.1427, 0.9719, 0.3101, 0.6784, 0.3571, 0.7329, + 0.6992, 0.2961, 0.7605, 0.3985, 0.1295, 0.8951, 0.5622, + 0.2362, 0.0149, 0.3226, 0.8306, 0.2548, 0.2532, 0.8888, + 0.1434, 0.1482, 0.2179, 0.8422, 0.6150, 0.7603, 0.2665, + 0.8673, 0.3035, 0.1706, 0.2689, 0.9151, 0.1045, 0.0141, + 0.4861, 0.1566, 0.2750, 0.3958, 0.0336, 0.7854, 0.0838, + 0.7202, 0.5357, 0.1356, 0.8048, 0.1340, 0.0716, 0.5308, + 0.4959, 0.3349, 0.8036, 0.6913, 0.6107, 0.4431, 0.5386, + 0.3116, 0.0546, 0.1399, 0.8659, 0.1354, 0.9518]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.4774, 0.5622, 0.8471, ..., 0.2935, 0.6471, 0.0068]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 0.015372514724731445 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 68303 -ss 10000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 4.871366500854492} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 1000, 1000, 1000]), + col_indices=tensor([6744, 9183, 5203, 6638, 1533, 7743, 539, 8215, 8490, + 4534, 6346, 2886, 815, 690, 4659, 7859, 4960, 9599, + 7211, 9102, 9352, 9158, 5228, 349, 9466, 1784, 6758, + 6019, 4222, 3313, 4202, 6284, 5941, 3644, 8527, 621, + 8978, 2864, 4741, 937, 3040, 5951, 4377, 2752, 2224, + 833, 9594, 8371, 4644, 3164, 5751, 2168, 7735, 2026, + 7627, 2921, 3825, 1318, 5894, 9816, 8373, 6219, 7761, + 770, 6016, 7731, 2607, 3685, 9115, 9936, 4556, 2302, + 1032, 5304, 9652, 9315, 2299, 8095, 2227, 9852, 7527, + 7548, 5459, 1914, 4627, 9758, 4418, 5645, 5335, 1474, + 5, 4325, 1166, 5758, 8037, 4831, 7864, 4621, 1408, + 7991, 7361, 3430, 5370, 9921, 6713, 3837, 9935, 1916, + 9036, 5612, 1786, 9554, 5873, 9290, 5803, 8105, 7749, + 2495, 2472, 8808, 5958, 6237, 7275, 4348, 4709, 7618, + 2723, 835, 9714, 1090, 6330, 6812, 6188, 232, 626, + 445, 8400, 57, 7784, 9047, 5661, 8636, 2320, 4471, + 9589, 9560, 5053, 2465, 7391, 8282, 7210, 2128, 3549, + 2704, 7346, 5039, 6538, 8120, 953, 8729, 5862, 8226, + 4137, 112, 6745, 8084, 376, 7059, 6560, 8487, 4693, + 10, 5925, 5522, 7046, 5332, 5096, 8815, 7290, 8154, + 1699, 3419, 3972, 7305, 963, 699, 8976, 8405, 1750, + 8383, 6396, 7366, 2223, 7026, 1722, 7778, 173, 7465, + 1026, 2239, 9167, 4227, 3336, 8659, 6898, 264, 1819, + 4526, 9903, 3299, 8471, 2338, 5008, 6034, 5255, 1016, + 2476, 3281, 9291, 6915, 6157, 3429, 6616, 5294, 1960, + 3849, 6756, 6524, 9676, 1278, 2144, 8034, 9702, 8689, + 7428, 2101, 1606, 8926, 2565, 4025, 4286, 9944, 6729, + 1860, 6272, 6011, 1865, 1480, 6982, 593, 5077, 8793, + 8373, 2645, 7072, 2995, 422, 4753, 1315, 8695, 9479, + 4749, 7734, 6063, 7096, 9419, 8427, 6287, 6628, 3423, + 6286, 7303, 6136, 8068, 796, 3097, 1701, 3836, 8310, + 9629, 9555, 6582, 1297, 7896, 2598, 2280, 4630, 1294, + 7175, 3070, 3321, 7083, 6930, 8188, 3776, 9884, 1450, + 5587, 7988, 8659, 5326, 9433, 9194, 1815, 1042, 9718, + 3878, 4772, 7012, 9395, 8269, 9270, 1629, 2660, 209, + 5712, 932, 1485, 5192, 4238, 6353, 6193, 5165, 3026, + 3281, 2398, 4990, 8451, 5995, 2437, 7572, 9348, 2438, + 9680, 6106, 4164, 7478, 3249, 3727, 1957, 9143, 6126, + 1831, 4451, 8075, 4026, 2735, 8626, 4378, 205, 5899, + 1940, 1951, 2036, 8343, 8308, 8732, 8451, 6204, 7090, + 1801, 4175, 4396, 4659, 2284, 3194, 7493, 7149, 2323, + 5044, 3306, 5547, 5456, 1851, 4655, 6488, 9141, 7070, + 4125, 1093, 5396, 7738, 2079, 8139, 738, 1474, 9389, + 8473, 6944, 9388, 9801, 3310, 4840, 8737, 2836, 7124, + 5736, 8458, 7851, 2445, 4348, 2958, 1500, 7079, 3361, + 2917, 5609, 9694, 7338, 2003, 6819, 9301, 8759, 3668, + 4230, 9606, 5045, 1392, 3446, 5031, 2339, 7379, 9413, + 7019, 1575, 9646, 9892, 4175, 7521, 9210, 8996, 9856, + 2105, 6891, 2516, 7644, 6342, 5591, 4607, 8370, 2267, + 2178, 98, 4758, 5716, 8549, 2672, 3367, 9687, 6760, + 9110, 1378, 9958, 2062, 8086, 5488, 6201, 5121, 5155, + 4299, 3592, 4569, 7674, 9743, 9715, 5859, 5982, 9157, + 5766, 746, 379, 1868, 3707, 4085, 3960, 6014, 1918, + 7302, 5034, 8923, 4358, 3196, 5464, 5160, 7466, 5520, + 4012, 4775, 1536, 4418, 7081, 2030, 8186, 3043, 4489, + 6982, 4291, 14, 4887, 277, 3371, 7617, 8246, 1976, + 1779, 4401, 3966, 5238, 2266, 3849, 2641, 4879, 9073, + 3290, 4069, 7474, 232, 4401, 1411, 2648, 6385, 9602, + 1030, 9986, 4068, 265, 1296, 9722, 4721, 3794, 7224, + 9214, 2941, 4786, 6676, 2620, 6240, 7532, 6528, 3667, + 6404, 7204, 9481, 2749, 555, 4908, 3755, 47, 7892, + 8014, 5573, 4646, 8048, 9408, 4239, 7085, 7339, 2213, + 9590, 4261, 4369, 1661, 5901, 621, 7189, 453, 6633, + 1412, 1040, 3670, 8460, 7301, 8172, 5431, 8655, 8445, + 5264, 1982, 6719, 6488, 9538, 9776, 4381, 2280, 1223, + 2336, 4148, 8508, 585, 9480, 5943, 6989, 3101, 8689, + 8256, 6028, 1081, 8748, 6924, 5582, 9219, 1164, 9719, + 6904, 9219, 3348, 1248, 2380, 4837, 6421, 8759, 8176, + 2413, 9241, 6280, 795, 6836, 6623, 3295, 5487, 113, + 562, 6970, 5028, 2406, 8295, 8368, 3385, 4212, 9418, + 4453, 6440, 4796, 4189, 429, 199, 5828, 1302, 4275, + 3705, 6507, 9466, 8720, 636, 9800, 6974, 9561, 3002, + 6294, 6645, 1538, 238, 807, 3626, 6120, 5716, 8600, + 4318, 5792, 1943, 5603, 2143, 3104, 3061, 862, 2604, + 9101, 6695, 4250, 6121, 3993, 5656, 3094, 4118, 5827, + 4887, 1061, 5947, 6676, 6374, 4231, 1551, 240, 1173, + 8389, 1604, 5288, 4594, 2461, 5134, 2250, 9472, 1501, + 6338, 6393, 5061, 6467, 9017, 111, 4430, 4906, 4617, + 7659, 3038, 9083, 8874, 4785, 6903, 4936, 1238, 8369, + 183, 8286, 1773, 4890, 3477, 1143, 6106, 7346, 5613, + 5765, 1348, 576, 3940, 2554, 5492, 9590, 603, 7762, + 563, 6706, 3669, 5773, 6097, 3721, 8648, 2328, 9556, + 4798, 605, 5091, 7028, 8465, 606, 8771, 9883, 2697, + 1661, 8326, 5685, 5164, 2959, 1796, 6376, 4139, 9534, + 1259, 5224, 6687, 803, 432, 6625, 1457, 844, 9575, + 7195, 2325, 5841, 4426, 9449, 829, 1474, 6946, 23, + 4915, 4070, 2967, 6725, 2677, 2638, 219, 4785, 1030, + 4914, 3439, 8781, 4947, 6034, 2961, 6021, 103, 3443, + 9818, 844, 8744, 4287, 6940, 9206, 8132, 9639, 4328, + 6379, 4109, 7287, 5872, 2968, 8194, 8179, 2332, 2296, + 5350, 3926, 8242, 8552, 4727, 2202, 387, 3297, 1857, + 3876, 1691, 9764, 1422, 229, 1091, 1690, 730, 2018, + 7618, 1303, 3323, 7404, 3433, 488, 4748, 2180, 1314, + 6350, 9436, 3086, 9808, 6299, 1930, 3547, 4010, 3605, + 6165, 956, 5351, 421, 9662, 1173, 8605, 7930, 2736, + 6953, 2718, 9042, 3741, 7757, 1552, 9205, 1650, 599, + 5595, 4263, 1103, 7418, 9241, 8601, 1744, 7642, 515, + 9006, 3083, 8693, 9032, 5906, 7000, 2551, 3028, 3835, + 5449, 4937, 2426, 8599, 3062, 2693, 9800, 9210, 5275, + 3360, 3233, 6476, 4125, 6253, 8942, 1537, 467, 9364, + 2729, 7910, 1994, 1148, 3863, 8051, 6394, 8157, 1640, + 8390, 8149, 5412, 2816, 3795, 8617, 9981, 2763, 1764, + 676, 9771, 7442, 4680, 2279, 1341, 3408, 6649, 5478, + 8223, 5047, 7129, 5067, 1428, 6922, 7376, 493, 3030, + 127, 9415, 1410, 4169, 9819, 3335, 4738, 3017, 486, + 451, 4170, 208, 4490, 1163, 5281, 8361, 7624, 6925, + 1101, 1934, 2095, 7683, 109, 688, 2415, 8688, 4906, + 47, 1639, 3155, 9545, 9361, 5321, 5522, 1318, 4944, + 3639, 4692, 6598, 5731, 4104, 2490, 6697, 6146, 6141, + 8631, 4236, 8812, 5534, 9172, 2357, 694, 5351, 3729, + 8488, 2621, 5018, 1297, 5214, 2847, 2659, 9771, 3304, + 3414]), + values=tensor([8.7997e-01, 2.8521e-01, 4.5005e-01, 5.0855e-01, + 3.8634e-03, 5.7734e-01, 3.8405e-01, 9.4486e-01, + 3.5202e-01, 7.6382e-01, 4.7786e-01, 6.9793e-01, + 5.0912e-01, 6.3767e-03, 6.9119e-01, 4.0181e-01, + 7.6100e-01, 8.5859e-01, 3.6709e-01, 7.7781e-01, + 4.3558e-01, 2.5672e-01, 7.1189e-01, 8.1200e-01, + 3.4793e-01, 3.2184e-01, 1.1386e-01, 6.1289e-01, + 8.2371e-01, 1.9096e-01, 1.8303e-01, 1.8841e-01, + 5.0087e-01, 2.5093e-02, 6.6238e-03, 6.4069e-01, + 1.1422e-01, 6.7509e-01, 2.8931e-01, 9.6964e-01, + 2.4089e-01, 4.4554e-01, 3.2641e-01, 4.3071e-01, + 6.5669e-02, 3.6619e-01, 6.9264e-01, 7.7302e-01, + 6.5551e-01, 4.8090e-02, 3.4286e-01, 6.4302e-02, + 9.6403e-01, 7.7081e-01, 6.0460e-01, 4.8930e-01, + 7.6331e-01, 6.1378e-01, 7.4581e-01, 6.4943e-01, + 6.6800e-01, 9.2555e-01, 9.3781e-01, 7.1424e-01, + 3.9480e-01, 7.6845e-01, 9.4928e-01, 1.6757e-02, + 7.3400e-01, 5.1327e-01, 7.3558e-01, 1.5695e-01, + 6.7293e-01, 9.5435e-01, 9.1287e-01, 2.5381e-02, + 8.4456e-01, 7.6779e-01, 1.3407e-01, 4.9738e-01, + 3.9647e-01, 5.3527e-01, 7.3173e-01, 3.2717e-01, + 2.7642e-01, 1.7541e-01, 8.7538e-01, 5.3714e-01, + 4.0317e-01, 9.6258e-01, 4.9134e-01, 5.2103e-01, + 6.3584e-01, 7.8266e-01, 6.2083e-01, 7.1376e-01, + 5.7960e-01, 5.3449e-01, 7.5515e-01, 3.9838e-01, + 9.3057e-02, 7.9195e-01, 9.9938e-02, 3.2785e-01, + 4.1981e-01, 4.7350e-01, 2.9521e-01, 7.2738e-01, + 7.1675e-01, 9.1113e-01, 6.8622e-01, 3.1104e-01, + 4.7595e-01, 5.6348e-02, 6.2878e-01, 8.8733e-01, + 8.3583e-01, 3.5424e-01, 7.4340e-01, 6.9196e-01, + 8.6307e-01, 4.9523e-01, 1.9610e-01, 4.7483e-01, + 5.7196e-01, 5.1546e-01, 7.5100e-01, 5.9452e-01, + 2.3036e-01, 2.6958e-01, 5.3660e-01, 1.1357e-01, + 1.4815e-01, 4.3323e-01, 7.8068e-01, 7.5669e-01, + 5.1025e-01, 8.9680e-01, 2.9991e-01, 9.5303e-01, + 6.5093e-01, 1.8516e-01, 6.6969e-02, 1.1082e-01, + 8.5796e-02, 1.8005e-01, 8.5690e-02, 4.0885e-01, + 8.5941e-01, 5.4485e-02, 8.5646e-01, 9.8199e-01, + 5.0636e-01, 4.3617e-01, 5.9529e-01, 5.7098e-01, + 7.3113e-01, 9.0655e-01, 4.7307e-01, 6.9439e-01, + 9.5960e-01, 2.8637e-01, 4.1165e-01, 3.5498e-01, + 2.9302e-01, 7.1891e-01, 7.9570e-01, 5.6832e-01, + 7.0477e-01, 2.7348e-01, 9.5003e-01, 2.2469e-01, + 2.5175e-01, 4.8973e-01, 5.9989e-01, 5.8269e-01, + 7.9838e-01, 5.5642e-01, 6.1809e-01, 6.7618e-01, + 8.2227e-01, 5.4224e-01, 1.0585e-01, 3.0707e-01, + 8.6384e-01, 8.3680e-01, 8.1983e-01, 5.4882e-01, + 6.7569e-01, 4.0288e-01, 9.5827e-01, 6.4296e-01, + 4.5776e-01, 4.7685e-01, 4.7969e-01, 9.1368e-01, + 2.5314e-01, 8.9231e-01, 6.5064e-01, 1.3463e-01, + 7.7634e-02, 7.6612e-01, 7.6132e-01, 4.5487e-01, + 8.1562e-01, 3.9770e-01, 3.7874e-01, 9.8044e-01, + 2.9015e-01, 2.3310e-01, 8.9180e-02, 3.3477e-01, + 7.4886e-01, 7.7876e-01, 5.7465e-01, 6.7747e-01, + 6.3826e-01, 6.8923e-01, 2.2027e-01, 9.2721e-01, + 6.5802e-01, 8.6034e-01, 6.7590e-01, 3.0092e-01, + 5.0367e-01, 5.2007e-01, 5.4932e-01, 9.2163e-01, + 1.5539e-01, 8.3302e-01, 6.3467e-01, 6.7336e-01, + 9.6415e-01, 7.3161e-01, 5.1727e-01, 9.6905e-01, + 8.0804e-01, 8.6858e-02, 5.0096e-01, 9.7323e-01, + 5.0529e-01, 6.9268e-01, 8.5286e-01, 6.1778e-01, + 9.8231e-01, 3.3323e-01, 8.6429e-01, 7.8369e-02, + 4.1466e-01, 9.1520e-01, 5.0481e-01, 6.4411e-01, + 2.9477e-01, 8.0817e-01, 9.8288e-01, 3.3812e-01, + 2.4965e-01, 9.9967e-01, 9.0376e-01, 5.8973e-01, + 7.8162e-01, 6.5235e-01, 1.7058e-01, 4.2443e-01, + 6.6975e-01, 9.8723e-01, 6.7750e-01, 1.4445e-02, + 4.8293e-01, 3.9921e-01, 1.6541e-01, 3.0431e-01, + 7.0151e-01, 4.4106e-01, 3.5106e-02, 1.8337e-01, + 2.3382e-01, 2.3108e-01, 9.0945e-01, 9.0869e-01, + 2.5770e-01, 1.1305e-01, 3.0215e-01, 5.6599e-01, + 4.9016e-01, 1.0358e-01, 6.5084e-01, 2.1980e-01, + 2.7526e-01, 6.8575e-01, 3.8685e-01, 3.3360e-01, + 9.2841e-01, 2.3845e-01, 6.0353e-01, 4.7893e-01, + 2.1612e-01, 4.9916e-02, 6.1017e-01, 4.1103e-01, + 6.8532e-01, 8.6455e-02, 6.1925e-01, 1.9289e-01, + 2.1648e-01, 4.0255e-02, 7.4462e-01, 8.3120e-01, + 5.4511e-01, 9.3700e-02, 3.9437e-01, 7.9637e-01, + 5.2834e-01, 6.5519e-01, 9.8216e-01, 7.8679e-01, + 5.1865e-01, 2.6188e-01, 3.8483e-01, 1.0953e-01, + 6.0364e-01, 6.2100e-01, 2.7577e-01, 3.8468e-01, + 5.9031e-01, 1.4769e-01, 3.2718e-01, 7.6561e-01, + 7.0164e-01, 4.9655e-01, 8.9997e-01, 8.1649e-02, + 8.3568e-01, 3.7404e-01, 5.7489e-01, 4.8879e-01, + 3.3945e-01, 6.4600e-01, 3.3785e-02, 9.3062e-01, + 8.0442e-01, 4.2287e-01, 8.8652e-01, 2.5031e-01, + 5.4172e-02, 8.0831e-01, 9.0044e-01, 2.0783e-01, + 2.6264e-02, 6.3673e-01, 3.1357e-01, 1.3635e-02, + 9.4946e-01, 8.7749e-01, 6.3987e-01, 3.0051e-01, + 3.8978e-01, 3.9192e-01, 7.7167e-01, 2.5028e-01, + 6.3457e-01, 2.2326e-01, 2.1021e-01, 4.9092e-01, + 5.6111e-01, 6.4954e-01, 8.0426e-01, 4.5267e-02, + 7.2168e-01, 5.1283e-04, 9.1136e-01, 1.2495e-01, + 4.4895e-01, 9.3184e-01, 2.2892e-01, 5.9504e-01, + 5.6472e-02, 2.9795e-01, 4.0327e-01, 5.5233e-02, + 7.8699e-01, 9.1170e-02, 4.2592e-01, 2.8865e-01, + 9.5409e-01, 7.2826e-01, 6.7525e-01, 7.3618e-01, + 3.4218e-01, 6.9883e-01, 7.1871e-01, 2.0906e-01, + 9.9500e-01, 9.5206e-01, 1.0883e-01, 7.8057e-01, + 4.1855e-01, 1.7458e-01, 9.7395e-01, 3.9682e-01, + 7.6878e-01, 7.3827e-01, 2.9447e-01, 4.1030e-01, + 7.1074e-01, 4.2242e-01, 6.9407e-02, 1.0676e-01, + 3.7330e-01, 7.8475e-02, 2.3566e-01, 3.3687e-01, + 8.9509e-01, 5.6818e-01, 8.2692e-02, 2.1473e-01, + 2.7932e-01, 3.2494e-01, 9.5931e-01, 5.0787e-01, + 5.3320e-01, 8.9201e-01, 9.8617e-01, 3.2344e-01, + 7.5618e-01, 5.6291e-01, 1.7829e-01, 7.5177e-01, + 1.7789e-01, 5.7880e-01, 9.0026e-01, 6.1347e-03, + 1.1215e-01, 8.8491e-01, 7.7699e-02, 6.0626e-01, + 9.8867e-01, 4.0378e-01, 8.6001e-01, 4.4491e-01, + 3.1045e-02, 1.0014e-01, 8.3254e-01, 7.2285e-01, + 8.8978e-01, 3.3346e-01, 5.5897e-01, 7.5235e-01, + 3.0218e-01, 9.7073e-01, 8.0571e-01, 6.3659e-01, + 7.4468e-01, 8.8894e-02, 3.8364e-01, 8.3517e-01, + 7.1046e-01, 8.2789e-02, 9.9635e-01, 1.9280e-01, + 3.2091e-01, 6.0294e-01, 9.4375e-01, 7.4749e-01, + 6.7696e-01, 4.1623e-01, 7.4117e-02, 5.0351e-01, + 7.9718e-01, 7.1889e-01, 5.1471e-01, 7.8589e-01, + 9.1567e-01, 5.0537e-01, 1.4661e-01, 2.0153e-01, + 1.9491e-01, 6.4695e-01, 9.8462e-01, 6.0265e-01, + 2.7637e-01, 3.9293e-01, 1.7625e-01, 8.0870e-01, + 2.1159e-01, 5.9264e-01, 5.7012e-01, 5.9849e-01, + 5.3945e-01, 9.0767e-01, 5.0641e-01, 8.2994e-02, + 4.1407e-01, 8.5969e-01, 7.5631e-01, 9.7899e-01, + 3.0245e-01, 9.5165e-01, 5.6284e-01, 5.8693e-01, + 1.3760e-01, 8.9978e-01, 8.0792e-01, 6.6211e-01, + 5.6306e-01, 2.5657e-01, 7.2956e-01, 3.7115e-01, + 5.1520e-01, 8.2467e-01, 7.5545e-01, 9.4052e-01, + 9.7952e-01, 6.6546e-01, 7.8683e-01, 7.5895e-02, + 8.2766e-01, 9.3261e-01, 8.4123e-01, 7.0903e-01, + 8.6546e-01, 9.9407e-01, 5.9707e-01, 6.4446e-01, + 3.2013e-01, 4.5177e-01, 7.2474e-01, 9.5717e-01, + 9.2961e-01, 1.8631e-02, 1.2011e-01, 8.7293e-01, + 5.0934e-01, 1.2118e-01, 4.5119e-01, 3.9655e-01, + 9.6740e-01, 7.3842e-01, 5.3682e-01, 1.5135e-01, + 6.6126e-01, 6.5927e-01, 1.1407e-01, 4.1038e-01, + 1.6834e-01, 8.2535e-01, 7.0347e-02, 2.7263e-01, + 4.2171e-01, 2.8301e-01, 8.8235e-02, 2.2241e-01, + 4.6000e-01, 6.6548e-01, 1.8844e-01, 6.6034e-01, + 2.1227e-02, 3.8783e-02, 3.3827e-01, 4.7088e-01, + 9.7627e-01, 6.2968e-01, 6.3522e-01, 2.4334e-01, + 1.9212e-01, 1.3712e-01, 1.2686e-01, 3.0093e-01, + 9.4777e-01, 2.4785e-01, 9.8636e-01, 9.3583e-01, + 3.6026e-01, 2.2137e-01, 6.1133e-01, 9.1866e-02, + 3.6103e-01, 1.7489e-01, 4.5825e-01, 7.3822e-01, + 1.1665e-01, 3.6889e-01, 7.8219e-01, 1.6535e-01, + 7.7655e-01, 4.3396e-02, 4.5151e-01, 9.3061e-01, + 3.4963e-01, 6.3379e-01, 3.0356e-01, 7.9136e-01, + 2.1718e-01, 4.5984e-01, 8.5264e-01, 2.2071e-01, + 5.8333e-01, 3.7356e-01, 2.4578e-02, 6.6263e-01, + 7.4748e-01, 2.1894e-01, 2.5251e-01, 4.2144e-01, + 8.0678e-01, 1.2904e-01, 8.8791e-01, 2.4954e-01, + 5.5182e-01, 8.3078e-01, 8.0810e-01, 9.4817e-01, + 8.9573e-01, 5.1727e-01, 3.6179e-01, 3.5744e-01, + 8.1063e-01, 6.3401e-01, 8.4475e-01, 4.6719e-01, + 4.7935e-01, 8.8285e-01, 3.5260e-01, 8.1538e-01, + 2.9803e-01, 7.1210e-01, 9.6602e-01, 4.3768e-01, + 6.0388e-01, 7.5485e-01, 1.6097e-01, 7.3941e-01, + 1.2583e-01, 3.7349e-01, 2.7473e-02, 5.5611e-01, + 9.1308e-01, 4.4818e-01, 4.5070e-01, 3.2069e-01, + 1.4256e-01, 4.3464e-01, 2.5253e-01, 3.2121e-01, + 3.3224e-01, 3.9011e-01, 7.1556e-01, 5.7877e-01, + 8.0467e-01, 6.7205e-01, 1.0771e-01, 2.8920e-01, + 5.6940e-02, 4.6611e-02, 8.5119e-01, 7.0781e-01, + 1.4819e-01, 2.7250e-01, 8.7019e-01, 4.3230e-01, + 2.6507e-01, 9.2497e-01, 2.6065e-01, 6.7056e-01, + 4.7623e-01, 7.7408e-02, 7.8815e-01, 7.9083e-01, + 4.0135e-01, 4.4360e-01, 5.6498e-01, 2.1514e-01, + 4.4589e-01, 7.5491e-01, 9.7064e-01, 5.8939e-02, + 5.4940e-01, 7.9838e-01, 7.1091e-01, 2.8896e-01, + 8.1053e-01, 8.6197e-02, 9.4069e-01, 4.2678e-01, + 7.9980e-01, 3.9927e-01, 7.9838e-01, 7.2181e-01, + 6.1672e-01, 4.3699e-01, 1.9963e-01, 1.9977e-01, + 5.4157e-01, 6.4055e-01, 5.1059e-01, 6.7688e-01, + 4.1296e-01, 9.1355e-01, 9.9221e-01, 1.9937e-01, + 2.0294e-01, 4.8334e-01, 5.5805e-01, 5.7577e-01, + 9.8396e-01, 2.1795e-01, 1.8931e-01, 8.5201e-01, + 3.8953e-01, 6.9513e-02, 6.9908e-01, 4.2103e-01, + 5.1686e-01, 9.8052e-01, 4.8102e-01, 7.7828e-01, + 3.3843e-01, 9.9544e-01, 2.5451e-01, 9.0598e-01, + 7.5647e-02, 2.9191e-01, 6.4351e-01, 3.2196e-01, + 2.0623e-01, 8.6748e-01, 7.8486e-01, 6.7205e-01, + 3.1625e-01, 8.5128e-01, 8.8565e-01, 4.2137e-01, + 1.1091e-01, 4.9402e-01, 5.4089e-01, 6.8405e-01, + 2.9753e-01, 4.2060e-01, 9.1311e-01, 5.5459e-01, + 8.3026e-01, 4.6157e-01, 2.3608e-01, 5.8476e-01, + 2.5801e-01, 7.1950e-01, 9.1236e-01, 8.9678e-01, + 5.6071e-01, 4.7115e-01, 9.0639e-01, 1.3986e-01, + 5.1603e-01, 4.5611e-01, 5.2778e-01, 2.3069e-01, + 1.7250e-01, 6.1973e-01, 4.9448e-01, 7.8930e-01, + 6.9896e-01, 6.4817e-01, 4.7390e-01, 6.7748e-01, + 1.8072e-01, 9.9144e-01, 2.6587e-01, 6.0122e-01, + 2.1225e-01, 4.4200e-01, 4.8065e-01, 9.0465e-01, + 3.2260e-01, 2.5671e-01, 2.8894e-01, 2.4832e-01, + 7.5346e-01, 3.7883e-01, 2.2906e-01, 6.0232e-02, + 5.1161e-01, 7.4210e-02, 6.5179e-01, 5.1750e-01, + 8.8617e-01, 4.7427e-01, 6.8617e-01, 5.4228e-02, + 7.3517e-01, 7.3277e-01, 2.1593e-01, 8.7086e-01, + 2.5536e-01, 6.7634e-01, 4.0865e-01, 3.9570e-01, + 8.1394e-01, 6.7279e-01, 3.1018e-01, 7.9731e-01, + 3.2988e-01, 1.4131e-01, 2.7103e-02, 5.9738e-01, + 5.7453e-01, 9.5820e-01, 2.2775e-01, 5.9104e-01, + 5.1097e-01, 9.5412e-01, 9.8822e-01, 5.2242e-01, + 2.8580e-01, 6.6891e-01, 8.0483e-01, 9.6335e-01, + 8.8453e-01, 8.3167e-01, 7.5733e-01, 9.4445e-01, + 3.0266e-01, 9.4298e-01, 6.4349e-01, 3.7207e-01, + 2.8157e-01, 9.8279e-01, 5.2135e-01, 9.2412e-01, + 3.9414e-01, 1.9883e-01, 1.0428e-01, 4.4835e-01, + 5.4509e-01, 2.9717e-01, 8.8737e-01, 3.2817e-01, + 8.1706e-01, 5.4337e-01, 3.5309e-02, 6.1329e-01, + 2.4008e-01, 8.6714e-01, 8.2432e-01, 8.6613e-01, + 4.7304e-01, 8.0100e-01, 5.9219e-01, 9.1623e-01, + 8.9663e-01, 8.4183e-01, 6.1959e-01, 2.5572e-01, + 5.3324e-01, 8.7137e-01, 2.3142e-01, 1.2987e-01, + 8.7470e-01, 3.2674e-01, 7.0319e-01, 6.8691e-01, + 6.0352e-02, 1.0758e-01, 8.0610e-01, 1.4246e-01, + 8.5753e-01, 3.1758e-01, 7.2485e-02, 4.9372e-01, + 5.9390e-01, 8.6305e-01, 9.5054e-01, 6.1048e-01, + 2.5868e-01, 6.7061e-01, 5.4914e-02, 3.1942e-01, + 3.2211e-01, 5.9735e-02, 6.3294e-01, 5.3201e-01, + 3.2903e-01, 3.8267e-01, 4.1705e-01, 2.8449e-01, + 9.6245e-01, 9.8518e-01, 3.5270e-01, 3.0525e-01, + 5.7444e-01, 3.8535e-01, 7.2539e-01, 9.0836e-01, + 2.5651e-01, 1.1982e-01, 7.7055e-01, 4.9427e-01, + 7.7750e-01, 1.2286e-01, 7.6843e-01, 9.7353e-01, + 3.1458e-03, 4.9794e-01, 5.4164e-01, 2.7698e-01, + 9.4323e-01, 6.8588e-01, 4.4740e-01, 2.5060e-01, + 6.3933e-01, 1.5948e-01, 8.0108e-01, 1.6827e-01, + 7.7705e-01, 3.7266e-01, 1.1629e-01, 1.2457e-01, + 1.7987e-01, 1.7544e-01, 8.9379e-01, 9.9154e-01, + 1.9943e-01, 4.3856e-01, 8.6042e-01, 4.5407e-01, + 2.6806e-01, 5.9331e-01, 6.6726e-02, 8.4538e-01, + 4.3269e-01, 6.3831e-01, 8.4049e-01, 5.6436e-01, + 7.0962e-01, 2.9599e-01, 3.5067e-01, 4.4666e-01, + 1.2939e-01, 9.4365e-01, 7.8824e-02, 2.4235e-01, + 3.1459e-02, 4.0226e-01, 6.6546e-01, 1.9632e-01, + 1.0086e-01, 6.9880e-01, 4.8300e-01, 8.2713e-01, + 7.4273e-01, 3.5099e-02, 2.7427e-01, 6.4444e-01, + 3.3388e-01, 5.7429e-01, 6.7086e-01, 8.3286e-01, + 8.6153e-02, 6.5216e-02, 7.5920e-01, 4.8135e-01, + 3.9134e-01, 2.2790e-01, 4.1788e-01, 3.1685e-01, + 4.6375e-01, 7.1242e-01, 9.2845e-01, 4.7767e-01, + 8.8388e-01, 5.0231e-01, 8.8959e-01, 1.3500e-01, + 5.5147e-01, 3.4307e-01, 8.1439e-01, 5.6923e-01, + 1.5864e-01, 2.8270e-01, 7.7082e-01, 9.5930e-01, + 6.5183e-01, 2.8440e-01, 8.4987e-01, 4.0660e-01, + 4.5850e-01, 7.9000e-01, 7.4111e-01, 9.7289e-02, + 7.1325e-01, 4.8387e-01, 8.8020e-01, 9.2394e-01, + 2.2972e-01, 1.5188e-01, 7.6577e-01, 9.9898e-01, + 3.1108e-01, 6.0390e-01, 1.0443e-01, 2.6637e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.5445, 0.4387, 0.2146, ..., 0.9330, 0.4366, 0.2965]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 4.871366500854492 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 147223 -ss 10000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.998100280761719} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), - col_indices=tensor([2253, 476, 8386, 498, 9957, 4225, 8921, 5276, 6649, - 8361, 9030, 5103, 3236, 7146, 9127, 2162, 9108, 6109, - 7536, 3391, 5945, 596, 2632, 4253, 1582, 1210, 8101, - 3475, 1476, 5207, 5384, 5794, 8608, 7628, 6539, 4656, - 3584, 5833, 2648, 8342, 6408, 8271, 1628, 7349, 575, - 7362, 4397, 3774, 5414, 2631, 5850, 2642, 3145, 3161, - 377, 8231, 2181, 5528, 2062, 2662, 8705, 9554, 9972, - 7839, 4744, 1749, 9566, 8398, 2429, 4619, 8801, 4605, - 923, 3311, 3483, 3043, 7643, 9036, 8304, 1912, 6129, - 5169, 5472, 5945, 2394, 4490, 494, 3501, 5216, 6603, - 665, 7641, 281, 3907, 8487, 5619, 9635, 4755, 2164, - 2784, 5175, 1775, 6954, 9274, 7097, 8360, 5171, 9211, - 7466, 7749, 191, 4501, 4484, 7642, 624, 2893, 5539, - 843, 8041, 8, 7403, 371, 2730, 286, 1593, 634, - 6431, 3385, 7870, 1108, 7997, 9418, 6500, 144, 9317, - 8997, 4648, 3107, 6947, 7390, 1587, 6749, 1802, 1348, - 6123, 1209, 9744, 121, 7082, 1344, 5264, 3961, 337, - 1330, 8627, 8947, 5889, 2601, 7669, 6120, 1019, 9499, - 9644, 7263, 5542, 2071, 8937, 953, 6648, 3926, 8115, - 5125, 7691, 352, 2444, 9825, 446, 2457, 8890, 6114, - 444, 1431, 454, 7900, 764, 5672, 4233, 944, 6601, - 3851, 1429, 6524, 7034, 1142, 5431, 6286, 5413, 2636, - 6329, 8315, 3414, 2949, 3506, 3226, 5971, 847, 3600, - 992, 324, 7224, 5784, 6318, 83, 3862, 582, 144, - 9213, 7884, 7303, 9318, 282, 388, 7306, 5058, 5981, - 4403, 1069, 8491, 3796, 8782, 1118, 9875, 4797, 4628, - 7243, 6257, 3754, 989, 2393, 8967, 8200, 5340, 3683, - 3434, 6938, 77, 3597, 9197, 8552, 9020, 7876, 3038, - 3483, 5985, 8914, 6258, 909, 1009, 5616, 7735, 6306, - 8373, 8632, 9452, 2154, 850, 8434, 629, 2534, 4582, - 4794, 9281, 8393, 6244, 3735, 4916, 6011, 2651, 609, - 7143, 4921, 4268, 6408, 1599, 8894, 2479, 2987, 832, - 3094, 5886, 3124, 7081, 5811, 3779, 5580, 6485, 5673, - 2218, 6770, 8285, 7334, 9715, 9128, 9532, 7461, 5679, - 8558, 8501, 477, 1192, 7608, 1319, 5616, 6695, 471, - 3772, 635, 9729, 2007, 6636, 676, 3085, 7945, 9975, - 3381, 2953, 8697, 7684, 3880, 2799, 6966, 7129, 4996, - 6015, 4533, 1443, 3747, 1336, 2630, 929, 5196, 3570, - 9424, 2273, 2381, 5266, 1572, 6420, 3875, 6027, 7141, - 6677, 6980, 3009, 2751, 11, 9306, 7709, 5830, 3046, - 9401, 5663, 1417, 3815, 8979, 4391, 9801, 7149, 456, - 5864, 1995, 124, 2256, 64, 7564, 4815, 7391, 5180, - 1771, 6764, 7376, 8538, 3458, 9772, 5308, 4242, 3324, - 1587, 8262, 7034, 8132, 3536, 1819, 291, 5025, 8022, - 2479, 2185, 738, 6526, 1167, 198, 6694, 4805, 3411, - 1094, 5203, 6491, 3786, 3097, 14, 5114, 9852, 2892, - 1099, 3181, 7333, 9943, 2852, 3882, 1189, 7485, 801, - 7674, 1836, 2040, 48, 9611, 831, 9698, 3539, 9064, - 2385, 8967, 1047, 3548, 8644, 1830, 2701, 4898, 5632, - 4136, 454, 5669, 6049, 4736, 9501, 135, 4897, 1534, - 9703, 7765, 8595, 8435, 2609, 6015, 2453, 9389, 2270, - 465, 7417, 430, 7171, 8871, 1021, 7527, 7908, 5769, - 8048, 3197, 8416, 7025, 5256, 5349, 524, 2853, 25, - 2139, 4464, 8829, 8865, 1374, 8061, 5300, 5876, 877, - 5876, 5689, 2903, 4858, 8712, 2885, 8268, 2876, 745, - 8136, 3532, 1841, 2997, 5759, 8795, 2224, 2888, 3987, - 7096, 5077, 4678, 314, 6278, 2146, 7763, 289, 9645, - 6451, 5383, 2666, 2568, 8764, 9199, 1976, 9869, 1871, - 2021, 3166, 6570, 1222, 7177, 2488, 2338, 7477, 1189, - 3030, 3721, 1710, 1232, 7961, 4126, 308, 4200, 965, - 9904, 4017, 6562, 6332, 7006, 5924, 2802, 7274, 1169, - 3009, 4422, 6534, 9656, 208, 8761, 850, 9534, 4682, - 2555, 6198, 6368, 7692, 5662, 2129, 3691, 4273, 9508, - 2696, 7307, 3188, 6647, 5727, 8700, 4207, 682, 9106, - 2149, 4986, 5637, 1941, 499, 3102, 1738, 6760, 4204, - 3978, 8966, 6178, 2258, 6397, 4255, 8893, 3201, 8526, - 2337, 7166, 5403, 8700, 6301, 4346, 7735, 2026, 5837, - 6048, 4330, 7066, 9100, 599, 3049, 8143, 7838, 9560, - 19, 1997, 7509, 3059, 631, 1554, 7487, 3158, 9740, - 4447, 7007, 6865, 7805, 8858, 9961, 4470, 1340, 3019, - 3976, 7670, 3406, 7333, 9623, 8635, 8755, 230, 7678, - 300, 7869, 1930, 5050, 6663, 7893, 2260, 9909, 3177, - 7398, 7540, 8321, 1906, 4295, 342, 9074, 2945, 347, - 8837, 4083, 5991, 9167, 6116, 5351, 3445, 3983, 8585, - 2090, 6146, 270, 9204, 4432, 3628, 6533, 7536, 2391, - 1685, 2450, 9637, 3683, 2462, 3807, 1036, 3839, 228, - 3925, 3816, 8324, 6421, 5687, 5110, 7733, 1652, 4160, - 1137, 5865, 3286, 9592, 2840, 3618, 4485, 311, 4669, - 928, 4264, 6305, 9097, 2633, 2665, 4297, 1264, 4645, - 3225, 4230, 5094, 1069, 5003, 6336, 5540, 4439, 9466, - 7232, 5756, 3182, 2102, 2707, 1311, 2637, 7030, 3968, - 6272, 1505, 4585, 7602, 4311, 2082, 9202, 5354, 6351, - 1441, 8362, 3808, 4841, 9724, 9207, 3877, 8352, 7408, - 4030, 2185, 9052, 7226, 3336, 3945, 8666, 7938, 8782, - 4100, 8086, 5984, 3626, 2672, 7372, 3546, 2561, 4074, - 8717, 8180, 9385, 7597, 5929, 7174, 2432, 8780, 9283, - 6149, 5146, 6441, 6822, 8442, 9156, 429, 7461, 4279, - 4570, 2502, 7584, 4060, 1992, 8593, 5213, 1470, 212, - 8012, 2299, 9100, 164, 6950, 318, 3931, 8854, 2544, - 8123, 4669, 3733, 1762, 1623, 624, 8523, 8469, 8314, - 6018, 2782, 641, 6358, 3665, 84, 4407, 4887, 7885, - 6216, 5842, 7476, 6155, 3633, 122, 5167, 1130, 9085, - 2101, 4068, 9401, 1920, 9958, 6623, 2692, 1400, 9977, - 747, 5121, 4933, 3403, 6168, 2497, 4983, 1046, 368, - 4188, 2792, 7678, 3307, 6594, 5130, 3360, 4616, 6665, - 756, 7347, 9242, 1770, 5077, 4147, 7161, 4247, 7564, - 9777, 7509, 1971, 6841, 9178, 3219, 3923, 5557, 1156, - 6659, 5854, 755, 7951, 3645, 5002, 5996, 5298, 2962, - 664, 910, 9706, 559, 9086, 7185, 7068, 8873, 3043, - 6847, 899, 9812, 5204, 6576, 9492, 2795, 1137, 2641, - 3328, 9343, 564, 9305, 2923, 1111, 1779, 3369, 6605, - 4019, 1610, 880, 1451, 9582, 5536, 5942, 8693, 761, - 2047, 8128, 3665, 344, 200, 829, 921, 6070, 5139, - 7786, 1227, 845, 2875, 8428, 3177, 7508, 8640, 3794, - 1021, 1201, 793, 4861, 1815, 805, 934, 278, 9733, - 3485, 6488, 9019, 3305, 9442, 5657, 1096, 9025, 788, - 9251, 8928, 2037, 6123, 8627, 9039, 338, 9114, 5248, - 6939, 4216, 482, 938, 2695, 7299, 281, 7594, 308, - 2340, 3138, 4712, 2333, 1413, 5695, 6460, 8022, 5681, - 9297, 3452, 7181, 2694, 9869, 6366, 7679, 706, 6973, - 7311, 612, 6829, 395, 1800, 3281, 659, 7900, 3453, - 8264]), - values=tensor([0.2353, 0.1782, 0.2258, 0.1855, 0.4423, 0.9398, 0.9665, - 0.8674, 0.3458, 0.4757, 0.8998, 0.6019, 0.2886, 0.4221, - 0.6484, 0.9801, 0.0245, 0.8132, 0.5707, 0.2417, 0.1923, - 0.3961, 0.7153, 0.5454, 0.4598, 0.6610, 0.4260, 0.1997, - 0.0793, 0.4958, 0.2937, 0.5847, 0.0359, 0.4976, 0.2729, - 0.8319, 0.8665, 0.9690, 0.6840, 0.6532, 0.0099, 0.4971, - 0.1625, 0.5070, 0.5926, 0.1981, 0.5308, 0.2462, 0.8898, - 0.8763, 0.9767, 0.5809, 0.2706, 0.9621, 0.7549, 0.3768, - 0.9278, 0.5204, 1.0000, 0.2137, 0.4229, 0.0576, 0.7793, - 0.1382, 0.0969, 0.2743, 0.5872, 0.0691, 0.9723, 0.3887, - 0.0943, 0.1416, 0.4521, 0.8468, 0.5301, 0.2564, 0.1849, - 0.6969, 0.0750, 0.3222, 0.0861, 0.6703, 0.5693, 0.6477, - 0.1966, 0.4584, 0.8691, 0.6805, 0.2765, 0.7859, 0.7443, - 0.9810, 0.3422, 0.7561, 0.4489, 0.0063, 0.4574, 0.9083, - 0.1002, 0.7936, 0.5968, 0.0707, 0.7668, 0.6483, 0.7189, - 0.4981, 0.1607, 0.6888, 0.0829, 0.7417, 0.2211, 0.2819, - 0.9757, 0.3594, 0.7768, 0.9804, 0.6903, 0.7514, 0.7754, - 0.1849, 0.3762, 0.7186, 0.0990, 0.6769, 0.3048, 0.1519, - 0.9897, 0.3153, 0.4324, 0.9344, 0.0248, 0.5611, 0.8766, - 0.7837, 0.4802, 0.9675, 0.5851, 0.5862, 0.7681, 0.0508, - 0.6572, 0.7537, 0.5656, 0.1112, 0.2042, 0.7151, 0.5006, - 0.5707, 0.5865, 0.0130, 0.0664, 0.1659, 0.3827, 0.7062, - 0.3658, 0.7399, 0.8337, 0.0364, 0.6575, 0.4213, 0.2326, - 0.9789, 0.6253, 0.6894, 0.0904, 0.7227, 0.6683, 0.5135, - 0.2681, 0.8516, 0.3120, 0.3633, 0.7677, 0.8894, 0.6031, - 0.0593, 0.5694, 0.3693, 0.1344, 0.6320, 0.4248, 0.2232, - 0.6425, 0.4196, 0.6058, 0.4603, 0.3503, 0.6498, 0.4788, - 0.4362, 0.9373, 0.3056, 0.4705, 0.4236, 0.5704, 0.4843, - 0.9620, 0.1021, 0.7610, 0.0814, 0.6722, 0.4110, 0.7771, - 0.4689, 0.6626, 0.4133, 0.8867, 0.2756, 0.4896, 0.2682, - 0.0517, 0.9650, 0.2920, 0.3181, 0.0581, 0.4257, 0.5482, - 0.1617, 0.1381, 0.1610, 0.5911, 0.2667, 0.9487, 0.9879, - 0.0731, 0.9821, 0.6859, 0.7774, 0.3801, 0.7192, 0.6019, - 0.8431, 0.3503, 0.7171, 0.9187, 0.3757, 0.4129, 0.6595, - 0.8404, 0.7307, 0.0031, 0.3753, 0.7273, 0.5407, 0.3289, - 0.0344, 0.5252, 0.4677, 0.4304, 0.6884, 0.3139, 0.1012, - 0.8221, 0.2497, 0.6689, 0.0923, 0.6619, 0.4437, 0.6033, - 0.6195, 0.2430, 0.8474, 0.1926, 0.1247, 0.2040, 0.4323, - 0.3765, 0.3732, 0.1982, 0.9063, 0.4932, 0.8726, 0.1883, - 0.5386, 0.5904, 0.3114, 0.6236, 0.7317, 0.9186, 0.7537, - 0.3131, 0.6360, 0.0203, 0.1384, 0.9474, 0.6232, 0.4153, - 0.3962, 0.5622, 0.0194, 0.2466, 0.5790, 0.2534, 0.9447, - 0.0912, 0.5169, 0.8722, 0.3340, 0.8679, 0.7267, 0.7460, - 0.9842, 0.9486, 0.7102, 0.2158, 0.1190, 0.4696, 0.4126, - 0.7215, 0.0963, 0.0323, 0.1045, 0.9260, 0.9084, 0.1646, - 0.9534, 0.2639, 0.5164, 0.0732, 0.7655, 0.7814, 0.7669, - 0.7098, 0.0085, 0.3405, 0.5626, 0.5535, 0.8817, 0.1845, - 0.6215, 0.5931, 0.8487, 0.9499, 0.3328, 0.6443, 0.7090, - 0.5190, 0.0648, 0.1536, 0.0726, 0.4312, 0.3042, 0.2809, - 0.5510, 0.4125, 0.2830, 0.2534, 0.7475, 0.2773, 0.9025, - 0.1924, 0.9863, 0.2745, 0.5967, 0.2546, 0.0514, 0.5147, - 0.5375, 0.0157, 0.3671, 0.5558, 0.6812, 0.5989, 0.4999, - 0.3845, 0.5625, 0.8284, 0.1874, 0.7319, 0.2837, 0.3265, - 0.1183, 0.5433, 0.1711, 0.6828, 0.1592, 0.6204, 0.3344, - 0.7467, 0.9883, 0.3898, 0.3093, 0.3595, 0.7632, 0.4240, - 0.4645, 0.2155, 0.9780, 0.3326, 0.3188, 0.3761, 0.9520, - 0.9066, 0.1536, 0.7306, 0.0318, 0.2393, 0.4902, 0.8550, - 0.1201, 0.9456, 0.2522, 0.7416, 0.6499, 0.6393, 0.6763, - 0.4288, 0.7816, 0.5055, 0.1002, 0.8372, 0.4266, 0.9321, - 0.5332, 0.9639, 0.3621, 0.7693, 0.2079, 0.2135, 0.2986, - 0.8318, 0.1809, 0.6887, 0.7968, 0.4485, 0.9968, 0.3844, - 0.9171, 0.8948, 0.0563, 0.2633, 0.4923, 0.2338, 0.8688, - 0.5756, 0.7592, 0.2458, 0.9535, 0.3897, 0.0756, 0.5022, - 0.9240, 0.5638, 0.2016, 0.6776, 0.2604, 0.4394, 0.2034, - 0.8727, 0.0420, 0.7949, 0.8553, 0.2219, 0.2845, 0.7576, - 0.0822, 0.9063, 0.8381, 0.4579, 0.9659, 0.9046, 0.2436, - 0.1292, 0.6101, 0.9870, 0.8638, 0.9652, 0.7550, 0.0480, - 0.6712, 0.2958, 0.3868, 0.8628, 0.0355, 0.3204, 0.2060, - 0.3250, 0.1398, 0.3678, 0.5695, 0.7809, 0.4826, 0.0989, - 0.5059, 0.4212, 0.2406, 0.9781, 0.3638, 0.1720, 0.8480, - 0.4271, 0.8091, 0.9918, 0.3000, 0.6606, 0.8454, 0.5300, - 0.5252, 0.0635, 0.9108, 0.8222, 0.1548, 0.0985, 0.8547, - 0.6072, 0.7014, 0.3452, 0.2884, 0.3585, 0.8758, 0.1001, - 0.4468, 0.6047, 0.1332, 0.1165, 0.1894, 0.8703, 0.9388, - 0.5289, 0.0961, 0.3963, 0.4088, 0.0353, 0.4726, 0.0497, - 0.1657, 0.1332, 0.8424, 0.3770, 0.3753, 0.2990, 0.7492, - 0.3599, 0.1006, 0.2027, 0.2482, 0.2160, 0.7178, 0.4018, - 0.5121, 0.1620, 0.1861, 0.9097, 0.1876, 0.6771, 0.7242, - 0.1984, 0.8642, 0.7265, 0.8026, 0.0894, 0.7046, 0.3341, - 0.9662, 0.8060, 0.2941, 0.3211, 0.8905, 0.6195, 0.5768, - 0.2107, 0.9394, 0.6531, 0.0393, 0.7642, 0.5794, 0.9121, - 0.7424, 0.9481, 0.2357, 0.5093, 0.4284, 0.6020, 0.0803, - 0.7598, 0.8604, 0.7256, 0.6093, 0.5086, 0.3756, 0.6412, - 0.8776, 0.9545, 0.5824, 0.6562, 0.1354, 0.9933, 0.2672, - 0.0285, 0.8526, 0.6755, 0.7049, 0.2854, 0.5057, 0.9990, - 0.9196, 0.6274, 0.2554, 0.2122, 0.3370, 0.3386, 0.3169, - 0.7733, 0.2486, 0.2674, 0.1403, 0.6963, 0.7088, 0.3851, - 0.2191, 0.3001, 0.6826, 0.5536, 0.2177, 0.6052, 0.8636, - 0.9715, 0.2358, 0.4881, 0.0889, 0.8262, 0.1997, 0.8162, - 0.0582, 0.4706, 0.6276, 0.9860, 0.7618, 0.7273, 0.9791, - 0.8954, 0.1469, 0.0188, 0.2048, 0.3781, 0.0089, 0.6219, - 0.3027, 0.8627, 0.8771, 0.8271, 0.9922, 0.6041, 0.4076, - 0.3944, 0.6122, 0.9607, 0.8934, 0.1106, 0.5422, 0.8581, - 0.0265, 0.3612, 0.6596, 0.0347, 0.8474, 0.0167, 0.6080, - 0.1079, 0.0585, 0.8435, 0.3170, 0.7671, 0.7858, 0.4844, - 0.7878, 0.3447, 0.0805, 0.1858, 0.2807, 0.2509, 0.8630, - 0.6871, 0.3052, 0.7960, 0.0089, 0.0988, 0.1041, 0.9455, - 0.5949, 0.2156, 0.7655, 0.1696, 0.7121, 0.9759, 0.7770, - 0.1164, 0.5865, 0.6119, 0.4107, 0.4022, 0.3372, 0.8928, - 0.1138, 0.9831, 0.7790, 0.4196, 0.4976, 0.6814, 0.3419, - 0.7406, 0.3991, 0.0289, 0.5356, 0.4211, 0.2193, 0.0087, - 0.7933, 0.3929, 0.5198, 0.7999, 0.8401, 0.3842, 0.1942, - 0.7014, 0.8914, 0.6002, 0.7161, 0.4335, 0.9511, 0.9698, - 0.0936, 0.2259, 0.4025, 0.3622, 0.8372, 0.2849, 0.3400, - 0.6678, 0.0346, 0.4859, 0.5633, 0.8356, 0.4528, 0.6768, - 0.5972, 0.3821, 0.3636, 0.8229, 0.2322, 0.7735, 0.1857, - 0.5068, 0.3651, 0.7864, 0.7204, 0.2674, 0.3027, 0.3049, - 0.5230, 0.1538, 0.4601, 0.6939, 0.1634, 0.2994, 0.0774, - 0.2376, 0.2841, 0.3050, 0.0617, 0.7215, 0.0305, 0.8728, - 0.2061, 0.2378, 0.0375, 0.7683, 0.9988, 0.6914, 0.1107, - 0.0736, 0.9019, 0.7942, 0.2277, 0.9235, 0.3860, 0.9262, - 0.7040, 0.3201, 0.0612, 0.4204, 0.1116, 0.4348, 0.3602, - 0.5310, 0.7646, 0.4236, 0.0975, 0.2950, 0.0345, 0.6622, - 0.4405, 0.4799, 0.0829, 0.1177, 0.8585, 0.5586, 0.5044, - 0.5414, 0.8945, 0.8002, 0.9645, 0.1886, 0.9038, 0.5484, - 0.0204, 0.8519, 0.5493, 0.4895, 0.7530, 0.9959, 0.2604, - 0.6691, 0.3460, 0.4685, 0.0621, 0.3649, 0.2189, 0.2904, - 0.8808, 0.2042, 0.2147, 0.3779, 0.4607, 0.2132, 0.9129, - 0.9209, 0.1822, 0.2024, 0.8409, 0.7644, 0.5983, 0.7859, - 0.2499, 0.4718, 0.4239, 0.7014, 0.1942, 0.2520, 0.4721, - 0.6679, 0.1025, 0.1320, 0.3436, 0.3961, 0.6327, 0.2792, - 0.5959, 0.5798, 0.2139, 0.0897, 0.6923, 0.6952, 0.9848, - 0.8212, 0.0136, 0.4390, 0.5528, 0.4977, 0.2278, 0.8417, - 0.4814, 0.4675, 0.3121, 0.8191, 0.1734, 0.1167, 0.3309, - 0.1047, 0.9547, 0.3483, 0.7649, 0.9901, 0.8778, 0.3147, - 0.6047, 0.5848, 0.7965, 0.7107, 0.9034, 0.8508, 0.2629, - 0.5257, 0.3152, 0.5617, 0.9414, 0.6428, 0.5980, 0.7990, - 0.4296, 0.1560, 0.5798, 0.0593, 0.1015, 0.7821, 0.4172, - 0.6000, 0.8223, 0.9921, 0.9472, 0.7984, 0.4961, 0.5188, - 0.8866, 0.4976, 0.6972, 0.4976, 0.6772, 0.6002, 0.2993, - 0.7316, 0.1629, 0.5415, 0.8855, 0.6732, 0.5311, 0.0305, - 0.3944, 0.9823, 0.1791, 0.9728, 0.6487, 0.2106, 0.8214, - 0.7792, 0.5466, 0.7555, 0.1071, 0.9621, 0.6549, 0.3949, - 0.9203, 0.0732, 0.7772, 0.5887, 0.2841, 0.0951, 0.4007, - 0.4779, 0.0368, 0.9097, 0.4207, 0.1401, 0.8859, 0.1233, - 0.4669, 0.0737, 0.9870, 0.7542, 0.8903, 0.5909, 0.6027, - 0.6678, 0.8937, 0.5338, 0.9161, 0.2478, 0.3565, 0.6401, - 0.1779, 0.3402, 0.7089, 0.6358, 0.7531, 0.5739, 0.2462, - 0.8489, 0.2223, 0.5307, 0.8218, 0.9545, 0.4531, 0.9697, - 0.8082, 0.7093, 0.6366, 0.5366, 0.4305, 0.2988, 0.2509, - 0.2966, 0.3305, 0.0533, 0.9515, 0.3749, 0.2751, 0.9848, - 0.8736, 0.1427, 0.2371, 0.5146, 0.5425, 0.6733, 0.7992, - 0.8399, 0.9753, 0.8351, 0.3146, 0.2432, 0.5413]), + col_indices=tensor([ 606, 4248, 4323, 142, 3267, 1209, 7616, 5137, 8211, + 6424, 2299, 2295, 132, 1237, 207, 4471, 8426, 1510, + 3485, 6960, 5069, 6876, 5759, 6010, 6198, 5515, 1057, + 6920, 9155, 4894, 8077, 2579, 7160, 9343, 5510, 6273, + 3046, 6095, 9498, 4568, 7882, 4172, 6457, 7199, 2821, + 8109, 7947, 3059, 5273, 811, 3090, 6904, 7921, 941, + 171, 1700, 8078, 8915, 5888, 6297, 3017, 6368, 5232, + 3121, 6921, 1954, 1701, 989, 2512, 3553, 4586, 8676, + 4195, 7666, 522, 8800, 4183, 4215, 5436, 4713, 8751, + 9665, 2209, 2880, 8327, 8043, 3725, 5157, 5205, 5068, + 5472, 2221, 9235, 5844, 1615, 5209, 8676, 880, 3145, + 5350, 6766, 607, 1821, 2811, 5587, 4952, 36, 972, + 9657, 5891, 932, 6251, 2971, 8136, 8846, 5746, 6772, + 3335, 9210, 5699, 6015, 5058, 4114, 1121, 1345, 4570, + 3080, 1837, 5077, 2774, 60, 9761, 283, 1953, 8754, + 568, 8363, 7504, 4312, 2950, 8818, 3615, 7260, 5054, + 9479, 8823, 817, 4247, 8916, 458, 1663, 1516, 8921, + 8262, 3930, 5511, 4167, 1454, 227, 9082, 8167, 6759, + 4104, 2365, 4891, 7213, 8479, 3335, 3691, 5216, 8378, + 1063, 5818, 8471, 7448, 5050, 8971, 747, 666, 6626, + 6463, 5721, 7264, 5789, 105, 7831, 7486, 5643, 8037, + 3964, 1225, 7868, 6793, 785, 9337, 463, 785, 4486, + 40, 8639, 6486, 5799, 220, 7289, 3630, 4023, 9716, + 636, 3153, 9820, 4041, 7979, 6263, 5265, 4683, 9203, + 90, 7642, 420, 3880, 2822, 376, 3766, 4385, 838, + 7707, 6033, 8983, 6271, 3139, 9042, 3814, 2813, 2724, + 6271, 5387, 8121, 7195, 5117, 5794, 8947, 1085, 4429, + 160, 2993, 9952, 7440, 7699, 3817, 18, 5719, 6435, + 6095, 7069, 731, 9481, 9394, 2426, 4205, 2461, 3873, + 8586, 4374, 7356, 5004, 2798, 7617, 2197, 119, 2470, + 3245, 8733, 6824, 4746, 9120, 2061, 7077, 2855, 8255, + 3205, 7568, 3053, 9530, 1111, 6923, 2083, 2934, 8128, + 5682, 8762, 6169, 7878, 5288, 2262, 4469, 7426, 1628, + 8495, 4564, 2858, 9806, 1173, 5731, 2322, 8964, 1865, + 7016, 9059, 5039, 2002, 1262, 7718, 4777, 1962, 1879, + 7855, 7890, 8641, 1099, 829, 2515, 1746, 2320, 6687, + 4799, 4569, 6237, 125, 2360, 7731, 401, 9623, 7974, + 7957, 893, 162, 8581, 115, 4518, 1206, 9451, 4274, + 8143, 5673, 5773, 9287, 9034, 6759, 2616, 4836, 638, + 2832, 3042, 3961, 9127, 7640, 5801, 3757, 8870, 8049, + 7486, 8964, 1399, 684, 1029, 2622, 6759, 2002, 3761, + 9818, 252, 8051, 7124, 5540, 8162, 333, 6237, 8228, + 7539, 7326, 3539, 9730, 3200, 1285, 3058, 6960, 9438, + 3335, 118, 848, 7603, 2443, 3021, 5193, 1159, 4828, + 5979, 3020, 6180, 8297, 2434, 8432, 873, 6202, 7493, + 1203, 4541, 547, 3753, 2874, 591, 2074, 4910, 3558, + 8, 8298, 2922, 6062, 8645, 3039, 7096, 8203, 433, + 4098, 2978, 5201, 220, 4789, 9244, 7862, 3711, 8615, + 7690, 3102, 7583, 2602, 5733, 1120, 4841, 144, 8214, + 5416, 404, 6971, 805, 6355, 8972, 3062, 8352, 2931, + 889, 7464, 2057, 2241, 2991, 9880, 133, 6643, 7302, + 3644, 4493, 6722, 9152, 4033, 7880, 8852, 4724, 5057, + 855, 3221, 7385, 5224, 5527, 5418, 5692, 9101, 2016, + 4500, 7558, 4991, 2183, 8431, 5687, 826, 8185, 7512, + 2034, 7269, 9017, 5667, 1066, 3954, 6620, 6000, 5735, + 4170, 6764, 5652, 6631, 3447, 1745, 1777, 3216, 7230, + 9533, 1387, 2874, 521, 745, 8458, 5566, 3373, 8999, + 2967, 8776, 9639, 3523, 831, 3365, 1405, 3704, 2518, + 8736, 9840, 8611, 7168, 974, 9007, 4762, 6891, 9021, + 6430, 9209, 301, 1699, 2870, 8888, 7910, 1671, 663, + 5112, 5271, 1358, 1676, 8365, 1780, 7972, 1361, 1045, + 1410, 4989, 2560, 1704, 6356, 9942, 2422, 9763, 6643, + 1212, 5204, 5812, 5025, 7667, 8288, 576, 8273, 6833, + 9949, 6536, 5359, 6612, 7293, 5641, 1851, 335, 4310, + 5189, 2075, 5757, 8286, 7613, 8539, 4264, 7571, 1867, + 7380, 7067, 1, 1197, 3144, 5717, 7323, 4837, 5709, + 8246, 2292, 5490, 4382, 1545, 1139, 9329, 6740, 703, + 1593, 798, 7486, 9746, 3819, 8833, 6776, 5180, 5052, + 2319, 7164, 4881, 5400, 7841, 2215, 554, 7675, 7385, + 9306, 6355, 6231, 9361, 2385, 796, 4758, 7147, 5797, + 8281, 3852, 8531, 1545, 8108, 6926, 7059, 4504, 4531, + 7506, 124, 7458, 3327, 3628, 7556, 4417, 5016, 2525, + 7489, 8555, 8443, 3229, 5225, 3661, 6918, 4100, 8017, + 696, 3226, 8086, 741, 4257, 7752, 9762, 5276, 7602, + 5466, 6581, 5529, 3577, 8691, 4977, 7816, 9124, 4760, + 3859, 4524, 9305, 6899, 4753, 8459, 4314, 3121, 6139, + 2846, 229, 1517, 5567, 5587, 6908, 6983, 1860, 4933, + 7361, 4014, 765, 1397, 6972, 1767, 184, 2375, 5132, + 8705, 5405, 2339, 1938, 8334, 4952, 7588, 5389, 6605, + 3177, 1985, 9590, 5212, 8072, 3816, 8811, 3096, 8925, + 1481, 7459, 6634, 1656, 5790, 1907, 5450, 5369, 1969, + 416, 8199, 204, 7300, 3972, 4789, 9148, 3034, 8861, + 867, 3687, 8017, 7357, 7678, 1306, 4227, 2554, 13, + 4237, 2094, 155, 3093, 7018, 9364, 9696, 454, 2404, + 9877, 1667, 5368, 2586, 9721, 344, 4734, 6749, 9534, + 6490, 9586, 8397, 4492, 1324, 1754, 8517, 7428, 618, + 5779, 2546, 5800, 591, 8731, 153, 2268, 5592, 747, + 1729, 6137, 9551, 3864, 9573, 4958, 9404, 1107, 40, + 81, 4587, 1225, 3165, 570, 3811, 3337, 716, 3120, + 5004, 6021, 7094, 5385, 1117, 9004, 5007, 7419, 1047, + 3691, 9910, 3062, 8070, 427, 7658, 5876, 5585, 6170, + 8863, 2006, 168, 2709, 1624, 9133, 9550, 8635, 9703, + 2241, 7070, 8845, 7089, 5296, 7227, 4530, 8156, 6517, + 6289, 3818, 5042, 4297, 6306, 292, 2597, 1535, 5147, + 8744, 3740, 2035, 1766, 8354, 3023, 1994, 479, 1457, + 2645, 8758, 6863, 6834, 8195, 5541, 5631, 8260, 1567, + 9934, 417, 8257, 382, 2493, 3232, 8660, 8338, 7113, + 1209, 5614, 471, 6024, 9286, 54, 7652, 6187, 540, + 8542, 6207, 6408, 4218, 7616, 5719, 4534, 6986, 2199, + 2970, 7293, 6650, 9284, 956, 6642, 9326, 5000, 9529, + 5318, 3414, 2028, 6559, 6060, 2447, 543, 4868, 7178, + 336, 1140, 3673, 2489, 8807, 2157, 5056, 6476, 3035, + 9189, 2353, 2512, 4440, 9211, 3097, 2278, 932, 4252, + 768, 331, 5614, 3971, 5355, 7842, 9323, 6119, 7597, + 450, 8478, 583, 2348, 5392, 1174, 1349, 5119, 7445, + 479, 1422, 413, 167, 314, 7818, 8189, 3817, 9967, + 3831, 4635, 9032, 2332, 6873, 8301, 1534, 4964, 9327, + 3874, 9991, 8234, 517, 4545, 7823, 9803, 8221, 542, + 5331, 9104, 7312, 7039, 7742, 2907, 3191, 8019, 2692, + 5064, 3352, 9762, 7319, 9026, 6962, 128, 5753, 4, + 9327, 3158, 8441, 4944, 4588, 8836, 9882, 3216, 3631, + 4729]), + values=tensor([0.7863, 0.8342, 0.7119, 0.8691, 0.1799, 0.8019, 0.5297, + 0.0461, 0.6789, 0.7616, 0.1867, 0.1510, 0.4759, 0.4897, + 0.3112, 0.5107, 0.2673, 0.7677, 0.2078, 0.1024, 0.6974, + 0.7483, 0.1375, 0.4229, 0.3418, 0.4279, 0.1779, 0.3128, + 0.7738, 0.2688, 0.7139, 0.5474, 0.8893, 0.2669, 0.3732, + 0.3978, 0.5696, 0.8366, 0.1938, 0.3846, 0.7418, 0.1575, + 0.9175, 0.3788, 0.9034, 0.5215, 0.5959, 0.4812, 0.8080, + 0.9553, 0.3234, 0.3058, 0.4874, 0.0548, 0.2922, 0.3243, + 0.2802, 0.3277, 0.7008, 0.8317, 0.6850, 0.3190, 0.4857, + 0.5360, 0.3195, 0.2796, 0.9648, 0.3173, 0.1462, 0.6508, + 0.9193, 0.0306, 0.5949, 0.4367, 0.7038, 0.9052, 0.8896, + 0.7649, 0.2853, 0.3726, 0.3482, 0.2792, 0.4239, 0.7674, + 0.7629, 0.2768, 0.2724, 0.5503, 0.3248, 0.8259, 0.0264, + 0.4983, 0.0596, 0.1536, 0.8502, 0.3449, 0.3085, 0.4356, + 0.3873, 0.9396, 0.5172, 0.4872, 0.6271, 0.3707, 0.6993, + 0.4127, 0.1519, 0.7471, 0.9960, 0.8186, 0.7247, 0.9753, + 0.6228, 0.3862, 0.0395, 0.6842, 0.6671, 0.0794, 0.0052, + 0.9718, 0.2986, 0.0151, 0.4374, 0.9946, 0.0935, 0.5060, + 0.9278, 0.3396, 0.3559, 0.9710, 0.0242, 0.8115, 0.3763, + 0.7869, 0.4303, 0.4782, 0.2549, 0.1494, 0.9501, 0.9807, + 0.5176, 0.8320, 0.7401, 0.7586, 0.0516, 0.2314, 0.8977, + 0.3697, 0.6354, 0.3793, 0.1332, 0.4121, 0.9345, 0.8805, + 0.2787, 0.5335, 0.9802, 0.1369, 0.6510, 0.3232, 0.7449, + 0.7218, 0.7851, 0.7585, 0.3555, 0.2232, 0.3523, 0.7028, + 0.1003, 0.5059, 0.7756, 0.5967, 0.2963, 0.2044, 0.5060, + 0.4409, 0.2094, 0.4839, 0.8768, 0.4050, 0.2371, 0.4748, + 0.4748, 0.2096, 0.9009, 0.7365, 0.7361, 0.9956, 0.8167, + 0.9573, 0.1456, 0.8912, 0.8245, 0.2111, 0.1344, 0.3731, + 0.3546, 0.1724, 0.5871, 0.2882, 0.4315, 0.5993, 0.8036, + 0.5470, 0.0035, 0.4441, 0.2185, 0.7867, 0.1945, 0.1865, + 0.6911, 0.1596, 0.9086, 0.6358, 0.5350, 0.7830, 0.3829, + 0.8050, 0.3156, 0.1687, 0.6780, 0.7685, 0.5011, 0.3136, + 0.7647, 0.2212, 0.6030, 0.2126, 0.7262, 0.0615, 0.5973, + 0.9209, 0.1964, 0.0162, 0.2415, 0.2513, 0.1957, 0.9780, + 0.4213, 0.1357, 0.1199, 0.0038, 0.5586, 0.0956, 0.1284, + 0.2755, 0.0056, 0.5708, 0.5209, 0.1329, 0.1111, 0.6389, + 0.5765, 0.0036, 0.4213, 0.3664, 0.1220, 0.0489, 0.9965, + 0.8755, 0.8525, 0.6302, 0.2268, 0.7377, 0.0782, 0.4169, + 0.9956, 0.6600, 0.0917, 0.5793, 0.2528, 0.5405, 0.4980, + 0.7610, 0.2135, 0.4588, 0.6096, 0.1996, 0.3369, 0.2309, + 0.4068, 0.9687, 0.7562, 0.2269, 0.1687, 0.3793, 0.6399, + 0.4915, 0.4112, 0.6703, 0.6153, 0.4705, 0.1233, 0.9046, + 0.5631, 0.3352, 0.9593, 0.2252, 0.0553, 0.6186, 0.4222, + 0.2235, 0.1408, 0.4026, 0.0716, 0.3602, 0.6066, 0.8411, + 0.9387, 0.9914, 0.7443, 0.1915, 0.6794, 0.2087, 0.8185, + 0.7287, 0.5539, 0.8187, 0.7845, 0.7145, 0.3411, 0.1268, + 0.7307, 0.2110, 0.3286, 0.1623, 0.5391, 0.8854, 0.3559, + 0.3656, 0.2022, 0.2735, 0.4384, 0.2267, 0.5682, 0.0871, + 0.7504, 0.0440, 0.9453, 0.0560, 0.7453, 0.5245, 0.7868, + 0.7607, 0.0740, 0.5851, 0.6988, 0.9941, 0.1340, 0.8946, + 0.5851, 0.0531, 0.1239, 0.5973, 0.8490, 0.8281, 0.0289, + 0.9819, 0.2244, 0.1732, 0.2714, 0.1424, 0.2251, 0.3208, + 0.8178, 0.8825, 0.1082, 0.5536, 0.6102, 0.1422, 0.0979, + 0.8259, 0.1018, 0.6720, 0.0237, 0.5334, 0.2595, 0.3522, + 0.7713, 0.9285, 0.1688, 0.2536, 0.8257, 0.4873, 0.4909, + 0.6034, 0.7331, 0.7261, 0.8379, 0.4814, 0.4604, 0.0061, + 0.6796, 0.9124, 0.6545, 0.1060, 0.4611, 0.8779, 0.0489, + 0.4770, 0.9426, 0.0362, 0.9291, 0.0085, 0.2023, 0.9600, + 0.4833, 0.8674, 0.3213, 0.0549, 0.2797, 0.9705, 0.5031, + 0.0798, 0.1913, 0.0630, 0.4306, 0.1285, 0.5088, 0.2413, + 0.7971, 0.4797, 0.5836, 0.3643, 0.1162, 0.6647, 0.5069, + 0.8942, 0.2930, 0.0041, 0.5855, 0.8851, 0.2293, 0.4329, + 0.7326, 0.1690, 0.2530, 0.2387, 0.0036, 0.0121, 0.1039, + 0.5190, 0.2097, 0.4634, 0.9255, 0.4940, 0.3517, 0.6614, + 0.4552, 0.1007, 0.0099, 0.5784, 0.2947, 0.7080, 0.3681, + 0.7319, 0.5470, 0.3905, 0.8546, 0.8378, 0.2638, 0.2474, + 0.2020, 0.2602, 0.2058, 0.3439, 0.3725, 0.2372, 0.8608, + 0.6782, 0.4161, 0.2714, 0.0130, 0.3098, 0.6316, 0.5573, + 0.6366, 0.0552, 0.8331, 0.1655, 0.6120, 0.6847, 0.5996, + 0.3423, 0.3329, 0.9321, 0.1631, 0.7762, 0.9917, 0.4457, + 0.2145, 0.3700, 0.3585, 0.1830, 0.8788, 0.7830, 0.8978, + 0.9083, 0.9699, 0.0188, 0.8464, 0.2189, 0.0314, 0.1098, + 0.5475, 0.6995, 0.2544, 0.4684, 0.3350, 0.8207, 0.7849, + 0.7699, 0.7118, 0.1858, 0.2650, 0.1482, 0.3208, 0.2300, + 0.0603, 0.6347, 0.1795, 0.1880, 0.1849, 0.3946, 0.2904, + 0.3987, 0.0378, 0.8753, 0.9825, 0.3658, 0.9591, 0.8361, + 0.6193, 0.9979, 0.4363, 0.2356, 0.5991, 0.1784, 0.1734, + 0.6202, 0.8094, 0.4349, 0.0297, 0.2971, 0.5907, 0.7311, + 0.5068, 0.6370, 0.7797, 0.6554, 0.9023, 0.2928, 0.4467, + 0.3417, 0.7580, 0.0048, 0.5521, 0.6463, 0.4551, 0.2157, + 0.9490, 0.7709, 0.5133, 0.6298, 0.9824, 0.0939, 0.6470, + 0.8582, 0.6745, 0.3195, 0.7034, 0.3210, 0.4343, 0.8580, + 0.2725, 0.9024, 0.1300, 0.1018, 0.1214, 0.8294, 0.8231, + 0.4988, 0.6393, 0.5659, 0.3564, 0.4693, 0.7534, 0.8943, + 0.8326, 0.6300, 0.8559, 0.5119, 0.1976, 0.2140, 0.7843, + 0.6970, 0.1656, 0.6279, 0.1965, 0.1246, 0.2067, 0.4844, + 0.6932, 0.0875, 0.9163, 0.9941, 0.6738, 0.5892, 0.8709, + 0.4754, 0.3597, 0.3053, 0.6792, 0.1671, 0.1823, 0.5845, + 0.7883, 0.0033, 0.7413, 0.6371, 0.5830, 0.0867, 0.2426, + 0.0434, 0.2486, 0.2783, 0.8635, 0.4149, 0.8689, 0.2094, + 0.0406, 0.9992, 0.4458, 0.4786, 0.5163, 0.4532, 0.9377, + 0.1115, 0.5946, 0.5658, 0.7630, 0.5075, 0.2843, 0.6994, + 0.4331, 0.1647, 0.7111, 0.9415, 0.9134, 0.3649, 0.1405, + 0.3023, 0.1916, 0.9338, 0.8955, 0.1579, 0.6881, 0.6431, + 0.7938, 0.6435, 0.1598, 0.8058, 0.0143, 0.7389, 0.1256, + 0.3343, 0.5721, 0.4218, 0.4586, 0.7800, 0.2224, 0.0329, + 0.3782, 0.5096, 0.7729, 0.2314, 0.6628, 0.4257, 0.0530, + 0.2394, 0.3782, 0.3378, 0.9264, 0.3846, 0.8312, 0.7165, + 0.9018, 0.2255, 0.8764, 0.4648, 0.8905, 0.6287, 0.3061, + 0.2358, 0.3575, 0.8837, 0.8661, 0.4644, 0.0307, 0.1658, + 0.1603, 0.6516, 0.7616, 0.5701, 0.3014, 0.9310, 0.2065, + 0.7077, 0.7364, 0.4491, 0.0518, 0.7097, 0.4874, 0.4668, + 0.0620, 0.4255, 0.6665, 0.1014, 0.1580, 0.0470, 0.3432, + 0.8393, 0.1570, 0.1401, 0.5172, 0.8417, 0.4672, 0.2201, + 0.1674, 0.9708, 0.6467, 0.6089, 0.9800, 0.0513, 0.3044, + 0.6979, 0.6719, 0.1842, 0.8617, 0.2669, 0.6961, 0.6593, + 0.1234, 0.4151, 0.5864, 0.5859, 0.0830, 0.1869, 0.0506, + 0.4507, 0.0944, 0.5583, 0.8982, 0.5055, 0.6171, 0.7678, + 0.4718, 0.9977, 0.2777, 0.7559, 0.1953, 0.4405, 0.9006, + 0.3125, 0.6338, 0.3459, 0.2249, 0.6948, 0.3347, 0.4623, + 0.5826, 0.5751, 0.0351, 0.6388, 0.1795, 0.7330, 0.5707, + 0.5527, 0.2760, 0.8521, 0.1919, 0.1692, 0.4703, 0.1457, + 0.4745, 0.3853, 0.5193, 0.8361, 0.1959, 0.4596, 0.5784, + 0.0974, 0.3018, 0.0027, 0.0284, 0.6379, 0.0985, 0.6697, + 0.1617, 0.9408, 0.1225, 0.4828, 0.1493, 0.2255, 0.9622, + 0.3456, 0.5549, 0.7083, 0.8183, 0.4017, 0.9015, 0.9500, + 0.9757, 0.7762, 0.4376, 0.1119, 0.0478, 0.0482, 0.0578, + 0.7538, 0.6748, 0.4915, 0.0046, 0.4804, 0.0171, 0.2571, + 0.5740, 0.8135, 0.9212, 0.1282, 0.1633, 0.3991, 0.3795, + 0.2563, 0.7909, 0.3096, 0.9640, 0.3523, 0.8436, 0.3227, + 0.0600, 0.3198, 0.3035, 0.1361, 0.3922, 0.1782, 0.7833, + 0.2504, 0.4757, 0.7349, 0.8713, 0.6836, 0.3507, 0.6395, + 0.8433, 0.8479, 0.5637, 0.2767, 0.4270, 0.1521, 0.7400, + 0.4410, 0.9217, 0.8199, 0.3646, 0.7246, 0.6747, 0.1362, + 0.4476, 0.3311, 0.4522, 0.8256, 0.9839, 0.1661, 0.7065, + 0.0053, 0.7677, 0.6798, 0.6573, 0.7053, 0.0946, 0.4782, + 0.6733, 0.8968, 0.8493, 0.9722, 0.3359, 0.2513, 0.8759, + 0.7557, 0.5642, 0.6956, 0.9785, 0.2314, 0.2092, 0.6617, + 0.2157, 0.9152, 0.2913, 0.0438, 0.9309, 0.2537, 0.0994, + 0.4607, 0.6405, 0.5177, 0.7145, 0.1394, 0.3492, 0.5865, + 0.9348, 0.8342, 0.9034, 0.5205, 0.0516, 0.1632, 0.3433, + 0.4758, 0.2442, 0.7218, 0.3687, 0.3685, 0.7796, 0.4166, + 0.7390, 0.4015, 0.0501, 0.4473, 0.1656, 0.4610, 0.3317, + 0.3754, 0.6628, 0.9353, 0.1661, 0.2491, 0.3244, 0.5026, + 0.2276, 0.1611, 0.0412, 0.1485, 0.2596, 0.3703, 0.5359, + 0.7023, 0.3612, 0.9260, 0.3044, 0.4320, 0.5730, 0.4544, + 0.7409, 0.6046, 0.2126, 0.8407, 0.5541, 0.9635, 0.4726, + 0.7284, 0.1079, 0.8545, 0.8839, 0.1658, 0.6432, 0.3731, + 0.4876, 0.5276, 0.8205, 0.3497, 0.2810, 0.3329, 0.4371, + 0.6824, 0.9070, 0.8115, 0.6630, 0.8608, 0.8445, 0.6452, + 0.0464, 0.2074, 0.6033, 0.8590, 0.4426, 0.1662, 0.9143, + 0.8420, 0.9435, 0.3667, 0.0587, 0.3344, 0.5940, 0.9391, + 0.3098, 0.3277, 0.3122, 0.0248, 0.5693, 0.1331]), size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.2336, 0.7811, 0.2916, ..., 0.9209, 0.8685, 0.4951]) +tensor([0.8452, 0.1047, 0.0563, ..., 0.6079, 0.4820, 0.4351]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -268,650 +919,268 @@ Rows: 10000 Size: 100000000 NNZ: 1000 Density: 1e-05 -Time: 0.0838630199432373 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 125204 -ss 10000 -sd 1e-05 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.234081745147705} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 999, 999, 1000]), - col_indices=tensor([8690, 1861, 4903, 1985, 5995, 5133, 3649, 6848, 9888, - 5313, 1367, 6414, 5407, 8918, 331, 630, 7545, 9107, - 3109, 3571, 7241, 7083, 7466, 8084, 2727, 3640, 4567, - 9919, 948, 9219, 4437, 725, 7475, 1603, 9410, 5378, - 1267, 1566, 2735, 5978, 7044, 9006, 2830, 2291, 2928, - 246, 5452, 5303, 9481, 9784, 3316, 511, 9042, 689, - 1633, 1432, 7308, 4565, 9940, 5588, 4670, 74, 3920, - 5855, 8957, 3500, 7187, 8512, 3908, 9837, 8166, 2653, - 7148, 8369, 6481, 6454, 7191, 3138, 1912, 8141, 7068, - 663, 2545, 9875, 1574, 4296, 1631, 8653, 1587, 4471, - 8482, 7123, 2944, 4403, 3050, 8451, 4956, 9785, 7618, - 6529, 9271, 9559, 9158, 5049, 3870, 9460, 6015, 9128, - 9779, 3634, 7478, 2718, 4829, 5557, 2520, 8161, 1201, - 9733, 9896, 3536, 2437, 9760, 1331, 2860, 210, 958, - 4424, 8707, 1531, 2806, 9137, 5267, 8292, 4132, 7990, - 2715, 8713, 3219, 7635, 8360, 5058, 4018, 1011, 3165, - 7271, 4671, 490, 6635, 7416, 4229, 2810, 1235, 9589, - 4173, 7150, 5653, 5283, 4143, 2170, 7879, 1964, 5898, - 1301, 7280, 6637, 7038, 4540, 7863, 3916, 7240, 4473, - 2810, 4563, 211, 2724, 5297, 2314, 7383, 7549, 7593, - 7902, 5189, 2848, 4020, 504, 929, 1871, 6291, 4019, - 6918, 1232, 1712, 2725, 3019, 9775, 6611, 3101, 4550, - 5864, 8103, 9150, 1578, 2256, 8242, 9493, 4873, 8528, - 7748, 4250, 9306, 8224, 2493, 9732, 8604, 5119, 3521, - 9573, 9524, 1509, 8848, 4100, 83, 9396, 99, 4460, - 4971, 6971, 8025, 37, 5487, 5102, 9467, 3925, 1812, - 6496, 2474, 3416, 770, 3079, 3632, 3928, 1261, 9627, - 6023, 7720, 2373, 7178, 1154, 1976, 686, 4234, 2525, - 2386, 3801, 1084, 4920, 9622, 3186, 1781, 369, 4632, - 9872, 8667, 9674, 1830, 1374, 4683, 9070, 214, 4518, - 5534, 5601, 5258, 7170, 5140, 6908, 5657, 1888, 7447, - 1417, 9074, 7958, 6603, 6682, 6812, 3871, 7796, 2656, - 9359, 549, 6120, 2930, 102, 2531, 6544, 9391, 4378, - 2047, 7512, 2190, 5751, 8525, 1136, 2747, 720, 2145, - 641, 301, 2496, 9622, 4510, 395, 6798, 6226, 7892, - 8532, 6935, 1823, 2827, 7370, 1020, 1943, 9056, 9966, - 4214, 2013, 7924, 3776, 5066, 5635, 5665, 7059, 9145, - 1876, 8463, 436, 8889, 3554, 7616, 5977, 2123, 8891, - 3093, 3444, 8298, 7769, 9996, 4534, 8206, 8590, 6868, - 4918, 9753, 405, 7432, 1938, 8244, 4199, 9661, 6123, - 1379, 4616, 988, 2639, 7628, 7893, 3929, 385, 3197, - 4048, 1422, 7166, 8817, 2223, 9867, 9076, 1609, 3957, - 3493, 5154, 9868, 383, 7966, 6016, 658, 39, 8072, - 3272, 3200, 3031, 6375, 5122, 6299, 8569, 5223, 9918, - 5752, 9906, 1624, 8619, 8885, 6, 1530, 8345, 5934, - 8759, 9362, 374, 7647, 9500, 6878, 8651, 730, 6206, - 6922, 2425, 3365, 3507, 1146, 1333, 4027, 3526, 8032, - 5545, 3816, 1420, 9477, 2919, 6588, 7717, 5586, 4372, - 9646, 4459, 6004, 5986, 3951, 9102, 933, 8920, 3777, - 4007, 6453, 9682, 7501, 2970, 6620, 5252, 1515, 8683, - 2270, 854, 4792, 3612, 2431, 3646, 391, 7432, 8791, - 5732, 2927, 2736, 3415, 9331, 660, 891, 2087, 1032, - 8108, 6196, 2271, 6743, 2298, 1495, 4443, 8578, 1211, - 299, 721, 3596, 9782, 931, 1754, 5985, 3356, 1915, - 6959, 9781, 2014, 2812, 5587, 2995, 2083, 2550, 4199, - 6159, 4633, 7287, 4370, 2671, 1567, 7232, 98, 7463, - 7674, 2991, 9261, 9455, 5907, 4437, 5403, 1604, 5472, - 1763, 3134, 2907, 2000, 4953, 8723, 3834, 290, 3287, - 9580, 5999, 9187, 5984, 8847, 3554, 9248, 7111, 8325, - 841, 3919, 3951, 3645, 221, 9865, 3994, 1127, 6695, - 6647, 7177, 8098, 6023, 9342, 6911, 1870, 4718, 8147, - 4235, 2965, 9837, 856, 3022, 1380, 6101, 6210, 3833, - 151, 1194, 7661, 3944, 7192, 9278, 996, 2039, 2037, - 9067, 4888, 1694, 2687, 3653, 6840, 4033, 5950, 1549, - 9846, 3081, 8066, 769, 8909, 1020, 5908, 2460, 1635, - 6323, 3903, 2849, 1854, 8624, 2421, 4866, 2864, 2488, - 4161, 6088, 2649, 324, 6423, 1433, 256, 8338, 431, - 8627, 3937, 3277, 8971, 7852, 6671, 7455, 6555, 3396, - 8138, 6922, 752, 7772, 9156, 9141, 595, 7469, 2581, - 190, 1418, 3064, 4469, 9408, 4854, 5691, 7984, 3024, - 2707, 9907, 4453, 9093, 7027, 8141, 9776, 3748, 6818, - 449, 2814, 8326, 5427, 3095, 5063, 639, 4947, 8753, - 4085, 8976, 4506, 4719, 4537, 7038, 6831, 9759, 7338, - 1913, 6779, 8933, 9136, 2598, 8897, 2297, 4611, 4639, - 7797, 5128, 4819, 2032, 8142, 518, 2044, 8267, 2677, - 4008, 9440, 3807, 8, 6735, 6851, 8177, 7296, 5290, - 648, 7625, 4802, 7175, 9799, 8657, 1777, 555, 8998, - 4747, 886, 3741, 1929, 7012, 272, 8315, 4721, 9533, - 6549, 8950, 5461, 927, 6305, 3504, 6127, 6161, 2963, - 3469, 7401, 3538, 7768, 2131, 2614, 1885, 3070, 7477, - 309, 6358, 7534, 1977, 6187, 6783, 3213, 1290, 4328, - 3842, 1354, 885, 2517, 4560, 1926, 3961, 9227, 6935, - 462, 1438, 5292, 5574, 6029, 1889, 1936, 960, 2051, - 1095, 6855, 7130, 1000, 5214, 7545, 6674, 6222, 1624, - 7924, 9255, 3113, 4359, 6452, 8545, 3149, 1090, 8723, - 12, 728, 2926, 7047, 8841, 4132, 5028, 6320, 5710, - 4095, 7091, 9196, 6592, 256, 2595, 7555, 7220, 7503, - 3678, 5193, 1846, 8863, 8465, 4921, 8958, 4119, 9500, - 4218, 6868, 2278, 5286, 9717, 3507, 602, 5539, 4997, - 7677, 5129, 5927, 5269, 2466, 7276, 3295, 3682, 4275, - 6823, 7704, 1751, 638, 3376, 2815, 274, 6800, 2001, - 3097, 2067, 6878, 7193, 29, 3760, 2048, 9336, 4726, - 4307, 1514, 4722, 4667, 2541, 78, 1702, 235, 1797, - 7126, 5089, 9859, 451, 2808, 1114, 2670, 2921, 253, - 6747, 1120, 9233, 7774, 2196, 5790, 868, 4297, 6901, - 2496, 4705, 3152, 9611, 3987, 1345, 4561, 8845, 759, - 6029, 1321, 9564, 7293, 8230, 3303, 2114, 4705, 8878, - 7072, 9781, 7747, 5473, 4845, 3268, 9804, 5918, 5813, - 2229, 9728, 8829, 5296, 9089, 4507, 4478, 9771, 189, - 4361, 7386, 5404, 4216, 6784, 835, 9468, 1174, 4062, - 635, 8468, 9399, 9956, 5927, 3633, 2041, 5438, 9398, - 7769, 318, 2503, 2115, 154, 2105, 4783, 6026, 5722, - 6257, 9069, 98, 6855, 3977, 6916, 5247, 551, 6874, - 453, 2707, 2022, 9182, 7602, 9284, 5224, 8443, 1184, - 1616, 9624, 3609, 2194, 7767, 2938, 7851, 777, 5938, - 1546, 2652, 4044, 384, 1875, 8817, 9415, 7504, 2445, - 9751, 4207, 4920, 9990, 7213, 397, 4131, 5253, 5120, - 7687, 7708, 2743, 3453, 2942, 6367, 5198, 5257, 6863, - 2109, 2297, 5048, 7698, 629, 5215, 3378, 7559, 2206, - 1086, 7684, 3748, 107, 1983, 2852, 2220, 7374, 3217, - 1908, 5874, 591, 5820, 7786, 8995, 9449, 3085, 4817, - 4114]), - values=tensor([0.9947, 0.8142, 0.8795, 0.8201, 0.5910, 0.5774, 0.6787, - 0.3836, 0.6040, 0.8398, 0.1259, 0.1459, 0.6698, 0.4976, - 0.2937, 0.5676, 0.1634, 0.5111, 0.1879, 0.3973, 0.1173, - 0.9735, 0.0848, 0.2837, 0.8090, 0.2099, 0.1769, 0.1252, - 0.0842, 0.4799, 0.3065, 0.7083, 0.1028, 0.6702, 0.1950, - 0.4882, 0.7283, 0.0312, 0.3765, 0.3697, 0.4492, 0.7468, - 0.8657, 0.3983, 0.7946, 0.9615, 0.8286, 0.6214, 0.8592, - 0.4413, 0.6006, 0.4282, 0.4277, 0.2990, 0.0424, 0.3419, - 0.9831, 0.0184, 0.6371, 0.4181, 0.8034, 0.6733, 0.6806, - 0.0607, 0.2397, 0.3099, 0.0864, 0.7937, 0.9239, 0.8015, - 0.8287, 0.5835, 0.9482, 0.9914, 0.6012, 0.1646, 0.5987, - 0.5880, 0.5622, 0.9711, 0.9774, 0.5218, 0.6976, 0.3425, - 0.2975, 0.4278, 0.8927, 0.4119, 0.2833, 0.2442, 0.7490, - 0.5147, 0.0807, 0.4474, 0.6798, 0.9577, 0.2109, 0.8632, - 0.3757, 0.2105, 0.7130, 0.3533, 0.1690, 0.4804, 0.5167, - 0.9728, 0.8527, 0.1135, 0.5917, 0.8791, 0.6425, 0.6958, - 0.1839, 0.0340, 0.5170, 0.2015, 0.1209, 0.6163, 0.4274, - 0.2144, 0.9963, 0.8824, 0.1649, 0.6969, 0.8670, 0.6598, - 0.3078, 0.5853, 0.9715, 0.7585, 0.5095, 0.3547, 0.7490, - 0.6322, 0.9507, 0.2170, 0.1205, 0.5733, 0.2161, 0.5475, - 0.0400, 0.0701, 0.6929, 0.4946, 0.9048, 0.5536, 0.7938, - 0.7391, 0.7036, 0.3338, 0.2405, 0.9038, 0.2827, 0.8615, - 0.0612, 0.2391, 0.4980, 0.5230, 0.3775, 0.0596, 0.6816, - 0.7299, 0.1596, 0.7477, 0.6113, 0.5079, 0.5112, 0.9304, - 0.2833, 0.4280, 0.7909, 0.0432, 0.3695, 0.1434, 0.1742, - 0.6911, 0.4963, 0.7415, 0.3341, 0.6418, 0.9104, 0.8708, - 0.5701, 0.4124, 0.0029, 0.2245, 0.0994, 0.3629, 0.9844, - 0.1808, 0.8216, 0.7584, 0.5728, 0.8761, 0.5793, 0.6932, - 0.4974, 0.0700, 0.8292, 0.6429, 0.6033, 0.6616, 0.0149, - 0.6410, 0.6499, 0.6682, 0.9018, 0.5612, 0.6244, 0.2034, - 0.3658, 0.3966, 0.3922, 0.7716, 0.7977, 0.5707, 0.0225, - 0.3566, 0.5719, 0.1669, 0.0521, 0.4122, 0.2017, 0.1862, - 0.7381, 0.4027, 0.5838, 0.1008, 0.5373, 0.2087, 0.8661, - 0.2967, 0.0213, 0.6365, 0.4971, 0.3991, 0.3183, 0.3688, - 0.3715, 0.2215, 0.5958, 0.0267, 0.3628, 0.1001, 0.2964, - 0.0307, 0.4153, 0.0718, 0.7484, 0.2708, 0.2602, 0.2771, - 0.8610, 0.8293, 0.7956, 0.7654, 0.5931, 0.1625, 0.6279, - 0.7151, 0.0419, 0.5125, 0.4553, 0.3215, 0.8706, 0.3694, - 0.7482, 0.7484, 0.3599, 0.7352, 0.6473, 0.9284, 0.0336, - 0.7077, 0.6412, 0.7363, 0.5240, 0.2691, 0.4230, 0.7906, - 0.6749, 0.2034, 0.4311, 0.0985, 0.4884, 0.0018, 0.6710, - 0.6790, 0.2098, 0.0750, 0.9750, 0.1155, 0.2968, 0.0360, - 0.9908, 0.4869, 0.3234, 0.1121, 0.4329, 0.8802, 0.3352, - 0.0936, 0.2726, 0.0378, 0.1903, 0.6851, 0.7012, 0.7926, - 0.6112, 0.2624, 0.2279, 0.8759, 0.0133, 0.8322, 0.4001, - 0.7463, 0.9062, 0.7759, 0.6849, 0.1473, 0.1215, 0.1255, - 0.1145, 0.6020, 0.1543, 0.0107, 0.6992, 0.2812, 0.8585, - 0.0415, 0.8397, 0.0506, 0.0567, 0.7237, 0.0505, 0.1581, - 0.1605, 0.1352, 0.1599, 0.5700, 0.9940, 0.1719, 0.1559, - 0.3442, 0.3517, 0.8650, 0.0507, 0.0774, 0.3044, 0.9415, - 0.9135, 0.8143, 0.8978, 0.5331, 0.8830, 0.9179, 0.5019, - 0.4481, 0.5985, 0.9501, 0.1300, 0.5891, 0.6023, 0.5878, - 0.2328, 0.9375, 0.6776, 0.6109, 0.2392, 0.4025, 0.8957, - 0.9293, 0.1514, 0.1062, 0.4517, 0.4744, 0.6135, 0.1092, - 0.8682, 0.7074, 0.4025, 0.8245, 0.5438, 0.0306, 0.5168, - 0.3435, 0.4368, 0.3254, 0.8575, 0.6522, 0.4516, 0.3889, - 0.7155, 0.5152, 0.3747, 0.1934, 0.8799, 0.7374, 0.8447, - 0.3303, 0.6124, 0.4096, 0.4168, 0.5871, 0.3973, 0.3709, - 0.4537, 0.2659, 0.9664, 0.2243, 0.7921, 0.4993, 0.3369, - 0.8845, 0.0353, 0.1029, 0.2229, 0.2944, 0.8975, 0.0870, - 0.9800, 0.0723, 0.2951, 0.3726, 0.9571, 0.1796, 0.6703, - 0.7356, 0.3061, 0.0102, 0.8339, 0.5728, 0.2850, 0.7175, - 0.7657, 0.9492, 0.9447, 0.8513, 0.1834, 0.3093, 0.9589, - 0.5785, 0.8799, 0.1563, 0.7102, 0.6827, 0.3414, 0.8059, - 0.4581, 0.3597, 0.0538, 0.8422, 0.3224, 0.2475, 0.8804, - 0.5505, 0.1860, 0.4825, 0.8233, 0.1705, 0.0018, 0.0070, - 0.5773, 0.0579, 0.9972, 0.7747, 0.0470, 0.8156, 0.7927, - 0.4961, 0.6170, 0.3308, 0.0946, 0.7921, 0.7075, 0.3192, - 0.3788, 0.2776, 0.5390, 0.0384, 0.7359, 0.8495, 0.3753, - 0.9297, 0.8609, 0.4756, 0.2075, 0.8723, 0.3556, 0.0178, - 0.5989, 0.4108, 0.6837, 0.2932, 0.4760, 0.1799, 0.8359, - 0.5516, 0.6924, 0.8639, 0.7611, 0.6684, 0.1628, 0.2499, - 0.7207, 0.4081, 0.2940, 0.1700, 0.3918, 0.1758, 0.3345, - 0.6827, 0.4177, 0.3104, 0.9645, 0.7915, 0.1430, 0.3047, - 0.6795, 0.3375, 0.5591, 0.5936, 0.7980, 0.6445, 0.6860, - 0.0813, 0.3502, 0.7347, 0.4464, 0.2210, 0.6725, 0.4676, - 0.9791, 0.1497, 0.2862, 0.1219, 0.1364, 0.1316, 0.1297, - 0.6676, 0.4648, 0.2785, 0.8402, 0.3104, 0.9823, 0.2575, - 0.4886, 0.8197, 0.9829, 0.0189, 0.3986, 0.0292, 0.3866, - 0.7344, 0.1934, 0.2571, 0.1218, 0.8332, 0.4134, 0.3935, - 0.4616, 0.6195, 0.4292, 0.5706, 0.2806, 0.4996, 0.1909, - 0.0528, 0.9268, 0.1029, 0.4934, 0.3040, 0.5857, 0.8663, - 0.8906, 0.0055, 0.0546, 0.6358, 0.5019, 0.8777, 0.9935, - 0.0896, 0.1857, 0.6371, 0.8996, 0.9816, 0.0571, 0.1826, - 0.4938, 0.0971, 0.6974, 0.3356, 0.1667, 0.8245, 0.3869, - 0.4390, 0.0351, 0.8901, 0.7794, 0.3075, 0.8284, 0.9392, - 0.6635, 0.3030, 0.3204, 0.1313, 0.4423, 0.2744, 0.4833, - 0.1684, 0.6597, 0.4624, 0.9157, 0.3101, 0.2889, 0.6835, - 0.7483, 0.9270, 0.9666, 0.9122, 0.6004, 0.3227, 0.3422, - 0.0559, 0.3329, 0.3847, 0.8364, 0.0683, 0.8726, 0.6441, - 0.2936, 0.9992, 0.5330, 0.2236, 0.7202, 0.1538, 0.1463, - 0.9975, 0.1073, 0.9785, 0.8323, 0.9179, 0.1768, 0.2374, - 0.8639, 0.8611, 0.2135, 0.7852, 0.1105, 0.3423, 0.0570, - 0.7971, 0.2463, 0.9421, 0.6500, 0.4273, 0.4870, 0.7569, - 0.4048, 0.0956, 0.1875, 0.2027, 0.5062, 0.2254, 0.9266, - 0.0270, 1.0000, 0.5358, 0.7957, 0.0992, 0.7476, 0.7134, - 0.3073, 0.9515, 0.4257, 0.7879, 0.7532, 0.8575, 0.7050, - 0.6162, 0.9639, 0.9647, 0.3985, 0.9411, 0.7396, 0.6996, - 0.0128, 0.3998, 0.3520, 0.5992, 0.6274, 0.6761, 0.9873, - 0.5050, 0.6012, 0.7518, 0.4731, 0.3321, 0.8593, 0.9781, - 0.6447, 0.3754, 0.4844, 0.3666, 0.8391, 0.2700, 0.4478, - 0.1196, 0.7313, 0.5924, 0.5257, 0.2515, 0.9787, 0.2667, - 0.9283, 0.7402, 0.2859, 0.5403, 0.8058, 0.2628, 0.1197, - 0.8079, 0.1418, 0.9980, 0.9578, 0.3931, 0.1985, 0.1167, - 0.5381, 0.4910, 0.4833, 0.9287, 0.2466, 0.7456, 0.6309, - 0.3680, 0.9610, 0.5857, 0.5926, 0.5408, 0.3344, 0.8273, - 0.5335, 0.1632, 0.3312, 0.6302, 0.7085, 0.7097, 0.0159, - 0.2602, 0.3872, 0.3869, 0.3249, 0.4454, 0.7036, 0.5390, - 0.7601, 0.2638, 0.6789, 0.2000, 0.8420, 0.0251, 0.3391, - 0.4358, 0.1688, 0.4442, 0.5648, 0.1351, 0.9596, 0.2138, - 0.0593, 0.7952, 0.0630, 0.7767, 0.6377, 0.9130, 0.1033, - 0.7046, 0.0318, 0.5844, 0.3118, 0.4860, 0.4688, 0.8553, - 0.8250, 0.4534, 0.4391, 0.8300, 0.5927, 0.7682, 0.3238, - 0.7033, 0.4352, 0.4954, 0.9437, 0.9054, 0.5747, 0.7765, - 0.4424, 0.2929, 0.9590, 0.4225, 0.4001, 0.5871, 0.8788, - 0.3040, 0.9523, 0.7164, 0.5327, 0.5236, 0.4380, 0.1134, - 0.8473, 0.2882, 0.3523, 0.3539, 0.4121, 0.4672, 0.8323, - 0.7208, 0.2181, 0.0170, 0.1058, 0.3764, 0.0125, 0.6340, - 0.4615, 0.6428, 0.5669, 0.0760, 0.6375, 0.8387, 0.0311, - 0.1713, 0.0010, 0.4339, 0.8789, 0.1521, 0.9377, 0.9324, - 0.6243, 0.2326, 0.2212, 0.8896, 0.1088, 0.3471, 0.7677, - 0.3772, 0.5205, 0.3621, 0.8824, 0.7207, 0.7693, 0.7233, - 0.8563, 0.4628, 0.5350, 0.0480, 0.7499, 0.9678, 0.7096, - 0.1312, 0.6863, 0.8271, 0.7358, 0.3418, 0.4553, 0.0225, - 0.8086, 0.0509, 0.9180, 0.0939, 0.1837, 0.4209, 0.0984, - 0.9255, 0.7897, 0.0222, 0.2331, 0.7623, 0.7332, 0.8990, - 0.2149, 0.2188, 0.7875, 0.2162, 0.2017, 0.2101, 0.7395, - 0.5164, 0.1275, 0.5592, 0.8372, 0.9368, 0.1299, 0.2527, - 0.2989, 0.4241, 0.6867, 0.0859, 0.4353, 0.3463, 0.0852, - 0.7482, 0.9930, 0.0910, 0.3557, 0.8138, 0.1492, 0.1226, - 0.9829, 0.3178, 0.1808, 0.6471, 0.0049, 0.9936, 0.6310, - 0.8742, 0.7801, 0.9697, 0.4503, 0.7427, 0.6939, 0.9810, - 0.1235, 0.6928, 0.2526, 0.6531, 0.7614, 0.2766, 0.3928, - 0.6482, 0.3744, 0.9162, 0.9336, 0.3657, 0.9951, 0.7185, - 0.4848, 0.0849, 0.3631, 0.6820, 0.9602, 0.9376, 0.8353, - 0.1594, 0.7467, 0.8948, 0.6829, 0.9264, 0.7902, 0.7239, - 0.8735, 0.3875, 0.0528, 0.7009, 0.5289, 0.2944, 0.4509, - 0.5369, 0.6869, 0.2268, 0.2641, 0.2154, 0.3362, 0.6552, - 0.1327, 0.1218, 0.6611, 0.0654, 0.0444, 0.7917, 0.2227, - 0.5871, 0.9300, 0.2691, 0.6683, 0.2163, 0.8183, 0.6909, - 0.0176, 0.0647, 0.9873, 0.6484, 0.3203, 0.2129, 0.9498, - 0.8937, 0.7407, 0.7572, 0.9827, 0.2276, 0.4923, 0.3868, - 0.3238, 0.4139, 0.4523, 0.9314, 0.2645, 0.3099]), - size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.9394, 0.5361, 0.0926, ..., 0.1333, 0.7033, 0.7122]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([10000, 10000]) -Rows: 10000 -Size: 100000000 -NNZ: 1000 -Density: 1e-05 -Time: 9.234081745147705 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 142368 -ss 10000 -sd 1e-05 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.641618490219116} +Time: 10.998100280761719 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), - col_indices=tensor([1350, 1465, 4190, 6900, 6571, 5844, 4736, 324, 9249, - 4549, 8900, 1195, 9063, 17, 7365, 9356, 2846, 1690, - 3749, 1888, 862, 8180, 9473, 3977, 5876, 6416, 6859, - 7325, 678, 7412, 524, 1679, 6675, 3544, 6761, 5863, - 1068, 1910, 8050, 5074, 3644, 5672, 2657, 2220, 3680, - 3869, 2170, 9920, 5472, 6846, 1556, 5671, 175, 5132, - 2577, 8845, 2796, 3794, 8679, 3242, 2471, 9643, 3149, - 1963, 477, 3306, 128, 7262, 8119, 314, 7239, 5180, - 7202, 2643, 4302, 4311, 1590, 7790, 3773, 8804, 9774, - 2553, 9496, 5566, 1143, 7175, 1004, 2781, 372, 2208, - 7381, 6760, 7287, 1604, 2915, 9765, 1879, 938, 8046, - 4870, 6940, 4820, 8392, 5340, 4182, 5114, 2023, 1770, - 6402, 82, 2384, 7877, 2701, 2498, 2104, 9483, 669, - 9528, 5633, 1059, 3421, 3906, 4248, 6650, 9824, 1201, - 6102, 134, 2120, 8662, 7792, 9525, 5975, 1053, 6589, - 2129, 3517, 7592, 8589, 4303, 8461, 4477, 5747, 151, - 4870, 4529, 3641, 7250, 392, 4557, 4767, 3949, 3212, - 6761, 5818, 2538, 1345, 6586, 9842, 9149, 9262, 9581, - 8332, 5787, 6867, 3334, 3929, 9915, 9165, 4571, 9626, - 7362, 4285, 9980, 8689, 7517, 3312, 4487, 2526, 8915, - 9807, 716, 901, 2067, 6046, 9001, 7911, 408, 148, - 1317, 5920, 3284, 7801, 7588, 8770, 6560, 348, 6988, - 8097, 3984, 3485, 3409, 9201, 5638, 6421, 3563, 3632, - 1452, 6631, 6346, 2233, 5327, 64, 3152, 8667, 5946, - 4510, 1417, 3779, 8867, 2905, 1369, 135, 8079, 9417, - 187, 7716, 9929, 5719, 3498, 2120, 8640, 5146, 9731, - 8710, 9996, 9692, 1206, 6217, 1310, 7099, 2614, 8044, - 1982, 4290, 9595, 7939, 9679, 9571, 7958, 1758, 6195, - 5533, 9545, 406, 917, 1357, 5574, 1085, 7923, 7220, - 6422, 8549, 2682, 40, 3795, 9767, 3767, 5240, 158, - 3048, 7355, 4332, 6816, 4937, 8246, 9715, 8200, 9814, - 6924, 8065, 6446, 6243, 4976, 4917, 5512, 4910, 3708, - 6023, 7639, 1133, 6448, 4950, 8492, 7993, 8584, 1340, - 5468, 6297, 6716, 8997, 6226, 6910, 7244, 6616, 1449, - 5171, 5393, 8543, 2497, 1323, 5505, 4755, 5970, 388, - 2929, 385, 1335, 7880, 9728, 5434, 6161, 2897, 3622, - 6161, 1650, 8903, 6820, 7357, 9843, 3756, 4645, 5310, - 1445, 7447, 1450, 6550, 1861, 6021, 3492, 1610, 5698, - 4827, 6115, 5157, 1608, 4965, 737, 1903, 4025, 2119, - 6552, 595, 4810, 130, 3982, 137, 8138, 5899, 7598, - 5942, 3724, 5818, 6843, 8546, 4893, 4811, 391, 3514, - 9590, 3749, 2481, 8733, 9761, 9190, 5512, 9765, 134, - 8737, 2194, 9046, 3630, 3577, 1253, 9106, 1281, 5455, - 2534, 8025, 1117, 9647, 9761, 3834, 8587, 9342, 4191, - 9213, 3915, 2071, 2631, 849, 3316, 4207, 5597, 9512, - 7014, 9934, 1359, 6351, 1942, 6581, 6730, 6231, 5782, - 5904, 9677, 532, 7482, 4382, 7965, 9754, 4297, 5473, - 3176, 7459, 9266, 9112, 9056, 5480, 4330, 3498, 3249, - 887, 2323, 930, 7809, 58, 2094, 769, 5008, 5797, - 6898, 9453, 808, 7053, 398, 7426, 1736, 634, 7990, - 3100, 1720, 4719, 4760, 7828, 648, 5462, 3365, 7079, - 7345, 2413, 8136, 6049, 5463, 2961, 6046, 4524, 6494, - 9373, 3832, 7595, 4732, 9656, 3425, 2265, 3526, 7277, - 1225, 8233, 9557, 960, 3905, 1045, 4119, 8053, 8659, - 1372, 8807, 1493, 4002, 9729, 3897, 7672, 5249, 1203, - 6003, 5841, 3864, 7129, 5663, 2654, 493, 7397, 7287, - 8513, 5254, 1707, 4926, 5022, 9139, 5676, 8296, 5115, - 9657, 591, 3536, 5723, 4822, 5176, 7346, 8375, 9143, - 2356, 7880, 2943, 6276, 2137, 3628, 59, 290, 6930, - 2063, 7839, 1196, 5604, 6563, 8782, 9536, 5108, 3877, - 429, 6184, 7060, 3523, 3867, 5457, 5143, 8932, 5594, - 5593, 2868, 1998, 3179, 1071, 9873, 6395, 5298, 9745, - 5572, 1722, 4856, 9429, 1499, 3117, 6370, 8257, 4390, - 3738, 9994, 4823, 6585, 1467, 2601, 5458, 2716, 1146, - 1738, 33, 9872, 5036, 1557, 1944, 2879, 4044, 2272, - 7676, 6388, 1904, 6101, 7987, 1700, 4395, 343, 9841, - 1734, 7922, 7616, 779, 5161, 468, 8805, 3563, 3932, - 1112, 1437, 1123, 8651, 9745, 3719, 4795, 7772, 9403, - 4517, 7987, 9197, 2190, 6957, 7720, 6929, 726, 1110, - 9372, 5858, 5956, 8878, 9550, 1968, 4362, 1304, 9796, - 7292, 3154, 8295, 3865, 7777, 3161, 3378, 1822, 7853, - 208, 589, 1972, 9911, 1971, 862, 9849, 3414, 9130, - 579, 4654, 92, 1475, 5598, 8930, 3936, 5479, 4313, - 185, 4782, 8779, 9083, 418, 1106, 2313, 6235, 7286, - 152, 2775, 6751, 650, 4919, 8921, 9634, 1984, 5779, - 1783, 7443, 6754, 7424, 1444, 6666, 409, 7791, 2642, - 1544, 5312, 3341, 5058, 6924, 1677, 5851, 5827, 2727, - 2075, 6264, 3079, 359, 2843, 330, 8651, 3205, 9111, - 3779, 6781, 64, 3792, 2666, 6804, 8462, 1474, 2290, - 1836, 9949, 6173, 4550, 9201, 1274, 5067, 351, 6480, - 6711, 8407, 7904, 5366, 4929, 444, 108, 2997, 7484, - 8340, 6161, 8073, 6104, 8943, 694, 6149, 8601, 1196, - 6575, 9937, 5094, 7925, 5722, 4565, 1084, 8988, 2783, - 7886, 6397, 7800, 2120, 9277, 5526, 5542, 1074, 1789, - 5085, 3061, 759, 7623, 4901, 1186, 3367, 1888, 9959, - 2396, 9680, 360, 1868, 6943, 9939, 5200, 5990, 7250, - 6064, 4697, 2291, 9159, 5133, 7533, 58, 7263, 8045, - 653, 6028, 7381, 932, 5857, 3072, 5547, 6647, 6032, - 5013, 1366, 1918, 6452, 4364, 581, 9863, 1502, 2117, - 5639, 4065, 1307, 3603, 5711, 481, 9225, 4458, 5133, - 5766, 2525, 6579, 6101, 955, 4014, 6750, 3371, 125, - 7603, 502, 2892, 6603, 2344, 8601, 3165, 2311, 9192, - 9546, 5043, 7844, 8591, 4935, 1765, 6671, 3193, 7181, - 2586, 5711, 3133, 5348, 7042, 9417, 8381, 100, 9386, - 3078, 5274, 1139, 6265, 8146, 6636, 5554, 6892, 1948, - 4479, 3693, 6919, 173, 9040, 5511, 2922, 6123, 9263, - 1418, 7264, 9857, 4588, 2740, 3894, 934, 1897, 9124, - 2393, 5100, 6701, 4211, 7855, 8655, 7893, 6373, 880, - 3410, 9500, 817, 9700, 622, 8424, 8906, 1192, 8082, - 5342, 4260, 2298, 5844, 8318, 1796, 365, 9287, 9942, - 1981, 5532, 9956, 1644, 1875, 1279, 1792, 9840, 4785, - 2478, 8953, 6214, 7060, 7798, 5291, 3255, 4370, 6301, - 9417, 5935, 5835, 7402, 7682, 5438, 9081, 5509, 8833, - 4566, 7011, 7184, 9706, 5339, 6813, 8443, 6535, 4377, - 9556, 509, 7923, 1426, 269, 4969, 957, 9645, 915, - 2300, 7682, 2902, 3368, 6024, 5901, 8615, 9741, 4861, - 1715, 1852, 8544, 3363, 7624, 4922, 8831, 1155, 5064, - 5765, 8030, 5214, 394, 5236, 4059, 7423, 941, 4185, - 7107, 525, 2019, 9115, 9184, 9216, 3622, 6792, 7696, - 6453, 9771, 541, 5255, 3317, 5383, 7392, 5897, 2023, - 6649, 4678, 2681, 6438, 365, 8269, 3577, 3723, 8264, - 2108]), - values=tensor([4.4965e-01, 1.3769e-01, 9.5035e-01, 5.7293e-01, - 7.7954e-01, 9.7503e-01, 1.4322e-01, 1.1818e-01, - 9.2953e-01, 8.1415e-01, 2.5238e-01, 6.0614e-01, - 4.5041e-01, 9.3390e-01, 9.7710e-01, 9.9499e-01, - 6.9516e-01, 1.2549e-01, 6.3390e-02, 4.9786e-01, - 2.6705e-01, 8.4035e-01, 4.7765e-01, 3.0191e-01, - 6.1763e-01, 6.4828e-01, 3.9165e-01, 4.0915e-01, - 4.2696e-01, 5.5891e-01, 9.9986e-01, 6.3730e-01, - 2.9036e-01, 6.8686e-01, 6.5946e-01, 4.8732e-01, - 3.4969e-01, 4.5554e-01, 8.7839e-01, 2.7698e-01, - 3.7226e-01, 1.5065e-02, 7.8865e-01, 6.0802e-01, - 5.6511e-01, 2.4244e-01, 5.1242e-02, 4.0738e-01, - 9.8710e-01, 1.9007e-01, 5.9800e-01, 8.4842e-01, - 9.1312e-01, 5.7446e-01, 5.4363e-01, 8.4750e-01, - 7.2541e-01, 8.4173e-01, 2.0399e-01, 4.5103e-01, - 1.4989e-01, 4.0298e-02, 1.7179e-01, 1.9945e-01, - 4.2389e-01, 3.1067e-01, 4.1838e-01, 4.7559e-01, - 8.5569e-01, 1.8368e-01, 4.8212e-01, 2.5203e-01, - 9.8680e-01, 4.5715e-01, 3.9215e-01, 8.5828e-01, - 9.4023e-01, 6.4093e-01, 7.0762e-01, 9.1246e-02, - 1.3960e-01, 8.7422e-01, 2.0504e-01, 5.2817e-01, - 4.5923e-02, 7.5340e-01, 4.3166e-02, 2.0079e-01, - 7.8776e-01, 7.4413e-01, 8.2810e-01, 4.3091e-02, - 6.3484e-01, 9.8935e-01, 4.7099e-01, 7.2918e-01, - 5.9483e-01, 8.6295e-01, 7.3936e-01, 3.6303e-01, - 5.6024e-01, 7.7622e-02, 1.0867e-01, 4.7041e-01, - 8.9265e-02, 9.1467e-01, 5.3849e-01, 1.8243e-01, - 5.3073e-01, 1.6104e-01, 5.5963e-01, 7.7433e-01, - 6.2087e-01, 2.9998e-01, 8.4995e-01, 2.2873e-02, - 8.7271e-02, 5.9852e-02, 6.5516e-01, 8.3316e-01, - 6.1547e-01, 6.3866e-01, 3.5342e-02, 9.7500e-01, - 4.1725e-01, 8.5943e-02, 3.3098e-02, 2.9393e-01, - 1.5172e-01, 6.5877e-01, 2.8169e-01, 8.0348e-01, - 7.7073e-01, 8.8877e-02, 6.6121e-01, 5.8345e-01, - 2.0661e-01, 3.7722e-01, 7.1221e-01, 4.5307e-01, - 3.1638e-01, 3.0489e-01, 1.1920e-01, 4.1591e-01, - 8.9518e-01, 5.0347e-01, 5.0858e-01, 3.2186e-01, - 7.4868e-01, 6.7171e-01, 9.3244e-01, 5.1430e-01, - 5.5016e-01, 2.8409e-01, 8.7062e-01, 2.5604e-01, - 9.6683e-01, 6.2006e-01, 8.0527e-02, 8.3669e-01, - 4.1226e-01, 3.0537e-01, 8.3561e-01, 3.9863e-01, - 5.3343e-01, 7.4499e-01, 4.3410e-01, 2.7897e-02, - 9.3765e-01, 8.4855e-01, 1.2336e-01, 1.1406e-01, - 3.0397e-01, 5.7188e-01, 3.3977e-01, 5.2731e-01, - 9.7160e-01, 3.2639e-01, 4.2242e-01, 3.2683e-02, - 9.8412e-01, 1.9910e-01, 2.5882e-01, 5.8518e-01, - 6.3761e-01, 7.2072e-01, 8.3748e-01, 2.4796e-02, - 9.0469e-01, 3.8373e-01, 8.3620e-01, 9.4335e-02, - 4.4129e-01, 4.0587e-01, 7.4687e-01, 5.2634e-01, - 1.3717e-01, 6.0904e-01, 4.2155e-01, 4.1423e-01, - 3.9847e-01, 8.8079e-02, 1.4881e-01, 3.8816e-01, - 5.2840e-02, 9.9597e-01, 3.7101e-01, 6.4058e-01, - 2.2169e-01, 9.4454e-01, 7.6950e-01, 1.2550e-01, - 3.3727e-02, 1.9034e-01, 7.9984e-01, 1.3267e-01, - 5.6674e-01, 3.2196e-01, 8.4859e-01, 4.3616e-01, - 5.3671e-02, 4.6213e-01, 3.4971e-01, 9.0445e-01, - 6.7961e-02, 6.2929e-01, 4.7567e-01, 1.9572e-01, - 9.0426e-01, 9.0016e-01, 4.5447e-01, 2.6630e-01, - 4.9915e-01, 4.7508e-01, 9.2903e-01, 8.0348e-01, - 5.8895e-01, 5.5352e-01, 2.2582e-01, 5.7060e-01, - 8.1496e-01, 4.4092e-01, 7.1190e-01, 9.3405e-01, - 4.8151e-01, 4.4619e-02, 5.0619e-01, 6.3555e-02, - 1.1898e-01, 9.5625e-01, 4.3337e-02, 8.4608e-01, - 5.4897e-01, 7.6274e-01, 5.6999e-01, 5.3584e-01, - 9.6706e-01, 4.7222e-01, 6.2173e-01, 2.9964e-01, - 5.3674e-01, 4.0259e-01, 2.0631e-01, 7.9009e-01, - 5.8390e-01, 3.0329e-01, 4.0575e-01, 1.9726e-01, - 4.3732e-01, 6.0232e-01, 4.7348e-01, 1.9995e-01, - 5.4697e-01, 8.5390e-01, 9.9359e-01, 6.6034e-01, - 3.4418e-01, 8.4510e-02, 8.6703e-01, 2.9267e-01, - 2.0810e-03, 7.2851e-01, 6.6168e-01, 6.6317e-01, - 1.1115e-01, 6.0774e-03, 6.7142e-01, 1.1584e-01, - 7.1563e-01, 1.7755e-01, 5.1168e-01, 9.3821e-02, - 8.1249e-01, 1.8413e-01, 3.5159e-01, 2.4573e-01, - 4.2074e-01, 7.3776e-01, 5.3183e-01, 8.0631e-01, - 7.7750e-01, 5.5525e-01, 2.8671e-01, 6.1549e-01, - 7.1549e-01, 9.9895e-01, 5.2674e-01, 7.3041e-01, - 6.6176e-01, 3.6282e-01, 7.6034e-01, 4.0504e-01, - 2.0401e-01, 2.5487e-01, 1.9033e-01, 1.9623e-01, - 3.6284e-02, 4.2903e-01, 9.9371e-01, 6.3885e-01, - 2.5968e-02, 4.8586e-01, 6.6560e-01, 2.0616e-01, - 3.1688e-01, 6.5113e-01, 1.4279e-01, 2.1929e-01, - 5.0027e-01, 4.5512e-01, 7.2149e-01, 9.4504e-01, - 1.7168e-01, 2.2541e-01, 8.0417e-01, 3.4956e-01, - 8.3679e-01, 1.7641e-01, 9.6793e-01, 5.6210e-01, - 3.9701e-01, 1.3797e-01, 8.9202e-01, 3.2792e-01, - 4.6708e-03, 5.7283e-01, 6.0612e-01, 1.8272e-01, - 3.6646e-01, 7.2284e-01, 1.8383e-01, 2.9022e-01, - 7.9856e-01, 1.1343e-01, 2.3634e-01, 7.7130e-01, - 6.8456e-01, 1.7480e-01, 4.6250e-01, 2.4163e-01, - 8.8702e-01, 2.3058e-01, 5.1560e-02, 4.7027e-01, - 3.3772e-03, 7.2097e-02, 8.7375e-01, 4.0896e-01, - 2.9561e-01, 6.5640e-01, 5.7376e-01, 4.6184e-01, - 1.1663e-03, 9.9713e-01, 3.9355e-01, 8.6592e-01, - 6.8146e-02, 5.3923e-01, 9.7404e-01, 5.4723e-01, - 7.0125e-01, 5.4053e-01, 7.3082e-01, 9.7785e-01, - 3.3078e-02, 6.3749e-01, 6.2345e-01, 8.3051e-01, - 2.7383e-01, 3.6590e-01, 7.1021e-02, 6.9549e-01, - 7.7323e-03, 3.9891e-01, 6.7410e-01, 3.3211e-01, - 6.5325e-01, 3.6018e-01, 6.0362e-01, 8.1452e-01, - 9.4481e-01, 5.7955e-02, 4.9542e-01, 2.6184e-01, - 9.7487e-01, 4.9456e-01, 8.7892e-01, 6.6865e-01, - 5.8486e-01, 2.1761e-01, 8.5696e-01, 5.0919e-01, - 5.9215e-01, 3.5729e-01, 1.3459e-02, 1.6525e-01, - 7.5009e-03, 1.0552e-02, 5.5984e-01, 3.7025e-01, - 3.7418e-01, 8.5195e-01, 7.4716e-01, 6.0013e-01, - 4.7662e-01, 8.2335e-01, 6.4900e-01, 8.0351e-01, - 2.5588e-01, 1.9713e-02, 6.8762e-01, 5.8259e-01, - 3.1885e-01, 3.6384e-01, 8.9646e-01, 7.1272e-01, - 2.8574e-01, 3.1895e-02, 2.6414e-03, 9.8227e-02, - 9.4357e-02, 9.7996e-01, 4.3905e-02, 2.3021e-01, - 7.1295e-01, 6.1474e-01, 7.0395e-01, 5.6433e-01, - 7.0563e-01, 4.9830e-01, 1.9892e-01, 8.6877e-01, - 6.0980e-01, 4.8155e-02, 6.3296e-01, 5.8453e-01, - 1.9986e-01, 3.3112e-01, 4.0151e-01, 5.4000e-01, - 1.8111e-01, 1.3640e-01, 8.8587e-01, 3.0679e-01, - 6.3513e-01, 7.3512e-01, 7.9733e-01, 4.2402e-01, - 1.6855e-01, 6.3117e-01, 4.8672e-01, 1.8039e-01, - 3.3868e-01, 2.7695e-01, 8.9797e-01, 4.2602e-01, - 6.0119e-01, 6.6892e-01, 4.7692e-01, 9.6219e-01, - 8.0484e-03, 6.4306e-01, 5.9041e-01, 8.0576e-01, - 9.0822e-01, 1.9501e-01, 4.1124e-01, 7.9817e-01, - 9.1499e-01, 9.9412e-01, 5.3613e-01, 4.8755e-01, - 3.6868e-01, 6.5275e-01, 8.9945e-01, 4.7785e-01, - 2.3655e-01, 6.0433e-01, 1.1690e-01, 6.1542e-01, - 7.9383e-01, 1.1610e-01, 3.0181e-01, 2.1347e-01, - 3.3610e-01, 2.0677e-01, 7.2341e-03, 6.2776e-01, - 6.5419e-01, 9.4441e-01, 8.8461e-04, 5.3031e-01, - 4.1369e-01, 9.4148e-01, 3.5549e-01, 4.1555e-01, - 5.8924e-01, 3.9711e-02, 6.9593e-02, 9.8539e-01, - 5.4075e-01, 4.7812e-01, 8.5548e-01, 8.1065e-01, - 6.5941e-01, 6.6644e-01, 9.6480e-01, 5.4150e-01, - 3.9903e-01, 4.8873e-01, 3.2687e-01, 9.4824e-01, - 5.1894e-01, 5.8274e-01, 1.6827e-01, 5.5825e-01, - 8.2071e-01, 1.6344e-01, 5.2556e-01, 1.1193e-01, - 5.0648e-01, 3.6618e-01, 9.5810e-01, 1.2800e-01, - 1.3206e-03, 8.7762e-01, 2.8271e-01, 1.0213e-01, - 5.9400e-01, 3.9522e-01, 9.9260e-01, 7.4976e-01, - 2.6447e-01, 7.7409e-01, 4.1362e-01, 2.2793e-01, - 2.8623e-01, 9.4784e-01, 1.8629e-01, 5.5902e-01, - 9.8596e-01, 4.8008e-01, 2.9452e-01, 1.9370e-01, - 3.6762e-01, 8.4825e-01, 3.2358e-01, 2.2154e-01, - 5.2395e-01, 6.2301e-01, 4.6454e-01, 1.9464e-01, - 8.7654e-01, 6.1940e-01, 9.7699e-01, 3.6808e-01, - 5.8060e-01, 9.3912e-01, 9.3195e-01, 1.9902e-01, - 5.0862e-01, 6.4487e-01, 2.7873e-01, 8.0248e-02, - 7.8608e-01, 4.3327e-01, 7.4604e-01, 3.0959e-01, - 3.9353e-01, 9.8239e-01, 7.6245e-01, 9.2901e-01, - 4.6128e-01, 3.6167e-01, 9.0955e-01, 3.1202e-01, - 4.4085e-02, 6.2633e-01, 8.7656e-01, 7.4675e-01, - 2.9172e-01, 6.1556e-01, 3.1529e-01, 3.4902e-01, - 5.4348e-01, 4.2744e-01, 9.8776e-01, 8.2751e-01, - 5.7028e-01, 6.7691e-01, 3.1950e-01, 7.9881e-01, - 8.9268e-01, 2.2836e-01, 7.5059e-01, 5.6039e-02, - 8.4118e-01, 6.5572e-01, 5.5163e-01, 3.1458e-01, - 6.1704e-01, 5.6093e-02, 7.9767e-01, 9.4600e-01, - 2.1928e-01, 3.9326e-02, 5.6560e-01, 7.8186e-01, - 8.9823e-01, 6.0816e-01, 4.7673e-01, 4.3366e-01, - 9.1734e-01, 5.8754e-01, 9.5818e-01, 5.0338e-01, - 4.7101e-01, 4.2574e-01, 8.8347e-01, 9.9629e-01, - 3.7466e-01, 9.2046e-01, 1.9630e-01, 5.6342e-01, - 3.9690e-01, 3.8488e-01, 7.6991e-01, 4.0605e-01, - 8.9007e-01, 6.1929e-01, 7.5840e-01, 3.6900e-01, - 7.9131e-01, 4.8074e-01, 2.5482e-01, 3.6580e-01, - 6.8986e-01, 1.9103e-01, 8.0298e-01, 5.5040e-01, - 6.0138e-01, 2.4459e-01, 1.8774e-02, 7.6177e-01, - 1.9747e-01, 7.4636e-01, 2.7241e-01, 6.3384e-01, - 6.8666e-01, 5.8283e-01, 2.4638e-01, 4.5053e-01, - 7.7113e-02, 9.6400e-01, 7.5084e-01, 9.9097e-01, - 8.2369e-01, 1.2518e-01, 8.7079e-01, 8.8731e-01, - 6.6279e-01, 2.0421e-01, 8.1221e-02, 9.8411e-01, - 2.6106e-01, 2.3338e-02, 2.6480e-02, 4.0599e-01, - 2.9908e-01, 4.8339e-01, 7.8936e-01, 9.9101e-01, - 9.0942e-01, 2.0788e-01, 2.2735e-01, 8.7072e-01, - 5.0509e-01, 2.3135e-01, 4.7407e-01, 7.4017e-01, - 4.9692e-01, 3.6074e-01, 4.9514e-02, 1.2661e-01, - 9.7856e-02, 2.2153e-01, 1.5779e-02, 8.8678e-01, - 9.8514e-01, 7.5711e-01, 2.2177e-01, 2.4731e-01, - 8.5599e-02, 7.0071e-01, 8.3437e-01, 6.5447e-01, - 2.5607e-01, 4.0526e-01, 4.8411e-01, 6.8148e-01, - 6.9610e-01, 3.9874e-01, 4.8623e-01, 8.7722e-01, - 2.8142e-01, 2.9443e-01, 8.8637e-01, 1.8955e-01, - 3.6086e-02, 1.6641e-01, 7.8338e-01, 4.6497e-01, - 1.4233e-02, 5.7884e-01, 3.3947e-01, 4.7233e-02, - 4.2210e-02, 2.4198e-01, 7.7171e-01, 7.9947e-01, - 9.6589e-01, 6.1429e-01, 1.2277e-01, 2.0682e-01, - 3.4285e-01, 7.9675e-01, 2.9050e-01, 7.8865e-01, - 7.5171e-01, 4.5477e-01, 5.8210e-01, 7.8888e-01, - 9.8955e-02, 2.5763e-01, 8.5833e-01, 3.0164e-01, - 3.9566e-01, 6.7231e-01, 3.3608e-01, 6.6018e-01, - 1.3947e-01, 2.1432e-01, 8.3950e-01, 8.7634e-02, - 8.7303e-02, 7.9920e-01, 2.1686e-01, 2.3929e-01, - 6.2304e-01, 2.5707e-01, 4.4665e-01, 6.8967e-01, - 6.9303e-01, 2.2866e-01, 9.2399e-01, 5.7817e-01, - 5.2984e-01, 3.2154e-01, 7.8238e-01, 4.0391e-01, - 9.0909e-01, 4.9607e-02, 5.2078e-01, 2.3283e-01, - 4.9465e-01, 6.1527e-01, 4.3228e-01, 9.0330e-01, - 8.0827e-01, 6.9746e-01, 9.6769e-01, 9.2643e-01, - 9.3397e-01, 3.8602e-01, 6.5755e-01, 8.2635e-01, - 1.0202e-01, 1.5856e-01, 1.2288e-01, 8.4879e-02, - 3.2458e-01, 2.9655e-01, 1.7742e-01, 9.3450e-01, - 1.0076e-01, 7.2645e-01, 8.1806e-02, 4.6658e-01, - 3.8093e-01, 3.3309e-01, 6.5422e-01, 2.5819e-01, - 1.5107e-01, 8.8510e-01, 4.3293e-01, 9.2351e-01, - 8.9183e-01, 3.2430e-01, 4.3852e-01, 8.7239e-01, - 3.5201e-01, 4.2486e-01, 7.0879e-01, 6.1583e-01, - 1.1565e-01, 7.0478e-01, 8.8022e-01, 2.5408e-01, - 7.3129e-02, 8.2514e-01, 8.2613e-01, 3.2247e-01, - 3.3085e-01, 8.9530e-01, 1.0707e-01, 4.3826e-01, - 7.8570e-01, 9.4198e-01, 7.2354e-01, 3.4066e-01, - 7.3480e-01, 4.2036e-01, 6.3356e-01, 2.9797e-01, - 8.2827e-01, 7.8339e-01, 9.0276e-01, 2.0607e-01, - 9.7252e-01, 7.1435e-01, 4.2314e-01, 9.8891e-01, - 6.9301e-01, 5.7219e-01, 9.0386e-01, 7.0463e-01, - 7.1908e-04, 5.4692e-01, 6.0821e-01, 9.8439e-01, - 2.8373e-01, 4.8915e-01, 5.5931e-01, 9.7619e-01, - 7.4567e-01, 7.0938e-01, 1.2593e-01, 6.1318e-01, - 8.1283e-01, 9.8667e-02, 3.3716e-02, 5.7522e-01, - 1.9639e-01, 2.9416e-01, 5.5823e-01, 1.8549e-01, - 3.1942e-01, 7.4665e-01, 7.2327e-01, 9.5305e-01, - 1.9036e-02, 5.3955e-01, 2.4116e-01, 9.2667e-01, - 1.4653e-01, 9.8715e-01, 5.3480e-01, 6.0516e-01, - 6.0680e-01, 8.5987e-01, 3.9984e-01, 3.1004e-01, - 8.8724e-01, 7.4026e-01, 4.4687e-01, 8.9641e-01, - 2.4418e-01, 2.4025e-02, 5.5509e-01, 8.9647e-01, - 1.9417e-01, 6.6319e-01, 5.1484e-02, 3.4897e-01, - 5.1031e-01, 3.0611e-01, 3.8996e-01, 3.8358e-01, - 6.9904e-01, 6.9426e-01, 7.9483e-01, 3.3074e-01, - 4.4849e-01, 4.5771e-01, 3.3817e-01, 9.0376e-01, - 2.9871e-01, 1.3521e-01, 4.3356e-01, 8.7768e-02, - 2.4144e-01, 7.4490e-01, 5.2568e-01, 6.6800e-01, - 6.9455e-01, 8.8174e-01, 2.7533e-01, 9.6499e-01, - 9.5226e-01, 6.3027e-01, 6.0446e-02, 2.4209e-01, - 8.6906e-01, 3.5261e-01, 1.4614e-01, 9.4982e-01, - 7.0784e-02, 4.6539e-01, 8.8096e-01, 6.3553e-01, - 5.2585e-01, 6.7815e-02, 6.7186e-01, 7.0013e-01, - 3.2879e-01, 8.4313e-01, 2.0230e-01, 6.7661e-01, - 2.5127e-02, 8.3948e-01, 7.1261e-01, 9.8116e-01, - 5.7618e-01, 7.3962e-01, 4.1140e-01, 1.7002e-01, - 2.9786e-02, 6.1256e-01, 2.2368e-01, 2.3720e-01, - 5.1041e-01, 5.8688e-01, 3.2746e-01, 3.0206e-01, - 4.6125e-01, 3.9820e-01, 9.6772e-01, 2.2109e-01, - 6.7044e-01, 9.0422e-02, 7.0940e-01, 4.4105e-01, - 8.1398e-01, 1.1710e-01, 4.8937e-02, 6.8242e-02, - 2.0881e-01, 5.1602e-01, 9.9962e-01, 5.4247e-01, - 2.9660e-01, 5.2390e-01, 5.7505e-01, 8.5464e-01, - 9.4683e-01, 8.0727e-01, 2.3938e-01, 5.1948e-01, - 4.7982e-01, 5.9710e-01, 1.9899e-01, 5.7719e-01, - 9.9101e-01, 8.2375e-01, 4.2012e-01, 4.5169e-01, - 4.0205e-02, 5.1058e-03, 5.9797e-01, 3.2629e-01]), + col_indices=tensor([ 606, 4248, 4323, 142, 3267, 1209, 7616, 5137, 8211, + 6424, 2299, 2295, 132, 1237, 207, 4471, 8426, 1510, + 3485, 6960, 5069, 6876, 5759, 6010, 6198, 5515, 1057, + 6920, 9155, 4894, 8077, 2579, 7160, 9343, 5510, 6273, + 3046, 6095, 9498, 4568, 7882, 4172, 6457, 7199, 2821, + 8109, 7947, 3059, 5273, 811, 3090, 6904, 7921, 941, + 171, 1700, 8078, 8915, 5888, 6297, 3017, 6368, 5232, + 3121, 6921, 1954, 1701, 989, 2512, 3553, 4586, 8676, + 4195, 7666, 522, 8800, 4183, 4215, 5436, 4713, 8751, + 9665, 2209, 2880, 8327, 8043, 3725, 5157, 5205, 5068, + 5472, 2221, 9235, 5844, 1615, 5209, 8676, 880, 3145, + 5350, 6766, 607, 1821, 2811, 5587, 4952, 36, 972, + 9657, 5891, 932, 6251, 2971, 8136, 8846, 5746, 6772, + 3335, 9210, 5699, 6015, 5058, 4114, 1121, 1345, 4570, + 3080, 1837, 5077, 2774, 60, 9761, 283, 1953, 8754, + 568, 8363, 7504, 4312, 2950, 8818, 3615, 7260, 5054, + 9479, 8823, 817, 4247, 8916, 458, 1663, 1516, 8921, + 8262, 3930, 5511, 4167, 1454, 227, 9082, 8167, 6759, + 4104, 2365, 4891, 7213, 8479, 3335, 3691, 5216, 8378, + 1063, 5818, 8471, 7448, 5050, 8971, 747, 666, 6626, + 6463, 5721, 7264, 5789, 105, 7831, 7486, 5643, 8037, + 3964, 1225, 7868, 6793, 785, 9337, 463, 785, 4486, + 40, 8639, 6486, 5799, 220, 7289, 3630, 4023, 9716, + 636, 3153, 9820, 4041, 7979, 6263, 5265, 4683, 9203, + 90, 7642, 420, 3880, 2822, 376, 3766, 4385, 838, + 7707, 6033, 8983, 6271, 3139, 9042, 3814, 2813, 2724, + 6271, 5387, 8121, 7195, 5117, 5794, 8947, 1085, 4429, + 160, 2993, 9952, 7440, 7699, 3817, 18, 5719, 6435, + 6095, 7069, 731, 9481, 9394, 2426, 4205, 2461, 3873, + 8586, 4374, 7356, 5004, 2798, 7617, 2197, 119, 2470, + 3245, 8733, 6824, 4746, 9120, 2061, 7077, 2855, 8255, + 3205, 7568, 3053, 9530, 1111, 6923, 2083, 2934, 8128, + 5682, 8762, 6169, 7878, 5288, 2262, 4469, 7426, 1628, + 8495, 4564, 2858, 9806, 1173, 5731, 2322, 8964, 1865, + 7016, 9059, 5039, 2002, 1262, 7718, 4777, 1962, 1879, + 7855, 7890, 8641, 1099, 829, 2515, 1746, 2320, 6687, + 4799, 4569, 6237, 125, 2360, 7731, 401, 9623, 7974, + 7957, 893, 162, 8581, 115, 4518, 1206, 9451, 4274, + 8143, 5673, 5773, 9287, 9034, 6759, 2616, 4836, 638, + 2832, 3042, 3961, 9127, 7640, 5801, 3757, 8870, 8049, + 7486, 8964, 1399, 684, 1029, 2622, 6759, 2002, 3761, + 9818, 252, 8051, 7124, 5540, 8162, 333, 6237, 8228, + 7539, 7326, 3539, 9730, 3200, 1285, 3058, 6960, 9438, + 3335, 118, 848, 7603, 2443, 3021, 5193, 1159, 4828, + 5979, 3020, 6180, 8297, 2434, 8432, 873, 6202, 7493, + 1203, 4541, 547, 3753, 2874, 591, 2074, 4910, 3558, + 8, 8298, 2922, 6062, 8645, 3039, 7096, 8203, 433, + 4098, 2978, 5201, 220, 4789, 9244, 7862, 3711, 8615, + 7690, 3102, 7583, 2602, 5733, 1120, 4841, 144, 8214, + 5416, 404, 6971, 805, 6355, 8972, 3062, 8352, 2931, + 889, 7464, 2057, 2241, 2991, 9880, 133, 6643, 7302, + 3644, 4493, 6722, 9152, 4033, 7880, 8852, 4724, 5057, + 855, 3221, 7385, 5224, 5527, 5418, 5692, 9101, 2016, + 4500, 7558, 4991, 2183, 8431, 5687, 826, 8185, 7512, + 2034, 7269, 9017, 5667, 1066, 3954, 6620, 6000, 5735, + 4170, 6764, 5652, 6631, 3447, 1745, 1777, 3216, 7230, + 9533, 1387, 2874, 521, 745, 8458, 5566, 3373, 8999, + 2967, 8776, 9639, 3523, 831, 3365, 1405, 3704, 2518, + 8736, 9840, 8611, 7168, 974, 9007, 4762, 6891, 9021, + 6430, 9209, 301, 1699, 2870, 8888, 7910, 1671, 663, + 5112, 5271, 1358, 1676, 8365, 1780, 7972, 1361, 1045, + 1410, 4989, 2560, 1704, 6356, 9942, 2422, 9763, 6643, + 1212, 5204, 5812, 5025, 7667, 8288, 576, 8273, 6833, + 9949, 6536, 5359, 6612, 7293, 5641, 1851, 335, 4310, + 5189, 2075, 5757, 8286, 7613, 8539, 4264, 7571, 1867, + 7380, 7067, 1, 1197, 3144, 5717, 7323, 4837, 5709, + 8246, 2292, 5490, 4382, 1545, 1139, 9329, 6740, 703, + 1593, 798, 7486, 9746, 3819, 8833, 6776, 5180, 5052, + 2319, 7164, 4881, 5400, 7841, 2215, 554, 7675, 7385, + 9306, 6355, 6231, 9361, 2385, 796, 4758, 7147, 5797, + 8281, 3852, 8531, 1545, 8108, 6926, 7059, 4504, 4531, + 7506, 124, 7458, 3327, 3628, 7556, 4417, 5016, 2525, + 7489, 8555, 8443, 3229, 5225, 3661, 6918, 4100, 8017, + 696, 3226, 8086, 741, 4257, 7752, 9762, 5276, 7602, + 5466, 6581, 5529, 3577, 8691, 4977, 7816, 9124, 4760, + 3859, 4524, 9305, 6899, 4753, 8459, 4314, 3121, 6139, + 2846, 229, 1517, 5567, 5587, 6908, 6983, 1860, 4933, + 7361, 4014, 765, 1397, 6972, 1767, 184, 2375, 5132, + 8705, 5405, 2339, 1938, 8334, 4952, 7588, 5389, 6605, + 3177, 1985, 9590, 5212, 8072, 3816, 8811, 3096, 8925, + 1481, 7459, 6634, 1656, 5790, 1907, 5450, 5369, 1969, + 416, 8199, 204, 7300, 3972, 4789, 9148, 3034, 8861, + 867, 3687, 8017, 7357, 7678, 1306, 4227, 2554, 13, + 4237, 2094, 155, 3093, 7018, 9364, 9696, 454, 2404, + 9877, 1667, 5368, 2586, 9721, 344, 4734, 6749, 9534, + 6490, 9586, 8397, 4492, 1324, 1754, 8517, 7428, 618, + 5779, 2546, 5800, 591, 8731, 153, 2268, 5592, 747, + 1729, 6137, 9551, 3864, 9573, 4958, 9404, 1107, 40, + 81, 4587, 1225, 3165, 570, 3811, 3337, 716, 3120, + 5004, 6021, 7094, 5385, 1117, 9004, 5007, 7419, 1047, + 3691, 9910, 3062, 8070, 427, 7658, 5876, 5585, 6170, + 8863, 2006, 168, 2709, 1624, 9133, 9550, 8635, 9703, + 2241, 7070, 8845, 7089, 5296, 7227, 4530, 8156, 6517, + 6289, 3818, 5042, 4297, 6306, 292, 2597, 1535, 5147, + 8744, 3740, 2035, 1766, 8354, 3023, 1994, 479, 1457, + 2645, 8758, 6863, 6834, 8195, 5541, 5631, 8260, 1567, + 9934, 417, 8257, 382, 2493, 3232, 8660, 8338, 7113, + 1209, 5614, 471, 6024, 9286, 54, 7652, 6187, 540, + 8542, 6207, 6408, 4218, 7616, 5719, 4534, 6986, 2199, + 2970, 7293, 6650, 9284, 956, 6642, 9326, 5000, 9529, + 5318, 3414, 2028, 6559, 6060, 2447, 543, 4868, 7178, + 336, 1140, 3673, 2489, 8807, 2157, 5056, 6476, 3035, + 9189, 2353, 2512, 4440, 9211, 3097, 2278, 932, 4252, + 768, 331, 5614, 3971, 5355, 7842, 9323, 6119, 7597, + 450, 8478, 583, 2348, 5392, 1174, 1349, 5119, 7445, + 479, 1422, 413, 167, 314, 7818, 8189, 3817, 9967, + 3831, 4635, 9032, 2332, 6873, 8301, 1534, 4964, 9327, + 3874, 9991, 8234, 517, 4545, 7823, 9803, 8221, 542, + 5331, 9104, 7312, 7039, 7742, 2907, 3191, 8019, 2692, + 5064, 3352, 9762, 7319, 9026, 6962, 128, 5753, 4, + 9327, 3158, 8441, 4944, 4588, 8836, 9882, 3216, 3631, + 4729]), + values=tensor([0.7863, 0.8342, 0.7119, 0.8691, 0.1799, 0.8019, 0.5297, + 0.0461, 0.6789, 0.7616, 0.1867, 0.1510, 0.4759, 0.4897, + 0.3112, 0.5107, 0.2673, 0.7677, 0.2078, 0.1024, 0.6974, + 0.7483, 0.1375, 0.4229, 0.3418, 0.4279, 0.1779, 0.3128, + 0.7738, 0.2688, 0.7139, 0.5474, 0.8893, 0.2669, 0.3732, + 0.3978, 0.5696, 0.8366, 0.1938, 0.3846, 0.7418, 0.1575, + 0.9175, 0.3788, 0.9034, 0.5215, 0.5959, 0.4812, 0.8080, + 0.9553, 0.3234, 0.3058, 0.4874, 0.0548, 0.2922, 0.3243, + 0.2802, 0.3277, 0.7008, 0.8317, 0.6850, 0.3190, 0.4857, + 0.5360, 0.3195, 0.2796, 0.9648, 0.3173, 0.1462, 0.6508, + 0.9193, 0.0306, 0.5949, 0.4367, 0.7038, 0.9052, 0.8896, + 0.7649, 0.2853, 0.3726, 0.3482, 0.2792, 0.4239, 0.7674, + 0.7629, 0.2768, 0.2724, 0.5503, 0.3248, 0.8259, 0.0264, + 0.4983, 0.0596, 0.1536, 0.8502, 0.3449, 0.3085, 0.4356, + 0.3873, 0.9396, 0.5172, 0.4872, 0.6271, 0.3707, 0.6993, + 0.4127, 0.1519, 0.7471, 0.9960, 0.8186, 0.7247, 0.9753, + 0.6228, 0.3862, 0.0395, 0.6842, 0.6671, 0.0794, 0.0052, + 0.9718, 0.2986, 0.0151, 0.4374, 0.9946, 0.0935, 0.5060, + 0.9278, 0.3396, 0.3559, 0.9710, 0.0242, 0.8115, 0.3763, + 0.7869, 0.4303, 0.4782, 0.2549, 0.1494, 0.9501, 0.9807, + 0.5176, 0.8320, 0.7401, 0.7586, 0.0516, 0.2314, 0.8977, + 0.3697, 0.6354, 0.3793, 0.1332, 0.4121, 0.9345, 0.8805, + 0.2787, 0.5335, 0.9802, 0.1369, 0.6510, 0.3232, 0.7449, + 0.7218, 0.7851, 0.7585, 0.3555, 0.2232, 0.3523, 0.7028, + 0.1003, 0.5059, 0.7756, 0.5967, 0.2963, 0.2044, 0.5060, + 0.4409, 0.2094, 0.4839, 0.8768, 0.4050, 0.2371, 0.4748, + 0.4748, 0.2096, 0.9009, 0.7365, 0.7361, 0.9956, 0.8167, + 0.9573, 0.1456, 0.8912, 0.8245, 0.2111, 0.1344, 0.3731, + 0.3546, 0.1724, 0.5871, 0.2882, 0.4315, 0.5993, 0.8036, + 0.5470, 0.0035, 0.4441, 0.2185, 0.7867, 0.1945, 0.1865, + 0.6911, 0.1596, 0.9086, 0.6358, 0.5350, 0.7830, 0.3829, + 0.8050, 0.3156, 0.1687, 0.6780, 0.7685, 0.5011, 0.3136, + 0.7647, 0.2212, 0.6030, 0.2126, 0.7262, 0.0615, 0.5973, + 0.9209, 0.1964, 0.0162, 0.2415, 0.2513, 0.1957, 0.9780, + 0.4213, 0.1357, 0.1199, 0.0038, 0.5586, 0.0956, 0.1284, + 0.2755, 0.0056, 0.5708, 0.5209, 0.1329, 0.1111, 0.6389, + 0.5765, 0.0036, 0.4213, 0.3664, 0.1220, 0.0489, 0.9965, + 0.8755, 0.8525, 0.6302, 0.2268, 0.7377, 0.0782, 0.4169, + 0.9956, 0.6600, 0.0917, 0.5793, 0.2528, 0.5405, 0.4980, + 0.7610, 0.2135, 0.4588, 0.6096, 0.1996, 0.3369, 0.2309, + 0.4068, 0.9687, 0.7562, 0.2269, 0.1687, 0.3793, 0.6399, + 0.4915, 0.4112, 0.6703, 0.6153, 0.4705, 0.1233, 0.9046, + 0.5631, 0.3352, 0.9593, 0.2252, 0.0553, 0.6186, 0.4222, + 0.2235, 0.1408, 0.4026, 0.0716, 0.3602, 0.6066, 0.8411, + 0.9387, 0.9914, 0.7443, 0.1915, 0.6794, 0.2087, 0.8185, + 0.7287, 0.5539, 0.8187, 0.7845, 0.7145, 0.3411, 0.1268, + 0.7307, 0.2110, 0.3286, 0.1623, 0.5391, 0.8854, 0.3559, + 0.3656, 0.2022, 0.2735, 0.4384, 0.2267, 0.5682, 0.0871, + 0.7504, 0.0440, 0.9453, 0.0560, 0.7453, 0.5245, 0.7868, + 0.7607, 0.0740, 0.5851, 0.6988, 0.9941, 0.1340, 0.8946, + 0.5851, 0.0531, 0.1239, 0.5973, 0.8490, 0.8281, 0.0289, + 0.9819, 0.2244, 0.1732, 0.2714, 0.1424, 0.2251, 0.3208, + 0.8178, 0.8825, 0.1082, 0.5536, 0.6102, 0.1422, 0.0979, + 0.8259, 0.1018, 0.6720, 0.0237, 0.5334, 0.2595, 0.3522, + 0.7713, 0.9285, 0.1688, 0.2536, 0.8257, 0.4873, 0.4909, + 0.6034, 0.7331, 0.7261, 0.8379, 0.4814, 0.4604, 0.0061, + 0.6796, 0.9124, 0.6545, 0.1060, 0.4611, 0.8779, 0.0489, + 0.4770, 0.9426, 0.0362, 0.9291, 0.0085, 0.2023, 0.9600, + 0.4833, 0.8674, 0.3213, 0.0549, 0.2797, 0.9705, 0.5031, + 0.0798, 0.1913, 0.0630, 0.4306, 0.1285, 0.5088, 0.2413, + 0.7971, 0.4797, 0.5836, 0.3643, 0.1162, 0.6647, 0.5069, + 0.8942, 0.2930, 0.0041, 0.5855, 0.8851, 0.2293, 0.4329, + 0.7326, 0.1690, 0.2530, 0.2387, 0.0036, 0.0121, 0.1039, + 0.5190, 0.2097, 0.4634, 0.9255, 0.4940, 0.3517, 0.6614, + 0.4552, 0.1007, 0.0099, 0.5784, 0.2947, 0.7080, 0.3681, + 0.7319, 0.5470, 0.3905, 0.8546, 0.8378, 0.2638, 0.2474, + 0.2020, 0.2602, 0.2058, 0.3439, 0.3725, 0.2372, 0.8608, + 0.6782, 0.4161, 0.2714, 0.0130, 0.3098, 0.6316, 0.5573, + 0.6366, 0.0552, 0.8331, 0.1655, 0.6120, 0.6847, 0.5996, + 0.3423, 0.3329, 0.9321, 0.1631, 0.7762, 0.9917, 0.4457, + 0.2145, 0.3700, 0.3585, 0.1830, 0.8788, 0.7830, 0.8978, + 0.9083, 0.9699, 0.0188, 0.8464, 0.2189, 0.0314, 0.1098, + 0.5475, 0.6995, 0.2544, 0.4684, 0.3350, 0.8207, 0.7849, + 0.7699, 0.7118, 0.1858, 0.2650, 0.1482, 0.3208, 0.2300, + 0.0603, 0.6347, 0.1795, 0.1880, 0.1849, 0.3946, 0.2904, + 0.3987, 0.0378, 0.8753, 0.9825, 0.3658, 0.9591, 0.8361, + 0.6193, 0.9979, 0.4363, 0.2356, 0.5991, 0.1784, 0.1734, + 0.6202, 0.8094, 0.4349, 0.0297, 0.2971, 0.5907, 0.7311, + 0.5068, 0.6370, 0.7797, 0.6554, 0.9023, 0.2928, 0.4467, + 0.3417, 0.7580, 0.0048, 0.5521, 0.6463, 0.4551, 0.2157, + 0.9490, 0.7709, 0.5133, 0.6298, 0.9824, 0.0939, 0.6470, + 0.8582, 0.6745, 0.3195, 0.7034, 0.3210, 0.4343, 0.8580, + 0.2725, 0.9024, 0.1300, 0.1018, 0.1214, 0.8294, 0.8231, + 0.4988, 0.6393, 0.5659, 0.3564, 0.4693, 0.7534, 0.8943, + 0.8326, 0.6300, 0.8559, 0.5119, 0.1976, 0.2140, 0.7843, + 0.6970, 0.1656, 0.6279, 0.1965, 0.1246, 0.2067, 0.4844, + 0.6932, 0.0875, 0.9163, 0.9941, 0.6738, 0.5892, 0.8709, + 0.4754, 0.3597, 0.3053, 0.6792, 0.1671, 0.1823, 0.5845, + 0.7883, 0.0033, 0.7413, 0.6371, 0.5830, 0.0867, 0.2426, + 0.0434, 0.2486, 0.2783, 0.8635, 0.4149, 0.8689, 0.2094, + 0.0406, 0.9992, 0.4458, 0.4786, 0.5163, 0.4532, 0.9377, + 0.1115, 0.5946, 0.5658, 0.7630, 0.5075, 0.2843, 0.6994, + 0.4331, 0.1647, 0.7111, 0.9415, 0.9134, 0.3649, 0.1405, + 0.3023, 0.1916, 0.9338, 0.8955, 0.1579, 0.6881, 0.6431, + 0.7938, 0.6435, 0.1598, 0.8058, 0.0143, 0.7389, 0.1256, + 0.3343, 0.5721, 0.4218, 0.4586, 0.7800, 0.2224, 0.0329, + 0.3782, 0.5096, 0.7729, 0.2314, 0.6628, 0.4257, 0.0530, + 0.2394, 0.3782, 0.3378, 0.9264, 0.3846, 0.8312, 0.7165, + 0.9018, 0.2255, 0.8764, 0.4648, 0.8905, 0.6287, 0.3061, + 0.2358, 0.3575, 0.8837, 0.8661, 0.4644, 0.0307, 0.1658, + 0.1603, 0.6516, 0.7616, 0.5701, 0.3014, 0.9310, 0.2065, + 0.7077, 0.7364, 0.4491, 0.0518, 0.7097, 0.4874, 0.4668, + 0.0620, 0.4255, 0.6665, 0.1014, 0.1580, 0.0470, 0.3432, + 0.8393, 0.1570, 0.1401, 0.5172, 0.8417, 0.4672, 0.2201, + 0.1674, 0.9708, 0.6467, 0.6089, 0.9800, 0.0513, 0.3044, + 0.6979, 0.6719, 0.1842, 0.8617, 0.2669, 0.6961, 0.6593, + 0.1234, 0.4151, 0.5864, 0.5859, 0.0830, 0.1869, 0.0506, + 0.4507, 0.0944, 0.5583, 0.8982, 0.5055, 0.6171, 0.7678, + 0.4718, 0.9977, 0.2777, 0.7559, 0.1953, 0.4405, 0.9006, + 0.3125, 0.6338, 0.3459, 0.2249, 0.6948, 0.3347, 0.4623, + 0.5826, 0.5751, 0.0351, 0.6388, 0.1795, 0.7330, 0.5707, + 0.5527, 0.2760, 0.8521, 0.1919, 0.1692, 0.4703, 0.1457, + 0.4745, 0.3853, 0.5193, 0.8361, 0.1959, 0.4596, 0.5784, + 0.0974, 0.3018, 0.0027, 0.0284, 0.6379, 0.0985, 0.6697, + 0.1617, 0.9408, 0.1225, 0.4828, 0.1493, 0.2255, 0.9622, + 0.3456, 0.5549, 0.7083, 0.8183, 0.4017, 0.9015, 0.9500, + 0.9757, 0.7762, 0.4376, 0.1119, 0.0478, 0.0482, 0.0578, + 0.7538, 0.6748, 0.4915, 0.0046, 0.4804, 0.0171, 0.2571, + 0.5740, 0.8135, 0.9212, 0.1282, 0.1633, 0.3991, 0.3795, + 0.2563, 0.7909, 0.3096, 0.9640, 0.3523, 0.8436, 0.3227, + 0.0600, 0.3198, 0.3035, 0.1361, 0.3922, 0.1782, 0.7833, + 0.2504, 0.4757, 0.7349, 0.8713, 0.6836, 0.3507, 0.6395, + 0.8433, 0.8479, 0.5637, 0.2767, 0.4270, 0.1521, 0.7400, + 0.4410, 0.9217, 0.8199, 0.3646, 0.7246, 0.6747, 0.1362, + 0.4476, 0.3311, 0.4522, 0.8256, 0.9839, 0.1661, 0.7065, + 0.0053, 0.7677, 0.6798, 0.6573, 0.7053, 0.0946, 0.4782, + 0.6733, 0.8968, 0.8493, 0.9722, 0.3359, 0.2513, 0.8759, + 0.7557, 0.5642, 0.6956, 0.9785, 0.2314, 0.2092, 0.6617, + 0.2157, 0.9152, 0.2913, 0.0438, 0.9309, 0.2537, 0.0994, + 0.4607, 0.6405, 0.5177, 0.7145, 0.1394, 0.3492, 0.5865, + 0.9348, 0.8342, 0.9034, 0.5205, 0.0516, 0.1632, 0.3433, + 0.4758, 0.2442, 0.7218, 0.3687, 0.3685, 0.7796, 0.4166, + 0.7390, 0.4015, 0.0501, 0.4473, 0.1656, 0.4610, 0.3317, + 0.3754, 0.6628, 0.9353, 0.1661, 0.2491, 0.3244, 0.5026, + 0.2276, 0.1611, 0.0412, 0.1485, 0.2596, 0.3703, 0.5359, + 0.7023, 0.3612, 0.9260, 0.3044, 0.4320, 0.5730, 0.4544, + 0.7409, 0.6046, 0.2126, 0.8407, 0.5541, 0.9635, 0.4726, + 0.7284, 0.1079, 0.8545, 0.8839, 0.1658, 0.6432, 0.3731, + 0.4876, 0.5276, 0.8205, 0.3497, 0.2810, 0.3329, 0.4371, + 0.6824, 0.9070, 0.8115, 0.6630, 0.8608, 0.8445, 0.6452, + 0.0464, 0.2074, 0.6033, 0.8590, 0.4426, 0.1662, 0.9143, + 0.8420, 0.9435, 0.3667, 0.0587, 0.3344, 0.5940, 0.9391, + 0.3098, 0.3277, 0.3122, 0.0248, 0.5693, 0.1331]), size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.5424, 0.9332, 0.7035, ..., 0.9872, 0.5484, 0.9353]) +tensor([0.8452, 0.1047, 0.0563, ..., 0.6079, 0.4820, 0.4351]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -919,389 +1188,13 @@ Rows: 10000 Size: 100000000 NNZ: 1000 Density: 1e-05 -Time: 10.641618490219116 seconds +Time: 10.998100280761719 seconds -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), - col_indices=tensor([1350, 1465, 4190, 6900, 6571, 5844, 4736, 324, 9249, - 4549, 8900, 1195, 9063, 17, 7365, 9356, 2846, 1690, - 3749, 1888, 862, 8180, 9473, 3977, 5876, 6416, 6859, - 7325, 678, 7412, 524, 1679, 6675, 3544, 6761, 5863, - 1068, 1910, 8050, 5074, 3644, 5672, 2657, 2220, 3680, - 3869, 2170, 9920, 5472, 6846, 1556, 5671, 175, 5132, - 2577, 8845, 2796, 3794, 8679, 3242, 2471, 9643, 3149, - 1963, 477, 3306, 128, 7262, 8119, 314, 7239, 5180, - 7202, 2643, 4302, 4311, 1590, 7790, 3773, 8804, 9774, - 2553, 9496, 5566, 1143, 7175, 1004, 2781, 372, 2208, - 7381, 6760, 7287, 1604, 2915, 9765, 1879, 938, 8046, - 4870, 6940, 4820, 8392, 5340, 4182, 5114, 2023, 1770, - 6402, 82, 2384, 7877, 2701, 2498, 2104, 9483, 669, - 9528, 5633, 1059, 3421, 3906, 4248, 6650, 9824, 1201, - 6102, 134, 2120, 8662, 7792, 9525, 5975, 1053, 6589, - 2129, 3517, 7592, 8589, 4303, 8461, 4477, 5747, 151, - 4870, 4529, 3641, 7250, 392, 4557, 4767, 3949, 3212, - 6761, 5818, 2538, 1345, 6586, 9842, 9149, 9262, 9581, - 8332, 5787, 6867, 3334, 3929, 9915, 9165, 4571, 9626, - 7362, 4285, 9980, 8689, 7517, 3312, 4487, 2526, 8915, - 9807, 716, 901, 2067, 6046, 9001, 7911, 408, 148, - 1317, 5920, 3284, 7801, 7588, 8770, 6560, 348, 6988, - 8097, 3984, 3485, 3409, 9201, 5638, 6421, 3563, 3632, - 1452, 6631, 6346, 2233, 5327, 64, 3152, 8667, 5946, - 4510, 1417, 3779, 8867, 2905, 1369, 135, 8079, 9417, - 187, 7716, 9929, 5719, 3498, 2120, 8640, 5146, 9731, - 8710, 9996, 9692, 1206, 6217, 1310, 7099, 2614, 8044, - 1982, 4290, 9595, 7939, 9679, 9571, 7958, 1758, 6195, - 5533, 9545, 406, 917, 1357, 5574, 1085, 7923, 7220, - 6422, 8549, 2682, 40, 3795, 9767, 3767, 5240, 158, - 3048, 7355, 4332, 6816, 4937, 8246, 9715, 8200, 9814, - 6924, 8065, 6446, 6243, 4976, 4917, 5512, 4910, 3708, - 6023, 7639, 1133, 6448, 4950, 8492, 7993, 8584, 1340, - 5468, 6297, 6716, 8997, 6226, 6910, 7244, 6616, 1449, - 5171, 5393, 8543, 2497, 1323, 5505, 4755, 5970, 388, - 2929, 385, 1335, 7880, 9728, 5434, 6161, 2897, 3622, - 6161, 1650, 8903, 6820, 7357, 9843, 3756, 4645, 5310, - 1445, 7447, 1450, 6550, 1861, 6021, 3492, 1610, 5698, - 4827, 6115, 5157, 1608, 4965, 737, 1903, 4025, 2119, - 6552, 595, 4810, 130, 3982, 137, 8138, 5899, 7598, - 5942, 3724, 5818, 6843, 8546, 4893, 4811, 391, 3514, - 9590, 3749, 2481, 8733, 9761, 9190, 5512, 9765, 134, - 8737, 2194, 9046, 3630, 3577, 1253, 9106, 1281, 5455, - 2534, 8025, 1117, 9647, 9761, 3834, 8587, 9342, 4191, - 9213, 3915, 2071, 2631, 849, 3316, 4207, 5597, 9512, - 7014, 9934, 1359, 6351, 1942, 6581, 6730, 6231, 5782, - 5904, 9677, 532, 7482, 4382, 7965, 9754, 4297, 5473, - 3176, 7459, 9266, 9112, 9056, 5480, 4330, 3498, 3249, - 887, 2323, 930, 7809, 58, 2094, 769, 5008, 5797, - 6898, 9453, 808, 7053, 398, 7426, 1736, 634, 7990, - 3100, 1720, 4719, 4760, 7828, 648, 5462, 3365, 7079, - 7345, 2413, 8136, 6049, 5463, 2961, 6046, 4524, 6494, - 9373, 3832, 7595, 4732, 9656, 3425, 2265, 3526, 7277, - 1225, 8233, 9557, 960, 3905, 1045, 4119, 8053, 8659, - 1372, 8807, 1493, 4002, 9729, 3897, 7672, 5249, 1203, - 6003, 5841, 3864, 7129, 5663, 2654, 493, 7397, 7287, - 8513, 5254, 1707, 4926, 5022, 9139, 5676, 8296, 5115, - 9657, 591, 3536, 5723, 4822, 5176, 7346, 8375, 9143, - 2356, 7880, 2943, 6276, 2137, 3628, 59, 290, 6930, - 2063, 7839, 1196, 5604, 6563, 8782, 9536, 5108, 3877, - 429, 6184, 7060, 3523, 3867, 5457, 5143, 8932, 5594, - 5593, 2868, 1998, 3179, 1071, 9873, 6395, 5298, 9745, - 5572, 1722, 4856, 9429, 1499, 3117, 6370, 8257, 4390, - 3738, 9994, 4823, 6585, 1467, 2601, 5458, 2716, 1146, - 1738, 33, 9872, 5036, 1557, 1944, 2879, 4044, 2272, - 7676, 6388, 1904, 6101, 7987, 1700, 4395, 343, 9841, - 1734, 7922, 7616, 779, 5161, 468, 8805, 3563, 3932, - 1112, 1437, 1123, 8651, 9745, 3719, 4795, 7772, 9403, - 4517, 7987, 9197, 2190, 6957, 7720, 6929, 726, 1110, - 9372, 5858, 5956, 8878, 9550, 1968, 4362, 1304, 9796, - 7292, 3154, 8295, 3865, 7777, 3161, 3378, 1822, 7853, - 208, 589, 1972, 9911, 1971, 862, 9849, 3414, 9130, - 579, 4654, 92, 1475, 5598, 8930, 3936, 5479, 4313, - 185, 4782, 8779, 9083, 418, 1106, 2313, 6235, 7286, - 152, 2775, 6751, 650, 4919, 8921, 9634, 1984, 5779, - 1783, 7443, 6754, 7424, 1444, 6666, 409, 7791, 2642, - 1544, 5312, 3341, 5058, 6924, 1677, 5851, 5827, 2727, - 2075, 6264, 3079, 359, 2843, 330, 8651, 3205, 9111, - 3779, 6781, 64, 3792, 2666, 6804, 8462, 1474, 2290, - 1836, 9949, 6173, 4550, 9201, 1274, 5067, 351, 6480, - 6711, 8407, 7904, 5366, 4929, 444, 108, 2997, 7484, - 8340, 6161, 8073, 6104, 8943, 694, 6149, 8601, 1196, - 6575, 9937, 5094, 7925, 5722, 4565, 1084, 8988, 2783, - 7886, 6397, 7800, 2120, 9277, 5526, 5542, 1074, 1789, - 5085, 3061, 759, 7623, 4901, 1186, 3367, 1888, 9959, - 2396, 9680, 360, 1868, 6943, 9939, 5200, 5990, 7250, - 6064, 4697, 2291, 9159, 5133, 7533, 58, 7263, 8045, - 653, 6028, 7381, 932, 5857, 3072, 5547, 6647, 6032, - 5013, 1366, 1918, 6452, 4364, 581, 9863, 1502, 2117, - 5639, 4065, 1307, 3603, 5711, 481, 9225, 4458, 5133, - 5766, 2525, 6579, 6101, 955, 4014, 6750, 3371, 125, - 7603, 502, 2892, 6603, 2344, 8601, 3165, 2311, 9192, - 9546, 5043, 7844, 8591, 4935, 1765, 6671, 3193, 7181, - 2586, 5711, 3133, 5348, 7042, 9417, 8381, 100, 9386, - 3078, 5274, 1139, 6265, 8146, 6636, 5554, 6892, 1948, - 4479, 3693, 6919, 173, 9040, 5511, 2922, 6123, 9263, - 1418, 7264, 9857, 4588, 2740, 3894, 934, 1897, 9124, - 2393, 5100, 6701, 4211, 7855, 8655, 7893, 6373, 880, - 3410, 9500, 817, 9700, 622, 8424, 8906, 1192, 8082, - 5342, 4260, 2298, 5844, 8318, 1796, 365, 9287, 9942, - 1981, 5532, 9956, 1644, 1875, 1279, 1792, 9840, 4785, - 2478, 8953, 6214, 7060, 7798, 5291, 3255, 4370, 6301, - 9417, 5935, 5835, 7402, 7682, 5438, 9081, 5509, 8833, - 4566, 7011, 7184, 9706, 5339, 6813, 8443, 6535, 4377, - 9556, 509, 7923, 1426, 269, 4969, 957, 9645, 915, - 2300, 7682, 2902, 3368, 6024, 5901, 8615, 9741, 4861, - 1715, 1852, 8544, 3363, 7624, 4922, 8831, 1155, 5064, - 5765, 8030, 5214, 394, 5236, 4059, 7423, 941, 4185, - 7107, 525, 2019, 9115, 9184, 9216, 3622, 6792, 7696, - 6453, 9771, 541, 5255, 3317, 5383, 7392, 5897, 2023, - 6649, 4678, 2681, 6438, 365, 8269, 3577, 3723, 8264, - 2108]), - values=tensor([4.4965e-01, 1.3769e-01, 9.5035e-01, 5.7293e-01, - 7.7954e-01, 9.7503e-01, 1.4322e-01, 1.1818e-01, - 9.2953e-01, 8.1415e-01, 2.5238e-01, 6.0614e-01, - 4.5041e-01, 9.3390e-01, 9.7710e-01, 9.9499e-01, - 6.9516e-01, 1.2549e-01, 6.3390e-02, 4.9786e-01, - 2.6705e-01, 8.4035e-01, 4.7765e-01, 3.0191e-01, - 6.1763e-01, 6.4828e-01, 3.9165e-01, 4.0915e-01, - 4.2696e-01, 5.5891e-01, 9.9986e-01, 6.3730e-01, - 2.9036e-01, 6.8686e-01, 6.5946e-01, 4.8732e-01, - 3.4969e-01, 4.5554e-01, 8.7839e-01, 2.7698e-01, - 3.7226e-01, 1.5065e-02, 7.8865e-01, 6.0802e-01, - 5.6511e-01, 2.4244e-01, 5.1242e-02, 4.0738e-01, - 9.8710e-01, 1.9007e-01, 5.9800e-01, 8.4842e-01, - 9.1312e-01, 5.7446e-01, 5.4363e-01, 8.4750e-01, - 7.2541e-01, 8.4173e-01, 2.0399e-01, 4.5103e-01, - 1.4989e-01, 4.0298e-02, 1.7179e-01, 1.9945e-01, - 4.2389e-01, 3.1067e-01, 4.1838e-01, 4.7559e-01, - 8.5569e-01, 1.8368e-01, 4.8212e-01, 2.5203e-01, - 9.8680e-01, 4.5715e-01, 3.9215e-01, 8.5828e-01, - 9.4023e-01, 6.4093e-01, 7.0762e-01, 9.1246e-02, - 1.3960e-01, 8.7422e-01, 2.0504e-01, 5.2817e-01, - 4.5923e-02, 7.5340e-01, 4.3166e-02, 2.0079e-01, - 7.8776e-01, 7.4413e-01, 8.2810e-01, 4.3091e-02, - 6.3484e-01, 9.8935e-01, 4.7099e-01, 7.2918e-01, - 5.9483e-01, 8.6295e-01, 7.3936e-01, 3.6303e-01, - 5.6024e-01, 7.7622e-02, 1.0867e-01, 4.7041e-01, - 8.9265e-02, 9.1467e-01, 5.3849e-01, 1.8243e-01, - 5.3073e-01, 1.6104e-01, 5.5963e-01, 7.7433e-01, - 6.2087e-01, 2.9998e-01, 8.4995e-01, 2.2873e-02, - 8.7271e-02, 5.9852e-02, 6.5516e-01, 8.3316e-01, - 6.1547e-01, 6.3866e-01, 3.5342e-02, 9.7500e-01, - 4.1725e-01, 8.5943e-02, 3.3098e-02, 2.9393e-01, - 1.5172e-01, 6.5877e-01, 2.8169e-01, 8.0348e-01, - 7.7073e-01, 8.8877e-02, 6.6121e-01, 5.8345e-01, - 2.0661e-01, 3.7722e-01, 7.1221e-01, 4.5307e-01, - 3.1638e-01, 3.0489e-01, 1.1920e-01, 4.1591e-01, - 8.9518e-01, 5.0347e-01, 5.0858e-01, 3.2186e-01, - 7.4868e-01, 6.7171e-01, 9.3244e-01, 5.1430e-01, - 5.5016e-01, 2.8409e-01, 8.7062e-01, 2.5604e-01, - 9.6683e-01, 6.2006e-01, 8.0527e-02, 8.3669e-01, - 4.1226e-01, 3.0537e-01, 8.3561e-01, 3.9863e-01, - 5.3343e-01, 7.4499e-01, 4.3410e-01, 2.7897e-02, - 9.3765e-01, 8.4855e-01, 1.2336e-01, 1.1406e-01, - 3.0397e-01, 5.7188e-01, 3.3977e-01, 5.2731e-01, - 9.7160e-01, 3.2639e-01, 4.2242e-01, 3.2683e-02, - 9.8412e-01, 1.9910e-01, 2.5882e-01, 5.8518e-01, - 6.3761e-01, 7.2072e-01, 8.3748e-01, 2.4796e-02, - 9.0469e-01, 3.8373e-01, 8.3620e-01, 9.4335e-02, - 4.4129e-01, 4.0587e-01, 7.4687e-01, 5.2634e-01, - 1.3717e-01, 6.0904e-01, 4.2155e-01, 4.1423e-01, - 3.9847e-01, 8.8079e-02, 1.4881e-01, 3.8816e-01, - 5.2840e-02, 9.9597e-01, 3.7101e-01, 6.4058e-01, - 2.2169e-01, 9.4454e-01, 7.6950e-01, 1.2550e-01, - 3.3727e-02, 1.9034e-01, 7.9984e-01, 1.3267e-01, - 5.6674e-01, 3.2196e-01, 8.4859e-01, 4.3616e-01, - 5.3671e-02, 4.6213e-01, 3.4971e-01, 9.0445e-01, - 6.7961e-02, 6.2929e-01, 4.7567e-01, 1.9572e-01, - 9.0426e-01, 9.0016e-01, 4.5447e-01, 2.6630e-01, - 4.9915e-01, 4.7508e-01, 9.2903e-01, 8.0348e-01, - 5.8895e-01, 5.5352e-01, 2.2582e-01, 5.7060e-01, - 8.1496e-01, 4.4092e-01, 7.1190e-01, 9.3405e-01, - 4.8151e-01, 4.4619e-02, 5.0619e-01, 6.3555e-02, - 1.1898e-01, 9.5625e-01, 4.3337e-02, 8.4608e-01, - 5.4897e-01, 7.6274e-01, 5.6999e-01, 5.3584e-01, - 9.6706e-01, 4.7222e-01, 6.2173e-01, 2.9964e-01, - 5.3674e-01, 4.0259e-01, 2.0631e-01, 7.9009e-01, - 5.8390e-01, 3.0329e-01, 4.0575e-01, 1.9726e-01, - 4.3732e-01, 6.0232e-01, 4.7348e-01, 1.9995e-01, - 5.4697e-01, 8.5390e-01, 9.9359e-01, 6.6034e-01, - 3.4418e-01, 8.4510e-02, 8.6703e-01, 2.9267e-01, - 2.0810e-03, 7.2851e-01, 6.6168e-01, 6.6317e-01, - 1.1115e-01, 6.0774e-03, 6.7142e-01, 1.1584e-01, - 7.1563e-01, 1.7755e-01, 5.1168e-01, 9.3821e-02, - 8.1249e-01, 1.8413e-01, 3.5159e-01, 2.4573e-01, - 4.2074e-01, 7.3776e-01, 5.3183e-01, 8.0631e-01, - 7.7750e-01, 5.5525e-01, 2.8671e-01, 6.1549e-01, - 7.1549e-01, 9.9895e-01, 5.2674e-01, 7.3041e-01, - 6.6176e-01, 3.6282e-01, 7.6034e-01, 4.0504e-01, - 2.0401e-01, 2.5487e-01, 1.9033e-01, 1.9623e-01, - 3.6284e-02, 4.2903e-01, 9.9371e-01, 6.3885e-01, - 2.5968e-02, 4.8586e-01, 6.6560e-01, 2.0616e-01, - 3.1688e-01, 6.5113e-01, 1.4279e-01, 2.1929e-01, - 5.0027e-01, 4.5512e-01, 7.2149e-01, 9.4504e-01, - 1.7168e-01, 2.2541e-01, 8.0417e-01, 3.4956e-01, - 8.3679e-01, 1.7641e-01, 9.6793e-01, 5.6210e-01, - 3.9701e-01, 1.3797e-01, 8.9202e-01, 3.2792e-01, - 4.6708e-03, 5.7283e-01, 6.0612e-01, 1.8272e-01, - 3.6646e-01, 7.2284e-01, 1.8383e-01, 2.9022e-01, - 7.9856e-01, 1.1343e-01, 2.3634e-01, 7.7130e-01, - 6.8456e-01, 1.7480e-01, 4.6250e-01, 2.4163e-01, - 8.8702e-01, 2.3058e-01, 5.1560e-02, 4.7027e-01, - 3.3772e-03, 7.2097e-02, 8.7375e-01, 4.0896e-01, - 2.9561e-01, 6.5640e-01, 5.7376e-01, 4.6184e-01, - 1.1663e-03, 9.9713e-01, 3.9355e-01, 8.6592e-01, - 6.8146e-02, 5.3923e-01, 9.7404e-01, 5.4723e-01, - 7.0125e-01, 5.4053e-01, 7.3082e-01, 9.7785e-01, - 3.3078e-02, 6.3749e-01, 6.2345e-01, 8.3051e-01, - 2.7383e-01, 3.6590e-01, 7.1021e-02, 6.9549e-01, - 7.7323e-03, 3.9891e-01, 6.7410e-01, 3.3211e-01, - 6.5325e-01, 3.6018e-01, 6.0362e-01, 8.1452e-01, - 9.4481e-01, 5.7955e-02, 4.9542e-01, 2.6184e-01, - 9.7487e-01, 4.9456e-01, 8.7892e-01, 6.6865e-01, - 5.8486e-01, 2.1761e-01, 8.5696e-01, 5.0919e-01, - 5.9215e-01, 3.5729e-01, 1.3459e-02, 1.6525e-01, - 7.5009e-03, 1.0552e-02, 5.5984e-01, 3.7025e-01, - 3.7418e-01, 8.5195e-01, 7.4716e-01, 6.0013e-01, - 4.7662e-01, 8.2335e-01, 6.4900e-01, 8.0351e-01, - 2.5588e-01, 1.9713e-02, 6.8762e-01, 5.8259e-01, - 3.1885e-01, 3.6384e-01, 8.9646e-01, 7.1272e-01, - 2.8574e-01, 3.1895e-02, 2.6414e-03, 9.8227e-02, - 9.4357e-02, 9.7996e-01, 4.3905e-02, 2.3021e-01, - 7.1295e-01, 6.1474e-01, 7.0395e-01, 5.6433e-01, - 7.0563e-01, 4.9830e-01, 1.9892e-01, 8.6877e-01, - 6.0980e-01, 4.8155e-02, 6.3296e-01, 5.8453e-01, - 1.9986e-01, 3.3112e-01, 4.0151e-01, 5.4000e-01, - 1.8111e-01, 1.3640e-01, 8.8587e-01, 3.0679e-01, - 6.3513e-01, 7.3512e-01, 7.9733e-01, 4.2402e-01, - 1.6855e-01, 6.3117e-01, 4.8672e-01, 1.8039e-01, - 3.3868e-01, 2.7695e-01, 8.9797e-01, 4.2602e-01, - 6.0119e-01, 6.6892e-01, 4.7692e-01, 9.6219e-01, - 8.0484e-03, 6.4306e-01, 5.9041e-01, 8.0576e-01, - 9.0822e-01, 1.9501e-01, 4.1124e-01, 7.9817e-01, - 9.1499e-01, 9.9412e-01, 5.3613e-01, 4.8755e-01, - 3.6868e-01, 6.5275e-01, 8.9945e-01, 4.7785e-01, - 2.3655e-01, 6.0433e-01, 1.1690e-01, 6.1542e-01, - 7.9383e-01, 1.1610e-01, 3.0181e-01, 2.1347e-01, - 3.3610e-01, 2.0677e-01, 7.2341e-03, 6.2776e-01, - 6.5419e-01, 9.4441e-01, 8.8461e-04, 5.3031e-01, - 4.1369e-01, 9.4148e-01, 3.5549e-01, 4.1555e-01, - 5.8924e-01, 3.9711e-02, 6.9593e-02, 9.8539e-01, - 5.4075e-01, 4.7812e-01, 8.5548e-01, 8.1065e-01, - 6.5941e-01, 6.6644e-01, 9.6480e-01, 5.4150e-01, - 3.9903e-01, 4.8873e-01, 3.2687e-01, 9.4824e-01, - 5.1894e-01, 5.8274e-01, 1.6827e-01, 5.5825e-01, - 8.2071e-01, 1.6344e-01, 5.2556e-01, 1.1193e-01, - 5.0648e-01, 3.6618e-01, 9.5810e-01, 1.2800e-01, - 1.3206e-03, 8.7762e-01, 2.8271e-01, 1.0213e-01, - 5.9400e-01, 3.9522e-01, 9.9260e-01, 7.4976e-01, - 2.6447e-01, 7.7409e-01, 4.1362e-01, 2.2793e-01, - 2.8623e-01, 9.4784e-01, 1.8629e-01, 5.5902e-01, - 9.8596e-01, 4.8008e-01, 2.9452e-01, 1.9370e-01, - 3.6762e-01, 8.4825e-01, 3.2358e-01, 2.2154e-01, - 5.2395e-01, 6.2301e-01, 4.6454e-01, 1.9464e-01, - 8.7654e-01, 6.1940e-01, 9.7699e-01, 3.6808e-01, - 5.8060e-01, 9.3912e-01, 9.3195e-01, 1.9902e-01, - 5.0862e-01, 6.4487e-01, 2.7873e-01, 8.0248e-02, - 7.8608e-01, 4.3327e-01, 7.4604e-01, 3.0959e-01, - 3.9353e-01, 9.8239e-01, 7.6245e-01, 9.2901e-01, - 4.6128e-01, 3.6167e-01, 9.0955e-01, 3.1202e-01, - 4.4085e-02, 6.2633e-01, 8.7656e-01, 7.4675e-01, - 2.9172e-01, 6.1556e-01, 3.1529e-01, 3.4902e-01, - 5.4348e-01, 4.2744e-01, 9.8776e-01, 8.2751e-01, - 5.7028e-01, 6.7691e-01, 3.1950e-01, 7.9881e-01, - 8.9268e-01, 2.2836e-01, 7.5059e-01, 5.6039e-02, - 8.4118e-01, 6.5572e-01, 5.5163e-01, 3.1458e-01, - 6.1704e-01, 5.6093e-02, 7.9767e-01, 9.4600e-01, - 2.1928e-01, 3.9326e-02, 5.6560e-01, 7.8186e-01, - 8.9823e-01, 6.0816e-01, 4.7673e-01, 4.3366e-01, - 9.1734e-01, 5.8754e-01, 9.5818e-01, 5.0338e-01, - 4.7101e-01, 4.2574e-01, 8.8347e-01, 9.9629e-01, - 3.7466e-01, 9.2046e-01, 1.9630e-01, 5.6342e-01, - 3.9690e-01, 3.8488e-01, 7.6991e-01, 4.0605e-01, - 8.9007e-01, 6.1929e-01, 7.5840e-01, 3.6900e-01, - 7.9131e-01, 4.8074e-01, 2.5482e-01, 3.6580e-01, - 6.8986e-01, 1.9103e-01, 8.0298e-01, 5.5040e-01, - 6.0138e-01, 2.4459e-01, 1.8774e-02, 7.6177e-01, - 1.9747e-01, 7.4636e-01, 2.7241e-01, 6.3384e-01, - 6.8666e-01, 5.8283e-01, 2.4638e-01, 4.5053e-01, - 7.7113e-02, 9.6400e-01, 7.5084e-01, 9.9097e-01, - 8.2369e-01, 1.2518e-01, 8.7079e-01, 8.8731e-01, - 6.6279e-01, 2.0421e-01, 8.1221e-02, 9.8411e-01, - 2.6106e-01, 2.3338e-02, 2.6480e-02, 4.0599e-01, - 2.9908e-01, 4.8339e-01, 7.8936e-01, 9.9101e-01, - 9.0942e-01, 2.0788e-01, 2.2735e-01, 8.7072e-01, - 5.0509e-01, 2.3135e-01, 4.7407e-01, 7.4017e-01, - 4.9692e-01, 3.6074e-01, 4.9514e-02, 1.2661e-01, - 9.7856e-02, 2.2153e-01, 1.5779e-02, 8.8678e-01, - 9.8514e-01, 7.5711e-01, 2.2177e-01, 2.4731e-01, - 8.5599e-02, 7.0071e-01, 8.3437e-01, 6.5447e-01, - 2.5607e-01, 4.0526e-01, 4.8411e-01, 6.8148e-01, - 6.9610e-01, 3.9874e-01, 4.8623e-01, 8.7722e-01, - 2.8142e-01, 2.9443e-01, 8.8637e-01, 1.8955e-01, - 3.6086e-02, 1.6641e-01, 7.8338e-01, 4.6497e-01, - 1.4233e-02, 5.7884e-01, 3.3947e-01, 4.7233e-02, - 4.2210e-02, 2.4198e-01, 7.7171e-01, 7.9947e-01, - 9.6589e-01, 6.1429e-01, 1.2277e-01, 2.0682e-01, - 3.4285e-01, 7.9675e-01, 2.9050e-01, 7.8865e-01, - 7.5171e-01, 4.5477e-01, 5.8210e-01, 7.8888e-01, - 9.8955e-02, 2.5763e-01, 8.5833e-01, 3.0164e-01, - 3.9566e-01, 6.7231e-01, 3.3608e-01, 6.6018e-01, - 1.3947e-01, 2.1432e-01, 8.3950e-01, 8.7634e-02, - 8.7303e-02, 7.9920e-01, 2.1686e-01, 2.3929e-01, - 6.2304e-01, 2.5707e-01, 4.4665e-01, 6.8967e-01, - 6.9303e-01, 2.2866e-01, 9.2399e-01, 5.7817e-01, - 5.2984e-01, 3.2154e-01, 7.8238e-01, 4.0391e-01, - 9.0909e-01, 4.9607e-02, 5.2078e-01, 2.3283e-01, - 4.9465e-01, 6.1527e-01, 4.3228e-01, 9.0330e-01, - 8.0827e-01, 6.9746e-01, 9.6769e-01, 9.2643e-01, - 9.3397e-01, 3.8602e-01, 6.5755e-01, 8.2635e-01, - 1.0202e-01, 1.5856e-01, 1.2288e-01, 8.4879e-02, - 3.2458e-01, 2.9655e-01, 1.7742e-01, 9.3450e-01, - 1.0076e-01, 7.2645e-01, 8.1806e-02, 4.6658e-01, - 3.8093e-01, 3.3309e-01, 6.5422e-01, 2.5819e-01, - 1.5107e-01, 8.8510e-01, 4.3293e-01, 9.2351e-01, - 8.9183e-01, 3.2430e-01, 4.3852e-01, 8.7239e-01, - 3.5201e-01, 4.2486e-01, 7.0879e-01, 6.1583e-01, - 1.1565e-01, 7.0478e-01, 8.8022e-01, 2.5408e-01, - 7.3129e-02, 8.2514e-01, 8.2613e-01, 3.2247e-01, - 3.3085e-01, 8.9530e-01, 1.0707e-01, 4.3826e-01, - 7.8570e-01, 9.4198e-01, 7.2354e-01, 3.4066e-01, - 7.3480e-01, 4.2036e-01, 6.3356e-01, 2.9797e-01, - 8.2827e-01, 7.8339e-01, 9.0276e-01, 2.0607e-01, - 9.7252e-01, 7.1435e-01, 4.2314e-01, 9.8891e-01, - 6.9301e-01, 5.7219e-01, 9.0386e-01, 7.0463e-01, - 7.1908e-04, 5.4692e-01, 6.0821e-01, 9.8439e-01, - 2.8373e-01, 4.8915e-01, 5.5931e-01, 9.7619e-01, - 7.4567e-01, 7.0938e-01, 1.2593e-01, 6.1318e-01, - 8.1283e-01, 9.8667e-02, 3.3716e-02, 5.7522e-01, - 1.9639e-01, 2.9416e-01, 5.5823e-01, 1.8549e-01, - 3.1942e-01, 7.4665e-01, 7.2327e-01, 9.5305e-01, - 1.9036e-02, 5.3955e-01, 2.4116e-01, 9.2667e-01, - 1.4653e-01, 9.8715e-01, 5.3480e-01, 6.0516e-01, - 6.0680e-01, 8.5987e-01, 3.9984e-01, 3.1004e-01, - 8.8724e-01, 7.4026e-01, 4.4687e-01, 8.9641e-01, - 2.4418e-01, 2.4025e-02, 5.5509e-01, 8.9647e-01, - 1.9417e-01, 6.6319e-01, 5.1484e-02, 3.4897e-01, - 5.1031e-01, 3.0611e-01, 3.8996e-01, 3.8358e-01, - 6.9904e-01, 6.9426e-01, 7.9483e-01, 3.3074e-01, - 4.4849e-01, 4.5771e-01, 3.3817e-01, 9.0376e-01, - 2.9871e-01, 1.3521e-01, 4.3356e-01, 8.7768e-02, - 2.4144e-01, 7.4490e-01, 5.2568e-01, 6.6800e-01, - 6.9455e-01, 8.8174e-01, 2.7533e-01, 9.6499e-01, - 9.5226e-01, 6.3027e-01, 6.0446e-02, 2.4209e-01, - 8.6906e-01, 3.5261e-01, 1.4614e-01, 9.4982e-01, - 7.0784e-02, 4.6539e-01, 8.8096e-01, 6.3553e-01, - 5.2585e-01, 6.7815e-02, 6.7186e-01, 7.0013e-01, - 3.2879e-01, 8.4313e-01, 2.0230e-01, 6.7661e-01, - 2.5127e-02, 8.3948e-01, 7.1261e-01, 9.8116e-01, - 5.7618e-01, 7.3962e-01, 4.1140e-01, 1.7002e-01, - 2.9786e-02, 6.1256e-01, 2.2368e-01, 2.3720e-01, - 5.1041e-01, 5.8688e-01, 3.2746e-01, 3.0206e-01, - 4.6125e-01, 3.9820e-01, 9.6772e-01, 2.2109e-01, - 6.7044e-01, 9.0422e-02, 7.0940e-01, 4.4105e-01, - 8.1398e-01, 1.1710e-01, 4.8937e-02, 6.8242e-02, - 2.0881e-01, 5.1602e-01, 9.9962e-01, 5.4247e-01, - 2.9660e-01, 5.2390e-01, 5.7505e-01, 8.5464e-01, - 9.4683e-01, 8.0727e-01, 2.3938e-01, 5.1948e-01, - 4.7982e-01, 5.9710e-01, 1.9899e-01, 5.7719e-01, - 9.9101e-01, 8.2375e-01, 4.2012e-01, 4.5169e-01, - 4.0205e-02, 5.1058e-03, 5.9797e-01, 3.2629e-01]), - size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.5424, 0.9332, 0.7035, ..., 0.9872, 0.5484, 0.9353]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([10000, 10000]) -Rows: 10000 -Size: 100000000 -NNZ: 1000 -Density: 1e-05 -Time: 10.641618490219116 seconds - -[21.44, 21.48, 21.48, 21.12, 21.2, 21.24, 21.16, 21.48, 21.6, 21.92] -[21.92, 21.88, 24.96, 26.8, 28.08, 28.64, 29.24, 29.24, 26.08, 24.52, 23.6, 23.56, 23.36, 23.36] -14.664376258850098 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 142368, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.641618490219116, 'TIME_S_1KI': 0.07474726406368788, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 348.11982940673823, 'W': 23.739150118754246} -[21.44, 21.48, 21.48, 21.12, 21.2, 21.24, 21.16, 21.48, 21.6, 21.92, 20.56, 20.56, 20.2, 20.2, 20.08, 20.04, 20.44, 20.72, 20.72, 21.12] -376.24 -18.812 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 142368, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.641618490219116, 'TIME_S_1KI': 0.07474726406368788, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 348.11982940673823, 'W': 23.739150118754246, 'J_1KI': 2.445211209026876, 'W_1KI': 0.16674498566218704, 'W_D': 4.927150118754245, 'J_D': 72.25358322525018, 'W_D_1KI': 0.03460855050821986, 'J_D_1KI': 0.00024309220125463487} +[20.36, 20.16, 20.2, 20.32, 20.32, 20.36, 20.56, 20.6, 20.52, 20.56] +[20.68, 20.8, 21.2, 24.88, 26.6, 27.2, 27.72, 25.88, 24.68, 23.88, 23.88, 23.8, 23.88, 23.68] +14.660717248916626 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 147223, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.998100280761719, 'TIME_S_1KI': 0.07470368271779354, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 332.2257844543456, 'W': 22.66095026687019} +[20.36, 20.16, 20.2, 20.32, 20.32, 20.36, 20.56, 20.6, 20.52, 20.56, 20.32, 20.36, 20.24, 20.2, 20.24, 20.36, 20.24, 20.2, 20.36, 20.24] +365.9799999999999 +18.298999999999996 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 147223, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.998100280761719, 'TIME_S_1KI': 0.07470368271779354, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 332.2257844543456, 'W': 22.66095026687019, 'J_1KI': 2.256616048133414, 'W_1KI': 0.15392262259884795, 'W_D': 4.3619502668701955, 'J_D': 63.94931951642035, 'W_D_1KI': 0.029628184909084827, 'J_D_1KI': 0.00020124698524744657} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_5e-05.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_5e-05.json new file mode 100644 index 0000000..f94bbe2 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 52408, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.675631761550903, "TIME_S_1KI": 0.2037023309714338, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 322.76721565246584, "W": 22.07477701860741, "J_1KI": 6.1587394224634755, "W_1KI": 0.42121006370415603, "W_D": 3.4607770186074056, "J_D": 50.6018865489959, "W_D_1KI": 0.06603528122819809, "J_D_1KI": 0.0012600229207029095} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_5e-05.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_5e-05.output new file mode 100644 index 0000000..a9bfe94 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_5e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 5e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.02814483642578125} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 3, ..., 4997, 4998, 5000]), + col_indices=tensor([7223, 597, 5381, ..., 4437, 2871, 7175]), + values=tensor([0.8424, 0.9605, 0.7186, ..., 0.3316, 0.2968, 0.8125]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.9947, 0.8149, 0.3597, ..., 0.7445, 0.4060, 0.0098]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 0.02814483642578125 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 37307 -ss 10000 -sd 5e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 7.474437952041626} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 5000, 5000, 5000]), + col_indices=tensor([7873, 9438, 5376, ..., 1254, 8934, 6510]), + values=tensor([0.8139, 0.0055, 0.6843, ..., 0.4362, 0.9226, 0.6386]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.9683, 0.4961, 0.7880, ..., 0.7466, 0.9086, 0.6990]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 7.474437952041626 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 52408 -ss 10000 -sd 5e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.675631761550903} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 5000, 5000, 5000]), + col_indices=tensor([6316, 4387, 8598, ..., 977, 3012, 3071]), + values=tensor([0.0249, 0.1066, 0.4899, ..., 0.3057, 0.2915, 0.5832]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.6250, 0.8754, 0.6636, ..., 0.3831, 0.1537, 0.5147]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 10.675631761550903 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 5000, 5000, 5000]), + col_indices=tensor([6316, 4387, 8598, ..., 977, 3012, 3071]), + values=tensor([0.0249, 0.1066, 0.4899, ..., 0.3057, 0.2915, 0.5832]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.6250, 0.8754, 0.6636, ..., 0.3831, 0.1537, 0.5147]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 10.675631761550903 seconds + +[20.6, 20.52, 20.48, 20.48, 20.44, 20.28, 20.56, 20.6, 20.76, 21.08] +[21.08, 20.76, 21.6, 22.6, 23.96, 24.64, 25.4, 24.84, 24.84, 24.72, 23.92, 24.04, 24.08, 23.92] +14.621539115905762 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 52408, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.675631761550903, 'TIME_S_1KI': 0.2037023309714338, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 322.76721565246584, 'W': 22.07477701860741} +[20.6, 20.52, 20.48, 20.48, 20.44, 20.28, 20.56, 20.6, 20.76, 21.08, 20.48, 20.64, 20.8, 20.76, 20.92, 21.0, 20.88, 20.76, 20.84, 20.96] +372.2800000000001 +18.614000000000004 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 52408, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.675631761550903, 'TIME_S_1KI': 0.2037023309714338, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 322.76721565246584, 'W': 22.07477701860741, 'J_1KI': 6.1587394224634755, 'W_1KI': 0.42121006370415603, 'W_D': 3.4607770186074056, 'J_D': 50.6018865489959, 'W_D_1KI': 0.06603528122819809, 'J_D_1KI': 0.0012600229207029095} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_0.0001.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_0.0001.json new file mode 100644 index 0000000..118d60f --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 98.35910129547119, "TIME_S_1KI": 983.5910129547119, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2706.022798595428, "W": 24.09983015121324, "J_1KI": 27060.22798595428, "W_1KI": 240.9983015121324, "W_D": 5.635830151213241, "J_D": 632.8129610252375, "W_D_1KI": 56.358301512132414, "J_D_1KI": 563.5830151213241} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_0.0001.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_0.0001.output new file mode 100644 index 0000000..22bc540 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_0.0001.output @@ -0,0 +1,47 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 500000 -sd 0.0001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 98.35910129547119} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 62, 113, ..., 24999916, + 24999964, 25000000]), + col_indices=tensor([ 13628, 17541, 24252, ..., 467551, 469636, + 477818]), + values=tensor([0.8374, 0.1433, 0.7046, ..., 0.7606, 0.4438, 0.1648]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.5427, 0.9990, 0.7165, ..., 0.2818, 0.2990, 0.5329]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 98.35910129547119 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 62, 113, ..., 24999916, + 24999964, 25000000]), + col_indices=tensor([ 13628, 17541, 24252, ..., 467551, 469636, + 477818]), + values=tensor([0.8374, 0.1433, 0.7046, ..., 0.7606, 0.4438, 0.1648]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.5427, 0.9990, 0.7165, ..., 0.2818, 0.2990, 0.5329]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 98.35910129547119 seconds + +[20.28, 20.32, 20.44, 20.32, 20.6, 20.64, 20.64, 20.52, 20.76, 20.8] +[20.68, 20.52, 20.6, 22.08, 24.8, 25.76, 28.52, 28.48, 30.56, 30.0, 29.28, 29.8, 28.92, 28.32, 28.32, 27.32, 26.84, 25.96, 25.16, 25.08, 24.72, 24.92, 24.96, 25.12, 25.32, 25.44, 25.32, 25.24, 25.2, 25.08, 25.12, 25.28, 25.16, 25.32, 25.2, 25.04, 25.04, 25.04, 25.28, 25.16, 25.28, 25.36, 25.36, 25.36, 25.44, 25.48, 25.28, 25.24, 25.12, 25.04, 25.04, 25.2, 25.16, 25.36, 25.24, 25.36, 25.12, 25.12, 25.12, 25.2, 25.32, 25.36, 25.16, 25.16, 25.2, 25.28, 25.4, 25.44, 25.48, 25.28, 25.24, 25.36, 25.36, 25.24, 25.36, 25.2, 25.24, 25.52, 25.52, 25.52, 25.52, 25.4, 25.08, 25.2, 25.24, 25.44, 25.12, 25.12, 24.92, 24.8, 24.8, 25.08, 25.12, 25.32, 25.28, 25.2, 25.04, 25.08, 25.16, 25.4, 25.44, 25.36, 25.36, 25.36, 25.28, 25.04, 25.16] +112.28389501571655 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 98.35910129547119, 'TIME_S_1KI': 983.5910129547119, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2706.022798595428, 'W': 24.09983015121324} +[20.28, 20.32, 20.44, 20.32, 20.6, 20.64, 20.64, 20.52, 20.76, 20.8, 20.48, 20.64, 20.56, 20.44, 20.36, 20.4, 20.36, 20.52, 20.64, 20.68] +369.28 +18.464 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 98.35910129547119, 'TIME_S_1KI': 983.5910129547119, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2706.022798595428, 'W': 24.09983015121324, 'J_1KI': 27060.22798595428, 'W_1KI': 240.9983015121324, 'W_D': 5.635830151213241, 'J_D': 632.8129610252375, 'W_D_1KI': 56.358301512132414, 'J_D_1KI': 563.5830151213241} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_1e-05.json index 7ae266f..36dce3a 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_1e-05.json +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_1e-05.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 101.81685495376587, "TIME_S_1KI": 101.81685495376587, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2509.431913032532, "W": 23.91615643501538, "J_1KI": 2509.431913032532, "W_1KI": 23.91615643501538, "W_D": 5.455156435015379, "J_D": 572.3889491109848, "W_D_1KI": 5.455156435015379, "J_D_1KI": 5.455156435015379} +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.078357696533203, "TIME_S_1KI": 100.78357696533203, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 355.02523105621333, "W": 24.261238712111865, "J_1KI": 3550.2523105621335, "W_1KI": 242.61238712111864, "W_D": 5.657238712111866, "J_D": 82.78482829093929, "W_D_1KI": 56.57238712111866, "J_D_1KI": 565.7238712111866} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_1e-05.output index 06c1b57..8996689 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_1e-05.output +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_1e-05.output @@ -1,15 +1,15 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 500000 -sd 1e-05 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 101.81685495376587} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 500000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.078357696533203} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 6, 8, ..., 2499992, +tensor(crow_indices=tensor([ 0, 0, 6, ..., 2499989, 2499997, 2500000]), - col_indices=tensor([ 7138, 74289, 101345, ..., 58125, 215534, - 230533]), - values=tensor([0.6785, 0.9079, 0.1725, ..., 0.1754, 0.6680, 0.6302]), + col_indices=tensor([ 10944, 177257, 201447, ..., 125511, 168548, + 443200]), + values=tensor([0.0549, 0.4670, 0.3111, ..., 0.0129, 0.0661, 0.9327]), size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.7654, 0.8855, 0.1287, ..., 0.1047, 0.9719, 0.8120]) +tensor([0.3951, 0.3409, 0.2222, ..., 0.4533, 0.5999, 0.5088]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -17,17 +17,17 @@ Rows: 500000 Size: 250000000000 NNZ: 2500000 Density: 1e-05 -Time: 101.81685495376587 seconds +Time: 10.078357696533203 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 6, 8, ..., 2499992, +tensor(crow_indices=tensor([ 0, 0, 6, ..., 2499989, 2499997, 2500000]), - col_indices=tensor([ 7138, 74289, 101345, ..., 58125, 215534, - 230533]), - values=tensor([0.6785, 0.9079, 0.1725, ..., 0.1754, 0.6680, 0.6302]), + col_indices=tensor([ 10944, 177257, 201447, ..., 125511, 168548, + 443200]), + values=tensor([0.0549, 0.4670, 0.3111, ..., 0.0129, 0.0661, 0.9327]), size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.7654, 0.8855, 0.1287, ..., 0.1047, 0.9719, 0.8120]) +tensor([0.3951, 0.3409, 0.2222, ..., 0.4533, 0.5999, 0.5088]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -35,13 +35,13 @@ Rows: 500000 Size: 250000000000 NNZ: 2500000 Density: 1e-05 -Time: 101.81685495376587 seconds +Time: 10.078357696533203 seconds -[20.36, 20.36, 20.32, 20.32, 20.32, 20.56, 20.64, 20.8, 21.0, 21.0] -[20.96, 20.8, 21.96, 21.96, 22.8, 24.92, 25.88, 26.52, 26.32, 25.68, 25.2, 25.44, 25.36, 25.12, 25.04, 25.08, 25.04, 25.24, 25.36, 25.12, 25.28, 25.28, 25.08, 24.96, 25.04, 25.04, 25.2, 25.32, 25.2, 25.36, 25.08, 24.88, 24.96, 25.12, 25.24, 25.4, 25.4, 25.4, 25.2, 25.16, 25.08, 25.04, 25.24, 25.28, 25.36, 25.48, 25.48, 25.4, 25.36, 25.48, 25.52, 25.4, 25.28, 25.04, 24.84, 24.88, 25.12, 25.68, 26.12, 26.12, 25.76, 25.32, 24.96, 24.84, 24.92, 24.96, 24.92, 24.92, 24.92, 25.28, 25.08, 25.08, 25.16, 25.12, 25.04, 25.12, 25.2, 24.92, 24.92, 24.96, 25.08, 25.4, 25.4, 25.48, 25.44, 25.24, 25.28, 25.48, 25.72, 25.56, 25.56, 25.52, 25.44, 25.2, 25.08, 25.12, 25.08, 25.28, 25.44, 25.32] -104.92622089385986 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 101.81685495376587, 'TIME_S_1KI': 101.81685495376587, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2509.431913032532, 'W': 23.91615643501538} -[20.36, 20.36, 20.32, 20.32, 20.32, 20.56, 20.64, 20.8, 21.0, 21.0, 20.52, 20.48, 20.28, 20.48, 20.52, 20.64, 20.52, 20.44, 20.4, 20.4] -369.22 -18.461000000000002 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 101.81685495376587, 'TIME_S_1KI': 101.81685495376587, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2509.431913032532, 'W': 23.91615643501538, 'J_1KI': 2509.431913032532, 'W_1KI': 23.91615643501538, 'W_D': 5.455156435015379, 'J_D': 572.3889491109848, 'W_D_1KI': 5.455156435015379, 'J_D_1KI': 5.455156435015379} +[20.6, 20.6, 20.76, 20.88, 20.68, 20.64, 20.36, 20.76, 20.88, 20.96] +[21.0, 20.96, 24.12, 26.84, 26.84, 28.92, 30.04, 30.92, 26.56, 25.12, 24.8, 25.2, 25.28, 25.52] +14.633433818817139 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.078357696533203, 'TIME_S_1KI': 100.78357696533203, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 355.02523105621333, 'W': 24.261238712111865} +[20.6, 20.6, 20.76, 20.88, 20.68, 20.64, 20.36, 20.76, 20.88, 20.96, 20.52, 20.48, 20.56, 20.6, 20.6, 20.64, 20.64, 20.76, 20.8, 20.8] +372.08 +18.604 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.078357696533203, 'TIME_S_1KI': 100.78357696533203, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 355.02523105621333, 'W': 24.261238712111865, 'J_1KI': 3550.2523105621335, 'W_1KI': 242.61238712111864, 'W_D': 5.657238712111866, 'J_D': 82.78482829093929, 'W_D_1KI': 56.57238712111866, 'J_D_1KI': 565.7238712111866} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_5e-05.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_5e-05.json new file mode 100644 index 0000000..741a72d --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 50.092703104019165, "TIME_S_1KI": 500.92703104019165, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1421.3682743358613, "W": 24.212233919725165, "J_1KI": 14213.682743358613, "W_1KI": 242.12233919725165, "W_D": 5.561233919725165, "J_D": 326.46972955346126, "W_D_1KI": 55.61233919725165, "J_D_1KI": 556.1233919725165} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_5e-05.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_5e-05.output new file mode 100644 index 0000000..2787c93 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_5e-05.output @@ -0,0 +1,47 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 500000 -sd 5e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 50.092703104019165} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 19, 45, ..., 12499947, + 12499973, 12500000]), + col_indices=tensor([ 17397, 55872, 132943, ..., 437400, 464141, + 486359]), + values=tensor([0.6537, 0.5151, 0.3039, ..., 0.7629, 0.2656, 0.5446]), + size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.4135, 0.5444, 0.9798, ..., 0.8106, 0.6562, 0.9974]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 12500000 +Density: 5e-05 +Time: 50.092703104019165 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 19, 45, ..., 12499947, + 12499973, 12500000]), + col_indices=tensor([ 17397, 55872, 132943, ..., 437400, 464141, + 486359]), + values=tensor([0.6537, 0.5151, 0.3039, ..., 0.7629, 0.2656, 0.5446]), + size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.4135, 0.5444, 0.9798, ..., 0.8106, 0.6562, 0.9974]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 12500000 +Density: 5e-05 +Time: 50.092703104019165 seconds + +[20.76, 20.64, 20.64, 20.64, 20.48, 20.64, 20.6, 20.8, 21.08, 20.96] +[20.92, 20.92, 23.96, 24.8, 26.64, 28.44, 28.44, 30.32, 28.64, 28.92, 27.6, 26.6, 25.88, 25.0, 25.04, 25.08, 25.08, 25.16, 25.16, 25.12, 25.08, 24.88, 25.08, 25.12, 25.2, 25.28, 25.36, 25.32, 25.32, 25.04, 25.04, 25.28, 25.16, 25.12, 25.24, 25.16, 25.16, 25.36, 25.24, 25.2, 25.28, 25.12, 24.96, 25.12, 25.2, 25.32, 25.36, 25.48, 25.56, 25.52, 25.52, 25.36, 25.4, 25.2, 25.28, 25.56] +58.704549074172974 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 50.092703104019165, 'TIME_S_1KI': 500.92703104019165, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1421.3682743358613, 'W': 24.212233919725165} +[20.76, 20.64, 20.64, 20.64, 20.48, 20.64, 20.6, 20.8, 21.08, 20.96, 20.76, 20.4, 20.48, 20.92, 20.8, 20.92, 20.88, 20.72, 20.64, 21.0] +373.02 +18.651 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 50.092703104019165, 'TIME_S_1KI': 500.92703104019165, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1421.3682743358613, 'W': 24.212233919725165, 'J_1KI': 14213.682743358613, 'W_1KI': 242.12233919725165, 'W_D': 5.561233919725165, 'J_D': 326.46972955346126, 'W_D_1KI': 55.61233919725165, 'J_D_1KI': 556.1233919725165} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.0001.json index 99da0bf..8bb383c 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.0001.json +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.0001.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1750, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.16480827331543, "TIME_S_1KI": 5.80846187046596, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 350.615839214325, "W": 23.96705841957935, "J_1KI": 200.35190812247143, "W_1KI": 13.695461954045342, "W_D": 5.563058419579352, "J_D": 81.38238586616524, "W_D_1KI": 3.178890525473916, "J_D_1KI": 1.8165088716993805} +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1701, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.195863723754883, "TIME_S_1KI": 5.994040989861777, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 298.5689013671875, "W": 22.02886990511616, "J_1KI": 175.5255152070473, "W_1KI": 12.950540802537425, "W_D": 3.5278699051161624, "J_D": 47.81508294677735, "W_D_1KI": 2.0739975926608833, "J_D_1KI": 1.2192813595889966} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.0001.output index 38bf734..7e66808 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.0001.output +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.0001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 0.0001 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 5.999283075332642} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 50000 -sd 0.0001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.6172366142272949} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 5, 11, ..., 249990, 249995, +tensor(crow_indices=tensor([ 0, 2, 11, ..., 249984, 249992, 250000]), - col_indices=tensor([13962, 18394, 22949, ..., 14595, 37415, 49220]), - values=tensor([0.3721, 0.9393, 0.0895, ..., 0.9714, 0.3434, 0.8212]), + col_indices=tensor([ 55, 33912, 7825, ..., 25553, 31300, 45367]), + values=tensor([0.2156, 0.3825, 0.1471, ..., 0.6075, 0.9514, 0.6641]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.7511, 0.6955, 0.0801, ..., 0.5808, 0.0034, 0.8132]) +tensor([0.8972, 0.9948, 0.0628, ..., 0.4950, 0.5589, 0.8119]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -16,19 +16,19 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 5.999283075332642 seconds +Time: 0.6172366142272949 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1750 -ss 50000 -sd 0.0001 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.16480827331543} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1701 -ss 50000 -sd 0.0001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.195863723754883} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 8, 10, ..., 249989, 249996, +tensor(crow_indices=tensor([ 0, 4, 10, ..., 249986, 249995, 250000]), - col_indices=tensor([ 581, 19518, 20111, ..., 13396, 34309, 44743]), - values=tensor([0.2810, 0.4140, 0.9885, ..., 0.7044, 0.0704, 0.4209]), + col_indices=tensor([ 4095, 7631, 26458, ..., 36946, 37655, 49733]), + values=tensor([0.3588, 0.4994, 0.4557, ..., 0.6547, 0.8163, 0.6645]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.2162, 0.8403, 0.5346, ..., 0.6143, 0.9627, 0.5199]) +tensor([0.0295, 0.0838, 0.1870, ..., 0.2542, 0.3969, 0.7673]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -36,16 +36,16 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 10.16480827331543 seconds +Time: 10.195863723754883 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 8, 10, ..., 249989, 249996, +tensor(crow_indices=tensor([ 0, 4, 10, ..., 249986, 249995, 250000]), - col_indices=tensor([ 581, 19518, 20111, ..., 13396, 34309, 44743]), - values=tensor([0.2810, 0.4140, 0.9885, ..., 0.7044, 0.0704, 0.4209]), + col_indices=tensor([ 4095, 7631, 26458, ..., 36946, 37655, 49733]), + values=tensor([0.3588, 0.4994, 0.4557, ..., 0.6547, 0.8163, 0.6645]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.2162, 0.8403, 0.5346, ..., 0.6143, 0.9627, 0.5199]) +tensor([0.0295, 0.0838, 0.1870, ..., 0.2542, 0.3969, 0.7673]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -53,13 +53,13 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 10.16480827331543 seconds +Time: 10.195863723754883 seconds -[20.36, 20.36, 20.36, 20.4, 20.24, 20.28, 20.32, 20.8, 21.08, 20.92] -[21.16, 21.04, 24.12, 26.48, 28.28, 28.28, 29.04, 29.84, 25.88, 24.76, 24.76, 24.72, 24.88, 24.76] -14.629072666168213 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1750, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.16480827331543, 'TIME_S_1KI': 5.80846187046596, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 350.615839214325, 'W': 23.96705841957935} -[20.36, 20.36, 20.36, 20.4, 20.24, 20.28, 20.32, 20.8, 21.08, 20.92, 20.4, 20.24, 20.24, 20.08, 20.2, 20.32, 20.56, 20.68, 20.72, 20.72] -368.0799999999999 -18.403999999999996 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1750, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.16480827331543, 'TIME_S_1KI': 5.80846187046596, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 350.615839214325, 'W': 23.96705841957935, 'J_1KI': 200.35190812247143, 'W_1KI': 13.695461954045342, 'W_D': 5.563058419579352, 'J_D': 81.38238586616524, 'W_D_1KI': 3.178890525473916, 'J_D_1KI': 1.8165088716993805} +[20.6, 20.6, 20.68, 20.56, 20.68, 20.6, 20.6, 20.48, 20.36, 20.44] +[20.44, 20.16, 20.24, 22.04, 22.92, 24.8, 25.72, 25.84, 25.56, 24.68, 24.84, 25.0, 25.2] +13.55352783203125 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1701, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.195863723754883, 'TIME_S_1KI': 5.994040989861777, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 298.5689013671875, 'W': 22.02886990511616} +[20.6, 20.6, 20.68, 20.56, 20.68, 20.6, 20.6, 20.48, 20.36, 20.44, 20.56, 20.52, 20.52, 20.44, 20.44, 20.44, 20.44, 20.56, 20.88, 20.84] +370.02 +18.500999999999998 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1701, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.195863723754883, 'TIME_S_1KI': 5.994040989861777, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 298.5689013671875, 'W': 22.02886990511616, 'J_1KI': 175.5255152070473, 'W_1KI': 12.950540802537425, 'W_D': 3.5278699051161624, 'J_D': 47.81508294677735, 'W_D_1KI': 2.0739975926608833, 'J_D_1KI': 1.2192813595889966} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.001.json index 295c278..911c49b 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.001.json +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.001.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 54.368531465530396, "TIME_S_1KI": 54.368531465530396, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1384.197800512314, "W": 23.562014123499935, "J_1KI": 1384.197800512314, "W_1KI": 23.562014123499935, "W_D": 4.987014123499936, "J_D": 292.97215190053004, "W_D_1KI": 4.987014123499936, "J_D_1KI": 4.987014123499936} +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 193, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.676417112350464, "TIME_S_1KI": 55.318223380054214, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 327.75970675468443, "W": 22.393652951640597, "J_1KI": 1698.2368225631317, "W_1KI": 116.02928990487356, "W_D": 4.002652951640599, "J_D": 58.58393717646598, "W_D_1KI": 20.73913446445906, "J_D_1KI": 107.45665525626457} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.001.output index ea77cdc..7534e40 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.001.output +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 0.001 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 54.368531465530396} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 50000 -sd 0.001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 5.431778192520142} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 55, 110, ..., 2499903, - 2499953, 2500000]), - col_indices=tensor([ 180, 933, 1739, ..., 48224, 48432, 48665]), - values=tensor([0.2331, 0.6137, 0.9488, ..., 0.3126, 0.9414, 0.7411]), +tensor(crow_indices=tensor([ 0, 57, 95, ..., 2499895, + 2499944, 2500000]), + col_indices=tensor([ 14, 1180, 1352, ..., 49220, 49912, 49936]), + values=tensor([0.8618, 0.4205, 0.6419, ..., 0.4989, 0.5508, 0.1652]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.7249, 0.6013, 0.3531, ..., 0.7563, 0.1447, 0.0341]) +tensor([0.3965, 0.7585, 0.8670, ..., 0.1152, 0.9413, 0.0865]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -16,16 +16,19 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 54.368531465530396 seconds +Time: 5.431778192520142 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 193 -ss 50000 -sd 0.001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.676417112350464} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 55, 110, ..., 2499903, - 2499953, 2500000]), - col_indices=tensor([ 180, 933, 1739, ..., 48224, 48432, 48665]), - values=tensor([0.2331, 0.6137, 0.9488, ..., 0.3126, 0.9414, 0.7411]), +tensor(crow_indices=tensor([ 0, 57, 106, ..., 2499905, + 2499942, 2500000]), + col_indices=tensor([ 275, 2452, 2625, ..., 47289, 48937, 49987]), + values=tensor([0.8108, 0.0031, 0.6812, ..., 0.9899, 0.5982, 0.1156]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.7249, 0.6013, 0.3531, ..., 0.7563, 0.1447, 0.0341]) +tensor([0.1893, 0.7932, 0.1409, ..., 0.0408, 0.4757, 0.3205]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -33,13 +36,30 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 54.368531465530396 seconds +Time: 10.676417112350464 seconds -[20.28, 20.28, 20.28, 20.52, 20.52, 20.52, 20.84, 20.84, 20.8, 20.84] -[20.8, 20.8, 24.12, 26.04, 26.04, 28.44, 29.44, 30.08, 26.76, 25.32, 24.56, 24.68, 24.84, 24.84, 24.76, 24.52, 24.68, 24.72, 24.96, 24.76, 24.96, 24.84, 25.0, 24.88, 24.88, 24.64, 24.64, 24.44, 24.28, 24.24, 24.28, 24.28, 24.52, 24.72, 24.84, 24.64, 24.68, 24.68, 24.72, 24.72, 24.8, 24.76, 24.56, 24.52, 24.2, 24.24, 24.24, 24.24, 24.24, 24.4, 24.52, 24.52, 24.4, 24.44, 24.4, 24.12] -58.74700665473938 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 54.368531465530396, 'TIME_S_1KI': 54.368531465530396, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1384.197800512314, 'W': 23.562014123499935} -[20.28, 20.28, 20.28, 20.52, 20.52, 20.52, 20.84, 20.84, 20.8, 20.84, 20.4, 20.36, 20.4, 20.28, 20.56, 20.56, 20.96, 21.12, 21.28, 21.24] -371.5 -18.575 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 54.368531465530396, 'TIME_S_1KI': 54.368531465530396, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1384.197800512314, 'W': 23.562014123499935, 'J_1KI': 1384.197800512314, 'W_1KI': 23.562014123499935, 'W_D': 4.987014123499936, 'J_D': 292.97215190053004, 'W_D_1KI': 4.987014123499936, 'J_D_1KI': 4.987014123499936} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 57, 106, ..., 2499905, + 2499942, 2500000]), + col_indices=tensor([ 275, 2452, 2625, ..., 47289, 48937, 49987]), + values=tensor([0.8108, 0.0031, 0.6812, ..., 0.9899, 0.5982, 0.1156]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.1893, 0.7932, 0.1409, ..., 0.0408, 0.4757, 0.3205]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 10.676417112350464 seconds + +[20.32, 20.4, 20.88, 20.88, 20.88, 20.88, 20.64, 20.24, 20.48, 20.52] +[20.48, 20.64, 20.88, 22.0, 23.72, 25.32, 26.2, 26.2, 26.28, 25.08, 24.6, 24.56, 24.36, 24.36] +14.636276960372925 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 193, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.676417112350464, 'TIME_S_1KI': 55.318223380054214, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 327.75970675468443, 'W': 22.393652951640597} +[20.32, 20.4, 20.88, 20.88, 20.88, 20.88, 20.64, 20.24, 20.48, 20.52, 20.24, 20.24, 20.24, 20.4, 20.4, 20.2, 20.16, 20.08, 20.16, 20.24] +367.81999999999994 +18.391 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 193, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.676417112350464, 'TIME_S_1KI': 55.318223380054214, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 327.75970675468443, 'W': 22.393652951640597, 'J_1KI': 1698.2368225631317, 'W_1KI': 116.02928990487356, 'W_D': 4.002652951640599, 'J_D': 58.58393717646598, 'W_D_1KI': 20.73913446445906, 'J_D_1KI': 107.45665525626457} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.01.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.01.json new file mode 100644 index 0000000..0d711cb --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 53.1586058139801, "TIME_S_1KI": 531.586058139801, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1662.8207085037227, "W": 23.65320095688087, "J_1KI": 16628.20708503723, "W_1KI": 236.53200956880872, "W_D": 4.901200956880867, "J_D": 344.55456842803903, "W_D_1KI": 49.01200956880867, "J_D_1KI": 490.12009568808674} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.01.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.01.output new file mode 100644 index 0000000..142816b --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.01.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 50000 -sd 0.01 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 53.1586058139801} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 489, 973, ..., 24998974, + 24999478, 25000000]), + col_indices=tensor([ 275, 454, 699, ..., 49715, 49729, 49796]), + values=tensor([0.3350, 0.9556, 0.9308, ..., 0.7756, 0.4208, 0.8843]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.3743, 0.4258, 0.0327, ..., 0.7931, 0.5462, 0.4257]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 53.1586058139801 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 489, 973, ..., 24998974, + 24999478, 25000000]), + col_indices=tensor([ 275, 454, 699, ..., 49715, 49729, 49796]), + values=tensor([0.3350, 0.9556, 0.9308, ..., 0.7756, 0.4208, 0.8843]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.3743, 0.4258, 0.0327, ..., 0.7931, 0.5462, 0.4257]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 53.1586058139801 seconds + +[20.44, 20.76, 21.08, 21.12, 21.36, 21.16, 21.04, 21.0, 20.96, 20.84] +[21.0, 20.84, 20.84, 23.72, 24.72, 26.8, 28.0, 29.48, 28.44, 28.04, 28.08, 27.92, 28.6, 27.68, 27.36, 26.52, 25.72, 24.68, 24.64, 24.72, 24.64, 24.64, 24.68, 24.68, 24.56, 24.76, 24.76, 24.64, 24.68, 24.64, 24.8, 24.64, 25.04, 24.96, 24.84, 24.88, 24.68, 24.68, 24.64, 24.8, 24.72, 24.72, 24.68, 24.56, 24.36, 24.36, 24.48, 24.4, 24.44, 24.4, 24.6, 24.56, 24.72, 24.96, 24.92, 24.84, 24.76, 24.72, 24.76, 24.8, 24.88, 24.92, 24.76, 24.68, 24.56, 24.64, 24.6] +70.30002880096436 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 53.1586058139801, 'TIME_S_1KI': 531.586058139801, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1662.8207085037227, 'W': 23.65320095688087} +[20.44, 20.76, 21.08, 21.12, 21.36, 21.16, 21.04, 21.0, 20.96, 20.84, 20.6, 20.6, 20.72, 20.72, 20.68, 20.56, 20.76, 20.64, 20.6, 20.68] +375.04 +18.752000000000002 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 53.1586058139801, 'TIME_S_1KI': 531.586058139801, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1662.8207085037227, 'W': 23.65320095688087, 'J_1KI': 16628.20708503723, 'W_1KI': 236.53200956880872, 'W_D': 4.901200956880867, 'J_D': 344.55456842803903, 'W_D_1KI': 49.01200956880867, 'J_D_1KI': 490.12009568808674} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_1e-05.json index 79e75a2..458d682 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_1e-05.json +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_1e-05.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 10740, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.677687883377075, "TIME_S_1KI": 0.9941981269438619, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 332.0521117687225, "W": 22.70459223140718, "J_1KI": 30.91732884252537, "W_1KI": 2.11402162303605, "W_D": 4.278592231407178, "J_D": 62.57393091917032, "W_D_1KI": 0.3983791649354914, "J_D_1KI": 0.03709303211689864} +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 10429, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.529776096343994, "TIME_S_1KI": 1.0096630641810331, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 331.7018713665009, "W": 22.733124806095596, "J_1KI": 31.80572167671885, "W_1KI": 2.1797990992516634, "W_D": 4.373124806095593, "J_D": 63.8088117790222, "W_D_1KI": 0.41932350235838456, "J_D_1KI": 0.040207450604888735} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_1e-05.output index 0bf1f45..f7f583d 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_1e-05.output +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_1e-05.output @@ -1,13 +1,13 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 1e-05 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 1.031747817993164} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 50000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.1077582836151123} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 24999, 25000, 25000]), - col_indices=tensor([40215, 7884, 10043, ..., 30495, 28697, 40914]), - values=tensor([0.0776, 0.0144, 0.1627, ..., 0.8046, 0.8736, 0.3953]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 24997, 24998, 25000]), + col_indices=tensor([30956, 25020, 4290, ..., 1571, 5930, 34059]), + values=tensor([0.1925, 0.5429, 0.7430, ..., 0.0669, 0.5504, 0.8934]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.9279, 0.0068, 0.0286, ..., 0.3265, 0.6131, 0.7632]) +tensor([0.9564, 0.4579, 0.9465, ..., 0.7236, 0.9546, 0.7676]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -15,18 +15,18 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 1.031747817993164 seconds +Time: 0.1077582836151123 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 10176 -ss 50000 -sd 1e-05 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.948124408721924} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 9744 -ss 50000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.809481859207153} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 24999, 25000, 25000]), - col_indices=tensor([36670, 6571, 29568, ..., 18627, 41427, 17079]), - values=tensor([0.2785, 0.5861, 0.6450, ..., 0.6094, 0.8660, 0.4536]), +tensor(crow_indices=tensor([ 0, 1, 1, ..., 24999, 24999, 25000]), + col_indices=tensor([47588, 45161, 40455, ..., 30522, 42036, 2005]), + values=tensor([0.2055, 0.2802, 0.2448, ..., 0.0926, 0.8451, 0.9361]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.5003, 0.3455, 0.7125, ..., 0.5405, 0.2393, 0.4201]) +tensor([0.5605, 0.1853, 0.0043, ..., 0.6007, 0.1968, 0.9775]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -34,18 +34,18 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 9.948124408721924 seconds +Time: 9.809481859207153 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 10740 -ss 50000 -sd 1e-05 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.677687883377075} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 10429 -ss 50000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.529776096343994} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 24998, 25000, 25000]), - col_indices=tensor([16841, 18429, 37212, ..., 30943, 4364, 38003]), - values=tensor([0.6614, 0.5763, 0.4032, ..., 0.0279, 0.2406, 0.7956]), +tensor(crow_indices=tensor([ 0, 1, 1, ..., 24998, 24999, 25000]), + col_indices=tensor([20158, 23859, 20874, ..., 41939, 15422, 41283]), + values=tensor([0.7225, 0.1851, 0.6655, ..., 0.6086, 0.8791, 0.8414]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.8404, 0.4278, 0.6904, ..., 0.0651, 0.6749, 0.6556]) +tensor([0.1130, 0.7539, 0.9598, ..., 0.4914, 0.7455, 0.6539]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -53,15 +53,15 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 10.677687883377075 seconds +Time: 10.529776096343994 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 24998, 25000, 25000]), - col_indices=tensor([16841, 18429, 37212, ..., 30943, 4364, 38003]), - values=tensor([0.6614, 0.5763, 0.4032, ..., 0.0279, 0.2406, 0.7956]), +tensor(crow_indices=tensor([ 0, 1, 1, ..., 24998, 24999, 25000]), + col_indices=tensor([20158, 23859, 20874, ..., 41939, 15422, 41283]), + values=tensor([0.7225, 0.1851, 0.6655, ..., 0.6086, 0.8791, 0.8414]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.8404, 0.4278, 0.6904, ..., 0.0651, 0.6749, 0.6556]) +tensor([0.1130, 0.7539, 0.9598, ..., 0.4914, 0.7455, 0.6539]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -69,13 +69,13 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 10.677687883377075 seconds +Time: 10.529776096343994 seconds -[20.72, 20.68, 20.64, 20.72, 20.72, 20.64, 20.68, 20.52, 20.52, 20.6] -[21.04, 21.2, 21.2, 21.92, 23.48, 24.12, 25.48, 25.92, 26.2, 25.8, 25.88, 25.6, 25.8, 25.72] -14.624887704849243 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 10740, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.677687883377075, 'TIME_S_1KI': 0.9941981269438619, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 332.0521117687225, 'W': 22.70459223140718} -[20.72, 20.68, 20.64, 20.72, 20.72, 20.64, 20.68, 20.52, 20.52, 20.6, 20.2, 20.12, 20.24, 20.24, 20.28, 20.28, 20.4, 20.4, 20.44, 20.48] -368.52000000000004 -18.426000000000002 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 10740, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.677687883377075, 'TIME_S_1KI': 0.9941981269438619, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 332.0521117687225, 'W': 22.70459223140718, 'J_1KI': 30.91732884252537, 'W_1KI': 2.11402162303605, 'W_D': 4.278592231407178, 'J_D': 62.57393091917032, 'W_D_1KI': 0.3983791649354914, 'J_D_1KI': 0.03709303211689864} +[20.44, 20.44, 20.32, 20.64, 20.6, 20.48, 20.6, 20.36, 20.32, 20.16] +[20.36, 20.16, 20.76, 22.32, 23.88, 23.88, 25.12, 26.36, 26.64, 26.44, 26.08, 26.2, 25.88, 25.48] +14.591125249862671 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 10429, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.529776096343994, 'TIME_S_1KI': 1.0096630641810331, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 331.7018713665009, 'W': 22.733124806095596} +[20.44, 20.44, 20.32, 20.64, 20.6, 20.48, 20.6, 20.36, 20.32, 20.16, 20.56, 20.32, 20.36, 20.56, 20.36, 20.28, 20.44, 20.16, 20.16, 20.44] +367.20000000000005 +18.360000000000003 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 10429, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.529776096343994, 'TIME_S_1KI': 1.0096630641810331, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 331.7018713665009, 'W': 22.733124806095596, 'J_1KI': 31.80572167671885, 'W_1KI': 2.1797990992516634, 'W_D': 4.373124806095593, 'J_D': 63.8088117790222, 'W_D_1KI': 0.41932350235838456, 'J_D_1KI': 0.040207450604888735} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_5e-05.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_5e-05.json new file mode 100644 index 0000000..fea28ac --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 3217, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.183324813842773, "TIME_S_1KI": 3.1654724320307035, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 313.5762239074707, "W": 23.142141761096784, "J_1KI": 97.47473543906457, "W_1KI": 7.193702754459679, "W_D": 4.7631417610967866, "J_D": 64.54061265373231, "W_D_1KI": 1.4806160276956128, "J_D_1KI": 0.46024744410805496} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_5e-05.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_5e-05.output new file mode 100644 index 0000000..dbda68a --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_5e-05.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 50000 -sd 5e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.3263556957244873} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 2, ..., 124996, 124997, + 125000]), + col_indices=tensor([ 8999, 37078, 2648, ..., 24880, 43913, 47673]), + values=tensor([0.7939, 0.1706, 0.9831, ..., 0.2838, 0.4924, 0.0921]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.2834, 0.1318, 0.3567, ..., 0.3503, 0.0519, 0.6169]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 0.3263556957244873 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 3217 -ss 50000 -sd 5e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.183324813842773} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 7, ..., 125000, 125000, + 125000]), + col_indices=tensor([ 9508, 26799, 1812, ..., 32912, 38580, 39384]), + values=tensor([0.1038, 0.2683, 0.7729, ..., 0.6337, 0.2232, 0.8870]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.7924, 0.9644, 0.0933, ..., 0.2945, 0.3904, 0.9557]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 10.183324813842773 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 7, ..., 125000, 125000, + 125000]), + col_indices=tensor([ 9508, 26799, 1812, ..., 32912, 38580, 39384]), + values=tensor([0.1038, 0.2683, 0.7729, ..., 0.6337, 0.2232, 0.8870]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.7924, 0.9644, 0.0933, ..., 0.2945, 0.3904, 0.9557]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 10.183324813842773 seconds + +[20.36, 20.32, 20.32, 20.32, 20.36, 20.28, 20.48, 20.52, 20.64, 20.52] +[20.52, 20.48, 21.56, 23.32, 25.2, 26.32, 27.16, 27.16, 26.96, 26.76, 25.76, 25.84, 25.52] +13.550008773803711 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 3217, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.183324813842773, 'TIME_S_1KI': 3.1654724320307035, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 313.5762239074707, 'W': 23.142141761096784} +[20.36, 20.32, 20.32, 20.32, 20.36, 20.28, 20.48, 20.52, 20.64, 20.52, 20.52, 20.6, 20.44, 20.6, 20.48, 20.32, 20.2, 20.36, 20.4, 20.48] +367.5799999999999 +18.378999999999998 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 3217, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.183324813842773, 'TIME_S_1KI': 3.1654724320307035, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 313.5762239074707, 'W': 23.142141761096784, 'J_1KI': 97.47473543906457, 'W_1KI': 7.193702754459679, 'W_D': 4.7631417610967866, 'J_D': 64.54061265373231, 'W_D_1KI': 1.4806160276956128, 'J_D_1KI': 0.46024744410805496} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.0001.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.0001.json index f8f615f..769abe1 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.0001.json +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.0001.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 96826, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.588202953338623, "TIME_S_1KI": 0.10935289027057425, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 358.2542047309875, "W": 24.50573052785985, "J_1KI": 3.699979393251683, "W_1KI": 0.2530903943967514, "W_D": 4.6827305278598494, "J_D": 68.45777967405314, "W_D_1KI": 0.04836232548963966, "J_D_1KI": 0.000499476643563089} +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 97993, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.781827449798584, "TIME_S_1KI": 0.1100265064831017, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 315.41705104827884, "W": 21.541217597275665, "J_1KI": 3.218771249459439, "W_1KI": 0.21982404454681115, "W_D": 2.808217597275668, "J_D": 41.119296494484, "W_D_1KI": 0.02865732855689353, "J_D_1KI": 0.00029244260872606745} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.0001.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.0001.output index 4f006ee..bb7f54b 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.0001.output +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.0001.output @@ -1,13 +1,13 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.0001 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.1145937442779541} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 0.0001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.0191800594329834} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 2495, 2499, 2500]), - col_indices=tensor([2458, 4485, 3264, ..., 1767, 2577, 3633]), - values=tensor([0.5111, 0.1865, 0.4486, ..., 0.9187, 0.4905, 0.6857]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 2500, 2500, 2500]), + col_indices=tensor([3313, 1621, 3812, ..., 4525, 1664, 4698]), + values=tensor([0.0941, 0.2796, 0.9707, ..., 0.4661, 0.7642, 0.2416]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.1036, 0.8585, 0.3762, ..., 0.6219, 0.4226, 0.3195]) +tensor([0.5336, 0.9402, 0.6361, ..., 0.0126, 0.4753, 0.7232]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -15,18 +15,18 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 0.1145937442779541 seconds +Time: 0.0191800594329834 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 91628 -ss 5000 -sd 0.0001 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.936307668685913} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 54744 -ss 5000 -sd 0.0001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 5.86583399772644} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 2500, 2500, 2500]), - col_indices=tensor([1700, 3040, 4129, ..., 4083, 2058, 3930]), - values=tensor([0.1350, 0.7186, 0.2594, ..., 0.2124, 0.0344, 0.1244]), +tensor(crow_indices=tensor([ 0, 0, 2, ..., 2499, 2500, 2500]), + col_indices=tensor([ 440, 3019, 2397, ..., 2648, 4224, 1471]), + values=tensor([0.9686, 0.9548, 0.6770, ..., 0.0683, 0.1247, 0.7029]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.7260, 0.9332, 0.2146, ..., 0.1697, 0.4017, 0.1867]) +tensor([0.3648, 0.8360, 0.9424, ..., 0.5773, 0.5768, 0.8650]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -34,18 +34,18 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 9.936307668685913 seconds +Time: 5.86583399772644 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 96826 -ss 5000 -sd 0.0001 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.588202953338623} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 97993 -ss 5000 -sd 0.0001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.781827449798584} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 1, ..., 2499, 2500, 2500]), - col_indices=tensor([3997, 2967, 4931, ..., 3835, 1314, 3597]), - values=tensor([0.7356, 0.2235, 0.2006, ..., 0.5232, 0.0695, 0.2889]), +tensor(crow_indices=tensor([ 0, 1, 2, ..., 2498, 2500, 2500]), + col_indices=tensor([3713, 3378, 4473, ..., 4286, 2104, 3764]), + values=tensor([0.2566, 0.6316, 0.0221, ..., 0.9864, 0.6559, 0.8912]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.7175, 0.9581, 0.9907, ..., 0.9548, 0.8349, 0.6616]) +tensor([0.3213, 0.3541, 0.7168, ..., 0.5598, 0.7087, 0.6560]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,15 +53,15 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 10.588202953338623 seconds +Time: 10.781827449798584 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 1, ..., 2499, 2500, 2500]), - col_indices=tensor([3997, 2967, 4931, ..., 3835, 1314, 3597]), - values=tensor([0.7356, 0.2235, 0.2006, ..., 0.5232, 0.0695, 0.2889]), +tensor(crow_indices=tensor([ 0, 1, 2, ..., 2498, 2500, 2500]), + col_indices=tensor([3713, 3378, 4473, ..., 4286, 2104, 3764]), + values=tensor([0.2566, 0.6316, 0.0221, ..., 0.9864, 0.6559, 0.8912]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.7175, 0.9581, 0.9907, ..., 0.9548, 0.8349, 0.6616]) +tensor([0.3213, 0.3541, 0.7168, ..., 0.5598, 0.7087, 0.6560]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -69,13 +69,13 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 10.588202953338623 seconds +Time: 10.781827449798584 seconds -[20.4, 20.56, 20.56, 20.6, 20.44, 20.64, 20.68, 20.96, 21.52, 22.56] -[23.28, 23.64, 26.88, 28.2, 29.6, 29.52, 29.52, 29.72, 25.72, 24.92, 23.8, 23.72, 24.2, 24.28] -14.619201183319092 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 96826, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.588202953338623, 'TIME_S_1KI': 0.10935289027057425, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 358.2542047309875, 'W': 24.50573052785985} -[20.4, 20.56, 20.56, 20.6, 20.44, 20.64, 20.68, 20.96, 21.52, 22.56, 22.96, 23.28, 23.32, 23.36, 23.32, 23.28, 23.36, 23.12, 23.0, 23.0] -396.46 -19.823 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 96826, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.588202953338623, 'TIME_S_1KI': 0.10935289027057425, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 358.2542047309875, 'W': 24.50573052785985, 'J_1KI': 3.699979393251683, 'W_1KI': 0.2530903943967514, 'W_D': 4.6827305278598494, 'J_D': 68.45777967405314, 'W_D_1KI': 0.04836232548963966, 'J_D_1KI': 0.000499476643563089} +[20.44, 20.48, 20.88, 20.96, 20.96, 20.92, 20.72, 20.72, 20.56, 20.48] +[20.44, 20.32, 20.6, 21.56, 23.32, 24.04, 24.72, 24.96, 24.56, 23.56, 23.68, 23.44, 23.52, 23.56] +14.642489433288574 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 97993, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.781827449798584, 'TIME_S_1KI': 0.1100265064831017, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 315.41705104827884, 'W': 21.541217597275665} +[20.44, 20.48, 20.88, 20.96, 20.96, 20.92, 20.72, 20.72, 20.56, 20.48, 20.36, 20.44, 20.44, 20.32, 20.4, 20.68, 21.08, 21.76, 21.76, 21.88] +374.65999999999997 +18.732999999999997 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 97993, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.781827449798584, 'TIME_S_1KI': 0.1100265064831017, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 315.41705104827884, 'W': 21.541217597275665, 'J_1KI': 3.218771249459439, 'W_1KI': 0.21982404454681115, 'W_D': 2.808217597275668, 'J_D': 41.119296494484, 'W_D_1KI': 0.02865732855689353, 'J_D_1KI': 0.00029244260872606745} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.001.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.001.json index 7e96f33..1de7362 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.001.json +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.001.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 17363, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.667346239089966, "TIME_S_1KI": 0.6143722996653784, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 333.18905796051024, "W": 22.76067676218484, "J_1KI": 19.1896019098376, "W_1KI": 1.3108723585892323, "W_D": 3.0516767621848366, "J_D": 44.67289422965043, "W_D_1KI": 0.17575745909029755, "J_D_1KI": 0.010122528312520737} +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 17801, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.451899290084839, "TIME_S_1KI": 0.5871523672875029, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 335.3643196678161, "W": 22.918247866906853, "J_1KI": 18.839633709781257, "W_1KI": 1.2874696852371694, "W_D": 4.382247866906855, "J_D": 64.12573871421813, "W_D_1KI": 0.24617987005824704, "J_D_1KI": 0.013829552837382564} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.001.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.001.output index ba00b65..6e9f06a 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.001.output +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.001.output @@ -1,13 +1,13 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.001 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.6047096252441406} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 0.001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.06674790382385254} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 7, 11, ..., 24983, 24992, 25000]), - col_indices=tensor([ 225, 408, 1943, ..., 2555, 2651, 2712]), - values=tensor([0.7906, 0.4816, 0.2276, ..., 0.2718, 0.8003, 0.8712]), +tensor(crow_indices=tensor([ 0, 6, 11, ..., 24994, 24998, 25000]), + col_indices=tensor([ 153, 1166, 1591, ..., 4476, 1654, 3013]), + values=tensor([0.9133, 0.8479, 0.0929, ..., 0.2328, 0.6185, 0.0308]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.6660, 0.8709, 0.7078, ..., 0.4840, 0.5828, 0.2928]) +tensor([0.9627, 0.4329, 0.3045, ..., 0.2813, 0.7730, 0.0924]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -15,18 +15,18 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 0.6047096252441406 seconds +Time: 0.06674790382385254 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 17363 -ss 5000 -sd 0.001 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.667346239089966} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 15730 -ss 5000 -sd 0.001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 9.27815866470337} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 7, ..., 24986, 24994, 25000]), - col_indices=tensor([ 85, 195, 4187, ..., 2991, 3287, 4675]), - values=tensor([0.1915, 0.0298, 0.9128, ..., 0.0482, 0.8260, 0.8063]), +tensor(crow_indices=tensor([ 0, 1, 5, ..., 24988, 24995, 25000]), + col_indices=tensor([1294, 410, 634, ..., 1096, 2182, 3875]), + values=tensor([0.7576, 0.8466, 0.6529, ..., 0.8373, 0.3120, 0.9707]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.9668, 0.6018, 0.4153, ..., 0.6117, 0.1974, 0.6733]) +tensor([0.6367, 0.3440, 0.8123, ..., 0.8035, 0.7344, 0.3858]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -34,15 +34,18 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 10.667346239089966 seconds +Time: 9.27815866470337 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 17801 -ss 5000 -sd 0.001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.451899290084839} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 7, ..., 24986, 24994, 25000]), - col_indices=tensor([ 85, 195, 4187, ..., 2991, 3287, 4675]), - values=tensor([0.1915, 0.0298, 0.9128, ..., 0.0482, 0.8260, 0.8063]), +tensor(crow_indices=tensor([ 0, 2, 5, ..., 24991, 24996, 25000]), + col_indices=tensor([ 139, 2091, 2694, ..., 3635, 3692, 4401]), + values=tensor([0.7198, 0.5125, 0.0166, ..., 0.6335, 0.1279, 0.4059]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.9668, 0.6018, 0.4153, ..., 0.6117, 0.1974, 0.6733]) +tensor([0.0330, 0.5472, 0.9005, ..., 0.3693, 0.0673, 0.4597]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -50,13 +53,29 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 10.667346239089966 seconds +Time: 10.451899290084839 seconds -[22.96, 22.64, 22.44, 22.84, 23.2, 23.48, 24.08, 23.88, 23.04, 22.2] -[21.52, 21.52, 20.88, 24.32, 25.36, 27.04, 27.68, 28.12, 25.12, 23.88, 23.84, 23.84, 23.68, 23.84] -14.638802766799927 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 17363, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.667346239089966, 'TIME_S_1KI': 0.6143722996653784, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 333.18905796051024, 'W': 22.76067676218484} -[22.96, 22.64, 22.44, 22.84, 23.2, 23.48, 24.08, 23.88, 23.04, 22.2, 20.48, 20.6, 20.52, 20.76, 20.72, 20.68, 20.68, 20.76, 20.64, 20.8] -394.18000000000006 -19.709000000000003 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 17363, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.667346239089966, 'TIME_S_1KI': 0.6143722996653784, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 333.18905796051024, 'W': 22.76067676218484, 'J_1KI': 19.1896019098376, 'W_1KI': 1.3108723585892323, 'W_D': 3.0516767621848366, 'J_D': 44.67289422965043, 'W_D_1KI': 0.17575745909029755, 'J_D_1KI': 0.010122528312520737} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 5, ..., 24991, 24996, 25000]), + col_indices=tensor([ 139, 2091, 2694, ..., 3635, 3692, 4401]), + values=tensor([0.7198, 0.5125, 0.0166, ..., 0.6335, 0.1279, 0.4059]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.0330, 0.5472, 0.9005, ..., 0.3693, 0.0673, 0.4597]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 10.451899290084839 seconds + +[20.28, 20.36, 20.4, 20.6, 20.68, 20.64, 20.52, 20.48, 20.32, 20.24] +[20.4, 20.48, 23.8, 23.8, 25.36, 27.2, 28.0, 28.44, 25.2, 23.88, 23.72, 23.92, 24.08, 24.08] +14.63306975364685 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 17801, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.451899290084839, 'TIME_S_1KI': 0.5871523672875029, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 335.3643196678161, 'W': 22.918247866906853} +[20.28, 20.36, 20.4, 20.6, 20.68, 20.64, 20.52, 20.48, 20.32, 20.24, 20.44, 20.64, 20.96, 20.68, 20.56, 20.68, 20.72, 20.76, 20.76, 20.96] +370.71999999999997 +18.535999999999998 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 17801, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.451899290084839, 'TIME_S_1KI': 0.5871523672875029, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 335.3643196678161, 'W': 22.918247866906853, 'J_1KI': 18.839633709781257, 'W_1KI': 1.2874696852371694, 'W_D': 4.382247866906855, 'J_D': 64.12573871421813, 'W_D_1KI': 0.24617987005824704, 'J_D_1KI': 0.013829552837382564} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.01.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.01.json index a5d181f..d1eb1c9 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.01.json +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.01.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1948, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.5094473361969, "TIME_S_1KI": 5.394993499074384, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 321.46233737945556, "W": 22.060099154306354, "J_1KI": 165.02173376768766, "W_1KI": 11.324486218843099, "W_D": 3.783099154306356, "J_D": 55.127762036561975, "W_D_1KI": 1.9420426870155834, "J_D_1KI": 0.9969418311168293} +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1927, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.278133630752563, "TIME_S_1KI": 5.333748640764174, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 315.9295339012146, "W": 21.68469080536072, "J_1KI": 163.94890186881918, "W_1KI": 11.253082929611168, "W_D": 3.326690805360723, "J_D": 48.46736737012868, "W_D_1KI": 1.7263574495904115, "J_D_1KI": 0.8958782820915472} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.01.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.01.output index 80c2fbe..9788e34 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.01.output +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.01.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.01 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 5.389868259429932} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 0.01 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.5448694229125977} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 46, 96, ..., 249907, 249949, +tensor(crow_indices=tensor([ 0, 55, 104, ..., 249896, 249951, 250000]), - col_indices=tensor([ 123, 345, 399, ..., 4711, 4879, 4988]), - values=tensor([0.4250, 0.5468, 0.7620, ..., 0.1883, 0.2040, 0.8985]), + col_indices=tensor([ 128, 142, 245, ..., 4657, 4734, 4838]), + values=tensor([0.1820, 0.1438, 0.1562, ..., 0.6881, 0.0081, 0.4382]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.2612, 0.9268, 0.9416, ..., 0.0698, 0.1077, 0.5090]) +tensor([0.7604, 0.0772, 0.6951, ..., 0.4926, 0.6864, 0.3702]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,19 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 5.389868259429932 seconds +Time: 0.5448694229125977 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1948 -ss 5000 -sd 0.01 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.5094473361969} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1927 -ss 5000 -sd 0.01 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.278133630752563} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 57, 115, ..., 249893, 249944, +tensor(crow_indices=tensor([ 0, 52, 109, ..., 249898, 249957, 250000]), - col_indices=tensor([ 73, 135, 475, ..., 4575, 4723, 4971]), - values=tensor([0.1739, 0.5180, 0.0955, ..., 0.3924, 0.5566, 0.2573]), + col_indices=tensor([ 25, 140, 158, ..., 4486, 4823, 4835]), + values=tensor([0.8176, 0.1521, 0.6094, ..., 0.2740, 0.3181, 0.5161]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.5075, 0.6044, 0.6141, ..., 0.4161, 0.9554, 0.0515]) +tensor([0.4533, 0.4508, 0.3256, ..., 0.6556, 0.1742, 0.9221]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -36,16 +36,16 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 10.5094473361969 seconds +Time: 10.278133630752563 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 57, 115, ..., 249893, 249944, +tensor(crow_indices=tensor([ 0, 52, 109, ..., 249898, 249957, 250000]), - col_indices=tensor([ 73, 135, 475, ..., 4575, 4723, 4971]), - values=tensor([0.1739, 0.5180, 0.0955, ..., 0.3924, 0.5566, 0.2573]), + col_indices=tensor([ 25, 140, 158, ..., 4486, 4823, 4835]), + values=tensor([0.8176, 0.1521, 0.6094, ..., 0.2740, 0.3181, 0.5161]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.5075, 0.6044, 0.6141, ..., 0.4161, 0.9554, 0.0515]) +tensor([0.4533, 0.4508, 0.3256, ..., 0.6556, 0.1742, 0.9221]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,13 +53,13 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 10.5094473361969 seconds +Time: 10.278133630752563 seconds -[20.56, 20.36, 20.36, 20.92, 20.64, 20.52, 20.44, 20.2, 20.0, 20.24] -[20.4, 20.4, 20.96, 22.24, 24.0, 24.56, 25.32, 25.32, 25.28, 24.8, 24.08, 24.24, 24.16, 24.16] -14.572116613388062 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1948, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.5094473361969, 'TIME_S_1KI': 5.394993499074384, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 321.46233737945556, 'W': 22.060099154306354} -[20.56, 20.36, 20.36, 20.92, 20.64, 20.52, 20.44, 20.2, 20.0, 20.24, 20.16, 20.08, 20.04, 20.12, 20.12, 20.16, 20.24, 20.2, 20.44, 20.44] -365.53999999999996 -18.276999999999997 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1948, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.5094473361969, 'TIME_S_1KI': 5.394993499074384, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 321.46233737945556, 'W': 22.060099154306354, 'J_1KI': 165.02173376768766, 'W_1KI': 11.324486218843099, 'W_D': 3.783099154306356, 'J_D': 55.127762036561975, 'W_D_1KI': 1.9420426870155834, 'J_D_1KI': 0.9969418311168293} +[20.28, 20.32, 20.56, 20.6, 20.48, 20.56, 20.76, 20.68, 20.88, 20.88] +[20.72, 20.48, 20.56, 21.28, 22.24, 24.0, 24.68, 25.2, 25.04, 23.88, 23.88, 24.04, 24.2, 24.4] +14.56924319267273 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1927, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.278133630752563, 'TIME_S_1KI': 5.333748640764174, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 315.9295339012146, 'W': 21.68469080536072} +[20.28, 20.32, 20.56, 20.6, 20.48, 20.56, 20.76, 20.68, 20.88, 20.88, 20.16, 20.08, 20.16, 20.16, 20.24, 20.36, 20.08, 20.2, 20.28, 20.2] +367.15999999999997 +18.357999999999997 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1927, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.278133630752563, 'TIME_S_1KI': 5.333748640764174, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 315.9295339012146, 'W': 21.68469080536072, 'J_1KI': 163.94890186881918, 'W_1KI': 11.253082929611168, 'W_D': 3.326690805360723, 'J_D': 48.46736737012868, 'W_D_1KI': 1.7263574495904115, 'J_D_1KI': 0.8958782820915472} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.05.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.05.json index 496e602..942bb7d 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.05.json +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.05.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 28.093817949295044, "TIME_S_1KI": 28.093817949295044, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 689.2963391876219, "W": 22.82953703239495, "J_1KI": 689.2963391876219, "W_1KI": 22.82953703239495, "W_D": 4.334537032394952, "J_D": 130.87346030116072, "W_D_1KI": 4.334537032394952, "J_D_1KI": 4.334537032394952} +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 393, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.605815887451172, "TIME_S_1KI": 26.986808873921557, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 343.57593024253845, "W": 23.547531420592268, "J_1KI": 874.239008250734, "W_1KI": 59.917382749598644, "W_D": 5.065531420592269, "J_D": 73.90985657548903, "W_D_1KI": 12.889392927715695, "J_D_1KI": 32.79743747510355} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.05.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.05.output index 9c2fd18..5869b7e 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.05.output +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.05 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 28.093817949295044} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 0.05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 2.6673474311828613} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 249, 484, ..., 1249498, - 1249755, 1250000]), - col_indices=tensor([ 8, 31, 46, ..., 4934, 4976, 4984]), - values=tensor([0.2044, 0.4643, 0.3912, ..., 0.8352, 0.2191, 0.4950]), +tensor(crow_indices=tensor([ 0, 248, 507, ..., 1249488, + 1249771, 1250000]), + col_indices=tensor([ 0, 22, 35, ..., 4958, 4983, 4999]), + values=tensor([0.4233, 0.1325, 0.2059, ..., 0.9744, 0.8399, 0.1366]), size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.7092, 0.7480, 0.2063, ..., 0.9775, 0.7055, 0.9981]) +tensor([0.6304, 0.5951, 0.1863, ..., 0.0552, 0.3796, 0.7701]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,16 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 1250000 Density: 0.05 -Time: 28.093817949295044 seconds +Time: 2.6673474311828613 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 393 -ss 5000 -sd 0.05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.605815887451172} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 249, 484, ..., 1249498, - 1249755, 1250000]), - col_indices=tensor([ 8, 31, 46, ..., 4934, 4976, 4984]), - values=tensor([0.2044, 0.4643, 0.3912, ..., 0.8352, 0.2191, 0.4950]), +tensor(crow_indices=tensor([ 0, 284, 548, ..., 1249494, + 1249762, 1250000]), + col_indices=tensor([ 9, 27, 28, ..., 4894, 4914, 4954]), + values=tensor([0.8223, 0.3728, 0.3102, ..., 0.8633, 0.4361, 0.2072]), size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.7092, 0.7480, 0.2063, ..., 0.9775, 0.7055, 0.9981]) +tensor([0.4176, 0.5149, 0.4165, ..., 0.2240, 0.9505, 0.5242]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -33,13 +36,30 @@ Rows: 5000 Size: 25000000 NNZ: 1250000 Density: 0.05 -Time: 28.093817949295044 seconds +Time: 10.605815887451172 seconds -[20.56, 20.6, 20.48, 20.56, 20.4, 20.48, 20.68, 20.72, 20.92, 21.08] -[20.92, 20.92, 20.56, 23.36, 25.52, 27.28, 28.24, 28.72, 25.44, 24.36, 24.6, 24.76, 24.64, 24.52, 24.36, 24.44, 24.24, 24.4, 24.44, 24.16, 24.16, 24.12, 24.2, 24.2, 24.08, 24.12, 24.24, 24.12, 24.0] -30.193180799484253 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 28.093817949295044, 'TIME_S_1KI': 28.093817949295044, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 689.2963391876219, 'W': 22.82953703239495} -[20.56, 20.6, 20.48, 20.56, 20.4, 20.48, 20.68, 20.72, 20.92, 21.08, 20.52, 20.6, 20.36, 20.4, 20.52, 20.44, 20.6, 20.44, 20.44, 20.36] -369.9 -18.494999999999997 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 28.093817949295044, 'TIME_S_1KI': 28.093817949295044, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 689.2963391876219, 'W': 22.82953703239495, 'J_1KI': 689.2963391876219, 'W_1KI': 22.82953703239495, 'W_D': 4.334537032394952, 'J_D': 130.87346030116072, 'W_D_1KI': 4.334537032394952, 'J_D_1KI': 4.334537032394952} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 284, 548, ..., 1249494, + 1249762, 1250000]), + col_indices=tensor([ 9, 27, 28, ..., 4894, 4914, 4954]), + values=tensor([0.8223, 0.3728, 0.3102, ..., 0.8633, 0.4361, 0.2072]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.4176, 0.5149, 0.4165, ..., 0.2240, 0.9505, 0.5242]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 10.605815887451172 seconds + +[20.32, 20.32, 20.44, 20.4, 20.52, 20.52, 20.64, 20.8, 20.92, 20.88] +[20.92, 21.04, 24.24, 26.28, 27.72, 27.72, 28.36, 29.08, 25.2, 24.24, 24.28, 24.28, 24.28, 24.2] +14.59074091911316 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 393, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.605815887451172, 'TIME_S_1KI': 26.986808873921557, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 343.57593024253845, 'W': 23.547531420592268} +[20.32, 20.32, 20.44, 20.4, 20.52, 20.52, 20.64, 20.8, 20.92, 20.88, 20.24, 20.28, 20.52, 20.64, 20.6, 20.56, 20.52, 20.48, 20.48, 20.56] +369.64 +18.482 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 393, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.605815887451172, 'TIME_S_1KI': 26.986808873921557, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 343.57593024253845, 'W': 23.547531420592268, 'J_1KI': 874.239008250734, 'W_1KI': 59.917382749598644, 'W_D': 5.065531420592269, 'J_D': 73.90985657548903, 'W_D_1KI': 12.889392927715695, 'J_D_1KI': 32.79743747510355} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.1.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.1.json index fff9557..5939696 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.1.json +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.1.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 53.78093886375427, "TIME_S_1KI": 53.78093886375427, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1352.5172874259947, "W": 23.03061139017129, "J_1KI": 1352.5172874259947, "W_1KI": 23.03061139017129, "W_D": 4.417611390171292, "J_D": 259.4327902595995, "W_D_1KI": 4.417611390171292, "J_D_1KI": 4.417611390171292} +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 194, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.912250995635986, "TIME_S_1KI": 56.248716472350445, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 326.6964877033234, "W": 22.305376949262342, "J_1KI": 1684.0025139346567, "W_1KI": 114.97616984155846, "W_D": 3.7133769492623436, "J_D": 54.38810604286199, "W_D_1KI": 19.14111829516672, "J_D_1KI": 98.66555822250888} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.1.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.1.output index c5ce197..469c726 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.1.output +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.1.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.1 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 53.78093886375427} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 0.1 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 5.392450332641602} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 534, 1044, ..., 2498992, - 2499517, 2500000]), - col_indices=tensor([ 3, 19, 25, ..., 4971, 4983, 4990]), - values=tensor([0.2124, 0.6762, 0.6770, ..., 0.5380, 0.6783, 0.2658]), +tensor(crow_indices=tensor([ 0, 508, 1024, ..., 2499064, + 2499534, 2500000]), + col_indices=tensor([ 1, 4, 10, ..., 4973, 4986, 4993]), + values=tensor([0.4448, 0.2935, 0.6096, ..., 0.6772, 0.8304, 0.1969]), size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.0160, 0.9125, 0.7128, ..., 0.4183, 0.3158, 0.5797]) +tensor([0.5801, 0.6662, 0.3258, ..., 0.9572, 0.7518, 0.3845]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,16 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 2500000 Density: 0.1 -Time: 53.78093886375427 seconds +Time: 5.392450332641602 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 194 -ss 5000 -sd 0.1 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.912250995635986} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 534, 1044, ..., 2498992, - 2499517, 2500000]), - col_indices=tensor([ 3, 19, 25, ..., 4971, 4983, 4990]), - values=tensor([0.2124, 0.6762, 0.6770, ..., 0.5380, 0.6783, 0.2658]), +tensor(crow_indices=tensor([ 0, 510, 1021, ..., 2499033, + 2499527, 2500000]), + col_indices=tensor([ 27, 33, 84, ..., 4958, 4963, 4982]), + values=tensor([0.5404, 0.4129, 0.3312, ..., 0.4218, 0.5770, 0.4495]), size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.0160, 0.9125, 0.7128, ..., 0.4183, 0.3158, 0.5797]) +tensor([0.8518, 0.9058, 0.3829, ..., 0.5160, 0.0011, 0.3108]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -33,13 +36,30 @@ Rows: 5000 Size: 25000000 NNZ: 2500000 Density: 0.1 -Time: 53.78093886375427 seconds +Time: 10.912250995635986 seconds -[20.56, 20.72, 20.76, 20.76, 20.64, 20.88, 20.6, 20.52, 20.72, 20.48] -[20.36, 20.24, 20.8, 22.0, 24.0, 25.2, 26.08, 25.8, 25.8, 25.44, 24.16, 24.32, 24.32, 24.4, 24.36, 24.4, 24.52, 24.88, 24.68, 24.64, 24.52, 24.28, 24.04, 24.08, 24.08, 24.08, 24.36, 24.4, 24.48, 24.6, 24.6, 24.64, 24.56, 24.52, 24.56, 24.32, 24.04, 24.32, 24.36, 24.24, 24.28, 24.28, 24.28, 24.48, 24.52, 24.76, 24.56, 24.24, 24.16, 24.04, 24.12, 24.12, 24.44, 24.48, 24.52, 24.4] -58.726938009262085 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 53.78093886375427, 'TIME_S_1KI': 53.78093886375427, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1352.5172874259947, 'W': 23.03061139017129} -[20.56, 20.72, 20.76, 20.76, 20.64, 20.88, 20.6, 20.52, 20.72, 20.48, 20.84, 20.6, 20.72, 20.72, 20.72, 20.52, 20.6, 20.72, 20.76, 20.72] -372.26 -18.613 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 53.78093886375427, 'TIME_S_1KI': 53.78093886375427, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1352.5172874259947, 'W': 23.03061139017129, 'J_1KI': 1352.5172874259947, 'W_1KI': 23.03061139017129, 'W_D': 4.417611390171292, 'J_D': 259.4327902595995, 'W_D_1KI': 4.417611390171292, 'J_D_1KI': 4.417611390171292} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 510, 1021, ..., 2499033, + 2499527, 2500000]), + col_indices=tensor([ 27, 33, 84, ..., 4958, 4963, 4982]), + values=tensor([0.5404, 0.4129, 0.3312, ..., 0.4218, 0.5770, 0.4495]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.8518, 0.9058, 0.3829, ..., 0.5160, 0.0011, 0.3108]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 10.912250995635986 seconds + +[20.28, 20.36, 20.6, 20.76, 20.96, 20.8, 20.76, 20.64, 20.48, 20.76] +[20.88, 20.88, 20.64, 21.88, 22.92, 24.88, 26.08, 26.2, 25.72, 24.96, 24.48, 24.56, 24.76, 24.68] +14.646535158157349 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 194, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.912250995635986, 'TIME_S_1KI': 56.248716472350445, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 326.6964877033234, 'W': 22.305376949262342} +[20.28, 20.36, 20.6, 20.76, 20.96, 20.8, 20.76, 20.64, 20.48, 20.76, 20.68, 20.08, 20.2, 20.52, 20.52, 20.72, 20.72, 21.32, 21.0, 21.08] +371.84 +18.592 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 194, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.912250995635986, 'TIME_S_1KI': 56.248716472350445, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 326.6964877033234, 'W': 22.305376949262342, 'J_1KI': 1684.0025139346567, 'W_1KI': 114.97616984155846, 'W_D': 3.7133769492623436, 'J_D': 54.38810604286199, 'W_D_1KI': 19.14111829516672, 'J_D_1KI': 98.66555822250888} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.2.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.2.json new file mode 100644 index 0000000..8d5c96a --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.2.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.527036905288696, "TIME_S_1KI": 105.27036905288696, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 363.19735393524167, "W": 23.113061201495835, "J_1KI": 3631.973539352417, "W_1KI": 231.13061201495836, "W_D": 4.666061201495836, "J_D": 73.32222533869742, "W_D_1KI": 46.66061201495836, "J_D_1KI": 466.6061201495836} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.2.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.2.output new file mode 100644 index 0000000..9300b4b --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.2.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 0.2 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.527036905288696} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 996, 2006, ..., 4997968, + 4998974, 5000000]), + col_indices=tensor([ 4, 8, 12, ..., 4976, 4983, 4993]), + values=tensor([0.4991, 0.7024, 0.1537, ..., 0.4726, 0.2476, 0.0939]), + size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.1571, 0.7792, 0.7385, ..., 0.2151, 0.4821, 0.5033]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 5000000 +Density: 0.2 +Time: 10.527036905288696 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 996, 2006, ..., 4997968, + 4998974, 5000000]), + col_indices=tensor([ 4, 8, 12, ..., 4976, 4983, 4993]), + values=tensor([0.4991, 0.7024, 0.1537, ..., 0.4726, 0.2476, 0.0939]), + size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.1571, 0.7792, 0.7385, ..., 0.2151, 0.4821, 0.5033]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 5000000 +Density: 0.2 +Time: 10.527036905288696 seconds + +[20.48, 20.44, 20.48, 20.64, 20.72, 20.72, 20.68, 20.72, 20.68, 20.6] +[20.4, 20.48, 21.0, 23.96, 25.48, 27.4, 28.52, 27.56, 26.24, 25.04, 24.48, 24.4, 24.4, 24.32, 24.48] +15.71394419670105 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.527036905288696, 'TIME_S_1KI': 105.27036905288696, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 363.19735393524167, 'W': 23.113061201495835} +[20.48, 20.44, 20.48, 20.64, 20.72, 20.72, 20.68, 20.72, 20.68, 20.6, 20.4, 20.16, 20.32, 20.32, 20.16, 20.56, 20.48, 20.52, 20.48, 20.24] +368.94 +18.447 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.527036905288696, 'TIME_S_1KI': 105.27036905288696, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 363.19735393524167, 'W': 23.113061201495835, 'J_1KI': 3631.973539352417, 'W_1KI': 231.13061201495836, 'W_D': 4.666061201495836, 'J_D': 73.32222533869742, 'W_D_1KI': 46.66061201495836, 'J_D_1KI': 466.6061201495836} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.3.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.3.json new file mode 100644 index 0000000..fef5f93 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.3.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 15.927062749862671, "TIME_S_1KI": 159.2706274986267, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 517.2976983642578, "W": 23.521442010494468, "J_1KI": 5172.9769836425785, "W_1KI": 235.21442010494468, "W_D": 5.048442010494465, "J_D": 111.02837280082699, "W_D_1KI": 50.484420104944654, "J_D_1KI": 504.8442010494465} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.3.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.3.output new file mode 100644 index 0000000..eaea98f --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.3.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 0.3 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 15.927062749862671} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1527, 3024, ..., 7496971, + 7498460, 7500000]), + col_indices=tensor([ 0, 3, 4, ..., 4985, 4992, 4996]), + values=tensor([0.7552, 0.2419, 0.2481, ..., 0.7383, 0.7786, 0.4470]), + size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) +tensor([0.6238, 0.3406, 0.3665, ..., 0.0040, 0.2464, 0.8126]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 7500000 +Density: 0.3 +Time: 15.927062749862671 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1527, 3024, ..., 7496971, + 7498460, 7500000]), + col_indices=tensor([ 0, 3, 4, ..., 4985, 4992, 4996]), + values=tensor([0.7552, 0.2419, 0.2481, ..., 0.7383, 0.7786, 0.4470]), + size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) +tensor([0.6238, 0.3406, 0.3665, ..., 0.0040, 0.2464, 0.8126]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 7500000 +Density: 0.3 +Time: 15.927062749862671 seconds + +[20.4, 20.32, 20.32, 20.4, 20.48, 20.52, 20.8, 20.76, 20.76, 20.64] +[20.8, 20.8, 21.12, 22.88, 23.72, 26.16, 27.92, 27.96, 27.28, 26.72, 25.24, 24.32, 24.24, 24.16, 24.2, 24.68, 24.8, 24.68, 24.68, 24.56, 24.64] +21.99260139465332 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 15.927062749862671, 'TIME_S_1KI': 159.2706274986267, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 517.2976983642578, 'W': 23.521442010494468} +[20.4, 20.32, 20.32, 20.4, 20.48, 20.52, 20.8, 20.76, 20.76, 20.64, 20.56, 20.16, 20.24, 20.6, 20.64, 20.76, 20.8, 20.6, 20.28, 20.44] +369.46000000000004 +18.473000000000003 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 15.927062749862671, 'TIME_S_1KI': 159.2706274986267, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 517.2976983642578, 'W': 23.521442010494468, 'J_1KI': 5172.9769836425785, 'W_1KI': 235.21442010494468, 'W_D': 5.048442010494465, 'J_D': 111.02837280082699, 'W_D_1KI': 50.484420104944654, 'J_D_1KI': 504.8442010494465} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.4.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.4.json new file mode 100644 index 0000000..d2af780 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.4.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.4, "TIME_S": 22.84249472618103, "TIME_S_1KI": 228.4249472618103, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 682.8522075366976, "W": 24.128078827131084, "J_1KI": 6828.522075366976, "W_1KI": 241.28078827131083, "W_D": 3.4220788271310845, "J_D": 96.84874200773261, "W_D_1KI": 34.220788271310845, "J_D_1KI": 342.2078827131084} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.4.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.4.output new file mode 100644 index 0000000..c75f057 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.4.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 0.4 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.4, "TIME_S": 22.84249472618103} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2006, 4067, ..., 9995955, + 9997971, 10000000]), + col_indices=tensor([ 1, 3, 4, ..., 4995, 4998, 4999]), + values=tensor([0.5438, 0.4529, 0.4674, ..., 0.4313, 0.1734, 0.8643]), + size=(5000, 5000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.4316, 0.5719, 0.8319, ..., 0.7407, 0.2442, 0.5797]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 10000000 +Density: 0.4 +Time: 22.84249472618103 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2006, 4067, ..., 9995955, + 9997971, 10000000]), + col_indices=tensor([ 1, 3, 4, ..., 4995, 4998, 4999]), + values=tensor([0.5438, 0.4529, 0.4674, ..., 0.4313, 0.1734, 0.8643]), + size=(5000, 5000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.4316, 0.5719, 0.8319, ..., 0.7407, 0.2442, 0.5797]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 10000000 +Density: 0.4 +Time: 22.84249472618103 seconds + +[26.88, 26.16, 25.48, 25.52, 24.68, 24.6, 24.36, 24.16, 24.16, 24.28] +[24.4, 24.52, 24.52, 28.04, 29.2, 30.8, 31.68, 30.2, 29.88, 28.12, 26.84, 25.72, 24.28, 24.16, 24.04, 24.12, 24.24, 24.24, 24.4, 24.44, 24.48, 24.52, 24.68, 24.48, 24.68, 24.6, 24.68] +28.301142930984497 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.4, 'TIME_S': 22.84249472618103, 'TIME_S_1KI': 228.4249472618103, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 682.8522075366976, 'W': 24.128078827131084} +[26.88, 26.16, 25.48, 25.52, 24.68, 24.6, 24.36, 24.16, 24.16, 24.28, 20.44, 20.64, 20.68, 20.8, 20.92, 21.32, 21.36, 21.44, 21.44, 21.2] +414.12 +20.706 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.4, 'TIME_S': 22.84249472618103, 'TIME_S_1KI': 228.4249472618103, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 682.8522075366976, 'W': 24.128078827131084, 'J_1KI': 6828.522075366976, 'W_1KI': 241.28078827131083, 'W_D': 3.4220788271310845, 'J_D': 96.84874200773261, 'W_D_1KI': 34.220788271310845, 'J_D_1KI': 342.2078827131084} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.5.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.5.json new file mode 100644 index 0000000..1c5a213 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.5.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 26.49390745162964, "TIME_S_1KI": 264.9390745162964, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 833.4256306743622, "W": 24.07917164557845, "J_1KI": 8334.256306743622, "W_1KI": 240.79171645578452, "W_D": 5.603171645578453, "J_D": 193.9363584108353, "W_D_1KI": 56.031716455784526, "J_D_1KI": 560.3171645578453} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.5.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.5.output new file mode 100644 index 0000000..99ea343 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_0.5.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 0.5 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 26.49390745162964} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2475, 4991, ..., 12495070, + 12497536, 12500000]), + col_indices=tensor([ 3, 6, 7, ..., 4992, 4996, 4999]), + values=tensor([0.7861, 0.1444, 0.2009, ..., 0.5207, 0.8919, 0.5019]), + size=(5000, 5000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.4801, 0.0235, 0.0420, ..., 0.5930, 0.2408, 0.0610]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 12500000 +Density: 0.5 +Time: 26.49390745162964 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2475, 4991, ..., 12495070, + 12497536, 12500000]), + col_indices=tensor([ 3, 6, 7, ..., 4992, 4996, 4999]), + values=tensor([0.7861, 0.1444, 0.2009, ..., 0.5207, 0.8919, 0.5019]), + size=(5000, 5000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.4801, 0.0235, 0.0420, ..., 0.5930, 0.2408, 0.0610]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 12500000 +Density: 0.5 +Time: 26.49390745162964 seconds + +[20.72, 20.56, 20.56, 20.36, 20.36, 20.36, 20.28, 20.56, 20.72, 21.08] +[21.48, 21.52, 24.72, 26.76, 28.04, 29.8, 31.48, 31.48, 29.76, 28.44, 27.2, 25.96, 25.12, 24.52, 24.64, 24.64, 24.72, 24.52, 24.56, 24.68, 24.68, 24.6, 24.52, 24.2, 24.32, 24.24, 24.16, 24.4, 24.44, 24.44, 24.44, 24.6, 24.36] +34.611889600753784 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.5, 'TIME_S': 26.49390745162964, 'TIME_S_1KI': 264.9390745162964, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 833.4256306743622, 'W': 24.07917164557845} +[20.72, 20.56, 20.56, 20.36, 20.36, 20.36, 20.28, 20.56, 20.72, 21.08, 20.64, 20.64, 20.36, 20.36, 20.56, 20.64, 20.68, 20.56, 20.56, 20.36] +369.52 +18.476 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.5, 'TIME_S': 26.49390745162964, 'TIME_S_1KI': 264.9390745162964, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 833.4256306743622, 'W': 24.07917164557845, 'J_1KI': 8334.256306743622, 'W_1KI': 240.79171645578452, 'W_D': 5.603171645578453, 'J_D': 193.9363584108353, 'W_D_1KI': 56.031716455784526, 'J_D_1KI': 560.3171645578453} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_1e-05.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_1e-05.json index a523326..732c4d4 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_1e-05.json +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_1e-05.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 289284, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.336281061172485, "TIME_S_1KI": 0.035730566022222056, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 302.8508556365967, "W": 22.269333190276484, "J_1KI": 1.0468980504853247, "W_1KI": 0.07698086721103305, "W_D": 3.542333190276487, "J_D": 48.17381052494056, "W_D_1KI": 0.012245174950140648, "J_D_1KI": 4.232925066765064e-05} +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 289937, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.948570489883423, "TIME_S_1KI": 0.037761894790535266, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 337.0917576313019, "W": 22.992700250818316, "J_1KI": 1.1626379442130597, "W_1KI": 0.07930240104166876, "W_D": 4.582700250818316, "J_D": 67.18612713575365, "W_D_1KI": 0.015805848342289243, "J_D_1KI": 5.4514768181671336e-05} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_1e-05.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_1e-05.output index 2a5bc74..90b44fb 100644 --- a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_1e-05.output +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_1e-05.output @@ -1,183 +1,75 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 1e-05 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.04395866394042969} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.012730121612548828} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([ 439, 4351, 241, 500, 1004, 350, 1803, 3065, 3191, - 3136, 4095, 405, 1027, 870, 1417, 1360, 1534, 1342, - 3091, 3442, 2499, 1358, 1636, 3780, 2825, 2256, 4221, - 891, 2908, 3121, 1626, 2038, 883, 1037, 495, 2079, - 274, 937, 1868, 1488, 2903, 1523, 2167, 269, 3946, - 4053, 3008, 3702, 2193, 1563, 433, 1763, 2812, 3707, - 1886, 3013, 1511, 241, 1937, 2889, 1518, 4490, 4205, - 2026, 1673, 448, 986, 4061, 3094, 3985, 2097, 1213, - 4129, 3540, 2913, 1842, 3281, 3579, 2699, 1582, 1926, - 2137, 2888, 530, 3516, 2878, 57, 3238, 1656, 156, - 3904, 1121, 616, 2128, 426, 4846, 2365, 4030, 347, - 3690, 867, 1324, 1005, 4649, 3492, 4358, 47, 220, - 4307, 708, 2842, 3336, 1686, 1004, 4195, 3767, 332, - 43, 2809, 3452, 1463, 2172, 1464, 3770, 1880, 2042, - 3777, 2498, 3420, 1112, 4060, 4103, 4825, 1440, 4448, - 99, 2245, 3060, 27, 3733, 457, 3987, 3747, 1652, - 2522, 757, 4125, 2250, 2724, 3925, 2338, 3816, 1409, - 2282, 4242, 682, 3683, 4310, 1582, 4330, 601, 544, - 2289, 2874, 3966, 1136, 681, 4257, 2516, 3237, 2677, - 2257, 2771, 3675, 3168, 1248, 4288, 3632, 3599, 280, - 4551, 4047, 3577, 2662, 2281, 1968, 3402, 454, 1141, - 3366, 354, 2291, 4168, 3523, 2296, 2127, 2248, 4229, - 2140, 736, 3393, 640, 4820, 2236, 1416, 4815, 3234, - 1042, 1979, 4637, 2323, 138, 2380, 3226, 1859, 3342, - 2378, 803, 349, 3172, 4960, 4660, 4480, 3337, 245, - 4128, 3649, 2732, 968, 771, 3445, 3899, 644, 16, - 3599, 1029, 1799, 4502, 366, 4843, 2859, 2949, 545, - 645, 3511, 4843, 251, 2988, 2387, 946]), - values=tensor([9.4296e-01, 5.2301e-01, 8.9037e-01, 1.8262e-01, - 9.3621e-01, 5.6553e-01, 9.8721e-01, 6.5141e-01, - 2.8305e-01, 8.9567e-01, 7.1276e-04, 4.5788e-01, - 1.3154e-01, 7.7912e-01, 2.1464e-01, 9.3572e-01, - 4.0199e-01, 1.4579e-01, 1.5259e-01, 5.2311e-01, - 6.3620e-01, 8.3700e-01, 3.7813e-01, 1.4289e-01, - 6.8630e-01, 9.7120e-01, 7.6830e-01, 1.8723e-01, - 5.0392e-01, 9.2014e-01, 9.6103e-01, 7.2487e-01, - 3.2638e-01, 3.9838e-01, 2.7919e-01, 9.9376e-02, - 1.2394e-01, 1.9018e-01, 9.4573e-01, 4.8384e-02, - 3.3755e-01, 5.4543e-01, 6.5933e-01, 9.2931e-03, - 6.7184e-01, 3.3367e-01, 7.2403e-02, 1.6238e-01, - 7.9429e-01, 7.1594e-01, 9.3852e-01, 9.0787e-01, - 8.7587e-01, 2.4929e-01, 3.4089e-01, 7.4583e-01, - 3.6106e-01, 5.5151e-01, 6.3073e-01, 2.4689e-01, - 6.6122e-01, 6.2804e-01, 3.7429e-04, 5.6550e-01, - 5.0592e-01, 5.2248e-02, 7.1885e-01, 1.4852e-03, - 6.1029e-01, 4.5258e-01, 9.8998e-01, 7.7545e-03, - 6.8035e-01, 8.7032e-01, 2.7807e-01, 6.6854e-01, - 8.8838e-01, 1.5830e-02, 6.6226e-01, 1.1911e-01, - 1.8780e-01, 3.7508e-01, 9.2709e-01, 1.3932e-01, - 8.5139e-01, 2.8186e-01, 2.2711e-01, 8.2491e-01, - 9.3666e-01, 5.4799e-01, 8.7126e-01, 5.6305e-01, - 2.9909e-01, 9.8105e-02, 1.0565e-01, 9.1471e-01, - 9.5693e-01, 5.2767e-01, 7.5753e-01, 2.3887e-01, - 8.7389e-01, 2.4255e-01, 8.0756e-01, 7.2201e-01, - 6.6620e-01, 4.9751e-01, 5.1454e-01, 8.6001e-01, - 3.0834e-01, 2.2246e-01, 1.9841e-01, 8.9698e-02, - 9.1174e-01, 9.2243e-01, 7.7010e-01, 3.5962e-01, - 6.8634e-01, 9.5528e-01, 9.6147e-02, 9.3024e-02, - 8.3726e-01, 7.2003e-01, 6.7904e-01, 2.9273e-01, - 9.7464e-02, 1.5658e-02, 9.0559e-01, 3.6883e-01, - 7.9470e-01, 3.6450e-01, 5.7814e-03, 6.5827e-02, - 6.1557e-02, 3.8228e-02, 4.7705e-01, 2.6058e-01, - 8.0137e-01, 9.8272e-01, 8.4581e-01, 6.6501e-01, - 5.2583e-03, 3.0522e-01, 9.5123e-01, 2.4154e-01, - 6.0106e-01, 6.7170e-01, 2.1086e-01, 6.6402e-01, - 9.0397e-01, 3.9084e-01, 2.0324e-01, 7.2153e-01, - 6.7300e-01, 5.3381e-01, 2.8418e-02, 4.4506e-01, - 1.0782e-01, 1.9622e-01, 8.0898e-02, 5.4146e-01, - 8.2802e-01, 7.5722e-01, 9.2798e-04, 8.7421e-02, - 6.0281e-01, 1.2511e-01, 5.8418e-01, 7.7672e-01, - 8.2524e-01, 8.4603e-01, 6.9503e-01, 5.3184e-01, - 8.1918e-01, 5.6983e-01, 6.0056e-01, 1.8971e-01, - 1.0667e-01, 1.4853e-01, 3.6607e-01, 9.1330e-01, - 7.6093e-01, 6.6336e-01, 8.3088e-02, 8.4756e-01, - 5.8339e-01, 9.7773e-03, 7.7948e-02, 2.5127e-01, - 9.2139e-01, 3.2626e-01, 8.8502e-01, 8.8419e-01, - 9.3048e-01, 2.5403e-01, 7.0568e-01, 6.2669e-01, - 5.4774e-01, 7.1848e-01, 6.1011e-01, 7.7754e-01, - 8.5827e-01, 1.7827e-01, 6.2997e-01, 8.0090e-02, - 2.7963e-01, 9.9685e-01, 9.8342e-01, 1.9697e-01, - 4.5505e-01, 4.5432e-01, 2.5097e-01, 6.7016e-01, - 1.8891e-01, 1.1873e-01, 3.8346e-01, 2.0525e-01, - 7.7441e-01, 9.7489e-01, 9.5720e-01, 1.2362e-01, - 6.3758e-01, 4.1703e-01, 4.2223e-01, 1.8615e-01, - 3.6248e-02, 7.9391e-01, 2.0557e-01, 2.4331e-01, - 3.3957e-02, 7.9866e-01, 9.2672e-01, 7.1739e-01, - 4.0885e-01, 7.5316e-01, 1.3635e-01, 7.8209e-01, - 7.8379e-01, 8.6373e-01, 4.7931e-01, 9.1748e-01, - 8.8234e-01, 3.9897e-02, 1.9663e-01, 5.1895e-01, - 1.8534e-01, 5.8047e-01, 8.8859e-01, 6.9097e-01, - 9.8689e-01, 3.5349e-01]), size=(5000, 5000), nnz=250, - layout=torch.sparse_csr) -tensor([0.0440, 0.7352, 0.2145, ..., 0.3780, 0.1332, 0.0924]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([5000, 5000]) -Rows: 5000 -Size: 25000000 -NNZ: 250 -Density: 1e-05 -Time: 0.04395866394042969 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 238860 -ss 5000 -sd 1e-05 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 8.669770956039429} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([3091, 2173, 2760, 4828, 4497, 2021, 4336, 1372, 2593, - 4578, 2353, 1617, 2286, 4843, 611, 3842, 780, 3798, - 1703, 2131, 4067, 844, 2093, 4026, 1314, 3497, 4042, - 4776, 3331, 3582, 1805, 810, 679, 3355, 267, 75, - 1213, 2221, 1110, 2198, 2383, 4776, 4217, 678, 3909, - 1512, 3709, 4936, 3783, 908, 1282, 1246, 4599, 2322, - 400, 1819, 1668, 1808, 2129, 438, 3127, 679, 3190, - 1219, 3867, 1347, 947, 2998, 4062, 3110, 2027, 1149, - 4411, 3584, 2329, 3206, 3899, 4697, 2802, 4938, 2228, - 4929, 3505, 2881, 4726, 2353, 1213, 3407, 639, 4955, - 2493, 2366, 1047, 948, 3072, 1625, 3356, 4277, 3654, - 3675, 3687, 1889, 2750, 4011, 2466, 2775, 4133, 2972, - 4848, 1886, 2462, 153, 3593, 4334, 1547, 1439, 1117, - 4652, 364, 4137, 3929, 32, 4355, 3906, 1819, 701, - 843, 1395, 965, 3122, 4564, 113, 2887, 3505, 3813, - 1298, 294, 4050, 112, 970, 3705, 1370, 1914, 3916, - 1662, 4047, 1814, 166, 4992, 2795, 1857, 3493, 862, - 4171, 3693, 4410, 3072, 191, 4249, 2990, 2750, 2777, - 2482, 2558, 4173, 4640, 4365, 2368, 165, 3278, 3602, - 4362, 3309, 800, 3849, 4373, 4033, 1894, 4873, 4868, - 2497, 3754, 682, 4534, 989, 3189, 843, 3829, 1001, - 1817, 1493, 4385, 4304, 2601, 4528, 142, 3070, 914, - 4818, 1532, 2114, 396, 1015, 1256, 3073, 1867, 2500, - 3218, 958, 3683, 1738, 4356, 2003, 3914, 1072, 3035, - 906, 3835, 659, 3510, 266, 3356, 607, 3975, 4538, - 845, 569, 3535, 3958, 1202, 678, 853, 3550, 3828, - 589, 2363, 2962, 3748, 447, 325, 4847, 760, 2711, - 4314, 4639, 1546, 4036, 2172, 2793, 2280]), - values=tensor([0.9311, 0.9337, 0.6031, 0.9384, 0.3149, 0.4635, 0.9582, - 0.9724, 0.9125, 0.1632, 0.9245, 0.0672, 0.1143, 0.3208, - 0.1789, 0.9522, 0.9522, 0.5693, 0.9699, 0.8167, 0.2351, - 0.8218, 0.0084, 0.8188, 0.0090, 0.0238, 0.9758, 0.2522, - 0.5008, 0.7112, 0.5123, 0.0579, 0.8162, 0.9429, 0.9583, - 0.8914, 0.0600, 0.0407, 0.6565, 0.9268, 0.0759, 0.6544, - 0.1768, 0.1190, 0.3416, 0.4319, 0.6553, 0.9105, 0.0139, - 0.3695, 0.9454, 0.5109, 0.7588, 0.3085, 0.7470, 0.2791, - 0.8189, 0.8019, 0.7112, 0.0119, 0.9175, 0.6748, 0.5583, - 0.3843, 0.9066, 0.9602, 0.5163, 0.7903, 0.5317, 0.8558, - 0.0178, 0.9916, 0.0539, 0.1774, 0.1131, 0.2007, 0.4985, - 0.3602, 0.2595, 0.8066, 0.9027, 0.9075, 0.6105, 0.4231, - 0.6445, 0.3321, 0.5032, 0.7416, 0.0328, 0.1698, 0.1582, - 0.0973, 0.7734, 0.4633, 0.0933, 0.5521, 0.4839, 0.4820, - 0.1735, 0.5797, 0.5056, 0.2959, 0.7988, 0.9839, 0.0551, - 0.6884, 0.9314, 0.9873, 0.7685, 0.0058, 0.0787, 0.9765, - 0.6762, 0.3041, 0.3881, 0.9603, 0.5133, 0.5010, 0.5978, - 0.4901, 0.1096, 0.3089, 0.4831, 0.1777, 0.2237, 0.1128, - 0.1933, 0.6434, 0.5434, 0.2104, 0.1106, 0.7119, 0.8262, - 0.1519, 0.4358, 0.3729, 0.3091, 0.7531, 0.7323, 0.9612, - 0.1214, 0.5723, 0.7721, 0.9862, 0.8839, 0.8431, 0.1624, - 0.7651, 0.9221, 0.7966, 0.7730, 0.4034, 0.8456, 0.4576, - 0.9356, 0.8744, 0.0500, 0.0142, 0.8332, 0.7405, 0.9426, - 0.9799, 0.7180, 0.0762, 0.9417, 0.8209, 0.5328, 0.8635, - 0.5987, 0.9841, 0.7140, 0.4626, 0.1625, 0.9366, 0.7462, - 0.7100, 0.7244, 0.1108, 0.3970, 0.3797, 0.5535, 0.5783, - 0.7423, 0.8333, 0.5720, 0.4870, 0.8115, 0.4909, 0.2202, - 0.4712, 0.9250, 0.1538, 0.1309, 0.3084, 0.5786, 0.3477, - 0.3671, 0.5677, 0.9819, 0.9097, 0.6246, 0.6428, 0.8143, - 0.2008, 0.5795, 0.9732, 0.8629, 0.0578, 0.4214, 0.2742, - 0.5882, 0.2057, 0.2782, 0.1474, 0.6538, 0.7641, 0.1314, - 0.5759, 0.5734, 0.1329, 0.3014, 0.6477, 0.7298, 0.9380, - 0.2945, 0.0625, 0.3728, 0.4803, 0.1010, 0.9830, 0.7456, - 0.0112, 0.3135, 0.2364, 0.8172, 0.4517, 0.9464, 0.8185, - 0.0983, 0.1786, 0.9208, 0.9192, 0.5143, 0.5288, 0.7078, - 0.6070, 0.5609, 0.7211, 0.9777, 0.7339]), + col_indices=tensor([ 601, 2647, 820, 2703, 4832, 2905, 4036, 996, 2456, + 2955, 1267, 3283, 2251, 4368, 2032, 1143, 1874, 4481, + 3312, 337, 3271, 2673, 2707, 912, 1355, 576, 4171, + 1338, 4509, 2894, 3669, 436, 629, 3354, 3800, 1938, + 3841, 3356, 3452, 2739, 639, 4726, 1185, 2215, 4780, + 2365, 813, 3529, 3133, 2027, 1430, 1360, 1560, 4504, + 4891, 990, 715, 1174, 4133, 1335, 2115, 2803, 644, + 1222, 359, 4157, 1393, 961, 2251, 4773, 836, 2710, + 702, 1699, 2540, 3245, 4452, 1916, 3004, 2947, 4627, + 2897, 3573, 4136, 3724, 2543, 4225, 4206, 1697, 2467, + 4746, 2725, 1632, 1936, 4003, 4667, 837, 3403, 2009, + 3106, 4241, 1632, 143, 2900, 2184, 2389, 134, 1255, + 455, 3988, 4547, 3113, 3784, 246, 1055, 1579, 2608, + 1441, 4808, 3117, 2320, 2723, 2732, 1022, 4658, 752, + 2092, 3461, 403, 1092, 2475, 1500, 4745, 1977, 2013, + 1043, 1615, 2577, 280, 4124, 4918, 3583, 3155, 4834, + 2410, 1454, 4710, 2436, 3776, 3032, 3163, 332, 2083, + 3800, 348, 742, 2269, 4249, 2249, 388, 3899, 1000, + 3276, 3790, 482, 1626, 3791, 386, 1380, 385, 518, + 3261, 3414, 3411, 1506, 372, 2674, 2798, 1667, 3725, + 190, 3734, 1581, 3514, 2910, 3386, 1246, 4529, 2936, + 3830, 2148, 4608, 2142, 767, 3320, 1467, 118, 736, + 1289, 3485, 482, 1713, 920, 523, 2549, 1394, 1179, + 1453, 3629, 477, 885, 4060, 1379, 4354, 1610, 3955, + 4389, 2465, 337, 97, 1261, 1276, 880, 2430, 2803, + 1291, 2721, 585, 2387, 4856, 993, 177, 4024, 1337, + 4378, 435, 408, 1205, 4, 2496, 4066, 296, 288, + 2154, 1297, 3984, 4892, 1675, 3223, 2466]), + values=tensor([0.2688, 0.3138, 0.1347, 0.8899, 0.0694, 0.1416, 0.2868, + 0.2019, 0.8985, 0.0861, 0.2909, 0.4503, 0.7663, 0.8882, + 0.6672, 0.1346, 0.9398, 0.2159, 0.4799, 0.2790, 0.3866, + 0.2729, 0.6835, 0.4176, 0.9415, 0.7950, 0.5659, 0.4247, + 0.4627, 0.0016, 0.2802, 0.5691, 0.4545, 0.9589, 0.5833, + 0.2407, 0.8459, 0.0609, 0.7229, 0.1587, 0.3799, 0.2604, + 0.0299, 0.6751, 0.8528, 0.9681, 0.0567, 0.8653, 0.8227, + 0.8273, 0.6799, 0.0354, 0.3989, 0.1205, 0.6402, 0.1199, + 0.3054, 0.1464, 0.1989, 0.0387, 0.3720, 0.5942, 0.7253, + 0.7730, 0.9054, 0.0855, 0.5753, 0.3128, 0.7859, 0.4565, + 0.8518, 0.4282, 0.9370, 0.5476, 0.3415, 0.1584, 0.4788, + 0.2685, 0.1433, 0.3934, 0.1639, 0.1743, 0.9037, 0.0304, + 0.0289, 0.0705, 0.5423, 0.6257, 0.8142, 0.7578, 0.3516, + 0.0327, 0.0056, 0.9367, 0.3464, 0.2720, 0.5506, 0.6244, + 0.9778, 0.9403, 0.2695, 0.1008, 0.2814, 0.4022, 0.0750, + 0.8589, 0.5073, 0.2768, 0.4090, 0.0915, 0.6257, 0.7999, + 0.6904, 0.8703, 0.1142, 0.1298, 0.5992, 0.4302, 0.0539, + 0.7905, 0.9381, 0.9895, 0.8549, 0.3053, 0.2672, 0.8126, + 0.5440, 0.4082, 0.4559, 0.5422, 0.5229, 0.1070, 0.6759, + 0.9088, 0.1120, 0.0848, 0.1772, 0.0720, 0.8290, 0.5142, + 0.0465, 0.4337, 0.4749, 0.7655, 0.4175, 0.8665, 0.2208, + 0.6756, 0.9278, 0.6977, 0.7861, 0.8161, 0.4230, 0.8317, + 0.1717, 0.0383, 0.6928, 0.6239, 0.7675, 0.9077, 0.2548, + 0.9243, 0.7360, 0.7612, 0.0838, 0.0670, 0.8799, 0.8976, + 0.6367, 0.4875, 0.4382, 0.0454, 0.5556, 0.5205, 0.8555, + 0.8390, 0.6880, 0.8890, 0.5970, 0.9613, 0.7713, 0.4355, + 0.0933, 0.7601, 0.9627, 0.3532, 0.8675, 0.4814, 0.2521, + 0.6473, 0.8370, 0.9626, 0.0085, 0.0901, 0.8755, 0.5072, + 0.9504, 0.7596, 0.2658, 0.8293, 0.6634, 0.4401, 0.0682, + 0.6406, 0.9649, 0.2363, 0.8410, 0.6169, 0.9731, 0.1306, + 0.2698, 0.6020, 0.0496, 0.3126, 0.8880, 0.7892, 0.7667, + 0.6466, 0.0659, 0.7587, 0.7496, 0.6160, 0.2212, 0.0833, + 0.9146, 0.0286, 0.3379, 0.5728, 0.8427, 0.7370, 0.7738, + 0.6182, 0.3534, 0.1226, 0.0015, 0.7059, 0.3466, 0.3941, + 0.7962, 0.2804, 0.4929, 0.7827, 0.0766, 0.2294, 0.8494, + 0.9943, 0.0815, 0.8720, 0.8261, 0.8846]), size=(5000, 5000), nnz=250, layout=torch.sparse_csr) -tensor([0.3130, 0.9247, 0.8789, ..., 0.8987, 0.6939, 0.4674]) +tensor([0.4430, 0.7360, 0.8513, ..., 0.2058, 0.5954, 0.5363]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -185,80 +77,80 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 8.669770956039429 seconds +Time: 0.012730121612548828 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 289284 -ss 5000 -sd 1e-05 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.336281061172485} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 82481 -ss 5000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 2.9870200157165527} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([1127, 2914, 651, 3868, 3478, 2616, 630, 2816, 2915, - 3943, 3548, 2263, 4542, 4912, 1799, 1521, 4830, 1959, - 565, 4046, 352, 708, 388, 1948, 1601, 580, 4884, - 1273, 2391, 2767, 3934, 3369, 4073, 1550, 863, 4309, - 666, 1592, 2221, 566, 3749, 4816, 269, 465, 352, - 1056, 3923, 2996, 3908, 4028, 1098, 3401, 2466, 323, - 4554, 3723, 4598, 3095, 2628, 4872, 2114, 3081, 3773, - 3425, 1731, 1262, 1917, 2900, 2481, 4272, 4608, 2685, - 4012, 3949, 546, 721, 2719, 2060, 3934, 2047, 319, - 1177, 4368, 590, 919, 2939, 1268, 3254, 3134, 888, - 658, 3560, 3243, 4771, 1870, 2190, 3032, 1145, 3921, - 3093, 240, 195, 4761, 94, 4383, 2739, 425, 1280, - 2618, 2549, 2332, 4924, 2783, 3566, 338, 1395, 3128, - 1333, 3138, 4314, 4739, 2917, 1017, 709, 300, 2533, - 3360, 999, 395, 2920, 889, 1982, 4806, 1821, 1887, - 3776, 1083, 112, 254, 1671, 1524, 3260, 3015, 2718, - 1436, 4393, 4051, 3480, 2230, 4054, 2670, 395, 2759, - 4796, 849, 4168, 1575, 4853, 1261, 4275, 1866, 3556, - 3417, 1020, 4282, 584, 3689, 3874, 1509, 4083, 263, - 1550, 171, 3186, 1466, 1336, 4936, 3512, 2418, 944, - 325, 1694, 930, 2377, 1839, 621, 2680, 2742, 1537, - 4859, 1103, 3522, 1157, 158, 4629, 2357, 873, 4934, - 2882, 1458, 3703, 572, 1916, 2812, 1567, 1471, 1134, - 673, 1170, 2394, 135, 1008, 3492, 716, 2043, 4892, - 1753, 1218, 680, 2404, 2996, 3897, 4680, 298, 3550, - 1169, 883, 1691, 2497, 4937, 4137, 2804, 4987, 4765, - 1784, 3581, 2966, 4679, 4779, 60, 1363, 4249, 709, - 3283, 2433, 962, 3692, 1587, 4377, 2820]), - values=tensor([0.9574, 0.0088, 0.5020, 0.9141, 0.2863, 0.0911, 0.1607, - 0.4081, 0.1489, 0.0577, 0.6602, 0.5319, 0.6687, 0.7359, - 0.7218, 0.5265, 0.2843, 0.5255, 0.7975, 0.9675, 0.4955, - 0.9458, 0.7420, 0.1283, 0.0140, 0.5968, 0.2693, 0.9592, - 0.8530, 0.7750, 0.2021, 0.3487, 0.7218, 0.6129, 0.8420, - 0.1328, 0.0258, 0.3482, 0.2496, 0.9070, 0.1335, 0.8930, - 0.3961, 0.0685, 0.4593, 0.3228, 0.0085, 0.1698, 0.1363, - 0.2353, 0.4054, 0.4337, 0.7557, 0.8715, 0.1886, 0.6545, - 0.5162, 0.7325, 0.3336, 0.6877, 0.8204, 0.5811, 0.3075, - 0.6798, 0.4051, 0.0597, 0.5326, 0.8458, 0.4272, 0.2826, - 0.4719, 0.5396, 0.3388, 0.9973, 0.4187, 0.6234, 0.2698, - 0.3492, 0.8857, 0.1489, 0.1998, 0.2289, 0.4451, 0.0379, - 0.1988, 0.2113, 0.3738, 0.7193, 0.5213, 0.9072, 0.0613, - 0.4005, 0.3523, 0.0709, 0.5596, 0.7335, 0.6383, 0.0887, - 0.5692, 0.4603, 0.6272, 0.2553, 0.8985, 0.3462, 0.0407, - 0.6936, 0.4412, 0.0627, 0.2562, 0.5155, 0.3465, 0.4292, - 0.4385, 0.0812, 0.3872, 0.5207, 0.2559, 0.2581, 0.6221, - 0.7181, 0.1019, 0.8605, 0.1756, 0.2609, 0.7394, 0.4792, - 0.5099, 0.8831, 0.7934, 0.9746, 0.6748, 0.9066, 0.6080, - 0.5057, 0.1054, 0.3619, 0.1974, 0.9928, 0.4111, 0.7540, - 0.7143, 0.9147, 0.9579, 0.7958, 0.4523, 0.7894, 0.2118, - 0.3648, 0.9673, 0.5837, 0.0431, 0.7582, 0.2735, 0.6036, - 0.6216, 0.5076, 0.9183, 0.8897, 0.4081, 0.7880, 0.2381, - 0.5085, 0.3796, 0.6662, 0.3146, 0.0575, 0.2385, 0.6086, - 0.9934, 0.6888, 0.1889, 0.0438, 0.3261, 0.3882, 0.4169, - 0.8627, 0.9997, 0.2070, 0.7356, 0.5145, 0.1752, 0.6555, - 0.6684, 0.9501, 0.6473, 0.8531, 0.7478, 0.1401, 0.2317, - 0.3747, 0.6467, 0.8854, 0.0360, 0.9037, 0.4674, 0.5830, - 0.9597, 0.0900, 0.4875, 0.2138, 0.3988, 0.5880, 0.0152, - 0.7769, 0.9566, 0.4429, 0.9222, 0.4459, 0.5489, 0.2798, - 0.1520, 0.0578, 0.0988, 0.1282, 0.5238, 0.4828, 0.8259, - 0.8455, 0.5457, 0.6118, 0.8302, 0.6716, 0.4292, 0.3306, - 0.7331, 0.1640, 0.1078, 0.2534, 0.3387, 0.7022, 0.6433, - 0.1056, 0.7198, 0.6256, 0.4771, 0.9207, 0.9076, 0.7974, - 0.8755, 0.5354, 0.1002, 0.2943, 0.2911, 0.1894, 0.3903, - 0.1589, 0.3357, 0.6754, 0.9423, 0.7719]), + col_indices=tensor([1850, 2920, 982, 2920, 4207, 4970, 436, 2573, 4448, + 4877, 4672, 2082, 4283, 4267, 2430, 1672, 1924, 2492, + 2408, 375, 2305, 3583, 3031, 1418, 2140, 1197, 1752, + 3076, 720, 312, 2699, 3140, 1513, 401, 3552, 13, + 806, 4950, 885, 1841, 3287, 275, 2117, 560, 18, + 1477, 2688, 1794, 1927, 4953, 3645, 3622, 4539, 3985, + 3945, 2233, 4167, 2147, 1082, 1206, 1252, 1066, 1078, + 321, 808, 1999, 635, 1039, 3245, 1630, 1008, 4182, + 1408, 2667, 193, 3182, 772, 1491, 608, 1914, 2811, + 1620, 3712, 1794, 3637, 3266, 214, 1284, 4462, 4923, + 2463, 2700, 3904, 4098, 3900, 3027, 4116, 3580, 332, + 4692, 353, 653, 1766, 2037, 590, 2523, 136, 4354, + 4126, 2451, 226, 2678, 2130, 4889, 2592, 1660, 3477, + 4537, 2214, 1017, 1706, 4859, 3869, 167, 4374, 4799, + 1507, 1665, 4935, 3083, 2008, 4174, 859, 984, 2840, + 863, 82, 79, 4175, 3907, 4158, 4533, 3431, 2281, + 2787, 3034, 4208, 2453, 2306, 4607, 1125, 4475, 945, + 2063, 2439, 3548, 3678, 3034, 1770, 1726, 3619, 4461, + 647, 1318, 4963, 2847, 798, 1118, 1938, 2152, 3584, + 162, 4914, 1173, 3329, 4768, 2504, 2250, 4542, 1812, + 1545, 228, 2, 4710, 208, 2941, 770, 2538, 3754, + 4746, 2065, 1748, 2708, 2153, 2280, 3564, 3494, 4959, + 1719, 167, 854, 1084, 801, 1756, 2522, 2179, 3363, + 4832, 639, 1945, 2876, 4790, 630, 3306, 2308, 3577, + 253, 3942, 331, 3878, 976, 3355, 242, 1100, 869, + 105, 4517, 3895, 3065, 4030, 177, 4481, 2908, 861, + 1478, 4165, 3720, 1447, 2081, 2042, 4335, 1110, 2494, + 4959, 3445, 552, 1961, 1713, 2677, 2157]), + values=tensor([0.2973, 0.0528, 0.0593, 0.4373, 0.3149, 0.1720, 0.8405, + 0.5692, 0.8566, 0.6937, 0.9133, 0.4677, 0.7516, 0.1147, + 0.9773, 0.0717, 0.0053, 0.2351, 0.3045, 0.8381, 0.0276, + 0.1683, 0.6574, 0.1413, 0.3680, 0.2281, 0.6440, 0.9364, + 0.7063, 0.6312, 0.4354, 0.4765, 0.5047, 0.5079, 0.1300, + 0.6462, 0.5531, 0.3126, 0.0835, 0.2181, 0.0832, 0.6136, + 0.2259, 0.2091, 0.0668, 0.3926, 0.4321, 0.7371, 0.0309, + 0.5039, 0.4193, 0.4354, 0.3007, 0.2701, 0.1422, 0.9665, + 0.4389, 0.2429, 0.7584, 0.6797, 0.5891, 0.3173, 0.8048, + 0.5910, 0.6072, 0.6009, 0.0564, 0.6818, 0.0189, 0.7587, + 0.4355, 0.8685, 0.7348, 0.6709, 0.7401, 0.8320, 0.4287, + 0.5419, 0.6982, 0.3521, 0.5136, 0.1073, 0.2471, 0.8444, + 0.2369, 0.0792, 0.5748, 0.6149, 0.9268, 0.1438, 0.9218, + 0.2189, 0.9680, 0.3579, 0.6778, 0.9284, 0.9712, 0.8475, + 0.6595, 0.8451, 0.9596, 0.0291, 0.2904, 0.4624, 0.9348, + 0.5743, 0.6942, 0.7654, 0.0460, 0.6704, 0.4112, 0.0182, + 0.7891, 0.1191, 0.0775, 0.8674, 0.6379, 0.6054, 0.8989, + 0.6635, 0.7675, 0.4663, 0.1353, 0.5542, 0.9368, 0.0244, + 0.5413, 0.4729, 0.7814, 0.8256, 0.2315, 0.9472, 0.2322, + 0.6177, 0.8709, 0.4587, 0.3448, 0.7377, 0.9270, 0.8111, + 0.2693, 0.6265, 0.4066, 0.9210, 0.2302, 0.6077, 0.3406, + 0.5854, 0.6597, 0.4653, 0.2831, 0.2390, 0.4564, 0.7151, + 0.8705, 0.3781, 0.3836, 0.2946, 0.0129, 0.3443, 0.5513, + 0.5972, 0.1489, 0.6113, 0.5915, 0.8810, 0.4599, 0.1897, + 0.3004, 0.9932, 0.0623, 0.6712, 0.9400, 0.1765, 0.4924, + 0.4162, 0.7114, 0.5036, 0.7747, 0.8718, 0.4237, 0.6772, + 0.3151, 0.4843, 0.4319, 0.0489, 0.9698, 0.2863, 0.1393, + 0.0339, 0.9839, 0.8166, 0.2810, 0.0680, 0.7799, 0.6229, + 0.5426, 0.1095, 0.3560, 0.3903, 0.8409, 0.3643, 0.1432, + 0.9733, 0.8764, 0.1891, 0.5211, 0.8147, 0.5398, 0.1212, + 0.4051, 0.7700, 0.6201, 0.6092, 0.5740, 0.0174, 0.9730, + 0.5750, 0.1625, 0.0572, 0.6170, 0.5243, 0.2437, 0.4114, + 0.6512, 0.1771, 0.4980, 0.0027, 0.6626, 0.7558, 0.5376, + 0.7689, 0.8026, 0.1009, 0.8359, 0.8508, 0.4274, 0.6167, + 0.9714, 0.0496, 0.8017, 0.4516, 0.6537, 0.1179, 0.6975, + 0.5184, 0.3878, 0.1200, 0.4588, 0.2915]), size=(5000, 5000), nnz=250, layout=torch.sparse_csr) -tensor([0.4104, 0.7044, 0.9040, ..., 0.0726, 0.3479, 0.6465]) +tensor([0.1901, 0.2382, 0.6937, ..., 0.7632, 0.8746, 0.1540]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -266,77 +158,80 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 10.336281061172485 seconds +Time: 2.9870200157165527 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 289937 -ss 5000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.948570489883423} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([1127, 2914, 651, 3868, 3478, 2616, 630, 2816, 2915, - 3943, 3548, 2263, 4542, 4912, 1799, 1521, 4830, 1959, - 565, 4046, 352, 708, 388, 1948, 1601, 580, 4884, - 1273, 2391, 2767, 3934, 3369, 4073, 1550, 863, 4309, - 666, 1592, 2221, 566, 3749, 4816, 269, 465, 352, - 1056, 3923, 2996, 3908, 4028, 1098, 3401, 2466, 323, - 4554, 3723, 4598, 3095, 2628, 4872, 2114, 3081, 3773, - 3425, 1731, 1262, 1917, 2900, 2481, 4272, 4608, 2685, - 4012, 3949, 546, 721, 2719, 2060, 3934, 2047, 319, - 1177, 4368, 590, 919, 2939, 1268, 3254, 3134, 888, - 658, 3560, 3243, 4771, 1870, 2190, 3032, 1145, 3921, - 3093, 240, 195, 4761, 94, 4383, 2739, 425, 1280, - 2618, 2549, 2332, 4924, 2783, 3566, 338, 1395, 3128, - 1333, 3138, 4314, 4739, 2917, 1017, 709, 300, 2533, - 3360, 999, 395, 2920, 889, 1982, 4806, 1821, 1887, - 3776, 1083, 112, 254, 1671, 1524, 3260, 3015, 2718, - 1436, 4393, 4051, 3480, 2230, 4054, 2670, 395, 2759, - 4796, 849, 4168, 1575, 4853, 1261, 4275, 1866, 3556, - 3417, 1020, 4282, 584, 3689, 3874, 1509, 4083, 263, - 1550, 171, 3186, 1466, 1336, 4936, 3512, 2418, 944, - 325, 1694, 930, 2377, 1839, 621, 2680, 2742, 1537, - 4859, 1103, 3522, 1157, 158, 4629, 2357, 873, 4934, - 2882, 1458, 3703, 572, 1916, 2812, 1567, 1471, 1134, - 673, 1170, 2394, 135, 1008, 3492, 716, 2043, 4892, - 1753, 1218, 680, 2404, 2996, 3897, 4680, 298, 3550, - 1169, 883, 1691, 2497, 4937, 4137, 2804, 4987, 4765, - 1784, 3581, 2966, 4679, 4779, 60, 1363, 4249, 709, - 3283, 2433, 962, 3692, 1587, 4377, 2820]), - values=tensor([0.9574, 0.0088, 0.5020, 0.9141, 0.2863, 0.0911, 0.1607, - 0.4081, 0.1489, 0.0577, 0.6602, 0.5319, 0.6687, 0.7359, - 0.7218, 0.5265, 0.2843, 0.5255, 0.7975, 0.9675, 0.4955, - 0.9458, 0.7420, 0.1283, 0.0140, 0.5968, 0.2693, 0.9592, - 0.8530, 0.7750, 0.2021, 0.3487, 0.7218, 0.6129, 0.8420, - 0.1328, 0.0258, 0.3482, 0.2496, 0.9070, 0.1335, 0.8930, - 0.3961, 0.0685, 0.4593, 0.3228, 0.0085, 0.1698, 0.1363, - 0.2353, 0.4054, 0.4337, 0.7557, 0.8715, 0.1886, 0.6545, - 0.5162, 0.7325, 0.3336, 0.6877, 0.8204, 0.5811, 0.3075, - 0.6798, 0.4051, 0.0597, 0.5326, 0.8458, 0.4272, 0.2826, - 0.4719, 0.5396, 0.3388, 0.9973, 0.4187, 0.6234, 0.2698, - 0.3492, 0.8857, 0.1489, 0.1998, 0.2289, 0.4451, 0.0379, - 0.1988, 0.2113, 0.3738, 0.7193, 0.5213, 0.9072, 0.0613, - 0.4005, 0.3523, 0.0709, 0.5596, 0.7335, 0.6383, 0.0887, - 0.5692, 0.4603, 0.6272, 0.2553, 0.8985, 0.3462, 0.0407, - 0.6936, 0.4412, 0.0627, 0.2562, 0.5155, 0.3465, 0.4292, - 0.4385, 0.0812, 0.3872, 0.5207, 0.2559, 0.2581, 0.6221, - 0.7181, 0.1019, 0.8605, 0.1756, 0.2609, 0.7394, 0.4792, - 0.5099, 0.8831, 0.7934, 0.9746, 0.6748, 0.9066, 0.6080, - 0.5057, 0.1054, 0.3619, 0.1974, 0.9928, 0.4111, 0.7540, - 0.7143, 0.9147, 0.9579, 0.7958, 0.4523, 0.7894, 0.2118, - 0.3648, 0.9673, 0.5837, 0.0431, 0.7582, 0.2735, 0.6036, - 0.6216, 0.5076, 0.9183, 0.8897, 0.4081, 0.7880, 0.2381, - 0.5085, 0.3796, 0.6662, 0.3146, 0.0575, 0.2385, 0.6086, - 0.9934, 0.6888, 0.1889, 0.0438, 0.3261, 0.3882, 0.4169, - 0.8627, 0.9997, 0.2070, 0.7356, 0.5145, 0.1752, 0.6555, - 0.6684, 0.9501, 0.6473, 0.8531, 0.7478, 0.1401, 0.2317, - 0.3747, 0.6467, 0.8854, 0.0360, 0.9037, 0.4674, 0.5830, - 0.9597, 0.0900, 0.4875, 0.2138, 0.3988, 0.5880, 0.0152, - 0.7769, 0.9566, 0.4429, 0.9222, 0.4459, 0.5489, 0.2798, - 0.1520, 0.0578, 0.0988, 0.1282, 0.5238, 0.4828, 0.8259, - 0.8455, 0.5457, 0.6118, 0.8302, 0.6716, 0.4292, 0.3306, - 0.7331, 0.1640, 0.1078, 0.2534, 0.3387, 0.7022, 0.6433, - 0.1056, 0.7198, 0.6256, 0.4771, 0.9207, 0.9076, 0.7974, - 0.8755, 0.5354, 0.1002, 0.2943, 0.2911, 0.1894, 0.3903, - 0.1589, 0.3357, 0.6754, 0.9423, 0.7719]), + col_indices=tensor([4712, 4178, 2903, 24, 4753, 51, 2819, 4572, 4453, + 3780, 2899, 3226, 3780, 3989, 722, 4731, 1139, 1109, + 4512, 1669, 4522, 2228, 2733, 1441, 2781, 363, 3766, + 2188, 1770, 795, 1224, 1803, 4910, 1370, 4516, 2224, + 2678, 4365, 692, 1811, 1383, 2901, 749, 3344, 1016, + 4896, 4731, 857, 4171, 1998, 4569, 2011, 3832, 2691, + 1005, 4276, 2954, 4491, 2491, 2981, 645, 4461, 2128, + 3675, 4293, 1741, 3314, 1065, 1939, 1615, 3365, 3901, + 589, 3305, 4000, 4212, 790, 4927, 4076, 2238, 4107, + 3701, 3348, 1617, 1179, 3888, 4445, 2667, 3215, 4009, + 4710, 219, 2800, 233, 1521, 2319, 680, 1854, 4750, + 3077, 1721, 3819, 3579, 2334, 2886, 4510, 1278, 1666, + 4749, 4910, 1969, 2508, 532, 1736, 4315, 1491, 537, + 3309, 3121, 4585, 2996, 3358, 502, 4286, 4572, 2864, + 1049, 469, 825, 1143, 635, 2773, 2543, 3425, 3473, + 2174, 4228, 3516, 1137, 2463, 4638, 1994, 2452, 2065, + 96, 3029, 2790, 1834, 4863, 978, 4811, 3677, 2912, + 1938, 2797, 895, 1501, 2558, 1230, 534, 2633, 3017, + 4982, 4618, 4241, 2899, 2098, 2010, 1636, 2502, 2716, + 4980, 363, 466, 23, 1737, 1476, 1286, 4720, 833, + 2653, 201, 3769, 3397, 3009, 4570, 2692, 2095, 4797, + 3941, 2845, 1360, 1763, 3589, 3716, 2365, 196, 1112, + 123, 2267, 4731, 228, 4673, 1590, 3794, 3816, 2846, + 863, 3759, 1182, 304, 2540, 66, 4385, 3694, 3525, + 31, 4315, 4266, 4089, 2728, 1405, 1294, 4022, 2222, + 370, 101, 3253, 4145, 1994, 1358, 981, 2203, 2167, + 3742, 4696, 614, 2733, 396, 4399, 427, 1682, 4896, + 3429, 693, 870, 4939, 3305, 4250, 3680]), + values=tensor([0.3479, 0.5084, 0.6603, 0.8257, 0.8683, 0.9247, 0.0338, + 0.9486, 0.8504, 0.5745, 0.3925, 0.3196, 0.6449, 0.2119, + 0.0164, 0.7309, 0.7682, 0.1461, 0.7397, 0.9951, 0.7123, + 0.4571, 0.7549, 0.0282, 0.5968, 0.6667, 0.3749, 0.3789, + 0.4293, 0.3353, 0.3273, 0.0531, 0.5787, 0.8917, 0.4198, + 0.7695, 0.7895, 0.7926, 0.6654, 0.0192, 0.0703, 0.9096, + 0.9289, 0.6077, 0.6990, 0.6780, 0.1687, 0.0557, 0.0641, + 0.1726, 0.7968, 0.1192, 0.9982, 0.1104, 0.3778, 0.1311, + 0.0584, 0.9615, 0.6551, 0.7173, 0.4827, 0.9281, 0.2508, + 0.5901, 0.8616, 0.6261, 0.7668, 0.8880, 0.5680, 0.6476, + 0.9494, 0.3895, 0.7153, 0.7995, 0.4681, 0.0628, 0.0354, + 0.8123, 0.7147, 0.5397, 0.7785, 0.1737, 0.3550, 0.8870, + 0.9193, 0.0915, 0.0963, 0.4243, 0.0483, 0.3655, 0.7711, + 0.4395, 0.3161, 0.5266, 0.7991, 0.4530, 0.0590, 0.9302, + 0.7021, 0.5336, 0.6784, 0.9823, 0.0943, 0.7391, 0.7084, + 0.0171, 0.4786, 0.7623, 0.5776, 0.2256, 0.8698, 0.1309, + 0.6095, 0.6277, 0.0828, 0.3536, 0.7932, 0.1162, 0.9939, + 0.6893, 0.6054, 0.2963, 0.4057, 0.5571, 0.8162, 0.7161, + 0.6029, 0.7576, 0.8687, 0.3351, 0.8262, 0.5784, 0.6376, + 0.1057, 0.2968, 0.0568, 0.6646, 0.7354, 0.2403, 0.0158, + 0.7552, 0.5770, 0.3899, 0.7014, 0.1196, 0.2500, 0.6112, + 0.3203, 0.8311, 0.8445, 0.8722, 0.6620, 0.5633, 0.3401, + 0.0024, 0.6473, 0.3675, 0.6286, 0.4764, 0.3994, 0.7176, + 0.9295, 0.7610, 0.0448, 0.1910, 0.5959, 0.2410, 0.6714, + 0.3638, 0.8788, 0.4303, 0.8357, 0.1493, 0.7533, 0.2046, + 0.6241, 0.3330, 0.7519, 0.0927, 0.5403, 0.3301, 0.0842, + 0.3044, 0.5311, 0.1859, 0.7234, 0.6523, 0.1074, 0.7205, + 0.0951, 0.9394, 0.8290, 0.0965, 0.9119, 0.9547, 0.5884, + 0.2956, 0.6206, 0.7425, 0.9894, 0.3994, 0.9059, 0.3500, + 0.1825, 0.6628, 0.6687, 0.3257, 0.5028, 0.7592, 0.5362, + 0.2886, 0.3968, 0.4420, 0.4118, 0.6245, 0.3599, 0.5238, + 0.6126, 0.6306, 0.0343, 0.1672, 0.1822, 0.1255, 0.6333, + 0.3425, 0.1597, 0.8225, 0.7857, 0.7675, 0.1595, 0.4863, + 0.8578, 0.1155, 0.8038, 0.8906, 0.6082, 0.3640, 0.5820, + 0.4951, 0.3638, 0.3016, 0.7272, 0.7832, 0.5085, 0.1101, + 0.2648, 0.6399, 0.4137, 0.5843, 0.7184]), size=(5000, 5000), nnz=250, layout=torch.sparse_csr) -tensor([0.4104, 0.7044, 0.9040, ..., 0.0726, 0.3479, 0.6465]) +tensor([0.0011, 0.9357, 0.8539, ..., 0.1995, 0.1479, 0.1616]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -344,13 +239,91 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 10.336281061172485 seconds +Time: 10.948570489883423 seconds -[20.72, 20.68, 20.72, 20.88, 21.04, 21.0, 21.04, 20.76, 20.76, 20.8] -[20.88, 21.0, 21.28, 23.68, 24.48, 25.8, 26.4, 26.0, 24.92, 23.92, 24.12, 24.16, 24.24] -13.599457740783691 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 289284, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.336281061172485, 'TIME_S_1KI': 0.035730566022222056, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 302.8508556365967, 'W': 22.269333190276484} -[20.72, 20.68, 20.72, 20.88, 21.04, 21.0, 21.04, 20.76, 20.76, 20.8, 21.04, 20.92, 20.64, 20.48, 20.48, 20.48, 20.68, 20.96, 21.16, 21.16] -374.53999999999996 -18.726999999999997 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 289284, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.336281061172485, 'TIME_S_1KI': 0.035730566022222056, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 302.8508556365967, 'W': 22.269333190276484, 'J_1KI': 1.0468980504853247, 'W_1KI': 0.07698086721103305, 'W_D': 3.542333190276487, 'J_D': 48.17381052494056, 'W_D_1KI': 0.012245174950140648, 'J_D_1KI': 4.232925066765064e-05} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([4712, 4178, 2903, 24, 4753, 51, 2819, 4572, 4453, + 3780, 2899, 3226, 3780, 3989, 722, 4731, 1139, 1109, + 4512, 1669, 4522, 2228, 2733, 1441, 2781, 363, 3766, + 2188, 1770, 795, 1224, 1803, 4910, 1370, 4516, 2224, + 2678, 4365, 692, 1811, 1383, 2901, 749, 3344, 1016, + 4896, 4731, 857, 4171, 1998, 4569, 2011, 3832, 2691, + 1005, 4276, 2954, 4491, 2491, 2981, 645, 4461, 2128, + 3675, 4293, 1741, 3314, 1065, 1939, 1615, 3365, 3901, + 589, 3305, 4000, 4212, 790, 4927, 4076, 2238, 4107, + 3701, 3348, 1617, 1179, 3888, 4445, 2667, 3215, 4009, + 4710, 219, 2800, 233, 1521, 2319, 680, 1854, 4750, + 3077, 1721, 3819, 3579, 2334, 2886, 4510, 1278, 1666, + 4749, 4910, 1969, 2508, 532, 1736, 4315, 1491, 537, + 3309, 3121, 4585, 2996, 3358, 502, 4286, 4572, 2864, + 1049, 469, 825, 1143, 635, 2773, 2543, 3425, 3473, + 2174, 4228, 3516, 1137, 2463, 4638, 1994, 2452, 2065, + 96, 3029, 2790, 1834, 4863, 978, 4811, 3677, 2912, + 1938, 2797, 895, 1501, 2558, 1230, 534, 2633, 3017, + 4982, 4618, 4241, 2899, 2098, 2010, 1636, 2502, 2716, + 4980, 363, 466, 23, 1737, 1476, 1286, 4720, 833, + 2653, 201, 3769, 3397, 3009, 4570, 2692, 2095, 4797, + 3941, 2845, 1360, 1763, 3589, 3716, 2365, 196, 1112, + 123, 2267, 4731, 228, 4673, 1590, 3794, 3816, 2846, + 863, 3759, 1182, 304, 2540, 66, 4385, 3694, 3525, + 31, 4315, 4266, 4089, 2728, 1405, 1294, 4022, 2222, + 370, 101, 3253, 4145, 1994, 1358, 981, 2203, 2167, + 3742, 4696, 614, 2733, 396, 4399, 427, 1682, 4896, + 3429, 693, 870, 4939, 3305, 4250, 3680]), + values=tensor([0.3479, 0.5084, 0.6603, 0.8257, 0.8683, 0.9247, 0.0338, + 0.9486, 0.8504, 0.5745, 0.3925, 0.3196, 0.6449, 0.2119, + 0.0164, 0.7309, 0.7682, 0.1461, 0.7397, 0.9951, 0.7123, + 0.4571, 0.7549, 0.0282, 0.5968, 0.6667, 0.3749, 0.3789, + 0.4293, 0.3353, 0.3273, 0.0531, 0.5787, 0.8917, 0.4198, + 0.7695, 0.7895, 0.7926, 0.6654, 0.0192, 0.0703, 0.9096, + 0.9289, 0.6077, 0.6990, 0.6780, 0.1687, 0.0557, 0.0641, + 0.1726, 0.7968, 0.1192, 0.9982, 0.1104, 0.3778, 0.1311, + 0.0584, 0.9615, 0.6551, 0.7173, 0.4827, 0.9281, 0.2508, + 0.5901, 0.8616, 0.6261, 0.7668, 0.8880, 0.5680, 0.6476, + 0.9494, 0.3895, 0.7153, 0.7995, 0.4681, 0.0628, 0.0354, + 0.8123, 0.7147, 0.5397, 0.7785, 0.1737, 0.3550, 0.8870, + 0.9193, 0.0915, 0.0963, 0.4243, 0.0483, 0.3655, 0.7711, + 0.4395, 0.3161, 0.5266, 0.7991, 0.4530, 0.0590, 0.9302, + 0.7021, 0.5336, 0.6784, 0.9823, 0.0943, 0.7391, 0.7084, + 0.0171, 0.4786, 0.7623, 0.5776, 0.2256, 0.8698, 0.1309, + 0.6095, 0.6277, 0.0828, 0.3536, 0.7932, 0.1162, 0.9939, + 0.6893, 0.6054, 0.2963, 0.4057, 0.5571, 0.8162, 0.7161, + 0.6029, 0.7576, 0.8687, 0.3351, 0.8262, 0.5784, 0.6376, + 0.1057, 0.2968, 0.0568, 0.6646, 0.7354, 0.2403, 0.0158, + 0.7552, 0.5770, 0.3899, 0.7014, 0.1196, 0.2500, 0.6112, + 0.3203, 0.8311, 0.8445, 0.8722, 0.6620, 0.5633, 0.3401, + 0.0024, 0.6473, 0.3675, 0.6286, 0.4764, 0.3994, 0.7176, + 0.9295, 0.7610, 0.0448, 0.1910, 0.5959, 0.2410, 0.6714, + 0.3638, 0.8788, 0.4303, 0.8357, 0.1493, 0.7533, 0.2046, + 0.6241, 0.3330, 0.7519, 0.0927, 0.5403, 0.3301, 0.0842, + 0.3044, 0.5311, 0.1859, 0.7234, 0.6523, 0.1074, 0.7205, + 0.0951, 0.9394, 0.8290, 0.0965, 0.9119, 0.9547, 0.5884, + 0.2956, 0.6206, 0.7425, 0.9894, 0.3994, 0.9059, 0.3500, + 0.1825, 0.6628, 0.6687, 0.3257, 0.5028, 0.7592, 0.5362, + 0.2886, 0.3968, 0.4420, 0.4118, 0.6245, 0.3599, 0.5238, + 0.6126, 0.6306, 0.0343, 0.1672, 0.1822, 0.1255, 0.6333, + 0.3425, 0.1597, 0.8225, 0.7857, 0.7675, 0.1595, 0.4863, + 0.8578, 0.1155, 0.8038, 0.8906, 0.6082, 0.3640, 0.5820, + 0.4951, 0.3638, 0.3016, 0.7272, 0.7832, 0.5085, 0.1101, + 0.2648, 0.6399, 0.4137, 0.5843, 0.7184]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.0011, 0.9357, 0.8539, ..., 0.1995, 0.1479, 0.1616]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 10.948570489883423 seconds + +[20.16, 20.24, 20.28, 20.24, 20.08, 20.16, 20.2, 20.28, 20.28, 20.36] +[20.72, 20.56, 20.44, 24.96, 27.52, 28.24, 29.2, 26.64, 25.12, 24.04, 23.96, 23.92, 24.04, 24.2] +14.660816431045532 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 289937, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.948570489883423, 'TIME_S_1KI': 0.037761894790535266, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 337.0917576313019, 'W': 22.992700250818316} +[20.16, 20.24, 20.28, 20.24, 20.08, 20.16, 20.2, 20.28, 20.28, 20.36, 20.4, 20.4, 20.44, 20.84, 20.84, 20.76, 20.64, 20.8, 20.84, 20.84] +368.2 +18.41 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 289937, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.948570489883423, 'TIME_S_1KI': 0.037761894790535266, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 337.0917576313019, 'W': 22.992700250818316, 'J_1KI': 1.1626379442130597, 'W_1KI': 0.07930240104166876, 'W_D': 4.582700250818316, 'J_D': 67.18612713575365, 'W_D_1KI': 0.015805848342289243, 'J_D_1KI': 5.4514768181671336e-05} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_5e-05.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_5e-05.json new file mode 100644 index 0000000..8ad2558 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 154350, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.289572715759277, "TIME_S_1KI": 0.0666638983852237, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 297.04585779190063, "W": 21.84801552939114, "J_1KI": 1.9244953533650835, "W_1KI": 0.14154852950690727, "W_D": 3.3270155293911436, "J_D": 45.23413947987558, "W_D_1KI": 0.0215550082888963, "J_D_1KI": 0.0001396501994745468} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_5e-05.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_5e-05.output new file mode 100644 index 0000000..f253283 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_5000_5e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 5e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.014810323715209961} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1250, 1250, 1250]), + col_indices=tensor([4902, 4751, 573, ..., 1409, 1871, 577]), + values=tensor([0.0874, 0.7756, 0.4965, ..., 0.1251, 0.3364, 0.3476]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.4221, 0.7918, 0.4416, ..., 0.8475, 0.7362, 0.1103]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 0.014810323715209961 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 70896 -ss 5000 -sd 5e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 4.822846412658691} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 1249, 1250, 1250]), + col_indices=tensor([1594, 2931, 2652, ..., 4428, 449, 1795]), + values=tensor([0.3058, 0.1710, 0.0965, ..., 0.7799, 0.8373, 0.5140]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.0899, 0.4612, 0.1283, ..., 0.7452, 0.2953, 0.1670]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 4.822846412658691 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 154350 -ss 5000 -sd 5e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.289572715759277} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 1249, 1250, 1250]), + col_indices=tensor([ 621, 1968, 1113, ..., 1968, 726, 3393]), + values=tensor([0.9316, 0.3440, 0.3874, ..., 0.4845, 0.3520, 0.3225]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.4702, 0.8122, 0.0166, ..., 0.1291, 0.0008, 0.5220]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 10.289572715759277 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 1249, 1250, 1250]), + col_indices=tensor([ 621, 1968, 1113, ..., 1968, 726, 3393]), + values=tensor([0.9316, 0.3440, 0.3874, ..., 0.4845, 0.3520, 0.3225]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.4702, 0.8122, 0.0166, ..., 0.1291, 0.0008, 0.5220]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 10.289572715759277 seconds + +[20.4, 20.44, 20.52, 20.68, 20.64, 20.48, 20.24, 20.36, 20.2, 20.16] +[20.36, 20.44, 21.32, 23.28, 23.28, 24.96, 25.6, 26.08, 24.88, 23.92, 23.64, 23.6, 23.6] +13.59601092338562 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 154350, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.289572715759277, 'TIME_S_1KI': 0.0666638983852237, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 297.04585779190063, 'W': 21.84801552939114} +[20.4, 20.44, 20.52, 20.68, 20.64, 20.48, 20.24, 20.36, 20.2, 20.16, 20.52, 20.64, 20.96, 21.2, 21.24, 21.04, 20.76, 20.36, 20.08, 20.08] +370.41999999999996 +18.520999999999997 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 154350, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.289572715759277, 'TIME_S_1KI': 0.0666638983852237, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 297.04585779190063, 'W': 21.84801552939114, 'J_1KI': 1.9244953533650835, 'W_1KI': 0.14154852950690727, 'W_D': 3.3270155293911436, 'J_D': 45.23413947987558, 'W_D_1KI': 0.0215550082888963, 'J_D_1KI': 0.0001396501994745468} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.0001.json index 4c97264..57ab5e0 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.0001.json +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.0001.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 6154, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.661418676376343, "TIME_S_1KI": 1.732437223980556, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 888.1215419101716, "W": 66.29, "J_1KI": 144.31614265683646, "W_1KI": 10.771855703607411, "W_D": 31.486250000000005, "J_D": 421.8376361286641, "W_D_1KI": 5.116387715307118, "J_D_1KI": 0.8313922189319334} +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 6238, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.769784212112427, "TIME_S_1KI": 1.7264803161449866, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 915.7679015994072, "W": 67.11, "J_1KI": 146.8047293362307, "W_1KI": 10.75825585123437, "W_D": 31.7095, "J_D": 432.70067465007304, "W_D_1KI": 5.083279897403013, "J_D_1KI": 0.8148893711771422} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.0001.output index 3c6753a..fe560b9 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.0001.output +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.0001.output @@ -1,14 +1,34 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 1.7059962749481201} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '100000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.18373441696166992} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 10, 28, ..., 999981, +tensor(crow_indices=tensor([ 0, 9, 18, ..., 999979, + 999991, 1000000]), + col_indices=tensor([ 9419, 17690, 19775, ..., 65904, 78906, 97730]), + values=tensor([0.1002, 0.0063, 0.1334, ..., 0.8477, 0.2339, 0.2955]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.9261, 0.9567, 0.5751, ..., 0.3199, 0.0262, 0.3042]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 0.18373441696166992 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '5714', '-ss', '100000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.617395401000977} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 15, ..., 999976, 999989, 1000000]), - col_indices=tensor([10839, 13780, 19162, ..., 70763, 71204, 84111]), - values=tensor([0.3862, 0.3703, 0.4692, ..., 0.8959, 0.7094, 0.8230]), + col_indices=tensor([12342, 20602, 31374, ..., 83399, 88988, 97850]), + values=tensor([0.3594, 0.1684, 0.5761, ..., 0.4601, 0.3694, 0.1608]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.6738, 0.0568, 0.8510, ..., 0.5567, 0.5192, 0.1431]) +tensor([0.5848, 0.1566, 0.7046, ..., 0.5634, 0.8550, 0.2097]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,19 +36,19 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 1.7059962749481201 seconds +Time: 9.617395401000977 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '6154', '-ss', '100000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.661418676376343} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '6238', '-ss', '100000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.769784212112427} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 19, 22, ..., 999983, - 999992, 1000000]), - col_indices=tensor([ 4495, 11307, 13629, ..., 46229, 59792, 89876]), - values=tensor([0.8364, 0.7832, 0.5169, ..., 0.6963, 0.9299, 0.6811]), +tensor(crow_indices=tensor([ 0, 7, 15, ..., 999972, + 999990, 1000000]), + col_indices=tensor([ 1977, 7363, 16479, ..., 91067, 93957, 95744]), + values=tensor([0.8934, 0.4616, 0.7140, ..., 0.3224, 0.7140, 0.9696]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.2491, 0.3919, 0.1225, ..., 0.6201, 0.7425, 0.7393]) +tensor([0.0584, 0.0097, 0.6336, ..., 0.7366, 0.8575, 0.7006]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -36,16 +56,16 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 10.661418676376343 seconds +Time: 10.769784212112427 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 19, 22, ..., 999983, - 999992, 1000000]), - col_indices=tensor([ 4495, 11307, 13629, ..., 46229, 59792, 89876]), - values=tensor([0.8364, 0.7832, 0.5169, ..., 0.6963, 0.9299, 0.6811]), +tensor(crow_indices=tensor([ 0, 7, 15, ..., 999972, + 999990, 1000000]), + col_indices=tensor([ 1977, 7363, 16479, ..., 91067, 93957, 95744]), + values=tensor([0.8934, 0.4616, 0.7140, ..., 0.3224, 0.7140, 0.9696]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.2491, 0.3919, 0.1225, ..., 0.6201, 0.7425, 0.7393]) +tensor([0.0584, 0.0097, 0.6336, ..., 0.7366, 0.8575, 0.7006]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -53,13 +73,13 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 10.661418676376343 seconds +Time: 10.769784212112427 seconds -[39.48, 39.2, 39.2, 38.44, 38.38, 38.41, 38.43, 38.34, 38.9, 38.82] -[66.29] -13.3975191116333 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 6154, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.661418676376343, 'TIME_S_1KI': 1.732437223980556, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 888.1215419101716, 'W': 66.29} -[39.48, 39.2, 39.2, 38.44, 38.38, 38.41, 38.43, 38.34, 38.9, 38.82, 39.78, 38.22, 38.35, 38.27, 38.77, 38.41, 38.95, 38.84, 38.8, 38.25] -696.075 -34.80375 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 6154, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.661418676376343, 'TIME_S_1KI': 1.732437223980556, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 888.1215419101716, 'W': 66.29, 'J_1KI': 144.31614265683646, 'W_1KI': 10.771855703607411, 'W_D': 31.486250000000005, 'J_D': 421.8376361286641, 'W_D_1KI': 5.116387715307118, 'J_D_1KI': 0.8313922189319334} +[39.95, 40.61, 39.69, 39.43, 39.55, 38.89, 39.33, 39.12, 39.11, 38.94] +[67.11] +13.645774126052856 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 6238, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.769784212112427, 'TIME_S_1KI': 1.7264803161449866, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 915.7679015994072, 'W': 67.11} +[39.95, 40.61, 39.69, 39.43, 39.55, 38.89, 39.33, 39.12, 39.11, 38.94, 39.57, 38.89, 39.02, 39.08, 39.5, 39.31, 39.6, 39.05, 39.01, 39.18] +708.01 +35.4005 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 6238, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.769784212112427, 'TIME_S_1KI': 1.7264803161449866, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 915.7679015994072, 'W': 67.11, 'J_1KI': 146.8047293362307, 'W_1KI': 10.75825585123437, 'W_D': 31.7095, 'J_D': 432.70067465007304, 'W_D_1KI': 5.083279897403013, 'J_D_1KI': 0.8148893711771422} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.001.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.001.json index 28fc497..a6d9713 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.001.json +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.001.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 16.51292133331299, "TIME_S_1KI": 16.51292133331299, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1675.715212612152, "W": 77.36, "J_1KI": 1675.715212612152, "W_1KI": 77.36, "W_D": 42.0475, "J_D": 910.8019054073095, "W_D_1KI": 42.0475, "J_D_1KI": 42.0475} +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 631, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.591248035430908, "TIME_S_1KI": 16.78486217976372, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1175.510341129303, "W": 76.44, "J_1KI": 1862.932394816645, "W_1KI": 121.14104595879556, "W_D": 40.61775, "J_D": 624.6282726112604, "W_D_1KI": 64.37044374009508, "J_D_1KI": 102.0133815215453} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.001.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.001.output index d1f2742..4526ab4 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.001.output +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 16.51292133331299} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '100000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 1.6621592044830322} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 85, 184, ..., 9999802, - 9999894, 10000000]), - col_indices=tensor([ 1647, 2383, 2584, ..., 98263, 98777, 99734]), - values=tensor([0.1681, 0.5843, 0.2619, ..., 0.7600, 0.0011, 0.9501]), +tensor(crow_indices=tensor([ 0, 87, 180, ..., 9999810, + 9999900, 10000000]), + col_indices=tensor([ 1316, 2180, 2488, ..., 99391, 99679, 99852]), + values=tensor([0.4838, 0.8512, 0.8260, ..., 0.7772, 0.9919, 0.5400]), size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.3789, 0.7363, 0.6915, ..., 0.8879, 0.6465, 0.7586]) +tensor([0.7127, 0.0015, 0.2736, ..., 0.7345, 0.7377, 0.4477]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,16 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 10000000 Density: 0.001 -Time: 16.51292133331299 seconds +Time: 1.6621592044830322 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '631', '-ss', '100000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.591248035430908} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 85, 184, ..., 9999802, - 9999894, 10000000]), - col_indices=tensor([ 1647, 2383, 2584, ..., 98263, 98777, 99734]), - values=tensor([0.1681, 0.5843, 0.2619, ..., 0.7600, 0.0011, 0.9501]), +tensor(crow_indices=tensor([ 0, 104, 198, ..., 9999801, + 9999900, 10000000]), + col_indices=tensor([ 1720, 2057, 4608, ..., 98148, 99667, 99757]), + values=tensor([0.5091, 0.6981, 0.1321, ..., 0.4342, 0.6647, 0.6565]), size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.3789, 0.7363, 0.6915, ..., 0.8879, 0.6465, 0.7586]) +tensor([0.3567, 0.4501, 0.1430, ..., 0.3086, 0.4387, 0.0746]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -33,13 +36,30 @@ Rows: 100000 Size: 10000000000 NNZ: 10000000 Density: 0.001 -Time: 16.51292133331299 seconds +Time: 10.591248035430908 seconds -[39.67, 38.57, 40.75, 44.07, 38.52, 39.19, 39.95, 38.76, 38.89, 38.37] -[77.36] -21.661261796951294 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 16.51292133331299, 'TIME_S_1KI': 16.51292133331299, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1675.715212612152, 'W': 77.36} -[39.67, 38.57, 40.75, 44.07, 38.52, 39.19, 39.95, 38.76, 38.89, 38.37, 39.54, 38.41, 38.76, 38.62, 39.0, 38.84, 38.88, 38.44, 38.6, 38.42] -706.25 -35.3125 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 16.51292133331299, 'TIME_S_1KI': 16.51292133331299, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1675.715212612152, 'W': 77.36, 'J_1KI': 1675.715212612152, 'W_1KI': 77.36, 'W_D': 42.0475, 'J_D': 910.8019054073095, 'W_D_1KI': 42.0475, 'J_D_1KI': 42.0475} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 104, 198, ..., 9999801, + 9999900, 10000000]), + col_indices=tensor([ 1720, 2057, 4608, ..., 98148, 99667, 99757]), + values=tensor([0.5091, 0.6981, 0.1321, ..., 0.4342, 0.6647, 0.6565]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.3567, 0.4501, 0.1430, ..., 0.3086, 0.4387, 0.0746]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 10.591248035430908 seconds + +[39.78, 39.0, 39.24, 38.88, 39.37, 39.28, 39.34, 38.84, 41.87, 41.9] +[76.44] +15.378209590911865 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 631, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.591248035430908, 'TIME_S_1KI': 16.78486217976372, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1175.510341129303, 'W': 76.44} +[39.78, 39.0, 39.24, 38.88, 39.37, 39.28, 39.34, 38.84, 41.87, 41.9, 39.74, 39.44, 39.02, 44.31, 40.1, 38.93, 39.71, 39.12, 39.62, 39.33] +716.4449999999999 +35.82225 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 631, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.591248035430908, 'TIME_S_1KI': 16.78486217976372, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1175.510341129303, 'W': 76.44, 'J_1KI': 1862.932394816645, 'W_1KI': 121.14104595879556, 'W_D': 40.61775, 'J_D': 624.6282726112604, 'W_D_1KI': 64.37044374009508, 'J_D_1KI': 102.0133815215453} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_1e-05.json index 8f7419f..87f4ecf 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_1e-05.json +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_1e-05.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 12077, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.322007656097412, "TIME_S_1KI": 0.8546830881922176, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 838.5464090538024, "W": 64.47, "J_1KI": 69.43333684307382, "W_1KI": 5.3382462532085775, "W_D": 29.621750000000006, "J_D": 385.28326496648793, "W_D_1KI": 2.452740746874224, "J_D_1KI": 0.20309188928328428} +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 12301, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.471284627914429, "TIME_S_1KI": 0.8512547457860685, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 857.4546840524674, "W": 65.29, "J_1KI": 69.70609576883729, "W_1KI": 5.307698561092595, "W_D": 29.40700000000001, "J_D": 386.2026327757837, "W_D_1KI": 2.3906186488903347, "J_D_1KI": 0.19434343946755017} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_1e-05.output index d689d8c..e82259e 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_1e-05.output +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_1e-05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.8693974018096924} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '100000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.09777641296386719} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 99998, 100000, +tensor(crow_indices=tensor([ 0, 0, 0, ..., 99999, 99999, 100000]), - col_indices=tensor([57795, 90642, 37628, ..., 28610, 559, 98027]), - values=tensor([0.1696, 0.5341, 0.5606, ..., 0.7529, 0.5749, 0.6066]), + col_indices=tensor([10415, 34481, 41161, ..., 69185, 8793, 68858]), + values=tensor([0.7697, 0.4410, 0.3075, ..., 0.8657, 0.1828, 0.6667]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.7238, 0.7083, 0.7900, ..., 0.2093, 0.5825, 0.4482]) +tensor([0.2533, 0.9138, 0.2717, ..., 0.2019, 0.7103, 0.0862]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,19 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 0.8693974018096924 seconds +Time: 0.09777641296386719 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '12077', '-ss', '100000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.322007656097412} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '10738', '-ss', '100000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.165135860443115} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 100000, 100000, +tensor(crow_indices=tensor([ 0, 1, 2, ..., 99996, 99996, 100000]), - col_indices=tensor([ 3486, 41765, 3206, ..., 33238, 50080, 42417]), - values=tensor([0.6049, 0.2829, 0.2416, ..., 0.9238, 0.5292, 0.5723]), + col_indices=tensor([17140, 55127, 70380, ..., 9005, 21920, 77148]), + values=tensor([0.4913, 0.5196, 0.1867, ..., 0.0903, 0.8718, 0.1023]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.4597, 0.0749, 0.9185, ..., 0.4582, 0.2319, 0.2322]) +tensor([0.0174, 0.3477, 0.7027, ..., 0.9312, 0.2138, 0.3974]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -36,16 +36,19 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 10.322007656097412 seconds +Time: 9.165135860443115 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '12301', '-ss', '100000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.471284627914429} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 100000, 100000, +tensor(crow_indices=tensor([ 0, 1, 5, ..., 99999, 100000, 100000]), - col_indices=tensor([ 3486, 41765, 3206, ..., 33238, 50080, 42417]), - values=tensor([0.6049, 0.2829, 0.2416, ..., 0.9238, 0.5292, 0.5723]), + col_indices=tensor([46597, 403, 54918, ..., 58141, 94085, 20979]), + values=tensor([0.5040, 0.7325, 0.7996, ..., 0.9839, 0.2631, 0.4936]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.4597, 0.0749, 0.9185, ..., 0.4582, 0.2319, 0.2322]) +tensor([0.2071, 0.7418, 0.9347, ..., 0.4731, 0.1489, 0.5724]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -53,13 +56,30 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 10.322007656097412 seconds +Time: 10.471284627914429 seconds -[39.73, 38.57, 38.91, 38.66, 38.65, 38.36, 38.94, 39.73, 38.42, 38.47] -[64.47] -13.006769180297852 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 12077, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.322007656097412, 'TIME_S_1KI': 0.8546830881922176, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 838.5464090538024, 'W': 64.47} -[39.73, 38.57, 38.91, 38.66, 38.65, 38.36, 38.94, 39.73, 38.42, 38.47, 39.26, 38.5, 38.85, 38.41, 38.98, 38.35, 38.75, 38.41, 38.37, 38.75] -696.9649999999999 -34.84824999999999 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 12077, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.322007656097412, 'TIME_S_1KI': 0.8546830881922176, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 838.5464090538024, 'W': 64.47, 'J_1KI': 69.43333684307382, 'W_1KI': 5.3382462532085775, 'W_D': 29.621750000000006, 'J_D': 385.28326496648793, 'W_D_1KI': 2.452740746874224, 'J_D_1KI': 0.20309188928328428} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 5, ..., 99999, 100000, + 100000]), + col_indices=tensor([46597, 403, 54918, ..., 58141, 94085, 20979]), + values=tensor([0.5040, 0.7325, 0.7996, ..., 0.9839, 0.2631, 0.4936]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.2071, 0.7418, 0.9347, ..., 0.4731, 0.1489, 0.5724]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 10.471284627914429 seconds + +[39.92, 39.64, 39.53, 39.59, 39.42, 39.38, 39.39, 39.02, 44.4, 39.0] +[65.29] +13.13301706314087 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 12301, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.471284627914429, 'TIME_S_1KI': 0.8512547457860685, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 857.4546840524674, 'W': 65.29} +[39.92, 39.64, 39.53, 39.59, 39.42, 39.38, 39.39, 39.02, 44.4, 39.0, 39.77, 38.96, 39.1, 39.29, 38.97, 44.08, 39.5, 39.1, 39.5, 38.89] +717.66 +35.882999999999996 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 12301, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.471284627914429, 'TIME_S_1KI': 0.8512547457860685, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 857.4546840524674, 'W': 65.29, 'J_1KI': 69.70609576883729, 'W_1KI': 5.307698561092595, 'W_D': 29.40700000000001, 'J_D': 386.2026327757837, 'W_D_1KI': 2.3906186488903347, 'J_D_1KI': 0.19434343946755017} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_5e-05.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_5e-05.json new file mode 100644 index 0000000..96abffc --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 7670, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.499921083450317, "TIME_S_1KI": 1.3689597240482814, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 873.9648419952392, "W": 65.94, "J_1KI": 113.94587248960094, "W_1KI": 8.597131681877444, "W_D": 30.4285, "J_D": 403.29753100776674, "W_D_1KI": 3.9672099087353327, "J_D_1KI": 0.5172372762366796} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_5e-05.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_5e-05.output new file mode 100644 index 0000000..7c108ed --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_5e-05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '100000', '-sd', '5e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.15105009078979492} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 7, ..., 499997, 499999, + 500000]), + col_indices=tensor([ 4363, 49954, 63940, ..., 740, 19551, 36085]), + values=tensor([0.7532, 0.6946, 0.3669, ..., 0.0744, 0.6590, 0.6868]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.0672, 0.6383, 0.6761, ..., 0.1188, 0.9489, 0.0863]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 0.15105009078979492 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '6951', '-ss', '100000', '-sd', '5e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 9.51450252532959} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 13, ..., 499996, 499997, + 500000]), + col_indices=tensor([ 4260, 42899, 54575, ..., 5425, 31756, 61151]), + values=tensor([0.4952, 0.8247, 0.2969, ..., 0.2331, 0.9267, 0.2319]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.7470, 0.2926, 0.2731, ..., 0.9830, 0.8295, 0.9958]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 9.51450252532959 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '7670', '-ss', '100000', '-sd', '5e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.499921083450317} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 18, ..., 499989, 499996, + 500000]), + col_indices=tensor([16754, 23077, 28797, ..., 22620, 46442, 72952]), + values=tensor([0.6737, 0.8129, 0.9335, ..., 0.4581, 0.1021, 0.2391]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.9975, 0.9245, 0.4309, ..., 0.4303, 0.6144, 0.3183]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 10.499921083450317 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 18, ..., 499989, 499996, + 500000]), + col_indices=tensor([16754, 23077, 28797, ..., 22620, 46442, 72952]), + values=tensor([0.6737, 0.8129, 0.9335, ..., 0.4581, 0.1021, 0.2391]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.9975, 0.9245, 0.4309, ..., 0.4303, 0.6144, 0.3183]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 10.499921083450317 seconds + +[39.66, 38.93, 40.25, 39.53, 39.7, 39.41, 40.1, 39.55, 39.0, 39.05] +[65.94] +13.25394058227539 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 7670, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.499921083450317, 'TIME_S_1KI': 1.3689597240482814, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 873.9648419952392, 'W': 65.94} +[39.66, 38.93, 40.25, 39.53, 39.7, 39.41, 40.1, 39.55, 39.0, 39.05, 39.72, 39.51, 39.22, 39.24, 39.32, 39.23, 40.03, 39.22, 39.23, 39.09] +710.23 +35.5115 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 7670, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.499921083450317, 'TIME_S_1KI': 1.3689597240482814, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 873.9648419952392, 'W': 65.94, 'J_1KI': 113.94587248960094, 'W_1KI': 8.597131681877444, 'W_D': 30.4285, 'J_D': 403.29753100776674, 'W_D_1KI': 3.9672099087353327, 'J_D_1KI': 0.5172372762366796} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.0001.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.0001.json index 9dc0eed..a0173f2 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.0001.json +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.0001.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 238697, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.480466604232788, "TIME_S_1KI": 0.04390698921324017, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1152.02081230402, "W": 58.89, "J_1KI": 4.826289447726699, "W_1KI": 0.24671445388924035, "W_D": 23.781499999999994, "J_D": 465.21961195123185, "W_D_1KI": 0.09963049388974303, "J_D_1KI": 0.0004173931548772839} +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 237172, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.292231321334839, "TIME_S_1KI": 0.04339564249293693, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 862.8344623732567, "W": 65.91, "J_1KI": 3.638011495342016, "W_1KI": 0.2778995834246875, "W_D": 30.572500000000005, "J_D": 400.22768321812157, "W_D_1KI": 0.12890433946671614, "J_D_1KI": 0.0005435057235538602} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.0001.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.0001.output index 9b8fd23..104c518 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.0001.output +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.0001.output @@ -1,13 +1,13 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.05536341667175293} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.016118526458740234} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 3, ..., 9998, 9998, 10000]), - col_indices=tensor([8403, 1214, 9126, ..., 1351, 3891, 9766]), - values=tensor([0.6664, 0.5402, 0.6356, ..., 0.4443, 0.7393, 0.7343]), +tensor(crow_indices=tensor([ 0, 3, 3, ..., 9995, 9998, 10000]), + col_indices=tensor([3770, 7218, 7901, ..., 7147, 2189, 2422]), + values=tensor([0.0682, 0.4925, 0.4932, ..., 0.9859, 0.2682, 0.5675]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.3881, 0.9820, 0.4323, ..., 0.4549, 0.5025, 0.0926]) +tensor([0.1703, 0.4753, 0.7272, ..., 0.9852, 0.8357, 0.1698]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -15,18 +15,18 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 0.05536341667175293 seconds +Time: 0.016118526458740234 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '189655', '-ss', '10000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 8.342687606811523} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '65142', '-ss', '10000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 2.8839359283447266} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 9997, 9997, 10000]), - col_indices=tensor([1328, 2584, 2989, ..., 4729, 4835, 7640]), - values=tensor([0.4337, 0.1976, 0.1440, ..., 0.2725, 0.2860, 0.2817]), +tensor(crow_indices=tensor([ 0, 0, 1, ..., 9999, 10000, 10000]), + col_indices=tensor([6160, 1315, 448, ..., 9882, 6598, 7658]), + values=tensor([0.4764, 0.2622, 0.7017, ..., 0.9860, 0.1866, 0.7529]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.7295, 0.2766, 0.3418, ..., 0.0114, 0.7550, 0.8307]) +tensor([0.4338, 0.9515, 0.6308, ..., 0.9365, 0.1556, 0.4912]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -34,18 +34,18 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 8.342687606811523 seconds +Time: 2.8839359283447266 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '238697', '-ss', '10000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.480466604232788} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '237172', '-ss', '10000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.292231321334839} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 1, ..., 9996, 9997, 10000]), - col_indices=tensor([9286, 7396, 732, ..., 1484, 5299, 9027]), - values=tensor([0.3440, 0.6043, 0.5062, ..., 0.2355, 0.1186, 0.4561]), +tensor(crow_indices=tensor([ 0, 2, 3, ..., 9999, 10000, 10000]), + col_indices=tensor([1278, 7265, 6993, ..., 9863, 6468, 3133]), + values=tensor([0.6288, 0.8682, 0.0748, ..., 0.3062, 0.2031, 0.3525]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.0996, 0.8226, 0.2068, ..., 0.2572, 0.9962, 0.0083]) +tensor([0.1078, 0.8244, 0.8698, ..., 0.0830, 0.2322, 0.6518]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -53,15 +53,15 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 10.480466604232788 seconds +Time: 10.292231321334839 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 1, ..., 9996, 9997, 10000]), - col_indices=tensor([9286, 7396, 732, ..., 1484, 5299, 9027]), - values=tensor([0.3440, 0.6043, 0.5062, ..., 0.2355, 0.1186, 0.4561]), +tensor(crow_indices=tensor([ 0, 2, 3, ..., 9999, 10000, 10000]), + col_indices=tensor([1278, 7265, 6993, ..., 9863, 6468, 3133]), + values=tensor([0.6288, 0.8682, 0.0748, ..., 0.3062, 0.2031, 0.3525]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.0996, 0.8226, 0.2068, ..., 0.2572, 0.9962, 0.0083]) +tensor([0.1078, 0.8244, 0.8698, ..., 0.0830, 0.2322, 0.6518]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -69,13 +69,13 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 10.480466604232788 seconds +Time: 10.292231321334839 seconds -[40.64, 38.78, 39.02, 39.34, 38.69, 38.38, 38.42, 38.49, 38.47, 38.38] -[58.89] -19.562248468399048 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 238697, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.480466604232788, 'TIME_S_1KI': 0.04390698921324017, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1152.02081230402, 'W': 58.89} -[40.64, 38.78, 39.02, 39.34, 38.69, 38.38, 38.42, 38.49, 38.47, 38.38, 44.89, 39.96, 38.48, 39.7, 39.01, 38.35, 38.7, 38.38, 38.58, 38.93] -702.1700000000001 -35.10850000000001 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 238697, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.480466604232788, 'TIME_S_1KI': 0.04390698921324017, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1152.02081230402, 'W': 58.89, 'J_1KI': 4.826289447726699, 'W_1KI': 0.24671445388924035, 'W_D': 23.781499999999994, 'J_D': 465.21961195123185, 'W_D_1KI': 0.09963049388974303, 'J_D_1KI': 0.0004173931548772839} +[40.27, 39.31, 39.28, 38.86, 41.16, 39.32, 39.02, 39.09, 38.81, 39.11] +[65.91] +13.091100931167603 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 237172, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.292231321334839, 'TIME_S_1KI': 0.04339564249293693, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 862.8344623732567, 'W': 65.91} +[40.27, 39.31, 39.28, 38.86, 41.16, 39.32, 39.02, 39.09, 38.81, 39.11, 39.9, 39.01, 39.35, 39.15, 39.0, 38.86, 39.09, 38.89, 38.89, 40.04] +706.7499999999999 +35.33749999999999 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 237172, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.292231321334839, 'TIME_S_1KI': 0.04339564249293693, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 862.8344623732567, 'W': 65.91, 'J_1KI': 3.638011495342016, 'W_1KI': 0.2778995834246875, 'W_D': 30.572500000000005, 'J_D': 400.22768321812157, 'W_D_1KI': 0.12890433946671614, 'J_D_1KI': 0.0005435057235538602} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.001.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.001.json index 80c52ca..deb9985 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.001.json +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.001.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 75618, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.541181087493896, "TIME_S_1KI": 0.13940042169184447, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 940.5316159009933, "W": 66.47, "J_1KI": 12.437932977611062, "W_1KI": 0.8790235129202042, "W_D": 31.600500000000004, "J_D": 447.1380973112584, "W_D_1KI": 0.41789653257160997, "J_D_1KI": 0.005526416098965987} +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 75716, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.424914360046387, "TIME_S_1KI": 0.1376844307682179, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 940.2084917426108, "W": 66.49, "J_1KI": 12.41756685169067, "W_1KI": 0.8781499286808601, "W_D": 31.17374999999999, "J_D": 440.81552819162596, "W_D_1KI": 0.4117194516350572, "J_D_1KI": 0.005437680960894093} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.001.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.001.output index 9b49c17..169706c 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.001.output +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.16539597511291504} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.02692556381225586} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 9, 17, ..., 99980, 99988, +tensor(crow_indices=tensor([ 0, 8, 22, ..., 99984, 99990, 100000]), - col_indices=tensor([2312, 2519, 3298, ..., 9035, 9400, 9910]), - values=tensor([0.1410, 0.2218, 0.1849, ..., 0.4652, 0.0649, 0.3640]), + col_indices=tensor([ 947, 1869, 5338, ..., 6268, 7050, 7942]), + values=tensor([0.2237, 0.7540, 0.0617, ..., 0.6862, 0.3906, 0.7890]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.4363, 0.0084, 0.9005, ..., 0.6999, 0.4782, 0.9424]) +tensor([0.6838, 0.4222, 0.9597, ..., 0.5474, 0.0680, 0.5394]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,19 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 0.16539597511291504 seconds +Time: 0.02692556381225586 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '63484', '-ss', '10000', '-sd', '0.001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 8.8150315284729} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '38996', '-ss', '10000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 5.952186584472656} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 11, 21, ..., 99981, 99989, +tensor(crow_indices=tensor([ 0, 11, 19, ..., 99978, 99990, 100000]), - col_indices=tensor([ 457, 1232, 2417, ..., 8600, 9856, 9966]), - values=tensor([0.5653, 0.7705, 0.0640, ..., 0.9989, 0.3761, 0.2052]), + col_indices=tensor([ 7, 556, 703, ..., 8117, 8865, 9056]), + values=tensor([0.2495, 0.4435, 0.2550, ..., 0.5409, 0.7823, 0.3947]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.7731, 0.4840, 0.8355, ..., 0.4086, 0.2552, 0.3939]) +tensor([0.8603, 0.6651, 0.2785, ..., 0.2036, 0.7755, 0.1415]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -36,19 +36,19 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 8.8150315284729 seconds +Time: 5.952186584472656 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '75618', '-ss', '10000', '-sd', '0.001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.541181087493896} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '68791', '-ss', '10000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 9.539567232131958} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 8, 15, ..., 99981, 99989, +tensor(crow_indices=tensor([ 0, 9, 19, ..., 99987, 99995, 100000]), - col_indices=tensor([ 812, 4021, 6538, ..., 8729, 9196, 9676]), - values=tensor([0.8795, 0.6481, 0.9606, ..., 0.0277, 0.7911, 0.3727]), + col_indices=tensor([ 696, 997, 2062, ..., 1211, 1590, 9690]), + values=tensor([0.0377, 0.1568, 0.2160, ..., 0.8237, 0.6309, 0.0587]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.1908, 0.4704, 0.2059, ..., 0.1529, 0.3275, 0.9276]) +tensor([0.0823, 0.1873, 0.3356, ..., 0.2591, 0.5771, 0.7059]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -56,16 +56,19 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 10.541181087493896 seconds +Time: 9.539567232131958 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '75716', '-ss', '10000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.424914360046387} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 8, 15, ..., 99981, 99989, +tensor(crow_indices=tensor([ 0, 9, 17, ..., 99986, 99994, 100000]), - col_indices=tensor([ 812, 4021, 6538, ..., 8729, 9196, 9676]), - values=tensor([0.8795, 0.6481, 0.9606, ..., 0.0277, 0.7911, 0.3727]), + col_indices=tensor([1284, 3776, 5103, ..., 6955, 7171, 8445]), + values=tensor([0.9684, 0.2053, 0.3935, ..., 0.8592, 0.0314, 0.3677]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.1908, 0.4704, 0.2059, ..., 0.1529, 0.3275, 0.9276]) +tensor([0.4306, 0.9725, 0.6597, ..., 0.5969, 0.7821, 0.5134]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -73,13 +76,30 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 10.541181087493896 seconds +Time: 10.424914360046387 seconds -[38.98, 38.52, 38.36, 38.43, 38.45, 38.57, 38.52, 38.55, 38.55, 38.4] -[66.47] -14.149715900421143 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 75618, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.541181087493896, 'TIME_S_1KI': 0.13940042169184447, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 940.5316159009933, 'W': 66.47} -[38.98, 38.52, 38.36, 38.43, 38.45, 38.57, 38.52, 38.55, 38.55, 38.4, 39.0, 38.48, 38.51, 39.07, 38.73, 38.62, 38.94, 38.66, 38.36, 43.76] -697.3899999999999 -34.869499999999995 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 75618, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.541181087493896, 'TIME_S_1KI': 0.13940042169184447, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 940.5316159009933, 'W': 66.47, 'J_1KI': 12.437932977611062, 'W_1KI': 0.8790235129202042, 'W_D': 31.600500000000004, 'J_D': 447.1380973112584, 'W_D_1KI': 0.41789653257160997, 'J_D_1KI': 0.005526416098965987} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 9, 17, ..., 99986, 99994, + 100000]), + col_indices=tensor([1284, 3776, 5103, ..., 6955, 7171, 8445]), + values=tensor([0.9684, 0.2053, 0.3935, ..., 0.8592, 0.0314, 0.3677]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.4306, 0.9725, 0.6597, ..., 0.5969, 0.7821, 0.5134]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.424914360046387 seconds + +[40.22, 38.81, 38.98, 39.63, 38.95, 39.23, 38.84, 39.29, 39.31, 38.77] +[66.49] +14.140599966049194 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 75716, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.424914360046387, 'TIME_S_1KI': 0.1376844307682179, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 940.2084917426108, 'W': 66.49} +[40.22, 38.81, 38.98, 39.63, 38.95, 39.23, 38.84, 39.29, 39.31, 38.77, 41.54, 39.08, 39.06, 38.87, 39.0, 38.96, 39.2, 38.82, 39.06, 41.94] +706.325 +35.316250000000004 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 75716, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.424914360046387, 'TIME_S_1KI': 0.1376844307682179, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 940.2084917426108, 'W': 66.49, 'J_1KI': 12.41756685169067, 'W_1KI': 0.8781499286808601, 'W_D': 31.17374999999999, 'J_D': 440.81552819162596, 'W_D_1KI': 0.4117194516350572, 'J_D_1KI': 0.005437680960894093} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.01.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.01.json index e580351..db6444c 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.01.json +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.01.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 10094, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.424894571304321, "TIME_S_1KI": 1.0327813127902044, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 874.2127872061731, "W": 66.43, "J_1KI": 86.60717131030047, "W_1KI": 6.581137309292649, "W_D": 31.351250000000007, "J_D": 412.5796122971178, "W_D_1KI": 3.1059292649098484, "J_D_1KI": 0.3077005414018078} +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 10206, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.48923373222351, "TIME_S_1KI": 1.0277516884404774, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 888.1208229660987, "W": 67.21, "J_1KI": 87.01948098825189, "W_1KI": 6.585341955712326, "W_D": 31.27349999999999, "J_D": 413.25169702470293, "W_D_1KI": 3.0642269253380356, "J_D_1KI": 0.30023779397785966} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.01.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.01.output index c679aff..191d2ac 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.01.output +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.01.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.01', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 1.040170669555664} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.1162419319152832} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 84, 184, ..., 999814, - 999899, 1000000]), - col_indices=tensor([ 171, 251, 472, ..., 9843, 9880, 9941]), - values=tensor([0.4805, 0.3615, 0.2747, ..., 0.6607, 0.4074, 0.0301]), +tensor(crow_indices=tensor([ 0, 100, 185, ..., 999774, + 999893, 1000000]), + col_indices=tensor([ 36, 100, 149, ..., 9802, 9836, 9872]), + values=tensor([0.2938, 0.2320, 0.9118, ..., 0.8681, 0.8272, 0.2716]), size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.4780, 0.2256, 0.5818, ..., 0.3209, 0.4621, 0.5747]) +tensor([0.9985, 0.1887, 0.5488, ..., 0.6608, 0.9222, 0.7055]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,19 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 1000000 Density: 0.01 -Time: 1.040170669555664 seconds +Time: 0.1162419319152832 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '10094', '-ss', '10000', '-sd', '0.01', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.424894571304321} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '9032', '-ss', '10000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 9.29158329963684} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 106, 205, ..., 999816, - 999911, 1000000]), - col_indices=tensor([ 83, 89, 669, ..., 9640, 9974, 9983]), - values=tensor([0.6432, 0.8453, 0.7190, ..., 0.8302, 0.0770, 0.7390]), +tensor(crow_indices=tensor([ 0, 95, 205, ..., 999782, + 999891, 1000000]), + col_indices=tensor([ 54, 212, 264, ..., 9693, 9804, 9961]), + values=tensor([0.9421, 0.7916, 0.1774, ..., 0.7420, 0.5713, 0.3525]), size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.4670, 0.3263, 0.5346, ..., 0.9779, 0.3626, 0.9957]) +tensor([0.0899, 0.7410, 0.9990, ..., 0.5022, 0.0295, 0.8248]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -36,16 +36,19 @@ Rows: 10000 Size: 100000000 NNZ: 1000000 Density: 0.01 -Time: 10.424894571304321 seconds +Time: 9.29158329963684 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '10206', '-ss', '10000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.48923373222351} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 106, 205, ..., 999816, - 999911, 1000000]), - col_indices=tensor([ 83, 89, 669, ..., 9640, 9974, 9983]), - values=tensor([0.6432, 0.8453, 0.7190, ..., 0.8302, 0.0770, 0.7390]), +tensor(crow_indices=tensor([ 0, 108, 196, ..., 999774, + 999884, 1000000]), + col_indices=tensor([ 16, 259, 309, ..., 9528, 9603, 9788]), + values=tensor([0.1649, 0.9890, 0.6907, ..., 0.8956, 0.0145, 0.7596]), size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.4670, 0.3263, 0.5346, ..., 0.9779, 0.3626, 0.9957]) +tensor([0.7287, 0.8351, 0.4943, ..., 0.5583, 0.1274, 0.9823]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -53,13 +56,30 @@ Rows: 10000 Size: 100000000 NNZ: 1000000 Density: 0.01 -Time: 10.424894571304321 seconds +Time: 10.48923373222351 seconds -[39.35, 40.11, 43.57, 38.24, 39.46, 38.59, 38.37, 38.38, 38.28, 38.71] -[66.43] -13.15990948677063 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 10094, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.424894571304321, 'TIME_S_1KI': 1.0327813127902044, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 874.2127872061731, 'W': 66.43} -[39.35, 40.11, 43.57, 38.24, 39.46, 38.59, 38.37, 38.38, 38.28, 38.71, 40.11, 38.48, 38.37, 38.48, 38.37, 38.22, 38.39, 39.48, 38.33, 38.74] -701.575 -35.07875 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 10094, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.424894571304321, 'TIME_S_1KI': 1.0327813127902044, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 874.2127872061731, 'W': 66.43, 'J_1KI': 86.60717131030047, 'W_1KI': 6.581137309292649, 'W_D': 31.351250000000007, 'J_D': 412.5796122971178, 'W_D_1KI': 3.1059292649098484, 'J_D_1KI': 0.3077005414018078} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 108, 196, ..., 999774, + 999884, 1000000]), + col_indices=tensor([ 16, 259, 309, ..., 9528, 9603, 9788]), + values=tensor([0.1649, 0.9890, 0.6907, ..., 0.8956, 0.0145, 0.7596]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.7287, 0.8351, 0.4943, ..., 0.5583, 0.1274, 0.9823]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.48923373222351 seconds + +[39.9, 39.07, 39.52, 38.94, 39.35, 44.79, 39.52, 39.98, 39.47, 39.28] +[67.21] +13.214117288589478 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 10206, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.48923373222351, 'TIME_S_1KI': 1.0277516884404774, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 888.1208229660987, 'W': 67.21} +[39.9, 39.07, 39.52, 38.94, 39.35, 44.79, 39.52, 39.98, 39.47, 39.28, 40.29, 39.27, 43.98, 38.92, 39.16, 39.39, 39.32, 39.34, 39.08, 39.79] +718.73 +35.9365 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 10206, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.48923373222351, 'TIME_S_1KI': 1.0277516884404774, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 888.1208229660987, 'W': 67.21, 'J_1KI': 87.01948098825189, 'W_1KI': 6.585341955712326, 'W_D': 31.27349999999999, 'J_D': 413.25169702470293, 'W_D_1KI': 3.0642269253380356, 'J_D_1KI': 0.30023779397785966} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.05.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.05.json index 73d3b47..f94ac11 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.05.json +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.05.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1758, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.496397256851196, "TIME_S_1KI": 5.970646903783388, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1131.7024735164641, "W": 74.58, "J_1KI": 643.7442966532789, "W_1KI": 42.42320819112628, "W_D": 39.617, "J_D": 601.1619320635796, "W_D_1KI": 22.535267349260522, "J_D_1KI": 12.818695875574814} +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1725, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.28298306465149, "TIME_S_1KI": 5.961149602696516, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1049.8662384581567, "W": 75.33, "J_1KI": 608.6181092511052, "W_1KI": 43.66956521739131, "W_D": 39.905, "J_D": 556.151762188673, "W_D_1KI": 23.133333333333336, "J_D_1KI": 13.410628019323674} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.05.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.05.output index 78fc6b7..bf02e51 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.05.output +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 5.972491502761841} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 0.6085023880004883} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 519, 993, ..., 4998959, - 4999496, 5000000]), - col_indices=tensor([ 17, 61, 73, ..., 9901, 9911, 9920]), - values=tensor([0.3098, 0.8299, 0.3979, ..., 0.3415, 0.7398, 0.5378]), +tensor(crow_indices=tensor([ 0, 508, 930, ..., 4999014, + 4999519, 5000000]), + col_indices=tensor([ 33, 44, 68, ..., 9921, 9984, 9990]), + values=tensor([0.7535, 0.2308, 0.9086, ..., 0.5781, 0.9835, 0.5048]), size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.6888, 0.9764, 0.3608, ..., 0.4208, 0.9222, 0.1586]) +tensor([0.1644, 0.2567, 0.4067, ..., 0.0618, 0.3860, 0.0437]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,19 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 5000000 Density: 0.05 -Time: 5.972491502761841 seconds +Time: 0.6085023880004883 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1758', '-ss', '10000', '-sd', '0.05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.496397256851196} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1725', '-ss', '10000', '-sd', '0.05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.28298306465149} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 496, 998, ..., 4999016, - 4999498, 5000000]), - col_indices=tensor([ 25, 29, 69, ..., 9894, 9911, 9997]), - values=tensor([0.8031, 0.3187, 0.9076, ..., 0.2949, 0.8412, 0.6618]), +tensor(crow_indices=tensor([ 0, 453, 934, ..., 4998993, + 4999474, 5000000]), + col_indices=tensor([ 76, 82, 85, ..., 9960, 9963, 9989]), + values=tensor([0.2757, 0.2788, 0.5904, ..., 0.0782, 0.3342, 0.9799]), size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.4316, 0.0196, 0.7556, ..., 0.1123, 0.7172, 0.6330]) +tensor([0.0884, 0.4732, 0.8375, ..., 0.9901, 0.5525, 0.7748]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -36,16 +36,16 @@ Rows: 10000 Size: 100000000 NNZ: 5000000 Density: 0.05 -Time: 10.496397256851196 seconds +Time: 10.28298306465149 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 496, 998, ..., 4999016, - 4999498, 5000000]), - col_indices=tensor([ 25, 29, 69, ..., 9894, 9911, 9997]), - values=tensor([0.8031, 0.3187, 0.9076, ..., 0.2949, 0.8412, 0.6618]), +tensor(crow_indices=tensor([ 0, 453, 934, ..., 4998993, + 4999474, 5000000]), + col_indices=tensor([ 76, 82, 85, ..., 9960, 9963, 9989]), + values=tensor([0.2757, 0.2788, 0.5904, ..., 0.0782, 0.3342, 0.9799]), size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.4316, 0.0196, 0.7556, ..., 0.1123, 0.7172, 0.6330]) +tensor([0.0884, 0.4732, 0.8375, ..., 0.9901, 0.5525, 0.7748]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -53,13 +53,13 @@ Rows: 10000 Size: 100000000 NNZ: 5000000 Density: 0.05 -Time: 10.496397256851196 seconds +Time: 10.28298306465149 seconds -[39.62, 38.84, 38.53, 38.4, 38.53, 38.95, 38.67, 38.93, 38.95, 38.34] -[74.58] -15.174342632293701 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1758, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.496397256851196, 'TIME_S_1KI': 5.970646903783388, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1131.7024735164641, 'W': 74.58} -[39.62, 38.84, 38.53, 38.4, 38.53, 38.95, 38.67, 38.93, 38.95, 38.34, 39.14, 38.64, 38.84, 38.7, 38.86, 38.26, 38.63, 38.26, 38.4, 44.64] -699.26 -34.963 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1758, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.496397256851196, 'TIME_S_1KI': 5.970646903783388, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1131.7024735164641, 'W': 74.58, 'J_1KI': 643.7442966532789, 'W_1KI': 42.42320819112628, 'W_D': 39.617, 'J_D': 601.1619320635796, 'W_D_1KI': 22.535267349260522, 'J_D_1KI': 12.818695875574814} +[40.86, 38.91, 38.99, 39.35, 38.92, 38.87, 39.32, 39.52, 39.41, 41.56] +[75.33] +13.936894178390503 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1725, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.28298306465149, 'TIME_S_1KI': 5.961149602696516, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1049.8662384581567, 'W': 75.33} +[40.86, 38.91, 38.99, 39.35, 38.92, 38.87, 39.32, 39.52, 39.41, 41.56, 39.65, 38.96, 39.21, 38.88, 39.0, 40.01, 39.33, 39.71, 39.42, 39.31] +708.5 +35.425 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1725, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.28298306465149, 'TIME_S_1KI': 5.961149602696516, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1049.8662384581567, 'W': 75.33, 'J_1KI': 608.6181092511052, 'W_1KI': 43.66956521739131, 'W_D': 39.905, 'J_D': 556.151762188673, 'W_D_1KI': 23.133333333333336, 'J_D_1KI': 13.410628019323674} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.1.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.1.json index 6bba238..02b08b6 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.1.json +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.1.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 14.862756252288818, "TIME_S_1KI": 14.862756252288818, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1509.8221988201142, "W": 77.42, "J_1KI": 1509.8221988201142, "W_1KI": 77.42, "W_D": 42.230500000000006, "J_D": 823.5668608534337, "W_D_1KI": 42.230500000000006, "J_D_1KI": 42.230500000000006} +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 700, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.428780555725098, "TIME_S_1KI": 14.89825793675014, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1164.5532444572448, "W": 76.66, "J_1KI": 1663.6474920817784, "W_1KI": 109.5142857142857, "W_D": 40.888999999999996, "J_D": 621.1507645788192, "W_D_1KI": 58.412857142857135, "J_D_1KI": 83.44693877551019} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.1.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.1.output index 550e30b..f0881c0 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.1.output +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.1.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.1', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 14.862756252288818} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.1', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 1.498870611190796} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1022, 2054, ..., 9998064, - 9999016, 10000000]), - col_indices=tensor([ 8, 12, 13, ..., 9969, 9975, 9983]), - values=tensor([0.6048, 0.0895, 0.3093, ..., 0.2729, 0.9589, 0.2791]), +tensor(crow_indices=tensor([ 0, 987, 1979, ..., 9997999, + 9999011, 10000000]), + col_indices=tensor([ 3, 7, 20, ..., 9954, 9962, 9986]), + values=tensor([0.9369, 0.1464, 0.7342, ..., 0.7208, 0.8895, 0.6454]), size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.8686, 0.6857, 0.7903, ..., 0.7591, 0.3670, 0.6215]) +tensor([0.7880, 0.5272, 0.7128, ..., 0.1762, 0.3407, 0.4321]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,16 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 10000000 Density: 0.1 -Time: 14.862756252288818 seconds +Time: 1.498870611190796 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '700', '-ss', '10000', '-sd', '0.1', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.428780555725098} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1022, 2054, ..., 9998064, - 9999016, 10000000]), - col_indices=tensor([ 8, 12, 13, ..., 9969, 9975, 9983]), - values=tensor([0.6048, 0.0895, 0.3093, ..., 0.2729, 0.9589, 0.2791]), +tensor(crow_indices=tensor([ 0, 995, 2027, ..., 9997983, + 9998981, 10000000]), + col_indices=tensor([ 16, 21, 33, ..., 9977, 9983, 9988]), + values=tensor([0.3684, 0.6722, 0.7880, ..., 0.5048, 0.0966, 0.9792]), size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.8686, 0.6857, 0.7903, ..., 0.7591, 0.3670, 0.6215]) +tensor([0.4422, 0.8800, 0.2165, ..., 0.4558, 0.6103, 0.1393]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -33,13 +36,30 @@ Rows: 10000 Size: 100000000 NNZ: 10000000 Density: 0.1 -Time: 14.862756252288818 seconds +Time: 10.428780555725098 seconds -[44.78, 38.35, 39.08, 38.71, 38.47, 39.2, 39.52, 39.83, 39.49, 40.27] -[77.42] -19.501707553863525 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 14.862756252288818, 'TIME_S_1KI': 14.862756252288818, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1509.8221988201142, 'W': 77.42} -[44.78, 38.35, 39.08, 38.71, 38.47, 39.2, 39.52, 39.83, 39.49, 40.27, 40.17, 38.57, 38.51, 38.69, 38.5, 38.97, 38.48, 38.73, 38.88, 38.4] -703.79 -35.189499999999995 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 14.862756252288818, 'TIME_S_1KI': 14.862756252288818, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1509.8221988201142, 'W': 77.42, 'J_1KI': 1509.8221988201142, 'W_1KI': 77.42, 'W_D': 42.230500000000006, 'J_D': 823.5668608534337, 'W_D_1KI': 42.230500000000006, 'J_D_1KI': 42.230500000000006} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 995, 2027, ..., 9997983, + 9998981, 10000000]), + col_indices=tensor([ 16, 21, 33, ..., 9977, 9983, 9988]), + values=tensor([0.3684, 0.6722, 0.7880, ..., 0.5048, 0.0966, 0.9792]), + size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.4422, 0.8800, 0.2165, ..., 0.4558, 0.6103, 0.1393]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000000 +Density: 0.1 +Time: 10.428780555725098 seconds + +[40.18, 38.97, 39.04, 39.1, 38.99, 38.9, 38.95, 39.03, 44.22, 39.22] +[76.66] +15.191145896911621 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 700, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.428780555725098, 'TIME_S_1KI': 14.89825793675014, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1164.5532444572448, 'W': 76.66} +[40.18, 38.97, 39.04, 39.1, 38.99, 38.9, 38.95, 39.03, 44.22, 39.22, 40.59, 39.18, 39.25, 44.66, 38.99, 39.16, 38.92, 38.8, 39.17, 40.19] +715.42 +35.771 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 700, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.428780555725098, 'TIME_S_1KI': 14.89825793675014, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1164.5532444572448, 'W': 76.66, 'J_1KI': 1663.6474920817784, 'W_1KI': 109.5142857142857, 'W_D': 40.888999999999996, 'J_D': 621.1507645788192, 'W_D_1KI': 58.412857142857135, 'J_D_1KI': 83.44693877551019} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.2.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.2.json new file mode 100644 index 0000000..a0b1b52 --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.2.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 343, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.229193925857544, "TIME_S_1KI": 29.822722815911206, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1277.0280195808411, "W": 76.08, "J_1KI": 3723.1137597109073, "W_1KI": 221.8075801749271, "W_D": 40.66575, "J_D": 682.5880939441324, "W_D_1KI": 118.55903790087464, "J_D_1KI": 345.65317172266657} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.2.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.2.output new file mode 100644 index 0000000..9529016 --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.2.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.2', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 3.0540103912353516} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2046, 4073, ..., 19996013, + 19997969, 20000000]), + col_indices=tensor([ 3, 8, 17, ..., 9981, 9984, 9987]), + values=tensor([0.5017, 0.4094, 0.1287, ..., 0.4741, 0.2195, 0.3916]), + size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) +tensor([0.6824, 0.3340, 0.1820, ..., 0.2779, 0.3641, 0.6445]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 20000000 +Density: 0.2 +Time: 3.0540103912353516 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '343', '-ss', '10000', '-sd', '0.2', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.229193925857544} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1942, 3919, ..., 19996087, + 19998013, 20000000]), + col_indices=tensor([ 9, 10, 17, ..., 9985, 9988, 9989]), + values=tensor([0.3594, 0.3340, 0.0020, ..., 0.8034, 0.9201, 0.1838]), + size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) +tensor([0.0654, 0.1078, 0.4601, ..., 0.8409, 0.3729, 0.1721]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 20000000 +Density: 0.2 +Time: 10.229193925857544 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1942, 3919, ..., 19996087, + 19998013, 20000000]), + col_indices=tensor([ 9, 10, 17, ..., 9985, 9988, 9989]), + values=tensor([0.3594, 0.3340, 0.0020, ..., 0.8034, 0.9201, 0.1838]), + size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) +tensor([0.0654, 0.1078, 0.4601, ..., 0.8409, 0.3729, 0.1721]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 20000000 +Density: 0.2 +Time: 10.229193925857544 seconds + +[39.53, 39.95, 39.42, 39.3, 39.16, 38.94, 39.07, 38.8, 39.46, 38.91] +[76.08] +16.78533148765564 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 343, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.229193925857544, 'TIME_S_1KI': 29.822722815911206, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1277.0280195808411, 'W': 76.08} +[39.53, 39.95, 39.42, 39.3, 39.16, 38.94, 39.07, 38.8, 39.46, 38.91, 39.85, 38.96, 39.07, 39.05, 39.38, 38.91, 39.06, 39.15, 39.29, 44.34] +708.285 +35.414249999999996 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 343, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.229193925857544, 'TIME_S_1KI': 29.822722815911206, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1277.0280195808411, 'W': 76.08, 'J_1KI': 3723.1137597109073, 'W_1KI': 221.8075801749271, 'W_D': 40.66575, 'J_D': 682.5880939441324, 'W_D_1KI': 118.55903790087464, 'J_D_1KI': 345.65317172266657} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.3.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.3.json new file mode 100644 index 0000000..a1f4a32 --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.3.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 233, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.295273542404175, "TIME_S_1KI": 44.18572335795783, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1458.0208019256593, "W": 76.48, "J_1KI": 6257.6000082646315, "W_1KI": 328.2403433476395, "W_D": 40.760999999999996, "J_D": 777.0709454405307, "W_D_1KI": 174.9399141630901, "J_D_1KI": 750.8150822450219} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.3.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.3.output new file mode 100644 index 0000000..d790296 --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.3.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.3', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 4.5049638748168945} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3029, 6057, ..., 29993789, + 29996881, 30000000]), + col_indices=tensor([ 0, 1, 2, ..., 9988, 9991, 9998]), + values=tensor([0.8599, 0.6300, 0.6697, ..., 0.0214, 0.0757, 0.9206]), + size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) +tensor([0.5404, 0.3446, 0.4295, ..., 0.2969, 0.5137, 0.1316]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 30000000 +Density: 0.3 +Time: 4.5049638748168945 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '233', '-ss', '10000', '-sd', '0.3', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.295273542404175} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2988, 6007, ..., 29993964, + 29997046, 30000000]), + col_indices=tensor([ 9, 16, 24, ..., 9996, 9997, 9999]), + values=tensor([0.2433, 0.7720, 0.0178, ..., 0.3342, 0.8303, 0.6867]), + size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) +tensor([0.4151, 0.6857, 0.4615, ..., 0.0665, 0.4824, 0.1217]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 30000000 +Density: 0.3 +Time: 10.295273542404175 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2988, 6007, ..., 29993964, + 29997046, 30000000]), + col_indices=tensor([ 9, 16, 24, ..., 9996, 9997, 9999]), + values=tensor([0.2433, 0.7720, 0.0178, ..., 0.3342, 0.8303, 0.6867]), + size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) +tensor([0.4151, 0.6857, 0.4615, ..., 0.0665, 0.4824, 0.1217]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 30000000 +Density: 0.3 +Time: 10.295273542404175 seconds + +[40.6, 39.0, 39.72, 40.47, 39.9, 39.66, 39.13, 38.97, 39.1, 39.62] +[76.48] +19.064079523086548 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 233, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.295273542404175, 'TIME_S_1KI': 44.18572335795783, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1458.0208019256593, 'W': 76.48} +[40.6, 39.0, 39.72, 40.47, 39.9, 39.66, 39.13, 38.97, 39.1, 39.62, 40.89, 39.12, 39.47, 39.11, 38.93, 39.6, 38.9, 43.73, 39.55, 38.93] +714.3800000000001 +35.71900000000001 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 233, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.295273542404175, 'TIME_S_1KI': 44.18572335795783, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1458.0208019256593, 'W': 76.48, 'J_1KI': 6257.6000082646315, 'W_1KI': 328.2403433476395, 'W_D': 40.760999999999996, 'J_D': 777.0709454405307, 'W_D_1KI': 174.9399141630901, 'J_D_1KI': 750.8150822450219} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_1e-05.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_1e-05.json index 721cd64..9c3e1bc 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_1e-05.json +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_1e-05.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 361507, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.549095392227173, "TIME_S_1KI": 0.029180888315377497, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 862.0974852204322, "W": 65.27, "J_1KI": 2.3847324815852313, "W_1KI": 0.18054975422329303, "W_D": 30.177249999999994, "J_D": 398.58635415762654, "W_D_1KI": 0.08347625357185336, "J_D_1KI": 0.0002309118594435332} +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 362205, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.420795440673828, "TIME_S_1KI": 0.02877043508696409, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 858.7538476467132, "W": 65.88, "J_1KI": 2.3709055580312617, "W_1KI": 0.18188594856503915, "W_D": 30.515249999999995, "J_D": 397.7700113752484, "W_D_1KI": 0.08424856089783408, "J_D_1KI": 0.00023259911071860987} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_1e-05.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_1e-05.output index 4ba6f6a..3b7f750 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_1e-05.output +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_1e-05.output @@ -1,266 +1,1131 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.043045759201049805} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.01423192024230957} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 998, 999, 1000]), + col_indices=tensor([3651, 8143, 8284, 1201, 8802, 9084, 518, 1318, 7113, + 4198, 6659, 361, 3967, 2631, 475, 1422, 3709, 9745, + 1114, 731, 1484, 190, 4372, 6889, 5946, 9134, 7399, + 9315, 9547, 5191, 558, 5996, 7786, 36, 2608, 6971, + 3588, 9206, 3929, 9738, 5532, 8672, 3550, 556, 7458, + 8249, 9648, 4644, 9311, 9352, 38, 6820, 8314, 7776, + 4648, 2648, 7188, 7862, 9766, 7529, 130, 2138, 9531, + 8955, 7529, 5567, 4237, 5643, 2920, 8945, 2985, 4202, + 7221, 9523, 9145, 9414, 1727, 482, 6337, 9385, 8259, + 3509, 9326, 4737, 9125, 4925, 237, 7538, 8759, 1847, + 9447, 2922, 470, 1647, 9673, 9620, 4380, 489, 1206, + 7536, 7237, 8859, 8031, 2617, 1541, 3066, 2051, 3249, + 799, 2618, 3289, 7373, 6080, 4605, 5686, 1742, 849, + 6896, 7211, 3112, 7256, 3784, 1106, 2254, 6134, 5896, + 1197, 668, 4080, 9988, 7197, 5551, 2494, 6286, 1000, + 4996, 8332, 1100, 2758, 798, 3892, 3478, 2185, 7918, + 2934, 778, 141, 2782, 3364, 3405, 1218, 2274, 7259, + 5489, 6646, 2341, 6847, 7023, 9242, 3864, 2758, 6683, + 8891, 1342, 9608, 1869, 4064, 5757, 8557, 505, 8921, + 9349, 4634, 352, 1820, 5776, 3014, 8861, 7895, 3485, + 5721, 197, 176, 117, 3954, 4225, 7039, 5248, 2463, + 2095, 11, 1760, 9171, 5730, 5601, 9323, 4622, 2426, + 3559, 8535, 6749, 1931, 7698, 9928, 8891, 5123, 8390, + 8697, 6602, 5844, 2162, 8439, 3522, 3358, 3931, 2301, + 4057, 5775, 5263, 8135, 9212, 9531, 3252, 7052, 6494, + 758, 7356, 4215, 9693, 8845, 7141, 2982, 531, 2113, + 4038, 615, 6178, 4213, 9543, 1003, 8259, 9546, 7414, + 7919, 4200, 52, 4324, 4762, 7129, 7642, 6073, 4560, + 2253, 6444, 669, 7596, 1750, 485, 1814, 6910, 8509, + 4617, 1203, 1628, 8037, 4709, 5873, 8080, 203, 987, + 8514, 9228, 3095, 6122, 3762, 801, 3892, 4470, 2052, + 5864, 5657, 6101, 8630, 7401, 6959, 6944, 6101, 4154, + 3180, 3057, 9407, 723, 3850, 364, 3889, 6447, 9732, + 3930, 7935, 4825, 3256, 5086, 2856, 8438, 4603, 8740, + 9625, 3540, 9399, 5097, 4034, 5917, 531, 7347, 5038, + 6274, 647, 1800, 1181, 8789, 5526, 6301, 3891, 6331, + 1478, 6263, 4830, 6993, 7924, 6574, 5359, 4883, 4837, + 5042, 947, 5442, 5733, 3374, 4555, 3375, 3285, 5832, + 9049, 3233, 166, 4580, 1532, 151, 2765, 7817, 8639, + 4125, 8484, 1732, 5071, 6465, 5679, 8488, 8603, 3469, + 9261, 9776, 846, 5701, 7438, 7977, 8568, 2276, 939, + 9123, 3558, 5796, 1651, 3499, 7225, 1382, 979, 1521, + 7794, 7875, 9433, 8620, 9143, 8536, 3539, 3123, 9572, + 8887, 6698, 648, 1852, 3737, 6106, 5365, 7996, 7696, + 6420, 4967, 723, 9089, 9304, 2947, 4078, 3384, 510, + 6462, 9968, 9761, 6304, 6398, 8470, 7323, 4206, 7644, + 801, 8103, 2105, 1747, 4824, 1219, 9728, 7888, 9670, + 2176, 6904, 3033, 9611, 7207, 9012, 1271, 657, 371, + 9123, 6710, 4619, 7211, 2155, 4610, 6025, 285, 9331, + 4113, 554, 5803, 1639, 6961, 1648, 415, 906, 7866, + 1924, 3252, 3636, 5550, 6715, 7435, 8064, 1106, 274, + 3628, 1664, 6161, 5478, 8830, 6266, 1459, 7707, 6348, + 9645, 9206, 4977, 7028, 6265, 4870, 2230, 9839, 9967, + 347, 6592, 8862, 5370, 9685, 8059, 7554, 1703, 4535, + 4005, 4350, 4668, 1143, 4889, 1870, 2588, 240, 675, + 71, 5834, 2880, 4006, 8645, 5427, 9818, 4307, 738, + 3961, 7964, 5288, 9417, 1982, 329, 8068, 4072, 5879, + 6097, 8617, 7503, 1410, 1823, 7077, 6135, 2488, 3328, + 274, 921, 2060, 2645, 3571, 1043, 6316, 8871, 8412, + 5119, 7069, 2665, 85, 34, 8574, 2590, 637, 2202, + 6952, 7619, 3016, 9668, 7862, 6958, 6039, 6333, 7215, + 5464, 8477, 6548, 5285, 7311, 2003, 1410, 2913, 1526, + 9521, 8698, 6223, 3986, 3657, 6207, 7801, 5709, 3647, + 3252, 1035, 9604, 1181, 7037, 159, 4177, 5759, 4872, + 9240, 5252, 3872, 9571, 6044, 7719, 7565, 7149, 3588, + 6562, 3557, 6068, 2546, 6115, 1355, 6668, 4906, 8986, + 6500, 7496, 630, 8871, 9721, 5188, 8498, 7741, 5019, + 628, 8555, 587, 5660, 9280, 7630, 6539, 5875, 2329, + 5734, 8187, 7487, 1969, 563, 9588, 8397, 4526, 9056, + 9279, 1452, 7145, 4509, 8675, 9423, 4903, 6061, 3078, + 9854, 658, 2800, 8777, 3256, 6502, 655, 4202, 2340, + 7264, 2793, 9667, 7007, 1984, 2597, 8329, 973, 2964, + 5928, 5694, 7, 458, 1678, 8136, 7463, 5577, 1552, + 8802, 7791, 3267, 9658, 7328, 8612, 1072, 8025, 9476, + 1953, 9826, 5398, 8217, 3320, 6354, 9186, 4280, 429, + 8543, 1826, 2844, 6067, 725, 1315, 8628, 7368, 7864, + 4348, 880, 8731, 1212, 8814, 5248, 5301, 5948, 6407, + 5261, 1408, 3246, 3306, 9042, 2193, 3541, 9568, 5425, + 6999, 7594, 1750, 1807, 6659, 2171, 9504, 1409, 9150, + 8663, 1696, 1010, 8263, 1112, 7827, 8063, 2910, 334, + 16, 3900, 2459, 926, 9369, 1805, 4344, 9836, 4115, + 1369, 4988, 1627, 5156, 2353, 7777, 5894, 8446, 4883, + 2998, 1145, 6802, 3712, 7048, 8242, 4573, 1952, 9161, + 2948, 1393, 5629, 6077, 6217, 7741, 5490, 4760, 4928, + 1111, 4030, 3358, 6226, 9638, 8878, 3960, 3811, 7376, + 3518, 4285, 2019, 3229, 8382, 4467, 8984, 5949, 7869, + 9506, 3931, 1371, 3956, 1352, 8445, 4708, 282, 7584, + 1810, 9323, 6419, 249, 2071, 7240, 9768, 3331, 8772, + 8183, 1613, 8842, 2926, 7357, 3452, 3763, 4133, 7805, + 1885, 7240, 2702, 9042, 9269, 3584, 5278, 8194, 3343, + 7179, 8945, 3898, 5523, 3442, 7945, 2587, 5458, 9537, + 6622, 2944, 1110, 771, 236, 8935, 9666, 139, 7612, + 4134, 3984, 5023, 4683, 9275, 111, 7428, 7669, 7747, + 755, 2779, 3468, 8498, 3541, 7482, 944, 4464, 8516, + 463, 5427, 8364, 7748, 7401, 6892, 9346, 1909, 9249, + 86, 7583, 3063, 6943, 626, 6091, 2519, 1737, 8751, + 9124, 1009, 3316, 5731, 5829, 4431, 2023, 2450, 6131, + 8424, 4861, 7933, 8078, 1779, 8877, 9139, 4928, 6951, + 3919, 3482, 9094, 3852, 5471, 7856, 3392, 1994, 9752, + 3756, 1817, 2591, 2817, 8894, 629, 9298, 5223, 8822, + 1201, 4189, 9730, 9744, 8034, 9431, 7558, 9291, 4944, + 6796, 6751, 6082, 5976, 5338, 8944, 6438, 5985, 1828, + 2836, 465, 3960, 4405, 5510, 5454, 8633, 6603, 9533, + 8571, 4583, 7144, 6663, 4393, 2927, 2954, 8837, 5885, + 2961, 5939, 1827, 723, 7500, 2196, 8973, 455, 8932, + 7063, 3686, 5260, 2893, 3247, 6085, 381, 1076, 6381, + 5199, 7305, 6086, 9206, 3702, 9000, 1702, 2385, 6122, + 7104, 8300, 3094, 3205, 8369, 2427, 9735, 4152, 6605, + 5060, 8896, 8622, 7660, 6402, 2450, 225, 677, 5702, + 9898, 1760, 5944, 2917, 4615, 3267, 4326, 273, 948, + 9292, 3919, 1215, 2725, 3011, 184, 7139, 7428, 6341, + 6075]), + values=tensor([4.0893e-01, 7.4647e-01, 4.0914e-01, 3.5864e-01, + 4.8555e-01, 1.8092e-04, 3.0123e-01, 4.6002e-01, + 6.8513e-01, 7.7433e-01, 1.1833e-01, 7.7674e-01, + 2.1230e-02, 6.5005e-01, 2.5378e-03, 1.4380e-02, + 4.7469e-01, 7.3133e-01, 3.5139e-01, 9.5308e-01, + 8.5012e-01, 6.7265e-01, 3.0657e-01, 6.1900e-01, + 5.5589e-01, 9.4629e-01, 3.6042e-01, 3.1773e-02, + 5.5135e-01, 5.7262e-01, 8.6726e-01, 2.2990e-01, + 2.7172e-01, 8.1676e-01, 9.8110e-01, 6.1687e-02, + 9.1464e-01, 8.3395e-01, 5.0196e-02, 2.3382e-01, + 3.5840e-01, 6.2133e-01, 1.0935e-01, 1.9079e-01, + 9.0813e-01, 6.0670e-01, 9.4361e-01, 4.0716e-01, + 2.6226e-01, 2.9494e-01, 4.5161e-01, 1.5794e-02, + 5.5005e-02, 2.7524e-01, 8.4708e-02, 2.7124e-01, + 5.9039e-01, 4.4167e-01, 3.5090e-02, 7.8814e-02, + 3.3788e-01, 3.3405e-01, 9.6722e-01, 2.9590e-01, + 8.2668e-01, 3.8429e-01, 1.1459e-01, 7.2456e-01, + 6.3513e-01, 5.5357e-01, 7.5112e-02, 4.6214e-01, + 8.2042e-01, 8.8648e-01, 5.7232e-01, 5.0082e-01, + 7.2914e-01, 4.7976e-01, 1.9845e-01, 7.8635e-01, + 8.4682e-02, 8.8008e-01, 3.3425e-01, 5.1799e-01, + 4.9607e-01, 3.9452e-03, 5.5016e-02, 3.1020e-01, + 8.9128e-02, 4.3443e-01, 2.9563e-01, 7.3845e-01, + 7.2493e-01, 1.5083e-01, 7.4143e-01, 2.7680e-01, + 8.7421e-01, 5.4248e-02, 4.9964e-01, 8.0841e-01, + 8.4502e-01, 3.6483e-01, 8.3624e-02, 7.4983e-01, + 1.2633e-01, 9.9425e-02, 4.8657e-02, 4.9780e-01, + 4.6150e-01, 6.6866e-01, 7.5273e-01, 6.5112e-01, + 2.2094e-01, 9.3158e-02, 2.0877e-01, 1.4861e-01, + 3.6390e-01, 5.0828e-01, 1.5597e-01, 4.6034e-01, + 9.3777e-02, 6.9770e-01, 6.5803e-02, 9.5397e-01, + 3.0578e-01, 9.4048e-01, 5.9922e-01, 7.7196e-01, + 9.7704e-01, 2.2835e-01, 9.9383e-01, 8.6800e-01, + 8.8874e-01, 7.2989e-01, 4.9534e-01, 1.1077e-01, + 1.9545e-01, 9.8031e-01, 7.0316e-01, 1.0654e-01, + 4.6569e-01, 9.8063e-01, 6.9036e-01, 6.1855e-01, + 1.7249e-01, 1.4035e-01, 6.4122e-01, 4.2890e-01, + 4.4597e-01, 2.0114e-01, 6.2076e-01, 2.6296e-01, + 5.1906e-01, 4.6291e-02, 4.3527e-01, 8.6879e-01, + 2.7018e-02, 6.7597e-01, 9.9164e-01, 2.6552e-01, + 7.9984e-01, 7.7352e-01, 1.7076e-01, 4.2917e-01, + 1.6896e-01, 9.6141e-02, 1.5324e-01, 2.2314e-01, + 1.1977e-01, 9.3202e-01, 8.6227e-01, 7.1184e-01, + 4.1014e-01, 5.2121e-01, 4.3074e-01, 1.5812e-01, + 6.7409e-02, 7.7385e-01, 9.2572e-01, 3.7243e-01, + 7.7639e-01, 1.3124e-01, 9.6748e-01, 9.9585e-01, + 9.4879e-02, 4.2174e-01, 1.0964e-01, 7.7620e-01, + 4.2591e-01, 1.0445e-01, 4.8496e-01, 8.8067e-01, + 4.7605e-01, 4.0209e-02, 2.9210e-01, 9.7444e-01, + 2.6426e-01, 7.9845e-01, 8.6184e-01, 2.8088e-01, + 4.7154e-01, 7.8332e-01, 3.3323e-01, 8.9045e-01, + 5.3742e-01, 5.4121e-01, 3.5738e-01, 2.8552e-01, + 6.6960e-01, 7.9798e-02, 9.5883e-02, 6.4858e-01, + 6.1198e-01, 3.9265e-01, 6.7901e-01, 7.7712e-01, + 7.3831e-01, 3.8690e-01, 2.8814e-01, 1.5900e-01, + 7.4089e-01, 3.3823e-02, 6.0486e-02, 1.9784e-02, + 7.5396e-01, 6.7253e-01, 2.0684e-01, 3.3255e-01, + 5.8123e-01, 9.0516e-01, 8.4270e-02, 5.9737e-01, + 9.1544e-01, 3.8624e-01, 8.6974e-01, 5.9614e-01, + 3.4793e-01, 2.2719e-01, 5.0042e-01, 3.1822e-01, + 1.4557e-02, 3.8869e-02, 2.4391e-01, 2.0417e-01, + 6.8119e-01, 9.6452e-03, 8.2586e-01, 3.7726e-01, + 7.5797e-01, 7.3036e-01, 1.0288e-01, 5.9685e-01, + 4.1494e-01, 6.9899e-01, 3.6873e-01, 8.5351e-01, + 8.1078e-01, 8.1658e-01, 2.2052e-01, 1.4704e-01, + 1.1582e-01, 2.2602e-01, 9.1009e-01, 7.8758e-01, + 2.0662e-01, 9.7393e-01, 1.5186e-01, 2.0325e-01, + 5.2871e-01, 7.1085e-01, 7.7983e-01, 3.6386e-01, + 8.1438e-03, 2.8844e-01, 9.8254e-01, 9.2260e-01, + 9.3691e-01, 4.4583e-01, 6.9386e-01, 7.4592e-01, + 8.5702e-01, 8.7501e-01, 8.6228e-01, 6.8437e-02, + 8.8003e-01, 5.9655e-02, 5.5984e-01, 5.3624e-01, + 5.1137e-01, 6.6329e-02, 4.5292e-01, 9.3699e-01, + 9.3817e-01, 9.4024e-01, 8.9176e-01, 1.0596e-01, + 8.7853e-01, 8.9555e-01, 9.5549e-01, 9.6768e-01, + 6.0145e-01, 5.1318e-01, 9.7239e-01, 8.2053e-01, + 1.5019e-01, 9.3464e-01, 7.3976e-01, 1.5624e-01, + 5.8975e-01, 6.6958e-01, 4.4599e-01, 6.0277e-02, + 8.8260e-01, 9.3177e-01, 8.0332e-01, 9.8789e-01, + 4.1076e-01, 2.3903e-01, 3.9403e-01, 8.9861e-01, + 6.0636e-01, 5.1990e-01, 8.5455e-01, 3.3246e-01, + 7.3782e-01, 1.4832e-01, 5.5070e-01, 4.8315e-01, + 4.3169e-01, 2.1798e-01, 1.4116e-02, 1.8134e-01, + 8.1250e-02, 3.4893e-01, 1.9401e-01, 9.6046e-01, + 3.8487e-01, 4.5091e-01, 4.4411e-01, 6.2029e-02, + 5.7398e-01, 8.6131e-01, 8.9893e-02, 1.7085e-01, + 8.5289e-01, 3.7000e-01, 2.3685e-01, 2.6378e-01, + 9.1867e-01, 6.1129e-01, 8.6874e-01, 1.9254e-01, + 8.3643e-02, 6.8821e-01, 2.7187e-01, 4.6686e-01, + 9.7703e-01, 5.0208e-01, 2.6366e-01, 6.2374e-01, + 2.3604e-01, 9.9467e-01, 8.0512e-01, 8.0824e-02, + 1.8891e-01, 1.0550e-01, 5.5150e-01, 1.2517e-01, + 2.7982e-01, 2.4216e-01, 4.1069e-01, 6.8340e-01, + 7.3819e-02, 9.1765e-01, 5.7174e-01, 9.9094e-01, + 6.6466e-01, 3.5731e-01, 1.8235e-01, 4.5610e-01, + 8.7234e-01, 5.0580e-01, 2.8747e-01, 8.1041e-01, + 4.7505e-01, 2.0576e-01, 8.9010e-01, 8.4393e-01, + 4.7564e-01, 9.1611e-01, 3.3871e-01, 5.8593e-01, + 9.1005e-01, 4.6075e-01, 2.2976e-01, 1.6047e-01, + 6.2572e-02, 8.8079e-01, 7.9591e-01, 3.7074e-02, + 2.5624e-01, 5.3032e-01, 3.1496e-01, 5.5436e-01, + 5.2931e-01, 9.5389e-01, 6.3221e-01, 1.7242e-01, + 8.3925e-01, 7.5080e-01, 8.9636e-01, 7.4764e-01, + 9.0250e-01, 8.2000e-01, 2.9637e-01, 6.3107e-01, + 5.1566e-01, 9.1943e-01, 4.8464e-01, 2.2422e-01, + 7.0865e-01, 3.7071e-03, 8.8154e-01, 8.4300e-01, + 5.9617e-01, 7.8834e-01, 9.3422e-02, 6.2256e-01, + 8.3740e-01, 8.4745e-01, 2.3007e-02, 5.3812e-01, + 2.3587e-01, 2.9263e-01, 8.1439e-01, 2.4432e-01, + 3.1496e-01, 6.8237e-01, 9.9900e-01, 5.1112e-01, + 6.1402e-02, 2.0358e-01, 6.3097e-01, 1.7750e-01, + 3.5024e-01, 3.0596e-02, 7.3322e-01, 8.2818e-01, + 6.9285e-01, 1.8523e-01, 8.6152e-01, 9.3401e-01, + 4.5793e-01, 4.1794e-01, 4.9425e-01, 6.8516e-01, + 6.5776e-01, 6.9317e-01, 3.2227e-02, 2.8983e-01, + 8.6778e-01, 8.3223e-01, 6.3141e-01, 4.1697e-01, + 1.5997e-01, 2.8398e-02, 3.6903e-01, 7.4846e-01, + 9.4236e-01, 6.7992e-01, 7.9570e-01, 7.0022e-01, + 3.9911e-01, 5.4460e-01, 5.3406e-01, 6.1707e-02, + 3.4846e-01, 7.8485e-03, 5.2423e-01, 1.8395e-01, + 1.2384e-02, 2.1221e-01, 9.8422e-01, 2.7750e-02, + 7.8006e-02, 8.5223e-01, 7.3279e-01, 7.5232e-01, + 9.8682e-02, 5.9891e-01, 7.2723e-01, 7.2170e-01, + 6.7640e-01, 3.1676e-01, 7.2952e-01, 8.8475e-01, + 1.0979e-01, 1.0927e-01, 3.1374e-01, 3.8162e-01, + 6.8310e-01, 8.9795e-01, 6.9303e-01, 2.0847e-01, + 7.0549e-01, 4.6013e-01, 1.0482e-02, 8.2480e-02, + 6.3437e-01, 2.2931e-01, 5.8909e-01, 1.5036e-01, + 9.5013e-02, 3.0604e-02, 3.4294e-01, 3.0982e-01, + 3.3888e-01, 7.3004e-01, 2.7535e-01, 4.6383e-01, + 3.7714e-01, 1.6771e-01, 2.8789e-01, 6.4774e-01, + 8.7569e-01, 5.8565e-01, 3.7890e-01, 1.7734e-01, + 8.5514e-01, 6.2505e-01, 2.0834e-01, 4.7834e-01, + 4.1297e-01, 1.9860e-01, 2.9647e-02, 4.3259e-01, + 2.8413e-01, 5.6185e-01, 8.2575e-02, 6.8264e-02, + 7.9173e-01, 9.4058e-01, 9.9665e-01, 1.5687e-01, + 9.0528e-01, 8.6377e-01, 6.8574e-01, 7.6422e-02, + 8.4351e-01, 4.1954e-01, 5.1337e-02, 9.5963e-02, + 7.5659e-01, 8.6958e-01, 7.4293e-02, 8.5173e-01, + 2.3423e-01, 3.5272e-03, 4.5855e-01, 2.5929e-01, + 1.8317e-01, 3.9174e-01, 1.9440e-01, 7.1044e-01, + 7.0894e-01, 8.5999e-02, 8.3721e-01, 6.8479e-01, + 6.4997e-01, 5.8657e-01, 5.1681e-01, 3.9751e-01, + 4.2349e-01, 2.1141e-01, 3.0925e-01, 3.4787e-02, + 3.7440e-01, 3.1224e-01, 2.9507e-01, 4.5275e-01, + 4.4228e-01, 9.2088e-01, 7.0840e-01, 8.1934e-02, + 8.9574e-01, 2.9883e-01, 9.7423e-01, 8.2101e-01, + 6.5546e-02, 3.5597e-01, 7.5741e-01, 3.4616e-01, + 8.3611e-01, 8.8683e-01, 2.5757e-01, 6.8378e-01, + 7.9689e-01, 9.6721e-01, 4.2741e-01, 3.3442e-02, + 8.7813e-01, 6.5055e-01, 1.7699e-01, 9.4707e-01, + 9.8286e-01, 5.1212e-01, 7.7437e-01, 5.3901e-01, + 8.9561e-01, 1.0947e-02, 3.2047e-01, 7.3343e-01, + 2.7138e-01, 9.5091e-01, 2.0941e-01, 5.3765e-01, + 6.1969e-01, 9.5062e-01, 9.8183e-01, 9.1239e-01, + 4.0820e-02, 7.5090e-01, 5.9426e-01, 3.6137e-01, + 5.3664e-01, 2.4273e-01, 7.0358e-01, 8.6205e-01, + 9.1349e-01, 3.4262e-01, 4.5848e-01, 3.6446e-01, + 6.4786e-01, 8.8286e-01, 4.6119e-01, 2.3044e-01, + 3.5263e-01, 6.8361e-01, 4.7663e-01, 5.6685e-03, + 8.3359e-01, 3.5310e-01, 8.9949e-02, 5.1295e-01, + 8.6279e-01, 7.2924e-01, 7.0823e-01, 4.7497e-01, + 9.8642e-01, 9.6950e-01, 3.1822e-01, 8.9707e-01, + 8.2130e-02, 8.3490e-01, 2.5776e-01, 5.1683e-01, + 1.1497e-01, 8.3218e-01, 8.6213e-01, 3.2832e-03, + 7.0292e-01, 2.8831e-01, 4.4333e-01, 7.2009e-01, + 4.0793e-01, 4.5162e-01, 3.6693e-01, 1.2147e-01, + 7.6792e-01, 1.5089e-01, 6.2167e-01, 3.5245e-01, + 9.3500e-01, 7.9017e-01, 9.1171e-01, 7.0950e-01, + 7.5701e-01, 8.5804e-01, 4.4625e-01, 6.2964e-01, + 4.0825e-01, 4.8145e-01, 3.6250e-01, 2.1616e-01, + 5.0502e-01, 2.4223e-02, 4.9976e-01, 9.0505e-01, + 9.3497e-01, 8.6822e-01, 8.5824e-01, 1.7667e-01, + 2.2820e-01, 3.3221e-01, 9.1383e-01, 1.5961e-01, + 2.3015e-01, 5.6818e-01, 9.9248e-01, 9.5778e-01, + 4.5782e-01, 3.0766e-01, 4.2287e-01, 6.0590e-01, + 3.1194e-01, 6.2603e-01, 1.2652e-01, 6.6990e-01, + 2.7961e-01, 8.6904e-01, 6.2781e-01, 8.5423e-01, + 2.5994e-01, 3.5572e-01, 8.9677e-01, 6.9735e-02, + 8.7326e-01, 2.3486e-01, 6.7756e-01, 9.1506e-01, + 6.6235e-01, 6.3638e-01, 6.2212e-01, 4.2214e-01, + 9.6628e-01, 4.7979e-01, 5.5599e-01, 6.6975e-01, + 9.1770e-01, 8.4921e-01, 7.8228e-01, 4.9541e-01, + 2.4676e-01, 5.8229e-01, 6.3363e-01, 5.8999e-01, + 5.5398e-01, 1.7297e-01, 2.6442e-01, 6.6954e-01, + 4.0705e-01, 1.5092e-01, 8.6820e-01, 8.0155e-01, + 9.6246e-01, 5.4199e-02, 6.1116e-01, 1.0232e-01, + 8.6891e-01, 2.4082e-01, 5.6454e-01, 2.4664e-01, + 3.0002e-01, 3.8365e-01, 4.3945e-01, 7.7554e-01, + 3.5987e-01, 4.1034e-01, 1.7631e-01, 4.3247e-01, + 4.9655e-01, 9.4554e-01, 5.2332e-01, 9.9976e-01, + 2.3445e-01, 4.2321e-01, 1.2031e-01, 6.9179e-01, + 9.5785e-01, 9.2308e-01, 2.4116e-01, 9.9876e-01, + 2.0342e-01, 8.9867e-01, 3.4996e-01, 2.3225e-01, + 2.8198e-01, 2.7293e-01, 7.0256e-02, 8.3430e-01, + 9.7407e-01, 2.1501e-02, 5.6137e-02, 8.3712e-01, + 2.1155e-01, 2.0680e-01, 5.8653e-01, 7.0146e-01, + 2.4499e-01, 6.1291e-01, 6.7401e-02, 5.2936e-02, + 5.5710e-01, 3.6277e-01, 6.4019e-01, 8.5335e-01, + 4.7761e-01, 2.3988e-01, 5.6900e-01, 2.0262e-01, + 4.5640e-01, 4.8010e-01, 8.7735e-01, 9.6990e-01, + 1.2396e-02, 7.7949e-01, 7.6676e-01, 2.7081e-01, + 5.2024e-01, 2.6366e-01, 7.9351e-01, 7.7967e-01, + 5.1343e-01, 8.6651e-01, 7.1801e-01, 5.4343e-01, + 5.7478e-01, 6.1938e-01, 7.5548e-02, 9.0783e-01, + 5.9722e-01, 7.1908e-01, 2.7312e-01, 4.9747e-01, + 1.7016e-01, 7.4263e-01, 9.3484e-01, 2.5565e-01, + 7.6354e-01, 6.9252e-01, 8.9558e-01, 5.9991e-01, + 7.4127e-01, 2.4916e-01, 3.2608e-01, 1.1447e-01, + 2.9080e-01, 2.2015e-01, 2.7586e-01, 9.3624e-01, + 5.0901e-01, 9.2773e-01, 2.3779e-01, 7.2414e-01, + 6.2115e-01, 8.8543e-03, 9.5559e-01, 5.5237e-01, + 5.9702e-02, 3.0996e-02, 2.7452e-01, 9.3476e-01, + 9.2334e-01, 1.0158e-01, 8.1141e-01, 4.2710e-01, + 9.4909e-02, 3.4917e-01, 1.6636e-01, 7.4557e-01, + 8.8926e-01, 4.1535e-01, 8.2911e-01, 1.4004e-01, + 1.3374e-02, 1.4100e-01, 9.0306e-01, 4.8827e-02, + 7.7186e-01, 6.3321e-01, 1.9462e-01, 3.9827e-01, + 5.9589e-01, 5.0163e-01, 5.5641e-01, 3.2488e-01, + 6.6930e-01, 5.1964e-01, 3.1040e-01, 8.3101e-01, + 9.1606e-01, 8.0023e-01, 3.2635e-01, 6.2952e-01, + 7.4512e-01, 2.9163e-01, 3.0956e-01, 5.7898e-01, + 3.8483e-01, 3.5295e-01, 7.1281e-02, 9.3899e-02, + 7.5473e-01, 5.6119e-01, 7.2374e-01, 3.3493e-01, + 2.1353e-01, 4.1028e-01, 4.3380e-01, 4.9443e-01, + 8.3914e-01, 4.0980e-01, 2.2353e-01, 4.6856e-01, + 9.8532e-01, 4.1826e-01, 7.2795e-01, 8.8187e-01, + 2.2991e-01, 5.6937e-01, 8.7997e-01, 9.8732e-01, + 8.9366e-01, 3.8819e-01, 8.6363e-01, 1.1832e-01, + 3.8550e-01, 7.5854e-01, 5.3971e-01, 4.0107e-01, + 7.1399e-02, 7.0022e-01, 3.9042e-01, 4.6769e-01, + 4.1568e-01, 1.8784e-03, 5.3264e-01, 3.9975e-01, + 7.9966e-01, 1.8820e-01, 1.7925e-02, 3.9911e-01, + 9.2246e-01, 1.7928e-01, 8.4736e-01, 7.0479e-01, + 5.7742e-01, 3.6414e-01, 6.4537e-01, 6.3918e-01, + 9.7580e-01, 2.1688e-01, 5.4784e-01, 7.4740e-01, + 1.3211e-01, 3.6429e-02, 4.4621e-01, 6.6190e-01, + 5.3119e-01, 2.5916e-01, 1.5296e-03, 5.4547e-01, + 7.1935e-01, 1.0792e-01, 5.1658e-02, 8.1958e-02, + 4.1507e-01, 8.1530e-01, 1.1213e-01, 1.5070e-01, + 6.7624e-01, 8.1166e-01, 8.6140e-01, 2.2385e-01, + 9.3921e-01, 4.0510e-01, 8.1991e-01, 8.7893e-01, + 2.8937e-01, 1.6184e-01, 2.8851e-01, 7.3226e-01, + 9.5694e-01, 6.4905e-01, 2.8654e-01, 3.4884e-01, + 9.3195e-01, 2.5569e-01, 8.9239e-01, 9.7412e-02, + 4.6401e-01, 6.8605e-01, 1.7844e-01, 1.5800e-01, + 6.8510e-01, 6.7166e-01, 3.4981e-02, 3.1457e-02, + 2.0280e-01, 5.6851e-01, 1.3432e-01, 8.7812e-01, + 7.2954e-01, 8.1625e-01, 3.7929e-01, 7.5942e-01, + 5.3153e-01, 5.4974e-01, 9.8914e-01, 7.2178e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.1442, 0.3479, 0.0736, ..., 0.7713, 0.5566, 0.1675]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 0.01423192024230957 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '73777', '-ss', '10000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 2.1387269496917725} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 1000, 1000, 1000]), + col_indices=tensor([5508, 9575, 656, 2627, 8566, 5820, 3018, 3373, 4414, + 3055, 6937, 1153, 3250, 1389, 6514, 3345, 2855, 7135, + 4792, 7175, 808, 4068, 3395, 4430, 2729, 8023, 6573, + 5208, 6115, 4870, 2959, 9004, 6154, 6036, 7804, 4772, + 5201, 296, 3325, 6381, 5380, 9121, 1445, 4957, 6867, + 4006, 2284, 5865, 3974, 9462, 3299, 49, 9461, 6670, + 3714, 3027, 4310, 2400, 5954, 7235, 2580, 2868, 7198, + 3736, 5562, 9005, 8912, 2276, 8194, 5812, 8468, 2983, + 6818, 255, 9224, 6925, 9166, 298, 3685, 1181, 2606, + 9590, 7743, 2755, 3440, 9622, 8827, 767, 6647, 6657, + 9003, 6161, 3158, 3383, 8984, 4164, 6155, 1581, 6250, + 3148, 5225, 7492, 1641, 3667, 1192, 2607, 7402, 6138, + 2597, 2358, 274, 9224, 7866, 4138, 5342, 38, 3457, + 5561, 5899, 2231, 5345, 7211, 5666, 1005, 6429, 1717, + 4864, 6032, 2544, 6728, 2581, 9245, 4695, 381, 3082, + 2086, 6195, 4752, 4134, 1810, 9562, 3721, 268, 4151, + 5614, 5819, 1155, 8820, 5775, 7686, 2525, 6174, 5674, + 9202, 279, 7651, 9040, 5, 6561, 3605, 6968, 2146, + 953, 377, 4363, 187, 7768, 751, 9638, 1330, 4286, + 1751, 8364, 6205, 8982, 8713, 8415, 8469, 6147, 491, + 5083, 2289, 8302, 8307, 1182, 2477, 2676, 5713, 9967, + 4103, 6320, 780, 3861, 5582, 5133, 3823, 1563, 4798, + 4512, 4446, 7915, 4568, 903, 1523, 3572, 5001, 1933, + 1949, 8734, 4705, 2155, 9618, 715, 6214, 4699, 997, + 7101, 2851, 9068, 1466, 7697, 4478, 7542, 2752, 2412, + 18, 2463, 5978, 4225, 6611, 4731, 5581, 7116, 7970, + 2865, 8155, 4666, 604, 7169, 7837, 4336, 6912, 697, + 5910, 8813, 5358, 8366, 9544, 501, 4615, 2803, 6919, + 2746, 1371, 4480, 7793, 6743, 6203, 1713, 865, 1494, + 9168, 9742, 4247, 3057, 8065, 4346, 2523, 6892, 1113, + 3827, 763, 132, 1453, 4262, 294, 8688, 9365, 3282, + 8252, 7662, 5148, 6621, 3594, 8378, 4159, 6261, 4499, + 7194, 6189, 9208, 1850, 3329, 2636, 8760, 3724, 3020, + 3329, 3956, 184, 9442, 8259, 7422, 5104, 240, 5838, + 1954, 7486, 8601, 3925, 7339, 2015, 1974, 3758, 3482, + 8722, 5421, 9520, 4546, 5331, 6717, 5812, 7975, 7442, + 7940, 4158, 7967, 6116, 3811, 7786, 1220, 4785, 6185, + 579, 3103, 7158, 8394, 2983, 6440, 5229, 2484, 1111, + 16, 2051, 1935, 293, 2058, 4920, 7225, 9659, 5108, + 639, 1031, 4323, 8725, 2666, 7298, 3414, 5109, 6513, + 2574, 266, 919, 1740, 8088, 5280, 894, 6663, 1130, + 7446, 4099, 20, 7217, 3332, 8885, 3112, 2296, 5865, + 56, 4230, 7201, 4767, 2688, 1411, 9682, 7533, 7713, + 5376, 8528, 19, 1667, 3225, 7209, 9374, 9673, 8929, + 5186, 3393, 5754, 458, 7524, 5689, 1857, 584, 2192, + 9671, 8149, 7375, 3650, 7201, 7617, 524, 5283, 3542, + 8092, 5244, 7073, 8028, 4271, 9656, 7882, 874, 2907, + 6918, 3419, 5521, 9656, 2461, 9839, 5975, 5084, 1139, + 6395, 805, 1410, 4457, 9849, 8263, 514, 713, 4473, + 3973, 1009, 6909, 7592, 3285, 3898, 5360, 2525, 440, + 9369, 1527, 3851, 9222, 3247, 3317, 4058, 7353, 2516, + 4234, 7642, 6022, 9914, 5180, 6543, 8560, 1441, 6117, + 2991, 8437, 3934, 9954, 7373, 1482, 1468, 7800, 5928, + 9144, 2690, 4445, 134, 7037, 9825, 1077, 7704, 5017, + 7739, 1905, 2423, 2516, 175, 6651, 6001, 6897, 6784, + 4971, 6198, 365, 1638, 7617, 6571, 7493, 3203, 704, + 2950, 2519, 5939, 5997, 931, 7748, 1950, 8185, 5176, + 890, 3070, 2791, 6438, 8457, 5669, 4411, 1482, 7050, + 601, 287, 5291, 4620, 2195, 1746, 4986, 8569, 3581, + 9031, 6202, 4210, 8431, 5885, 6652, 8914, 5202, 5034, + 816, 9352, 3322, 4967, 2768, 6719, 1660, 5297, 984, + 7606, 4288, 353, 7241, 1058, 9337, 9042, 97, 7482, + 3656, 4781, 9768, 5551, 9382, 6204, 3873, 3658, 9543, + 7766, 9333, 6514, 8310, 3838, 9481, 1887, 7793, 7682, + 9769, 4432, 4077, 5553, 8666, 5009, 9686, 1897, 5687, + 3382, 5919, 6551, 985, 8716, 2117, 7814, 5439, 7352, + 9154, 1069, 2145, 3994, 2450, 9754, 2935, 404, 138, + 6862, 4476, 5505, 2562, 2599, 2713, 4755, 6459, 7992, + 5580, 8294, 5009, 2485, 3945, 804, 8407, 3840, 3255, + 3135, 998, 5023, 8897, 4666, 1858, 4752, 135, 5372, + 1971, 2696, 7255, 1370, 8484, 4531, 4478, 5553, 2961, + 5403, 8082, 2803, 4478, 8089, 2563, 8344, 6470, 7823, + 5312, 5620, 5527, 4242, 8621, 2330, 4398, 642, 8991, + 7171, 9790, 5285, 6026, 3822, 3235, 4680, 6765, 3912, + 6543, 1450, 8818, 7558, 3261, 2113, 2373, 6919, 1131, + 6346, 3897, 1491, 1956, 4891, 7597, 996, 4074, 4722, + 2917, 5715, 8477, 9008, 7897, 4755, 7127, 2468, 4303, + 8306, 3974, 8907, 6722, 8711, 5733, 5028, 9135, 1866, + 7880, 3122, 2881, 8959, 8975, 55, 2311, 518, 7346, + 3155, 8803, 9740, 1957, 1812, 9667, 6289, 8136, 3531, + 1701, 495, 6279, 3572, 1162, 849, 217, 4374, 1639, + 1008, 5290, 4005, 9949, 9499, 7223, 3926, 7792, 354, + 8743, 429, 9875, 4421, 8853, 4992, 7345, 2313, 5947, + 2043, 7821, 7045, 3713, 1991, 9737, 2501, 6974, 8470, + 9355, 1042, 5178, 8527, 3387, 490, 4642, 8954, 1137, + 8655, 3394, 6784, 7051, 1774, 6167, 9750, 8404, 3082, + 6552, 4440, 522, 3508, 6337, 1418, 9452, 7117, 6648, + 8517, 766, 124, 6291, 1485, 2849, 7280, 459, 6691, + 7248, 5962, 9416, 2853, 3078, 5487, 3279, 8934, 9426, + 8788, 3551, 5452, 6149, 8603, 4993, 498, 4502, 2852, + 8524, 8859, 7620, 8162, 97, 6066, 6387, 8989, 817, + 1568, 246, 5600, 6289, 8988, 5342, 8448, 5649, 3692, + 688, 5698, 9881, 5150, 1629, 4058, 8276, 7736, 2593, + 1359, 4844, 9564, 7059, 7297, 9003, 798, 1319, 4119, + 2381, 7125, 4085, 273, 5623, 8157, 7485, 7765, 726, + 6395, 7157, 2290, 1726, 6046, 982, 9604, 2732, 8470, + 7237, 619, 3919, 7222, 540, 9760, 4380, 7356, 6016, + 7784, 4321, 395, 6423, 8568, 6214, 7974, 3353, 8129, + 6464, 9392, 9492, 3759, 472, 9308, 9344, 5127, 7423, + 6806, 1474, 2823, 5706, 1764, 6599, 9778, 8657, 7022, + 3614, 4485, 2452, 7525, 3149, 8601, 9645, 4269, 1503, + 6069, 2741, 3306, 863, 1229, 9656, 4386, 1768, 867, + 4819, 8547, 4244, 4948, 4190, 762, 9133, 131, 6780, + 6079, 8208, 5847, 9316, 7287, 8495, 2586, 1656, 4465, + 8814, 4625, 11, 2919, 3804, 7982, 6935, 9826, 7505, + 1259, 1040, 140, 9789, 2693, 5742, 2306, 7537, 8992, + 8296, 9987, 103, 8057, 643, 1848, 2330, 3674, 7402, + 1282, 4176, 8432, 9278, 6798, 342, 6639, 8590, 2414, + 6534, 9031, 318, 5748, 4899, 3462, 8454, 2064, 8941, + 716, 5685, 1233, 1844, 1555, 318, 7269, 8269, 8949, + 7099, 9893, 538, 3010, 6057, 7431, 5445, 2794, 2504, + 5841]), + values=tensor([3.2633e-01, 7.9191e-01, 3.6473e-01, 5.2553e-02, + 5.7875e-01, 8.9363e-01, 9.6431e-01, 4.0938e-02, + 1.5024e-01, 9.3457e-02, 8.5666e-01, 6.6021e-01, + 1.9759e-01, 8.0939e-01, 7.4204e-01, 2.8880e-01, + 7.9046e-01, 7.8851e-01, 7.0371e-01, 1.3685e-01, + 5.0481e-01, 3.6903e-01, 9.2692e-01, 8.9307e-02, + 4.0071e-01, 8.5389e-02, 6.8778e-01, 9.1185e-01, + 3.9447e-01, 4.1056e-01, 6.9100e-03, 4.4205e-01, + 8.9282e-01, 9.3322e-01, 8.3638e-01, 1.9546e-01, + 4.4549e-01, 8.8377e-01, 8.9362e-01, 6.5160e-01, + 3.2815e-02, 6.3599e-01, 2.9856e-01, 3.8738e-01, + 5.7386e-01, 2.8263e-01, 5.0030e-01, 3.7536e-01, + 2.7007e-01, 9.5128e-01, 6.1301e-01, 9.8955e-01, + 4.8124e-01, 8.0247e-01, 9.1091e-01, 7.1646e-01, + 8.6645e-01, 9.2664e-03, 3.1727e-01, 1.0464e-01, + 7.6432e-01, 3.2572e-01, 6.4872e-01, 4.6614e-01, + 6.3000e-01, 9.5522e-01, 3.9473e-01, 3.8621e-01, + 5.6019e-01, 1.1553e-01, 5.3397e-01, 4.0184e-01, + 6.5600e-01, 7.2218e-01, 5.3125e-01, 6.7148e-01, + 1.5411e-01, 2.4424e-01, 6.2084e-03, 1.7181e-01, + 5.5933e-01, 8.9801e-02, 3.3998e-01, 1.1723e-01, + 3.0450e-01, 3.8459e-01, 9.8748e-01, 9.0307e-01, + 8.4006e-01, 7.4864e-01, 3.1639e-01, 2.1710e-01, + 7.3644e-01, 3.8356e-01, 3.0116e-01, 3.5797e-02, + 6.7960e-01, 3.8349e-01, 8.9489e-01, 6.5540e-01, + 7.5185e-02, 8.8098e-02, 8.4915e-01, 4.5570e-01, + 4.1326e-01, 2.2841e-01, 5.7832e-01, 9.8572e-01, + 2.1038e-01, 3.1384e-01, 6.5102e-01, 7.8064e-02, + 8.1578e-01, 9.6599e-01, 4.3348e-01, 4.0471e-01, + 6.6705e-01, 9.9374e-01, 9.3593e-01, 2.7792e-01, + 7.6408e-01, 7.1910e-01, 3.0730e-01, 9.2789e-02, + 5.0816e-01, 2.0054e-01, 9.0756e-01, 4.2139e-02, + 2.2042e-02, 3.8699e-01, 5.8026e-01, 3.2550e-01, + 1.6808e-01, 8.3002e-01, 4.0081e-01, 9.5268e-01, + 5.0592e-01, 6.5938e-01, 1.9963e-01, 4.0528e-01, + 2.7731e-02, 1.9693e-01, 6.1060e-01, 6.3866e-01, + 5.3688e-01, 5.2347e-01, 2.5349e-01, 2.9615e-01, + 9.7016e-01, 3.4954e-01, 2.6613e-01, 3.3523e-02, + 1.5584e-01, 8.3051e-02, 6.0614e-01, 8.6788e-01, + 6.0641e-01, 3.2123e-01, 3.1342e-01, 8.0290e-01, + 9.8955e-01, 3.0445e-01, 7.7405e-01, 4.4438e-01, + 2.4247e-01, 1.0812e-01, 3.8171e-02, 1.6700e-01, + 9.9278e-01, 1.6124e-01, 1.4018e-01, 9.9672e-01, + 1.7920e-01, 8.7088e-01, 9.3567e-01, 9.0612e-01, + 7.3360e-01, 8.6982e-01, 1.8853e-01, 2.8631e-02, + 3.1908e-01, 5.4943e-01, 5.4554e-01, 5.7148e-01, + 8.7372e-01, 8.1331e-01, 3.5535e-01, 6.6365e-02, + 3.7900e-01, 4.4060e-01, 6.9755e-01, 8.4770e-02, + 2.6765e-01, 7.1295e-01, 5.9500e-01, 9.3206e-01, + 2.8045e-01, 9.7087e-01, 2.9626e-01, 3.4970e-01, + 9.7291e-01, 3.3104e-01, 7.5134e-02, 4.9646e-01, + 7.3787e-01, 9.4535e-01, 9.9298e-01, 7.8352e-02, + 7.1369e-01, 5.2407e-01, 3.4781e-01, 2.9479e-02, + 7.9036e-01, 3.2159e-02, 2.9663e-01, 4.0057e-01, + 7.5187e-01, 7.2985e-02, 9.9586e-01, 3.5315e-01, + 7.0513e-01, 8.3438e-01, 1.1850e-01, 6.1954e-01, + 7.4807e-01, 4.7444e-01, 1.4806e-01, 4.6297e-01, + 8.2386e-01, 3.7491e-01, 5.2912e-01, 4.8493e-01, + 9.8747e-01, 8.2071e-01, 6.0411e-01, 2.6614e-01, + 4.7854e-01, 7.0928e-01, 4.7195e-01, 1.2463e-01, + 6.5685e-01, 3.5210e-01, 3.3489e-01, 3.4371e-01, + 5.6556e-01, 5.8336e-02, 2.5168e-01, 1.1237e-03, + 6.1377e-01, 1.4862e-01, 4.7916e-01, 9.8286e-01, + 7.2047e-01, 6.1947e-01, 2.5084e-02, 8.6610e-01, + 3.6497e-01, 7.1297e-01, 4.6956e-01, 3.6140e-01, + 7.0052e-01, 5.8768e-01, 8.9326e-01, 5.2583e-01, + 9.7503e-01, 5.9070e-01, 9.4841e-01, 7.0689e-01, + 4.8720e-01, 1.2759e-01, 5.2594e-01, 5.1674e-01, + 2.2215e-01, 4.8116e-01, 5.4493e-01, 1.6438e-01, + 1.6212e-01, 1.4592e-01, 9.3453e-01, 5.4120e-01, + 9.9377e-01, 9.5104e-01, 3.6132e-01, 5.3946e-01, + 9.9391e-01, 4.6287e-01, 2.8328e-01, 6.1212e-01, + 4.1816e-01, 7.1117e-01, 7.2036e-01, 4.2976e-02, + 2.1797e-01, 6.2665e-01, 4.2489e-02, 6.7964e-01, + 4.1152e-01, 2.0657e-01, 7.4251e-01, 6.2519e-01, + 4.6706e-01, 6.5784e-01, 1.7252e-01, 8.8152e-01, + 1.6930e-01, 9.4893e-01, 8.8209e-01, 8.7479e-01, + 4.1704e-01, 8.7646e-01, 6.5490e-01, 5.1932e-01, + 8.4152e-01, 6.8650e-01, 9.4596e-01, 6.7239e-01, + 7.6111e-01, 8.3939e-01, 8.3015e-01, 8.0600e-02, + 5.4688e-01, 4.2004e-01, 3.5995e-01, 8.7290e-01, + 2.9848e-01, 4.0104e-01, 7.6500e-01, 7.5102e-01, + 2.0463e-01, 2.7033e-01, 9.7413e-01, 5.9293e-01, + 4.1711e-01, 6.1095e-01, 2.3521e-01, 7.4961e-01, + 7.3623e-01, 8.2256e-01, 6.1390e-01, 5.1919e-01, + 2.8273e-01, 4.5435e-01, 8.5019e-02, 9.4253e-01, + 3.1807e-02, 5.6156e-01, 4.3673e-01, 2.3393e-01, + 4.5771e-01, 1.4899e-01, 8.7682e-01, 9.2175e-01, + 7.3314e-01, 1.1596e-01, 2.1438e-01, 1.1876e-01, + 2.7871e-01, 6.2895e-01, 1.0399e-01, 6.5021e-01, + 9.7906e-01, 6.0746e-01, 1.0704e-01, 8.5925e-01, + 2.2433e-01, 4.9315e-01, 2.7459e-01, 7.3299e-01, + 2.6631e-01, 4.4259e-01, 1.6375e-01, 8.4103e-01, + 6.8640e-02, 9.0139e-01, 3.6033e-01, 8.9148e-01, + 1.4670e-01, 2.1681e-01, 2.2662e-01, 6.6090e-02, + 2.7846e-01, 7.6443e-01, 6.3337e-01, 1.4853e-01, + 3.1082e-01, 4.9872e-01, 8.4014e-01, 9.8999e-01, + 6.7688e-01, 1.6975e-01, 3.7138e-01, 8.1020e-01, + 7.0790e-02, 1.3523e-01, 3.7468e-02, 7.9415e-01, + 2.7812e-01, 1.2167e-01, 4.3224e-01, 5.5136e-01, + 4.0724e-02, 2.6502e-01, 6.1419e-01, 8.7909e-01, + 9.5819e-01, 9.5194e-01, 2.6001e-01, 2.3975e-01, + 6.7454e-01, 5.7007e-01, 5.3707e-01, 8.1178e-01, + 7.9154e-01, 2.2539e-01, 7.8655e-01, 6.5846e-01, + 2.6535e-01, 9.7806e-01, 7.1020e-01, 8.3252e-01, + 9.6863e-01, 7.5960e-01, 5.7156e-01, 2.7669e-01, + 6.3128e-01, 7.7289e-01, 7.1228e-01, 7.7482e-01, + 1.6904e-01, 8.1997e-01, 9.7624e-01, 5.6560e-01, + 2.7663e-01, 2.3951e-01, 4.4379e-01, 2.8076e-02, + 4.4129e-02, 7.9282e-01, 3.5166e-01, 7.1038e-01, + 4.7806e-01, 8.0129e-01, 1.8759e-02, 2.9831e-01, + 9.6097e-01, 7.5028e-01, 6.7067e-01, 2.5064e-01, + 7.3552e-02, 2.2102e-01, 4.0798e-02, 7.3754e-01, + 5.2514e-01, 1.2280e-01, 7.7926e-01, 5.8105e-01, + 5.6506e-01, 3.0079e-01, 5.7893e-01, 4.5377e-01, + 4.5091e-02, 6.1516e-01, 8.0451e-01, 8.1548e-01, + 4.9070e-01, 9.4442e-01, 6.7333e-01, 4.6352e-01, + 9.4087e-01, 6.6036e-01, 7.7251e-01, 4.8492e-01, + 5.5056e-01, 6.1609e-01, 4.1240e-01, 7.6930e-01, + 1.5580e-01, 5.5480e-01, 6.6083e-01, 7.9676e-01, + 2.1381e-01, 9.8321e-01, 6.0074e-01, 2.8389e-01, + 8.3180e-01, 8.8109e-01, 1.2639e-01, 6.2125e-01, + 7.0439e-01, 9.1146e-01, 5.1574e-01, 9.8774e-01, + 8.2024e-01, 2.4417e-01, 8.8016e-01, 8.1631e-01, + 1.4643e-01, 9.8658e-01, 2.7646e-01, 1.2864e-01, + 2.9087e-02, 1.4354e-01, 6.0524e-01, 2.8677e-01, + 1.4899e-01, 4.6367e-01, 5.1784e-01, 9.8821e-01, + 4.8069e-01, 8.3426e-01, 1.7525e-01, 5.0974e-01, + 3.0878e-01, 2.9609e-01, 6.8677e-01, 2.0869e-01, + 3.2086e-01, 3.7111e-01, 6.1587e-02, 7.4378e-02, + 4.2695e-01, 1.4850e-01, 5.4335e-02, 8.4394e-01, + 8.0973e-01, 4.7836e-01, 8.4671e-01, 9.7012e-01, + 1.0626e-01, 4.9016e-01, 4.0803e-01, 9.7115e-01, + 7.5995e-01, 9.5447e-01, 8.6611e-01, 7.0402e-01, + 7.9939e-01, 2.3092e-01, 4.4970e-01, 3.9381e-01, + 1.5460e-01, 9.1987e-01, 4.3357e-01, 7.2170e-01, + 9.1074e-01, 9.8918e-01, 2.9317e-01, 2.4967e-01, + 6.4585e-01, 8.0204e-01, 4.6814e-01, 3.0193e-01, + 8.1103e-01, 1.4968e-01, 8.8709e-01, 5.7762e-01, + 8.7050e-01, 1.3270e-01, 3.7713e-01, 5.9660e-01, + 6.3653e-01, 2.9283e-01, 2.1496e-01, 8.4861e-01, + 5.2665e-01, 4.4147e-01, 5.6040e-01, 2.4280e-01, + 1.0891e-01, 1.3062e-01, 9.9818e-01, 3.2711e-02, + 7.8364e-01, 8.8951e-01, 1.1528e-01, 9.1362e-01, + 1.8879e-01, 4.1744e-01, 9.0491e-01, 2.1200e-01, + 5.8240e-02, 1.4926e-01, 2.8456e-01, 5.7208e-01, + 3.9875e-01, 3.0948e-01, 8.5836e-02, 2.0035e-01, + 7.1400e-01, 7.8279e-01, 6.8278e-01, 6.6938e-01, + 9.4297e-01, 1.8496e-01, 1.5518e-02, 1.0389e-01, + 4.1335e-01, 9.0194e-02, 5.3872e-01, 7.5585e-01, + 3.4338e-01, 1.1621e-01, 7.9511e-01, 5.9093e-01, + 6.0436e-01, 3.4533e-01, 6.2464e-01, 6.2137e-01, + 2.6066e-01, 2.1593e-01, 5.7001e-01, 2.9622e-01, + 8.6756e-01, 4.5066e-01, 6.3181e-01, 7.8115e-01, + 1.1513e-01, 3.3336e-01, 5.9404e-01, 5.5227e-01, + 4.8272e-01, 4.5789e-01, 5.2434e-01, 8.7910e-01, + 3.6237e-01, 3.6341e-01, 2.2645e-01, 2.1768e-01, + 4.5579e-01, 3.4246e-01, 7.0649e-01, 2.9172e-01, + 1.5275e-01, 9.9131e-01, 6.6686e-01, 3.1529e-01, + 9.5275e-01, 5.2154e-01, 6.0311e-01, 6.9413e-01, + 5.2394e-01, 2.9542e-01, 6.9079e-01, 3.5982e-01, + 2.0311e-01, 2.2891e-01, 8.3397e-01, 7.9481e-01, + 7.7724e-01, 6.7393e-01, 5.1568e-01, 8.6496e-01, + 8.7170e-01, 9.9110e-02, 8.4462e-01, 8.3862e-01, + 8.1703e-01, 7.4599e-01, 8.0526e-01, 4.4458e-02, + 9.9751e-01, 7.3077e-01, 4.6991e-01, 7.3467e-01, + 9.3161e-02, 9.5937e-01, 6.5874e-01, 6.4726e-01, + 1.5051e-01, 5.7551e-01, 7.2428e-01, 9.3155e-01, + 6.2676e-01, 9.6143e-01, 8.6169e-01, 4.6347e-01, + 8.7308e-01, 1.8969e-02, 8.3502e-01, 8.9361e-01, + 1.9404e-01, 4.3472e-02, 2.0120e-01, 6.9356e-01, + 9.4889e-01, 5.6077e-01, 8.6433e-01, 8.7016e-01, + 7.3158e-01, 4.4803e-01, 2.3998e-01, 9.7238e-01, + 4.3879e-01, 2.9965e-01, 8.3148e-01, 2.4330e-01, + 6.7838e-01, 6.1669e-01, 7.2623e-01, 1.2354e-01, + 2.2972e-01, 2.7296e-01, 9.8873e-01, 7.5405e-01, + 3.4953e-01, 2.5789e-01, 6.3716e-01, 8.4804e-01, + 1.8777e-01, 5.7827e-01, 4.9683e-01, 8.6743e-01, + 2.8557e-01, 7.6619e-01, 2.2211e-01, 6.8093e-01, + 9.5156e-01, 6.3191e-01, 8.7661e-01, 9.1812e-02, + 8.0288e-01, 9.5932e-01, 8.4664e-01, 5.6317e-01, + 4.1155e-01, 5.6613e-01, 6.7922e-01, 5.0367e-01, + 7.7000e-01, 2.3487e-01, 6.5953e-01, 2.6442e-01, + 4.8671e-01, 1.3645e-01, 3.1847e-01, 3.7867e-01, + 6.8019e-01, 6.2500e-01, 8.7404e-01, 7.5376e-01, + 1.0881e-01, 2.1589e-01, 4.1967e-01, 2.7998e-01, + 9.8292e-01, 1.8108e-01, 4.3913e-01, 1.4646e-01, + 6.9060e-01, 4.8902e-01, 7.7270e-01, 6.7527e-01, + 4.5794e-01, 6.8861e-01, 8.4179e-01, 8.6936e-01, + 8.8470e-01, 8.3332e-01, 4.5104e-01, 2.2109e-01, + 6.7705e-01, 3.9307e-02, 1.4542e-01, 7.5689e-01, + 7.3681e-01, 1.4316e-01, 1.3469e-01, 9.2693e-01, + 7.9835e-02, 4.8747e-01, 2.3991e-01, 5.0674e-01, + 8.1572e-01, 8.9171e-01, 9.4262e-01, 4.4242e-02, + 4.8771e-01, 2.2083e-01, 7.7910e-01, 6.0918e-01, + 7.4097e-02, 1.2246e-01, 6.0510e-01, 9.1036e-01, + 5.6118e-01, 1.6158e-01, 6.7291e-01, 1.8197e-01, + 1.7103e-01, 9.5862e-01, 4.6520e-01, 1.2359e-01, + 3.6908e-01, 9.8844e-01, 3.6924e-03, 4.3265e-01, + 8.5218e-01, 1.4758e-01, 1.7384e-01, 6.5237e-02, + 8.2651e-01, 8.8829e-01, 2.6356e-01, 4.3625e-01, + 2.5112e-01, 9.8859e-01, 7.9307e-01, 6.3628e-01, + 8.3428e-01, 1.7687e-02, 2.6174e-01, 9.5803e-01, + 1.4430e-01, 2.1325e-01, 1.4008e-01, 6.7486e-01, + 2.8336e-01, 1.6215e-01, 9.0703e-01, 8.7796e-01, + 3.4117e-01, 5.4612e-01, 1.4746e-01, 4.1956e-01, + 2.7025e-02, 7.3708e-02, 8.1368e-01, 5.0288e-01, + 5.6119e-01, 4.8670e-01, 5.7631e-01, 3.1818e-01, + 6.6127e-01, 7.7339e-01, 7.0503e-02, 9.2309e-01, + 3.9171e-01, 7.5288e-02, 3.6269e-01, 4.9846e-01, + 8.1495e-01, 9.4113e-01, 4.7373e-02, 3.0034e-01, + 2.2161e-01, 4.3905e-01, 3.3523e-01, 8.3970e-01, + 2.1837e-01, 8.3822e-01, 9.9775e-01, 5.5403e-01, + 8.9486e-01, 1.4148e-01, 9.0127e-01, 9.7059e-02, + 3.2741e-01, 1.0701e-01, 2.7984e-01, 7.7278e-01, + 6.8926e-01, 2.8243e-01, 3.0207e-01, 6.5028e-02, + 2.4311e-01, 2.9351e-01, 7.3131e-01, 4.2415e-01, + 7.4454e-01, 6.9421e-01, 2.5342e-01, 1.5780e-01, + 2.9231e-01, 1.4667e-01, 6.9582e-02, 8.6692e-01, + 5.4682e-01, 4.6227e-01, 4.6657e-01, 1.0327e-01, + 1.8106e-01, 7.5880e-01, 3.2925e-01, 1.2240e-01, + 3.1478e-01, 9.1416e-01, 9.6930e-03, 1.3241e-01, + 8.0456e-01, 7.4784e-01, 6.9926e-02, 8.4918e-01, + 8.2454e-01, 8.7979e-01, 1.6012e-01, 3.4099e-01, + 1.3158e-01, 5.1930e-01, 3.2542e-01, 8.0769e-01, + 1.1181e-02, 9.1890e-02, 7.2786e-01, 6.7172e-02, + 8.3525e-02, 7.9476e-01, 6.4096e-01, 2.8445e-01, + 3.8206e-01, 4.6326e-01, 4.8276e-01, 2.3710e-01, + 5.7913e-01, 5.4204e-01, 7.5509e-01, 5.9955e-01, + 1.1200e-01, 9.5213e-04, 9.0864e-01, 6.2336e-01, + 4.3307e-01, 3.6198e-01, 9.8456e-01, 2.8949e-01, + 4.7497e-01, 5.7509e-01, 3.3429e-01, 7.0479e-01, + 9.6075e-01, 9.2558e-01, 3.6179e-01, 8.2591e-01, + 5.9758e-01, 5.3473e-01, 2.7530e-02, 9.6342e-02, + 9.3529e-02, 1.6467e-01, 8.9391e-01, 8.5922e-01, + 1.4915e-01, 1.8769e-01, 1.0016e-01, 8.4777e-02, + 3.6040e-01, 8.2450e-01, 3.4686e-01, 8.2301e-01, + 8.9691e-02, 4.3378e-01, 1.3710e-01, 4.0908e-01, + 6.9494e-01, 9.9675e-01, 9.8566e-01, 1.3164e-02, + 6.9583e-01, 8.3204e-01, 2.1108e-01, 8.1028e-01, + 6.7781e-01, 2.9978e-01, 3.4866e-01, 2.9128e-01, + 8.2911e-01, 3.9288e-01, 9.7244e-01, 5.5754e-01, + 8.6365e-01, 1.9935e-01, 4.2606e-01, 6.5710e-01, + 1.1321e-01, 8.9438e-01, 5.3287e-02, 6.7747e-01, + 1.3725e-01, 9.6097e-01, 6.1965e-01, 7.3747e-01, + 1.9823e-01, 8.4099e-01, 9.3609e-01, 2.6566e-01, + 2.6173e-01, 6.9673e-01, 9.6055e-01, 7.2272e-03, + 8.9838e-01, 5.5549e-01, 4.9628e-01, 2.5939e-01, + 2.4806e-01, 5.9743e-01, 7.2404e-01, 5.7379e-01, + 9.2371e-01, 9.8965e-02, 1.7327e-01, 7.3460e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.0752, 0.0265, 0.5369, ..., 0.1368, 0.6161, 0.4463]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 2.1387269496917725 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '362205', '-ss', '10000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.420795440673828} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), - col_indices=tensor([1583, 2010, 5254, 7979, 6044, 1811, 7275, 5124, 1436, - 6977, 5579, 4446, 9531, 9948, 1649, 1369, 7922, 7653, - 2659, 6213, 259, 9933, 1809, 5407, 6617, 1048, 9736, - 8197, 4865, 8298, 9784, 82, 5539, 325, 4902, 1683, - 7666, 621, 9636, 2101, 9761, 740, 4832, 605, 5884, - 3975, 9597, 4053, 6617, 1715, 7682, 8784, 4868, 6631, - 4385, 6313, 6260, 3586, 9177, 2920, 7526, 5398, 7541, - 248, 3734, 7646, 6276, 8109, 2125, 9714, 6281, 1353, - 5963, 2603, 264, 3737, 9675, 9238, 2280, 9506, 9180, - 8024, 6153, 5553, 3522, 6695, 1640, 8954, 8297, 6626, - 843, 9222, 5001, 3481, 6513, 5429, 9771, 5585, 8988, - 5464, 3454, 6624, 6512, 7330, 6444, 6199, 5861, 4510, - 672, 6028, 7721, 5884, 2715, 1700, 4921, 4515, 9810, - 242, 3364, 5002, 1424, 3751, 9511, 8727, 7691, 6098, - 8102, 5389, 3846, 102, 6605, 6800, 5446, 4429, 9979, - 6051, 887, 6347, 5680, 5275, 2705, 9887, 8702, 7450, - 9613, 1435, 9601, 9924, 7389, 9934, 1462, 4302, 946, - 584, 8440, 8214, 4233, 5454, 4216, 6174, 9492, 1467, - 7415, 3149, 3551, 5073, 7523, 8960, 4752, 7424, 4426, - 2828, 4638, 8921, 7283, 9829, 5888, 286, 7407, 6914, - 7286, 465, 3805, 1983, 2183, 7470, 8061, 9434, 9295, - 8270, 5079, 1562, 9550, 5203, 9993, 4115, 392, 600, - 8605, 4591, 7089, 1143, 4551, 580, 3847, 8259, 1796, - 2339, 8992, 9416, 7284, 9062, 8162, 205, 4452, 8143, - 669, 7123, 4261, 3096, 5227, 4884, 7762, 4252, 52, - 3294, 1781, 9880, 1607, 4053, 2502, 5482, 6906, 2035, - 3232, 7130, 8453, 2375, 5456, 7258, 5074, 1652, 861, - 2762, 5646, 7995, 1392, 97, 3679, 7567, 6422, 8241, - 7836, 1183, 6034, 142, 9235, 4509, 6760, 4561, 9070, - 2031, 9065, 6375, 4040, 9160, 4623, 5781, 9376, 5259, - 8317, 6466, 1257, 2274, 1048, 3553, 9336, 8350, 2160, - 4368, 2869, 233, 8694, 1453, 4399, 705, 4421, 79, - 2161, 6601, 6000, 6535, 869, 6199, 4248, 4356, 4542, - 4670, 9521, 6660, 9199, 5986, 7398, 9596, 5813, 6088, - 7831, 753, 5374, 9257, 2827, 3291, 6819, 4035, 7713, - 4013, 7218, 2279, 2871, 1326, 1811, 2703, 1574, 5900, - 1155, 1352, 9694, 8175, 2074, 3391, 9502, 4148, 8642, - 2600, 2104, 2058, 3036, 4818, 8770, 2956, 8526, 9775, - 225, 4118, 7042, 6449, 5064, 4207, 1756, 8969, 2588, - 1096, 1153, 7117, 4392, 9511, 4215, 2271, 4504, 5309, - 2046, 8527, 4173, 3449, 7352, 1698, 7327, 3267, 1105, - 6661, 3644, 2703, 5379, 701, 6814, 1440, 6092, 1140, - 2239, 412, 4967, 1213, 7822, 3780, 5299, 7074, 5185, - 2666, 9098, 4903, 8017, 846, 4723, 3624, 9337, 5755, - 3369, 3913, 8577, 7137, 8463, 7938, 5325, 4521, 5290, - 6218, 1511, 1273, 4386, 8704, 1619, 195, 3249, 4064, - 773, 7448, 8201, 3121, 301, 4372, 1634, 7663, 2937, - 4689, 3712, 2187, 7632, 4046, 6463, 6448, 2875, 2814, - 9857, 2905, 9752, 7090, 3694, 7956, 4390, 5280, 7018, - 7056, 2989, 6712, 9231, 5247, 2513, 738, 431, 1726, - 2666, 6815, 9509, 646, 9632, 2730, 9313, 4866, 8557, - 1201, 4486, 5168, 9202, 7420, 4285, 5922, 3677, 2027, - 3975, 6254, 498, 5210, 204, 3290, 3533, 9875, 2505, - 6720, 3641, 9914, 1958, 3109, 7127, 2799, 7390, 179, - 7325, 9320, 2800, 2350, 7555, 8269, 7272, 8574, 8049, - 6676, 3970, 285, 8780, 1108, 1111, 9658, 6160, 6280, - 9914, 5935, 5918, 9764, 548, 2210, 2619, 1696, 4207, - 1063, 9914, 4231, 1029, 9243, 3982, 7733, 8072, 6321, - 6035, 5297, 7545, 9721, 4364, 9434, 6360, 7476, 2533, - 7275, 8433, 3934, 6724, 1068, 4014, 8204, 9682, 9063, - 1493, 2469, 2999, 3214, 9658, 2217, 9114, 3111, 8598, - 4210, 3973, 1496, 4445, 7146, 1795, 4717, 7849, 7512, - 1191, 1515, 3311, 6622, 939, 4014, 9088, 9339, 7424, - 7262, 6339, 7032, 9476, 7001, 4460, 2692, 4399, 7886, - 7047, 7669, 9359, 864, 5049, 7040, 4096, 4298, 9623, - 4192, 5872, 9144, 7397, 6121, 280, 9465, 5892, 966, - 5574, 5723, 2834, 9950, 3081, 5143, 5667, 8402, 2784, - 5766, 6218, 8186, 8713, 1780, 6821, 8450, 7019, 6189, - 8952, 9208, 1484, 7762, 3939, 7602, 4668, 3210, 4330, - 5716, 7241, 405, 335, 3412, 8477, 9234, 3584, 5207, - 6179, 7712, 5919, 8037, 4123, 7316, 7474, 2679, 8523, - 3986, 1694, 5901, 9022, 9607, 9829, 9846, 6902, 4585, - 9022, 2079, 9614, 8663, 5819, 1097, 3118, 5088, 8749, - 4025, 4321, 5154, 6517, 880, 4285, 4711, 2326, 4162, - 4920, 8690, 2593, 488, 4694, 1259, 587, 7957, 4395, - 8376, 7054, 2133, 3697, 5563, 9686, 918, 2978, 8239, - 6797, 7376, 9376, 1457, 3934, 2176, 9476, 3211, 3186, - 7396, 5390, 2250, 176, 8978, 9325, 2806, 6907, 8181, - 4346, 5066, 99, 1478, 770, 7246, 8629, 9961, 3268, - 1790, 5846, 8686, 1633, 492, 1478, 6673, 1726, 8741, - 7768, 7527, 1121, 1733, 1273, 9650, 7653, 6076, 194, - 8769, 8199, 4604, 7252, 9298, 9566, 567, 6639, 4728, - 9542, 8173, 2780, 2516, 4192, 9184, 6994, 6018, 9797, - 590, 9338, 8251, 3777, 8162, 13, 8005, 188, 2602, - 9738, 4060, 9649, 9986, 8500, 4315, 5221, 4141, 4921, - 6691, 8158, 9615, 4239, 6096, 9428, 555, 6830, 9510, - 9880, 2716, 808, 4588, 557, 5422, 4795, 165, 4359, - 1300, 4655, 4817, 1957, 4576, 6824, 6342, 1040, 8141, - 4172, 8691, 48, 277, 8256, 9583, 4203, 1779, 5112, - 3616, 9838, 1376, 7998, 2797, 6753, 8079, 8276, 1987, - 19, 4354, 9286, 2615, 6740, 9487, 3627, 5231, 5312, - 390, 7185, 7779, 5971, 3543, 6278, 8106, 9509, 758, - 4532, 5244, 8649, 3081, 5562, 7090, 2064, 5447, 6233, - 2085, 2494, 1501, 8471, 526, 9417, 5830, 1825, 355, - 1862, 4324, 2868, 9563, 2266, 3962, 389, 6200, 6403, - 663, 5817, 7056, 8981, 4928, 9712, 1095, 3893, 9576, - 2748, 7578, 3941, 2877, 4899, 2380, 6793, 4371, 8114, - 4922, 6923, 2351, 8578, 3122, 5644, 6934, 4317, 6902, - 6045, 9795, 1482, 6773, 9968, 5852, 9269, 9520, 4391, - 2401, 9617, 2668, 7256, 4772, 1903, 3373, 4316, 1692, - 5034, 8118, 7083, 2393, 9148, 5891, 1781, 9855, 721, - 9905, 3195, 2413, 4717, 5913, 670, 1557, 3791, 7460, - 3616, 5334, 4133, 1405, 3039, 7529, 4796, 4803, 2152, - 5840, 2128, 9084, 8408, 3604, 6581, 5669, 6068, 7009, - 3479, 7465, 7540, 8897, 4413, 3315, 6549, 1677, 8701, - 2788, 2678, 3442, 3734, 1118, 4316, 9381, 9006, 4108, - 5912, 826, 6724, 7846, 460, 6304, 2843, 4879, 6744, - 6163, 4479, 222, 1812, 3520, 9850, 935, 9282, 4410, - 4179, 6820, 3994, 5429, 7733, 2102, 2864, 556, 4530, - 6540, 2911, 8663, 2630, 3513, 9220, 6390, 5701, 7953, - 7398, 6782, 5778, 7647, 1313, 5401, 5563, 9720, 5486, - 7709]), - values=tensor([0.6630, 0.9503, 0.0770, 0.9226, 0.1778, 0.8279, 0.0536, - 0.5325, 0.8085, 0.7558, 0.2260, 0.6523, 0.1197, 0.0283, - 0.8139, 0.4165, 0.5589, 0.9775, 0.8148, 0.2087, 0.7767, - 0.9982, 0.1484, 0.2622, 0.3615, 0.4355, 0.0185, 0.0082, - 0.8837, 0.4983, 0.6604, 0.5671, 0.1006, 0.6141, 0.5716, - 0.6764, 0.1529, 0.3165, 0.4084, 0.1229, 0.1096, 0.8308, - 0.6585, 0.1950, 0.5085, 0.3697, 0.4971, 0.2796, 0.2744, - 0.7057, 0.5504, 0.4942, 0.5020, 0.9849, 0.7865, 0.4277, - 0.7720, 0.9203, 0.4083, 0.5834, 0.2993, 0.4296, 0.1742, - 0.7625, 0.5725, 0.0721, 0.6285, 0.8961, 0.7799, 0.9867, - 0.4023, 0.0461, 0.2516, 0.8722, 0.3041, 0.0596, 0.3822, - 0.7562, 0.7884, 0.2916, 0.8113, 0.7857, 0.6486, 0.1687, - 0.2654, 0.6660, 0.5205, 0.5807, 0.1636, 0.7524, 0.7303, - 0.3845, 0.9418, 0.8240, 0.9533, 0.9406, 0.6844, 0.7416, - 0.8718, 0.0156, 0.8172, 0.4208, 0.9722, 0.5292, 0.3721, - 0.6191, 0.9317, 0.6666, 0.7072, 0.3855, 0.2294, 0.8589, - 0.8908, 0.4834, 0.3423, 0.7789, 0.1241, 0.4564, 0.1890, - 0.2563, 0.9107, 0.6748, 0.1334, 0.8151, 0.7204, 0.8972, - 0.1073, 0.8907, 0.0744, 0.5882, 0.8889, 0.6790, 0.8885, - 0.6658, 0.2075, 0.9175, 0.9938, 0.4163, 0.0696, 0.8712, - 0.9168, 0.3235, 0.4716, 0.9854, 0.8143, 0.7879, 0.4607, - 0.4850, 0.6066, 0.6913, 0.7193, 0.2839, 0.8347, 0.2095, - 0.8353, 0.4546, 0.8880, 0.7210, 0.8453, 0.8916, 0.7714, - 0.9868, 0.0515, 0.5239, 0.5681, 0.1820, 0.5272, 0.5691, - 0.4175, 0.5907, 0.4424, 0.0668, 0.0128, 0.9282, 0.7583, - 0.0221, 0.5736, 0.2285, 0.6693, 0.2730, 0.2836, 0.9157, - 0.5434, 0.9795, 0.1769, 0.6107, 0.7322, 0.8412, 0.2757, - 0.3098, 0.3578, 0.3820, 0.2329, 0.4037, 0.0151, 0.1326, - 0.7184, 0.6578, 0.8297, 0.6581, 0.3428, 0.9501, 0.6670, - 0.8806, 0.8754, 0.7223, 0.7669, 0.3788, 0.8755, 0.2260, - 0.4669, 0.9844, 0.0082, 0.2669, 0.6026, 0.2689, 0.0429, - 0.7489, 0.3726, 0.0159, 0.3927, 0.8172, 0.3282, 0.0575, - 0.9974, 0.1350, 0.5672, 0.4689, 0.7961, 0.5402, 0.4963, - 0.2623, 0.5421, 0.8354, 0.9905, 0.6240, 0.8519, 0.1978, - 0.6499, 0.5759, 0.2503, 0.1102, 0.8574, 0.7008, 0.3233, - 0.4296, 0.2435, 0.6516, 0.7119, 0.5430, 0.4755, 0.2341, - 0.5926, 0.0770, 0.8351, 0.6430, 0.9481, 0.7289, 0.4034, - 0.1701, 0.7125, 0.8934, 0.3081, 0.6354, 0.7915, 0.1404, - 0.9513, 0.8453, 0.0850, 0.0642, 0.8424, 0.2306, 0.9822, - 0.5022, 0.4984, 0.4800, 0.2218, 0.9723, 0.7497, 0.9084, - 0.4784, 0.7804, 0.1238, 0.0880, 0.9711, 0.5284, 0.2542, - 0.4913, 0.0373, 0.9479, 0.7298, 0.5961, 0.2747, 0.8281, - 0.3376, 0.6719, 0.5355, 0.2467, 0.1814, 0.6034, 0.3903, - 0.8079, 0.6634, 0.1089, 0.4461, 0.0248, 0.7098, 0.8937, - 0.6958, 0.2081, 0.8237, 0.3634, 0.3255, 0.3011, 0.8487, - 0.1664, 0.0299, 0.4550, 0.8746, 0.8226, 0.5176, 0.2105, - 0.8160, 0.9892, 0.5189, 0.1660, 0.0722, 0.9487, 0.8604, - 0.8181, 0.8144, 0.0561, 0.2179, 0.2462, 0.1360, 0.7312, - 0.5931, 0.6399, 0.4488, 0.9270, 0.1570, 0.5666, 0.0921, - 0.9507, 0.7374, 0.9303, 0.9871, 0.0275, 0.0396, 0.7157, - 0.7314, 0.4516, 0.5880, 0.5629, 0.7503, 0.5107, 0.0122, - 0.0074, 0.8876, 0.3382, 0.7626, 0.8644, 0.8030, 0.7340, - 0.8979, 0.6798, 0.6990, 0.8131, 0.0632, 0.8141, 0.9434, - 0.5737, 0.8869, 0.6157, 0.9858, 0.1492, 0.1949, 0.5858, - 0.8066, 0.7969, 0.1033, 0.7643, 0.6380, 0.5493, 0.8582, - 0.1931, 0.2076, 0.1054, 0.0371, 0.2378, 0.8212, 0.4451, - 0.9355, 0.1414, 0.2556, 0.4392, 0.9159, 0.8704, 0.5855, - 0.5298, 0.0073, 0.3946, 0.2827, 0.6593, 0.2170, 0.1559, - 0.0455, 0.0804, 0.3042, 0.1902, 0.1499, 0.4571, 0.2421, - 0.2416, 0.9852, 0.9579, 0.6952, 0.6187, 0.8878, 0.9344, - 0.1083, 0.7885, 0.6837, 0.3299, 0.6348, 0.5837, 0.6662, - 0.7313, 0.3365, 0.6725, 0.8139, 0.5019, 0.3039, 0.0443, - 0.3934, 0.1305, 0.6780, 0.3155, 0.0219, 0.7662, 0.6555, - 0.1320, 0.2374, 0.6933, 0.5809, 0.5466, 0.6377, 0.3020, - 0.1965, 0.5168, 0.4464, 0.2304, 0.0432, 0.9550, 0.9132, - 0.3859, 0.2031, 0.3693, 0.8159, 0.9889, 0.9524, 0.3432, - 0.9314, 0.8808, 0.9456, 0.6866, 0.3442, 0.3810, 0.2142, - 0.1117, 0.1744, 0.1056, 0.5794, 0.4455, 0.7572, 0.7078, - 0.3687, 0.4666, 0.7407, 0.7029, 0.4882, 0.4880, 0.1980, - 0.7023, 0.6681, 0.3423, 0.8422, 0.4851, 0.3016, 0.7606, - 0.3490, 0.7330, 0.1476, 0.1495, 0.7345, 0.5988, 0.7147, - 0.9822, 0.6029, 0.8218, 0.8268, 0.6557, 0.2332, 0.7667, - 0.0044, 0.4372, 0.0163, 0.9516, 0.7012, 0.6660, 0.1956, - 0.0351, 0.8338, 0.8275, 0.6101, 0.8723, 0.8245, 0.0823, - 0.2151, 0.2357, 0.3441, 0.6542, 0.6748, 0.6120, 0.6830, - 0.9101, 0.3363, 0.6175, 0.2109, 0.7948, 0.1254, 0.3320, - 0.4047, 0.8548, 0.2724, 0.0547, 0.0778, 0.5829, 0.7401, - 0.7010, 0.5091, 0.4745, 0.7438, 0.0620, 0.6122, 0.3501, - 0.7476, 0.3391, 0.5091, 0.9092, 0.8341, 0.1950, 0.5236, - 0.7056, 0.1342, 0.3505, 0.7257, 0.4253, 0.6642, 0.1578, - 0.1206, 0.9648, 0.8145, 0.6922, 0.2614, 0.5366, 0.4982, - 0.1154, 0.6473, 0.8548, 0.3066, 0.1033, 0.1884, 0.1407, - 0.6633, 0.9702, 0.8613, 0.8238, 0.6722, 0.6006, 0.6815, - 0.1240, 0.9769, 0.1594, 0.1592, 0.7939, 0.7089, 0.7574, - 0.7724, 0.7991, 0.0521, 0.1390, 0.5925, 0.9554, 0.5527, - 0.3929, 0.3007, 0.1885, 0.5802, 0.9953, 0.8505, 0.7792, - 0.7177, 0.7694, 0.9788, 0.1512, 0.0267, 0.7016, 0.1441, - 0.2745, 0.3479, 0.2525, 0.2337, 0.5448, 0.7971, 0.7101, - 0.4871, 0.7275, 0.0547, 0.1591, 0.6937, 0.7809, 0.7092, - 0.5201, 0.8475, 0.9010, 0.4869, 0.9890, 0.2146, 0.1450, - 0.9848, 0.0270, 0.0118, 0.0203, 0.7924, 0.2769, 0.6145, - 0.6071, 0.6017, 0.9106, 0.8197, 0.5817, 0.4479, 0.4907, - 0.2678, 0.4969, 0.5055, 0.5426, 0.5791, 0.8993, 0.7838, - 0.7690, 0.7852, 0.3688, 0.8160, 0.2079, 0.3793, 0.0739, - 0.5666, 0.4022, 0.9864, 0.3167, 0.6305, 0.3557, 0.3387, - 0.0828, 0.3478, 0.2152, 0.7658, 0.2613, 0.2753, 0.3668, - 0.0262, 0.0671, 0.9363, 0.6576, 0.6551, 0.4846, 0.8404, - 0.2088, 0.7480, 0.7314, 0.0171, 0.1082, 0.8451, 0.8946, - 0.0525, 0.5191, 0.9442, 0.8675, 0.0810, 0.1833, 0.6438, - 0.4552, 0.3045, 0.4082, 0.8689, 0.6683, 0.1434, 0.4421, - 0.8382, 0.0615, 0.9346, 0.9201, 0.3514, 0.2008, 0.9937, - 0.6121, 0.0783, 0.0490, 0.9787, 0.7461, 0.6146, 0.8319, - 0.8274, 0.2768, 0.5834, 0.3309, 0.3199, 0.2056, 0.8142, - 0.8941, 0.8025, 0.5653, 0.7564, 0.5742, 0.2219, 0.3180, - 0.5125, 0.8124, 0.7601, 0.2726, 0.1730, 0.3593, 0.3373, - 0.4692, 0.9228, 0.9147, 0.2409, 0.6852, 0.8612, 0.6749, - 0.1014, 0.9540, 0.1357, 0.7184, 0.6814, 0.5570, 0.7995, - 0.7039, 0.6331, 0.7100, 0.7276, 0.8540, 0.6804, 0.1364, - 0.3489, 0.7310, 0.1063, 0.2338, 0.8823, 0.4673, 0.2555, - 0.6167, 0.7623, 0.3031, 0.8515, 0.4643, 0.9082, 0.2171, - 0.0778, 0.6489, 0.8915, 0.5582, 0.7660, 0.2890, 0.4197, - 0.5005, 0.0508, 0.7572, 0.3797, 0.1183, 0.9101, 0.8882, - 0.5287, 0.0878, 0.2431, 0.2083, 0.8905, 0.2357, 0.5134, - 0.9562, 0.2161, 0.9351, 0.4696, 0.5955, 0.3703, 0.1321, - 0.5021, 0.2072, 0.4348, 0.7568, 0.6269, 0.1888, 0.6508, - 0.7362, 0.7266, 0.2942, 0.5439, 0.3775, 0.0531, 0.4822, - 0.1171, 0.7194, 0.5961, 0.0788, 0.7347, 0.2944, 0.5051, - 0.4234, 0.1811, 0.7851, 0.4131, 0.9675, 0.0834, 0.4549, - 0.3090, 0.4735, 0.2600, 0.9700, 0.4791, 0.4860, 0.9793, - 0.1782, 0.1251, 0.0561, 0.1267, 0.4222, 0.2756, 0.5840, - 0.9312, 0.7700, 0.0651, 0.8242, 0.0918, 0.6772, 0.2307, - 0.6185, 0.2052, 0.0318, 0.2899, 0.0400, 0.8978, 0.7673, - 0.1941, 0.1098, 0.6272, 0.1911, 0.5689, 0.7419, 0.2110, - 0.5718, 0.0873, 0.7370, 0.5046, 0.2710, 0.0251, 0.9665, - 0.4711, 0.3015, 0.6301, 0.4981, 0.9277, 0.2392, 0.1183, - 0.4019, 0.2169, 0.9822, 0.6515, 0.1332, 0.4805, 0.5861, - 0.5485, 0.5998, 0.1326, 0.7170, 0.7154, 0.4803, 0.1293, - 0.9035, 0.3781, 0.2599, 0.8153, 0.9982, 0.5549, 0.7963, - 0.6153, 0.5282, 0.8208, 0.7625, 0.3001, 0.8081, 0.0388, - 0.7114, 0.7782, 0.5048, 0.3137, 0.5784, 0.9730, 0.4431, - 0.4536, 0.3100, 0.6520, 0.2606, 0.8882, 0.1650, 0.9834, - 0.5674, 0.4688, 0.3389, 0.4291, 0.4446, 0.5716, 0.8014, - 0.3987, 0.6453, 0.1096, 0.5652, 0.9221, 0.8967, 0.0894, - 0.2612, 0.3509, 0.6985, 0.7305, 0.1395, 0.1928, 0.1405, - 0.9620, 0.6290, 0.2470, 0.3081, 0.4298, 0.1092, 0.7591, - 0.5871, 0.5192, 0.1299, 0.2518, 0.0236, 0.9061, 0.5083, - 0.1286, 0.8821, 0.0292, 0.9269, 0.0310, 0.7251, 0.3297, - 0.9879, 0.2589, 0.3124, 0.1632, 0.7470, 0.5454, 0.8446, - 0.7783, 0.6341, 0.9530, 0.0359, 0.0134, 0.0892, 0.9552, - 0.4086, 0.1451, 0.7356, 0.2482, 0.4823, 0.7400, 0.5225, - 0.5147, 0.8299, 0.9223, 0.5481, 0.2230, 0.4704, 0.7526, - 0.9367, 0.9192, 0.2550, 0.0140, 0.7589, 0.7582, 0.2471, - 0.6001, 0.8208, 0.0590, 0.9928, 0.6332, 0.0738]), + col_indices=tensor([ 367, 5928, 4913, 9662, 9837, 1139, 7195, 709, 1186, + 80, 7429, 8354, 3731, 4238, 1204, 8286, 5350, 6518, + 6581, 5481, 8412, 8567, 4483, 270, 6809, 6052, 9047, + 8886, 6265, 2683, 8840, 6468, 5705, 4463, 7370, 8923, + 7324, 752, 3820, 476, 1511, 1152, 7156, 6378, 1601, + 6251, 5183, 964, 1260, 884, 6109, 4781, 1936, 3415, + 7691, 4888, 5674, 6459, 8140, 8932, 2864, 6432, 1356, + 2665, 9855, 2360, 1289, 3774, 7837, 576, 7725, 1293, + 907, 2542, 7673, 5326, 1656, 1077, 464, 7656, 5438, + 524, 4581, 8099, 2687, 4078, 5342, 5240, 9155, 9342, + 4985, 2318, 5185, 4603, 8415, 3279, 2083, 7925, 8071, + 9166, 9303, 9469, 5789, 7778, 8645, 7134, 7594, 2178, + 218, 3344, 3951, 8834, 4013, 7845, 8331, 9692, 3137, + 7730, 5023, 8474, 4718, 38, 726, 535, 2913, 4635, + 2716, 3591, 9066, 2660, 3345, 7905, 2026, 1175, 9827, + 6627, 4714, 9765, 1301, 2421, 949, 3573, 4881, 5681, + 2117, 1844, 8550, 9611, 6234, 1475, 3891, 4140, 4791, + 497, 5133, 1193, 8459, 1053, 2110, 5799, 6433, 6363, + 6452, 1314, 1357, 383, 1853, 7981, 8433, 7415, 6026, + 6286, 7644, 2079, 2595, 9578, 6356, 4227, 8298, 2069, + 2653, 5142, 7404, 4079, 1966, 7533, 6062, 6415, 8225, + 8783, 5739, 3815, 1201, 4896, 5097, 5808, 8945, 5520, + 6206, 511, 7347, 334, 3119, 1570, 7713, 2906, 3536, + 6334, 7998, 298, 3942, 6558, 2963, 4842, 2263, 5657, + 6492, 6276, 9075, 5298, 2267, 9620, 5320, 1568, 8760, + 7490, 9058, 1722, 5460, 3464, 1842, 2377, 9510, 1053, + 3322, 9012, 5664, 8967, 8790, 9286, 1946, 3141, 8192, + 6659, 3495, 4958, 4102, 7004, 6177, 5317, 6593, 7640, + 6307, 8035, 9650, 8087, 4138, 5288, 54, 277, 9498, + 8689, 2955, 8232, 1954, 321, 4627, 4226, 4258, 7653, + 5234, 2531, 412, 5196, 6249, 3047, 8171, 9428, 3213, + 9763, 1374, 9103, 7900, 6626, 2118, 7765, 3728, 6106, + 4954, 4753, 8313, 550, 6888, 8896, 9965, 3061, 2947, + 8278, 5879, 5273, 5453, 181, 2437, 4117, 7283, 5591, + 8602, 8473, 5720, 1866, 7656, 8837, 3905, 7472, 7158, + 3023, 2882, 9989, 8681, 648, 6274, 6847, 3312, 5656, + 7680, 6098, 4463, 9954, 2825, 6574, 7011, 1957, 6137, + 6725, 3576, 5559, 9535, 4552, 2200, 3109, 9611, 9451, + 1309, 2875, 3230, 5628, 9907, 8010, 6405, 222, 8761, + 2120, 9374, 4858, 4514, 5442, 9330, 8281, 8858, 4407, + 6543, 35, 3825, 9633, 1009, 2627, 3906, 1955, 7496, + 3563, 3539, 8202, 7400, 7587, 7952, 2607, 3232, 9574, + 748, 9829, 4992, 1810, 7308, 6501, 6785, 7235, 1137, + 8724, 2405, 7482, 6759, 4652, 5655, 4530, 6784, 9512, + 4088, 6049, 9230, 7810, 9658, 5737, 1295, 738, 747, + 7672, 2503, 5907, 2220, 201, 5120, 7515, 3259, 3879, + 3039, 9321, 8605, 9482, 4181, 7348, 9537, 587, 6394, + 3984, 306, 1193, 3228, 778, 134, 9046, 7121, 4357, + 4190, 4050, 4701, 5483, 6713, 8937, 2483, 711, 8665, + 3008, 3841, 9929, 1156, 7864, 8900, 4657, 7749, 2947, + 9699, 2414, 4266, 6048, 8585, 5785, 2832, 7866, 2519, + 9463, 5405, 1165, 1777, 9786, 9696, 3031, 653, 1886, + 1959, 8043, 4843, 484, 4688, 1972, 2038, 6598, 7240, + 1462, 7254, 3087, 1879, 7554, 1558, 7001, 9016, 8895, + 5649, 4937, 9704, 4961, 7644, 8442, 2757, 2242, 9502, + 2976, 4095, 4676, 9126, 5855, 4163, 6430, 137, 106, + 3030, 655, 8531, 7089, 648, 854, 5910, 4435, 7738, + 4805, 6752, 444, 2066, 5929, 8674, 9769, 2865, 2752, + 5321, 130, 2489, 807, 9550, 1633, 7468, 9068, 9241, + 6808, 7365, 968, 8661, 9018, 3550, 6104, 2629, 7508, + 35, 8351, 2048, 4626, 2188, 1746, 7387, 3093, 1503, + 1452, 7638, 1336, 9281, 6296, 6140, 7102, 9783, 1071, + 4115, 8592, 8292, 2729, 6495, 356, 8036, 1239, 4223, + 6109, 2038, 6313, 7535, 4790, 2693, 2125, 7954, 5865, + 3268, 2522, 6271, 2184, 4150, 1470, 3491, 6995, 9734, + 2067, 3839, 7338, 6815, 4421, 307, 289, 5776, 7623, + 5550, 9770, 6085, 800, 6471, 6365, 7940, 7253, 9023, + 3056, 1623, 7408, 4931, 2227, 3852, 1329, 3500, 1597, + 680, 4795, 1426, 733, 9436, 1001, 976, 8821, 8330, + 6704, 5168, 673, 3362, 4167, 8558, 5789, 6484, 7568, + 5585, 6431, 6874, 5521, 5213, 7970, 3020, 8092, 5025, + 6800, 7632, 7512, 3989, 4195, 1578, 2940, 3628, 3648, + 6431, 2736, 7676, 5158, 5635, 1844, 6595, 8947, 5903, + 51, 9169, 4098, 5691, 6814, 9766, 6514, 9970, 2239, + 2046, 3280, 2714, 5806, 2677, 82, 1113, 2963, 2180, + 2566, 2541, 3825, 9253, 8388, 6485, 870, 1684, 7333, + 793, 9898, 5870, 5155, 6286, 9563, 9068, 5713, 2343, + 1715, 3887, 723, 1944, 2953, 3319, 9854, 144, 718, + 6674, 4026, 8079, 7531, 4342, 6924, 6779, 6546, 7462, + 9962, 1432, 8607, 1875, 2805, 7948, 2976, 1046, 7036, + 4949, 7102, 477, 7850, 2174, 1961, 4920, 8186, 1308, + 179, 2095, 3644, 8483, 9153, 627, 2488, 890, 3123, + 4350, 5492, 1701, 1645, 3932, 3331, 2933, 6624, 7332, + 7665, 5288, 7681, 6550, 7545, 730, 5687, 802, 6864, + 7451, 2117, 4878, 4869, 1248, 1137, 1380, 8950, 5598, + 7429, 4233, 1060, 5569, 6689, 8608, 3567, 4558, 7535, + 9199, 2985, 2282, 235, 9129, 8582, 2072, 7435, 8445, + 9048, 7905, 3709, 7810, 5385, 5720, 2662, 2668, 7912, + 4854, 9556, 9550, 3132, 8229, 4856, 4161, 1914, 745, + 65, 7058, 9271, 7846, 8928, 5152, 5482, 8156, 4590, + 3430, 90, 6589, 2814, 3078, 1382, 8736, 5505, 2054, + 8404, 4829, 8221, 2458, 952, 6527, 2277, 8961, 5925, + 2066, 2154, 3256, 2466, 7237, 2076, 9446, 4670, 7006, + 2231, 8823, 7168, 5299, 1101, 7045, 7082, 8944, 4016, + 4074, 4258, 3864, 3141, 4450, 5115, 5389, 9949, 1172, + 9433, 1642, 1479, 3769, 9973, 4747, 4872, 389, 8601, + 9119, 8563, 2438, 6873, 1818, 9226, 937, 6705, 3733, + 2036, 669, 2029, 332, 7663, 8899, 3889, 9735, 9326, + 8050, 2621, 3330, 992, 9581, 1488, 8125, 6995, 2528, + 7140, 6221, 1417, 9802, 898, 1689, 3308, 303, 2075, + 6622, 9167, 6725, 8722, 8663, 7196, 3835, 4992, 1316, + 6283, 4758, 9632, 641, 8717, 8903, 403, 3496, 5247, + 9491, 1114, 4440, 9898, 4961, 6497, 4291, 3663, 5161, + 7340, 9289, 8727, 7951, 3216, 9826, 2744, 1742, 7964, + 1100, 4645, 9, 4874, 3732, 9378, 1625, 9820, 3610, + 1545, 6999, 6918, 1895, 3580, 9207, 2130, 5891, 4573, + 1060, 9808, 4116, 943, 4244, 5724, 4961, 3837, 8840, + 389, 1348, 833, 3514, 5170, 1683, 7789, 9831, 5974, + 9125, 5396, 7463, 6389, 1948, 8359, 6877, 7522, 8087, + 7219, 1695, 4668, 662, 3386, 4803, 1414, 7277, 1481, + 9053, 9285, 9508, 5533, 205, 8818, 4845, 7696, 8623, + 9000]), + values=tensor([9.0347e-01, 8.9097e-01, 3.9050e-01, 1.1761e-01, + 7.3236e-01, 1.8076e-01, 1.7435e-01, 3.1968e-01, + 6.2094e-02, 6.9707e-01, 9.2156e-01, 2.5833e-01, + 3.9175e-01, 8.0344e-02, 8.5392e-01, 7.0595e-02, + 6.3035e-01, 4.6849e-01, 4.1355e-01, 5.1765e-01, + 6.7505e-01, 7.7298e-01, 3.0196e-01, 2.7160e-01, + 4.9835e-01, 7.7842e-01, 7.9100e-01, 6.1241e-01, + 9.2766e-01, 8.1158e-01, 9.2979e-01, 2.0087e-01, + 6.3444e-01, 1.1919e-01, 2.9666e-01, 8.1344e-01, + 2.3658e-01, 7.2770e-01, 3.4239e-01, 6.0915e-01, + 3.8756e-01, 4.8989e-01, 5.2955e-01, 9.2633e-01, + 7.9699e-01, 9.0118e-01, 6.9847e-02, 3.2137e-02, + 8.8024e-01, 6.0500e-01, 4.6450e-01, 8.5960e-02, + 5.6130e-01, 3.3831e-01, 9.3616e-01, 8.2763e-01, + 2.4098e-01, 8.9643e-01, 9.8468e-01, 8.8817e-01, + 4.6338e-01, 1.1147e-02, 8.1814e-01, 9.2206e-02, + 1.0005e-01, 6.2906e-01, 6.9146e-01, 1.5603e-01, + 3.1235e-01, 6.2561e-01, 3.7711e-01, 6.5022e-01, + 1.2930e-01, 6.7901e-02, 7.2399e-01, 7.8736e-01, + 8.8706e-02, 7.0933e-01, 9.0665e-01, 1.0525e-01, + 7.0947e-01, 7.6785e-01, 7.4226e-01, 9.8559e-01, + 9.2459e-01, 1.7157e-01, 7.4478e-01, 7.9596e-01, + 7.2144e-01, 1.9958e-01, 6.1043e-01, 2.7464e-01, + 5.8302e-01, 9.7091e-01, 4.8610e-01, 8.4624e-01, + 8.7645e-01, 7.2595e-01, 7.4275e-01, 2.6952e-01, + 8.8491e-01, 6.7085e-02, 7.5574e-01, 6.1435e-01, + 1.3665e-01, 8.8809e-01, 2.2500e-01, 7.6147e-01, + 5.8642e-01, 8.3791e-01, 3.2752e-01, 4.9244e-01, + 6.5160e-01, 6.2237e-01, 5.6666e-01, 1.2589e-01, + 5.4657e-01, 1.6810e-01, 1.1783e-01, 3.3742e-01, + 6.8221e-01, 1.2268e-02, 4.7183e-01, 6.4275e-01, + 3.3058e-01, 6.2514e-01, 2.7607e-01, 5.2090e-01, + 3.9798e-01, 7.4704e-02, 3.1431e-01, 2.3156e-01, + 2.4983e-01, 7.9235e-01, 6.1773e-02, 4.1696e-01, + 2.9905e-01, 6.8152e-01, 3.4211e-01, 6.0393e-01, + 3.6186e-02, 8.0620e-01, 9.8874e-01, 4.6252e-01, + 8.4231e-01, 9.1653e-01, 4.6135e-01, 2.8152e-01, + 9.7319e-01, 4.3848e-01, 5.7170e-01, 4.9901e-01, + 7.4233e-01, 2.6089e-01, 8.3401e-01, 2.3202e-01, + 8.4769e-01, 8.7678e-01, 7.1420e-01, 8.9378e-01, + 5.6124e-01, 4.0637e-01, 3.8693e-01, 8.0881e-02, + 2.6688e-01, 5.6776e-01, 4.3004e-01, 4.7054e-01, + 2.0392e-01, 7.2817e-01, 6.6755e-01, 5.1867e-01, + 5.2670e-01, 1.4618e-01, 7.3183e-01, 8.6973e-01, + 1.9126e-01, 4.9009e-01, 2.5587e-01, 4.0650e-01, + 9.8806e-01, 9.6733e-01, 1.1171e-01, 7.9880e-01, + 6.7184e-01, 7.4651e-02, 1.7680e-01, 9.4485e-01, + 8.4713e-01, 1.4694e-01, 9.3410e-01, 6.8790e-01, + 6.7995e-01, 3.4766e-01, 3.3209e-01, 8.5193e-01, + 5.7959e-01, 2.9187e-01, 3.0229e-01, 9.7462e-01, + 7.8153e-01, 2.9900e-01, 3.0648e-01, 9.4053e-01, + 7.5039e-01, 7.3664e-01, 2.3912e-01, 5.6769e-01, + 9.2225e-01, 1.2617e-01, 4.4870e-01, 5.2352e-01, + 4.9831e-01, 4.2978e-01, 5.8379e-03, 5.1101e-01, + 1.1850e-02, 4.3076e-02, 2.0400e-01, 4.3425e-02, + 2.0565e-01, 2.5026e-01, 5.8630e-01, 9.9979e-01, + 5.5005e-01, 2.8369e-01, 7.0988e-01, 9.9716e-01, + 1.0843e-01, 5.2002e-01, 8.1336e-01, 4.4712e-01, + 1.7801e-01, 4.1042e-01, 8.1718e-01, 7.5846e-01, + 6.4002e-01, 8.1764e-01, 9.2236e-01, 2.7385e-01, + 2.2693e-01, 1.3388e-01, 2.7481e-01, 2.7276e-01, + 6.3817e-01, 8.1593e-01, 7.1721e-01, 1.0760e-01, + 3.2614e-01, 4.3753e-03, 9.9770e-01, 9.1052e-01, + 1.4963e-01, 1.3781e-01, 1.1034e-01, 1.1895e-02, + 8.2173e-01, 2.6975e-01, 3.5686e-01, 5.8749e-01, + 1.5253e-01, 6.6786e-01, 9.1749e-01, 8.5611e-01, + 5.9711e-01, 8.9352e-01, 7.2370e-01, 4.2727e-01, + 4.7201e-01, 6.1878e-01, 1.3255e-01, 4.0640e-01, + 6.1650e-01, 9.0122e-01, 3.3783e-01, 1.2667e-01, + 5.3203e-01, 7.8517e-01, 4.7198e-01, 8.0031e-01, + 9.8415e-02, 6.3035e-01, 8.4415e-01, 4.0094e-01, + 3.8505e-01, 5.1696e-01, 9.5335e-01, 7.6890e-01, + 5.9772e-01, 8.7886e-01, 7.4086e-01, 8.4781e-01, + 1.6493e-01, 3.3683e-01, 7.1960e-03, 2.9042e-01, + 8.4813e-01, 1.8192e-01, 6.0102e-01, 4.2567e-01, + 9.3317e-02, 3.8724e-01, 3.5787e-01, 9.9992e-01, + 1.2443e-01, 8.2890e-01, 2.8195e-01, 6.3051e-01, + 6.0894e-01, 9.5920e-01, 6.4943e-01, 6.5476e-01, + 6.7692e-01, 5.7763e-01, 7.8022e-01, 4.1886e-01, + 5.0205e-01, 2.5778e-01, 9.0479e-01, 8.7006e-01, + 6.1226e-01, 6.4647e-01, 1.5596e-01, 7.0047e-01, + 6.7722e-01, 5.4595e-01, 4.9292e-01, 9.0526e-01, + 4.8174e-02, 8.1995e-02, 7.1448e-01, 2.7007e-02, + 6.2586e-01, 6.7855e-01, 4.6902e-01, 3.6021e-01, + 3.9907e-01, 1.8609e-02, 6.0745e-01, 2.4758e-01, + 6.2019e-02, 9.3085e-01, 3.9521e-01, 8.9117e-01, + 5.9487e-01, 4.2672e-02, 7.4925e-01, 8.7766e-02, + 5.8346e-01, 6.5657e-01, 8.0155e-01, 4.5151e-01, + 5.5583e-01, 7.1994e-01, 6.1938e-01, 4.9424e-01, + 8.4852e-01, 2.5577e-01, 7.5244e-01, 5.8561e-01, + 1.6622e-01, 5.3017e-01, 7.0377e-01, 1.6795e-01, + 6.1195e-01, 5.0235e-01, 4.0852e-01, 2.4062e-01, + 3.7706e-01, 7.1399e-01, 1.5932e-01, 2.0246e-01, + 9.3118e-01, 3.6824e-01, 9.2308e-01, 4.1388e-01, + 3.9074e-01, 2.1232e-02, 4.8230e-01, 3.1334e-02, + 7.6588e-01, 8.9020e-01, 9.5571e-02, 9.3996e-01, + 3.3502e-01, 1.6456e-02, 4.8873e-01, 9.0152e-01, + 6.0836e-01, 6.2449e-02, 2.3911e-01, 2.5569e-01, + 1.9099e-01, 6.5319e-01, 3.4599e-01, 9.4871e-01, + 1.5293e-01, 9.6291e-01, 5.9772e-01, 9.2359e-01, + 6.8691e-01, 6.3677e-01, 7.7151e-01, 5.4282e-01, + 9.3692e-01, 3.1526e-01, 9.7688e-01, 8.3385e-01, + 2.2972e-01, 6.2720e-01, 2.5945e-01, 2.4371e-01, + 1.9518e-01, 9.3585e-01, 5.0154e-01, 4.9345e-01, + 9.2069e-01, 2.8370e-01, 2.0941e-01, 2.7517e-01, + 3.3759e-01, 3.1978e-01, 9.0873e-01, 7.9081e-01, + 6.9871e-01, 2.8844e-01, 7.5941e-01, 4.7964e-01, + 4.1805e-01, 7.2289e-01, 7.1452e-01, 2.2869e-01, + 3.5827e-01, 5.0632e-01, 5.1573e-01, 6.2442e-01, + 5.5513e-01, 3.8608e-01, 6.5218e-02, 2.8971e-01, + 9.3603e-01, 9.9599e-01, 2.9308e-02, 5.0704e-01, + 3.3920e-01, 1.3835e-01, 1.3900e-01, 8.3661e-01, + 8.7030e-02, 1.9115e-01, 8.1969e-01, 2.0766e-01, + 2.0634e-04, 3.2996e-03, 3.5546e-01, 6.9885e-01, + 8.1732e-01, 4.6117e-01, 9.2421e-01, 7.9629e-01, + 9.9088e-01, 9.9274e-01, 1.1080e-01, 1.7902e-01, + 7.9706e-01, 1.8505e-01, 7.4092e-01, 7.3209e-01, + 1.2144e-01, 5.6902e-01, 9.3325e-01, 2.2999e-01, + 6.3010e-01, 9.2148e-01, 2.9383e-01, 4.2274e-01, + 1.2992e-01, 1.8436e-01, 7.7452e-01, 9.5314e-03, + 8.7521e-01, 3.7291e-01, 3.4776e-01, 9.8447e-01, + 9.2182e-01, 6.2103e-01, 7.8077e-01, 6.7523e-01, + 1.6309e-01, 9.9005e-01, 7.0418e-01, 7.5393e-01, + 4.9572e-02, 5.3018e-01, 5.0127e-02, 9.4383e-01, + 9.3893e-01, 2.9396e-01, 1.7931e-01, 3.2387e-01, + 5.3937e-01, 4.4591e-01, 4.1519e-01, 6.4965e-01, + 9.0437e-01, 8.3040e-01, 1.4310e-01, 3.5145e-02, + 4.6746e-01, 5.6639e-01, 4.2557e-01, 8.3449e-01, + 7.7874e-01, 8.0354e-03, 7.7620e-01, 6.3805e-01, + 9.9677e-01, 2.9228e-01, 7.5318e-01, 7.8356e-01, + 9.8216e-01, 6.5817e-01, 3.5696e-01, 2.7232e-01, + 3.7271e-01, 2.1862e-01, 6.4841e-01, 3.4376e-01, + 6.0935e-01, 9.5134e-02, 6.6915e-01, 8.1621e-01, + 4.0272e-01, 6.1882e-01, 5.0284e-02, 8.7929e-01, + 4.2125e-01, 7.6634e-01, 2.5193e-01, 1.3171e-01, + 5.5583e-01, 1.3959e-01, 1.7579e-01, 7.2551e-01, + 6.6240e-01, 1.9258e-01, 3.6612e-01, 1.8147e-01, + 5.7841e-01, 7.8278e-01, 4.2669e-02, 6.6255e-01, + 2.8767e-01, 8.0007e-02, 3.6674e-04, 3.9335e-01, + 2.1417e-01, 2.2919e-01, 1.2683e-01, 9.0001e-01, + 9.9290e-01, 4.5741e-01, 2.3197e-01, 1.8836e-01, + 9.6565e-01, 8.0740e-01, 1.9854e-01, 5.3042e-02, + 8.1469e-01, 4.9040e-01, 7.2177e-01, 6.4045e-01, + 4.9810e-01, 2.5103e-02, 4.7475e-01, 4.7844e-02, + 6.0969e-01, 9.1481e-01, 4.4597e-01, 1.1494e-01, + 4.9666e-01, 6.1275e-01, 8.7093e-01, 1.3668e-01, + 9.5248e-01, 5.9063e-01, 4.9499e-01, 9.1388e-01, + 4.0836e-01, 9.3011e-01, 8.1737e-01, 5.9702e-01, + 9.9251e-01, 9.3234e-01, 7.8850e-01, 5.3497e-01, + 5.6422e-01, 3.4891e-01, 7.9452e-01, 8.5710e-01, + 9.6578e-01, 5.9804e-01, 4.3277e-01, 7.3290e-01, + 1.0449e-01, 4.8889e-01, 9.8684e-01, 3.1549e-02, + 8.2245e-02, 9.4666e-01, 1.7503e-01, 1.3455e-01, + 8.0620e-01, 9.4127e-01, 6.0203e-01, 2.4925e-01, + 2.1869e-01, 3.0844e-02, 4.0776e-01, 2.7968e-01, + 7.2045e-01, 4.5107e-02, 7.6360e-01, 6.9114e-01, + 3.5384e-01, 2.6205e-01, 4.0814e-01, 4.1925e-01, + 9.5840e-01, 2.7948e-01, 9.9578e-01, 5.4533e-01, + 4.9157e-01, 1.7568e-01, 4.9298e-01, 1.2249e-01, + 4.9184e-01, 5.8221e-01, 3.4826e-01, 2.3718e-01, + 4.0414e-02, 9.8825e-01, 6.8724e-01, 4.1618e-01, + 3.5580e-01, 9.8542e-01, 6.1434e-01, 1.5506e-01, + 1.8635e-01, 3.4507e-01, 8.7226e-01, 6.4723e-01, + 1.1927e-01, 6.1913e-02, 5.8115e-01, 5.0795e-02, + 6.9421e-01, 8.5543e-01, 4.6361e-01, 1.7225e-01, + 7.1720e-01, 5.2724e-01, 2.7571e-01, 7.8026e-01, + 9.7859e-01, 3.3684e-01, 9.4074e-01, 8.4877e-01, + 1.6576e-02, 3.2110e-01, 8.1119e-01, 4.4604e-02, + 7.5553e-01, 8.9513e-01, 2.5486e-01, 5.6611e-01, + 1.5194e-01, 8.0984e-01, 1.1473e-02, 5.0922e-02, + 1.9459e-01, 2.4450e-01, 5.2269e-01, 8.8459e-01, + 1.5980e-01, 5.1724e-01, 3.6058e-01, 3.8147e-01, + 8.0778e-02, 6.8899e-01, 9.3518e-01, 3.9577e-01, + 6.8067e-01, 2.9545e-01, 2.1034e-01, 8.0864e-01, + 3.0905e-01, 3.9012e-01, 5.0504e-01, 3.5331e-01, + 2.3990e-01, 1.9663e-01, 4.7629e-02, 8.8145e-01, + 1.6688e-01, 3.2309e-01, 6.0635e-01, 6.9179e-01, + 8.4762e-01, 4.8298e-01, 4.2062e-01, 8.8411e-01, + 3.1172e-01, 4.7812e-02, 1.8446e-01, 3.6828e-01, + 2.3400e-01, 8.2280e-02, 7.9717e-01, 4.5737e-02, + 6.3521e-01, 7.6517e-01, 5.7003e-01, 8.6854e-01, + 6.3527e-01, 5.4238e-01, 6.1423e-02, 9.0375e-01, + 9.5888e-01, 3.1839e-01, 2.4367e-01, 6.4739e-01, + 8.1586e-01, 2.4076e-01, 9.7343e-01, 4.9856e-01, + 7.2246e-01, 5.0023e-01, 1.2692e-01, 7.4359e-01, + 3.5270e-01, 2.8465e-01, 3.0118e-01, 3.5307e-01, + 6.2379e-01, 7.1186e-01, 6.6474e-01, 8.4095e-02, + 8.8565e-01, 2.9464e-01, 5.4755e-01, 9.0701e-01, + 8.9197e-01, 1.8235e-01, 9.3370e-01, 8.6788e-01, + 1.0571e-01, 3.0684e-01, 2.0394e-01, 6.1322e-01, + 7.6393e-01, 7.5679e-01, 2.3964e-01, 2.2054e-01, + 4.5451e-01, 3.5051e-01, 7.3550e-02, 9.3935e-01, + 2.5262e-01, 9.1953e-01, 2.4572e-01, 1.1299e-01, + 5.8933e-01, 2.5009e-01, 8.9652e-01, 6.5729e-02, + 1.7446e-01, 3.5451e-01, 5.3832e-01, 6.5479e-01, + 6.3736e-01, 1.1466e-01, 4.7192e-01, 9.4751e-01, + 4.2249e-01, 8.0013e-01, 8.3662e-01, 2.7945e-01, + 4.9136e-01, 2.0754e-01, 1.5234e-01, 2.6470e-01, + 9.8611e-01, 2.0121e-01, 6.4605e-01, 1.4810e-01, + 3.8203e-01, 1.0221e-02, 6.4883e-01, 3.7738e-01, + 6.6558e-01, 1.0409e-01, 3.3837e-01, 4.1054e-01, + 2.3450e-01, 5.9670e-01, 6.3347e-01, 9.3841e-01, + 7.1202e-01, 8.2758e-02, 3.3401e-01, 4.6725e-01, + 5.5433e-01, 4.1060e-01, 4.8108e-01, 2.6006e-02, + 5.0602e-01, 7.5691e-01, 8.3228e-01, 5.5461e-01, + 9.7723e-01, 9.5142e-02, 4.8502e-01, 4.7276e-01, + 4.6702e-01, 6.8685e-02, 4.7602e-01, 9.8285e-01, + 8.7376e-02, 7.2154e-01, 6.4366e-02, 8.0105e-01, + 6.7920e-01, 3.4169e-01, 9.9690e-01, 8.6900e-02, + 6.8423e-01, 2.2307e-01, 6.6827e-01, 6.2007e-01, + 7.2812e-01, 8.1208e-01, 8.1304e-01, 4.9537e-02, + 2.2654e-01, 1.0913e-01, 1.8736e-01, 7.4063e-01, + 7.0233e-01, 5.2413e-01, 9.2392e-01, 4.3601e-01, + 8.7513e-01, 9.5555e-02, 5.5401e-01, 4.9938e-02, + 6.6611e-02, 5.3894e-01, 7.4381e-01, 8.2785e-01, + 4.4283e-01, 2.1861e-01, 8.1992e-02, 5.3650e-01, + 2.7083e-01, 9.6992e-02, 6.5700e-01, 3.6738e-01, + 5.3582e-02, 6.8961e-01, 5.1692e-01, 4.7811e-01, + 9.5507e-01, 1.1629e-01, 4.4608e-01, 9.1741e-01, + 6.7667e-01, 2.8148e-02, 7.4903e-01, 7.8503e-01, + 4.6236e-02, 4.6999e-02, 1.9415e-01, 5.8769e-01, + 3.9665e-01, 2.8180e-01, 6.6891e-01, 5.2471e-01, + 5.6718e-01, 3.6965e-01, 4.8691e-01, 1.2448e-01, + 3.7830e-01, 7.1508e-01, 5.3843e-01, 1.9964e-01, + 4.6846e-01, 3.0749e-01, 5.0821e-01, 4.7264e-01, + 6.5869e-01, 7.5655e-01, 6.6608e-01, 4.4097e-01, + 8.8246e-01, 5.5178e-01, 3.1991e-01, 6.1838e-01, + 5.4250e-01, 3.8407e-01, 6.9734e-01, 5.6089e-01, + 7.7507e-01, 1.5344e-01, 8.1394e-01, 3.8479e-02, + 5.6357e-02, 3.7774e-01, 7.2734e-01, 7.5830e-02, + 9.5355e-01, 4.6254e-01, 5.1318e-01, 7.7011e-01, + 2.9491e-01, 1.3797e-01, 8.7797e-01, 8.0879e-01, + 5.8383e-01, 1.2735e-01, 2.6792e-01, 7.5423e-01, + 8.5687e-01, 5.6856e-01, 3.0846e-01, 7.2150e-01, + 2.0158e-01, 4.4285e-01, 4.3074e-01, 8.2410e-01, + 5.6984e-01, 2.3044e-01, 8.7317e-01, 5.4302e-01, + 1.6661e-01, 1.5551e-01, 5.3661e-01, 9.8902e-01, + 6.2303e-01, 5.7449e-01, 9.7497e-01, 6.9276e-01, + 2.8973e-01, 2.2008e-01, 7.4155e-02, 6.3535e-01, + 3.2883e-01, 7.0117e-01, 3.0143e-01, 5.7505e-01, + 3.4680e-01, 2.7660e-01, 7.0338e-02, 7.8984e-01, + 6.7461e-01, 2.5361e-01, 8.3933e-01, 7.1929e-01, + 1.4013e-01, 9.9655e-01, 2.4267e-01, 9.3212e-01, + 4.6070e-01, 2.2070e-01, 6.6336e-01, 1.3432e-01, + 5.3597e-01, 5.1768e-01, 7.6964e-01, 9.9864e-01, + 5.3829e-01, 3.1592e-01, 9.3386e-01, 5.8600e-01, + 1.2704e-01, 5.0213e-01, 6.2221e-02, 1.0695e-01, + 2.6995e-01, 2.6387e-01, 9.3927e-01, 2.7555e-01, + 3.1073e-01, 1.1755e-01, 8.1059e-01, 3.6864e-01, + 2.6251e-01, 5.7401e-01, 2.8597e-02, 8.6585e-02]), size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.8647, 0.0597, 0.7485, ..., 0.2087, 0.0137, 0.4402]) +tensor([0.8046, 0.6398, 0.4516, ..., 0.6060, 0.1172, 0.9615]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -268,271 +1133,375 @@ Rows: 10000 Size: 100000000 NNZ: 1000 Density: 1e-05 -Time: 0.043045759201049805 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '243926', '-ss', '10000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.084842920303345} +Time: 10.420795440673828 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), - col_indices=tensor([3973, 7951, 6448, 7869, 8084, 9579, 2166, 6078, 8362, - 8338, 8347, 5231, 6954, 9251, 1588, 5032, 2102, 2793, - 9690, 6831, 9069, 2808, 4275, 4074, 907, 3545, 5544, - 6941, 2356, 797, 2644, 6095, 4109, 3561, 6200, 28, - 557, 6355, 1990, 951, 69, 8267, 3139, 215, 6612, - 2860, 9213, 3348, 7098, 6592, 1146, 7228, 789, 9196, - 4382, 7744, 7817, 1180, 1510, 4317, 7077, 4265, 6219, - 9856, 311, 1497, 5748, 2535, 7861, 2853, 1662, 4174, - 4694, 7392, 5450, 3394, 4805, 2432, 1322, 8861, 6678, - 3023, 1316, 4128, 2030, 3793, 8525, 8443, 1161, 991, - 1447, 2471, 6828, 2582, 6332, 4483, 41, 4006, 219, - 5990, 1636, 3986, 5354, 8312, 8664, 9463, 4528, 141, - 3941, 4470, 6778, 5188, 9246, 7613, 8447, 2428, 1539, - 9970, 4662, 9881, 2741, 7672, 7933, 80, 6971, 8473, - 4272, 6382, 3599, 7720, 123, 2250, 1458, 8861, 4899, - 9782, 2839, 4678, 9108, 4080, 1338, 5595, 1158, 3764, - 4696, 3832, 8401, 5959, 1183, 231, 7893, 8235, 8841, - 2906, 1812, 2502, 6071, 3913, 3016, 804, 4126, 2806, - 4482, 5376, 1238, 5593, 4938, 3143, 1445, 6781, 2527, - 6429, 9354, 624, 1378, 7349, 9901, 6199, 3158, 4135, - 5456, 7226, 9816, 792, 5368, 6449, 9103, 9270, 6930, - 493, 654, 3407, 9216, 5688, 1755, 6223, 5657, 2654, - 9831, 3125, 361, 7126, 2218, 2602, 5098, 4761, 1205, - 8621, 115, 9888, 3031, 2585, 352, 4367, 811, 5475, - 2429, 7689, 3224, 5662, 6948, 6079, 5550, 9463, 1122, - 5894, 8681, 6785, 9288, 7944, 7865, 6760, 9011, 5553, - 4825, 6415, 2355, 898, 3403, 9170, 561, 9126, 4234, - 4025, 5940, 1906, 5324, 7757, 4713, 9775, 1276, 3050, - 1845, 2151, 1470, 5517, 6107, 2126, 169, 7316, 5147, - 7143, 5798, 7485, 2100, 1175, 3639, 2292, 7216, 5739, - 4604, 5676, 7900, 1743, 5543, 496, 5438, 3033, 6300, - 9625, 7884, 868, 6764, 7790, 4603, 4275, 2542, 7679, - 2517, 753, 1188, 9, 9628, 825, 1504, 4738, 4503, - 3667, 2724, 2437, 9981, 5492, 4742, 4297, 8972, 2110, - 5788, 2844, 1894, 1956, 849, 4784, 2604, 1766, 9559, - 8830, 513, 8376, 2625, 9089, 5995, 224, 4591, 8437, - 3546, 8082, 5587, 7269, 7261, 1050, 8775, 8368, 9710, - 3130, 7138, 1877, 1810, 714, 7162, 6619, 5709, 5555, - 9176, 4508, 3812, 9450, 8136, 3068, 6301, 8245, 2547, - 3686, 2549, 4881, 760, 7053, 4068, 2932, 8510, 5794, - 3610, 5663, 6536, 6323, 7083, 9722, 3009, 5541, 1592, - 8519, 4330, 9599, 8483, 5422, 8749, 7140, 7425, 3258, - 4071, 3508, 440, 3491, 8958, 227, 1822, 1899, 4417, - 4130, 5376, 7607, 2711, 5070, 8453, 5974, 5725, 3102, - 4319, 1136, 5353, 2913, 2100, 2380, 7803, 8429, 7033, - 9865, 4179, 2758, 7091, 9712, 3940, 1660, 2738, 1161, - 1273, 1987, 8698, 9908, 1522, 5855, 6557, 5362, 6199, - 5495, 3618, 2810, 4992, 2049, 5628, 2971, 7729, 8844, - 8814, 237, 6048, 2296, 9533, 7612, 7926, 9780, 925, - 8697, 4822, 2510, 5570, 1858, 3634, 978, 9466, 3386, - 5188, 7331, 2020, 4713, 1236, 507, 3473, 8015, 4093, - 2302, 6423, 8539, 9221, 3, 6883, 8377, 9158, 2785, - 7310, 6982, 1898, 4277, 8390, 9571, 9839, 1183, 4005, - 7487, 5970, 6616, 6116, 6012, 1446, 5537, 5387, 1151, - 2755, 3911, 5651, 5271, 3235, 386, 4450, 6442, 6100, - 3848, 6984, 2294, 4300, 3422, 41, 1221, 8412, 5345, - 4518, 2990, 4466, 2619, 6417, 7807, 6949, 2231, 5092, - 8664, 1107, 988, 4816, 494, 6420, 3491, 453, 3600, - 7054, 2027, 3564, 1710, 9554, 5472, 8900, 9386, 9031, - 1816, 8149, 7567, 8266, 3663, 9033, 5921, 364, 8749, - 6698, 9060, 756, 9355, 9834, 1694, 9007, 8663, 6164, - 4533, 453, 3525, 2999, 1620, 8551, 5584, 7302, 3431, - 3511, 1151, 2693, 6701, 2811, 1846, 3914, 8113, 4732, - 1710, 1768, 4864, 3721, 6244, 7942, 2108, 6527, 3669, - 9755, 6535, 6335, 1200, 5012, 8614, 6815, 9348, 9957, - 5437, 7361, 3722, 976, 9311, 7143, 6455, 9740, 8884, - 3173, 3993, 7603, 353, 4034, 6110, 6153, 8098, 8815, - 2092, 5561, 6424, 9337, 488, 1819, 5055, 9226, 3017, - 4576, 898, 1858, 9119, 597, 6301, 2611, 6385, 9665, - 5459, 358, 3146, 9108, 9707, 1541, 9224, 4402, 9579, - 3681, 9452, 1698, 7040, 3635, 9172, 7054, 3774, 3656, - 6702, 2178, 7785, 5385, 919, 2093, 7462, 2285, 9457, - 7427, 4598, 3631, 4308, 7505, 7302, 2092, 7835, 4224, - 3882, 7590, 9918, 7814, 756, 9050, 2847, 7772, 7696, - 3977, 171, 1283, 9421, 5242, 3078, 4953, 7874, 4620, - 4267, 7589, 331, 7280, 5130, 4485, 3121, 6860, 8138, - 9853, 8960, 2877, 9855, 2762, 9180, 8810, 4152, 3051, - 3629, 8822, 2644, 3273, 9726, 2350, 9066, 6303, 8018, - 5285, 1079, 2137, 4590, 4781, 8984, 5550, 1556, 9883, - 9833, 9681, 4081, 9689, 673, 4409, 5987, 6177, 8822, - 6139, 8036, 5927, 4714, 6545, 838, 9662, 2644, 5070, - 3487, 3165, 5195, 3829, 6379, 2232, 5754, 5129, 5848, - 3894, 8283, 5980, 9902, 3662, 8890, 8853, 7110, 9795, - 7642, 7103, 469, 4810, 6688, 2429, 4076, 5306, 9979, - 1005, 5135, 7240, 217, 8643, 9053, 6814, 9298, 2894, - 2956, 6801, 5613, 8067, 4531, 7499, 8653, 2058, 7557, - 4361, 1877, 3469, 8406, 121, 4566, 7838, 1546, 7137, - 4932, 2801, 8544, 3003, 8745, 6652, 473, 4604, 8791, - 639, 3375, 5223, 2802, 4534, 7871, 7405, 7614, 7083, - 843, 5874, 5304, 4212, 528, 4583, 223, 4030, 2578, - 141, 353, 5303, 9898, 6794, 7807, 3099, 9090, 5793, - 758, 3061, 5500, 4165, 6157, 5208, 7754, 1844, 5707, - 3293, 5083, 2302, 690, 1183, 1997, 5490, 4852, 2205, - 7232, 7597, 6171, 1383, 4301, 5376, 664, 168, 2009, - 2094, 399, 3659, 3084, 5546, 7468, 2182, 3513, 2614, - 8010, 278, 6465, 4957, 8539, 7108, 9242, 2256, 2890, - 8404, 3586, 6800, 8966, 5769, 8430, 6846, 6811, 7644, - 7111, 317, 8434, 8264, 6583, 9847, 3990, 5681, 2242, - 1436, 1513, 9864, 3452, 6689, 6046, 7561, 4932, 3944, - 3218, 1928, 7678, 8172, 4776, 5768, 1423, 8354, 4677, - 3404, 6672, 7842, 4930, 9021, 1299, 7118, 1359, 3096, - 9765, 756, 9451, 1433, 7324, 129, 7736, 2685, 402, - 4229, 7359, 2482, 8948, 9187, 8125, 7326, 2103, 1079, - 9957, 336, 3873, 8288, 3188, 9701, 7293, 9132, 9723, - 9022, 7867, 4259, 3133, 9090, 6528, 9027, 8659, 1507, - 7617, 4841, 45, 3093, 3583, 4343, 5982, 8161, 6155, - 7739, 6985, 8567, 9853, 723, 6930, 7751, 6992, 7484, - 1228, 8212, 8093, 5964, 2926, 1855, 8661, 8972, 1067, - 8476, 2481, 2860, 3244, 2959, 6123, 2484, 6976, 5707, - 149, 8194, 1354, 3355, 7336, 2434, 3067, 2904, 7963, - 9385, 9454, 6997, 2534, 2719, 9409, 566, 9588, 6159, - 6836]), - values=tensor([0.1595, 0.3574, 0.1569, 0.1927, 0.3455, 0.5475, 0.2360, - 0.1267, 0.8383, 0.2014, 0.9754, 0.6677, 0.1560, 0.5822, - 0.1680, 0.8880, 0.2016, 0.4887, 0.3651, 0.0525, 0.8366, - 0.9019, 0.0584, 0.5934, 0.4533, 0.4719, 0.3162, 0.0856, - 0.7503, 0.4555, 0.9429, 0.4009, 0.2620, 0.7629, 0.8959, - 0.8100, 0.4815, 0.9912, 0.3905, 0.7870, 0.9051, 0.8110, - 0.3963, 0.7546, 0.5404, 0.9403, 0.6281, 0.8601, 0.2128, - 0.9335, 0.8597, 0.6945, 0.6850, 0.0122, 0.8533, 0.8021, - 0.9410, 0.6950, 0.0132, 0.6242, 0.6252, 0.4892, 0.9799, - 0.2600, 0.5261, 0.3792, 0.5610, 0.3160, 0.6218, 0.2206, - 0.4237, 0.9982, 0.6522, 0.9333, 0.4171, 0.0460, 0.8531, - 0.2544, 0.1701, 0.8725, 0.4151, 0.7436, 0.8380, 0.0031, - 0.3674, 0.8777, 0.9995, 0.2664, 0.8279, 0.9505, 0.7657, - 0.0903, 0.6663, 0.4719, 0.7276, 0.6169, 0.8148, 0.4273, - 0.3201, 0.1031, 0.2252, 0.8940, 0.3381, 0.8762, 0.7333, - 0.0849, 0.8563, 0.6688, 0.1880, 0.9474, 0.8424, 0.7469, - 0.9112, 0.2026, 0.6237, 0.9001, 0.2204, 0.9422, 0.4954, - 0.2980, 0.9255, 0.7271, 0.1643, 0.0068, 0.3178, 0.5072, - 0.3845, 0.1691, 0.3369, 0.7974, 0.8022, 0.9517, 0.0776, - 0.3732, 0.7589, 0.9862, 0.5735, 0.0931, 0.9904, 0.2630, - 0.6907, 0.2327, 0.9485, 0.3933, 0.0070, 0.5468, 0.1908, - 0.4896, 0.4702, 0.2500, 0.3063, 0.1212, 0.3153, 0.1618, - 0.7622, 0.8638, 0.1344, 0.6568, 0.5980, 0.9557, 0.8515, - 0.2277, 0.3628, 0.2727, 0.0373, 0.9037, 0.4799, 0.3062, - 0.6071, 0.8382, 0.4268, 0.8911, 0.8229, 0.2938, 0.0976, - 0.8421, 0.7644, 0.9978, 0.3199, 0.6222, 0.4954, 0.9778, - 0.0275, 0.7170, 0.6011, 0.1531, 0.5312, 0.9783, 0.8205, - 0.8456, 0.4085, 0.4253, 0.7621, 0.1505, 0.1381, 0.3816, - 0.5020, 0.0751, 0.7124, 0.3677, 0.0986, 0.0496, 0.6638, - 0.3861, 0.0351, 0.3193, 0.4186, 0.4530, 0.9467, 0.4987, - 0.3540, 0.1193, 0.8914, 0.4872, 0.4479, 0.6686, 0.2751, - 0.6904, 0.3039, 0.5511, 0.0068, 0.1531, 0.4781, 0.0240, - 0.0954, 0.4173, 0.8675, 0.3561, 0.5523, 0.8362, 0.8739, - 0.2651, 0.1857, 0.6250, 0.3480, 0.8560, 0.1622, 0.0542, - 0.0157, 0.5141, 0.3731, 0.1157, 0.9155, 0.3058, 0.7435, - 0.7859, 0.4688, 0.0056, 0.1613, 0.7726, 0.0041, 0.3619, - 0.2268, 0.9956, 0.9510, 0.3827, 0.0067, 0.1149, 0.7615, - 0.9664, 0.8445, 0.0184, 0.4913, 0.9609, 0.7391, 0.2482, - 0.6660, 0.0209, 0.8868, 0.7347, 0.8362, 0.2449, 0.8127, - 0.7980, 0.3277, 0.9091, 0.5022, 0.3583, 0.2423, 0.2692, - 0.1713, 0.8883, 0.9609, 0.9490, 0.5907, 0.4577, 0.2866, - 0.7624, 0.0106, 0.3356, 0.3755, 0.3176, 0.2329, 0.6294, - 0.2743, 0.3101, 0.4588, 0.4036, 0.2885, 0.0873, 0.1858, - 0.6210, 0.6215, 0.7748, 0.7653, 0.5778, 0.6956, 0.8102, - 0.5336, 0.2692, 0.9831, 0.1045, 0.0380, 0.6104, 0.9903, - 0.9600, 0.4662, 0.6465, 0.0804, 0.3548, 0.4656, 0.2254, - 0.5211, 0.0469, 0.0289, 0.7491, 0.2704, 0.0359, 0.3814, - 0.7932, 0.0705, 0.6724, 0.6843, 0.5705, 0.8756, 0.5358, - 0.2306, 0.2562, 0.1388, 0.0248, 0.6323, 0.9284, 0.8278, - 0.7314, 0.2155, 0.2294, 0.0161, 0.6530, 0.5020, 0.7866, - 0.8715, 0.3957, 0.6929, 0.8887, 0.2496, 0.0985, 0.9688, - 0.1963, 0.1758, 0.9882, 0.3141, 0.5378, 0.2842, 0.7512, - 0.7785, 0.2724, 0.7845, 0.7457, 0.7853, 0.4491, 0.0892, - 0.6755, 0.0822, 0.3497, 0.2198, 0.2096, 0.7362, 0.7000, - 0.7558, 0.6886, 0.3624, 0.4586, 0.4677, 0.6188, 0.3817, - 0.9762, 0.6388, 0.3421, 0.3758, 0.4427, 0.6492, 0.6447, - 0.3194, 0.7097, 0.4354, 0.7354, 0.5318, 0.8658, 0.7094, - 0.6004, 0.9097, 0.9603, 0.8838, 0.0910, 0.6694, 0.1681, - 0.2590, 0.0355, 0.8694, 0.7102, 0.2759, 0.5787, 0.4767, - 0.3597, 0.7267, 0.6895, 0.4960, 0.8730, 0.2749, 0.1586, - 0.6161, 0.7990, 0.8168, 0.0944, 0.7334, 0.9960, 0.2785, - 0.0470, 0.3508, 0.4295, 0.0284, 0.0051, 0.3737, 0.5871, - 0.4284, 0.8218, 0.9847, 0.3679, 0.1207, 0.2346, 0.4243, - 0.9559, 0.2612, 0.4282, 0.3933, 0.2705, 0.3399, 0.6871, - 0.4253, 0.3048, 0.5530, 0.8665, 0.9604, 0.7933, 0.5495, - 0.3547, 0.6941, 0.3034, 0.1736, 0.2158, 0.5342, 0.2303, - 0.3372, 0.4158, 0.6518, 0.9761, 0.7109, 0.3505, 0.9214, - 0.1522, 0.0453, 0.0191, 0.9590, 0.8644, 0.7588, 0.8704, - 0.1540, 0.2129, 0.5901, 0.1942, 0.5206, 0.2060, 0.2277, - 0.7450, 0.0777, 0.9499, 0.5353, 0.5186, 0.1737, 0.7503, - 0.8631, 0.7618, 0.5550, 0.2174, 0.3974, 0.1521, 0.6051, - 0.4034, 0.4703, 0.9003, 0.2967, 0.9908, 0.5484, 0.1785, - 0.4706, 0.1583, 0.1875, 0.9349, 0.1669, 0.1316, 0.9691, - 0.6559, 0.8500, 0.6218, 0.3967, 0.4572, 0.9139, 0.6810, - 0.1586, 0.1486, 0.8315, 0.8096, 0.9857, 0.7295, 0.3313, - 0.2901, 0.7519, 0.2999, 0.4506, 0.2748, 0.0649, 0.1849, - 0.4934, 0.1966, 0.2320, 0.1827, 0.6308, 0.8147, 0.3176, - 0.1413, 0.7432, 0.0179, 0.7421, 0.3941, 0.5882, 0.7801, - 0.9334, 0.1856, 0.6599, 0.6152, 0.2121, 0.9447, 0.7494, - 0.0679, 0.1033, 0.5551, 0.1571, 0.0595, 0.8123, 0.0859, - 0.9549, 0.1265, 0.5115, 0.4947, 0.6271, 0.6976, 0.8284, - 0.6156, 0.3197, 0.4649, 0.6608, 0.0350, 0.6588, 0.4689, - 0.8863, 0.6367, 0.8396, 0.7628, 0.4943, 0.9468, 0.0315, - 0.9582, 0.2547, 0.1886, 0.6267, 0.7794, 0.4776, 0.4022, - 0.5361, 0.7915, 0.8303, 0.9516, 0.0065, 0.0486, 0.5721, - 0.6300, 0.7896, 0.2178, 0.6430, 0.6654, 0.7293, 0.9324, - 0.0904, 0.0029, 0.6017, 0.9638, 0.4045, 0.4907, 0.9349, - 0.3193, 0.8456, 0.7305, 0.1329, 0.8873, 0.6186, 0.7027, - 0.8375, 0.5304, 0.7685, 0.9669, 0.0769, 0.5929, 0.9438, - 0.8255, 0.1349, 0.9462, 0.6909, 0.5550, 0.8560, 0.1634, - 0.1474, 0.2667, 0.0145, 0.8628, 0.5634, 0.9169, 0.9663, - 0.2805, 0.7481, 0.5412, 0.6579, 0.1723, 0.4958, 0.1952, - 0.2705, 0.8297, 0.8781, 0.9300, 0.4932, 0.4241, 0.8045, - 0.7911, 0.2353, 0.7012, 0.0295, 0.4429, 0.5761, 0.6847, - 0.7203, 0.0226, 0.4063, 0.4252, 0.4095, 0.6422, 0.3906, - 0.9874, 0.3819, 0.4620, 0.5675, 0.5519, 0.8265, 0.6693, - 0.1202, 0.8118, 0.1855, 0.3789, 0.0306, 0.3898, 0.5980, - 0.1281, 0.5170, 0.3924, 0.7384, 0.2157, 0.0988, 0.9655, - 0.9173, 0.2438, 0.6109, 0.4547, 0.7814, 0.3018, 0.9140, - 0.4492, 0.0868, 0.3575, 0.8858, 0.7853, 0.5862, 0.9430, - 0.2082, 0.5310, 0.7981, 0.9057, 0.9136, 0.6813, 0.3059, - 0.8130, 0.5169, 0.0825, 0.2122, 0.0361, 0.0680, 0.7877, - 0.1443, 0.9315, 0.9537, 0.6573, 0.6673, 0.6096, 0.7720, - 0.4006, 0.2793, 0.9923, 0.9568, 0.7372, 0.4581, 0.2225, - 0.4795, 0.3467, 0.5454, 0.8269, 0.7995, 0.9928, 0.1039, - 0.1411, 0.1543, 0.1304, 0.0386, 0.3874, 0.3397, 0.3370, - 0.6393, 0.6802, 0.4644, 0.5235, 0.9807, 0.7889, 0.1021, - 0.9696, 0.0877, 0.1046, 0.8426, 0.2928, 0.7682, 0.8307, - 0.0498, 0.3274, 0.2247, 0.5502, 0.2341, 0.4460, 0.7793, - 0.0766, 0.4276, 0.5283, 0.7434, 0.7790, 0.6635, 0.9685, - 0.5303, 0.3645, 0.0898, 0.4529, 0.3974, 0.9204, 0.8693, - 0.1193, 0.3095, 0.1361, 0.1585, 0.0797, 0.0386, 0.4867, - 0.8062, 0.7372, 0.7472, 0.2565, 0.7787, 0.5623, 0.0895, - 0.4141, 0.0579, 0.2073, 0.2739, 0.2587, 0.0279, 0.8989, - 0.3379, 0.3508, 0.9852, 0.3682, 0.7416, 0.4370, 0.7560, - 0.6964, 0.0462, 0.8293, 0.5669, 0.8160, 0.4919, 0.0343, - 0.3307, 0.6785, 0.5043, 0.5529, 0.4214, 0.9726, 0.0919, - 0.4339, 0.1688, 0.9404, 0.3583, 0.5260, 0.7457, 0.6037, - 0.4126, 0.8261, 0.6361, 0.7849, 0.4720, 0.4658, 0.4472, - 0.6965, 0.6849, 0.1463, 0.7329, 0.7205, 0.6296, 0.3943, - 0.6225, 0.5935, 0.3962, 0.5131, 0.0094, 0.1853, 0.3726, - 0.2671, 0.8018, 0.8606, 0.1727, 0.4492, 0.1565, 0.2321, - 0.5274, 0.3800, 0.7385, 0.1726, 0.8828, 0.5176, 0.5197, - 0.2711, 0.2519, 0.5041, 0.2737, 0.3773, 0.8524, 0.9013, - 0.3757, 0.2440, 0.0248, 0.3047, 0.1741, 0.1625, 0.4159, - 0.6619, 0.4663, 0.5995, 0.1867, 0.1602, 0.9925, 0.4213, - 0.1398, 0.2159, 0.0078, 0.9534, 0.2005, 0.1991, 0.9875, - 0.8102, 0.7752, 0.4701, 0.4231, 0.4248, 0.2862, 0.3896, - 0.6863, 0.8315, 0.2118, 0.5451, 0.2655, 0.0905, 0.5261, - 0.8693, 0.4019, 0.1497, 0.3541, 0.0860, 0.0962, 0.2879, - 0.5698, 0.1106, 0.6799, 0.8942, 0.7616, 0.6926, 0.1966, - 0.4551, 0.7681, 0.0079, 0.9274, 0.5069, 0.8968, 0.3655, - 0.2959, 0.0872, 0.0693, 0.7746, 0.5158, 0.7922, 0.0759, - 0.3888, 0.0874, 0.3282, 0.5900, 0.7945, 0.8309, 0.9513, - 0.3391, 0.1582, 0.6222, 0.7213, 0.2696, 0.2995, 0.0623, - 0.7078, 0.2954, 0.4316, 0.2744, 0.6635, 0.6872, 0.8983, - 0.7149, 0.3497, 0.3162, 0.0296, 0.5639, 0.7317, 0.1808, - 0.5588, 0.4835, 0.1889, 0.2880, 0.0596, 0.9660, 0.6453, - 0.2374, 0.0690, 0.2719, 0.9133, 0.2929, 0.5555, 0.7051, - 0.3500, 0.3031, 0.8234, 0.6216, 0.6849, 0.6063, 0.7426, - 0.6347, 0.2320, 0.0786, 0.4232, 0.7048, 0.8846, 0.7739, - 0.9266, 0.8791, 0.1752, 0.0562, 0.4849, 0.4175, 0.0203, - 0.7363, 0.1222, 0.4577, 0.5149, 0.7902, 0.1347]), + col_indices=tensor([ 367, 5928, 4913, 9662, 9837, 1139, 7195, 709, 1186, + 80, 7429, 8354, 3731, 4238, 1204, 8286, 5350, 6518, + 6581, 5481, 8412, 8567, 4483, 270, 6809, 6052, 9047, + 8886, 6265, 2683, 8840, 6468, 5705, 4463, 7370, 8923, + 7324, 752, 3820, 476, 1511, 1152, 7156, 6378, 1601, + 6251, 5183, 964, 1260, 884, 6109, 4781, 1936, 3415, + 7691, 4888, 5674, 6459, 8140, 8932, 2864, 6432, 1356, + 2665, 9855, 2360, 1289, 3774, 7837, 576, 7725, 1293, + 907, 2542, 7673, 5326, 1656, 1077, 464, 7656, 5438, + 524, 4581, 8099, 2687, 4078, 5342, 5240, 9155, 9342, + 4985, 2318, 5185, 4603, 8415, 3279, 2083, 7925, 8071, + 9166, 9303, 9469, 5789, 7778, 8645, 7134, 7594, 2178, + 218, 3344, 3951, 8834, 4013, 7845, 8331, 9692, 3137, + 7730, 5023, 8474, 4718, 38, 726, 535, 2913, 4635, + 2716, 3591, 9066, 2660, 3345, 7905, 2026, 1175, 9827, + 6627, 4714, 9765, 1301, 2421, 949, 3573, 4881, 5681, + 2117, 1844, 8550, 9611, 6234, 1475, 3891, 4140, 4791, + 497, 5133, 1193, 8459, 1053, 2110, 5799, 6433, 6363, + 6452, 1314, 1357, 383, 1853, 7981, 8433, 7415, 6026, + 6286, 7644, 2079, 2595, 9578, 6356, 4227, 8298, 2069, + 2653, 5142, 7404, 4079, 1966, 7533, 6062, 6415, 8225, + 8783, 5739, 3815, 1201, 4896, 5097, 5808, 8945, 5520, + 6206, 511, 7347, 334, 3119, 1570, 7713, 2906, 3536, + 6334, 7998, 298, 3942, 6558, 2963, 4842, 2263, 5657, + 6492, 6276, 9075, 5298, 2267, 9620, 5320, 1568, 8760, + 7490, 9058, 1722, 5460, 3464, 1842, 2377, 9510, 1053, + 3322, 9012, 5664, 8967, 8790, 9286, 1946, 3141, 8192, + 6659, 3495, 4958, 4102, 7004, 6177, 5317, 6593, 7640, + 6307, 8035, 9650, 8087, 4138, 5288, 54, 277, 9498, + 8689, 2955, 8232, 1954, 321, 4627, 4226, 4258, 7653, + 5234, 2531, 412, 5196, 6249, 3047, 8171, 9428, 3213, + 9763, 1374, 9103, 7900, 6626, 2118, 7765, 3728, 6106, + 4954, 4753, 8313, 550, 6888, 8896, 9965, 3061, 2947, + 8278, 5879, 5273, 5453, 181, 2437, 4117, 7283, 5591, + 8602, 8473, 5720, 1866, 7656, 8837, 3905, 7472, 7158, + 3023, 2882, 9989, 8681, 648, 6274, 6847, 3312, 5656, + 7680, 6098, 4463, 9954, 2825, 6574, 7011, 1957, 6137, + 6725, 3576, 5559, 9535, 4552, 2200, 3109, 9611, 9451, + 1309, 2875, 3230, 5628, 9907, 8010, 6405, 222, 8761, + 2120, 9374, 4858, 4514, 5442, 9330, 8281, 8858, 4407, + 6543, 35, 3825, 9633, 1009, 2627, 3906, 1955, 7496, + 3563, 3539, 8202, 7400, 7587, 7952, 2607, 3232, 9574, + 748, 9829, 4992, 1810, 7308, 6501, 6785, 7235, 1137, + 8724, 2405, 7482, 6759, 4652, 5655, 4530, 6784, 9512, + 4088, 6049, 9230, 7810, 9658, 5737, 1295, 738, 747, + 7672, 2503, 5907, 2220, 201, 5120, 7515, 3259, 3879, + 3039, 9321, 8605, 9482, 4181, 7348, 9537, 587, 6394, + 3984, 306, 1193, 3228, 778, 134, 9046, 7121, 4357, + 4190, 4050, 4701, 5483, 6713, 8937, 2483, 711, 8665, + 3008, 3841, 9929, 1156, 7864, 8900, 4657, 7749, 2947, + 9699, 2414, 4266, 6048, 8585, 5785, 2832, 7866, 2519, + 9463, 5405, 1165, 1777, 9786, 9696, 3031, 653, 1886, + 1959, 8043, 4843, 484, 4688, 1972, 2038, 6598, 7240, + 1462, 7254, 3087, 1879, 7554, 1558, 7001, 9016, 8895, + 5649, 4937, 9704, 4961, 7644, 8442, 2757, 2242, 9502, + 2976, 4095, 4676, 9126, 5855, 4163, 6430, 137, 106, + 3030, 655, 8531, 7089, 648, 854, 5910, 4435, 7738, + 4805, 6752, 444, 2066, 5929, 8674, 9769, 2865, 2752, + 5321, 130, 2489, 807, 9550, 1633, 7468, 9068, 9241, + 6808, 7365, 968, 8661, 9018, 3550, 6104, 2629, 7508, + 35, 8351, 2048, 4626, 2188, 1746, 7387, 3093, 1503, + 1452, 7638, 1336, 9281, 6296, 6140, 7102, 9783, 1071, + 4115, 8592, 8292, 2729, 6495, 356, 8036, 1239, 4223, + 6109, 2038, 6313, 7535, 4790, 2693, 2125, 7954, 5865, + 3268, 2522, 6271, 2184, 4150, 1470, 3491, 6995, 9734, + 2067, 3839, 7338, 6815, 4421, 307, 289, 5776, 7623, + 5550, 9770, 6085, 800, 6471, 6365, 7940, 7253, 9023, + 3056, 1623, 7408, 4931, 2227, 3852, 1329, 3500, 1597, + 680, 4795, 1426, 733, 9436, 1001, 976, 8821, 8330, + 6704, 5168, 673, 3362, 4167, 8558, 5789, 6484, 7568, + 5585, 6431, 6874, 5521, 5213, 7970, 3020, 8092, 5025, + 6800, 7632, 7512, 3989, 4195, 1578, 2940, 3628, 3648, + 6431, 2736, 7676, 5158, 5635, 1844, 6595, 8947, 5903, + 51, 9169, 4098, 5691, 6814, 9766, 6514, 9970, 2239, + 2046, 3280, 2714, 5806, 2677, 82, 1113, 2963, 2180, + 2566, 2541, 3825, 9253, 8388, 6485, 870, 1684, 7333, + 793, 9898, 5870, 5155, 6286, 9563, 9068, 5713, 2343, + 1715, 3887, 723, 1944, 2953, 3319, 9854, 144, 718, + 6674, 4026, 8079, 7531, 4342, 6924, 6779, 6546, 7462, + 9962, 1432, 8607, 1875, 2805, 7948, 2976, 1046, 7036, + 4949, 7102, 477, 7850, 2174, 1961, 4920, 8186, 1308, + 179, 2095, 3644, 8483, 9153, 627, 2488, 890, 3123, + 4350, 5492, 1701, 1645, 3932, 3331, 2933, 6624, 7332, + 7665, 5288, 7681, 6550, 7545, 730, 5687, 802, 6864, + 7451, 2117, 4878, 4869, 1248, 1137, 1380, 8950, 5598, + 7429, 4233, 1060, 5569, 6689, 8608, 3567, 4558, 7535, + 9199, 2985, 2282, 235, 9129, 8582, 2072, 7435, 8445, + 9048, 7905, 3709, 7810, 5385, 5720, 2662, 2668, 7912, + 4854, 9556, 9550, 3132, 8229, 4856, 4161, 1914, 745, + 65, 7058, 9271, 7846, 8928, 5152, 5482, 8156, 4590, + 3430, 90, 6589, 2814, 3078, 1382, 8736, 5505, 2054, + 8404, 4829, 8221, 2458, 952, 6527, 2277, 8961, 5925, + 2066, 2154, 3256, 2466, 7237, 2076, 9446, 4670, 7006, + 2231, 8823, 7168, 5299, 1101, 7045, 7082, 8944, 4016, + 4074, 4258, 3864, 3141, 4450, 5115, 5389, 9949, 1172, + 9433, 1642, 1479, 3769, 9973, 4747, 4872, 389, 8601, + 9119, 8563, 2438, 6873, 1818, 9226, 937, 6705, 3733, + 2036, 669, 2029, 332, 7663, 8899, 3889, 9735, 9326, + 8050, 2621, 3330, 992, 9581, 1488, 8125, 6995, 2528, + 7140, 6221, 1417, 9802, 898, 1689, 3308, 303, 2075, + 6622, 9167, 6725, 8722, 8663, 7196, 3835, 4992, 1316, + 6283, 4758, 9632, 641, 8717, 8903, 403, 3496, 5247, + 9491, 1114, 4440, 9898, 4961, 6497, 4291, 3663, 5161, + 7340, 9289, 8727, 7951, 3216, 9826, 2744, 1742, 7964, + 1100, 4645, 9, 4874, 3732, 9378, 1625, 9820, 3610, + 1545, 6999, 6918, 1895, 3580, 9207, 2130, 5891, 4573, + 1060, 9808, 4116, 943, 4244, 5724, 4961, 3837, 8840, + 389, 1348, 833, 3514, 5170, 1683, 7789, 9831, 5974, + 9125, 5396, 7463, 6389, 1948, 8359, 6877, 7522, 8087, + 7219, 1695, 4668, 662, 3386, 4803, 1414, 7277, 1481, + 9053, 9285, 9508, 5533, 205, 8818, 4845, 7696, 8623, + 9000]), + values=tensor([9.0347e-01, 8.9097e-01, 3.9050e-01, 1.1761e-01, + 7.3236e-01, 1.8076e-01, 1.7435e-01, 3.1968e-01, + 6.2094e-02, 6.9707e-01, 9.2156e-01, 2.5833e-01, + 3.9175e-01, 8.0344e-02, 8.5392e-01, 7.0595e-02, + 6.3035e-01, 4.6849e-01, 4.1355e-01, 5.1765e-01, + 6.7505e-01, 7.7298e-01, 3.0196e-01, 2.7160e-01, + 4.9835e-01, 7.7842e-01, 7.9100e-01, 6.1241e-01, + 9.2766e-01, 8.1158e-01, 9.2979e-01, 2.0087e-01, + 6.3444e-01, 1.1919e-01, 2.9666e-01, 8.1344e-01, + 2.3658e-01, 7.2770e-01, 3.4239e-01, 6.0915e-01, + 3.8756e-01, 4.8989e-01, 5.2955e-01, 9.2633e-01, + 7.9699e-01, 9.0118e-01, 6.9847e-02, 3.2137e-02, + 8.8024e-01, 6.0500e-01, 4.6450e-01, 8.5960e-02, + 5.6130e-01, 3.3831e-01, 9.3616e-01, 8.2763e-01, + 2.4098e-01, 8.9643e-01, 9.8468e-01, 8.8817e-01, + 4.6338e-01, 1.1147e-02, 8.1814e-01, 9.2206e-02, + 1.0005e-01, 6.2906e-01, 6.9146e-01, 1.5603e-01, + 3.1235e-01, 6.2561e-01, 3.7711e-01, 6.5022e-01, + 1.2930e-01, 6.7901e-02, 7.2399e-01, 7.8736e-01, + 8.8706e-02, 7.0933e-01, 9.0665e-01, 1.0525e-01, + 7.0947e-01, 7.6785e-01, 7.4226e-01, 9.8559e-01, + 9.2459e-01, 1.7157e-01, 7.4478e-01, 7.9596e-01, + 7.2144e-01, 1.9958e-01, 6.1043e-01, 2.7464e-01, + 5.8302e-01, 9.7091e-01, 4.8610e-01, 8.4624e-01, + 8.7645e-01, 7.2595e-01, 7.4275e-01, 2.6952e-01, + 8.8491e-01, 6.7085e-02, 7.5574e-01, 6.1435e-01, + 1.3665e-01, 8.8809e-01, 2.2500e-01, 7.6147e-01, + 5.8642e-01, 8.3791e-01, 3.2752e-01, 4.9244e-01, + 6.5160e-01, 6.2237e-01, 5.6666e-01, 1.2589e-01, + 5.4657e-01, 1.6810e-01, 1.1783e-01, 3.3742e-01, + 6.8221e-01, 1.2268e-02, 4.7183e-01, 6.4275e-01, + 3.3058e-01, 6.2514e-01, 2.7607e-01, 5.2090e-01, + 3.9798e-01, 7.4704e-02, 3.1431e-01, 2.3156e-01, + 2.4983e-01, 7.9235e-01, 6.1773e-02, 4.1696e-01, + 2.9905e-01, 6.8152e-01, 3.4211e-01, 6.0393e-01, + 3.6186e-02, 8.0620e-01, 9.8874e-01, 4.6252e-01, + 8.4231e-01, 9.1653e-01, 4.6135e-01, 2.8152e-01, + 9.7319e-01, 4.3848e-01, 5.7170e-01, 4.9901e-01, + 7.4233e-01, 2.6089e-01, 8.3401e-01, 2.3202e-01, + 8.4769e-01, 8.7678e-01, 7.1420e-01, 8.9378e-01, + 5.6124e-01, 4.0637e-01, 3.8693e-01, 8.0881e-02, + 2.6688e-01, 5.6776e-01, 4.3004e-01, 4.7054e-01, + 2.0392e-01, 7.2817e-01, 6.6755e-01, 5.1867e-01, + 5.2670e-01, 1.4618e-01, 7.3183e-01, 8.6973e-01, + 1.9126e-01, 4.9009e-01, 2.5587e-01, 4.0650e-01, + 9.8806e-01, 9.6733e-01, 1.1171e-01, 7.9880e-01, + 6.7184e-01, 7.4651e-02, 1.7680e-01, 9.4485e-01, + 8.4713e-01, 1.4694e-01, 9.3410e-01, 6.8790e-01, + 6.7995e-01, 3.4766e-01, 3.3209e-01, 8.5193e-01, + 5.7959e-01, 2.9187e-01, 3.0229e-01, 9.7462e-01, + 7.8153e-01, 2.9900e-01, 3.0648e-01, 9.4053e-01, + 7.5039e-01, 7.3664e-01, 2.3912e-01, 5.6769e-01, + 9.2225e-01, 1.2617e-01, 4.4870e-01, 5.2352e-01, + 4.9831e-01, 4.2978e-01, 5.8379e-03, 5.1101e-01, + 1.1850e-02, 4.3076e-02, 2.0400e-01, 4.3425e-02, + 2.0565e-01, 2.5026e-01, 5.8630e-01, 9.9979e-01, + 5.5005e-01, 2.8369e-01, 7.0988e-01, 9.9716e-01, + 1.0843e-01, 5.2002e-01, 8.1336e-01, 4.4712e-01, + 1.7801e-01, 4.1042e-01, 8.1718e-01, 7.5846e-01, + 6.4002e-01, 8.1764e-01, 9.2236e-01, 2.7385e-01, + 2.2693e-01, 1.3388e-01, 2.7481e-01, 2.7276e-01, + 6.3817e-01, 8.1593e-01, 7.1721e-01, 1.0760e-01, + 3.2614e-01, 4.3753e-03, 9.9770e-01, 9.1052e-01, + 1.4963e-01, 1.3781e-01, 1.1034e-01, 1.1895e-02, + 8.2173e-01, 2.6975e-01, 3.5686e-01, 5.8749e-01, + 1.5253e-01, 6.6786e-01, 9.1749e-01, 8.5611e-01, + 5.9711e-01, 8.9352e-01, 7.2370e-01, 4.2727e-01, + 4.7201e-01, 6.1878e-01, 1.3255e-01, 4.0640e-01, + 6.1650e-01, 9.0122e-01, 3.3783e-01, 1.2667e-01, + 5.3203e-01, 7.8517e-01, 4.7198e-01, 8.0031e-01, + 9.8415e-02, 6.3035e-01, 8.4415e-01, 4.0094e-01, + 3.8505e-01, 5.1696e-01, 9.5335e-01, 7.6890e-01, + 5.9772e-01, 8.7886e-01, 7.4086e-01, 8.4781e-01, + 1.6493e-01, 3.3683e-01, 7.1960e-03, 2.9042e-01, + 8.4813e-01, 1.8192e-01, 6.0102e-01, 4.2567e-01, + 9.3317e-02, 3.8724e-01, 3.5787e-01, 9.9992e-01, + 1.2443e-01, 8.2890e-01, 2.8195e-01, 6.3051e-01, + 6.0894e-01, 9.5920e-01, 6.4943e-01, 6.5476e-01, + 6.7692e-01, 5.7763e-01, 7.8022e-01, 4.1886e-01, + 5.0205e-01, 2.5778e-01, 9.0479e-01, 8.7006e-01, + 6.1226e-01, 6.4647e-01, 1.5596e-01, 7.0047e-01, + 6.7722e-01, 5.4595e-01, 4.9292e-01, 9.0526e-01, + 4.8174e-02, 8.1995e-02, 7.1448e-01, 2.7007e-02, + 6.2586e-01, 6.7855e-01, 4.6902e-01, 3.6021e-01, + 3.9907e-01, 1.8609e-02, 6.0745e-01, 2.4758e-01, + 6.2019e-02, 9.3085e-01, 3.9521e-01, 8.9117e-01, + 5.9487e-01, 4.2672e-02, 7.4925e-01, 8.7766e-02, + 5.8346e-01, 6.5657e-01, 8.0155e-01, 4.5151e-01, + 5.5583e-01, 7.1994e-01, 6.1938e-01, 4.9424e-01, + 8.4852e-01, 2.5577e-01, 7.5244e-01, 5.8561e-01, + 1.6622e-01, 5.3017e-01, 7.0377e-01, 1.6795e-01, + 6.1195e-01, 5.0235e-01, 4.0852e-01, 2.4062e-01, + 3.7706e-01, 7.1399e-01, 1.5932e-01, 2.0246e-01, + 9.3118e-01, 3.6824e-01, 9.2308e-01, 4.1388e-01, + 3.9074e-01, 2.1232e-02, 4.8230e-01, 3.1334e-02, + 7.6588e-01, 8.9020e-01, 9.5571e-02, 9.3996e-01, + 3.3502e-01, 1.6456e-02, 4.8873e-01, 9.0152e-01, + 6.0836e-01, 6.2449e-02, 2.3911e-01, 2.5569e-01, + 1.9099e-01, 6.5319e-01, 3.4599e-01, 9.4871e-01, + 1.5293e-01, 9.6291e-01, 5.9772e-01, 9.2359e-01, + 6.8691e-01, 6.3677e-01, 7.7151e-01, 5.4282e-01, + 9.3692e-01, 3.1526e-01, 9.7688e-01, 8.3385e-01, + 2.2972e-01, 6.2720e-01, 2.5945e-01, 2.4371e-01, + 1.9518e-01, 9.3585e-01, 5.0154e-01, 4.9345e-01, + 9.2069e-01, 2.8370e-01, 2.0941e-01, 2.7517e-01, + 3.3759e-01, 3.1978e-01, 9.0873e-01, 7.9081e-01, + 6.9871e-01, 2.8844e-01, 7.5941e-01, 4.7964e-01, + 4.1805e-01, 7.2289e-01, 7.1452e-01, 2.2869e-01, + 3.5827e-01, 5.0632e-01, 5.1573e-01, 6.2442e-01, + 5.5513e-01, 3.8608e-01, 6.5218e-02, 2.8971e-01, + 9.3603e-01, 9.9599e-01, 2.9308e-02, 5.0704e-01, + 3.3920e-01, 1.3835e-01, 1.3900e-01, 8.3661e-01, + 8.7030e-02, 1.9115e-01, 8.1969e-01, 2.0766e-01, + 2.0634e-04, 3.2996e-03, 3.5546e-01, 6.9885e-01, + 8.1732e-01, 4.6117e-01, 9.2421e-01, 7.9629e-01, + 9.9088e-01, 9.9274e-01, 1.1080e-01, 1.7902e-01, + 7.9706e-01, 1.8505e-01, 7.4092e-01, 7.3209e-01, + 1.2144e-01, 5.6902e-01, 9.3325e-01, 2.2999e-01, + 6.3010e-01, 9.2148e-01, 2.9383e-01, 4.2274e-01, + 1.2992e-01, 1.8436e-01, 7.7452e-01, 9.5314e-03, + 8.7521e-01, 3.7291e-01, 3.4776e-01, 9.8447e-01, + 9.2182e-01, 6.2103e-01, 7.8077e-01, 6.7523e-01, + 1.6309e-01, 9.9005e-01, 7.0418e-01, 7.5393e-01, + 4.9572e-02, 5.3018e-01, 5.0127e-02, 9.4383e-01, + 9.3893e-01, 2.9396e-01, 1.7931e-01, 3.2387e-01, + 5.3937e-01, 4.4591e-01, 4.1519e-01, 6.4965e-01, + 9.0437e-01, 8.3040e-01, 1.4310e-01, 3.5145e-02, + 4.6746e-01, 5.6639e-01, 4.2557e-01, 8.3449e-01, + 7.7874e-01, 8.0354e-03, 7.7620e-01, 6.3805e-01, + 9.9677e-01, 2.9228e-01, 7.5318e-01, 7.8356e-01, + 9.8216e-01, 6.5817e-01, 3.5696e-01, 2.7232e-01, + 3.7271e-01, 2.1862e-01, 6.4841e-01, 3.4376e-01, + 6.0935e-01, 9.5134e-02, 6.6915e-01, 8.1621e-01, + 4.0272e-01, 6.1882e-01, 5.0284e-02, 8.7929e-01, + 4.2125e-01, 7.6634e-01, 2.5193e-01, 1.3171e-01, + 5.5583e-01, 1.3959e-01, 1.7579e-01, 7.2551e-01, + 6.6240e-01, 1.9258e-01, 3.6612e-01, 1.8147e-01, + 5.7841e-01, 7.8278e-01, 4.2669e-02, 6.6255e-01, + 2.8767e-01, 8.0007e-02, 3.6674e-04, 3.9335e-01, + 2.1417e-01, 2.2919e-01, 1.2683e-01, 9.0001e-01, + 9.9290e-01, 4.5741e-01, 2.3197e-01, 1.8836e-01, + 9.6565e-01, 8.0740e-01, 1.9854e-01, 5.3042e-02, + 8.1469e-01, 4.9040e-01, 7.2177e-01, 6.4045e-01, + 4.9810e-01, 2.5103e-02, 4.7475e-01, 4.7844e-02, + 6.0969e-01, 9.1481e-01, 4.4597e-01, 1.1494e-01, + 4.9666e-01, 6.1275e-01, 8.7093e-01, 1.3668e-01, + 9.5248e-01, 5.9063e-01, 4.9499e-01, 9.1388e-01, + 4.0836e-01, 9.3011e-01, 8.1737e-01, 5.9702e-01, + 9.9251e-01, 9.3234e-01, 7.8850e-01, 5.3497e-01, + 5.6422e-01, 3.4891e-01, 7.9452e-01, 8.5710e-01, + 9.6578e-01, 5.9804e-01, 4.3277e-01, 7.3290e-01, + 1.0449e-01, 4.8889e-01, 9.8684e-01, 3.1549e-02, + 8.2245e-02, 9.4666e-01, 1.7503e-01, 1.3455e-01, + 8.0620e-01, 9.4127e-01, 6.0203e-01, 2.4925e-01, + 2.1869e-01, 3.0844e-02, 4.0776e-01, 2.7968e-01, + 7.2045e-01, 4.5107e-02, 7.6360e-01, 6.9114e-01, + 3.5384e-01, 2.6205e-01, 4.0814e-01, 4.1925e-01, + 9.5840e-01, 2.7948e-01, 9.9578e-01, 5.4533e-01, + 4.9157e-01, 1.7568e-01, 4.9298e-01, 1.2249e-01, + 4.9184e-01, 5.8221e-01, 3.4826e-01, 2.3718e-01, + 4.0414e-02, 9.8825e-01, 6.8724e-01, 4.1618e-01, + 3.5580e-01, 9.8542e-01, 6.1434e-01, 1.5506e-01, + 1.8635e-01, 3.4507e-01, 8.7226e-01, 6.4723e-01, + 1.1927e-01, 6.1913e-02, 5.8115e-01, 5.0795e-02, + 6.9421e-01, 8.5543e-01, 4.6361e-01, 1.7225e-01, + 7.1720e-01, 5.2724e-01, 2.7571e-01, 7.8026e-01, + 9.7859e-01, 3.3684e-01, 9.4074e-01, 8.4877e-01, + 1.6576e-02, 3.2110e-01, 8.1119e-01, 4.4604e-02, + 7.5553e-01, 8.9513e-01, 2.5486e-01, 5.6611e-01, + 1.5194e-01, 8.0984e-01, 1.1473e-02, 5.0922e-02, + 1.9459e-01, 2.4450e-01, 5.2269e-01, 8.8459e-01, + 1.5980e-01, 5.1724e-01, 3.6058e-01, 3.8147e-01, + 8.0778e-02, 6.8899e-01, 9.3518e-01, 3.9577e-01, + 6.8067e-01, 2.9545e-01, 2.1034e-01, 8.0864e-01, + 3.0905e-01, 3.9012e-01, 5.0504e-01, 3.5331e-01, + 2.3990e-01, 1.9663e-01, 4.7629e-02, 8.8145e-01, + 1.6688e-01, 3.2309e-01, 6.0635e-01, 6.9179e-01, + 8.4762e-01, 4.8298e-01, 4.2062e-01, 8.8411e-01, + 3.1172e-01, 4.7812e-02, 1.8446e-01, 3.6828e-01, + 2.3400e-01, 8.2280e-02, 7.9717e-01, 4.5737e-02, + 6.3521e-01, 7.6517e-01, 5.7003e-01, 8.6854e-01, + 6.3527e-01, 5.4238e-01, 6.1423e-02, 9.0375e-01, + 9.5888e-01, 3.1839e-01, 2.4367e-01, 6.4739e-01, + 8.1586e-01, 2.4076e-01, 9.7343e-01, 4.9856e-01, + 7.2246e-01, 5.0023e-01, 1.2692e-01, 7.4359e-01, + 3.5270e-01, 2.8465e-01, 3.0118e-01, 3.5307e-01, + 6.2379e-01, 7.1186e-01, 6.6474e-01, 8.4095e-02, + 8.8565e-01, 2.9464e-01, 5.4755e-01, 9.0701e-01, + 8.9197e-01, 1.8235e-01, 9.3370e-01, 8.6788e-01, + 1.0571e-01, 3.0684e-01, 2.0394e-01, 6.1322e-01, + 7.6393e-01, 7.5679e-01, 2.3964e-01, 2.2054e-01, + 4.5451e-01, 3.5051e-01, 7.3550e-02, 9.3935e-01, + 2.5262e-01, 9.1953e-01, 2.4572e-01, 1.1299e-01, + 5.8933e-01, 2.5009e-01, 8.9652e-01, 6.5729e-02, + 1.7446e-01, 3.5451e-01, 5.3832e-01, 6.5479e-01, + 6.3736e-01, 1.1466e-01, 4.7192e-01, 9.4751e-01, + 4.2249e-01, 8.0013e-01, 8.3662e-01, 2.7945e-01, + 4.9136e-01, 2.0754e-01, 1.5234e-01, 2.6470e-01, + 9.8611e-01, 2.0121e-01, 6.4605e-01, 1.4810e-01, + 3.8203e-01, 1.0221e-02, 6.4883e-01, 3.7738e-01, + 6.6558e-01, 1.0409e-01, 3.3837e-01, 4.1054e-01, + 2.3450e-01, 5.9670e-01, 6.3347e-01, 9.3841e-01, + 7.1202e-01, 8.2758e-02, 3.3401e-01, 4.6725e-01, + 5.5433e-01, 4.1060e-01, 4.8108e-01, 2.6006e-02, + 5.0602e-01, 7.5691e-01, 8.3228e-01, 5.5461e-01, + 9.7723e-01, 9.5142e-02, 4.8502e-01, 4.7276e-01, + 4.6702e-01, 6.8685e-02, 4.7602e-01, 9.8285e-01, + 8.7376e-02, 7.2154e-01, 6.4366e-02, 8.0105e-01, + 6.7920e-01, 3.4169e-01, 9.9690e-01, 8.6900e-02, + 6.8423e-01, 2.2307e-01, 6.6827e-01, 6.2007e-01, + 7.2812e-01, 8.1208e-01, 8.1304e-01, 4.9537e-02, + 2.2654e-01, 1.0913e-01, 1.8736e-01, 7.4063e-01, + 7.0233e-01, 5.2413e-01, 9.2392e-01, 4.3601e-01, + 8.7513e-01, 9.5555e-02, 5.5401e-01, 4.9938e-02, + 6.6611e-02, 5.3894e-01, 7.4381e-01, 8.2785e-01, + 4.4283e-01, 2.1861e-01, 8.1992e-02, 5.3650e-01, + 2.7083e-01, 9.6992e-02, 6.5700e-01, 3.6738e-01, + 5.3582e-02, 6.8961e-01, 5.1692e-01, 4.7811e-01, + 9.5507e-01, 1.1629e-01, 4.4608e-01, 9.1741e-01, + 6.7667e-01, 2.8148e-02, 7.4903e-01, 7.8503e-01, + 4.6236e-02, 4.6999e-02, 1.9415e-01, 5.8769e-01, + 3.9665e-01, 2.8180e-01, 6.6891e-01, 5.2471e-01, + 5.6718e-01, 3.6965e-01, 4.8691e-01, 1.2448e-01, + 3.7830e-01, 7.1508e-01, 5.3843e-01, 1.9964e-01, + 4.6846e-01, 3.0749e-01, 5.0821e-01, 4.7264e-01, + 6.5869e-01, 7.5655e-01, 6.6608e-01, 4.4097e-01, + 8.8246e-01, 5.5178e-01, 3.1991e-01, 6.1838e-01, + 5.4250e-01, 3.8407e-01, 6.9734e-01, 5.6089e-01, + 7.7507e-01, 1.5344e-01, 8.1394e-01, 3.8479e-02, + 5.6357e-02, 3.7774e-01, 7.2734e-01, 7.5830e-02, + 9.5355e-01, 4.6254e-01, 5.1318e-01, 7.7011e-01, + 2.9491e-01, 1.3797e-01, 8.7797e-01, 8.0879e-01, + 5.8383e-01, 1.2735e-01, 2.6792e-01, 7.5423e-01, + 8.5687e-01, 5.6856e-01, 3.0846e-01, 7.2150e-01, + 2.0158e-01, 4.4285e-01, 4.3074e-01, 8.2410e-01, + 5.6984e-01, 2.3044e-01, 8.7317e-01, 5.4302e-01, + 1.6661e-01, 1.5551e-01, 5.3661e-01, 9.8902e-01, + 6.2303e-01, 5.7449e-01, 9.7497e-01, 6.9276e-01, + 2.8973e-01, 2.2008e-01, 7.4155e-02, 6.3535e-01, + 3.2883e-01, 7.0117e-01, 3.0143e-01, 5.7505e-01, + 3.4680e-01, 2.7660e-01, 7.0338e-02, 7.8984e-01, + 6.7461e-01, 2.5361e-01, 8.3933e-01, 7.1929e-01, + 1.4013e-01, 9.9655e-01, 2.4267e-01, 9.3212e-01, + 4.6070e-01, 2.2070e-01, 6.6336e-01, 1.3432e-01, + 5.3597e-01, 5.1768e-01, 7.6964e-01, 9.9864e-01, + 5.3829e-01, 3.1592e-01, 9.3386e-01, 5.8600e-01, + 1.2704e-01, 5.0213e-01, 6.2221e-02, 1.0695e-01, + 2.6995e-01, 2.6387e-01, 9.3927e-01, 2.7555e-01, + 3.1073e-01, 1.1755e-01, 8.1059e-01, 3.6864e-01, + 2.6251e-01, 5.7401e-01, 2.8597e-02, 8.6585e-02]), size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.8197, 0.8953, 0.9337, ..., 0.6014, 0.8565, 0.4467]) +tensor([0.8046, 0.6398, 0.4516, ..., 0.6060, 0.1172, 0.9615]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -540,768 +1509,13 @@ Rows: 10000 Size: 100000000 NNZ: 1000 Density: 1e-05 -Time: 7.084842920303345 seconds +Time: 10.420795440673828 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '361507', '-ss', '10000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.549095392227173} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 999, 999, 1000]), - col_indices=tensor([3175, 1540, 6513, 4566, 9706, 3242, 7522, 361, 3563, - 273, 8050, 6972, 5246, 100, 2674, 5918, 3629, 808, - 6317, 2665, 3236, 7680, 4047, 5897, 1768, 5781, 8933, - 8413, 7478, 8640, 5353, 4488, 7437, 3716, 4046, 1102, - 6131, 2784, 5612, 6734, 6293, 813, 8222, 4409, 7568, - 7734, 4823, 4746, 71, 9732, 5731, 7539, 5376, 3975, - 4034, 5323, 3781, 4198, 6205, 3448, 5920, 4554, 964, - 2149, 3775, 4363, 7665, 7615, 1360, 740, 9444, 8107, - 1702, 5055, 4887, 338, 8496, 5258, 6306, 4365, 8779, - 3316, 6271, 7936, 5465, 5927, 2341, 8746, 8614, 4168, - 7453, 8302, 1818, 3772, 900, 570, 1621, 1384, 1313, - 5863, 7529, 2013, 14, 7644, 4866, 5872, 4394, 6186, - 7063, 8838, 961, 1908, 8272, 1397, 5498, 6793, 4939, - 7488, 3334, 7992, 2581, 6595, 9145, 5581, 4949, 2140, - 6797, 414, 1120, 5151, 8169, 7479, 5174, 1884, 9527, - 2164, 3682, 8813, 2069, 8178, 7946, 3103, 3936, 5349, - 2278, 6902, 2920, 1610, 3303, 3215, 9428, 1830, 2118, - 5807, 1813, 6966, 2320, 7242, 2061, 1142, 8325, 1748, - 6423, 3895, 9860, 3334, 1571, 7560, 9529, 2255, 5990, - 7873, 1082, 5084, 4882, 8756, 2595, 3740, 8442, 4906, - 4146, 3172, 76, 1682, 3498, 5746, 4339, 3299, 2674, - 4896, 7065, 1329, 4780, 8089, 9997, 1942, 3826, 4131, - 731, 9928, 4711, 108, 4149, 1842, 8173, 1747, 9110, - 443, 1885, 4298, 1140, 4797, 448, 4550, 429, 8474, - 4481, 6412, 6907, 8449, 3203, 1144, 8022, 5563, 2882, - 5617, 6692, 1347, 1909, 5954, 8651, 3933, 1838, 8274, - 2192, 3777, 9060, 791, 4605, 3528, 4962, 9087, 4984, - 2397, 5548, 7709, 3017, 2309, 3655, 6073, 8413, 9630, - 431, 1679, 7855, 1854, 2512, 7892, 7672, 3225, 8437, - 1273, 8525, 6002, 4821, 6282, 236, 2495, 4787, 7877, - 8952, 9372, 4533, 4631, 5234, 8335, 9577, 6036, 98, - 2704, 5610, 6864, 5127, 6489, 9983, 9754, 5784, 4497, - 7982, 8077, 5919, 4969, 6009, 6638, 5854, 2056, 7764, - 3940, 5182, 6794, 6660, 8586, 4187, 8042, 2416, 8812, - 3619, 6316, 9827, 3289, 3690, 1654, 2607, 451, 2745, - 5265, 4289, 6960, 1869, 7932, 5618, 4964, 3986, 215, - 9920, 528, 1074, 6998, 9786, 9451, 4860, 7150, 5317, - 2922, 1331, 9263, 8341, 4258, 5180, 5269, 5128, 4740, - 9937, 9856, 7158, 6339, 836, 9058, 8365, 1840, 9851, - 5665, 7487, 3732, 179, 4366, 2315, 9267, 1373, 2275, - 7848, 5845, 8794, 6211, 6941, 2, 804, 8730, 5269, - 7518, 2707, 7073, 3598, 7548, 8402, 55, 4035, 7643, - 9945, 7893, 5968, 8491, 1584, 8889, 7265, 5390, 8665, - 4508, 3535, 723, 893, 7985, 4490, 7267, 4951, 8120, - 1353, 6368, 4704, 5448, 5441, 8473, 9294, 3369, 4289, - 3173, 9667, 8648, 3368, 3676, 7114, 9123, 9879, 2618, - 2041, 2076, 9915, 2059, 7375, 4830, 5178, 3566, 6066, - 9528, 432, 3275, 9207, 9228, 898, 9740, 704, 7175, - 1810, 4839, 9301, 7082, 7045, 9236, 5459, 6824, 2386, - 9099, 2425, 6745, 8533, 9747, 7091, 7333, 6526, 5056, - 8568, 3601, 9200, 611, 9078, 7305, 7509, 8202, 2800, - 676, 4144, 2431, 6051, 523, 4438, 7508, 8507, 4826, - 9235, 9404, 1554, 6190, 1800, 8838, 8616, 9273, 1919, - 210, 323, 3095, 2911, 1383, 7516, 3916, 6756, 186, - 1597, 4025, 9811, 1346, 7942, 8460, 4239, 3491, 9614, - 1574, 3026, 1308, 2921, 9065, 7897, 1949, 5662, 3969, - 6445, 2108, 3419, 7470, 7688, 9282, 1284, 1190, 7548, - 5183, 1643, 8925, 2434, 1016, 3356, 4259, 736, 9699, - 4586, 9185, 7689, 8664, 6332, 6646, 6512, 3621, 87, - 6668, 2483, 2434, 1838, 4859, 4139, 6036, 8716, 5847, - 9068, 1235, 5372, 1971, 6227, 1556, 4067, 4084, 9394, - 8499, 8204, 8364, 6391, 8186, 3868, 7454, 4389, 3681, - 5817, 3764, 3744, 6962, 5091, 9055, 6773, 4867, 6944, - 2264, 652, 3256, 2751, 8863, 7674, 2641, 9240, 2245, - 9330, 8024, 9843, 4610, 82, 200, 8852, 5519, 2948, - 1600, 4032, 1320, 5925, 2330, 9335, 8707, 6761, 5646, - 813, 1857, 537, 7443, 5765, 3517, 7296, 7246, 6140, - 7043, 8305, 6878, 7142, 1532, 5166, 1412, 718, 9870, - 5087, 452, 3492, 6284, 6960, 7980, 454, 5109, 9800, - 5047, 2964, 1824, 5078, 6124, 9571, 9534, 2567, 8828, - 4193, 1120, 3726, 1508, 8125, 1525, 2609, 983, 9289, - 6898, 5932, 8744, 6717, 5439, 4405, 853, 7405, 3237, - 2345, 6750, 8221, 667, 5951, 632, 9570, 2101, 6091, - 3022, 3318, 4966, 5463, 4525, 9617, 5713, 8112, 7764, - 1714, 3834, 6463, 7656, 4347, 9414, 6948, 9428, 7757, - 709, 2683, 5160, 5955, 5530, 6376, 3284, 4446, 5698, - 2275, 2092, 6675, 5841, 5301, 6848, 9042, 3714, 5714, - 3313, 8575, 5834, 1116, 3984, 2225, 8925, 9909, 7358, - 9350, 6525, 5220, 7818, 1339, 6950, 9289, 9181, 9998, - 7845, 6947, 9177, 8578, 4463, 1874, 70, 2789, 9195, - 4686, 2356, 4115, 1229, 3411, 9168, 3818, 4667, 6830, - 6742, 8796, 4708, 6334, 9212, 955, 1317, 5763, 7646, - 8855, 9864, 5649, 4410, 9725, 7835, 2594, 4904, 9545, - 1567, 3913, 9838, 887, 929, 6237, 8603, 266, 8794, - 4699, 6401, 8344, 7226, 8586, 183, 9072, 8396, 1293, - 7009, 8570, 6640, 2705, 4187, 2146, 1943, 5404, 4534, - 3765, 8271, 1936, 8038, 6160, 6410, 5531, 6130, 449, - 6410, 825, 5772, 7843, 6366, 8489, 3632, 1857, 6681, - 6911, 6206, 9698, 5731, 2691, 7020, 9437, 9086, 7250, - 9133, 8448, 9615, 9805, 7718, 7430, 8451, 617, 7119, - 3608, 2957, 8156, 2628, 381, 2102, 5147, 1812, 7632, - 6080, 3801, 6557, 3664, 7115, 4747, 9946, 933, 9043, - 1209, 8903, 2470, 7079, 2590, 4242, 1267, 2310, 1880, - 1533, 8678, 2879, 5347, 3885, 2968, 7456, 8838, 419, - 3883, 1590, 8133, 338, 7811, 610, 5462, 8096, 5384, - 2656, 3961, 9755, 4315, 8580, 1978, 7459, 2728, 6364, - 3022, 540, 8591, 2436, 6393, 2785, 2076, 2351, 7720, - 3071, 210, 3880, 3780, 5455, 4217, 6253, 1690, 7922, - 8344, 3819, 673, 5739, 9352, 339, 2786, 4845, 1565, - 3191, 9970, 5600, 5489, 5182, 6938, 5244, 6170, 2279, - 5161, 5371, 3300, 45, 6679, 8740, 7633, 4511, 1112, - 1547, 359, 8586, 849, 9883, 8268, 2875, 7310, 8225, - 1860, 3766, 6124, 7431, 5973, 1224, 8189, 1700, 9843, - 2201, 8620, 3055, 1358, 7636, 5811, 5697, 3368, 2604, - 2311, 8744, 5512, 4770, 1238, 7759, 9050, 3348, 7125, - 1114, 7201, 7256, 5261, 6468, 3791, 4716, 1684, 3831, - 2665, 4866, 2193, 1393, 7781, 4603, 2849, 4725, 1778, - 9535, 4976, 3128, 4153, 976, 3584, 9384, 4201, 3066, - 3919, 5286, 1666, 9720, 5671, 8474, 8596, 6477, 9376, - 8643, 5995, 856, 6368, 3119, 9235, 7286, 4524, 7608, - 8305, 1316, 3514, 8323, 3763, 5982, 5171, 9325, 2051, - 3757]), - values=tensor([5.4503e-02, 2.9508e-01, 2.7621e-01, 5.9220e-01, - 6.7599e-01, 6.9875e-01, 7.2193e-02, 4.2622e-01, - 4.4064e-01, 4.9415e-01, 4.8448e-01, 4.6026e-01, - 8.3385e-01, 6.8127e-01, 7.4836e-01, 9.8446e-01, - 4.5546e-01, 1.1369e-01, 7.1924e-01, 1.0264e-01, - 9.0307e-01, 6.5371e-02, 4.6885e-02, 6.4486e-01, - 7.8103e-01, 2.8906e-01, 4.3815e-01, 3.8670e-01, - 4.1476e-01, 1.4529e-01, 4.5266e-02, 8.7285e-01, - 8.3886e-01, 5.0968e-01, 1.9297e-01, 8.7115e-01, - 4.2403e-01, 1.7959e-01, 7.8896e-01, 8.3163e-01, - 2.2324e-01, 2.8136e-01, 1.9157e-02, 7.8786e-01, - 2.7574e-01, 1.6824e-01, 8.9669e-01, 2.4513e-01, - 5.8585e-01, 3.7827e-01, 2.4067e-01, 5.7494e-01, - 7.5649e-01, 5.4031e-01, 1.9831e-01, 2.0146e-01, - 3.5111e-03, 1.4887e-01, 9.3482e-01, 8.9867e-01, - 7.3926e-01, 8.9432e-01, 7.7800e-01, 7.8593e-02, - 9.0410e-01, 1.3148e-01, 2.7506e-02, 2.8367e-01, - 3.7537e-01, 4.9944e-01, 9.2122e-01, 2.8280e-01, - 1.5841e-01, 6.6171e-01, 2.7753e-01, 7.5495e-01, - 7.8495e-01, 4.0801e-01, 5.1023e-02, 6.5582e-01, - 8.4918e-01, 4.8003e-02, 3.5027e-01, 9.2382e-01, - 4.3491e-01, 2.8400e-01, 4.9820e-01, 4.0135e-01, - 9.0951e-01, 8.1196e-01, 1.4390e-01, 3.9182e-01, - 9.1794e-01, 4.1848e-01, 8.6036e-01, 6.1219e-01, - 8.7067e-01, 8.2945e-01, 3.9732e-01, 7.8015e-01, - 8.9715e-02, 8.2485e-02, 3.5463e-01, 9.2038e-01, - 3.3054e-01, 6.8980e-01, 8.3428e-01, 6.7282e-01, - 9.0467e-01, 9.8824e-01, 2.3744e-01, 7.6530e-01, - 5.0061e-01, 1.5883e-01, 5.3783e-01, 7.9345e-01, - 3.7436e-01, 2.0235e-01, 7.7143e-01, 5.2818e-01, - 5.0000e-01, 1.1490e-02, 9.7408e-01, 2.0383e-01, - 6.8759e-02, 4.2208e-01, 7.0805e-01, 3.5602e-01, - 1.4045e-01, 1.8772e-01, 8.2939e-01, 2.6640e-01, - 7.5430e-01, 6.3779e-01, 9.8984e-01, 3.1603e-03, - 6.1629e-01, 4.2752e-01, 4.2494e-01, 3.2776e-01, - 7.0716e-01, 6.0492e-01, 2.4134e-01, 9.9805e-01, - 7.8767e-01, 9.6566e-01, 1.7115e-01, 7.1157e-02, - 4.0609e-01, 9.1913e-01, 4.0558e-01, 7.9724e-01, - 9.6047e-01, 2.4534e-01, 6.7326e-01, 7.3496e-01, - 2.5675e-01, 1.7448e-01, 6.2499e-02, 5.6949e-01, - 7.5770e-01, 3.9893e-01, 5.3252e-01, 4.1528e-01, - 3.5445e-01, 9.4052e-01, 9.9915e-01, 3.2511e-01, - 2.7636e-01, 9.6422e-01, 1.8532e-02, 4.8863e-01, - 1.6115e-01, 4.8734e-01, 4.4591e-01, 1.2811e-01, - 5.5702e-01, 6.3130e-01, 1.8993e-01, 5.4511e-01, - 2.1032e-01, 6.5660e-01, 2.6576e-01, 8.1915e-01, - 5.9613e-01, 3.3776e-01, 6.2370e-01, 8.7516e-01, - 6.3332e-01, 9.1021e-01, 5.9864e-01, 2.2683e-01, - 3.7532e-01, 3.4357e-01, 9.2278e-01, 1.0352e-01, - 7.7095e-01, 3.3999e-01, 3.1460e-01, 9.0103e-01, - 3.5506e-01, 8.8805e-01, 5.7371e-01, 2.3930e-01, - 8.7840e-01, 6.0017e-01, 4.8130e-01, 4.4910e-01, - 5.3282e-01, 8.6422e-02, 2.0105e-01, 4.1225e-01, - 3.6155e-01, 6.2255e-01, 1.8640e-01, 8.2609e-01, - 1.7861e-01, 4.5248e-01, 8.8949e-01, 9.6998e-01, - 2.6238e-01, 6.4922e-01, 6.7744e-01, 8.7497e-01, - 5.2727e-02, 2.5528e-03, 5.5124e-01, 8.9615e-01, - 7.7634e-01, 5.0560e-01, 6.4556e-01, 3.4657e-01, - 3.1546e-01, 2.4480e-02, 6.3994e-01, 1.1798e-01, - 7.4735e-01, 7.7755e-01, 4.2687e-01, 2.0743e-01, - 4.1103e-01, 4.7313e-01, 6.6535e-01, 1.5899e-01, - 5.0196e-01, 1.5159e-01, 1.8033e-01, 4.0226e-01, - 4.0348e-01, 5.4168e-01, 4.0167e-01, 1.6018e-01, - 2.5039e-01, 3.4686e-01, 2.5177e-01, 4.9281e-01, - 5.0762e-01, 8.7205e-01, 5.2584e-02, 7.4358e-01, - 3.1876e-01, 2.8162e-01, 6.8347e-01, 8.9200e-01, - 2.3220e-01, 1.1302e-01, 4.9947e-01, 3.5588e-01, - 6.1641e-01, 2.4231e-01, 6.5140e-02, 4.4885e-02, - 3.2197e-01, 6.1080e-01, 7.8795e-01, 2.6929e-02, - 5.8856e-01, 2.4904e-01, 8.5655e-01, 8.7065e-01, - 2.1587e-01, 7.8035e-01, 9.2913e-01, 2.1233e-01, - 6.0794e-02, 7.7621e-01, 5.9383e-01, 7.7282e-01, - 2.1097e-01, 4.5931e-01, 1.2216e-01, 5.5394e-01, - 8.2536e-01, 9.4006e-01, 6.9903e-01, 2.3400e-01, - 1.6489e-01, 9.9877e-01, 3.9160e-03, 9.6684e-01, - 6.2591e-01, 2.5349e-01, 8.7857e-01, 4.9299e-01, - 2.8608e-01, 9.5114e-01, 1.4473e-01, 6.2640e-01, - 4.5802e-01, 5.0106e-02, 6.0613e-01, 8.2241e-02, - 7.2741e-01, 7.5131e-01, 8.4107e-01, 2.1466e-01, - 8.8673e-01, 8.0627e-01, 7.4367e-01, 8.8514e-01, - 9.2521e-01, 6.5036e-01, 6.8984e-01, 2.2250e-01, - 1.8633e-01, 6.5714e-01, 9.9674e-01, 9.5767e-01, - 9.8742e-01, 1.4499e-01, 6.8279e-01, 8.4327e-01, - 3.1676e-01, 9.4538e-01, 2.0070e-02, 7.2806e-01, - 2.1770e-01, 8.0038e-01, 1.4197e-02, 2.4290e-01, - 5.8603e-01, 8.5921e-01, 3.7803e-02, 5.9046e-01, - 1.3055e-03, 5.8856e-01, 3.0292e-01, 9.3443e-02, - 9.6541e-01, 6.2831e-01, 4.3760e-01, 1.1317e-01, - 2.1064e-01, 5.8110e-01, 7.5660e-01, 9.2549e-01, - 1.3727e-02, 1.6075e-02, 3.0759e-01, 3.7790e-01, - 2.1176e-01, 1.3578e-01, 4.7314e-01, 1.6872e-01, - 2.7121e-01, 4.5927e-01, 2.9240e-01, 7.4103e-01, - 3.2311e-01, 5.0994e-01, 5.8812e-01, 1.0297e-01, - 9.3280e-01, 1.1119e-02, 2.3125e-01, 9.4903e-01, - 9.5077e-01, 6.3578e-01, 3.0323e-01, 9.1593e-01, - 6.8375e-01, 7.8254e-01, 4.1770e-01, 8.4649e-01, - 3.4911e-01, 1.4315e-02, 4.6432e-01, 1.0495e-01, - 8.9960e-01, 5.6481e-01, 9.8227e-01, 9.4531e-04, - 1.6178e-01, 7.1270e-01, 9.0622e-01, 2.5614e-02, - 5.3965e-02, 6.0181e-01, 4.7567e-01, 7.3600e-01, - 1.4436e-01, 9.4179e-01, 8.0074e-01, 9.8982e-01, - 8.1912e-01, 5.9117e-01, 1.4834e-01, 8.6032e-01, - 6.1336e-01, 7.8548e-01, 7.9831e-01, 5.4864e-02, - 5.7972e-01, 8.9770e-01, 9.8146e-02, 1.3538e-01, - 2.5634e-03, 9.7743e-01, 6.5789e-01, 4.9119e-01, - 1.4415e-01, 4.5435e-01, 9.3861e-01, 2.4903e-01, - 9.8609e-01, 1.0273e-01, 6.1532e-02, 8.6587e-01, - 9.9411e-01, 6.9395e-02, 5.1601e-01, 8.8388e-01, - 5.1906e-01, 3.4757e-01, 7.0502e-01, 9.7708e-01, - 6.1776e-01, 7.0773e-01, 5.8744e-02, 7.0159e-01, - 6.4261e-01, 1.6001e-01, 1.0469e-02, 2.6232e-01, - 2.3191e-01, 3.1641e-01, 5.8909e-01, 9.7064e-02, - 8.2228e-01, 2.6238e-01, 6.7340e-01, 6.6894e-01, - 1.2005e-02, 3.5561e-01, 8.9801e-01, 6.5307e-01, - 2.9558e-01, 8.5369e-01, 6.1529e-02, 2.8934e-01, - 9.6447e-01, 5.9228e-01, 5.6285e-02, 4.7556e-01, - 8.7048e-01, 3.6616e-01, 4.2623e-01, 9.2599e-01, - 6.2658e-01, 6.7118e-01, 6.5435e-01, 5.6091e-01, - 5.3675e-02, 3.3015e-01, 4.7517e-01, 9.0024e-01, - 8.8494e-02, 8.2825e-01, 8.8778e-01, 8.7782e-01, - 5.8637e-01, 6.8125e-01, 5.4448e-01, 8.7589e-02, - 2.4761e-01, 7.0949e-01, 6.1296e-01, 5.8345e-01, - 2.3981e-01, 9.4679e-01, 5.9791e-01, 5.4437e-01, - 9.2743e-01, 5.6804e-01, 2.0049e-01, 6.7777e-01, - 9.3903e-01, 3.3628e-01, 7.2323e-01, 1.5931e-01, - 5.0401e-01, 3.4850e-01, 3.1155e-01, 9.9494e-01, - 3.4038e-01, 5.7178e-01, 7.0324e-01, 3.0201e-01, - 1.0997e-01, 8.8095e-01, 3.8991e-01, 2.3953e-01, - 8.6688e-01, 1.8669e-01, 2.9318e-01, 8.1412e-01, - 7.5600e-01, 3.5357e-01, 5.3145e-01, 5.3373e-01, - 8.5296e-01, 7.1799e-01, 4.4404e-01, 1.4435e-01, - 4.3572e-01, 1.5025e-01, 1.9665e-01, 6.8243e-01, - 7.0719e-01, 4.6621e-01, 9.9873e-01, 1.9092e-01, - 3.4845e-01, 3.2613e-01, 1.3621e-01, 3.7010e-03, - 2.5735e-01, 6.3842e-01, 7.9218e-01, 5.3496e-01, - 8.3599e-01, 8.7940e-01, 9.2095e-01, 4.8514e-01, - 4.7299e-02, 5.9454e-01, 8.7756e-01, 8.1858e-01, - 3.0753e-01, 1.0135e-01, 8.9628e-01, 8.7531e-01, - 2.4338e-01, 7.6256e-01, 2.7974e-01, 7.3112e-01, - 4.5748e-01, 9.6845e-01, 4.6279e-01, 2.2181e-01, - 5.2307e-02, 3.8183e-01, 8.9776e-01, 7.9512e-01, - 5.4519e-01, 1.8232e-01, 4.2318e-01, 6.8070e-01, - 6.7107e-01, 3.5950e-01, 3.3105e-01, 1.5345e-01, - 5.0364e-01, 6.3834e-01, 2.5384e-01, 8.9469e-01, - 8.5636e-01, 8.5903e-02, 6.8240e-01, 9.1985e-01, - 1.5333e-01, 6.3524e-01, 3.8410e-01, 9.5777e-01, - 6.3208e-01, 6.9916e-01, 5.0984e-01, 9.4018e-01, - 8.5347e-01, 6.0579e-01, 4.0323e-01, 7.2110e-02, - 3.0391e-01, 8.5004e-01, 4.0011e-01, 2.1766e-01, - 2.4996e-01, 8.3817e-01, 3.3134e-01, 1.6257e-01, - 7.7411e-01, 1.8474e-01, 3.7528e-01, 2.2447e-01, - 3.3097e-01, 7.9759e-01, 6.5413e-01, 4.2646e-01, - 1.9429e-01, 3.9184e-01, 9.8345e-01, 7.0461e-01, - 9.2992e-01, 5.5353e-01, 2.4215e-01, 8.8896e-01, - 1.4076e-01, 5.3922e-01, 5.3680e-01, 3.4086e-01, - 3.6827e-02, 6.8591e-01, 5.7598e-01, 9.2286e-01, - 1.5534e-01, 8.4442e-01, 9.7693e-01, 6.3237e-01, - 2.1297e-01, 7.2103e-01, 6.7295e-01, 7.7213e-01, - 7.7624e-01, 4.4250e-01, 7.6173e-01, 6.3408e-01, - 8.4143e-01, 8.0697e-01, 1.1873e-01, 1.2005e-02, - 3.7617e-01, 2.0706e-01, 4.9533e-01, 9.6023e-01, - 3.1793e-01, 4.0810e-01, 8.9848e-02, 1.4669e-01, - 2.3224e-02, 3.4590e-01, 1.5016e-01, 6.8482e-01, - 5.4447e-02, 5.0062e-01, 2.7224e-02, 4.2357e-01, - 7.2193e-02, 7.5728e-01, 3.9624e-01, 1.7947e-01, - 9.8249e-01, 8.6582e-01, 5.8813e-01, 6.1141e-01, - 2.0695e-01, 2.9035e-03, 8.2408e-01, 8.7966e-01, - 4.3094e-01, 9.2415e-01, 4.9195e-01, 2.6851e-01, - 6.1337e-01, 9.4270e-01, 9.2968e-01, 8.5545e-01, - 3.7090e-01, 7.3166e-01, 4.3200e-01, 9.2318e-04, - 6.8527e-01, 3.8630e-01, 2.9276e-01, 9.4452e-01, - 5.5661e-01, 3.3534e-01, 6.0022e-01, 4.5533e-01, - 3.0979e-01, 4.2662e-01, 8.1662e-02, 9.0957e-01, - 3.3693e-02, 5.6665e-01, 2.1704e-01, 6.4408e-02, - 1.1745e-01, 1.8148e-01, 3.5404e-01, 5.3128e-01, - 5.1695e-01, 6.1276e-01, 9.1890e-01, 3.0434e-02, - 1.9294e-01, 4.4383e-01, 1.9963e-01, 3.9245e-01, - 2.8135e-01, 9.1337e-01, 5.9610e-01, 9.7742e-01, - 3.5662e-01, 1.7009e-01, 5.2935e-01, 9.5236e-01, - 7.5234e-01, 8.9560e-01, 9.9574e-02, 2.1619e-01, - 4.6299e-02, 4.5196e-01, 9.5694e-01, 9.2056e-02, - 5.7164e-01, 9.0188e-03, 5.9236e-01, 2.7750e-02, - 5.3824e-01, 1.4417e-01, 9.9993e-01, 2.4670e-01, - 2.9559e-01, 9.7206e-02, 4.1621e-02, 8.3694e-01, - 8.3051e-01, 5.6169e-01, 8.8527e-01, 5.1914e-01, - 4.0201e-01, 7.8341e-01, 2.9365e-01, 2.9879e-01, - 2.8162e-01, 2.0121e-01, 6.6932e-01, 6.1473e-01, - 4.9632e-03, 3.8050e-01, 3.4448e-01, 5.3838e-02, - 2.7405e-01, 8.6591e-01, 7.3213e-01, 5.1101e-01, - 9.6397e-01, 5.3489e-01, 4.2717e-01, 1.4181e-01, - 4.3734e-01, 3.5588e-01, 6.4507e-01, 7.1977e-01, - 2.5664e-01, 4.3752e-01, 5.2081e-01, 8.3232e-01, - 8.3341e-01, 8.8012e-01, 8.1018e-01, 1.3653e-01, - 6.9665e-01, 2.1682e-01, 7.9394e-01, 1.1105e-01, - 4.9175e-01, 7.1874e-01, 4.2673e-01, 3.5619e-02, - 1.7445e-01, 4.2686e-01, 2.4267e-01, 3.1348e-01, - 2.1916e-01, 8.6054e-01, 5.1870e-02, 8.2679e-01, - 7.7808e-01, 1.0574e-01, 3.0661e-01, 2.6611e-01, - 4.3519e-01, 4.6871e-01, 3.5600e-01, 7.0874e-01, - 8.7795e-02, 4.4678e-01, 7.8626e-01, 1.9312e-01, - 8.1397e-01, 8.8447e-01, 4.1526e-02, 2.2637e-01, - 4.1953e-02, 2.2587e-01, 9.1774e-01, 3.7696e-01, - 1.0103e-01, 7.8365e-01, 7.9119e-01, 3.6537e-02, - 5.2353e-02, 5.9226e-01, 5.7444e-01, 3.5985e-01, - 2.3526e-01, 4.1637e-01, 4.6316e-01, 5.2774e-01, - 2.3136e-01, 7.7246e-02, 8.8505e-01, 8.9057e-01, - 6.2438e-01, 4.2260e-01, 5.4818e-01, 4.1466e-01, - 9.8218e-01, 7.6989e-01, 9.9061e-01, 9.1208e-01, - 1.9061e-01, 3.1493e-01, 5.1772e-01, 5.6560e-01, - 6.4220e-01, 1.7290e-02, 8.9717e-01, 1.8223e-01, - 2.3977e-01, 2.0508e-01, 1.4863e-01, 1.4836e-01, - 6.5533e-01, 2.5762e-01, 6.0459e-01, 9.4558e-01, - 8.1865e-01, 6.7206e-01, 4.9234e-01, 9.2049e-01, - 2.8530e-01, 1.8503e-01, 5.5805e-01, 4.8402e-01, - 5.6399e-02, 1.9669e-01, 1.0907e-01, 8.8177e-01, - 6.3074e-01, 5.6872e-02, 7.5582e-02, 1.6196e-01, - 7.5413e-01, 9.1751e-01, 8.2396e-01, 4.8314e-02, - 4.0233e-01, 4.7439e-01, 8.6903e-01, 6.4683e-01, - 4.0413e-01, 9.6644e-01, 4.3207e-01, 2.1787e-01, - 3.8462e-01, 5.8970e-02, 9.5603e-01, 2.9289e-01, - 1.1430e-02, 5.0879e-01, 8.8051e-01, 7.5483e-01, - 1.0664e-01, 6.4358e-01, 7.3353e-02, 5.7649e-01, - 9.0772e-01, 1.2860e-01, 3.5405e-01, 5.8783e-01, - 5.1844e-02, 6.6979e-01, 3.9982e-01, 5.7713e-01, - 9.5423e-01, 4.5051e-01, 2.8531e-01, 1.4108e-02, - 8.0540e-01, 4.4277e-01, 8.9220e-01, 2.6249e-01, - 2.4123e-01, 5.4797e-01, 6.6492e-01, 2.0508e-01, - 6.7675e-01, 4.1081e-01, 5.6068e-02, 2.2294e-01, - 4.1645e-01, 9.4258e-01, 4.8056e-01, 1.9642e-01, - 8.7808e-01, 2.3744e-01, 8.4309e-01, 5.2265e-01, - 7.4547e-01, 8.2721e-01, 9.3542e-01, 3.4692e-01, - 2.9115e-02, 7.3087e-02, 3.0307e-01, 9.5155e-01, - 2.1303e-01, 7.1446e-01, 9.1782e-01, 8.7408e-01, - 5.8906e-01, 8.3877e-01, 2.7997e-01, 4.6594e-01, - 4.2045e-01, 5.5887e-01, 8.2414e-01, 6.5204e-01, - 1.5283e-01, 4.0072e-02, 4.2285e-02, 9.5155e-01, - 7.6513e-02, 6.7783e-01, 2.9920e-01, 9.2939e-01, - 1.2315e-01, 2.4026e-01, 1.7920e-01, 6.1226e-02, - 6.4655e-01, 9.9832e-01, 4.3253e-01, 7.2332e-01, - 7.3881e-01, 7.6725e-01, 1.0282e-01, 6.2526e-02, - 6.6880e-02, 7.1237e-01, 1.8045e-01, 2.8368e-01, - 8.1627e-01, 3.2290e-01, 7.1207e-01, 9.3336e-01, - 5.8264e-01, 8.6629e-01, 1.0427e-01, 4.1347e-01, - 1.2616e-01, 9.6273e-01, 2.5433e-01, 7.5316e-01, - 9.7344e-01, 2.8688e-01, 7.9705e-01, 3.3331e-01, - 9.6254e-01, 9.1487e-01, 2.8480e-01, 3.2055e-01, - 3.9523e-01, 3.6145e-01, 4.5015e-01, 9.4686e-01, - 3.2711e-02, 8.9001e-01, 1.9633e-02, 3.7308e-01, - 5.9301e-01, 8.8253e-01, 8.2784e-01, 4.4139e-01, - 6.6233e-01, 5.8030e-01, 7.4490e-01, 9.5820e-01]), - size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.1332, 0.3872, 0.9921, ..., 0.6563, 0.0596, 0.5136]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([10000, 10000]) -Rows: 10000 -Size: 100000000 -NNZ: 1000 -Density: 1e-05 -Time: 10.549095392227173 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 999, 999, 1000]), - col_indices=tensor([3175, 1540, 6513, 4566, 9706, 3242, 7522, 361, 3563, - 273, 8050, 6972, 5246, 100, 2674, 5918, 3629, 808, - 6317, 2665, 3236, 7680, 4047, 5897, 1768, 5781, 8933, - 8413, 7478, 8640, 5353, 4488, 7437, 3716, 4046, 1102, - 6131, 2784, 5612, 6734, 6293, 813, 8222, 4409, 7568, - 7734, 4823, 4746, 71, 9732, 5731, 7539, 5376, 3975, - 4034, 5323, 3781, 4198, 6205, 3448, 5920, 4554, 964, - 2149, 3775, 4363, 7665, 7615, 1360, 740, 9444, 8107, - 1702, 5055, 4887, 338, 8496, 5258, 6306, 4365, 8779, - 3316, 6271, 7936, 5465, 5927, 2341, 8746, 8614, 4168, - 7453, 8302, 1818, 3772, 900, 570, 1621, 1384, 1313, - 5863, 7529, 2013, 14, 7644, 4866, 5872, 4394, 6186, - 7063, 8838, 961, 1908, 8272, 1397, 5498, 6793, 4939, - 7488, 3334, 7992, 2581, 6595, 9145, 5581, 4949, 2140, - 6797, 414, 1120, 5151, 8169, 7479, 5174, 1884, 9527, - 2164, 3682, 8813, 2069, 8178, 7946, 3103, 3936, 5349, - 2278, 6902, 2920, 1610, 3303, 3215, 9428, 1830, 2118, - 5807, 1813, 6966, 2320, 7242, 2061, 1142, 8325, 1748, - 6423, 3895, 9860, 3334, 1571, 7560, 9529, 2255, 5990, - 7873, 1082, 5084, 4882, 8756, 2595, 3740, 8442, 4906, - 4146, 3172, 76, 1682, 3498, 5746, 4339, 3299, 2674, - 4896, 7065, 1329, 4780, 8089, 9997, 1942, 3826, 4131, - 731, 9928, 4711, 108, 4149, 1842, 8173, 1747, 9110, - 443, 1885, 4298, 1140, 4797, 448, 4550, 429, 8474, - 4481, 6412, 6907, 8449, 3203, 1144, 8022, 5563, 2882, - 5617, 6692, 1347, 1909, 5954, 8651, 3933, 1838, 8274, - 2192, 3777, 9060, 791, 4605, 3528, 4962, 9087, 4984, - 2397, 5548, 7709, 3017, 2309, 3655, 6073, 8413, 9630, - 431, 1679, 7855, 1854, 2512, 7892, 7672, 3225, 8437, - 1273, 8525, 6002, 4821, 6282, 236, 2495, 4787, 7877, - 8952, 9372, 4533, 4631, 5234, 8335, 9577, 6036, 98, - 2704, 5610, 6864, 5127, 6489, 9983, 9754, 5784, 4497, - 7982, 8077, 5919, 4969, 6009, 6638, 5854, 2056, 7764, - 3940, 5182, 6794, 6660, 8586, 4187, 8042, 2416, 8812, - 3619, 6316, 9827, 3289, 3690, 1654, 2607, 451, 2745, - 5265, 4289, 6960, 1869, 7932, 5618, 4964, 3986, 215, - 9920, 528, 1074, 6998, 9786, 9451, 4860, 7150, 5317, - 2922, 1331, 9263, 8341, 4258, 5180, 5269, 5128, 4740, - 9937, 9856, 7158, 6339, 836, 9058, 8365, 1840, 9851, - 5665, 7487, 3732, 179, 4366, 2315, 9267, 1373, 2275, - 7848, 5845, 8794, 6211, 6941, 2, 804, 8730, 5269, - 7518, 2707, 7073, 3598, 7548, 8402, 55, 4035, 7643, - 9945, 7893, 5968, 8491, 1584, 8889, 7265, 5390, 8665, - 4508, 3535, 723, 893, 7985, 4490, 7267, 4951, 8120, - 1353, 6368, 4704, 5448, 5441, 8473, 9294, 3369, 4289, - 3173, 9667, 8648, 3368, 3676, 7114, 9123, 9879, 2618, - 2041, 2076, 9915, 2059, 7375, 4830, 5178, 3566, 6066, - 9528, 432, 3275, 9207, 9228, 898, 9740, 704, 7175, - 1810, 4839, 9301, 7082, 7045, 9236, 5459, 6824, 2386, - 9099, 2425, 6745, 8533, 9747, 7091, 7333, 6526, 5056, - 8568, 3601, 9200, 611, 9078, 7305, 7509, 8202, 2800, - 676, 4144, 2431, 6051, 523, 4438, 7508, 8507, 4826, - 9235, 9404, 1554, 6190, 1800, 8838, 8616, 9273, 1919, - 210, 323, 3095, 2911, 1383, 7516, 3916, 6756, 186, - 1597, 4025, 9811, 1346, 7942, 8460, 4239, 3491, 9614, - 1574, 3026, 1308, 2921, 9065, 7897, 1949, 5662, 3969, - 6445, 2108, 3419, 7470, 7688, 9282, 1284, 1190, 7548, - 5183, 1643, 8925, 2434, 1016, 3356, 4259, 736, 9699, - 4586, 9185, 7689, 8664, 6332, 6646, 6512, 3621, 87, - 6668, 2483, 2434, 1838, 4859, 4139, 6036, 8716, 5847, - 9068, 1235, 5372, 1971, 6227, 1556, 4067, 4084, 9394, - 8499, 8204, 8364, 6391, 8186, 3868, 7454, 4389, 3681, - 5817, 3764, 3744, 6962, 5091, 9055, 6773, 4867, 6944, - 2264, 652, 3256, 2751, 8863, 7674, 2641, 9240, 2245, - 9330, 8024, 9843, 4610, 82, 200, 8852, 5519, 2948, - 1600, 4032, 1320, 5925, 2330, 9335, 8707, 6761, 5646, - 813, 1857, 537, 7443, 5765, 3517, 7296, 7246, 6140, - 7043, 8305, 6878, 7142, 1532, 5166, 1412, 718, 9870, - 5087, 452, 3492, 6284, 6960, 7980, 454, 5109, 9800, - 5047, 2964, 1824, 5078, 6124, 9571, 9534, 2567, 8828, - 4193, 1120, 3726, 1508, 8125, 1525, 2609, 983, 9289, - 6898, 5932, 8744, 6717, 5439, 4405, 853, 7405, 3237, - 2345, 6750, 8221, 667, 5951, 632, 9570, 2101, 6091, - 3022, 3318, 4966, 5463, 4525, 9617, 5713, 8112, 7764, - 1714, 3834, 6463, 7656, 4347, 9414, 6948, 9428, 7757, - 709, 2683, 5160, 5955, 5530, 6376, 3284, 4446, 5698, - 2275, 2092, 6675, 5841, 5301, 6848, 9042, 3714, 5714, - 3313, 8575, 5834, 1116, 3984, 2225, 8925, 9909, 7358, - 9350, 6525, 5220, 7818, 1339, 6950, 9289, 9181, 9998, - 7845, 6947, 9177, 8578, 4463, 1874, 70, 2789, 9195, - 4686, 2356, 4115, 1229, 3411, 9168, 3818, 4667, 6830, - 6742, 8796, 4708, 6334, 9212, 955, 1317, 5763, 7646, - 8855, 9864, 5649, 4410, 9725, 7835, 2594, 4904, 9545, - 1567, 3913, 9838, 887, 929, 6237, 8603, 266, 8794, - 4699, 6401, 8344, 7226, 8586, 183, 9072, 8396, 1293, - 7009, 8570, 6640, 2705, 4187, 2146, 1943, 5404, 4534, - 3765, 8271, 1936, 8038, 6160, 6410, 5531, 6130, 449, - 6410, 825, 5772, 7843, 6366, 8489, 3632, 1857, 6681, - 6911, 6206, 9698, 5731, 2691, 7020, 9437, 9086, 7250, - 9133, 8448, 9615, 9805, 7718, 7430, 8451, 617, 7119, - 3608, 2957, 8156, 2628, 381, 2102, 5147, 1812, 7632, - 6080, 3801, 6557, 3664, 7115, 4747, 9946, 933, 9043, - 1209, 8903, 2470, 7079, 2590, 4242, 1267, 2310, 1880, - 1533, 8678, 2879, 5347, 3885, 2968, 7456, 8838, 419, - 3883, 1590, 8133, 338, 7811, 610, 5462, 8096, 5384, - 2656, 3961, 9755, 4315, 8580, 1978, 7459, 2728, 6364, - 3022, 540, 8591, 2436, 6393, 2785, 2076, 2351, 7720, - 3071, 210, 3880, 3780, 5455, 4217, 6253, 1690, 7922, - 8344, 3819, 673, 5739, 9352, 339, 2786, 4845, 1565, - 3191, 9970, 5600, 5489, 5182, 6938, 5244, 6170, 2279, - 5161, 5371, 3300, 45, 6679, 8740, 7633, 4511, 1112, - 1547, 359, 8586, 849, 9883, 8268, 2875, 7310, 8225, - 1860, 3766, 6124, 7431, 5973, 1224, 8189, 1700, 9843, - 2201, 8620, 3055, 1358, 7636, 5811, 5697, 3368, 2604, - 2311, 8744, 5512, 4770, 1238, 7759, 9050, 3348, 7125, - 1114, 7201, 7256, 5261, 6468, 3791, 4716, 1684, 3831, - 2665, 4866, 2193, 1393, 7781, 4603, 2849, 4725, 1778, - 9535, 4976, 3128, 4153, 976, 3584, 9384, 4201, 3066, - 3919, 5286, 1666, 9720, 5671, 8474, 8596, 6477, 9376, - 8643, 5995, 856, 6368, 3119, 9235, 7286, 4524, 7608, - 8305, 1316, 3514, 8323, 3763, 5982, 5171, 9325, 2051, - 3757]), - values=tensor([5.4503e-02, 2.9508e-01, 2.7621e-01, 5.9220e-01, - 6.7599e-01, 6.9875e-01, 7.2193e-02, 4.2622e-01, - 4.4064e-01, 4.9415e-01, 4.8448e-01, 4.6026e-01, - 8.3385e-01, 6.8127e-01, 7.4836e-01, 9.8446e-01, - 4.5546e-01, 1.1369e-01, 7.1924e-01, 1.0264e-01, - 9.0307e-01, 6.5371e-02, 4.6885e-02, 6.4486e-01, - 7.8103e-01, 2.8906e-01, 4.3815e-01, 3.8670e-01, - 4.1476e-01, 1.4529e-01, 4.5266e-02, 8.7285e-01, - 8.3886e-01, 5.0968e-01, 1.9297e-01, 8.7115e-01, - 4.2403e-01, 1.7959e-01, 7.8896e-01, 8.3163e-01, - 2.2324e-01, 2.8136e-01, 1.9157e-02, 7.8786e-01, - 2.7574e-01, 1.6824e-01, 8.9669e-01, 2.4513e-01, - 5.8585e-01, 3.7827e-01, 2.4067e-01, 5.7494e-01, - 7.5649e-01, 5.4031e-01, 1.9831e-01, 2.0146e-01, - 3.5111e-03, 1.4887e-01, 9.3482e-01, 8.9867e-01, - 7.3926e-01, 8.9432e-01, 7.7800e-01, 7.8593e-02, - 9.0410e-01, 1.3148e-01, 2.7506e-02, 2.8367e-01, - 3.7537e-01, 4.9944e-01, 9.2122e-01, 2.8280e-01, - 1.5841e-01, 6.6171e-01, 2.7753e-01, 7.5495e-01, - 7.8495e-01, 4.0801e-01, 5.1023e-02, 6.5582e-01, - 8.4918e-01, 4.8003e-02, 3.5027e-01, 9.2382e-01, - 4.3491e-01, 2.8400e-01, 4.9820e-01, 4.0135e-01, - 9.0951e-01, 8.1196e-01, 1.4390e-01, 3.9182e-01, - 9.1794e-01, 4.1848e-01, 8.6036e-01, 6.1219e-01, - 8.7067e-01, 8.2945e-01, 3.9732e-01, 7.8015e-01, - 8.9715e-02, 8.2485e-02, 3.5463e-01, 9.2038e-01, - 3.3054e-01, 6.8980e-01, 8.3428e-01, 6.7282e-01, - 9.0467e-01, 9.8824e-01, 2.3744e-01, 7.6530e-01, - 5.0061e-01, 1.5883e-01, 5.3783e-01, 7.9345e-01, - 3.7436e-01, 2.0235e-01, 7.7143e-01, 5.2818e-01, - 5.0000e-01, 1.1490e-02, 9.7408e-01, 2.0383e-01, - 6.8759e-02, 4.2208e-01, 7.0805e-01, 3.5602e-01, - 1.4045e-01, 1.8772e-01, 8.2939e-01, 2.6640e-01, - 7.5430e-01, 6.3779e-01, 9.8984e-01, 3.1603e-03, - 6.1629e-01, 4.2752e-01, 4.2494e-01, 3.2776e-01, - 7.0716e-01, 6.0492e-01, 2.4134e-01, 9.9805e-01, - 7.8767e-01, 9.6566e-01, 1.7115e-01, 7.1157e-02, - 4.0609e-01, 9.1913e-01, 4.0558e-01, 7.9724e-01, - 9.6047e-01, 2.4534e-01, 6.7326e-01, 7.3496e-01, - 2.5675e-01, 1.7448e-01, 6.2499e-02, 5.6949e-01, - 7.5770e-01, 3.9893e-01, 5.3252e-01, 4.1528e-01, - 3.5445e-01, 9.4052e-01, 9.9915e-01, 3.2511e-01, - 2.7636e-01, 9.6422e-01, 1.8532e-02, 4.8863e-01, - 1.6115e-01, 4.8734e-01, 4.4591e-01, 1.2811e-01, - 5.5702e-01, 6.3130e-01, 1.8993e-01, 5.4511e-01, - 2.1032e-01, 6.5660e-01, 2.6576e-01, 8.1915e-01, - 5.9613e-01, 3.3776e-01, 6.2370e-01, 8.7516e-01, - 6.3332e-01, 9.1021e-01, 5.9864e-01, 2.2683e-01, - 3.7532e-01, 3.4357e-01, 9.2278e-01, 1.0352e-01, - 7.7095e-01, 3.3999e-01, 3.1460e-01, 9.0103e-01, - 3.5506e-01, 8.8805e-01, 5.7371e-01, 2.3930e-01, - 8.7840e-01, 6.0017e-01, 4.8130e-01, 4.4910e-01, - 5.3282e-01, 8.6422e-02, 2.0105e-01, 4.1225e-01, - 3.6155e-01, 6.2255e-01, 1.8640e-01, 8.2609e-01, - 1.7861e-01, 4.5248e-01, 8.8949e-01, 9.6998e-01, - 2.6238e-01, 6.4922e-01, 6.7744e-01, 8.7497e-01, - 5.2727e-02, 2.5528e-03, 5.5124e-01, 8.9615e-01, - 7.7634e-01, 5.0560e-01, 6.4556e-01, 3.4657e-01, - 3.1546e-01, 2.4480e-02, 6.3994e-01, 1.1798e-01, - 7.4735e-01, 7.7755e-01, 4.2687e-01, 2.0743e-01, - 4.1103e-01, 4.7313e-01, 6.6535e-01, 1.5899e-01, - 5.0196e-01, 1.5159e-01, 1.8033e-01, 4.0226e-01, - 4.0348e-01, 5.4168e-01, 4.0167e-01, 1.6018e-01, - 2.5039e-01, 3.4686e-01, 2.5177e-01, 4.9281e-01, - 5.0762e-01, 8.7205e-01, 5.2584e-02, 7.4358e-01, - 3.1876e-01, 2.8162e-01, 6.8347e-01, 8.9200e-01, - 2.3220e-01, 1.1302e-01, 4.9947e-01, 3.5588e-01, - 6.1641e-01, 2.4231e-01, 6.5140e-02, 4.4885e-02, - 3.2197e-01, 6.1080e-01, 7.8795e-01, 2.6929e-02, - 5.8856e-01, 2.4904e-01, 8.5655e-01, 8.7065e-01, - 2.1587e-01, 7.8035e-01, 9.2913e-01, 2.1233e-01, - 6.0794e-02, 7.7621e-01, 5.9383e-01, 7.7282e-01, - 2.1097e-01, 4.5931e-01, 1.2216e-01, 5.5394e-01, - 8.2536e-01, 9.4006e-01, 6.9903e-01, 2.3400e-01, - 1.6489e-01, 9.9877e-01, 3.9160e-03, 9.6684e-01, - 6.2591e-01, 2.5349e-01, 8.7857e-01, 4.9299e-01, - 2.8608e-01, 9.5114e-01, 1.4473e-01, 6.2640e-01, - 4.5802e-01, 5.0106e-02, 6.0613e-01, 8.2241e-02, - 7.2741e-01, 7.5131e-01, 8.4107e-01, 2.1466e-01, - 8.8673e-01, 8.0627e-01, 7.4367e-01, 8.8514e-01, - 9.2521e-01, 6.5036e-01, 6.8984e-01, 2.2250e-01, - 1.8633e-01, 6.5714e-01, 9.9674e-01, 9.5767e-01, - 9.8742e-01, 1.4499e-01, 6.8279e-01, 8.4327e-01, - 3.1676e-01, 9.4538e-01, 2.0070e-02, 7.2806e-01, - 2.1770e-01, 8.0038e-01, 1.4197e-02, 2.4290e-01, - 5.8603e-01, 8.5921e-01, 3.7803e-02, 5.9046e-01, - 1.3055e-03, 5.8856e-01, 3.0292e-01, 9.3443e-02, - 9.6541e-01, 6.2831e-01, 4.3760e-01, 1.1317e-01, - 2.1064e-01, 5.8110e-01, 7.5660e-01, 9.2549e-01, - 1.3727e-02, 1.6075e-02, 3.0759e-01, 3.7790e-01, - 2.1176e-01, 1.3578e-01, 4.7314e-01, 1.6872e-01, - 2.7121e-01, 4.5927e-01, 2.9240e-01, 7.4103e-01, - 3.2311e-01, 5.0994e-01, 5.8812e-01, 1.0297e-01, - 9.3280e-01, 1.1119e-02, 2.3125e-01, 9.4903e-01, - 9.5077e-01, 6.3578e-01, 3.0323e-01, 9.1593e-01, - 6.8375e-01, 7.8254e-01, 4.1770e-01, 8.4649e-01, - 3.4911e-01, 1.4315e-02, 4.6432e-01, 1.0495e-01, - 8.9960e-01, 5.6481e-01, 9.8227e-01, 9.4531e-04, - 1.6178e-01, 7.1270e-01, 9.0622e-01, 2.5614e-02, - 5.3965e-02, 6.0181e-01, 4.7567e-01, 7.3600e-01, - 1.4436e-01, 9.4179e-01, 8.0074e-01, 9.8982e-01, - 8.1912e-01, 5.9117e-01, 1.4834e-01, 8.6032e-01, - 6.1336e-01, 7.8548e-01, 7.9831e-01, 5.4864e-02, - 5.7972e-01, 8.9770e-01, 9.8146e-02, 1.3538e-01, - 2.5634e-03, 9.7743e-01, 6.5789e-01, 4.9119e-01, - 1.4415e-01, 4.5435e-01, 9.3861e-01, 2.4903e-01, - 9.8609e-01, 1.0273e-01, 6.1532e-02, 8.6587e-01, - 9.9411e-01, 6.9395e-02, 5.1601e-01, 8.8388e-01, - 5.1906e-01, 3.4757e-01, 7.0502e-01, 9.7708e-01, - 6.1776e-01, 7.0773e-01, 5.8744e-02, 7.0159e-01, - 6.4261e-01, 1.6001e-01, 1.0469e-02, 2.6232e-01, - 2.3191e-01, 3.1641e-01, 5.8909e-01, 9.7064e-02, - 8.2228e-01, 2.6238e-01, 6.7340e-01, 6.6894e-01, - 1.2005e-02, 3.5561e-01, 8.9801e-01, 6.5307e-01, - 2.9558e-01, 8.5369e-01, 6.1529e-02, 2.8934e-01, - 9.6447e-01, 5.9228e-01, 5.6285e-02, 4.7556e-01, - 8.7048e-01, 3.6616e-01, 4.2623e-01, 9.2599e-01, - 6.2658e-01, 6.7118e-01, 6.5435e-01, 5.6091e-01, - 5.3675e-02, 3.3015e-01, 4.7517e-01, 9.0024e-01, - 8.8494e-02, 8.2825e-01, 8.8778e-01, 8.7782e-01, - 5.8637e-01, 6.8125e-01, 5.4448e-01, 8.7589e-02, - 2.4761e-01, 7.0949e-01, 6.1296e-01, 5.8345e-01, - 2.3981e-01, 9.4679e-01, 5.9791e-01, 5.4437e-01, - 9.2743e-01, 5.6804e-01, 2.0049e-01, 6.7777e-01, - 9.3903e-01, 3.3628e-01, 7.2323e-01, 1.5931e-01, - 5.0401e-01, 3.4850e-01, 3.1155e-01, 9.9494e-01, - 3.4038e-01, 5.7178e-01, 7.0324e-01, 3.0201e-01, - 1.0997e-01, 8.8095e-01, 3.8991e-01, 2.3953e-01, - 8.6688e-01, 1.8669e-01, 2.9318e-01, 8.1412e-01, - 7.5600e-01, 3.5357e-01, 5.3145e-01, 5.3373e-01, - 8.5296e-01, 7.1799e-01, 4.4404e-01, 1.4435e-01, - 4.3572e-01, 1.5025e-01, 1.9665e-01, 6.8243e-01, - 7.0719e-01, 4.6621e-01, 9.9873e-01, 1.9092e-01, - 3.4845e-01, 3.2613e-01, 1.3621e-01, 3.7010e-03, - 2.5735e-01, 6.3842e-01, 7.9218e-01, 5.3496e-01, - 8.3599e-01, 8.7940e-01, 9.2095e-01, 4.8514e-01, - 4.7299e-02, 5.9454e-01, 8.7756e-01, 8.1858e-01, - 3.0753e-01, 1.0135e-01, 8.9628e-01, 8.7531e-01, - 2.4338e-01, 7.6256e-01, 2.7974e-01, 7.3112e-01, - 4.5748e-01, 9.6845e-01, 4.6279e-01, 2.2181e-01, - 5.2307e-02, 3.8183e-01, 8.9776e-01, 7.9512e-01, - 5.4519e-01, 1.8232e-01, 4.2318e-01, 6.8070e-01, - 6.7107e-01, 3.5950e-01, 3.3105e-01, 1.5345e-01, - 5.0364e-01, 6.3834e-01, 2.5384e-01, 8.9469e-01, - 8.5636e-01, 8.5903e-02, 6.8240e-01, 9.1985e-01, - 1.5333e-01, 6.3524e-01, 3.8410e-01, 9.5777e-01, - 6.3208e-01, 6.9916e-01, 5.0984e-01, 9.4018e-01, - 8.5347e-01, 6.0579e-01, 4.0323e-01, 7.2110e-02, - 3.0391e-01, 8.5004e-01, 4.0011e-01, 2.1766e-01, - 2.4996e-01, 8.3817e-01, 3.3134e-01, 1.6257e-01, - 7.7411e-01, 1.8474e-01, 3.7528e-01, 2.2447e-01, - 3.3097e-01, 7.9759e-01, 6.5413e-01, 4.2646e-01, - 1.9429e-01, 3.9184e-01, 9.8345e-01, 7.0461e-01, - 9.2992e-01, 5.5353e-01, 2.4215e-01, 8.8896e-01, - 1.4076e-01, 5.3922e-01, 5.3680e-01, 3.4086e-01, - 3.6827e-02, 6.8591e-01, 5.7598e-01, 9.2286e-01, - 1.5534e-01, 8.4442e-01, 9.7693e-01, 6.3237e-01, - 2.1297e-01, 7.2103e-01, 6.7295e-01, 7.7213e-01, - 7.7624e-01, 4.4250e-01, 7.6173e-01, 6.3408e-01, - 8.4143e-01, 8.0697e-01, 1.1873e-01, 1.2005e-02, - 3.7617e-01, 2.0706e-01, 4.9533e-01, 9.6023e-01, - 3.1793e-01, 4.0810e-01, 8.9848e-02, 1.4669e-01, - 2.3224e-02, 3.4590e-01, 1.5016e-01, 6.8482e-01, - 5.4447e-02, 5.0062e-01, 2.7224e-02, 4.2357e-01, - 7.2193e-02, 7.5728e-01, 3.9624e-01, 1.7947e-01, - 9.8249e-01, 8.6582e-01, 5.8813e-01, 6.1141e-01, - 2.0695e-01, 2.9035e-03, 8.2408e-01, 8.7966e-01, - 4.3094e-01, 9.2415e-01, 4.9195e-01, 2.6851e-01, - 6.1337e-01, 9.4270e-01, 9.2968e-01, 8.5545e-01, - 3.7090e-01, 7.3166e-01, 4.3200e-01, 9.2318e-04, - 6.8527e-01, 3.8630e-01, 2.9276e-01, 9.4452e-01, - 5.5661e-01, 3.3534e-01, 6.0022e-01, 4.5533e-01, - 3.0979e-01, 4.2662e-01, 8.1662e-02, 9.0957e-01, - 3.3693e-02, 5.6665e-01, 2.1704e-01, 6.4408e-02, - 1.1745e-01, 1.8148e-01, 3.5404e-01, 5.3128e-01, - 5.1695e-01, 6.1276e-01, 9.1890e-01, 3.0434e-02, - 1.9294e-01, 4.4383e-01, 1.9963e-01, 3.9245e-01, - 2.8135e-01, 9.1337e-01, 5.9610e-01, 9.7742e-01, - 3.5662e-01, 1.7009e-01, 5.2935e-01, 9.5236e-01, - 7.5234e-01, 8.9560e-01, 9.9574e-02, 2.1619e-01, - 4.6299e-02, 4.5196e-01, 9.5694e-01, 9.2056e-02, - 5.7164e-01, 9.0188e-03, 5.9236e-01, 2.7750e-02, - 5.3824e-01, 1.4417e-01, 9.9993e-01, 2.4670e-01, - 2.9559e-01, 9.7206e-02, 4.1621e-02, 8.3694e-01, - 8.3051e-01, 5.6169e-01, 8.8527e-01, 5.1914e-01, - 4.0201e-01, 7.8341e-01, 2.9365e-01, 2.9879e-01, - 2.8162e-01, 2.0121e-01, 6.6932e-01, 6.1473e-01, - 4.9632e-03, 3.8050e-01, 3.4448e-01, 5.3838e-02, - 2.7405e-01, 8.6591e-01, 7.3213e-01, 5.1101e-01, - 9.6397e-01, 5.3489e-01, 4.2717e-01, 1.4181e-01, - 4.3734e-01, 3.5588e-01, 6.4507e-01, 7.1977e-01, - 2.5664e-01, 4.3752e-01, 5.2081e-01, 8.3232e-01, - 8.3341e-01, 8.8012e-01, 8.1018e-01, 1.3653e-01, - 6.9665e-01, 2.1682e-01, 7.9394e-01, 1.1105e-01, - 4.9175e-01, 7.1874e-01, 4.2673e-01, 3.5619e-02, - 1.7445e-01, 4.2686e-01, 2.4267e-01, 3.1348e-01, - 2.1916e-01, 8.6054e-01, 5.1870e-02, 8.2679e-01, - 7.7808e-01, 1.0574e-01, 3.0661e-01, 2.6611e-01, - 4.3519e-01, 4.6871e-01, 3.5600e-01, 7.0874e-01, - 8.7795e-02, 4.4678e-01, 7.8626e-01, 1.9312e-01, - 8.1397e-01, 8.8447e-01, 4.1526e-02, 2.2637e-01, - 4.1953e-02, 2.2587e-01, 9.1774e-01, 3.7696e-01, - 1.0103e-01, 7.8365e-01, 7.9119e-01, 3.6537e-02, - 5.2353e-02, 5.9226e-01, 5.7444e-01, 3.5985e-01, - 2.3526e-01, 4.1637e-01, 4.6316e-01, 5.2774e-01, - 2.3136e-01, 7.7246e-02, 8.8505e-01, 8.9057e-01, - 6.2438e-01, 4.2260e-01, 5.4818e-01, 4.1466e-01, - 9.8218e-01, 7.6989e-01, 9.9061e-01, 9.1208e-01, - 1.9061e-01, 3.1493e-01, 5.1772e-01, 5.6560e-01, - 6.4220e-01, 1.7290e-02, 8.9717e-01, 1.8223e-01, - 2.3977e-01, 2.0508e-01, 1.4863e-01, 1.4836e-01, - 6.5533e-01, 2.5762e-01, 6.0459e-01, 9.4558e-01, - 8.1865e-01, 6.7206e-01, 4.9234e-01, 9.2049e-01, - 2.8530e-01, 1.8503e-01, 5.5805e-01, 4.8402e-01, - 5.6399e-02, 1.9669e-01, 1.0907e-01, 8.8177e-01, - 6.3074e-01, 5.6872e-02, 7.5582e-02, 1.6196e-01, - 7.5413e-01, 9.1751e-01, 8.2396e-01, 4.8314e-02, - 4.0233e-01, 4.7439e-01, 8.6903e-01, 6.4683e-01, - 4.0413e-01, 9.6644e-01, 4.3207e-01, 2.1787e-01, - 3.8462e-01, 5.8970e-02, 9.5603e-01, 2.9289e-01, - 1.1430e-02, 5.0879e-01, 8.8051e-01, 7.5483e-01, - 1.0664e-01, 6.4358e-01, 7.3353e-02, 5.7649e-01, - 9.0772e-01, 1.2860e-01, 3.5405e-01, 5.8783e-01, - 5.1844e-02, 6.6979e-01, 3.9982e-01, 5.7713e-01, - 9.5423e-01, 4.5051e-01, 2.8531e-01, 1.4108e-02, - 8.0540e-01, 4.4277e-01, 8.9220e-01, 2.6249e-01, - 2.4123e-01, 5.4797e-01, 6.6492e-01, 2.0508e-01, - 6.7675e-01, 4.1081e-01, 5.6068e-02, 2.2294e-01, - 4.1645e-01, 9.4258e-01, 4.8056e-01, 1.9642e-01, - 8.7808e-01, 2.3744e-01, 8.4309e-01, 5.2265e-01, - 7.4547e-01, 8.2721e-01, 9.3542e-01, 3.4692e-01, - 2.9115e-02, 7.3087e-02, 3.0307e-01, 9.5155e-01, - 2.1303e-01, 7.1446e-01, 9.1782e-01, 8.7408e-01, - 5.8906e-01, 8.3877e-01, 2.7997e-01, 4.6594e-01, - 4.2045e-01, 5.5887e-01, 8.2414e-01, 6.5204e-01, - 1.5283e-01, 4.0072e-02, 4.2285e-02, 9.5155e-01, - 7.6513e-02, 6.7783e-01, 2.9920e-01, 9.2939e-01, - 1.2315e-01, 2.4026e-01, 1.7920e-01, 6.1226e-02, - 6.4655e-01, 9.9832e-01, 4.3253e-01, 7.2332e-01, - 7.3881e-01, 7.6725e-01, 1.0282e-01, 6.2526e-02, - 6.6880e-02, 7.1237e-01, 1.8045e-01, 2.8368e-01, - 8.1627e-01, 3.2290e-01, 7.1207e-01, 9.3336e-01, - 5.8264e-01, 8.6629e-01, 1.0427e-01, 4.1347e-01, - 1.2616e-01, 9.6273e-01, 2.5433e-01, 7.5316e-01, - 9.7344e-01, 2.8688e-01, 7.9705e-01, 3.3331e-01, - 9.6254e-01, 9.1487e-01, 2.8480e-01, 3.2055e-01, - 3.9523e-01, 3.6145e-01, 4.5015e-01, 9.4686e-01, - 3.2711e-02, 8.9001e-01, 1.9633e-02, 3.7308e-01, - 5.9301e-01, 8.8253e-01, 8.2784e-01, 4.4139e-01, - 6.6233e-01, 5.8030e-01, 7.4490e-01, 9.5820e-01]), - size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.1332, 0.3872, 0.9921, ..., 0.6563, 0.0596, 0.5136]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([10000, 10000]) -Rows: 10000 -Size: 100000000 -NNZ: 1000 -Density: 1e-05 -Time: 10.549095392227173 seconds - -[45.65, 38.89, 39.88, 38.76, 38.37, 38.3, 38.7, 38.8, 39.08, 38.56] -[65.27] -13.208173513412476 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 361507, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.549095392227173, 'TIME_S_1KI': 0.029180888315377497, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 862.0974852204322, 'W': 65.27} -[45.65, 38.89, 39.88, 38.76, 38.37, 38.3, 38.7, 38.8, 39.08, 38.56, 39.02, 38.54, 38.45, 38.34, 38.8, 39.14, 38.83, 39.15, 38.35, 39.72] -701.855 -35.09275 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 361507, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.549095392227173, 'TIME_S_1KI': 0.029180888315377497, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 862.0974852204322, 'W': 65.27, 'J_1KI': 2.3847324815852313, 'W_1KI': 0.18054975422329303, 'W_D': 30.177249999999994, 'J_D': 398.58635415762654, 'W_D_1KI': 0.08347625357185336, 'J_D_1KI': 0.0002309118594435332} +[40.1, 39.18, 39.44, 38.84, 39.26, 38.78, 38.88, 39.27, 39.5, 39.18] +[65.88] +13.035122156143188 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 362205, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.420795440673828, 'TIME_S_1KI': 0.02877043508696409, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 858.7538476467132, 'W': 65.88} +[40.1, 39.18, 39.44, 38.84, 39.26, 38.78, 38.88, 39.27, 39.5, 39.18, 39.55, 39.36, 39.34, 38.83, 39.02, 39.04, 38.92, 39.01, 41.73, 38.96] +707.295 +35.36475 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 362205, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.420795440673828, 'TIME_S_1KI': 0.02877043508696409, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 858.7538476467132, 'W': 65.88, 'J_1KI': 2.3709055580312617, 'W_1KI': 0.18188594856503915, 'W_D': 30.515249999999995, 'J_D': 397.7700113752484, 'W_D_1KI': 0.08424856089783408, 'J_D_1KI': 0.00023259911071860987} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_5e-05.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_5e-05.json new file mode 100644 index 0000000..44b0019 --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 288650, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.542811155319214, "TIME_S_1KI": 0.036524549299564224, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 872.9266104698181, "W": 66.0, "J_1KI": 3.0241697920312425, "W_1KI": 0.22865061493157804, "W_D": 30.442750000000004, "J_D": 402.64070561939485, "W_D_1KI": 0.10546596223800452, "J_D_1KI": 0.00036537662303136846} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_5e-05.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_5e-05.output new file mode 100644 index 0000000..ec44bfd --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_5e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '5e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.014984130859375} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 5000, 5000, 5000]), + col_indices=tensor([5455, 6096, 7620, ..., 8334, 1515, 9556]), + values=tensor([0.3295, 0.9699, 0.1085, ..., 0.1358, 0.2338, 0.9968]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.0525, 0.2160, 0.5197, ..., 0.9729, 0.0490, 0.2973]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 0.014984130859375 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '70074', '-ss', '10000', '-sd', '5e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 2.549025535583496} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 5000, 5000, 5000]), + col_indices=tensor([3016, 6372, 3284, ..., 9865, 6936, 5486]), + values=tensor([0.2981, 0.0450, 0.6145, ..., 0.3998, 0.9695, 0.2536]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.7165, 0.5810, 0.9668, ..., 0.2745, 0.2690, 0.0815]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 2.549025535583496 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '288650', '-ss', '10000', '-sd', '5e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.542811155319214} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 5000, 5000, 5000]), + col_indices=tensor([4532, 8082, 1862, ..., 2662, 2473, 4062]), + values=tensor([0.2290, 0.0977, 0.7273, ..., 0.3334, 0.1586, 0.6128]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.0256, 0.2861, 0.7976, ..., 0.1212, 0.6310, 0.3680]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 10.542811155319214 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 5000, 5000, 5000]), + col_indices=tensor([4532, 8082, 1862, ..., 2662, 2473, 4062]), + values=tensor([0.2290, 0.0977, 0.7273, ..., 0.3334, 0.1586, 0.6128]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.0256, 0.2861, 0.7976, ..., 0.1212, 0.6310, 0.3680]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 10.542811155319214 seconds + +[40.67, 38.88, 39.03, 38.97, 39.55, 38.85, 39.41, 38.82, 39.41, 38.86] +[66.0] +13.226160764694214 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 288650, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.542811155319214, 'TIME_S_1KI': 0.036524549299564224, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 872.9266104698181, 'W': 66.0} +[40.67, 38.88, 39.03, 38.97, 39.55, 38.85, 39.41, 38.82, 39.41, 38.86, 39.72, 38.82, 38.97, 39.27, 39.27, 39.76, 38.89, 38.89, 45.01, 39.44] +711.145 +35.557249999999996 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 288650, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.542811155319214, 'TIME_S_1KI': 0.036524549299564224, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 872.9266104698181, 'W': 66.0, 'J_1KI': 3.0241697920312425, 'W_1KI': 0.22865061493157804, 'W_D': 30.442750000000004, 'J_D': 402.64070561939485, 'W_D_1KI': 0.10546596223800452, 'J_D_1KI': 0.00036537662303136846} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_0.0001.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_0.0001.json new file mode 100644 index 0000000..c479701 --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 203, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.8138906955719, "TIME_S_1KI": 53.27039751513251, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1609.7031775331498, "W": 81.98, "J_1KI": 7929.572303118964, "W_1KI": 403.8423645320197, "W_D": 30.52650000000002, "J_D": 599.3974633930925, "W_D_1KI": 150.37684729064048, "J_D_1KI": 740.7726467519235} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_0.0001.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_0.0001.output new file mode 100644 index 0000000..e1438f6 --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_0.0001.output @@ -0,0 +1,89 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '500000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 5.424488306045532} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 44, 99, ..., 24999917, + 24999946, 25000000]), + col_indices=tensor([ 4827, 10869, 14232, ..., 471243, 483745, + 496563]), + values=tensor([0.8207, 0.6147, 0.2995, ..., 0.3197, 0.5880, 0.5650]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.7008, 0.9045, 0.7559, ..., 0.2377, 0.3193, 0.3380]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 5.424488306045532 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '193', '-ss', '500000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.982287168502808} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 53, 103, ..., 24999914, + 24999954, 25000000]), + col_indices=tensor([ 956, 25275, 30712, ..., 470941, 489379, + 489461]), + values=tensor([0.2897, 0.9352, 0.3996, ..., 0.3187, 0.8556, 0.7054]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.6888, 0.9226, 0.2376, ..., 0.2155, 0.1168, 0.1817]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 9.982287168502808 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '203', '-ss', '500000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.8138906955719} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 60, 106, ..., 24999892, + 24999946, 25000000]), + col_indices=tensor([ 18694, 24514, 28811, ..., 477104, 482132, + 483877]), + values=tensor([0.0999, 0.2209, 0.5662, ..., 0.8643, 0.1918, 0.8434]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.7305, 0.0261, 0.0866, ..., 0.4657, 0.9743, 0.1757]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 10.8138906955719 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 60, 106, ..., 24999892, + 24999946, 25000000]), + col_indices=tensor([ 18694, 24514, 28811, ..., 477104, 482132, + 483877]), + values=tensor([0.0999, 0.2209, 0.5662, ..., 0.8643, 0.1918, 0.8434]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.7305, 0.0261, 0.0866, ..., 0.4657, 0.9743, 0.1757]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 10.8138906955719 seconds + +[48.25, 66.08, 64.62, 65.48, 60.76, 53.27, 65.63, 72.69, 68.45, 64.01] +[81.98] +19.635315656661987 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 203, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.8138906955719, 'TIME_S_1KI': 53.27039751513251, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1609.7031775331498, 'W': 81.98} +[48.25, 66.08, 64.62, 65.48, 60.76, 53.27, 65.63, 72.69, 68.45, 64.01, 67.95, 64.4, 68.38, 60.78, 45.98, 39.37, 40.58, 39.5, 41.17, 43.65] +1029.0699999999997 +51.453499999999984 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 203, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.8138906955719, 'TIME_S_1KI': 53.27039751513251, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1609.7031775331498, 'W': 81.98, 'J_1KI': 7929.572303118964, 'W_1KI': 403.8423645320197, 'W_D': 30.52650000000002, 'J_D': 599.3974633930925, 'W_D_1KI': 150.37684729064048, 'J_D_1KI': 740.7726467519235} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_1e-05.json index 98e0f55..9445831 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_1e-05.json +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_1e-05.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1357, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.362020254135132, "TIME_S_1KI": 7.635976605847555, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 997.3382936573029, "W": 74.92, "J_1KI": 734.9582119803264, "W_1KI": 55.21002210759028, "W_D": 39.366, "J_D": 524.0419016032218, "W_D_1KI": 29.00957995578482, "J_D_1KI": 21.377730254815635} +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1357, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.301345348358154, "TIME_S_1KI": 7.591264073955898, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 974.2936608052254, "W": 72.47, "J_1KI": 717.9761686110725, "W_1KI": 53.404568901989684, "W_D": 37.03175, "J_D": 497.85841415101294, "W_D_1KI": 27.28942520265291, "J_D_1KI": 20.11011437188866} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_1e-05.output index f772ea4..d835f69 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_1e-05.output +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_1e-05.output @@ -1,15 +1,15 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.737008094787598} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '500000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.7734920978546143} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 6, 9, ..., 2499995, - 2499998, 2500000]), - col_indices=tensor([ 13538, 14404, 124427, ..., 299545, 64656, - 263709]), - values=tensor([0.6726, 0.7704, 0.5503, ..., 0.8434, 0.2560, 0.2989]), +tensor(crow_indices=tensor([ 0, 4, 10, ..., 2499990, + 2499995, 2500000]), + col_indices=tensor([ 99860, 161360, 168008, ..., 375780, 443860, + 468048]), + values=tensor([0.7731, 0.7975, 0.7314, ..., 0.7653, 0.4860, 0.2739]), size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.7902, 0.8995, 0.9133, ..., 0.8775, 0.6765, 0.9460]) +tensor([0.9501, 0.6169, 0.8449, ..., 0.9228, 0.9726, 0.5004]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -17,20 +17,20 @@ Rows: 500000 Size: 250000000000 NNZ: 2500000 Density: 1e-05 -Time: 7.737008094787598 seconds +Time: 0.7734920978546143 seconds ['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1357', '-ss', '500000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.362020254135132} +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.301345348358154} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 7, 12, ..., 2499987, - 2499995, 2500000]), - col_indices=tensor([ 74385, 156503, 312661, ..., 102229, 341067, - 464580]), - values=tensor([0.2383, 0.0369, 0.7603, ..., 0.0658, 0.9688, 0.3918]), +tensor(crow_indices=tensor([ 0, 2, 10, ..., 2499991, + 2499994, 2500000]), + col_indices=tensor([238281, 305722, 262347, ..., 326599, 364388, + 410788]), + values=tensor([0.2261, 0.8621, 0.1222, ..., 0.7643, 0.7262, 0.6796]), size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.4224, 0.2766, 0.2547, ..., 0.2726, 0.8333, 0.3690]) +tensor([0.7756, 0.5142, 0.7476, ..., 0.1970, 0.9731, 0.3396]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -38,17 +38,17 @@ Rows: 500000 Size: 250000000000 NNZ: 2500000 Density: 1e-05 -Time: 10.362020254135132 seconds +Time: 10.301345348358154 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 7, 12, ..., 2499987, - 2499995, 2500000]), - col_indices=tensor([ 74385, 156503, 312661, ..., 102229, 341067, - 464580]), - values=tensor([0.2383, 0.0369, 0.7603, ..., 0.0658, 0.9688, 0.3918]), +tensor(crow_indices=tensor([ 0, 2, 10, ..., 2499991, + 2499994, 2500000]), + col_indices=tensor([238281, 305722, 262347, ..., 326599, 364388, + 410788]), + values=tensor([0.2261, 0.8621, 0.1222, ..., 0.7643, 0.7262, 0.6796]), size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.4224, 0.2766, 0.2547, ..., 0.2726, 0.8333, 0.3690]) +tensor([0.7756, 0.5142, 0.7476, ..., 0.1970, 0.9731, 0.3396]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -56,13 +56,13 @@ Rows: 500000 Size: 250000000000 NNZ: 2500000 Density: 1e-05 -Time: 10.362020254135132 seconds +Time: 10.301345348358154 seconds -[40.3, 38.79, 39.14, 38.79, 39.0, 38.98, 38.53, 44.02, 38.67, 38.42] -[74.92] -13.31204342842102 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1357, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.362020254135132, 'TIME_S_1KI': 7.635976605847555, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 997.3382936573029, 'W': 74.92} -[40.3, 38.79, 39.14, 38.79, 39.0, 38.98, 38.53, 44.02, 38.67, 38.42, 39.44, 38.36, 38.82, 38.43, 45.76, 38.31, 39.93, 38.5, 38.79, 38.36] -711.08 -35.554 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1357, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.362020254135132, 'TIME_S_1KI': 7.635976605847555, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 997.3382936573029, 'W': 74.92, 'J_1KI': 734.9582119803264, 'W_1KI': 55.21002210759028, 'W_D': 39.366, 'J_D': 524.0419016032218, 'W_D_1KI': 29.00957995578482, 'J_D_1KI': 21.377730254815635} +[40.45, 39.15, 39.07, 39.07, 39.08, 39.31, 39.47, 39.12, 39.58, 39.08] +[72.47] +13.444096326828003 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1357, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.301345348358154, 'TIME_S_1KI': 7.591264073955898, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 974.2936608052254, 'W': 72.47} +[40.45, 39.15, 39.07, 39.07, 39.08, 39.31, 39.47, 39.12, 39.58, 39.08, 39.87, 38.95, 39.89, 38.93, 39.13, 39.06, 39.33, 39.5, 40.16, 40.53] +708.7649999999999 +35.43825 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1357, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.301345348358154, 'TIME_S_1KI': 7.591264073955898, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 974.2936608052254, 'W': 72.47, 'J_1KI': 717.9761686110725, 'W_1KI': 53.404568901989684, 'W_D': 37.03175, 'J_D': 497.85841415101294, 'W_D_1KI': 27.28942520265291, 'J_D_1KI': 20.11011437188866} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_5e-05.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_5e-05.json new file mode 100644 index 0000000..016557b --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 374, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.481700897216797, "TIME_S_1KI": 28.025938227852397, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1245.1822829723358, "W": 76.84, "J_1KI": 3329.3643929741597, "W_1KI": 205.45454545454547, "W_D": 40.990750000000006, "J_D": 664.2498134532572, "W_D_1KI": 109.60093582887701, "J_D_1KI": 293.0506305584947} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_5e-05.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_5e-05.output new file mode 100644 index 0000000..9fc6dc1 --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_5e-05.output @@ -0,0 +1,68 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '500000', '-sd', '5e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 2.8034374713897705} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 31, 56, ..., 12499945, + 12499972, 12500000]), + col_indices=tensor([ 16534, 21956, 27589, ..., 400032, 455487, + 480702]), + values=tensor([0.5221, 0.3710, 0.3411, ..., 0.2701, 0.3669, 0.2928]), + size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.5983, 0.4656, 0.7235, ..., 0.5590, 0.7340, 0.5167]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 12500000 +Density: 5e-05 +Time: 2.8034374713897705 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '374', '-ss', '500000', '-sd', '5e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.481700897216797} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 20, 47, ..., 12499941, + 12499971, 12500000]), + col_indices=tensor([ 37298, 48174, 79945, ..., 425979, 429124, + 477898]), + values=tensor([0.8892, 0.8073, 0.3867, ..., 0.6750, 0.3130, 0.8587]), + size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.8772, 0.7830, 0.9014, ..., 0.3941, 0.0151, 0.6871]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 12500000 +Density: 5e-05 +Time: 10.481700897216797 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 20, 47, ..., 12499941, + 12499971, 12500000]), + col_indices=tensor([ 37298, 48174, 79945, ..., 425979, 429124, + 477898]), + values=tensor([0.8892, 0.8073, 0.3867, ..., 0.6750, 0.3130, 0.8587]), + size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.8772, 0.7830, 0.9014, ..., 0.3941, 0.0151, 0.6871]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 12500000 +Density: 5e-05 +Time: 10.481700897216797 seconds + +[39.77, 39.61, 39.09, 39.46, 39.43, 39.2, 39.07, 38.94, 44.28, 39.72] +[76.84] +16.20487093925476 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 374, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.481700897216797, 'TIME_S_1KI': 28.025938227852397, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1245.1822829723358, 'W': 76.84} +[39.77, 39.61, 39.09, 39.46, 39.43, 39.2, 39.07, 38.94, 44.28, 39.72, 40.11, 44.49, 39.49, 38.95, 39.21, 39.06, 39.21, 38.96, 39.02, 39.43] +716.9849999999999 +35.84925 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 374, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.481700897216797, 'TIME_S_1KI': 28.025938227852397, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1245.1822829723358, 'W': 76.84, 'J_1KI': 3329.3643929741597, 'W_1KI': 205.45454545454547, 'W_D': 40.990750000000006, 'J_D': 664.2498134532572, 'W_D_1KI': 109.60093582887701, 'J_D_1KI': 293.0506305584947} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.0001.json index 0569add..e80dbeb 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.0001.json +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.0001.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 15401, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.70950984954834, "TIME_S_1KI": 0.6953775631159236, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 846.8573481559754, "W": 65.04, "J_1KI": 54.987166298031, "W_1KI": 4.223102395948315, "W_D": 30.268000000000008, "J_D": 394.10636860370647, "W_D_1KI": 1.9653269268229343, "J_D_1KI": 0.12761034522582523} +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 15655, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.832781791687012, "TIME_S_1KI": 0.691969453317599, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 866.9169475746155, "W": 65.84, "J_1KI": 55.37636202967841, "W_1KI": 4.205685084637497, "W_D": 30.269999999999996, "J_D": 398.5658566689491, "W_D_1KI": 1.933567550303417, "J_D_1KI": 0.12351118175045782} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.0001.output index 5835407..da8990f 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.0001.output +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.0001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.6817739009857178} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.08056378364562988} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 11, ..., 249990, 249996, +tensor(crow_indices=tensor([ 0, 3, 7, ..., 249990, 249996, 250000]), - col_indices=tensor([22352, 25754, 44016, ..., 24187, 38739, 43878]), - values=tensor([0.9987, 0.7536, 0.3762, ..., 0.2868, 0.8081, 0.6848]), + col_indices=tensor([28795, 30379, 41102, ..., 5633, 6424, 22447]), + values=tensor([0.9841, 0.4564, 0.4138, ..., 0.4352, 0.7831, 0.6427]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.2548, 0.4461, 0.9076, ..., 0.8528, 0.8836, 0.6180]) +tensor([0.6096, 0.2856, 0.5951, ..., 0.5564, 0.0665, 0.9869]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -16,19 +16,19 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 0.6817739009857178 seconds +Time: 0.08056378364562988 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '15401', '-ss', '50000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.70950984954834} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '13033', '-ss', '50000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 8.741129398345947} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 5, 9, ..., 249990, 249994, +tensor(crow_indices=tensor([ 0, 7, 13, ..., 249987, 249991, 250000]), - col_indices=tensor([21278, 27457, 27912, ..., 25636, 33177, 40764]), - values=tensor([0.5508, 0.6259, 0.1639, ..., 0.1456, 0.5920, 0.1745]), + col_indices=tensor([ 370, 1086, 2786, ..., 43615, 44396, 45243]), + values=tensor([0.9664, 0.8693, 0.7422, ..., 0.8293, 0.8225, 0.1476]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.3112, 0.1298, 0.2276, ..., 0.1739, 0.6060, 0.6815]) +tensor([0.9116, 0.5607, 0.8635, ..., 0.8139, 0.6651, 0.4589]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -36,16 +36,19 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 10.70950984954834 seconds +Time: 8.741129398345947 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '15655', '-ss', '50000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.832781791687012} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 5, 9, ..., 249990, 249994, +tensor(crow_indices=tensor([ 0, 3, 10, ..., 249991, 249998, 250000]), - col_indices=tensor([21278, 27457, 27912, ..., 25636, 33177, 40764]), - values=tensor([0.5508, 0.6259, 0.1639, ..., 0.1456, 0.5920, 0.1745]), + col_indices=tensor([12466, 31687, 41380, ..., 43099, 30794, 44210]), + values=tensor([0.5535, 0.2801, 0.3869, ..., 0.8607, 0.0342, 0.7001]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.3112, 0.1298, 0.2276, ..., 0.1739, 0.6060, 0.6815]) +tensor([0.1141, 0.0022, 0.7559, ..., 0.9683, 0.9705, 0.8203]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -53,13 +56,30 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 10.70950984954834 seconds +Time: 10.832781791687012 seconds -[39.37, 38.33, 39.38, 39.01, 38.5, 38.38, 38.36, 38.51, 38.52, 38.33] -[65.04] -13.020561933517456 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 15401, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.70950984954834, 'TIME_S_1KI': 0.6953775631159236, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 846.8573481559754, 'W': 65.04} -[39.37, 38.33, 39.38, 39.01, 38.5, 38.38, 38.36, 38.51, 38.52, 38.33, 40.16, 38.83, 38.77, 38.25, 38.69, 38.32, 38.3, 38.47, 38.28, 39.22] -695.4399999999999 -34.772 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 15401, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.70950984954834, 'TIME_S_1KI': 0.6953775631159236, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 846.8573481559754, 'W': 65.04, 'J_1KI': 54.987166298031, 'W_1KI': 4.223102395948315, 'W_D': 30.268000000000008, 'J_D': 394.10636860370647, 'W_D_1KI': 1.9653269268229343, 'J_D_1KI': 0.12761034522582523} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 10, ..., 249991, 249998, + 250000]), + col_indices=tensor([12466, 31687, 41380, ..., 43099, 30794, 44210]), + values=tensor([0.5535, 0.2801, 0.3869, ..., 0.8607, 0.0342, 0.7001]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.1141, 0.0022, 0.7559, ..., 0.9683, 0.9705, 0.8203]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.832781791687012 seconds + +[39.71, 38.91, 39.08, 39.03, 39.04, 38.89, 39.49, 39.37, 39.35, 39.31] +[65.84] +13.167025327682495 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 15655, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.832781791687012, 'TIME_S_1KI': 0.691969453317599, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 866.9169475746155, 'W': 65.84} +[39.71, 38.91, 39.08, 39.03, 39.04, 38.89, 39.49, 39.37, 39.35, 39.31, 40.75, 39.44, 39.59, 39.09, 39.39, 39.11, 38.98, 38.78, 44.38, 39.19] +711.4000000000001 +35.57000000000001 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 15655, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.832781791687012, 'TIME_S_1KI': 0.691969453317599, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 866.9169475746155, 'W': 65.84, 'J_1KI': 55.37636202967841, 'W_1KI': 4.205685084637497, 'W_D': 30.269999999999996, 'J_D': 398.5658566689491, 'W_D_1KI': 1.933567550303417, 'J_D_1KI': 0.12351118175045782} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.001.json index 4fe2ca5..4e67596 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.001.json +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.001.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 3498, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.43606948852539, "TIME_S_1KI": 2.983438961842593, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 938.4889250850676, "W": 69.66, "J_1KI": 268.29300316897303, "W_1KI": 19.914236706689536, "W_D": 34.37075, "J_D": 463.0572526825667, "W_D_1KI": 9.82582904516867, "J_D_1KI": 2.8089848613975614} +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 3401, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.135668277740479, "TIME_S_1KI": 2.9802023751074618, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 929.8197621202468, "W": 70.57, "J_1KI": 273.39599003829665, "W_1KI": 20.74977947662452, "W_D": 35.09774999999999, "J_D": 462.44270307433595, "W_D_1KI": 10.319832402234633, "J_D_1KI": 3.0343523676079487} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.001.output index 08291b1..73dd96f 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.001.output +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 3.0015740394592285} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.3087193965911865} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 44, 103, ..., 2499905, - 2499956, 2500000]), - col_indices=tensor([ 226, 2395, 3856, ..., 46208, 48736, 49649]), - values=tensor([0.2794, 0.3289, 0.9047, ..., 0.2004, 0.4257, 0.7682]), +tensor(crow_indices=tensor([ 0, 47, 100, ..., 2499908, + 2499955, 2500000]), + col_indices=tensor([ 1811, 3820, 5210, ..., 47398, 47518, 48036]), + values=tensor([0.8154, 0.8090, 0.3024, ..., 0.4722, 0.9116, 0.7561]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.4960, 0.6719, 0.9417, ..., 0.9330, 0.7654, 0.9120]) +tensor([0.4260, 0.8795, 0.3202, ..., 0.3159, 0.0406, 0.9752]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -16,19 +16,19 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 3.0015740394592285 seconds +Time: 0.3087193965911865 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '3498', '-ss', '50000', '-sd', '0.001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.43606948852539} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '3401', '-ss', '50000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.135668277740479} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 53, 101, ..., 2499890, - 2499947, 2500000]), - col_indices=tensor([ 1, 302, 356, ..., 47860, 48391, 48616]), - values=tensor([0.1949, 0.9610, 0.6433, ..., 0.8236, 0.0074, 0.9971]), +tensor(crow_indices=tensor([ 0, 41, 88, ..., 2499883, + 2499951, 2500000]), + col_indices=tensor([ 638, 2365, 2400, ..., 44467, 46636, 49496]), + values=tensor([0.8518, 0.8769, 0.3572, ..., 0.1360, 0.1673, 0.1097]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.6285, 0.6234, 0.6444, ..., 0.5791, 0.7727, 0.1804]) +tensor([0.0408, 0.6133, 0.1624, ..., 0.7272, 0.2583, 0.9038]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -36,16 +36,16 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 10.43606948852539 seconds +Time: 10.135668277740479 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 53, 101, ..., 2499890, - 2499947, 2500000]), - col_indices=tensor([ 1, 302, 356, ..., 47860, 48391, 48616]), - values=tensor([0.1949, 0.9610, 0.6433, ..., 0.8236, 0.0074, 0.9971]), +tensor(crow_indices=tensor([ 0, 41, 88, ..., 2499883, + 2499951, 2500000]), + col_indices=tensor([ 638, 2365, 2400, ..., 44467, 46636, 49496]), + values=tensor([0.8518, 0.8769, 0.3572, ..., 0.1360, 0.1673, 0.1097]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.6285, 0.6234, 0.6444, ..., 0.5791, 0.7727, 0.1804]) +tensor([0.0408, 0.6133, 0.1624, ..., 0.7272, 0.2583, 0.9038]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -53,13 +53,13 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 10.43606948852539 seconds +Time: 10.135668277740479 seconds -[38.98, 38.56, 38.59, 38.25, 38.75, 38.31, 38.43, 38.27, 38.33, 43.32] -[69.66] -13.472422122955322 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3498, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.43606948852539, 'TIME_S_1KI': 2.983438961842593, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 938.4889250850676, 'W': 69.66} -[38.98, 38.56, 38.59, 38.25, 38.75, 38.31, 38.43, 38.27, 38.33, 43.32, 39.04, 38.73, 38.9, 38.87, 38.44, 45.59, 38.97, 38.44, 40.32, 38.73] -705.785 -35.289249999999996 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3498, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.43606948852539, 'TIME_S_1KI': 2.983438961842593, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 938.4889250850676, 'W': 69.66, 'J_1KI': 268.29300316897303, 'W_1KI': 19.914236706689536, 'W_D': 34.37075, 'J_D': 463.0572526825667, 'W_D_1KI': 9.82582904516867, 'J_D_1KI': 2.8089848613975614} +[40.86, 44.19, 38.96, 38.91, 39.18, 38.84, 39.26, 38.86, 39.41, 39.32] +[70.57] +13.17585039138794 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3401, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.135668277740479, 'TIME_S_1KI': 2.9802023751074618, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 929.8197621202468, 'W': 70.57} +[40.86, 44.19, 38.96, 38.91, 39.18, 38.84, 39.26, 38.86, 39.41, 39.32, 40.03, 39.02, 38.84, 38.98, 38.82, 40.3, 38.82, 38.8, 38.79, 38.72] +709.445 +35.47225 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3401, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.135668277740479, 'TIME_S_1KI': 2.9802023751074618, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 929.8197621202468, 'W': 70.57, 'J_1KI': 273.39599003829665, 'W_1KI': 20.74977947662452, 'W_D': 35.09774999999999, 'J_D': 462.44270307433595, 'W_D_1KI': 10.319832402234633, 'J_D_1KI': 3.0343523676079487} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.01.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.01.json new file mode 100644 index 0000000..05ef34d --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 277, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.601917266845703, "TIME_S_1KI": 38.27406955539965, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1502.4378191399574, "W": 76.47, "J_1KI": 5423.963245992626, "W_1KI": 276.0649819494585, "W_D": 40.946749999999994, "J_D": 804.497786986649, "W_D_1KI": 147.82220216606495, "J_D_1KI": 533.6541594442779} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.01.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.01.output new file mode 100644 index 0000000..e414a83 --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.01.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 3.789712905883789} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 551, 1060, ..., 24998953, + 24999494, 25000000]), + col_indices=tensor([ 18, 53, 90, ..., 49926, 49944, 49970]), + values=tensor([0.6546, 0.1735, 0.7966, ..., 0.3203, 0.8871, 0.0598]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.4855, 0.9619, 0.0930, ..., 0.6959, 0.6112, 0.3764]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 3.789712905883789 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '277', '-ss', '50000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.601917266845703} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 523, 1012, ..., 24998990, + 24999509, 25000000]), + col_indices=tensor([ 171, 246, 332, ..., 49640, 49825, 49863]), + values=tensor([0.1620, 0.2511, 0.7784, ..., 0.0916, 0.2856, 0.2435]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.9840, 0.8151, 0.6106, ..., 0.4542, 0.6992, 0.9833]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 10.601917266845703 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 523, 1012, ..., 24998990, + 24999509, 25000000]), + col_indices=tensor([ 171, 246, 332, ..., 49640, 49825, 49863]), + values=tensor([0.1620, 0.2511, 0.7784, ..., 0.0916, 0.2856, 0.2435]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.9840, 0.8151, 0.6106, ..., 0.4542, 0.6992, 0.9833]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 10.601917266845703 seconds + +[39.75, 38.88, 39.04, 38.94, 38.9, 44.6, 39.87, 39.01, 39.47, 38.87] +[76.47] +19.647414922714233 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 277, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.601917266845703, 'TIME_S_1KI': 38.27406955539965, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1502.4378191399574, 'W': 76.47} +[39.75, 38.88, 39.04, 38.94, 38.9, 44.6, 39.87, 39.01, 39.47, 38.87, 39.65, 39.46, 38.97, 39.37, 39.36, 38.88, 39.18, 38.94, 39.03, 38.86] +710.465 +35.523250000000004 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 277, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.601917266845703, 'TIME_S_1KI': 38.27406955539965, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1502.4378191399574, 'W': 76.47, 'J_1KI': 5423.963245992626, 'W_1KI': 276.0649819494585, 'W_D': 40.946749999999994, 'J_D': 804.497786986649, 'W_D_1KI': 147.82220216606495, 'J_D_1KI': 533.6541594442779} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_1e-05.json index 5c43412..41355a8 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_1e-05.json +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_1e-05.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 35695, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.507647275924683, "TIME_S_1KI": 0.2943730851918947, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 842.3661928725243, "W": 64.41, "J_1KI": 23.598996858734395, "W_1KI": 1.8044544053789044, "W_D": 29.134750000000004, "J_D": 381.0297847817541, "W_D_1KI": 0.8162137554279313, "J_D_1KI": 0.02286633297178684} +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 35925, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.468754291534424, "TIME_S_1KI": 0.29140582579079816, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 855.3263425445557, "W": 65.12, "J_1KI": 23.808666459138642, "W_1KI": 1.8126652748782186, "W_D": 29.625000000000007, "J_D": 389.1130666136743, "W_D_1KI": 0.8246346555323593, "J_D_1KI": 0.022954339750378826} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_1e-05.output index c6e8d71..77e4f27 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_1e-05.output +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_1e-05.output @@ -1,13 +1,13 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.3123207092285156} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.04216480255126953} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 25000, 25000, 25000]), - col_indices=tensor([ 1731, 4163, 39043, ..., 48142, 1105, 32715]), - values=tensor([0.9730, 0.5233, 0.5883, ..., 0.0098, 0.9466, 0.3610]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 24998, 24999, 25000]), + col_indices=tensor([ 8605, 8537, 29290, ..., 9179, 13978, 1469]), + values=tensor([0.2780, 0.8342, 0.8502, ..., 0.9082, 0.5496, 0.9536]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.3233, 0.5001, 0.4757, ..., 0.9452, 0.0190, 0.8013]) +tensor([0.7685, 0.9033, 0.7153, ..., 0.8654, 0.8274, 0.9503]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -15,18 +15,18 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 0.3123207092285156 seconds +Time: 0.04216480255126953 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '33619', '-ss', '50000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.88913083076477} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '24902', '-ss', '50000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.278246164321899} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 24999, 25000, 25000]), - col_indices=tensor([10235, 29693, 19116, ..., 40289, 44691, 23523]), - values=tensor([0.1639, 0.2137, 0.2836, ..., 0.1546, 0.8297, 0.2686]), +tensor(crow_indices=tensor([ 0, 0, 1, ..., 25000, 25000, 25000]), + col_indices=tensor([37031, 32096, 18727, ..., 44552, 41451, 6296]), + values=tensor([0.0751, 0.3287, 0.1662, ..., 0.5788, 0.0483, 0.4147]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.0511, 0.8204, 0.3831, ..., 0.1304, 0.0964, 0.0598]) +tensor([0.5341, 0.4675, 0.3327, ..., 0.1193, 0.3106, 0.6128]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -34,18 +34,18 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 9.88913083076477 seconds +Time: 7.278246164321899 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '35695', '-ss', '50000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.507647275924683} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '35925', '-ss', '50000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.468754291534424} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 24999, 24999, 25000]), - col_indices=tensor([19065, 20351, 39842, ..., 40423, 9509, 47347]), - values=tensor([0.9158, 0.3839, 0.2352, ..., 0.6644, 0.6974, 0.4594]), +tensor(crow_indices=tensor([ 0, 0, 1, ..., 24998, 24998, 25000]), + col_indices=tensor([44391, 10770, 45928, ..., 5594, 4079, 17032]), + values=tensor([0.6882, 0.4791, 0.4331, ..., 0.9470, 0.6037, 0.4941]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.0381, 0.0022, 0.0479, ..., 0.9299, 0.2975, 0.9449]) +tensor([0.1889, 0.2559, 0.4696, ..., 0.5278, 0.4768, 0.4458]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -53,15 +53,15 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 10.507647275924683 seconds +Time: 10.468754291534424 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 24999, 24999, 25000]), - col_indices=tensor([19065, 20351, 39842, ..., 40423, 9509, 47347]), - values=tensor([0.9158, 0.3839, 0.2352, ..., 0.6644, 0.6974, 0.4594]), +tensor(crow_indices=tensor([ 0, 0, 1, ..., 24998, 24998, 25000]), + col_indices=tensor([44391, 10770, 45928, ..., 5594, 4079, 17032]), + values=tensor([0.6882, 0.4791, 0.4331, ..., 0.9470, 0.6037, 0.4941]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.0381, 0.0022, 0.0479, ..., 0.9299, 0.2975, 0.9449]) +tensor([0.1889, 0.2559, 0.4696, ..., 0.5278, 0.4768, 0.4458]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -69,13 +69,13 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 10.507647275924683 seconds +Time: 10.468754291534424 seconds -[39.22, 44.39, 40.14, 38.47, 39.94, 38.41, 38.49, 38.91, 39.41, 38.82] -[64.41] -13.078189611434937 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 35695, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.507647275924683, 'TIME_S_1KI': 0.2943730851918947, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 842.3661928725243, 'W': 64.41} -[39.22, 44.39, 40.14, 38.47, 39.94, 38.41, 38.49, 38.91, 39.41, 38.82, 39.08, 38.6, 38.48, 38.48, 38.48, 38.38, 38.83, 39.42, 38.84, 38.55] -705.5049999999999 -35.27524999999999 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 35695, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.507647275924683, 'TIME_S_1KI': 0.2943730851918947, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 842.3661928725243, 'W': 64.41, 'J_1KI': 23.598996858734395, 'W_1KI': 1.8044544053789044, 'W_D': 29.134750000000004, 'J_D': 381.0297847817541, 'W_D_1KI': 0.8162137554279313, 'J_D_1KI': 0.02286633297178684} +[39.59, 39.87, 39.3, 39.3, 39.78, 38.89, 39.35, 40.52, 39.13, 38.83] +[65.12] +13.134618282318115 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 35925, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.468754291534424, 'TIME_S_1KI': 0.29140582579079816, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 855.3263425445557, 'W': 65.12} +[39.59, 39.87, 39.3, 39.3, 39.78, 38.89, 39.35, 40.52, 39.13, 38.83, 39.59, 39.23, 39.11, 38.91, 39.77, 40.62, 39.49, 39.29, 38.91, 38.85] +709.9 +35.495 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 35925, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.468754291534424, 'TIME_S_1KI': 0.29140582579079816, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 855.3263425445557, 'W': 65.12, 'J_1KI': 23.808666459138642, 'W_1KI': 1.8126652748782186, 'W_D': 29.625000000000007, 'J_D': 389.1130666136743, 'W_D_1KI': 0.8246346555323593, 'J_D_1KI': 0.022954339750378826} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_5e-05.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_5e-05.json new file mode 100644 index 0000000..54cfc66 --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 18331, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.45155644416809, "TIME_S_1KI": 0.570157462449844, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 852.8894222688675, "W": 65.62, "J_1KI": 46.52716285357414, "W_1KI": 3.5797283290600626, "W_D": 29.885000000000005, "J_D": 388.42731460690504, "W_D_1KI": 1.6302984016147513, "J_D_1KI": 0.08893668657545967} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_5e-05.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_5e-05.output new file mode 100644 index 0000000..bef46d2 --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_5e-05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '5e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.0693967342376709} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 5, ..., 124992, 124996, + 125000]), + col_indices=tensor([17438, 29688, 13553, ..., 36532, 44163, 44855]), + values=tensor([0.2242, 0.0224, 0.1461, ..., 0.6740, 0.5355, 0.8238]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.2153, 0.3458, 0.3359, ..., 0.7412, 0.9011, 0.6249]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 0.0693967342376709 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '15130', '-ss', '50000', '-sd', '5e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 8.666174411773682} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 4, ..., 124994, 124997, + 125000]), + col_indices=tensor([17329, 36001, 38373, ..., 475, 21379, 35295]), + values=tensor([0.0803, 0.2135, 0.1853, ..., 0.6523, 0.5299, 0.1396]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.4435, 0.4362, 0.5554, ..., 0.5263, 0.8506, 0.5178]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 8.666174411773682 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '18331', '-ss', '50000', '-sd', '5e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.45155644416809} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 2, ..., 124997, 124997, + 125000]), + col_indices=tensor([14185, 16264, 7088, ..., 33383, 46641, 46645]), + values=tensor([0.3059, 0.0880, 0.9320, ..., 0.7602, 0.8512, 0.4645]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.5025, 0.7968, 0.2806, ..., 0.1024, 0.8091, 0.6972]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 10.45155644416809 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 2, ..., 124997, 124997, + 125000]), + col_indices=tensor([14185, 16264, 7088, ..., 33383, 46641, 46645]), + values=tensor([0.3059, 0.0880, 0.9320, ..., 0.7602, 0.8512, 0.4645]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.5025, 0.7968, 0.2806, ..., 0.1024, 0.8091, 0.6972]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 10.45155644416809 seconds + +[39.86, 38.92, 44.85, 39.01, 39.6, 39.39, 38.97, 39.8, 41.08, 39.48] +[65.62] +12.997400522232056 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 18331, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.45155644416809, 'TIME_S_1KI': 0.570157462449844, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 852.8894222688675, 'W': 65.62} +[39.86, 38.92, 44.85, 39.01, 39.6, 39.39, 38.97, 39.8, 41.08, 39.48, 40.67, 39.02, 39.09, 39.05, 39.17, 38.87, 39.48, 39.3, 39.44, 39.31] +714.7 +35.735 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 18331, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.45155644416809, 'TIME_S_1KI': 0.570157462449844, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 852.8894222688675, 'W': 65.62, 'J_1KI': 46.52716285357414, 'W_1KI': 3.5797283290600626, 'W_D': 29.885000000000005, 'J_D': 388.42731460690504, 'W_D_1KI': 1.6302984016147513, 'J_D_1KI': 0.08893668657545967} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.0001.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.0001.json index cbaf9ec..2d402b4 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.0001.json +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.0001.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 478217, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.855157613754272, "TIME_S_1KI": 0.022699229876299402, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 856.2491577148438, "W": 64.87, "J_1KI": 1.7905033859416202, "W_1KI": 0.1356497155057223, "W_D": 29.804500000000004, "J_D": 393.40339172363286, "W_D_1KI": 0.06232421683043473, "J_D_1KI": 0.00013032622602382335} +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 461205, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.546576023101807, "TIME_S_1KI": 0.022867436439548153, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 854.1005449390411, "W": 65.22, "J_1KI": 1.8518891706270337, "W_1KI": 0.1414121702930367, "W_D": 29.99125, "J_D": 392.75594861090184, "W_D_1KI": 0.065028024414306, "J_D_1KI": 0.0001409959224516343} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.0001.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.0001.output index dc99150..a788520 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.0001.output +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.0001.output @@ -1,51 +1,13 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.03418374061584473} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 1, ..., 2500, 2500, 2500]), - col_indices=tensor([3258, 3666, 785, ..., 592, 2528, 4295]), - values=tensor([0.0745, 0.3346, 0.7433, ..., 0.4561, 0.1450, 0.7729]), - size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.6815, 0.4251, 0.0154, ..., 0.8636, 0.4620, 0.2584]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([5000, 5000]) -Rows: 5000 -Size: 25000000 -NNZ: 2500 -Density: 0.0001 -Time: 0.03418374061584473 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '307163', '-ss', '5000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 6.744239568710327} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 2500, 2500, 2500]), - col_indices=tensor([1557, 2371, 1241, ..., 4745, 784, 3444]), - values=tensor([0.6224, 0.1480, 0.3479, ..., 0.3226, 0.4259, 0.8584]), - size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.6292, 0.0071, 0.7726, ..., 0.8443, 0.3847, 0.4326]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([5000, 5000]) -Rows: 5000 -Size: 25000000 -NNZ: 2500 -Density: 0.0001 -Time: 6.744239568710327 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '478217', '-ss', '5000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.855157613754272} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.0131683349609375} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 2499, 2499, 2500]), - col_indices=tensor([ 537, 942, 2250, ..., 4421, 3640, 3689]), - values=tensor([0.2431, 0.3591, 0.7204, ..., 0.2868, 0.0163, 0.2334]), + col_indices=tensor([1743, 190, 2771, ..., 2075, 3388, 3957]), + values=tensor([0.1814, 0.3494, 0.7591, ..., 0.1503, 0.3935, 0.5274]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.9258, 0.9006, 0.7252, ..., 0.7255, 0.3779, 0.2202]) +tensor([0.3288, 0.8511, 0.6239, ..., 0.9211, 0.6649, 0.5940]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,15 +15,18 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 10.855157613754272 seconds +Time: 0.0131683349609375 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '79736', '-ss', '5000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 1.8153021335601807} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 2499, 2499, 2500]), - col_indices=tensor([ 537, 942, 2250, ..., 4421, 3640, 3689]), - values=tensor([0.2431, 0.3591, 0.7204, ..., 0.2868, 0.0163, 0.2334]), + col_indices=tensor([3060, 1065, 3686, ..., 959, 268, 4999]), + values=tensor([0.4441, 0.5663, 0.4237, ..., 0.7927, 0.1815, 0.5098]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.9258, 0.9006, 0.7252, ..., 0.7255, 0.3779, 0.2202]) +tensor([0.5827, 0.3654, 0.8856, ..., 0.0793, 0.3634, 0.4632]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -69,13 +34,48 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 10.855157613754272 seconds +Time: 1.8153021335601807 seconds -[39.25, 38.14, 38.36, 38.18, 38.58, 38.56, 38.4, 38.47, 38.48, 38.68] -[64.87] -13.199462890625 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 478217, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.855157613754272, 'TIME_S_1KI': 0.022699229876299402, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 856.2491577148438, 'W': 64.87} -[39.25, 38.14, 38.36, 38.18, 38.58, 38.56, 38.4, 38.47, 38.48, 38.68, 39.07, 38.8, 38.23, 39.53, 38.54, 38.21, 38.59, 38.49, 41.46, 47.58] -701.31 -35.0655 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 478217, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.855157613754272, 'TIME_S_1KI': 0.022699229876299402, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 856.2491577148438, 'W': 64.87, 'J_1KI': 1.7905033859416202, 'W_1KI': 0.1356497155057223, 'W_D': 29.804500000000004, 'J_D': 393.40339172363286, 'W_D_1KI': 0.06232421683043473, 'J_D_1KI': 0.00013032622602382335} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '461205', '-ss', '5000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.546576023101807} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 2499, 2499, 2500]), + col_indices=tensor([ 400, 983, 3289, ..., 2520, 735, 710]), + values=tensor([0.5782, 0.5847, 0.2189, ..., 0.6822, 0.4901, 0.5172]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.8041, 0.1477, 0.3593, ..., 0.2372, 0.8803, 0.6540]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 10.546576023101807 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 2499, 2499, 2500]), + col_indices=tensor([ 400, 983, 3289, ..., 2520, 735, 710]), + values=tensor([0.5782, 0.5847, 0.2189, ..., 0.6822, 0.4901, 0.5172]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.8041, 0.1477, 0.3593, ..., 0.2372, 0.8803, 0.6540]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 10.546576023101807 seconds + +[42.91, 38.91, 39.2, 38.78, 38.91, 38.88, 39.21, 39.32, 39.19, 38.86] +[65.22] +13.09568452835083 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 461205, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.546576023101807, 'TIME_S_1KI': 0.022867436439548153, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 854.1005449390411, 'W': 65.22} +[42.91, 38.91, 39.2, 38.78, 38.91, 38.88, 39.21, 39.32, 39.19, 38.86, 39.94, 38.72, 39.13, 38.84, 39.27, 38.74, 39.16, 38.84, 39.21, 38.82] +704.5749999999999 +35.22875 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 461205, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.546576023101807, 'TIME_S_1KI': 0.022867436439548153, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 854.1005449390411, 'W': 65.22, 'J_1KI': 1.8518891706270337, 'W_1KI': 0.1414121702930367, 'W_D': 29.99125, 'J_D': 392.75594861090184, 'W_D_1KI': 0.065028024414306, 'J_D_1KI': 0.0001409959224516343} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.001.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.001.json index 34a1b0c..89f214d 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.001.json +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.001.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 248678, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.619725465774536, "TIME_S_1KI": 0.04270472444596843, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 878.5904247951509, "W": 65.93, "J_1KI": 3.5330444381696444, "W_1KI": 0.2651219649506591, "W_D": 31.137750000000004, "J_D": 414.9450781080723, "W_D_1KI": 0.12521312701565881, "J_D_1KI": 0.0005035150958897} +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 244335, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.417778253555298, "TIME_S_1KI": 0.04263727363478543, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 855.0210603523253, "W": 66.32, "J_1KI": 3.4993801966657467, "W_1KI": 0.27143061779933286, "W_D": 30.753, "J_D": 396.4786289055347, "W_D_1KI": 0.1258640800540242, "J_D_1KI": 0.0005151291466798624} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.001.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.001.output index c454cf5..b5c1026 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.001.output +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.001.output @@ -1,13 +1,13 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.05426168441772461} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.01594710350036621} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 9, ..., 24991, 24997, 25000]), - col_indices=tensor([1287, 1316, 2359, ..., 1751, 2298, 3529]), - values=tensor([0.1773, 0.9664, 0.4947, ..., 0.2806, 0.9364, 0.2474]), +tensor(crow_indices=tensor([ 0, 8, 12, ..., 24992, 24999, 25000]), + col_indices=tensor([ 675, 1985, 2689, ..., 3047, 3313, 3022]), + values=tensor([0.4390, 0.7079, 0.1777, ..., 0.9145, 0.2520, 0.4929]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.5449, 0.4697, 0.1251, ..., 0.6031, 0.3711, 0.9109]) +tensor([0.8163, 0.8334, 0.7201, ..., 0.8897, 0.9022, 0.1765]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -15,18 +15,18 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 0.05426168441772461 seconds +Time: 0.01594710350036621 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '193506', '-ss', '5000', '-sd', '0.001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 8.17044973373413} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '65842', '-ss', '5000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 2.8294758796691895} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 7, 10, ..., 24989, 24995, 25000]), - col_indices=tensor([ 563, 1432, 1628, ..., 3910, 4925, 4964]), - values=tensor([0.0779, 0.2473, 0.4860, ..., 0.8752, 0.7145, 0.0936]), +tensor(crow_indices=tensor([ 0, 3, 9, ..., 24993, 24997, 25000]), + col_indices=tensor([ 33, 1908, 3594, ..., 299, 386, 4209]), + values=tensor([0.2193, 0.5619, 0.9883, ..., 0.1847, 0.2793, 0.9697]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.5862, 0.8689, 0.7521, ..., 0.3378, 0.8388, 0.0430]) +tensor([0.6444, 0.1854, 0.4415, ..., 0.6088, 0.2901, 0.0299]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -34,18 +34,18 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 8.17044973373413 seconds +Time: 2.8294758796691895 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '248678', '-ss', '5000', '-sd', '0.001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.619725465774536} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '244335', '-ss', '5000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.417778253555298} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 5, ..., 24990, 24993, 25000]), - col_indices=tensor([ 49, 355, 745, ..., 2877, 3597, 4425]), - values=tensor([0.2389, 0.4883, 0.4431, ..., 0.9568, 0.0569, 0.8170]), +tensor(crow_indices=tensor([ 0, 3, 8, ..., 24990, 24997, 25000]), + col_indices=tensor([2557, 3235, 4228, ..., 486, 3364, 4712]), + values=tensor([0.2079, 0.9240, 0.7430, ..., 0.9071, 0.8940, 0.1396]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.9647, 0.9839, 0.1030, ..., 0.7979, 0.9168, 0.5702]) +tensor([0.3103, 0.6909, 0.1567, ..., 0.3064, 0.4398, 0.1480]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,15 +53,15 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 10.619725465774536 seconds +Time: 10.417778253555298 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 5, ..., 24990, 24993, 25000]), - col_indices=tensor([ 49, 355, 745, ..., 2877, 3597, 4425]), - values=tensor([0.2389, 0.4883, 0.4431, ..., 0.9568, 0.0569, 0.8170]), +tensor(crow_indices=tensor([ 0, 3, 8, ..., 24990, 24997, 25000]), + col_indices=tensor([2557, 3235, 4228, ..., 486, 3364, 4712]), + values=tensor([0.2079, 0.9240, 0.7430, ..., 0.9071, 0.8940, 0.1396]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.9647, 0.9839, 0.1030, ..., 0.7979, 0.9168, 0.5702]) +tensor([0.3103, 0.6909, 0.1567, ..., 0.3064, 0.4398, 0.1480]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -69,13 +69,13 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 10.619725465774536 seconds +Time: 10.417778253555298 seconds -[39.55, 38.57, 38.5, 38.49, 39.15, 38.5, 38.44, 38.52, 38.74, 38.66] -[65.93] -13.326109886169434 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 248678, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.619725465774536, 'TIME_S_1KI': 0.04270472444596843, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 878.5904247951509, 'W': 65.93} -[39.55, 38.57, 38.5, 38.49, 39.15, 38.5, 38.44, 38.52, 38.74, 38.66, 39.58, 38.56, 38.38, 38.87, 38.31, 38.44, 38.39, 38.74, 38.99, 38.72] -695.845 -34.79225 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 248678, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.619725465774536, 'TIME_S_1KI': 0.04270472444596843, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 878.5904247951509, 'W': 65.93, 'J_1KI': 3.5330444381696444, 'W_1KI': 0.2651219649506591, 'W_D': 31.137750000000004, 'J_D': 414.9450781080723, 'W_D_1KI': 0.12521312701565881, 'J_D_1KI': 0.0005035150958897} +[45.51, 38.78, 39.51, 38.99, 39.48, 39.2, 39.32, 39.33, 39.41, 38.75] +[66.32] +12.892356157302856 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 244335, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.417778253555298, 'TIME_S_1KI': 0.04263727363478543, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 855.0210603523253, 'W': 66.32} +[45.51, 38.78, 39.51, 38.99, 39.48, 39.2, 39.32, 39.33, 39.41, 38.75, 39.41, 38.8, 39.14, 39.28, 40.7, 39.8, 39.35, 39.07, 39.32, 40.05] +711.3399999999999 +35.56699999999999 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 244335, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.417778253555298, 'TIME_S_1KI': 0.04263727363478543, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 855.0210603523253, 'W': 66.32, 'J_1KI': 3.4993801966657467, 'W_1KI': 0.27143061779933286, 'W_D': 30.753, 'J_D': 396.4786289055347, 'W_D_1KI': 0.1258640800540242, 'J_D_1KI': 0.0005151291466798624} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.01.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.01.json index 163b6dc..d1e9eee 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.01.json +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.01.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 39651, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.074631690979004, "TIME_S_1KI": 0.25408266351363157, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 909.2396620059013, "W": 71.91, "J_1KI": 22.931065093084698, "W_1KI": 1.8135734281607019, "W_D": 21.342999999999996, "J_D": 269.8637478263378, "W_D_1KI": 0.5382714181231241, "J_D_1KI": 0.013575229328973395} +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 41575, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.472304821014404, "TIME_S_1KI": 0.2518894725439424, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 875.4065453624726, "W": 66.47, "J_1KI": 21.056080465723934, "W_1KI": 1.5987973541791942, "W_D": 30.839750000000002, "J_D": 406.1579510657788, "W_D_1KI": 0.7417859290438966, "J_D_1KI": 0.017842114949943394} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.01.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.01.output index 5c37580..9d6f728 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.01.output +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.01.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.01', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.26480770111083984} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.03741025924682617} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 43, 97, ..., 249898, 249949, +tensor(crow_indices=tensor([ 0, 50, 95, ..., 249917, 249960, 250000]), - col_indices=tensor([ 46, 106, 224, ..., 4804, 4890, 4986]), - values=tensor([0.9512, 0.1564, 0.8337, ..., 0.0764, 0.6147, 0.8806]), + col_indices=tensor([ 56, 131, 133, ..., 4645, 4665, 4841]), + values=tensor([0.2594, 0.3669, 0.3309, ..., 0.9204, 0.7750, 0.3008]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.5067, 0.1013, 0.0742, ..., 0.2212, 0.5429, 0.9437]) +tensor([0.7286, 0.8651, 0.2961, ..., 0.7120, 0.4132, 0.7079]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,19 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 0.26480770111083984 seconds +Time: 0.03741025924682617 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '39651', '-ss', '5000', '-sd', '0.01', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.074631690979004} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '28067', '-ss', '5000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 7.088342666625977} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 49, 105, ..., 249900, 249947, +tensor(crow_indices=tensor([ 0, 51, 92, ..., 249888, 249951, 250000]), - col_indices=tensor([ 129, 155, 285, ..., 4713, 4736, 4825]), - values=tensor([0.9050, 0.4779, 0.3101, ..., 0.9077, 0.5485, 0.2382]), + col_indices=tensor([ 195, 232, 275, ..., 4637, 4801, 4910]), + values=tensor([0.9933, 0.3255, 0.9817, ..., 0.2679, 0.2640, 0.0554]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.7723, 0.0685, 0.7362, ..., 0.7986, 0.1054, 0.6909]) +tensor([0.2297, 0.2173, 0.6945, ..., 0.5761, 0.5521, 0.3650]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -36,16 +36,19 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 10.074631690979004 seconds +Time: 7.088342666625977 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '41575', '-ss', '5000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.472304821014404} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 49, 105, ..., 249900, 249947, +tensor(crow_indices=tensor([ 0, 48, 88, ..., 249902, 249950, 250000]), - col_indices=tensor([ 129, 155, 285, ..., 4713, 4736, 4825]), - values=tensor([0.9050, 0.4779, 0.3101, ..., 0.9077, 0.5485, 0.2382]), + col_indices=tensor([ 75, 83, 302, ..., 4746, 4941, 4952]), + values=tensor([0.9930, 0.3893, 0.6584, ..., 0.0382, 0.8338, 0.2904]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.7723, 0.0685, 0.7362, ..., 0.7986, 0.1054, 0.6909]) +tensor([0.5807, 0.7893, 0.2250, ..., 0.2178, 0.8594, 0.2155]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,13 +56,30 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 10.074631690979004 seconds +Time: 10.472304821014404 seconds -[39.13, 38.4, 39.4, 38.95, 39.01, 38.64, 38.39, 62.19, 64.39, 63.32] -[71.91] -12.644133806228638 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 39651, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.074631690979004, 'TIME_S_1KI': 0.25408266351363157, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 909.2396620059013, 'W': 71.91} -[39.13, 38.4, 39.4, 38.95, 39.01, 38.64, 38.39, 62.19, 64.39, 63.32, 68.24, 64.54, 66.6, 65.57, 64.04, 68.19, 66.94, 66.24, 69.2, 70.61] -1011.34 -50.567 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 39651, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.074631690979004, 'TIME_S_1KI': 0.25408266351363157, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 909.2396620059013, 'W': 71.91, 'J_1KI': 22.931065093084698, 'W_1KI': 1.8135734281607019, 'W_D': 21.342999999999996, 'J_D': 269.8637478263378, 'W_D_1KI': 0.5382714181231241, 'J_D_1KI': 0.013575229328973395} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 48, 88, ..., 249902, 249950, + 250000]), + col_indices=tensor([ 75, 83, 302, ..., 4746, 4941, 4952]), + values=tensor([0.9930, 0.3893, 0.6584, ..., 0.0382, 0.8338, 0.2904]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.5807, 0.7893, 0.2250, ..., 0.2178, 0.8594, 0.2155]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 10.472304821014404 seconds + +[39.83, 38.85, 39.09, 38.79, 39.53, 38.8, 39.37, 39.26, 39.29, 38.81] +[66.47] +13.169949531555176 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 41575, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.472304821014404, 'TIME_S_1KI': 0.2518894725439424, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 875.4065453624726, 'W': 66.47} +[39.83, 38.85, 39.09, 38.79, 39.53, 38.8, 39.37, 39.26, 39.29, 38.81, 39.98, 38.99, 38.83, 39.07, 38.9, 38.8, 38.86, 39.29, 47.91, 39.33] +712.6049999999999 +35.63025 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 41575, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.472304821014404, 'TIME_S_1KI': 0.2518894725439424, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 875.4065453624726, 'W': 66.47, 'J_1KI': 21.056080465723934, 'W_1KI': 1.5987973541791942, 'W_D': 30.839750000000002, 'J_D': 406.1579510657788, 'W_D_1KI': 0.7417859290438966, 'J_D_1KI': 0.017842114949943394} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.05.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.05.json index c6f366b..e407283 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.05.json +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.05.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 8104, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.399449348449707, "TIME_S_1KI": 1.2832489324345642, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 868.1994806170463, "W": 65.85, "J_1KI": 107.132216265677, "W_1KI": 8.125616979269497, "W_D": 30.541749999999993, "J_D": 402.67777505141487, "W_D_1KI": 3.768725320829219, "J_D_1KI": 0.46504507907566867} +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 8178, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.511467218399048, "TIME_S_1KI": 1.2853347051111579, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 880.7755374526977, "W": 66.16, "J_1KI": 107.70060374818999, "W_1KI": 8.089997554414282, "W_D": 30.69249999999999, "J_D": 408.60343384623513, "W_D_1KI": 3.7530569821472226, "J_D_1KI": 0.4589211276775767} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.05.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.05.output index 440ed84..b9e58d8 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.05.output +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 1.2955126762390137} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 0.14169001579284668} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 222, 488, ..., 1249497, - 1249743, 1250000]), - col_indices=tensor([ 0, 1, 24, ..., 4925, 4934, 4978]), - values=tensor([0.4956, 0.3294, 0.5952, ..., 0.4990, 0.9373, 0.9148]), +tensor(crow_indices=tensor([ 0, 264, 521, ..., 1249500, + 1249758, 1250000]), + col_indices=tensor([ 22, 35, 54, ..., 4954, 4963, 4982]), + values=tensor([0.3715, 0.6699, 0.1465, ..., 0.9132, 0.2376, 0.1878]), size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.4962, 0.1920, 0.2421, ..., 0.8601, 0.2392, 0.4151]) +tensor([0.3853, 0.7833, 0.5244, ..., 0.5756, 0.3818, 0.8103]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,19 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 1250000 Density: 0.05 -Time: 1.2955126762390137 seconds +Time: 0.14169001579284668 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '8104', '-ss', '5000', '-sd', '0.05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.399449348449707} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '7410', '-ss', '5000', '-sd', '0.05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 9.513462543487549} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 238, 495, ..., 1249467, - 1249713, 1250000]), - col_indices=tensor([ 4, 6, 45, ..., 4913, 4952, 4965]), - values=tensor([0.6573, 0.3725, 0.2540, ..., 0.9752, 0.8782, 0.5831]), +tensor(crow_indices=tensor([ 0, 245, 477, ..., 1249530, + 1249759, 1250000]), + col_indices=tensor([ 15, 78, 164, ..., 4968, 4978, 4992]), + values=tensor([0.5947, 0.7215, 0.2123, ..., 0.7493, 0.6227, 0.0355]), size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.7880, 0.7423, 0.8544, ..., 0.3557, 0.5396, 0.2540]) +tensor([0.4245, 0.9857, 0.9704, ..., 0.1643, 0.0459, 0.0545]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -36,16 +36,19 @@ Rows: 5000 Size: 25000000 NNZ: 1250000 Density: 0.05 -Time: 10.399449348449707 seconds +Time: 9.513462543487549 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '8178', '-ss', '5000', '-sd', '0.05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.511467218399048} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 238, 495, ..., 1249467, - 1249713, 1250000]), - col_indices=tensor([ 4, 6, 45, ..., 4913, 4952, 4965]), - values=tensor([0.6573, 0.3725, 0.2540, ..., 0.9752, 0.8782, 0.5831]), +tensor(crow_indices=tensor([ 0, 243, 531, ..., 1249480, + 1249728, 1250000]), + col_indices=tensor([ 10, 29, 31, ..., 4961, 4980, 4981]), + values=tensor([0.2878, 0.6436, 0.4714, ..., 0.0074, 0.1096, 0.3758]), size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.7880, 0.7423, 0.8544, ..., 0.3557, 0.5396, 0.2540]) +tensor([0.4226, 0.4894, 0.7354, ..., 0.5546, 0.7888, 0.4627]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,13 +56,30 @@ Rows: 5000 Size: 25000000 NNZ: 1250000 Density: 0.05 -Time: 10.399449348449707 seconds +Time: 10.511467218399048 seconds -[39.35, 38.88, 44.16, 39.47, 38.8, 39.17, 38.52, 38.75, 38.59, 39.07] -[65.85] -13.184502363204956 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 8104, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.399449348449707, 'TIME_S_1KI': 1.2832489324345642, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 868.1994806170463, 'W': 65.85} -[39.35, 38.88, 44.16, 39.47, 38.8, 39.17, 38.52, 38.75, 38.59, 39.07, 39.04, 39.89, 38.99, 38.43, 38.88, 38.64, 38.45, 39.36, 39.15, 38.61] -706.165 -35.30825 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 8104, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.399449348449707, 'TIME_S_1KI': 1.2832489324345642, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 868.1994806170463, 'W': 65.85, 'J_1KI': 107.132216265677, 'W_1KI': 8.125616979269497, 'W_D': 30.541749999999993, 'J_D': 402.67777505141487, 'W_D_1KI': 3.768725320829219, 'J_D_1KI': 0.46504507907566867} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 243, 531, ..., 1249480, + 1249728, 1250000]), + col_indices=tensor([ 10, 29, 31, ..., 4961, 4980, 4981]), + values=tensor([0.2878, 0.6436, 0.4714, ..., 0.0074, 0.1096, 0.3758]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.4226, 0.4894, 0.7354, ..., 0.5546, 0.7888, 0.4627]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 10.511467218399048 seconds + +[40.21, 39.14, 39.56, 39.02, 39.43, 41.29, 39.49, 39.07, 39.13, 39.19] +[66.16] +13.31281042098999 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 8178, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.511467218399048, 'TIME_S_1KI': 1.2853347051111579, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 880.7755374526977, 'W': 66.16} +[40.21, 39.14, 39.56, 39.02, 39.43, 41.29, 39.49, 39.07, 39.13, 39.19, 40.14, 39.04, 40.64, 38.87, 39.1, 38.93, 39.37, 39.03, 38.8, 39.34] +709.3500000000001 +35.46750000000001 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 8178, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.511467218399048, 'TIME_S_1KI': 1.2853347051111579, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 880.7755374526977, 'W': 66.16, 'J_1KI': 107.70060374818999, 'W_1KI': 8.089997554414282, 'W_D': 30.69249999999999, 'J_D': 408.60343384623513, 'W_D_1KI': 3.7530569821472226, 'J_D_1KI': 0.4589211276775767} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.1.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.1.json index f20d05f..cc784c7 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.1.json +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.1.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 3588, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.469439029693604, "TIME_S_1KI": 2.9179038544296554, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 926.2283216476441, "W": 68.56, "J_1KI": 258.1461320088194, "W_1KI": 19.108138238573023, "W_D": 33.73800000000001, "J_D": 455.7918774175645, "W_D_1KI": 9.403010033444819, "J_D_1KI": 2.620682840982391} +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 3463, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.092161417007446, "TIME_S_1KI": 2.9142828232767677, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 888.6800115585327, "W": 67.72, "J_1KI": 256.6214298465298, "W_1KI": 19.555298873808837, "W_D": 32.353, "J_D": 424.56385726451873, "W_D_1KI": 9.34247762056021, "J_D_1KI": 2.697798908622642} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.1.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.1.output index 3e39a46..8f92a77 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.1.output +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.1.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.1', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 2.925701141357422} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.1', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 0.30318737030029297} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 485, 1004, ..., 2498982, - 2499482, 2500000]), - col_indices=tensor([ 18, 27, 28, ..., 4963, 4979, 4987]), - values=tensor([0.5744, 0.1591, 0.4039, ..., 0.3146, 0.5536, 0.6554]), +tensor(crow_indices=tensor([ 0, 515, 1018, ..., 2498999, + 2499493, 2500000]), + col_indices=tensor([ 4, 21, 24, ..., 4955, 4957, 4967]), + values=tensor([0.5325, 0.9134, 0.0336, ..., 0.9679, 0.3618, 0.7033]), size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.8562, 0.0559, 0.5751, ..., 0.9013, 0.4689, 0.3374]) +tensor([0.8211, 0.4248, 0.8998, ..., 0.9656, 0.3613, 0.2992]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,19 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 2500000 Density: 0.1 -Time: 2.925701141357422 seconds +Time: 0.30318737030029297 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '3588', '-ss', '5000', '-sd', '0.1', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.469439029693604} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '3463', '-ss', '5000', '-sd', '0.1', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.092161417007446} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 486, 1006, ..., 2498987, - 2499524, 2500000]), - col_indices=tensor([ 6, 12, 25, ..., 4979, 4985, 4986]), - values=tensor([0.9526, 0.5714, 0.7457, ..., 0.5995, 0.2741, 0.0768]), +tensor(crow_indices=tensor([ 0, 498, 1000, ..., 2499016, + 2499523, 2500000]), + col_indices=tensor([ 2, 43, 50, ..., 4978, 4986, 4997]), + values=tensor([0.9352, 0.1649, 0.8628, ..., 0.6965, 0.7003, 0.5455]), size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.9940, 0.0288, 0.0030, ..., 0.3299, 0.0903, 0.2227]) +tensor([0.0499, 0.6757, 0.4614, ..., 0.0542, 0.7848, 0.0169]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -36,16 +36,16 @@ Rows: 5000 Size: 25000000 NNZ: 2500000 Density: 0.1 -Time: 10.469439029693604 seconds +Time: 10.092161417007446 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 486, 1006, ..., 2498987, - 2499524, 2500000]), - col_indices=tensor([ 6, 12, 25, ..., 4979, 4985, 4986]), - values=tensor([0.9526, 0.5714, 0.7457, ..., 0.5995, 0.2741, 0.0768]), +tensor(crow_indices=tensor([ 0, 498, 1000, ..., 2499016, + 2499523, 2500000]), + col_indices=tensor([ 2, 43, 50, ..., 4978, 4986, 4997]), + values=tensor([0.9352, 0.1649, 0.8628, ..., 0.6965, 0.7003, 0.5455]), size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.9940, 0.0288, 0.0030, ..., 0.3299, 0.0903, 0.2227]) +tensor([0.0499, 0.6757, 0.4614, ..., 0.0542, 0.7848, 0.0169]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,13 +53,13 @@ Rows: 5000 Size: 25000000 NNZ: 2500000 Density: 0.1 -Time: 10.469439029693604 seconds +Time: 10.092161417007446 seconds -[39.61, 38.42, 39.72, 38.79, 38.63, 38.61, 38.72, 38.24, 38.41, 38.4] -[68.56] -13.509747982025146 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3588, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.469439029693604, 'TIME_S_1KI': 2.9179038544296554, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 926.2283216476441, 'W': 68.56} -[39.61, 38.42, 39.72, 38.79, 38.63, 38.61, 38.72, 38.24, 38.41, 38.4, 39.84, 38.26, 38.74, 38.59, 38.81, 38.31, 38.94, 38.63, 38.58, 38.23] -696.4399999999999 -34.821999999999996 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3588, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.469439029693604, 'TIME_S_1KI': 2.9179038544296554, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 926.2283216476441, 'W': 68.56, 'J_1KI': 258.1461320088194, 'W_1KI': 19.108138238573023, 'W_D': 33.73800000000001, 'J_D': 455.7918774175645, 'W_D_1KI': 9.403010033444819, 'J_D_1KI': 2.620682840982391} +[40.21, 38.8, 38.93, 38.71, 39.03, 38.9, 38.74, 39.19, 39.25, 38.74] +[67.72] +13.122859001159668 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3463, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.092161417007446, 'TIME_S_1KI': 2.9142828232767677, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 888.6800115585327, 'W': 67.72} +[40.21, 38.8, 38.93, 38.71, 39.03, 38.9, 38.74, 39.19, 39.25, 38.74, 40.21, 38.79, 39.15, 38.78, 38.85, 38.73, 44.44, 39.11, 38.88, 38.96] +707.3399999999999 +35.367 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3463, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.092161417007446, 'TIME_S_1KI': 2.9142828232767677, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 888.6800115585327, 'W': 67.72, 'J_1KI': 256.6214298465298, 'W_1KI': 19.555298873808837, 'W_D': 32.353, 'J_D': 424.56385726451873, 'W_D_1KI': 9.34247762056021, 'J_D_1KI': 2.697798908622642} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.2.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.2.json new file mode 100644 index 0000000..b65b863 --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.2.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1741, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.298704862594604, "TIME_S_1KI": 5.915396245028492, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1027.8759766101837, "W": 74.46, "J_1KI": 590.3940129868946, "W_1KI": 42.76852383687535, "W_D": 39.113499999999995, "J_D": 539.9385846245289, "W_D_1KI": 22.466111430212518, "J_D_1KI": 12.904142119593635} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.2.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.2.output new file mode 100644 index 0000000..987a685 --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.2.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.2', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 0.6030943393707275} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1017, 2015, ..., 4997969, + 4998981, 5000000]), + col_indices=tensor([ 0, 31, 34, ..., 4984, 4989, 4995]), + values=tensor([0.9331, 0.7841, 0.5601, ..., 0.4749, 0.8668, 0.1575]), + size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.1492, 0.3030, 0.4894, ..., 0.2440, 0.4033, 0.0238]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 5000000 +Density: 0.2 +Time: 0.6030943393707275 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1741', '-ss', '5000', '-sd', '0.2', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.298704862594604} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 961, 1935, ..., 4998003, + 4999013, 5000000]), + col_indices=tensor([ 0, 3, 5, ..., 4968, 4970, 4989]), + values=tensor([0.3710, 0.5603, 0.2176, ..., 0.5072, 0.2694, 0.8987]), + size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.6029, 0.2962, 0.8345, ..., 0.0907, 0.1121, 0.2666]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 5000000 +Density: 0.2 +Time: 10.298704862594604 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 961, 1935, ..., 4998003, + 4999013, 5000000]), + col_indices=tensor([ 0, 3, 5, ..., 4968, 4970, 4989]), + values=tensor([0.3710, 0.5603, 0.2176, ..., 0.5072, 0.2694, 0.8987]), + size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.6029, 0.2962, 0.8345, ..., 0.0907, 0.1121, 0.2666]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 5000000 +Density: 0.2 +Time: 10.298704862594604 seconds + +[39.56, 39.38, 38.97, 38.88, 38.82, 39.21, 39.23, 39.16, 39.31, 39.25] +[74.46] +13.804404735565186 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1741, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.298704862594604, 'TIME_S_1KI': 5.915396245028492, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1027.8759766101837, 'W': 74.46} +[39.56, 39.38, 38.97, 38.88, 38.82, 39.21, 39.23, 39.16, 39.31, 39.25, 40.48, 40.05, 39.23, 38.85, 39.62, 39.32, 38.87, 39.04, 39.64, 39.41] +706.93 +35.3465 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1741, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.298704862594604, 'TIME_S_1KI': 5.915396245028492, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1027.8759766101837, 'W': 74.46, 'J_1KI': 590.3940129868946, 'W_1KI': 42.76852383687535, 'W_D': 39.113499999999995, 'J_D': 539.9385846245289, 'W_D_1KI': 22.466111430212518, 'J_D_1KI': 12.904142119593635} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.3.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.3.json new file mode 100644 index 0000000..20f95b6 --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.3.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1166, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.334495306015015, "TIME_S_1KI": 8.8632035214537, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1095.1619911956786, "W": 75.64, "J_1KI": 939.2469907338582, "W_1KI": 64.8713550600343, "W_D": 40.43425, "J_D": 585.4316993985176, "W_D_1KI": 34.67774442538593, "J_D_1KI": 29.74077566499651} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.3.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.3.output new file mode 100644 index 0000000..be3ca1f --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.3.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.3', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 0.9000704288482666} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1542, 2985, ..., 7497037, + 7498525, 7500000]), + col_indices=tensor([ 0, 1, 6, ..., 4988, 4994, 4997]), + values=tensor([0.4057, 0.2930, 0.9549, ..., 0.4574, 0.5414, 0.6416]), + size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) +tensor([0.4314, 0.0098, 0.8060, ..., 0.6655, 0.0522, 0.0757]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 7500000 +Density: 0.3 +Time: 0.9000704288482666 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1166', '-ss', '5000', '-sd', '0.3', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.334495306015015} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1525, 3027, ..., 7497015, + 7498498, 7500000]), + col_indices=tensor([ 12, 15, 18, ..., 4991, 4994, 4995]), + values=tensor([0.8648, 0.2387, 0.0206, ..., 0.7504, 0.0755, 0.9898]), + size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) +tensor([0.0126, 0.2581, 0.5840, ..., 0.5862, 0.5778, 0.3525]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 7500000 +Density: 0.3 +Time: 10.334495306015015 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1525, 3027, ..., 7497015, + 7498498, 7500000]), + col_indices=tensor([ 12, 15, 18, ..., 4991, 4994, 4995]), + values=tensor([0.8648, 0.2387, 0.0206, ..., 0.7504, 0.0755, 0.9898]), + size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) +tensor([0.0126, 0.2581, 0.5840, ..., 0.5862, 0.5778, 0.3525]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 7500000 +Density: 0.3 +Time: 10.334495306015015 seconds + +[41.12, 38.83, 38.85, 38.96, 39.38, 38.75, 39.14, 38.88, 38.85, 38.77] +[75.64] +14.478609085083008 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1166, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.334495306015015, 'TIME_S_1KI': 8.8632035214537, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1095.1619911956786, 'W': 75.64} +[41.12, 38.83, 38.85, 38.96, 39.38, 38.75, 39.14, 38.88, 38.85, 38.77, 40.18, 38.79, 39.32, 38.91, 39.22, 38.92, 39.3, 39.28, 39.3, 38.8] +704.115 +35.20575 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1166, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.334495306015015, 'TIME_S_1KI': 8.8632035214537, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1095.1619911956786, 'W': 75.64, 'J_1KI': 939.2469907338582, 'W_1KI': 64.8713550600343, 'W_D': 40.43425, 'J_D': 585.4316993985176, 'W_D_1KI': 34.67774442538593, 'J_D_1KI': 29.74077566499651} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.4.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.4.json new file mode 100644 index 0000000..973144c --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.4.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 704, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.4, "TIME_S": 10.429930925369263, "TIME_S_1KI": 14.815242791717703, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1157.2951932907106, "W": 76.7, "J_1KI": 1643.8852177424865, "W_1KI": 108.94886363636364, "W_D": 41.2785, "J_D": 622.8345454530717, "W_D_1KI": 58.63423295454546, "J_D_1KI": 83.2872627195248} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.4.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.4.output new file mode 100644 index 0000000..0f653eb --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.4.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.4', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.4, "TIME_S": 1.4912726879119873} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1951, 3944, ..., 9995965, + 9997988, 10000000]), + col_indices=tensor([ 6, 14, 15, ..., 4996, 4997, 4998]), + values=tensor([0.7071, 0.0905, 0.6037, ..., 0.4689, 0.3914, 0.3516]), + size=(5000, 5000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.7487, 0.9804, 0.4485, ..., 0.3781, 0.3818, 0.0598]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 10000000 +Density: 0.4 +Time: 1.4912726879119873 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '704', '-ss', '5000', '-sd', '0.4', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.4, "TIME_S": 10.429930925369263} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1962, 3997, ..., 9995983, + 9998031, 10000000]), + col_indices=tensor([ 2, 3, 4, ..., 4989, 4991, 4999]), + values=tensor([0.3156, 0.5704, 0.4238, ..., 0.9413, 0.7746, 0.6098]), + size=(5000, 5000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.3215, 0.3275, 0.6323, ..., 0.0024, 0.8893, 0.0654]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 10000000 +Density: 0.4 +Time: 10.429930925369263 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1962, 3997, ..., 9995983, + 9998031, 10000000]), + col_indices=tensor([ 2, 3, 4, ..., 4989, 4991, 4999]), + values=tensor([0.3156, 0.5704, 0.4238, ..., 0.9413, 0.7746, 0.6098]), + size=(5000, 5000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.3215, 0.3275, 0.6323, ..., 0.0024, 0.8893, 0.0654]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 10000000 +Density: 0.4 +Time: 10.429930925369263 seconds + +[40.15, 39.37, 39.68, 38.87, 39.22, 39.13, 41.47, 38.91, 39.0, 39.01] +[76.7] +15.088594436645508 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 704, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.4, 'TIME_S': 10.429930925369263, 'TIME_S_1KI': 14.815242791717703, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1157.2951932907106, 'W': 76.7} +[40.15, 39.37, 39.68, 38.87, 39.22, 39.13, 41.47, 38.91, 39.0, 39.01, 40.04, 39.56, 38.96, 39.33, 38.96, 38.95, 39.21, 38.91, 38.9, 40.8] +708.4300000000001 +35.4215 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 704, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.4, 'TIME_S': 10.429930925369263, 'TIME_S_1KI': 14.815242791717703, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1157.2951932907106, 'W': 76.7, 'J_1KI': 1643.8852177424865, 'W_1KI': 108.94886363636364, 'W_D': 41.2785, 'J_D': 622.8345454530717, 'W_D_1KI': 58.63423295454546, 'J_D_1KI': 83.2872627195248} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.5.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.5.json new file mode 100644 index 0000000..70ebf3a --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.5.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 569, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 10.483191013336182, "TIME_S_1KI": 18.42388578793705, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1197.8375442028046, "W": 76.6, "J_1KI": 2105.162643590166, "W_1KI": 134.62214411247803, "W_D": 41.0435, "J_D": 641.8204340142012, "W_D_1KI": 72.13268892794376, "J_D_1KI": 126.77098229867093} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.5.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.5.output new file mode 100644 index 0000000..d4faa36 --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.5.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.5', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 1.8439099788665771} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2531, 5020, ..., 12494917, + 12497450, 12500000]), + col_indices=tensor([ 0, 1, 9, ..., 4992, 4994, 4999]), + values=tensor([0.6676, 0.2754, 0.2712, ..., 0.4447, 0.2547, 0.8500]), + size=(5000, 5000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.9338, 0.0413, 0.5968, ..., 0.6366, 0.2029, 0.7249]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 12500000 +Density: 0.5 +Time: 1.8439099788665771 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '569', '-ss', '5000', '-sd', '0.5', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 10.483191013336182} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2491, 4957, ..., 12495037, + 12497545, 12500000]), + col_indices=tensor([ 0, 2, 5, ..., 4995, 4998, 4999]), + values=tensor([0.5758, 0.7291, 0.3910, ..., 0.8483, 0.9816, 0.9388]), + size=(5000, 5000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.0835, 0.8623, 0.0534, ..., 0.1116, 0.3605, 0.8512]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 12500000 +Density: 0.5 +Time: 10.483191013336182 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2491, 4957, ..., 12495037, + 12497545, 12500000]), + col_indices=tensor([ 0, 2, 5, ..., 4995, 4998, 4999]), + values=tensor([0.5758, 0.7291, 0.3910, ..., 0.8483, 0.9816, 0.9388]), + size=(5000, 5000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.0835, 0.8623, 0.0534, ..., 0.1116, 0.3605, 0.8512]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 12500000 +Density: 0.5 +Time: 10.483191013336182 seconds + +[39.92, 38.82, 39.41, 39.19, 39.02, 39.24, 39.27, 38.82, 38.86, 38.89] +[76.6] +15.637565851211548 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 569, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.5, 'TIME_S': 10.483191013336182, 'TIME_S_1KI': 18.42388578793705, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1197.8375442028046, 'W': 76.6} +[39.92, 38.82, 39.41, 39.19, 39.02, 39.24, 39.27, 38.82, 38.86, 38.89, 40.74, 39.81, 39.32, 39.32, 39.28, 44.23, 39.36, 38.92, 39.11, 38.75] +711.1299999999999 +35.55649999999999 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 569, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.5, 'TIME_S': 10.483191013336182, 'TIME_S_1KI': 18.42388578793705, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1197.8375442028046, 'W': 76.6, 'J_1KI': 2105.162643590166, 'W_1KI': 134.62214411247803, 'W_D': 41.0435, 'J_D': 641.8204340142012, 'W_D_1KI': 72.13268892794376, 'J_D_1KI': 126.77098229867093} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_1e-05.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_1e-05.json index d170a6b..c3ed634 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_1e-05.json +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_1e-05.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 565598, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.406220436096191, "TIME_S_1KI": 0.018398616041952396, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 847.5254345631599, "W": 64.13, "J_1KI": 1.498459037272338, "W_1KI": 0.11338441790812556, "W_D": 29.180249999999987, "J_D": 385.6386100407241, "W_D_1KI": 0.05159185499241509, "J_D_1KI": 9.121647352433192e-05} +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 569391, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.146198511123657, "TIME_S_1KI": 0.017819386873209546, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 837.5037681818008, "W": 65.05, "J_1KI": 1.4708763717406856, "W_1KI": 0.11424486864035434, "W_D": 29.76475, "J_D": 383.2143010605574, "W_D_1KI": 0.05227471105092985, "J_D_1KI": 9.180810910416543e-05} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_1e-05.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_1e-05.output index 4a0b8d8..6482c19 100644 --- a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_1e-05.output +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_1e-05.output @@ -1,75 +1,75 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.055680274963378906} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.025912761688232422} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([4927, 850, 790, 511, 1, 4275, 3659, 3202, 4099, - 3346, 1589, 716, 4620, 4989, 3861, 2882, 2487, 356, - 3163, 4196, 2032, 713, 507, 4615, 4269, 4035, 1320, - 655, 4926, 1128, 2992, 3058, 2439, 4007, 3555, 1710, - 2353, 655, 2875, 397, 2586, 4948, 858, 1089, 783, - 1767, 1975, 2378, 3541, 1407, 868, 4760, 4954, 4948, - 2154, 3756, 192, 4715, 2175, 343, 3413, 855, 3051, - 4256, 4765, 3143, 3774, 3357, 1362, 3915, 3187, 3177, - 3730, 4948, 4331, 2972, 3797, 963, 1487, 1791, 3014, - 3104, 4150, 4779, 2304, 1176, 1597, 3268, 4290, 3867, - 1778, 4097, 4190, 1835, 2167, 1131, 4492, 3907, 2098, - 4204, 4273, 3262, 2220, 4871, 3645, 4702, 4344, 3548, - 398, 3919, 762, 3209, 941, 2587, 4871, 1294, 846, - 4270, 1587, 490, 3776, 205, 4893, 4944, 3389, 1241, - 319, 1205, 149, 2679, 835, 185, 1679, 305, 803, - 3987, 4919, 1049, 2984, 150, 2222, 3548, 4559, 2082, - 773, 3809, 333, 4072, 2819, 773, 1940, 3544, 2429, - 4213, 3874, 3370, 3390, 3737, 2306, 2576, 3944, 3962, - 2700, 3672, 1959, 2924, 1160, 2820, 201, 3021, 1400, - 2786, 3009, 3104, 1799, 1722, 1307, 4435, 3240, 3490, - 3514, 3928, 2870, 339, 280, 3127, 278, 43, 1063, - 3176, 1262, 2341, 4542, 3316, 4835, 2103, 3750, 2839, - 1642, 4880, 4963, 1368, 4924, 2484, 1087, 26, 3186, - 4671, 3346, 1979, 748, 800, 144, 54, 3361, 3955, - 4948, 2768, 2175, 216, 0, 934, 3902, 3054, 854, - 1551, 310, 382, 1750, 779, 4286, 2768, 4550, 2371, - 2027, 2115, 2210, 4053, 3461, 4944, 349, 2236, 2467, - 2141, 1730, 73, 1349, 3773, 2561, 2961]), - values=tensor([0.0052, 0.9685, 0.5552, 0.5554, 0.3769, 0.8417, 0.2484, - 0.8557, 0.2810, 0.1770, 0.3815, 0.5491, 0.2804, 0.7014, - 0.4668, 0.6665, 0.6885, 0.4406, 0.0793, 0.0505, 0.2168, - 0.2768, 0.8793, 0.5292, 0.6124, 0.8331, 0.8520, 0.8953, - 0.2979, 0.9092, 0.1021, 0.9939, 0.8355, 0.6875, 0.6744, - 0.7797, 0.7132, 0.1964, 0.7787, 0.7395, 0.3653, 0.6907, - 0.2135, 0.4345, 0.6550, 0.1169, 0.1290, 0.6211, 0.7886, - 0.4978, 0.8807, 0.4515, 0.8365, 0.6929, 0.0657, 0.2646, - 0.3895, 0.0998, 0.4953, 0.3952, 0.3596, 0.9459, 0.2141, - 0.1718, 0.1717, 0.3607, 0.1199, 0.7175, 0.8124, 0.4557, - 0.0741, 0.2089, 0.8742, 0.1642, 0.0425, 0.9409, 0.3852, - 0.8648, 0.0435, 0.7984, 0.2433, 0.6033, 0.1259, 0.5531, - 0.2437, 0.6326, 0.4382, 0.6680, 0.3511, 0.0596, 0.0831, - 0.8185, 0.6864, 0.6621, 0.0203, 0.2915, 0.7632, 0.4015, - 0.1622, 0.5710, 0.1068, 0.3154, 0.7156, 0.1137, 0.7110, - 0.7922, 0.6817, 0.4208, 0.8226, 0.6751, 0.5470, 0.6580, - 0.9115, 0.2395, 0.8631, 0.8946, 0.8633, 0.9964, 0.1781, - 0.0456, 0.7692, 0.7333, 0.7567, 0.4246, 0.7150, 0.3292, - 0.8102, 0.3763, 0.7077, 0.9596, 0.7799, 0.8995, 0.4237, - 0.8044, 0.0028, 0.6094, 0.0822, 0.3516, 0.1473, 0.3747, - 0.2994, 0.6148, 0.9715, 0.8176, 0.8036, 0.4058, 0.2036, - 0.3753, 0.4509, 0.2117, 0.5735, 0.9721, 0.6964, 0.3733, - 0.2389, 0.5980, 0.7861, 0.1124, 0.7224, 0.2736, 0.1517, - 0.1578, 0.1015, 0.9540, 0.9804, 0.5457, 0.1059, 0.7649, - 0.7606, 0.0359, 0.3684, 0.4744, 0.3881, 0.5669, 0.6894, - 0.8642, 0.1190, 0.1465, 0.4614, 0.1113, 0.6697, 0.9048, - 0.9025, 0.8550, 0.3322, 0.9950, 0.8601, 0.6688, 0.9556, - 0.6649, 0.0390, 0.6075, 0.3304, 0.8947, 0.7252, 0.7691, - 0.7526, 0.8639, 0.4721, 0.9403, 0.4391, 0.6933, 0.1244, - 0.9914, 0.2708, 0.4335, 0.8597, 0.4714, 0.6817, 0.8948, - 0.1646, 0.6199, 0.1780, 0.7119, 0.3391, 0.9514, 0.4224, - 0.9358, 0.1033, 0.8786, 0.4834, 0.9743, 0.3774, 0.6356, - 0.0241, 0.9866, 0.3267, 0.8949, 0.2494, 0.9412, 0.8442, - 0.7104, 0.1721, 0.4102, 0.7763, 0.4723, 0.0485, 0.1320, - 0.4711, 0.1941, 0.9435, 0.7325, 0.9932, 0.9457, 0.1546, - 0.7522, 0.6262, 0.4856, 0.7356, 0.9269]), + col_indices=tensor([2955, 4682, 3449, 1969, 3854, 251, 2319, 668, 498, + 3572, 3854, 2322, 4794, 541, 1204, 3498, 557, 2286, + 3599, 1633, 263, 572, 401, 2359, 4315, 911, 3580, + 647, 4452, 4876, 2180, 2875, 4244, 3344, 2209, 559, + 1303, 3655, 2944, 2633, 4973, 1628, 4101, 143, 4999, + 4517, 2519, 3173, 1189, 2853, 1263, 1640, 2218, 2187, + 500, 639, 1141, 4234, 755, 459, 531, 3206, 4041, + 4859, 2211, 4404, 1761, 2224, 3743, 1719, 4799, 2055, + 4619, 4316, 4729, 1778, 2613, 3964, 2169, 739, 4154, + 1973, 1793, 4308, 801, 3310, 342, 3095, 520, 3764, + 4097, 3032, 1897, 3411, 2128, 1565, 3684, 2810, 2598, + 1157, 2540, 3590, 4555, 145, 3631, 3914, 308, 84, + 3223, 2928, 1083, 1157, 2416, 2092, 1789, 4234, 2339, + 866, 1332, 582, 480, 407, 2460, 594, 1184, 1302, + 4554, 3210, 212, 2368, 3876, 3742, 2272, 1393, 406, + 80, 3371, 4169, 2118, 452, 2986, 932, 49, 3160, + 2327, 713, 2877, 3484, 2257, 182, 3066, 1789, 610, + 3257, 2119, 4757, 577, 310, 2782, 116, 2689, 2876, + 2666, 144, 4643, 3955, 517, 1439, 3012, 4289, 3484, + 1701, 3447, 1824, 1951, 3681, 4272, 2740, 4790, 1804, + 3833, 1146, 672, 4424, 3920, 2173, 2155, 2090, 4174, + 4084, 560, 3425, 3143, 3470, 1712, 3489, 1811, 1766, + 4872, 3288, 771, 4485, 3269, 2695, 4584, 535, 200, + 2606, 3547, 3737, 102, 696, 271, 2048, 2470, 1740, + 2219, 829, 4785, 1264, 2283, 4517, 1344, 1726, 844, + 2384, 4310, 42, 3459, 2017, 2199, 3093, 4339, 313, + 1332, 303, 3733, 2074, 4094, 4006, 429, 1830, 3447, + 3735, 3446, 1158, 2156, 2171, 2458, 989]), + values=tensor([0.1546, 0.0338, 0.3832, 0.6845, 0.5359, 0.2115, 0.5134, + 0.5236, 0.8368, 0.0286, 0.8691, 0.3848, 0.7412, 0.7376, + 0.0492, 0.2561, 0.4285, 0.6403, 0.4264, 0.9823, 0.2432, + 0.9496, 0.9648, 0.1994, 0.5806, 0.9987, 0.8946, 0.3796, + 0.9742, 0.5421, 0.7745, 0.0707, 0.4271, 0.7771, 0.6813, + 0.4916, 0.5119, 0.7062, 0.2752, 0.9391, 0.5947, 0.6220, + 0.1073, 0.5082, 0.8956, 0.6658, 0.1040, 0.0454, 0.1560, + 0.7150, 0.4739, 0.5494, 0.1706, 0.6723, 0.3127, 0.2460, + 0.1585, 0.6938, 0.6937, 0.2200, 0.6734, 0.5021, 0.7544, + 0.1720, 0.3861, 0.8179, 0.3810, 0.0801, 0.6567, 0.1205, + 0.2925, 0.1255, 0.7882, 0.3753, 0.2290, 0.4877, 0.9183, + 0.7718, 0.3047, 0.6194, 0.2851, 0.3419, 0.7256, 0.2356, + 0.5102, 0.4050, 0.2487, 0.5983, 0.2252, 0.4330, 0.1968, + 0.1306, 0.4006, 0.3092, 0.2645, 0.4635, 0.3587, 0.7536, + 0.7019, 0.0792, 0.1678, 0.7485, 0.9817, 0.9065, 0.9994, + 0.3911, 0.8833, 0.5411, 0.3679, 0.9711, 0.9853, 0.6437, + 0.7861, 0.5048, 0.2591, 0.7726, 0.6174, 0.1004, 0.1489, + 0.6017, 0.8836, 0.5571, 0.7423, 0.4796, 0.5887, 0.7010, + 0.6198, 0.7601, 0.9790, 0.0717, 0.8254, 0.1983, 0.6497, + 0.9092, 0.9977, 0.7279, 0.3767, 0.5564, 0.8901, 0.2896, + 0.4914, 0.7288, 0.7282, 0.1569, 0.7491, 0.2024, 0.5103, + 0.2006, 0.2616, 0.3680, 0.8784, 0.5095, 0.3100, 0.5468, + 0.7473, 0.8067, 0.1566, 0.7922, 0.7836, 0.0734, 0.2895, + 0.0658, 0.3948, 0.1442, 0.9166, 0.4276, 0.4709, 0.0305, + 0.5373, 0.3415, 0.0906, 0.7116, 0.3303, 0.4381, 0.5263, + 0.3654, 0.9325, 0.0370, 0.6385, 0.6709, 0.3766, 0.7549, + 0.4298, 0.9883, 0.6034, 0.5195, 0.8067, 0.8173, 0.5194, + 0.5329, 0.4999, 0.5357, 0.5843, 0.4652, 0.6589, 0.6127, + 0.9625, 0.8533, 0.0618, 0.2250, 0.1341, 0.3851, 0.9176, + 0.6106, 0.0281, 0.2538, 0.5580, 0.0137, 0.4927, 0.5743, + 0.6268, 0.5818, 0.7719, 0.1711, 0.1084, 0.6064, 0.1367, + 0.6312, 0.8778, 0.2960, 0.3372, 0.8224, 0.9699, 0.6070, + 0.2907, 0.4693, 0.5694, 0.7710, 0.6091, 0.5452, 0.3569, + 0.0226, 0.4986, 0.6727, 0.5738, 0.8629, 0.9155, 0.9081, + 0.9105, 0.9222, 0.7776, 0.3699, 0.9402, 0.5035, 0.4769, + 0.4797, 0.1466, 0.6411, 0.6861, 0.6601]), size=(5000, 5000), nnz=250, layout=torch.sparse_csr) -tensor([0.4907, 0.7631, 0.4016, ..., 0.1364, 0.7839, 0.0874]) +tensor([0.1758, 0.5990, 0.4260, ..., 0.6457, 0.1523, 0.4408]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -77,80 +77,80 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 0.055680274963378906 seconds +Time: 0.025912761688232422 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '188576', '-ss', '5000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 3.5007991790771484} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '40520', '-ss', '5000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.7472190856933594} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([1945, 1023, 4059, 2482, 4205, 303, 4777, 854, 2860, - 3128, 1003, 4735, 2788, 4977, 4888, 1184, 1747, 1500, - 1488, 4664, 4234, 267, 2917, 1657, 2512, 4827, 4561, - 702, 1237, 3411, 3165, 543, 1337, 83, 2870, 335, - 3814, 4999, 149, 4519, 2422, 4719, 798, 1942, 1622, - 3623, 4934, 3536, 2679, 1799, 4397, 3267, 2356, 3096, - 939, 547, 3544, 3068, 871, 1836, 3638, 2030, 3514, - 3175, 329, 4905, 2001, 311, 2973, 4563, 1817, 1048, - 929, 4023, 2988, 4454, 1785, 1847, 1514, 4852, 2649, - 3063, 1763, 4293, 987, 4530, 3247, 562, 3333, 1092, - 3107, 2490, 531, 4875, 990, 2781, 1158, 1668, 810, - 4571, 1453, 4830, 4987, 542, 1478, 3139, 2797, 4337, - 4005, 1729, 1210, 1760, 2876, 492, 717, 4559, 1380, - 2637, 1249, 2077, 2637, 1153, 3843, 4108, 3845, 3286, - 4892, 4744, 3227, 2586, 83, 679, 2941, 1087, 894, - 781, 3420, 957, 2881, 2363, 2348, 2617, 2659, 1938, - 1995, 162, 900, 4007, 2523, 4470, 4394, 2657, 1289, - 3860, 3369, 1091, 538, 136, 430, 3091, 862, 1648, - 643, 490, 4863, 2809, 1365, 1101, 1331, 516, 1710, - 2693, 2751, 328, 677, 727, 1218, 3858, 2408, 4041, - 4770, 1765, 2463, 3676, 4301, 3125, 2410, 3828, 4357, - 3454, 2697, 3913, 3850, 2386, 3319, 2739, 967, 2681, - 2619, 1855, 848, 4820, 42, 3478, 2615, 4379, 3969, - 318, 169, 4793, 3405, 1411, 1550, 4436, 2892, 2747, - 2076, 4350, 3765, 3931, 2191, 4279, 3507, 1647, 3640, - 24, 2376, 2290, 3244, 118, 4586, 1505, 1122, 1321, - 3378, 2663, 1121, 2193, 4996, 4050, 1149, 1171, 674, - 98, 868, 2491, 2360, 3984, 4243, 3717]), - values=tensor([0.8923, 0.2170, 0.4055, 0.4662, 0.6388, 0.1130, 0.3558, - 0.8111, 0.3477, 0.3800, 0.1079, 0.8330, 0.9521, 0.2703, - 0.3856, 0.0011, 0.5451, 0.8270, 0.6026, 0.6871, 0.2987, - 0.0297, 0.9583, 0.5169, 0.4017, 0.2171, 0.4756, 0.5607, - 0.0472, 0.1280, 0.3544, 0.8497, 0.3044, 0.7975, 0.4038, - 0.2219, 0.0782, 0.3625, 0.4265, 0.7585, 0.5674, 0.8855, - 0.8283, 0.3415, 0.0517, 0.5793, 0.6358, 0.0955, 0.8953, - 0.4821, 0.5628, 0.3527, 0.5347, 0.9985, 0.4438, 0.9458, - 0.8619, 0.6814, 0.4148, 0.2273, 0.3882, 0.1003, 0.0543, - 0.4150, 0.9185, 0.0166, 0.8297, 0.5190, 0.1538, 0.6141, - 0.2637, 0.0598, 0.8180, 0.7469, 0.0453, 0.5538, 0.8701, - 0.6469, 0.0982, 0.7176, 0.0465, 0.3670, 0.5104, 0.4937, - 0.2148, 0.7740, 0.3290, 0.8672, 0.1889, 0.4020, 0.0735, - 0.7646, 0.0051, 0.2270, 0.0781, 0.9331, 0.9272, 0.2719, - 0.1297, 0.3201, 0.5551, 0.7162, 0.8369, 0.6662, 0.1046, - 0.5488, 0.7113, 0.7847, 0.2788, 0.8185, 0.6566, 0.4871, - 0.5299, 0.6218, 0.8570, 0.1819, 0.5175, 0.1532, 0.4515, - 0.3371, 0.8231, 0.7575, 0.8237, 0.2542, 0.7977, 0.3121, - 0.6201, 0.3327, 0.3804, 0.3314, 0.3106, 0.6784, 0.7520, - 0.4798, 0.5547, 0.5647, 0.4448, 0.9580, 0.7896, 0.4903, - 0.1080, 0.8992, 0.5980, 0.8970, 0.6636, 0.7995, 0.6348, - 0.1663, 0.2370, 0.3831, 0.4667, 0.7285, 0.6074, 0.1379, - 0.1650, 0.4365, 0.1346, 0.0493, 0.9094, 0.8343, 0.5503, - 0.6878, 0.9726, 0.3666, 0.9441, 0.6828, 0.4331, 0.9621, - 0.0173, 0.9911, 0.0894, 0.4748, 0.0217, 0.1933, 0.3591, - 0.5607, 0.7065, 0.9013, 0.5608, 0.5400, 0.0070, 0.9469, - 0.6275, 0.4975, 0.8745, 0.1132, 0.5527, 0.6696, 0.7603, - 0.2454, 0.5447, 0.0979, 0.6116, 0.0408, 0.5683, 0.5779, - 0.1881, 0.0095, 0.3924, 0.6268, 0.9119, 0.2320, 0.0019, - 0.0175, 0.8569, 0.7934, 0.3311, 0.4757, 0.7819, 0.0089, - 0.0688, 0.2934, 0.7037, 0.0307, 0.4797, 0.2771, 0.4270, - 0.8332, 0.6054, 0.8327, 0.8285, 0.2236, 0.0301, 0.9022, - 0.2426, 0.5397, 0.0668, 0.3464, 0.5399, 0.2689, 0.4924, - 0.7416, 0.9953, 0.1583, 0.4326, 0.2863, 0.4395, 0.4620, - 0.4220, 0.0019, 0.8210, 0.7450, 0.1671, 0.2691, 0.2129, - 0.6046, 0.1184, 0.5733, 0.5791, 0.6764]), + col_indices=tensor([4979, 4303, 4566, 4762, 4549, 190, 2004, 2509, 751, + 928, 1907, 2345, 3485, 628, 2908, 2256, 1744, 3960, + 753, 741, 1691, 3236, 822, 110, 1716, 2413, 2905, + 1494, 3365, 3162, 4499, 3337, 4292, 2749, 1497, 1083, + 571, 2576, 1389, 2374, 4678, 2621, 3191, 2850, 4442, + 3038, 2838, 3147, 1692, 3297, 1369, 316, 44, 3096, + 1795, 1502, 4078, 1530, 382, 1493, 2347, 369, 4086, + 3463, 1734, 324, 4159, 222, 2163, 3883, 2624, 3179, + 1955, 2358, 4353, 3311, 2924, 323, 448, 10, 1850, + 3616, 4600, 4760, 641, 4296, 2902, 1005, 4495, 3758, + 2177, 1780, 1919, 576, 3690, 2414, 4915, 960, 2888, + 4117, 1616, 3504, 3045, 3420, 3788, 3250, 4185, 565, + 1378, 1958, 1079, 3142, 700, 3775, 2755, 2658, 4044, + 3937, 2159, 2450, 691, 2810, 2854, 3907, 15, 3162, + 4347, 4859, 392, 4662, 1450, 2377, 2601, 2733, 2929, + 1056, 3918, 1597, 324, 1218, 4516, 2665, 4847, 4488, + 1656, 2761, 652, 3181, 916, 67, 4641, 3028, 215, + 2829, 990, 4480, 3427, 3715, 1658, 1471, 2613, 915, + 4016, 2089, 4, 4230, 2407, 4012, 246, 2239, 359, + 1734, 4596, 4776, 1554, 2314, 1733, 3775, 4475, 4112, + 4261, 4903, 3913, 101, 2681, 3353, 525, 3858, 185, + 877, 1621, 4340, 4135, 463, 2930, 2999, 1174, 3548, + 1690, 2905, 3325, 3911, 711, 2787, 2453, 456, 3056, + 3218, 3802, 3733, 687, 2791, 1304, 4779, 2332, 3970, + 155, 2041, 2588, 2371, 3243, 3760, 181, 1764, 909, + 39, 3595, 2215, 3497, 2575, 3579, 257, 3215, 1268, + 660, 3425, 4720, 1730, 3977, 302, 2922, 4097, 2384, + 2222, 3777, 3527, 253, 2444, 2627, 880]), + values=tensor([0.6428, 0.9934, 0.2143, 0.2775, 0.8801, 0.9209, 0.7937, + 0.3950, 0.9558, 0.4336, 0.7173, 0.5611, 0.9142, 0.7220, + 0.9288, 0.0252, 0.1643, 0.3238, 0.3899, 0.9050, 0.8167, + 0.0316, 0.4642, 0.2775, 0.6749, 0.3101, 0.4910, 0.2421, + 0.2427, 0.1619, 0.6985, 0.1109, 0.5934, 0.6019, 0.5879, + 0.2363, 0.8960, 0.8107, 0.6787, 0.6439, 0.2015, 0.5182, + 0.3918, 0.2235, 0.7280, 0.1655, 0.1523, 0.7307, 0.2277, + 0.0713, 0.3285, 0.3448, 0.9658, 0.6123, 0.3458, 0.8019, + 0.7467, 0.1797, 0.0926, 0.5584, 0.6018, 0.7448, 0.7637, + 0.6467, 0.4119, 0.4865, 0.3304, 0.8004, 0.4028, 0.3316, + 0.4346, 0.2111, 0.8264, 0.5751, 0.1845, 0.5351, 0.6490, + 0.1782, 0.3206, 0.0372, 0.4209, 0.6069, 0.2848, 0.1110, + 0.4496, 0.7402, 0.9814, 0.1676, 0.9158, 0.3694, 0.5027, + 0.9759, 0.3630, 0.0452, 0.6637, 0.4099, 0.7193, 0.9349, + 0.4031, 0.4884, 0.0588, 0.8852, 0.4143, 0.6287, 0.2603, + 0.0585, 0.6828, 0.0068, 0.4013, 0.8395, 0.5456, 0.8367, + 0.2039, 0.1976, 0.9018, 0.5362, 0.0977, 0.9421, 0.0954, + 0.0477, 0.2774, 0.5744, 0.7438, 0.6477, 0.2957, 0.5835, + 0.7384, 0.3101, 0.2011, 0.7432, 0.1000, 0.7629, 0.0287, + 0.1747, 0.7484, 0.6466, 0.2628, 0.6546, 0.9448, 0.6789, + 0.3641, 0.3340, 0.2888, 0.6351, 0.9463, 0.7934, 0.2568, + 0.0882, 0.7783, 0.9130, 0.2947, 0.2702, 0.1584, 0.1104, + 0.9967, 0.4045, 0.5340, 0.4029, 0.5998, 0.3784, 0.8814, + 0.3307, 0.4333, 0.0862, 0.8030, 0.7150, 0.6042, 0.4672, + 0.1420, 0.3126, 0.5565, 0.5063, 0.1371, 0.4110, 0.5830, + 0.3460, 0.8459, 0.9932, 0.3370, 0.3110, 0.0982, 0.6162, + 0.8866, 0.9938, 0.9137, 0.2599, 0.1340, 0.1968, 0.4654, + 0.2563, 0.6561, 0.7845, 0.2903, 0.6104, 0.9219, 0.6603, + 0.0736, 0.2080, 0.8730, 0.0269, 0.5148, 0.9185, 0.0914, + 0.7374, 0.6494, 0.0513, 0.2661, 0.6485, 0.3876, 0.3399, + 0.5727, 0.6526, 0.6545, 0.8063, 0.5866, 0.7739, 0.1262, + 0.2849, 0.1051, 0.1115, 0.2427, 0.0104, 0.2599, 0.3134, + 0.0451, 0.7262, 0.6349, 0.5852, 0.2103, 0.4468, 0.0131, + 0.9703, 0.2087, 0.9981, 0.0746, 0.6323, 0.0776, 0.3216, + 0.8062, 0.8168, 0.8982, 0.6078, 0.4816, 0.3037, 0.1198, + 0.4605, 0.7585, 0.3262, 0.3531, 0.6379]), size=(5000, 5000), nnz=250, layout=torch.sparse_csr) -tensor([0.1655, 0.0894, 0.3335, ..., 0.5896, 0.4748, 0.7424]) +tensor([0.7653, 0.7067, 0.4116, ..., 0.4300, 0.1070, 0.3611]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -158,80 +158,80 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 3.5007991790771484 seconds +Time: 0.7472190856933594 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '565598', '-ss', '5000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.406220436096191} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '569391', '-ss', '5000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.146198511123657} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 249, 249, 250]), - col_indices=tensor([3711, 2509, 1480, 2246, 4155, 2306, 315, 3219, 781, - 3895, 3381, 2148, 1468, 1317, 2648, 3838, 486, 2691, - 4269, 1833, 4130, 2494, 2935, 4534, 1404, 631, 2237, - 3119, 2408, 4857, 3452, 3551, 652, 1979, 294, 2907, - 4341, 963, 1166, 1723, 2311, 2016, 4067, 2454, 3108, - 4422, 594, 1090, 1798, 1231, 1189, 3083, 3007, 2134, - 3681, 526, 4251, 1258, 2420, 4062, 326, 2947, 386, - 3623, 4002, 1015, 2488, 2914, 344, 749, 2046, 3369, - 2183, 4810, 804, 4709, 4216, 4774, 3285, 1736, 1631, - 1116, 2085, 4390, 2715, 1633, 1339, 4203, 1468, 3776, - 4650, 1964, 1644, 3484, 556, 1113, 359, 2615, 4829, - 4748, 1322, 159, 1685, 3154, 4693, 4031, 1252, 1027, - 678, 4884, 997, 1416, 284, 2922, 2849, 4079, 606, - 470, 1943, 1148, 4302, 4930, 4799, 1057, 474, 2030, - 3336, 862, 2916, 4504, 1767, 3103, 2022, 3927, 3702, - 2754, 2164, 4564, 2862, 341, 1369, 1305, 4261, 2181, - 1646, 3936, 3010, 930, 4647, 2915, 4405, 3874, 1229, - 1875, 855, 1323, 963, 2816, 4148, 4829, 4066, 4913, - 691, 4066, 1415, 2632, 3157, 1676, 346, 4763, 246, - 2345, 1525, 4678, 2542, 2753, 3445, 3912, 2714, 1361, - 733, 3308, 420, 1698, 1705, 3596, 4607, 2749, 2452, - 4692, 611, 3476, 336, 999, 2085, 3920, 2039, 3357, - 4270, 3263, 3475, 3737, 446, 1786, 2984, 2510, 2736, - 3086, 1080, 3428, 4087, 375, 2103, 1319, 4228, 2727, - 4839, 645, 2259, 3905, 3083, 2174, 1253, 1258, 2465, - 3785, 2824, 24, 1918, 2335, 918, 1175, 3575, 2352, - 4164, 2100, 1603, 715, 4639, 1853, 3257, 1572, 4514, - 2943, 1003, 4748, 1038, 1012, 3061, 294]), - values=tensor([0.0072, 0.2895, 0.9639, 0.0057, 0.4191, 0.2094, 0.7103, - 0.8218, 0.3375, 0.5039, 0.5062, 0.5584, 0.5972, 0.9352, - 0.8333, 0.7188, 0.6342, 0.9555, 0.9103, 0.1687, 0.2984, - 0.7732, 0.0449, 0.0772, 0.1352, 0.5023, 0.0443, 0.4171, - 0.2148, 0.7142, 0.2678, 0.2649, 0.5734, 0.2586, 0.1803, - 0.3367, 0.7155, 0.6815, 0.6287, 0.8390, 0.5032, 0.1992, - 0.5162, 0.5707, 0.0670, 0.5923, 0.5384, 0.7500, 0.0960, - 0.4905, 0.7846, 0.7390, 0.3348, 0.9396, 0.2679, 0.8099, - 0.4907, 0.0176, 0.1919, 0.5036, 0.7682, 0.7675, 0.5778, - 0.9394, 0.8838, 0.1647, 0.2045, 0.3204, 0.5816, 0.4877, - 0.4316, 0.5907, 0.3880, 0.5556, 0.6079, 0.5805, 0.9477, - 0.7717, 0.2301, 0.4363, 0.4192, 0.7264, 0.9246, 0.5163, - 0.0957, 0.1670, 0.3706, 0.2621, 0.2557, 0.7081, 0.3520, - 0.9207, 0.5713, 0.9991, 0.2774, 0.9953, 0.3693, 0.6174, - 0.8286, 0.4524, 0.9605, 0.1877, 0.9322, 0.0179, 0.6890, - 0.8811, 0.8437, 0.1818, 0.1680, 0.0986, 0.7979, 0.9912, - 0.8202, 0.1132, 0.4257, 0.5766, 0.6866, 0.1937, 0.7442, - 0.9210, 0.2915, 0.9278, 0.6093, 0.0128, 0.7291, 0.8036, - 0.5824, 0.8528, 0.6888, 0.3925, 0.4263, 0.3416, 0.9010, - 0.2543, 0.7049, 0.8368, 0.2533, 0.1239, 0.2556, 0.3482, - 0.6122, 0.3407, 0.8598, 0.6533, 0.0993, 0.8400, 0.5464, - 0.2659, 0.0791, 0.9360, 0.6384, 0.4202, 0.5451, 0.6770, - 0.9558, 0.2536, 0.5924, 0.5367, 0.4377, 0.3759, 0.9344, - 0.0785, 0.9178, 0.5703, 0.2621, 0.7840, 0.6650, 0.5173, - 0.7316, 0.8675, 0.0573, 0.5592, 0.5656, 0.1368, 0.7342, - 0.4891, 0.5212, 0.5980, 0.9850, 0.3144, 0.9416, 0.3586, - 0.5874, 0.8863, 0.8557, 0.4322, 0.3167, 0.3279, 0.7906, - 0.9595, 0.6426, 0.5182, 0.3380, 0.6725, 0.1898, 0.5553, - 0.6660, 0.7693, 0.0543, 0.1495, 0.4661, 0.0013, 0.2189, - 0.2756, 0.4230, 0.3033, 0.9296, 0.0600, 0.3160, 0.8967, - 0.7981, 0.0839, 0.1133, 0.3382, 0.5864, 0.5344, 0.5684, - 0.8353, 0.4735, 0.5909, 0.0547, 0.2196, 0.1029, 0.2516, - 0.4455, 0.6775, 0.1108, 0.8486, 0.1605, 0.0632, 0.7729, - 0.1033, 0.7416, 0.1100, 0.7509, 0.4420, 0.1639, 0.2794, - 0.8260, 0.8724, 0.3230, 0.8818, 0.5434, 0.6423, 0.5673, - 0.7089, 0.6119, 0.9976, 0.0416, 0.2792]), +tensor(crow_indices=tensor([ 0, 1, 1, ..., 250, 250, 250]), + col_indices=tensor([ 989, 4634, 172, 296, 437, 988, 4701, 40, 3459, + 2902, 284, 2223, 3489, 379, 2336, 3854, 3801, 4913, + 1784, 189, 1121, 2886, 4344, 1044, 1507, 1629, 4228, + 950, 3157, 372, 4392, 249, 3355, 4991, 61, 3311, + 365, 3749, 2426, 4689, 420, 1130, 2303, 3276, 2058, + 3417, 2635, 1997, 4469, 149, 3640, 2817, 310, 1358, + 4005, 314, 2266, 836, 2231, 2153, 4590, 1083, 2752, + 2577, 2539, 3832, 170, 4839, 1662, 908, 3409, 160, + 1208, 2792, 1394, 3839, 404, 2657, 1041, 2651, 3377, + 3822, 3581, 2353, 3591, 2000, 4401, 4545, 4324, 3328, + 3711, 2291, 2328, 732, 536, 660, 2140, 2401, 566, + 1414, 1235, 4049, 1072, 4129, 3797, 3825, 3260, 1333, + 2653, 3617, 58, 3265, 1036, 4854, 392, 4867, 4701, + 3576, 771, 2398, 4330, 1034, 4559, 2708, 409, 3139, + 2114, 3463, 923, 763, 2766, 4868, 1142, 1459, 3024, + 2321, 1511, 1594, 1553, 98, 954, 4757, 1367, 2284, + 321, 4282, 4827, 311, 3480, 705, 1128, 255, 1664, + 653, 1381, 1987, 2729, 634, 2582, 4911, 3144, 1242, + 3821, 2906, 2900, 547, 195, 264, 1462, 3048, 2738, + 753, 4689, 302, 1125, 2387, 532, 854, 131, 4228, + 2001, 3802, 1432, 364, 2122, 3, 492, 481, 3737, + 3945, 2016, 4040, 4587, 3047, 678, 2781, 1044, 3568, + 1574, 3813, 2876, 1656, 4200, 1707, 1113, 3551, 4496, + 1942, 1480, 4429, 3975, 2412, 3934, 2906, 952, 4773, + 1043, 3314, 572, 4511, 1843, 4636, 1964, 2523, 457, + 3459, 2009, 1681, 9, 2459, 3710, 4173, 1493, 3773, + 2982, 4418, 4646, 1091, 541, 4902, 4735, 4604, 3735, + 3670, 955, 687, 2373, 4360, 1850, 1893]), + values=tensor([0.2345, 0.0289, 0.8583, 0.9123, 0.0874, 0.7501, 0.2033, + 0.8326, 0.8469, 0.1882, 0.3285, 0.3183, 0.8931, 0.0457, + 0.8868, 0.7189, 0.4379, 0.1462, 0.4719, 0.1691, 0.1099, + 0.8022, 0.0756, 0.2871, 0.6213, 0.4582, 0.2170, 0.3357, + 0.7252, 0.0149, 0.2470, 0.4898, 0.0035, 0.1331, 0.4871, + 0.7295, 0.2640, 0.3186, 0.3619, 0.0774, 0.2757, 0.9917, + 0.3749, 0.2825, 0.4846, 0.8782, 0.2242, 0.0584, 0.4269, + 0.3007, 0.5193, 0.9227, 0.9773, 0.6304, 0.0725, 0.4260, + 0.4518, 0.5456, 0.3019, 0.2067, 0.3845, 0.8768, 0.2863, + 0.4471, 0.0208, 0.9135, 0.0548, 0.1836, 0.9804, 0.3038, + 0.5045, 0.8119, 0.2476, 0.4867, 0.9780, 0.3338, 0.2853, + 0.7670, 0.4677, 0.5075, 0.3848, 0.5236, 0.0031, 0.3726, + 0.6233, 0.1936, 0.1739, 0.4139, 0.1871, 0.5920, 0.8457, + 0.8536, 0.8234, 0.3531, 0.8514, 0.1766, 0.5797, 0.3086, + 0.0545, 0.2101, 0.0864, 0.3338, 0.2356, 0.3200, 0.7401, + 0.4108, 0.5013, 0.5320, 0.4414, 0.7825, 0.0249, 0.2494, + 0.0429, 0.7080, 0.9162, 0.6423, 0.2821, 0.2742, 0.5289, + 0.2928, 0.0848, 0.8315, 0.7088, 0.8269, 0.3671, 0.5127, + 0.2282, 0.7407, 0.1379, 0.8288, 0.2763, 0.1471, 0.0918, + 0.7196, 0.6693, 0.6326, 0.9413, 0.1511, 0.6888, 0.3336, + 0.2545, 0.9984, 0.8005, 0.8337, 0.2430, 0.7476, 0.3204, + 0.0554, 0.5080, 0.0854, 0.1850, 0.7747, 0.5775, 0.2057, + 0.7868, 0.8337, 0.6964, 0.9562, 0.1725, 0.3223, 0.4786, + 0.5641, 0.5075, 0.5871, 0.6849, 0.6564, 0.2437, 0.1937, + 0.6389, 0.0952, 0.9817, 0.1000, 0.7393, 0.9387, 0.8443, + 0.9838, 0.1009, 0.7329, 0.9758, 0.9984, 0.0689, 0.6045, + 0.3081, 0.8442, 0.7079, 0.3197, 0.6314, 0.2885, 0.9946, + 0.0894, 0.3380, 0.0723, 0.8864, 0.2114, 0.6387, 0.7774, + 0.5705, 0.9374, 0.3114, 0.6458, 0.5623, 0.1687, 0.3946, + 0.8120, 0.4227, 0.8777, 0.4345, 0.8346, 0.0514, 0.7320, + 0.0137, 0.2630, 0.1970, 0.0196, 0.2035, 0.6052, 0.7403, + 0.6899, 0.2449, 0.2769, 0.3900, 0.8664, 0.9461, 0.5286, + 0.0997, 0.7438, 0.0400, 0.7885, 0.5277, 0.1693, 0.7534, + 0.3649, 0.5259, 0.9420, 0.2968, 0.8974, 0.5468, 0.5308, + 0.9748, 0.7021, 0.7026, 0.1970, 0.7386, 0.9856, 0.8826, + 0.6766, 0.7905, 0.8999, 0.3805, 0.8437]), size=(5000, 5000), nnz=250, layout=torch.sparse_csr) -tensor([0.0013, 0.0858, 0.8984, ..., 0.5676, 0.8612, 0.3338]) +tensor([0.6631, 0.6256, 0.9086, ..., 0.3830, 0.1647, 0.1472]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -239,77 +239,77 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 10.406220436096191 seconds +Time: 10.146198511123657 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 249, 249, 250]), - col_indices=tensor([3711, 2509, 1480, 2246, 4155, 2306, 315, 3219, 781, - 3895, 3381, 2148, 1468, 1317, 2648, 3838, 486, 2691, - 4269, 1833, 4130, 2494, 2935, 4534, 1404, 631, 2237, - 3119, 2408, 4857, 3452, 3551, 652, 1979, 294, 2907, - 4341, 963, 1166, 1723, 2311, 2016, 4067, 2454, 3108, - 4422, 594, 1090, 1798, 1231, 1189, 3083, 3007, 2134, - 3681, 526, 4251, 1258, 2420, 4062, 326, 2947, 386, - 3623, 4002, 1015, 2488, 2914, 344, 749, 2046, 3369, - 2183, 4810, 804, 4709, 4216, 4774, 3285, 1736, 1631, - 1116, 2085, 4390, 2715, 1633, 1339, 4203, 1468, 3776, - 4650, 1964, 1644, 3484, 556, 1113, 359, 2615, 4829, - 4748, 1322, 159, 1685, 3154, 4693, 4031, 1252, 1027, - 678, 4884, 997, 1416, 284, 2922, 2849, 4079, 606, - 470, 1943, 1148, 4302, 4930, 4799, 1057, 474, 2030, - 3336, 862, 2916, 4504, 1767, 3103, 2022, 3927, 3702, - 2754, 2164, 4564, 2862, 341, 1369, 1305, 4261, 2181, - 1646, 3936, 3010, 930, 4647, 2915, 4405, 3874, 1229, - 1875, 855, 1323, 963, 2816, 4148, 4829, 4066, 4913, - 691, 4066, 1415, 2632, 3157, 1676, 346, 4763, 246, - 2345, 1525, 4678, 2542, 2753, 3445, 3912, 2714, 1361, - 733, 3308, 420, 1698, 1705, 3596, 4607, 2749, 2452, - 4692, 611, 3476, 336, 999, 2085, 3920, 2039, 3357, - 4270, 3263, 3475, 3737, 446, 1786, 2984, 2510, 2736, - 3086, 1080, 3428, 4087, 375, 2103, 1319, 4228, 2727, - 4839, 645, 2259, 3905, 3083, 2174, 1253, 1258, 2465, - 3785, 2824, 24, 1918, 2335, 918, 1175, 3575, 2352, - 4164, 2100, 1603, 715, 4639, 1853, 3257, 1572, 4514, - 2943, 1003, 4748, 1038, 1012, 3061, 294]), - values=tensor([0.0072, 0.2895, 0.9639, 0.0057, 0.4191, 0.2094, 0.7103, - 0.8218, 0.3375, 0.5039, 0.5062, 0.5584, 0.5972, 0.9352, - 0.8333, 0.7188, 0.6342, 0.9555, 0.9103, 0.1687, 0.2984, - 0.7732, 0.0449, 0.0772, 0.1352, 0.5023, 0.0443, 0.4171, - 0.2148, 0.7142, 0.2678, 0.2649, 0.5734, 0.2586, 0.1803, - 0.3367, 0.7155, 0.6815, 0.6287, 0.8390, 0.5032, 0.1992, - 0.5162, 0.5707, 0.0670, 0.5923, 0.5384, 0.7500, 0.0960, - 0.4905, 0.7846, 0.7390, 0.3348, 0.9396, 0.2679, 0.8099, - 0.4907, 0.0176, 0.1919, 0.5036, 0.7682, 0.7675, 0.5778, - 0.9394, 0.8838, 0.1647, 0.2045, 0.3204, 0.5816, 0.4877, - 0.4316, 0.5907, 0.3880, 0.5556, 0.6079, 0.5805, 0.9477, - 0.7717, 0.2301, 0.4363, 0.4192, 0.7264, 0.9246, 0.5163, - 0.0957, 0.1670, 0.3706, 0.2621, 0.2557, 0.7081, 0.3520, - 0.9207, 0.5713, 0.9991, 0.2774, 0.9953, 0.3693, 0.6174, - 0.8286, 0.4524, 0.9605, 0.1877, 0.9322, 0.0179, 0.6890, - 0.8811, 0.8437, 0.1818, 0.1680, 0.0986, 0.7979, 0.9912, - 0.8202, 0.1132, 0.4257, 0.5766, 0.6866, 0.1937, 0.7442, - 0.9210, 0.2915, 0.9278, 0.6093, 0.0128, 0.7291, 0.8036, - 0.5824, 0.8528, 0.6888, 0.3925, 0.4263, 0.3416, 0.9010, - 0.2543, 0.7049, 0.8368, 0.2533, 0.1239, 0.2556, 0.3482, - 0.6122, 0.3407, 0.8598, 0.6533, 0.0993, 0.8400, 0.5464, - 0.2659, 0.0791, 0.9360, 0.6384, 0.4202, 0.5451, 0.6770, - 0.9558, 0.2536, 0.5924, 0.5367, 0.4377, 0.3759, 0.9344, - 0.0785, 0.9178, 0.5703, 0.2621, 0.7840, 0.6650, 0.5173, - 0.7316, 0.8675, 0.0573, 0.5592, 0.5656, 0.1368, 0.7342, - 0.4891, 0.5212, 0.5980, 0.9850, 0.3144, 0.9416, 0.3586, - 0.5874, 0.8863, 0.8557, 0.4322, 0.3167, 0.3279, 0.7906, - 0.9595, 0.6426, 0.5182, 0.3380, 0.6725, 0.1898, 0.5553, - 0.6660, 0.7693, 0.0543, 0.1495, 0.4661, 0.0013, 0.2189, - 0.2756, 0.4230, 0.3033, 0.9296, 0.0600, 0.3160, 0.8967, - 0.7981, 0.0839, 0.1133, 0.3382, 0.5864, 0.5344, 0.5684, - 0.8353, 0.4735, 0.5909, 0.0547, 0.2196, 0.1029, 0.2516, - 0.4455, 0.6775, 0.1108, 0.8486, 0.1605, 0.0632, 0.7729, - 0.1033, 0.7416, 0.1100, 0.7509, 0.4420, 0.1639, 0.2794, - 0.8260, 0.8724, 0.3230, 0.8818, 0.5434, 0.6423, 0.5673, - 0.7089, 0.6119, 0.9976, 0.0416, 0.2792]), +tensor(crow_indices=tensor([ 0, 1, 1, ..., 250, 250, 250]), + col_indices=tensor([ 989, 4634, 172, 296, 437, 988, 4701, 40, 3459, + 2902, 284, 2223, 3489, 379, 2336, 3854, 3801, 4913, + 1784, 189, 1121, 2886, 4344, 1044, 1507, 1629, 4228, + 950, 3157, 372, 4392, 249, 3355, 4991, 61, 3311, + 365, 3749, 2426, 4689, 420, 1130, 2303, 3276, 2058, + 3417, 2635, 1997, 4469, 149, 3640, 2817, 310, 1358, + 4005, 314, 2266, 836, 2231, 2153, 4590, 1083, 2752, + 2577, 2539, 3832, 170, 4839, 1662, 908, 3409, 160, + 1208, 2792, 1394, 3839, 404, 2657, 1041, 2651, 3377, + 3822, 3581, 2353, 3591, 2000, 4401, 4545, 4324, 3328, + 3711, 2291, 2328, 732, 536, 660, 2140, 2401, 566, + 1414, 1235, 4049, 1072, 4129, 3797, 3825, 3260, 1333, + 2653, 3617, 58, 3265, 1036, 4854, 392, 4867, 4701, + 3576, 771, 2398, 4330, 1034, 4559, 2708, 409, 3139, + 2114, 3463, 923, 763, 2766, 4868, 1142, 1459, 3024, + 2321, 1511, 1594, 1553, 98, 954, 4757, 1367, 2284, + 321, 4282, 4827, 311, 3480, 705, 1128, 255, 1664, + 653, 1381, 1987, 2729, 634, 2582, 4911, 3144, 1242, + 3821, 2906, 2900, 547, 195, 264, 1462, 3048, 2738, + 753, 4689, 302, 1125, 2387, 532, 854, 131, 4228, + 2001, 3802, 1432, 364, 2122, 3, 492, 481, 3737, + 3945, 2016, 4040, 4587, 3047, 678, 2781, 1044, 3568, + 1574, 3813, 2876, 1656, 4200, 1707, 1113, 3551, 4496, + 1942, 1480, 4429, 3975, 2412, 3934, 2906, 952, 4773, + 1043, 3314, 572, 4511, 1843, 4636, 1964, 2523, 457, + 3459, 2009, 1681, 9, 2459, 3710, 4173, 1493, 3773, + 2982, 4418, 4646, 1091, 541, 4902, 4735, 4604, 3735, + 3670, 955, 687, 2373, 4360, 1850, 1893]), + values=tensor([0.2345, 0.0289, 0.8583, 0.9123, 0.0874, 0.7501, 0.2033, + 0.8326, 0.8469, 0.1882, 0.3285, 0.3183, 0.8931, 0.0457, + 0.8868, 0.7189, 0.4379, 0.1462, 0.4719, 0.1691, 0.1099, + 0.8022, 0.0756, 0.2871, 0.6213, 0.4582, 0.2170, 0.3357, + 0.7252, 0.0149, 0.2470, 0.4898, 0.0035, 0.1331, 0.4871, + 0.7295, 0.2640, 0.3186, 0.3619, 0.0774, 0.2757, 0.9917, + 0.3749, 0.2825, 0.4846, 0.8782, 0.2242, 0.0584, 0.4269, + 0.3007, 0.5193, 0.9227, 0.9773, 0.6304, 0.0725, 0.4260, + 0.4518, 0.5456, 0.3019, 0.2067, 0.3845, 0.8768, 0.2863, + 0.4471, 0.0208, 0.9135, 0.0548, 0.1836, 0.9804, 0.3038, + 0.5045, 0.8119, 0.2476, 0.4867, 0.9780, 0.3338, 0.2853, + 0.7670, 0.4677, 0.5075, 0.3848, 0.5236, 0.0031, 0.3726, + 0.6233, 0.1936, 0.1739, 0.4139, 0.1871, 0.5920, 0.8457, + 0.8536, 0.8234, 0.3531, 0.8514, 0.1766, 0.5797, 0.3086, + 0.0545, 0.2101, 0.0864, 0.3338, 0.2356, 0.3200, 0.7401, + 0.4108, 0.5013, 0.5320, 0.4414, 0.7825, 0.0249, 0.2494, + 0.0429, 0.7080, 0.9162, 0.6423, 0.2821, 0.2742, 0.5289, + 0.2928, 0.0848, 0.8315, 0.7088, 0.8269, 0.3671, 0.5127, + 0.2282, 0.7407, 0.1379, 0.8288, 0.2763, 0.1471, 0.0918, + 0.7196, 0.6693, 0.6326, 0.9413, 0.1511, 0.6888, 0.3336, + 0.2545, 0.9984, 0.8005, 0.8337, 0.2430, 0.7476, 0.3204, + 0.0554, 0.5080, 0.0854, 0.1850, 0.7747, 0.5775, 0.2057, + 0.7868, 0.8337, 0.6964, 0.9562, 0.1725, 0.3223, 0.4786, + 0.5641, 0.5075, 0.5871, 0.6849, 0.6564, 0.2437, 0.1937, + 0.6389, 0.0952, 0.9817, 0.1000, 0.7393, 0.9387, 0.8443, + 0.9838, 0.1009, 0.7329, 0.9758, 0.9984, 0.0689, 0.6045, + 0.3081, 0.8442, 0.7079, 0.3197, 0.6314, 0.2885, 0.9946, + 0.0894, 0.3380, 0.0723, 0.8864, 0.2114, 0.6387, 0.7774, + 0.5705, 0.9374, 0.3114, 0.6458, 0.5623, 0.1687, 0.3946, + 0.8120, 0.4227, 0.8777, 0.4345, 0.8346, 0.0514, 0.7320, + 0.0137, 0.2630, 0.1970, 0.0196, 0.2035, 0.6052, 0.7403, + 0.6899, 0.2449, 0.2769, 0.3900, 0.8664, 0.9461, 0.5286, + 0.0997, 0.7438, 0.0400, 0.7885, 0.5277, 0.1693, 0.7534, + 0.3649, 0.5259, 0.9420, 0.2968, 0.8974, 0.5468, 0.5308, + 0.9748, 0.7021, 0.7026, 0.1970, 0.7386, 0.9856, 0.8826, + 0.6766, 0.7905, 0.8999, 0.3805, 0.8437]), size=(5000, 5000), nnz=250, layout=torch.sparse_csr) -tensor([0.0013, 0.0858, 0.8984, ..., 0.5676, 0.8612, 0.3338]) +tensor([0.6631, 0.6256, 0.9086, ..., 0.3830, 0.1647, 0.1472]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -317,13 +317,13 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 10.406220436096191 seconds +Time: 10.146198511123657 seconds -[39.5, 43.3, 38.37, 38.43, 38.66, 38.52, 38.75, 38.13, 38.31, 39.28] -[64.13] -13.215740442276001 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 565598, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.406220436096191, 'TIME_S_1KI': 0.018398616041952396, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 847.5254345631599, 'W': 64.13} -[39.5, 43.3, 38.37, 38.43, 38.66, 38.52, 38.75, 38.13, 38.31, 39.28, 40.56, 38.94, 38.24, 38.25, 38.39, 38.16, 38.85, 38.41, 38.49, 38.25] -698.9950000000001 -34.94975000000001 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 565598, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.406220436096191, 'TIME_S_1KI': 0.018398616041952396, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 847.5254345631599, 'W': 64.13, 'J_1KI': 1.498459037272338, 'W_1KI': 0.11338441790812556, 'W_D': 29.180249999999987, 'J_D': 385.6386100407241, 'W_D_1KI': 0.05159185499241509, 'J_D_1KI': 9.121647352433192e-05} +[39.27, 38.69, 38.63, 39.39, 38.61, 38.66, 38.59, 38.96, 38.73, 38.93] +[65.05] +12.874769687652588 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 569391, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.146198511123657, 'TIME_S_1KI': 0.017819386873209546, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 837.5037681818008, 'W': 65.05} +[39.27, 38.69, 38.63, 39.39, 38.61, 38.66, 38.59, 38.96, 38.73, 38.93, 39.57, 38.76, 39.0, 38.65, 39.12, 39.14, 39.15, 44.31, 38.75, 39.36] +705.7049999999999 +35.28525 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 569391, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.146198511123657, 'TIME_S_1KI': 0.017819386873209546, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 837.5037681818008, 'W': 65.05, 'J_1KI': 1.4708763717406856, 'W_1KI': 0.11424486864035434, 'W_D': 29.76475, 'J_D': 383.2143010605574, 'W_D_1KI': 0.05227471105092985, 'J_D_1KI': 9.180810910416543e-05} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_5e-05.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_5e-05.json new file mode 100644 index 0000000..1f26acc --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 520646, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.21049165725708, "TIME_S_1KI": 0.01961119773753583, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 853.8924551653862, "W": 65.17, "J_1KI": 1.6400634119255428, "W_1KI": 0.1251714216569416, "W_D": 29.995000000000005, "J_D": 393.0106520283223, "W_D_1KI": 0.05761112156820566, "J_D_1KI": 0.0001106531531370752} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_5e-05.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_5e-05.output new file mode 100644 index 0000000..65d6ab4 --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_5000_5e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '5e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.012744903564453125} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 1249, 1249, 1250]), + col_indices=tensor([1621, 4974, 1997, ..., 3786, 4849, 461]), + values=tensor([0.2109, 0.3256, 0.0266, ..., 0.3581, 0.6264, 0.0778]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.8357, 0.0383, 0.1188, ..., 0.4462, 0.9461, 0.1099]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 0.012744903564453125 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '82385', '-ss', '5000', '-sd', '5e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 1.6614789962768555} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1250, 1250, 1250]), + col_indices=tensor([1213, 1571, 1960, ..., 2843, 4867, 4843]), + values=tensor([0.3029, 0.3061, 0.3000, ..., 0.6016, 0.9759, 0.4960]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.1072, 0.2899, 0.3055, ..., 0.7146, 0.5978, 0.9959]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 1.6614789962768555 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '520646', '-ss', '5000', '-sd', '5e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.21049165725708} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 1250, 1250, 1250]), + col_indices=tensor([ 472, 3691, 4268, ..., 1601, 3041, 533]), + values=tensor([0.9317, 0.8516, 0.8376, ..., 0.6191, 0.8435, 0.3776]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.6520, 0.6755, 0.7512, ..., 0.2262, 0.3599, 0.0025]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 10.21049165725708 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 1250, 1250, 1250]), + col_indices=tensor([ 472, 3691, 4268, ..., 1601, 3041, 533]), + values=tensor([0.9317, 0.8516, 0.8376, ..., 0.6191, 0.8435, 0.3776]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.6520, 0.6755, 0.7512, ..., 0.2262, 0.3599, 0.0025]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 10.21049165725708 seconds + +[39.48, 39.4, 39.17, 39.09, 40.79, 38.97, 38.82, 38.72, 38.81, 38.71] +[65.17] +13.102538824081421 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 520646, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.21049165725708, 'TIME_S_1KI': 0.01961119773753583, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 853.8924551653862, 'W': 65.17} +[39.48, 39.4, 39.17, 39.09, 40.79, 38.97, 38.82, 38.72, 38.81, 38.71, 39.49, 39.17, 38.98, 38.86, 39.13, 38.88, 38.85, 38.81, 38.77, 38.88] +703.5 +35.175 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 520646, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.21049165725708, 'TIME_S_1KI': 0.01961119773753583, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 853.8924551653862, 'W': 65.17, 'J_1KI': 1.6400634119255428, 'W_1KI': 0.1251714216569416, 'W_D': 29.995000000000005, 'J_D': 393.0106520283223, 'W_D_1KI': 0.05761112156820566, 'J_D_1KI': 0.0001106531531370752} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_0.0001.json index 027433b..3a94ff3 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_0.0001.json +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_0.0001.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 3626, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.40371823310852, "TIME_S_1KI": 2.869199733344876, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 756.9219121170044, "W": 52.54, "J_1KI": 208.74845894015564, "W_1KI": 14.489795918367347, "W_D": 36.50025, "J_D": 525.8439098353386, "W_D_1KI": 10.066257584114727, "J_D_1KI": 2.776132814151883} +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 3659, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.513276815414429, "TIME_S_1KI": 2.8732650493070317, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 699.5738222312928, "W": 48.46, "J_1KI": 191.19262701046534, "W_1KI": 13.244055752937962, "W_D": 31.944000000000003, "J_D": 461.147052772522, "W_D_1KI": 8.73025416780541, "J_D_1KI": 2.3859672500151436} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_0.0001.output index 8a43e29..3030a8d 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_0.0001.output +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_0.0001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 2.89510178565979} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '100000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.3051443099975586} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 8, 17, ..., 999968, - 999983, 1000000]), - col_indices=tensor([23348, 35658, 56723, ..., 82423, 86979, 88187]), - values=tensor([0.8917, 0.1559, 0.5748, ..., 0.5915, 0.7647, 0.8715]), +tensor(crow_indices=tensor([ 0, 9, 20, ..., 999978, + 999988, 1000000]), + col_indices=tensor([10874, 16180, 25759, ..., 85120, 90595, 97571]), + values=tensor([0.6980, 0.1450, 0.2222, ..., 0.0442, 0.2876, 0.2305]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.4707, 0.9474, 0.3412, ..., 0.5588, 0.8812, 0.4153]) +tensor([0.9393, 0.9771, 0.4381, ..., 0.2097, 0.8256, 0.0395]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,19 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 2.89510178565979 seconds +Time: 0.3051443099975586 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '3626', '-ss', '100000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.40371823310852} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '3440', '-ss', '100000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.870911598205566} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 5, 15, ..., 999979, - 999990, 1000000]), - col_indices=tensor([16760, 54124, 62778, ..., 86983, 90495, 98787]), - values=tensor([0.0638, 0.0650, 0.2338, ..., 0.3776, 0.7465, 0.0262]), +tensor(crow_indices=tensor([ 0, 16, 29, ..., 999980, + 999991, 1000000]), + col_indices=tensor([ 5523, 13716, 16446, ..., 89337, 96388, 97674]), + values=tensor([0.9883, 0.0360, 0.0063, ..., 0.9506, 0.8956, 0.5971]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.7059, 0.4263, 0.8303, ..., 0.6514, 0.5791, 0.5612]) +tensor([0.2735, 0.3671, 0.2374, ..., 0.9952, 0.6404, 0.3809]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -36,16 +36,19 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 10.40371823310852 seconds +Time: 9.870911598205566 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '3659', '-ss', '100000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.513276815414429} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 5, 15, ..., 999979, - 999990, 1000000]), - col_indices=tensor([16760, 54124, 62778, ..., 86983, 90495, 98787]), - values=tensor([0.0638, 0.0650, 0.2338, ..., 0.3776, 0.7465, 0.0262]), +tensor(crow_indices=tensor([ 0, 15, 23, ..., 999980, + 999992, 1000000]), + col_indices=tensor([ 3420, 12508, 17596, ..., 74140, 75972, 84324]), + values=tensor([0.2457, 0.5369, 0.4041, ..., 0.2835, 0.7746, 0.0854]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.7059, 0.4263, 0.8303, ..., 0.6514, 0.5791, 0.5612]) +tensor([0.1485, 0.5045, 0.7097, ..., 0.5250, 0.4505, 0.4467]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -53,13 +56,30 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 10.40371823310852 seconds +Time: 10.513276815414429 seconds -[18.45, 17.61, 17.77, 17.55, 17.61, 17.99, 17.58, 18.4, 17.81, 17.62] -[52.54] -14.406583786010742 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3626, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.40371823310852, 'TIME_S_1KI': 2.869199733344876, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 756.9219121170044, 'W': 52.54} -[18.45, 17.61, 17.77, 17.55, 17.61, 17.99, 17.58, 18.4, 17.81, 17.62, 18.49, 17.87, 17.62, 17.77, 17.72, 17.81, 18.01, 17.57, 17.69, 18.27] -320.79499999999996 -16.039749999999998 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3626, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.40371823310852, 'TIME_S_1KI': 2.869199733344876, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 756.9219121170044, 'W': 52.54, 'J_1KI': 208.74845894015564, 'W_1KI': 14.489795918367347, 'W_D': 36.50025, 'J_D': 525.8439098353386, 'W_D_1KI': 10.066257584114727, 'J_D_1KI': 2.776132814151883} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 15, 23, ..., 999980, + 999992, 1000000]), + col_indices=tensor([ 3420, 12508, 17596, ..., 74140, 75972, 84324]), + values=tensor([0.2457, 0.5369, 0.4041, ..., 0.2835, 0.7746, 0.0854]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.1485, 0.5045, 0.7097, ..., 0.5250, 0.4505, 0.4467]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 10.513276815414429 seconds + +[19.03, 17.89, 18.11, 18.19, 17.92, 19.96, 20.76, 18.13, 18.16, 18.25] +[48.46] +14.436108589172363 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3659, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.513276815414429, 'TIME_S_1KI': 2.8732650493070317, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 699.5738222312928, 'W': 48.46} +[19.03, 17.89, 18.11, 18.19, 17.92, 19.96, 20.76, 18.13, 18.16, 18.25, 18.14, 18.17, 18.05, 17.87, 18.21, 18.32, 17.88, 17.89, 18.02, 18.16] +330.31999999999994 +16.516 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3659, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.513276815414429, 'TIME_S_1KI': 2.8732650493070317, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 699.5738222312928, 'W': 48.46, 'J_1KI': 191.19262701046534, 'W_1KI': 13.244055752937962, 'W_D': 31.944000000000003, 'J_D': 461.147052772522, 'W_D_1KI': 8.73025416780541, 'J_D_1KI': 2.3859672500151436} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_0.001.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_0.001.json index 46cf4d4..253d722 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_0.001.json +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_0.001.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 27.417505741119385, "TIME_S_1KI": 27.417505741119385, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1870.535600104332, "W": 53.17, "J_1KI": 1870.535600104332, "W_1KI": 53.17, "W_D": 36.779250000000005, "J_D": 1293.9043910125495, "W_D_1KI": 36.779250000000005, "J_D_1KI": 36.779250000000005} +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 376, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.408750772476196, "TIME_S_1KI": 27.68284779913882, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 864.391910111904, "W": 48.41, "J_1KI": 2298.914654552936, "W_1KI": 128.75, "W_D": 32.1215, "J_D": 573.5501908832788, "W_D_1KI": 85.42952127659574, "J_D_1KI": 227.20617360796737} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_0.001.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_0.001.output index 523884d..8c93db0 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_0.001.output +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_0.001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 27.417505741119385} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '100000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 2.7904272079467773} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 87, 206, ..., 9999814, - 9999907, 10000000]), - col_indices=tensor([ 430, 1206, 1283, ..., 96095, 96254, 99884]), - values=tensor([0.0855, 0.2486, 0.3160, ..., 0.5781, 0.8085, 0.1274]), +tensor(crow_indices=tensor([ 0, 83, 173, ..., 9999788, + 9999895, 10000000]), + col_indices=tensor([ 687, 1990, 2832, ..., 93491, 98909, 99713]), + values=tensor([0.2182, 0.4312, 0.1873, ..., 0.5994, 0.5663, 0.3895]), size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.4876, 0.8099, 0.9530, ..., 0.3051, 0.4863, 0.6986]) +tensor([0.6218, 0.2935, 0.0099, ..., 0.4944, 0.2399, 0.4191]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,16 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 10000000 Density: 0.001 -Time: 27.417505741119385 seconds +Time: 2.7904272079467773 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '376', '-ss', '100000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.408750772476196} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 87, 206, ..., 9999814, - 9999907, 10000000]), - col_indices=tensor([ 430, 1206, 1283, ..., 96095, 96254, 99884]), - values=tensor([0.0855, 0.2486, 0.3160, ..., 0.5781, 0.8085, 0.1274]), +tensor(crow_indices=tensor([ 0, 101, 179, ..., 9999785, + 9999885, 10000000]), + col_indices=tensor([ 974, 1017, 1175, ..., 97865, 98322, 99037]), + values=tensor([0.8598, 0.2680, 0.8943, ..., 0.1763, 0.5676, 0.4916]), size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.4876, 0.8099, 0.9530, ..., 0.3051, 0.4863, 0.6986]) +tensor([0.4049, 0.5573, 0.2557, ..., 0.0615, 0.7671, 0.4849]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -33,13 +36,30 @@ Rows: 100000 Size: 10000000000 NNZ: 10000000 Density: 0.001 -Time: 27.417505741119385 seconds +Time: 10.408750772476196 seconds -[18.51, 17.88, 18.06, 17.74, 17.69, 18.37, 18.17, 17.77, 18.14, 17.72] -[53.17] -35.18028211593628 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 27.417505741119385, 'TIME_S_1KI': 27.417505741119385, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1870.535600104332, 'W': 53.17} -[18.51, 17.88, 18.06, 17.74, 17.69, 18.37, 18.17, 17.77, 18.14, 17.72, 18.92, 17.72, 17.91, 22.37, 18.39, 17.62, 17.83, 17.88, 17.9, 17.6] -327.815 -16.39075 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 27.417505741119385, 'TIME_S_1KI': 27.417505741119385, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1870.535600104332, 'W': 53.17, 'J_1KI': 1870.535600104332, 'W_1KI': 53.17, 'W_D': 36.779250000000005, 'J_D': 1293.9043910125495, 'W_D_1KI': 36.779250000000005, 'J_D_1KI': 36.779250000000005} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 101, 179, ..., 9999785, + 9999885, 10000000]), + col_indices=tensor([ 974, 1017, 1175, ..., 97865, 98322, 99037]), + values=tensor([0.8598, 0.2680, 0.8943, ..., 0.1763, 0.5676, 0.4916]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.4049, 0.5573, 0.2557, ..., 0.0615, 0.7671, 0.4849]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 10.408750772476196 seconds + +[18.19, 17.86, 18.15, 17.76, 18.57, 17.97, 17.88, 17.91, 18.5, 18.33] +[48.41] +17.855647802352905 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 376, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.408750772476196, 'TIME_S_1KI': 27.68284779913882, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 864.391910111904, 'W': 48.41} +[18.19, 17.86, 18.15, 17.76, 18.57, 17.97, 17.88, 17.91, 18.5, 18.33, 18.68, 17.76, 17.89, 18.01, 18.9, 17.73, 18.37, 17.97, 18.0, 17.88] +325.77 +16.2885 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 376, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.408750772476196, 'TIME_S_1KI': 27.68284779913882, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 864.391910111904, 'W': 48.41, 'J_1KI': 2298.914654552936, 'W_1KI': 128.75, 'W_D': 32.1215, 'J_D': 573.5501908832788, 'W_D_1KI': 85.42952127659574, 'J_D_1KI': 227.20617360796737} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_1e-05.json index fb45506..9c4b03d 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_1e-05.json +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_1e-05.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 7957, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.378219842910767, "TIME_S_1KI": 1.3042880285171252, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 722.9498359966278, "W": 51.18, "J_1KI": 90.85708633864871, "W_1KI": 6.432072389091366, "W_D": 34.9585, "J_D": 493.81089960312846, "W_D_1KI": 4.3934271710443635, "J_D_1KI": 0.5521461821093834} +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 8087, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.519959688186646, "TIME_S_1KI": 1.300848236451916, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 670.7503997087479, "W": 46.91, "J_1KI": 82.94180780372794, "W_1KI": 5.800667738345492, "W_D": 30.164499999999997, "J_D": 431.3120961844921, "W_D_1KI": 3.729998763447508, "J_D_1KI": 0.46123392648046346} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_1e-05.output index f2950b1..cc342ed 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_1e-05.output +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_1e-05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 1.319572925567627} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '100000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.14809489250183105} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 4, ..., 99998, 100000, +tensor(crow_indices=tensor([ 0, 1, 3, ..., 99993, 99994, 100000]), - col_indices=tensor([ 8050, 18600, 47626, ..., 72573, 7071, 11396]), - values=tensor([0.6679, 0.8144, 0.2788, ..., 0.2480, 0.1170, 0.9852]), + col_indices=tensor([11566, 2001, 14819, ..., 49184, 52555, 95716]), + values=tensor([0.6903, 0.1382, 0.4591, ..., 0.3067, 0.8088, 0.6364]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.3322, 0.6851, 0.8140, ..., 0.1719, 0.4686, 0.0560]) +tensor([0.9563, 0.6034, 0.0890, ..., 0.8548, 0.6115, 0.7911]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,19 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 1.319572925567627 seconds +Time: 0.14809489250183105 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '7957', '-ss', '100000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.378219842910767} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '7090', '-ss', '100000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.205029487609863} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 5, ..., 99999, 99999, +tensor(crow_indices=tensor([ 0, 2, 3, ..., 99999, 99999, 100000]), - col_indices=tensor([79139, 34438, 57240, ..., 99522, 68399, 1834]), - values=tensor([0.8717, 0.0754, 0.3550, ..., 0.4586, 0.3508, 0.4372]), + col_indices=tensor([ 7711, 16815, 22150, ..., 77554, 50594, 27282]), + values=tensor([0.3735, 0.5582, 0.2278, ..., 0.2317, 0.9623, 0.5188]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.1033, 0.1471, 0.4199, ..., 0.6623, 0.5752, 0.0388]) +tensor([0.8847, 0.2063, 0.0570, ..., 0.4149, 0.1346, 0.4208]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -36,16 +36,19 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 10.378219842910767 seconds +Time: 9.205029487609863 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '8087', '-ss', '100000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.519959688186646} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 5, ..., 99999, 99999, +tensor(crow_indices=tensor([ 0, 1, 3, ..., 100000, 100000, 100000]), - col_indices=tensor([79139, 34438, 57240, ..., 99522, 68399, 1834]), - values=tensor([0.8717, 0.0754, 0.3550, ..., 0.4586, 0.3508, 0.4372]), + col_indices=tensor([95443, 50058, 77222, ..., 43317, 3451, 10339]), + values=tensor([0.1078, 0.8522, 0.7935, ..., 0.8133, 0.3945, 0.6126]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.1033, 0.1471, 0.4199, ..., 0.6623, 0.5752, 0.0388]) +tensor([0.8231, 0.3876, 0.1205, ..., 0.1479, 0.8608, 0.1605]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -53,13 +56,30 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 10.378219842910767 seconds +Time: 10.519959688186646 seconds -[19.98, 17.81, 17.8, 18.03, 17.89, 17.86, 17.65, 18.02, 17.79, 17.59] -[51.18] -14.12563180923462 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 7957, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.378219842910767, 'TIME_S_1KI': 1.3042880285171252, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 722.9498359966278, 'W': 51.18} -[19.98, 17.81, 17.8, 18.03, 17.89, 17.86, 17.65, 18.02, 17.79, 17.59, 18.5, 18.06, 17.99, 17.58, 17.86, 17.88, 17.85, 17.69, 17.49, 22.29] -324.43 -16.2215 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 7957, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.378219842910767, 'TIME_S_1KI': 1.3042880285171252, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 722.9498359966278, 'W': 51.18, 'J_1KI': 90.85708633864871, 'W_1KI': 6.432072389091366, 'W_D': 34.9585, 'J_D': 493.81089960312846, 'W_D_1KI': 4.3934271710443635, 'J_D_1KI': 0.5521461821093834} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 3, ..., 100000, 100000, + 100000]), + col_indices=tensor([95443, 50058, 77222, ..., 43317, 3451, 10339]), + values=tensor([0.1078, 0.8522, 0.7935, ..., 0.8133, 0.3945, 0.6126]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.8231, 0.3876, 0.1205, ..., 0.1479, 0.8608, 0.1605]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 10.519959688186646 seconds + +[18.45, 18.35, 18.06, 17.99, 17.93, 18.06, 18.08, 17.93, 22.44, 18.22] +[46.91] +14.298665523529053 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 8087, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.519959688186646, 'TIME_S_1KI': 1.300848236451916, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 670.7503997087479, 'W': 46.91} +[18.45, 18.35, 18.06, 17.99, 17.93, 18.06, 18.08, 17.93, 22.44, 18.22, 19.6, 17.81, 18.45, 17.9, 22.14, 18.02, 18.39, 17.96, 18.34, 17.85] +334.90999999999997 +16.7455 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 8087, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.519959688186646, 'TIME_S_1KI': 1.300848236451916, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 670.7503997087479, 'W': 46.91, 'J_1KI': 82.94180780372794, 'W_1KI': 5.800667738345492, 'W_D': 30.164499999999997, 'J_D': 431.3120961844921, 'W_D_1KI': 3.729998763447508, 'J_D_1KI': 0.46123392648046346} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_5e-05.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_5e-05.json new file mode 100644 index 0000000..0e52b1a --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 4760, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.509625434875488, "TIME_S_1KI": 2.2079045031251026, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 685.1951848602295, "W": 48.04, "J_1KI": 143.94856824794735, "W_1KI": 10.092436974789916, "W_D": 31.590249999999997, "J_D": 450.57217295026777, "W_D_1KI": 6.636607142857142, "J_D_1KI": 1.3942451980792314} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_5e-05.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_5e-05.output new file mode 100644 index 0000000..e5c487f --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_5e-05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '100000', '-sd', '5e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.2381742000579834} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 10, ..., 499988, 499996, + 500000]), + col_indices=tensor([ 7829, 21471, 22951, ..., 29509, 41224, 66852]), + values=tensor([0.9739, 0.6225, 0.8607, ..., 0.0619, 0.3093, 0.0510]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.6694, 0.1094, 0.7903, ..., 0.4860, 0.7386, 0.2172]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 0.2381742000579834 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '4408', '-ss', '100000', '-sd', '5e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 9.722268104553223} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 8, ..., 499991, 499997, + 500000]), + col_indices=tensor([ 8468, 11831, 46487, ..., 65418, 70471, 71020]), + values=tensor([0.5611, 0.2625, 0.0139, ..., 0.7643, 0.0263, 0.5630]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.6021, 0.3259, 0.4454, ..., 0.1291, 0.3066, 0.3093]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 9.722268104553223 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '4760', '-ss', '100000', '-sd', '5e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.509625434875488} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 7, ..., 499986, 499991, + 500000]), + col_indices=tensor([37454, 51813, 86506, ..., 62954, 73906, 92773]), + values=tensor([0.8256, 0.7091, 0.8154, ..., 0.4160, 0.7952, 0.1689]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.1880, 0.2475, 0.0895, ..., 0.2917, 0.5906, 0.9519]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 10.509625434875488 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 7, ..., 499986, 499991, + 500000]), + col_indices=tensor([37454, 51813, 86506, ..., 62954, 73906, 92773]), + values=tensor([0.8256, 0.7091, 0.8154, ..., 0.4160, 0.7952, 0.1689]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.1880, 0.2475, 0.0895, ..., 0.2917, 0.5906, 0.9519]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 10.509625434875488 seconds + +[18.07, 18.03, 18.14, 17.98, 17.8, 18.31, 18.47, 18.23, 18.16, 17.92] +[48.04] +14.26301383972168 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 4760, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.509625434875488, 'TIME_S_1KI': 2.2079045031251026, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 685.1951848602295, 'W': 48.04} +[18.07, 18.03, 18.14, 17.98, 17.8, 18.31, 18.47, 18.23, 18.16, 17.92, 18.33, 17.81, 18.24, 18.05, 18.09, 17.75, 17.78, 21.35, 18.67, 17.95] +328.995 +16.44975 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 4760, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.509625434875488, 'TIME_S_1KI': 2.2079045031251026, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 685.1951848602295, 'W': 48.04, 'J_1KI': 143.94856824794735, 'W_1KI': 10.092436974789916, 'W_D': 31.590249999999997, 'J_D': 450.57217295026777, 'W_D_1KI': 6.636607142857142, 'J_D_1KI': 1.3942451980792314} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.0001.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.0001.json index 641470f..20b7d93 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.0001.json +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.0001.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 83764, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.409894704818726, "TIME_S_1KI": 0.12427647563175977, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 711.6688519239426, "W": 50.42, "J_1KI": 8.49611828379665, "W_1KI": 0.6019292297407001, "W_D": 34.06175, "J_D": 480.7752185049654, "W_D_1KI": 0.40663948713050957, "J_D_1KI": 0.004854585348485144} +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 84718, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.541555881500244, "TIME_S_1KI": 0.12443112303761, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 661.3758532905579, "W": 46.44, "J_1KI": 7.80679257407585, "W_1KI": 0.5481715810099388, "W_D": 30.123999999999995, "J_D": 429.01133084678645, "W_D_1KI": 0.3555796879057579, "J_D_1KI": 0.004197215325028422} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.0001.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.0001.output index 168b413..79fd885 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.0001.output +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.0001.output @@ -1,13 +1,13 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.13988041877746582} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.028100967407226562} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 5, ..., 9997, 9998, 10000]), - col_indices=tensor([5444, 7298, 2758, ..., 5406, 201, 2159]), - values=tensor([0.2785, 0.9301, 0.1173, ..., 0.6105, 0.0625, 0.6073]), +tensor(crow_indices=tensor([ 0, 1, 1, ..., 9999, 10000, 10000]), + col_indices=tensor([1696, 2591, 3015, ..., 1730, 8585, 3790]), + values=tensor([0.6837, 0.7697, 0.7550, ..., 0.1323, 0.4514, 0.4553]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.9117, 0.7600, 0.5676, ..., 0.4107, 0.0296, 0.3559]) +tensor([0.1557, 0.9230, 0.6401, ..., 0.3725, 0.8926, 0.6402]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -15,18 +15,18 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 0.13988041877746582 seconds +Time: 0.028100967407226562 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '75064', '-ss', '10000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.409368753433228} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '37365', '-ss', '10000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 4.631014823913574} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 3, ..., 9999, 9999, 10000]), - col_indices=tensor([ 559, 1691, 3057, ..., 6770, 161, 9445]), - values=tensor([0.2390, 0.7843, 0.4833, ..., 0.8916, 0.1224, 0.1645]), +tensor(crow_indices=tensor([ 0, 3, 4, ..., 9998, 9998, 10000]), + col_indices=tensor([2386, 8388, 9261, ..., 1344, 2569, 4425]), + values=tensor([0.6000, 0.2415, 0.7139, ..., 0.1197, 0.4001, 0.0791]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.9833, 0.3493, 0.9306, ..., 0.5004, 0.5453, 0.7909]) +tensor([0.9194, 0.6903, 0.0708, ..., 0.1917, 0.6424, 0.6800]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -34,18 +34,18 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 9.409368753433228 seconds +Time: 4.631014823913574 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '83764', '-ss', '10000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.409894704818726} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '84718', '-ss', '10000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.541555881500244} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 5, ..., 9999, 10000, 10000]), - col_indices=tensor([1791, 2178, 4941, ..., 8437, 8977, 5726]), - values=tensor([0.7542, 0.7473, 0.0826, ..., 0.7863, 0.2178, 0.9123]), +tensor(crow_indices=tensor([ 0, 1, 2, ..., 9998, 9999, 10000]), + col_indices=tensor([6630, 3375, 966, ..., 5451, 76, 624]), + values=tensor([0.0314, 0.6841, 0.2123, ..., 0.3011, 0.8872, 0.9156]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.0349, 0.7342, 0.7720, ..., 0.6458, 0.8179, 0.1428]) +tensor([0.4846, 0.1841, 0.4323, ..., 0.0718, 0.1957, 0.5902]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -53,15 +53,15 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 10.409894704818726 seconds +Time: 10.541555881500244 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 5, ..., 9999, 10000, 10000]), - col_indices=tensor([1791, 2178, 4941, ..., 8437, 8977, 5726]), - values=tensor([0.7542, 0.7473, 0.0826, ..., 0.7863, 0.2178, 0.9123]), +tensor(crow_indices=tensor([ 0, 1, 2, ..., 9998, 9999, 10000]), + col_indices=tensor([6630, 3375, 966, ..., 5451, 76, 624]), + values=tensor([0.0314, 0.6841, 0.2123, ..., 0.3011, 0.8872, 0.9156]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.0349, 0.7342, 0.7720, ..., 0.6458, 0.8179, 0.1428]) +tensor([0.4846, 0.1841, 0.4323, ..., 0.0718, 0.1957, 0.5902]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -69,13 +69,13 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 10.409894704818726 seconds +Time: 10.541555881500244 seconds -[18.39, 17.85, 18.37, 17.98, 17.9, 18.07, 21.28, 18.76, 18.12, 17.67] -[50.42] -14.11481261253357 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 83764, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.409894704818726, 'TIME_S_1KI': 0.12427647563175977, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 711.6688519239426, 'W': 50.42} -[18.39, 17.85, 18.37, 17.98, 17.9, 18.07, 21.28, 18.76, 18.12, 17.67, 18.33, 17.97, 17.87, 17.66, 17.77, 17.96, 17.86, 17.77, 17.81, 17.94] -327.16499999999996 -16.358249999999998 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 83764, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.409894704818726, 'TIME_S_1KI': 0.12427647563175977, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 711.6688519239426, 'W': 50.42, 'J_1KI': 8.49611828379665, 'W_1KI': 0.6019292297407001, 'W_D': 34.06175, 'J_D': 480.7752185049654, 'W_D_1KI': 0.40663948713050957, 'J_D_1KI': 0.004854585348485144} +[18.42, 18.02, 18.15, 18.67, 18.24, 18.06, 18.05, 17.99, 18.11, 18.07] +[46.44] +14.241512775421143 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 84718, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.541555881500244, 'TIME_S_1KI': 0.12443112303761, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 661.3758532905579, 'W': 46.44} +[18.42, 18.02, 18.15, 18.67, 18.24, 18.06, 18.05, 17.99, 18.11, 18.07, 18.36, 18.1, 17.99, 18.16, 18.02, 18.13, 18.12, 18.03, 18.02, 18.07] +326.32000000000005 +16.316000000000003 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 84718, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.541555881500244, 'TIME_S_1KI': 0.12443112303761, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 661.3758532905579, 'W': 46.44, 'J_1KI': 7.80679257407585, 'W_1KI': 0.5481715810099388, 'W_D': 30.123999999999995, 'J_D': 429.01133084678645, 'W_D_1KI': 0.3555796879057579, 'J_D_1KI': 0.004197215325028422} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.001.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.001.json index b3d9f1e..e07fffc 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.001.json +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.001.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 33076, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.000443935394287, "TIME_S_1KI": 0.30234744030095195, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 713.14643699646, "W": 51.71, "J_1KI": 21.560842816436693, "W_1KI": 1.5633692103035435, "W_D": 35.256, "J_D": 486.2249232788086, "W_D_1KI": 1.065908816059983, "J_D_1KI": 0.03222604958459254} +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 34651, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.471668004989624, "TIME_S_1KI": 0.30220391922281103, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 677.0323536157608, "W": 47.45, "J_1KI": 19.53860937969354, "W_1KI": 1.369368849383856, "W_D": 30.828750000000007, "J_D": 439.8748402851821, "W_D_1KI": 0.8896929381547433, "J_D_1KI": 0.025675822866720825} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.001.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.001.output index 108ea7e..ff06711 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.001.output +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.31745004653930664} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.04611039161682129} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 13, 25, ..., 99974, 99988, +tensor(crow_indices=tensor([ 0, 9, 22, ..., 99983, 99992, 100000]), - col_indices=tensor([ 189, 1046, 1680, ..., 7652, 7822, 9876]), - values=tensor([0.3200, 0.6172, 0.8426, ..., 0.6310, 0.2892, 0.4983]), + col_indices=tensor([ 845, 1153, 1508, ..., 8313, 9367, 9854]), + values=tensor([0.8746, 0.4039, 0.9243, ..., 0.5657, 0.2713, 0.6449]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.5979, 0.0691, 0.5787, ..., 0.1637, 0.0173, 0.7657]) +tensor([0.3540, 0.2628, 0.4314, ..., 0.0912, 0.3507, 0.8651]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,19 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 0.31745004653930664 seconds +Time: 0.04611039161682129 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '33076', '-ss', '10000', '-sd', '0.001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.000443935394287} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '22771', '-ss', '10000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 6.900022268295288} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 5, 16, ..., 99975, 99984, +tensor(crow_indices=tensor([ 0, 8, 19, ..., 99978, 99991, 100000]), - col_indices=tensor([2058, 2088, 2648, ..., 8443, 9183, 9230]), - values=tensor([0.6058, 0.3120, 0.6569, ..., 0.6120, 0.0868, 0.9498]), + col_indices=tensor([ 917, 1959, 2965, ..., 8075, 8263, 9058]), + values=tensor([0.2271, 0.8712, 0.9636, ..., 0.2167, 0.1262, 0.7253]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.4574, 0.0884, 0.9388, ..., 0.4572, 0.8159, 0.8640]) +tensor([0.8029, 0.1325, 0.2655, ..., 0.5832, 0.4718, 0.3144]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -36,16 +36,19 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 10.000443935394287 seconds +Time: 6.900022268295288 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '34651', '-ss', '10000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.471668004989624} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 5, 16, ..., 99975, 99984, +tensor(crow_indices=tensor([ 0, 7, 14, ..., 99994, 99997, 100000]), - col_indices=tensor([2058, 2088, 2648, ..., 8443, 9183, 9230]), - values=tensor([0.6058, 0.3120, 0.6569, ..., 0.6120, 0.0868, 0.9498]), + col_indices=tensor([ 24, 1396, 2236, ..., 5590, 6310, 9874]), + values=tensor([0.4982, 0.6812, 0.1465, ..., 0.3747, 0.0311, 0.9162]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.4574, 0.0884, 0.9388, ..., 0.4572, 0.8159, 0.8640]) +tensor([0.7533, 0.0703, 0.6276, ..., 0.6008, 0.2603, 0.3256]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -53,13 +56,30 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 10.000443935394287 seconds +Time: 10.471668004989624 seconds -[18.4, 17.89, 17.86, 18.15, 21.93, 17.6, 17.74, 17.84, 17.81, 17.8] -[51.71] -13.791267395019531 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 33076, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.000443935394287, 'TIME_S_1KI': 0.30234744030095195, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 713.14643699646, 'W': 51.71} -[18.4, 17.89, 17.86, 18.15, 21.93, 17.6, 17.74, 17.84, 17.81, 17.8, 22.42, 17.97, 17.98, 17.67, 18.14, 18.06, 18.09, 18.36, 17.77, 17.82] -329.08000000000004 -16.454 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 33076, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.000443935394287, 'TIME_S_1KI': 0.30234744030095195, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 713.14643699646, 'W': 51.71, 'J_1KI': 21.560842816436693, 'W_1KI': 1.5633692103035435, 'W_D': 35.256, 'J_D': 486.2249232788086, 'W_D_1KI': 1.065908816059983, 'J_D_1KI': 0.03222604958459254} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 7, 14, ..., 99994, 99997, + 100000]), + col_indices=tensor([ 24, 1396, 2236, ..., 5590, 6310, 9874]), + values=tensor([0.4982, 0.6812, 0.1465, ..., 0.3747, 0.0311, 0.9162]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.7533, 0.0703, 0.6276, ..., 0.6008, 0.2603, 0.3256]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.471668004989624 seconds + +[18.34, 18.19, 18.22, 18.02, 22.16, 18.64, 18.12, 17.87, 17.95, 18.81] +[47.45] +14.26833200454712 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 34651, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.471668004989624, 'TIME_S_1KI': 0.30220391922281103, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 677.0323536157608, 'W': 47.45} +[18.34, 18.19, 18.22, 18.02, 22.16, 18.64, 18.12, 17.87, 17.95, 18.81, 22.38, 17.93, 18.41, 17.77, 18.07, 17.88, 18.52, 17.88, 18.1, 17.86] +332.42499999999995 +16.621249999999996 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 34651, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.471668004989624, 'TIME_S_1KI': 0.30220391922281103, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 677.0323536157608, 'W': 47.45, 'J_1KI': 19.53860937969354, 'W_1KI': 1.369368849383856, 'W_D': 30.828750000000007, 'J_D': 439.8748402851821, 'W_D_1KI': 0.8896929381547433, 'J_D_1KI': 0.025675822866720825} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.01.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.01.json index ec86a79..89c422b 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.01.json +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.01.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 5536, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.43858790397644, "TIME_S_1KI": 1.885583075140253, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 757.4033546972274, "W": 52.18, "J_1KI": 136.81418979357431, "W_1KI": 9.425578034682081, "W_D": 35.855000000000004, "J_D": 520.4426462757588, "W_D_1KI": 6.476697976878613, "J_D_1KI": 1.1699237674997496} +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 5583, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.513006925582886, "TIME_S_1KI": 1.8830390337780558, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 692.6418607521057, "W": 47.919999999999995, "J_1KI": 124.06266536845884, "W_1KI": 8.58319899695504, "W_D": 31.175249999999995, "J_D": 450.611084503591, "W_D_1KI": 5.583960236432024, "J_D_1KI": 1.0001719929127753} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.01.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.01.output index cdf759d..d152642 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.01.output +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.01.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.01', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 1.8966615200042725} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.2040116786956787} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 98, 196, ..., 999798, - 999896, 1000000]), - col_indices=tensor([ 136, 346, 355, ..., 9896, 9907, 9979]), - values=tensor([0.5884, 0.9037, 0.2601, ..., 0.4944, 0.5993, 0.9598]), +tensor(crow_indices=tensor([ 0, 106, 193, ..., 999811, + 999905, 1000000]), + col_indices=tensor([ 107, 139, 344, ..., 9485, 9560, 9767]), + values=tensor([0.2657, 0.7219, 0.2773, ..., 0.6022, 0.5377, 0.2291]), size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.5307, 0.6978, 0.6134, ..., 0.5179, 0.0970, 0.9420]) +tensor([0.8604, 0.1859, 0.3719, ..., 0.6286, 0.9460, 0.3185]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,19 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 1000000 Density: 0.01 -Time: 1.8966615200042725 seconds +Time: 0.2040116786956787 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '5536', '-ss', '10000', '-sd', '0.01', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.43858790397644} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '5146', '-ss', '10000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 9.677676439285278} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 90, 180, ..., 999793, - 999892, 1000000]), - col_indices=tensor([ 10, 80, 127, ..., 9954, 9956, 9988]), - values=tensor([0.2975, 0.8577, 0.6251, ..., 0.1783, 0.1753, 0.5886]), +tensor(crow_indices=tensor([ 0, 90, 186, ..., 999811, + 999907, 1000000]), + col_indices=tensor([ 74, 208, 311, ..., 9654, 9863, 9976]), + values=tensor([0.0395, 0.4059, 0.0831, ..., 0.6188, 0.9591, 0.8953]), size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.4757, 0.0822, 0.0813, ..., 0.4411, 0.1352, 0.6104]) +tensor([0.6360, 0.9265, 0.4313, ..., 0.6926, 0.7242, 0.0651]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -36,16 +36,19 @@ Rows: 10000 Size: 100000000 NNZ: 1000000 Density: 0.01 -Time: 10.43858790397644 seconds +Time: 9.677676439285278 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '5583', '-ss', '10000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.513006925582886} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 90, 180, ..., 999793, - 999892, 1000000]), - col_indices=tensor([ 10, 80, 127, ..., 9954, 9956, 9988]), - values=tensor([0.2975, 0.8577, 0.6251, ..., 0.1783, 0.1753, 0.5886]), +tensor(crow_indices=tensor([ 0, 104, 207, ..., 999792, + 999898, 1000000]), + col_indices=tensor([ 168, 206, 240, ..., 9827, 9842, 9996]), + values=tensor([0.8276, 0.5768, 0.6424, ..., 0.0752, 0.7475, 0.3129]), size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.4757, 0.0822, 0.0813, ..., 0.4411, 0.1352, 0.6104]) +tensor([0.7571, 0.4178, 0.1860, ..., 0.0563, 0.6255, 0.7203]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -53,13 +56,30 @@ Rows: 10000 Size: 100000000 NNZ: 1000000 Density: 0.01 -Time: 10.43858790397644 seconds +Time: 10.513006925582886 seconds -[18.3, 18.15, 17.72, 17.62, 17.65, 18.51, 19.15, 17.59, 17.78, 18.09] -[52.18] -14.515204191207886 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 5536, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.43858790397644, 'TIME_S_1KI': 1.885583075140253, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 757.4033546972274, 'W': 52.18} -[18.3, 18.15, 17.72, 17.62, 17.65, 18.51, 19.15, 17.59, 17.78, 18.09, 18.11, 18.06, 18.06, 18.01, 19.44, 18.82, 18.14, 17.87, 17.86, 17.64] -326.5 -16.325 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 5536, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.43858790397644, 'TIME_S_1KI': 1.885583075140253, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 757.4033546972274, 'W': 52.18, 'J_1KI': 136.81418979357431, 'W_1KI': 9.425578034682081, 'W_D': 35.855000000000004, 'J_D': 520.4426462757588, 'W_D_1KI': 6.476697976878613, 'J_D_1KI': 1.1699237674997496} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 104, 207, ..., 999792, + 999898, 1000000]), + col_indices=tensor([ 168, 206, 240, ..., 9827, 9842, 9996]), + values=tensor([0.8276, 0.5768, 0.6424, ..., 0.0752, 0.7475, 0.3129]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.7571, 0.4178, 0.1860, ..., 0.0563, 0.6255, 0.7203]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.513006925582886 seconds + +[18.38, 17.86, 18.24, 17.87, 19.06, 17.88, 18.29, 21.74, 18.54, 18.08] +[47.92] +14.454128980636597 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 5583, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.513006925582886, 'TIME_S_1KI': 1.8830390337780558, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 692.6418607521057, 'W': 47.919999999999995} +[18.38, 17.86, 18.24, 17.87, 19.06, 17.88, 18.29, 21.74, 18.54, 18.08, 18.58, 17.99, 17.96, 22.09, 18.22, 17.97, 17.93, 18.49, 18.13, 18.23] +334.895 +16.74475 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 5583, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.513006925582886, 'TIME_S_1KI': 1.8830390337780558, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 692.6418607521057, 'W': 47.919999999999995, 'J_1KI': 124.06266536845884, 'W_1KI': 8.58319899695504, 'W_D': 31.175249999999995, 'J_D': 450.611084503591, 'W_D_1KI': 5.583960236432024, 'J_D_1KI': 1.0001719929127753} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.05.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.05.json index 4abbf3f..20cc2bc 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.05.json +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.05.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.659594058990479, "TIME_S_1KI": 10.659594058990479, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 944.4377518177032, "W": 52.04, "J_1KI": 944.4377518177032, "W_1KI": 52.04, "W_D": 22.411249999999995, "J_D": 406.72618304044, "W_D_1KI": 22.411249999999995, "J_D_1KI": 22.411249999999995} +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 959, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.294347047805786, "TIME_S_1KI": 10.73445990386422, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 792.9360737204552, "W": 48.35, "J_1KI": 826.8363646720074, "W_1KI": 50.417101147028156, "W_D": 31.9585, "J_D": 524.1168047982454, "W_D_1KI": 33.324817518248175, "J_D_1KI": 34.74954902841311} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.05.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.05.output index e447139..643494f 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.05.output +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.659594058990479} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 1.0941581726074219} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 491, 987, ..., 4999032, - 4999549, 5000000]), - col_indices=tensor([ 2, 62, 63, ..., 9943, 9957, 9997]), - values=tensor([0.7700, 0.3306, 0.4646, ..., 0.1296, 0.2152, 0.2390]), +tensor(crow_indices=tensor([ 0, 514, 1009, ..., 4998988, + 4999478, 5000000]), + col_indices=tensor([ 8, 23, 83, ..., 9969, 9982, 9990]), + values=tensor([0.1393, 0.4453, 0.1108, ..., 0.3215, 0.7885, 0.8444]), size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.3463, 0.4470, 0.4445, ..., 0.6886, 0.1263, 0.4488]) +tensor([0.3317, 0.0622, 0.5595, ..., 0.2290, 0.2268, 0.9236]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,16 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 5000000 Density: 0.05 -Time: 10.659594058990479 seconds +Time: 1.0941581726074219 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '959', '-ss', '10000', '-sd', '0.05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.294347047805786} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 491, 987, ..., 4999032, - 4999549, 5000000]), - col_indices=tensor([ 2, 62, 63, ..., 9943, 9957, 9997]), - values=tensor([0.7700, 0.3306, 0.4646, ..., 0.1296, 0.2152, 0.2390]), +tensor(crow_indices=tensor([ 0, 514, 994, ..., 4999000, + 4999500, 5000000]), + col_indices=tensor([ 13, 16, 23, ..., 9955, 9988, 9993]), + values=tensor([0.2414, 0.9977, 0.9772, ..., 0.9200, 0.6029, 0.8714]), size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.3463, 0.4470, 0.4445, ..., 0.6886, 0.1263, 0.4488]) +tensor([0.0530, 0.1017, 0.7510, ..., 0.2543, 0.0728, 0.9686]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -33,13 +36,30 @@ Rows: 10000 Size: 100000000 NNZ: 5000000 Density: 0.05 -Time: 10.659594058990479 seconds +Time: 10.294347047805786 seconds -[18.53, 17.91, 17.8, 17.55, 17.82, 18.2, 17.7, 17.96, 22.04, 18.01] -[52.04] -18.148304224014282 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.659594058990479, 'TIME_S_1KI': 10.659594058990479, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 944.4377518177032, 'W': 52.04} -[18.53, 17.91, 17.8, 17.55, 17.82, 18.2, 17.7, 17.96, 22.04, 18.01, 43.17, 47.09, 51.95, 51.61, 51.61, 46.81, 50.13, 50.7, 46.45, 18.78] -592.575 -29.628750000000004 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.659594058990479, 'TIME_S_1KI': 10.659594058990479, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 944.4377518177032, 'W': 52.04, 'J_1KI': 944.4377518177032, 'W_1KI': 52.04, 'W_D': 22.411249999999995, 'J_D': 406.72618304044, 'W_D_1KI': 22.411249999999995, 'J_D_1KI': 22.411249999999995} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 514, 994, ..., 4999000, + 4999500, 5000000]), + col_indices=tensor([ 13, 16, 23, ..., 9955, 9988, 9993]), + values=tensor([0.2414, 0.9977, 0.9772, ..., 0.9200, 0.6029, 0.8714]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.0530, 0.1017, 0.7510, ..., 0.2543, 0.0728, 0.9686]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 10.294347047805786 seconds + +[18.47, 18.05, 17.89, 17.81, 18.54, 18.75, 17.99, 17.87, 18.49, 18.81] +[48.35] +16.399918794631958 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 959, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.294347047805786, 'TIME_S_1KI': 10.73445990386422, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 792.9360737204552, 'W': 48.35} +[18.47, 18.05, 17.89, 17.81, 18.54, 18.75, 17.99, 17.87, 18.49, 18.81, 18.47, 17.8, 17.9, 18.12, 18.16, 18.55, 18.0, 18.63, 18.45, 17.91] +327.83 +16.3915 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 959, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.294347047805786, 'TIME_S_1KI': 10.73445990386422, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 792.9360737204552, 'W': 48.35, 'J_1KI': 826.8363646720074, 'W_1KI': 50.417101147028156, 'W_D': 31.9585, 'J_D': 524.1168047982454, 'W_D_1KI': 33.324817518248175, 'J_D_1KI': 34.74954902841311} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.1.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.1.json index 3316ce4..a3bba53 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.1.json +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.1.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 26.374675512313843, "TIME_S_1KI": 26.374675512313843, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1870.3769276547432, "W": 52.87, "J_1KI": 1870.3769276547432, "W_1KI": 52.87, "W_D": 36.2005, "J_D": 1280.661622272849, "W_D_1KI": 36.2005, "J_D_1KI": 36.2005} +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 389, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.411779165267944, "TIME_S_1KI": 26.765499139506282, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 876.1174001097679, "W": 47.85, "J_1KI": 2252.2298203335936, "W_1KI": 123.00771208226222, "W_D": 31.457250000000002, "J_D": 575.971663210094, "W_D_1KI": 80.86696658097686, "J_D_1KI": 207.88423285598165} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.1.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.1.output index fb57672..086f941 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.1.output +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.1.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.1', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 26.374675512313843} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.1', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 2.693603992462158} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1071, 2053, ..., 9998024, - 9999000, 10000000]), - col_indices=tensor([ 3, 4, 5, ..., 9980, 9985, 9995]), - values=tensor([0.3665, 0.1961, 0.0802, ..., 0.1951, 0.2808, 0.5332]), +tensor(crow_indices=tensor([ 0, 1004, 2049, ..., 9997955, + 9998949, 10000000]), + col_indices=tensor([ 1, 3, 35, ..., 9984, 9987, 9993]), + values=tensor([0.3631, 0.8073, 0.7190, ..., 0.1286, 0.7057, 0.1104]), size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.6172, 0.4719, 0.5685, ..., 0.7751, 0.3390, 0.5446]) +tensor([0.7885, 0.1169, 0.1101, ..., 0.4416, 0.5822, 0.3212]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,16 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 10000000 Density: 0.1 -Time: 26.374675512313843 seconds +Time: 2.693603992462158 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '389', '-ss', '10000', '-sd', '0.1', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.411779165267944} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1071, 2053, ..., 9998024, - 9999000, 10000000]), - col_indices=tensor([ 3, 4, 5, ..., 9980, 9985, 9995]), - values=tensor([0.3665, 0.1961, 0.0802, ..., 0.1951, 0.2808, 0.5332]), +tensor(crow_indices=tensor([ 0, 966, 1941, ..., 9997989, + 9998973, 10000000]), + col_indices=tensor([ 2, 11, 26, ..., 9956, 9965, 9978]), + values=tensor([0.0342, 0.9218, 0.6993, ..., 0.4506, 0.1146, 0.2093]), size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.6172, 0.4719, 0.5685, ..., 0.7751, 0.3390, 0.5446]) +tensor([0.6037, 0.3505, 0.1319, ..., 0.1315, 0.2126, 0.8791]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -33,13 +36,30 @@ Rows: 10000 Size: 100000000 NNZ: 10000000 Density: 0.1 -Time: 26.374675512313843 seconds +Time: 10.411779165267944 seconds -[18.71, 18.02, 18.12, 18.01, 22.7, 19.43, 18.17, 18.48, 18.54, 18.36] -[52.87] -35.376904249191284 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 26.374675512313843, 'TIME_S_1KI': 26.374675512313843, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1870.3769276547432, 'W': 52.87} -[18.71, 18.02, 18.12, 18.01, 22.7, 19.43, 18.17, 18.48, 18.54, 18.36, 18.41, 17.86, 17.86, 18.01, 17.87, 17.66, 17.87, 17.6, 18.07, 22.76] -333.39 -16.6695 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 26.374675512313843, 'TIME_S_1KI': 26.374675512313843, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1870.3769276547432, 'W': 52.87, 'J_1KI': 1870.3769276547432, 'W_1KI': 52.87, 'W_D': 36.2005, 'J_D': 1280.661622272849, 'W_D_1KI': 36.2005, 'J_D_1KI': 36.2005} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 966, 1941, ..., 9997989, + 9998973, 10000000]), + col_indices=tensor([ 2, 11, 26, ..., 9956, 9965, 9978]), + values=tensor([0.0342, 0.9218, 0.6993, ..., 0.4506, 0.1146, 0.2093]), + size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.6037, 0.3505, 0.1319, ..., 0.1315, 0.2126, 0.8791]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000000 +Density: 0.1 +Time: 10.411779165267944 seconds + +[18.87, 18.17, 18.37, 17.93, 17.97, 18.29, 18.55, 17.92, 18.13, 17.84] +[47.85] +18.30966353416443 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 389, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.411779165267944, 'TIME_S_1KI': 26.765499139506282, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 876.1174001097679, 'W': 47.85} +[18.87, 18.17, 18.37, 17.93, 17.97, 18.29, 18.55, 17.92, 18.13, 17.84, 19.36, 18.07, 17.99, 17.91, 18.82, 18.49, 18.1, 18.04, 18.09, 17.96] +327.855 +16.39275 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 389, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.411779165267944, 'TIME_S_1KI': 26.765499139506282, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 876.1174001097679, 'W': 47.85, 'J_1KI': 2252.2298203335936, 'W_1KI': 123.00771208226222, 'W_D': 31.457250000000002, 'J_D': 575.971663210094, 'W_D_1KI': 80.86696658097686, 'J_D_1KI': 207.88423285598165} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.2.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.2.json new file mode 100644 index 0000000..9e5a000 --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.2.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 193, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.419133424758911, "TIME_S_1KI": 53.98514727854358, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1480.8600453448294, "W": 45.41, "J_1KI": 7672.849975879945, "W_1KI": 235.28497409326422, "W_D": 29.142749999999996, "J_D": 950.3707132013438, "W_D_1KI": 150.9987046632124, "J_D_1KI": 782.3767080995461} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.2.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.2.output new file mode 100644 index 0000000..f051b42 --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.2.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.2', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 5.42013144493103} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2043, 4027, ..., 19995921, + 19998006, 20000000]), + col_indices=tensor([ 9, 15, 16, ..., 9989, 9991, 9993]), + values=tensor([0.8685, 0.2737, 0.0800, ..., 0.3440, 0.3550, 0.7008]), + size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) +tensor([0.2841, 0.6439, 0.8852, ..., 0.0124, 0.9656, 0.3759]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 20000000 +Density: 0.2 +Time: 5.42013144493103 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '193', '-ss', '10000', '-sd', '0.2', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.419133424758911} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1925, 3946, ..., 19996050, + 19998038, 20000000]), + col_indices=tensor([ 4, 9, 22, ..., 9994, 9995, 9997]), + values=tensor([0.4143, 0.0158, 0.3991, ..., 0.4975, 0.2189, 0.5132]), + size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) +tensor([0.4618, 0.1550, 0.6479, ..., 0.8342, 0.8619, 0.7737]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 20000000 +Density: 0.2 +Time: 10.419133424758911 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1925, 3946, ..., 19996050, + 19998038, 20000000]), + col_indices=tensor([ 4, 9, 22, ..., 9994, 9995, 9997]), + values=tensor([0.4143, 0.0158, 0.3991, ..., 0.4975, 0.2189, 0.5132]), + size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) +tensor([0.4618, 0.1550, 0.6479, ..., 0.8342, 0.8619, 0.7737]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 20000000 +Density: 0.2 +Time: 10.419133424758911 seconds + +[18.6, 18.13, 18.25, 17.88, 17.94, 17.94, 18.23, 18.23, 18.37, 17.79] +[45.41] +32.61087965965271 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 193, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.419133424758911, 'TIME_S_1KI': 53.98514727854358, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1480.8600453448294, 'W': 45.41} +[18.6, 18.13, 18.25, 17.88, 17.94, 17.94, 18.23, 18.23, 18.37, 17.79, 18.29, 17.94, 17.98, 17.82, 18.04, 18.23, 17.96, 17.98, 18.11, 17.95] +325.345 +16.26725 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 193, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.419133424758911, 'TIME_S_1KI': 53.98514727854358, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1480.8600453448294, 'W': 45.41, 'J_1KI': 7672.849975879945, 'W_1KI': 235.28497409326422, 'W_D': 29.142749999999996, 'J_D': 950.3707132013438, 'W_D_1KI': 150.9987046632124, 'J_D_1KI': 782.3767080995461} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.3.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.3.json new file mode 100644 index 0000000..28c2d57 --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.3.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.80802845954895, "TIME_S_1KI": 108.0802845954895, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 3840.7128683352466, "W": 37.19, "J_1KI": 38407.128683352465, "W_1KI": 371.9, "W_D": 20.811749999999996, "J_D": 2149.286260757625, "W_D_1KI": 208.11749999999995, "J_D_1KI": 2081.1749999999997} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.3.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.3.output new file mode 100644 index 0000000..5b24363 --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.3.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.3', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.80802845954895} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2964, 5988, ..., 29994017, + 29996992, 30000000]), + col_indices=tensor([ 4, 9, 14, ..., 9990, 9993, 9995]), + values=tensor([0.5510, 0.0884, 0.7125, ..., 0.7844, 0.3492, 0.1801]), + size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) +tensor([0.7648, 0.2589, 0.8570, ..., 0.0438, 0.7014, 0.5513]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 30000000 +Density: 0.3 +Time: 10.80802845954895 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2964, 5988, ..., 29994017, + 29996992, 30000000]), + col_indices=tensor([ 4, 9, 14, ..., 9990, 9993, 9995]), + values=tensor([0.5510, 0.0884, 0.7125, ..., 0.7844, 0.3492, 0.1801]), + size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) +tensor([0.7648, 0.2589, 0.8570, ..., 0.0438, 0.7014, 0.5513]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 30000000 +Density: 0.3 +Time: 10.80802845954895 seconds + +[18.36, 18.76, 18.08, 17.8, 18.22, 18.13, 18.92, 17.85, 18.59, 18.05] +[37.19] +103.27273106575012 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.80802845954895, 'TIME_S_1KI': 108.0802845954895, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3840.7128683352466, 'W': 37.19} +[18.36, 18.76, 18.08, 17.8, 18.22, 18.13, 18.92, 17.85, 18.59, 18.05, 18.39, 18.01, 18.68, 17.8, 18.23, 17.94, 17.9, 17.92, 18.33, 18.01] +327.56500000000005 +16.37825 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.80802845954895, 'TIME_S_1KI': 108.0802845954895, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3840.7128683352466, 'W': 37.19, 'J_1KI': 38407.128683352465, 'W_1KI': 371.9, 'W_D': 20.811749999999996, 'J_D': 2149.286260757625, 'W_D_1KI': 208.11749999999995, 'J_D_1KI': 2081.1749999999997} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_1e-05.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_1e-05.json index bb313c5..d3d85cb 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_1e-05.json +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_1e-05.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 225815, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.501307487487793, "TIME_S_1KI": 0.046504029792032386, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 725.5277880001069, "W": 50.86, "J_1KI": 3.2129300002218932, "W_1KI": 0.22522861634523836, "W_D": 34.5345, "J_D": 492.64135656094555, "W_D_1KI": 0.15293271040453468, "J_D_1KI": 0.0006772477931250567} +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 223318, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.272708654403687, "TIME_S_1KI": 0.046000361163917314, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 661.7633163213729, "W": 46.54, "J_1KI": 2.963322778823798, "W_1KI": 0.2084023679237679, "W_D": 29.777749999999997, "J_D": 423.41690143078563, "W_D_1KI": 0.13334236380408207, "J_D_1KI": 0.0005970963549919042} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_1e-05.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_1e-05.output index 9f5c396..404ad45 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_1e-05.output +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_1e-05.output @@ -1,752 +1,373 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.06352877616882324} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 1000, 1000, 1000]), - col_indices=tensor([8818, 4997, 6295, 3180, 5518, 5172, 746, 5244, 2210, - 743, 966, 3996, 5220, 1403, 3538, 8509, 4502, 3785, - 3874, 817, 2474, 8625, 1826, 7378, 3372, 3487, 3692, - 2823, 4014, 5568, 2853, 458, 6380, 403, 9884, 6452, - 9461, 3174, 4128, 3727, 4746, 3692, 3559, 764, 7725, - 9740, 2443, 7797, 959, 9783, 3882, 305, 8658, 3439, - 5219, 6204, 295, 2674, 5653, 2515, 9433, 6942, 4787, - 2622, 8901, 7171, 1978, 5705, 8547, 5754, 1645, 8716, - 7164, 3964, 7058, 652, 9812, 2558, 4701, 5177, 98, - 4410, 1873, 4795, 9496, 1552, 8229, 5835, 111, 9027, - 4842, 5493, 1576, 7272, 2867, 9784, 7469, 4609, 150, - 9289, 6828, 2031, 511, 5367, 206, 9469, 1196, 6, - 6915, 5850, 9888, 478, 1163, 4552, 2977, 4780, 2098, - 8590, 2673, 6656, 6488, 6316, 4862, 2997, 7612, 1952, - 2112, 7509, 4782, 1126, 7937, 6476, 235, 4623, 3076, - 3989, 6113, 2417, 6645, 7779, 1104, 5344, 4301, 6259, - 1752, 8337, 8322, 7835, 1908, 7672, 4448, 5034, 60, - 7057, 2837, 8532, 8189, 5873, 1420, 6709, 490, 6751, - 8214, 372, 7996, 3737, 3617, 4217, 2087, 3924, 715, - 7031, 927, 4709, 9269, 6784, 9714, 1522, 6663, 5719, - 4381, 6868, 7211, 9670, 8059, 6497, 7248, 8162, 2084, - 7034, 9399, 6368, 805, 1972, 1288, 6192, 6971, 8158, - 839, 2511, 8665, 9067, 2039, 5911, 3156, 7465, 1110, - 1361, 5583, 6290, 6815, 9577, 8273, 5080, 5829, 4439, - 4517, 7692, 6404, 3416, 4236, 9336, 4572, 6801, 7025, - 3277, 3132, 7625, 3681, 2623, 3841, 8373, 5724, 5264, - 4286, 5692, 9344, 6955, 4289, 9500, 6700, 8199, 366, - 3802, 521, 2483, 8095, 5552, 6282, 9877, 4904, 2556, - 5298, 3693, 2380, 4385, 4412, 1834, 9121, 5659, 8347, - 2368, 6268, 3224, 9192, 3527, 71, 5299, 3747, 9127, - 7913, 3584, 6170, 5219, 9969, 8558, 7471, 1869, 6249, - 6314, 8214, 9604, 4989, 9678, 9005, 899, 327, 9154, - 420, 7636, 9194, 2023, 6652, 3649, 2734, 7531, 6034, - 6367, 2297, 2439, 8543, 8665, 2261, 7803, 6026, 5718, - 1460, 3052, 5066, 4649, 5088, 3888, 7634, 3125, 1031, - 357, 4186, 379, 1160, 3285, 8329, 8278, 5375, 6589, - 3332, 2502, 5635, 2777, 4131, 8236, 5364, 4119, 4773, - 7426, 3813, 7568, 4300, 251, 7007, 6592, 520, 5616, - 184, 5912, 159, 2430, 7561, 1581, 8783, 1948, 4824, - 8861, 1027, 7384, 7064, 3762, 9883, 5055, 9889, 2136, - 6878, 134, 439, 8931, 7319, 4846, 7379, 9994, 2529, - 7477, 8567, 4006, 6282, 7117, 311, 9326, 7719, 5997, - 9451, 2406, 6518, 3299, 9691, 2738, 7672, 4868, 7911, - 5072, 1199, 7673, 5307, 9429, 3333, 4281, 9947, 8085, - 8514, 3607, 8741, 6796, 1858, 1016, 1779, 480, 6356, - 7534, 7821, 5353, 6971, 7947, 3649, 3547, 6610, 7945, - 8983, 2902, 2404, 3640, 3470, 7115, 4331, 3001, 7217, - 6067, 6675, 9033, 113, 8511, 2978, 3828, 5547, 6128, - 5943, 9133, 7396, 340, 5013, 3866, 5429, 3843, 4232, - 4224, 5836, 9527, 5393, 5619, 3765, 7060, 7312, 8751, - 9882, 3644, 2436, 1894, 9420, 4432, 3471, 689, 2661, - 8498, 9018, 5541, 8913, 8885, 2798, 7235, 4793, 2889, - 22, 4074, 7934, 4211, 9089, 1688, 2377, 3141, 1578, - 736, 6921, 8872, 2373, 2510, 5342, 5747, 7007, 5681, - 4089, 3866, 3383, 4848, 2721, 2600, 8073, 2987, 4596, - 8224, 7575, 1778, 7724, 7661, 9433, 1516, 5355, 8800, - 9206, 6526, 8742, 5734, 1218, 9890, 6353, 6953, 9936, - 5027, 6686, 7991, 7405, 4870, 3524, 2831, 4892, 3114, - 8610, 5079, 7688, 3999, 6035, 4304, 578, 5348, 8238, - 6971, 6365, 7448, 5465, 1168, 9574, 125, 360, 8670, - 1031, 3631, 9612, 6050, 4553, 5025, 7956, 621, 7664, - 5616, 5980, 3672, 5851, 1472, 5912, 974, 7527, 6936, - 3930, 214, 2108, 966, 7534, 3091, 9626, 1342, 2734, - 6495, 7050, 5771, 9438, 4075, 4885, 2053, 5699, 1233, - 1947, 9922, 2071, 7358, 4113, 4493, 1101, 5450, 1849, - 5005, 4209, 7972, 9327, 8652, 1919, 9648, 2341, 6003, - 5957, 8870, 4062, 7506, 7950, 234, 5860, 9966, 6514, - 573, 417, 3838, 134, 311, 3466, 651, 6202, 7365, - 7013, 2031, 8636, 3247, 4845, 4825, 8910, 614, 665, - 3996, 6221, 9001, 1244, 1489, 3803, 788, 9532, 7970, - 902, 9287, 5113, 9135, 8459, 3179, 9001, 7566, 887, - 7657, 5624, 5814, 4435, 543, 3492, 150, 4412, 7874, - 9601, 4359, 2434, 2790, 8199, 7856, 9975, 7047, 450, - 7905, 9286, 7834, 1567, 5836, 541, 7574, 6346, 2293, - 1724, 4573, 8919, 2574, 7423, 9764, 900, 9870, 4793, - 6813, 5501, 6220, 5209, 4493, 9942, 3899, 1850, 9402, - 4899, 967, 1495, 5010, 551, 8509, 1348, 6653, 5443, - 38, 5351, 7236, 6333, 2748, 6974, 5517, 5271, 2671, - 2099, 2279, 5546, 7405, 6267, 4157, 6136, 7672, 7732, - 2068, 5252, 730, 2034, 517, 6990, 3368, 1064, 8937, - 3732, 9471, 232, 46, 2596, 29, 6547, 1283, 4106, - 3755, 441, 8420, 2767, 4347, 8108, 6894, 3712, 9224, - 5559, 3154, 1897, 9474, 5775, 9076, 9330, 6478, 4842, - 5819, 4627, 3308, 8268, 8302, 7939, 3972, 2816, 1671, - 654, 3190, 1461, 8667, 2709, 4129, 6596, 5313, 8247, - 8111, 6549, 9761, 4895, 7369, 7306, 5691, 6366, 6366, - 1632, 1006, 1565, 8757, 8307, 7957, 6655, 8497, 6101, - 789, 5192, 8243, 4023, 8662, 8468, 184, 4890, 8196, - 4665, 195, 8889, 4145, 6127, 6961, 1552, 9768, 9245, - 9336, 2960, 3225, 8928, 1942, 7053, 4234, 7272, 4267, - 2453, 9231, 6135, 9573, 8580, 5701, 9618, 625, 1243, - 8497, 1674, 290, 8086, 6464, 782, 4299, 375, 1982, - 1301, 2328, 2966, 9273, 2957, 5839, 2534, 9510, 3891, - 6678, 118, 6417, 2293, 7076, 8464, 8118, 1840, 6882, - 1749, 2518, 1180, 5249, 3941, 7393, 4780, 2412, 1116, - 3560, 4248, 9195, 3261, 7262, 8391, 4018, 9884, 3637, - 708, 6472, 8166, 9273, 6239, 3301, 2615, 8039, 9504, - 2277, 7369, 9363, 169, 2266, 7615, 341, 752, 1755, - 3496, 7393, 1717, 3157, 4288, 6859, 4916, 1821, 2886, - 3627, 7457, 2496, 3885, 6234, 4545, 6510, 9711, 3708, - 9103, 6471, 9205, 9987, 390, 8226, 9671, 9512, 4146, - 2072, 4493, 8377, 7389, 6002, 5643, 6690, 6821, 7003, - 639, 833, 3000, 7750, 1465, 2933, 1680, 1789, 3599, - 7744, 1866, 406, 4679, 8328, 3373, 8553, 137, 3824, - 647, 9373, 6325, 3601, 826, 7215, 3418, 1045, 2194, - 8870, 2266, 5573, 2823, 855, 4619, 4378, 9555, 8804, - 1524, 5955, 362, 470, 9979, 9421, 5896, 6593, 8227, - 1504, 9829, 7218, 9534, 7521, 4807, 5986, 9951, 2099, - 1648, 4145, 9786, 8587, 4042, 9042, 868, 4796, 7815, - 9322, 5225, 6497, 1773, 8345, 1473, 4874, 5455, 8676, - 956, 3326, 6466, 4895, 6950, 9662, 956, 5289, 402, - 9854]), - values=tensor([3.3413e-01, 9.6154e-01, 9.2428e-01, 4.3740e-01, - 5.0672e-01, 6.7183e-01, 1.7642e-01, 6.2591e-01, - 1.8806e-01, 5.1543e-01, 2.7472e-01, 8.7819e-01, - 3.0617e-01, 1.9266e-01, 2.5253e-01, 1.7604e-01, - 9.6939e-01, 9.3065e-01, 6.8263e-01, 3.3567e-01, - 6.7566e-01, 7.2445e-01, 8.4903e-01, 6.8276e-01, - 8.9068e-01, 9.4827e-01, 2.9850e-03, 4.8301e-01, - 7.5776e-01, 2.0438e-01, 6.8328e-01, 9.5097e-01, - 5.5850e-01, 5.8555e-01, 4.8689e-01, 7.4699e-01, - 3.5636e-01, 6.3398e-02, 7.2154e-01, 6.4758e-01, - 7.1128e-01, 5.3896e-01, 4.4886e-01, 8.3528e-01, - 8.0431e-01, 4.5542e-01, 8.4234e-01, 9.1079e-01, - 8.9773e-01, 5.2581e-01, 1.7418e-01, 2.7136e-01, - 7.3759e-01, 5.3422e-01, 7.0519e-01, 9.5438e-02, - 5.0885e-01, 2.5722e-01, 5.8427e-01, 4.4767e-01, - 1.3592e-01, 8.3711e-01, 2.3871e-01, 3.4095e-01, - 5.8466e-01, 9.8314e-01, 7.3868e-01, 7.4283e-01, - 1.9128e-01, 7.5101e-01, 5.7700e-01, 2.9889e-01, - 4.5959e-01, 4.2145e-01, 2.5057e-01, 7.5680e-01, - 4.6999e-01, 8.4990e-01, 6.7075e-02, 5.3521e-01, - 5.4071e-01, 6.9243e-01, 1.3893e-01, 1.6825e-01, - 1.4559e-01, 2.9361e-01, 4.0267e-01, 4.6702e-02, - 7.4439e-01, 9.2611e-01, 5.3385e-01, 5.8174e-01, - 8.3240e-01, 3.8714e-02, 3.6481e-02, 9.8895e-01, - 3.5439e-01, 4.9898e-01, 7.1920e-01, 5.2686e-01, - 3.8192e-01, 3.2391e-01, 4.2722e-01, 2.9358e-01, - 3.8674e-01, 9.0560e-01, 5.9147e-02, 7.5979e-01, - 2.1172e-01, 7.8685e-01, 7.1357e-01, 3.5759e-01, - 5.5162e-01, 4.4878e-01, 1.8497e-01, 6.2065e-01, - 2.6438e-01, 8.4614e-02, 2.3238e-01, 9.6334e-01, - 3.0934e-01, 3.6143e-01, 1.2818e-01, 4.2707e-01, - 5.8897e-01, 6.2555e-01, 1.5839e-01, 1.1931e-01, - 6.0302e-01, 4.7008e-01, 3.4107e-01, 8.7125e-01, - 3.7647e-01, 3.7313e-01, 6.9521e-01, 9.1572e-01, - 9.9820e-01, 5.3099e-01, 3.5865e-01, 6.3793e-01, - 9.8776e-01, 4.9652e-01, 4.7539e-01, 7.7584e-01, - 3.3199e-01, 3.9594e-01, 1.9223e-01, 5.0865e-01, - 7.8381e-01, 6.4350e-01, 3.3288e-01, 1.5435e-02, - 3.2685e-01, 5.0507e-01, 6.4444e-02, 2.3900e-01, - 6.9439e-01, 9.2867e-01, 6.7916e-01, 9.8867e-02, - 6.4876e-01, 9.1622e-01, 2.6086e-01, 5.7986e-01, - 8.7320e-01, 5.1780e-01, 1.4542e-01, 3.4482e-01, - 5.5641e-01, 5.0377e-01, 4.4889e-01, 4.4496e-01, - 9.2119e-01, 3.7454e-01, 4.5180e-02, 5.2673e-01, - 7.3967e-01, 9.0447e-02, 2.8158e-02, 5.3280e-01, - 2.0659e-01, 9.2580e-01, 2.4951e-02, 9.0341e-01, - 9.1063e-01, 6.9181e-01, 9.9889e-01, 7.1868e-01, - 7.3530e-01, 3.2916e-01, 4.5052e-01, 6.6286e-01, - 7.5088e-01, 2.9739e-01, 8.4962e-01, 7.8855e-01, - 6.7181e-02, 2.5548e-01, 5.1131e-01, 8.0204e-01, - 7.8482e-02, 9.2621e-01, 4.2595e-01, 4.0279e-01, - 2.1659e-01, 4.6389e-01, 5.1602e-01, 2.4603e-01, - 8.4689e-02, 1.5638e-01, 4.8617e-01, 3.0228e-01, - 1.2974e-02, 7.0727e-01, 4.6162e-02, 6.9480e-01, - 5.3946e-01, 5.4407e-01, 7.1006e-01, 7.4908e-01, - 9.1735e-02, 6.7248e-01, 8.6916e-02, 6.5322e-01, - 6.3607e-01, 3.9262e-01, 5.9178e-01, 2.6405e-01, - 2.5459e-01, 3.5071e-01, 1.0168e-01, 6.2308e-01, - 2.9867e-01, 5.7428e-01, 5.3193e-01, 4.2365e-01, - 1.2457e-01, 2.4644e-01, 9.1203e-01, 1.6859e-01, - 1.6178e-01, 8.6987e-02, 9.2550e-01, 5.4948e-01, - 7.0272e-01, 4.1025e-01, 6.9905e-01, 9.3853e-01, - 3.8478e-01, 2.7231e-01, 8.7451e-01, 1.6185e-01, - 2.1615e-01, 8.3915e-01, 9.3369e-01, 4.6497e-02, - 1.3231e-01, 8.2041e-01, 1.8464e-01, 6.1141e-01, - 1.7747e-01, 6.2373e-02, 3.1910e-01, 4.0769e-01, - 9.2121e-01, 5.5775e-01, 9.9630e-01, 4.8526e-01, - 8.6126e-01, 8.4215e-01, 6.3503e-01, 2.3170e-01, - 9.8023e-01, 6.3946e-01, 5.6702e-01, 7.7645e-01, - 5.4873e-01, 9.3943e-01, 8.6454e-01, 6.2600e-01, - 1.5287e-01, 3.9319e-02, 8.5149e-01, 5.6868e-02, - 7.1982e-01, 9.1464e-01, 5.2991e-01, 6.2555e-01, - 4.1212e-01, 5.2963e-01, 1.2844e-01, 9.9335e-01, - 9.6476e-01, 3.7956e-01, 9.2300e-01, 4.6692e-01, - 4.0223e-01, 5.0942e-01, 7.1786e-01, 2.0918e-02, - 5.8405e-02, 6.9935e-01, 9.4314e-01, 7.2617e-01, - 7.6302e-01, 9.5543e-01, 5.2211e-01, 5.1296e-01, - 7.7800e-01, 1.2704e-01, 5.8003e-01, 9.0919e-01, - 8.2907e-01, 1.6851e-01, 2.8117e-01, 7.6064e-01, - 3.8642e-01, 5.8016e-02, 1.5644e-01, 6.8292e-01, - 4.0441e-01, 2.8108e-01, 8.4916e-01, 2.2913e-02, - 3.8522e-01, 7.0529e-01, 1.0784e-01, 8.9236e-02, - 5.4299e-02, 4.4178e-01, 4.4945e-01, 3.8154e-02, - 1.8942e-01, 3.8126e-01, 4.0344e-01, 8.3251e-01, - 2.9117e-01, 8.3230e-01, 3.7680e-02, 4.8312e-01, - 2.3530e-01, 3.8031e-02, 4.8939e-01, 8.2329e-01, - 5.6083e-01, 4.9221e-01, 2.8147e-01, 8.2134e-01, - 8.8106e-01, 9.6345e-01, 8.5673e-02, 8.3601e-01, - 9.0416e-01, 3.2669e-01, 6.6247e-01, 3.7821e-01, - 6.2048e-01, 3.8196e-01, 4.1013e-01, 4.6001e-01, - 5.2872e-02, 2.2035e-01, 8.4768e-01, 6.9547e-01, - 5.2226e-01, 8.0056e-01, 6.1057e-01, 8.9496e-01, - 7.9516e-02, 8.6518e-02, 9.6564e-01, 7.5278e-01, - 3.0018e-01, 3.1016e-01, 3.2145e-01, 1.3818e-01, - 1.5719e-02, 9.3330e-01, 1.1458e-01, 7.9328e-01, - 6.1409e-01, 7.9912e-01, 8.1155e-01, 8.1719e-01, - 9.5110e-01, 9.0720e-01, 9.0330e-01, 3.5557e-01, - 8.9821e-01, 3.2569e-01, 8.2973e-01, 5.7229e-01, - 4.6707e-01, 1.6807e-01, 6.1908e-01, 5.3227e-01, - 1.6841e-01, 7.5433e-01, 1.5976e-01, 8.1569e-01, - 9.8174e-01, 8.0700e-01, 8.0758e-01, 2.5587e-01, - 8.0716e-01, 1.4534e-01, 6.4834e-01, 4.8418e-01, - 4.2206e-01, 5.1555e-01, 6.2372e-01, 1.8478e-01, - 6.2172e-01, 7.6542e-01, 2.0146e-01, 3.4389e-01, - 2.6014e-01, 5.4968e-01, 2.2724e-01, 7.3462e-02, - 4.9419e-01, 2.8888e-01, 6.1621e-01, 7.8133e-01, - 1.2898e-01, 3.1743e-01, 9.4942e-01, 5.0322e-01, - 1.1519e-01, 8.9371e-01, 9.9778e-01, 1.1507e-01, - 4.7869e-01, 1.5039e-01, 5.0710e-01, 1.1949e-01, - 7.1555e-01, 8.6586e-01, 9.9749e-01, 9.7706e-01, - 9.7198e-01, 6.4097e-01, 6.5528e-01, 4.5529e-01, - 7.2320e-01, 5.6966e-01, 8.2813e-01, 3.0838e-01, - 5.8695e-01, 5.3551e-01, 6.6446e-01, 6.4615e-01, - 2.8057e-01, 4.2723e-01, 8.8389e-01, 3.2057e-01, - 2.5664e-01, 4.9971e-01, 8.2847e-01, 9.1802e-01, - 3.9503e-03, 1.7917e-01, 5.6674e-01, 5.9594e-02, - 2.9573e-01, 7.5324e-01, 9.8288e-01, 9.6041e-01, - 2.5792e-01, 6.3506e-01, 9.4713e-01, 5.5160e-01, - 8.7668e-01, 5.4248e-01, 8.4704e-01, 3.5258e-01, - 5.4899e-01, 1.7759e-01, 8.5356e-01, 1.8781e-01, - 8.5644e-01, 9.6625e-01, 9.8773e-01, 1.7599e-01, - 9.3049e-03, 1.1167e-01, 5.5962e-01, 4.1542e-01, - 8.6926e-01, 8.5629e-01, 7.4983e-01, 9.6038e-02, - 8.0905e-01, 2.8552e-01, 8.2475e-01, 2.8115e-01, - 6.2389e-02, 9.2871e-01, 1.8106e-01, 8.8332e-01, - 5.6800e-01, 4.5719e-01, 1.6232e-01, 6.9521e-01, - 5.9495e-01, 5.5107e-01, 3.7398e-02, 2.3840e-01, - 7.6451e-01, 1.6915e-01, 4.2375e-01, 8.5118e-01, - 5.8113e-01, 6.7525e-02, 6.7553e-01, 5.1583e-01, - 1.7408e-01, 5.3300e-01, 5.0256e-01, 8.0241e-01, - 5.4870e-01, 1.7516e-02, 8.0299e-01, 8.7076e-01, - 1.9071e-01, 9.0709e-01, 9.9797e-01, 4.1422e-01, - 2.4372e-01, 6.7107e-02, 1.4709e-01, 3.1995e-01, - 7.7356e-01, 7.0764e-01, 7.2801e-01, 8.7525e-02, - 4.9250e-01, 7.7304e-01, 8.0663e-01, 2.7071e-02, - 4.8988e-02, 4.0919e-02, 7.3029e-01, 6.4353e-01, - 7.8818e-01, 9.4565e-01, 7.5804e-01, 7.6888e-01, - 9.3870e-01, 8.2402e-01, 3.9508e-01, 5.9546e-01, - 5.4638e-02, 5.9375e-01, 9.1096e-01, 3.5543e-01, - 5.0710e-02, 1.0874e-01, 7.5845e-01, 6.2126e-01, - 2.1767e-01, 5.2358e-01, 3.5926e-01, 5.4564e-02, - 7.9008e-01, 6.1479e-01, 4.7427e-01, 2.2081e-01, - 4.3878e-01, 9.0154e-01, 2.2267e-01, 2.3302e-02, - 6.2728e-01, 7.2256e-01, 8.4482e-01, 4.3277e-01, - 4.1845e-01, 6.0946e-01, 9.9849e-01, 6.8789e-02, - 3.2314e-01, 1.1939e-01, 2.8754e-02, 8.9296e-01, - 9.7598e-01, 2.7956e-01, 7.5135e-01, 5.2820e-01, - 7.3256e-01, 7.1043e-01, 2.3368e-01, 6.4732e-01, - 5.7605e-01, 9.2871e-02, 5.8319e-02, 5.9050e-01, - 6.6527e-01, 1.5119e-01, 3.9390e-01, 5.3447e-01, - 8.9445e-02, 6.4077e-01, 6.2757e-01, 9.4870e-01, - 5.2767e-02, 5.3053e-01, 9.8813e-01, 6.1004e-01, - 6.2611e-01, 5.3778e-01, 6.3170e-01, 8.3799e-01, - 3.9200e-01, 2.0112e-01, 9.2461e-01, 1.9096e-02, - 2.1625e-01, 2.4502e-01, 8.2892e-01, 9.6210e-01, - 2.7158e-01, 6.5096e-01, 2.0859e-01, 7.9354e-01, - 3.6660e-01, 8.9057e-01, 7.1135e-01, 5.5623e-03, - 7.5296e-01, 6.8111e-01, 7.7528e-02, 5.9745e-02, - 9.5325e-01, 7.4659e-01, 2.7298e-01, 1.2532e-01, - 4.4855e-01, 3.5666e-01, 8.7559e-01, 8.0018e-01, - 4.3854e-02, 4.8713e-01, 7.0706e-01, 1.4292e-01, - 6.6608e-01, 4.3445e-01, 8.3296e-01, 6.4635e-01, - 1.8399e-01, 7.7778e-01, 5.9029e-02, 9.1834e-02, - 9.3319e-01, 2.9954e-01, 3.1840e-01, 1.8707e-01, - 1.6916e-02, 9.6409e-01, 7.4541e-01, 7.9703e-02, - 9.7434e-01, 1.0020e-01, 2.7892e-01, 7.1368e-01, - 4.7674e-01, 6.4478e-01, 5.2522e-01, 8.6860e-01, - 9.4748e-01, 6.5723e-02, 8.7105e-01, 7.5428e-01, - 3.6689e-01, 8.0115e-03, 4.1276e-01, 1.5636e-01, - 9.1725e-01, 6.9545e-01, 1.3289e-02, 8.9995e-01, - 2.0639e-01, 1.9138e-01, 9.4419e-01, 2.5837e-01, - 8.7362e-01, 3.4040e-01, 7.2384e-01, 3.3064e-01, - 8.9279e-01, 4.2820e-01, 5.7483e-01, 5.3771e-01, - 2.4929e-01, 3.1792e-01, 7.1197e-01, 5.0460e-01, - 2.6674e-01, 9.4672e-02, 3.4302e-01, 8.1671e-01, - 4.8547e-01, 2.8213e-01, 1.6782e-01, 9.6716e-01, - 3.0221e-01, 1.3908e-01, 6.7492e-01, 2.2244e-01, - 2.8707e-02, 5.1882e-01, 4.1038e-01, 9.9815e-01, - 9.6759e-01, 6.7923e-01, 3.4796e-01, 5.0600e-01, - 5.5888e-04, 2.9575e-01, 5.7722e-01, 1.9569e-01, - 3.7543e-01, 7.8717e-01, 2.5436e-01, 9.0124e-01, - 4.0404e-01, 2.7663e-01, 7.6533e-01, 3.5933e-01, - 7.5821e-01, 1.6975e-01, 9.4532e-01, 2.3711e-01, - 8.0138e-01, 3.2955e-01, 5.6015e-01, 9.2748e-01, - 8.4579e-01, 5.1898e-01, 4.0725e-01, 5.7184e-01, - 6.5866e-01, 3.2435e-01, 1.5454e-01, 2.7207e-02, - 1.2155e-01, 8.1870e-01, 7.1106e-01, 4.8694e-01, - 9.8429e-01, 8.0534e-01, 9.9535e-01, 7.2043e-01, - 1.8504e-01, 1.3436e-01, 1.5534e-02, 1.3554e-01, - 6.6736e-01, 6.5617e-01, 3.4409e-01, 6.1274e-01, - 1.2646e-01, 5.9901e-03, 7.0636e-01, 1.2071e-01, - 3.6276e-01, 5.6897e-01, 1.5409e-01, 3.7871e-01, - 7.3209e-01, 4.9497e-01, 8.0639e-01, 3.4676e-01, - 7.5146e-01, 3.7860e-01, 2.0107e-01, 1.6325e-01, - 3.1191e-02, 3.5857e-02, 4.0769e-01, 8.7428e-01, - 2.4569e-01, 1.4399e-01, 6.9912e-01, 2.7792e-01, - 5.5729e-01, 3.7241e-01, 8.6404e-01, 3.7650e-01, - 9.4704e-01, 9.7985e-01, 8.1096e-01, 9.4533e-01, - 8.1956e-01, 8.7672e-01, 2.7292e-01, 1.9319e-01, - 4.6081e-01, 1.7064e-01, 2.6865e-02, 5.2624e-01, - 2.5369e-02, 5.9603e-01, 6.9433e-02, 3.8668e-01, - 3.3346e-01, 9.8204e-01, 3.6774e-01, 6.5913e-01, - 7.0554e-01, 9.4439e-01, 2.4802e-01, 9.2182e-01, - 6.1579e-01, 3.3392e-01, 1.2702e-02, 8.4271e-01, - 9.1801e-01, 4.5016e-01, 6.1777e-01, 2.0341e-01, - 8.9939e-01, 9.5834e-01, 2.5519e-01, 5.2982e-01, - 1.1985e-01, 6.6381e-03, 9.7890e-01, 1.7337e-01, - 8.9119e-01, 1.5043e-01, 4.6040e-01, 6.9538e-01, - 9.2558e-01, 5.7281e-01, 6.3030e-01, 3.8118e-01, - 2.3229e-01, 3.4195e-01, 7.7987e-01, 8.1058e-01, - 2.0181e-01, 7.2688e-01, 9.4281e-01, 2.3447e-01, - 9.7234e-01, 8.0731e-01, 6.3180e-01, 7.0109e-01, - 3.5266e-01, 8.5632e-01, 7.4654e-01, 4.3216e-01, - 8.7903e-01, 6.9429e-01, 8.1585e-01, 8.9722e-01, - 6.7023e-01, 6.4708e-01, 6.5524e-01, 9.6414e-01, - 2.0021e-01, 7.2708e-01, 3.7007e-01, 7.7144e-01, - 9.4777e-01, 9.2591e-01, 4.2859e-01, 2.3407e-01, - 8.4389e-01, 9.4705e-01, 7.1472e-01, 3.5134e-01, - 4.9152e-01, 3.1197e-01, 8.8038e-01, 3.8248e-01, - 5.9123e-01, 4.3307e-01, 4.4155e-02, 5.2431e-01, - 8.9782e-01, 2.7591e-01, 9.8361e-02, 9.4181e-01, - 7.8504e-01, 4.7174e-01, 6.9580e-01, 6.5364e-01, - 5.2368e-02, 9.6495e-01, 2.4019e-01, 1.6985e-01, - 5.8895e-01, 4.9707e-01, 6.6860e-01, 1.5414e-01, - 7.6333e-01, 1.9743e-01, 5.6171e-01, 2.0281e-01, - 6.4197e-01, 5.8021e-02, 4.9562e-02, 9.5483e-01, - 4.3674e-01, 5.2614e-01, 2.4113e-01, 3.4303e-01, - 3.9772e-01, 3.9798e-01, 1.3877e-02, 7.9278e-01, - 6.5379e-01, 4.2851e-01, 3.9171e-01, 8.2409e-01, - 2.3082e-01, 5.4049e-01, 3.2908e-01, 5.0166e-01, - 9.3871e-01, 9.6652e-01, 1.5463e-01, 3.0043e-01, - 9.3627e-01, 2.4720e-01, 3.6368e-01, 2.6467e-01, - 8.8606e-02, 4.2096e-01, 6.4731e-01, 2.2082e-01, - 9.3578e-02, 9.4451e-01, 8.8364e-01, 1.9562e-02, - 4.3969e-01, 7.3790e-01, 1.6640e-01, 4.2768e-01, - 9.8714e-01, 7.6766e-01, 1.2558e-01, 7.3721e-01, - 6.0219e-01, 3.5863e-01, 4.8847e-01, 4.5578e-01, - 1.6342e-01, 1.1963e-01, 4.7580e-01, 6.3141e-01, - 6.9461e-01, 5.9385e-01, 4.9160e-01, 3.8014e-01, - 5.8303e-01, 6.1575e-01, 8.0137e-01, 6.6537e-01, - 2.6899e-01, 6.0576e-01, 1.7340e-01, 1.3601e-01, - 6.8659e-02, 9.3027e-01, 9.1185e-01, 5.6535e-01, - 7.2279e-01, 1.0745e-01, 3.4131e-01, 6.6057e-01, - 6.1837e-02, 2.9305e-01, 2.6054e-01, 9.2548e-01, - 9.7730e-02, 3.3059e-01, 5.6727e-01, 5.3952e-01, - 5.6284e-01, 6.6863e-01, 1.4912e-01, 3.1011e-01, - 3.8308e-01, 7.6274e-01, 5.0556e-01, 9.7555e-02, - 1.2835e-02, 2.3082e-01, 9.3417e-01, 2.9390e-01, - 8.9799e-01, 9.0230e-01, 4.8453e-01, 2.6455e-02, - 7.3056e-01, 6.0896e-01, 8.5559e-01, 8.0240e-01]), - size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.7941, 0.9355, 0.0308, ..., 0.8188, 0.6700, 0.4642]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([10000, 10000]) -Rows: 10000 -Size: 100000000 -NNZ: 1000 -Density: 1e-05 -Time: 0.06352877616882324 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '165279', '-ss', '10000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.6851487159729} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.02031111717224121} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), - col_indices=tensor([2315, 6513, 5907, 3877, 2077, 4860, 5985, 658, 3064, - 8525, 1554, 9709, 6171, 3486, 5590, 6539, 972, 2273, - 5380, 8899, 6597, 4928, 5344, 7693, 7209, 5497, 5006, - 3737, 6805, 5, 330, 5450, 3346, 4927, 7186, 6849, - 6070, 1061, 6235, 2264, 2970, 871, 39, 7564, 7449, - 540, 713, 6220, 3148, 1912, 3294, 2937, 9597, 7507, - 3495, 6431, 2416, 1295, 7098, 5465, 1017, 9139, 435, - 8876, 8838, 4376, 9730, 4842, 7867, 8061, 9281, 1949, - 7658, 8915, 1137, 8442, 5195, 2389, 1625, 4385, 9310, - 997, 7413, 1331, 821, 9963, 9388, 5618, 5626, 5767, - 8489, 4236, 8701, 4618, 4742, 7946, 9243, 4145, 2575, - 9322, 4983, 502, 5054, 8120, 5509, 950, 1703, 8746, - 5612, 5946, 6745, 899, 2969, 5501, 795, 6775, 3060, - 4478, 4772, 111, 6722, 9089, 3583, 9218, 5182, 7957, - 723, 1921, 8516, 8853, 9391, 3891, 3586, 408, 9632, - 1991, 4664, 4499, 6491, 7245, 6684, 5166, 6649, 2730, - 3764, 3979, 6730, 3057, 5867, 8792, 4125, 2218, 1533, - 5113, 7306, 5629, 5666, 5756, 131, 1440, 4944, 1266, - 5547, 6384, 2635, 2386, 8693, 1504, 7092, 8653, 7778, - 2636, 3625, 8515, 4909, 1332, 7115, 46, 3082, 8953, - 2740, 4800, 4283, 1774, 4225, 292, 3512, 7009, 2971, - 6652, 8465, 9733, 2887, 6111, 7989, 2817, 4663, 1923, - 5670, 8962, 6085, 7418, 2581, 1436, 7330, 4785, 3036, - 3497, 8572, 5589, 5748, 168, 146, 4212, 1605, 6080, - 6547, 7776, 8665, 7614, 4514, 7188, 5813, 1254, 83, - 3317, 1019, 7137, 6527, 9364, 1207, 9501, 3408, 5904, - 5098, 9112, 3018, 9136, 275, 3010, 3146, 4521, 9038, - 8663, 5537, 7480, 4120, 6347, 3307, 3876, 1966, 4488, - 7356, 8804, 7499, 2292, 1821, 2366, 679, 7496, 3642, - 7851, 3895, 5333, 6043, 3040, 2060, 7503, 9570, 6468, - 9921, 6762, 8463, 431, 9394, 9548, 5002, 143, 6444, - 4188, 2769, 1658, 754, 9146, 35, 8308, 9618, 6981, - 8171, 4639, 4311, 7585, 2093, 5417, 6050, 4800, 3966, - 68, 3535, 1877, 9901, 7212, 160, 9196, 7598, 8686, - 6459, 5732, 9734, 1901, 5872, 2435, 6827, 8564, 411, - 2508, 935, 5852, 782, 3300, 3365, 1207, 2855, 6266, - 6339, 1878, 2354, 4008, 2005, 8422, 8494, 1208, 6928, - 9919, 6641, 5584, 7833, 7971, 7706, 117, 7671, 6445, - 3503, 7807, 9156, 7726, 3805, 8990, 4918, 3437, 947, - 5513, 7974, 1699, 602, 2418, 6721, 9677, 7914, 8170, - 7859, 6859, 5449, 5042, 6974, 7845, 2054, 8751, 5481, - 609, 9970, 7529, 8241, 4224, 2112, 3651, 3543, 6721, - 6512, 2707, 895, 1696, 8169, 2551, 3584, 4349, 8797, - 6569, 8786, 814, 7884, 795, 4759, 2568, 8712, 6395, - 2376, 2854, 9680, 9824, 4978, 6870, 1035, 6724, 6385, - 2724, 3362, 3157, 6954, 6295, 6284, 8052, 6210, 9985, - 5704, 1387, 1737, 8196, 1817, 2478, 499, 2716, 9666, - 2649, 8326, 3038, 5612, 5747, 5253, 7760, 7762, 8190, - 5198, 7436, 5477, 908, 5864, 8768, 4487, 5721, 8514, - 2770, 3160, 858, 3764, 2567, 1045, 7482, 9942, 4484, - 714, 7788, 2437, 1928, 5540, 9718, 4746, 5999, 4394, - 2451, 4934, 4618, 7277, 8390, 5242, 5664, 4531, 5254, - 2664, 6785, 3111, 8855, 1575, 7155, 2279, 3860, 7237, - 4317, 6030, 6927, 6636, 5874, 451, 7617, 8535, 8288, - 5524, 9627, 4794, 1623, 1947, 8686, 8221, 9300, 3618, - 8878, 6915, 8820, 6629, 7951, 106, 3146, 9602, 5845, - 2110, 4299, 3613, 3887, 6227, 9498, 3595, 9744, 6732, - 8028, 2558, 8469, 8400, 336, 8305, 3221, 313, 9784, - 8593, 2965, 4984, 1558, 8138, 8231, 188, 8906, 4075, - 3180, 8176, 6316, 6167, 1757, 7807, 9343, 8645, 3483, - 3083, 954, 6927, 4269, 9259, 7661, 1288, 2678, 349, - 8128, 4950, 288, 6455, 4211, 5346, 9619, 4911, 6243, - 5585, 6049, 7705, 5262, 4934, 687, 6806, 7031, 7189, - 8152, 1593, 1512, 7777, 4562, 5778, 188, 165, 851, - 9217, 9696, 387, 1187, 4686, 9168, 428, 443, 5429, - 1268, 1031, 8490, 5288, 3849, 8658, 9815, 6717, 2946, - 9846, 2189, 7877, 6892, 6114, 5690, 3539, 3875, 8647, - 5913, 9153, 5410, 5082, 8686, 4080, 4841, 3835, 6259, - 9692, 5253, 6567, 9889, 1892, 2598, 5841, 6642, 1912, - 2847, 4155, 9394, 45, 3186, 5518, 2725, 3823, 2828, - 3126, 1420, 1261, 1840, 8806, 1627, 8317, 8294, 8778, - 3609, 3309, 3042, 9161, 1484, 2164, 9609, 1817, 3834, - 1189, 4748, 7797, 3354, 6115, 8720, 316, 642, 3345, - 24, 6446, 8295, 8271, 3087, 558, 1408, 4598, 3725, - 5827, 5509, 9209, 5228, 1370, 3966, 9996, 2251, 3719, - 3698, 7069, 3534, 4982, 3549, 1769, 9864, 8408, 1196, - 5773, 2758, 1803, 6057, 4608, 4593, 3639, 7190, 6855, - 5704, 8269, 3483, 3815, 8231, 1102, 5330, 5479, 2933, - 2683, 9799, 5021, 4354, 5026, 26, 5990, 1519, 2981, - 2846, 6169, 7895, 7110, 7523, 1066, 2130, 2514, 2031, - 8315, 8096, 8743, 1462, 9117, 5, 8824, 1514, 8690, - 7118, 4872, 9226, 4653, 9397, 3337, 4234, 8473, 7337, - 3884, 4204, 3019, 6455, 1104, 1521, 2106, 7198, 68, - 1136, 8467, 5599, 2846, 6369, 220, 3258, 7063, 730, - 601, 4313, 8486, 1812, 8291, 7501, 8040, 26, 1851, - 4760, 1321, 6337, 767, 3219, 1341, 714, 2192, 4423, - 5541, 5328, 3308, 3321, 5762, 8360, 2556, 7025, 2849, - 4886, 7558, 3167, 165, 2861, 466, 1092, 4637, 5199, - 6366, 1107, 4052, 1221, 2488, 9112, 1215, 6851, 5671, - 2053, 5106, 15, 9782, 9430, 7179, 550, 4466, 2830, - 6796, 461, 1034, 2492, 5827, 371, 3140, 5149, 2316, - 7847, 8655, 2571, 1599, 9980, 95, 7985, 4055, 2189, - 899, 1470, 3741, 8781, 7702, 6356, 984, 9256, 9634, - 4567, 4413, 9245, 5875, 1291, 1891, 5874, 5278, 9292, - 7181, 9589, 1784, 9464, 604, 3108, 4857, 2372, 4063, - 5107, 3555, 5411, 2141, 7436, 6706, 5143, 8475, 4088, - 1500, 9848, 3062, 2678, 836, 3467, 7996, 1248, 3127, - 4401, 7913, 1336, 2190, 5928, 73, 584, 8208, 8274, - 7052, 4521, 3177, 7849, 7214, 3806, 5722, 8664, 6344, - 1619, 1332, 6519, 1084, 4436, 5718, 7294, 3470, 2911, - 3695, 9537, 8937, 3345, 3742, 4531, 6513, 6431, 26, - 2346, 6918, 8006, 920, 5177, 210, 4057, 7906, 7248, - 3947, 2905, 2235, 306, 9708, 4594, 7250, 8229, 8875, - 1622, 846, 3105, 9418, 2883, 6853, 3856, 8008, 1331, - 2240, 3167, 5030, 5185, 1340, 1723, 1644, 4799, 6542, - 1478, 2423, 8569, 5524, 5971, 649, 6159, 2769, 1175, - 4322, 6680, 7151, 7748, 6327, 2772, 5891, 6447, 7572, - 2458, 3372, 7703, 4630, 9445, 8200, 1529, 6569, 2949, - 5965, 1056, 1481, 2301, 1636, 6216, 4562, 1939, 4023, - 614, 8330, 8596, 5870, 5267, 228, 8401, 9249, 6395, - 92, 4819, 5568, 1371, 1083, 8144, 9850, 4272, 5130, - 2209]), - values=tensor([8.6258e-01, 7.0528e-01, 8.9060e-01, 1.2632e-01, - 4.5563e-01, 6.6045e-01, 3.0092e-01, 9.7052e-01, - 4.8919e-02, 4.0764e-01, 7.7300e-01, 6.5404e-02, - 5.4979e-01, 8.0336e-01, 9.5192e-01, 3.7841e-01, - 8.0208e-01, 1.0151e-01, 8.5149e-01, 7.2534e-01, - 5.5997e-01, 1.3926e-01, 9.5254e-01, 9.1344e-01, - 4.1506e-01, 2.3270e-01, 2.8990e-01, 7.5387e-01, - 7.4473e-01, 7.0246e-01, 8.3206e-01, 6.5414e-01, - 2.5564e-01, 7.6579e-01, 7.7270e-01, 4.2267e-01, - 3.1006e-01, 3.4269e-01, 3.5526e-01, 9.3057e-01, - 9.6563e-02, 4.1280e-02, 4.7926e-01, 1.2473e-01, - 4.8461e-01, 7.8876e-02, 6.4119e-02, 9.4254e-01, - 1.1308e-01, 8.8908e-01, 7.5728e-01, 5.8280e-01, - 8.8847e-01, 7.7586e-01, 1.3915e-01, 9.1771e-02, - 4.5336e-01, 1.2809e-01, 6.5940e-01, 4.2233e-01, - 8.8184e-01, 2.6616e-02, 1.0459e-01, 6.7414e-01, - 2.3815e-01, 2.0330e-01, 2.4639e-02, 9.9792e-01, - 6.7680e-01, 7.2355e-01, 5.5501e-01, 3.3324e-01, - 3.2105e-01, 2.1791e-01, 9.5292e-01, 3.8432e-01, - 9.2398e-01, 1.9293e-01, 5.4469e-01, 3.5666e-01, - 5.5969e-01, 2.7763e-01, 2.3221e-02, 3.5759e-04, - 8.0557e-01, 1.8923e-01, 5.8292e-01, 3.9627e-01, - 7.3948e-01, 1.7041e-01, 1.1789e-01, 9.3322e-01, - 1.0791e-01, 7.0921e-01, 2.0004e-01, 8.8851e-01, - 3.4656e-01, 5.4702e-01, 2.7115e-01, 5.9585e-01, - 5.2729e-01, 3.6243e-01, 1.1079e-01, 2.2523e-01, - 2.1144e-01, 8.3509e-01, 4.2526e-01, 4.9317e-01, - 7.2731e-01, 2.3582e-01, 9.3508e-01, 5.3966e-01, - 1.0993e-01, 1.5191e-01, 4.5350e-01, 2.9441e-01, - 4.7183e-01, 5.2142e-01, 1.7420e-01, 5.8166e-02, - 6.9334e-01, 5.1245e-01, 5.5905e-01, 3.9385e-01, - 8.9043e-01, 7.1150e-01, 5.7970e-01, 5.8002e-01, - 5.4458e-01, 4.0697e-01, 3.6366e-01, 2.9923e-01, - 2.1028e-01, 2.5941e-01, 1.1346e-01, 1.9881e-01, - 3.7219e-01, 6.8616e-01, 3.5857e-01, 2.8390e-01, - 8.1470e-01, 2.1647e-01, 8.2945e-01, 1.7039e-01, - 9.2725e-01, 3.7820e-01, 4.5789e-01, 3.9648e-01, - 6.1922e-01, 8.5985e-01, 7.9265e-01, 1.6149e-01, - 3.5320e-01, 5.8308e-01, 9.0209e-01, 7.4476e-01, - 4.2686e-01, 6.2860e-01, 7.2772e-01, 2.5235e-01, - 1.1409e-01, 9.2918e-01, 6.8618e-01, 4.1873e-01, - 9.3854e-01, 1.3502e-01, 5.5618e-01, 1.3702e-01, - 4.1709e-01, 9.3472e-01, 1.8129e-01, 9.4820e-01, - 8.2794e-02, 2.1226e-01, 3.6720e-03, 4.8224e-02, - 5.3950e-01, 4.0388e-01, 2.3913e-01, 5.5803e-01, - 7.3623e-02, 6.4578e-01, 4.8277e-01, 6.7790e-01, - 2.3775e-01, 8.0072e-01, 9.1382e-02, 2.8452e-01, - 2.1676e-01, 2.0981e-01, 4.4176e-01, 2.7794e-01, - 8.3250e-01, 2.4127e-01, 5.7781e-02, 2.2104e-01, - 9.3391e-01, 2.2715e-01, 6.5312e-01, 6.2274e-01, - 2.5685e-01, 4.7442e-01, 2.9903e-01, 7.7858e-01, - 5.7041e-02, 7.9584e-01, 2.6641e-01, 3.0436e-01, - 6.3655e-01, 8.2758e-01, 5.6285e-01, 3.2258e-01, - 6.7511e-02, 5.4900e-01, 1.9819e-01, 3.4191e-01, - 1.3793e-01, 7.6774e-01, 7.1828e-01, 5.7111e-02, - 1.0691e-01, 9.7809e-01, 9.2257e-01, 9.9542e-01, - 3.0046e-01, 9.8827e-01, 3.4283e-01, 1.7532e-01, - 7.7669e-02, 8.1315e-01, 6.6867e-01, 4.8788e-02, - 3.2304e-02, 7.5275e-02, 6.6643e-01, 3.6447e-01, - 6.0187e-01, 2.9229e-01, 5.8431e-01, 2.2281e-01, - 7.1742e-01, 1.0215e-01, 8.2338e-01, 7.7100e-02, - 8.5923e-01, 1.4953e-01, 2.1530e-01, 1.0293e-01, - 4.9104e-01, 1.9647e-01, 7.2264e-01, 5.8338e-01, - 5.9546e-01, 8.4965e-01, 5.2402e-01, 1.8564e-01, - 4.9718e-01, 9.6137e-01, 2.9624e-01, 5.8891e-01, - 1.7958e-01, 3.1799e-01, 7.5606e-01, 8.8768e-01, - 4.9711e-01, 4.9336e-01, 9.3411e-01, 9.0131e-01, - 8.5228e-01, 4.7423e-01, 1.6452e-01, 4.6910e-01, - 3.7699e-01, 8.7542e-01, 8.0623e-01, 2.6126e-01, - 8.5229e-01, 5.5935e-01, 2.7236e-01, 9.9458e-01, - 4.9580e-01, 3.4747e-02, 4.8415e-01, 5.1958e-01, - 6.9504e-01, 2.5548e-01, 3.0528e-01, 7.1730e-01, - 3.8145e-01, 2.0093e-02, 6.2916e-01, 3.3482e-01, - 5.2828e-01, 9.4216e-01, 3.3977e-01, 4.1521e-01, - 9.5372e-01, 7.7047e-01, 1.0023e-01, 3.5710e-01, - 7.3857e-01, 6.8809e-02, 7.4386e-01, 4.3718e-01, - 1.8658e-01, 5.7370e-01, 4.5150e-01, 7.0198e-02, - 6.8435e-01, 5.5671e-01, 8.2365e-02, 1.0064e-01, - 2.5875e-01, 6.8293e-01, 9.4793e-01, 9.9080e-01, - 4.3473e-01, 1.0381e-01, 5.0057e-01, 7.3879e-01, - 9.3982e-01, 3.4285e-01, 9.7702e-01, 3.8211e-01, - 6.6050e-01, 9.8690e-01, 7.3652e-01, 3.2843e-01, - 4.2444e-02, 2.5252e-01, 8.8356e-01, 2.2553e-01, - 1.8416e-01, 7.8172e-01, 8.0046e-01, 5.1290e-01, - 3.5366e-01, 5.9034e-01, 8.3100e-01, 6.6707e-01, - 8.4675e-02, 9.7004e-02, 3.5214e-01, 7.7826e-01, - 4.3537e-01, 2.3609e-01, 1.3677e-01, 3.2106e-01, - 7.8817e-01, 8.3369e-01, 2.7975e-01, 9.9545e-01, - 9.6692e-01, 3.9647e-01, 5.1961e-01, 2.8142e-01, - 4.5836e-01, 4.3857e-01, 4.4516e-01, 7.1314e-01, - 1.7621e-01, 9.2860e-02, 8.4755e-01, 4.3613e-01, - 7.3509e-01, 8.0642e-01, 2.9694e-02, 3.4008e-02, - 9.2426e-01, 3.2348e-01, 2.8616e-01, 4.2552e-01, - 8.4735e-01, 4.1948e-01, 3.0574e-01, 3.7392e-01, - 5.4896e-01, 1.9431e-01, 5.7118e-01, 4.6320e-01, - 3.8569e-01, 3.6416e-01, 2.2456e-02, 3.1990e-01, - 3.5266e-01, 1.2688e-01, 6.1160e-01, 7.2708e-01, - 5.6045e-01, 2.5060e-01, 4.9716e-01, 7.2309e-01, - 4.7966e-02, 1.2364e-01, 2.2141e-01, 1.3711e-01, - 3.9034e-01, 6.7146e-01, 6.2663e-01, 1.9251e-01, - 5.1129e-01, 8.1609e-02, 9.4985e-01, 3.9532e-01, - 1.6509e-02, 6.1501e-01, 2.2691e-01, 2.0927e-02, - 2.0748e-01, 6.8899e-01, 8.6433e-02, 3.9669e-01, - 6.9160e-02, 1.5549e-01, 3.8321e-01, 1.2232e-01, - 9.4562e-01, 6.8881e-01, 6.1696e-01, 4.2100e-01, - 5.4252e-01, 3.9009e-01, 6.8385e-01, 7.9578e-01, - 1.5056e-02, 7.6275e-01, 5.4209e-02, 8.7610e-01, - 8.5376e-01, 6.0599e-01, 2.8684e-01, 6.4263e-01, - 9.3010e-01, 8.0589e-01, 3.5734e-01, 2.0317e-01, - 3.3933e-01, 9.9563e-01, 2.2093e-01, 6.5015e-01, - 9.6797e-01, 5.9242e-01, 7.6016e-01, 3.0456e-01, - 4.9245e-01, 3.0952e-01, 6.6456e-01, 4.3460e-01, - 6.2089e-01, 8.4494e-01, 6.1761e-01, 2.1979e-01, - 4.7127e-01, 4.0187e-01, 1.7874e-01, 4.7424e-01, - 6.8399e-01, 6.7148e-01, 9.2348e-01, 6.8470e-02, - 2.1234e-01, 5.9731e-01, 2.1177e-02, 1.4386e-01, - 4.5326e-01, 8.1515e-01, 8.1113e-01, 2.4470e-01, - 1.8209e-01, 1.7176e-01, 5.4850e-01, 3.2891e-01, - 4.6976e-01, 8.2868e-02, 5.0932e-01, 5.1633e-01, - 4.5595e-01, 8.3960e-01, 2.0220e-01, 6.6244e-01, - 6.4238e-01, 4.7242e-01, 9.3861e-01, 2.6402e-01, - 6.6982e-01, 7.4495e-01, 9.8999e-01, 9.0582e-01, - 5.0527e-01, 2.6714e-01, 9.7670e-02, 3.6567e-01, - 3.8412e-01, 6.2592e-01, 5.2075e-01, 7.8355e-01, - 9.9082e-01, 9.8918e-01, 7.2479e-01, 8.1508e-02, - 3.3672e-01, 6.3762e-02, 5.3834e-01, 4.7174e-01, - 1.2926e-01, 9.9884e-01, 4.9716e-01, 7.3407e-01, - 7.1173e-01, 4.9329e-01, 1.6675e-01, 5.9213e-01, - 6.1003e-01, 7.7121e-01, 7.1368e-01, 6.8332e-02, - 3.2691e-01, 1.1772e-01, 1.4419e-01, 2.2637e-01, - 1.8844e-01, 3.8315e-01, 2.1113e-01, 5.9147e-01, - 4.0637e-01, 7.6620e-01, 6.3290e-01, 7.0888e-01, - 4.1142e-01, 1.8429e-01, 7.1186e-01, 4.0633e-01, - 4.3527e-01, 1.0853e-01, 1.3609e-01, 7.3986e-01, - 6.4089e-01, 8.8251e-01, 6.6967e-01, 8.3393e-01, - 9.3056e-01, 7.1752e-01, 8.6294e-01, 5.8911e-01, - 5.1638e-01, 4.2786e-01, 3.9803e-01, 7.7440e-02, - 4.3829e-01, 6.5063e-01, 5.1549e-01, 8.2076e-01, - 6.9963e-02, 1.6012e-01, 3.8326e-01, 1.3349e-01, - 9.8517e-01, 8.8342e-01, 2.5190e-01, 1.6117e-01, - 6.5414e-01, 9.0065e-01, 9.2371e-03, 3.6861e-01, - 6.8362e-01, 6.3026e-01, 4.4740e-01, 1.3820e-01, - 3.0137e-01, 2.6217e-01, 2.5735e-01, 5.6040e-01, - 8.6859e-01, 1.8929e-01, 1.6536e-01, 4.7060e-01, - 7.3877e-01, 5.4422e-01, 5.3028e-01, 7.9555e-01, - 1.2884e-01, 4.8681e-01, 2.8536e-01, 5.7157e-01, - 2.0760e-02, 7.8334e-01, 4.9999e-01, 8.1263e-01, - 1.8957e-01, 1.8857e-01, 4.2172e-01, 5.9307e-01, - 6.8538e-01, 5.4944e-01, 6.2613e-01, 4.0387e-01, - 2.1974e-01, 4.2153e-01, 4.3924e-01, 6.8757e-01, - 3.2899e-01, 4.1687e-01, 3.2791e-01, 7.9799e-01, - 2.3111e-01, 6.8751e-01, 9.6699e-01, 8.0224e-01, - 8.4370e-01, 5.4973e-01, 5.7027e-01, 6.3729e-01, - 2.8420e-01, 9.7973e-02, 7.0540e-01, 4.3504e-01, - 7.4693e-01, 1.6761e-02, 8.3801e-01, 5.6735e-01, - 4.1883e-01, 4.6145e-01, 6.7365e-01, 3.9648e-01, - 2.9496e-01, 4.0270e-01, 1.5795e-02, 8.0503e-01, - 8.6951e-01, 2.9612e-01, 4.6891e-01, 4.9634e-01, - 1.6087e-01, 6.7111e-01, 8.2315e-01, 6.0957e-01, - 1.9295e-01, 7.9043e-01, 2.4667e-01, 3.5145e-01, - 4.3326e-01, 9.2553e-01, 1.7285e-01, 4.9663e-01, - 7.5709e-01, 7.3305e-01, 6.5591e-01, 1.6922e-01, - 9.7852e-02, 7.0028e-02, 4.0960e-01, 9.6666e-01, - 9.8033e-01, 1.8625e-01, 3.3433e-01, 9.0699e-02, - 8.8832e-01, 1.1216e-01, 6.7428e-02, 6.6405e-01, - 5.6008e-01, 3.5558e-01, 3.2086e-01, 6.4313e-01, - 6.6564e-01, 8.6180e-01, 3.9292e-01, 9.9089e-01, - 4.0120e-01, 2.3650e-01, 3.6857e-01, 8.7558e-01, - 1.2504e-01, 7.5624e-01, 4.2258e-01, 3.9465e-01, - 8.1754e-01, 2.0309e-01, 4.0634e-01, 1.7315e-01, - 1.9344e-01, 7.2119e-02, 8.3024e-02, 2.9133e-01, - 4.3479e-01, 6.7282e-01, 8.6958e-02, 7.6394e-01, - 6.8277e-01, 7.9329e-01, 8.8151e-01, 8.2960e-01, - 8.1719e-01, 8.5229e-01, 5.5712e-01, 4.1049e-01, - 2.4757e-01, 9.0586e-01, 1.4366e-01, 3.1020e-01, - 3.5280e-01, 2.9786e-01, 5.0803e-01, 3.5710e-01, - 2.3543e-01, 9.6762e-01, 2.8875e-01, 8.9645e-01, - 2.4041e-01, 8.2229e-03, 7.8572e-01, 8.5687e-02, - 8.7011e-01, 1.6728e-01, 1.6690e-01, 9.1501e-01, - 2.6593e-01, 8.6687e-01, 8.6199e-02, 8.5561e-01, - 1.6618e-01, 6.8007e-01, 7.1649e-01, 2.9972e-01, - 1.2971e-03, 9.4611e-01, 7.9622e-01, 8.3496e-01, - 5.7596e-01, 3.1512e-01, 7.8760e-01, 2.0723e-01, - 5.7829e-01, 1.1079e-01, 2.5915e-01, 6.4582e-01, - 3.7963e-01, 6.6160e-01, 6.7616e-02, 4.6793e-01, - 2.6347e-01, 9.2833e-01, 5.5353e-01, 7.1987e-01, - 8.2195e-01, 4.3576e-01, 5.9578e-01, 5.4960e-01, - 7.6790e-01, 5.0350e-01, 1.6330e-01, 4.4980e-01, - 8.1475e-01, 8.2107e-01, 4.1167e-01, 5.2435e-01, - 7.9072e-01, 9.3812e-01, 2.5123e-02, 9.5534e-01, - 5.1101e-01, 1.1638e-01, 5.3786e-03, 9.8278e-01, - 2.1734e-01, 6.4647e-01, 1.6399e-01, 6.0609e-01, - 9.3545e-01, 1.5524e-01, 1.8395e-01, 5.2700e-01, - 8.8524e-01, 8.9978e-01, 3.3954e-01, 7.9557e-01, - 9.2616e-01, 7.8200e-01, 8.5199e-01, 9.1200e-01, - 8.7588e-01, 3.0321e-01, 5.6257e-01, 9.9862e-01, - 2.4910e-01, 1.7283e-01, 9.2654e-01, 9.7156e-01, - 3.6401e-01, 3.2947e-01, 3.3530e-01, 6.5351e-01, - 9.8423e-01, 3.9352e-01, 1.5021e-01, 8.9702e-01, - 8.0842e-01, 3.5295e-01, 9.6435e-01, 9.2943e-01, - 4.6951e-01, 7.4679e-01, 3.0707e-02, 7.4355e-01, - 3.2675e-01, 8.4080e-01, 9.7647e-01, 5.1300e-01, - 8.5035e-01, 8.6314e-01, 8.7472e-01, 8.3684e-01, - 3.4789e-01, 4.0210e-01, 9.2233e-01, 4.5365e-01, - 5.5333e-01, 1.8570e-01, 4.1967e-02, 1.6211e-01, - 9.2523e-01, 5.5357e-01, 8.2017e-01, 7.4827e-01, - 2.9538e-01, 8.4459e-01, 6.0769e-01, 2.7657e-01, - 9.2496e-01, 4.9726e-01, 5.6693e-01, 2.6585e-01, - 8.7549e-01, 1.1184e-02, 8.0465e-01, 2.6346e-01, - 6.5631e-02, 5.3764e-01, 9.1495e-01, 3.1091e-01, - 9.6606e-01, 6.9022e-01, 8.3325e-01, 4.6344e-01, - 5.4954e-01, 6.3646e-01, 3.4287e-01, 3.4056e-01, - 3.4792e-02, 8.2077e-01, 4.3962e-01, 9.2306e-01, - 6.3618e-01, 8.7709e-01, 2.3326e-01, 8.6772e-01, - 9.6968e-01, 1.5316e-01, 4.7019e-01, 2.3939e-01, - 8.4352e-01, 8.0994e-01, 3.2247e-01, 8.7148e-01, - 5.7326e-01, 9.1918e-01, 9.8467e-01, 2.6205e-01, - 6.0807e-01, 1.5648e-02, 4.4449e-01, 8.2402e-01, - 5.4313e-01, 5.8309e-01, 1.5459e-01, 7.0926e-01, - 8.6123e-01, 5.4907e-01, 4.5772e-01, 9.1321e-01, - 5.8474e-01, 5.9303e-01, 7.8580e-01, 2.9711e-01, - 4.6384e-01, 3.0213e-01, 8.8351e-01, 6.0581e-01, - 3.2728e-01, 4.9952e-01, 4.1434e-01, 6.3278e-01, - 4.1366e-01, 2.7552e-01, 5.4264e-01, 1.2186e-01, - 1.3860e-01, 1.4550e-01, 5.5313e-01, 3.8997e-01, - 5.2577e-01, 4.5122e-01, 1.2593e-01, 5.5669e-01, - 4.9823e-02, 2.8409e-02, 6.3327e-01, 5.1417e-01, - 6.9790e-01, 9.5954e-02, 5.4878e-01, 4.6796e-01, - 8.3287e-01, 6.9688e-01, 3.0482e-01, 5.9031e-01, - 1.3253e-01, 4.6403e-01, 2.0383e-01, 6.8453e-01, - 1.0846e-01, 2.2057e-01, 7.1628e-01, 2.1954e-01, - 7.9697e-01, 7.2314e-02, 4.1365e-01, 6.8219e-01, - 9.7902e-01, 4.7276e-01, 5.1219e-01, 1.9369e-01, - 6.1233e-01, 8.4391e-01, 5.1670e-01, 6.3502e-01, - 8.6315e-01, 4.4413e-02, 2.2785e-01, 4.8562e-01, - 2.4673e-01, 3.4092e-01, 3.8043e-01, 4.9876e-01, - 3.6324e-01, 4.0648e-01, 1.3136e-01, 2.6742e-01, - 5.5688e-01, 4.3080e-01, 3.4861e-01, 3.1019e-02, - 1.7662e-01, 2.9944e-01, 7.3278e-01, 2.5329e-01, - 4.5397e-01, 8.7188e-01, 2.7853e-01, 2.6008e-01, - 7.7165e-01, 7.1359e-01, 4.5360e-02, 3.2456e-01, - 9.2683e-02, 6.8130e-01, 1.4100e-01, 9.9045e-01, - 2.1901e-01, 9.5740e-01, 2.3954e-01, 4.0705e-01, - 6.1890e-01, 1.7349e-01, 3.4682e-01, 9.6567e-01, - 3.8795e-01, 1.4728e-01, 7.7217e-02, 4.0736e-01, - 7.4286e-01, 4.3040e-01, 3.6512e-01, 5.6225e-01, - 5.8228e-01, 4.9701e-01, 3.4542e-01, 7.7128e-01, - 7.9901e-01, 1.3439e-01, 5.9351e-01, 9.6899e-01, - 1.9404e-01, 5.9343e-01, 6.9413e-01, 3.5619e-01, - 5.8933e-02, 5.3074e-01, 3.6413e-01, 2.2481e-01]), + col_indices=tensor([4137, 7377, 7043, 6108, 9323, 897, 9654, 227, 2578, + 4698, 9915, 4015, 9949, 2349, 8008, 1966, 4875, 4040, + 6979, 2450, 7633, 6619, 9795, 2725, 5746, 5264, 4390, + 2139, 8315, 3676, 8258, 2550, 7703, 6861, 8246, 1325, + 6548, 4010, 3106, 8161, 3532, 2108, 7993, 386, 7921, + 2704, 9957, 7073, 3331, 9744, 4980, 6346, 1498, 1404, + 8824, 1275, 9681, 2862, 4082, 1465, 5274, 7840, 5924, + 9483, 98, 2679, 7843, 1423, 2659, 4200, 7882, 4396, + 8968, 5460, 7766, 9614, 1590, 8686, 7557, 1225, 5913, + 5155, 9823, 7515, 4242, 147, 5927, 2787, 5542, 7655, + 5944, 2866, 5695, 9408, 3998, 7348, 7456, 5035, 7898, + 6129, 2807, 3798, 4059, 6217, 4055, 6985, 8048, 2902, + 2337, 461, 3316, 7537, 42, 5645, 9082, 1247, 3998, + 9775, 8363, 2735, 93, 476, 9970, 9170, 4926, 3860, + 2000, 8258, 8990, 1304, 1955, 2898, 4931, 9660, 749, + 7970, 1430, 136, 1728, 3493, 5173, 838, 9924, 9475, + 9208, 3918, 2507, 3992, 2000, 7754, 5632, 87, 7861, + 1028, 9056, 3445, 6453, 2164, 8030, 8837, 3400, 1991, + 5976, 7138, 4278, 6917, 8431, 3928, 8200, 9576, 544, + 3683, 3997, 1043, 2590, 5349, 7018, 58, 9350, 6692, + 1721, 3408, 5604, 655, 7107, 7982, 4650, 1645, 8377, + 5270, 5374, 9226, 6822, 6438, 8163, 2878, 5855, 3643, + 4380, 8884, 7438, 20, 8087, 7305, 2720, 1905, 9868, + 6635, 715, 5790, 888, 2709, 5700, 3461, 8946, 8488, + 9562, 8957, 6895, 1530, 8225, 2482, 9848, 6363, 60, + 9048, 4834, 584, 7029, 2291, 6622, 5454, 1482, 6564, + 7253, 4134, 4215, 7307, 255, 2256, 1308, 8832, 24, + 420, 4060, 3545, 3071, 2732, 6945, 8909, 1551, 7964, + 4210, 6238, 8532, 2620, 6983, 8405, 3644, 369, 8495, + 2851, 3884, 8614, 2495, 5435, 1497, 6514, 5937, 4865, + 7874, 7518, 9410, 726, 6738, 5623, 3151, 6922, 7926, + 2790, 1189, 762, 7808, 8573, 5170, 8000, 1707, 6332, + 7054, 4243, 6417, 3948, 1132, 1131, 6589, 5174, 60, + 223, 7683, 4637, 4586, 8258, 6780, 8920, 2046, 1612, + 5178, 8919, 7992, 5147, 6177, 3273, 9105, 8454, 3669, + 6494, 4848, 1427, 8432, 5755, 6577, 3626, 331, 3914, + 3636, 8285, 5491, 2909, 3115, 3372, 4727, 2186, 9534, + 5635, 7951, 3172, 9667, 3745, 5270, 428, 6615, 7258, + 1963, 3714, 6510, 2116, 2898, 5537, 481, 5467, 1168, + 6070, 9569, 7666, 9538, 6782, 3677, 4998, 780, 3405, + 8522, 5807, 9775, 4531, 4145, 9593, 484, 6152, 5639, + 6746, 3067, 8640, 5539, 6804, 5763, 6878, 8527, 9567, + 2461, 88, 3812, 7527, 1732, 2995, 1302, 5999, 4401, + 1636, 9368, 9766, 8129, 7690, 5557, 6058, 8415, 2316, + 3836, 7654, 4129, 8130, 662, 8048, 4078, 5310, 3394, + 697, 8499, 7954, 2695, 9511, 7314, 7366, 7641, 6823, + 6140, 7617, 8756, 7529, 926, 8480, 7592, 9330, 5786, + 5489, 124, 1928, 9569, 8032, 4423, 7047, 765, 9603, + 6041, 2668, 1487, 2665, 9551, 1633, 6181, 84, 7547, + 8082, 7482, 3259, 9213, 5803, 3882, 5394, 1979, 2400, + 6749, 5983, 1058, 6137, 7246, 773, 5714, 4565, 7822, + 6878, 4417, 3086, 1569, 1719, 5174, 5169, 6031, 5251, + 9640, 5409, 14, 2545, 7747, 5114, 5492, 9898, 1409, + 3523, 4063, 6729, 80, 9337, 6181, 8917, 261, 8381, + 6760, 9320, 5295, 3220, 4010, 4744, 8609, 1010, 5305, + 9260, 3490, 8283, 6887, 1747, 9772, 4685, 6659, 290, + 7030, 1170, 5710, 5634, 940, 2186, 3989, 889, 5333, + 6260, 8885, 2061, 5442, 4830, 8951, 3636, 8790, 578, + 5354, 9275, 1915, 5033, 4205, 7287, 2495, 1602, 3870, + 5486, 8600, 8275, 4198, 1084, 888, 495, 9803, 1292, + 8077, 5480, 1678, 5774, 3124, 3887, 332, 2678, 6175, + 409, 8310, 3436, 8252, 4352, 7590, 1442, 1255, 228, + 1152, 5560, 3824, 6610, 6637, 709, 2283, 8512, 6994, + 8985, 8735, 2350, 5740, 1930, 8458, 1361, 5384, 1444, + 7861, 6037, 7951, 3248, 8488, 1791, 1333, 177, 1355, + 6950, 3609, 6501, 8409, 1484, 7136, 5644, 3183, 9492, + 6917, 4022, 2331, 6796, 6370, 8934, 8277, 944, 5653, + 3069, 1456, 5189, 4084, 6941, 6557, 5802, 9989, 2527, + 6957, 9803, 14, 7896, 3797, 8217, 7379, 6116, 3815, + 9642, 9413, 2717, 6241, 1490, 1253, 3463, 2175, 3779, + 4863, 9031, 9205, 1690, 6995, 924, 43, 1394, 9054, + 1581, 3438, 2069, 4045, 5727, 2738, 4333, 5292, 7000, + 5376, 3015, 7111, 9030, 4819, 3485, 7384, 3097, 9362, + 8900, 2958, 8391, 6412, 1332, 5703, 9571, 6546, 2733, + 1890, 2159, 872, 1550, 305, 8578, 3297, 2050, 7548, + 3782, 1940, 640, 686, 8521, 6710, 9047, 3672, 8803, + 8238, 8882, 3472, 9261, 8047, 8763, 3448, 6714, 2416, + 9982, 2400, 3564, 3852, 8717, 2790, 8247, 2277, 887, + 5222, 7805, 9772, 5998, 1226, 9045, 8024, 5, 1965, + 946, 1956, 9244, 9275, 4790, 1278, 551, 2586, 35, + 6129, 7167, 9018, 9329, 5117, 4282, 2002, 7861, 3835, + 5057, 4040, 5353, 9894, 1447, 6457, 4072, 9973, 7775, + 2060, 8382, 3220, 1353, 1529, 3443, 132, 4532, 2405, + 9547, 5941, 254, 7773, 7543, 3043, 7390, 5242, 1337, + 8815, 2460, 9378, 1204, 7745, 4525, 8861, 8564, 8327, + 688, 8999, 6101, 1066, 660, 3165, 3845, 8997, 7684, + 9043, 8631, 6390, 6701, 9914, 2834, 7659, 8364, 6501, + 353, 1688, 3567, 3604, 5656, 5920, 1486, 9285, 8314, + 230, 4186, 6805, 6534, 5779, 6201, 1337, 619, 1368, + 4028, 9239, 5361, 9670, 3165, 8764, 8451, 1749, 5354, + 4757, 9433, 8330, 4044, 8195, 6400, 7150, 969, 9788, + 7121, 3276, 6802, 4876, 1470, 6334, 7325, 2295, 3504, + 4757, 93, 7166, 9475, 6294, 7298, 7786, 8426, 8073, + 3016, 7988, 8621, 7220, 3188, 7756, 7413, 4578, 7672, + 2046, 3507, 519, 6069, 2781, 1914, 7615, 4950, 7118, + 7131, 3707, 5379, 1378, 4426, 7265, 6448, 6606, 9476, + 5509, 2898, 947, 2096, 8223, 9521, 3781, 8358, 8383, + 2204, 5656, 5777, 3613, 5194, 5301, 7557, 8773, 1256, + 6364, 6538, 4220, 9100, 2360, 3056, 9805, 5261, 8211, + 2932, 9519, 1171, 205, 9123, 4449, 7847, 546, 6585, + 7811, 3911, 2070, 1743, 7688, 4267, 306, 7417, 1851, + 1865, 9232, 5014, 5024, 5064, 6511, 2993, 9070, 2950, + 557, 3789, 8751, 5349, 7134, 7831, 8803, 1422, 8903, + 7709, 2862, 91, 1213, 8347, 7430, 5358, 7802, 8452, + 8492, 6556, 5314, 3562, 3630, 6367, 543, 1027, 4551, + 8, 5834, 388, 6891, 1469, 6519, 5988, 3495, 5974, + 8821, 728, 3788, 2391, 8571, 3972, 9896, 1211, 4134, + 5009, 417, 3154, 4927, 8513, 4238, 3565, 1465, 8832, + 3710, 8052, 4595, 350, 943, 174, 7051, 2274, 4617, + 7712, 6029, 6405, 9644, 16, 4952, 1792, 7406, 3238, + 9821, 8222, 3824, 1039, 5851, 9963, 5374, 3591, 6018, + 1911]), + values=tensor([5.8156e-01, 2.8002e-01, 5.9905e-01, 3.3753e-01, + 2.5754e-01, 1.6141e-01, 7.2303e-01, 4.8284e-01, + 3.7468e-02, 3.4012e-01, 4.4953e-01, 4.5698e-01, + 2.9457e-01, 5.1227e-01, 5.2810e-01, 7.8482e-01, + 3.4909e-01, 8.6832e-01, 2.8544e-01, 4.3171e-01, + 4.6706e-01, 6.8312e-01, 4.0593e-01, 5.5164e-01, + 4.3321e-01, 5.3334e-01, 4.0228e-01, 6.6474e-01, + 5.9923e-02, 4.9814e-01, 3.1823e-01, 2.7113e-01, + 9.4443e-01, 6.0224e-01, 7.4800e-01, 8.6611e-01, + 9.1513e-01, 3.6846e-01, 2.0848e-01, 6.1374e-01, + 9.2960e-01, 6.5074e-01, 9.9559e-01, 2.8175e-01, + 4.7907e-01, 2.3395e-01, 4.2341e-01, 3.1732e-01, + 7.4312e-02, 7.5262e-01, 3.5443e-01, 1.0318e-02, + 2.2228e-01, 8.9822e-01, 4.1342e-01, 5.8355e-01, + 1.7611e-01, 1.6604e-02, 4.8518e-01, 8.7768e-01, + 7.1511e-01, 3.0722e-02, 4.5888e-01, 5.7548e-01, + 9.0778e-01, 4.3445e-02, 3.5396e-01, 4.8016e-01, + 4.4230e-02, 9.9890e-01, 3.9145e-01, 2.9800e-01, + 6.1930e-01, 3.9548e-01, 3.4855e-01, 8.7740e-01, + 3.8543e-01, 6.6978e-01, 9.4785e-01, 4.1594e-01, + 8.4757e-01, 8.1133e-01, 5.6867e-02, 5.5226e-01, + 5.8939e-02, 5.7339e-01, 1.1663e-01, 6.6088e-02, + 1.8693e-01, 9.0155e-01, 5.9654e-01, 3.1837e-01, + 5.0504e-01, 6.4980e-01, 9.5165e-01, 7.1873e-01, + 4.5242e-01, 8.6374e-01, 4.6175e-01, 2.2611e-01, + 1.8382e-01, 3.6584e-01, 6.7886e-02, 7.5200e-02, + 8.3070e-01, 3.0320e-01, 9.8572e-01, 9.5629e-01, + 8.1226e-01, 9.5778e-01, 1.0918e-01, 4.0952e-01, + 7.0520e-01, 8.3725e-02, 7.8669e-01, 6.6612e-01, + 4.0295e-01, 4.8172e-01, 6.7617e-01, 8.8344e-01, + 9.7812e-01, 4.7845e-01, 1.0589e-01, 9.0709e-01, + 9.5599e-01, 6.2792e-01, 8.6374e-01, 5.8811e-01, + 6.0978e-01, 5.2608e-01, 9.0717e-01, 8.6568e-01, + 7.4107e-01, 1.1724e-01, 5.3682e-01, 2.8650e-01, + 8.3774e-01, 2.3658e-01, 7.3055e-01, 4.1747e-01, + 3.8409e-01, 8.0411e-01, 7.2906e-01, 8.5363e-01, + 2.0820e-01, 8.0698e-01, 5.4203e-01, 4.8744e-01, + 5.9718e-01, 9.5159e-01, 5.9867e-01, 6.4359e-01, + 2.5597e-01, 3.0317e-01, 6.6206e-01, 5.1466e-01, + 9.4856e-01, 2.4915e-01, 7.6198e-01, 1.5861e-02, + 2.1708e-01, 1.1645e-02, 7.9476e-01, 9.2575e-01, + 6.7664e-01, 4.2133e-01, 3.3009e-01, 7.6266e-01, + 1.6946e-01, 1.6240e-01, 9.3099e-01, 7.5739e-01, + 4.9141e-01, 6.4062e-02, 3.2170e-02, 3.2530e-01, + 1.2979e-01, 2.9704e-01, 3.2789e-01, 2.5535e-01, + 9.4932e-01, 5.1161e-01, 2.7674e-01, 5.8229e-01, + 6.3609e-01, 9.9252e-01, 9.0421e-02, 2.4892e-01, + 5.9265e-01, 9.3719e-01, 3.9770e-01, 3.8402e-01, + 1.3360e-01, 8.5620e-01, 3.1692e-01, 5.1660e-01, + 9.5131e-01, 3.8815e-01, 7.3377e-01, 2.1604e-01, + 8.0984e-01, 5.4329e-01, 8.9375e-01, 9.7503e-01, + 7.6707e-01, 3.0482e-01, 1.3642e-01, 1.5375e-01, + 1.1664e-01, 6.0092e-01, 3.7722e-01, 6.7558e-01, + 9.1306e-01, 4.7166e-01, 4.9053e-01, 4.7589e-01, + 7.3640e-01, 1.8433e-01, 8.1768e-01, 7.1966e-01, + 4.5083e-01, 3.3424e-02, 1.6627e-01, 2.2704e-02, + 3.6462e-01, 8.1434e-01, 3.7133e-01, 8.8699e-01, + 2.4828e-01, 6.5800e-01, 8.5523e-01, 3.6767e-01, + 1.2518e-01, 5.6608e-03, 9.2298e-01, 5.8367e-01, + 2.1481e-01, 5.0742e-01, 1.9039e-01, 2.3495e-01, + 5.4404e-01, 3.6909e-01, 4.9871e-01, 9.8443e-01, + 8.3432e-01, 3.3951e-01, 9.1294e-01, 6.4420e-01, + 3.3950e-01, 5.7430e-01, 9.6796e-01, 8.2992e-01, + 3.6682e-01, 5.1895e-01, 4.5942e-01, 1.0992e-01, + 1.6148e-01, 7.7366e-01, 1.0734e-01, 1.5092e-01, + 5.9359e-01, 5.9202e-01, 6.6171e-01, 9.7101e-01, + 2.3146e-01, 6.7431e-01, 2.2316e-01, 7.9158e-01, + 6.0714e-01, 8.9981e-01, 5.6367e-01, 5.8087e-02, + 3.3026e-01, 3.8922e-01, 4.8605e-01, 4.9868e-01, + 2.3291e-01, 7.2357e-01, 9.8898e-01, 6.9764e-01, + 7.7170e-01, 3.4277e-02, 2.2283e-01, 9.1702e-01, + 6.5624e-02, 6.0656e-01, 3.2293e-01, 3.1288e-01, + 8.9296e-01, 8.0019e-01, 1.5753e-01, 1.6827e-01, + 9.2928e-04, 7.8682e-01, 7.2607e-01, 1.3459e-01, + 1.7782e-01, 4.9229e-01, 7.3527e-01, 6.0846e-01, + 5.9970e-01, 5.9203e-01, 5.0594e-02, 8.4256e-01, + 2.0525e-01, 2.4114e-01, 6.6307e-01, 5.7161e-01, + 3.0589e-01, 6.9218e-01, 2.2955e-01, 5.3125e-01, + 5.4542e-01, 7.7805e-01, 9.8328e-01, 1.5098e-01, + 8.6051e-01, 3.0543e-01, 8.4604e-01, 2.0176e-01, + 4.4216e-01, 6.7534e-01, 4.6552e-01, 1.4717e-01, + 1.3506e-01, 5.8764e-01, 9.3422e-01, 6.4074e-02, + 3.3773e-01, 5.7824e-01, 7.9107e-01, 1.3758e-01, + 4.4704e-02, 5.2611e-01, 3.7652e-01, 5.3796e-01, + 9.8105e-01, 3.4618e-01, 7.2700e-01, 9.4524e-01, + 7.1978e-02, 1.4573e-01, 5.6411e-01, 7.1441e-01, + 1.9767e-01, 1.6079e-01, 2.3638e-01, 3.6422e-01, + 3.9279e-01, 9.1192e-01, 8.2524e-01, 4.6723e-01, + 9.0043e-01, 1.3223e-03, 4.2797e-01, 1.8204e-01, + 3.7267e-01, 6.6259e-01, 7.9631e-01, 3.0493e-01, + 5.0885e-01, 8.5562e-01, 1.1331e-01, 9.8719e-01, + 1.7280e-01, 8.7981e-01, 5.5505e-01, 7.7485e-01, + 4.0930e-01, 7.3886e-01, 5.6965e-02, 4.9206e-01, + 2.7155e-01, 1.5581e-01, 2.3386e-01, 4.3266e-01, + 7.7529e-01, 7.5067e-02, 2.5397e-01, 9.4814e-01, + 9.6142e-01, 8.3097e-01, 5.0218e-01, 9.1265e-01, + 2.8372e-01, 3.9980e-01, 5.4897e-01, 2.1594e-01, + 9.3294e-01, 5.4688e-01, 8.6351e-01, 5.3989e-01, + 8.0554e-01, 9.0137e-01, 9.3937e-01, 7.9889e-01, + 5.0169e-01, 9.8315e-01, 4.6786e-01, 8.1309e-01, + 5.9596e-01, 4.7187e-01, 6.3017e-01, 9.6252e-01, + 8.2351e-01, 1.7638e-01, 3.9039e-02, 5.8827e-01, + 4.1792e-01, 7.3715e-01, 4.2459e-01, 1.6410e-01, + 7.9534e-01, 8.3015e-01, 4.4691e-01, 8.4333e-02, + 1.7140e-01, 9.2049e-01, 8.4713e-01, 9.8495e-01, + 8.7326e-01, 8.9186e-01, 8.9461e-01, 7.6165e-01, + 5.1863e-01, 9.0112e-01, 6.7544e-01, 2.1724e-01, + 4.6683e-01, 2.3202e-01, 9.8523e-01, 8.8973e-02, + 6.0117e-01, 4.6704e-01, 9.9637e-01, 1.6636e-01, + 3.5168e-01, 7.7266e-01, 9.0598e-01, 9.0368e-01, + 4.4043e-01, 4.7120e-01, 7.6647e-01, 1.1084e-01, + 2.3819e-01, 9.6001e-01, 9.8689e-01, 2.3260e-01, + 5.2772e-01, 2.2360e-01, 9.2191e-01, 8.0228e-01, + 8.4431e-01, 5.3234e-01, 2.9951e-02, 6.1181e-02, + 3.6272e-01, 9.8281e-01, 9.9138e-01, 5.9192e-01, + 9.2206e-01, 3.7819e-01, 3.1175e-01, 8.8393e-01, + 7.9849e-01, 5.1811e-01, 2.9878e-01, 7.0659e-03, + 5.3577e-01, 5.7861e-01, 9.5654e-01, 8.4606e-01, + 7.8324e-01, 6.0075e-01, 8.1177e-01, 8.4371e-01, + 3.4033e-01, 9.2437e-01, 4.5828e-01, 5.0331e-01, + 4.4795e-01, 7.0522e-01, 6.9947e-01, 2.2760e-01, + 6.6935e-01, 1.7435e-01, 4.4039e-01, 1.6653e-01, + 4.7153e-02, 9.0149e-02, 7.3259e-01, 6.9735e-01, + 7.5150e-01, 8.6004e-01, 6.1248e-01, 8.5985e-01, + 8.8200e-01, 4.8501e-01, 7.3720e-01, 8.0633e-01, + 4.8185e-01, 6.4752e-01, 5.6419e-01, 3.9386e-01, + 8.0603e-01, 5.0349e-01, 1.2778e-01, 2.0548e-01, + 1.5821e-01, 1.6556e-01, 7.1631e-01, 4.0624e-01, + 1.3606e-01, 6.1183e-01, 3.9555e-01, 1.0561e-01, + 2.8675e-01, 5.2567e-02, 7.5976e-01, 7.9129e-02, + 7.3730e-01, 8.3241e-01, 7.1875e-01, 1.1856e-01, + 8.6258e-02, 5.6471e-01, 2.5785e-02, 8.1635e-01, + 6.3949e-02, 1.8129e-01, 6.7175e-01, 3.8091e-02, + 2.2187e-01, 7.4485e-01, 7.9801e-01, 5.3716e-01, + 4.1435e-02, 9.8612e-01, 5.7251e-01, 7.8581e-01, + 2.8949e-01, 7.0273e-01, 8.5312e-01, 6.0211e-01, + 4.8109e-01, 7.5446e-01, 1.5074e-01, 8.6119e-01, + 6.0038e-01, 9.8757e-01, 4.5262e-03, 4.2661e-01, + 4.7783e-02, 4.0508e-01, 3.0956e-01, 9.5069e-01, + 5.6196e-01, 7.6732e-01, 9.4765e-01, 2.0531e-01, + 6.1458e-01, 5.0798e-02, 5.9745e-01, 5.1827e-01, + 8.9350e-01, 6.1221e-01, 8.1354e-01, 6.6283e-01, + 2.1505e-01, 8.9438e-01, 9.4276e-01, 7.0349e-01, + 3.8506e-01, 4.0799e-01, 3.0782e-02, 5.2799e-01, + 5.3057e-01, 2.7077e-02, 7.8361e-01, 7.3240e-01, + 3.5031e-01, 6.4726e-01, 2.2415e-01, 6.0831e-01, + 2.4833e-02, 3.5753e-01, 6.0782e-01, 5.4172e-02, + 4.9722e-01, 5.4081e-01, 9.9252e-01, 1.6883e-01, + 7.4341e-01, 5.9899e-01, 5.2520e-01, 6.9027e-01, + 3.9066e-01, 2.0380e-01, 6.7595e-01, 1.5434e-01, + 5.9520e-01, 1.2884e-01, 6.0210e-01, 3.2402e-01, + 8.5293e-01, 7.4237e-01, 1.0054e-02, 2.4596e-01, + 7.4130e-01, 5.2280e-01, 8.0440e-01, 6.1296e-01, + 2.0068e-01, 2.5059e-01, 9.8719e-01, 9.6879e-02, + 7.7269e-01, 3.4500e-01, 6.1866e-02, 4.6024e-01, + 2.0564e-01, 4.1027e-01, 6.0301e-01, 4.6657e-01, + 6.1033e-01, 4.8262e-01, 8.8721e-01, 5.7207e-01, + 3.8954e-01, 9.6602e-01, 9.8296e-01, 3.0700e-01, + 4.7009e-01, 6.1393e-01, 3.6798e-01, 4.6415e-01, + 5.5804e-01, 7.3157e-01, 3.9789e-02, 5.7521e-01, + 2.3897e-01, 2.7612e-01, 3.6370e-01, 2.3572e-01, + 7.5048e-01, 7.4924e-01, 5.2436e-01, 4.1265e-01, + 1.0055e-01, 6.8976e-01, 9.0139e-01, 5.4326e-01, + 5.6119e-01, 8.8100e-01, 4.3479e-01, 1.6981e-01, + 5.4168e-01, 4.0741e-02, 3.7419e-01, 6.0348e-01, + 4.7511e-02, 9.1892e-02, 2.9757e-01, 7.9735e-01, + 4.0023e-02, 8.0662e-01, 3.5945e-01, 4.4613e-01, + 4.0985e-01, 6.4909e-01, 8.2913e-01, 5.6092e-01, + 6.1720e-01, 2.2445e-01, 9.2177e-01, 5.4056e-01, + 9.9170e-02, 4.0349e-01, 1.0757e-01, 4.6385e-01, + 9.1243e-01, 9.6524e-01, 1.5630e-02, 1.2372e-02, + 6.8277e-01, 6.6230e-01, 4.2663e-01, 1.1331e-01, + 1.1843e-01, 8.7492e-01, 3.2309e-01, 1.8141e-01, + 4.6109e-01, 9.2364e-01, 3.4677e-01, 9.5054e-01, + 9.0661e-01, 2.2803e-01, 2.8323e-01, 1.1518e-01, + 3.3279e-01, 7.6139e-01, 3.8271e-01, 2.4706e-02, + 3.9825e-01, 9.4575e-02, 1.2221e-01, 3.4147e-01, + 8.3339e-01, 5.0504e-02, 2.8865e-01, 2.4651e-01, + 3.6862e-01, 2.4803e-01, 2.1618e-01, 6.2499e-01, + 3.4456e-01, 6.0018e-02, 2.1179e-02, 1.1625e-01, + 4.2536e-01, 6.7639e-01, 3.6221e-01, 1.9357e-01, + 6.0271e-01, 7.0261e-01, 1.1726e-01, 6.0181e-01, + 8.9599e-01, 8.1322e-01, 3.7877e-01, 4.3523e-01, + 4.3914e-01, 8.8124e-01, 3.0515e-01, 6.7038e-01, + 6.0127e-01, 7.6653e-01, 2.9249e-02, 2.2096e-01, + 9.4668e-01, 8.5878e-01, 4.5109e-01, 4.7936e-01, + 6.5717e-01, 6.8862e-01, 7.6992e-01, 9.3225e-01, + 8.5394e-03, 4.3708e-01, 7.2233e-01, 1.6987e-01, + 5.4738e-02, 2.4823e-02, 6.7652e-01, 1.7166e-01, + 1.1735e-01, 2.5575e-01, 7.2176e-01, 3.0234e-01, + 7.1567e-01, 4.3413e-01, 8.1045e-01, 4.8844e-01, + 1.4022e-01, 7.3062e-01, 4.2223e-01, 4.7326e-01, + 1.9276e-02, 4.8944e-01, 4.0502e-01, 8.2884e-01, + 9.5804e-01, 1.5109e-01, 6.8776e-01, 3.4887e-02, + 6.7033e-01, 7.8144e-01, 1.8732e-01, 3.9434e-01, + 7.8051e-01, 5.3829e-01, 4.1271e-01, 2.6616e-01, + 1.6403e-01, 5.4211e-01, 4.1375e-01, 3.8938e-01, + 3.9980e-01, 8.9495e-01, 9.2956e-01, 5.7320e-01, + 4.4129e-01, 7.3360e-01, 4.8990e-01, 7.0508e-01, + 9.3550e-01, 2.6797e-01, 1.4940e-01, 2.8127e-01, + 5.0946e-01, 8.7169e-01, 5.9653e-01, 5.9401e-01, + 2.2895e-01, 7.8885e-01, 9.8315e-01, 8.8748e-01, + 7.5977e-01, 6.6367e-01, 2.3954e-01, 3.7040e-01, + 1.1940e-01, 4.6258e-01, 9.2222e-01, 4.4173e-01, + 7.7064e-01, 2.1576e-01, 2.7241e-01, 1.4843e-01, + 6.5290e-01, 3.1076e-01, 4.9139e-01, 2.5075e-02, + 9.6030e-01, 9.1738e-01, 6.8115e-01, 8.9410e-01, + 9.2336e-01, 3.2098e-01, 9.9084e-01, 2.9840e-01, + 9.3566e-01, 8.7476e-01, 7.3520e-01, 7.4897e-01, + 5.0484e-01, 2.8760e-01, 5.5015e-01, 3.5047e-01, + 9.0398e-01, 4.8261e-01, 4.4223e-02, 2.8056e-01, + 2.3169e-01, 3.8516e-01, 5.1483e-01, 3.1543e-01, + 6.3024e-01, 9.4733e-02, 4.7810e-01, 5.5539e-01, + 5.7289e-02, 3.2199e-01, 5.0710e-01, 7.9558e-01, + 1.6270e-01, 7.9383e-01, 1.4537e-02, 8.9211e-01, + 3.7452e-01, 2.0368e-01, 5.9692e-01, 2.5907e-01, + 9.5016e-01, 6.1173e-01, 5.1952e-01, 5.1345e-01, + 8.7632e-01, 1.7394e-01, 2.4675e-01, 7.4916e-01, + 9.8520e-02, 4.5166e-01, 9.0804e-01, 8.2228e-01, + 1.9968e-01, 8.0784e-01, 9.4766e-01, 7.3145e-01, + 4.4231e-01, 5.8073e-01, 9.6792e-01, 1.5536e-01, + 1.6897e-01, 4.6301e-02, 6.9308e-01, 6.5970e-01, + 7.7933e-01, 7.7180e-01, 7.6291e-01, 6.9430e-01, + 2.8253e-01, 9.3597e-01, 5.5534e-01, 7.0535e-01, + 5.7773e-01, 1.7953e-01, 8.2295e-02, 6.2018e-01, + 5.0550e-01, 7.1159e-01, 1.0988e-01, 4.4791e-01, + 9.1384e-01, 9.0103e-01, 3.6527e-01, 6.0135e-02, + 2.6150e-02, 4.6299e-01, 2.4526e-01, 3.1743e-01, + 4.2068e-01, 3.1271e-01, 7.5573e-01, 2.9495e-01, + 8.0565e-01, 2.3590e-01, 9.1131e-01, 2.8576e-01, + 2.0058e-01, 5.4518e-01, 6.9041e-01, 5.0889e-01, + 7.8903e-01, 6.8462e-01, 1.1413e-01, 2.1967e-01, + 1.0436e-01, 5.2052e-03, 5.2858e-01, 7.2315e-01, + 5.8394e-01, 7.4019e-01, 1.9528e-01, 9.0704e-01, + 5.3717e-01, 5.1037e-01, 9.7610e-01, 6.4359e-01, + 6.7128e-01, 4.9653e-01, 8.6929e-01, 7.7971e-01, + 8.0348e-01, 9.0766e-01, 7.7183e-01, 3.4928e-01, + 3.9630e-01, 3.8015e-01, 3.9147e-01, 8.9063e-01, + 7.3734e-01, 6.4280e-01, 2.0891e-01, 7.2230e-01, + 6.9356e-01, 2.6885e-01, 7.5346e-01, 1.8015e-02, + 9.7342e-01, 7.5843e-01, 3.9930e-02, 5.3224e-01, + 2.4238e-01, 7.0185e-01, 4.2115e-01, 7.0334e-01, + 9.0349e-02, 6.6656e-01, 3.1757e-01, 6.7208e-01, + 5.6411e-01, 4.9627e-01, 5.3507e-01, 9.0409e-01, + 6.4014e-01, 8.4199e-01, 5.6660e-01, 1.3654e-01, + 7.8412e-01, 4.1112e-01, 2.8374e-01, 6.5040e-01, + 9.6597e-01, 1.1932e-01, 1.4265e-01, 5.1651e-01, + 6.2252e-01, 5.9412e-01, 5.8400e-01, 4.7015e-01, + 8.7865e-01, 2.1175e-01, 4.5409e-01, 9.5729e-01, + 6.2691e-01, 4.0234e-01, 8.7349e-01, 9.0944e-01]), size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.5425, 0.1860, 0.7804, ..., 0.3375, 0.7494, 0.4073]) +tensor([0.3846, 0.0429, 0.8390, ..., 0.4444, 0.4671, 0.5693]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -754,271 +375,378 @@ Rows: 10000 Size: 100000000 NNZ: 1000 Density: 1e-05 -Time: 7.6851487159729 seconds +Time: 0.02031111717224121 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '225815', '-ss', '10000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.501307487487793} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '51695', '-ss', '10000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 2.430596351623535} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), - col_indices=tensor([ 621, 8067, 8701, 6486, 5538, 5824, 379, 1918, 5000, - 5124, 6265, 1757, 7171, 5785, 2098, 8110, 8680, 9293, - 3536, 8102, 4182, 8879, 9877, 2040, 7911, 510, 3802, - 7722, 6811, 1404, 2410, 8431, 3523, 6495, 6498, 6685, - 7173, 7872, 4534, 9047, 7100, 8447, 6072, 5630, 5799, - 190, 6891, 1441, 9822, 4335, 8399, 1784, 1404, 5633, - 6623, 2518, 6475, 3954, 4736, 1500, 5281, 4391, 6371, - 886, 805, 6503, 5528, 1428, 6887, 8163, 4623, 5541, - 4640, 3383, 6444, 4711, 4505, 3203, 7934, 4654, 687, - 7329, 1943, 6395, 8455, 1952, 3346, 9199, 2955, 3712, - 7082, 8540, 6711, 1353, 3492, 6382, 9227, 3128, 4738, - 7860, 8372, 15, 1552, 8319, 9811, 3777, 9596, 8620, - 4064, 4884, 9629, 5329, 7715, 7613, 6097, 4214, 6601, - 8769, 7774, 2256, 3188, 9906, 6088, 7859, 2481, 3977, - 5219, 4949, 6267, 3615, 4199, 9995, 444, 6572, 6590, - 7908, 8736, 1682, 7932, 9231, 9498, 4969, 8032, 7386, - 3757, 5388, 5500, 7007, 497, 6899, 924, 5470, 4242, - 8349, 988, 321, 277, 6809, 2621, 4996, 3392, 2070, - 8599, 2865, 1951, 2114, 8145, 435, 2953, 956, 2814, - 1486, 8770, 3701, 8858, 3904, 8946, 1921, 2720, 8762, - 9358, 9717, 5029, 4186, 4041, 3158, 5636, 5605, 4525, - 5593, 7451, 6146, 5196, 850, 4025, 7864, 9672, 7108, - 777, 2450, 9967, 3039, 7352, 7620, 5364, 1636, 7924, - 9792, 4541, 3656, 1580, 8687, 4603, 7545, 1231, 9649, - 2748, 7212, 6116, 9217, 2342, 1946, 3303, 6323, 5879, - 4477, 5340, 4516, 5722, 3754, 6742, 650, 8207, 6470, - 2264, 3353, 2048, 8251, 400, 1044, 8345, 2532, 2124, - 1395, 5517, 6024, 3422, 7067, 1645, 6318, 3535, 6960, - 308, 4401, 9204, 1112, 4901, 4265, 8909, 888, 7274, - 2714, 4875, 7150, 2797, 4106, 4244, 2138, 3876, 2559, - 3408, 2983, 6763, 1791, 1130, 1328, 3454, 3597, 3047, - 9406, 8234, 2404, 5313, 8028, 8018, 4816, 2500, 8560, - 3279, 4533, 506, 4358, 9720, 9432, 5299, 1497, 4103, - 4459, 2841, 3387, 6518, 8285, 1486, 4206, 317, 3410, - 1281, 6931, 471, 5237, 7799, 9052, 1693, 1883, 977, - 3915, 377, 6991, 2617, 5482, 7380, 2319, 6326, 4913, - 63, 6407, 6245, 8595, 8116, 5131, 5553, 3847, 9485, - 7909, 3795, 8618, 7145, 3635, 6413, 9128, 3130, 8692, - 2576, 4366, 8928, 6249, 7783, 8379, 9553, 1007, 4718, - 1322, 4530, 5651, 4480, 2964, 4421, 6311, 2055, 9796, - 5531, 7518, 7953, 2916, 7603, 6190, 5496, 6074, 3416, - 4536, 338, 5349, 4767, 7727, 61, 2223, 5727, 6702, - 1168, 3309, 6908, 120, 2145, 7426, 217, 6262, 4322, - 710, 1996, 1502, 6744, 3362, 9551, 9541, 4765, 5555, - 7677, 3714, 9116, 9201, 9677, 808, 3444, 7948, 3547, - 3147, 8821, 4131, 7853, 4873, 3727, 8956, 9242, 463, - 6102, 3207, 2647, 2009, 6976, 8113, 5383, 9950, 9210, - 2607, 6196, 3792, 5279, 4469, 6166, 8307, 3139, 8294, - 3045, 8587, 5732, 6420, 4767, 6384, 3262, 6516, 9124, - 5629, 9140, 4268, 7884, 9280, 2845, 4396, 1695, 5892, - 9646, 4870, 474, 711, 5269, 9561, 510, 234, 6036, - 1463, 1833, 5092, 1789, 1299, 8945, 842, 2582, 1165, - 9387, 4647, 18, 2357, 8595, 5475, 9627, 2152, 6592, - 7559, 3616, 6551, 6061, 5016, 351, 6411, 5971, 9815, - 8118, 3528, 9738, 1760, 6048, 7402, 1939, 2804, 8305, - 1191, 7749, 4316, 6651, 179, 6542, 9648, 2265, 7391, - 7426, 6846, 1001, 1073, 1131, 6087, 4908, 4135, 4320, - 7720, 1601, 7467, 9773, 8874, 2360, 6153, 8937, 6481, - 3762, 9196, 7483, 944, 7320, 7745, 860, 3192, 2592, - 5428, 1558, 4118, 6406, 4829, 7167, 5223, 5427, 1349, - 5294, 7920, 7467, 9863, 7414, 1430, 2272, 4749, 9366, - 5823, 7199, 7730, 4037, 4741, 8062, 2210, 4947, 2286, - 3927, 3530, 6602, 7303, 6039, 6871, 649, 2184, 5850, - 8991, 9883, 1962, 7997, 8066, 2827, 485, 73, 5074, - 4027, 8247, 1956, 466, 6094, 7363, 8807, 3485, 4713, - 8857, 4550, 6148, 5177, 6630, 3729, 5962, 2364, 8027, - 1540, 5512, 8420, 1833, 166, 185, 1717, 5236, 2057, - 1920, 8729, 7603, 7798, 4581, 7903, 2753, 3830, 1012, - 3358, 98, 1431, 3548, 1765, 7173, 2113, 1774, 5074, - 9875, 5748, 6477, 3076, 4013, 5494, 142, 6261, 1546, - 735, 8132, 3760, 3833, 8392, 2866, 3747, 2238, 5039, - 9991, 3930, 3295, 4281, 6582, 1507, 2339, 8308, 4795, - 6042, 9144, 5178, 7200, 1854, 5289, 1036, 263, 4673, - 1755, 7843, 9590, 1674, 1997, 5404, 7842, 2316, 4765, - 903, 4521, 1615, 9734, 2683, 9393, 4743, 465, 2256, - 1490, 4969, 5519, 7553, 9750, 1156, 9506, 2573, 7753, - 8858, 2242, 2353, 4052, 130, 5566, 7279, 9261, 2032, - 5574, 9697, 2307, 6357, 4851, 125, 7010, 9557, 7434, - 1764, 5376, 8681, 520, 1147, 3019, 2766, 4221, 6787, - 913, 9582, 7327, 3426, 4085, 9753, 397, 1757, 2467, - 6219, 9421, 4979, 4880, 9636, 399, 4017, 6742, 7711, - 4977, 597, 3788, 7425, 4538, 5803, 7511, 707, 6862, - 4448, 2935, 796, 5761, 8972, 3222, 5360, 4073, 3780, - 7587, 3935, 3659, 3516, 3305, 6397, 835, 8897, 2260, - 8074, 4151, 59, 9881, 5722, 4749, 4490, 8386, 9531, - 1681, 8322, 7280, 7383, 9110, 9496, 3979, 1667, 1609, - 605, 7186, 3289, 9548, 9178, 3499, 8700, 8958, 6798, - 4712, 6079, 3652, 2893, 6478, 6228, 2105, 1064, 1126, - 594, 1239, 5010, 9616, 2691, 5967, 1503, 1488, 3756, - 3247, 4285, 4420, 2495, 3105, 2726, 8612, 1019, 7638, - 301, 3462, 8224, 7646, 2804, 892, 3360, 9148, 9972, - 4302, 6615, 1094, 5589, 9642, 9897, 7341, 5880, 2250, - 504, 6779, 1200, 8941, 3565, 8375, 7844, 9898, 7773, - 866, 2804, 8221, 7345, 7948, 44, 1443, 2712, 6139, - 27, 5009, 6474, 7863, 6279, 2280, 2088, 3757, 8456, - 8642, 2733, 1757, 7233, 5141, 3949, 8447, 2690, 3294, - 2211, 161, 6191, 1188, 871, 3978, 5524, 3757, 7095, - 4586, 4518, 8935, 4168, 5727, 4325, 5573, 274, 8627, - 5160, 6998, 5604, 9203, 1927, 6912, 3284, 5635, 8095, - 4022, 8206, 1927, 9163, 7500, 7635, 8229, 2377, 4284, - 5090, 9687, 8448, 6150, 8497, 8068, 7265, 2977, 4847, - 9227, 4643, 5971, 3091, 9617, 1463, 3964, 7383, 3704, - 5970, 2528, 4339, 780, 6389, 7456, 1723, 7888, 8852, - 109, 5808, 2711, 1313, 97, 5642, 753, 4358, 9054, - 5886, 9449, 104, 2884, 1499, 7364, 9304, 4311, 9143, - 7421, 2337, 2694, 3377, 3997, 3023, 7414, 4869, 419, - 3257, 224, 4395, 7186, 1420, 2887, 9106, 1717, 5082, - 3894, 8215, 6787, 4497, 3468, 9059, 3488, 9487, 7280, - 6265, 4060, 8912, 5499, 4442, 7535, 6018, 6368, 1204, - 8864, 9258, 6588, 5167, 2209, 2012, 4429, 8470, 8234, - 9211, 4382, 7963, 5391, 591, 4867, 8168, 9279, 897, - 4170]), - values=tensor([0.4878, 0.2366, 0.8733, 0.8071, 0.3473, 0.2387, 0.9164, - 0.3754, 0.7791, 0.5219, 0.2035, 0.6398, 0.4422, 0.3796, - 0.7410, 0.0343, 0.0746, 0.6347, 0.0691, 0.8108, 0.6743, - 0.7644, 0.4125, 0.8362, 0.4857, 0.8892, 0.4751, 0.0020, - 0.5709, 0.6384, 0.1497, 0.3464, 0.3034, 0.5189, 0.2843, - 0.8914, 0.9227, 0.3685, 0.3834, 0.0155, 0.1265, 0.8952, - 0.3893, 0.8670, 0.7098, 0.4601, 0.8885, 0.0046, 0.1082, - 0.5850, 0.3348, 0.6623, 0.6228, 0.0161, 0.7512, 0.8534, - 0.5169, 0.3788, 0.1287, 0.4768, 0.5501, 0.8770, 0.6106, - 0.3540, 0.4183, 0.1505, 0.6415, 0.2760, 0.4263, 0.1294, - 0.2381, 0.3413, 0.7792, 0.3560, 0.7846, 0.6195, 0.9067, - 0.9607, 0.5449, 0.5238, 0.7187, 0.7121, 0.1293, 0.8894, - 0.0511, 0.0830, 0.2825, 0.4900, 0.0409, 0.2002, 0.4854, - 0.3856, 0.8627, 0.8310, 0.5780, 0.7482, 0.3676, 0.5167, - 0.4530, 0.8058, 0.4658, 0.0519, 0.2134, 0.3241, 0.3833, - 0.1132, 0.1256, 0.5042, 0.0189, 0.1971, 0.1400, 0.7715, - 0.1621, 0.0713, 0.8856, 0.2929, 0.3989, 0.8128, 0.0289, - 0.2640, 0.5075, 0.4705, 0.8865, 0.9171, 0.4145, 0.4919, - 0.4500, 0.5633, 0.3618, 0.0032, 0.3175, 0.9427, 0.8902, - 0.2880, 0.6791, 0.9616, 0.0047, 0.8354, 0.3680, 0.2314, - 0.5566, 0.6728, 0.8761, 0.3109, 0.4191, 0.1257, 0.0231, - 0.4635, 0.8760, 0.8559, 0.1650, 0.1720, 0.8840, 0.1952, - 0.5716, 0.4436, 0.6030, 0.9799, 0.4962, 0.0060, 0.0091, - 0.1820, 0.1058, 0.9674, 0.3332, 0.5543, 0.3055, 0.7098, - 0.5098, 0.5712, 0.3186, 0.2511, 0.9486, 0.2897, 0.7906, - 0.4682, 0.9460, 0.4947, 0.0711, 0.2903, 0.4667, 0.5414, - 0.0305, 0.9032, 0.1444, 0.0549, 0.4534, 0.0693, 0.9432, - 0.7050, 0.0278, 0.6850, 0.1700, 0.0189, 0.3286, 0.1955, - 0.6291, 0.1692, 0.8585, 0.9646, 0.7537, 0.6946, 0.7438, - 0.4102, 0.6268, 0.2998, 0.4067, 0.3522, 0.5813, 0.2936, - 0.9445, 0.1475, 0.9903, 0.8673, 0.8393, 0.5631, 0.2710, - 0.4872, 0.2561, 0.4261, 0.0249, 0.8866, 0.7154, 0.7262, - 0.4255, 0.2060, 0.4915, 0.5716, 0.3734, 0.5359, 0.0582, - 0.7274, 0.3193, 0.1823, 0.9469, 0.1962, 0.8306, 0.0367, - 0.3559, 0.8060, 0.2544, 0.7597, 0.1912, 0.5306, 0.2236, - 0.1306, 0.0906, 0.3830, 0.2840, 0.1455, 0.7884, 0.5093, - 0.2096, 0.7409, 0.5736, 0.0118, 0.2511, 0.1254, 0.6493, - 0.5987, 0.1422, 0.7590, 0.3750, 0.0146, 0.3755, 0.5252, - 0.4470, 0.1730, 0.8157, 0.1781, 0.3561, 0.5010, 0.2990, - 0.7060, 0.9531, 0.0424, 0.8444, 0.0333, 0.9215, 0.3468, - 0.6299, 0.5208, 0.5070, 0.7369, 0.3345, 0.6893, 0.6628, - 0.0479, 0.2533, 0.8987, 0.9263, 0.7389, 0.2881, 0.3437, - 0.4669, 0.0061, 0.2705, 0.7551, 0.5375, 0.9128, 0.4733, - 0.3625, 0.3041, 0.3906, 0.4750, 0.5152, 0.6836, 0.5047, - 0.3035, 0.6463, 0.6891, 0.4384, 0.3322, 0.0632, 0.1828, - 0.0306, 0.6593, 0.7636, 0.2683, 0.3746, 0.6911, 0.2833, - 0.2470, 0.5171, 0.6073, 0.6043, 0.2759, 0.6224, 0.0070, - 0.6025, 0.5674, 0.9167, 0.4212, 0.0308, 0.3773, 0.8746, - 0.6407, 0.5547, 0.0444, 0.6266, 0.5499, 0.1996, 0.9428, - 0.8289, 0.3044, 0.3689, 0.5795, 0.4388, 0.9210, 0.7518, - 0.6388, 0.2171, 0.2636, 0.4873, 0.6059, 0.1825, 0.2514, - 0.8353, 0.3177, 0.0671, 0.6724, 0.2137, 0.9634, 0.1659, - 0.8310, 0.1283, 0.7040, 0.7122, 0.7650, 0.2004, 0.0295, - 0.0888, 0.3593, 0.6433, 0.9173, 0.5749, 0.5966, 0.6545, - 0.8191, 0.5699, 0.1636, 0.7580, 0.4365, 0.7079, 0.9192, - 0.9281, 0.8754, 0.6240, 0.7560, 0.6668, 0.9111, 0.9369, - 0.0367, 0.7533, 0.4804, 0.3166, 0.9053, 0.4957, 0.5130, - 0.7835, 0.3616, 0.2789, 0.5579, 0.6716, 0.4682, 0.6876, - 0.0966, 0.9182, 0.5997, 0.8196, 0.3189, 0.4501, 0.8553, - 0.2473, 0.0680, 0.4275, 0.1537, 0.0899, 0.7313, 0.8241, - 0.3081, 0.6292, 0.1662, 0.0904, 0.5149, 0.6344, 0.2456, - 0.2729, 0.2756, 0.6668, 0.4375, 0.7295, 0.4340, 0.2948, - 0.0278, 0.7870, 0.4490, 0.1408, 0.9227, 0.4041, 0.8449, - 0.5107, 0.6642, 0.1322, 0.7169, 0.8679, 0.3739, 0.7236, - 0.4248, 0.5882, 0.9469, 0.8184, 0.8365, 0.8779, 0.1038, - 0.8810, 0.9769, 0.5428, 0.3538, 0.9830, 0.9676, 0.1831, - 0.0084, 0.5971, 0.7115, 0.1927, 0.2619, 0.1005, 0.5333, - 0.2042, 0.2705, 0.6258, 0.9835, 0.9394, 0.7617, 0.3233, - 0.0297, 0.9049, 0.3704, 0.8040, 0.8975, 0.1579, 0.5446, - 0.2183, 0.2325, 0.0639, 0.2768, 0.2461, 0.4765, 0.2089, - 0.9111, 0.6567, 0.5216, 0.9797, 0.3080, 0.5219, 0.5582, - 0.3741, 0.2265, 0.1644, 0.9904, 0.9096, 0.6977, 0.7378, - 0.6163, 0.2973, 0.5170, 0.1559, 0.9194, 0.1883, 0.3665, - 0.6107, 0.4618, 0.4740, 0.0187, 0.8554, 0.8371, 0.2227, - 0.9554, 0.1756, 0.1396, 0.9691, 0.1329, 0.2855, 0.2852, - 0.5955, 0.2284, 0.7196, 0.1940, 0.7502, 0.5298, 0.9924, - 0.7439, 0.6637, 0.2900, 0.6522, 0.0204, 0.0933, 0.3725, - 0.2785, 0.1362, 0.2224, 0.2585, 0.4365, 0.6210, 0.9700, - 0.5368, 0.3375, 0.9444, 0.7297, 0.5092, 0.3376, 0.8591, - 0.9008, 0.5379, 0.9510, 0.9421, 0.0713, 0.2091, 0.6298, - 0.4005, 0.7776, 0.4989, 0.8706, 0.2922, 0.3070, 0.0813, - 0.5714, 0.2514, 0.4480, 0.5234, 0.0360, 0.0758, 0.3730, - 0.7634, 0.0856, 0.8934, 0.6490, 0.5291, 0.3184, 0.3037, - 0.3443, 0.5792, 0.5490, 0.5327, 0.4678, 0.2006, 0.8032, - 0.9436, 0.9189, 0.7953, 0.9640, 0.0058, 0.7983, 0.6143, - 0.9639, 0.7438, 0.7417, 0.1685, 0.5369, 0.7292, 0.5840, - 0.3088, 0.6745, 0.1144, 0.4342, 0.4148, 0.3081, 0.3141, - 0.7523, 0.9548, 0.1159, 0.9214, 0.7606, 0.1319, 0.0108, - 0.5213, 0.7386, 0.2722, 0.3665, 0.1771, 0.0556, 0.9859, - 0.0054, 0.2965, 0.3687, 0.8425, 0.4479, 0.3524, 0.2824, - 0.4727, 0.3410, 0.8501, 0.7125, 0.9448, 0.2352, 0.2937, - 0.6534, 0.3739, 0.6671, 0.8901, 0.3611, 0.4255, 0.2194, - 0.1776, 0.7356, 0.6315, 0.2672, 0.6863, 0.5095, 0.5719, - 0.6850, 0.4423, 0.4707, 0.8096, 0.8117, 0.4330, 0.1565, - 0.6528, 0.3855, 0.7960, 0.8457, 0.9509, 0.4271, 0.9874, - 0.2012, 0.1858, 0.4458, 0.2549, 0.0069, 0.9617, 0.8083, - 0.8286, 0.3440, 0.6245, 0.1685, 0.2887, 0.8351, 0.3371, - 0.8326, 0.2133, 0.4971, 0.1969, 0.9997, 0.0108, 0.8265, - 0.2603, 0.2486, 0.1123, 0.3933, 0.1972, 0.1286, 0.2410, - 0.9427, 0.8517, 0.1056, 0.4498, 0.3528, 0.4997, 0.1873, - 0.9308, 0.5270, 0.1818, 0.0192, 0.5147, 0.6995, 0.3808, - 0.1801, 0.1254, 0.8616, 0.9334, 0.6635, 0.6097, 0.9317, - 0.0639, 0.5688, 0.1321, 0.2406, 0.0702, 0.3025, 0.5470, - 0.2516, 0.7748, 0.5947, 0.3008, 0.0640, 0.6075, 0.7333, - 0.2489, 0.8087, 0.9366, 0.5301, 0.5997, 0.9710, 0.1167, - 0.8349, 0.0943, 0.3077, 0.1781, 0.0964, 0.5114, 0.2721, - 0.4485, 0.5358, 0.9249, 0.1281, 0.7787, 0.9696, 0.7641, - 0.9267, 0.8005, 0.2565, 0.9156, 0.0177, 0.4399, 0.6139, - 0.6561, 0.2921, 0.2455, 0.0677, 0.8007, 0.1673, 0.6272, - 0.9708, 0.7757, 0.7844, 0.4143, 0.7244, 0.3178, 0.2015, - 0.7092, 0.6947, 0.5693, 0.4803, 0.3248, 0.5740, 0.1234, - 0.7532, 0.8432, 0.5693, 0.7346, 0.8612, 0.6697, 0.0106, - 0.9867, 0.9456, 0.7600, 0.4214, 0.7451, 0.1923, 0.8683, - 0.7611, 0.2801, 0.7750, 0.6682, 0.9146, 0.0443, 0.5069, - 0.8481, 0.2446, 0.9950, 0.4152, 0.1745, 0.1637, 0.2428, - 0.6569, 0.4895, 0.4090, 0.9641, 0.2949, 0.4773, 0.4363, - 0.3083, 0.0374, 0.4019, 0.0579, 0.0686, 0.4139, 0.1952, - 0.0362, 0.0311, 0.8833, 0.6790, 0.8853, 0.7058, 0.2329, - 0.9566, 0.6724, 0.9699, 0.2549, 0.0950, 0.9403, 0.8375, - 0.7841, 0.9563, 0.7054, 0.1040, 0.8158, 0.8050, 0.1655, - 0.1587, 0.3559, 0.9451, 0.7518, 0.4895, 0.3845, 0.5434, - 0.2137, 0.1454, 0.9690, 0.7963, 0.0141, 0.6547, 0.3894, - 0.1222, 0.1580, 0.2599, 0.1493, 0.3838, 0.7658, 0.2010, - 0.8027, 0.8916, 0.5453, 0.4941, 0.7164, 0.8434, 0.4222, - 0.2960, 0.0732, 0.0275, 0.3155, 0.9582, 0.2006, 0.5100, - 0.3835, 0.7693, 0.0825, 0.5403, 0.0058, 0.5775, 0.4579, - 0.7231, 0.5432, 0.1385, 0.9942, 0.7281, 0.1494, 0.2026, - 0.0383, 0.2089, 0.1678, 0.3352, 0.3308, 0.9511, 0.9479, - 0.3486, 0.6349, 0.3617, 0.1790, 0.9290, 0.9003, 0.7128, - 0.2573, 0.5128, 0.2734, 0.8333, 0.7565, 0.2114, 0.0550, - 0.1806, 0.7785, 0.3657, 0.1751, 0.5105, 0.4138, 0.6648, - 0.0988, 0.5462, 0.5957, 0.0841, 0.7102, 0.7202, 0.1878, - 0.8772, 0.4902, 0.6123, 0.9058, 0.6380, 0.2081, 0.1591, - 0.1205, 0.1672, 0.9664, 0.6634, 0.6646, 0.2765, 0.4269, - 0.5829, 0.8144, 0.4256, 0.2309, 0.0615, 0.0926, 0.0573, - 0.0407, 0.6434, 0.2531, 0.0667, 0.6337, 0.0241, 0.7295, - 0.9133, 0.7637, 0.9403, 0.7968, 0.3787, 0.2873, 0.0225, - 0.1808, 0.3069, 0.1014, 0.5506, 0.2895, 0.7186, 0.5054, - 0.4710, 0.7466, 0.0956, 0.6689, 0.1987, 0.9374, 0.4713, - 0.8415, 0.9657, 0.9038, 0.1088, 0.8688, 0.2488, 0.6505, - 0.9593, 0.4610, 0.7212, 0.1418, 0.6637, 0.4566, 0.9474, - 0.6935, 0.5967, 0.6983, 0.4944, 0.8522, 0.4429, 0.6141, - 0.6725, 0.8987, 0.3589, 0.1096, 0.3360, 0.7261]), + col_indices=tensor([2944, 4631, 7838, 64, 7093, 5206, 1028, 310, 9606, + 1018, 6902, 7057, 1823, 4013, 4610, 9989, 4269, 4529, + 6204, 2190, 9040, 4125, 4186, 8485, 9100, 1208, 6942, + 5613, 5410, 982, 7663, 9703, 3365, 643, 8709, 5149, + 1560, 3811, 7285, 2169, 4837, 435, 8158, 77, 5709, + 4392, 8477, 214, 5447, 1230, 2352, 7618, 2372, 1855, + 9698, 8138, 9945, 2370, 5687, 685, 4433, 106, 4886, + 6383, 6506, 8296, 2570, 6015, 7735, 8565, 6870, 6825, + 6162, 5406, 357, 4114, 3650, 9189, 4601, 615, 2109, + 9546, 583, 5240, 2983, 5584, 3664, 6211, 9643, 427, + 3253, 1697, 3784, 7720, 8331, 144, 5167, 9371, 3050, + 8120, 311, 7247, 526, 2016, 559, 5116, 960, 9939, + 4437, 7192, 3190, 5204, 1362, 3918, 6955, 3497, 7938, + 3584, 768, 9858, 357, 7248, 4890, 3019, 5465, 2250, + 6450, 6315, 1323, 7946, 4804, 9385, 2390, 5192, 6218, + 6486, 9725, 8061, 6921, 2589, 581, 1321, 8748, 5258, + 8932, 3600, 1815, 3765, 4806, 1864, 8606, 4321, 8281, + 1210, 8564, 1395, 944, 9269, 4578, 851, 2516, 3733, + 4122, 5377, 8566, 3856, 7526, 2900, 7004, 3137, 4286, + 5951, 6434, 855, 2440, 3924, 4064, 8268, 6266, 7614, + 8695, 6065, 890, 1123, 3892, 8571, 852, 7199, 2977, + 6191, 6117, 9295, 9139, 1914, 8396, 8082, 1888, 5920, + 3434, 2684, 5852, 8569, 776, 8843, 6510, 1633, 8834, + 8526, 1580, 8173, 282, 6642, 7312, 3586, 1518, 1005, + 4706, 4163, 5932, 3672, 2153, 7059, 4002, 6969, 6411, + 6065, 7536, 1968, 2781, 6687, 7194, 6920, 2851, 1789, + 9756, 3005, 9630, 99, 2131, 1722, 5637, 9061, 5906, + 8732, 6783, 9448, 5100, 3577, 9652, 6175, 6234, 6704, + 7274, 4940, 771, 1465, 3148, 2594, 9088, 4863, 4452, + 4262, 3763, 6315, 2297, 9967, 167, 5404, 7440, 1234, + 4491, 9830, 2721, 8188, 3813, 5248, 4965, 9264, 2428, + 8783, 9884, 7556, 5232, 1866, 4881, 4240, 444, 3067, + 767, 9531, 8720, 9797, 8425, 5431, 8011, 9312, 4880, + 8821, 3698, 2971, 5, 3673, 267, 2436, 5203, 2055, + 6531, 9865, 8191, 8816, 5113, 1324, 2406, 853, 5434, + 2987, 1271, 1838, 833, 6506, 1146, 2917, 8166, 7909, + 3648, 1782, 1802, 2838, 4143, 631, 2015, 75, 9460, + 3849, 2112, 456, 3786, 8968, 9520, 6835, 7144, 7621, + 2315, 8703, 1731, 2031, 7103, 9099, 6237, 2016, 8915, + 5251, 258, 3215, 1913, 1648, 6070, 6349, 537, 3231, + 9264, 7547, 5721, 2677, 3735, 2594, 2432, 4830, 5593, + 5054, 5952, 3001, 8697, 8593, 1261, 9838, 9624, 9968, + 7941, 1741, 9156, 5234, 2249, 5886, 5882, 6287, 151, + 4253, 9286, 5777, 3328, 1300, 7552, 1150, 698, 5598, + 6779, 6880, 7828, 8409, 1847, 1177, 9423, 5339, 8040, + 2933, 226, 8668, 9532, 829, 7683, 1021, 5184, 1989, + 6222, 4187, 646, 8577, 348, 4530, 3057, 139, 8413, + 9470, 3528, 8527, 8781, 9727, 2925, 7182, 2238, 8597, + 1505, 4920, 6681, 6866, 4885, 4952, 1302, 8353, 6525, + 4239, 278, 7723, 9708, 2951, 4329, 9499, 847, 1705, + 7179, 4713, 4933, 6431, 7397, 1171, 1797, 9375, 2124, + 9648, 2158, 151, 8529, 5910, 7872, 8196, 6347, 4852, + 6362, 8322, 3066, 4255, 1267, 8971, 9505, 2218, 8058, + 7670, 2180, 5402, 5997, 6533, 932, 8160, 4883, 4362, + 4475, 5441, 4918, 5223, 9438, 3376, 2793, 964, 8748, + 1984, 1432, 1708, 8439, 2947, 4968, 6368, 6713, 6795, + 3148, 9913, 217, 5345, 6001, 8332, 1552, 1199, 7206, + 1308, 7825, 5277, 8289, 85, 2333, 5765, 226, 8927, + 8002, 7029, 1600, 6557, 5595, 3577, 8420, 953, 281, + 5437, 1674, 7978, 3961, 278, 6180, 7438, 6902, 7475, + 9302, 154, 2101, 2559, 9637, 8412, 7907, 1203, 2401, + 9205, 9268, 671, 2239, 1644, 2845, 8071, 5971, 7992, + 5268, 5658, 3402, 9075, 117, 9708, 7839, 6237, 1366, + 4248, 5405, 3450, 2823, 2678, 8128, 3077, 7890, 5525, + 352, 7953, 8994, 2792, 9843, 6836, 2444, 23, 8606, + 5482, 538, 7248, 2671, 2636, 4875, 6392, 1634, 9039, + 206, 8557, 4262, 6345, 2787, 5186, 9690, 3313, 7196, + 8187, 4688, 3636, 5699, 5851, 2918, 4441, 2561, 4610, + 2129, 7033, 6, 654, 3222, 6073, 7625, 8473, 6191, + 2880, 70, 1031, 6689, 6971, 2004, 7000, 9676, 3644, + 2140, 5806, 8059, 6633, 4320, 1663, 4526, 3203, 4616, + 869, 2766, 1163, 1210, 2331, 4282, 6403, 6555, 6365, + 7000, 9544, 3550, 4307, 1368, 6969, 8833, 3383, 9978, + 1612, 6654, 7073, 7110, 9566, 3445, 7597, 360, 3236, + 7275, 5924, 226, 8020, 320, 4244, 2760, 6608, 2555, + 7919, 984, 1478, 3569, 1644, 9945, 9097, 9180, 2886, + 7713, 3094, 1356, 6989, 8789, 3839, 5615, 1182, 7409, + 5000, 430, 5040, 7926, 3097, 6697, 4245, 2151, 950, + 4330, 6071, 639, 3674, 5561, 6529, 7043, 7697, 1166, + 9926, 5506, 4062, 141, 6776, 1000, 5889, 1811, 3805, + 4499, 742, 9756, 6422, 3115, 1421, 2148, 4577, 849, + 2703, 9046, 5675, 6060, 9740, 1043, 1133, 2568, 6264, + 8365, 2819, 7233, 5911, 5860, 7890, 540, 224, 40, + 3677, 6635, 2186, 2545, 1144, 5999, 7948, 1275, 7035, + 6767, 440, 2108, 7801, 2969, 8350, 7659, 9002, 317, + 3973, 8437, 443, 2678, 8935, 6175, 9836, 8183, 4682, + 9089, 9110, 5267, 8976, 8306, 1349, 7138, 7607, 1143, + 8943, 8080, 3638, 5861, 5984, 1101, 7747, 9364, 6794, + 9386, 9795, 7275, 4821, 451, 5323, 9773, 4378, 5864, + 5634, 5713, 173, 9097, 1287, 4073, 5068, 8982, 1727, + 8774, 1428, 3104, 3715, 575, 7243, 3651, 6707, 5075, + 8914, 3157, 1446, 1023, 3445, 7439, 3411, 6822, 8426, + 4690, 8269, 6866, 4650, 7633, 3301, 1775, 9688, 3595, + 2053, 2622, 3250, 7912, 6773, 6316, 177, 2930, 6156, + 1293, 577, 1247, 6081, 5439, 1662, 4881, 8932, 4199, + 138, 9186, 2308, 2400, 770, 4059, 6081, 3117, 8087, + 5005, 7215, 4647, 6804, 6284, 198, 3580, 7361, 1611, + 7627, 5464, 1293, 4984, 2254, 7286, 5884, 9703, 5740, + 9960, 7501, 6278, 972, 9723, 1341, 1549, 9994, 8760, + 3100, 1070, 3050, 126, 7718, 9489, 9768, 6233, 8322, + 198, 1114, 1745, 6052, 5501, 54, 1988, 844, 5891, + 7468, 5693, 6195, 1125, 8757, 6530, 960, 1088, 5817, + 2609, 2322, 5466, 178, 2328, 4211, 8288, 7077, 2606, + 6127, 1116, 3683, 2034, 9765, 3690, 5390, 5302, 9888, + 373, 5882, 1973, 5371, 3576, 9266, 7825, 1187, 1677, + 5997, 3264, 2770, 7555, 2180, 1025, 5640, 6520, 351, + 7466, 7331, 398, 4140, 6895, 6471, 5153, 2278, 5771, + 9295, 4997, 1365, 9802, 7556, 5796, 7043, 4565, 8844, + 8073, 4187, 3352, 7057, 3992, 5284, 8234, 8721, 6018, + 7438, 1774, 1947, 6669, 1070, 6008, 9524, 9578, 5651, + 9208, 8515, 3069, 4213, 1533, 3772, 203, 9477, 7854, + 4029]), + values=tensor([2.3738e-01, 2.6402e-02, 5.3203e-01, 6.2427e-01, + 6.7786e-01, 6.5310e-01, 3.6557e-01, 9.7123e-01, + 8.9972e-01, 9.5830e-01, 3.4232e-01, 1.0001e-01, + 8.4545e-01, 1.7529e-01, 5.2093e-01, 2.8574e-01, + 7.7667e-01, 4.8853e-01, 8.8174e-02, 3.8671e-01, + 6.4054e-01, 1.4478e-01, 1.4161e-01, 1.3033e-01, + 5.8032e-01, 3.2700e-01, 5.7588e-01, 6.4111e-01, + 9.3574e-01, 9.8711e-01, 2.9326e-01, 5.1547e-01, + 5.5550e-01, 9.9624e-01, 6.9869e-01, 8.7238e-01, + 1.4140e-01, 7.8895e-01, 8.0717e-01, 8.4288e-01, + 7.5389e-01, 6.4603e-01, 4.7889e-01, 2.0452e-01, + 6.3552e-01, 7.5543e-01, 4.2326e-01, 1.2044e-01, + 6.4432e-01, 4.9972e-02, 1.5813e-01, 5.4805e-01, + 7.7746e-01, 9.6780e-01, 8.1895e-01, 7.0802e-01, + 2.0264e-01, 4.3775e-01, 8.5595e-01, 2.7169e-01, + 4.0346e-01, 4.0533e-01, 1.4484e-01, 3.1479e-01, + 2.3174e-01, 2.5230e-01, 5.5513e-01, 3.5842e-01, + 8.2852e-01, 8.2638e-01, 9.5400e-01, 1.2552e-01, + 9.9323e-01, 1.6458e-01, 3.0800e-01, 4.9640e-01, + 8.8731e-01, 9.2485e-02, 3.0189e-02, 7.0178e-01, + 3.9376e-01, 6.4217e-01, 3.1370e-01, 5.0653e-01, + 4.3611e-01, 5.4295e-01, 4.0541e-01, 6.4571e-01, + 2.9565e-01, 2.7763e-01, 8.2797e-01, 7.0112e-01, + 1.8712e-01, 6.7060e-01, 2.6354e-01, 5.6298e-01, + 2.5183e-01, 9.8374e-01, 1.1535e-01, 5.6613e-01, + 6.5427e-01, 5.3770e-01, 7.1824e-01, 2.6174e-01, + 7.6309e-01, 7.0956e-01, 3.4060e-01, 8.8854e-01, + 6.3975e-01, 1.3395e-01, 1.6898e-01, 3.7819e-01, + 8.5999e-01, 8.8412e-01, 7.3320e-01, 7.1138e-01, + 2.4100e-01, 9.2249e-01, 8.4111e-01, 2.0516e-02, + 3.2336e-01, 3.0900e-01, 4.7411e-01, 4.1779e-01, + 2.4793e-01, 4.4443e-01, 7.6111e-01, 2.5346e-01, + 9.3721e-01, 9.5365e-01, 1.6967e-01, 9.2786e-01, + 2.4943e-01, 1.3252e-01, 6.9868e-01, 7.1942e-01, + 6.5647e-01, 4.3431e-01, 9.3856e-01, 5.0608e-01, + 3.8007e-01, 6.6370e-01, 3.5720e-01, 8.2733e-01, + 9.5105e-01, 5.6232e-01, 1.4629e-02, 4.8497e-01, + 1.7643e-01, 6.8013e-01, 8.6450e-01, 6.5699e-01, + 7.1222e-02, 2.5273e-01, 4.9082e-01, 3.7325e-01, + 3.1209e-03, 2.1298e-02, 4.6607e-01, 3.9429e-01, + 3.7773e-02, 4.3848e-02, 4.0839e-01, 3.0784e-01, + 2.5508e-01, 3.4852e-01, 7.1756e-01, 7.2894e-01, + 3.6554e-01, 9.2825e-01, 3.6757e-01, 5.1756e-01, + 2.1632e-01, 3.3479e-01, 9.3681e-01, 4.2513e-01, + 9.5757e-01, 9.7212e-01, 3.7930e-01, 7.9385e-01, + 7.5330e-01, 4.3880e-01, 3.0507e-02, 8.3967e-01, + 2.0001e-01, 2.5357e-01, 2.5983e-01, 4.3218e-01, + 4.0356e-02, 9.8588e-01, 1.8766e-01, 9.5399e-02, + 1.9176e-01, 4.3947e-01, 1.3454e-01, 5.5070e-01, + 2.9283e-01, 7.3724e-01, 7.5999e-01, 6.5391e-01, + 3.3144e-01, 2.0963e-01, 7.8419e-02, 3.2595e-01, + 4.8398e-01, 7.0621e-01, 9.4064e-01, 5.0536e-01, + 8.0281e-01, 2.0884e-01, 1.8452e-01, 4.2045e-01, + 7.5716e-01, 4.8000e-01, 1.3992e-01, 9.2003e-01, + 2.9919e-01, 9.8505e-02, 3.8274e-01, 4.3847e-01, + 6.4077e-01, 8.0841e-01, 3.7080e-01, 1.8314e-01, + 5.0345e-01, 6.5621e-01, 9.9426e-01, 2.6686e-01, + 5.2414e-03, 1.2980e-01, 6.4376e-01, 7.5228e-02, + 8.7038e-01, 6.2767e-01, 8.2595e-02, 7.1176e-01, + 2.3989e-01, 3.3127e-01, 2.3020e-02, 9.7489e-01, + 8.6149e-01, 1.2530e-01, 4.6233e-01, 2.9601e-01, + 5.5479e-01, 8.5166e-01, 4.3046e-01, 4.1313e-01, + 2.6780e-01, 5.4984e-01, 4.1855e-01, 4.9210e-01, + 6.2682e-01, 7.4517e-01, 6.6285e-01, 9.3085e-01, + 5.3350e-01, 2.8974e-01, 4.4394e-02, 2.8930e-01, + 7.8976e-01, 4.3678e-01, 7.6157e-01, 3.7944e-01, + 3.3591e-01, 1.2626e-01, 7.2858e-01, 9.3352e-02, + 6.7802e-01, 8.5292e-01, 7.5938e-01, 1.8850e-01, + 9.9956e-01, 5.6141e-01, 7.0078e-01, 9.1202e-01, + 8.7269e-01, 4.9572e-01, 9.6328e-01, 5.5369e-01, + 4.1234e-01, 1.2004e-01, 2.3986e-01, 9.6465e-01, + 4.2990e-01, 1.6000e-01, 4.0186e-01, 2.1829e-01, + 9.7558e-01, 2.7825e-01, 2.9610e-01, 9.7411e-01, + 8.6444e-01, 5.5775e-01, 7.9402e-02, 5.2234e-01, + 7.9853e-01, 1.9558e-01, 9.4287e-01, 1.0306e-01, + 2.8658e-01, 4.0821e-01, 7.9293e-01, 5.1165e-01, + 8.5048e-01, 3.7074e-01, 8.3318e-01, 5.7708e-01, + 5.9855e-01, 1.9828e-01, 3.4368e-01, 4.7604e-01, + 9.6257e-01, 7.8500e-01, 1.6163e-02, 1.5176e-01, + 3.1112e-01, 3.7056e-02, 7.2264e-01, 3.0160e-02, + 4.1949e-01, 9.7850e-01, 1.0112e-01, 8.4497e-01, + 7.3483e-01, 6.4117e-01, 5.4885e-01, 4.8799e-01, + 2.4303e-01, 3.3166e-02, 8.0967e-02, 5.5332e-01, + 9.0394e-01, 4.8740e-01, 5.7113e-01, 1.8688e-01, + 2.5461e-01, 8.0556e-01, 4.2261e-01, 8.4350e-01, + 8.9809e-01, 6.0672e-01, 5.2776e-01, 2.0777e-02, + 2.9352e-01, 3.8160e-01, 5.0311e-01, 7.4170e-01, + 4.7393e-01, 5.2493e-01, 1.4382e-01, 8.3941e-01, + 1.4398e-01, 7.4231e-01, 6.4705e-01, 3.0748e-01, + 9.8149e-01, 8.3684e-01, 4.1167e-01, 9.1083e-01, + 6.8831e-01, 4.9856e-01, 8.1105e-01, 8.6579e-01, + 6.1778e-01, 3.3383e-01, 5.5148e-01, 6.1391e-01, + 4.8355e-01, 5.2801e-01, 3.1579e-01, 4.0657e-01, + 8.3102e-01, 8.8214e-01, 6.2846e-01, 7.7912e-02, + 7.1251e-01, 1.5134e-01, 3.7764e-01, 9.3226e-01, + 9.0073e-01, 4.0255e-01, 8.3469e-01, 5.5163e-02, + 5.5679e-01, 7.7247e-01, 9.9926e-01, 7.1631e-01, + 1.4688e-01, 8.5901e-01, 9.5820e-01, 8.7402e-01, + 3.3750e-01, 8.3379e-01, 1.7997e-01, 3.4024e-02, + 6.0026e-01, 7.2408e-01, 1.6327e-01, 8.5342e-01, + 6.8883e-01, 7.5934e-01, 4.2426e-01, 4.2108e-01, + 7.9901e-01, 3.7324e-01, 1.4921e-01, 3.4700e-02, + 6.9781e-01, 5.9434e-01, 6.0246e-01, 5.8023e-01, + 2.8967e-01, 1.9480e-01, 6.2027e-01, 8.0618e-01, + 3.4684e-03, 2.8542e-01, 7.7883e-01, 9.8518e-01, + 2.6924e-01, 3.0555e-01, 3.6124e-01, 7.4453e-01, + 1.8155e-01, 6.4206e-01, 2.7114e-01, 4.7901e-01, + 8.7451e-01, 9.2856e-02, 3.4326e-01, 2.1555e-01, + 3.0832e-01, 4.0096e-01, 1.5544e-01, 6.8396e-01, + 6.8827e-01, 2.2804e-01, 6.6620e-01, 8.9734e-01, + 3.3590e-01, 9.3187e-01, 9.3009e-01, 3.5177e-01, + 6.8568e-01, 5.5609e-01, 2.0487e-01, 8.8749e-01, + 6.9496e-01, 4.7259e-01, 9.6056e-01, 2.6776e-01, + 8.7342e-01, 9.2249e-01, 1.3092e-01, 5.5780e-01, + 4.7137e-01, 5.0339e-01, 1.1579e-01, 4.4049e-01, + 6.2910e-01, 4.8928e-01, 6.7993e-01, 2.2566e-01, + 8.9579e-01, 3.8693e-01, 1.3706e-01, 7.8526e-01, + 7.7892e-01, 4.7453e-01, 5.5368e-01, 7.7885e-01, + 5.6439e-01, 5.8212e-01, 1.2176e-01, 5.9040e-01, + 8.3832e-01, 4.8913e-01, 3.9403e-01, 7.9724e-01, + 1.9041e-01, 3.0558e-01, 7.3543e-02, 3.8543e-01, + 3.8432e-01, 1.5301e-01, 1.9464e-01, 7.6242e-01, + 8.5603e-01, 2.4348e-01, 3.3823e-01, 1.3497e-01, + 2.9285e-01, 3.1222e-01, 4.8630e-01, 7.9517e-01, + 2.0854e-01, 5.5934e-01, 3.1609e-01, 9.9551e-01, + 3.6527e-01, 3.4714e-01, 6.7307e-01, 2.8007e-01, + 3.8271e-01, 3.9288e-01, 6.5768e-01, 5.8630e-01, + 5.4392e-01, 5.8597e-02, 6.5879e-01, 7.0779e-01, + 8.2889e-01, 7.8725e-01, 2.3580e-01, 1.2659e-01, + 4.6340e-01, 7.1524e-01, 1.4355e-01, 9.3213e-01, + 6.7358e-01, 9.9362e-01, 3.3661e-01, 8.1383e-01, + 6.3340e-01, 5.5372e-01, 9.3278e-01, 4.5087e-01, + 9.2927e-01, 5.3649e-01, 8.7350e-01, 2.7214e-01, + 9.4851e-01, 5.9748e-01, 3.1403e-02, 6.1772e-01, + 2.6300e-01, 6.6770e-01, 1.9508e-01, 6.6179e-01, + 2.5318e-02, 3.1166e-01, 5.9892e-01, 9.4355e-01, + 2.1253e-01, 2.3988e-01, 8.9296e-01, 7.7257e-01, + 6.2487e-01, 9.1523e-01, 9.7362e-01, 5.4365e-01, + 7.0272e-02, 8.3501e-01, 3.0732e-01, 4.5696e-01, + 6.9966e-01, 5.5054e-01, 8.9687e-01, 4.4966e-01, + 4.7031e-01, 3.6367e-01, 7.4112e-01, 1.0620e-01, + 7.1418e-01, 9.5953e-03, 9.8052e-01, 4.1101e-01, + 1.8228e-01, 8.9274e-01, 7.5847e-01, 7.1856e-01, + 5.6637e-01, 5.7611e-01, 3.8877e-01, 4.2294e-01, + 6.2557e-01, 5.3124e-01, 1.6826e-02, 2.3507e-01, + 8.1644e-01, 1.5435e-01, 3.3081e-01, 5.6503e-01, + 1.9146e-01, 6.8300e-01, 2.5627e-02, 1.7776e-01, + 2.7126e-01, 9.1810e-03, 2.4871e-01, 3.6057e-02, + 5.8490e-01, 3.2513e-01, 6.0523e-01, 3.8111e-01, + 9.1639e-01, 2.9765e-01, 7.2000e-01, 2.5948e-01, + 2.5582e-01, 2.4864e-01, 3.7189e-01, 1.0205e-01, + 3.8670e-01, 4.0786e-02, 8.8019e-01, 6.7285e-01, + 7.3613e-01, 3.4637e-01, 5.4532e-01, 1.9835e-02, + 9.5883e-01, 2.3990e-01, 1.1367e-01, 2.3155e-01, + 9.8695e-02, 9.9085e-01, 8.2365e-01, 1.9166e-02, + 1.0994e-01, 7.0415e-01, 7.0864e-01, 3.8621e-01, + 2.6239e-01, 7.7842e-01, 1.3817e-01, 7.9101e-02, + 2.1852e-01, 6.2569e-01, 2.2697e-01, 6.0997e-01, + 5.8456e-01, 2.7736e-02, 9.9867e-01, 1.3290e-01, + 1.4762e-01, 1.4758e-02, 9.2467e-03, 9.5847e-02, + 5.6896e-01, 7.7772e-01, 4.3486e-01, 9.6895e-01, + 5.7190e-01, 9.8043e-01, 5.9680e-02, 1.3507e-01, + 1.1531e-01, 7.4566e-01, 8.1640e-01, 6.3706e-01, + 1.5904e-01, 6.7155e-01, 4.7947e-01, 6.7198e-01, + 8.0175e-01, 2.8197e-02, 4.2399e-04, 8.8622e-01, + 2.9810e-01, 6.2710e-01, 5.3580e-01, 7.0656e-01, + 1.9115e-01, 2.1864e-01, 8.2521e-01, 9.7825e-01, + 3.2694e-01, 4.5699e-01, 9.2332e-01, 8.1085e-01, + 8.6842e-01, 2.6298e-01, 9.5236e-01, 9.6902e-01, + 3.7078e-02, 3.2802e-01, 6.1465e-01, 1.9061e-01, + 7.4225e-02, 9.0832e-01, 6.7882e-01, 9.1376e-01, + 1.8754e-01, 5.8402e-01, 4.0463e-01, 1.6950e-02, + 6.0488e-01, 7.0416e-01, 8.9438e-01, 6.3537e-01, + 9.3311e-01, 7.1219e-01, 1.8304e-01, 2.0294e-01, + 2.4156e-01, 2.5246e-02, 4.7333e-01, 3.6382e-01, + 7.7323e-02, 6.9307e-01, 6.1588e-02, 8.9470e-01, + 3.1037e-01, 8.2865e-01, 6.5366e-01, 1.6570e-01, + 5.7658e-01, 4.8139e-01, 7.1975e-01, 5.1300e-01, + 8.9715e-01, 4.2038e-01, 5.8014e-01, 6.9148e-01, + 3.0599e-01, 9.3319e-02, 4.7731e-01, 2.1704e-01, + 6.4481e-01, 2.4996e-01, 6.0429e-01, 5.5205e-01, + 2.2135e-01, 8.8346e-01, 7.0709e-01, 8.2152e-01, + 9.6879e-01, 9.9632e-01, 2.4221e-01, 4.5972e-01, + 9.6493e-01, 1.4195e-01, 3.1842e-01, 1.4820e-01, + 1.9437e-01, 9.3361e-01, 7.2369e-01, 8.1980e-02, + 3.0563e-01, 8.3087e-01, 9.6210e-01, 3.8570e-01, + 3.8999e-01, 2.6426e-01, 3.8497e-01, 6.2371e-01, + 3.4436e-02, 5.7200e-01, 9.1103e-03, 3.4663e-01, + 7.5139e-01, 8.0402e-02, 1.4851e-01, 5.6103e-01, + 1.4194e-01, 3.7747e-01, 1.2583e-01, 3.4934e-01, + 7.8245e-01, 4.4202e-02, 2.3814e-02, 5.0043e-01, + 4.0549e-02, 9.2123e-01, 6.4456e-01, 5.5668e-01, + 2.2637e-01, 4.5866e-01, 6.5612e-01, 4.8747e-01, + 3.5998e-01, 9.6531e-01, 2.2855e-01, 8.7165e-01, + 2.1451e-01, 6.0932e-01, 1.3079e-01, 8.7426e-01, + 8.1725e-01, 4.2196e-01, 7.1141e-01, 4.3740e-01, + 5.3629e-01, 9.9116e-01, 2.5936e-01, 6.2397e-02, + 4.8627e-01, 7.9972e-01, 5.9392e-01, 1.2708e-01, + 7.6474e-01, 7.6568e-01, 7.2778e-01, 7.1216e-01, + 7.5908e-01, 6.9230e-01, 8.6691e-01, 1.5589e-01, + 9.6845e-01, 3.9806e-01, 5.2987e-01, 4.8572e-02, + 6.1088e-01, 8.4502e-01, 8.7595e-01, 7.9081e-01, + 2.2328e-01, 7.3453e-02, 2.9361e-01, 7.2018e-01, + 8.6362e-01, 5.8239e-01, 9.8886e-01, 9.8207e-01, + 4.9789e-02, 9.0883e-01, 4.6588e-01, 7.8227e-01, + 5.6496e-01, 4.4322e-01, 6.0243e-01, 7.9633e-01, + 1.5407e-01, 4.7116e-01, 4.6135e-02, 7.9439e-01, + 9.4742e-01, 3.0537e-01, 7.4954e-01, 6.1486e-01, + 4.0816e-01, 5.7772e-02, 4.8874e-02, 6.5603e-01, + 6.5378e-01, 1.4657e-01, 7.5423e-01, 2.1719e-01, + 6.1274e-01, 7.2810e-01, 5.9787e-01, 8.5114e-01, + 8.4574e-01, 4.4836e-01, 1.1812e-01, 1.6302e-02, + 2.8183e-01, 2.8454e-01, 7.8868e-01, 5.6188e-01, + 3.7106e-01, 9.5184e-01, 4.6233e-01, 3.0721e-01, + 4.6652e-01, 4.5518e-01, 3.9625e-01, 3.1047e-01, + 6.1431e-01, 7.7994e-03, 5.0223e-01, 8.8821e-01, + 6.2450e-01, 1.5123e-02, 1.6467e-01, 3.7877e-02, + 3.3093e-01, 4.8842e-01, 1.4406e-01, 3.7447e-01, + 4.1940e-01, 4.0252e-01, 1.5874e-01, 9.2837e-01, + 6.5660e-02, 3.7370e-01, 1.6842e-01, 3.0803e-01, + 6.5644e-01, 7.7941e-01, 7.2378e-01, 5.4227e-01, + 1.4685e-01, 2.4221e-01, 2.9616e-01, 1.1769e-01, + 7.8889e-01, 4.7046e-01, 5.6810e-01, 9.0070e-02, + 9.6025e-01, 8.4650e-01, 5.7994e-01, 9.2239e-01, + 5.9694e-01, 7.0729e-01, 9.6887e-01, 6.6587e-01, + 4.3626e-01, 8.5358e-01, 3.8961e-01, 7.2852e-01, + 4.6255e-01, 8.4622e-01, 7.8245e-01, 6.5110e-01, + 6.2516e-01, 5.3600e-01, 4.1244e-01, 2.4712e-01, + 9.1064e-01, 7.1727e-01, 8.3599e-03, 4.9574e-01, + 6.2521e-02, 6.8479e-01, 5.4408e-02, 7.0926e-01, + 9.2773e-01, 4.3862e-01, 1.9592e-02, 8.3484e-01, + 6.2885e-01, 4.3876e-01, 7.8552e-01, 1.0172e-01, + 6.3309e-01, 3.7608e-01, 2.7818e-01, 4.2463e-01, + 5.4210e-01, 8.8253e-01, 7.3945e-02, 9.1054e-03, + 5.1831e-01, 5.1131e-01, 5.9108e-02, 5.0222e-01, + 4.4171e-02, 7.9161e-01, 4.9498e-01, 8.3120e-01, + 8.8602e-01, 1.6136e-01, 6.8591e-01, 5.5565e-01, + 3.7967e-01, 1.6486e-02, 8.2781e-01, 5.2694e-01, + 8.7141e-01, 9.6245e-01, 4.4308e-01, 4.7436e-01, + 9.5535e-01, 4.0917e-01, 6.3676e-01, 2.5075e-01, + 6.4306e-01, 1.4736e-01, 9.1328e-01, 9.5108e-01, + 5.5093e-01, 1.0660e-01, 1.0531e-01, 8.3265e-01, + 5.7798e-01, 9.3816e-01, 7.4004e-01, 2.6624e-01, + 4.6151e-01, 7.3546e-01, 2.5614e-01, 8.3512e-01, + 8.1670e-01, 5.0614e-01, 9.7279e-01, 3.1225e-01, + 7.8442e-01, 7.3051e-01, 5.8183e-01, 3.3468e-01, + 8.6277e-01, 1.6129e-01, 3.9534e-01, 5.0412e-01, + 9.3144e-02, 6.8435e-01, 1.5667e-01, 4.1079e-01, + 2.4207e-01, 4.8373e-01, 4.2507e-01, 6.1906e-01, + 2.8594e-01, 9.8090e-01, 8.5909e-01, 7.8064e-01]), size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.5928, 0.5923, 0.2769, ..., 0.7868, 0.2495, 0.0989]) +tensor([0.8755, 0.4171, 0.4007, ..., 0.3638, 0.0663, 0.0983]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -1026,268 +754,271 @@ Rows: 10000 Size: 100000000 NNZ: 1000 Density: 1e-05 -Time: 10.501307487487793 seconds +Time: 2.430596351623535 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '223318', '-ss', '10000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.272708654403687} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), - col_indices=tensor([ 621, 8067, 8701, 6486, 5538, 5824, 379, 1918, 5000, - 5124, 6265, 1757, 7171, 5785, 2098, 8110, 8680, 9293, - 3536, 8102, 4182, 8879, 9877, 2040, 7911, 510, 3802, - 7722, 6811, 1404, 2410, 8431, 3523, 6495, 6498, 6685, - 7173, 7872, 4534, 9047, 7100, 8447, 6072, 5630, 5799, - 190, 6891, 1441, 9822, 4335, 8399, 1784, 1404, 5633, - 6623, 2518, 6475, 3954, 4736, 1500, 5281, 4391, 6371, - 886, 805, 6503, 5528, 1428, 6887, 8163, 4623, 5541, - 4640, 3383, 6444, 4711, 4505, 3203, 7934, 4654, 687, - 7329, 1943, 6395, 8455, 1952, 3346, 9199, 2955, 3712, - 7082, 8540, 6711, 1353, 3492, 6382, 9227, 3128, 4738, - 7860, 8372, 15, 1552, 8319, 9811, 3777, 9596, 8620, - 4064, 4884, 9629, 5329, 7715, 7613, 6097, 4214, 6601, - 8769, 7774, 2256, 3188, 9906, 6088, 7859, 2481, 3977, - 5219, 4949, 6267, 3615, 4199, 9995, 444, 6572, 6590, - 7908, 8736, 1682, 7932, 9231, 9498, 4969, 8032, 7386, - 3757, 5388, 5500, 7007, 497, 6899, 924, 5470, 4242, - 8349, 988, 321, 277, 6809, 2621, 4996, 3392, 2070, - 8599, 2865, 1951, 2114, 8145, 435, 2953, 956, 2814, - 1486, 8770, 3701, 8858, 3904, 8946, 1921, 2720, 8762, - 9358, 9717, 5029, 4186, 4041, 3158, 5636, 5605, 4525, - 5593, 7451, 6146, 5196, 850, 4025, 7864, 9672, 7108, - 777, 2450, 9967, 3039, 7352, 7620, 5364, 1636, 7924, - 9792, 4541, 3656, 1580, 8687, 4603, 7545, 1231, 9649, - 2748, 7212, 6116, 9217, 2342, 1946, 3303, 6323, 5879, - 4477, 5340, 4516, 5722, 3754, 6742, 650, 8207, 6470, - 2264, 3353, 2048, 8251, 400, 1044, 8345, 2532, 2124, - 1395, 5517, 6024, 3422, 7067, 1645, 6318, 3535, 6960, - 308, 4401, 9204, 1112, 4901, 4265, 8909, 888, 7274, - 2714, 4875, 7150, 2797, 4106, 4244, 2138, 3876, 2559, - 3408, 2983, 6763, 1791, 1130, 1328, 3454, 3597, 3047, - 9406, 8234, 2404, 5313, 8028, 8018, 4816, 2500, 8560, - 3279, 4533, 506, 4358, 9720, 9432, 5299, 1497, 4103, - 4459, 2841, 3387, 6518, 8285, 1486, 4206, 317, 3410, - 1281, 6931, 471, 5237, 7799, 9052, 1693, 1883, 977, - 3915, 377, 6991, 2617, 5482, 7380, 2319, 6326, 4913, - 63, 6407, 6245, 8595, 8116, 5131, 5553, 3847, 9485, - 7909, 3795, 8618, 7145, 3635, 6413, 9128, 3130, 8692, - 2576, 4366, 8928, 6249, 7783, 8379, 9553, 1007, 4718, - 1322, 4530, 5651, 4480, 2964, 4421, 6311, 2055, 9796, - 5531, 7518, 7953, 2916, 7603, 6190, 5496, 6074, 3416, - 4536, 338, 5349, 4767, 7727, 61, 2223, 5727, 6702, - 1168, 3309, 6908, 120, 2145, 7426, 217, 6262, 4322, - 710, 1996, 1502, 6744, 3362, 9551, 9541, 4765, 5555, - 7677, 3714, 9116, 9201, 9677, 808, 3444, 7948, 3547, - 3147, 8821, 4131, 7853, 4873, 3727, 8956, 9242, 463, - 6102, 3207, 2647, 2009, 6976, 8113, 5383, 9950, 9210, - 2607, 6196, 3792, 5279, 4469, 6166, 8307, 3139, 8294, - 3045, 8587, 5732, 6420, 4767, 6384, 3262, 6516, 9124, - 5629, 9140, 4268, 7884, 9280, 2845, 4396, 1695, 5892, - 9646, 4870, 474, 711, 5269, 9561, 510, 234, 6036, - 1463, 1833, 5092, 1789, 1299, 8945, 842, 2582, 1165, - 9387, 4647, 18, 2357, 8595, 5475, 9627, 2152, 6592, - 7559, 3616, 6551, 6061, 5016, 351, 6411, 5971, 9815, - 8118, 3528, 9738, 1760, 6048, 7402, 1939, 2804, 8305, - 1191, 7749, 4316, 6651, 179, 6542, 9648, 2265, 7391, - 7426, 6846, 1001, 1073, 1131, 6087, 4908, 4135, 4320, - 7720, 1601, 7467, 9773, 8874, 2360, 6153, 8937, 6481, - 3762, 9196, 7483, 944, 7320, 7745, 860, 3192, 2592, - 5428, 1558, 4118, 6406, 4829, 7167, 5223, 5427, 1349, - 5294, 7920, 7467, 9863, 7414, 1430, 2272, 4749, 9366, - 5823, 7199, 7730, 4037, 4741, 8062, 2210, 4947, 2286, - 3927, 3530, 6602, 7303, 6039, 6871, 649, 2184, 5850, - 8991, 9883, 1962, 7997, 8066, 2827, 485, 73, 5074, - 4027, 8247, 1956, 466, 6094, 7363, 8807, 3485, 4713, - 8857, 4550, 6148, 5177, 6630, 3729, 5962, 2364, 8027, - 1540, 5512, 8420, 1833, 166, 185, 1717, 5236, 2057, - 1920, 8729, 7603, 7798, 4581, 7903, 2753, 3830, 1012, - 3358, 98, 1431, 3548, 1765, 7173, 2113, 1774, 5074, - 9875, 5748, 6477, 3076, 4013, 5494, 142, 6261, 1546, - 735, 8132, 3760, 3833, 8392, 2866, 3747, 2238, 5039, - 9991, 3930, 3295, 4281, 6582, 1507, 2339, 8308, 4795, - 6042, 9144, 5178, 7200, 1854, 5289, 1036, 263, 4673, - 1755, 7843, 9590, 1674, 1997, 5404, 7842, 2316, 4765, - 903, 4521, 1615, 9734, 2683, 9393, 4743, 465, 2256, - 1490, 4969, 5519, 7553, 9750, 1156, 9506, 2573, 7753, - 8858, 2242, 2353, 4052, 130, 5566, 7279, 9261, 2032, - 5574, 9697, 2307, 6357, 4851, 125, 7010, 9557, 7434, - 1764, 5376, 8681, 520, 1147, 3019, 2766, 4221, 6787, - 913, 9582, 7327, 3426, 4085, 9753, 397, 1757, 2467, - 6219, 9421, 4979, 4880, 9636, 399, 4017, 6742, 7711, - 4977, 597, 3788, 7425, 4538, 5803, 7511, 707, 6862, - 4448, 2935, 796, 5761, 8972, 3222, 5360, 4073, 3780, - 7587, 3935, 3659, 3516, 3305, 6397, 835, 8897, 2260, - 8074, 4151, 59, 9881, 5722, 4749, 4490, 8386, 9531, - 1681, 8322, 7280, 7383, 9110, 9496, 3979, 1667, 1609, - 605, 7186, 3289, 9548, 9178, 3499, 8700, 8958, 6798, - 4712, 6079, 3652, 2893, 6478, 6228, 2105, 1064, 1126, - 594, 1239, 5010, 9616, 2691, 5967, 1503, 1488, 3756, - 3247, 4285, 4420, 2495, 3105, 2726, 8612, 1019, 7638, - 301, 3462, 8224, 7646, 2804, 892, 3360, 9148, 9972, - 4302, 6615, 1094, 5589, 9642, 9897, 7341, 5880, 2250, - 504, 6779, 1200, 8941, 3565, 8375, 7844, 9898, 7773, - 866, 2804, 8221, 7345, 7948, 44, 1443, 2712, 6139, - 27, 5009, 6474, 7863, 6279, 2280, 2088, 3757, 8456, - 8642, 2733, 1757, 7233, 5141, 3949, 8447, 2690, 3294, - 2211, 161, 6191, 1188, 871, 3978, 5524, 3757, 7095, - 4586, 4518, 8935, 4168, 5727, 4325, 5573, 274, 8627, - 5160, 6998, 5604, 9203, 1927, 6912, 3284, 5635, 8095, - 4022, 8206, 1927, 9163, 7500, 7635, 8229, 2377, 4284, - 5090, 9687, 8448, 6150, 8497, 8068, 7265, 2977, 4847, - 9227, 4643, 5971, 3091, 9617, 1463, 3964, 7383, 3704, - 5970, 2528, 4339, 780, 6389, 7456, 1723, 7888, 8852, - 109, 5808, 2711, 1313, 97, 5642, 753, 4358, 9054, - 5886, 9449, 104, 2884, 1499, 7364, 9304, 4311, 9143, - 7421, 2337, 2694, 3377, 3997, 3023, 7414, 4869, 419, - 3257, 224, 4395, 7186, 1420, 2887, 9106, 1717, 5082, - 3894, 8215, 6787, 4497, 3468, 9059, 3488, 9487, 7280, - 6265, 4060, 8912, 5499, 4442, 7535, 6018, 6368, 1204, - 8864, 9258, 6588, 5167, 2209, 2012, 4429, 8470, 8234, - 9211, 4382, 7963, 5391, 591, 4867, 8168, 9279, 897, - 4170]), - values=tensor([0.4878, 0.2366, 0.8733, 0.8071, 0.3473, 0.2387, 0.9164, - 0.3754, 0.7791, 0.5219, 0.2035, 0.6398, 0.4422, 0.3796, - 0.7410, 0.0343, 0.0746, 0.6347, 0.0691, 0.8108, 0.6743, - 0.7644, 0.4125, 0.8362, 0.4857, 0.8892, 0.4751, 0.0020, - 0.5709, 0.6384, 0.1497, 0.3464, 0.3034, 0.5189, 0.2843, - 0.8914, 0.9227, 0.3685, 0.3834, 0.0155, 0.1265, 0.8952, - 0.3893, 0.8670, 0.7098, 0.4601, 0.8885, 0.0046, 0.1082, - 0.5850, 0.3348, 0.6623, 0.6228, 0.0161, 0.7512, 0.8534, - 0.5169, 0.3788, 0.1287, 0.4768, 0.5501, 0.8770, 0.6106, - 0.3540, 0.4183, 0.1505, 0.6415, 0.2760, 0.4263, 0.1294, - 0.2381, 0.3413, 0.7792, 0.3560, 0.7846, 0.6195, 0.9067, - 0.9607, 0.5449, 0.5238, 0.7187, 0.7121, 0.1293, 0.8894, - 0.0511, 0.0830, 0.2825, 0.4900, 0.0409, 0.2002, 0.4854, - 0.3856, 0.8627, 0.8310, 0.5780, 0.7482, 0.3676, 0.5167, - 0.4530, 0.8058, 0.4658, 0.0519, 0.2134, 0.3241, 0.3833, - 0.1132, 0.1256, 0.5042, 0.0189, 0.1971, 0.1400, 0.7715, - 0.1621, 0.0713, 0.8856, 0.2929, 0.3989, 0.8128, 0.0289, - 0.2640, 0.5075, 0.4705, 0.8865, 0.9171, 0.4145, 0.4919, - 0.4500, 0.5633, 0.3618, 0.0032, 0.3175, 0.9427, 0.8902, - 0.2880, 0.6791, 0.9616, 0.0047, 0.8354, 0.3680, 0.2314, - 0.5566, 0.6728, 0.8761, 0.3109, 0.4191, 0.1257, 0.0231, - 0.4635, 0.8760, 0.8559, 0.1650, 0.1720, 0.8840, 0.1952, - 0.5716, 0.4436, 0.6030, 0.9799, 0.4962, 0.0060, 0.0091, - 0.1820, 0.1058, 0.9674, 0.3332, 0.5543, 0.3055, 0.7098, - 0.5098, 0.5712, 0.3186, 0.2511, 0.9486, 0.2897, 0.7906, - 0.4682, 0.9460, 0.4947, 0.0711, 0.2903, 0.4667, 0.5414, - 0.0305, 0.9032, 0.1444, 0.0549, 0.4534, 0.0693, 0.9432, - 0.7050, 0.0278, 0.6850, 0.1700, 0.0189, 0.3286, 0.1955, - 0.6291, 0.1692, 0.8585, 0.9646, 0.7537, 0.6946, 0.7438, - 0.4102, 0.6268, 0.2998, 0.4067, 0.3522, 0.5813, 0.2936, - 0.9445, 0.1475, 0.9903, 0.8673, 0.8393, 0.5631, 0.2710, - 0.4872, 0.2561, 0.4261, 0.0249, 0.8866, 0.7154, 0.7262, - 0.4255, 0.2060, 0.4915, 0.5716, 0.3734, 0.5359, 0.0582, - 0.7274, 0.3193, 0.1823, 0.9469, 0.1962, 0.8306, 0.0367, - 0.3559, 0.8060, 0.2544, 0.7597, 0.1912, 0.5306, 0.2236, - 0.1306, 0.0906, 0.3830, 0.2840, 0.1455, 0.7884, 0.5093, - 0.2096, 0.7409, 0.5736, 0.0118, 0.2511, 0.1254, 0.6493, - 0.5987, 0.1422, 0.7590, 0.3750, 0.0146, 0.3755, 0.5252, - 0.4470, 0.1730, 0.8157, 0.1781, 0.3561, 0.5010, 0.2990, - 0.7060, 0.9531, 0.0424, 0.8444, 0.0333, 0.9215, 0.3468, - 0.6299, 0.5208, 0.5070, 0.7369, 0.3345, 0.6893, 0.6628, - 0.0479, 0.2533, 0.8987, 0.9263, 0.7389, 0.2881, 0.3437, - 0.4669, 0.0061, 0.2705, 0.7551, 0.5375, 0.9128, 0.4733, - 0.3625, 0.3041, 0.3906, 0.4750, 0.5152, 0.6836, 0.5047, - 0.3035, 0.6463, 0.6891, 0.4384, 0.3322, 0.0632, 0.1828, - 0.0306, 0.6593, 0.7636, 0.2683, 0.3746, 0.6911, 0.2833, - 0.2470, 0.5171, 0.6073, 0.6043, 0.2759, 0.6224, 0.0070, - 0.6025, 0.5674, 0.9167, 0.4212, 0.0308, 0.3773, 0.8746, - 0.6407, 0.5547, 0.0444, 0.6266, 0.5499, 0.1996, 0.9428, - 0.8289, 0.3044, 0.3689, 0.5795, 0.4388, 0.9210, 0.7518, - 0.6388, 0.2171, 0.2636, 0.4873, 0.6059, 0.1825, 0.2514, - 0.8353, 0.3177, 0.0671, 0.6724, 0.2137, 0.9634, 0.1659, - 0.8310, 0.1283, 0.7040, 0.7122, 0.7650, 0.2004, 0.0295, - 0.0888, 0.3593, 0.6433, 0.9173, 0.5749, 0.5966, 0.6545, - 0.8191, 0.5699, 0.1636, 0.7580, 0.4365, 0.7079, 0.9192, - 0.9281, 0.8754, 0.6240, 0.7560, 0.6668, 0.9111, 0.9369, - 0.0367, 0.7533, 0.4804, 0.3166, 0.9053, 0.4957, 0.5130, - 0.7835, 0.3616, 0.2789, 0.5579, 0.6716, 0.4682, 0.6876, - 0.0966, 0.9182, 0.5997, 0.8196, 0.3189, 0.4501, 0.8553, - 0.2473, 0.0680, 0.4275, 0.1537, 0.0899, 0.7313, 0.8241, - 0.3081, 0.6292, 0.1662, 0.0904, 0.5149, 0.6344, 0.2456, - 0.2729, 0.2756, 0.6668, 0.4375, 0.7295, 0.4340, 0.2948, - 0.0278, 0.7870, 0.4490, 0.1408, 0.9227, 0.4041, 0.8449, - 0.5107, 0.6642, 0.1322, 0.7169, 0.8679, 0.3739, 0.7236, - 0.4248, 0.5882, 0.9469, 0.8184, 0.8365, 0.8779, 0.1038, - 0.8810, 0.9769, 0.5428, 0.3538, 0.9830, 0.9676, 0.1831, - 0.0084, 0.5971, 0.7115, 0.1927, 0.2619, 0.1005, 0.5333, - 0.2042, 0.2705, 0.6258, 0.9835, 0.9394, 0.7617, 0.3233, - 0.0297, 0.9049, 0.3704, 0.8040, 0.8975, 0.1579, 0.5446, - 0.2183, 0.2325, 0.0639, 0.2768, 0.2461, 0.4765, 0.2089, - 0.9111, 0.6567, 0.5216, 0.9797, 0.3080, 0.5219, 0.5582, - 0.3741, 0.2265, 0.1644, 0.9904, 0.9096, 0.6977, 0.7378, - 0.6163, 0.2973, 0.5170, 0.1559, 0.9194, 0.1883, 0.3665, - 0.6107, 0.4618, 0.4740, 0.0187, 0.8554, 0.8371, 0.2227, - 0.9554, 0.1756, 0.1396, 0.9691, 0.1329, 0.2855, 0.2852, - 0.5955, 0.2284, 0.7196, 0.1940, 0.7502, 0.5298, 0.9924, - 0.7439, 0.6637, 0.2900, 0.6522, 0.0204, 0.0933, 0.3725, - 0.2785, 0.1362, 0.2224, 0.2585, 0.4365, 0.6210, 0.9700, - 0.5368, 0.3375, 0.9444, 0.7297, 0.5092, 0.3376, 0.8591, - 0.9008, 0.5379, 0.9510, 0.9421, 0.0713, 0.2091, 0.6298, - 0.4005, 0.7776, 0.4989, 0.8706, 0.2922, 0.3070, 0.0813, - 0.5714, 0.2514, 0.4480, 0.5234, 0.0360, 0.0758, 0.3730, - 0.7634, 0.0856, 0.8934, 0.6490, 0.5291, 0.3184, 0.3037, - 0.3443, 0.5792, 0.5490, 0.5327, 0.4678, 0.2006, 0.8032, - 0.9436, 0.9189, 0.7953, 0.9640, 0.0058, 0.7983, 0.6143, - 0.9639, 0.7438, 0.7417, 0.1685, 0.5369, 0.7292, 0.5840, - 0.3088, 0.6745, 0.1144, 0.4342, 0.4148, 0.3081, 0.3141, - 0.7523, 0.9548, 0.1159, 0.9214, 0.7606, 0.1319, 0.0108, - 0.5213, 0.7386, 0.2722, 0.3665, 0.1771, 0.0556, 0.9859, - 0.0054, 0.2965, 0.3687, 0.8425, 0.4479, 0.3524, 0.2824, - 0.4727, 0.3410, 0.8501, 0.7125, 0.9448, 0.2352, 0.2937, - 0.6534, 0.3739, 0.6671, 0.8901, 0.3611, 0.4255, 0.2194, - 0.1776, 0.7356, 0.6315, 0.2672, 0.6863, 0.5095, 0.5719, - 0.6850, 0.4423, 0.4707, 0.8096, 0.8117, 0.4330, 0.1565, - 0.6528, 0.3855, 0.7960, 0.8457, 0.9509, 0.4271, 0.9874, - 0.2012, 0.1858, 0.4458, 0.2549, 0.0069, 0.9617, 0.8083, - 0.8286, 0.3440, 0.6245, 0.1685, 0.2887, 0.8351, 0.3371, - 0.8326, 0.2133, 0.4971, 0.1969, 0.9997, 0.0108, 0.8265, - 0.2603, 0.2486, 0.1123, 0.3933, 0.1972, 0.1286, 0.2410, - 0.9427, 0.8517, 0.1056, 0.4498, 0.3528, 0.4997, 0.1873, - 0.9308, 0.5270, 0.1818, 0.0192, 0.5147, 0.6995, 0.3808, - 0.1801, 0.1254, 0.8616, 0.9334, 0.6635, 0.6097, 0.9317, - 0.0639, 0.5688, 0.1321, 0.2406, 0.0702, 0.3025, 0.5470, - 0.2516, 0.7748, 0.5947, 0.3008, 0.0640, 0.6075, 0.7333, - 0.2489, 0.8087, 0.9366, 0.5301, 0.5997, 0.9710, 0.1167, - 0.8349, 0.0943, 0.3077, 0.1781, 0.0964, 0.5114, 0.2721, - 0.4485, 0.5358, 0.9249, 0.1281, 0.7787, 0.9696, 0.7641, - 0.9267, 0.8005, 0.2565, 0.9156, 0.0177, 0.4399, 0.6139, - 0.6561, 0.2921, 0.2455, 0.0677, 0.8007, 0.1673, 0.6272, - 0.9708, 0.7757, 0.7844, 0.4143, 0.7244, 0.3178, 0.2015, - 0.7092, 0.6947, 0.5693, 0.4803, 0.3248, 0.5740, 0.1234, - 0.7532, 0.8432, 0.5693, 0.7346, 0.8612, 0.6697, 0.0106, - 0.9867, 0.9456, 0.7600, 0.4214, 0.7451, 0.1923, 0.8683, - 0.7611, 0.2801, 0.7750, 0.6682, 0.9146, 0.0443, 0.5069, - 0.8481, 0.2446, 0.9950, 0.4152, 0.1745, 0.1637, 0.2428, - 0.6569, 0.4895, 0.4090, 0.9641, 0.2949, 0.4773, 0.4363, - 0.3083, 0.0374, 0.4019, 0.0579, 0.0686, 0.4139, 0.1952, - 0.0362, 0.0311, 0.8833, 0.6790, 0.8853, 0.7058, 0.2329, - 0.9566, 0.6724, 0.9699, 0.2549, 0.0950, 0.9403, 0.8375, - 0.7841, 0.9563, 0.7054, 0.1040, 0.8158, 0.8050, 0.1655, - 0.1587, 0.3559, 0.9451, 0.7518, 0.4895, 0.3845, 0.5434, - 0.2137, 0.1454, 0.9690, 0.7963, 0.0141, 0.6547, 0.3894, - 0.1222, 0.1580, 0.2599, 0.1493, 0.3838, 0.7658, 0.2010, - 0.8027, 0.8916, 0.5453, 0.4941, 0.7164, 0.8434, 0.4222, - 0.2960, 0.0732, 0.0275, 0.3155, 0.9582, 0.2006, 0.5100, - 0.3835, 0.7693, 0.0825, 0.5403, 0.0058, 0.5775, 0.4579, - 0.7231, 0.5432, 0.1385, 0.9942, 0.7281, 0.1494, 0.2026, - 0.0383, 0.2089, 0.1678, 0.3352, 0.3308, 0.9511, 0.9479, - 0.3486, 0.6349, 0.3617, 0.1790, 0.9290, 0.9003, 0.7128, - 0.2573, 0.5128, 0.2734, 0.8333, 0.7565, 0.2114, 0.0550, - 0.1806, 0.7785, 0.3657, 0.1751, 0.5105, 0.4138, 0.6648, - 0.0988, 0.5462, 0.5957, 0.0841, 0.7102, 0.7202, 0.1878, - 0.8772, 0.4902, 0.6123, 0.9058, 0.6380, 0.2081, 0.1591, - 0.1205, 0.1672, 0.9664, 0.6634, 0.6646, 0.2765, 0.4269, - 0.5829, 0.8144, 0.4256, 0.2309, 0.0615, 0.0926, 0.0573, - 0.0407, 0.6434, 0.2531, 0.0667, 0.6337, 0.0241, 0.7295, - 0.9133, 0.7637, 0.9403, 0.7968, 0.3787, 0.2873, 0.0225, - 0.1808, 0.3069, 0.1014, 0.5506, 0.2895, 0.7186, 0.5054, - 0.4710, 0.7466, 0.0956, 0.6689, 0.1987, 0.9374, 0.4713, - 0.8415, 0.9657, 0.9038, 0.1088, 0.8688, 0.2488, 0.6505, - 0.9593, 0.4610, 0.7212, 0.1418, 0.6637, 0.4566, 0.9474, - 0.6935, 0.5967, 0.6983, 0.4944, 0.8522, 0.4429, 0.6141, - 0.6725, 0.8987, 0.3589, 0.1096, 0.3360, 0.7261]), + col_indices=tensor([1701, 5200, 151, 7106, 6780, 2055, 1375, 8242, 376, + 4556, 1864, 1124, 4828, 55, 5866, 9752, 5516, 7381, + 1233, 540, 636, 7075, 5707, 6021, 4061, 4372, 9110, + 8043, 6636, 2721, 2135, 174, 4881, 658, 3469, 6307, + 6633, 7241, 1540, 9161, 3585, 3028, 1940, 352, 9272, + 3623, 3390, 9183, 6840, 1293, 3398, 5823, 704, 5011, + 1738, 9159, 5732, 4747, 2802, 1249, 5171, 5364, 7066, + 4818, 4723, 9883, 1229, 9311, 6671, 7348, 8536, 5413, + 6, 4030, 8060, 4147, 5081, 6166, 1683, 8447, 8806, + 8357, 9243, 6546, 2055, 6450, 9246, 3143, 856, 7551, + 1646, 9323, 5361, 3834, 1319, 9746, 7840, 8141, 2671, + 5949, 5626, 8150, 3730, 796, 1535, 4730, 6915, 6972, + 2766, 9860, 7270, 8106, 2537, 797, 5364, 6621, 5648, + 8548, 5257, 7801, 1229, 8693, 4025, 9202, 2593, 7960, + 5369, 7148, 7940, 9714, 2580, 5784, 7297, 5127, 6802, + 622, 3354, 4226, 9817, 7738, 681, 3311, 7124, 4060, + 4152, 2763, 5861, 4574, 2518, 5568, 7103, 2604, 1355, + 4689, 7527, 1325, 8159, 152, 4720, 4594, 5586, 2562, + 6272, 3785, 7905, 2125, 7915, 9420, 6886, 4693, 2166, + 91, 6490, 4806, 3118, 2672, 66, 1234, 1981, 8691, + 253, 7553, 230, 3625, 559, 8846, 3213, 4483, 4148, + 6841, 4073, 5125, 2223, 9103, 1924, 720, 5412, 4803, + 3085, 8563, 9540, 9315, 3139, 4726, 2626, 5785, 2038, + 6901, 621, 2004, 8854, 1914, 4754, 192, 7935, 5989, + 7322, 8869, 9629, 1813, 2620, 6175, 6750, 6796, 7909, + 5597, 7944, 723, 3767, 4917, 8478, 1868, 384, 772, + 4519, 5478, 4767, 9866, 5553, 2050, 2777, 5275, 9876, + 2088, 6106, 2118, 5471, 7481, 4915, 1002, 5183, 2482, + 7207, 9343, 7965, 4201, 3702, 8145, 2757, 9560, 9718, + 7886, 52, 9777, 985, 9786, 8980, 8450, 853, 4486, + 1238, 3703, 3895, 824, 2368, 4761, 7044, 6976, 7259, + 3408, 4627, 1088, 2233, 2531, 9316, 3007, 7830, 1611, + 2937, 2309, 6160, 3027, 5106, 8960, 6283, 8248, 1806, + 338, 2652, 6414, 8464, 1253, 2007, 5826, 1700, 5189, + 3184, 9274, 7910, 2408, 2889, 1106, 4992, 8140, 123, + 5004, 6911, 4693, 4844, 2907, 9739, 1307, 4690, 6578, + 2490, 1409, 2982, 4236, 7452, 258, 9946, 1594, 9084, + 7506, 349, 1142, 8943, 4241, 4711, 6656, 2419, 7301, + 2041, 4288, 2852, 4987, 6067, 2342, 5031, 1240, 3326, + 809, 1883, 7214, 5948, 4514, 7898, 6737, 2244, 7695, + 5774, 7074, 4380, 338, 3037, 5989, 4689, 2151, 4935, + 8239, 8199, 8742, 8379, 8464, 7648, 7511, 9789, 542, + 2321, 4702, 7444, 4179, 5713, 3500, 440, 3372, 1553, + 7066, 237, 6333, 4983, 9001, 6220, 9958, 7810, 6862, + 5158, 12, 3298, 176, 3276, 228, 4205, 1817, 6762, + 3628, 9393, 8101, 3855, 4143, 1454, 9776, 905, 9823, + 5862, 2192, 4474, 7500, 7608, 7951, 8118, 1256, 8656, + 8920, 6853, 1192, 8163, 2750, 1899, 3066, 8521, 9238, + 1236, 5960, 5040, 5370, 4579, 9179, 1422, 3868, 5989, + 5883, 5467, 8069, 2067, 4039, 8465, 7018, 1691, 4312, + 4117, 4240, 6107, 9816, 943, 9542, 8621, 1040, 2403, + 8739, 7827, 6446, 9590, 3659, 3297, 3557, 6979, 1879, + 3579, 2959, 2874, 7456, 8140, 5191, 5810, 753, 5881, + 2926, 3160, 7447, 9128, 3369, 9643, 866, 1094, 7856, + 2939, 2771, 903, 4019, 1481, 8141, 3059, 5105, 54, + 5797, 8704, 6592, 9683, 238, 941, 9073, 1570, 8149, + 620, 9506, 8170, 935, 287, 4429, 4319, 2568, 1551, + 2824, 4536, 8659, 8268, 4581, 7494, 1661, 2098, 5451, + 7560, 9224, 2281, 7897, 5655, 6711, 6313, 5649, 3624, + 1113, 3337, 9567, 6293, 4554, 4615, 390, 6190, 9206, + 2980, 9994, 298, 8200, 7196, 3147, 82, 7032, 1909, + 6954, 4345, 2438, 2065, 2556, 5426, 8978, 7465, 5220, + 5604, 788, 8414, 2663, 5742, 4974, 462, 1147, 9967, + 2553, 6062, 5166, 3507, 4599, 8067, 9145, 6263, 358, + 6192, 9886, 1258, 1355, 8678, 8303, 9017, 8920, 3248, + 9675, 9017, 2019, 2107, 8167, 8733, 3179, 4669, 528, + 6951, 1546, 9515, 8164, 7191, 1458, 7943, 2239, 8218, + 160, 1727, 1954, 2526, 1135, 2201, 9078, 3991, 6935, + 519, 208, 8883, 3452, 5310, 4150, 3705, 3822, 7401, + 8546, 6404, 3490, 1861, 743, 6663, 7115, 426, 6265, + 5338, 4421, 8479, 4579, 7854, 952, 4160, 5970, 2820, + 6175, 9201, 3918, 8342, 1561, 8841, 9347, 6312, 8811, + 802, 3751, 1504, 9841, 3459, 4709, 7585, 9176, 402, + 8777, 5093, 5366, 1341, 94, 1213, 3151, 5186, 6190, + 9472, 8769, 8920, 5876, 9844, 8088, 3443, 3158, 1522, + 2239, 5911, 1843, 878, 3231, 9219, 9744, 5314, 5187, + 7781, 4935, 1116, 2698, 2909, 7609, 34, 6226, 271, + 7563, 6665, 2928, 7844, 7394, 1971, 1334, 8649, 7028, + 9162, 7777, 8221, 7806, 7876, 9654, 9678, 288, 6495, + 8153, 8652, 8277, 3375, 9963, 69, 2407, 1311, 3891, + 6745, 2980, 7523, 832, 7750, 7534, 9660, 5289, 3385, + 484, 2425, 9377, 7231, 951, 3144, 5429, 1186, 4354, + 946, 3543, 2792, 7235, 7094, 6477, 4712, 3170, 5325, + 6937, 7529, 2618, 9824, 1671, 9430, 3905, 2384, 1668, + 2134, 5903, 8606, 6210, 736, 9653, 2364, 46, 8839, + 3680, 8561, 7610, 2537, 5694, 4491, 3070, 102, 7674, + 94, 8566, 9307, 6073, 5078, 5944, 6543, 2837, 5013, + 5856, 26, 4035, 1232, 2905, 644, 1632, 730, 2714, + 5211, 7999, 7356, 9942, 3050, 3488, 2030, 3261, 990, + 2503, 9947, 5773, 2097, 8736, 2427, 814, 8208, 7952, + 1425, 763, 3478, 2559, 2030, 7355, 2403, 8133, 1521, + 2534, 4093, 6128, 650, 4011, 373, 5526, 1945, 3671, + 9189, 5214, 508, 4155, 9541, 9972, 2781, 9076, 2880, + 3611, 4734, 9885, 7739, 6719, 4377, 7240, 3082, 5164, + 2874, 6457, 2759, 7393, 5423, 443, 9684, 5344, 4129, + 7342, 9307, 5758, 5216, 2857, 6451, 1753, 5670, 3430, + 7468, 6794, 5048, 2729, 9118, 9764, 1919, 5665, 767, + 1418, 1135, 8997, 7779, 2429, 9649, 5229, 7038, 811, + 1832, 5395, 8070, 6294, 826, 5781, 6439, 3995, 1648, + 5102, 6547, 1824, 6293, 2074, 1908, 2741, 7323, 5768, + 7042, 3737, 1819, 2188, 1660, 4954, 7523, 3959, 9961, + 6052, 7983, 9534, 9061, 2300, 6304, 2454, 8016, 2821, + 1085, 1757, 9862, 5100, 1573, 6827, 5866, 5759, 3861, + 1208, 5621, 2294, 4759, 9995, 7707, 978, 9925, 5367, + 9804, 9907, 9336, 1138, 7783, 5709, 9686, 6759, 5257, + 3612, 9813, 741, 965, 354, 5561, 3584, 1206, 483, + 5051, 7676, 6562, 4835, 7136, 2052, 4373, 7923, 9493, + 3447, 2194, 3934, 1186, 6674, 4835, 7761, 3711, 2508, + 8473, 8257, 9236, 9392, 9771, 837, 8611, 4349, 8338, + 9309, 8829, 4296, 7751, 6181, 8890, 2833, 7799, 5871, + 3122, 6337, 1417, 1292, 5004, 6019, 1196, 5382, 6389, + 3275]), + values=tensor([0.2237, 0.0937, 0.9630, 0.1477, 0.5729, 0.1998, 0.9498, + 0.4379, 0.8034, 0.0235, 0.9902, 0.3432, 0.0700, 0.1825, + 0.5442, 0.2482, 0.6281, 0.6943, 0.3994, 0.1696, 0.8276, + 0.4876, 0.7936, 0.7452, 0.0998, 0.2679, 0.8349, 0.3267, + 0.0044, 0.0261, 0.7294, 0.7269, 0.9705, 0.1244, 0.6999, + 0.0989, 0.9010, 0.3293, 0.8054, 0.8993, 0.1777, 0.0858, + 0.0842, 0.5815, 0.0073, 0.8773, 0.5984, 0.9584, 0.9585, + 0.9084, 0.8010, 0.3890, 0.7561, 0.2065, 0.0869, 0.1566, + 0.5409, 0.0893, 0.4037, 0.9105, 0.3894, 0.1083, 0.0753, + 0.9158, 0.4006, 0.0324, 0.5094, 0.9774, 0.7974, 0.7971, + 0.4057, 0.2885, 0.0520, 0.2695, 0.5617, 0.7978, 0.7923, + 0.0655, 0.7159, 0.9957, 0.9205, 0.7614, 0.5249, 0.9947, + 0.7384, 0.2115, 0.5030, 0.2376, 0.3351, 0.0950, 0.7426, + 0.9408, 0.1119, 0.8775, 0.3131, 0.2215, 0.5071, 0.5270, + 0.2205, 0.8988, 0.4070, 0.6511, 0.6751, 0.8449, 0.8296, + 0.8009, 0.0238, 0.1850, 0.1927, 0.3420, 0.8088, 0.0148, + 0.6612, 0.4105, 0.1426, 0.8882, 0.2834, 0.4158, 0.8305, + 0.3284, 0.6229, 0.4603, 0.3207, 0.5603, 0.9335, 0.2077, + 0.3713, 0.2711, 0.3356, 0.1915, 0.1831, 0.6739, 0.8426, + 0.8846, 0.4385, 0.3712, 0.1660, 0.5165, 0.4995, 0.8937, + 0.3826, 0.4064, 0.9294, 0.5277, 0.4615, 0.3664, 0.3226, + 0.2012, 0.4698, 0.4989, 0.3815, 0.0360, 0.2844, 0.1905, + 0.6394, 0.1553, 0.2179, 0.9991, 0.4322, 0.8990, 0.8663, + 0.5714, 0.2616, 0.9118, 0.1532, 0.0794, 0.4487, 0.6562, + 0.8275, 0.3748, 0.9786, 0.2334, 0.4221, 0.0891, 0.4672, + 0.7959, 0.9325, 0.2602, 0.6239, 0.2789, 0.5279, 0.9698, + 0.2620, 0.9710, 0.0659, 0.7009, 0.4749, 0.0914, 0.8769, + 0.1261, 0.4952, 0.9824, 0.3145, 0.3912, 0.7378, 0.2369, + 0.7117, 0.3375, 0.4187, 0.9390, 0.2536, 0.2477, 0.8490, + 0.6862, 0.8212, 0.4774, 0.7214, 0.2067, 0.2441, 0.9886, + 0.6487, 0.5109, 0.5780, 0.0528, 0.8446, 0.2500, 0.0099, + 0.3498, 0.0603, 0.6328, 0.1396, 0.3979, 0.0437, 0.4013, + 0.4045, 0.6436, 0.0264, 0.5833, 0.5292, 0.4239, 0.4451, + 0.5547, 0.9082, 0.0133, 0.9732, 0.3574, 0.5837, 0.2932, + 0.7709, 0.0813, 0.8692, 0.3324, 0.5254, 0.2501, 0.7664, + 0.8569, 0.9977, 0.7986, 0.2734, 0.2131, 0.2578, 0.0864, + 0.4157, 0.7639, 0.4495, 0.8317, 0.0808, 0.3465, 0.3449, + 0.1795, 0.3111, 0.3583, 0.5361, 0.7493, 0.6307, 0.5749, + 0.7117, 0.5264, 0.3319, 0.4855, 0.7740, 0.0389, 0.7199, + 0.1757, 0.7320, 0.3881, 0.8473, 0.7211, 0.0089, 0.8715, + 0.8121, 0.6785, 0.3229, 0.7947, 0.1252, 0.4363, 0.7100, + 0.8129, 0.7275, 0.7882, 0.1837, 0.4836, 0.9665, 0.3166, + 0.8373, 0.4110, 0.9919, 0.7071, 0.1476, 0.4264, 0.6374, + 0.1843, 0.0355, 0.4476, 0.5128, 0.6553, 0.9636, 0.4657, + 0.3003, 0.5021, 0.2604, 0.1725, 0.4826, 0.8980, 0.9472, + 0.5359, 0.5329, 0.7276, 0.9162, 0.7128, 0.3214, 0.4430, + 0.0268, 0.4336, 0.6726, 0.3183, 0.6498, 0.8979, 0.4377, + 0.4508, 0.7071, 0.7374, 0.6664, 0.3207, 0.9118, 0.0607, + 0.6305, 0.1649, 0.7631, 0.3880, 0.1389, 0.3349, 0.7098, + 0.2548, 0.1348, 0.7807, 0.3721, 0.5610, 0.2096, 0.6681, + 0.4693, 0.1901, 0.1930, 0.1622, 0.2963, 0.0603, 0.2890, + 0.1230, 0.6505, 0.5223, 0.4052, 0.7992, 0.2060, 0.6551, + 0.9600, 0.8356, 0.2101, 0.1915, 0.5095, 0.9710, 0.1888, + 0.1645, 0.3590, 0.3490, 0.1788, 0.3894, 0.3501, 0.3981, + 0.8373, 0.9445, 0.9392, 0.0706, 0.5984, 0.1523, 0.8809, + 0.3914, 0.7705, 0.3109, 0.6448, 0.4013, 0.0518, 0.5764, + 0.9274, 0.9661, 0.6301, 0.2194, 0.3082, 0.6486, 0.9235, + 0.3097, 0.0386, 0.1441, 0.2865, 0.6143, 0.4563, 0.3660, + 0.2231, 0.3622, 0.4918, 0.2906, 0.1025, 0.3484, 0.1783, + 0.0793, 0.4740, 0.8350, 0.2433, 0.0513, 0.4263, 0.6836, + 0.8954, 0.2130, 0.9199, 0.7013, 0.7526, 0.7990, 0.3316, + 0.3824, 0.6560, 0.0665, 0.3473, 0.7352, 0.3958, 0.6717, + 0.1787, 0.9112, 0.3996, 0.1342, 0.8973, 0.7673, 0.3783, + 0.7610, 0.5775, 0.8738, 0.8225, 0.6836, 0.9352, 0.4659, + 0.0218, 0.6016, 0.7349, 0.5865, 0.4088, 0.3716, 0.3419, + 0.4366, 0.2265, 0.1625, 0.3329, 0.2090, 0.9832, 0.8807, + 0.9078, 0.0817, 0.5180, 0.2440, 0.2482, 0.7292, 0.3941, + 0.8401, 0.0141, 0.7489, 0.3723, 0.0350, 0.2835, 0.3314, + 0.1685, 0.1121, 0.6204, 0.8138, 0.4395, 0.6725, 0.3304, + 0.8152, 0.9086, 0.9942, 0.4917, 0.4382, 0.2414, 0.3708, + 0.4786, 0.6864, 0.9521, 0.6060, 0.5707, 0.3741, 0.7770, + 0.9669, 0.3737, 0.9687, 0.3704, 0.3850, 0.7958, 0.7808, + 0.1612, 0.9230, 0.8525, 0.6799, 0.0805, 0.9623, 0.0798, + 0.1563, 0.7621, 0.9897, 0.4134, 0.9079, 0.9743, 0.2876, + 0.0876, 0.7910, 0.9308, 0.0610, 0.2187, 0.5615, 0.3229, + 0.9375, 0.5980, 0.9792, 0.8630, 0.9130, 0.2219, 0.2254, + 0.9540, 0.2937, 0.2448, 0.2621, 0.5306, 0.1461, 0.7337, + 0.4278, 0.4789, 0.9525, 0.8487, 0.1678, 0.8083, 0.8602, + 0.5427, 0.9150, 0.6338, 0.0596, 0.3932, 0.3519, 0.0682, + 0.2049, 0.6992, 0.1087, 0.4717, 0.7743, 0.1069, 0.9390, + 0.7215, 0.0549, 0.2173, 0.5676, 0.3363, 0.3647, 0.6589, + 0.8482, 0.0780, 0.4024, 0.0875, 0.0825, 0.2565, 0.7274, + 0.2689, 0.2341, 0.8282, 0.6484, 0.5740, 0.2458, 0.3418, + 0.6679, 0.0928, 0.8043, 0.0375, 0.0455, 0.1021, 0.0727, + 0.6034, 0.7073, 0.9501, 0.1827, 0.6546, 0.0622, 0.8697, + 0.6037, 0.6145, 0.7007, 0.9749, 0.2250, 0.9919, 0.6048, + 0.0930, 0.2305, 0.6915, 0.5382, 0.1474, 0.1571, 0.4897, + 0.4500, 0.3177, 0.8426, 0.5450, 0.6520, 0.4501, 0.7247, + 0.0507, 0.2850, 0.0212, 0.9359, 0.6125, 0.4131, 0.8209, + 0.5987, 0.8486, 0.6476, 0.7153, 0.8008, 0.6473, 0.9929, + 0.7390, 0.7887, 0.4013, 0.3755, 0.5104, 0.8562, 0.2127, + 0.2174, 0.7440, 0.3993, 0.8984, 0.4550, 0.9304, 0.9089, + 0.9769, 0.3961, 0.4588, 0.7478, 0.4077, 0.7220, 0.1553, + 0.0217, 0.3009, 0.6585, 0.6058, 0.6903, 0.5106, 0.3638, + 0.8147, 0.1664, 0.2008, 0.2597, 0.0618, 0.8442, 0.8484, + 0.5244, 0.1691, 0.8820, 0.2008, 0.5312, 0.1231, 0.2789, + 0.2030, 0.9130, 0.3220, 0.9544, 0.0942, 0.3181, 0.3072, + 0.8830, 0.5897, 0.4002, 0.4521, 0.5237, 0.1548, 0.2054, + 0.1146, 0.0603, 0.1840, 0.5799, 0.0520, 0.7941, 0.5931, + 0.8282, 0.2801, 0.8827, 0.2904, 0.6095, 0.1708, 0.2367, + 0.4340, 0.5936, 0.4575, 0.2879, 0.8225, 0.0562, 0.7618, + 0.0424, 0.3732, 0.7233, 0.7772, 0.4983, 0.8623, 0.4285, + 0.4221, 0.1088, 0.3304, 0.1568, 0.5143, 0.6215, 0.5503, + 0.7690, 0.3756, 0.5348, 0.7357, 0.8109, 0.3130, 0.0158, + 0.0023, 0.6162, 0.8535, 0.2750, 0.7217, 0.5469, 0.3265, + 0.1222, 0.4043, 0.3551, 0.1335, 0.2431, 0.0804, 0.8806, + 0.9161, 0.7825, 0.7689, 0.7354, 0.8643, 0.4190, 0.5343, + 0.3840, 0.7807, 0.6542, 0.2807, 0.0621, 0.5952, 0.8649, + 0.8056, 0.2886, 0.8492, 0.0497, 0.6903, 0.0986, 0.3481, + 0.9830, 0.1513, 0.7150, 0.5003, 0.6462, 0.3091, 0.5104, + 0.1090, 0.4875, 0.2487, 0.1973, 0.1005, 0.5965, 0.6503, + 0.6776, 0.1194, 0.6968, 0.4165, 0.3997, 0.2356, 0.9948, + 0.2469, 0.5798, 0.3444, 0.2015, 0.9011, 0.6742, 0.3975, + 0.8612, 0.7831, 0.0862, 0.4379, 0.0809, 0.7931, 0.0607, + 0.3830, 0.8447, 0.6462, 0.9840, 0.5433, 0.4101, 0.8260, + 0.5601, 0.6978, 0.1804, 0.4108, 0.0158, 0.7436, 0.8390, + 0.9475, 0.4933, 0.1487, 0.4644, 0.5877, 0.7798, 0.6315, + 0.5300, 0.7588, 0.5234, 0.0393, 0.3814, 0.5279, 0.6528, + 0.9869, 0.9540, 0.6270, 0.7013, 0.4305, 0.2085, 0.9008, + 0.4866, 0.4271, 0.1271, 0.3216, 0.3653, 0.9917, 0.2290, + 0.3330, 0.6020, 0.4543, 0.6559, 0.8582, 0.2937, 0.1913, + 0.3080, 0.3895, 0.3059, 0.0633, 0.6122, 0.1175, 0.6572, + 0.2524, 0.7704, 0.8210, 0.4794, 0.7538, 0.4031, 0.0275, + 0.5311, 0.0815, 0.4034, 0.6148, 0.1185, 0.7439, 0.4016, + 0.5608, 0.0706, 0.4835, 0.2505, 0.9363, 0.3741, 0.3124, + 0.4634, 0.9844, 0.4189, 0.3458, 0.6504, 0.0883, 0.9154, + 0.1987, 0.8102, 0.2403, 0.6352, 0.9134, 0.0740, 0.6217, + 0.7461, 0.9307, 0.2340, 0.9526, 0.2394, 0.1661, 0.5903, + 0.3531, 0.3579, 0.3335, 0.4941, 0.0937, 0.0190, 0.7400, + 0.6048, 0.0736, 0.8480, 0.7056, 0.9624, 0.8952, 0.2590, + 0.2918, 0.9369, 0.3316, 0.8127, 0.4530, 0.8583, 0.8824, + 0.6823, 0.0554, 0.6007, 0.8647, 0.0307, 0.2993, 0.2476, + 0.7318, 0.8917, 0.9643, 0.6157, 0.2184, 0.8408, 0.3345, + 0.0712, 0.8159, 0.2459, 0.0991, 0.7444, 0.2222, 0.0014, + 0.1305, 0.8914, 0.0089, 0.5321, 0.7917, 0.7163, 0.9580, + 0.3624, 0.0142, 0.8937, 0.5115, 0.5049, 0.8434, 0.7234, + 0.7161, 0.2634, 0.8592, 0.3961, 0.5586, 0.2620, 0.0375, + 0.1665, 0.2915, 0.9139, 0.7009, 0.5095, 0.4519, 0.1213, + 0.3561, 0.0066, 0.4379, 0.3522, 0.6225, 0.6900, 0.8216, + 0.8841, 0.6553, 0.8193, 0.7688, 0.5104, 0.3926, 0.7388, + 0.4735, 0.1897, 0.7788, 0.8825, 0.9103, 0.2988, 0.1239, + 0.1792, 0.1266, 0.4818, 0.8893, 0.6604, 0.1883, 0.9700, + 0.5469, 0.0958, 0.2762, 0.2054, 0.3215, 0.7664]), size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.5928, 0.5923, 0.2769, ..., 0.7868, 0.2495, 0.0989]) +tensor([0.5980, 0.9421, 0.9493, ..., 0.6518, 0.5202, 0.4457]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -1295,13 +1026,282 @@ Rows: 10000 Size: 100000000 NNZ: 1000 Density: 1e-05 -Time: 10.501307487487793 seconds +Time: 10.272708654403687 seconds -[18.25, 18.14, 17.95, 17.87, 17.91, 17.96, 17.87, 17.59, 18.03, 17.97] -[50.86] -14.265194416046143 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 225815, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.501307487487793, 'TIME_S_1KI': 0.046504029792032386, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 725.5277880001069, 'W': 50.86} -[18.25, 18.14, 17.95, 17.87, 17.91, 17.96, 17.87, 17.59, 18.03, 17.97, 17.9, 17.6, 18.05, 17.8, 18.18, 17.66, 17.82, 21.98, 18.23, 17.62] -326.51 -16.325499999999998 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 225815, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.501307487487793, 'TIME_S_1KI': 0.046504029792032386, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 725.5277880001069, 'W': 50.86, 'J_1KI': 3.2129300002218932, 'W_1KI': 0.22522861634523836, 'W_D': 34.5345, 'J_D': 492.64135656094555, 'W_D_1KI': 0.15293271040453468, 'J_D_1KI': 0.0006772477931250567} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([1701, 5200, 151, 7106, 6780, 2055, 1375, 8242, 376, + 4556, 1864, 1124, 4828, 55, 5866, 9752, 5516, 7381, + 1233, 540, 636, 7075, 5707, 6021, 4061, 4372, 9110, + 8043, 6636, 2721, 2135, 174, 4881, 658, 3469, 6307, + 6633, 7241, 1540, 9161, 3585, 3028, 1940, 352, 9272, + 3623, 3390, 9183, 6840, 1293, 3398, 5823, 704, 5011, + 1738, 9159, 5732, 4747, 2802, 1249, 5171, 5364, 7066, + 4818, 4723, 9883, 1229, 9311, 6671, 7348, 8536, 5413, + 6, 4030, 8060, 4147, 5081, 6166, 1683, 8447, 8806, + 8357, 9243, 6546, 2055, 6450, 9246, 3143, 856, 7551, + 1646, 9323, 5361, 3834, 1319, 9746, 7840, 8141, 2671, + 5949, 5626, 8150, 3730, 796, 1535, 4730, 6915, 6972, + 2766, 9860, 7270, 8106, 2537, 797, 5364, 6621, 5648, + 8548, 5257, 7801, 1229, 8693, 4025, 9202, 2593, 7960, + 5369, 7148, 7940, 9714, 2580, 5784, 7297, 5127, 6802, + 622, 3354, 4226, 9817, 7738, 681, 3311, 7124, 4060, + 4152, 2763, 5861, 4574, 2518, 5568, 7103, 2604, 1355, + 4689, 7527, 1325, 8159, 152, 4720, 4594, 5586, 2562, + 6272, 3785, 7905, 2125, 7915, 9420, 6886, 4693, 2166, + 91, 6490, 4806, 3118, 2672, 66, 1234, 1981, 8691, + 253, 7553, 230, 3625, 559, 8846, 3213, 4483, 4148, + 6841, 4073, 5125, 2223, 9103, 1924, 720, 5412, 4803, + 3085, 8563, 9540, 9315, 3139, 4726, 2626, 5785, 2038, + 6901, 621, 2004, 8854, 1914, 4754, 192, 7935, 5989, + 7322, 8869, 9629, 1813, 2620, 6175, 6750, 6796, 7909, + 5597, 7944, 723, 3767, 4917, 8478, 1868, 384, 772, + 4519, 5478, 4767, 9866, 5553, 2050, 2777, 5275, 9876, + 2088, 6106, 2118, 5471, 7481, 4915, 1002, 5183, 2482, + 7207, 9343, 7965, 4201, 3702, 8145, 2757, 9560, 9718, + 7886, 52, 9777, 985, 9786, 8980, 8450, 853, 4486, + 1238, 3703, 3895, 824, 2368, 4761, 7044, 6976, 7259, + 3408, 4627, 1088, 2233, 2531, 9316, 3007, 7830, 1611, + 2937, 2309, 6160, 3027, 5106, 8960, 6283, 8248, 1806, + 338, 2652, 6414, 8464, 1253, 2007, 5826, 1700, 5189, + 3184, 9274, 7910, 2408, 2889, 1106, 4992, 8140, 123, + 5004, 6911, 4693, 4844, 2907, 9739, 1307, 4690, 6578, + 2490, 1409, 2982, 4236, 7452, 258, 9946, 1594, 9084, + 7506, 349, 1142, 8943, 4241, 4711, 6656, 2419, 7301, + 2041, 4288, 2852, 4987, 6067, 2342, 5031, 1240, 3326, + 809, 1883, 7214, 5948, 4514, 7898, 6737, 2244, 7695, + 5774, 7074, 4380, 338, 3037, 5989, 4689, 2151, 4935, + 8239, 8199, 8742, 8379, 8464, 7648, 7511, 9789, 542, + 2321, 4702, 7444, 4179, 5713, 3500, 440, 3372, 1553, + 7066, 237, 6333, 4983, 9001, 6220, 9958, 7810, 6862, + 5158, 12, 3298, 176, 3276, 228, 4205, 1817, 6762, + 3628, 9393, 8101, 3855, 4143, 1454, 9776, 905, 9823, + 5862, 2192, 4474, 7500, 7608, 7951, 8118, 1256, 8656, + 8920, 6853, 1192, 8163, 2750, 1899, 3066, 8521, 9238, + 1236, 5960, 5040, 5370, 4579, 9179, 1422, 3868, 5989, + 5883, 5467, 8069, 2067, 4039, 8465, 7018, 1691, 4312, + 4117, 4240, 6107, 9816, 943, 9542, 8621, 1040, 2403, + 8739, 7827, 6446, 9590, 3659, 3297, 3557, 6979, 1879, + 3579, 2959, 2874, 7456, 8140, 5191, 5810, 753, 5881, + 2926, 3160, 7447, 9128, 3369, 9643, 866, 1094, 7856, + 2939, 2771, 903, 4019, 1481, 8141, 3059, 5105, 54, + 5797, 8704, 6592, 9683, 238, 941, 9073, 1570, 8149, + 620, 9506, 8170, 935, 287, 4429, 4319, 2568, 1551, + 2824, 4536, 8659, 8268, 4581, 7494, 1661, 2098, 5451, + 7560, 9224, 2281, 7897, 5655, 6711, 6313, 5649, 3624, + 1113, 3337, 9567, 6293, 4554, 4615, 390, 6190, 9206, + 2980, 9994, 298, 8200, 7196, 3147, 82, 7032, 1909, + 6954, 4345, 2438, 2065, 2556, 5426, 8978, 7465, 5220, + 5604, 788, 8414, 2663, 5742, 4974, 462, 1147, 9967, + 2553, 6062, 5166, 3507, 4599, 8067, 9145, 6263, 358, + 6192, 9886, 1258, 1355, 8678, 8303, 9017, 8920, 3248, + 9675, 9017, 2019, 2107, 8167, 8733, 3179, 4669, 528, + 6951, 1546, 9515, 8164, 7191, 1458, 7943, 2239, 8218, + 160, 1727, 1954, 2526, 1135, 2201, 9078, 3991, 6935, + 519, 208, 8883, 3452, 5310, 4150, 3705, 3822, 7401, + 8546, 6404, 3490, 1861, 743, 6663, 7115, 426, 6265, + 5338, 4421, 8479, 4579, 7854, 952, 4160, 5970, 2820, + 6175, 9201, 3918, 8342, 1561, 8841, 9347, 6312, 8811, + 802, 3751, 1504, 9841, 3459, 4709, 7585, 9176, 402, + 8777, 5093, 5366, 1341, 94, 1213, 3151, 5186, 6190, + 9472, 8769, 8920, 5876, 9844, 8088, 3443, 3158, 1522, + 2239, 5911, 1843, 878, 3231, 9219, 9744, 5314, 5187, + 7781, 4935, 1116, 2698, 2909, 7609, 34, 6226, 271, + 7563, 6665, 2928, 7844, 7394, 1971, 1334, 8649, 7028, + 9162, 7777, 8221, 7806, 7876, 9654, 9678, 288, 6495, + 8153, 8652, 8277, 3375, 9963, 69, 2407, 1311, 3891, + 6745, 2980, 7523, 832, 7750, 7534, 9660, 5289, 3385, + 484, 2425, 9377, 7231, 951, 3144, 5429, 1186, 4354, + 946, 3543, 2792, 7235, 7094, 6477, 4712, 3170, 5325, + 6937, 7529, 2618, 9824, 1671, 9430, 3905, 2384, 1668, + 2134, 5903, 8606, 6210, 736, 9653, 2364, 46, 8839, + 3680, 8561, 7610, 2537, 5694, 4491, 3070, 102, 7674, + 94, 8566, 9307, 6073, 5078, 5944, 6543, 2837, 5013, + 5856, 26, 4035, 1232, 2905, 644, 1632, 730, 2714, + 5211, 7999, 7356, 9942, 3050, 3488, 2030, 3261, 990, + 2503, 9947, 5773, 2097, 8736, 2427, 814, 8208, 7952, + 1425, 763, 3478, 2559, 2030, 7355, 2403, 8133, 1521, + 2534, 4093, 6128, 650, 4011, 373, 5526, 1945, 3671, + 9189, 5214, 508, 4155, 9541, 9972, 2781, 9076, 2880, + 3611, 4734, 9885, 7739, 6719, 4377, 7240, 3082, 5164, + 2874, 6457, 2759, 7393, 5423, 443, 9684, 5344, 4129, + 7342, 9307, 5758, 5216, 2857, 6451, 1753, 5670, 3430, + 7468, 6794, 5048, 2729, 9118, 9764, 1919, 5665, 767, + 1418, 1135, 8997, 7779, 2429, 9649, 5229, 7038, 811, + 1832, 5395, 8070, 6294, 826, 5781, 6439, 3995, 1648, + 5102, 6547, 1824, 6293, 2074, 1908, 2741, 7323, 5768, + 7042, 3737, 1819, 2188, 1660, 4954, 7523, 3959, 9961, + 6052, 7983, 9534, 9061, 2300, 6304, 2454, 8016, 2821, + 1085, 1757, 9862, 5100, 1573, 6827, 5866, 5759, 3861, + 1208, 5621, 2294, 4759, 9995, 7707, 978, 9925, 5367, + 9804, 9907, 9336, 1138, 7783, 5709, 9686, 6759, 5257, + 3612, 9813, 741, 965, 354, 5561, 3584, 1206, 483, + 5051, 7676, 6562, 4835, 7136, 2052, 4373, 7923, 9493, + 3447, 2194, 3934, 1186, 6674, 4835, 7761, 3711, 2508, + 8473, 8257, 9236, 9392, 9771, 837, 8611, 4349, 8338, + 9309, 8829, 4296, 7751, 6181, 8890, 2833, 7799, 5871, + 3122, 6337, 1417, 1292, 5004, 6019, 1196, 5382, 6389, + 3275]), + values=tensor([0.2237, 0.0937, 0.9630, 0.1477, 0.5729, 0.1998, 0.9498, + 0.4379, 0.8034, 0.0235, 0.9902, 0.3432, 0.0700, 0.1825, + 0.5442, 0.2482, 0.6281, 0.6943, 0.3994, 0.1696, 0.8276, + 0.4876, 0.7936, 0.7452, 0.0998, 0.2679, 0.8349, 0.3267, + 0.0044, 0.0261, 0.7294, 0.7269, 0.9705, 0.1244, 0.6999, + 0.0989, 0.9010, 0.3293, 0.8054, 0.8993, 0.1777, 0.0858, + 0.0842, 0.5815, 0.0073, 0.8773, 0.5984, 0.9584, 0.9585, + 0.9084, 0.8010, 0.3890, 0.7561, 0.2065, 0.0869, 0.1566, + 0.5409, 0.0893, 0.4037, 0.9105, 0.3894, 0.1083, 0.0753, + 0.9158, 0.4006, 0.0324, 0.5094, 0.9774, 0.7974, 0.7971, + 0.4057, 0.2885, 0.0520, 0.2695, 0.5617, 0.7978, 0.7923, + 0.0655, 0.7159, 0.9957, 0.9205, 0.7614, 0.5249, 0.9947, + 0.7384, 0.2115, 0.5030, 0.2376, 0.3351, 0.0950, 0.7426, + 0.9408, 0.1119, 0.8775, 0.3131, 0.2215, 0.5071, 0.5270, + 0.2205, 0.8988, 0.4070, 0.6511, 0.6751, 0.8449, 0.8296, + 0.8009, 0.0238, 0.1850, 0.1927, 0.3420, 0.8088, 0.0148, + 0.6612, 0.4105, 0.1426, 0.8882, 0.2834, 0.4158, 0.8305, + 0.3284, 0.6229, 0.4603, 0.3207, 0.5603, 0.9335, 0.2077, + 0.3713, 0.2711, 0.3356, 0.1915, 0.1831, 0.6739, 0.8426, + 0.8846, 0.4385, 0.3712, 0.1660, 0.5165, 0.4995, 0.8937, + 0.3826, 0.4064, 0.9294, 0.5277, 0.4615, 0.3664, 0.3226, + 0.2012, 0.4698, 0.4989, 0.3815, 0.0360, 0.2844, 0.1905, + 0.6394, 0.1553, 0.2179, 0.9991, 0.4322, 0.8990, 0.8663, + 0.5714, 0.2616, 0.9118, 0.1532, 0.0794, 0.4487, 0.6562, + 0.8275, 0.3748, 0.9786, 0.2334, 0.4221, 0.0891, 0.4672, + 0.7959, 0.9325, 0.2602, 0.6239, 0.2789, 0.5279, 0.9698, + 0.2620, 0.9710, 0.0659, 0.7009, 0.4749, 0.0914, 0.8769, + 0.1261, 0.4952, 0.9824, 0.3145, 0.3912, 0.7378, 0.2369, + 0.7117, 0.3375, 0.4187, 0.9390, 0.2536, 0.2477, 0.8490, + 0.6862, 0.8212, 0.4774, 0.7214, 0.2067, 0.2441, 0.9886, + 0.6487, 0.5109, 0.5780, 0.0528, 0.8446, 0.2500, 0.0099, + 0.3498, 0.0603, 0.6328, 0.1396, 0.3979, 0.0437, 0.4013, + 0.4045, 0.6436, 0.0264, 0.5833, 0.5292, 0.4239, 0.4451, + 0.5547, 0.9082, 0.0133, 0.9732, 0.3574, 0.5837, 0.2932, + 0.7709, 0.0813, 0.8692, 0.3324, 0.5254, 0.2501, 0.7664, + 0.8569, 0.9977, 0.7986, 0.2734, 0.2131, 0.2578, 0.0864, + 0.4157, 0.7639, 0.4495, 0.8317, 0.0808, 0.3465, 0.3449, + 0.1795, 0.3111, 0.3583, 0.5361, 0.7493, 0.6307, 0.5749, + 0.7117, 0.5264, 0.3319, 0.4855, 0.7740, 0.0389, 0.7199, + 0.1757, 0.7320, 0.3881, 0.8473, 0.7211, 0.0089, 0.8715, + 0.8121, 0.6785, 0.3229, 0.7947, 0.1252, 0.4363, 0.7100, + 0.8129, 0.7275, 0.7882, 0.1837, 0.4836, 0.9665, 0.3166, + 0.8373, 0.4110, 0.9919, 0.7071, 0.1476, 0.4264, 0.6374, + 0.1843, 0.0355, 0.4476, 0.5128, 0.6553, 0.9636, 0.4657, + 0.3003, 0.5021, 0.2604, 0.1725, 0.4826, 0.8980, 0.9472, + 0.5359, 0.5329, 0.7276, 0.9162, 0.7128, 0.3214, 0.4430, + 0.0268, 0.4336, 0.6726, 0.3183, 0.6498, 0.8979, 0.4377, + 0.4508, 0.7071, 0.7374, 0.6664, 0.3207, 0.9118, 0.0607, + 0.6305, 0.1649, 0.7631, 0.3880, 0.1389, 0.3349, 0.7098, + 0.2548, 0.1348, 0.7807, 0.3721, 0.5610, 0.2096, 0.6681, + 0.4693, 0.1901, 0.1930, 0.1622, 0.2963, 0.0603, 0.2890, + 0.1230, 0.6505, 0.5223, 0.4052, 0.7992, 0.2060, 0.6551, + 0.9600, 0.8356, 0.2101, 0.1915, 0.5095, 0.9710, 0.1888, + 0.1645, 0.3590, 0.3490, 0.1788, 0.3894, 0.3501, 0.3981, + 0.8373, 0.9445, 0.9392, 0.0706, 0.5984, 0.1523, 0.8809, + 0.3914, 0.7705, 0.3109, 0.6448, 0.4013, 0.0518, 0.5764, + 0.9274, 0.9661, 0.6301, 0.2194, 0.3082, 0.6486, 0.9235, + 0.3097, 0.0386, 0.1441, 0.2865, 0.6143, 0.4563, 0.3660, + 0.2231, 0.3622, 0.4918, 0.2906, 0.1025, 0.3484, 0.1783, + 0.0793, 0.4740, 0.8350, 0.2433, 0.0513, 0.4263, 0.6836, + 0.8954, 0.2130, 0.9199, 0.7013, 0.7526, 0.7990, 0.3316, + 0.3824, 0.6560, 0.0665, 0.3473, 0.7352, 0.3958, 0.6717, + 0.1787, 0.9112, 0.3996, 0.1342, 0.8973, 0.7673, 0.3783, + 0.7610, 0.5775, 0.8738, 0.8225, 0.6836, 0.9352, 0.4659, + 0.0218, 0.6016, 0.7349, 0.5865, 0.4088, 0.3716, 0.3419, + 0.4366, 0.2265, 0.1625, 0.3329, 0.2090, 0.9832, 0.8807, + 0.9078, 0.0817, 0.5180, 0.2440, 0.2482, 0.7292, 0.3941, + 0.8401, 0.0141, 0.7489, 0.3723, 0.0350, 0.2835, 0.3314, + 0.1685, 0.1121, 0.6204, 0.8138, 0.4395, 0.6725, 0.3304, + 0.8152, 0.9086, 0.9942, 0.4917, 0.4382, 0.2414, 0.3708, + 0.4786, 0.6864, 0.9521, 0.6060, 0.5707, 0.3741, 0.7770, + 0.9669, 0.3737, 0.9687, 0.3704, 0.3850, 0.7958, 0.7808, + 0.1612, 0.9230, 0.8525, 0.6799, 0.0805, 0.9623, 0.0798, + 0.1563, 0.7621, 0.9897, 0.4134, 0.9079, 0.9743, 0.2876, + 0.0876, 0.7910, 0.9308, 0.0610, 0.2187, 0.5615, 0.3229, + 0.9375, 0.5980, 0.9792, 0.8630, 0.9130, 0.2219, 0.2254, + 0.9540, 0.2937, 0.2448, 0.2621, 0.5306, 0.1461, 0.7337, + 0.4278, 0.4789, 0.9525, 0.8487, 0.1678, 0.8083, 0.8602, + 0.5427, 0.9150, 0.6338, 0.0596, 0.3932, 0.3519, 0.0682, + 0.2049, 0.6992, 0.1087, 0.4717, 0.7743, 0.1069, 0.9390, + 0.7215, 0.0549, 0.2173, 0.5676, 0.3363, 0.3647, 0.6589, + 0.8482, 0.0780, 0.4024, 0.0875, 0.0825, 0.2565, 0.7274, + 0.2689, 0.2341, 0.8282, 0.6484, 0.5740, 0.2458, 0.3418, + 0.6679, 0.0928, 0.8043, 0.0375, 0.0455, 0.1021, 0.0727, + 0.6034, 0.7073, 0.9501, 0.1827, 0.6546, 0.0622, 0.8697, + 0.6037, 0.6145, 0.7007, 0.9749, 0.2250, 0.9919, 0.6048, + 0.0930, 0.2305, 0.6915, 0.5382, 0.1474, 0.1571, 0.4897, + 0.4500, 0.3177, 0.8426, 0.5450, 0.6520, 0.4501, 0.7247, + 0.0507, 0.2850, 0.0212, 0.9359, 0.6125, 0.4131, 0.8209, + 0.5987, 0.8486, 0.6476, 0.7153, 0.8008, 0.6473, 0.9929, + 0.7390, 0.7887, 0.4013, 0.3755, 0.5104, 0.8562, 0.2127, + 0.2174, 0.7440, 0.3993, 0.8984, 0.4550, 0.9304, 0.9089, + 0.9769, 0.3961, 0.4588, 0.7478, 0.4077, 0.7220, 0.1553, + 0.0217, 0.3009, 0.6585, 0.6058, 0.6903, 0.5106, 0.3638, + 0.8147, 0.1664, 0.2008, 0.2597, 0.0618, 0.8442, 0.8484, + 0.5244, 0.1691, 0.8820, 0.2008, 0.5312, 0.1231, 0.2789, + 0.2030, 0.9130, 0.3220, 0.9544, 0.0942, 0.3181, 0.3072, + 0.8830, 0.5897, 0.4002, 0.4521, 0.5237, 0.1548, 0.2054, + 0.1146, 0.0603, 0.1840, 0.5799, 0.0520, 0.7941, 0.5931, + 0.8282, 0.2801, 0.8827, 0.2904, 0.6095, 0.1708, 0.2367, + 0.4340, 0.5936, 0.4575, 0.2879, 0.8225, 0.0562, 0.7618, + 0.0424, 0.3732, 0.7233, 0.7772, 0.4983, 0.8623, 0.4285, + 0.4221, 0.1088, 0.3304, 0.1568, 0.5143, 0.6215, 0.5503, + 0.7690, 0.3756, 0.5348, 0.7357, 0.8109, 0.3130, 0.0158, + 0.0023, 0.6162, 0.8535, 0.2750, 0.7217, 0.5469, 0.3265, + 0.1222, 0.4043, 0.3551, 0.1335, 0.2431, 0.0804, 0.8806, + 0.9161, 0.7825, 0.7689, 0.7354, 0.8643, 0.4190, 0.5343, + 0.3840, 0.7807, 0.6542, 0.2807, 0.0621, 0.5952, 0.8649, + 0.8056, 0.2886, 0.8492, 0.0497, 0.6903, 0.0986, 0.3481, + 0.9830, 0.1513, 0.7150, 0.5003, 0.6462, 0.3091, 0.5104, + 0.1090, 0.4875, 0.2487, 0.1973, 0.1005, 0.5965, 0.6503, + 0.6776, 0.1194, 0.6968, 0.4165, 0.3997, 0.2356, 0.9948, + 0.2469, 0.5798, 0.3444, 0.2015, 0.9011, 0.6742, 0.3975, + 0.8612, 0.7831, 0.0862, 0.4379, 0.0809, 0.7931, 0.0607, + 0.3830, 0.8447, 0.6462, 0.9840, 0.5433, 0.4101, 0.8260, + 0.5601, 0.6978, 0.1804, 0.4108, 0.0158, 0.7436, 0.8390, + 0.9475, 0.4933, 0.1487, 0.4644, 0.5877, 0.7798, 0.6315, + 0.5300, 0.7588, 0.5234, 0.0393, 0.3814, 0.5279, 0.6528, + 0.9869, 0.9540, 0.6270, 0.7013, 0.4305, 0.2085, 0.9008, + 0.4866, 0.4271, 0.1271, 0.3216, 0.3653, 0.9917, 0.2290, + 0.3330, 0.6020, 0.4543, 0.6559, 0.8582, 0.2937, 0.1913, + 0.3080, 0.3895, 0.3059, 0.0633, 0.6122, 0.1175, 0.6572, + 0.2524, 0.7704, 0.8210, 0.4794, 0.7538, 0.4031, 0.0275, + 0.5311, 0.0815, 0.4034, 0.6148, 0.1185, 0.7439, 0.4016, + 0.5608, 0.0706, 0.4835, 0.2505, 0.9363, 0.3741, 0.3124, + 0.4634, 0.9844, 0.4189, 0.3458, 0.6504, 0.0883, 0.9154, + 0.1987, 0.8102, 0.2403, 0.6352, 0.9134, 0.0740, 0.6217, + 0.7461, 0.9307, 0.2340, 0.9526, 0.2394, 0.1661, 0.5903, + 0.3531, 0.3579, 0.3335, 0.4941, 0.0937, 0.0190, 0.7400, + 0.6048, 0.0736, 0.8480, 0.7056, 0.9624, 0.8952, 0.2590, + 0.2918, 0.9369, 0.3316, 0.8127, 0.4530, 0.8583, 0.8824, + 0.6823, 0.0554, 0.6007, 0.8647, 0.0307, 0.2993, 0.2476, + 0.7318, 0.8917, 0.9643, 0.6157, 0.2184, 0.8408, 0.3345, + 0.0712, 0.8159, 0.2459, 0.0991, 0.7444, 0.2222, 0.0014, + 0.1305, 0.8914, 0.0089, 0.5321, 0.7917, 0.7163, 0.9580, + 0.3624, 0.0142, 0.8937, 0.5115, 0.5049, 0.8434, 0.7234, + 0.7161, 0.2634, 0.8592, 0.3961, 0.5586, 0.2620, 0.0375, + 0.1665, 0.2915, 0.9139, 0.7009, 0.5095, 0.4519, 0.1213, + 0.3561, 0.0066, 0.4379, 0.3522, 0.6225, 0.6900, 0.8216, + 0.8841, 0.6553, 0.8193, 0.7688, 0.5104, 0.3926, 0.7388, + 0.4735, 0.1897, 0.7788, 0.8825, 0.9103, 0.2988, 0.1239, + 0.1792, 0.1266, 0.4818, 0.8893, 0.6604, 0.1883, 0.9700, + 0.5469, 0.0958, 0.2762, 0.2054, 0.3215, 0.7664]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.5980, 0.9421, 0.9493, ..., 0.6518, 0.5202, 0.4457]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.272708654403687 seconds + +[18.39, 17.85, 18.29, 17.9, 18.11, 17.8, 18.16, 22.08, 18.79, 18.14] +[46.54] +14.219237565994263 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 223318, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.272708654403687, 'TIME_S_1KI': 0.046000361163917314, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 661.7633163213729, 'W': 46.54} +[18.39, 17.85, 18.29, 17.9, 18.11, 17.8, 18.16, 22.08, 18.79, 18.14, 20.06, 18.33, 18.25, 21.91, 18.14, 18.0, 18.29, 18.13, 17.88, 18.08] +335.245 +16.76225 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 223318, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.272708654403687, 'TIME_S_1KI': 0.046000361163917314, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 661.7633163213729, 'W': 46.54, 'J_1KI': 2.963322778823798, 'W_1KI': 0.2084023679237679, 'W_D': 29.777749999999997, 'J_D': 423.41690143078563, 'W_D_1KI': 0.13334236380408207, 'J_D_1KI': 0.0005970963549919042} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_5e-05.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_5e-05.json new file mode 100644 index 0000000..d34e261 --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 115566, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.362370014190674, "TIME_S_1KI": 0.08966625144238508, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 657.2445391845703, "W": 46.58, "J_1KI": 5.687179094063741, "W_1KI": 0.40305972344807295, "W_D": 30.2825, "J_D": 427.28655555725095, "W_D_1KI": 0.2620364120935223, "J_D_1KI": 0.002267417857272228} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_5e-05.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_5e-05.output new file mode 100644 index 0000000..30badbd --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_5e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '5e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.024602413177490234} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 3, ..., 4997, 4999, 5000]), + col_indices=tensor([5115, 9337, 5262, ..., 1244, 4227, 2124]), + values=tensor([0.7036, 0.8839, 0.8989, ..., 0.3409, 0.8377, 0.4572]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.4155, 0.9580, 0.1653, ..., 0.8843, 0.0512, 0.6581]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 0.024602413177490234 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '42678', '-ss', '10000', '-sd', '5e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 3.8775720596313477} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 4998, 4999, 5000]), + col_indices=tensor([ 717, 6679, 2344, ..., 3928, 4219, 6236]), + values=tensor([0.9595, 0.5891, 0.3421, ..., 0.3760, 0.2961, 0.2336]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.6496, 0.5288, 0.3835, ..., 0.2038, 0.3313, 0.3083]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 3.8775720596313477 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '115566', '-ss', '10000', '-sd', '5e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.362370014190674} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 5000, 5000, 5000]), + col_indices=tensor([6593, 2332, 3653, ..., 6447, 6839, 4175]), + values=tensor([0.4277, 0.1691, 0.2657, ..., 0.2731, 0.4419, 0.1553]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.3155, 0.6085, 0.7514, ..., 0.0185, 0.1956, 0.3828]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 10.362370014190674 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 5000, 5000, 5000]), + col_indices=tensor([6593, 2332, 3653, ..., 6447, 6839, 4175]), + values=tensor([0.4277, 0.1691, 0.2657, ..., 0.2731, 0.4419, 0.1553]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.3155, 0.6085, 0.7514, ..., 0.0185, 0.1956, 0.3828]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 10.362370014190674 seconds + +[18.44, 17.79, 18.13, 18.16, 18.19, 17.86, 18.01, 17.82, 18.05, 18.06] +[46.58] +14.110015869140625 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 115566, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.362370014190674, 'TIME_S_1KI': 0.08966625144238508, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 657.2445391845703, 'W': 46.58} +[18.44, 17.79, 18.13, 18.16, 18.19, 17.86, 18.01, 17.82, 18.05, 18.06, 18.35, 17.92, 18.08, 18.77, 17.97, 18.23, 18.59, 17.91, 18.14, 17.81] +325.95 +16.2975 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 115566, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.362370014190674, 'TIME_S_1KI': 0.08966625144238508, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 657.2445391845703, 'W': 46.58, 'J_1KI': 5.687179094063741, 'W_1KI': 0.40305972344807295, 'W_D': 30.2825, 'J_D': 427.28655555725095, 'W_D_1KI': 0.2620364120935223, 'J_D_1KI': 0.002267417857272228} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_0.0001.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_0.0001.json new file mode 100644 index 0000000..5b0e976 --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 15.447505474090576, "TIME_S_1KI": 154.47505474090576, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2621.8117760252953, "W": 44.61, "J_1KI": 26218.117760252953, "W_1KI": 446.1, "W_D": 28.050250000000002, "J_D": 1648.56480095166, "W_D_1KI": 280.50250000000005, "J_D_1KI": 2805.0250000000005} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_0.0001.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_0.0001.output new file mode 100644 index 0000000..55f3dfa --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_0.0001.output @@ -0,0 +1,47 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '500000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 15.447505474090576} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 57, 102, ..., 24999899, + 24999940, 25000000]), + col_indices=tensor([ 5577, 28835, 47310, ..., 481805, 486701, + 494412]), + values=tensor([0.4828, 0.8396, 0.7554, ..., 0.0896, 0.7495, 0.8303]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.9266, 0.8773, 0.4193, ..., 0.0231, 0.6267, 0.1934]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 15.447505474090576 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 57, 102, ..., 24999899, + 24999940, 25000000]), + col_indices=tensor([ 5577, 28835, 47310, ..., 481805, 486701, + 494412]), + values=tensor([0.4828, 0.8396, 0.7554, ..., 0.0896, 0.7495, 0.8303]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.9266, 0.8773, 0.4193, ..., 0.0231, 0.6267, 0.1934]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 15.447505474090576 seconds + +[18.81, 17.9, 18.4, 17.9, 18.2, 17.84, 18.01, 22.17, 18.54, 18.17] +[44.61] +58.77183985710144 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 15.447505474090576, 'TIME_S_1KI': 154.47505474090576, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2621.8117760252953, 'W': 44.61} +[18.81, 17.9, 18.4, 17.9, 18.2, 17.84, 18.01, 22.17, 18.54, 18.17, 18.44, 18.17, 17.99, 18.08, 18.12, 18.6, 18.11, 18.22, 18.18, 18.11] +331.19499999999994 +16.559749999999998 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 15.447505474090576, 'TIME_S_1KI': 154.47505474090576, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2621.8117760252953, 'W': 44.61, 'J_1KI': 26218.117760252953, 'W_1KI': 446.1, 'W_D': 28.050250000000002, 'J_D': 1648.56480095166, 'W_D_1KI': 280.50250000000005, 'J_D_1KI': 2805.0250000000005} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_1e-05.json index f1d93dd..8a43ad7 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_1e-05.json +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_1e-05.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 13.435759782791138, "TIME_S_1KI": 13.435759782791138, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 971.6288854122162, "W": 53.4, "J_1KI": 971.6288854122162, "W_1KI": 53.4, "W_D": 37.34824999999999, "J_D": 679.562519093573, "W_D_1KI": 37.34824999999999, "J_D_1KI": 37.34824999999999} +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 751, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.154199123382568, "TIME_S_1KI": 13.520904292120598, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 705.406801700592, "W": 48.84, "J_1KI": 939.290015580016, "W_1KI": 65.03328894806924, "W_D": 32.38000000000001, "J_D": 467.67142176628124, "W_D_1KI": 43.115845539280976, "J_D_1KI": 57.41124572474165} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_1e-05.output index 35674e7..9480055 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_1e-05.output +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_1e-05.output @@ -1,15 +1,15 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 13.435759782791138} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '500000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 1.3980276584625244} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 8, ..., 2499995, +tensor(crow_indices=tensor([ 0, 7, 14, ..., 2499987, 2499996, 2500000]), - col_indices=tensor([ 61754, 291279, 469696, ..., 173785, 177543, - 423232]), - values=tensor([0.5269, 0.9088, 0.4901, ..., 0.3381, 0.9016, 0.0517]), + col_indices=tensor([ 56026, 195485, 327540, ..., 74351, 467081, + 495492]), + values=tensor([0.8691, 0.8234, 0.1160, ..., 0.0380, 0.6115, 0.8262]), size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.7575, 0.8230, 0.6656, ..., 0.2327, 0.7437, 0.7040]) +tensor([0.8652, 0.4148, 0.1413, ..., 0.7873, 0.1950, 0.8001]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -17,17 +17,20 @@ Rows: 500000 Size: 250000000000 NNZ: 2500000 Density: 1e-05 -Time: 13.435759782791138 seconds +Time: 1.3980276584625244 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '751', '-ss', '500000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.154199123382568} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 8, ..., 2499995, - 2499996, 2500000]), - col_indices=tensor([ 61754, 291279, 469696, ..., 173785, 177543, - 423232]), - values=tensor([0.5269, 0.9088, 0.4901, ..., 0.3381, 0.9016, 0.0517]), +tensor(crow_indices=tensor([ 0, 3, 11, ..., 2499987, + 2499993, 2500000]), + col_indices=tensor([159259, 352180, 455738, ..., 361655, 368506, + 421546]), + values=tensor([0.7015, 0.3878, 0.3559, ..., 0.2417, 0.3895, 0.7278]), size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.7575, 0.8230, 0.6656, ..., 0.2327, 0.7437, 0.7040]) +tensor([0.4879, 0.7909, 0.7587, ..., 0.1983, 0.9582, 0.5253]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -35,13 +38,31 @@ Rows: 500000 Size: 250000000000 NNZ: 2500000 Density: 1e-05 -Time: 13.435759782791138 seconds +Time: 10.154199123382568 seconds -[18.26, 17.5, 18.12, 17.51, 17.77, 17.68, 17.73, 17.56, 17.86, 17.52] -[53.4] -18.195297479629517 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 13.435759782791138, 'TIME_S_1KI': 13.435759782791138, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 971.6288854122162, 'W': 53.4} -[18.26, 17.5, 18.12, 17.51, 17.77, 17.68, 17.73, 17.56, 17.86, 17.52, 18.07, 17.37, 18.42, 19.11, 17.73, 17.65, 18.23, 17.55, 17.59, 17.46] -321.035 -16.051750000000002 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 13.435759782791138, 'TIME_S_1KI': 13.435759782791138, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 971.6288854122162, 'W': 53.4, 'J_1KI': 971.6288854122162, 'W_1KI': 53.4, 'W_D': 37.34824999999999, 'J_D': 679.562519093573, 'W_D_1KI': 37.34824999999999, 'J_D_1KI': 37.34824999999999} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 11, ..., 2499987, + 2499993, 2500000]), + col_indices=tensor([159259, 352180, 455738, ..., 361655, 368506, + 421546]), + values=tensor([0.7015, 0.3878, 0.3559, ..., 0.2417, 0.3895, 0.7278]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.4879, 0.7909, 0.7587, ..., 0.1983, 0.9582, 0.5253]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 10.154199123382568 seconds + +[18.79, 17.69, 18.39, 21.58, 18.07, 18.02, 18.17, 17.87, 17.87, 18.03] +[48.84] +14.44321870803833 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 751, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.154199123382568, 'TIME_S_1KI': 13.520904292120598, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 705.406801700592, 'W': 48.84} +[18.79, 17.69, 18.39, 21.58, 18.07, 18.02, 18.17, 17.87, 17.87, 18.03, 18.42, 17.82, 17.95, 18.61, 17.96, 18.22, 17.97, 18.42, 18.04, 17.86] +329.19999999999993 +16.459999999999997 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 751, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.154199123382568, 'TIME_S_1KI': 13.520904292120598, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 705.406801700592, 'W': 48.84, 'J_1KI': 939.290015580016, 'W_1KI': 65.03328894806924, 'W_D': 32.38000000000001, 'J_D': 467.67142176628124, 'W_D_1KI': 43.115845539280976, 'J_D_1KI': 57.41124572474165} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_5e-05.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_5e-05.json new file mode 100644 index 0000000..e9ce521 --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 147, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.563251495361328, "TIME_S_1KI": 71.85885370994102, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 973.9529043245316, "W": 47.49, "J_1KI": 6625.529961391371, "W_1KI": 323.0612244897959, "W_D": 30.996250000000003, "J_D": 635.6893600898982, "W_D_1KI": 210.858843537415, "J_D_1KI": 1434.4139016150682} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_5e-05.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_5e-05.output new file mode 100644 index 0000000..b78ba4c --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_5e-05.output @@ -0,0 +1,68 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '500000', '-sd', '5e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 7.09878396987915} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 30, 58, ..., 12499941, + 12499962, 12500000]), + col_indices=tensor([ 1470, 2567, 5271, ..., 471166, 490246, + 499700]), + values=tensor([0.1668, 0.7788, 0.4321, ..., 0.7966, 0.9450, 0.5105]), + size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.9128, 0.0898, 0.7303, ..., 0.7724, 0.8343, 0.8680]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 12500000 +Density: 5e-05 +Time: 7.09878396987915 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '147', '-ss', '500000', '-sd', '5e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.563251495361328} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 16, 39, ..., 12499961, + 12499982, 12500000]), + col_indices=tensor([ 42415, 50722, 59820, ..., 419133, 436999, + 480407]), + values=tensor([0.4848, 0.7890, 0.2846, ..., 0.4428, 0.7066, 0.1150]), + size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.7955, 0.8202, 0.0668, ..., 0.2866, 0.4586, 0.4680]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 12500000 +Density: 5e-05 +Time: 10.563251495361328 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 16, 39, ..., 12499961, + 12499982, 12500000]), + col_indices=tensor([ 42415, 50722, 59820, ..., 419133, 436999, + 480407]), + values=tensor([0.4848, 0.7890, 0.2846, ..., 0.4428, 0.7066, 0.1150]), + size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.7955, 0.8202, 0.0668, ..., 0.2866, 0.4586, 0.4680]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 12500000 +Density: 5e-05 +Time: 10.563251495361328 seconds + +[18.64, 21.68, 17.93, 17.89, 17.96, 18.08, 18.05, 17.94, 17.92, 17.72] +[47.49] +20.508589267730713 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 147, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.563251495361328, 'TIME_S_1KI': 71.85885370994102, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 973.9529043245316, 'W': 47.49} +[18.64, 21.68, 17.93, 17.89, 17.96, 18.08, 18.05, 17.94, 17.92, 17.72, 18.36, 17.99, 18.51, 17.9, 18.05, 18.98, 18.56, 18.01, 18.0, 18.13] +329.875 +16.49375 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 147, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.563251495361328, 'TIME_S_1KI': 71.85885370994102, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 973.9529043245316, 'W': 47.49, 'J_1KI': 6625.529961391371, 'W_1KI': 323.0612244897959, 'W_D': 30.996250000000003, 'J_D': 635.6893600898982, 'W_D_1KI': 210.858843537415, 'J_D_1KI': 1434.4139016150682} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.0001.json index af9c51f..4d243f2 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.0001.json +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.0001.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 9021, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.444438695907593, "TIME_S_1KI": 1.1577916745269474, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 735.9580717468261, "W": 51.98, "J_1KI": 81.58275931125442, "W_1KI": 5.762110630750471, "W_D": 35.674749999999996, "J_D": 505.1004274730682, "W_D_1KI": 3.9546336326349625, "J_D_1KI": 0.43838084831337576} +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 9147, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.50059986114502, "TIME_S_1KI": 1.1479829300475588, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 681.5257016324997, "W": 47.63, "J_1KI": 74.50811212774677, "W_1KI": 5.207171750300645, "W_D": 31.135, "J_D": 445.50289146184923, "W_D_1KI": 3.4038482562588825, "J_D_1KI": 0.37212728285327235} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.0001.output index 945b881..2f48a00 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.0001.output +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.0001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 1.1638367176055908} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.13143563270568848} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 5, 10, ..., 249989, 249992, +tensor(crow_indices=tensor([ 0, 1, 12, ..., 249990, 249995, 250000]), - col_indices=tensor([ 5085, 27218, 28258, ..., 33170, 33475, 34242]), - values=tensor([0.4699, 0.9594, 0.0965, ..., 0.7443, 0.7286, 0.0273]), + col_indices=tensor([33764, 781, 3609, ..., 16676, 21435, 31146]), + values=tensor([0.7781, 0.6572, 0.9120, ..., 0.8330, 0.7571, 0.7121]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.3938, 0.4910, 0.8553, ..., 0.5913, 0.5925, 0.7936]) +tensor([0.7934, 0.6307, 0.2590, ..., 0.3547, 0.1547, 0.8460]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -16,19 +16,19 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 1.1638367176055908 seconds +Time: 0.13143563270568848 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '9021', '-ss', '50000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.444438695907593} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '7988', '-ss', '50000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.168656826019287} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 5, 13, ..., 249988, 249994, +tensor(crow_indices=tensor([ 0, 10, 18, ..., 249992, 249995, 250000]), - col_indices=tensor([ 3969, 14280, 16197, ..., 14337, 15782, 32993]), - values=tensor([0.2139, 0.2141, 0.1060, ..., 0.9818, 0.6790, 0.2416]), + col_indices=tensor([ 6728, 8437, 8523, ..., 40465, 44043, 46138]), + values=tensor([0.4640, 0.7108, 0.7346, ..., 0.1761, 0.2770, 0.7056]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.8858, 0.9490, 0.2990, ..., 0.1473, 0.1815, 0.8776]) +tensor([0.0571, 0.2747, 0.4590, ..., 0.7273, 0.2570, 0.3128]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -36,16 +36,19 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 10.444438695907593 seconds +Time: 9.168656826019287 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '9147', '-ss', '50000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.50059986114502} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 5, 13, ..., 249988, 249994, +tensor(crow_indices=tensor([ 0, 4, 10, ..., 249987, 249996, 250000]), - col_indices=tensor([ 3969, 14280, 16197, ..., 14337, 15782, 32993]), - values=tensor([0.2139, 0.2141, 0.1060, ..., 0.9818, 0.6790, 0.2416]), + col_indices=tensor([ 4811, 5188, 33226, ..., 17568, 20020, 26384]), + values=tensor([0.5580, 0.6578, 0.5141, ..., 0.8482, 0.1339, 0.2046]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.8858, 0.9490, 0.2990, ..., 0.1473, 0.1815, 0.8776]) +tensor([0.2505, 0.9140, 0.1873, ..., 0.2385, 0.4644, 0.1302]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -53,13 +56,30 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 10.444438695907593 seconds +Time: 10.50059986114502 seconds -[18.28, 18.06, 17.98, 18.51, 17.98, 18.02, 19.12, 19.17, 17.99, 18.0] -[51.98] -14.158485412597656 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 9021, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.444438695907593, 'TIME_S_1KI': 1.1577916745269474, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 735.9580717468261, 'W': 51.98} -[18.28, 18.06, 17.98, 18.51, 17.98, 18.02, 19.12, 19.17, 17.99, 18.0, 18.49, 17.73, 18.15, 17.89, 18.02, 17.91, 17.85, 17.6, 17.85, 17.78] -326.105 -16.30525 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 9021, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.444438695907593, 'TIME_S_1KI': 1.1577916745269474, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 735.9580717468261, 'W': 51.98, 'J_1KI': 81.58275931125442, 'W_1KI': 5.762110630750471, 'W_D': 35.674749999999996, 'J_D': 505.1004274730682, 'W_D_1KI': 3.9546336326349625, 'J_D_1KI': 0.43838084831337576} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 10, ..., 249987, 249996, + 250000]), + col_indices=tensor([ 4811, 5188, 33226, ..., 17568, 20020, 26384]), + values=tensor([0.5580, 0.6578, 0.5141, ..., 0.8482, 0.1339, 0.2046]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.2505, 0.9140, 0.1873, ..., 0.2385, 0.4644, 0.1302]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.50059986114502 seconds + +[18.33, 18.14, 21.59, 19.0, 18.11, 18.16, 17.98, 18.16, 18.03, 18.31] +[47.63] +14.308748722076416 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 9147, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.50059986114502, 'TIME_S_1KI': 1.1479829300475588, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 681.5257016324997, 'W': 47.63} +[18.33, 18.14, 21.59, 19.0, 18.11, 18.16, 17.98, 18.16, 18.03, 18.31, 18.43, 17.74, 17.82, 18.07, 18.59, 18.18, 17.93, 18.01, 17.93, 17.85] +329.90000000000003 +16.495 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 9147, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.50059986114502, 'TIME_S_1KI': 1.1479829300475588, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 681.5257016324997, 'W': 47.63, 'J_1KI': 74.50811212774677, 'W_1KI': 5.207171750300645, 'W_D': 31.135, 'J_D': 445.50289146184923, 'W_D_1KI': 3.4038482562588825, 'J_D_1KI': 0.37212728285327235} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.001.json index 0738cf0..db8a72e 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.001.json +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.001.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1973, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.479424238204956, "TIME_S_1KI": 5.311416238319795, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 791.6620005321503, "W": 53.24, "J_1KI": 401.2478461896352, "W_1KI": 26.984287886467307, "W_D": 37.20700000000001, "J_D": 553.2563496205807, "W_D_1KI": 18.858084135833757, "J_D_1KI": 9.558076095202107} +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1997, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.44909930229187, "TIME_S_1KI": 5.232398248518714, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 733.6282246422767, "W": 48.73, "J_1KI": 367.3651600612302, "W_1KI": 24.40160240360541, "W_D": 32.179249999999996, "J_D": 484.4573373244404, "W_D_1KI": 16.113795693540307, "J_D_1KI": 8.069001348793345} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.001.output index 3bd1995..a863f3a 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.001.output +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.001.output @@ -1,14 +1,54 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 5.321045160293579} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.5546464920043945} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 54, 97, ..., 2499896, +tensor(crow_indices=tensor([ 0, 55, 117, ..., 2499903, + 2499953, 2500000]), + col_indices=tensor([ 566, 1603, 2858, ..., 47622, 48780, 49985]), + values=tensor([0.9915, 0.7849, 0.7900, ..., 0.9170, 0.4625, 0.4875]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.6866, 0.0421, 0.1446, ..., 0.6566, 0.6603, 0.7026]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 0.5546464920043945 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1893', '-ss', '50000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 9.948294878005981} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 33, 68, ..., 2499891, + 2499938, 2500000]), + col_indices=tensor([ 3534, 3824, 4376, ..., 49368, 49484, 49571]), + values=tensor([0.2824, 0.5783, 0.2215, ..., 0.8826, 0.1249, 0.2741]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.5004, 0.8496, 0.6985, ..., 0.2602, 0.0299, 0.5346]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 9.948294878005981 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1997', '-ss', '50000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.44909930229187} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 60, 107, ..., 2499904, 2499948, 2500000]), - col_indices=tensor([ 176, 180, 853, ..., 47415, 47956, 49304]), - values=tensor([0.4358, 0.1204, 0.8362, ..., 0.7793, 0.3332, 0.4077]), + col_indices=tensor([ 1519, 4331, 6515, ..., 42103, 42230, 49135]), + values=tensor([0.6099, 0.9393, 0.8647, ..., 0.8575, 0.6331, 0.4704]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.9660, 0.1174, 0.2174, ..., 0.0235, 0.8944, 0.4447]) +tensor([0.1131, 0.9150, 0.5556, ..., 0.6033, 0.7715, 0.6124]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -16,19 +56,16 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 5.321045160293579 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1973', '-ss', '50000', '-sd', '0.001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.479424238204956} +Time: 10.44909930229187 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 43, 100, ..., 2499912, - 2499964, 2500000]), - col_indices=tensor([ 471, 539, 1515, ..., 46324, 49367, 49678]), - values=tensor([0.0688, 0.1954, 0.6278, ..., 0.4403, 0.6708, 0.8543]), +tensor(crow_indices=tensor([ 0, 60, 107, ..., 2499904, + 2499948, 2500000]), + col_indices=tensor([ 1519, 4331, 6515, ..., 42103, 42230, 49135]), + values=tensor([0.6099, 0.9393, 0.8647, ..., 0.8575, 0.6331, 0.4704]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.7713, 0.8001, 0.0882, ..., 0.6644, 0.4702, 0.2491]) +tensor([0.1131, 0.9150, 0.5556, ..., 0.6033, 0.7715, 0.6124]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -36,30 +73,13 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 10.479424238204956 seconds +Time: 10.44909930229187 seconds -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 43, 100, ..., 2499912, - 2499964, 2500000]), - col_indices=tensor([ 471, 539, 1515, ..., 46324, 49367, 49678]), - values=tensor([0.0688, 0.1954, 0.6278, ..., 0.4403, 0.6708, 0.8543]), - size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.7713, 0.8001, 0.0882, ..., 0.6644, 0.4702, 0.2491]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 2500000 -Density: 0.001 -Time: 10.479424238204956 seconds - -[18.09, 17.68, 17.78, 17.6, 17.88, 17.97, 17.49, 17.67, 17.75, 17.8] -[53.24] -14.86968445777893 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1973, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.479424238204956, 'TIME_S_1KI': 5.311416238319795, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 791.6620005321503, 'W': 53.24} -[18.09, 17.68, 17.78, 17.6, 17.88, 17.97, 17.49, 17.67, 17.75, 17.8, 18.63, 17.66, 18.2, 17.66, 17.95, 17.62, 18.05, 17.65, 17.58, 18.42] -320.65999999999997 -16.032999999999998 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1973, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.479424238204956, 'TIME_S_1KI': 5.311416238319795, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 791.6620005321503, 'W': 53.24, 'J_1KI': 401.2478461896352, 'W_1KI': 26.984287886467307, 'W_D': 37.20700000000001, 'J_D': 553.2563496205807, 'W_D_1KI': 18.858084135833757, 'J_D_1KI': 9.558076095202107} +[18.64, 18.18, 18.44, 22.12, 18.9, 18.07, 17.86, 17.86, 18.53, 18.0] +[48.73] +15.054960489273071 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1997, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.44909930229187, 'TIME_S_1KI': 5.232398248518714, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 733.6282246422767, 'W': 48.73} +[18.64, 18.18, 18.44, 22.12, 18.9, 18.07, 17.86, 17.86, 18.53, 18.0, 18.34, 18.09, 18.08, 17.94, 18.14, 18.44, 18.04, 17.91, 17.9, 18.05] +331.015 +16.55075 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1997, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.44909930229187, 'TIME_S_1KI': 5.232398248518714, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 733.6282246422767, 'W': 48.73, 'J_1KI': 367.3651600612302, 'W_1KI': 24.40160240360541, 'W_D': 32.179249999999996, 'J_D': 484.4573373244404, 'W_D_1KI': 16.113795693540307, 'J_D_1KI': 8.069001348793345} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.01.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.01.json new file mode 100644 index 0000000..981b4ab --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 134, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.514585256576538, "TIME_S_1KI": 78.46705415355626, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2494.187549471855, "W": 43.5, "J_1KI": 18613.339921431754, "W_1KI": 324.6268656716418, "W_D": 26.962, "J_D": 1545.9375795140265, "W_D_1KI": 201.2089552238806, "J_D_1KI": 1501.5593673423925} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.01.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.01.output new file mode 100644 index 0000000..7744b5c --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.01.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 7.827495813369751} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 509, 1029, ..., 24999021, + 24999525, 25000000]), + col_indices=tensor([ 77, 168, 174, ..., 49716, 49743, 49917]), + values=tensor([0.0871, 0.3865, 0.3717, ..., 0.4376, 0.0483, 0.0994]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.1988, 0.8388, 0.2584, ..., 0.5965, 0.5005, 0.7795]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 7.827495813369751 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '134', '-ss', '50000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.514585256576538} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 525, 1042, ..., 24999041, + 24999512, 25000000]), + col_indices=tensor([ 163, 320, 387, ..., 49821, 49828, 49920]), + values=tensor([0.8765, 0.3303, 0.5777, ..., 0.2129, 0.9852, 0.0873]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.2121, 0.5034, 0.7106, ..., 0.6677, 0.7232, 0.0645]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 10.514585256576538 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 525, 1042, ..., 24999041, + 24999512, 25000000]), + col_indices=tensor([ 163, 320, 387, ..., 49821, 49828, 49920]), + values=tensor([0.8765, 0.3303, 0.5777, ..., 0.2129, 0.9852, 0.0873]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.2121, 0.5034, 0.7106, ..., 0.6677, 0.7232, 0.0645]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 10.514585256576538 seconds + +[18.5, 18.14, 19.17, 17.93, 18.04, 17.95, 18.11, 18.93, 18.07, 18.37] +[43.5] +57.337644815444946 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 134, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.514585256576538, 'TIME_S_1KI': 78.46705415355626, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2494.187549471855, 'W': 43.5} +[18.5, 18.14, 19.17, 17.93, 18.04, 17.95, 18.11, 18.93, 18.07, 18.37, 22.44, 18.33, 18.23, 18.16, 18.38, 17.89, 18.61, 17.96, 18.23, 17.95] +330.76 +16.538 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 134, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.514585256576538, 'TIME_S_1KI': 78.46705415355626, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2494.187549471855, 'W': 43.5, 'J_1KI': 18613.339921431754, 'W_1KI': 324.6268656716418, 'W_D': 26.962, 'J_D': 1545.9375795140265, 'W_D_1KI': 201.2089552238806, 'J_D_1KI': 1501.5593673423925} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_1e-05.json index 0990f32..01c9d2b 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_1e-05.json +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_1e-05.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 21464, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.162778615951538, "TIME_S_1KI": 0.47348018151097365, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 708.2274965262413, "W": 50.99, "J_1KI": 32.99606301370859, "W_1KI": 2.3756056653000375, "W_D": 25.345, "J_D": 352.0303176987171, "W_D_1KI": 1.1808143868803578, "J_D_1KI": 0.055013715378324536} +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 22242, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.517975091934204, "TIME_S_1KI": 0.472888008809199, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 668.1220734119415, "W": 47.0, "J_1KI": 30.03875880819807, "W_1KI": 2.113119323801816, "W_D": 30.704, "J_D": 436.4685136604309, "W_D_1KI": 1.3804513982555526, "J_D_1KI": 0.062065075004745646} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_1e-05.output index eca4709..f23093c 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_1e-05.output +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_1e-05.output @@ -1,13 +1,13 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.4891834259033203} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.06578350067138672} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 2, ..., 25000, 25000, 25000]), - col_indices=tensor([16409, 39665, 45486, ..., 40216, 44015, 30698]), - values=tensor([0.3828, 0.2137, 0.3194, ..., 0.5609, 0.6557, 0.9594]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 25000, 25000, 25000]), + col_indices=tensor([16918, 1143, 1724, ..., 48553, 41363, 39308]), + values=tensor([0.9238, 0.1195, 0.2813, ..., 0.9276, 0.6113, 0.0798]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.1367, 0.4150, 0.8251, ..., 0.6451, 0.2178, 0.9645]) +tensor([0.0373, 0.8428, 0.6841, ..., 0.3333, 0.7324, 0.6824]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -15,18 +15,18 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 0.4891834259033203 seconds +Time: 0.06578350067138672 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '21464', '-ss', '50000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.162778615951538} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '15961', '-ss', '50000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.534844875335693} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 2, ..., 24997, 24999, 25000]), - col_indices=tensor([27591, 28713, 10997, ..., 3373, 26495, 43984]), - values=tensor([0.0595, 0.2219, 0.9508, ..., 0.7420, 0.6896, 0.8252]), +tensor(crow_indices=tensor([ 0, 0, 2, ..., 24999, 25000, 25000]), + col_indices=tensor([29190, 43986, 25006, ..., 44362, 15421, 8070]), + values=tensor([0.3395, 0.8970, 0.1159, ..., 0.8275, 0.4942, 0.3559]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.4890, 0.2230, 0.0247, ..., 0.5863, 0.9029, 0.3113]) +tensor([0.7532, 0.7737, 0.3401, ..., 0.4031, 0.1788, 0.5939]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -34,15 +34,18 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 10.162778615951538 seconds +Time: 7.534844875335693 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '22242', '-ss', '50000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.517975091934204} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 2, ..., 24997, 24999, 25000]), - col_indices=tensor([27591, 28713, 10997, ..., 3373, 26495, 43984]), - values=tensor([0.0595, 0.2219, 0.9508, ..., 0.7420, 0.6896, 0.8252]), +tensor(crow_indices=tensor([ 0, 1, 2, ..., 25000, 25000, 25000]), + col_indices=tensor([22981, 23025, 47875, ..., 28752, 43497, 8642]), + values=tensor([0.4359, 0.4232, 0.6349, ..., 0.3036, 0.5759, 0.5327]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.4890, 0.2230, 0.0247, ..., 0.5863, 0.9029, 0.3113]) +tensor([0.8882, 0.3621, 0.9798, ..., 0.1733, 0.2748, 0.2728]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -50,13 +53,29 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 10.162778615951538 seconds +Time: 10.517975091934204 seconds -[22.1, 18.96, 18.21, 17.89, 17.76, 17.62, 17.96, 18.44, 17.92, 17.8] -[50.99] -13.88953709602356 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 21464, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.162778615951538, 'TIME_S_1KI': 0.47348018151097365, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 708.2274965262413, 'W': 50.99} -[22.1, 18.96, 18.21, 17.89, 17.76, 17.62, 17.96, 18.44, 17.92, 17.8, 27.02, 48.47, 52.31, 52.11, 52.93, 45.58, 32.74, 23.06, 18.26, 18.44] -512.9000000000001 -25.645000000000003 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 21464, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.162778615951538, 'TIME_S_1KI': 0.47348018151097365, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 708.2274965262413, 'W': 50.99, 'J_1KI': 32.99606301370859, 'W_1KI': 2.3756056653000375, 'W_D': 25.345, 'J_D': 352.0303176987171, 'W_D_1KI': 1.1808143868803578, 'J_D_1KI': 0.055013715378324536} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 25000, 25000, 25000]), + col_indices=tensor([22981, 23025, 47875, ..., 28752, 43497, 8642]), + values=tensor([0.4359, 0.4232, 0.6349, ..., 0.3036, 0.5759, 0.5327]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.8882, 0.3621, 0.9798, ..., 0.1733, 0.2748, 0.2728]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.517975091934204 seconds + +[18.31, 17.89, 18.04, 17.91, 18.19, 18.28, 17.95, 17.98, 18.92, 18.1] +[47.0] +14.215363264083862 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 22242, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.517975091934204, 'TIME_S_1KI': 0.472888008809199, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 668.1220734119415, 'W': 47.0} +[18.31, 17.89, 18.04, 17.91, 18.19, 18.28, 17.95, 17.98, 18.92, 18.1, 18.24, 18.64, 18.01, 17.83, 18.02, 18.06, 18.04, 17.88, 17.99, 17.93] +325.92 +16.296 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 22242, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.517975091934204, 'TIME_S_1KI': 0.472888008809199, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 668.1220734119415, 'W': 47.0, 'J_1KI': 30.03875880819807, 'W_1KI': 2.113119323801816, 'W_D': 30.704, 'J_D': 436.4685136604309, 'W_D_1KI': 1.3804513982555526, 'J_D_1KI': 0.062065075004745646} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_5e-05.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_5e-05.json new file mode 100644 index 0000000..7de68b9 --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 11256, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.481152534484863, "TIME_S_1KI": 0.9311613836607022, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 671.3460792446136, "W": 47.13, "J_1KI": 59.64339723210853, "W_1KI": 4.187100213219616, "W_D": 30.78675, "J_D": 438.54368566060066, "W_D_1KI": 2.735141257995736, "J_D_1KI": 0.24299407053977753} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_5e-05.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_5e-05.output new file mode 100644 index 0000000..d1f10c6 --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_5e-05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '5e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.1096796989440918} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 124996, 124997, + 125000]), + col_indices=tensor([38708, 28625, 11454, ..., 884, 22723, 30800]), + values=tensor([0.0038, 0.3289, 0.1581, ..., 0.9719, 0.8303, 0.9998]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.0207, 0.8237, 0.8176, ..., 0.3561, 0.4550, 0.3366]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 0.1096796989440918 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '9573', '-ss', '50000', '-sd', '5e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 8.929835081100464} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 4, ..., 124997, 124998, + 125000]), + col_indices=tensor([ 5176, 42593, 37500, ..., 3219, 12793, 38658]), + values=tensor([0.6803, 0.7664, 0.9859, ..., 0.5422, 0.9603, 0.0980]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.2299, 0.8541, 0.6200, ..., 0.4981, 0.6521, 0.8502]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 8.929835081100464 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '11256', '-ss', '50000', '-sd', '5e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.481152534484863} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 7, ..., 124996, 124999, + 125000]), + col_indices=tensor([ 3517, 32781, 39284, ..., 16837, 28625, 12663]), + values=tensor([0.4051, 0.3118, 0.0683, ..., 0.4752, 0.1421, 0.6822]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.2287, 0.1097, 0.9835, ..., 0.8729, 0.0701, 0.5217]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 10.481152534484863 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 7, ..., 124996, 124999, + 125000]), + col_indices=tensor([ 3517, 32781, 39284, ..., 16837, 28625, 12663]), + values=tensor([0.4051, 0.3118, 0.0683, ..., 0.4752, 0.1421, 0.6822]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.2287, 0.1097, 0.9835, ..., 0.8729, 0.0701, 0.5217]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 10.481152534484863 seconds + +[18.46, 17.73, 18.38, 18.1, 18.29, 18.18, 18.04, 18.01, 18.16, 17.9] +[47.13] +14.244559288024902 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 11256, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.481152534484863, 'TIME_S_1KI': 0.9311613836607022, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 671.3460792446136, 'W': 47.13} +[18.46, 17.73, 18.38, 18.1, 18.29, 18.18, 18.04, 18.01, 18.16, 17.9, 18.94, 17.91, 17.96, 17.99, 18.41, 18.07, 18.2, 17.95, 18.46, 18.75] +326.865 +16.34325 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 11256, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.481152534484863, 'TIME_S_1KI': 0.9311613836607022, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 671.3460792446136, 'W': 47.13, 'J_1KI': 59.64339723210853, 'W_1KI': 4.187100213219616, 'W_D': 30.78675, 'J_D': 438.54368566060066, 'W_D_1KI': 2.735141257995736, 'J_D_1KI': 0.24299407053977753} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.0001.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.0001.json index cdd4446..b6b292e 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.0001.json +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.0001.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 220548, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.518115997314453, "TIME_S_1KI": 0.04769082466091034, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 712.8332035136224, "W": 50.77000000000001, "J_1KI": 3.2321000576456025, "W_1KI": 0.23019932168960958, "W_D": 34.49475000000001, "J_D": 484.32151165848984, "W_D_1KI": 0.15640472822242782, "J_D_1KI": 0.0007091641194770654} +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 220904, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.611992359161377, "TIME_S_1KI": 0.04803893256419701, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 660.6772035217285, "W": 46.78, "J_1KI": 2.990788774860249, "W_1KI": 0.211766197081085, "W_D": 30.2935, "J_D": 427.83721387100223, "W_D_1KI": 0.13713423025386592, "J_D_1KI": 0.0006207865419090009} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.0001.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.0001.output index 0444e69..bcbbe28 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.0001.output +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.0001.output @@ -1,13 +1,13 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.06373429298400879} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.021222829818725586} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 2496, 2500, 2500]), - col_indices=tensor([ 225, 423, 3600, ..., 1030, 3468, 3660]), - values=tensor([0.7007, 0.4494, 0.9248, ..., 0.2922, 0.0433, 0.9500]), +tensor(crow_indices=tensor([ 0, 1, 2, ..., 2499, 2499, 2500]), + col_indices=tensor([2865, 4172, 3505, ..., 1471, 1829, 2284]), + values=tensor([0.9472, 0.7106, 0.6508, ..., 0.6327, 0.4564, 0.0632]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.8445, 0.6906, 0.6660, ..., 0.8648, 0.6232, 0.6893]) +tensor([0.0811, 0.3767, 0.7595, ..., 0.7571, 0.6856, 0.3676]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -15,18 +15,18 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 0.06373429298400879 seconds +Time: 0.021222829818725586 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '164746', '-ss', '5000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 7.8433122634887695} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '49475', '-ss', '5000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 2.351640462875366} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 2500, 2500, 2500]), - col_indices=tensor([3043, 3415, 2314, ..., 4144, 83, 2442]), - values=tensor([0.9885, 0.5870, 0.9255, ..., 0.0554, 0.8705, 0.0319]), +tensor(crow_indices=tensor([ 0, 0, 1, ..., 2499, 2499, 2500]), + col_indices=tensor([1365, 3411, 751, ..., 1715, 4182, 3544]), + values=tensor([0.2168, 0.4073, 0.8209, ..., 0.1504, 0.5765, 0.8829]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.7612, 0.3828, 0.3624, ..., 0.7209, 0.0836, 0.1248]) +tensor([0.3766, 0.6993, 0.2098, ..., 0.7754, 0.7068, 0.6832]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -34,18 +34,18 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 7.8433122634887695 seconds +Time: 2.351640462875366 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '220548', '-ss', '5000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.518115997314453} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '220904', '-ss', '5000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.611992359161377} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 4, ..., 2499, 2500, 2500]), - col_indices=tensor([1110, 1648, 1178, ..., 3403, 882, 3863]), - values=tensor([0.7053, 0.9818, 0.3657, ..., 0.7070, 0.0906, 0.0064]), +tensor(crow_indices=tensor([ 0, 1, 1, ..., 2499, 2499, 2500]), + col_indices=tensor([ 469, 3066, 4238, ..., 2570, 4418, 4413]), + values=tensor([0.6778, 0.7938, 0.7053, ..., 0.2703, 0.2957, 0.5133]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.7696, 0.8663, 0.2054, ..., 0.2110, 0.6343, 0.9754]) +tensor([0.1744, 0.7493, 0.4982, ..., 0.1073, 0.6650, 0.9357]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,15 +53,15 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 10.518115997314453 seconds +Time: 10.611992359161377 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 4, ..., 2499, 2500, 2500]), - col_indices=tensor([1110, 1648, 1178, ..., 3403, 882, 3863]), - values=tensor([0.7053, 0.9818, 0.3657, ..., 0.7070, 0.0906, 0.0064]), +tensor(crow_indices=tensor([ 0, 1, 1, ..., 2499, 2499, 2500]), + col_indices=tensor([ 469, 3066, 4238, ..., 2570, 4418, 4413]), + values=tensor([0.6778, 0.7938, 0.7053, ..., 0.2703, 0.2957, 0.5133]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.7696, 0.8663, 0.2054, ..., 0.2110, 0.6343, 0.9754]) +tensor([0.1744, 0.7493, 0.4982, ..., 0.1073, 0.6650, 0.9357]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -69,13 +69,13 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 10.518115997314453 seconds +Time: 10.611992359161377 seconds -[18.38, 17.72, 18.11, 17.9, 17.72, 18.84, 18.26, 17.75, 18.1, 19.21] -[50.77] -14.040441274642944 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 220548, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.518115997314453, 'TIME_S_1KI': 0.04769082466091034, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 712.8332035136224, 'W': 50.77000000000001} -[18.38, 17.72, 18.11, 17.9, 17.72, 18.84, 18.26, 17.75, 18.1, 19.21, 18.75, 19.27, 17.62, 17.61, 18.13, 17.64, 17.82, 17.78, 18.21, 17.71] -325.505 -16.27525 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 220548, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.518115997314453, 'TIME_S_1KI': 0.04769082466091034, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 712.8332035136224, 'W': 50.77000000000001, 'J_1KI': 3.2321000576456025, 'W_1KI': 0.23019932168960958, 'W_D': 34.49475000000001, 'J_D': 484.32151165848984, 'W_D_1KI': 0.15640472822242782, 'J_D_1KI': 0.0007091641194770654} +[18.28, 17.78, 18.16, 18.31, 18.21, 17.89, 17.98, 18.38, 18.01, 17.96] +[46.78] +14.123069763183594 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 220904, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.611992359161377, 'TIME_S_1KI': 0.04803893256419701, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 660.6772035217285, 'W': 46.78} +[18.28, 17.78, 18.16, 18.31, 18.21, 17.89, 17.98, 18.38, 18.01, 17.96, 18.63, 18.15, 17.86, 18.23, 18.11, 18.07, 18.06, 17.82, 21.74, 19.07] +329.73 +16.4865 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 220904, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.611992359161377, 'TIME_S_1KI': 0.04803893256419701, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 660.6772035217285, 'W': 46.78, 'J_1KI': 2.990788774860249, 'W_1KI': 0.211766197081085, 'W_D': 30.2935, 'J_D': 427.83721387100223, 'W_D_1KI': 0.13713423025386592, 'J_D_1KI': 0.0006207865419090009} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.001.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.001.json index 8603573..96eeba5 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.001.json +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.001.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 110820, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.466707706451416, "TIME_S_1KI": 0.0944478226534147, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 732.0924870371819, "W": 51.05, "J_1KI": 6.606140471369625, "W_1KI": 0.46065692113336937, "W_D": 34.78399999999999, "J_D": 498.82673984527577, "W_D_1KI": 0.3138783613066233, "J_D_1KI": 0.0028323259457374416} +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 111257, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.7375807762146, "TIME_S_1KI": 0.09651150737674573, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 673.9428442955017, "W": 47.23, "J_1KI": 6.057532059065961, "W_1KI": 0.42451261493658826, "W_D": 30.839999999999996, "J_D": 440.0676967620849, "W_D_1KI": 0.2771960415973826, "J_D_1KI": 0.0024914930440096588} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.001.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.001.output index d9f1f9f..1589984 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.001.output +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.001.output @@ -1,13 +1,13 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.10903120040893555} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.025800704956054688} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 8, 12, ..., 24993, 24997, 25000]), - col_indices=tensor([ 238, 1233, 1853, ..., 2176, 2430, 4262]), - values=tensor([0.6643, 0.7436, 0.3106, ..., 0.6873, 0.4400, 0.9022]), +tensor(crow_indices=tensor([ 0, 3, 11, ..., 24988, 24993, 25000]), + col_indices=tensor([ 36, 564, 3279, ..., 4511, 4767, 4922]), + values=tensor([0.2797, 0.2996, 0.9239, ..., 0.1899, 0.3417, 0.3512]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.1554, 0.8998, 0.5501, ..., 0.9645, 0.8024, 0.0587]) +tensor([0.3254, 0.3602, 0.2662, ..., 0.3074, 0.8226, 0.4658]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -15,18 +15,18 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 0.10903120040893555 seconds +Time: 0.025800704956054688 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '96302', '-ss', '5000', '-sd', '0.001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 9.124423503875732} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '40696', '-ss', '5000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 3.8407018184661865} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 5, 5, ..., 24990, 24996, 25000]), - col_indices=tensor([ 172, 514, 1428, ..., 3067, 4065, 4821]), - values=tensor([0.3942, 0.3525, 0.9893, ..., 0.1091, 0.2236, 0.5194]), +tensor(crow_indices=tensor([ 0, 7, 11, ..., 24987, 24992, 25000]), + col_indices=tensor([ 298, 713, 1200, ..., 1957, 3799, 4153]), + values=tensor([0.8486, 0.9770, 0.8154, ..., 0.4467, 0.7513, 0.9966]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.3072, 0.9146, 0.5714, ..., 0.0055, 0.2166, 0.7033]) +tensor([0.8767, 0.4273, 0.1763, ..., 0.9403, 0.3580, 0.5902]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -34,18 +34,18 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 9.124423503875732 seconds +Time: 3.8407018184661865 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '110820', '-ss', '5000', '-sd', '0.001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.466707706451416} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '111257', '-ss', '5000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.7375807762146} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 9, ..., 24990, 24995, 25000]), - col_indices=tensor([ 254, 2428, 3765, ..., 2763, 3021, 4452]), - values=tensor([0.4991, 0.2229, 0.1709, ..., 0.9765, 0.1191, 0.1560]), +tensor(crow_indices=tensor([ 0, 1, 3, ..., 24991, 24996, 25000]), + col_indices=tensor([ 575, 1907, 4405, ..., 1224, 3086, 3740]), + values=tensor([0.1597, 0.6483, 0.2533, ..., 0.7760, 0.1307, 0.6720]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.0044, 0.7640, 0.5767, ..., 0.5512, 0.1474, 0.2527]) +tensor([0.0745, 0.7131, 0.6004, ..., 0.2535, 0.5073, 0.4932]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,15 +53,15 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 10.466707706451416 seconds +Time: 10.7375807762146 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 9, ..., 24990, 24995, 25000]), - col_indices=tensor([ 254, 2428, 3765, ..., 2763, 3021, 4452]), - values=tensor([0.4991, 0.2229, 0.1709, ..., 0.9765, 0.1191, 0.1560]), +tensor(crow_indices=tensor([ 0, 1, 3, ..., 24991, 24996, 25000]), + col_indices=tensor([ 575, 1907, 4405, ..., 1224, 3086, 3740]), + values=tensor([0.1597, 0.6483, 0.2533, ..., 0.7760, 0.1307, 0.6720]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.0044, 0.7640, 0.5767, ..., 0.5512, 0.1474, 0.2527]) +tensor([0.0745, 0.7131, 0.6004, ..., 0.2535, 0.5073, 0.4932]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -69,13 +69,13 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 10.466707706451416 seconds +Time: 10.7375807762146 seconds -[18.71, 18.12, 17.8, 18.17, 17.79, 18.66, 18.24, 17.82, 17.96, 18.33] -[51.05] -14.340695142745972 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 110820, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.466707706451416, 'TIME_S_1KI': 0.0944478226534147, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 732.0924870371819, 'W': 51.05} -[18.71, 18.12, 17.8, 18.17, 17.79, 18.66, 18.24, 17.82, 17.96, 18.33, 18.24, 17.71, 17.88, 18.05, 17.89, 18.02, 18.2, 18.01, 17.96, 18.8] -325.32000000000005 -16.266000000000002 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 110820, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.466707706451416, 'TIME_S_1KI': 0.0944478226534147, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 732.0924870371819, 'W': 51.05, 'J_1KI': 6.606140471369625, 'W_1KI': 0.46065692113336937, 'W_D': 34.78399999999999, 'J_D': 498.82673984527577, 'W_D_1KI': 0.3138783613066233, 'J_D_1KI': 0.0028323259457374416} +[18.26, 17.96, 17.92, 18.07, 18.39, 18.16, 18.05, 18.66, 19.34, 18.38] +[47.23] +14.269380569458008 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 111257, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.7375807762146, 'TIME_S_1KI': 0.09651150737674573, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 673.9428442955017, 'W': 47.23} +[18.26, 17.96, 17.92, 18.07, 18.39, 18.16, 18.05, 18.66, 19.34, 18.38, 18.78, 18.12, 17.96, 17.92, 17.93, 18.7, 18.05, 17.87, 17.97, 18.04] +327.8 +16.39 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 111257, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.7375807762146, 'TIME_S_1KI': 0.09651150737674573, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 673.9428442955017, 'W': 47.23, 'J_1KI': 6.057532059065961, 'W_1KI': 0.42451261493658826, 'W_D': 30.839999999999996, 'J_D': 440.0676967620849, 'W_D_1KI': 0.2771960415973826, 'J_D_1KI': 0.0024914930440096588} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.01.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.01.json index 480b88c..a469b78 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.01.json +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.01.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 20672, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.150692462921143, "TIME_S_1KI": 0.4910358196072534, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 730.3927840781212, "W": 52.39, "J_1KI": 35.332468270032955, "W_1KI": 2.534345975232198, "W_D": 36.085, "J_D": 503.07737380146983, "W_D_1KI": 1.7455979102167183, "J_D_1KI": 0.08444262336574683} +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 21150, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.43382978439331, "TIME_S_1KI": 0.4933252853141046, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 678.8009396362305, "W": 47.74, "J_1KI": 32.09460707499908, "W_1KI": 2.257210401891253, "W_D": 31.383250000000004, "J_D": 446.22914932632455, "W_D_1KI": 1.483841607565012, "J_D_1KI": 0.0701579956295514} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.01.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.01.output index a5c980d..c2c0006 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.01.output +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.01.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.01', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.5079245567321777} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.06486701965332031} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 49, 95, ..., 249890, 249948, +tensor(crow_indices=tensor([ 0, 47, 88, ..., 249915, 249957, 250000]), - col_indices=tensor([ 55, 65, 142, ..., 4926, 4940, 4998]), - values=tensor([0.9119, 0.0018, 0.8572, ..., 0.6690, 0.1772, 0.9395]), + col_indices=tensor([ 72, 118, 180, ..., 4779, 4849, 4984]), + values=tensor([0.8923, 0.3860, 0.0290, ..., 0.0532, 0.0516, 0.8464]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.5150, 0.8940, 0.4191, ..., 0.2946, 0.8617, 0.5629]) +tensor([0.1487, 0.9450, 0.3254, ..., 0.6866, 0.3989, 0.7268]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,19 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 0.5079245567321777 seconds +Time: 0.06486701965332031 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '20672', '-ss', '5000', '-sd', '0.01', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.150692462921143} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '16186', '-ss', '5000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 8.035360336303711} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 43, 97, ..., 249889, 249944, +tensor(crow_indices=tensor([ 0, 44, 82, ..., 249908, 249962, 250000]), - col_indices=tensor([ 6, 85, 316, ..., 4939, 4964, 4997]), - values=tensor([0.9982, 0.1843, 0.4498, ..., 0.0146, 0.5221, 0.3769]), + col_indices=tensor([ 36, 43, 78, ..., 4796, 4867, 4932]), + values=tensor([0.3758, 0.9832, 0.1983, ..., 0.0743, 0.8633, 0.0592]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.3609, 0.3004, 0.4171, ..., 0.6127, 0.3616, 0.7085]) +tensor([0.5985, 0.2492, 0.1240, ..., 0.8930, 0.7764, 0.3200]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -36,16 +36,19 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 10.150692462921143 seconds +Time: 8.035360336303711 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '21150', '-ss', '5000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.43382978439331} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 43, 97, ..., 249889, 249944, +tensor(crow_indices=tensor([ 0, 47, 95, ..., 249894, 249948, 250000]), - col_indices=tensor([ 6, 85, 316, ..., 4939, 4964, 4997]), - values=tensor([0.9982, 0.1843, 0.4498, ..., 0.0146, 0.5221, 0.3769]), + col_indices=tensor([ 129, 143, 228, ..., 4613, 4768, 4965]), + values=tensor([0.2601, 0.0327, 0.3118, ..., 0.8257, 0.2689, 0.3965]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.3609, 0.3004, 0.4171, ..., 0.6127, 0.3616, 0.7085]) +tensor([0.3768, 0.4725, 0.8369, ..., 0.3357, 0.4139, 0.5546]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,13 +56,30 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 10.150692462921143 seconds +Time: 10.43382978439331 seconds -[18.49, 17.73, 17.92, 17.82, 17.93, 17.75, 17.92, 17.66, 18.2, 17.78] -[52.39] -13.9414541721344 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 20672, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.150692462921143, 'TIME_S_1KI': 0.4910358196072534, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 730.3927840781212, 'W': 52.39} -[18.49, 17.73, 17.92, 17.82, 17.93, 17.75, 17.92, 17.66, 18.2, 17.78, 18.3, 17.44, 17.89, 17.79, 17.89, 17.6, 18.39, 22.34, 17.77, 17.55] -326.1 -16.305 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 20672, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.150692462921143, 'TIME_S_1KI': 0.4910358196072534, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 730.3927840781212, 'W': 52.39, 'J_1KI': 35.332468270032955, 'W_1KI': 2.534345975232198, 'W_D': 36.085, 'J_D': 503.07737380146983, 'W_D_1KI': 1.7455979102167183, 'J_D_1KI': 0.08444262336574683} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 47, 95, ..., 249894, 249948, + 250000]), + col_indices=tensor([ 129, 143, 228, ..., 4613, 4768, 4965]), + values=tensor([0.2601, 0.0327, 0.3118, ..., 0.8257, 0.2689, 0.3965]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.3768, 0.4725, 0.8369, ..., 0.3357, 0.4139, 0.5546]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 10.43382978439331 seconds + +[18.56, 17.95, 18.07, 18.36, 18.1, 18.2, 18.17, 18.16, 18.01, 17.83] +[47.74] +14.218704223632812 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 21150, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.43382978439331, 'TIME_S_1KI': 0.4933252853141046, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 678.8009396362305, 'W': 47.74} +[18.56, 17.95, 18.07, 18.36, 18.1, 18.2, 18.17, 18.16, 18.01, 17.83, 19.27, 18.21, 17.98, 17.93, 18.07, 18.27, 18.29, 17.78, 18.3, 18.91] +327.135 +16.356749999999998 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 21150, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.43382978439331, 'TIME_S_1KI': 0.4933252853141046, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 678.8009396362305, 'W': 47.74, 'J_1KI': 32.09460707499908, 'W_1KI': 2.257210401891253, 'W_D': 31.383250000000004, 'J_D': 446.22914932632455, 'W_D_1KI': 1.483841607565012, 'J_D_1KI': 0.0701579956295514} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.05.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.05.json index e52e6e6..c9a64dd 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.05.json +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.05.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 4507, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.511178016662598, "TIME_S_1KI": 2.332189486723452, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 757.7805129575729, "W": 51.93, "J_1KI": 168.13412756990746, "W_1KI": 11.522076769469715, "W_D": 35.70625, "J_D": 521.0379441708326, "W_D_1KI": 7.922398491235855, "J_D_1KI": 1.7577986446052485} +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 4516, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.427689790725708, "TIME_S_1KI": 2.309054426644311, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 694.9637099742889, "W": 47.9, "J_1KI": 153.88921832911623, "W_1KI": 10.606731620903455, "W_D": 31.338749999999997, "J_D": 454.682546262145, "W_D_1KI": 6.939492914083259, "J_D_1KI": 1.5366459065729094} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.05.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.05.output index a885cd8..ce3acc5 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.05.output +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 2.3295679092407227} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 0.2486708164215088} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 254, 504, ..., 1249528, - 1249756, 1250000]), - col_indices=tensor([ 6, 36, 59, ..., 4952, 4989, 4991]), - values=tensor([0.0659, 0.7749, 0.0668, ..., 0.7589, 0.1810, 0.5312]), +tensor(crow_indices=tensor([ 0, 247, 481, ..., 1249493, + 1249753, 1250000]), + col_indices=tensor([ 6, 31, 64, ..., 4955, 4959, 4978]), + values=tensor([0.8259, 0.7056, 0.5562, ..., 0.4513, 0.5248, 0.2272]), size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.3067, 0.0072, 0.7740, ..., 0.2122, 0.3107, 0.3197]) +tensor([0.7144, 0.3655, 0.7208, ..., 0.9456, 0.6678, 0.5049]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,19 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 1250000 Density: 0.05 -Time: 2.3295679092407227 seconds +Time: 0.2486708164215088 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '4507', '-ss', '5000', '-sd', '0.05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.511178016662598} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '4222', '-ss', '5000', '-sd', '0.05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 9.815936088562012} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 219, 483, ..., 1249530, - 1249766, 1250000]), - col_indices=tensor([ 20, 32, 102, ..., 4974, 4977, 4994]), - values=tensor([0.6920, 0.8171, 0.6223, ..., 0.4625, 0.9983, 0.7249]), +tensor(crow_indices=tensor([ 0, 269, 519, ..., 1249537, + 1249769, 1250000]), + col_indices=tensor([ 42, 49, 74, ..., 4955, 4973, 4990]), + values=tensor([0.0021, 0.9721, 0.1598, ..., 0.6170, 0.8086, 0.1248]), size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.2561, 0.5591, 0.5400, ..., 0.8818, 0.4529, 0.6860]) +tensor([0.9473, 0.7157, 0.7204, ..., 0.2702, 0.4361, 0.8753]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -36,16 +36,19 @@ Rows: 5000 Size: 25000000 NNZ: 1250000 Density: 0.05 -Time: 10.511178016662598 seconds +Time: 9.815936088562012 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '4516', '-ss', '5000', '-sd', '0.05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.427689790725708} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 219, 483, ..., 1249530, - 1249766, 1250000]), - col_indices=tensor([ 20, 32, 102, ..., 4974, 4977, 4994]), - values=tensor([0.6920, 0.8171, 0.6223, ..., 0.4625, 0.9983, 0.7249]), +tensor(crow_indices=tensor([ 0, 262, 521, ..., 1249547, + 1249780, 1250000]), + col_indices=tensor([ 5, 16, 32, ..., 4965, 4966, 4994]), + values=tensor([0.6294, 0.1213, 0.8577, ..., 0.8057, 0.3565, 0.7731]), size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.2561, 0.5591, 0.5400, ..., 0.8818, 0.4529, 0.6860]) +tensor([0.5561, 0.2020, 0.8277, ..., 0.0800, 0.4571, 0.4718]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,13 +56,30 @@ Rows: 5000 Size: 25000000 NNZ: 1250000 Density: 0.05 -Time: 10.511178016662598 seconds +Time: 10.427689790725708 seconds -[18.39, 17.88, 18.12, 17.92, 17.75, 18.25, 17.78, 17.64, 17.79, 18.46] -[51.93] -14.592345714569092 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 4507, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.511178016662598, 'TIME_S_1KI': 2.332189486723452, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 757.7805129575729, 'W': 51.93} -[18.39, 17.88, 18.12, 17.92, 17.75, 18.25, 17.78, 17.64, 17.79, 18.46, 18.69, 17.8, 17.97, 17.87, 17.86, 17.58, 17.99, 19.45, 18.2, 17.71] -324.47499999999997 -16.22375 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 4507, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.511178016662598, 'TIME_S_1KI': 2.332189486723452, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 757.7805129575729, 'W': 51.93, 'J_1KI': 168.13412756990746, 'W_1KI': 11.522076769469715, 'W_D': 35.70625, 'J_D': 521.0379441708326, 'W_D_1KI': 7.922398491235855, 'J_D_1KI': 1.7577986446052485} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 262, 521, ..., 1249547, + 1249780, 1250000]), + col_indices=tensor([ 5, 16, 32, ..., 4965, 4966, 4994]), + values=tensor([0.6294, 0.1213, 0.8577, ..., 0.8057, 0.3565, 0.7731]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.5561, 0.2020, 0.8277, ..., 0.0800, 0.4571, 0.4718]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 10.427689790725708 seconds + +[18.38, 21.41, 18.53, 17.98, 18.13, 17.94, 18.18, 18.19, 18.64, 17.87] +[47.9] +14.508636951446533 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 4516, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.427689790725708, 'TIME_S_1KI': 2.309054426644311, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 694.9637099742889, 'W': 47.9} +[18.38, 21.41, 18.53, 17.98, 18.13, 17.94, 18.18, 18.19, 18.64, 17.87, 18.41, 18.3, 18.02, 18.19, 18.18, 18.28, 18.35, 17.94, 18.16, 18.95] +331.225 +16.56125 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 4516, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.427689790725708, 'TIME_S_1KI': 2.309054426644311, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 694.9637099742889, 'W': 47.9, 'J_1KI': 153.88921832911623, 'W_1KI': 10.606731620903455, 'W_D': 31.338749999999997, 'J_D': 454.682546262145, 'W_D_1KI': 6.939492914083259, 'J_D_1KI': 1.5366459065729094} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.1.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.1.json index 635a552..6d226de 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.1.json +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.1.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 2058, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.45784878730774, "TIME_S_1KI": 5.08155917750619, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 785.1421909189224, "W": 52.34, "J_1KI": 381.5073813988933, "W_1KI": 25.432458697764822, "W_D": 35.778000000000006, "J_D": 536.6988404030801, "W_D_1KI": 17.384839650145775, "J_D_1KI": 8.44744395050815} +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 2077, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.487555503845215, "TIME_S_1KI": 5.04937674715706, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 724.931280415058, "W": 48.23, "J_1KI": 349.0280599013279, "W_1KI": 23.220991815117955, "W_D": 31.779249999999998, "J_D": 477.6647811140418, "W_D_1KI": 15.300553683196917, "J_D_1KI": 7.366660415597938} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.1.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.1.output index 4a3b3d8..ec991c2 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.1.output +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.1.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.1', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 5.10130500793457} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.1', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 0.53643798828125} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 521, 995, ..., 2499020, - 2499527, 2500000]), - col_indices=tensor([ 19, 49, 51, ..., 4986, 4987, 4995]), - values=tensor([0.7936, 0.5375, 0.7301, ..., 0.7605, 0.2307, 0.9856]), +tensor(crow_indices=tensor([ 0, 485, 953, ..., 2499027, + 2499524, 2500000]), + col_indices=tensor([ 4, 6, 18, ..., 4982, 4984, 4999]), + values=tensor([0.6950, 0.7335, 0.8547, ..., 0.7303, 0.2740, 0.2643]), size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.5487, 0.7747, 0.8035, ..., 0.5625, 0.3730, 0.5706]) +tensor([0.4725, 0.9871, 0.6689, ..., 0.5705, 0.1526, 0.5563]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,19 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 2500000 Density: 0.1 -Time: 5.10130500793457 seconds +Time: 0.53643798828125 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '2058', '-ss', '5000', '-sd', '0.1', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.45784878730774} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1957', '-ss', '5000', '-sd', '0.1', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 9.889901638031006} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 509, 1017, ..., 2498984, - 2499497, 2500000]), - col_indices=tensor([ 6, 22, 24, ..., 4979, 4998, 4999]), - values=tensor([0.4917, 0.1142, 0.9293, ..., 0.2344, 0.9124, 0.9917]), +tensor(crow_indices=tensor([ 0, 453, 921, ..., 2498978, + 2499478, 2500000]), + col_indices=tensor([ 4, 20, 34, ..., 4974, 4986, 4991]), + values=tensor([0.7939, 0.2865, 0.3388, ..., 0.3715, 0.9532, 0.1224]), size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.7101, 0.7759, 0.4138, ..., 0.4795, 0.2601, 0.9117]) +tensor([0.8979, 0.8998, 0.6031, ..., 0.0686, 0.1119, 0.6753]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -36,16 +36,19 @@ Rows: 5000 Size: 25000000 NNZ: 2500000 Density: 0.1 -Time: 10.45784878730774 seconds +Time: 9.889901638031006 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '2077', '-ss', '5000', '-sd', '0.1', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.487555503845215} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 509, 1017, ..., 2498984, - 2499497, 2500000]), - col_indices=tensor([ 6, 22, 24, ..., 4979, 4998, 4999]), - values=tensor([0.4917, 0.1142, 0.9293, ..., 0.2344, 0.9124, 0.9917]), +tensor(crow_indices=tensor([ 0, 534, 1011, ..., 2499001, + 2499492, 2500000]), + col_indices=tensor([ 12, 16, 26, ..., 4984, 4992, 4995]), + values=tensor([0.3129, 0.5758, 0.2112, ..., 0.6208, 0.5668, 0.8482]), size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.7101, 0.7759, 0.4138, ..., 0.4795, 0.2601, 0.9117]) +tensor([0.7114, 0.1437, 0.5452, ..., 0.6795, 0.1114, 0.8178]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,13 +56,30 @@ Rows: 5000 Size: 25000000 NNZ: 2500000 Density: 0.1 -Time: 10.45784878730774 seconds +Time: 10.487555503845215 seconds -[17.93, 17.71, 18.06, 17.99, 17.73, 17.68, 22.42, 18.22, 17.93, 17.72] -[52.34] -15.000806093215942 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 2058, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.45784878730774, 'TIME_S_1KI': 5.08155917750619, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 785.1421909189224, 'W': 52.34} -[17.93, 17.71, 18.06, 17.99, 17.73, 17.68, 22.42, 18.22, 17.93, 17.72, 17.97, 22.23, 18.27, 18.03, 17.94, 17.65, 17.66, 17.82, 18.34, 17.5] -331.24 -16.562 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 2058, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.45784878730774, 'TIME_S_1KI': 5.08155917750619, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 785.1421909189224, 'W': 52.34, 'J_1KI': 381.5073813988933, 'W_1KI': 25.432458697764822, 'W_D': 35.778000000000006, 'J_D': 536.6988404030801, 'W_D_1KI': 17.384839650145775, 'J_D_1KI': 8.44744395050815} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 534, 1011, ..., 2499001, + 2499492, 2500000]), + col_indices=tensor([ 12, 16, 26, ..., 4984, 4992, 4995]), + values=tensor([0.3129, 0.5758, 0.2112, ..., 0.6208, 0.5668, 0.8482]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.7114, 0.1437, 0.5452, ..., 0.6795, 0.1114, 0.8178]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 10.487555503845215 seconds + +[18.45, 17.83, 21.85, 18.4, 18.31, 17.94, 17.97, 18.32, 18.18, 17.83] +[48.23] +15.030712842941284 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 2077, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.487555503845215, 'TIME_S_1KI': 5.04937674715706, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 724.931280415058, 'W': 48.23} +[18.45, 17.83, 21.85, 18.4, 18.31, 17.94, 17.97, 18.32, 18.18, 17.83, 18.49, 17.82, 18.18, 18.17, 18.15, 17.82, 18.07, 17.68, 17.99, 17.9] +329.015 +16.45075 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 2077, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.487555503845215, 'TIME_S_1KI': 5.04937674715706, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 724.931280415058, 'W': 48.23, 'J_1KI': 349.0280599013279, 'W_1KI': 23.220991815117955, 'W_D': 31.779249999999998, 'J_D': 477.6647811140418, 'W_D_1KI': 15.300553683196917, 'J_D_1KI': 7.366660415597938} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.2.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.2.json new file mode 100644 index 0000000..e6d6ed2 --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.2.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 962, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.386102437973022, "TIME_S_1KI": 10.796364280637237, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 760.2223528313637, "W": 48.37, "J_1KI": 790.2519260201285, "W_1KI": 50.280665280665275, "W_D": 31.813249999999996, "J_D": 500.00297221857306, "W_D_1KI": 33.069906444906444, "J_D_1KI": 34.376202125682376} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.2.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.2.output new file mode 100644 index 0000000..c8b98a6 --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.2.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.2', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 1.090480089187622} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 979, 1989, ..., 4997947, + 4998978, 5000000]), + col_indices=tensor([ 0, 1, 2, ..., 4989, 4991, 4992]), + values=tensor([0.4629, 0.8349, 0.1230, ..., 0.3254, 0.2010, 0.4262]), + size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.8820, 0.9283, 0.2134, ..., 0.8569, 0.5183, 0.3465]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 5000000 +Density: 0.2 +Time: 1.090480089187622 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '962', '-ss', '5000', '-sd', '0.2', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.386102437973022} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1020, 2003, ..., 4997983, + 4998972, 5000000]), + col_indices=tensor([ 2, 12, 14, ..., 4982, 4988, 4994]), + values=tensor([0.5268, 0.0953, 0.2601, ..., 0.2366, 0.8226, 0.2641]), + size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.6710, 0.0398, 0.1150, ..., 0.1943, 0.5070, 0.9802]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 5000000 +Density: 0.2 +Time: 10.386102437973022 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1020, 2003, ..., 4997983, + 4998972, 5000000]), + col_indices=tensor([ 2, 12, 14, ..., 4982, 4988, 4994]), + values=tensor([0.5268, 0.0953, 0.2601, ..., 0.2366, 0.8226, 0.2641]), + size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.6710, 0.0398, 0.1150, ..., 0.1943, 0.5070, 0.9802]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 5000000 +Density: 0.2 +Time: 10.386102437973022 seconds + +[18.34, 18.12, 18.35, 17.91, 17.99, 18.03, 18.28, 18.28, 17.95, 18.09] +[48.37] +15.71681523323059 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 962, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.386102437973022, 'TIME_S_1KI': 10.796364280637237, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 760.2223528313637, 'W': 48.37} +[18.34, 18.12, 18.35, 17.91, 17.99, 18.03, 18.28, 18.28, 17.95, 18.09, 18.27, 18.18, 18.12, 17.89, 18.15, 21.61, 18.11, 17.8, 18.1, 21.83] +331.13500000000005 +16.55675 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 962, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.386102437973022, 'TIME_S_1KI': 10.796364280637237, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 760.2223528313637, 'W': 48.37, 'J_1KI': 790.2519260201285, 'W_1KI': 50.280665280665275, 'W_D': 31.813249999999996, 'J_D': 500.00297221857306, 'W_D_1KI': 33.069906444906444, 'J_D_1KI': 34.376202125682376} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.3.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.3.json new file mode 100644 index 0000000..6efa366 --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.3.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 640, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.40328574180603, "TIME_S_1KI": 16.255133971571922, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 792.4070657157898, "W": 48.54, "J_1KI": 1238.1360401809216, "W_1KI": 75.84375, "W_D": 32.294250000000005, "J_D": 527.1980198185445, "W_D_1KI": 50.45976562500001, "J_D_1KI": 78.84338378906251} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.3.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.3.output new file mode 100644 index 0000000..e11bc1c --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.3.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.3', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 1.6401786804199219} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1479, 2972, ..., 7496976, + 7498517, 7500000]), + col_indices=tensor([ 4, 10, 12, ..., 4987, 4989, 4997]), + values=tensor([0.8092, 0.2326, 0.1918, ..., 0.7537, 0.2703, 0.9406]), + size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) +tensor([0.6079, 0.4244, 0.8803, ..., 0.9929, 0.8834, 0.4182]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 7500000 +Density: 0.3 +Time: 1.6401786804199219 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '640', '-ss', '5000', '-sd', '0.3', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.40328574180603} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1469, 2947, ..., 7496962, + 7498492, 7500000]), + col_indices=tensor([ 5, 8, 10, ..., 4979, 4981, 4995]), + values=tensor([0.5097, 0.4133, 0.1946, ..., 0.6762, 0.7827, 0.5941]), + size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) +tensor([0.3256, 0.8526, 0.3288, ..., 0.0837, 0.1622, 0.2040]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 7500000 +Density: 0.3 +Time: 10.40328574180603 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1469, 2947, ..., 7496962, + 7498492, 7500000]), + col_indices=tensor([ 5, 8, 10, ..., 4979, 4981, 4995]), + values=tensor([0.5097, 0.4133, 0.1946, ..., 0.6762, 0.7827, 0.5941]), + size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) +tensor([0.3256, 0.8526, 0.3288, ..., 0.0837, 0.1622, 0.2040]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 7500000 +Density: 0.3 +Time: 10.40328574180603 seconds + +[18.61, 18.25, 18.17, 17.83, 17.98, 17.89, 17.97, 17.91, 17.89, 18.07] +[48.54] +16.32482624053955 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 640, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.40328574180603, 'TIME_S_1KI': 16.255133971571922, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 792.4070657157898, 'W': 48.54} +[18.61, 18.25, 18.17, 17.83, 17.98, 17.89, 17.97, 17.91, 17.89, 18.07, 18.46, 18.32, 17.92, 18.02, 17.98, 18.33, 17.98, 17.9, 18.02, 17.97] +324.91499999999996 +16.245749999999997 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 640, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.40328574180603, 'TIME_S_1KI': 16.255133971571922, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 792.4070657157898, 'W': 48.54, 'J_1KI': 1238.1360401809216, 'W_1KI': 75.84375, 'W_D': 32.294250000000005, 'J_D': 527.1980198185445, 'W_D_1KI': 50.45976562500001, 'J_D_1KI': 78.84338378906251} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.4.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.4.json new file mode 100644 index 0000000..679e37e --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.4.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 393, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.4, "TIME_S": 10.361774921417236, "TIME_S_1KI": 26.365839494700346, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 830.257935385704, "W": 47.87, "J_1KI": 2112.615611668458, "W_1KI": 121.80661577608141, "W_D": 31.368499999999997, "J_D": 544.0556934645175, "W_D_1KI": 79.81806615776081, "J_D_1KI": 203.09940498157965} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.4.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.4.output new file mode 100644 index 0000000..4eb279b --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.4.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.4', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.4, "TIME_S": 2.6700339317321777} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1981, 4013, ..., 9996053, + 9998014, 10000000]), + col_indices=tensor([ 1, 2, 4, ..., 4993, 4995, 4997]), + values=tensor([0.1269, 0.6137, 0.4927, ..., 0.6127, 0.1027, 0.1107]), + size=(5000, 5000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.1274, 0.2875, 0.5158, ..., 0.6638, 0.6368, 0.8182]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 10000000 +Density: 0.4 +Time: 2.6700339317321777 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '393', '-ss', '5000', '-sd', '0.4', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.4, "TIME_S": 10.361774921417236} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2035, 3994, ..., 9995956, + 9997978, 10000000]), + col_indices=tensor([ 2, 3, 4, ..., 4989, 4993, 4999]), + values=tensor([0.0874, 0.4595, 0.0218, ..., 0.9380, 0.2756, 0.2464]), + size=(5000, 5000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.1585, 0.7775, 0.6260, ..., 0.0357, 0.4122, 0.0843]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 10000000 +Density: 0.4 +Time: 10.361774921417236 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2035, 3994, ..., 9995956, + 9997978, 10000000]), + col_indices=tensor([ 2, 3, 4, ..., 4989, 4993, 4999]), + values=tensor([0.0874, 0.4595, 0.0218, ..., 0.9380, 0.2756, 0.2464]), + size=(5000, 5000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.1585, 0.7775, 0.6260, ..., 0.0357, 0.4122, 0.0843]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 10000000 +Density: 0.4 +Time: 10.361774921417236 seconds + +[18.09, 21.49, 19.13, 18.18, 17.87, 18.12, 18.49, 17.91, 18.18, 17.86] +[47.87] +17.344013690948486 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 393, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.4, 'TIME_S': 10.361774921417236, 'TIME_S_1KI': 26.365839494700346, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 830.257935385704, 'W': 47.87} +[18.09, 21.49, 19.13, 18.18, 17.87, 18.12, 18.49, 17.91, 18.18, 17.86, 18.63, 18.02, 17.95, 17.88, 17.98, 18.08, 17.96, 17.78, 18.35, 18.74] +330.03 +16.5015 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 393, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.4, 'TIME_S': 10.361774921417236, 'TIME_S_1KI': 26.365839494700346, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 830.257935385704, 'W': 47.87, 'J_1KI': 2112.615611668458, 'W_1KI': 121.80661577608141, 'W_D': 31.368499999999997, 'J_D': 544.0556934645175, 'W_D_1KI': 79.81806615776081, 'J_D_1KI': 203.09940498157965} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.5.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.5.json new file mode 100644 index 0000000..afa179f --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.5.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 307, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 10.394981145858765, "TIME_S_1KI": 33.85987343927936, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 930.0089691495895, "W": 47.58, "J_1KI": 3029.3451763830276, "W_1KI": 154.98371335504885, "W_D": 31.056999999999995, "J_D": 607.0468380596636, "W_D_1KI": 101.16286644951138, "J_D_1KI": 329.5207376205583} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.5.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.5.output new file mode 100644 index 0000000..91aa70e --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_0.5.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.5', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 3.415400505065918} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2477, 4964, ..., 12494964, + 12497482, 12500000]), + col_indices=tensor([ 1, 2, 4, ..., 4993, 4994, 4997]), + values=tensor([0.5791, 0.4301, 0.3570, ..., 0.1858, 0.4639, 0.9573]), + size=(5000, 5000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.0093, 0.1244, 0.8882, ..., 0.7606, 0.5225, 0.2163]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 12500000 +Density: 0.5 +Time: 3.415400505065918 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '307', '-ss', '5000', '-sd', '0.5', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 10.394981145858765} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2499, 4994, ..., 12495082, + 12497507, 12500000]), + col_indices=tensor([ 0, 1, 6, ..., 4995, 4997, 4999]), + values=tensor([0.6585, 0.9778, 0.9803, ..., 0.8325, 0.0849, 0.1040]), + size=(5000, 5000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.3486, 0.4233, 0.3644, ..., 0.4149, 0.2376, 0.4812]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 12500000 +Density: 0.5 +Time: 10.394981145858765 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2499, 4994, ..., 12495082, + 12497507, 12500000]), + col_indices=tensor([ 0, 1, 6, ..., 4995, 4997, 4999]), + values=tensor([0.6585, 0.9778, 0.9803, ..., 0.8325, 0.0849, 0.1040]), + size=(5000, 5000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.3486, 0.4233, 0.3644, ..., 0.4149, 0.2376, 0.4812]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 12500000 +Density: 0.5 +Time: 10.394981145858765 seconds + +[18.48, 21.56, 18.9, 18.32, 18.22, 17.83, 18.09, 17.98, 18.55, 18.34] +[47.58] +19.546216249465942 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 307, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.5, 'TIME_S': 10.394981145858765, 'TIME_S_1KI': 33.85987343927936, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 930.0089691495895, 'W': 47.58} +[18.48, 21.56, 18.9, 18.32, 18.22, 17.83, 18.09, 17.98, 18.55, 18.34, 18.35, 17.93, 17.78, 17.82, 18.22, 18.23, 18.5, 17.76, 18.34, 17.69] +330.46000000000004 +16.523000000000003 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 307, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.5, 'TIME_S': 10.394981145858765, 'TIME_S_1KI': 33.85987343927936, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 930.0089691495895, 'W': 47.58, 'J_1KI': 3029.3451763830276, 'W_1KI': 154.98371335504885, 'W_D': 31.056999999999995, 'J_D': 607.0468380596636, 'W_D_1KI': 101.16286644951138, 'J_D_1KI': 329.5207376205583} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_1e-05.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_1e-05.json index 6c5cd21..ca05b98 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_1e-05.json +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_1e-05.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 359075, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.526627540588379, "TIME_S_1KI": 0.029315957782046587, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 727.3910086989404, "W": 50.77, "J_1KI": 2.0257355947892233, "W_1KI": 0.14139107428810138, "W_D": 34.40475000000001, "J_D": 492.92310038477194, "W_D_1KI": 0.09581494116827963, "J_D_1KI": 0.00026683824039066943} +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 355542, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.588425874710083, "TIME_S_1KI": 0.02978108317641821, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 655.0935684347153, "W": 46.57, "J_1KI": 1.8425209073322286, "W_1KI": 0.13098311873140162, "W_D": 30.1475, "J_D": 424.08059597134593, "W_D_1KI": 0.08479307648604104, "J_D_1KI": 0.00023848962003375422} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_1e-05.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_1e-05.output index f806f78..a05082b 100644 --- a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_1e-05.output +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_1e-05.output @@ -1,75 +1,75 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.11398792266845703} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.022435426712036133} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([ 241, 1973, 126, 4921, 4422, 2653, 3082, 2201, 909, - 773, 2476, 1101, 4124, 1149, 4932, 4150, 708, 3916, - 3901, 3756, 2285, 2145, 2412, 4449, 1421, 1959, 273, - 295, 438, 3557, 1406, 2159, 1555, 1352, 2308, 123, - 422, 816, 1668, 2887, 824, 2337, 308, 3497, 990, - 532, 4077, 543, 4572, 3537, 2814, 363, 2178, 459, - 194, 3590, 3027, 4470, 4045, 3521, 3600, 3448, 3378, - 3735, 2740, 4248, 3124, 1351, 4670, 655, 21, 1574, - 1992, 4925, 3906, 2630, 1378, 3476, 2249, 1157, 791, - 4242, 829, 3492, 751, 3125, 155, 1550, 3503, 3772, - 4314, 2771, 3009, 651, 454, 3292, 4403, 3040, 3507, - 2608, 4119, 1826, 4717, 3363, 464, 3190, 2566, 1334, - 3602, 3134, 4282, 4686, 3398, 415, 1914, 1278, 3697, - 3496, 579, 3955, 1068, 4099, 763, 3707, 3389, 1217, - 1044, 4869, 1375, 3824, 2384, 1580, 1119, 2286, 4182, - 194, 4854, 2427, 3130, 4857, 3962, 2164, 2297, 3429, - 4738, 1374, 1526, 1469, 698, 2341, 4993, 1945, 4526, - 2645, 2777, 3401, 889, 4389, 444, 1509, 4747, 2279, - 4668, 72, 129, 1221, 3493, 378, 595, 67, 1157, - 1657, 2497, 2001, 1078, 4882, 3030, 2378, 193, 2365, - 3970, 4956, 3547, 158, 4478, 3594, 3986, 4843, 4633, - 1401, 3655, 934, 1838, 4467, 1935, 2294, 329, 1885, - 2444, 2560, 3870, 4475, 843, 2939, 3686, 4333, 3066, - 1183, 367, 3706, 3954, 4842, 1757, 4835, 4167, 4982, - 1096, 3863, 1904, 2261, 4656, 4688, 3811, 4079, 2898, - 525, 3689, 59, 2698, 369, 2440, 1363, 4533, 2450, - 3223, 1033, 4049, 3368, 2542, 4831, 3226, 3742, 4496, - 434, 1015, 2564, 1295, 3848, 4039, 804]), - values=tensor([0.2184, 0.5485, 0.5631, 0.7186, 0.3971, 0.9050, 0.7143, - 0.7288, 0.3895, 0.9734, 0.7253, 0.3854, 0.7553, 0.4272, - 0.9870, 0.8470, 0.2594, 0.4864, 0.4236, 0.8391, 0.1976, - 0.0203, 0.1892, 0.3198, 0.2335, 0.4485, 0.4766, 0.2460, - 0.8756, 0.2717, 0.6013, 0.3920, 0.2318, 0.2314, 0.6325, - 0.7402, 0.4011, 0.6801, 0.0374, 0.5386, 0.8760, 0.4919, - 0.9099, 0.6426, 0.0752, 0.2458, 0.7495, 0.4949, 0.4717, - 0.8587, 0.9263, 0.5756, 0.1987, 0.1048, 0.8736, 0.4765, - 0.2414, 0.4379, 0.9381, 0.5720, 0.7831, 0.1225, 0.0871, - 0.1953, 0.0019, 0.7763, 0.7548, 0.3103, 0.4088, 0.9386, - 0.6409, 0.3915, 0.4398, 0.8886, 0.6326, 0.8708, 0.6836, - 0.2686, 0.0291, 0.4089, 0.8430, 0.7311, 0.2220, 0.0973, - 0.4335, 0.3659, 0.1254, 0.1858, 0.2947, 0.6441, 0.6573, - 0.8939, 0.8485, 0.7258, 0.8542, 0.3356, 0.6753, 0.2728, - 0.1795, 0.8246, 0.2224, 0.2674, 0.8957, 0.1897, 0.5785, - 0.0612, 0.0570, 0.6450, 0.0772, 0.5313, 0.3238, 0.7938, - 0.9961, 0.4101, 0.7007, 0.3996, 0.0865, 0.3609, 0.3202, - 0.4978, 0.4886, 0.2294, 0.1102, 0.5506, 0.2172, 0.1849, - 0.3574, 0.0197, 0.0592, 0.3653, 0.9739, 0.5626, 0.3629, - 0.5946, 0.5286, 0.9497, 0.4607, 0.1036, 0.7227, 0.1313, - 0.2695, 0.1429, 0.5049, 0.5045, 0.0131, 0.8291, 0.1488, - 0.2606, 0.8600, 0.2356, 0.5905, 0.8817, 0.3417, 0.2576, - 0.1052, 0.2996, 0.2243, 0.4829, 0.2637, 0.4923, 0.6774, - 0.3415, 0.2189, 0.4198, 0.9822, 0.0220, 0.9119, 0.7410, - 0.2466, 0.2072, 0.8839, 0.7516, 0.8153, 0.2575, 0.8303, - 0.9406, 0.0281, 0.0637, 0.8256, 0.0137, 0.8551, 0.6904, - 0.7955, 0.7126, 0.4854, 0.7077, 0.7877, 0.2703, 0.2627, - 0.1225, 0.6814, 0.1981, 0.0012, 0.1101, 0.2261, 0.0650, - 0.7540, 0.2474, 0.6597, 0.2387, 0.2473, 0.3505, 0.4892, - 0.1885, 0.9295, 0.0390, 0.0947, 0.3171, 0.4778, 0.2438, - 0.6996, 0.4455, 0.6953, 0.9830, 0.4988, 0.5386, 0.2650, - 0.2674, 0.7866, 0.9811, 0.0823, 0.0951, 0.2368, 0.8950, - 0.6075, 0.7359, 0.6430, 0.6470, 0.0664, 0.2765, 0.1109, - 0.1504, 0.4845, 0.0431, 0.3770, 0.2384, 0.0687, 0.8824, - 0.9446, 0.8249, 0.8327, 0.3623, 0.1484, 0.9592, 0.8566, - 0.3466, 0.6434, 0.1142, 0.1855, 0.2031]), + col_indices=tensor([1292, 659, 4365, 3710, 1440, 2896, 123, 3649, 2612, + 927, 1659, 4214, 4385, 2636, 1869, 118, 1932, 2570, + 3752, 4154, 1992, 3194, 1579, 4685, 2991, 2783, 3487, + 3211, 2142, 3564, 4650, 3661, 3610, 3388, 1017, 3880, + 4125, 2970, 4559, 2499, 1693, 43, 2397, 1040, 4017, + 1828, 4674, 1496, 1775, 719, 2677, 389, 3154, 2997, + 3651, 773, 1883, 4184, 1034, 1972, 2681, 2277, 1527, + 4621, 238, 4365, 4905, 2103, 4738, 2026, 4073, 1797, + 3650, 3259, 4594, 2607, 1806, 3417, 2906, 213, 1348, + 1781, 4696, 1901, 709, 1550, 1968, 4490, 826, 4326, + 374, 3405, 4945, 642, 3326, 217, 437, 4704, 4681, + 3950, 1228, 3052, 3026, 3269, 1740, 2853, 2996, 1978, + 359, 3246, 3815, 3422, 1128, 733, 749, 4078, 2740, + 127, 2401, 240, 391, 4079, 575, 1175, 4439, 4510, + 2136, 1342, 880, 2183, 3085, 3808, 4189, 2436, 1877, + 140, 1033, 744, 134, 1457, 133, 407, 2079, 2372, + 2867, 1110, 602, 2915, 3299, 4776, 1097, 3465, 774, + 2845, 4963, 619, 3626, 3224, 3032, 4984, 3635, 1115, + 1431, 229, 362, 2520, 4880, 2306, 2092, 2949, 3111, + 141, 801, 4774, 1268, 4702, 3013, 4053, 4202, 2338, + 3307, 2339, 1627, 3991, 2211, 3208, 4859, 2254, 850, + 2555, 416, 3498, 2761, 1743, 3828, 3909, 4942, 4647, + 2857, 399, 2142, 1173, 2936, 2739, 3524, 2473, 2398, + 3617, 4358, 1503, 3513, 1560, 2497, 176, 1685, 851, + 2706, 2662, 1211, 466, 3647, 2835, 1798, 4560, 4189, + 74, 1919, 4892, 1659, 1504, 1873, 179, 4512, 1622, + 131, 802, 3776, 894, 98, 1072, 3715, 1448, 4255, + 4226, 676, 4655, 4974, 2293, 491, 1924]), + values=tensor([0.9106, 0.6103, 0.8018, 0.6726, 0.7831, 0.8787, 0.8641, + 0.0319, 0.4873, 0.6079, 0.6438, 0.5806, 0.1055, 0.2960, + 0.2595, 0.4592, 0.2559, 0.3932, 0.7042, 0.8694, 0.4660, + 0.4246, 0.4675, 0.7217, 0.9048, 0.6757, 0.7971, 0.3444, + 0.9040, 0.2589, 0.8383, 0.9787, 0.5364, 0.5478, 0.4280, + 0.9375, 0.9169, 0.6011, 0.6510, 0.3645, 0.9595, 0.3413, + 0.1561, 0.3706, 0.5420, 0.2194, 0.4928, 0.9365, 0.2372, + 0.4934, 0.8170, 0.4062, 0.4573, 0.8424, 0.2137, 0.2198, + 0.8285, 0.9490, 0.8645, 0.5816, 0.3427, 0.8902, 0.3651, + 0.7666, 0.8408, 0.8585, 0.8931, 0.5551, 0.8982, 0.6356, + 0.4250, 0.1088, 0.6737, 0.3958, 0.4828, 0.5186, 0.8805, + 0.2395, 0.2572, 0.2532, 0.6717, 0.2414, 0.7893, 0.8437, + 0.3171, 0.1858, 0.6604, 0.8284, 0.5385, 0.2314, 0.5114, + 0.2593, 0.8363, 0.9654, 0.7652, 0.9942, 0.9048, 0.6526, + 0.7743, 0.0670, 0.4879, 0.0500, 0.2026, 0.0553, 0.2990, + 0.2738, 0.8845, 0.6958, 0.2567, 0.3351, 0.1957, 0.2099, + 0.3337, 0.5048, 0.9817, 0.1630, 0.6715, 0.7671, 0.0645, + 0.2446, 0.2884, 0.8150, 0.9791, 0.9499, 0.4039, 0.4962, + 0.6049, 0.6707, 0.4315, 0.8269, 0.1062, 0.0634, 0.9597, + 0.8898, 0.1177, 0.9543, 0.8326, 0.6160, 0.9716, 0.8673, + 0.7943, 0.1918, 0.0735, 0.7498, 0.7051, 0.7537, 0.5409, + 0.9422, 0.7547, 0.3930, 0.7287, 0.3187, 0.8163, 0.1055, + 0.0953, 0.5157, 0.5484, 0.2625, 0.0877, 0.4823, 0.2711, + 0.4063, 0.7443, 0.2411, 0.7149, 0.2424, 0.1102, 0.7648, + 0.9164, 0.7435, 0.3343, 0.4014, 0.3868, 0.7585, 0.7825, + 0.9665, 0.6243, 0.8999, 0.5120, 0.3172, 0.9824, 0.0450, + 0.4103, 0.8334, 0.8361, 0.7898, 0.9067, 0.7235, 0.2233, + 0.3637, 0.9009, 0.8914, 0.3259, 0.8165, 0.9365, 0.9274, + 0.5741, 0.2639, 0.6520, 0.7150, 0.2093, 0.3816, 0.4707, + 0.4201, 0.9190, 0.5078, 0.8874, 0.9120, 0.2753, 0.7359, + 0.5812, 0.5682, 0.7646, 0.6267, 0.4102, 0.8266, 0.8853, + 0.7018, 0.9169, 0.0053, 0.7880, 0.6418, 0.6555, 0.9720, + 0.3526, 0.6341, 0.5088, 0.2195, 0.0203, 0.5525, 0.7633, + 0.6606, 0.4333, 0.8817, 0.0693, 0.9617, 0.5559, 0.9634, + 0.6048, 0.0232, 0.1068, 0.9352, 0.6002, 0.6363, 0.5154, + 0.1116, 0.5347, 0.0671, 0.7793, 0.1196]), size=(5000, 5000), nnz=250, layout=torch.sparse_csr) -tensor([0.1137, 0.5017, 0.2439, ..., 0.6384, 0.0681, 0.9585]) +tensor([0.9677, 0.1967, 0.0087, ..., 0.2565, 0.6584, 0.6200]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -77,80 +77,80 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 0.11398792266845703 seconds +Time: 0.022435426712036133 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '92115', '-ss', '5000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 2.6936018466949463} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '46800', '-ss', '5000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 1.382112741470337} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([ 137, 3972, 2939, 2536, 3585, 3536, 4694, 4081, 1091, - 3547, 2158, 1560, 4654, 3916, 1298, 1826, 148, 3363, - 2515, 695, 1436, 2549, 3112, 1426, 4349, 4876, 3863, - 2266, 79, 3433, 3354, 3087, 4915, 1126, 3703, 2213, - 4969, 2103, 3978, 4220, 3833, 3752, 4926, 1827, 2953, - 4810, 372, 1434, 633, 4328, 3235, 2981, 1886, 1672, - 4865, 3611, 2035, 3841, 2469, 1487, 1861, 3293, 4642, - 1604, 4933, 4004, 2061, 3358, 3726, 2632, 960, 126, - 2232, 2877, 895, 621, 3810, 4400, 2844, 3004, 2625, - 1260, 1779, 776, 2146, 1667, 3230, 539, 2113, 1737, - 4402, 465, 2922, 3985, 142, 4315, 2921, 2750, 885, - 710, 4008, 1590, 1261, 4292, 3623, 3503, 1672, 3336, - 2572, 3267, 2993, 70, 1995, 836, 1449, 4056, 4774, - 1934, 3439, 2960, 4562, 3889, 2634, 1182, 2896, 3385, - 205, 905, 4516, 1281, 169, 4524, 563, 927, 1718, - 3751, 3566, 1379, 2664, 985, 2775, 4965, 4796, 483, - 2960, 2505, 3939, 4782, 2656, 1648, 2553, 588, 2612, - 4485, 4017, 1943, 4451, 4661, 1851, 2653, 4614, 956, - 1822, 2814, 2160, 1989, 3032, 922, 291, 1256, 4491, - 941, 544, 161, 604, 1328, 4789, 747, 3093, 4018, - 1261, 4345, 1576, 1083, 2753, 4075, 244, 4712, 4715, - 4014, 1207, 4378, 15, 4207, 1970, 605, 1755, 1089, - 2896, 831, 501, 3378, 2699, 1900, 724, 1190, 1825, - 660, 181, 3354, 4952, 4827, 2686, 26, 1403, 2918, - 3156, 1375, 2817, 2786, 1609, 3155, 1989, 2470, 2850, - 3165, 3975, 2060, 233, 699, 4823, 3317, 293, 1836, - 3608, 3776, 669, 4280, 4958, 4125, 2468, 2256, 2146, - 4901, 2841, 3736, 283, 190, 3398, 1922]), - values=tensor([0.6695, 0.9833, 0.1432, 0.4161, 0.8392, 0.4519, 0.7335, - 0.9958, 0.0219, 0.7710, 0.5001, 0.2641, 0.3766, 0.7103, - 0.8540, 0.5709, 0.1682, 0.2996, 0.5530, 0.5173, 0.8745, - 0.0752, 0.4820, 0.5228, 0.0339, 0.6709, 0.2580, 0.8586, - 0.8878, 0.0878, 0.4393, 0.2211, 0.2258, 0.4333, 0.0038, - 0.6951, 0.6433, 0.6381, 0.3492, 0.3731, 0.0316, 0.8649, - 0.6734, 0.3206, 0.8321, 0.7226, 0.7357, 0.0634, 0.0931, - 0.4512, 0.1531, 0.6138, 0.4706, 0.7999, 0.4089, 0.8748, - 0.3486, 0.7322, 0.2439, 0.0715, 0.7807, 0.3511, 0.5350, - 0.1040, 0.6618, 0.9284, 0.6439, 0.1028, 0.6967, 0.1672, - 0.5232, 0.5990, 0.4131, 0.6209, 0.5668, 0.8927, 0.9754, - 0.2705, 0.6686, 0.2720, 0.2523, 0.2520, 0.2777, 0.2306, - 0.5601, 0.0701, 0.1220, 0.1669, 0.9340, 0.1957, 0.8919, - 0.8514, 0.7327, 0.5276, 0.8049, 0.2768, 0.0387, 0.1098, - 0.9042, 0.1414, 0.1252, 0.7087, 0.5489, 0.2450, 0.4588, - 0.9771, 0.4450, 0.1355, 0.9129, 0.4808, 0.5735, 0.9337, - 0.9658, 0.9256, 0.5364, 0.1244, 0.5347, 0.7434, 0.1846, - 0.7849, 0.7576, 0.0427, 0.2369, 0.3048, 0.5296, 0.9086, - 0.0541, 0.8841, 0.4305, 0.9907, 0.3676, 0.5804, 0.6895, - 0.9332, 0.0270, 0.3121, 0.8208, 0.8474, 0.2569, 0.4957, - 0.4133, 0.6520, 0.4588, 0.6225, 0.1027, 0.6632, 0.5190, - 0.0735, 0.1854, 0.8500, 0.6470, 0.2594, 0.7205, 0.8914, - 0.0489, 0.8156, 0.5306, 0.3119, 0.3137, 0.3120, 0.6417, - 0.2258, 0.6597, 0.8453, 0.6987, 0.4225, 0.5177, 0.2802, - 0.5315, 0.3767, 0.2520, 0.2831, 0.1536, 0.0334, 0.8465, - 0.7641, 0.9707, 0.5313, 0.7595, 0.4109, 0.8430, 0.9004, - 0.8413, 0.0821, 0.3632, 0.3777, 0.5912, 0.8961, 0.4075, - 0.0738, 0.9507, 0.9062, 0.2136, 0.1959, 0.6942, 0.6367, - 0.2811, 0.0027, 0.4216, 0.1826, 0.7776, 0.8261, 0.0554, - 0.1191, 0.5231, 0.1729, 0.5584, 0.7643, 0.0823, 0.4499, - 0.5024, 0.9288, 0.5019, 0.4372, 0.1384, 0.0776, 0.5461, - 0.7228, 0.2015, 0.8892, 0.2697, 0.1194, 0.6369, 0.9915, - 0.3322, 0.2044, 0.1389, 0.4917, 0.1141, 0.5811, 0.5234, - 0.7081, 0.5358, 0.2162, 0.4906, 0.8753, 0.4064, 0.6721, - 0.7143, 0.7824, 0.2108, 0.1572, 0.2915, 0.4564, 0.4382, - 0.0848, 0.7623, 0.7257, 0.3674, 0.7093]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 249, 249, 250]), + col_indices=tensor([4150, 2888, 4184, 1530, 678, 479, 1107, 471, 4285, + 3837, 1975, 2514, 511, 1660, 2068, 1448, 4627, 3695, + 4646, 2830, 2653, 1667, 2953, 3899, 1002, 4696, 4142, + 2682, 2648, 3794, 1459, 982, 980, 1746, 3339, 149, + 1718, 4640, 314, 53, 2403, 1141, 3357, 1085, 466, + 1619, 2477, 3859, 2168, 947, 4059, 1003, 2781, 2708, + 1717, 3009, 1864, 3007, 3896, 3680, 4372, 3309, 2254, + 2203, 4715, 1069, 4309, 2391, 3090, 3258, 952, 4475, + 4160, 3612, 4789, 3335, 819, 1827, 2260, 3171, 3323, + 4626, 3362, 7, 972, 4803, 364, 2649, 4177, 4599, + 2900, 3224, 1640, 4077, 3701, 2791, 1433, 655, 2314, + 3198, 317, 850, 1087, 611, 645, 558, 726, 1381, + 90, 1884, 2477, 176, 4078, 600, 1776, 1815, 4980, + 3290, 976, 3882, 4218, 3337, 4340, 4550, 1601, 376, + 2443, 2180, 1347, 4274, 3578, 2389, 1349, 3996, 4180, + 3976, 1026, 1825, 1698, 4427, 2513, 1604, 114, 2995, + 2989, 1072, 3384, 2975, 4300, 3198, 3255, 1005, 1851, + 4373, 2417, 1761, 1977, 1033, 304, 4563, 572, 4037, + 3427, 1513, 75, 468, 3187, 2009, 1764, 1805, 1467, + 3749, 4166, 2128, 4824, 3213, 2655, 2007, 1437, 1298, + 483, 971, 2056, 2156, 2263, 607, 4650, 771, 456, + 2047, 3920, 3689, 2454, 4552, 1948, 4918, 2583, 4601, + 1062, 3584, 2635, 2071, 2042, 2779, 1369, 1671, 4485, + 2542, 4111, 1550, 2280, 3307, 1653, 1055, 571, 3882, + 2132, 941, 2447, 3838, 493, 2724, 4427, 2495, 491, + 348, 2552, 3299, 317, 1166, 2830, 4896, 4608, 3014, + 670, 2086, 2508, 2837, 2920, 612, 4090, 2710, 1095, + 1628, 1220, 274, 3831, 1535, 1786, 4549]), + values=tensor([0.5255, 0.0182, 0.6174, 0.1076, 0.3535, 0.7090, 0.2797, + 0.4131, 0.9644, 0.6573, 0.3774, 0.2463, 0.8634, 0.5392, + 0.6180, 0.7460, 0.0840, 0.6919, 0.2395, 0.6380, 0.3064, + 0.4299, 0.2434, 0.7003, 0.1509, 0.6268, 0.3419, 0.0217, + 0.6724, 0.4826, 0.7793, 0.9245, 0.4498, 0.8997, 0.8789, + 0.2006, 0.9117, 0.6104, 0.9445, 0.6803, 0.5546, 0.0430, + 0.8599, 0.6166, 0.9366, 0.0741, 0.0108, 0.4102, 0.8063, + 0.1147, 0.2712, 0.9101, 0.6498, 0.4997, 0.5120, 0.1408, + 0.5873, 0.5440, 0.2130, 0.6524, 0.1914, 0.2027, 0.3598, + 0.1760, 0.9961, 0.4064, 0.1145, 0.4074, 0.8942, 0.9988, + 0.7396, 0.3520, 0.8007, 0.2689, 0.7383, 0.4192, 0.4738, + 0.5964, 0.1917, 0.1869, 0.3576, 0.9988, 0.6764, 0.1906, + 0.7629, 0.4501, 0.8709, 0.2468, 0.5177, 0.2466, 0.2197, + 0.1446, 0.0928, 0.2356, 0.4535, 0.4306, 0.8108, 0.4445, + 0.2001, 0.2909, 0.2893, 0.9446, 0.2722, 0.1526, 0.7522, + 0.5034, 0.0891, 0.6792, 0.6980, 0.8787, 0.8816, 0.0939, + 0.0544, 0.5728, 0.3453, 0.6599, 0.1401, 0.4967, 0.8703, + 0.0012, 0.1313, 0.5851, 0.4868, 0.8996, 0.7538, 0.7366, + 0.3299, 0.6412, 0.9032, 0.8207, 0.4202, 0.9740, 0.5987, + 0.7801, 0.2814, 0.4031, 0.0887, 0.7346, 0.5935, 0.7540, + 0.2319, 0.3570, 0.1145, 0.5888, 0.6276, 0.7231, 0.7135, + 0.9613, 0.8035, 0.6211, 0.0088, 0.0973, 0.8083, 0.1435, + 0.0594, 0.5423, 0.4477, 0.3960, 0.6871, 0.1103, 0.2807, + 0.9626, 0.5226, 0.3908, 0.2801, 0.5699, 0.2801, 0.6331, + 0.2050, 0.6787, 0.0958, 0.2630, 0.1454, 0.4463, 0.8988, + 0.0901, 0.2439, 0.8477, 0.1410, 0.2267, 0.5153, 0.7658, + 0.4023, 0.6070, 0.4869, 0.6448, 0.8450, 0.9154, 0.1431, + 0.8925, 0.4147, 0.0491, 0.3877, 0.8712, 0.5490, 0.2553, + 0.4929, 0.0602, 0.3093, 0.9867, 0.9857, 0.7010, 0.9249, + 0.3952, 0.9763, 0.0416, 0.7299, 0.7590, 0.5814, 0.9861, + 0.2685, 0.2403, 0.0997, 0.7290, 0.0363, 0.1796, 0.0573, + 0.1340, 0.1547, 0.5881, 0.5516, 0.6658, 0.9991, 0.5590, + 0.3010, 0.2004, 0.5300, 0.9600, 0.5439, 0.0253, 0.1689, + 0.7972, 0.3164, 0.6988, 0.4588, 0.6168, 0.9056, 0.7303, + 0.2798, 0.7978, 0.1100, 0.0574, 0.5151, 0.8940, 0.9058, + 0.1406, 0.2261, 0.0686, 0.3738, 0.0528]), size=(5000, 5000), nnz=250, layout=torch.sparse_csr) -tensor([0.1760, 0.3447, 0.5672, ..., 0.4540, 0.2179, 0.2738]) +tensor([0.9505, 0.7309, 0.0755, ..., 0.0952, 0.7737, 0.4268]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -158,80 +158,80 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 2.6936018466949463 seconds +Time: 1.382112741470337 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '359075', '-ss', '5000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.526627540588379} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '355542', '-ss', '5000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.588425874710083} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([3778, 4984, 4122, 2676, 3957, 4059, 4909, 4911, 2572, - 1267, 1150, 3364, 3576, 4257, 4803, 3469, 2315, 1996, - 1589, 4554, 3627, 222, 735, 2019, 1196, 3402, 918, - 508, 1833, 3932, 3749, 3244, 4451, 1193, 3387, 2934, - 4933, 2676, 1892, 1253, 2562, 3303, 93, 1367, 4037, - 388, 4569, 3905, 2205, 438, 2955, 2830, 2546, 3603, - 3071, 4886, 2701, 3617, 3981, 2453, 1634, 906, 2460, - 4767, 4482, 2328, 3968, 2373, 709, 1470, 1396, 1265, - 427, 2495, 18, 4172, 3266, 4196, 702, 133, 2624, - 2942, 4262, 4579, 1940, 2403, 42, 1771, 590, 3624, - 3674, 2977, 3577, 3648, 673, 1388, 4388, 17, 194, - 155, 552, 2075, 1300, 4736, 849, 2848, 3737, 3431, - 4900, 4636, 211, 2218, 935, 599, 2948, 4874, 369, - 966, 947, 3488, 346, 1181, 1472, 1637, 372, 1874, - 4884, 172, 214, 771, 3131, 1713, 3058, 4267, 3602, - 2760, 3398, 3174, 9, 318, 4703, 779, 2824, 4515, - 2540, 3491, 647, 4310, 4641, 1357, 289, 349, 73, - 908, 1015, 1680, 677, 202, 1047, 1747, 4308, 1250, - 3160, 3099, 2970, 2272, 3209, 2339, 1660, 4649, 642, - 2647, 4042, 3441, 1713, 3501, 3454, 4660, 2114, 1751, - 4938, 3300, 396, 1888, 1868, 2474, 3021, 4177, 1556, - 3530, 583, 156, 782, 534, 780, 3712, 1163, 3018, - 2652, 2501, 1137, 3069, 4789, 548, 1908, 709, 3367, - 4443, 1991, 4909, 152, 2054, 2229, 14, 2251, 1027, - 3732, 288, 642, 4326, 2761, 4086, 1629, 946, 4083, - 1089, 2210, 3114, 3172, 376, 4660, 3852, 3198, 3613, - 592, 1388, 3114, 4183, 4318, 1850, 4771, 843, 2522, - 2774, 2939, 3529, 1857, 2895, 2137, 4447]), - values=tensor([0.4475, 0.8812, 0.1292, 0.7293, 0.6267, 0.0108, 0.5387, - 0.9156, 0.4928, 0.6543, 0.3448, 0.7375, 0.4487, 0.3828, - 0.2863, 0.2902, 0.7640, 0.5621, 0.0700, 0.7401, 0.8451, - 0.9099, 0.0211, 0.8004, 0.5172, 0.0685, 0.5469, 0.9562, - 0.9763, 0.1102, 0.0709, 0.8735, 0.6816, 0.5541, 0.7172, - 0.8388, 0.7596, 0.0622, 0.0743, 0.1726, 0.6490, 0.2165, - 0.6650, 0.7371, 0.8810, 0.8711, 0.2280, 0.6052, 0.7488, - 0.7562, 0.5277, 0.9948, 0.0106, 0.0299, 0.7667, 0.5618, - 0.6094, 0.9214, 0.6504, 0.8772, 0.7922, 0.0380, 0.8257, - 0.9627, 0.8457, 0.9488, 0.7481, 0.0656, 0.7384, 0.8073, - 0.8799, 0.1542, 0.7486, 0.0058, 0.8291, 0.9889, 0.8922, - 0.2911, 0.9747, 0.0465, 0.1509, 0.5817, 0.7676, 0.1559, - 0.4514, 0.2238, 0.9216, 0.0912, 0.0562, 0.6927, 0.2560, - 0.7407, 0.7561, 0.5126, 0.8908, 0.4965, 0.0086, 0.7725, - 0.2468, 0.7667, 0.7880, 0.6098, 0.9369, 0.5035, 0.3626, - 0.7343, 0.2151, 0.1827, 0.2696, 0.7224, 0.6480, 0.0746, - 0.6229, 0.9622, 0.8016, 0.2190, 0.3391, 0.8517, 0.1344, - 0.9710, 0.8151, 0.7634, 0.9047, 0.8447, 0.3478, 0.4789, - 0.5543, 0.6475, 0.6794, 0.8153, 0.2995, 0.6764, 0.2993, - 0.4440, 0.6818, 0.5702, 0.7074, 0.4488, 0.4032, 0.6268, - 0.7286, 0.4749, 0.3646, 0.0331, 0.4227, 0.8138, 0.3173, - 0.0403, 0.2636, 0.3980, 0.1390, 0.1641, 0.6671, 0.5330, - 0.3639, 0.7467, 0.8967, 0.7753, 0.2492, 0.1215, 0.6986, - 0.6107, 0.6922, 0.6270, 0.0513, 0.3708, 0.4140, 0.6870, - 0.6642, 0.1925, 0.0944, 0.4210, 0.5791, 0.4516, 0.5935, - 0.1022, 0.0482, 0.6022, 0.6705, 0.3885, 0.1005, 0.3611, - 0.3535, 0.1700, 0.7214, 0.8017, 0.2409, 0.4915, 0.6710, - 0.5749, 0.1541, 0.6514, 0.2028, 0.1566, 0.2795, 0.9275, - 0.1313, 0.4671, 0.8621, 0.0474, 0.9495, 0.4065, 0.1561, - 0.3930, 0.1891, 0.0713, 0.9951, 0.8365, 0.9415, 0.9314, - 0.4274, 0.7485, 0.9571, 0.9768, 0.5673, 0.4241, 0.5508, - 0.4033, 0.2950, 0.2855, 0.8415, 0.9844, 0.7770, 0.3923, - 0.5787, 0.9241, 0.3429, 0.2388, 0.7432, 0.5287, 0.4894, - 0.3564, 0.1539, 0.3683, 0.3338, 0.2500, 0.3763, 0.4479, - 0.2028, 0.8079, 0.0187, 0.3962, 0.2530, 0.6932, 0.4307, - 0.2510, 0.2498, 0.5817, 0.8657, 0.8402]), + col_indices=tensor([4976, 2999, 3531, 729, 4293, 4703, 527, 519, 1087, + 2588, 2503, 4621, 623, 2508, 4018, 2181, 4566, 129, + 1882, 141, 241, 4234, 3011, 3475, 1507, 1753, 1592, + 16, 1837, 2881, 4935, 1126, 1212, 1843, 3769, 1406, + 4716, 3662, 2501, 4960, 3438, 3187, 281, 2582, 4408, + 1833, 1310, 2092, 1021, 4933, 3776, 3565, 3765, 4067, + 3036, 4650, 3192, 1618, 3142, 599, 3093, 1420, 3804, + 496, 2492, 4465, 4733, 3170, 4826, 4434, 3018, 360, + 3823, 3346, 2952, 3585, 1580, 4171, 3383, 4158, 1729, + 4780, 335, 3992, 4542, 2789, 4029, 416, 4212, 913, + 792, 2949, 3671, 2278, 3431, 4080, 1970, 3530, 1625, + 1846, 123, 3801, 179, 2650, 2793, 3609, 4951, 1904, + 3327, 3068, 797, 2882, 3831, 1946, 4674, 2611, 3167, + 3799, 820, 4595, 2920, 4476, 339, 16, 1057, 3858, + 1996, 2480, 211, 316, 2763, 1963, 1855, 789, 4091, + 3327, 1560, 1579, 4983, 674, 1259, 1259, 1614, 4040, + 4463, 3393, 619, 1723, 4630, 933, 1161, 3845, 4268, + 4840, 4044, 3897, 1211, 4242, 540, 433, 3144, 2336, + 4751, 151, 2282, 2250, 2548, 3515, 851, 1606, 4107, + 209, 996, 4881, 3062, 1226, 876, 3179, 583, 2155, + 304, 1823, 35, 692, 3702, 4106, 1336, 1789, 1359, + 3986, 1095, 312, 3819, 955, 1411, 4676, 1229, 4251, + 263, 3639, 4785, 3043, 1158, 1138, 2259, 2515, 3611, + 4898, 3676, 269, 509, 3101, 1147, 409, 3191, 1984, + 2546, 1127, 3710, 4610, 4906, 997, 3399, 3628, 347, + 847, 2034, 588, 2961, 2738, 4337, 3827, 1890, 1227, + 1635, 1728, 2759, 1429, 4176, 4191, 4862, 4968, 1336, + 119, 3406, 554, 532, 1507, 1917, 2750]), + values=tensor([0.5199, 0.0559, 0.9006, 0.7777, 0.2843, 0.6207, 0.6975, + 0.8689, 0.5742, 0.4737, 0.6755, 0.5958, 0.4384, 0.4390, + 0.8599, 0.7635, 0.7028, 0.4511, 0.3241, 0.0806, 0.8242, + 0.9053, 0.3849, 0.6596, 0.0472, 0.0762, 0.5653, 0.2663, + 0.8433, 0.4091, 0.7837, 0.1469, 0.0020, 0.4944, 0.8738, + 0.1320, 0.2431, 0.2650, 0.7193, 0.2483, 0.4028, 0.5091, + 0.3427, 0.6757, 0.9747, 0.5603, 0.1148, 0.1932, 0.5560, + 0.7920, 0.7790, 0.7814, 0.5929, 0.3079, 0.4008, 0.4233, + 0.4893, 0.9629, 0.6575, 0.2210, 0.9465, 0.6464, 0.0795, + 0.6735, 0.0196, 0.9297, 0.4843, 0.7360, 0.6757, 0.8217, + 0.8318, 0.9782, 0.6754, 0.1098, 0.6940, 0.8548, 0.6163, + 0.6934, 0.6171, 0.1041, 0.7511, 0.4878, 0.3635, 0.8620, + 0.3905, 0.3542, 0.8549, 0.4722, 0.9206, 0.2789, 0.9568, + 0.1952, 0.7173, 0.8016, 0.5436, 0.6025, 0.2628, 0.4776, + 0.0648, 0.4119, 0.1873, 0.5768, 0.6229, 0.4612, 0.3781, + 0.9685, 0.2051, 0.1702, 0.4419, 0.4538, 0.4515, 0.1665, + 0.0292, 0.6419, 0.1217, 0.0198, 0.2563, 0.3495, 0.0936, + 0.2664, 0.5259, 0.3038, 0.7533, 0.2522, 0.7253, 0.1463, + 0.2087, 0.7896, 0.0364, 0.6152, 0.7986, 0.8112, 0.7556, + 0.0756, 0.4969, 0.3790, 0.1978, 0.1043, 0.8605, 0.5011, + 0.8762, 0.2381, 0.0660, 0.2738, 0.0392, 0.5623, 0.1390, + 0.4257, 0.6102, 0.9603, 0.2834, 0.0200, 0.2511, 0.8990, + 0.6324, 0.9167, 0.3730, 0.6817, 0.4652, 0.8996, 0.9136, + 0.8631, 0.9770, 0.2565, 0.6496, 0.1799, 0.4018, 0.4388, + 0.9314, 0.6833, 0.7914, 0.9455, 0.7655, 0.3170, 0.6697, + 0.9757, 0.4151, 0.9576, 0.1567, 0.8861, 0.0170, 0.7822, + 0.2221, 0.7184, 0.0581, 0.4824, 0.4815, 0.2522, 0.1559, + 0.1892, 0.1146, 0.0347, 0.4792, 0.0555, 0.6999, 0.5092, + 0.0919, 0.7115, 0.9111, 0.4498, 0.4923, 0.5300, 0.3126, + 0.8103, 0.3276, 0.8722, 0.4823, 0.2311, 0.5957, 0.0760, + 0.2892, 0.3555, 0.6604, 0.7686, 0.1412, 0.8595, 0.6702, + 0.1119, 0.1550, 0.8493, 0.8158, 0.3714, 0.8983, 0.3484, + 0.6611, 0.8110, 0.2241, 0.8267, 0.9605, 0.8151, 0.1779, + 0.2906, 0.1723, 0.3272, 0.4678, 0.1292, 0.9514, 0.6369, + 0.8054, 0.2983, 0.3742, 0.8673, 0.0274, 0.1851, 0.9052, + 0.8742, 0.4529, 0.2266, 0.4410, 0.5323]), size=(5000, 5000), nnz=250, layout=torch.sparse_csr) -tensor([0.7545, 0.7162, 0.2861, ..., 0.9381, 0.3630, 0.3493]) +tensor([0.4269, 0.0147, 0.1392, ..., 0.1737, 0.9746, 0.9710]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -239,77 +239,77 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 10.526627540588379 seconds +Time: 10.588425874710083 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([3778, 4984, 4122, 2676, 3957, 4059, 4909, 4911, 2572, - 1267, 1150, 3364, 3576, 4257, 4803, 3469, 2315, 1996, - 1589, 4554, 3627, 222, 735, 2019, 1196, 3402, 918, - 508, 1833, 3932, 3749, 3244, 4451, 1193, 3387, 2934, - 4933, 2676, 1892, 1253, 2562, 3303, 93, 1367, 4037, - 388, 4569, 3905, 2205, 438, 2955, 2830, 2546, 3603, - 3071, 4886, 2701, 3617, 3981, 2453, 1634, 906, 2460, - 4767, 4482, 2328, 3968, 2373, 709, 1470, 1396, 1265, - 427, 2495, 18, 4172, 3266, 4196, 702, 133, 2624, - 2942, 4262, 4579, 1940, 2403, 42, 1771, 590, 3624, - 3674, 2977, 3577, 3648, 673, 1388, 4388, 17, 194, - 155, 552, 2075, 1300, 4736, 849, 2848, 3737, 3431, - 4900, 4636, 211, 2218, 935, 599, 2948, 4874, 369, - 966, 947, 3488, 346, 1181, 1472, 1637, 372, 1874, - 4884, 172, 214, 771, 3131, 1713, 3058, 4267, 3602, - 2760, 3398, 3174, 9, 318, 4703, 779, 2824, 4515, - 2540, 3491, 647, 4310, 4641, 1357, 289, 349, 73, - 908, 1015, 1680, 677, 202, 1047, 1747, 4308, 1250, - 3160, 3099, 2970, 2272, 3209, 2339, 1660, 4649, 642, - 2647, 4042, 3441, 1713, 3501, 3454, 4660, 2114, 1751, - 4938, 3300, 396, 1888, 1868, 2474, 3021, 4177, 1556, - 3530, 583, 156, 782, 534, 780, 3712, 1163, 3018, - 2652, 2501, 1137, 3069, 4789, 548, 1908, 709, 3367, - 4443, 1991, 4909, 152, 2054, 2229, 14, 2251, 1027, - 3732, 288, 642, 4326, 2761, 4086, 1629, 946, 4083, - 1089, 2210, 3114, 3172, 376, 4660, 3852, 3198, 3613, - 592, 1388, 3114, 4183, 4318, 1850, 4771, 843, 2522, - 2774, 2939, 3529, 1857, 2895, 2137, 4447]), - values=tensor([0.4475, 0.8812, 0.1292, 0.7293, 0.6267, 0.0108, 0.5387, - 0.9156, 0.4928, 0.6543, 0.3448, 0.7375, 0.4487, 0.3828, - 0.2863, 0.2902, 0.7640, 0.5621, 0.0700, 0.7401, 0.8451, - 0.9099, 0.0211, 0.8004, 0.5172, 0.0685, 0.5469, 0.9562, - 0.9763, 0.1102, 0.0709, 0.8735, 0.6816, 0.5541, 0.7172, - 0.8388, 0.7596, 0.0622, 0.0743, 0.1726, 0.6490, 0.2165, - 0.6650, 0.7371, 0.8810, 0.8711, 0.2280, 0.6052, 0.7488, - 0.7562, 0.5277, 0.9948, 0.0106, 0.0299, 0.7667, 0.5618, - 0.6094, 0.9214, 0.6504, 0.8772, 0.7922, 0.0380, 0.8257, - 0.9627, 0.8457, 0.9488, 0.7481, 0.0656, 0.7384, 0.8073, - 0.8799, 0.1542, 0.7486, 0.0058, 0.8291, 0.9889, 0.8922, - 0.2911, 0.9747, 0.0465, 0.1509, 0.5817, 0.7676, 0.1559, - 0.4514, 0.2238, 0.9216, 0.0912, 0.0562, 0.6927, 0.2560, - 0.7407, 0.7561, 0.5126, 0.8908, 0.4965, 0.0086, 0.7725, - 0.2468, 0.7667, 0.7880, 0.6098, 0.9369, 0.5035, 0.3626, - 0.7343, 0.2151, 0.1827, 0.2696, 0.7224, 0.6480, 0.0746, - 0.6229, 0.9622, 0.8016, 0.2190, 0.3391, 0.8517, 0.1344, - 0.9710, 0.8151, 0.7634, 0.9047, 0.8447, 0.3478, 0.4789, - 0.5543, 0.6475, 0.6794, 0.8153, 0.2995, 0.6764, 0.2993, - 0.4440, 0.6818, 0.5702, 0.7074, 0.4488, 0.4032, 0.6268, - 0.7286, 0.4749, 0.3646, 0.0331, 0.4227, 0.8138, 0.3173, - 0.0403, 0.2636, 0.3980, 0.1390, 0.1641, 0.6671, 0.5330, - 0.3639, 0.7467, 0.8967, 0.7753, 0.2492, 0.1215, 0.6986, - 0.6107, 0.6922, 0.6270, 0.0513, 0.3708, 0.4140, 0.6870, - 0.6642, 0.1925, 0.0944, 0.4210, 0.5791, 0.4516, 0.5935, - 0.1022, 0.0482, 0.6022, 0.6705, 0.3885, 0.1005, 0.3611, - 0.3535, 0.1700, 0.7214, 0.8017, 0.2409, 0.4915, 0.6710, - 0.5749, 0.1541, 0.6514, 0.2028, 0.1566, 0.2795, 0.9275, - 0.1313, 0.4671, 0.8621, 0.0474, 0.9495, 0.4065, 0.1561, - 0.3930, 0.1891, 0.0713, 0.9951, 0.8365, 0.9415, 0.9314, - 0.4274, 0.7485, 0.9571, 0.9768, 0.5673, 0.4241, 0.5508, - 0.4033, 0.2950, 0.2855, 0.8415, 0.9844, 0.7770, 0.3923, - 0.5787, 0.9241, 0.3429, 0.2388, 0.7432, 0.5287, 0.4894, - 0.3564, 0.1539, 0.3683, 0.3338, 0.2500, 0.3763, 0.4479, - 0.2028, 0.8079, 0.0187, 0.3962, 0.2530, 0.6932, 0.4307, - 0.2510, 0.2498, 0.5817, 0.8657, 0.8402]), + col_indices=tensor([4976, 2999, 3531, 729, 4293, 4703, 527, 519, 1087, + 2588, 2503, 4621, 623, 2508, 4018, 2181, 4566, 129, + 1882, 141, 241, 4234, 3011, 3475, 1507, 1753, 1592, + 16, 1837, 2881, 4935, 1126, 1212, 1843, 3769, 1406, + 4716, 3662, 2501, 4960, 3438, 3187, 281, 2582, 4408, + 1833, 1310, 2092, 1021, 4933, 3776, 3565, 3765, 4067, + 3036, 4650, 3192, 1618, 3142, 599, 3093, 1420, 3804, + 496, 2492, 4465, 4733, 3170, 4826, 4434, 3018, 360, + 3823, 3346, 2952, 3585, 1580, 4171, 3383, 4158, 1729, + 4780, 335, 3992, 4542, 2789, 4029, 416, 4212, 913, + 792, 2949, 3671, 2278, 3431, 4080, 1970, 3530, 1625, + 1846, 123, 3801, 179, 2650, 2793, 3609, 4951, 1904, + 3327, 3068, 797, 2882, 3831, 1946, 4674, 2611, 3167, + 3799, 820, 4595, 2920, 4476, 339, 16, 1057, 3858, + 1996, 2480, 211, 316, 2763, 1963, 1855, 789, 4091, + 3327, 1560, 1579, 4983, 674, 1259, 1259, 1614, 4040, + 4463, 3393, 619, 1723, 4630, 933, 1161, 3845, 4268, + 4840, 4044, 3897, 1211, 4242, 540, 433, 3144, 2336, + 4751, 151, 2282, 2250, 2548, 3515, 851, 1606, 4107, + 209, 996, 4881, 3062, 1226, 876, 3179, 583, 2155, + 304, 1823, 35, 692, 3702, 4106, 1336, 1789, 1359, + 3986, 1095, 312, 3819, 955, 1411, 4676, 1229, 4251, + 263, 3639, 4785, 3043, 1158, 1138, 2259, 2515, 3611, + 4898, 3676, 269, 509, 3101, 1147, 409, 3191, 1984, + 2546, 1127, 3710, 4610, 4906, 997, 3399, 3628, 347, + 847, 2034, 588, 2961, 2738, 4337, 3827, 1890, 1227, + 1635, 1728, 2759, 1429, 4176, 4191, 4862, 4968, 1336, + 119, 3406, 554, 532, 1507, 1917, 2750]), + values=tensor([0.5199, 0.0559, 0.9006, 0.7777, 0.2843, 0.6207, 0.6975, + 0.8689, 0.5742, 0.4737, 0.6755, 0.5958, 0.4384, 0.4390, + 0.8599, 0.7635, 0.7028, 0.4511, 0.3241, 0.0806, 0.8242, + 0.9053, 0.3849, 0.6596, 0.0472, 0.0762, 0.5653, 0.2663, + 0.8433, 0.4091, 0.7837, 0.1469, 0.0020, 0.4944, 0.8738, + 0.1320, 0.2431, 0.2650, 0.7193, 0.2483, 0.4028, 0.5091, + 0.3427, 0.6757, 0.9747, 0.5603, 0.1148, 0.1932, 0.5560, + 0.7920, 0.7790, 0.7814, 0.5929, 0.3079, 0.4008, 0.4233, + 0.4893, 0.9629, 0.6575, 0.2210, 0.9465, 0.6464, 0.0795, + 0.6735, 0.0196, 0.9297, 0.4843, 0.7360, 0.6757, 0.8217, + 0.8318, 0.9782, 0.6754, 0.1098, 0.6940, 0.8548, 0.6163, + 0.6934, 0.6171, 0.1041, 0.7511, 0.4878, 0.3635, 0.8620, + 0.3905, 0.3542, 0.8549, 0.4722, 0.9206, 0.2789, 0.9568, + 0.1952, 0.7173, 0.8016, 0.5436, 0.6025, 0.2628, 0.4776, + 0.0648, 0.4119, 0.1873, 0.5768, 0.6229, 0.4612, 0.3781, + 0.9685, 0.2051, 0.1702, 0.4419, 0.4538, 0.4515, 0.1665, + 0.0292, 0.6419, 0.1217, 0.0198, 0.2563, 0.3495, 0.0936, + 0.2664, 0.5259, 0.3038, 0.7533, 0.2522, 0.7253, 0.1463, + 0.2087, 0.7896, 0.0364, 0.6152, 0.7986, 0.8112, 0.7556, + 0.0756, 0.4969, 0.3790, 0.1978, 0.1043, 0.8605, 0.5011, + 0.8762, 0.2381, 0.0660, 0.2738, 0.0392, 0.5623, 0.1390, + 0.4257, 0.6102, 0.9603, 0.2834, 0.0200, 0.2511, 0.8990, + 0.6324, 0.9167, 0.3730, 0.6817, 0.4652, 0.8996, 0.9136, + 0.8631, 0.9770, 0.2565, 0.6496, 0.1799, 0.4018, 0.4388, + 0.9314, 0.6833, 0.7914, 0.9455, 0.7655, 0.3170, 0.6697, + 0.9757, 0.4151, 0.9576, 0.1567, 0.8861, 0.0170, 0.7822, + 0.2221, 0.7184, 0.0581, 0.4824, 0.4815, 0.2522, 0.1559, + 0.1892, 0.1146, 0.0347, 0.4792, 0.0555, 0.6999, 0.5092, + 0.0919, 0.7115, 0.9111, 0.4498, 0.4923, 0.5300, 0.3126, + 0.8103, 0.3276, 0.8722, 0.4823, 0.2311, 0.5957, 0.0760, + 0.2892, 0.3555, 0.6604, 0.7686, 0.1412, 0.8595, 0.6702, + 0.1119, 0.1550, 0.8493, 0.8158, 0.3714, 0.8983, 0.3484, + 0.6611, 0.8110, 0.2241, 0.8267, 0.9605, 0.8151, 0.1779, + 0.2906, 0.1723, 0.3272, 0.4678, 0.1292, 0.9514, 0.6369, + 0.8054, 0.2983, 0.3742, 0.8673, 0.0274, 0.1851, 0.9052, + 0.8742, 0.4529, 0.2266, 0.4410, 0.5323]), size=(5000, 5000), nnz=250, layout=torch.sparse_csr) -tensor([0.7545, 0.7162, 0.2861, ..., 0.9381, 0.3630, 0.3493]) +tensor([0.4269, 0.0147, 0.1392, ..., 0.1737, 0.9746, 0.9710]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -317,13 +317,13 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 10.526627540588379 seconds +Time: 10.588425874710083 seconds -[18.43, 17.7, 18.24, 17.84, 17.84, 17.8, 18.19, 17.69, 17.91, 17.97] -[50.77] -14.327181577682495 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 359075, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.526627540588379, 'TIME_S_1KI': 0.029315957782046587, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 727.3910086989404, 'W': 50.77} -[18.43, 17.7, 18.24, 17.84, 17.84, 17.8, 18.19, 17.69, 17.91, 17.97, 18.65, 17.88, 17.9, 17.81, 18.36, 17.89, 17.8, 17.9, 21.76, 18.54] -327.305 -16.36525 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 359075, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.526627540588379, 'TIME_S_1KI': 0.029315957782046587, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 727.3910086989404, 'W': 50.77, 'J_1KI': 2.0257355947892233, 'W_1KI': 0.14139107428810138, 'W_D': 34.40475000000001, 'J_D': 492.92310038477194, 'W_D_1KI': 0.09581494116827963, 'J_D_1KI': 0.00026683824039066943} +[18.34, 17.96, 17.95, 19.17, 18.44, 18.12, 18.19, 19.28, 18.14, 18.1] +[46.57] +14.066857814788818 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 355542, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.588425874710083, 'TIME_S_1KI': 0.02978108317641821, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 655.0935684347153, 'W': 46.57} +[18.34, 17.96, 17.95, 19.17, 18.44, 18.12, 18.19, 19.28, 18.14, 18.1, 18.29, 18.16, 18.13, 17.89, 18.15, 18.08, 18.32, 17.91, 18.06, 18.27] +328.45 +16.4225 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 355542, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.588425874710083, 'TIME_S_1KI': 0.02978108317641821, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 655.0935684347153, 'W': 46.57, 'J_1KI': 1.8425209073322286, 'W_1KI': 0.13098311873140162, 'W_D': 30.1475, 'J_D': 424.08059597134593, 'W_D_1KI': 0.08479307648604104, 'J_D_1KI': 0.00023848962003375422} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_5e-05.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_5e-05.json new file mode 100644 index 0000000..0d245c9 --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 303638, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.314902782440186, "TIME_S_1KI": 0.033971053631100805, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 652.3264142632485, "W": 46.59, "J_1KI": 2.148368828220606, "W_1KI": 0.1534392928421344, "W_D": 30.048000000000002, "J_D": 420.71483356475835, "W_D_1KI": 0.0989599457248434, "J_D_1KI": 0.0003259142324901475} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_5e-05.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_5e-05.output new file mode 100644 index 0000000..2579376 --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_5000_5e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '5e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.018550395965576172} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 1249, 1250, 1250]), + col_indices=tensor([2148, 2186, 2653, ..., 4713, 108, 1050]), + values=tensor([0.2240, 0.7824, 0.4591, ..., 0.0832, 0.2125, 0.9204]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.9989, 0.0104, 0.9920, ..., 0.8791, 0.9452, 0.9082]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 0.018550395965576172 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '56602', '-ss', '5000', '-sd', '5e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 1.9573328495025635} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 2, ..., 1249, 1250, 1250]), + col_indices=tensor([ 143, 2910, 3407, ..., 360, 1598, 1598]), + values=tensor([0.9185, 0.3997, 0.2489, ..., 0.0567, 0.3179, 0.0072]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.5677, 0.2086, 0.3083, ..., 0.5984, 0.8633, 0.3307]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 1.9573328495025635 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '303638', '-ss', '5000', '-sd', '5e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.314902782440186} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 1250, 1250, 1250]), + col_indices=tensor([4078, 67, 3564, ..., 1146, 2529, 4353]), + values=tensor([0.7614, 0.2386, 0.2238, ..., 0.8351, 0.5866, 0.5164]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.2149, 0.3426, 0.8577, ..., 0.2235, 0.1553, 0.5182]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 10.314902782440186 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 1250, 1250, 1250]), + col_indices=tensor([4078, 67, 3564, ..., 1146, 2529, 4353]), + values=tensor([0.7614, 0.2386, 0.2238, ..., 0.8351, 0.5866, 0.5164]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.2149, 0.3426, 0.8577, ..., 0.2235, 0.1553, 0.5182]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 10.314902782440186 seconds + +[18.14, 22.27, 18.32, 18.01, 17.87, 18.05, 18.11, 18.01, 18.55, 17.98] +[46.59] +14.001425504684448 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 303638, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.314902782440186, 'TIME_S_1KI': 0.033971053631100805, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 652.3264142632485, 'W': 46.59} +[18.14, 22.27, 18.32, 18.01, 17.87, 18.05, 18.11, 18.01, 18.55, 17.98, 18.58, 17.96, 18.17, 18.69, 18.11, 18.0, 18.22, 18.0, 18.06, 18.18] +330.84000000000003 +16.542 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 303638, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.314902782440186, 'TIME_S_1KI': 0.033971053631100805, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 652.3264142632485, 'W': 46.59, 'J_1KI': 2.148368828220606, 'W_1KI': 0.1534392928421344, 'W_D': 30.048000000000002, 'J_D': 420.71483356475835, 'W_D_1KI': 0.0989599457248434, 'J_D_1KI': 0.0003259142324901475} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_100000_0.0001.json new file mode 100644 index 0000000..59c1962 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_100000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 23.50609064102173, "TIME_S_1KI": 23.50609064102173, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 609.4492170715331, "W": 22.389903061636694, "J_1KI": 609.4492170715331, "W_1KI": 22.389903061636694, "W_D": 3.917903061636693, "J_D": 106.64463114929183, "W_D_1KI": 3.9179030616366926, "J_D_1KI": 3.9179030616366926} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_100000_0.0001.output similarity index 53% rename from pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0001.output rename to pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_100000_0.0001.output index f9e5f4b..81f61e7 100644 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0001.output +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_100000_0.0001.output @@ -1,14 +1,14 @@ ['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 0.0001 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 24.361413717269897} +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 23.50609064102173} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 11, 21, ..., 999974, - 999988, 1000000]), - col_indices=tensor([ 9500, 9994, 42112, ..., 68909, 84086, 93735]), - values=tensor([0.6307, 0.9197, 0.7409, ..., 0.9841, 0.2812, 0.5553]), +tensor(crow_indices=tensor([ 0, 6, 16, ..., 999976, + 999990, 1000000]), + col_indices=tensor([35450, 44241, 45004, ..., 57756, 61659, 92730]), + values=tensor([0.6041, 0.1643, 0.4254, ..., 0.8911, 0.3600, 0.5834]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.0568, 0.5322, 0.2500, ..., 0.3574, 0.0150, 0.2325]) +tensor([0.3461, 0.8147, 0.1835, ..., 0.7972, 0.9198, 0.6224]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,16 +16,16 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 24.361413717269897 seconds +Time: 23.50609064102173 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 11, 21, ..., 999974, - 999988, 1000000]), - col_indices=tensor([ 9500, 9994, 42112, ..., 68909, 84086, 93735]), - values=tensor([0.6307, 0.9197, 0.7409, ..., 0.9841, 0.2812, 0.5553]), +tensor(crow_indices=tensor([ 0, 6, 16, ..., 999976, + 999990, 1000000]), + col_indices=tensor([35450, 44241, 45004, ..., 57756, 61659, 92730]), + values=tensor([0.6041, 0.1643, 0.4254, ..., 0.8911, 0.3600, 0.5834]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.0568, 0.5322, 0.2500, ..., 0.3574, 0.0150, 0.2325]) +tensor([0.3461, 0.8147, 0.1835, ..., 0.7972, 0.9198, 0.6224]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -33,13 +33,13 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 24.361413717269897 seconds +Time: 23.50609064102173 seconds -[20.76, 20.76, 20.72, 20.72, 20.52, 20.4, 20.8, 20.84, 20.72, 21.04] -[20.92, 20.48, 23.92, 23.92, 25.2, 26.52, 27.64, 28.16, 25.08, 24.44, 24.2, 24.28, 24.28, 24.36, 24.6, 24.64, 24.84, 24.92, 25.08, 24.84, 24.8, 25.16, 25.12, 25.12, 24.92, 25.2, 25.24, 24.92] -29.261417388916016 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 24.361413717269897, 'TIME_S_1KI': 24.361413717269897, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 676.3945213317871, 'W': 23.115576130225318} -[20.76, 20.76, 20.72, 20.72, 20.52, 20.4, 20.8, 20.84, 20.72, 21.04, 20.12, 20.08, 20.12, 20.04, 19.88, 19.88, 19.92, 19.88, 19.8, 20.0] -366.04 -18.302 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 24.361413717269897, 'TIME_S_1KI': 24.361413717269897, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 676.3945213317871, 'W': 23.115576130225318, 'J_1KI': 676.3945213317871, 'W_1KI': 23.115576130225318, 'W_D': 4.813576130225318, 'J_D': 140.85206027984617, 'W_D_1KI': 4.813576130225318, 'J_D_1KI': 4.813576130225318} +[20.48, 20.4, 20.48, 20.48, 20.28, 20.4, 20.28, 20.28, 20.4, 20.44] +[20.28, 20.36, 20.36, 21.44, 23.4, 25.2, 26.04, 26.28, 25.2, 24.36, 24.32, 24.36, 24.52, 24.6, 24.68, 24.76, 24.68, 24.48, 24.52, 24.52, 24.48, 24.76, 24.72, 24.72, 24.64, 24.88] +27.219823837280273 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 23.50609064102173, 'TIME_S_1KI': 23.50609064102173, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 609.4492170715331, 'W': 22.389903061636694} +[20.48, 20.4, 20.48, 20.48, 20.28, 20.4, 20.28, 20.28, 20.4, 20.44, 20.6, 20.64, 20.72, 21.0, 20.92, 20.76, 20.68, 20.44, 20.28, 20.48] +369.44000000000005 +18.472 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 23.50609064102173, 'TIME_S_1KI': 23.50609064102173, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 609.4492170715331, 'W': 22.389903061636694, 'J_1KI': 609.4492170715331, 'W_1KI': 22.389903061636694, 'W_D': 3.917903061636693, 'J_D': 106.64463114929183, 'W_D_1KI': 3.9179030616366926, 'J_D_1KI': 3.9179030616366926} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_100000_0.001.json b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_100000_0.001.json new file mode 100644 index 0000000..05631c7 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_100000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 227.44817399978638, "TIME_S_1KI": 227.44817399978638, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 5651.356887254718, "W": 23.406634424755232, "J_1KI": 5651.356887254718, "W_1KI": 23.406634424755232, "W_D": 5.256634424755234, "J_D": 1269.1750817751913, "W_D_1KI": 5.256634424755234, "J_D_1KI": 5.256634424755234} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_100000_0.001.output b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_100000_0.001.output new file mode 100644 index 0000000..4847746 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_100000_0.001.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 0.001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 227.44817399978638} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 105, 212, ..., 9999786, + 9999896, 10000000]), + col_indices=tensor([ 310, 1031, 2044, ..., 96924, 97369, 99264]), + values=tensor([0.4389, 0.5701, 0.8338, ..., 0.1266, 0.7107, 0.7989]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.1044, 0.8564, 0.8953, ..., 0.3136, 0.0570, 0.9535]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 227.44817399978638 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 105, 212, ..., 9999786, + 9999896, 10000000]), + col_indices=tensor([ 310, 1031, 2044, ..., 96924, 97369, 99264]), + values=tensor([0.4389, 0.5701, 0.8338, ..., 0.1266, 0.7107, 0.7989]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.1044, 0.8564, 0.8953, ..., 0.3136, 0.0570, 0.9535]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 227.44817399978638 seconds + +[20.56, 20.48, 20.48, 20.36, 20.4, 20.32, 20.32, 19.96, 20.0, 20.04] +[20.12, 20.12, 20.4, 21.88, 23.4, 25.08, 27.48, 28.24, 27.96, 27.08, 26.24, 25.68, 24.72, 24.48, 24.4, 24.28, 24.36, 24.4, 24.48, 24.68, 24.72, 24.72, 24.8, 24.88, 24.76, 24.68, 24.64, 24.48, 24.44, 24.28, 24.44, 24.64, 24.76, 24.8, 24.84, 24.72, 24.44, 24.36, 24.32, 24.48, 24.48, 24.6, 24.76, 24.76, 24.68, 24.64, 24.72, 24.64, 24.4, 24.4, 24.68, 24.52, 24.6, 24.56, 24.48, 24.28, 24.32, 24.28, 24.32, 24.52, 24.52, 24.64, 24.76, 24.76, 24.68, 24.68, 24.6, 24.56, 24.72, 24.52, 24.76, 24.76, 24.68, 24.56, 24.48, 24.24, 24.4, 24.6, 24.76, 24.76, 24.8, 24.64, 24.64, 24.56, 24.76, 24.72, 24.8, 24.8, 24.8, 24.8, 24.6, 24.56, 24.44, 24.68, 24.72, 24.72, 24.68, 24.72, 24.68, 24.88, 24.92, 24.84, 24.8, 24.8, 25.0, 25.08, 25.0, 24.92, 24.8, 24.8, 24.6, 24.72, 24.84, 25.0, 25.0, 24.88, 24.96, 24.92, 24.96, 24.92, 24.92, 24.64, 24.56, 24.44, 24.44, 24.36, 24.6, 24.44, 24.52, 24.88, 25.12, 25.12, 25.2, 25.32, 24.96, 24.96, 24.8, 24.56, 24.64, 24.52, 24.44, 24.48, 24.4, 24.28, 24.56, 24.52, 24.48, 24.6, 24.52, 24.6, 24.64, 24.88, 24.8, 24.8, 24.76, 24.76, 24.76, 24.4, 24.28, 24.28, 24.28, 24.32, 24.8, 25.04, 24.92, 24.8, 24.8, 24.56, 24.52, 24.52, 24.48, 24.64, 24.52, 24.64, 24.68, 24.68, 24.72, 24.56, 24.56, 24.96, 24.96, 24.88, 24.72, 24.4, 24.32, 24.36, 24.4, 24.64, 24.92, 24.8, 24.76, 24.72, 24.64, 24.52, 24.8, 24.72, 24.76, 24.76, 24.72, 25.04, 24.96, 24.64, 24.32, 24.16, 24.12, 24.36, 24.44, 24.32, 24.16, 24.04, 24.32, 24.68, 24.56, 24.68, 24.72, 24.28, 24.4, 24.36, 24.36, 24.36, 24.44, 24.44, 24.16, 24.32, 24.44, 24.36, 24.6, 24.68, 24.8, 24.76] +241.44252371788025 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 227.44817399978638, 'TIME_S_1KI': 227.44817399978638, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 5651.356887254718, 'W': 23.406634424755232} +[20.56, 20.48, 20.48, 20.36, 20.4, 20.32, 20.32, 19.96, 20.0, 20.04, 20.08, 20.32, 20.08, 20.0, 19.84, 19.84, 19.92, 20.08, 20.08, 20.36] +363.0 +18.15 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 227.44817399978638, 'TIME_S_1KI': 227.44817399978638, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 5651.356887254718, 'W': 23.406634424755232, 'J_1KI': 5651.356887254718, 'W_1KI': 23.406634424755232, 'W_D': 5.256634424755234, 'J_D': 1269.1750817751913, 'W_D_1KI': 5.256634424755234, 'J_D_1KI': 5.256634424755234} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_100000_1e-05.json new file mode 100644 index 0000000..4c6f614 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_100000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 3195, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.793879747390747, "TIME_S_1KI": 3.3783661181191698, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 338.5230771541595, "W": 23.150052849773353, "J_1KI": 105.95401475873538, "W_1KI": 7.245712942026088, "W_D": 4.780052849773355, "J_D": 69.89868274450302, "W_D_1KI": 1.4961041783328186, "J_D_1KI": 0.46826421857052225} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_100000_1e-05.output similarity index 59% rename from pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_1e-05.output rename to pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_100000_1e-05.output index 0c82a6f..a9ff479 100644 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_1e-05.output +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_100000_1e-05.output @@ -1,14 +1,14 @@ ['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 1e-05 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 3.3640708923339844} +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 3.2854795455932617} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 1, ..., 99997, 99997, +tensor(crow_indices=tensor([ 0, 1, 3, ..., 100000, 100000, 100000]), - col_indices=tensor([49077, 61829, 75773, ..., 9180, 24382, 73621]), - values=tensor([0.5511, 0.7896, 0.6815, ..., 0.2019, 0.1356, 0.1654]), + col_indices=tensor([96494, 10713, 51050, ..., 77096, 58241, 39394]), + values=tensor([0.9472, 0.0468, 0.6571, ..., 0.2815, 0.5696, 0.0055]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.3810, 0.9981, 0.5438, ..., 0.4984, 0.5897, 0.5823]) +tensor([0.9254, 0.6847, 0.8457, ..., 0.6275, 0.7476, 0.1010]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,19 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 3.3640708923339844 seconds +Time: 3.2854795455932617 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 6242 -ss 100000 -sd 1e-05 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.78993320465088} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 3195 -ss 100000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.793879747390747} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 3, ..., 99999, 100000, +tensor(crow_indices=tensor([ 0, 0, 1, ..., 99997, 100000, 100000]), - col_indices=tensor([26056, 65660, 94841, ..., 43126, 80704, 3094]), - values=tensor([0.6558, 0.9729, 0.1332, ..., 0.9607, 0.6686, 0.0556]), + col_indices=tensor([41532, 61839, 3968, ..., 19432, 54156, 77664]), + values=tensor([0.2018, 0.3494, 0.0819, ..., 0.4942, 0.5843, 0.6732]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.0734, 0.1949, 0.9405, ..., 0.2088, 0.6775, 0.6290]) +tensor([0.4618, 0.8259, 0.6206, ..., 0.7480, 0.2960, 0.5870]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -36,16 +36,16 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 21.78993320465088 seconds +Time: 10.793879747390747 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 3, ..., 99999, 100000, +tensor(crow_indices=tensor([ 0, 0, 1, ..., 99997, 100000, 100000]), - col_indices=tensor([26056, 65660, 94841, ..., 43126, 80704, 3094]), - values=tensor([0.6558, 0.9729, 0.1332, ..., 0.9607, 0.6686, 0.0556]), + col_indices=tensor([41532, 61839, 3968, ..., 19432, 54156, 77664]), + values=tensor([0.2018, 0.3494, 0.0819, ..., 0.4942, 0.5843, 0.6732]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.0734, 0.1949, 0.9405, ..., 0.2088, 0.6775, 0.6290]) +tensor([0.4618, 0.8259, 0.6206, ..., 0.7480, 0.2960, 0.5870]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -53,13 +53,13 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 21.78993320465088 seconds +Time: 10.793879747390747 seconds -[20.36, 20.36, 20.28, 20.28, 20.56, 20.72, 20.88, 20.96, 21.04, 20.96] -[20.88, 20.92, 24.04, 25.0, 26.56, 27.48, 28.4, 25.72, 25.72, 25.84, 25.12, 25.12, 25.52, 25.44, 25.72, 25.68, 25.6, 25.28, 25.68, 25.68, 25.72, 25.6, 25.8, 25.48] -25.08890724182129 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 6242, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.78993320465088, 'TIME_S_1KI': 3.490857610485562, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 587.0853565216064, 'W': 23.400196384120708} -[20.36, 20.36, 20.28, 20.28, 20.56, 20.72, 20.88, 20.96, 21.04, 20.96, 20.48, 20.2, 20.2, 20.12, 20.12, 20.24, 20.24, 20.32, 20.44, 20.44] -368.08 -18.404 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 6242, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.78993320465088, 'TIME_S_1KI': 3.490857610485562, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 587.0853565216064, 'W': 23.400196384120708, 'J_1KI': 94.05404622262198, 'W_1KI': 3.748829923761728, 'W_D': 4.996196384120708, 'J_D': 125.34910764312737, 'W_D_1KI': 0.8004159538802801, 'J_D_1KI': 0.12823068790135855} +[20.88, 20.84, 20.52, 20.4, 20.32, 20.2, 20.2, 20.44, 20.48, 20.8] +[20.92, 20.8, 21.0, 22.96, 24.6, 25.56, 26.6, 27.0, 26.4, 25.96, 26.12, 26.12, 25.88, 25.88] +14.62299370765686 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 3195, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.793879747390747, 'TIME_S_1KI': 3.3783661181191698, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 338.5230771541595, 'W': 23.150052849773353} +[20.88, 20.84, 20.52, 20.4, 20.32, 20.2, 20.2, 20.44, 20.48, 20.8, 20.4, 20.4, 20.2, 20.36, 20.52, 20.36, 20.4, 20.36, 20.2, 20.32] +367.4 +18.369999999999997 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 3195, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.793879747390747, 'TIME_S_1KI': 3.3783661181191698, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 338.5230771541595, 'W': 23.150052849773353, 'J_1KI': 105.95401475873538, 'W_1KI': 7.245712942026088, 'W_D': 4.780052849773355, 'J_D': 69.89868274450302, 'W_D_1KI': 1.4961041783328186, 'J_D_1KI': 0.46826421857052225} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.0001.json b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.0001.json new file mode 100644 index 0000000..8de09b8 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 32341, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.187894582748413, "TIME_S_1KI": 0.3150148289399961, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 322.80105960845947, "W": 22.074332714462717, "J_1KI": 9.981171256561623, "W_1KI": 0.6825494794367124, "W_D": 3.644332714462717, "J_D": 53.29241327524185, "W_D_1KI": 0.11268460203650836, "J_D_1KI": 0.0034842646187968327} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.0001.output b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.0001.output new file mode 100644 index 0000000..a571cff --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.0001.output @@ -0,0 +1,62 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.0001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.3246574401855469} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 4, ..., 9996, 9998, 10000]), + col_indices=tensor([ 702, 590, 2393, ..., 5106, 4251, 5881]), + values=tensor([0.8131, 0.4443, 0.5032, ..., 0.0454, 0.7892, 0.7021]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.5617, 0.3540, 0.6665, ..., 0.2887, 0.4752, 0.2274]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 0.3246574401855469 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 32341 -ss 10000 -sd 0.0001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.187894582748413} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 9996, 9998, 10000]), + col_indices=tensor([5513, 4819, 4488, ..., 7223, 1569, 1749]), + values=tensor([0.7502, 0.9864, 0.0219, ..., 0.7577, 0.3030, 0.6500]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.4735, 0.0629, 0.6403, ..., 0.2218, 0.6036, 0.6062]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.187894582748413 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 9996, 9998, 10000]), + col_indices=tensor([5513, 4819, 4488, ..., 7223, 1569, 1749]), + values=tensor([0.7502, 0.9864, 0.0219, ..., 0.7577, 0.3030, 0.6500]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.4735, 0.0629, 0.6403, ..., 0.2218, 0.6036, 0.6062]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.187894582748413 seconds + +[20.16, 20.36, 20.44, 20.64, 20.64, 20.64, 20.68, 20.0, 19.96, 20.04] +[20.04, 20.36, 20.64, 22.2, 24.32, 25.36, 25.96, 26.0, 25.44, 24.12, 24.0, 23.8, 23.8, 23.84] +14.623366594314575 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 32341, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.187894582748413, 'TIME_S_1KI': 0.3150148289399961, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 322.80105960845947, 'W': 22.074332714462717} +[20.16, 20.36, 20.44, 20.64, 20.64, 20.64, 20.68, 20.0, 19.96, 20.04, 19.96, 20.28, 20.36, 20.44, 20.48, 20.48, 20.72, 20.76, 20.96, 21.36] +368.6 +18.43 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 32341, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.187894582748413, 'TIME_S_1KI': 0.3150148289399961, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 322.80105960845947, 'W': 22.074332714462717, 'J_1KI': 9.981171256561623, 'W_1KI': 0.6825494794367124, 'W_D': 3.644332714462717, 'J_D': 53.29241327524185, 'W_D_1KI': 0.11268460203650836, 'J_D_1KI': 0.0034842646187968327} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.001.json b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.001.json new file mode 100644 index 0000000..f0f5b59 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 4681, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.577015399932861, "TIME_S_1KI": 2.2595632129743346, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 334.1403603744507, "W": 22.94669291080223, "J_1KI": 71.38226028080554, "W_1KI": 4.902092055287809, "W_D": 4.40869291080223, "J_D": 64.19758366584783, "W_D_1KI": 0.9418271546255567, "J_D_1KI": 0.20120212660234066} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.001.output b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.001.output new file mode 100644 index 0000000..7485b00 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 2.242969274520874} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 10, 21, ..., 99980, 99990, + 100000]), + col_indices=tensor([ 158, 243, 1021, ..., 9060, 9386, 9562]), + values=tensor([0.4026, 0.0672, 0.1618, ..., 0.9478, 0.4676, 0.6061]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.1276, 0.9367, 0.3121, ..., 0.3681, 0.2222, 0.5819]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 2.242969274520874 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 4681 -ss 10000 -sd 0.001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.577015399932861} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 13, 23, ..., 99978, 99989, + 100000]), + col_indices=tensor([1463, 2229, 2458, ..., 6913, 8671, 9837]), + values=tensor([0.1583, 0.2191, 0.0082, ..., 0.3537, 0.5043, 0.1355]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.7982, 0.2389, 0.8535, ..., 0.4532, 0.2540, 0.6422]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.577015399932861 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 13, 23, ..., 99978, 99989, + 100000]), + col_indices=tensor([1463, 2229, 2458, ..., 6913, 8671, 9837]), + values=tensor([0.1583, 0.2191, 0.0082, ..., 0.3537, 0.5043, 0.1355]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.7982, 0.2389, 0.8535, ..., 0.4532, 0.2540, 0.6422]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.577015399932861 seconds + +[20.84, 20.96, 20.84, 20.76, 20.88, 20.8, 20.72, 20.8, 20.8, 20.72] +[20.72, 21.0, 21.04, 25.64, 26.56, 27.96, 28.44, 25.92, 25.0, 24.0, 23.88, 24.12, 24.36, 24.36] +14.561591148376465 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4681, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.577015399932861, 'TIME_S_1KI': 2.2595632129743346, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 334.1403603744507, 'W': 22.94669291080223} +[20.84, 20.96, 20.84, 20.76, 20.88, 20.8, 20.72, 20.8, 20.8, 20.72, 20.52, 20.24, 20.24, 20.2, 20.44, 20.16, 20.56, 20.64, 20.52, 20.32] +370.76 +18.538 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4681, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.577015399932861, 'TIME_S_1KI': 2.2595632129743346, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 334.1403603744507, 'W': 22.94669291080223, 'J_1KI': 71.38226028080554, 'W_1KI': 4.902092055287809, 'W_D': 4.40869291080223, 'J_D': 64.19758366584783, 'W_D_1KI': 0.9418271546255567, 'J_D_1KI': 0.20120212660234066} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.01.json b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.01.json new file mode 100644 index 0000000..7587c79 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 21.648348808288574, "TIME_S_1KI": 21.648348808288574, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 597.1462204551697, "W": 23.932854010192194, "J_1KI": 597.1462204551697, "W_1KI": 23.932854010192194, "W_D": 5.369854010192196, "J_D": 133.98268443942072, "W_D_1KI": 5.369854010192196, "J_D_1KI": 5.369854010192196} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.01.output b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.01.output new file mode 100644 index 0000000..ed3ac8e --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.01.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.01 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 21.648348808288574} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 93, 181, ..., 999807, + 999904, 1000000]), + col_indices=tensor([ 20, 39, 173, ..., 9424, 9617, 9690]), + values=tensor([0.7771, 0.0078, 0.5851, ..., 0.0250, 0.0076, 0.8688]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.6163, 0.0977, 0.8617, ..., 0.7477, 0.6432, 0.7227]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 21.648348808288574 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 93, 181, ..., 999807, + 999904, 1000000]), + col_indices=tensor([ 20, 39, 173, ..., 9424, 9617, 9690]), + values=tensor([0.7771, 0.0078, 0.5851, ..., 0.0250, 0.0076, 0.8688]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.6163, 0.0977, 0.8617, ..., 0.7477, 0.6432, 0.7227]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 21.648348808288574 seconds + +[20.48, 20.52, 20.6, 20.6, 20.6, 20.72, 20.48, 20.56, 20.64, 20.72] +[20.72, 21.08, 23.92, 25.96, 27.92, 28.72, 29.32, 26.52, 26.52, 25.36, 24.24, 24.4, 24.24, 24.44, 24.16, 24.12, 24.16, 24.12, 24.16, 24.2, 24.32, 24.36, 24.68, 24.72] +24.95089888572693 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 21.648348808288574, 'TIME_S_1KI': 21.648348808288574, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 597.1462204551697, 'W': 23.932854010192194} +[20.48, 20.52, 20.6, 20.6, 20.6, 20.72, 20.48, 20.56, 20.64, 20.72, 20.68, 20.72, 20.52, 20.52, 20.64, 20.76, 20.64, 20.8, 20.68, 20.64] +371.26 +18.563 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 21.648348808288574, 'TIME_S_1KI': 21.648348808288574, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 597.1462204551697, 'W': 23.932854010192194, 'J_1KI': 597.1462204551697, 'W_1KI': 23.932854010192194, 'W_D': 5.369854010192196, 'J_D': 133.98268443942072, 'W_D_1KI': 5.369854010192196, 'J_D_1KI': 5.369854010192196} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.05.json b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.05.json new file mode 100644 index 0000000..e29f054 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 106.87029075622559, "TIME_S_1KI": 106.87029075622559, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2633.659623832703, "W": 23.232350154828893, "J_1KI": 2633.659623832703, "W_1KI": 23.232350154828893, "W_D": 4.519350154828892, "J_D": 512.3213944957257, "W_D_1KI": 4.519350154828892, "J_D_1KI": 4.519350154828892} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.05.output b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.05.output new file mode 100644 index 0000000..5edda98 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.05.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 106.87029075622559} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 497, 970, ..., 4998958, + 4999495, 5000000]), + col_indices=tensor([ 3, 19, 30, ..., 9933, 9939, 9986]), + values=tensor([0.6521, 0.8632, 0.3100, ..., 0.6388, 0.4505, 0.0265]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.1776, 0.4739, 0.9893, ..., 0.4929, 0.9525, 0.7109]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 106.87029075622559 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 497, 970, ..., 4998958, + 4999495, 5000000]), + col_indices=tensor([ 3, 19, 30, ..., 9933, 9939, 9986]), + values=tensor([0.6521, 0.8632, 0.3100, ..., 0.6388, 0.4505, 0.0265]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.1776, 0.4739, 0.9893, ..., 0.4929, 0.9525, 0.7109]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 106.87029075622559 seconds + +[20.76, 20.72, 20.52, 20.48, 20.68, 20.6, 20.6, 20.56, 20.68, 20.6] +[20.64, 20.72, 20.72, 24.72, 25.96, 28.32, 29.48, 30.12, 26.68, 25.6, 25.08, 24.6, 24.6, 24.6, 24.8, 24.8, 24.88, 24.92, 24.84, 24.8, 24.72, 24.52, 24.52, 24.52, 24.6, 24.56, 24.4, 24.48, 24.32, 24.16, 24.28, 24.36, 24.48, 24.64, 24.68, 24.64, 24.4, 24.68, 24.72, 24.72, 24.56, 24.64, 24.48, 24.32, 24.12, 24.12, 24.2, 24.52, 24.4, 24.56, 24.68, 24.48, 24.28, 24.24, 24.2, 24.04, 23.92, 24.04, 24.28, 24.12, 24.28, 24.36, 24.28, 24.44, 24.52, 24.6, 24.72, 24.72, 24.88, 24.84, 24.72, 24.44, 24.16, 24.2, 24.0, 24.2, 24.44, 24.32, 24.2, 24.2, 24.16, 24.12, 24.24, 24.2, 24.12, 24.16, 24.2, 24.16, 24.4, 24.4, 24.36, 24.2, 24.28, 24.52, 24.12, 24.36, 24.64, 24.6, 24.6, 24.52, 24.48, 24.2, 24.4, 24.4, 24.4, 24.52, 24.4, 24.16] +113.36173939704895 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 106.87029075622559, 'TIME_S_1KI': 106.87029075622559, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2633.659623832703, 'W': 23.232350154828893} +[20.76, 20.72, 20.52, 20.48, 20.68, 20.6, 20.6, 20.56, 20.68, 20.6, 20.52, 20.76, 20.76, 21.2, 21.2, 21.28, 21.12, 21.0, 20.88, 20.56] +374.26 +18.713 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 106.87029075622559, 'TIME_S_1KI': 106.87029075622559, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2633.659623832703, 'W': 23.232350154828893, 'J_1KI': 2633.659623832703, 'W_1KI': 23.232350154828893, 'W_D': 4.519350154828892, 'J_D': 512.3213944957257, 'W_D_1KI': 4.519350154828892, 'J_D_1KI': 4.519350154828892} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.1.json b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.1.json new file mode 100644 index 0000000..8cd094e --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.1.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 210.98000812530518, "TIME_S_1KI": 210.98000812530518, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 5224.394376831054, "W": 23.586192508859664, "J_1KI": 5224.394376831054, "W_1KI": 23.586192508859664, "W_D": 5.122192508859662, "J_D": 1134.5770933685287, "W_D_1KI": 5.122192508859662, "J_D_1KI": 5.122192508859662} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.1.output b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.1.output new file mode 100644 index 0000000..d1e3dfe --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_0.1.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.1 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 210.98000812530518} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 993, 1975, ..., 9997956, + 9998997, 10000000]), + col_indices=tensor([ 19, 22, 26, ..., 9979, 9989, 9990]), + values=tensor([0.9746, 0.4059, 0.0503, ..., 0.3598, 0.3506, 0.0768]), + size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.8784, 0.5931, 0.4456, ..., 0.6081, 0.2914, 0.4121]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000000 +Density: 0.1 +Time: 210.98000812530518 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 993, 1975, ..., 9997956, + 9998997, 10000000]), + col_indices=tensor([ 19, 22, 26, ..., 9979, 9989, 9990]), + values=tensor([0.9746, 0.4059, 0.0503, ..., 0.3598, 0.3506, 0.0768]), + size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.8784, 0.5931, 0.4456, ..., 0.6081, 0.2914, 0.4121]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000000 +Density: 0.1 +Time: 210.98000812530518 seconds + +[20.72, 20.64, 20.6, 20.6, 20.48, 20.44, 20.4, 20.36, 20.28, 20.28] +[20.2, 20.36, 21.16, 23.28, 25.44, 27.76, 29.48, 29.48, 28.08, 28.08, 26.32, 25.08, 24.24, 24.16, 24.44, 24.76, 24.64, 24.68, 24.72, 24.64, 24.56, 24.64, 24.68, 24.64, 24.76, 24.76, 24.64, 24.56, 24.52, 24.48, 24.6, 24.6, 24.64, 24.96, 24.88, 25.04, 24.84, 24.68, 24.6, 24.48, 24.64, 24.52, 24.56, 24.4, 24.6, 24.6, 24.68, 24.84, 25.0, 24.68, 24.68, 24.68, 24.68, 24.68, 24.92, 24.68, 24.96, 25.12, 24.88, 24.8, 24.92, 24.72, 24.6, 24.64, 24.64, 24.96, 25.12, 25.0, 24.92, 24.88, 24.6, 24.48, 24.32, 24.48, 24.52, 24.52, 24.6, 24.76, 24.84, 24.76, 25.0, 24.72, 24.6, 24.92, 24.88, 24.88, 24.84, 24.92, 25.12, 25.2, 25.2, 25.12, 24.96, 24.52, 24.52, 24.32, 24.4, 24.4, 24.48, 24.36, 24.32, 24.28, 24.2, 24.16, 24.0, 24.08, 24.32, 24.36, 24.88, 25.12, 25.12, 25.08, 24.76, 25.0, 25.2, 24.84, 25.24, 25.16, 24.96, 24.96, 25.08, 25.24, 25.04, 25.12, 25.24, 25.16, 25.12, 25.24, 25.44, 25.64, 25.68, 25.44, 26.16, 26.24, 26.0, 26.24, 26.4, 25.56, 25.68, 25.56, 25.4, 25.4, 25.32, 25.24, 25.4, 25.6, 25.36, 25.16, 24.84, 24.52, 24.4, 24.24, 24.44, 24.48, 24.4, 24.56, 24.36, 24.24, 24.24, 24.44, 24.52, 24.68, 24.72, 24.72, 24.88, 24.76, 24.64, 24.36, 24.68, 24.84, 24.6, 24.84, 24.56, 24.28, 24.36, 24.52, 24.32, 24.4, 24.36, 24.4, 24.44, 24.44, 24.72, 24.64, 24.76, 24.76, 24.64, 24.52, 24.76, 24.68, 24.56, 24.72, 24.36, 24.44, 24.48, 24.88, 24.88, 25.0, 25.0, 24.68, 24.4, 24.44, 24.52, 24.36, 24.6, 24.52, 24.56, 24.56, 24.56, 24.64, 24.32] +221.50223588943481 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 210.98000812530518, 'TIME_S_1KI': 210.98000812530518, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 5224.394376831054, 'W': 23.586192508859664} +[20.72, 20.64, 20.6, 20.6, 20.48, 20.44, 20.4, 20.36, 20.28, 20.28, 20.24, 20.44, 20.68, 20.92, 21.04, 20.8, 20.44, 20.28, 20.2, 20.12] +369.28000000000003 +18.464000000000002 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 210.98000812530518, 'TIME_S_1KI': 210.98000812530518, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 5224.394376831054, 'W': 23.586192508859664, 'J_1KI': 5224.394376831054, 'W_1KI': 23.586192508859664, 'W_D': 5.122192508859662, 'J_D': 1134.5770933685287, 'W_D_1KI': 5.122192508859662, 'J_D_1KI': 5.122192508859662} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_1e-05.json b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_1e-05.json new file mode 100644 index 0000000..e2472aa --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 142368, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.641618490219116, "TIME_S_1KI": 0.07474726406368788, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 348.11982940673823, "W": 23.739150118754246, "J_1KI": 2.445211209026876, "W_1KI": 0.16674498566218704, "W_D": 4.927150118754245, "J_D": 72.25358322525018, "W_D_1KI": 0.03460855050821986, "J_D_1KI": 0.00024309220125463487} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_1e-05.output b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_1e-05.output new file mode 100644 index 0000000..4bc129d --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_10000_1e-05.output @@ -0,0 +1,1307 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.0838630199432373} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([2253, 476, 8386, 498, 9957, 4225, 8921, 5276, 6649, + 8361, 9030, 5103, 3236, 7146, 9127, 2162, 9108, 6109, + 7536, 3391, 5945, 596, 2632, 4253, 1582, 1210, 8101, + 3475, 1476, 5207, 5384, 5794, 8608, 7628, 6539, 4656, + 3584, 5833, 2648, 8342, 6408, 8271, 1628, 7349, 575, + 7362, 4397, 3774, 5414, 2631, 5850, 2642, 3145, 3161, + 377, 8231, 2181, 5528, 2062, 2662, 8705, 9554, 9972, + 7839, 4744, 1749, 9566, 8398, 2429, 4619, 8801, 4605, + 923, 3311, 3483, 3043, 7643, 9036, 8304, 1912, 6129, + 5169, 5472, 5945, 2394, 4490, 494, 3501, 5216, 6603, + 665, 7641, 281, 3907, 8487, 5619, 9635, 4755, 2164, + 2784, 5175, 1775, 6954, 9274, 7097, 8360, 5171, 9211, + 7466, 7749, 191, 4501, 4484, 7642, 624, 2893, 5539, + 843, 8041, 8, 7403, 371, 2730, 286, 1593, 634, + 6431, 3385, 7870, 1108, 7997, 9418, 6500, 144, 9317, + 8997, 4648, 3107, 6947, 7390, 1587, 6749, 1802, 1348, + 6123, 1209, 9744, 121, 7082, 1344, 5264, 3961, 337, + 1330, 8627, 8947, 5889, 2601, 7669, 6120, 1019, 9499, + 9644, 7263, 5542, 2071, 8937, 953, 6648, 3926, 8115, + 5125, 7691, 352, 2444, 9825, 446, 2457, 8890, 6114, + 444, 1431, 454, 7900, 764, 5672, 4233, 944, 6601, + 3851, 1429, 6524, 7034, 1142, 5431, 6286, 5413, 2636, + 6329, 8315, 3414, 2949, 3506, 3226, 5971, 847, 3600, + 992, 324, 7224, 5784, 6318, 83, 3862, 582, 144, + 9213, 7884, 7303, 9318, 282, 388, 7306, 5058, 5981, + 4403, 1069, 8491, 3796, 8782, 1118, 9875, 4797, 4628, + 7243, 6257, 3754, 989, 2393, 8967, 8200, 5340, 3683, + 3434, 6938, 77, 3597, 9197, 8552, 9020, 7876, 3038, + 3483, 5985, 8914, 6258, 909, 1009, 5616, 7735, 6306, + 8373, 8632, 9452, 2154, 850, 8434, 629, 2534, 4582, + 4794, 9281, 8393, 6244, 3735, 4916, 6011, 2651, 609, + 7143, 4921, 4268, 6408, 1599, 8894, 2479, 2987, 832, + 3094, 5886, 3124, 7081, 5811, 3779, 5580, 6485, 5673, + 2218, 6770, 8285, 7334, 9715, 9128, 9532, 7461, 5679, + 8558, 8501, 477, 1192, 7608, 1319, 5616, 6695, 471, + 3772, 635, 9729, 2007, 6636, 676, 3085, 7945, 9975, + 3381, 2953, 8697, 7684, 3880, 2799, 6966, 7129, 4996, + 6015, 4533, 1443, 3747, 1336, 2630, 929, 5196, 3570, + 9424, 2273, 2381, 5266, 1572, 6420, 3875, 6027, 7141, + 6677, 6980, 3009, 2751, 11, 9306, 7709, 5830, 3046, + 9401, 5663, 1417, 3815, 8979, 4391, 9801, 7149, 456, + 5864, 1995, 124, 2256, 64, 7564, 4815, 7391, 5180, + 1771, 6764, 7376, 8538, 3458, 9772, 5308, 4242, 3324, + 1587, 8262, 7034, 8132, 3536, 1819, 291, 5025, 8022, + 2479, 2185, 738, 6526, 1167, 198, 6694, 4805, 3411, + 1094, 5203, 6491, 3786, 3097, 14, 5114, 9852, 2892, + 1099, 3181, 7333, 9943, 2852, 3882, 1189, 7485, 801, + 7674, 1836, 2040, 48, 9611, 831, 9698, 3539, 9064, + 2385, 8967, 1047, 3548, 8644, 1830, 2701, 4898, 5632, + 4136, 454, 5669, 6049, 4736, 9501, 135, 4897, 1534, + 9703, 7765, 8595, 8435, 2609, 6015, 2453, 9389, 2270, + 465, 7417, 430, 7171, 8871, 1021, 7527, 7908, 5769, + 8048, 3197, 8416, 7025, 5256, 5349, 524, 2853, 25, + 2139, 4464, 8829, 8865, 1374, 8061, 5300, 5876, 877, + 5876, 5689, 2903, 4858, 8712, 2885, 8268, 2876, 745, + 8136, 3532, 1841, 2997, 5759, 8795, 2224, 2888, 3987, + 7096, 5077, 4678, 314, 6278, 2146, 7763, 289, 9645, + 6451, 5383, 2666, 2568, 8764, 9199, 1976, 9869, 1871, + 2021, 3166, 6570, 1222, 7177, 2488, 2338, 7477, 1189, + 3030, 3721, 1710, 1232, 7961, 4126, 308, 4200, 965, + 9904, 4017, 6562, 6332, 7006, 5924, 2802, 7274, 1169, + 3009, 4422, 6534, 9656, 208, 8761, 850, 9534, 4682, + 2555, 6198, 6368, 7692, 5662, 2129, 3691, 4273, 9508, + 2696, 7307, 3188, 6647, 5727, 8700, 4207, 682, 9106, + 2149, 4986, 5637, 1941, 499, 3102, 1738, 6760, 4204, + 3978, 8966, 6178, 2258, 6397, 4255, 8893, 3201, 8526, + 2337, 7166, 5403, 8700, 6301, 4346, 7735, 2026, 5837, + 6048, 4330, 7066, 9100, 599, 3049, 8143, 7838, 9560, + 19, 1997, 7509, 3059, 631, 1554, 7487, 3158, 9740, + 4447, 7007, 6865, 7805, 8858, 9961, 4470, 1340, 3019, + 3976, 7670, 3406, 7333, 9623, 8635, 8755, 230, 7678, + 300, 7869, 1930, 5050, 6663, 7893, 2260, 9909, 3177, + 7398, 7540, 8321, 1906, 4295, 342, 9074, 2945, 347, + 8837, 4083, 5991, 9167, 6116, 5351, 3445, 3983, 8585, + 2090, 6146, 270, 9204, 4432, 3628, 6533, 7536, 2391, + 1685, 2450, 9637, 3683, 2462, 3807, 1036, 3839, 228, + 3925, 3816, 8324, 6421, 5687, 5110, 7733, 1652, 4160, + 1137, 5865, 3286, 9592, 2840, 3618, 4485, 311, 4669, + 928, 4264, 6305, 9097, 2633, 2665, 4297, 1264, 4645, + 3225, 4230, 5094, 1069, 5003, 6336, 5540, 4439, 9466, + 7232, 5756, 3182, 2102, 2707, 1311, 2637, 7030, 3968, + 6272, 1505, 4585, 7602, 4311, 2082, 9202, 5354, 6351, + 1441, 8362, 3808, 4841, 9724, 9207, 3877, 8352, 7408, + 4030, 2185, 9052, 7226, 3336, 3945, 8666, 7938, 8782, + 4100, 8086, 5984, 3626, 2672, 7372, 3546, 2561, 4074, + 8717, 8180, 9385, 7597, 5929, 7174, 2432, 8780, 9283, + 6149, 5146, 6441, 6822, 8442, 9156, 429, 7461, 4279, + 4570, 2502, 7584, 4060, 1992, 8593, 5213, 1470, 212, + 8012, 2299, 9100, 164, 6950, 318, 3931, 8854, 2544, + 8123, 4669, 3733, 1762, 1623, 624, 8523, 8469, 8314, + 6018, 2782, 641, 6358, 3665, 84, 4407, 4887, 7885, + 6216, 5842, 7476, 6155, 3633, 122, 5167, 1130, 9085, + 2101, 4068, 9401, 1920, 9958, 6623, 2692, 1400, 9977, + 747, 5121, 4933, 3403, 6168, 2497, 4983, 1046, 368, + 4188, 2792, 7678, 3307, 6594, 5130, 3360, 4616, 6665, + 756, 7347, 9242, 1770, 5077, 4147, 7161, 4247, 7564, + 9777, 7509, 1971, 6841, 9178, 3219, 3923, 5557, 1156, + 6659, 5854, 755, 7951, 3645, 5002, 5996, 5298, 2962, + 664, 910, 9706, 559, 9086, 7185, 7068, 8873, 3043, + 6847, 899, 9812, 5204, 6576, 9492, 2795, 1137, 2641, + 3328, 9343, 564, 9305, 2923, 1111, 1779, 3369, 6605, + 4019, 1610, 880, 1451, 9582, 5536, 5942, 8693, 761, + 2047, 8128, 3665, 344, 200, 829, 921, 6070, 5139, + 7786, 1227, 845, 2875, 8428, 3177, 7508, 8640, 3794, + 1021, 1201, 793, 4861, 1815, 805, 934, 278, 9733, + 3485, 6488, 9019, 3305, 9442, 5657, 1096, 9025, 788, + 9251, 8928, 2037, 6123, 8627, 9039, 338, 9114, 5248, + 6939, 4216, 482, 938, 2695, 7299, 281, 7594, 308, + 2340, 3138, 4712, 2333, 1413, 5695, 6460, 8022, 5681, + 9297, 3452, 7181, 2694, 9869, 6366, 7679, 706, 6973, + 7311, 612, 6829, 395, 1800, 3281, 659, 7900, 3453, + 8264]), + values=tensor([0.2353, 0.1782, 0.2258, 0.1855, 0.4423, 0.9398, 0.9665, + 0.8674, 0.3458, 0.4757, 0.8998, 0.6019, 0.2886, 0.4221, + 0.6484, 0.9801, 0.0245, 0.8132, 0.5707, 0.2417, 0.1923, + 0.3961, 0.7153, 0.5454, 0.4598, 0.6610, 0.4260, 0.1997, + 0.0793, 0.4958, 0.2937, 0.5847, 0.0359, 0.4976, 0.2729, + 0.8319, 0.8665, 0.9690, 0.6840, 0.6532, 0.0099, 0.4971, + 0.1625, 0.5070, 0.5926, 0.1981, 0.5308, 0.2462, 0.8898, + 0.8763, 0.9767, 0.5809, 0.2706, 0.9621, 0.7549, 0.3768, + 0.9278, 0.5204, 1.0000, 0.2137, 0.4229, 0.0576, 0.7793, + 0.1382, 0.0969, 0.2743, 0.5872, 0.0691, 0.9723, 0.3887, + 0.0943, 0.1416, 0.4521, 0.8468, 0.5301, 0.2564, 0.1849, + 0.6969, 0.0750, 0.3222, 0.0861, 0.6703, 0.5693, 0.6477, + 0.1966, 0.4584, 0.8691, 0.6805, 0.2765, 0.7859, 0.7443, + 0.9810, 0.3422, 0.7561, 0.4489, 0.0063, 0.4574, 0.9083, + 0.1002, 0.7936, 0.5968, 0.0707, 0.7668, 0.6483, 0.7189, + 0.4981, 0.1607, 0.6888, 0.0829, 0.7417, 0.2211, 0.2819, + 0.9757, 0.3594, 0.7768, 0.9804, 0.6903, 0.7514, 0.7754, + 0.1849, 0.3762, 0.7186, 0.0990, 0.6769, 0.3048, 0.1519, + 0.9897, 0.3153, 0.4324, 0.9344, 0.0248, 0.5611, 0.8766, + 0.7837, 0.4802, 0.9675, 0.5851, 0.5862, 0.7681, 0.0508, + 0.6572, 0.7537, 0.5656, 0.1112, 0.2042, 0.7151, 0.5006, + 0.5707, 0.5865, 0.0130, 0.0664, 0.1659, 0.3827, 0.7062, + 0.3658, 0.7399, 0.8337, 0.0364, 0.6575, 0.4213, 0.2326, + 0.9789, 0.6253, 0.6894, 0.0904, 0.7227, 0.6683, 0.5135, + 0.2681, 0.8516, 0.3120, 0.3633, 0.7677, 0.8894, 0.6031, + 0.0593, 0.5694, 0.3693, 0.1344, 0.6320, 0.4248, 0.2232, + 0.6425, 0.4196, 0.6058, 0.4603, 0.3503, 0.6498, 0.4788, + 0.4362, 0.9373, 0.3056, 0.4705, 0.4236, 0.5704, 0.4843, + 0.9620, 0.1021, 0.7610, 0.0814, 0.6722, 0.4110, 0.7771, + 0.4689, 0.6626, 0.4133, 0.8867, 0.2756, 0.4896, 0.2682, + 0.0517, 0.9650, 0.2920, 0.3181, 0.0581, 0.4257, 0.5482, + 0.1617, 0.1381, 0.1610, 0.5911, 0.2667, 0.9487, 0.9879, + 0.0731, 0.9821, 0.6859, 0.7774, 0.3801, 0.7192, 0.6019, + 0.8431, 0.3503, 0.7171, 0.9187, 0.3757, 0.4129, 0.6595, + 0.8404, 0.7307, 0.0031, 0.3753, 0.7273, 0.5407, 0.3289, + 0.0344, 0.5252, 0.4677, 0.4304, 0.6884, 0.3139, 0.1012, + 0.8221, 0.2497, 0.6689, 0.0923, 0.6619, 0.4437, 0.6033, + 0.6195, 0.2430, 0.8474, 0.1926, 0.1247, 0.2040, 0.4323, + 0.3765, 0.3732, 0.1982, 0.9063, 0.4932, 0.8726, 0.1883, + 0.5386, 0.5904, 0.3114, 0.6236, 0.7317, 0.9186, 0.7537, + 0.3131, 0.6360, 0.0203, 0.1384, 0.9474, 0.6232, 0.4153, + 0.3962, 0.5622, 0.0194, 0.2466, 0.5790, 0.2534, 0.9447, + 0.0912, 0.5169, 0.8722, 0.3340, 0.8679, 0.7267, 0.7460, + 0.9842, 0.9486, 0.7102, 0.2158, 0.1190, 0.4696, 0.4126, + 0.7215, 0.0963, 0.0323, 0.1045, 0.9260, 0.9084, 0.1646, + 0.9534, 0.2639, 0.5164, 0.0732, 0.7655, 0.7814, 0.7669, + 0.7098, 0.0085, 0.3405, 0.5626, 0.5535, 0.8817, 0.1845, + 0.6215, 0.5931, 0.8487, 0.9499, 0.3328, 0.6443, 0.7090, + 0.5190, 0.0648, 0.1536, 0.0726, 0.4312, 0.3042, 0.2809, + 0.5510, 0.4125, 0.2830, 0.2534, 0.7475, 0.2773, 0.9025, + 0.1924, 0.9863, 0.2745, 0.5967, 0.2546, 0.0514, 0.5147, + 0.5375, 0.0157, 0.3671, 0.5558, 0.6812, 0.5989, 0.4999, + 0.3845, 0.5625, 0.8284, 0.1874, 0.7319, 0.2837, 0.3265, + 0.1183, 0.5433, 0.1711, 0.6828, 0.1592, 0.6204, 0.3344, + 0.7467, 0.9883, 0.3898, 0.3093, 0.3595, 0.7632, 0.4240, + 0.4645, 0.2155, 0.9780, 0.3326, 0.3188, 0.3761, 0.9520, + 0.9066, 0.1536, 0.7306, 0.0318, 0.2393, 0.4902, 0.8550, + 0.1201, 0.9456, 0.2522, 0.7416, 0.6499, 0.6393, 0.6763, + 0.4288, 0.7816, 0.5055, 0.1002, 0.8372, 0.4266, 0.9321, + 0.5332, 0.9639, 0.3621, 0.7693, 0.2079, 0.2135, 0.2986, + 0.8318, 0.1809, 0.6887, 0.7968, 0.4485, 0.9968, 0.3844, + 0.9171, 0.8948, 0.0563, 0.2633, 0.4923, 0.2338, 0.8688, + 0.5756, 0.7592, 0.2458, 0.9535, 0.3897, 0.0756, 0.5022, + 0.9240, 0.5638, 0.2016, 0.6776, 0.2604, 0.4394, 0.2034, + 0.8727, 0.0420, 0.7949, 0.8553, 0.2219, 0.2845, 0.7576, + 0.0822, 0.9063, 0.8381, 0.4579, 0.9659, 0.9046, 0.2436, + 0.1292, 0.6101, 0.9870, 0.8638, 0.9652, 0.7550, 0.0480, + 0.6712, 0.2958, 0.3868, 0.8628, 0.0355, 0.3204, 0.2060, + 0.3250, 0.1398, 0.3678, 0.5695, 0.7809, 0.4826, 0.0989, + 0.5059, 0.4212, 0.2406, 0.9781, 0.3638, 0.1720, 0.8480, + 0.4271, 0.8091, 0.9918, 0.3000, 0.6606, 0.8454, 0.5300, + 0.5252, 0.0635, 0.9108, 0.8222, 0.1548, 0.0985, 0.8547, + 0.6072, 0.7014, 0.3452, 0.2884, 0.3585, 0.8758, 0.1001, + 0.4468, 0.6047, 0.1332, 0.1165, 0.1894, 0.8703, 0.9388, + 0.5289, 0.0961, 0.3963, 0.4088, 0.0353, 0.4726, 0.0497, + 0.1657, 0.1332, 0.8424, 0.3770, 0.3753, 0.2990, 0.7492, + 0.3599, 0.1006, 0.2027, 0.2482, 0.2160, 0.7178, 0.4018, + 0.5121, 0.1620, 0.1861, 0.9097, 0.1876, 0.6771, 0.7242, + 0.1984, 0.8642, 0.7265, 0.8026, 0.0894, 0.7046, 0.3341, + 0.9662, 0.8060, 0.2941, 0.3211, 0.8905, 0.6195, 0.5768, + 0.2107, 0.9394, 0.6531, 0.0393, 0.7642, 0.5794, 0.9121, + 0.7424, 0.9481, 0.2357, 0.5093, 0.4284, 0.6020, 0.0803, + 0.7598, 0.8604, 0.7256, 0.6093, 0.5086, 0.3756, 0.6412, + 0.8776, 0.9545, 0.5824, 0.6562, 0.1354, 0.9933, 0.2672, + 0.0285, 0.8526, 0.6755, 0.7049, 0.2854, 0.5057, 0.9990, + 0.9196, 0.6274, 0.2554, 0.2122, 0.3370, 0.3386, 0.3169, + 0.7733, 0.2486, 0.2674, 0.1403, 0.6963, 0.7088, 0.3851, + 0.2191, 0.3001, 0.6826, 0.5536, 0.2177, 0.6052, 0.8636, + 0.9715, 0.2358, 0.4881, 0.0889, 0.8262, 0.1997, 0.8162, + 0.0582, 0.4706, 0.6276, 0.9860, 0.7618, 0.7273, 0.9791, + 0.8954, 0.1469, 0.0188, 0.2048, 0.3781, 0.0089, 0.6219, + 0.3027, 0.8627, 0.8771, 0.8271, 0.9922, 0.6041, 0.4076, + 0.3944, 0.6122, 0.9607, 0.8934, 0.1106, 0.5422, 0.8581, + 0.0265, 0.3612, 0.6596, 0.0347, 0.8474, 0.0167, 0.6080, + 0.1079, 0.0585, 0.8435, 0.3170, 0.7671, 0.7858, 0.4844, + 0.7878, 0.3447, 0.0805, 0.1858, 0.2807, 0.2509, 0.8630, + 0.6871, 0.3052, 0.7960, 0.0089, 0.0988, 0.1041, 0.9455, + 0.5949, 0.2156, 0.7655, 0.1696, 0.7121, 0.9759, 0.7770, + 0.1164, 0.5865, 0.6119, 0.4107, 0.4022, 0.3372, 0.8928, + 0.1138, 0.9831, 0.7790, 0.4196, 0.4976, 0.6814, 0.3419, + 0.7406, 0.3991, 0.0289, 0.5356, 0.4211, 0.2193, 0.0087, + 0.7933, 0.3929, 0.5198, 0.7999, 0.8401, 0.3842, 0.1942, + 0.7014, 0.8914, 0.6002, 0.7161, 0.4335, 0.9511, 0.9698, + 0.0936, 0.2259, 0.4025, 0.3622, 0.8372, 0.2849, 0.3400, + 0.6678, 0.0346, 0.4859, 0.5633, 0.8356, 0.4528, 0.6768, + 0.5972, 0.3821, 0.3636, 0.8229, 0.2322, 0.7735, 0.1857, + 0.5068, 0.3651, 0.7864, 0.7204, 0.2674, 0.3027, 0.3049, + 0.5230, 0.1538, 0.4601, 0.6939, 0.1634, 0.2994, 0.0774, + 0.2376, 0.2841, 0.3050, 0.0617, 0.7215, 0.0305, 0.8728, + 0.2061, 0.2378, 0.0375, 0.7683, 0.9988, 0.6914, 0.1107, + 0.0736, 0.9019, 0.7942, 0.2277, 0.9235, 0.3860, 0.9262, + 0.7040, 0.3201, 0.0612, 0.4204, 0.1116, 0.4348, 0.3602, + 0.5310, 0.7646, 0.4236, 0.0975, 0.2950, 0.0345, 0.6622, + 0.4405, 0.4799, 0.0829, 0.1177, 0.8585, 0.5586, 0.5044, + 0.5414, 0.8945, 0.8002, 0.9645, 0.1886, 0.9038, 0.5484, + 0.0204, 0.8519, 0.5493, 0.4895, 0.7530, 0.9959, 0.2604, + 0.6691, 0.3460, 0.4685, 0.0621, 0.3649, 0.2189, 0.2904, + 0.8808, 0.2042, 0.2147, 0.3779, 0.4607, 0.2132, 0.9129, + 0.9209, 0.1822, 0.2024, 0.8409, 0.7644, 0.5983, 0.7859, + 0.2499, 0.4718, 0.4239, 0.7014, 0.1942, 0.2520, 0.4721, + 0.6679, 0.1025, 0.1320, 0.3436, 0.3961, 0.6327, 0.2792, + 0.5959, 0.5798, 0.2139, 0.0897, 0.6923, 0.6952, 0.9848, + 0.8212, 0.0136, 0.4390, 0.5528, 0.4977, 0.2278, 0.8417, + 0.4814, 0.4675, 0.3121, 0.8191, 0.1734, 0.1167, 0.3309, + 0.1047, 0.9547, 0.3483, 0.7649, 0.9901, 0.8778, 0.3147, + 0.6047, 0.5848, 0.7965, 0.7107, 0.9034, 0.8508, 0.2629, + 0.5257, 0.3152, 0.5617, 0.9414, 0.6428, 0.5980, 0.7990, + 0.4296, 0.1560, 0.5798, 0.0593, 0.1015, 0.7821, 0.4172, + 0.6000, 0.8223, 0.9921, 0.9472, 0.7984, 0.4961, 0.5188, + 0.8866, 0.4976, 0.6972, 0.4976, 0.6772, 0.6002, 0.2993, + 0.7316, 0.1629, 0.5415, 0.8855, 0.6732, 0.5311, 0.0305, + 0.3944, 0.9823, 0.1791, 0.9728, 0.6487, 0.2106, 0.8214, + 0.7792, 0.5466, 0.7555, 0.1071, 0.9621, 0.6549, 0.3949, + 0.9203, 0.0732, 0.7772, 0.5887, 0.2841, 0.0951, 0.4007, + 0.4779, 0.0368, 0.9097, 0.4207, 0.1401, 0.8859, 0.1233, + 0.4669, 0.0737, 0.9870, 0.7542, 0.8903, 0.5909, 0.6027, + 0.6678, 0.8937, 0.5338, 0.9161, 0.2478, 0.3565, 0.6401, + 0.1779, 0.3402, 0.7089, 0.6358, 0.7531, 0.5739, 0.2462, + 0.8489, 0.2223, 0.5307, 0.8218, 0.9545, 0.4531, 0.9697, + 0.8082, 0.7093, 0.6366, 0.5366, 0.4305, 0.2988, 0.2509, + 0.2966, 0.3305, 0.0533, 0.9515, 0.3749, 0.2751, 0.9848, + 0.8736, 0.1427, 0.2371, 0.5146, 0.5425, 0.6733, 0.7992, + 0.8399, 0.9753, 0.8351, 0.3146, 0.2432, 0.5413]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.2336, 0.7811, 0.2916, ..., 0.9209, 0.8685, 0.4951]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 0.0838630199432373 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 125204 -ss 10000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.234081745147705} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 999, 999, 1000]), + col_indices=tensor([8690, 1861, 4903, 1985, 5995, 5133, 3649, 6848, 9888, + 5313, 1367, 6414, 5407, 8918, 331, 630, 7545, 9107, + 3109, 3571, 7241, 7083, 7466, 8084, 2727, 3640, 4567, + 9919, 948, 9219, 4437, 725, 7475, 1603, 9410, 5378, + 1267, 1566, 2735, 5978, 7044, 9006, 2830, 2291, 2928, + 246, 5452, 5303, 9481, 9784, 3316, 511, 9042, 689, + 1633, 1432, 7308, 4565, 9940, 5588, 4670, 74, 3920, + 5855, 8957, 3500, 7187, 8512, 3908, 9837, 8166, 2653, + 7148, 8369, 6481, 6454, 7191, 3138, 1912, 8141, 7068, + 663, 2545, 9875, 1574, 4296, 1631, 8653, 1587, 4471, + 8482, 7123, 2944, 4403, 3050, 8451, 4956, 9785, 7618, + 6529, 9271, 9559, 9158, 5049, 3870, 9460, 6015, 9128, + 9779, 3634, 7478, 2718, 4829, 5557, 2520, 8161, 1201, + 9733, 9896, 3536, 2437, 9760, 1331, 2860, 210, 958, + 4424, 8707, 1531, 2806, 9137, 5267, 8292, 4132, 7990, + 2715, 8713, 3219, 7635, 8360, 5058, 4018, 1011, 3165, + 7271, 4671, 490, 6635, 7416, 4229, 2810, 1235, 9589, + 4173, 7150, 5653, 5283, 4143, 2170, 7879, 1964, 5898, + 1301, 7280, 6637, 7038, 4540, 7863, 3916, 7240, 4473, + 2810, 4563, 211, 2724, 5297, 2314, 7383, 7549, 7593, + 7902, 5189, 2848, 4020, 504, 929, 1871, 6291, 4019, + 6918, 1232, 1712, 2725, 3019, 9775, 6611, 3101, 4550, + 5864, 8103, 9150, 1578, 2256, 8242, 9493, 4873, 8528, + 7748, 4250, 9306, 8224, 2493, 9732, 8604, 5119, 3521, + 9573, 9524, 1509, 8848, 4100, 83, 9396, 99, 4460, + 4971, 6971, 8025, 37, 5487, 5102, 9467, 3925, 1812, + 6496, 2474, 3416, 770, 3079, 3632, 3928, 1261, 9627, + 6023, 7720, 2373, 7178, 1154, 1976, 686, 4234, 2525, + 2386, 3801, 1084, 4920, 9622, 3186, 1781, 369, 4632, + 9872, 8667, 9674, 1830, 1374, 4683, 9070, 214, 4518, + 5534, 5601, 5258, 7170, 5140, 6908, 5657, 1888, 7447, + 1417, 9074, 7958, 6603, 6682, 6812, 3871, 7796, 2656, + 9359, 549, 6120, 2930, 102, 2531, 6544, 9391, 4378, + 2047, 7512, 2190, 5751, 8525, 1136, 2747, 720, 2145, + 641, 301, 2496, 9622, 4510, 395, 6798, 6226, 7892, + 8532, 6935, 1823, 2827, 7370, 1020, 1943, 9056, 9966, + 4214, 2013, 7924, 3776, 5066, 5635, 5665, 7059, 9145, + 1876, 8463, 436, 8889, 3554, 7616, 5977, 2123, 8891, + 3093, 3444, 8298, 7769, 9996, 4534, 8206, 8590, 6868, + 4918, 9753, 405, 7432, 1938, 8244, 4199, 9661, 6123, + 1379, 4616, 988, 2639, 7628, 7893, 3929, 385, 3197, + 4048, 1422, 7166, 8817, 2223, 9867, 9076, 1609, 3957, + 3493, 5154, 9868, 383, 7966, 6016, 658, 39, 8072, + 3272, 3200, 3031, 6375, 5122, 6299, 8569, 5223, 9918, + 5752, 9906, 1624, 8619, 8885, 6, 1530, 8345, 5934, + 8759, 9362, 374, 7647, 9500, 6878, 8651, 730, 6206, + 6922, 2425, 3365, 3507, 1146, 1333, 4027, 3526, 8032, + 5545, 3816, 1420, 9477, 2919, 6588, 7717, 5586, 4372, + 9646, 4459, 6004, 5986, 3951, 9102, 933, 8920, 3777, + 4007, 6453, 9682, 7501, 2970, 6620, 5252, 1515, 8683, + 2270, 854, 4792, 3612, 2431, 3646, 391, 7432, 8791, + 5732, 2927, 2736, 3415, 9331, 660, 891, 2087, 1032, + 8108, 6196, 2271, 6743, 2298, 1495, 4443, 8578, 1211, + 299, 721, 3596, 9782, 931, 1754, 5985, 3356, 1915, + 6959, 9781, 2014, 2812, 5587, 2995, 2083, 2550, 4199, + 6159, 4633, 7287, 4370, 2671, 1567, 7232, 98, 7463, + 7674, 2991, 9261, 9455, 5907, 4437, 5403, 1604, 5472, + 1763, 3134, 2907, 2000, 4953, 8723, 3834, 290, 3287, + 9580, 5999, 9187, 5984, 8847, 3554, 9248, 7111, 8325, + 841, 3919, 3951, 3645, 221, 9865, 3994, 1127, 6695, + 6647, 7177, 8098, 6023, 9342, 6911, 1870, 4718, 8147, + 4235, 2965, 9837, 856, 3022, 1380, 6101, 6210, 3833, + 151, 1194, 7661, 3944, 7192, 9278, 996, 2039, 2037, + 9067, 4888, 1694, 2687, 3653, 6840, 4033, 5950, 1549, + 9846, 3081, 8066, 769, 8909, 1020, 5908, 2460, 1635, + 6323, 3903, 2849, 1854, 8624, 2421, 4866, 2864, 2488, + 4161, 6088, 2649, 324, 6423, 1433, 256, 8338, 431, + 8627, 3937, 3277, 8971, 7852, 6671, 7455, 6555, 3396, + 8138, 6922, 752, 7772, 9156, 9141, 595, 7469, 2581, + 190, 1418, 3064, 4469, 9408, 4854, 5691, 7984, 3024, + 2707, 9907, 4453, 9093, 7027, 8141, 9776, 3748, 6818, + 449, 2814, 8326, 5427, 3095, 5063, 639, 4947, 8753, + 4085, 8976, 4506, 4719, 4537, 7038, 6831, 9759, 7338, + 1913, 6779, 8933, 9136, 2598, 8897, 2297, 4611, 4639, + 7797, 5128, 4819, 2032, 8142, 518, 2044, 8267, 2677, + 4008, 9440, 3807, 8, 6735, 6851, 8177, 7296, 5290, + 648, 7625, 4802, 7175, 9799, 8657, 1777, 555, 8998, + 4747, 886, 3741, 1929, 7012, 272, 8315, 4721, 9533, + 6549, 8950, 5461, 927, 6305, 3504, 6127, 6161, 2963, + 3469, 7401, 3538, 7768, 2131, 2614, 1885, 3070, 7477, + 309, 6358, 7534, 1977, 6187, 6783, 3213, 1290, 4328, + 3842, 1354, 885, 2517, 4560, 1926, 3961, 9227, 6935, + 462, 1438, 5292, 5574, 6029, 1889, 1936, 960, 2051, + 1095, 6855, 7130, 1000, 5214, 7545, 6674, 6222, 1624, + 7924, 9255, 3113, 4359, 6452, 8545, 3149, 1090, 8723, + 12, 728, 2926, 7047, 8841, 4132, 5028, 6320, 5710, + 4095, 7091, 9196, 6592, 256, 2595, 7555, 7220, 7503, + 3678, 5193, 1846, 8863, 8465, 4921, 8958, 4119, 9500, + 4218, 6868, 2278, 5286, 9717, 3507, 602, 5539, 4997, + 7677, 5129, 5927, 5269, 2466, 7276, 3295, 3682, 4275, + 6823, 7704, 1751, 638, 3376, 2815, 274, 6800, 2001, + 3097, 2067, 6878, 7193, 29, 3760, 2048, 9336, 4726, + 4307, 1514, 4722, 4667, 2541, 78, 1702, 235, 1797, + 7126, 5089, 9859, 451, 2808, 1114, 2670, 2921, 253, + 6747, 1120, 9233, 7774, 2196, 5790, 868, 4297, 6901, + 2496, 4705, 3152, 9611, 3987, 1345, 4561, 8845, 759, + 6029, 1321, 9564, 7293, 8230, 3303, 2114, 4705, 8878, + 7072, 9781, 7747, 5473, 4845, 3268, 9804, 5918, 5813, + 2229, 9728, 8829, 5296, 9089, 4507, 4478, 9771, 189, + 4361, 7386, 5404, 4216, 6784, 835, 9468, 1174, 4062, + 635, 8468, 9399, 9956, 5927, 3633, 2041, 5438, 9398, + 7769, 318, 2503, 2115, 154, 2105, 4783, 6026, 5722, + 6257, 9069, 98, 6855, 3977, 6916, 5247, 551, 6874, + 453, 2707, 2022, 9182, 7602, 9284, 5224, 8443, 1184, + 1616, 9624, 3609, 2194, 7767, 2938, 7851, 777, 5938, + 1546, 2652, 4044, 384, 1875, 8817, 9415, 7504, 2445, + 9751, 4207, 4920, 9990, 7213, 397, 4131, 5253, 5120, + 7687, 7708, 2743, 3453, 2942, 6367, 5198, 5257, 6863, + 2109, 2297, 5048, 7698, 629, 5215, 3378, 7559, 2206, + 1086, 7684, 3748, 107, 1983, 2852, 2220, 7374, 3217, + 1908, 5874, 591, 5820, 7786, 8995, 9449, 3085, 4817, + 4114]), + values=tensor([0.9947, 0.8142, 0.8795, 0.8201, 0.5910, 0.5774, 0.6787, + 0.3836, 0.6040, 0.8398, 0.1259, 0.1459, 0.6698, 0.4976, + 0.2937, 0.5676, 0.1634, 0.5111, 0.1879, 0.3973, 0.1173, + 0.9735, 0.0848, 0.2837, 0.8090, 0.2099, 0.1769, 0.1252, + 0.0842, 0.4799, 0.3065, 0.7083, 0.1028, 0.6702, 0.1950, + 0.4882, 0.7283, 0.0312, 0.3765, 0.3697, 0.4492, 0.7468, + 0.8657, 0.3983, 0.7946, 0.9615, 0.8286, 0.6214, 0.8592, + 0.4413, 0.6006, 0.4282, 0.4277, 0.2990, 0.0424, 0.3419, + 0.9831, 0.0184, 0.6371, 0.4181, 0.8034, 0.6733, 0.6806, + 0.0607, 0.2397, 0.3099, 0.0864, 0.7937, 0.9239, 0.8015, + 0.8287, 0.5835, 0.9482, 0.9914, 0.6012, 0.1646, 0.5987, + 0.5880, 0.5622, 0.9711, 0.9774, 0.5218, 0.6976, 0.3425, + 0.2975, 0.4278, 0.8927, 0.4119, 0.2833, 0.2442, 0.7490, + 0.5147, 0.0807, 0.4474, 0.6798, 0.9577, 0.2109, 0.8632, + 0.3757, 0.2105, 0.7130, 0.3533, 0.1690, 0.4804, 0.5167, + 0.9728, 0.8527, 0.1135, 0.5917, 0.8791, 0.6425, 0.6958, + 0.1839, 0.0340, 0.5170, 0.2015, 0.1209, 0.6163, 0.4274, + 0.2144, 0.9963, 0.8824, 0.1649, 0.6969, 0.8670, 0.6598, + 0.3078, 0.5853, 0.9715, 0.7585, 0.5095, 0.3547, 0.7490, + 0.6322, 0.9507, 0.2170, 0.1205, 0.5733, 0.2161, 0.5475, + 0.0400, 0.0701, 0.6929, 0.4946, 0.9048, 0.5536, 0.7938, + 0.7391, 0.7036, 0.3338, 0.2405, 0.9038, 0.2827, 0.8615, + 0.0612, 0.2391, 0.4980, 0.5230, 0.3775, 0.0596, 0.6816, + 0.7299, 0.1596, 0.7477, 0.6113, 0.5079, 0.5112, 0.9304, + 0.2833, 0.4280, 0.7909, 0.0432, 0.3695, 0.1434, 0.1742, + 0.6911, 0.4963, 0.7415, 0.3341, 0.6418, 0.9104, 0.8708, + 0.5701, 0.4124, 0.0029, 0.2245, 0.0994, 0.3629, 0.9844, + 0.1808, 0.8216, 0.7584, 0.5728, 0.8761, 0.5793, 0.6932, + 0.4974, 0.0700, 0.8292, 0.6429, 0.6033, 0.6616, 0.0149, + 0.6410, 0.6499, 0.6682, 0.9018, 0.5612, 0.6244, 0.2034, + 0.3658, 0.3966, 0.3922, 0.7716, 0.7977, 0.5707, 0.0225, + 0.3566, 0.5719, 0.1669, 0.0521, 0.4122, 0.2017, 0.1862, + 0.7381, 0.4027, 0.5838, 0.1008, 0.5373, 0.2087, 0.8661, + 0.2967, 0.0213, 0.6365, 0.4971, 0.3991, 0.3183, 0.3688, + 0.3715, 0.2215, 0.5958, 0.0267, 0.3628, 0.1001, 0.2964, + 0.0307, 0.4153, 0.0718, 0.7484, 0.2708, 0.2602, 0.2771, + 0.8610, 0.8293, 0.7956, 0.7654, 0.5931, 0.1625, 0.6279, + 0.7151, 0.0419, 0.5125, 0.4553, 0.3215, 0.8706, 0.3694, + 0.7482, 0.7484, 0.3599, 0.7352, 0.6473, 0.9284, 0.0336, + 0.7077, 0.6412, 0.7363, 0.5240, 0.2691, 0.4230, 0.7906, + 0.6749, 0.2034, 0.4311, 0.0985, 0.4884, 0.0018, 0.6710, + 0.6790, 0.2098, 0.0750, 0.9750, 0.1155, 0.2968, 0.0360, + 0.9908, 0.4869, 0.3234, 0.1121, 0.4329, 0.8802, 0.3352, + 0.0936, 0.2726, 0.0378, 0.1903, 0.6851, 0.7012, 0.7926, + 0.6112, 0.2624, 0.2279, 0.8759, 0.0133, 0.8322, 0.4001, + 0.7463, 0.9062, 0.7759, 0.6849, 0.1473, 0.1215, 0.1255, + 0.1145, 0.6020, 0.1543, 0.0107, 0.6992, 0.2812, 0.8585, + 0.0415, 0.8397, 0.0506, 0.0567, 0.7237, 0.0505, 0.1581, + 0.1605, 0.1352, 0.1599, 0.5700, 0.9940, 0.1719, 0.1559, + 0.3442, 0.3517, 0.8650, 0.0507, 0.0774, 0.3044, 0.9415, + 0.9135, 0.8143, 0.8978, 0.5331, 0.8830, 0.9179, 0.5019, + 0.4481, 0.5985, 0.9501, 0.1300, 0.5891, 0.6023, 0.5878, + 0.2328, 0.9375, 0.6776, 0.6109, 0.2392, 0.4025, 0.8957, + 0.9293, 0.1514, 0.1062, 0.4517, 0.4744, 0.6135, 0.1092, + 0.8682, 0.7074, 0.4025, 0.8245, 0.5438, 0.0306, 0.5168, + 0.3435, 0.4368, 0.3254, 0.8575, 0.6522, 0.4516, 0.3889, + 0.7155, 0.5152, 0.3747, 0.1934, 0.8799, 0.7374, 0.8447, + 0.3303, 0.6124, 0.4096, 0.4168, 0.5871, 0.3973, 0.3709, + 0.4537, 0.2659, 0.9664, 0.2243, 0.7921, 0.4993, 0.3369, + 0.8845, 0.0353, 0.1029, 0.2229, 0.2944, 0.8975, 0.0870, + 0.9800, 0.0723, 0.2951, 0.3726, 0.9571, 0.1796, 0.6703, + 0.7356, 0.3061, 0.0102, 0.8339, 0.5728, 0.2850, 0.7175, + 0.7657, 0.9492, 0.9447, 0.8513, 0.1834, 0.3093, 0.9589, + 0.5785, 0.8799, 0.1563, 0.7102, 0.6827, 0.3414, 0.8059, + 0.4581, 0.3597, 0.0538, 0.8422, 0.3224, 0.2475, 0.8804, + 0.5505, 0.1860, 0.4825, 0.8233, 0.1705, 0.0018, 0.0070, + 0.5773, 0.0579, 0.9972, 0.7747, 0.0470, 0.8156, 0.7927, + 0.4961, 0.6170, 0.3308, 0.0946, 0.7921, 0.7075, 0.3192, + 0.3788, 0.2776, 0.5390, 0.0384, 0.7359, 0.8495, 0.3753, + 0.9297, 0.8609, 0.4756, 0.2075, 0.8723, 0.3556, 0.0178, + 0.5989, 0.4108, 0.6837, 0.2932, 0.4760, 0.1799, 0.8359, + 0.5516, 0.6924, 0.8639, 0.7611, 0.6684, 0.1628, 0.2499, + 0.7207, 0.4081, 0.2940, 0.1700, 0.3918, 0.1758, 0.3345, + 0.6827, 0.4177, 0.3104, 0.9645, 0.7915, 0.1430, 0.3047, + 0.6795, 0.3375, 0.5591, 0.5936, 0.7980, 0.6445, 0.6860, + 0.0813, 0.3502, 0.7347, 0.4464, 0.2210, 0.6725, 0.4676, + 0.9791, 0.1497, 0.2862, 0.1219, 0.1364, 0.1316, 0.1297, + 0.6676, 0.4648, 0.2785, 0.8402, 0.3104, 0.9823, 0.2575, + 0.4886, 0.8197, 0.9829, 0.0189, 0.3986, 0.0292, 0.3866, + 0.7344, 0.1934, 0.2571, 0.1218, 0.8332, 0.4134, 0.3935, + 0.4616, 0.6195, 0.4292, 0.5706, 0.2806, 0.4996, 0.1909, + 0.0528, 0.9268, 0.1029, 0.4934, 0.3040, 0.5857, 0.8663, + 0.8906, 0.0055, 0.0546, 0.6358, 0.5019, 0.8777, 0.9935, + 0.0896, 0.1857, 0.6371, 0.8996, 0.9816, 0.0571, 0.1826, + 0.4938, 0.0971, 0.6974, 0.3356, 0.1667, 0.8245, 0.3869, + 0.4390, 0.0351, 0.8901, 0.7794, 0.3075, 0.8284, 0.9392, + 0.6635, 0.3030, 0.3204, 0.1313, 0.4423, 0.2744, 0.4833, + 0.1684, 0.6597, 0.4624, 0.9157, 0.3101, 0.2889, 0.6835, + 0.7483, 0.9270, 0.9666, 0.9122, 0.6004, 0.3227, 0.3422, + 0.0559, 0.3329, 0.3847, 0.8364, 0.0683, 0.8726, 0.6441, + 0.2936, 0.9992, 0.5330, 0.2236, 0.7202, 0.1538, 0.1463, + 0.9975, 0.1073, 0.9785, 0.8323, 0.9179, 0.1768, 0.2374, + 0.8639, 0.8611, 0.2135, 0.7852, 0.1105, 0.3423, 0.0570, + 0.7971, 0.2463, 0.9421, 0.6500, 0.4273, 0.4870, 0.7569, + 0.4048, 0.0956, 0.1875, 0.2027, 0.5062, 0.2254, 0.9266, + 0.0270, 1.0000, 0.5358, 0.7957, 0.0992, 0.7476, 0.7134, + 0.3073, 0.9515, 0.4257, 0.7879, 0.7532, 0.8575, 0.7050, + 0.6162, 0.9639, 0.9647, 0.3985, 0.9411, 0.7396, 0.6996, + 0.0128, 0.3998, 0.3520, 0.5992, 0.6274, 0.6761, 0.9873, + 0.5050, 0.6012, 0.7518, 0.4731, 0.3321, 0.8593, 0.9781, + 0.6447, 0.3754, 0.4844, 0.3666, 0.8391, 0.2700, 0.4478, + 0.1196, 0.7313, 0.5924, 0.5257, 0.2515, 0.9787, 0.2667, + 0.9283, 0.7402, 0.2859, 0.5403, 0.8058, 0.2628, 0.1197, + 0.8079, 0.1418, 0.9980, 0.9578, 0.3931, 0.1985, 0.1167, + 0.5381, 0.4910, 0.4833, 0.9287, 0.2466, 0.7456, 0.6309, + 0.3680, 0.9610, 0.5857, 0.5926, 0.5408, 0.3344, 0.8273, + 0.5335, 0.1632, 0.3312, 0.6302, 0.7085, 0.7097, 0.0159, + 0.2602, 0.3872, 0.3869, 0.3249, 0.4454, 0.7036, 0.5390, + 0.7601, 0.2638, 0.6789, 0.2000, 0.8420, 0.0251, 0.3391, + 0.4358, 0.1688, 0.4442, 0.5648, 0.1351, 0.9596, 0.2138, + 0.0593, 0.7952, 0.0630, 0.7767, 0.6377, 0.9130, 0.1033, + 0.7046, 0.0318, 0.5844, 0.3118, 0.4860, 0.4688, 0.8553, + 0.8250, 0.4534, 0.4391, 0.8300, 0.5927, 0.7682, 0.3238, + 0.7033, 0.4352, 0.4954, 0.9437, 0.9054, 0.5747, 0.7765, + 0.4424, 0.2929, 0.9590, 0.4225, 0.4001, 0.5871, 0.8788, + 0.3040, 0.9523, 0.7164, 0.5327, 0.5236, 0.4380, 0.1134, + 0.8473, 0.2882, 0.3523, 0.3539, 0.4121, 0.4672, 0.8323, + 0.7208, 0.2181, 0.0170, 0.1058, 0.3764, 0.0125, 0.6340, + 0.4615, 0.6428, 0.5669, 0.0760, 0.6375, 0.8387, 0.0311, + 0.1713, 0.0010, 0.4339, 0.8789, 0.1521, 0.9377, 0.9324, + 0.6243, 0.2326, 0.2212, 0.8896, 0.1088, 0.3471, 0.7677, + 0.3772, 0.5205, 0.3621, 0.8824, 0.7207, 0.7693, 0.7233, + 0.8563, 0.4628, 0.5350, 0.0480, 0.7499, 0.9678, 0.7096, + 0.1312, 0.6863, 0.8271, 0.7358, 0.3418, 0.4553, 0.0225, + 0.8086, 0.0509, 0.9180, 0.0939, 0.1837, 0.4209, 0.0984, + 0.9255, 0.7897, 0.0222, 0.2331, 0.7623, 0.7332, 0.8990, + 0.2149, 0.2188, 0.7875, 0.2162, 0.2017, 0.2101, 0.7395, + 0.5164, 0.1275, 0.5592, 0.8372, 0.9368, 0.1299, 0.2527, + 0.2989, 0.4241, 0.6867, 0.0859, 0.4353, 0.3463, 0.0852, + 0.7482, 0.9930, 0.0910, 0.3557, 0.8138, 0.1492, 0.1226, + 0.9829, 0.3178, 0.1808, 0.6471, 0.0049, 0.9936, 0.6310, + 0.8742, 0.7801, 0.9697, 0.4503, 0.7427, 0.6939, 0.9810, + 0.1235, 0.6928, 0.2526, 0.6531, 0.7614, 0.2766, 0.3928, + 0.6482, 0.3744, 0.9162, 0.9336, 0.3657, 0.9951, 0.7185, + 0.4848, 0.0849, 0.3631, 0.6820, 0.9602, 0.9376, 0.8353, + 0.1594, 0.7467, 0.8948, 0.6829, 0.9264, 0.7902, 0.7239, + 0.8735, 0.3875, 0.0528, 0.7009, 0.5289, 0.2944, 0.4509, + 0.5369, 0.6869, 0.2268, 0.2641, 0.2154, 0.3362, 0.6552, + 0.1327, 0.1218, 0.6611, 0.0654, 0.0444, 0.7917, 0.2227, + 0.5871, 0.9300, 0.2691, 0.6683, 0.2163, 0.8183, 0.6909, + 0.0176, 0.0647, 0.9873, 0.6484, 0.3203, 0.2129, 0.9498, + 0.8937, 0.7407, 0.7572, 0.9827, 0.2276, 0.4923, 0.3868, + 0.3238, 0.4139, 0.4523, 0.9314, 0.2645, 0.3099]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.9394, 0.5361, 0.0926, ..., 0.1333, 0.7033, 0.7122]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 9.234081745147705 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 142368 -ss 10000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.641618490219116} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([1350, 1465, 4190, 6900, 6571, 5844, 4736, 324, 9249, + 4549, 8900, 1195, 9063, 17, 7365, 9356, 2846, 1690, + 3749, 1888, 862, 8180, 9473, 3977, 5876, 6416, 6859, + 7325, 678, 7412, 524, 1679, 6675, 3544, 6761, 5863, + 1068, 1910, 8050, 5074, 3644, 5672, 2657, 2220, 3680, + 3869, 2170, 9920, 5472, 6846, 1556, 5671, 175, 5132, + 2577, 8845, 2796, 3794, 8679, 3242, 2471, 9643, 3149, + 1963, 477, 3306, 128, 7262, 8119, 314, 7239, 5180, + 7202, 2643, 4302, 4311, 1590, 7790, 3773, 8804, 9774, + 2553, 9496, 5566, 1143, 7175, 1004, 2781, 372, 2208, + 7381, 6760, 7287, 1604, 2915, 9765, 1879, 938, 8046, + 4870, 6940, 4820, 8392, 5340, 4182, 5114, 2023, 1770, + 6402, 82, 2384, 7877, 2701, 2498, 2104, 9483, 669, + 9528, 5633, 1059, 3421, 3906, 4248, 6650, 9824, 1201, + 6102, 134, 2120, 8662, 7792, 9525, 5975, 1053, 6589, + 2129, 3517, 7592, 8589, 4303, 8461, 4477, 5747, 151, + 4870, 4529, 3641, 7250, 392, 4557, 4767, 3949, 3212, + 6761, 5818, 2538, 1345, 6586, 9842, 9149, 9262, 9581, + 8332, 5787, 6867, 3334, 3929, 9915, 9165, 4571, 9626, + 7362, 4285, 9980, 8689, 7517, 3312, 4487, 2526, 8915, + 9807, 716, 901, 2067, 6046, 9001, 7911, 408, 148, + 1317, 5920, 3284, 7801, 7588, 8770, 6560, 348, 6988, + 8097, 3984, 3485, 3409, 9201, 5638, 6421, 3563, 3632, + 1452, 6631, 6346, 2233, 5327, 64, 3152, 8667, 5946, + 4510, 1417, 3779, 8867, 2905, 1369, 135, 8079, 9417, + 187, 7716, 9929, 5719, 3498, 2120, 8640, 5146, 9731, + 8710, 9996, 9692, 1206, 6217, 1310, 7099, 2614, 8044, + 1982, 4290, 9595, 7939, 9679, 9571, 7958, 1758, 6195, + 5533, 9545, 406, 917, 1357, 5574, 1085, 7923, 7220, + 6422, 8549, 2682, 40, 3795, 9767, 3767, 5240, 158, + 3048, 7355, 4332, 6816, 4937, 8246, 9715, 8200, 9814, + 6924, 8065, 6446, 6243, 4976, 4917, 5512, 4910, 3708, + 6023, 7639, 1133, 6448, 4950, 8492, 7993, 8584, 1340, + 5468, 6297, 6716, 8997, 6226, 6910, 7244, 6616, 1449, + 5171, 5393, 8543, 2497, 1323, 5505, 4755, 5970, 388, + 2929, 385, 1335, 7880, 9728, 5434, 6161, 2897, 3622, + 6161, 1650, 8903, 6820, 7357, 9843, 3756, 4645, 5310, + 1445, 7447, 1450, 6550, 1861, 6021, 3492, 1610, 5698, + 4827, 6115, 5157, 1608, 4965, 737, 1903, 4025, 2119, + 6552, 595, 4810, 130, 3982, 137, 8138, 5899, 7598, + 5942, 3724, 5818, 6843, 8546, 4893, 4811, 391, 3514, + 9590, 3749, 2481, 8733, 9761, 9190, 5512, 9765, 134, + 8737, 2194, 9046, 3630, 3577, 1253, 9106, 1281, 5455, + 2534, 8025, 1117, 9647, 9761, 3834, 8587, 9342, 4191, + 9213, 3915, 2071, 2631, 849, 3316, 4207, 5597, 9512, + 7014, 9934, 1359, 6351, 1942, 6581, 6730, 6231, 5782, + 5904, 9677, 532, 7482, 4382, 7965, 9754, 4297, 5473, + 3176, 7459, 9266, 9112, 9056, 5480, 4330, 3498, 3249, + 887, 2323, 930, 7809, 58, 2094, 769, 5008, 5797, + 6898, 9453, 808, 7053, 398, 7426, 1736, 634, 7990, + 3100, 1720, 4719, 4760, 7828, 648, 5462, 3365, 7079, + 7345, 2413, 8136, 6049, 5463, 2961, 6046, 4524, 6494, + 9373, 3832, 7595, 4732, 9656, 3425, 2265, 3526, 7277, + 1225, 8233, 9557, 960, 3905, 1045, 4119, 8053, 8659, + 1372, 8807, 1493, 4002, 9729, 3897, 7672, 5249, 1203, + 6003, 5841, 3864, 7129, 5663, 2654, 493, 7397, 7287, + 8513, 5254, 1707, 4926, 5022, 9139, 5676, 8296, 5115, + 9657, 591, 3536, 5723, 4822, 5176, 7346, 8375, 9143, + 2356, 7880, 2943, 6276, 2137, 3628, 59, 290, 6930, + 2063, 7839, 1196, 5604, 6563, 8782, 9536, 5108, 3877, + 429, 6184, 7060, 3523, 3867, 5457, 5143, 8932, 5594, + 5593, 2868, 1998, 3179, 1071, 9873, 6395, 5298, 9745, + 5572, 1722, 4856, 9429, 1499, 3117, 6370, 8257, 4390, + 3738, 9994, 4823, 6585, 1467, 2601, 5458, 2716, 1146, + 1738, 33, 9872, 5036, 1557, 1944, 2879, 4044, 2272, + 7676, 6388, 1904, 6101, 7987, 1700, 4395, 343, 9841, + 1734, 7922, 7616, 779, 5161, 468, 8805, 3563, 3932, + 1112, 1437, 1123, 8651, 9745, 3719, 4795, 7772, 9403, + 4517, 7987, 9197, 2190, 6957, 7720, 6929, 726, 1110, + 9372, 5858, 5956, 8878, 9550, 1968, 4362, 1304, 9796, + 7292, 3154, 8295, 3865, 7777, 3161, 3378, 1822, 7853, + 208, 589, 1972, 9911, 1971, 862, 9849, 3414, 9130, + 579, 4654, 92, 1475, 5598, 8930, 3936, 5479, 4313, + 185, 4782, 8779, 9083, 418, 1106, 2313, 6235, 7286, + 152, 2775, 6751, 650, 4919, 8921, 9634, 1984, 5779, + 1783, 7443, 6754, 7424, 1444, 6666, 409, 7791, 2642, + 1544, 5312, 3341, 5058, 6924, 1677, 5851, 5827, 2727, + 2075, 6264, 3079, 359, 2843, 330, 8651, 3205, 9111, + 3779, 6781, 64, 3792, 2666, 6804, 8462, 1474, 2290, + 1836, 9949, 6173, 4550, 9201, 1274, 5067, 351, 6480, + 6711, 8407, 7904, 5366, 4929, 444, 108, 2997, 7484, + 8340, 6161, 8073, 6104, 8943, 694, 6149, 8601, 1196, + 6575, 9937, 5094, 7925, 5722, 4565, 1084, 8988, 2783, + 7886, 6397, 7800, 2120, 9277, 5526, 5542, 1074, 1789, + 5085, 3061, 759, 7623, 4901, 1186, 3367, 1888, 9959, + 2396, 9680, 360, 1868, 6943, 9939, 5200, 5990, 7250, + 6064, 4697, 2291, 9159, 5133, 7533, 58, 7263, 8045, + 653, 6028, 7381, 932, 5857, 3072, 5547, 6647, 6032, + 5013, 1366, 1918, 6452, 4364, 581, 9863, 1502, 2117, + 5639, 4065, 1307, 3603, 5711, 481, 9225, 4458, 5133, + 5766, 2525, 6579, 6101, 955, 4014, 6750, 3371, 125, + 7603, 502, 2892, 6603, 2344, 8601, 3165, 2311, 9192, + 9546, 5043, 7844, 8591, 4935, 1765, 6671, 3193, 7181, + 2586, 5711, 3133, 5348, 7042, 9417, 8381, 100, 9386, + 3078, 5274, 1139, 6265, 8146, 6636, 5554, 6892, 1948, + 4479, 3693, 6919, 173, 9040, 5511, 2922, 6123, 9263, + 1418, 7264, 9857, 4588, 2740, 3894, 934, 1897, 9124, + 2393, 5100, 6701, 4211, 7855, 8655, 7893, 6373, 880, + 3410, 9500, 817, 9700, 622, 8424, 8906, 1192, 8082, + 5342, 4260, 2298, 5844, 8318, 1796, 365, 9287, 9942, + 1981, 5532, 9956, 1644, 1875, 1279, 1792, 9840, 4785, + 2478, 8953, 6214, 7060, 7798, 5291, 3255, 4370, 6301, + 9417, 5935, 5835, 7402, 7682, 5438, 9081, 5509, 8833, + 4566, 7011, 7184, 9706, 5339, 6813, 8443, 6535, 4377, + 9556, 509, 7923, 1426, 269, 4969, 957, 9645, 915, + 2300, 7682, 2902, 3368, 6024, 5901, 8615, 9741, 4861, + 1715, 1852, 8544, 3363, 7624, 4922, 8831, 1155, 5064, + 5765, 8030, 5214, 394, 5236, 4059, 7423, 941, 4185, + 7107, 525, 2019, 9115, 9184, 9216, 3622, 6792, 7696, + 6453, 9771, 541, 5255, 3317, 5383, 7392, 5897, 2023, + 6649, 4678, 2681, 6438, 365, 8269, 3577, 3723, 8264, + 2108]), + values=tensor([4.4965e-01, 1.3769e-01, 9.5035e-01, 5.7293e-01, + 7.7954e-01, 9.7503e-01, 1.4322e-01, 1.1818e-01, + 9.2953e-01, 8.1415e-01, 2.5238e-01, 6.0614e-01, + 4.5041e-01, 9.3390e-01, 9.7710e-01, 9.9499e-01, + 6.9516e-01, 1.2549e-01, 6.3390e-02, 4.9786e-01, + 2.6705e-01, 8.4035e-01, 4.7765e-01, 3.0191e-01, + 6.1763e-01, 6.4828e-01, 3.9165e-01, 4.0915e-01, + 4.2696e-01, 5.5891e-01, 9.9986e-01, 6.3730e-01, + 2.9036e-01, 6.8686e-01, 6.5946e-01, 4.8732e-01, + 3.4969e-01, 4.5554e-01, 8.7839e-01, 2.7698e-01, + 3.7226e-01, 1.5065e-02, 7.8865e-01, 6.0802e-01, + 5.6511e-01, 2.4244e-01, 5.1242e-02, 4.0738e-01, + 9.8710e-01, 1.9007e-01, 5.9800e-01, 8.4842e-01, + 9.1312e-01, 5.7446e-01, 5.4363e-01, 8.4750e-01, + 7.2541e-01, 8.4173e-01, 2.0399e-01, 4.5103e-01, + 1.4989e-01, 4.0298e-02, 1.7179e-01, 1.9945e-01, + 4.2389e-01, 3.1067e-01, 4.1838e-01, 4.7559e-01, + 8.5569e-01, 1.8368e-01, 4.8212e-01, 2.5203e-01, + 9.8680e-01, 4.5715e-01, 3.9215e-01, 8.5828e-01, + 9.4023e-01, 6.4093e-01, 7.0762e-01, 9.1246e-02, + 1.3960e-01, 8.7422e-01, 2.0504e-01, 5.2817e-01, + 4.5923e-02, 7.5340e-01, 4.3166e-02, 2.0079e-01, + 7.8776e-01, 7.4413e-01, 8.2810e-01, 4.3091e-02, + 6.3484e-01, 9.8935e-01, 4.7099e-01, 7.2918e-01, + 5.9483e-01, 8.6295e-01, 7.3936e-01, 3.6303e-01, + 5.6024e-01, 7.7622e-02, 1.0867e-01, 4.7041e-01, + 8.9265e-02, 9.1467e-01, 5.3849e-01, 1.8243e-01, + 5.3073e-01, 1.6104e-01, 5.5963e-01, 7.7433e-01, + 6.2087e-01, 2.9998e-01, 8.4995e-01, 2.2873e-02, + 8.7271e-02, 5.9852e-02, 6.5516e-01, 8.3316e-01, + 6.1547e-01, 6.3866e-01, 3.5342e-02, 9.7500e-01, + 4.1725e-01, 8.5943e-02, 3.3098e-02, 2.9393e-01, + 1.5172e-01, 6.5877e-01, 2.8169e-01, 8.0348e-01, + 7.7073e-01, 8.8877e-02, 6.6121e-01, 5.8345e-01, + 2.0661e-01, 3.7722e-01, 7.1221e-01, 4.5307e-01, + 3.1638e-01, 3.0489e-01, 1.1920e-01, 4.1591e-01, + 8.9518e-01, 5.0347e-01, 5.0858e-01, 3.2186e-01, + 7.4868e-01, 6.7171e-01, 9.3244e-01, 5.1430e-01, + 5.5016e-01, 2.8409e-01, 8.7062e-01, 2.5604e-01, + 9.6683e-01, 6.2006e-01, 8.0527e-02, 8.3669e-01, + 4.1226e-01, 3.0537e-01, 8.3561e-01, 3.9863e-01, + 5.3343e-01, 7.4499e-01, 4.3410e-01, 2.7897e-02, + 9.3765e-01, 8.4855e-01, 1.2336e-01, 1.1406e-01, + 3.0397e-01, 5.7188e-01, 3.3977e-01, 5.2731e-01, + 9.7160e-01, 3.2639e-01, 4.2242e-01, 3.2683e-02, + 9.8412e-01, 1.9910e-01, 2.5882e-01, 5.8518e-01, + 6.3761e-01, 7.2072e-01, 8.3748e-01, 2.4796e-02, + 9.0469e-01, 3.8373e-01, 8.3620e-01, 9.4335e-02, + 4.4129e-01, 4.0587e-01, 7.4687e-01, 5.2634e-01, + 1.3717e-01, 6.0904e-01, 4.2155e-01, 4.1423e-01, + 3.9847e-01, 8.8079e-02, 1.4881e-01, 3.8816e-01, + 5.2840e-02, 9.9597e-01, 3.7101e-01, 6.4058e-01, + 2.2169e-01, 9.4454e-01, 7.6950e-01, 1.2550e-01, + 3.3727e-02, 1.9034e-01, 7.9984e-01, 1.3267e-01, + 5.6674e-01, 3.2196e-01, 8.4859e-01, 4.3616e-01, + 5.3671e-02, 4.6213e-01, 3.4971e-01, 9.0445e-01, + 6.7961e-02, 6.2929e-01, 4.7567e-01, 1.9572e-01, + 9.0426e-01, 9.0016e-01, 4.5447e-01, 2.6630e-01, + 4.9915e-01, 4.7508e-01, 9.2903e-01, 8.0348e-01, + 5.8895e-01, 5.5352e-01, 2.2582e-01, 5.7060e-01, + 8.1496e-01, 4.4092e-01, 7.1190e-01, 9.3405e-01, + 4.8151e-01, 4.4619e-02, 5.0619e-01, 6.3555e-02, + 1.1898e-01, 9.5625e-01, 4.3337e-02, 8.4608e-01, + 5.4897e-01, 7.6274e-01, 5.6999e-01, 5.3584e-01, + 9.6706e-01, 4.7222e-01, 6.2173e-01, 2.9964e-01, + 5.3674e-01, 4.0259e-01, 2.0631e-01, 7.9009e-01, + 5.8390e-01, 3.0329e-01, 4.0575e-01, 1.9726e-01, + 4.3732e-01, 6.0232e-01, 4.7348e-01, 1.9995e-01, + 5.4697e-01, 8.5390e-01, 9.9359e-01, 6.6034e-01, + 3.4418e-01, 8.4510e-02, 8.6703e-01, 2.9267e-01, + 2.0810e-03, 7.2851e-01, 6.6168e-01, 6.6317e-01, + 1.1115e-01, 6.0774e-03, 6.7142e-01, 1.1584e-01, + 7.1563e-01, 1.7755e-01, 5.1168e-01, 9.3821e-02, + 8.1249e-01, 1.8413e-01, 3.5159e-01, 2.4573e-01, + 4.2074e-01, 7.3776e-01, 5.3183e-01, 8.0631e-01, + 7.7750e-01, 5.5525e-01, 2.8671e-01, 6.1549e-01, + 7.1549e-01, 9.9895e-01, 5.2674e-01, 7.3041e-01, + 6.6176e-01, 3.6282e-01, 7.6034e-01, 4.0504e-01, + 2.0401e-01, 2.5487e-01, 1.9033e-01, 1.9623e-01, + 3.6284e-02, 4.2903e-01, 9.9371e-01, 6.3885e-01, + 2.5968e-02, 4.8586e-01, 6.6560e-01, 2.0616e-01, + 3.1688e-01, 6.5113e-01, 1.4279e-01, 2.1929e-01, + 5.0027e-01, 4.5512e-01, 7.2149e-01, 9.4504e-01, + 1.7168e-01, 2.2541e-01, 8.0417e-01, 3.4956e-01, + 8.3679e-01, 1.7641e-01, 9.6793e-01, 5.6210e-01, + 3.9701e-01, 1.3797e-01, 8.9202e-01, 3.2792e-01, + 4.6708e-03, 5.7283e-01, 6.0612e-01, 1.8272e-01, + 3.6646e-01, 7.2284e-01, 1.8383e-01, 2.9022e-01, + 7.9856e-01, 1.1343e-01, 2.3634e-01, 7.7130e-01, + 6.8456e-01, 1.7480e-01, 4.6250e-01, 2.4163e-01, + 8.8702e-01, 2.3058e-01, 5.1560e-02, 4.7027e-01, + 3.3772e-03, 7.2097e-02, 8.7375e-01, 4.0896e-01, + 2.9561e-01, 6.5640e-01, 5.7376e-01, 4.6184e-01, + 1.1663e-03, 9.9713e-01, 3.9355e-01, 8.6592e-01, + 6.8146e-02, 5.3923e-01, 9.7404e-01, 5.4723e-01, + 7.0125e-01, 5.4053e-01, 7.3082e-01, 9.7785e-01, + 3.3078e-02, 6.3749e-01, 6.2345e-01, 8.3051e-01, + 2.7383e-01, 3.6590e-01, 7.1021e-02, 6.9549e-01, + 7.7323e-03, 3.9891e-01, 6.7410e-01, 3.3211e-01, + 6.5325e-01, 3.6018e-01, 6.0362e-01, 8.1452e-01, + 9.4481e-01, 5.7955e-02, 4.9542e-01, 2.6184e-01, + 9.7487e-01, 4.9456e-01, 8.7892e-01, 6.6865e-01, + 5.8486e-01, 2.1761e-01, 8.5696e-01, 5.0919e-01, + 5.9215e-01, 3.5729e-01, 1.3459e-02, 1.6525e-01, + 7.5009e-03, 1.0552e-02, 5.5984e-01, 3.7025e-01, + 3.7418e-01, 8.5195e-01, 7.4716e-01, 6.0013e-01, + 4.7662e-01, 8.2335e-01, 6.4900e-01, 8.0351e-01, + 2.5588e-01, 1.9713e-02, 6.8762e-01, 5.8259e-01, + 3.1885e-01, 3.6384e-01, 8.9646e-01, 7.1272e-01, + 2.8574e-01, 3.1895e-02, 2.6414e-03, 9.8227e-02, + 9.4357e-02, 9.7996e-01, 4.3905e-02, 2.3021e-01, + 7.1295e-01, 6.1474e-01, 7.0395e-01, 5.6433e-01, + 7.0563e-01, 4.9830e-01, 1.9892e-01, 8.6877e-01, + 6.0980e-01, 4.8155e-02, 6.3296e-01, 5.8453e-01, + 1.9986e-01, 3.3112e-01, 4.0151e-01, 5.4000e-01, + 1.8111e-01, 1.3640e-01, 8.8587e-01, 3.0679e-01, + 6.3513e-01, 7.3512e-01, 7.9733e-01, 4.2402e-01, + 1.6855e-01, 6.3117e-01, 4.8672e-01, 1.8039e-01, + 3.3868e-01, 2.7695e-01, 8.9797e-01, 4.2602e-01, + 6.0119e-01, 6.6892e-01, 4.7692e-01, 9.6219e-01, + 8.0484e-03, 6.4306e-01, 5.9041e-01, 8.0576e-01, + 9.0822e-01, 1.9501e-01, 4.1124e-01, 7.9817e-01, + 9.1499e-01, 9.9412e-01, 5.3613e-01, 4.8755e-01, + 3.6868e-01, 6.5275e-01, 8.9945e-01, 4.7785e-01, + 2.3655e-01, 6.0433e-01, 1.1690e-01, 6.1542e-01, + 7.9383e-01, 1.1610e-01, 3.0181e-01, 2.1347e-01, + 3.3610e-01, 2.0677e-01, 7.2341e-03, 6.2776e-01, + 6.5419e-01, 9.4441e-01, 8.8461e-04, 5.3031e-01, + 4.1369e-01, 9.4148e-01, 3.5549e-01, 4.1555e-01, + 5.8924e-01, 3.9711e-02, 6.9593e-02, 9.8539e-01, + 5.4075e-01, 4.7812e-01, 8.5548e-01, 8.1065e-01, + 6.5941e-01, 6.6644e-01, 9.6480e-01, 5.4150e-01, + 3.9903e-01, 4.8873e-01, 3.2687e-01, 9.4824e-01, + 5.1894e-01, 5.8274e-01, 1.6827e-01, 5.5825e-01, + 8.2071e-01, 1.6344e-01, 5.2556e-01, 1.1193e-01, + 5.0648e-01, 3.6618e-01, 9.5810e-01, 1.2800e-01, + 1.3206e-03, 8.7762e-01, 2.8271e-01, 1.0213e-01, + 5.9400e-01, 3.9522e-01, 9.9260e-01, 7.4976e-01, + 2.6447e-01, 7.7409e-01, 4.1362e-01, 2.2793e-01, + 2.8623e-01, 9.4784e-01, 1.8629e-01, 5.5902e-01, + 9.8596e-01, 4.8008e-01, 2.9452e-01, 1.9370e-01, + 3.6762e-01, 8.4825e-01, 3.2358e-01, 2.2154e-01, + 5.2395e-01, 6.2301e-01, 4.6454e-01, 1.9464e-01, + 8.7654e-01, 6.1940e-01, 9.7699e-01, 3.6808e-01, + 5.8060e-01, 9.3912e-01, 9.3195e-01, 1.9902e-01, + 5.0862e-01, 6.4487e-01, 2.7873e-01, 8.0248e-02, + 7.8608e-01, 4.3327e-01, 7.4604e-01, 3.0959e-01, + 3.9353e-01, 9.8239e-01, 7.6245e-01, 9.2901e-01, + 4.6128e-01, 3.6167e-01, 9.0955e-01, 3.1202e-01, + 4.4085e-02, 6.2633e-01, 8.7656e-01, 7.4675e-01, + 2.9172e-01, 6.1556e-01, 3.1529e-01, 3.4902e-01, + 5.4348e-01, 4.2744e-01, 9.8776e-01, 8.2751e-01, + 5.7028e-01, 6.7691e-01, 3.1950e-01, 7.9881e-01, + 8.9268e-01, 2.2836e-01, 7.5059e-01, 5.6039e-02, + 8.4118e-01, 6.5572e-01, 5.5163e-01, 3.1458e-01, + 6.1704e-01, 5.6093e-02, 7.9767e-01, 9.4600e-01, + 2.1928e-01, 3.9326e-02, 5.6560e-01, 7.8186e-01, + 8.9823e-01, 6.0816e-01, 4.7673e-01, 4.3366e-01, + 9.1734e-01, 5.8754e-01, 9.5818e-01, 5.0338e-01, + 4.7101e-01, 4.2574e-01, 8.8347e-01, 9.9629e-01, + 3.7466e-01, 9.2046e-01, 1.9630e-01, 5.6342e-01, + 3.9690e-01, 3.8488e-01, 7.6991e-01, 4.0605e-01, + 8.9007e-01, 6.1929e-01, 7.5840e-01, 3.6900e-01, + 7.9131e-01, 4.8074e-01, 2.5482e-01, 3.6580e-01, + 6.8986e-01, 1.9103e-01, 8.0298e-01, 5.5040e-01, + 6.0138e-01, 2.4459e-01, 1.8774e-02, 7.6177e-01, + 1.9747e-01, 7.4636e-01, 2.7241e-01, 6.3384e-01, + 6.8666e-01, 5.8283e-01, 2.4638e-01, 4.5053e-01, + 7.7113e-02, 9.6400e-01, 7.5084e-01, 9.9097e-01, + 8.2369e-01, 1.2518e-01, 8.7079e-01, 8.8731e-01, + 6.6279e-01, 2.0421e-01, 8.1221e-02, 9.8411e-01, + 2.6106e-01, 2.3338e-02, 2.6480e-02, 4.0599e-01, + 2.9908e-01, 4.8339e-01, 7.8936e-01, 9.9101e-01, + 9.0942e-01, 2.0788e-01, 2.2735e-01, 8.7072e-01, + 5.0509e-01, 2.3135e-01, 4.7407e-01, 7.4017e-01, + 4.9692e-01, 3.6074e-01, 4.9514e-02, 1.2661e-01, + 9.7856e-02, 2.2153e-01, 1.5779e-02, 8.8678e-01, + 9.8514e-01, 7.5711e-01, 2.2177e-01, 2.4731e-01, + 8.5599e-02, 7.0071e-01, 8.3437e-01, 6.5447e-01, + 2.5607e-01, 4.0526e-01, 4.8411e-01, 6.8148e-01, + 6.9610e-01, 3.9874e-01, 4.8623e-01, 8.7722e-01, + 2.8142e-01, 2.9443e-01, 8.8637e-01, 1.8955e-01, + 3.6086e-02, 1.6641e-01, 7.8338e-01, 4.6497e-01, + 1.4233e-02, 5.7884e-01, 3.3947e-01, 4.7233e-02, + 4.2210e-02, 2.4198e-01, 7.7171e-01, 7.9947e-01, + 9.6589e-01, 6.1429e-01, 1.2277e-01, 2.0682e-01, + 3.4285e-01, 7.9675e-01, 2.9050e-01, 7.8865e-01, + 7.5171e-01, 4.5477e-01, 5.8210e-01, 7.8888e-01, + 9.8955e-02, 2.5763e-01, 8.5833e-01, 3.0164e-01, + 3.9566e-01, 6.7231e-01, 3.3608e-01, 6.6018e-01, + 1.3947e-01, 2.1432e-01, 8.3950e-01, 8.7634e-02, + 8.7303e-02, 7.9920e-01, 2.1686e-01, 2.3929e-01, + 6.2304e-01, 2.5707e-01, 4.4665e-01, 6.8967e-01, + 6.9303e-01, 2.2866e-01, 9.2399e-01, 5.7817e-01, + 5.2984e-01, 3.2154e-01, 7.8238e-01, 4.0391e-01, + 9.0909e-01, 4.9607e-02, 5.2078e-01, 2.3283e-01, + 4.9465e-01, 6.1527e-01, 4.3228e-01, 9.0330e-01, + 8.0827e-01, 6.9746e-01, 9.6769e-01, 9.2643e-01, + 9.3397e-01, 3.8602e-01, 6.5755e-01, 8.2635e-01, + 1.0202e-01, 1.5856e-01, 1.2288e-01, 8.4879e-02, + 3.2458e-01, 2.9655e-01, 1.7742e-01, 9.3450e-01, + 1.0076e-01, 7.2645e-01, 8.1806e-02, 4.6658e-01, + 3.8093e-01, 3.3309e-01, 6.5422e-01, 2.5819e-01, + 1.5107e-01, 8.8510e-01, 4.3293e-01, 9.2351e-01, + 8.9183e-01, 3.2430e-01, 4.3852e-01, 8.7239e-01, + 3.5201e-01, 4.2486e-01, 7.0879e-01, 6.1583e-01, + 1.1565e-01, 7.0478e-01, 8.8022e-01, 2.5408e-01, + 7.3129e-02, 8.2514e-01, 8.2613e-01, 3.2247e-01, + 3.3085e-01, 8.9530e-01, 1.0707e-01, 4.3826e-01, + 7.8570e-01, 9.4198e-01, 7.2354e-01, 3.4066e-01, + 7.3480e-01, 4.2036e-01, 6.3356e-01, 2.9797e-01, + 8.2827e-01, 7.8339e-01, 9.0276e-01, 2.0607e-01, + 9.7252e-01, 7.1435e-01, 4.2314e-01, 9.8891e-01, + 6.9301e-01, 5.7219e-01, 9.0386e-01, 7.0463e-01, + 7.1908e-04, 5.4692e-01, 6.0821e-01, 9.8439e-01, + 2.8373e-01, 4.8915e-01, 5.5931e-01, 9.7619e-01, + 7.4567e-01, 7.0938e-01, 1.2593e-01, 6.1318e-01, + 8.1283e-01, 9.8667e-02, 3.3716e-02, 5.7522e-01, + 1.9639e-01, 2.9416e-01, 5.5823e-01, 1.8549e-01, + 3.1942e-01, 7.4665e-01, 7.2327e-01, 9.5305e-01, + 1.9036e-02, 5.3955e-01, 2.4116e-01, 9.2667e-01, + 1.4653e-01, 9.8715e-01, 5.3480e-01, 6.0516e-01, + 6.0680e-01, 8.5987e-01, 3.9984e-01, 3.1004e-01, + 8.8724e-01, 7.4026e-01, 4.4687e-01, 8.9641e-01, + 2.4418e-01, 2.4025e-02, 5.5509e-01, 8.9647e-01, + 1.9417e-01, 6.6319e-01, 5.1484e-02, 3.4897e-01, + 5.1031e-01, 3.0611e-01, 3.8996e-01, 3.8358e-01, + 6.9904e-01, 6.9426e-01, 7.9483e-01, 3.3074e-01, + 4.4849e-01, 4.5771e-01, 3.3817e-01, 9.0376e-01, + 2.9871e-01, 1.3521e-01, 4.3356e-01, 8.7768e-02, + 2.4144e-01, 7.4490e-01, 5.2568e-01, 6.6800e-01, + 6.9455e-01, 8.8174e-01, 2.7533e-01, 9.6499e-01, + 9.5226e-01, 6.3027e-01, 6.0446e-02, 2.4209e-01, + 8.6906e-01, 3.5261e-01, 1.4614e-01, 9.4982e-01, + 7.0784e-02, 4.6539e-01, 8.8096e-01, 6.3553e-01, + 5.2585e-01, 6.7815e-02, 6.7186e-01, 7.0013e-01, + 3.2879e-01, 8.4313e-01, 2.0230e-01, 6.7661e-01, + 2.5127e-02, 8.3948e-01, 7.1261e-01, 9.8116e-01, + 5.7618e-01, 7.3962e-01, 4.1140e-01, 1.7002e-01, + 2.9786e-02, 6.1256e-01, 2.2368e-01, 2.3720e-01, + 5.1041e-01, 5.8688e-01, 3.2746e-01, 3.0206e-01, + 4.6125e-01, 3.9820e-01, 9.6772e-01, 2.2109e-01, + 6.7044e-01, 9.0422e-02, 7.0940e-01, 4.4105e-01, + 8.1398e-01, 1.1710e-01, 4.8937e-02, 6.8242e-02, + 2.0881e-01, 5.1602e-01, 9.9962e-01, 5.4247e-01, + 2.9660e-01, 5.2390e-01, 5.7505e-01, 8.5464e-01, + 9.4683e-01, 8.0727e-01, 2.3938e-01, 5.1948e-01, + 4.7982e-01, 5.9710e-01, 1.9899e-01, 5.7719e-01, + 9.9101e-01, 8.2375e-01, 4.2012e-01, 4.5169e-01, + 4.0205e-02, 5.1058e-03, 5.9797e-01, 3.2629e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.5424, 0.9332, 0.7035, ..., 0.9872, 0.5484, 0.9353]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.641618490219116 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([1350, 1465, 4190, 6900, 6571, 5844, 4736, 324, 9249, + 4549, 8900, 1195, 9063, 17, 7365, 9356, 2846, 1690, + 3749, 1888, 862, 8180, 9473, 3977, 5876, 6416, 6859, + 7325, 678, 7412, 524, 1679, 6675, 3544, 6761, 5863, + 1068, 1910, 8050, 5074, 3644, 5672, 2657, 2220, 3680, + 3869, 2170, 9920, 5472, 6846, 1556, 5671, 175, 5132, + 2577, 8845, 2796, 3794, 8679, 3242, 2471, 9643, 3149, + 1963, 477, 3306, 128, 7262, 8119, 314, 7239, 5180, + 7202, 2643, 4302, 4311, 1590, 7790, 3773, 8804, 9774, + 2553, 9496, 5566, 1143, 7175, 1004, 2781, 372, 2208, + 7381, 6760, 7287, 1604, 2915, 9765, 1879, 938, 8046, + 4870, 6940, 4820, 8392, 5340, 4182, 5114, 2023, 1770, + 6402, 82, 2384, 7877, 2701, 2498, 2104, 9483, 669, + 9528, 5633, 1059, 3421, 3906, 4248, 6650, 9824, 1201, + 6102, 134, 2120, 8662, 7792, 9525, 5975, 1053, 6589, + 2129, 3517, 7592, 8589, 4303, 8461, 4477, 5747, 151, + 4870, 4529, 3641, 7250, 392, 4557, 4767, 3949, 3212, + 6761, 5818, 2538, 1345, 6586, 9842, 9149, 9262, 9581, + 8332, 5787, 6867, 3334, 3929, 9915, 9165, 4571, 9626, + 7362, 4285, 9980, 8689, 7517, 3312, 4487, 2526, 8915, + 9807, 716, 901, 2067, 6046, 9001, 7911, 408, 148, + 1317, 5920, 3284, 7801, 7588, 8770, 6560, 348, 6988, + 8097, 3984, 3485, 3409, 9201, 5638, 6421, 3563, 3632, + 1452, 6631, 6346, 2233, 5327, 64, 3152, 8667, 5946, + 4510, 1417, 3779, 8867, 2905, 1369, 135, 8079, 9417, + 187, 7716, 9929, 5719, 3498, 2120, 8640, 5146, 9731, + 8710, 9996, 9692, 1206, 6217, 1310, 7099, 2614, 8044, + 1982, 4290, 9595, 7939, 9679, 9571, 7958, 1758, 6195, + 5533, 9545, 406, 917, 1357, 5574, 1085, 7923, 7220, + 6422, 8549, 2682, 40, 3795, 9767, 3767, 5240, 158, + 3048, 7355, 4332, 6816, 4937, 8246, 9715, 8200, 9814, + 6924, 8065, 6446, 6243, 4976, 4917, 5512, 4910, 3708, + 6023, 7639, 1133, 6448, 4950, 8492, 7993, 8584, 1340, + 5468, 6297, 6716, 8997, 6226, 6910, 7244, 6616, 1449, + 5171, 5393, 8543, 2497, 1323, 5505, 4755, 5970, 388, + 2929, 385, 1335, 7880, 9728, 5434, 6161, 2897, 3622, + 6161, 1650, 8903, 6820, 7357, 9843, 3756, 4645, 5310, + 1445, 7447, 1450, 6550, 1861, 6021, 3492, 1610, 5698, + 4827, 6115, 5157, 1608, 4965, 737, 1903, 4025, 2119, + 6552, 595, 4810, 130, 3982, 137, 8138, 5899, 7598, + 5942, 3724, 5818, 6843, 8546, 4893, 4811, 391, 3514, + 9590, 3749, 2481, 8733, 9761, 9190, 5512, 9765, 134, + 8737, 2194, 9046, 3630, 3577, 1253, 9106, 1281, 5455, + 2534, 8025, 1117, 9647, 9761, 3834, 8587, 9342, 4191, + 9213, 3915, 2071, 2631, 849, 3316, 4207, 5597, 9512, + 7014, 9934, 1359, 6351, 1942, 6581, 6730, 6231, 5782, + 5904, 9677, 532, 7482, 4382, 7965, 9754, 4297, 5473, + 3176, 7459, 9266, 9112, 9056, 5480, 4330, 3498, 3249, + 887, 2323, 930, 7809, 58, 2094, 769, 5008, 5797, + 6898, 9453, 808, 7053, 398, 7426, 1736, 634, 7990, + 3100, 1720, 4719, 4760, 7828, 648, 5462, 3365, 7079, + 7345, 2413, 8136, 6049, 5463, 2961, 6046, 4524, 6494, + 9373, 3832, 7595, 4732, 9656, 3425, 2265, 3526, 7277, + 1225, 8233, 9557, 960, 3905, 1045, 4119, 8053, 8659, + 1372, 8807, 1493, 4002, 9729, 3897, 7672, 5249, 1203, + 6003, 5841, 3864, 7129, 5663, 2654, 493, 7397, 7287, + 8513, 5254, 1707, 4926, 5022, 9139, 5676, 8296, 5115, + 9657, 591, 3536, 5723, 4822, 5176, 7346, 8375, 9143, + 2356, 7880, 2943, 6276, 2137, 3628, 59, 290, 6930, + 2063, 7839, 1196, 5604, 6563, 8782, 9536, 5108, 3877, + 429, 6184, 7060, 3523, 3867, 5457, 5143, 8932, 5594, + 5593, 2868, 1998, 3179, 1071, 9873, 6395, 5298, 9745, + 5572, 1722, 4856, 9429, 1499, 3117, 6370, 8257, 4390, + 3738, 9994, 4823, 6585, 1467, 2601, 5458, 2716, 1146, + 1738, 33, 9872, 5036, 1557, 1944, 2879, 4044, 2272, + 7676, 6388, 1904, 6101, 7987, 1700, 4395, 343, 9841, + 1734, 7922, 7616, 779, 5161, 468, 8805, 3563, 3932, + 1112, 1437, 1123, 8651, 9745, 3719, 4795, 7772, 9403, + 4517, 7987, 9197, 2190, 6957, 7720, 6929, 726, 1110, + 9372, 5858, 5956, 8878, 9550, 1968, 4362, 1304, 9796, + 7292, 3154, 8295, 3865, 7777, 3161, 3378, 1822, 7853, + 208, 589, 1972, 9911, 1971, 862, 9849, 3414, 9130, + 579, 4654, 92, 1475, 5598, 8930, 3936, 5479, 4313, + 185, 4782, 8779, 9083, 418, 1106, 2313, 6235, 7286, + 152, 2775, 6751, 650, 4919, 8921, 9634, 1984, 5779, + 1783, 7443, 6754, 7424, 1444, 6666, 409, 7791, 2642, + 1544, 5312, 3341, 5058, 6924, 1677, 5851, 5827, 2727, + 2075, 6264, 3079, 359, 2843, 330, 8651, 3205, 9111, + 3779, 6781, 64, 3792, 2666, 6804, 8462, 1474, 2290, + 1836, 9949, 6173, 4550, 9201, 1274, 5067, 351, 6480, + 6711, 8407, 7904, 5366, 4929, 444, 108, 2997, 7484, + 8340, 6161, 8073, 6104, 8943, 694, 6149, 8601, 1196, + 6575, 9937, 5094, 7925, 5722, 4565, 1084, 8988, 2783, + 7886, 6397, 7800, 2120, 9277, 5526, 5542, 1074, 1789, + 5085, 3061, 759, 7623, 4901, 1186, 3367, 1888, 9959, + 2396, 9680, 360, 1868, 6943, 9939, 5200, 5990, 7250, + 6064, 4697, 2291, 9159, 5133, 7533, 58, 7263, 8045, + 653, 6028, 7381, 932, 5857, 3072, 5547, 6647, 6032, + 5013, 1366, 1918, 6452, 4364, 581, 9863, 1502, 2117, + 5639, 4065, 1307, 3603, 5711, 481, 9225, 4458, 5133, + 5766, 2525, 6579, 6101, 955, 4014, 6750, 3371, 125, + 7603, 502, 2892, 6603, 2344, 8601, 3165, 2311, 9192, + 9546, 5043, 7844, 8591, 4935, 1765, 6671, 3193, 7181, + 2586, 5711, 3133, 5348, 7042, 9417, 8381, 100, 9386, + 3078, 5274, 1139, 6265, 8146, 6636, 5554, 6892, 1948, + 4479, 3693, 6919, 173, 9040, 5511, 2922, 6123, 9263, + 1418, 7264, 9857, 4588, 2740, 3894, 934, 1897, 9124, + 2393, 5100, 6701, 4211, 7855, 8655, 7893, 6373, 880, + 3410, 9500, 817, 9700, 622, 8424, 8906, 1192, 8082, + 5342, 4260, 2298, 5844, 8318, 1796, 365, 9287, 9942, + 1981, 5532, 9956, 1644, 1875, 1279, 1792, 9840, 4785, + 2478, 8953, 6214, 7060, 7798, 5291, 3255, 4370, 6301, + 9417, 5935, 5835, 7402, 7682, 5438, 9081, 5509, 8833, + 4566, 7011, 7184, 9706, 5339, 6813, 8443, 6535, 4377, + 9556, 509, 7923, 1426, 269, 4969, 957, 9645, 915, + 2300, 7682, 2902, 3368, 6024, 5901, 8615, 9741, 4861, + 1715, 1852, 8544, 3363, 7624, 4922, 8831, 1155, 5064, + 5765, 8030, 5214, 394, 5236, 4059, 7423, 941, 4185, + 7107, 525, 2019, 9115, 9184, 9216, 3622, 6792, 7696, + 6453, 9771, 541, 5255, 3317, 5383, 7392, 5897, 2023, + 6649, 4678, 2681, 6438, 365, 8269, 3577, 3723, 8264, + 2108]), + values=tensor([4.4965e-01, 1.3769e-01, 9.5035e-01, 5.7293e-01, + 7.7954e-01, 9.7503e-01, 1.4322e-01, 1.1818e-01, + 9.2953e-01, 8.1415e-01, 2.5238e-01, 6.0614e-01, + 4.5041e-01, 9.3390e-01, 9.7710e-01, 9.9499e-01, + 6.9516e-01, 1.2549e-01, 6.3390e-02, 4.9786e-01, + 2.6705e-01, 8.4035e-01, 4.7765e-01, 3.0191e-01, + 6.1763e-01, 6.4828e-01, 3.9165e-01, 4.0915e-01, + 4.2696e-01, 5.5891e-01, 9.9986e-01, 6.3730e-01, + 2.9036e-01, 6.8686e-01, 6.5946e-01, 4.8732e-01, + 3.4969e-01, 4.5554e-01, 8.7839e-01, 2.7698e-01, + 3.7226e-01, 1.5065e-02, 7.8865e-01, 6.0802e-01, + 5.6511e-01, 2.4244e-01, 5.1242e-02, 4.0738e-01, + 9.8710e-01, 1.9007e-01, 5.9800e-01, 8.4842e-01, + 9.1312e-01, 5.7446e-01, 5.4363e-01, 8.4750e-01, + 7.2541e-01, 8.4173e-01, 2.0399e-01, 4.5103e-01, + 1.4989e-01, 4.0298e-02, 1.7179e-01, 1.9945e-01, + 4.2389e-01, 3.1067e-01, 4.1838e-01, 4.7559e-01, + 8.5569e-01, 1.8368e-01, 4.8212e-01, 2.5203e-01, + 9.8680e-01, 4.5715e-01, 3.9215e-01, 8.5828e-01, + 9.4023e-01, 6.4093e-01, 7.0762e-01, 9.1246e-02, + 1.3960e-01, 8.7422e-01, 2.0504e-01, 5.2817e-01, + 4.5923e-02, 7.5340e-01, 4.3166e-02, 2.0079e-01, + 7.8776e-01, 7.4413e-01, 8.2810e-01, 4.3091e-02, + 6.3484e-01, 9.8935e-01, 4.7099e-01, 7.2918e-01, + 5.9483e-01, 8.6295e-01, 7.3936e-01, 3.6303e-01, + 5.6024e-01, 7.7622e-02, 1.0867e-01, 4.7041e-01, + 8.9265e-02, 9.1467e-01, 5.3849e-01, 1.8243e-01, + 5.3073e-01, 1.6104e-01, 5.5963e-01, 7.7433e-01, + 6.2087e-01, 2.9998e-01, 8.4995e-01, 2.2873e-02, + 8.7271e-02, 5.9852e-02, 6.5516e-01, 8.3316e-01, + 6.1547e-01, 6.3866e-01, 3.5342e-02, 9.7500e-01, + 4.1725e-01, 8.5943e-02, 3.3098e-02, 2.9393e-01, + 1.5172e-01, 6.5877e-01, 2.8169e-01, 8.0348e-01, + 7.7073e-01, 8.8877e-02, 6.6121e-01, 5.8345e-01, + 2.0661e-01, 3.7722e-01, 7.1221e-01, 4.5307e-01, + 3.1638e-01, 3.0489e-01, 1.1920e-01, 4.1591e-01, + 8.9518e-01, 5.0347e-01, 5.0858e-01, 3.2186e-01, + 7.4868e-01, 6.7171e-01, 9.3244e-01, 5.1430e-01, + 5.5016e-01, 2.8409e-01, 8.7062e-01, 2.5604e-01, + 9.6683e-01, 6.2006e-01, 8.0527e-02, 8.3669e-01, + 4.1226e-01, 3.0537e-01, 8.3561e-01, 3.9863e-01, + 5.3343e-01, 7.4499e-01, 4.3410e-01, 2.7897e-02, + 9.3765e-01, 8.4855e-01, 1.2336e-01, 1.1406e-01, + 3.0397e-01, 5.7188e-01, 3.3977e-01, 5.2731e-01, + 9.7160e-01, 3.2639e-01, 4.2242e-01, 3.2683e-02, + 9.8412e-01, 1.9910e-01, 2.5882e-01, 5.8518e-01, + 6.3761e-01, 7.2072e-01, 8.3748e-01, 2.4796e-02, + 9.0469e-01, 3.8373e-01, 8.3620e-01, 9.4335e-02, + 4.4129e-01, 4.0587e-01, 7.4687e-01, 5.2634e-01, + 1.3717e-01, 6.0904e-01, 4.2155e-01, 4.1423e-01, + 3.9847e-01, 8.8079e-02, 1.4881e-01, 3.8816e-01, + 5.2840e-02, 9.9597e-01, 3.7101e-01, 6.4058e-01, + 2.2169e-01, 9.4454e-01, 7.6950e-01, 1.2550e-01, + 3.3727e-02, 1.9034e-01, 7.9984e-01, 1.3267e-01, + 5.6674e-01, 3.2196e-01, 8.4859e-01, 4.3616e-01, + 5.3671e-02, 4.6213e-01, 3.4971e-01, 9.0445e-01, + 6.7961e-02, 6.2929e-01, 4.7567e-01, 1.9572e-01, + 9.0426e-01, 9.0016e-01, 4.5447e-01, 2.6630e-01, + 4.9915e-01, 4.7508e-01, 9.2903e-01, 8.0348e-01, + 5.8895e-01, 5.5352e-01, 2.2582e-01, 5.7060e-01, + 8.1496e-01, 4.4092e-01, 7.1190e-01, 9.3405e-01, + 4.8151e-01, 4.4619e-02, 5.0619e-01, 6.3555e-02, + 1.1898e-01, 9.5625e-01, 4.3337e-02, 8.4608e-01, + 5.4897e-01, 7.6274e-01, 5.6999e-01, 5.3584e-01, + 9.6706e-01, 4.7222e-01, 6.2173e-01, 2.9964e-01, + 5.3674e-01, 4.0259e-01, 2.0631e-01, 7.9009e-01, + 5.8390e-01, 3.0329e-01, 4.0575e-01, 1.9726e-01, + 4.3732e-01, 6.0232e-01, 4.7348e-01, 1.9995e-01, + 5.4697e-01, 8.5390e-01, 9.9359e-01, 6.6034e-01, + 3.4418e-01, 8.4510e-02, 8.6703e-01, 2.9267e-01, + 2.0810e-03, 7.2851e-01, 6.6168e-01, 6.6317e-01, + 1.1115e-01, 6.0774e-03, 6.7142e-01, 1.1584e-01, + 7.1563e-01, 1.7755e-01, 5.1168e-01, 9.3821e-02, + 8.1249e-01, 1.8413e-01, 3.5159e-01, 2.4573e-01, + 4.2074e-01, 7.3776e-01, 5.3183e-01, 8.0631e-01, + 7.7750e-01, 5.5525e-01, 2.8671e-01, 6.1549e-01, + 7.1549e-01, 9.9895e-01, 5.2674e-01, 7.3041e-01, + 6.6176e-01, 3.6282e-01, 7.6034e-01, 4.0504e-01, + 2.0401e-01, 2.5487e-01, 1.9033e-01, 1.9623e-01, + 3.6284e-02, 4.2903e-01, 9.9371e-01, 6.3885e-01, + 2.5968e-02, 4.8586e-01, 6.6560e-01, 2.0616e-01, + 3.1688e-01, 6.5113e-01, 1.4279e-01, 2.1929e-01, + 5.0027e-01, 4.5512e-01, 7.2149e-01, 9.4504e-01, + 1.7168e-01, 2.2541e-01, 8.0417e-01, 3.4956e-01, + 8.3679e-01, 1.7641e-01, 9.6793e-01, 5.6210e-01, + 3.9701e-01, 1.3797e-01, 8.9202e-01, 3.2792e-01, + 4.6708e-03, 5.7283e-01, 6.0612e-01, 1.8272e-01, + 3.6646e-01, 7.2284e-01, 1.8383e-01, 2.9022e-01, + 7.9856e-01, 1.1343e-01, 2.3634e-01, 7.7130e-01, + 6.8456e-01, 1.7480e-01, 4.6250e-01, 2.4163e-01, + 8.8702e-01, 2.3058e-01, 5.1560e-02, 4.7027e-01, + 3.3772e-03, 7.2097e-02, 8.7375e-01, 4.0896e-01, + 2.9561e-01, 6.5640e-01, 5.7376e-01, 4.6184e-01, + 1.1663e-03, 9.9713e-01, 3.9355e-01, 8.6592e-01, + 6.8146e-02, 5.3923e-01, 9.7404e-01, 5.4723e-01, + 7.0125e-01, 5.4053e-01, 7.3082e-01, 9.7785e-01, + 3.3078e-02, 6.3749e-01, 6.2345e-01, 8.3051e-01, + 2.7383e-01, 3.6590e-01, 7.1021e-02, 6.9549e-01, + 7.7323e-03, 3.9891e-01, 6.7410e-01, 3.3211e-01, + 6.5325e-01, 3.6018e-01, 6.0362e-01, 8.1452e-01, + 9.4481e-01, 5.7955e-02, 4.9542e-01, 2.6184e-01, + 9.7487e-01, 4.9456e-01, 8.7892e-01, 6.6865e-01, + 5.8486e-01, 2.1761e-01, 8.5696e-01, 5.0919e-01, + 5.9215e-01, 3.5729e-01, 1.3459e-02, 1.6525e-01, + 7.5009e-03, 1.0552e-02, 5.5984e-01, 3.7025e-01, + 3.7418e-01, 8.5195e-01, 7.4716e-01, 6.0013e-01, + 4.7662e-01, 8.2335e-01, 6.4900e-01, 8.0351e-01, + 2.5588e-01, 1.9713e-02, 6.8762e-01, 5.8259e-01, + 3.1885e-01, 3.6384e-01, 8.9646e-01, 7.1272e-01, + 2.8574e-01, 3.1895e-02, 2.6414e-03, 9.8227e-02, + 9.4357e-02, 9.7996e-01, 4.3905e-02, 2.3021e-01, + 7.1295e-01, 6.1474e-01, 7.0395e-01, 5.6433e-01, + 7.0563e-01, 4.9830e-01, 1.9892e-01, 8.6877e-01, + 6.0980e-01, 4.8155e-02, 6.3296e-01, 5.8453e-01, + 1.9986e-01, 3.3112e-01, 4.0151e-01, 5.4000e-01, + 1.8111e-01, 1.3640e-01, 8.8587e-01, 3.0679e-01, + 6.3513e-01, 7.3512e-01, 7.9733e-01, 4.2402e-01, + 1.6855e-01, 6.3117e-01, 4.8672e-01, 1.8039e-01, + 3.3868e-01, 2.7695e-01, 8.9797e-01, 4.2602e-01, + 6.0119e-01, 6.6892e-01, 4.7692e-01, 9.6219e-01, + 8.0484e-03, 6.4306e-01, 5.9041e-01, 8.0576e-01, + 9.0822e-01, 1.9501e-01, 4.1124e-01, 7.9817e-01, + 9.1499e-01, 9.9412e-01, 5.3613e-01, 4.8755e-01, + 3.6868e-01, 6.5275e-01, 8.9945e-01, 4.7785e-01, + 2.3655e-01, 6.0433e-01, 1.1690e-01, 6.1542e-01, + 7.9383e-01, 1.1610e-01, 3.0181e-01, 2.1347e-01, + 3.3610e-01, 2.0677e-01, 7.2341e-03, 6.2776e-01, + 6.5419e-01, 9.4441e-01, 8.8461e-04, 5.3031e-01, + 4.1369e-01, 9.4148e-01, 3.5549e-01, 4.1555e-01, + 5.8924e-01, 3.9711e-02, 6.9593e-02, 9.8539e-01, + 5.4075e-01, 4.7812e-01, 8.5548e-01, 8.1065e-01, + 6.5941e-01, 6.6644e-01, 9.6480e-01, 5.4150e-01, + 3.9903e-01, 4.8873e-01, 3.2687e-01, 9.4824e-01, + 5.1894e-01, 5.8274e-01, 1.6827e-01, 5.5825e-01, + 8.2071e-01, 1.6344e-01, 5.2556e-01, 1.1193e-01, + 5.0648e-01, 3.6618e-01, 9.5810e-01, 1.2800e-01, + 1.3206e-03, 8.7762e-01, 2.8271e-01, 1.0213e-01, + 5.9400e-01, 3.9522e-01, 9.9260e-01, 7.4976e-01, + 2.6447e-01, 7.7409e-01, 4.1362e-01, 2.2793e-01, + 2.8623e-01, 9.4784e-01, 1.8629e-01, 5.5902e-01, + 9.8596e-01, 4.8008e-01, 2.9452e-01, 1.9370e-01, + 3.6762e-01, 8.4825e-01, 3.2358e-01, 2.2154e-01, + 5.2395e-01, 6.2301e-01, 4.6454e-01, 1.9464e-01, + 8.7654e-01, 6.1940e-01, 9.7699e-01, 3.6808e-01, + 5.8060e-01, 9.3912e-01, 9.3195e-01, 1.9902e-01, + 5.0862e-01, 6.4487e-01, 2.7873e-01, 8.0248e-02, + 7.8608e-01, 4.3327e-01, 7.4604e-01, 3.0959e-01, + 3.9353e-01, 9.8239e-01, 7.6245e-01, 9.2901e-01, + 4.6128e-01, 3.6167e-01, 9.0955e-01, 3.1202e-01, + 4.4085e-02, 6.2633e-01, 8.7656e-01, 7.4675e-01, + 2.9172e-01, 6.1556e-01, 3.1529e-01, 3.4902e-01, + 5.4348e-01, 4.2744e-01, 9.8776e-01, 8.2751e-01, + 5.7028e-01, 6.7691e-01, 3.1950e-01, 7.9881e-01, + 8.9268e-01, 2.2836e-01, 7.5059e-01, 5.6039e-02, + 8.4118e-01, 6.5572e-01, 5.5163e-01, 3.1458e-01, + 6.1704e-01, 5.6093e-02, 7.9767e-01, 9.4600e-01, + 2.1928e-01, 3.9326e-02, 5.6560e-01, 7.8186e-01, + 8.9823e-01, 6.0816e-01, 4.7673e-01, 4.3366e-01, + 9.1734e-01, 5.8754e-01, 9.5818e-01, 5.0338e-01, + 4.7101e-01, 4.2574e-01, 8.8347e-01, 9.9629e-01, + 3.7466e-01, 9.2046e-01, 1.9630e-01, 5.6342e-01, + 3.9690e-01, 3.8488e-01, 7.6991e-01, 4.0605e-01, + 8.9007e-01, 6.1929e-01, 7.5840e-01, 3.6900e-01, + 7.9131e-01, 4.8074e-01, 2.5482e-01, 3.6580e-01, + 6.8986e-01, 1.9103e-01, 8.0298e-01, 5.5040e-01, + 6.0138e-01, 2.4459e-01, 1.8774e-02, 7.6177e-01, + 1.9747e-01, 7.4636e-01, 2.7241e-01, 6.3384e-01, + 6.8666e-01, 5.8283e-01, 2.4638e-01, 4.5053e-01, + 7.7113e-02, 9.6400e-01, 7.5084e-01, 9.9097e-01, + 8.2369e-01, 1.2518e-01, 8.7079e-01, 8.8731e-01, + 6.6279e-01, 2.0421e-01, 8.1221e-02, 9.8411e-01, + 2.6106e-01, 2.3338e-02, 2.6480e-02, 4.0599e-01, + 2.9908e-01, 4.8339e-01, 7.8936e-01, 9.9101e-01, + 9.0942e-01, 2.0788e-01, 2.2735e-01, 8.7072e-01, + 5.0509e-01, 2.3135e-01, 4.7407e-01, 7.4017e-01, + 4.9692e-01, 3.6074e-01, 4.9514e-02, 1.2661e-01, + 9.7856e-02, 2.2153e-01, 1.5779e-02, 8.8678e-01, + 9.8514e-01, 7.5711e-01, 2.2177e-01, 2.4731e-01, + 8.5599e-02, 7.0071e-01, 8.3437e-01, 6.5447e-01, + 2.5607e-01, 4.0526e-01, 4.8411e-01, 6.8148e-01, + 6.9610e-01, 3.9874e-01, 4.8623e-01, 8.7722e-01, + 2.8142e-01, 2.9443e-01, 8.8637e-01, 1.8955e-01, + 3.6086e-02, 1.6641e-01, 7.8338e-01, 4.6497e-01, + 1.4233e-02, 5.7884e-01, 3.3947e-01, 4.7233e-02, + 4.2210e-02, 2.4198e-01, 7.7171e-01, 7.9947e-01, + 9.6589e-01, 6.1429e-01, 1.2277e-01, 2.0682e-01, + 3.4285e-01, 7.9675e-01, 2.9050e-01, 7.8865e-01, + 7.5171e-01, 4.5477e-01, 5.8210e-01, 7.8888e-01, + 9.8955e-02, 2.5763e-01, 8.5833e-01, 3.0164e-01, + 3.9566e-01, 6.7231e-01, 3.3608e-01, 6.6018e-01, + 1.3947e-01, 2.1432e-01, 8.3950e-01, 8.7634e-02, + 8.7303e-02, 7.9920e-01, 2.1686e-01, 2.3929e-01, + 6.2304e-01, 2.5707e-01, 4.4665e-01, 6.8967e-01, + 6.9303e-01, 2.2866e-01, 9.2399e-01, 5.7817e-01, + 5.2984e-01, 3.2154e-01, 7.8238e-01, 4.0391e-01, + 9.0909e-01, 4.9607e-02, 5.2078e-01, 2.3283e-01, + 4.9465e-01, 6.1527e-01, 4.3228e-01, 9.0330e-01, + 8.0827e-01, 6.9746e-01, 9.6769e-01, 9.2643e-01, + 9.3397e-01, 3.8602e-01, 6.5755e-01, 8.2635e-01, + 1.0202e-01, 1.5856e-01, 1.2288e-01, 8.4879e-02, + 3.2458e-01, 2.9655e-01, 1.7742e-01, 9.3450e-01, + 1.0076e-01, 7.2645e-01, 8.1806e-02, 4.6658e-01, + 3.8093e-01, 3.3309e-01, 6.5422e-01, 2.5819e-01, + 1.5107e-01, 8.8510e-01, 4.3293e-01, 9.2351e-01, + 8.9183e-01, 3.2430e-01, 4.3852e-01, 8.7239e-01, + 3.5201e-01, 4.2486e-01, 7.0879e-01, 6.1583e-01, + 1.1565e-01, 7.0478e-01, 8.8022e-01, 2.5408e-01, + 7.3129e-02, 8.2514e-01, 8.2613e-01, 3.2247e-01, + 3.3085e-01, 8.9530e-01, 1.0707e-01, 4.3826e-01, + 7.8570e-01, 9.4198e-01, 7.2354e-01, 3.4066e-01, + 7.3480e-01, 4.2036e-01, 6.3356e-01, 2.9797e-01, + 8.2827e-01, 7.8339e-01, 9.0276e-01, 2.0607e-01, + 9.7252e-01, 7.1435e-01, 4.2314e-01, 9.8891e-01, + 6.9301e-01, 5.7219e-01, 9.0386e-01, 7.0463e-01, + 7.1908e-04, 5.4692e-01, 6.0821e-01, 9.8439e-01, + 2.8373e-01, 4.8915e-01, 5.5931e-01, 9.7619e-01, + 7.4567e-01, 7.0938e-01, 1.2593e-01, 6.1318e-01, + 8.1283e-01, 9.8667e-02, 3.3716e-02, 5.7522e-01, + 1.9639e-01, 2.9416e-01, 5.5823e-01, 1.8549e-01, + 3.1942e-01, 7.4665e-01, 7.2327e-01, 9.5305e-01, + 1.9036e-02, 5.3955e-01, 2.4116e-01, 9.2667e-01, + 1.4653e-01, 9.8715e-01, 5.3480e-01, 6.0516e-01, + 6.0680e-01, 8.5987e-01, 3.9984e-01, 3.1004e-01, + 8.8724e-01, 7.4026e-01, 4.4687e-01, 8.9641e-01, + 2.4418e-01, 2.4025e-02, 5.5509e-01, 8.9647e-01, + 1.9417e-01, 6.6319e-01, 5.1484e-02, 3.4897e-01, + 5.1031e-01, 3.0611e-01, 3.8996e-01, 3.8358e-01, + 6.9904e-01, 6.9426e-01, 7.9483e-01, 3.3074e-01, + 4.4849e-01, 4.5771e-01, 3.3817e-01, 9.0376e-01, + 2.9871e-01, 1.3521e-01, 4.3356e-01, 8.7768e-02, + 2.4144e-01, 7.4490e-01, 5.2568e-01, 6.6800e-01, + 6.9455e-01, 8.8174e-01, 2.7533e-01, 9.6499e-01, + 9.5226e-01, 6.3027e-01, 6.0446e-02, 2.4209e-01, + 8.6906e-01, 3.5261e-01, 1.4614e-01, 9.4982e-01, + 7.0784e-02, 4.6539e-01, 8.8096e-01, 6.3553e-01, + 5.2585e-01, 6.7815e-02, 6.7186e-01, 7.0013e-01, + 3.2879e-01, 8.4313e-01, 2.0230e-01, 6.7661e-01, + 2.5127e-02, 8.3948e-01, 7.1261e-01, 9.8116e-01, + 5.7618e-01, 7.3962e-01, 4.1140e-01, 1.7002e-01, + 2.9786e-02, 6.1256e-01, 2.2368e-01, 2.3720e-01, + 5.1041e-01, 5.8688e-01, 3.2746e-01, 3.0206e-01, + 4.6125e-01, 3.9820e-01, 9.6772e-01, 2.2109e-01, + 6.7044e-01, 9.0422e-02, 7.0940e-01, 4.4105e-01, + 8.1398e-01, 1.1710e-01, 4.8937e-02, 6.8242e-02, + 2.0881e-01, 5.1602e-01, 9.9962e-01, 5.4247e-01, + 2.9660e-01, 5.2390e-01, 5.7505e-01, 8.5464e-01, + 9.4683e-01, 8.0727e-01, 2.3938e-01, 5.1948e-01, + 4.7982e-01, 5.9710e-01, 1.9899e-01, 5.7719e-01, + 9.9101e-01, 8.2375e-01, 4.2012e-01, 4.5169e-01, + 4.0205e-02, 5.1058e-03, 5.9797e-01, 3.2629e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.5424, 0.9332, 0.7035, ..., 0.9872, 0.5484, 0.9353]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.641618490219116 seconds + +[21.44, 21.48, 21.48, 21.12, 21.2, 21.24, 21.16, 21.48, 21.6, 21.92] +[21.92, 21.88, 24.96, 26.8, 28.08, 28.64, 29.24, 29.24, 26.08, 24.52, 23.6, 23.56, 23.36, 23.36] +14.664376258850098 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 142368, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.641618490219116, 'TIME_S_1KI': 0.07474726406368788, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 348.11982940673823, 'W': 23.739150118754246} +[21.44, 21.48, 21.48, 21.12, 21.2, 21.24, 21.16, 21.48, 21.6, 21.92, 20.56, 20.56, 20.2, 20.2, 20.08, 20.04, 20.44, 20.72, 20.72, 21.12] +376.24 +18.812 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 142368, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.641618490219116, 'TIME_S_1KI': 0.07474726406368788, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 348.11982940673823, 'W': 23.739150118754246, 'J_1KI': 2.445211209026876, 'W_1KI': 0.16674498566218704, 'W_D': 4.927150118754245, 'J_D': 72.25358322525018, 'W_D_1KI': 0.03460855050821986, 'J_D_1KI': 0.00024309220125463487} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_500000_1e-05.json new file mode 100644 index 0000000..7ae266f --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_500000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 101.81685495376587, "TIME_S_1KI": 101.81685495376587, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2509.431913032532, "W": 23.91615643501538, "J_1KI": 2509.431913032532, "W_1KI": 23.91615643501538, "W_D": 5.455156435015379, "J_D": 572.3889491109848, "W_D_1KI": 5.455156435015379, "J_D_1KI": 5.455156435015379} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_500000_1e-05.output new file mode 100644 index 0000000..06c1b57 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_500000_1e-05.output @@ -0,0 +1,47 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 500000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 101.81685495376587} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 8, ..., 2499992, + 2499997, 2500000]), + col_indices=tensor([ 7138, 74289, 101345, ..., 58125, 215534, + 230533]), + values=tensor([0.6785, 0.9079, 0.1725, ..., 0.1754, 0.6680, 0.6302]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.7654, 0.8855, 0.1287, ..., 0.1047, 0.9719, 0.8120]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 101.81685495376587 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 8, ..., 2499992, + 2499997, 2500000]), + col_indices=tensor([ 7138, 74289, 101345, ..., 58125, 215534, + 230533]), + values=tensor([0.6785, 0.9079, 0.1725, ..., 0.1754, 0.6680, 0.6302]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.7654, 0.8855, 0.1287, ..., 0.1047, 0.9719, 0.8120]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 101.81685495376587 seconds + +[20.36, 20.36, 20.32, 20.32, 20.32, 20.56, 20.64, 20.8, 21.0, 21.0] +[20.96, 20.8, 21.96, 21.96, 22.8, 24.92, 25.88, 26.52, 26.32, 25.68, 25.2, 25.44, 25.36, 25.12, 25.04, 25.08, 25.04, 25.24, 25.36, 25.12, 25.28, 25.28, 25.08, 24.96, 25.04, 25.04, 25.2, 25.32, 25.2, 25.36, 25.08, 24.88, 24.96, 25.12, 25.24, 25.4, 25.4, 25.4, 25.2, 25.16, 25.08, 25.04, 25.24, 25.28, 25.36, 25.48, 25.48, 25.4, 25.36, 25.48, 25.52, 25.4, 25.28, 25.04, 24.84, 24.88, 25.12, 25.68, 26.12, 26.12, 25.76, 25.32, 24.96, 24.84, 24.92, 24.96, 24.92, 24.92, 24.92, 25.28, 25.08, 25.08, 25.16, 25.12, 25.04, 25.12, 25.2, 24.92, 24.92, 24.96, 25.08, 25.4, 25.4, 25.48, 25.44, 25.24, 25.28, 25.48, 25.72, 25.56, 25.56, 25.52, 25.44, 25.2, 25.08, 25.12, 25.08, 25.28, 25.44, 25.32] +104.92622089385986 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 101.81685495376587, 'TIME_S_1KI': 101.81685495376587, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2509.431913032532, 'W': 23.91615643501538} +[20.36, 20.36, 20.32, 20.32, 20.32, 20.56, 20.64, 20.8, 21.0, 21.0, 20.52, 20.48, 20.28, 20.48, 20.52, 20.64, 20.52, 20.44, 20.4, 20.4] +369.22 +18.461000000000002 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 101.81685495376587, 'TIME_S_1KI': 101.81685495376587, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2509.431913032532, 'W': 23.91615643501538, 'J_1KI': 2509.431913032532, 'W_1KI': 23.91615643501538, 'W_D': 5.455156435015379, 'J_D': 572.3889491109848, 'W_D_1KI': 5.455156435015379, 'J_D_1KI': 5.455156435015379} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_50000_0.0001.json new file mode 100644 index 0000000..99da0bf --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_50000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1750, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.16480827331543, "TIME_S_1KI": 5.80846187046596, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 350.615839214325, "W": 23.96705841957935, "J_1KI": 200.35190812247143, "W_1KI": 13.695461954045342, "W_D": 5.563058419579352, "J_D": 81.38238586616524, "W_D_1KI": 3.178890525473916, "J_D_1KI": 1.8165088716993805} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_50000_0.0001.output similarity index 57% rename from pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0001.output rename to pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_50000_0.0001.output index 19d6f4f..38bf734 100644 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0001.output +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_50000_0.0001.output @@ -1,15 +1,14 @@ ['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 0.0001 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 6.156386375427246} +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 5.999283075332642} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 6, 12, ..., 249983, 249990, +tensor(crow_indices=tensor([ 0, 5, 11, ..., 249990, 249995, 250000]), - col_indices=tensor([ 2925, 8906, 11132, ..., 41372, 46211, 46407]), - values=tensor([4.7685e-01, 8.2631e-01, 1.3241e-01, ..., - 9.9306e-01, 3.1562e-01, 2.9121e-04]), + col_indices=tensor([13962, 18394, 22949, ..., 14595, 37415, 49220]), + values=tensor([0.3721, 0.9393, 0.0895, ..., 0.9714, 0.3434, 0.8212]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.6560, 0.4823, 0.8578, ..., 0.1247, 0.5626, 0.6108]) +tensor([0.7511, 0.6955, 0.0801, ..., 0.5808, 0.0034, 0.8132]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -17,19 +16,19 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 6.156386375427246 seconds +Time: 5.999283075332642 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 3411 -ss 50000 -sd 0.0001 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.881499767303467} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1750 -ss 50000 -sd 0.0001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.16480827331543} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 8, 11, ..., 249987, 249992, +tensor(crow_indices=tensor([ 0, 8, 10, ..., 249989, 249996, 250000]), - col_indices=tensor([ 5492, 16093, 20671, ..., 32727, 38238, 43452]), - values=tensor([0.3185, 0.0470, 0.4206, ..., 0.2062, 0.5185, 0.9595]), + col_indices=tensor([ 581, 19518, 20111, ..., 13396, 34309, 44743]), + values=tensor([0.2810, 0.4140, 0.9885, ..., 0.7044, 0.0704, 0.4209]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.4169, 0.1713, 0.4477, ..., 0.1220, 0.0527, 0.5400]) +tensor([0.2162, 0.8403, 0.5346, ..., 0.6143, 0.9627, 0.5199]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -37,16 +36,16 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 20.881499767303467 seconds +Time: 10.16480827331543 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 8, 11, ..., 249987, 249992, +tensor(crow_indices=tensor([ 0, 8, 10, ..., 249989, 249996, 250000]), - col_indices=tensor([ 5492, 16093, 20671, ..., 32727, 38238, 43452]), - values=tensor([0.3185, 0.0470, 0.4206, ..., 0.2062, 0.5185, 0.9595]), + col_indices=tensor([ 581, 19518, 20111, ..., 13396, 34309, 44743]), + values=tensor([0.2810, 0.4140, 0.9885, ..., 0.7044, 0.0704, 0.4209]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.4169, 0.1713, 0.4477, ..., 0.1220, 0.0527, 0.5400]) +tensor([0.2162, 0.8403, 0.5346, ..., 0.6143, 0.9627, 0.5199]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -54,13 +53,13 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 20.881499767303467 seconds +Time: 10.16480827331543 seconds -[20.32, 20.28, 20.4, 20.4, 20.32, 20.4, 20.72, 20.56, 20.56, 20.56] -[20.52, 20.56, 20.8, 22.24, 23.32, 25.08, 26.04, 25.96, 25.92, 24.88, 25.0, 24.72, 24.6, 24.56, 24.12, 24.24, 24.24, 24.44, 24.56, 24.76, 24.96, 24.84, 24.84] -24.017935037612915 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 3411, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.881499767303467, 'TIME_S_1KI': 6.121811717180729, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 532.9655063343048, 'W': 22.190313426181827} -[20.32, 20.28, 20.4, 20.4, 20.32, 20.4, 20.72, 20.56, 20.56, 20.56, 20.52, 20.32, 20.2, 20.28, 20.36, 20.32, 20.28, 20.28, 20.08, 19.84] -366.38000000000005 -18.319000000000003 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 3411, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.881499767303467, 'TIME_S_1KI': 6.121811717180729, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 532.9655063343048, 'W': 22.190313426181827, 'J_1KI': 156.24904905725734, 'W_1KI': 6.505515516324194, 'W_D': 3.8713134261818247, 'J_D': 92.98095438027374, 'W_D_1KI': 1.134949699848087, 'J_D_1KI': 0.3327322485629103} +[20.36, 20.36, 20.36, 20.4, 20.24, 20.28, 20.32, 20.8, 21.08, 20.92] +[21.16, 21.04, 24.12, 26.48, 28.28, 28.28, 29.04, 29.84, 25.88, 24.76, 24.76, 24.72, 24.88, 24.76] +14.629072666168213 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1750, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.16480827331543, 'TIME_S_1KI': 5.80846187046596, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 350.615839214325, 'W': 23.96705841957935} +[20.36, 20.36, 20.36, 20.4, 20.24, 20.28, 20.32, 20.8, 21.08, 20.92, 20.4, 20.24, 20.24, 20.08, 20.2, 20.32, 20.56, 20.68, 20.72, 20.72] +368.0799999999999 +18.403999999999996 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1750, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.16480827331543, 'TIME_S_1KI': 5.80846187046596, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 350.615839214325, 'W': 23.96705841957935, 'J_1KI': 200.35190812247143, 'W_1KI': 13.695461954045342, 'W_D': 5.563058419579352, 'J_D': 81.38238586616524, 'W_D_1KI': 3.178890525473916, 'J_D_1KI': 1.8165088716993805} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_50000_0.001.json new file mode 100644 index 0000000..295c278 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_50000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 54.368531465530396, "TIME_S_1KI": 54.368531465530396, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1384.197800512314, "W": 23.562014123499935, "J_1KI": 1384.197800512314, "W_1KI": 23.562014123499935, "W_D": 4.987014123499936, "J_D": 292.97215190053004, "W_D_1KI": 4.987014123499936, "J_D_1KI": 4.987014123499936} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_50000_0.001.output similarity index 51% rename from pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.001.output rename to pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_50000_0.001.output index 1dd53bb..ea77cdc 100644 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.001.output +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_50000_0.001.output @@ -1,14 +1,14 @@ ['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 0.001 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 54.24125528335571} +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 54.368531465530396} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 50, 100, ..., 2499893, - 2499949, 2500000]), - col_indices=tensor([ 3726, 3738, 3891, ..., 47883, 48507, 49636]), - values=tensor([0.9449, 0.1440, 0.2391, ..., 0.6142, 0.1134, 0.3366]), +tensor(crow_indices=tensor([ 0, 55, 110, ..., 2499903, + 2499953, 2500000]), + col_indices=tensor([ 180, 933, 1739, ..., 48224, 48432, 48665]), + values=tensor([0.2331, 0.6137, 0.9488, ..., 0.3126, 0.9414, 0.7411]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.1491, 0.4739, 0.9733, ..., 0.7895, 0.7265, 0.6840]) +tensor([0.7249, 0.6013, 0.3531, ..., 0.7563, 0.1447, 0.0341]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -16,16 +16,16 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 54.24125528335571 seconds +Time: 54.368531465530396 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 50, 100, ..., 2499893, - 2499949, 2500000]), - col_indices=tensor([ 3726, 3738, 3891, ..., 47883, 48507, 49636]), - values=tensor([0.9449, 0.1440, 0.2391, ..., 0.6142, 0.1134, 0.3366]), +tensor(crow_indices=tensor([ 0, 55, 110, ..., 2499903, + 2499953, 2500000]), + col_indices=tensor([ 180, 933, 1739, ..., 48224, 48432, 48665]), + values=tensor([0.2331, 0.6137, 0.9488, ..., 0.3126, 0.9414, 0.7411]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.1491, 0.4739, 0.9733, ..., 0.7895, 0.7265, 0.6840]) +tensor([0.7249, 0.6013, 0.3531, ..., 0.7563, 0.1447, 0.0341]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -33,13 +33,13 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 54.24125528335571 seconds +Time: 54.368531465530396 seconds -[20.52, 20.48, 20.52, 20.52, 20.48, 20.28, 20.36, 20.08, 20.2, 20.2] -[20.4, 20.56, 21.16, 25.2, 26.96, 28.36, 29.16, 26.04, 26.0, 26.0, 24.56, 24.48, 24.68, 24.64, 24.76, 24.8, 24.44, 24.48, 24.56, 24.36, 24.44, 24.6, 24.44, 24.44, 24.32, 24.2, 24.16, 24.24, 24.36, 24.44, 24.52, 24.52, 24.52, 24.52, 24.48, 24.44, 24.56, 24.56, 24.68, 24.76, 24.64, 24.64, 24.48, 24.36, 24.28, 24.16, 24.36, 24.48, 24.4, 24.6, 24.68, 24.6, 24.6, 24.6, 24.56, 24.16] -58.74232268333435 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 54.24125528335571, 'TIME_S_1KI': 54.24125528335571, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1372.0545160293577, 'W': 23.357171683962374} -[20.52, 20.48, 20.52, 20.52, 20.48, 20.28, 20.36, 20.08, 20.2, 20.2, 20.4, 20.52, 20.32, 20.48, 20.6, 20.4, 20.44, 20.4, 20.24, 20.28] -367.02 -18.351 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 54.24125528335571, 'TIME_S_1KI': 54.24125528335571, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1372.0545160293577, 'W': 23.357171683962374, 'J_1KI': 1372.0545160293577, 'W_1KI': 23.357171683962374, 'W_D': 5.006171683962375, 'J_D': 294.0741524674891, 'W_D_1KI': 5.006171683962375, 'J_D_1KI': 5.006171683962375} +[20.28, 20.28, 20.28, 20.52, 20.52, 20.52, 20.84, 20.84, 20.8, 20.84] +[20.8, 20.8, 24.12, 26.04, 26.04, 28.44, 29.44, 30.08, 26.76, 25.32, 24.56, 24.68, 24.84, 24.84, 24.76, 24.52, 24.68, 24.72, 24.96, 24.76, 24.96, 24.84, 25.0, 24.88, 24.88, 24.64, 24.64, 24.44, 24.28, 24.24, 24.28, 24.28, 24.52, 24.72, 24.84, 24.64, 24.68, 24.68, 24.72, 24.72, 24.8, 24.76, 24.56, 24.52, 24.2, 24.24, 24.24, 24.24, 24.24, 24.4, 24.52, 24.52, 24.4, 24.44, 24.4, 24.12] +58.74700665473938 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 54.368531465530396, 'TIME_S_1KI': 54.368531465530396, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1384.197800512314, 'W': 23.562014123499935} +[20.28, 20.28, 20.28, 20.52, 20.52, 20.52, 20.84, 20.84, 20.8, 20.84, 20.4, 20.36, 20.4, 20.28, 20.56, 20.56, 20.96, 21.12, 21.28, 21.24] +371.5 +18.575 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 54.368531465530396, 'TIME_S_1KI': 54.368531465530396, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1384.197800512314, 'W': 23.562014123499935, 'J_1KI': 1384.197800512314, 'W_1KI': 23.562014123499935, 'W_D': 4.987014123499936, 'J_D': 292.97215190053004, 'W_D_1KI': 4.987014123499936, 'J_D_1KI': 4.987014123499936} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_50000_1e-05.json new file mode 100644 index 0000000..79e75a2 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_50000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 10740, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.677687883377075, "TIME_S_1KI": 0.9941981269438619, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 332.0521117687225, "W": 22.70459223140718, "J_1KI": 30.91732884252537, "W_1KI": 2.11402162303605, "W_D": 4.278592231407178, "J_D": 62.57393091917032, "W_D_1KI": 0.3983791649354914, "J_D_1KI": 0.03709303211689864} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_50000_1e-05.output new file mode 100644 index 0000000..0bf1f45 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_50000_1e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 1.031747817993164} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 24999, 25000, 25000]), + col_indices=tensor([40215, 7884, 10043, ..., 30495, 28697, 40914]), + values=tensor([0.0776, 0.0144, 0.1627, ..., 0.8046, 0.8736, 0.3953]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.9279, 0.0068, 0.0286, ..., 0.3265, 0.6131, 0.7632]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 1.031747817993164 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 10176 -ss 50000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.948124408721924} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 24999, 25000, 25000]), + col_indices=tensor([36670, 6571, 29568, ..., 18627, 41427, 17079]), + values=tensor([0.2785, 0.5861, 0.6450, ..., 0.6094, 0.8660, 0.4536]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.5003, 0.3455, 0.7125, ..., 0.5405, 0.2393, 0.4201]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 9.948124408721924 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 10740 -ss 50000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.677687883377075} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 24998, 25000, 25000]), + col_indices=tensor([16841, 18429, 37212, ..., 30943, 4364, 38003]), + values=tensor([0.6614, 0.5763, 0.4032, ..., 0.0279, 0.2406, 0.7956]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.8404, 0.4278, 0.6904, ..., 0.0651, 0.6749, 0.6556]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.677687883377075 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 24998, 25000, 25000]), + col_indices=tensor([16841, 18429, 37212, ..., 30943, 4364, 38003]), + values=tensor([0.6614, 0.5763, 0.4032, ..., 0.0279, 0.2406, 0.7956]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.8404, 0.4278, 0.6904, ..., 0.0651, 0.6749, 0.6556]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.677687883377075 seconds + +[20.72, 20.68, 20.64, 20.72, 20.72, 20.64, 20.68, 20.52, 20.52, 20.6] +[21.04, 21.2, 21.2, 21.92, 23.48, 24.12, 25.48, 25.92, 26.2, 25.8, 25.88, 25.6, 25.8, 25.72] +14.624887704849243 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 10740, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.677687883377075, 'TIME_S_1KI': 0.9941981269438619, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 332.0521117687225, 'W': 22.70459223140718} +[20.72, 20.68, 20.64, 20.72, 20.72, 20.64, 20.68, 20.52, 20.52, 20.6, 20.2, 20.12, 20.24, 20.24, 20.28, 20.28, 20.4, 20.4, 20.44, 20.48] +368.52000000000004 +18.426000000000002 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 10740, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.677687883377075, 'TIME_S_1KI': 0.9941981269438619, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 332.0521117687225, 'W': 22.70459223140718, 'J_1KI': 30.91732884252537, 'W_1KI': 2.11402162303605, 'W_D': 4.278592231407178, 'J_D': 62.57393091917032, 'W_D_1KI': 0.3983791649354914, 'J_D_1KI': 0.03709303211689864} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.0001.json b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.0001.json new file mode 100644 index 0000000..f8f615f --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 96826, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.588202953338623, "TIME_S_1KI": 0.10935289027057425, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 358.2542047309875, "W": 24.50573052785985, "J_1KI": 3.699979393251683, "W_1KI": 0.2530903943967514, "W_D": 4.6827305278598494, "J_D": 68.45777967405314, "W_D_1KI": 0.04836232548963966, "J_D_1KI": 0.000499476643563089} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.0001.output b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.0001.output new file mode 100644 index 0000000..4f006ee --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.0001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.0001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.1145937442779541} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 2495, 2499, 2500]), + col_indices=tensor([2458, 4485, 3264, ..., 1767, 2577, 3633]), + values=tensor([0.5111, 0.1865, 0.4486, ..., 0.9187, 0.4905, 0.6857]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.1036, 0.8585, 0.3762, ..., 0.6219, 0.4226, 0.3195]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 0.1145937442779541 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 91628 -ss 5000 -sd 0.0001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.936307668685913} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 2500, 2500, 2500]), + col_indices=tensor([1700, 3040, 4129, ..., 4083, 2058, 3930]), + values=tensor([0.1350, 0.7186, 0.2594, ..., 0.2124, 0.0344, 0.1244]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.7260, 0.9332, 0.2146, ..., 0.1697, 0.4017, 0.1867]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 9.936307668685913 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 96826 -ss 5000 -sd 0.0001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.588202953338623} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 2499, 2500, 2500]), + col_indices=tensor([3997, 2967, 4931, ..., 3835, 1314, 3597]), + values=tensor([0.7356, 0.2235, 0.2006, ..., 0.5232, 0.0695, 0.2889]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.7175, 0.9581, 0.9907, ..., 0.9548, 0.8349, 0.6616]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 10.588202953338623 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 2499, 2500, 2500]), + col_indices=tensor([3997, 2967, 4931, ..., 3835, 1314, 3597]), + values=tensor([0.7356, 0.2235, 0.2006, ..., 0.5232, 0.0695, 0.2889]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.7175, 0.9581, 0.9907, ..., 0.9548, 0.8349, 0.6616]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 10.588202953338623 seconds + +[20.4, 20.56, 20.56, 20.6, 20.44, 20.64, 20.68, 20.96, 21.52, 22.56] +[23.28, 23.64, 26.88, 28.2, 29.6, 29.52, 29.52, 29.72, 25.72, 24.92, 23.8, 23.72, 24.2, 24.28] +14.619201183319092 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 96826, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.588202953338623, 'TIME_S_1KI': 0.10935289027057425, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 358.2542047309875, 'W': 24.50573052785985} +[20.4, 20.56, 20.56, 20.6, 20.44, 20.64, 20.68, 20.96, 21.52, 22.56, 22.96, 23.28, 23.32, 23.36, 23.32, 23.28, 23.36, 23.12, 23.0, 23.0] +396.46 +19.823 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 96826, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.588202953338623, 'TIME_S_1KI': 0.10935289027057425, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 358.2542047309875, 'W': 24.50573052785985, 'J_1KI': 3.699979393251683, 'W_1KI': 0.2530903943967514, 'W_D': 4.6827305278598494, 'J_D': 68.45777967405314, 'W_D_1KI': 0.04836232548963966, 'J_D_1KI': 0.000499476643563089} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.001.json b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.001.json new file mode 100644 index 0000000..7e96f33 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 17363, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.667346239089966, "TIME_S_1KI": 0.6143722996653784, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 333.18905796051024, "W": 22.76067676218484, "J_1KI": 19.1896019098376, "W_1KI": 1.3108723585892323, "W_D": 3.0516767621848366, "J_D": 44.67289422965043, "W_D_1KI": 0.17575745909029755, "J_D_1KI": 0.010122528312520737} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.001.output b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.001.output new file mode 100644 index 0000000..ba00b65 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.001.output @@ -0,0 +1,62 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.6047096252441406} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 7, 11, ..., 24983, 24992, 25000]), + col_indices=tensor([ 225, 408, 1943, ..., 2555, 2651, 2712]), + values=tensor([0.7906, 0.4816, 0.2276, ..., 0.2718, 0.8003, 0.8712]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.6660, 0.8709, 0.7078, ..., 0.4840, 0.5828, 0.2928]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 0.6047096252441406 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 17363 -ss 5000 -sd 0.001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.667346239089966} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 7, ..., 24986, 24994, 25000]), + col_indices=tensor([ 85, 195, 4187, ..., 2991, 3287, 4675]), + values=tensor([0.1915, 0.0298, 0.9128, ..., 0.0482, 0.8260, 0.8063]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.9668, 0.6018, 0.4153, ..., 0.6117, 0.1974, 0.6733]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 10.667346239089966 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 7, ..., 24986, 24994, 25000]), + col_indices=tensor([ 85, 195, 4187, ..., 2991, 3287, 4675]), + values=tensor([0.1915, 0.0298, 0.9128, ..., 0.0482, 0.8260, 0.8063]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.9668, 0.6018, 0.4153, ..., 0.6117, 0.1974, 0.6733]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 10.667346239089966 seconds + +[22.96, 22.64, 22.44, 22.84, 23.2, 23.48, 24.08, 23.88, 23.04, 22.2] +[21.52, 21.52, 20.88, 24.32, 25.36, 27.04, 27.68, 28.12, 25.12, 23.88, 23.84, 23.84, 23.68, 23.84] +14.638802766799927 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 17363, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.667346239089966, 'TIME_S_1KI': 0.6143722996653784, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 333.18905796051024, 'W': 22.76067676218484} +[22.96, 22.64, 22.44, 22.84, 23.2, 23.48, 24.08, 23.88, 23.04, 22.2, 20.48, 20.6, 20.52, 20.76, 20.72, 20.68, 20.68, 20.76, 20.64, 20.8] +394.18000000000006 +19.709000000000003 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 17363, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.667346239089966, 'TIME_S_1KI': 0.6143722996653784, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 333.18905796051024, 'W': 22.76067676218484, 'J_1KI': 19.1896019098376, 'W_1KI': 1.3108723585892323, 'W_D': 3.0516767621848366, 'J_D': 44.67289422965043, 'W_D_1KI': 0.17575745909029755, 'J_D_1KI': 0.010122528312520737} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.01.json b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.01.json new file mode 100644 index 0000000..a5d181f --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1948, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.5094473361969, "TIME_S_1KI": 5.394993499074384, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 321.46233737945556, "W": 22.060099154306354, "J_1KI": 165.02173376768766, "W_1KI": 11.324486218843099, "W_D": 3.783099154306356, "J_D": 55.127762036561975, "W_D_1KI": 1.9420426870155834, "J_D_1KI": 0.9969418311168293} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.01.output b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.01.output new file mode 100644 index 0000000..80c2fbe --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.01.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.01 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 5.389868259429932} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 46, 96, ..., 249907, 249949, + 250000]), + col_indices=tensor([ 123, 345, 399, ..., 4711, 4879, 4988]), + values=tensor([0.4250, 0.5468, 0.7620, ..., 0.1883, 0.2040, 0.8985]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.2612, 0.9268, 0.9416, ..., 0.0698, 0.1077, 0.5090]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 5.389868259429932 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1948 -ss 5000 -sd 0.01 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.5094473361969} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 57, 115, ..., 249893, 249944, + 250000]), + col_indices=tensor([ 73, 135, 475, ..., 4575, 4723, 4971]), + values=tensor([0.1739, 0.5180, 0.0955, ..., 0.3924, 0.5566, 0.2573]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.5075, 0.6044, 0.6141, ..., 0.4161, 0.9554, 0.0515]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 10.5094473361969 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 57, 115, ..., 249893, 249944, + 250000]), + col_indices=tensor([ 73, 135, 475, ..., 4575, 4723, 4971]), + values=tensor([0.1739, 0.5180, 0.0955, ..., 0.3924, 0.5566, 0.2573]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.5075, 0.6044, 0.6141, ..., 0.4161, 0.9554, 0.0515]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 10.5094473361969 seconds + +[20.56, 20.36, 20.36, 20.92, 20.64, 20.52, 20.44, 20.2, 20.0, 20.24] +[20.4, 20.4, 20.96, 22.24, 24.0, 24.56, 25.32, 25.32, 25.28, 24.8, 24.08, 24.24, 24.16, 24.16] +14.572116613388062 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1948, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.5094473361969, 'TIME_S_1KI': 5.394993499074384, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 321.46233737945556, 'W': 22.060099154306354} +[20.56, 20.36, 20.36, 20.92, 20.64, 20.52, 20.44, 20.2, 20.0, 20.24, 20.16, 20.08, 20.04, 20.12, 20.12, 20.16, 20.24, 20.2, 20.44, 20.44] +365.53999999999996 +18.276999999999997 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1948, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.5094473361969, 'TIME_S_1KI': 5.394993499074384, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 321.46233737945556, 'W': 22.060099154306354, 'J_1KI': 165.02173376768766, 'W_1KI': 11.324486218843099, 'W_D': 3.783099154306356, 'J_D': 55.127762036561975, 'W_D_1KI': 1.9420426870155834, 'J_D_1KI': 0.9969418311168293} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.05.json b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.05.json new file mode 100644 index 0000000..496e602 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 28.093817949295044, "TIME_S_1KI": 28.093817949295044, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 689.2963391876219, "W": 22.82953703239495, "J_1KI": 689.2963391876219, "W_1KI": 22.82953703239495, "W_D": 4.334537032394952, "J_D": 130.87346030116072, "W_D_1KI": 4.334537032394952, "J_D_1KI": 4.334537032394952} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.05.output b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.05.output new file mode 100644 index 0000000..9c2fd18 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.05.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 28.093817949295044} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 249, 484, ..., 1249498, + 1249755, 1250000]), + col_indices=tensor([ 8, 31, 46, ..., 4934, 4976, 4984]), + values=tensor([0.2044, 0.4643, 0.3912, ..., 0.8352, 0.2191, 0.4950]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.7092, 0.7480, 0.2063, ..., 0.9775, 0.7055, 0.9981]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 28.093817949295044 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 249, 484, ..., 1249498, + 1249755, 1250000]), + col_indices=tensor([ 8, 31, 46, ..., 4934, 4976, 4984]), + values=tensor([0.2044, 0.4643, 0.3912, ..., 0.8352, 0.2191, 0.4950]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.7092, 0.7480, 0.2063, ..., 0.9775, 0.7055, 0.9981]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 28.093817949295044 seconds + +[20.56, 20.6, 20.48, 20.56, 20.4, 20.48, 20.68, 20.72, 20.92, 21.08] +[20.92, 20.92, 20.56, 23.36, 25.52, 27.28, 28.24, 28.72, 25.44, 24.36, 24.6, 24.76, 24.64, 24.52, 24.36, 24.44, 24.24, 24.4, 24.44, 24.16, 24.16, 24.12, 24.2, 24.2, 24.08, 24.12, 24.24, 24.12, 24.0] +30.193180799484253 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 28.093817949295044, 'TIME_S_1KI': 28.093817949295044, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 689.2963391876219, 'W': 22.82953703239495} +[20.56, 20.6, 20.48, 20.56, 20.4, 20.48, 20.68, 20.72, 20.92, 21.08, 20.52, 20.6, 20.36, 20.4, 20.52, 20.44, 20.6, 20.44, 20.44, 20.36] +369.9 +18.494999999999997 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 28.093817949295044, 'TIME_S_1KI': 28.093817949295044, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 689.2963391876219, 'W': 22.82953703239495, 'J_1KI': 689.2963391876219, 'W_1KI': 22.82953703239495, 'W_D': 4.334537032394952, 'J_D': 130.87346030116072, 'W_D_1KI': 4.334537032394952, 'J_D_1KI': 4.334537032394952} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.1.json b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.1.json new file mode 100644 index 0000000..fff9557 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.1.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 53.78093886375427, "TIME_S_1KI": 53.78093886375427, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1352.5172874259947, "W": 23.03061139017129, "J_1KI": 1352.5172874259947, "W_1KI": 23.03061139017129, "W_D": 4.417611390171292, "J_D": 259.4327902595995, "W_D_1KI": 4.417611390171292, "J_D_1KI": 4.417611390171292} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.1.output b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.1.output new file mode 100644 index 0000000..c5ce197 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_0.1.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.1 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 53.78093886375427} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 534, 1044, ..., 2498992, + 2499517, 2500000]), + col_indices=tensor([ 3, 19, 25, ..., 4971, 4983, 4990]), + values=tensor([0.2124, 0.6762, 0.6770, ..., 0.5380, 0.6783, 0.2658]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.0160, 0.9125, 0.7128, ..., 0.4183, 0.3158, 0.5797]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 53.78093886375427 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 534, 1044, ..., 2498992, + 2499517, 2500000]), + col_indices=tensor([ 3, 19, 25, ..., 4971, 4983, 4990]), + values=tensor([0.2124, 0.6762, 0.6770, ..., 0.5380, 0.6783, 0.2658]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.0160, 0.9125, 0.7128, ..., 0.4183, 0.3158, 0.5797]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 53.78093886375427 seconds + +[20.56, 20.72, 20.76, 20.76, 20.64, 20.88, 20.6, 20.52, 20.72, 20.48] +[20.36, 20.24, 20.8, 22.0, 24.0, 25.2, 26.08, 25.8, 25.8, 25.44, 24.16, 24.32, 24.32, 24.4, 24.36, 24.4, 24.52, 24.88, 24.68, 24.64, 24.52, 24.28, 24.04, 24.08, 24.08, 24.08, 24.36, 24.4, 24.48, 24.6, 24.6, 24.64, 24.56, 24.52, 24.56, 24.32, 24.04, 24.32, 24.36, 24.24, 24.28, 24.28, 24.28, 24.48, 24.52, 24.76, 24.56, 24.24, 24.16, 24.04, 24.12, 24.12, 24.44, 24.48, 24.52, 24.4] +58.726938009262085 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 53.78093886375427, 'TIME_S_1KI': 53.78093886375427, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1352.5172874259947, 'W': 23.03061139017129} +[20.56, 20.72, 20.76, 20.76, 20.64, 20.88, 20.6, 20.52, 20.72, 20.48, 20.84, 20.6, 20.72, 20.72, 20.72, 20.52, 20.6, 20.72, 20.76, 20.72] +372.26 +18.613 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 53.78093886375427, 'TIME_S_1KI': 53.78093886375427, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1352.5172874259947, 'W': 23.03061139017129, 'J_1KI': 1352.5172874259947, 'W_1KI': 23.03061139017129, 'W_D': 4.417611390171292, 'J_D': 259.4327902595995, 'W_D_1KI': 4.417611390171292, 'J_D_1KI': 4.417611390171292} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_1e-05.json b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_1e-05.json new file mode 100644 index 0000000..a523326 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 289284, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.336281061172485, "TIME_S_1KI": 0.035730566022222056, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 302.8508556365967, "W": 22.269333190276484, "J_1KI": 1.0468980504853247, "W_1KI": 0.07698086721103305, "W_D": 3.542333190276487, "J_D": 48.17381052494056, "W_D_1KI": 0.012245174950140648, "J_D_1KI": 4.232925066765064e-05} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_1e-05.output b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_1e-05.output new file mode 100644 index 0000000..2a5bc74 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_10_10_10_synthetic_5000_1e-05.output @@ -0,0 +1,356 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.04395866394042969} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([ 439, 4351, 241, 500, 1004, 350, 1803, 3065, 3191, + 3136, 4095, 405, 1027, 870, 1417, 1360, 1534, 1342, + 3091, 3442, 2499, 1358, 1636, 3780, 2825, 2256, 4221, + 891, 2908, 3121, 1626, 2038, 883, 1037, 495, 2079, + 274, 937, 1868, 1488, 2903, 1523, 2167, 269, 3946, + 4053, 3008, 3702, 2193, 1563, 433, 1763, 2812, 3707, + 1886, 3013, 1511, 241, 1937, 2889, 1518, 4490, 4205, + 2026, 1673, 448, 986, 4061, 3094, 3985, 2097, 1213, + 4129, 3540, 2913, 1842, 3281, 3579, 2699, 1582, 1926, + 2137, 2888, 530, 3516, 2878, 57, 3238, 1656, 156, + 3904, 1121, 616, 2128, 426, 4846, 2365, 4030, 347, + 3690, 867, 1324, 1005, 4649, 3492, 4358, 47, 220, + 4307, 708, 2842, 3336, 1686, 1004, 4195, 3767, 332, + 43, 2809, 3452, 1463, 2172, 1464, 3770, 1880, 2042, + 3777, 2498, 3420, 1112, 4060, 4103, 4825, 1440, 4448, + 99, 2245, 3060, 27, 3733, 457, 3987, 3747, 1652, + 2522, 757, 4125, 2250, 2724, 3925, 2338, 3816, 1409, + 2282, 4242, 682, 3683, 4310, 1582, 4330, 601, 544, + 2289, 2874, 3966, 1136, 681, 4257, 2516, 3237, 2677, + 2257, 2771, 3675, 3168, 1248, 4288, 3632, 3599, 280, + 4551, 4047, 3577, 2662, 2281, 1968, 3402, 454, 1141, + 3366, 354, 2291, 4168, 3523, 2296, 2127, 2248, 4229, + 2140, 736, 3393, 640, 4820, 2236, 1416, 4815, 3234, + 1042, 1979, 4637, 2323, 138, 2380, 3226, 1859, 3342, + 2378, 803, 349, 3172, 4960, 4660, 4480, 3337, 245, + 4128, 3649, 2732, 968, 771, 3445, 3899, 644, 16, + 3599, 1029, 1799, 4502, 366, 4843, 2859, 2949, 545, + 645, 3511, 4843, 251, 2988, 2387, 946]), + values=tensor([9.4296e-01, 5.2301e-01, 8.9037e-01, 1.8262e-01, + 9.3621e-01, 5.6553e-01, 9.8721e-01, 6.5141e-01, + 2.8305e-01, 8.9567e-01, 7.1276e-04, 4.5788e-01, + 1.3154e-01, 7.7912e-01, 2.1464e-01, 9.3572e-01, + 4.0199e-01, 1.4579e-01, 1.5259e-01, 5.2311e-01, + 6.3620e-01, 8.3700e-01, 3.7813e-01, 1.4289e-01, + 6.8630e-01, 9.7120e-01, 7.6830e-01, 1.8723e-01, + 5.0392e-01, 9.2014e-01, 9.6103e-01, 7.2487e-01, + 3.2638e-01, 3.9838e-01, 2.7919e-01, 9.9376e-02, + 1.2394e-01, 1.9018e-01, 9.4573e-01, 4.8384e-02, + 3.3755e-01, 5.4543e-01, 6.5933e-01, 9.2931e-03, + 6.7184e-01, 3.3367e-01, 7.2403e-02, 1.6238e-01, + 7.9429e-01, 7.1594e-01, 9.3852e-01, 9.0787e-01, + 8.7587e-01, 2.4929e-01, 3.4089e-01, 7.4583e-01, + 3.6106e-01, 5.5151e-01, 6.3073e-01, 2.4689e-01, + 6.6122e-01, 6.2804e-01, 3.7429e-04, 5.6550e-01, + 5.0592e-01, 5.2248e-02, 7.1885e-01, 1.4852e-03, + 6.1029e-01, 4.5258e-01, 9.8998e-01, 7.7545e-03, + 6.8035e-01, 8.7032e-01, 2.7807e-01, 6.6854e-01, + 8.8838e-01, 1.5830e-02, 6.6226e-01, 1.1911e-01, + 1.8780e-01, 3.7508e-01, 9.2709e-01, 1.3932e-01, + 8.5139e-01, 2.8186e-01, 2.2711e-01, 8.2491e-01, + 9.3666e-01, 5.4799e-01, 8.7126e-01, 5.6305e-01, + 2.9909e-01, 9.8105e-02, 1.0565e-01, 9.1471e-01, + 9.5693e-01, 5.2767e-01, 7.5753e-01, 2.3887e-01, + 8.7389e-01, 2.4255e-01, 8.0756e-01, 7.2201e-01, + 6.6620e-01, 4.9751e-01, 5.1454e-01, 8.6001e-01, + 3.0834e-01, 2.2246e-01, 1.9841e-01, 8.9698e-02, + 9.1174e-01, 9.2243e-01, 7.7010e-01, 3.5962e-01, + 6.8634e-01, 9.5528e-01, 9.6147e-02, 9.3024e-02, + 8.3726e-01, 7.2003e-01, 6.7904e-01, 2.9273e-01, + 9.7464e-02, 1.5658e-02, 9.0559e-01, 3.6883e-01, + 7.9470e-01, 3.6450e-01, 5.7814e-03, 6.5827e-02, + 6.1557e-02, 3.8228e-02, 4.7705e-01, 2.6058e-01, + 8.0137e-01, 9.8272e-01, 8.4581e-01, 6.6501e-01, + 5.2583e-03, 3.0522e-01, 9.5123e-01, 2.4154e-01, + 6.0106e-01, 6.7170e-01, 2.1086e-01, 6.6402e-01, + 9.0397e-01, 3.9084e-01, 2.0324e-01, 7.2153e-01, + 6.7300e-01, 5.3381e-01, 2.8418e-02, 4.4506e-01, + 1.0782e-01, 1.9622e-01, 8.0898e-02, 5.4146e-01, + 8.2802e-01, 7.5722e-01, 9.2798e-04, 8.7421e-02, + 6.0281e-01, 1.2511e-01, 5.8418e-01, 7.7672e-01, + 8.2524e-01, 8.4603e-01, 6.9503e-01, 5.3184e-01, + 8.1918e-01, 5.6983e-01, 6.0056e-01, 1.8971e-01, + 1.0667e-01, 1.4853e-01, 3.6607e-01, 9.1330e-01, + 7.6093e-01, 6.6336e-01, 8.3088e-02, 8.4756e-01, + 5.8339e-01, 9.7773e-03, 7.7948e-02, 2.5127e-01, + 9.2139e-01, 3.2626e-01, 8.8502e-01, 8.8419e-01, + 9.3048e-01, 2.5403e-01, 7.0568e-01, 6.2669e-01, + 5.4774e-01, 7.1848e-01, 6.1011e-01, 7.7754e-01, + 8.5827e-01, 1.7827e-01, 6.2997e-01, 8.0090e-02, + 2.7963e-01, 9.9685e-01, 9.8342e-01, 1.9697e-01, + 4.5505e-01, 4.5432e-01, 2.5097e-01, 6.7016e-01, + 1.8891e-01, 1.1873e-01, 3.8346e-01, 2.0525e-01, + 7.7441e-01, 9.7489e-01, 9.5720e-01, 1.2362e-01, + 6.3758e-01, 4.1703e-01, 4.2223e-01, 1.8615e-01, + 3.6248e-02, 7.9391e-01, 2.0557e-01, 2.4331e-01, + 3.3957e-02, 7.9866e-01, 9.2672e-01, 7.1739e-01, + 4.0885e-01, 7.5316e-01, 1.3635e-01, 7.8209e-01, + 7.8379e-01, 8.6373e-01, 4.7931e-01, 9.1748e-01, + 8.8234e-01, 3.9897e-02, 1.9663e-01, 5.1895e-01, + 1.8534e-01, 5.8047e-01, 8.8859e-01, 6.9097e-01, + 9.8689e-01, 3.5349e-01]), size=(5000, 5000), nnz=250, + layout=torch.sparse_csr) +tensor([0.0440, 0.7352, 0.2145, ..., 0.3780, 0.1332, 0.0924]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 0.04395866394042969 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 238860 -ss 5000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 8.669770956039429} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([3091, 2173, 2760, 4828, 4497, 2021, 4336, 1372, 2593, + 4578, 2353, 1617, 2286, 4843, 611, 3842, 780, 3798, + 1703, 2131, 4067, 844, 2093, 4026, 1314, 3497, 4042, + 4776, 3331, 3582, 1805, 810, 679, 3355, 267, 75, + 1213, 2221, 1110, 2198, 2383, 4776, 4217, 678, 3909, + 1512, 3709, 4936, 3783, 908, 1282, 1246, 4599, 2322, + 400, 1819, 1668, 1808, 2129, 438, 3127, 679, 3190, + 1219, 3867, 1347, 947, 2998, 4062, 3110, 2027, 1149, + 4411, 3584, 2329, 3206, 3899, 4697, 2802, 4938, 2228, + 4929, 3505, 2881, 4726, 2353, 1213, 3407, 639, 4955, + 2493, 2366, 1047, 948, 3072, 1625, 3356, 4277, 3654, + 3675, 3687, 1889, 2750, 4011, 2466, 2775, 4133, 2972, + 4848, 1886, 2462, 153, 3593, 4334, 1547, 1439, 1117, + 4652, 364, 4137, 3929, 32, 4355, 3906, 1819, 701, + 843, 1395, 965, 3122, 4564, 113, 2887, 3505, 3813, + 1298, 294, 4050, 112, 970, 3705, 1370, 1914, 3916, + 1662, 4047, 1814, 166, 4992, 2795, 1857, 3493, 862, + 4171, 3693, 4410, 3072, 191, 4249, 2990, 2750, 2777, + 2482, 2558, 4173, 4640, 4365, 2368, 165, 3278, 3602, + 4362, 3309, 800, 3849, 4373, 4033, 1894, 4873, 4868, + 2497, 3754, 682, 4534, 989, 3189, 843, 3829, 1001, + 1817, 1493, 4385, 4304, 2601, 4528, 142, 3070, 914, + 4818, 1532, 2114, 396, 1015, 1256, 3073, 1867, 2500, + 3218, 958, 3683, 1738, 4356, 2003, 3914, 1072, 3035, + 906, 3835, 659, 3510, 266, 3356, 607, 3975, 4538, + 845, 569, 3535, 3958, 1202, 678, 853, 3550, 3828, + 589, 2363, 2962, 3748, 447, 325, 4847, 760, 2711, + 4314, 4639, 1546, 4036, 2172, 2793, 2280]), + values=tensor([0.9311, 0.9337, 0.6031, 0.9384, 0.3149, 0.4635, 0.9582, + 0.9724, 0.9125, 0.1632, 0.9245, 0.0672, 0.1143, 0.3208, + 0.1789, 0.9522, 0.9522, 0.5693, 0.9699, 0.8167, 0.2351, + 0.8218, 0.0084, 0.8188, 0.0090, 0.0238, 0.9758, 0.2522, + 0.5008, 0.7112, 0.5123, 0.0579, 0.8162, 0.9429, 0.9583, + 0.8914, 0.0600, 0.0407, 0.6565, 0.9268, 0.0759, 0.6544, + 0.1768, 0.1190, 0.3416, 0.4319, 0.6553, 0.9105, 0.0139, + 0.3695, 0.9454, 0.5109, 0.7588, 0.3085, 0.7470, 0.2791, + 0.8189, 0.8019, 0.7112, 0.0119, 0.9175, 0.6748, 0.5583, + 0.3843, 0.9066, 0.9602, 0.5163, 0.7903, 0.5317, 0.8558, + 0.0178, 0.9916, 0.0539, 0.1774, 0.1131, 0.2007, 0.4985, + 0.3602, 0.2595, 0.8066, 0.9027, 0.9075, 0.6105, 0.4231, + 0.6445, 0.3321, 0.5032, 0.7416, 0.0328, 0.1698, 0.1582, + 0.0973, 0.7734, 0.4633, 0.0933, 0.5521, 0.4839, 0.4820, + 0.1735, 0.5797, 0.5056, 0.2959, 0.7988, 0.9839, 0.0551, + 0.6884, 0.9314, 0.9873, 0.7685, 0.0058, 0.0787, 0.9765, + 0.6762, 0.3041, 0.3881, 0.9603, 0.5133, 0.5010, 0.5978, + 0.4901, 0.1096, 0.3089, 0.4831, 0.1777, 0.2237, 0.1128, + 0.1933, 0.6434, 0.5434, 0.2104, 0.1106, 0.7119, 0.8262, + 0.1519, 0.4358, 0.3729, 0.3091, 0.7531, 0.7323, 0.9612, + 0.1214, 0.5723, 0.7721, 0.9862, 0.8839, 0.8431, 0.1624, + 0.7651, 0.9221, 0.7966, 0.7730, 0.4034, 0.8456, 0.4576, + 0.9356, 0.8744, 0.0500, 0.0142, 0.8332, 0.7405, 0.9426, + 0.9799, 0.7180, 0.0762, 0.9417, 0.8209, 0.5328, 0.8635, + 0.5987, 0.9841, 0.7140, 0.4626, 0.1625, 0.9366, 0.7462, + 0.7100, 0.7244, 0.1108, 0.3970, 0.3797, 0.5535, 0.5783, + 0.7423, 0.8333, 0.5720, 0.4870, 0.8115, 0.4909, 0.2202, + 0.4712, 0.9250, 0.1538, 0.1309, 0.3084, 0.5786, 0.3477, + 0.3671, 0.5677, 0.9819, 0.9097, 0.6246, 0.6428, 0.8143, + 0.2008, 0.5795, 0.9732, 0.8629, 0.0578, 0.4214, 0.2742, + 0.5882, 0.2057, 0.2782, 0.1474, 0.6538, 0.7641, 0.1314, + 0.5759, 0.5734, 0.1329, 0.3014, 0.6477, 0.7298, 0.9380, + 0.2945, 0.0625, 0.3728, 0.4803, 0.1010, 0.9830, 0.7456, + 0.0112, 0.3135, 0.2364, 0.8172, 0.4517, 0.9464, 0.8185, + 0.0983, 0.1786, 0.9208, 0.9192, 0.5143, 0.5288, 0.7078, + 0.6070, 0.5609, 0.7211, 0.9777, 0.7339]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.3130, 0.9247, 0.8789, ..., 0.8987, 0.6939, 0.4674]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 8.669770956039429 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 289284 -ss 5000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.336281061172485} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([1127, 2914, 651, 3868, 3478, 2616, 630, 2816, 2915, + 3943, 3548, 2263, 4542, 4912, 1799, 1521, 4830, 1959, + 565, 4046, 352, 708, 388, 1948, 1601, 580, 4884, + 1273, 2391, 2767, 3934, 3369, 4073, 1550, 863, 4309, + 666, 1592, 2221, 566, 3749, 4816, 269, 465, 352, + 1056, 3923, 2996, 3908, 4028, 1098, 3401, 2466, 323, + 4554, 3723, 4598, 3095, 2628, 4872, 2114, 3081, 3773, + 3425, 1731, 1262, 1917, 2900, 2481, 4272, 4608, 2685, + 4012, 3949, 546, 721, 2719, 2060, 3934, 2047, 319, + 1177, 4368, 590, 919, 2939, 1268, 3254, 3134, 888, + 658, 3560, 3243, 4771, 1870, 2190, 3032, 1145, 3921, + 3093, 240, 195, 4761, 94, 4383, 2739, 425, 1280, + 2618, 2549, 2332, 4924, 2783, 3566, 338, 1395, 3128, + 1333, 3138, 4314, 4739, 2917, 1017, 709, 300, 2533, + 3360, 999, 395, 2920, 889, 1982, 4806, 1821, 1887, + 3776, 1083, 112, 254, 1671, 1524, 3260, 3015, 2718, + 1436, 4393, 4051, 3480, 2230, 4054, 2670, 395, 2759, + 4796, 849, 4168, 1575, 4853, 1261, 4275, 1866, 3556, + 3417, 1020, 4282, 584, 3689, 3874, 1509, 4083, 263, + 1550, 171, 3186, 1466, 1336, 4936, 3512, 2418, 944, + 325, 1694, 930, 2377, 1839, 621, 2680, 2742, 1537, + 4859, 1103, 3522, 1157, 158, 4629, 2357, 873, 4934, + 2882, 1458, 3703, 572, 1916, 2812, 1567, 1471, 1134, + 673, 1170, 2394, 135, 1008, 3492, 716, 2043, 4892, + 1753, 1218, 680, 2404, 2996, 3897, 4680, 298, 3550, + 1169, 883, 1691, 2497, 4937, 4137, 2804, 4987, 4765, + 1784, 3581, 2966, 4679, 4779, 60, 1363, 4249, 709, + 3283, 2433, 962, 3692, 1587, 4377, 2820]), + values=tensor([0.9574, 0.0088, 0.5020, 0.9141, 0.2863, 0.0911, 0.1607, + 0.4081, 0.1489, 0.0577, 0.6602, 0.5319, 0.6687, 0.7359, + 0.7218, 0.5265, 0.2843, 0.5255, 0.7975, 0.9675, 0.4955, + 0.9458, 0.7420, 0.1283, 0.0140, 0.5968, 0.2693, 0.9592, + 0.8530, 0.7750, 0.2021, 0.3487, 0.7218, 0.6129, 0.8420, + 0.1328, 0.0258, 0.3482, 0.2496, 0.9070, 0.1335, 0.8930, + 0.3961, 0.0685, 0.4593, 0.3228, 0.0085, 0.1698, 0.1363, + 0.2353, 0.4054, 0.4337, 0.7557, 0.8715, 0.1886, 0.6545, + 0.5162, 0.7325, 0.3336, 0.6877, 0.8204, 0.5811, 0.3075, + 0.6798, 0.4051, 0.0597, 0.5326, 0.8458, 0.4272, 0.2826, + 0.4719, 0.5396, 0.3388, 0.9973, 0.4187, 0.6234, 0.2698, + 0.3492, 0.8857, 0.1489, 0.1998, 0.2289, 0.4451, 0.0379, + 0.1988, 0.2113, 0.3738, 0.7193, 0.5213, 0.9072, 0.0613, + 0.4005, 0.3523, 0.0709, 0.5596, 0.7335, 0.6383, 0.0887, + 0.5692, 0.4603, 0.6272, 0.2553, 0.8985, 0.3462, 0.0407, + 0.6936, 0.4412, 0.0627, 0.2562, 0.5155, 0.3465, 0.4292, + 0.4385, 0.0812, 0.3872, 0.5207, 0.2559, 0.2581, 0.6221, + 0.7181, 0.1019, 0.8605, 0.1756, 0.2609, 0.7394, 0.4792, + 0.5099, 0.8831, 0.7934, 0.9746, 0.6748, 0.9066, 0.6080, + 0.5057, 0.1054, 0.3619, 0.1974, 0.9928, 0.4111, 0.7540, + 0.7143, 0.9147, 0.9579, 0.7958, 0.4523, 0.7894, 0.2118, + 0.3648, 0.9673, 0.5837, 0.0431, 0.7582, 0.2735, 0.6036, + 0.6216, 0.5076, 0.9183, 0.8897, 0.4081, 0.7880, 0.2381, + 0.5085, 0.3796, 0.6662, 0.3146, 0.0575, 0.2385, 0.6086, + 0.9934, 0.6888, 0.1889, 0.0438, 0.3261, 0.3882, 0.4169, + 0.8627, 0.9997, 0.2070, 0.7356, 0.5145, 0.1752, 0.6555, + 0.6684, 0.9501, 0.6473, 0.8531, 0.7478, 0.1401, 0.2317, + 0.3747, 0.6467, 0.8854, 0.0360, 0.9037, 0.4674, 0.5830, + 0.9597, 0.0900, 0.4875, 0.2138, 0.3988, 0.5880, 0.0152, + 0.7769, 0.9566, 0.4429, 0.9222, 0.4459, 0.5489, 0.2798, + 0.1520, 0.0578, 0.0988, 0.1282, 0.5238, 0.4828, 0.8259, + 0.8455, 0.5457, 0.6118, 0.8302, 0.6716, 0.4292, 0.3306, + 0.7331, 0.1640, 0.1078, 0.2534, 0.3387, 0.7022, 0.6433, + 0.1056, 0.7198, 0.6256, 0.4771, 0.9207, 0.9076, 0.7974, + 0.8755, 0.5354, 0.1002, 0.2943, 0.2911, 0.1894, 0.3903, + 0.1589, 0.3357, 0.6754, 0.9423, 0.7719]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.4104, 0.7044, 0.9040, ..., 0.0726, 0.3479, 0.6465]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 10.336281061172485 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([1127, 2914, 651, 3868, 3478, 2616, 630, 2816, 2915, + 3943, 3548, 2263, 4542, 4912, 1799, 1521, 4830, 1959, + 565, 4046, 352, 708, 388, 1948, 1601, 580, 4884, + 1273, 2391, 2767, 3934, 3369, 4073, 1550, 863, 4309, + 666, 1592, 2221, 566, 3749, 4816, 269, 465, 352, + 1056, 3923, 2996, 3908, 4028, 1098, 3401, 2466, 323, + 4554, 3723, 4598, 3095, 2628, 4872, 2114, 3081, 3773, + 3425, 1731, 1262, 1917, 2900, 2481, 4272, 4608, 2685, + 4012, 3949, 546, 721, 2719, 2060, 3934, 2047, 319, + 1177, 4368, 590, 919, 2939, 1268, 3254, 3134, 888, + 658, 3560, 3243, 4771, 1870, 2190, 3032, 1145, 3921, + 3093, 240, 195, 4761, 94, 4383, 2739, 425, 1280, + 2618, 2549, 2332, 4924, 2783, 3566, 338, 1395, 3128, + 1333, 3138, 4314, 4739, 2917, 1017, 709, 300, 2533, + 3360, 999, 395, 2920, 889, 1982, 4806, 1821, 1887, + 3776, 1083, 112, 254, 1671, 1524, 3260, 3015, 2718, + 1436, 4393, 4051, 3480, 2230, 4054, 2670, 395, 2759, + 4796, 849, 4168, 1575, 4853, 1261, 4275, 1866, 3556, + 3417, 1020, 4282, 584, 3689, 3874, 1509, 4083, 263, + 1550, 171, 3186, 1466, 1336, 4936, 3512, 2418, 944, + 325, 1694, 930, 2377, 1839, 621, 2680, 2742, 1537, + 4859, 1103, 3522, 1157, 158, 4629, 2357, 873, 4934, + 2882, 1458, 3703, 572, 1916, 2812, 1567, 1471, 1134, + 673, 1170, 2394, 135, 1008, 3492, 716, 2043, 4892, + 1753, 1218, 680, 2404, 2996, 3897, 4680, 298, 3550, + 1169, 883, 1691, 2497, 4937, 4137, 2804, 4987, 4765, + 1784, 3581, 2966, 4679, 4779, 60, 1363, 4249, 709, + 3283, 2433, 962, 3692, 1587, 4377, 2820]), + values=tensor([0.9574, 0.0088, 0.5020, 0.9141, 0.2863, 0.0911, 0.1607, + 0.4081, 0.1489, 0.0577, 0.6602, 0.5319, 0.6687, 0.7359, + 0.7218, 0.5265, 0.2843, 0.5255, 0.7975, 0.9675, 0.4955, + 0.9458, 0.7420, 0.1283, 0.0140, 0.5968, 0.2693, 0.9592, + 0.8530, 0.7750, 0.2021, 0.3487, 0.7218, 0.6129, 0.8420, + 0.1328, 0.0258, 0.3482, 0.2496, 0.9070, 0.1335, 0.8930, + 0.3961, 0.0685, 0.4593, 0.3228, 0.0085, 0.1698, 0.1363, + 0.2353, 0.4054, 0.4337, 0.7557, 0.8715, 0.1886, 0.6545, + 0.5162, 0.7325, 0.3336, 0.6877, 0.8204, 0.5811, 0.3075, + 0.6798, 0.4051, 0.0597, 0.5326, 0.8458, 0.4272, 0.2826, + 0.4719, 0.5396, 0.3388, 0.9973, 0.4187, 0.6234, 0.2698, + 0.3492, 0.8857, 0.1489, 0.1998, 0.2289, 0.4451, 0.0379, + 0.1988, 0.2113, 0.3738, 0.7193, 0.5213, 0.9072, 0.0613, + 0.4005, 0.3523, 0.0709, 0.5596, 0.7335, 0.6383, 0.0887, + 0.5692, 0.4603, 0.6272, 0.2553, 0.8985, 0.3462, 0.0407, + 0.6936, 0.4412, 0.0627, 0.2562, 0.5155, 0.3465, 0.4292, + 0.4385, 0.0812, 0.3872, 0.5207, 0.2559, 0.2581, 0.6221, + 0.7181, 0.1019, 0.8605, 0.1756, 0.2609, 0.7394, 0.4792, + 0.5099, 0.8831, 0.7934, 0.9746, 0.6748, 0.9066, 0.6080, + 0.5057, 0.1054, 0.3619, 0.1974, 0.9928, 0.4111, 0.7540, + 0.7143, 0.9147, 0.9579, 0.7958, 0.4523, 0.7894, 0.2118, + 0.3648, 0.9673, 0.5837, 0.0431, 0.7582, 0.2735, 0.6036, + 0.6216, 0.5076, 0.9183, 0.8897, 0.4081, 0.7880, 0.2381, + 0.5085, 0.3796, 0.6662, 0.3146, 0.0575, 0.2385, 0.6086, + 0.9934, 0.6888, 0.1889, 0.0438, 0.3261, 0.3882, 0.4169, + 0.8627, 0.9997, 0.2070, 0.7356, 0.5145, 0.1752, 0.6555, + 0.6684, 0.9501, 0.6473, 0.8531, 0.7478, 0.1401, 0.2317, + 0.3747, 0.6467, 0.8854, 0.0360, 0.9037, 0.4674, 0.5830, + 0.9597, 0.0900, 0.4875, 0.2138, 0.3988, 0.5880, 0.0152, + 0.7769, 0.9566, 0.4429, 0.9222, 0.4459, 0.5489, 0.2798, + 0.1520, 0.0578, 0.0988, 0.1282, 0.5238, 0.4828, 0.8259, + 0.8455, 0.5457, 0.6118, 0.8302, 0.6716, 0.4292, 0.3306, + 0.7331, 0.1640, 0.1078, 0.2534, 0.3387, 0.7022, 0.6433, + 0.1056, 0.7198, 0.6256, 0.4771, 0.9207, 0.9076, 0.7974, + 0.8755, 0.5354, 0.1002, 0.2943, 0.2911, 0.1894, 0.3903, + 0.1589, 0.3357, 0.6754, 0.9423, 0.7719]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.4104, 0.7044, 0.9040, ..., 0.0726, 0.3479, 0.6465]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 10.336281061172485 seconds + +[20.72, 20.68, 20.72, 20.88, 21.04, 21.0, 21.04, 20.76, 20.76, 20.8] +[20.88, 21.0, 21.28, 23.68, 24.48, 25.8, 26.4, 26.0, 24.92, 23.92, 24.12, 24.16, 24.24] +13.599457740783691 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 289284, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.336281061172485, 'TIME_S_1KI': 0.035730566022222056, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 302.8508556365967, 'W': 22.269333190276484} +[20.72, 20.68, 20.72, 20.88, 21.04, 21.0, 21.04, 20.76, 20.76, 20.8, 21.04, 20.92, 20.64, 20.48, 20.48, 20.48, 20.68, 20.96, 21.16, 21.16] +374.53999999999996 +18.726999999999997 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 289284, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.336281061172485, 'TIME_S_1KI': 0.035730566022222056, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 302.8508556365967, 'W': 22.269333190276484, 'J_1KI': 1.0468980504853247, 'W_1KI': 0.07698086721103305, 'W_D': 3.542333190276487, 'J_D': 48.17381052494056, 'W_D_1KI': 0.012245174950140648, 'J_D_1KI': 4.232925066765064e-05} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0001.json deleted file mode 100644 index 024170e..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0001.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 24.361413717269897, "TIME_S_1KI": 24.361413717269897, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 676.3945213317871, "W": 23.115576130225318, "J_1KI": 676.3945213317871, "W_1KI": 23.115576130225318, "W_D": 4.813576130225318, "J_D": 140.85206027984617, "W_D_1KI": 4.813576130225318, "J_D_1KI": 4.813576130225318} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0005.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0005.json deleted file mode 100644 index def7a28..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0005.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.0005, "TIME_S": 117.5588891506195, "TIME_S_1KI": 117.5588891506195, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2923.375952148438, "W": 23.010596725488792, "J_1KI": 2923.375952148438, "W_1KI": 23.010596725488792, "W_D": 4.534596725488793, "J_D": 576.0967947998054, "W_D_1KI": 4.534596725488793, "J_D_1KI": 4.534596725488793} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0005.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0005.output deleted file mode 100644 index 1edb066..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0005.output +++ /dev/null @@ -1,45 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 0.0005 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.0005, "TIME_S": 117.5588891506195} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 59, 119, ..., 4999916, - 4999957, 5000000]), - col_indices=tensor([ 1403, 2005, 2494, ..., 97036, 97364, 98409]), - values=tensor([0.0186, 0.2433, 0.9960, ..., 0.9635, 0.2941, 0.9283]), - size=(100000, 100000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.8104, 0.5597, 0.5404, ..., 0.7369, 0.5622, 0.9637]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([100000, 100000]) -Rows: 100000 -Size: 10000000000 -NNZ: 5000000 -Density: 0.0005 -Time: 117.5588891506195 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 59, 119, ..., 4999916, - 4999957, 5000000]), - col_indices=tensor([ 1403, 2005, 2494, ..., 97036, 97364, 98409]), - values=tensor([0.0186, 0.2433, 0.9960, ..., 0.9635, 0.2941, 0.9283]), - size=(100000, 100000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.8104, 0.5597, 0.5404, ..., 0.7369, 0.5622, 0.9637]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([100000, 100000]) -Rows: 100000 -Size: 10000000000 -NNZ: 5000000 -Density: 0.0005 -Time: 117.5588891506195 seconds - -[20.12, 20.28, 20.08, 20.04, 20.04, 20.04, 20.32, 20.4, 20.48, 20.6] -[20.4, 20.36, 21.2, 22.2, 24.2, 26.08, 27.2, 26.48, 26.32, 25.16, 24.32, 24.48, 24.48, 24.52, 24.56, 24.4, 24.36, 24.28, 24.48, 24.48, 24.48, 24.2, 24.2, 24.32, 24.2, 24.36, 24.48, 24.2, 24.24, 24.2, 24.24, 24.36, 24.36, 24.44, 24.44, 24.56, 24.56, 24.56, 24.64, 24.84, 24.68, 24.72, 24.52, 24.6, 24.64, 24.36, 24.4, 24.36, 24.28, 24.16, 24.2, 24.48, 24.64, 24.56, 24.44, 24.44, 24.44, 24.48, 24.4, 24.68, 24.44, 24.28, 24.2, 24.24, 24.28, 24.32, 24.2, 24.48, 24.32, 24.24, 24.36, 24.32, 24.16, 24.0, 23.92, 23.72, 23.64, 23.68, 23.68, 23.68, 23.76, 24.0, 24.04, 24.16, 24.4, 24.36, 24.48, 24.76, 24.76, 24.76, 24.64, 24.48, 24.28, 24.44, 24.48, 24.6, 24.52, 24.52, 24.44, 24.4, 24.4, 24.32, 24.36, 24.24, 24.2, 24.2, 24.48, 24.64, 24.48, 24.72, 24.52, 24.24, 24.36, 24.24, 24.24, 24.52, 24.6, 24.44, 24.68, 24.6, 24.48] -127.04476928710938 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 117.5588891506195, 'TIME_S_1KI': 117.5588891506195, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2923.375952148438, 'W': 23.010596725488792} -[20.12, 20.28, 20.08, 20.04, 20.04, 20.04, 20.32, 20.4, 20.48, 20.6, 21.08, 20.92, 20.92, 21.08, 20.84, 20.88, 20.8, 20.84, 20.44, 20.44] -369.52 -18.476 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 117.5588891506195, 'TIME_S_1KI': 117.5588891506195, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2923.375952148438, 'W': 23.010596725488792, 'J_1KI': 2923.375952148438, 'W_1KI': 23.010596725488792, 'W_D': 4.534596725488793, 'J_D': 576.0967947998054, 'W_D_1KI': 4.534596725488793, 'J_D_1KI': 4.534596725488793} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.001.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.001.json deleted file mode 100644 index 78b2e2b..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.001.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 230.9039385318756, "TIME_S_1KI": 230.9039385318756, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 5761.600697250372, "W": 23.455047609770336, "J_1KI": 5761.600697250372, "W_1KI": 23.455047609770336, "W_D": 5.099047609770334, "J_D": 1252.5524037532862, "W_D_1KI": 5.099047609770334, "J_D_1KI": 5.099047609770334} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.001.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.001.output deleted file mode 100644 index 1a5d909..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.001.output +++ /dev/null @@ -1,45 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 0.001 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 230.9039385318756} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 89, 166, ..., 9999787, - 9999913, 10000000]), - col_indices=tensor([ 196, 231, 588, ..., 93210, 94069, 96596]), - values=tensor([0.2369, 0.0996, 0.5969, ..., 0.6003, 0.9136, 0.6152]), - size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.9669, 0.8246, 0.8261, ..., 0.7936, 0.5607, 0.9848]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([100000, 100000]) -Rows: 100000 -Size: 10000000000 -NNZ: 10000000 -Density: 0.001 -Time: 230.9039385318756 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 89, 166, ..., 9999787, - 9999913, 10000000]), - col_indices=tensor([ 196, 231, 588, ..., 93210, 94069, 96596]), - values=tensor([0.2369, 0.0996, 0.5969, ..., 0.6003, 0.9136, 0.6152]), - size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.9669, 0.8246, 0.8261, ..., 0.7936, 0.5607, 0.9848]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([100000, 100000]) -Rows: 100000 -Size: 10000000000 -NNZ: 10000000 -Density: 0.001 -Time: 230.9039385318756 seconds - -[20.44, 20.56, 20.52, 20.52, 20.52, 20.6, 20.56, 20.68, 20.84, 20.88] -[21.08, 20.84, 21.6, 22.44, 24.12, 25.68, 27.16, 27.72, 27.68, 27.68, 26.88, 25.92, 25.32, 24.84, 24.64, 24.56, 24.56, 24.6, 24.64, 24.64, 24.8, 24.64, 24.44, 24.44, 24.44, 24.28, 24.6, 24.8, 24.68, 24.56, 24.44, 24.44, 24.6, 24.52, 24.72, 24.48, 24.48, 24.36, 24.24, 24.24, 24.4, 24.32, 24.64, 24.68, 24.64, 24.84, 24.4, 24.44, 24.52, 24.32, 24.48, 24.52, 24.6, 24.6, 24.48, 24.72, 24.56, 24.56, 24.64, 24.76, 24.72, 24.84, 25.04, 24.84, 24.92, 24.72, 24.4, 24.4, 24.6, 24.52, 24.4, 24.6, 24.32, 24.4, 24.48, 24.48, 24.6, 24.76, 25.0, 25.04, 25.0, 24.68, 24.32, 24.44, 24.4, 24.4, 24.56, 24.52, 24.56, 24.52, 24.56, 24.6, 24.84, 24.8, 24.92, 24.8, 24.52, 24.52, 24.84, 24.8, 24.8, 24.6, 24.36, 24.36, 24.56, 24.44, 24.72, 24.76, 24.52, 24.56, 24.72, 24.76, 24.84, 24.96, 25.0, 24.76, 24.96, 25.08, 24.72, 24.72, 24.68, 24.6, 24.52, 24.6, 24.68, 24.88, 24.8, 24.84, 24.88, 24.8, 24.88, 24.92, 24.96, 24.96, 24.8, 24.72, 24.88, 24.96, 25.28, 25.12, 25.08, 25.08, 25.0, 24.52, 24.56, 24.48, 24.52, 24.56, 24.6, 24.6, 24.56, 24.56, 24.52, 24.6, 24.8, 24.88, 24.76, 24.64, 24.52, 24.68, 24.6, 24.6, 24.52, 24.52, 24.44, 24.44, 24.24, 24.28, 24.32, 24.28, 24.6, 24.6, 24.76, 24.88, 24.88, 24.72, 24.72, 24.52, 24.6, 24.6, 24.56, 24.68, 24.92, 24.8, 24.84, 24.84, 24.8, 24.8, 24.44, 24.48, 24.48, 24.48, 24.52, 24.64, 24.56, 24.6, 24.52, 24.56, 24.48, 24.56, 24.48, 24.56, 24.48, 24.56, 24.64, 24.84, 24.88, 24.88, 24.72, 24.36, 24.48, 24.56, 24.8, 24.88, 24.96, 24.8, 24.48, 24.32, 24.2, 24.24, 24.2, 24.44, 24.6, 24.56, 24.88, 24.92, 24.84, 24.76, 24.48, 24.48, 24.52, 24.48, 24.72, 24.8] -245.6443829536438 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 230.9039385318756, 'TIME_S_1KI': 230.9039385318756, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 5761.600697250372, 'W': 23.455047609770336} -[20.44, 20.56, 20.52, 20.52, 20.52, 20.6, 20.56, 20.68, 20.84, 20.88, 20.84, 20.68, 20.52, 20.24, 19.96, 20.0, 19.76, 19.84, 20.12, 20.24] -367.12 -18.356 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 230.9039385318756, 'TIME_S_1KI': 230.9039385318756, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 5761.600697250372, 'W': 23.455047609770336, 'J_1KI': 5761.600697250372, 'W_1KI': 23.455047609770336, 'W_D': 5.099047609770334, 'J_D': 1252.5524037532862, 'W_D_1KI': 5.099047609770334, 'J_D_1KI': 5.099047609770334} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.005.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.005.json deleted file mode 100644 index 19d74a9..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.005.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 50000000, "MATRIX_DENSITY": 0.005, "TIME_S": 1091.9541580677032, "TIME_S_1KI": 1091.9541580677032, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 27099.232660408, "W": 23.65811028389948, "J_1KI": 27099.232660408, "W_1KI": 23.65811028389948, "W_D": 5.30711028389948, "J_D": 6079.0407438294715, "W_D_1KI": 5.30711028389948, "J_D_1KI": 5.30711028389948} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.005.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.005.output deleted file mode 100644 index a379597..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.005.output +++ /dev/null @@ -1,45 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 0.005 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 50000000, "MATRIX_DENSITY": 0.005, "TIME_S": 1091.9541580677032} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 520, 1009, ..., 49998961, - 49999487, 50000000]), - col_indices=tensor([ 172, 626, 631, ..., 99749, 99860, 99985]), - values=tensor([0.6669, 0.0843, 0.5498, ..., 0.0965, 0.4666, 0.0259]), - size=(100000, 100000), nnz=50000000, layout=torch.sparse_csr) -tensor([0.4596, 0.0337, 0.7880, ..., 0.9862, 0.8105, 0.6593]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([100000, 100000]) -Rows: 100000 -Size: 10000000000 -NNZ: 50000000 -Density: 0.005 -Time: 1091.9541580677032 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 520, 1009, ..., 49998961, - 49999487, 50000000]), - col_indices=tensor([ 172, 626, 631, ..., 99749, 99860, 99985]), - values=tensor([0.6669, 0.0843, 0.5498, ..., 0.0965, 0.4666, 0.0259]), - size=(100000, 100000), nnz=50000000, layout=torch.sparse_csr) -tensor([0.4596, 0.0337, 0.7880, ..., 0.9862, 0.8105, 0.6593]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([100000, 100000]) -Rows: 100000 -Size: 10000000000 -NNZ: 50000000 -Density: 0.005 -Time: 1091.9541580677032 seconds - -[20.56, 20.52, 20.4, 20.4, 20.44, 20.64, 20.52, 20.56, 20.56, 20.48] -[20.6, 20.68, 21.28, 23.72, 25.32, 26.16, 27.04, 28.16, 28.16, 27.72, 27.08, 27.72, 28.88, 28.92, 29.44, 29.92, 29.8, 28.28, 28.0, 27.84, 28.08, 28.48, 27.88, 27.44, 26.56, 25.84, 24.92, 24.92, 24.92, 24.72, 24.76, 24.76, 24.72, 24.72, 24.68, 24.56, 24.72, 24.72, 24.84, 25.0, 24.88, 24.96, 24.8, 24.6, 24.52, 24.4, 24.4, 24.28, 24.36, 24.48, 24.56, 24.72, 24.72, 24.96, 24.88, 24.92, 25.0, 24.92, 24.8, 24.76, 24.88, 24.92, 25.12, 25.12, 24.96, 24.96, 24.68, 24.68, 24.76, 24.56, 24.72, 25.08, 24.96, 24.88, 24.88, 24.72, 24.84, 24.6, 24.68, 24.68, 24.68, 24.24, 24.36, 24.44, 24.48, 24.84, 24.8, 24.68, 24.8, 24.88, 24.84, 24.76, 24.88, 24.88, 24.84, 25.16, 25.16, 25.16, 25.0, 24.96, 24.96, 24.92, 24.8, 25.08, 25.0, 24.88, 25.04, 24.84, 24.72, 24.68, 24.6, 24.72, 24.6, 24.8, 24.8, 24.68, 24.68, 24.64, 24.64, 24.56, 24.64, 24.56, 24.76, 24.84, 25.0, 24.96, 25.0, 24.84, 24.84, 25.08, 24.96, 25.04, 24.96, 24.92, 24.96, 24.8, 24.84, 24.72, 24.56, 24.68, 24.68, 24.88, 25.08, 25.2, 25.2, 25.04, 24.96, 24.68, 24.84, 24.88, 25.04, 25.12, 24.96, 24.84, 25.08, 24.72, 24.84, 24.92, 24.88, 24.72, 25.0, 24.92, 24.92, 25.0, 25.32, 25.36, 25.36, 25.32, 25.36, 24.96, 24.56, 24.72, 24.6, 24.64, 25.0, 24.84, 24.96, 24.76, 24.84, 24.92, 25.08, 24.96, 25.12, 25.04, 25.04, 24.96, 25.04, 24.84, 24.72, 24.52, 24.4, 24.44, 24.96, 25.04, 25.56, 25.76, 25.6, 25.6, 25.4, 24.96, 25.04, 24.96, 24.92, 25.0, 24.92, 24.88, 24.88, 24.92, 24.76, 24.96, 24.96, 24.92, 24.84, 24.92, 24.8, 24.8, 24.92, 24.96, 24.8, 24.76, 24.8, 24.76, 24.96, 25.04, 24.92, 24.8, 24.48, 24.32, 24.32, 24.36, 24.44, 24.44, 24.48, 24.36, 24.36, 24.36, 24.56, 24.68, 24.96, 24.96, 25.08, 24.96, 24.8, 24.68, 24.64, 24.76, 24.68, 24.76, 24.76, 24.48, 24.48, 24.56, 24.6, 24.48, 24.76, 24.8, 24.8, 24.96, 24.92, 24.88, 25.0, 24.96, 25.04, 25.08, 24.92, 24.72, 24.6, 24.48, 24.04, 23.92, 24.04, 24.08, 24.08, 24.28, 24.6, 24.88, 24.64, 24.72, 24.68, 24.52, 24.48, 24.68, 24.84, 24.76, 24.8, 24.92, 24.76, 24.48, 24.76, 24.72, 24.68, 24.92, 24.88, 24.8, 24.8, 25.04, 25.08, 25.04, 25.2, 25.12, 24.8, 24.68, 24.64, 24.52, 24.76, 24.72, 24.72, 24.84, 24.76, 24.64, 25.0, 25.12, 25.12, 25.28, 25.24, 25.0, 25.0, 24.84, 24.72, 24.48, 24.4, 24.6, 24.68, 24.88, 25.08, 25.16, 25.12, 24.88, 24.88, 24.96, 24.84, 24.92, 24.72, 24.68, 24.64, 24.48, 24.56, 24.68, 24.68, 24.72, 24.84, 24.96, 24.64, 24.48, 24.36, 24.6, 24.64, 24.8, 25.04, 24.84, 24.76, 24.76, 24.72, 24.68, 24.88, 24.84, 25.08, 25.08, 24.92, 24.96, 24.96, 24.96, 24.88, 24.76, 24.68, 24.8, 24.68, 24.76, 24.76, 25.12, 25.08, 25.16, 25.44, 25.32, 25.12, 25.12, 24.96, 25.16, 24.88, 24.8, 24.84, 24.8, 24.8, 24.68, 24.72, 24.56, 24.64, 24.56, 24.64, 24.92, 24.76, 24.8, 24.72, 24.72, 24.4, 24.48, 24.48, 24.36, 24.4, 24.48, 24.6, 24.68, 24.8, 24.72, 24.72, 24.64, 24.64, 24.48, 24.56, 24.92, 24.84, 24.88, 24.76, 24.48, 24.48, 24.56, 24.8, 24.84, 24.92, 25.0, 24.88, 24.76, 24.88, 25.12, 25.16, 25.16, 25.16, 24.8, 24.84, 24.72, 24.84, 24.96, 25.08, 24.84, 24.76, 24.52, 24.64, 24.44, 24.4, 24.48, 24.68, 24.64, 24.92, 24.96, 24.76, 24.68, 24.44, 24.44, 24.44, 24.52, 24.44, 24.52, 24.84, 24.68, 24.88, 25.16, 24.88, 24.68, 24.56, 24.48, 24.68, 24.8, 25.12, 24.96, 24.84, 24.92, 24.6, 24.56, 24.72, 24.8, 24.8, 25.2, 25.32, 25.28, 25.08, 25.12, 25.04, 24.76, 24.92, 24.72, 24.8, 24.8, 24.84, 24.56, 24.56, 24.44, 24.48, 24.76, 25.12, 25.16, 25.24, 25.16, 25.16, 24.96, 24.76, 24.92, 24.8, 24.72, 25.08, 24.96, 24.92, 24.84, 24.84, 24.84, 24.76, 24.92, 25.0, 25.12, 24.92, 24.68, 24.68, 24.72, 24.72, 24.6, 24.6, 24.56, 24.48, 24.28, 24.44, 24.6, 24.8, 24.92, 24.88, 24.88, 24.72, 24.56, 24.44, 24.6, 24.8, 24.72, 24.88, 24.92, 24.88, 24.84, 24.76, 24.84, 24.84, 24.88, 24.88, 24.88, 24.6, 24.84, 24.72, 24.92, 24.84, 24.64, 24.44, 24.28, 24.52, 24.72, 24.56, 24.36, 24.64, 24.48, 24.52, 24.52, 24.56, 24.48, 24.48, 24.68, 24.84, 24.84, 24.92, 25.04, 24.6, 24.52, 24.72, 24.72, 24.8, 25.08, 25.24, 25.0, 24.76, 24.76, 24.76, 25.08, 25.2, 25.24, 25.12, 24.68, 24.68, 24.56, 24.68, 24.4, 24.52, 24.72, 24.68, 24.92, 24.96, 24.88, 24.92, 24.88, 24.76, 24.76, 24.92, 24.8, 24.92, 25.0, 25.08, 24.96, 24.8, 24.64, 24.64, 24.64, 24.72, 24.84, 24.88, 24.88, 24.8, 24.72, 24.64, 24.88, 24.92, 24.8, 24.76, 24.6, 24.64, 24.72, 24.84, 25.0, 24.88, 25.0, 25.04, 24.76, 24.76, 24.68, 24.56, 24.68, 24.8, 24.88, 24.96, 24.88, 25.0, 24.88, 24.84, 24.76, 24.8, 24.64, 24.76, 24.72, 24.72, 24.68, 24.68, 24.84, 24.96, 24.92, 24.92, 25.08, 25.04, 24.96, 25.16, 25.08, 24.92, 24.88, 24.68, 24.56, 24.68, 24.72, 24.84, 24.96, 25.0, 25.04, 25.04, 24.84, 24.76, 24.44, 24.32, 24.44, 24.44, 24.4, 24.4, 24.56, 24.64, 24.64, 24.76, 24.8, 24.68, 24.68, 24.64, 24.56, 24.72, 25.04, 24.96, 24.92, 24.92, 24.88, 24.92, 24.96, 24.96, 24.84, 24.84, 24.56, 24.64, 24.6, 24.56, 24.84, 24.84, 24.56, 24.64, 24.72, 24.8, 25.0, 25.16, 25.04, 25.12, 25.04, 25.12, 25.0, 25.04, 25.16, 25.0, 25.16, 25.16, 25.04, 24.64, 24.44, 24.6, 24.56, 24.84, 24.8, 24.84, 24.72, 24.64, 24.64, 24.88, 25.12, 25.16, 25.12, 25.16, 24.88, 24.92, 24.72, 24.72, 24.84, 24.84, 24.84, 24.96, 25.36, 25.16, 25.16, 24.76, 24.68, 24.52, 24.44, 24.6, 24.68, 24.76, 24.88, 25.04, 25.16, 25.16, 25.08, 24.8, 24.52, 24.44, 24.4, 24.4, 24.76, 24.8, 25.08, 25.2, 25.08, 24.76, 24.68, 24.68, 24.8, 24.8, 25.0, 24.92, 24.8, 24.88, 24.84, 25.0, 25.04, 25.0, 24.84, 24.84, 25.0, 25.0, 24.96, 25.04, 25.16, 25.0, 24.92, 24.96, 24.92, 24.92, 24.84, 24.56, 24.48, 24.24, 24.24, 24.4, 24.36, 24.6, 24.48, 24.76, 24.96, 24.92, 25.16, 25.16, 25.2, 25.04, 24.84, 24.84, 24.72, 24.84, 25.0, 25.12, 25.12, 25.08, 25.08, 24.68, 24.72, 24.56, 24.32, 24.52, 24.64, 24.72, 24.76, 24.64, 24.48, 24.48, 24.6, 24.72, 25.0, 25.16, 24.92, 24.92, 25.0, 25.12, 25.16, 25.12, 25.0, 24.88, 24.88, 24.88, 24.84, 24.96, 24.76, 24.72, 24.68, 24.72, 24.64, 24.64, 24.84, 24.8, 25.08, 25.16, 25.28, 25.04, 25.0, 24.72, 24.76, 24.96, 25.04, 25.04, 25.36, 25.16, 24.92, 25.08, 25.12, 25.12, 25.08, 25.12, 25.08, 25.08, 25.0, 24.68, 24.96, 24.92, 24.96, 25.08, 25.04, 24.88, 24.88, 24.6, 24.48, 24.6, 24.56, 24.72, 24.8, 24.92, 24.92, 24.92, 24.84, 24.6, 24.6, 24.56, 24.6, 24.68, 24.8, 24.96, 24.96, 24.96, 24.88, 24.96, 24.88, 24.8, 24.88, 24.68, 24.68, 24.56, 24.64, 24.92, 24.92, 24.88, 25.0, 24.8, 24.8, 24.6, 24.72, 24.64, 24.52, 24.56, 24.64, 24.76, 24.84, 25.12, 25.08, 24.8, 24.8, 24.8, 24.8, 24.84, 24.8, 24.72, 24.68, 24.92, 25.0, 24.84, 24.84, 24.84, 24.8, 24.68, 24.56, 24.64, 24.32, 24.56, 24.64, 24.76, 24.92, 24.92, 25.0, 24.96, 25.2, 25.16, 25.0, 25.04, 24.92, 24.8, 24.6, 24.68, 24.68, 24.72, 24.96, 24.92, 25.08, 25.04, 24.88, 24.8, 24.92, 24.68, 24.56, 24.72, 24.68, 24.68, 24.8, 24.84, 24.76, 24.8, 24.84, 24.76, 24.8, 24.56, 24.56, 24.44, 24.76, 24.36, 24.32, 24.64, 24.8, 24.8, 25.12, 25.04, 24.88, 25.08, 24.88, 24.76, 24.96, 24.8, 24.8, 24.8, 24.76, 24.64, 24.6, 24.6, 24.6, 24.72, 24.8, 25.16, 25.32, 25.24, 25.16, 24.84, 24.68, 24.36, 24.48, 24.12, 24.2, 24.28, 24.36, 24.6, 24.92, 25.04, 24.88, 24.92, 24.84, 24.6, 24.6, 24.56, 24.72, 24.72, 24.72, 24.72, 24.72, 24.76, 24.88, 24.88, 25.0, 24.84, 24.88, 24.8, 24.44, 24.48, 24.4, 24.4, 24.44, 24.6, 24.68, 24.68, 24.68, 24.92, 24.84, 24.84, 24.92, 24.84, 24.64, 24.8, 24.48, 24.48, 24.68, 24.96, 24.96, 24.96, 24.8, 24.72, 24.68, 24.8, 24.48, 24.68, 24.76, 24.68, 24.68, 24.8, 24.6, 24.76, 24.52, 24.36, 24.24, 24.36, 24.4, 24.6, 24.84, 24.84, 24.84, 25.0, 24.92, 24.76, 24.76, 24.48, 24.36, 24.36, 24.32, 24.64, 24.64, 24.88, 24.92, 24.88, 24.88, 24.8] -1145.4521234035492 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 50000000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 1091.9541580677032, 'TIME_S_1KI': 1091.9541580677032, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 27099.232660408, 'W': 23.65811028389948} -[20.56, 20.52, 20.4, 20.4, 20.44, 20.64, 20.52, 20.56, 20.56, 20.48, 20.32, 20.32, 20.52, 20.44, 20.32, 20.24, 20.12, 20.2, 20.04, 20.2] -367.02 -18.351 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 50000000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 1091.9541580677032, 'TIME_S_1KI': 1091.9541580677032, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 27099.232660408, 'W': 23.65811028389948, 'J_1KI': 27099.232660408, 'W_1KI': 23.65811028389948, 'W_D': 5.30711028389948, 'J_D': 6079.0407438294715, 'W_D_1KI': 5.30711028389948, 'J_D_1KI': 5.30711028389948} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_1e-05.json deleted file mode 100644 index 044dbd0..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_1e-05.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 6242, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.78993320465088, "TIME_S_1KI": 3.490857610485562, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 587.0853565216064, "W": 23.400196384120708, "J_1KI": 94.05404622262198, "W_1KI": 3.748829923761728, "W_D": 4.996196384120708, "J_D": 125.34910764312737, "W_D_1KI": 0.8004159538802801, "J_D_1KI": 0.12823068790135855} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_300000_1e-05.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_300000_1e-05.json deleted file mode 100644 index e69de29..0000000 diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_300000_1e-05.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_300000_1e-05.output deleted file mode 100644 index 82012e6..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_300000_1e-05.output +++ /dev/null @@ -1 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 300000 -sd 1e-05 -c 1'] diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0001.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0001.json deleted file mode 100644 index 849e147..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0001.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 9462, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.88818907737732, "TIME_S_1KI": 2.2075870933605284, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 574.1408400344848, "W": 22.884833840996915, "J_1KI": 60.678592267436564, "W_1KI": 2.418604295180397, "W_D": 4.553833840996916, "J_D": 114.24780293416971, "W_D_1KI": 0.48127603477033565, "J_D_1KI": 0.05086409160540432} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0001.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0001.output deleted file mode 100644 index 9831ac1..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0001.output +++ /dev/null @@ -1,62 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 30000 -sd 0.0001 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000, "MATRIX_DENSITY": 0.0001, "TIME_S": 2.21927547454834} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 6, ..., 89992, 89995, 90000]), - col_indices=tensor([ 4135, 5257, 7346, ..., 19970, 20460, 23828]), - values=tensor([0.3812, 0.3967, 0.4332, ..., 0.7451, 0.5477, 0.3750]), - size=(30000, 30000), nnz=90000, layout=torch.sparse_csr) -tensor([0.1252, 0.8924, 0.9038, ..., 0.5916, 0.3272, 0.4447]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 90000 -Density: 0.0001 -Time: 2.21927547454834 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 9462 -ss 30000 -sd 0.0001 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.88818907737732} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 3, ..., 89998, 89998, 90000]), - col_indices=tensor([ 9013, 9207, 23498, ..., 264, 8481, 27073]), - values=tensor([0.3265, 0.9217, 0.2088, ..., 0.3044, 0.7404, 0.1795]), - size=(30000, 30000), nnz=90000, layout=torch.sparse_csr) -tensor([0.1642, 0.6221, 0.4016, ..., 0.5731, 0.3090, 0.6430]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 90000 -Density: 0.0001 -Time: 20.88818907737732 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 3, ..., 89998, 89998, 90000]), - col_indices=tensor([ 9013, 9207, 23498, ..., 264, 8481, 27073]), - values=tensor([0.3265, 0.9217, 0.2088, ..., 0.3044, 0.7404, 0.1795]), - size=(30000, 30000), nnz=90000, layout=torch.sparse_csr) -tensor([0.1642, 0.6221, 0.4016, ..., 0.5731, 0.3090, 0.6430]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 90000 -Density: 0.0001 -Time: 20.88818907737732 seconds - -[20.4, 20.6, 20.6, 20.76, 20.56, 20.6, 20.32, 20.12, 20.12, 20.2] -[20.04, 20.0, 20.84, 22.2, 23.8, 25.04, 26.28, 26.28, 26.08, 25.8, 25.32, 25.2, 25.16, 25.28, 26.0, 26.2, 25.92, 26.12, 25.76, 25.28, 25.48, 25.32, 25.56, 25.84] -25.08826780319214 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 9462, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 90000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.88818907737732, 'TIME_S_1KI': 2.2075870933605284, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 574.1408400344848, 'W': 22.884833840996915} -[20.4, 20.6, 20.6, 20.76, 20.56, 20.6, 20.32, 20.12, 20.12, 20.2, 20.2, 20.16, 20.0, 19.92, 19.92, 20.12, 20.36, 20.6, 20.96, 21.0] -366.62 -18.331 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 9462, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 90000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.88818907737732, 'TIME_S_1KI': 2.2075870933605284, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 574.1408400344848, 'W': 22.884833840996915, 'J_1KI': 60.678592267436564, 'W_1KI': 2.418604295180397, 'W_D': 4.553833840996916, 'J_D': 114.24780293416971, 'W_D_1KI': 0.48127603477033565, 'J_D_1KI': 0.05086409160540432} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0005.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0005.json deleted file mode 100644 index cc699f5..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0005.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1990, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 450000, "MATRIX_DENSITY": 0.0005, "TIME_S": 21.110622882843018, "TIME_S_1KI": 10.608353207458803, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 543.18098487854, "W": 22.61402761523156, "J_1KI": 272.95526878318594, "W_1KI": 11.363832972478171, "W_D": 4.532027615231559, "J_D": 108.8577083845138, "W_D_1KI": 2.27740081167415, "J_D_1KI": 1.1444225184292212} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0005.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0005.output deleted file mode 100644 index e29b500..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0005.output +++ /dev/null @@ -1,65 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 30000 -sd 0.0005 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 450000, "MATRIX_DENSITY": 0.0005, "TIME_S": 10.55085802078247} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 14, 24, ..., 449973, 449985, - 450000]), - col_indices=tensor([ 46, 2006, 2283, ..., 27547, 29014, 29850]), - values=tensor([0.4834, 0.4450, 0.5507, ..., 0.7876, 0.9956, 0.8691]), - size=(30000, 30000), nnz=450000, layout=torch.sparse_csr) -tensor([0.6061, 0.2390, 0.3325, ..., 0.9801, 0.7580, 0.8339]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 450000 -Density: 0.0005 -Time: 10.55085802078247 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1990 -ss 30000 -sd 0.0005 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 450000, "MATRIX_DENSITY": 0.0005, "TIME_S": 21.110622882843018} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 20, 37, ..., 449971, 449989, - 450000]), - col_indices=tensor([ 278, 1146, 6158, ..., 22458, 26366, 27217]), - values=tensor([0.7620, 0.0882, 0.1659, ..., 0.8176, 0.5012, 0.2468]), - size=(30000, 30000), nnz=450000, layout=torch.sparse_csr) -tensor([0.2139, 0.3171, 0.2720, ..., 0.8919, 0.1670, 0.7588]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 450000 -Density: 0.0005 -Time: 21.110622882843018 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 20, 37, ..., 449971, 449989, - 450000]), - col_indices=tensor([ 278, 1146, 6158, ..., 22458, 26366, 27217]), - values=tensor([0.7620, 0.0882, 0.1659, ..., 0.8176, 0.5012, 0.2468]), - size=(30000, 30000), nnz=450000, layout=torch.sparse_csr) -tensor([0.2139, 0.3171, 0.2720, ..., 0.8919, 0.1670, 0.7588]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 450000 -Density: 0.0005 -Time: 21.110622882843018 seconds - -[20.0, 20.04, 20.08, 20.0, 20.0, 20.0, 20.0, 20.16, 20.16, 20.32] -[20.52, 20.72, 21.08, 25.24, 27.4, 28.2, 29.0, 26.36, 25.24, 24.04, 24.0, 24.0, 24.12, 24.4, 24.56, 24.72, 24.8, 24.84, 24.44, 24.4, 24.32, 24.32, 24.48] -24.01964807510376 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1990, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 450000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 21.110622882843018, 'TIME_S_1KI': 10.608353207458803, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 543.18098487854, 'W': 22.61402761523156} -[20.0, 20.04, 20.08, 20.0, 20.0, 20.0, 20.0, 20.16, 20.16, 20.32, 20.32, 20.2, 20.16, 19.96, 19.84, 20.04, 20.24, 20.24, 20.16, 20.08] -361.64 -18.082 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1990, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 450000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 21.110622882843018, 'TIME_S_1KI': 10.608353207458803, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 543.18098487854, 'W': 22.61402761523156, 'J_1KI': 272.95526878318594, 'W_1KI': 11.363832972478171, 'W_D': 4.532027615231559, 'J_D': 108.8577083845138, 'W_D_1KI': 2.27740081167415, 'J_D_1KI': 1.1444225184292212} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.001.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.001.json deleted file mode 100644 index 31f0e20..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.001.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1067, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 0.001, "TIME_S": 21.000109434127808, "TIME_S_1KI": 19.681452140700852, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 559.3280275917053, "W": 22.321542174679774, "J_1KI": 524.2062114261531, "W_1KI": 20.919908317413096, "W_D": 3.8025421746797754, "J_D": 95.2832200281621, "W_D_1KI": 3.5637696107589276, "J_D_1KI": 3.3399902631292666} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.001.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.001.output deleted file mode 100644 index 2362809..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.001.output +++ /dev/null @@ -1,65 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 30000 -sd 0.001 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 0.001, "TIME_S": 19.667322635650635} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 32, 62, ..., 899942, 899975, - 900000]), - col_indices=tensor([ 740, 1042, 1045, ..., 28033, 28173, 29596]), - values=tensor([0.2730, 0.0823, 0.1244, ..., 0.0611, 0.7750, 0.7520]), - size=(30000, 30000), nnz=900000, layout=torch.sparse_csr) -tensor([0.9441, 0.9003, 0.6345, ..., 0.2976, 0.9481, 0.5370]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 900000 -Density: 0.001 -Time: 19.667322635650635 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1067 -ss 30000 -sd 0.001 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 0.001, "TIME_S": 21.000109434127808} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 31, 61, ..., 899954, 899977, - 900000]), - col_indices=tensor([ 498, 561, 1389, ..., 26094, 29069, 29804]), - values=tensor([0.7571, 0.4869, 0.1051, ..., 0.0359, 0.9032, 0.3458]), - size=(30000, 30000), nnz=900000, layout=torch.sparse_csr) -tensor([0.6710, 0.3662, 0.6537, ..., 0.7839, 0.4339, 0.5677]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 900000 -Density: 0.001 -Time: 21.000109434127808 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 31, 61, ..., 899954, 899977, - 900000]), - col_indices=tensor([ 498, 561, 1389, ..., 26094, 29069, 29804]), - values=tensor([0.7571, 0.4869, 0.1051, ..., 0.0359, 0.9032, 0.3458]), - size=(30000, 30000), nnz=900000, layout=torch.sparse_csr) -tensor([0.6710, 0.3662, 0.6537, ..., 0.7839, 0.4339, 0.5677]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 900000 -Density: 0.001 -Time: 21.000109434127808 seconds - -[20.36, 20.36, 20.6, 20.64, 20.68, 20.56, 20.56, 20.64, 20.44, 20.44] -[20.44, 20.36, 21.72, 22.8, 24.84, 24.84, 25.76, 26.48, 25.64, 24.72, 24.68, 24.32, 24.2, 24.4, 24.4, 24.28, 24.4, 24.36, 24.52, 24.6, 24.68, 24.64, 24.68, 24.72] -25.05776810646057 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1067, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 900000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 21.000109434127808, 'TIME_S_1KI': 19.681452140700852, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 559.3280275917053, 'W': 22.321542174679774} -[20.36, 20.36, 20.6, 20.64, 20.68, 20.56, 20.56, 20.64, 20.44, 20.44, 20.16, 20.36, 20.36, 20.72, 20.8, 20.96, 20.68, 20.84, 20.56, 20.28] -370.37999999999994 -18.519 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1067, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 900000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 21.000109434127808, 'TIME_S_1KI': 19.681452140700852, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 559.3280275917053, 'W': 22.321542174679774, 'J_1KI': 524.2062114261531, 'W_1KI': 20.919908317413096, 'W_D': 3.8025421746797754, 'J_D': 95.2832200281621, 'W_D_1KI': 3.5637696107589276, 'J_D_1KI': 3.3399902631292666} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.005.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.005.json deleted file mode 100644 index 883d2cb..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.005.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 4500000, "MATRIX_DENSITY": 0.005, "TIME_S": 96.94969439506531, "TIME_S_1KI": 96.94969439506531, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2378.374522399904, "W": 23.364920168223726, "J_1KI": 2378.374522399904, "W_1KI": 23.364920168223726, "W_D": 5.238920168223725, "J_D": 533.2829799237265, "W_D_1KI": 5.238920168223725, "J_D_1KI": 5.238920168223725} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.005.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.005.output deleted file mode 100644 index 9061dbb..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.005.output +++ /dev/null @@ -1,45 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 30000 -sd 0.005 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 4500000, "MATRIX_DENSITY": 0.005, "TIME_S": 96.94969439506531} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 143, 286, ..., 4499692, - 4499854, 4500000]), - col_indices=tensor([ 245, 443, 986, ..., 29592, 29945, 29961]), - values=tensor([0.6844, 0.8171, 0.9701, ..., 0.0838, 0.2528, 0.1757]), - size=(30000, 30000), nnz=4500000, layout=torch.sparse_csr) -tensor([0.4329, 0.8636, 0.1677, ..., 0.1956, 0.5933, 0.9265]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 4500000 -Density: 0.005 -Time: 96.94969439506531 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 143, 286, ..., 4499692, - 4499854, 4500000]), - col_indices=tensor([ 245, 443, 986, ..., 29592, 29945, 29961]), - values=tensor([0.6844, 0.8171, 0.9701, ..., 0.0838, 0.2528, 0.1757]), - size=(30000, 30000), nnz=4500000, layout=torch.sparse_csr) -tensor([0.4329, 0.8636, 0.1677, ..., 0.1956, 0.5933, 0.9265]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 4500000 -Density: 0.005 -Time: 96.94969439506531 seconds - -[20.28, 20.48, 20.32, 20.24, 20.08, 20.28, 20.2, 20.08, 20.24, 20.04] -[20.04, 20.12, 20.0, 23.8, 25.0, 27.52, 28.72, 29.16, 26.24, 24.8, 24.4, 24.48, 24.72, 24.6, 24.44, 24.36, 24.28, 24.16, 24.24, 24.24, 24.24, 24.28, 24.4, 24.48, 24.6, 24.8, 24.6, 24.4, 24.48, 24.44, 24.44, 24.56, 24.36, 24.56, 24.84, 24.56, 24.6, 24.4, 24.36, 24.6, 24.8, 25.16, 25.16, 25.04, 24.76, 24.92, 24.68, 24.48, 24.44, 24.44, 24.44, 24.36, 24.48, 24.64, 24.56, 24.72, 24.72, 24.52, 24.64, 24.6, 24.32, 24.64, 24.56, 24.44, 24.44, 24.4, 24.36, 24.28, 24.52, 24.64, 24.68, 24.64, 24.6, 24.4, 24.2, 24.52, 24.64, 24.84, 25.12, 24.92, 24.76, 24.76, 24.68, 24.84, 24.76, 24.76, 24.76, 24.64, 24.52, 24.32, 24.44, 24.4, 24.28, 24.28, 24.48, 24.24, 24.32] -101.79253792762756 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 4500000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 96.94969439506531, 'TIME_S_1KI': 96.94969439506531, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2378.374522399904, 'W': 23.364920168223726} -[20.28, 20.48, 20.32, 20.24, 20.08, 20.28, 20.2, 20.08, 20.24, 20.04, 20.36, 20.44, 20.08, 20.08, 20.0, 19.84, 19.84, 19.96, 19.96, 20.12] -362.52000000000004 -18.126 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 4500000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 96.94969439506531, 'TIME_S_1KI': 96.94969439506531, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2378.374522399904, 'W': 23.364920168223726, 'J_1KI': 2378.374522399904, 'W_1KI': 23.364920168223726, 'W_D': 5.238920168223725, 'J_D': 533.2829799237265, 'W_D_1KI': 5.238920168223725, 'J_D_1KI': 5.238920168223725} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.01.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.01.json deleted file mode 100644 index de9aa95..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.01.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000000, "MATRIX_DENSITY": 0.01, "TIME_S": 192.67980027198792, "TIME_S_1KI": 192.67980027198792, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 4713.865335979459, "W": 23.38761944190409, "J_1KI": 4713.865335979459, "W_1KI": 23.38761944190409, "W_D": 5.0876194419040885, "J_D": 1025.4294153118105, "W_D_1KI": 5.0876194419040885, "J_D_1KI": 5.0876194419040885} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.01.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.01.output deleted file mode 100644 index 111912f..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.01.output +++ /dev/null @@ -1,45 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 30000 -sd 0.01 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000000, "MATRIX_DENSITY": 0.01, "TIME_S": 192.67980027198792} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 280, 537, ..., 8999446, - 8999733, 9000000]), - col_indices=tensor([ 104, 197, 254, ..., 29816, 29922, 29974]), - values=tensor([0.4269, 0.5481, 0.4506, ..., 0.7600, 0.9930, 0.8353]), - size=(30000, 30000), nnz=9000000, layout=torch.sparse_csr) -tensor([0.6961, 0.8979, 0.5119, ..., 0.0794, 0.6244, 0.2452]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 9000000 -Density: 0.01 -Time: 192.67980027198792 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 280, 537, ..., 8999446, - 8999733, 9000000]), - col_indices=tensor([ 104, 197, 254, ..., 29816, 29922, 29974]), - values=tensor([0.4269, 0.5481, 0.4506, ..., 0.7600, 0.9930, 0.8353]), - size=(30000, 30000), nnz=9000000, layout=torch.sparse_csr) -tensor([0.6961, 0.8979, 0.5119, ..., 0.0794, 0.6244, 0.2452]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 9000000 -Density: 0.01 -Time: 192.67980027198792 seconds - -[20.36, 20.16, 20.08, 20.2, 20.36, 20.44, 20.48, 20.28, 20.28, 20.04] -[20.04, 20.4, 20.56, 25.0, 25.72, 28.12, 29.56, 28.28, 27.64, 26.76, 25.6, 24.84, 24.28, 24.32, 24.32, 24.32, 24.48, 24.52, 24.52, 24.48, 24.56, 24.88, 24.76, 24.8, 24.84, 24.76, 24.52, 24.68, 24.6, 24.56, 24.6, 24.56, 24.52, 24.52, 24.56, 24.72, 24.76, 24.76, 24.88, 24.84, 24.84, 24.56, 24.56, 24.72, 24.6, 24.52, 24.52, 24.48, 24.36, 24.4, 24.48, 24.6, 24.64, 24.64, 24.48, 24.56, 24.48, 24.56, 24.44, 24.28, 24.04, 23.96, 23.96, 23.92, 24.04, 24.24, 24.52, 24.76, 24.84, 24.72, 24.6, 24.72, 24.8, 24.76, 24.8, 24.64, 24.52, 24.52, 24.56, 24.56, 24.52, 24.56, 24.6, 24.72, 24.72, 24.6, 24.76, 24.88, 24.52, 24.68, 24.8, 24.72, 24.64, 24.72, 24.32, 24.16, 24.24, 24.2, 24.48, 24.68, 24.6, 24.72, 24.68, 24.56, 24.52, 24.8, 24.8, 24.68, 24.88, 24.88, 24.52, 24.56, 24.56, 24.56, 24.72, 24.72, 24.6, 24.56, 24.52, 24.76, 24.92, 24.96, 24.92, 24.88, 24.88, 24.8, 24.76, 24.48, 24.48, 24.68, 24.44, 24.64, 24.68, 24.72, 24.56, 24.6, 24.36, 24.32, 24.2, 24.24, 24.16, 24.24, 24.32, 24.52, 24.52, 24.44, 24.48, 24.12, 23.96, 23.92, 23.92, 24.08, 24.12, 24.44, 24.6, 24.48, 24.44, 24.64, 24.48, 24.4, 24.44, 24.28, 24.24, 24.52, 24.56, 24.6, 24.8, 24.68, 24.68, 24.84, 24.88, 24.84, 24.84, 24.72, 24.64, 24.68, 24.52, 24.16, 24.32, 24.32, 24.32, 24.28, 24.72, 24.84, 24.72, 24.8, 24.92, 24.6, 24.72, 24.68, 24.64, 24.6] -201.55387544631958 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 192.67980027198792, 'TIME_S_1KI': 192.67980027198792, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 4713.865335979459, 'W': 23.38761944190409} -[20.36, 20.16, 20.08, 20.2, 20.36, 20.44, 20.48, 20.28, 20.28, 20.04, 20.44, 20.44, 20.24, 20.24, 20.2, 20.24, 20.56, 20.56, 20.56, 20.52] -366.0 -18.3 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 192.67980027198792, 'TIME_S_1KI': 192.67980027198792, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 4713.865335979459, 'W': 23.38761944190409, 'J_1KI': 4713.865335979459, 'W_1KI': 23.38761944190409, 'W_D': 5.0876194419040885, 'J_D': 1025.4294153118105, 'W_D_1KI': 5.0876194419040885, 'J_D_1KI': 5.0876194419040885} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.05.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.05.json deleted file mode 100644 index 8e7a90d..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.05.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 45000000, "MATRIX_DENSITY": 0.05, "TIME_S": 974.439944267273, "TIME_S_1KI": 974.439944267273, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 23454.716241874696, "W": 23.50814234111929, "J_1KI": 23454.716241874696, "W_1KI": 23.50814234111929, "W_D": 4.921142341119289, "J_D": 4909.958240083218, "W_D_1KI": 4.921142341119289, "J_D_1KI": 4.921142341119289} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.05.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.05.output deleted file mode 100644 index 129f379..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.05.output +++ /dev/null @@ -1,45 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 30000 -sd 0.05 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 45000000, "MATRIX_DENSITY": 0.05, "TIME_S": 974.439944267273} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1561, 3045, ..., 44996950, - 44998508, 45000000]), - col_indices=tensor([ 5, 11, 69, ..., 29993, 29995, 29999]), - values=tensor([0.1916, 0.3634, 0.6366, ..., 0.4534, 0.7597, 0.1741]), - size=(30000, 30000), nnz=45000000, layout=torch.sparse_csr) -tensor([0.1350, 0.9680, 0.5489, ..., 0.5585, 0.8579, 0.6858]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 45000000 -Density: 0.05 -Time: 974.439944267273 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1561, 3045, ..., 44996950, - 44998508, 45000000]), - col_indices=tensor([ 5, 11, 69, ..., 29993, 29995, 29999]), - values=tensor([0.1916, 0.3634, 0.6366, ..., 0.4534, 0.7597, 0.1741]), - size=(30000, 30000), nnz=45000000, layout=torch.sparse_csr) -tensor([0.1350, 0.9680, 0.5489, ..., 0.5585, 0.8579, 0.6858]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 45000000 -Density: 0.05 -Time: 974.439944267273 seconds - -[20.36, 20.44, 20.52, 20.6, 20.8, 20.68, 20.76, 20.72, 21.08, 20.84] -[20.76, 20.32, 21.24, 21.24, 22.2, 25.24, 26.8, 27.64, 27.96, 29.52, 29.32, 29.6, 30.12, 29.4, 27.72, 27.76, 28.52, 28.68, 28.16, 27.28, 26.28, 25.36, 24.68, 24.64, 24.52, 24.52, 24.64, 24.64, 24.72, 24.6, 24.68, 24.8, 24.72, 24.72, 24.8, 24.76, 24.56, 24.4, 24.32, 24.16, 24.16, 24.12, 24.12, 24.28, 24.12, 24.52, 24.52, 24.52, 24.52, 24.56, 24.52, 24.48, 24.6, 24.8, 24.8, 24.8, 24.88, 24.72, 24.52, 24.76, 24.76, 24.84, 25.0, 24.96, 24.72, 24.52, 24.56, 24.4, 24.4, 24.4, 24.32, 24.28, 24.28, 24.28, 24.44, 24.36, 24.4, 24.24, 24.28, 24.24, 24.44, 24.4, 24.52, 24.52, 24.56, 24.32, 24.48, 24.36, 24.36, 24.24, 24.2, 24.16, 24.2, 24.32, 24.56, 24.68, 24.56, 24.56, 24.6, 24.52, 24.72, 24.8, 24.72, 24.56, 24.44, 24.48, 24.6, 24.68, 24.8, 24.8, 24.92, 24.84, 24.72, 24.68, 24.6, 24.52, 24.68, 24.6, 24.72, 24.84, 24.88, 24.76, 24.64, 24.64, 24.56, 24.6, 24.44, 24.44, 24.36, 24.36, 24.36, 24.52, 24.6, 24.52, 24.36, 24.32, 24.12, 24.2, 24.44, 24.56, 24.6, 24.68, 24.84, 24.72, 24.8, 24.88, 24.84, 24.6, 24.68, 24.52, 24.52, 24.76, 25.0, 25.16, 25.0, 24.88, 24.84, 24.48, 24.44, 24.44, 24.44, 24.68, 24.72, 24.48, 24.44, 24.6, 24.56, 24.36, 24.72, 24.72, 24.56, 24.56, 24.88, 24.64, 24.56, 24.56, 24.68, 24.72, 24.84, 24.68, 24.92, 24.72, 24.8, 24.72, 24.72, 24.64, 24.68, 24.64, 24.52, 24.32, 24.4, 24.52, 24.52, 24.72, 24.88, 24.76, 24.72, 24.64, 24.52, 24.44, 24.68, 24.64, 24.64, 24.76, 24.88, 24.72, 24.92, 25.0, 24.8, 24.48, 24.52, 24.36, 24.36, 24.44, 24.52, 24.76, 24.88, 24.88, 24.8, 24.68, 24.48, 24.36, 24.36, 24.52, 24.6, 24.84, 24.88, 24.84, 24.8, 24.6, 24.36, 24.4, 24.36, 24.36, 24.44, 24.48, 24.64, 24.6, 24.68, 24.76, 24.76, 24.72, 24.56, 24.32, 24.32, 24.12, 24.12, 24.2, 24.36, 24.24, 24.52, 24.48, 24.52, 24.6, 24.68, 24.68, 24.76, 24.64, 24.4, 24.32, 24.4, 24.32, 24.48, 24.76, 24.84, 24.68, 24.72, 24.52, 24.6, 24.72, 24.72, 24.8, 24.68, 24.64, 24.52, 24.52, 24.76, 24.8, 24.76, 24.56, 24.56, 24.36, 24.24, 24.4, 24.52, 24.6, 24.68, 24.8, 24.44, 24.52, 24.4, 24.48, 24.52, 24.4, 24.48, 24.48, 24.48, 24.44, 24.6, 24.56, 24.52, 24.52, 24.84, 24.88, 24.76, 24.68, 24.48, 24.24, 24.24, 24.24, 24.32, 24.52, 24.6, 24.72, 24.88, 24.92, 25.0, 24.92, 24.92, 24.68, 24.64, 24.64, 24.48, 24.44, 24.4, 24.36, 24.4, 24.48, 24.48, 24.4, 24.4, 24.36, 24.48, 24.36, 24.24, 24.6, 24.64, 24.36, 24.48, 24.52, 24.52, 24.36, 24.48, 24.56, 24.6, 24.6, 24.44, 24.44, 24.32, 24.24, 24.36, 24.64, 24.64, 24.76, 24.68, 24.8, 24.84, 24.76, 24.76, 24.6, 24.44, 24.52, 24.52, 24.56, 24.48, 24.52, 24.44, 24.56, 24.52, 24.56, 24.52, 24.56, 24.44, 24.4, 24.36, 24.48, 24.28, 24.28, 24.28, 24.2, 24.12, 24.12, 24.36, 24.24, 24.24, 24.32, 24.4, 24.48, 24.44, 24.72, 24.84, 24.76, 24.76, 24.68, 24.52, 24.48, 24.52, 24.48, 24.28, 24.28, 24.12, 23.92, 24.12, 24.48, 24.36, 24.52, 24.52, 24.68, 24.44, 24.52, 24.6, 24.68, 24.76, 24.92, 24.76, 24.76, 24.64, 24.64, 24.6, 24.56, 24.44, 24.2, 24.24, 24.24, 24.28, 24.2, 24.48, 24.32, 24.32, 24.32, 24.52, 24.36, 24.6, 24.52, 24.72, 24.64, 24.68, 24.4, 24.48, 24.52, 24.68, 24.6, 24.76, 24.6, 24.6, 24.6, 24.44, 24.36, 24.36, 24.4, 24.4, 24.52, 24.64, 24.76, 24.92, 24.88, 25.0, 25.08, 24.88, 24.76, 24.64, 24.72, 24.88, 25.16, 25.08, 25.0, 24.84, 24.48, 24.56, 24.84, 24.92, 25.04, 25.04, 25.2, 25.08, 24.84, 24.52, 24.72, 24.56, 24.44, 24.48, 24.48, 24.28, 24.44, 24.32, 24.28, 24.24, 24.56, 24.44, 24.76, 24.96, 24.92, 24.84, 24.76, 24.76, 24.36, 24.52, 24.36, 24.52, 24.64, 24.6, 24.76, 24.96, 25.12, 25.0, 24.92, 24.72, 24.56, 24.84, 24.84, 25.0, 24.92, 24.8, 25.0, 24.88, 24.92, 24.92, 24.64, 24.52, 24.44, 24.36, 24.36, 24.64, 24.56, 24.56, 24.52, 24.6, 24.52, 24.64, 24.56, 24.68, 24.76, 24.64, 24.92, 24.8, 24.64, 24.6, 24.8, 24.8, 24.76, 24.56, 24.52, 24.44, 24.36, 24.44, 24.52, 24.44, 24.72, 24.84, 24.6, 24.48, 24.68, 24.56, 24.32, 24.44, 24.68, 24.4, 24.36, 24.36, 24.52, 24.52, 24.52, 24.36, 24.52, 24.44, 24.36, 24.6, 24.48, 24.72, 24.96, 25.0, 25.2, 25.28, 25.0, 25.0, 24.8, 24.52, 24.48, 24.52, 24.32, 24.36, 24.48, 24.48, 24.52, 24.52, 24.6, 24.8, 24.68, 24.64, 24.52, 24.32, 24.24, 24.32, 24.56, 24.52, 24.52, 24.52, 24.4, 24.48, 24.72, 25.96, 26.72, 27.16, 27.4, 27.4, 27.04, 25.56, 25.36, 24.88, 24.44, 24.24, 24.24, 24.32, 24.44, 24.48, 24.48, 24.56, 24.52, 24.36, 24.6, 24.6, 24.8, 24.6, 24.64, 24.6, 24.56, 24.56, 24.52, 24.68, 24.6, 24.6, 24.44, 24.36, 24.12, 24.08, 24.0, 24.28, 24.4, 24.64, 24.72, 24.68, 24.88, 24.64, 24.6, 24.56, 24.68, 24.84, 25.0, 25.0, 25.12, 24.84, 24.84, 24.68, 24.64, 24.44, 24.52, 24.52, 24.6, 24.88, 24.76, 24.72, 24.76, 24.76, 24.56, 24.6, 24.48, 24.12, 24.16, 24.28, 24.52, 24.52, 24.6, 24.6, 24.44, 24.52, 24.36, 24.44, 24.56, 24.52, 24.4, 24.44, 24.44, 24.28, 24.36, 24.48, 24.8, 24.8, 24.68, 24.64, 24.48, 24.24, 24.36, 24.36, 24.44, 24.36, 24.56, 24.44, 24.44, 24.48, 24.48, 24.76, 24.64, 24.72, 24.76, 24.68, 24.64, 24.48, 24.4, 24.32, 24.16, 24.24, 24.32, 24.44, 24.28, 24.28, 24.6, 24.72, 24.72, 24.92, 24.84, 24.68, 24.64, 24.68, 24.68, 24.48, 24.4, 24.6, 24.4, 24.64, 24.52, 24.72, 24.76, 24.8, 24.84, 24.88, 24.88, 24.88, 24.72, 24.48, 24.84, 24.8, 24.6, 24.6, 24.48, 24.52, 24.52, 24.44, 24.56, 24.36, 24.24, 24.32, 24.56, 24.56, 24.8, 24.8, 24.72, 24.84, 24.84, 24.8, 24.72, 24.76, 24.84, 24.76, 24.76, 24.56, 24.68, 24.72, 24.64, 24.76, 24.64, 24.44, 24.48, 24.64, 24.4, 24.32, 24.32, 24.24, 24.04, 24.32, 24.32, 24.6, 24.68, 24.72, 24.68, 24.52, 24.36, 24.28, 24.28, 24.28, 24.44, 24.44, 24.6, 24.52, 24.6, 24.36, 24.52, 24.56, 24.72, 24.64, 24.52, 24.44, 24.44, 24.4, 24.56, 24.64, 24.6, 24.6, 24.56, 24.52, 24.56, 24.6, 24.8, 24.48, 24.6, 24.44, 24.48, 24.48, 24.6, 24.6, 24.4, 24.4, 24.44, 24.36, 24.36, 24.52, 24.72, 24.72, 24.88, 24.68, 24.68, 24.68, 24.6, 24.56, 24.72, 24.68, 24.72, 24.52, 24.44, 24.44, 24.44, 24.44, 24.76, 24.84, 24.68, 24.44, 24.44, 24.52, 24.28, 24.36, 24.48, 24.6, 24.68, 24.68, 24.72, 24.76, 24.56, 24.56, 24.4, 24.48, 24.52, 24.72, 24.68, 24.8, 24.8, 24.72, 24.56, 24.44, 24.44, 24.56, 24.64, 24.6, 24.72, 24.68, 24.36, 24.48, 24.56, 24.36, 24.52, 24.56, 24.72, 24.64, 24.52, 24.48, 24.44, 24.64, 24.8, 24.68, 24.84, 24.8, 24.8, 25.0, 25.0, 24.84, 24.84, 24.64, 24.64, 24.68, 24.76, 24.8, 24.68, 24.6, 24.56, 24.84, 24.72, 25.04, 25.08, 25.04, 25.12, 25.12, 24.92, 24.96, 24.96, 24.96, 24.72, 24.8, 24.76, 24.8, 24.76, 24.76, 25.0, 25.36, 25.32, 25.4, 25.36, 25.12, 25.24, 25.36, 25.44, 25.48, 25.12, 24.72, 24.24, 24.44, 24.44, 24.6, 24.64, 24.96, 25.28, 25.44, 25.4, 25.72, 25.4, 25.4, 25.16, 25.48, 25.64, 26.16, 26.32, 26.56, 26.72, 26.64] -997.7273364067078 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 45000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 974.439944267273, 'TIME_S_1KI': 974.439944267273, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 23454.716241874696, 'W': 23.50814234111929} -[20.36, 20.44, 20.52, 20.6, 20.8, 20.68, 20.76, 20.72, 21.08, 20.84, 22.08, 21.56, 21.0, 20.48, 20.48, 20.2, 20.24, 20.32, 20.12, 20.2] -371.74 -18.587 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 45000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 974.439944267273, 'TIME_S_1KI': 974.439944267273, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 23454.716241874696, 'W': 23.50814234111929, 'J_1KI': 23454.716241874696, 'W_1KI': 23.50814234111929, 'W_D': 4.921142341119289, 'J_D': 4909.958240083218, 'W_D_1KI': 4.921142341119289, 'J_D_1KI': 4.921142341119289} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.1.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.1.json deleted file mode 100644 index 32cac99..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.1.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000000, "MATRIX_DENSITY": 0.1, "TIME_S": 1889.6461987495422, "TIME_S_1KI": 1889.6461987495422, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 46014.76951049807, "W": 23.55154793120378, "J_1KI": 46014.76951049807, "W_1KI": 23.55154793120378, "W_D": 5.418547931203779, "J_D": 10586.702617774983, "W_D_1KI": 5.418547931203779, "J_D_1KI": 5.418547931203779} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.1.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.1.output deleted file mode 100644 index 3244029..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.1.output +++ /dev/null @@ -1,45 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 30000 -sd 0.1 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000000, "MATRIX_DENSITY": 0.1, "TIME_S": 1889.6461987495422} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2919, 6033, ..., 89993985, - 89996951, 90000000]), - col_indices=tensor([ 15, 22, 25, ..., 29928, 29955, 29961]), - values=tensor([0.1237, 0.9766, 0.2142, ..., 0.5188, 0.0654, 0.8458]), - size=(30000, 30000), nnz=90000000, layout=torch.sparse_csr) -tensor([0.8545, 0.2049, 0.9446, ..., 0.6392, 0.0667, 0.5059]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 90000000 -Density: 0.1 -Time: 1889.6461987495422 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2919, 6033, ..., 89993985, - 89996951, 90000000]), - col_indices=tensor([ 15, 22, 25, ..., 29928, 29955, 29961]), - values=tensor([0.1237, 0.9766, 0.2142, ..., 0.5188, 0.0654, 0.8458]), - size=(30000, 30000), nnz=90000000, layout=torch.sparse_csr) -tensor([0.8545, 0.2049, 0.9446, ..., 0.6392, 0.0667, 0.5059]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 90000000 -Density: 0.1 -Time: 1889.6461987495422 seconds - -[20.2, 20.08, 20.12, 19.96, 20.0, 20.0, 20.04, 20.04, 19.92, 20.12] -[20.08, 20.4, 20.64, 22.0, 23.52, 26.84, 27.8, 27.76, 27.76, 25.24, 26.52, 28.12, 30.6, 30.6, 32.76, 32.88, 32.32, 30.76, 28.68, 27.32, 27.48, 26.68, 27.08, 27.28, 27.36, 28.12, 28.64, 28.76, 28.48, 28.24, 28.24, 27.28, 26.68, 25.68, 25.12, 25.12, 24.6, 24.56, 24.48, 24.36, 24.52, 24.48, 24.48, 24.64, 24.96, 25.0, 24.68, 24.68, 24.44, 24.36, 24.56, 24.68, 24.52, 24.64, 24.56, 24.6, 24.4, 24.4, 24.4, 24.6, 24.68, 24.76, 24.92, 24.64, 24.56, 24.6, 24.6, 24.56, 24.52, 24.52, 24.44, 24.56, 24.64, 24.6, 24.72, 24.56, 24.52, 24.48, 24.48, 24.48, 24.28, 24.4, 24.4, 24.4, 24.44, 24.44, 24.08, 24.08, 24.12, 24.28, 24.24, 24.2, 24.32, 24.4, 24.56, 24.76, 24.8, 24.76, 24.68, 24.52, 24.4, 24.4, 24.24, 24.52, 24.4, 24.28, 24.52, 24.56, 24.56, 24.68, 24.76, 24.52, 24.6, 24.32, 24.24, 24.16, 24.36, 24.28, 24.24, 24.32, 24.4, 24.44, 24.44, 24.56, 24.6, 24.4, 24.4, 24.4, 24.24, 24.48, 24.52, 24.4, 24.68, 24.44, 24.6, 24.6, 24.32, 24.4, 24.48, 24.48, 24.68, 24.8, 24.76, 24.72, 24.72, 24.64, 24.92, 24.84, 24.84, 24.88, 24.72, 24.36, 24.36, 24.2, 24.2, 24.52, 24.36, 24.44, 24.44, 24.36, 24.52, 24.48, 24.6, 24.8, 24.68, 24.64, 24.64, 24.76, 24.6, 24.68, 24.84, 25.0, 24.92, 25.0, 25.32, 24.96, 24.84, 24.76, 24.72, 24.6, 24.4, 24.56, 24.64, 24.6, 24.96, 24.92, 24.84, 24.72, 24.72, 24.68, 24.68, 24.56, 24.6, 24.88, 24.76, 24.64, 24.76, 24.64, 24.68, 24.84, 24.96, 24.76, 24.76, 24.72, 24.56, 24.36, 24.36, 24.28, 24.28, 24.36, 24.36, 24.64, 24.52, 24.68, 24.72, 24.72, 24.8, 24.92, 24.72, 24.6, 24.52, 24.24, 24.28, 24.36, 24.68, 24.8, 24.72, 24.68, 24.4, 24.36, 24.28, 24.28, 24.56, 24.56, 24.36, 24.4, 24.32, 24.24, 24.28, 24.28, 24.44, 24.48, 24.48, 24.56, 24.68, 24.68, 24.92, 24.96, 24.88, 24.76, 24.6, 24.52, 24.52, 24.52, 24.6, 24.56, 24.52, 24.32, 24.52, 24.64, 24.76, 24.68, 24.6, 24.48, 24.52, 24.6, 24.72, 24.72, 24.48, 24.72, 24.76, 24.88, 24.76, 24.76, 24.76, 24.76, 24.56, 24.44, 24.64, 24.64, 24.64, 24.56, 24.44, 24.4, 24.36, 24.52, 24.68, 24.6, 24.64, 24.64, 24.52, 24.4, 24.6, 24.72, 24.56, 24.56, 24.4, 24.4, 24.24, 24.36, 24.68, 24.84, 24.8, 24.88, 24.92, 25.04, 25.08, 25.08, 24.68, 24.6, 24.56, 24.56, 24.68, 24.96, 24.96, 24.84, 24.76, 24.72, 24.64, 24.64, 24.76, 25.04, 24.88, 25.04, 25.04, 24.92, 25.08, 25.12, 24.92, 25.08, 25.32, 25.04, 25.12, 25.16, 24.8, 24.68, 24.52, 24.36, 24.24, 24.4, 24.48, 24.48, 24.6, 24.72, 24.84, 24.56, 24.6, 24.64, 24.8, 24.72, 24.8, 24.84, 24.8, 24.6, 24.6, 24.36, 24.52, 24.6, 24.72, 25.0, 25.16, 25.04, 24.96, 24.96, 24.8, 24.64, 24.4, 24.48, 24.48, 24.72, 24.68, 24.48, 24.56, 24.52, 24.48, 24.56, 24.4, 24.4, 24.4, 24.52, 24.72, 24.92, 24.72, 24.76, 24.64, 24.64, 24.64, 25.0, 25.08, 25.04, 24.68, 24.36, 24.24, 24.32, 24.6, 24.8, 24.96, 25.04, 24.72, 24.56, 24.6, 24.6, 24.84, 24.72, 24.92, 24.92, 24.92, 24.8, 24.8, 24.84, 24.6, 24.48, 24.4, 24.28, 24.4, 24.68, 24.76, 24.76, 24.8, 24.72, 24.76, 24.64, 24.6, 24.68, 24.56, 24.76, 24.92, 24.76, 24.76, 24.72, 24.36, 24.32, 24.4, 24.6, 24.68, 24.72, 24.52, 24.64, 24.64, 24.68, 24.84, 24.96, 25.0, 24.72, 24.88, 24.36, 24.44, 24.52, 24.36, 24.56, 24.56, 24.64, 24.72, 24.72, 24.64, 24.8, 24.76, 24.88, 24.8, 24.76, 24.48, 24.64, 24.8, 24.6, 24.6, 24.64, 24.56, 24.4, 24.56, 24.48, 24.64, 24.4, 24.4, 24.36, 24.32, 24.2, 24.28, 24.52, 24.56, 24.68, 24.6, 24.4, 24.24, 24.36, 24.16, 24.4, 24.52, 24.48, 24.52, 24.64, 24.36, 24.2, 24.12, 24.0, 24.0, 24.16, 24.28, 24.28, 24.16, 24.12, 24.24, 24.44, 24.76, 24.84, 24.96, 24.96, 24.88, 24.6, 24.64, 24.72, 24.6, 24.64, 24.88, 24.96, 25.0, 24.88, 24.88, 24.76, 24.72, 24.88, 24.6, 24.6, 24.72, 24.84, 24.56, 24.84, 24.84, 24.8, 24.72, 24.72, 24.88, 24.68, 24.56, 24.56, 24.6, 24.6, 24.96, 24.8, 24.8, 24.64, 24.8, 24.76, 24.6, 24.76, 24.64, 24.8, 24.64, 24.68, 24.64, 24.72, 24.64, 24.64, 24.76, 24.76, 24.68, 24.64, 24.56, 24.6, 24.64, 24.6, 24.6, 24.6, 24.56, 24.52, 24.56, 24.44, 24.36, 24.48, 24.4, 24.4, 24.48, 24.76, 24.8, 25.2, 25.2, 24.96, 24.88, 24.72, 24.72, 24.92, 25.16, 25.0, 25.0, 24.72, 24.48, 24.36, 24.32, 24.36, 24.36, 24.6, 24.52, 24.28, 24.28, 24.44, 24.24, 24.36, 24.44, 24.6, 24.52, 24.64, 24.6, 24.6, 24.6, 24.56, 24.56, 24.68, 24.76, 24.72, 24.72, 24.64, 24.72, 24.76, 24.92, 24.76, 24.84, 24.72, 24.6, 24.56, 24.6, 24.56, 24.48, 24.6, 24.4, 24.4, 24.36, 24.4, 24.4, 24.44, 24.64, 24.52, 24.4, 24.44, 24.52, 24.64, 24.6, 24.6, 24.36, 24.4, 24.52, 24.64, 24.72, 24.68, 24.84, 24.6, 24.68, 24.72, 24.64, 24.6, 24.6, 24.84, 24.8, 24.6, 24.56, 24.28, 24.24, 24.08, 24.36, 24.56, 24.76, 25.08, 25.0, 24.92, 25.08, 24.68, 24.64, 24.88, 24.76, 24.64, 24.68, 24.76, 24.76, 24.68, 24.8, 25.04, 24.96, 24.96, 25.08, 24.84, 24.88, 25.08, 24.96, 24.76, 25.04, 25.0, 24.84, 24.76, 24.6, 24.64, 24.84, 24.8, 24.96, 25.12, 25.12, 25.04, 24.88, 24.92, 24.52, 24.44, 24.24, 24.32, 24.08, 24.32, 24.32, 24.44, 24.68, 24.8, 24.76, 24.92, 24.64, 24.64, 24.44, 24.48, 24.44, 24.48, 24.48, 24.48, 24.48, 24.64, 24.64, 24.8, 25.0, 25.0, 25.0, 24.88, 24.76, 24.48, 24.6, 24.68, 24.76, 25.04, 24.96, 24.76, 24.6, 24.48, 24.28, 24.36, 24.36, 24.2, 24.48, 24.64, 24.64, 24.68, 24.76, 24.8, 24.52, 24.56, 24.72, 24.68, 24.68, 24.92, 24.84, 24.96, 25.12, 25.16, 24.84, 24.56, 24.52, 24.44, 24.44, 24.48, 24.64, 24.64, 24.56, 24.44, 24.4, 24.6, 24.64, 24.84, 24.76, 24.84, 24.56, 24.68, 24.76, 24.64, 24.64, 24.68, 24.44, 24.36, 24.28, 24.28, 24.28, 24.36, 24.44, 24.6, 24.76, 25.0, 24.88, 25.28, 25.12, 25.04, 24.96, 25.0, 24.96, 25.12, 25.12, 24.84, 24.64, 24.52, 24.52, 24.64, 24.52, 24.6, 24.6, 24.44, 24.24, 24.36, 24.48, 24.36, 24.4, 24.52, 24.52, 24.36, 24.28, 24.24, 24.44, 24.52, 24.84, 25.28, 25.24, 25.08, 24.96, 24.68, 24.8, 24.6, 24.6, 24.6, 24.56, 24.56, 24.4, 24.52, 24.44, 24.4, 24.24, 24.12, 24.2, 24.2, 24.2, 24.4, 24.44, 24.64, 24.44, 24.36, 24.28, 24.44, 24.36, 24.56, 24.56, 24.72, 24.76, 24.56, 24.28, 24.28, 24.12, 24.24, 24.24, 24.4, 24.6, 24.72, 24.52, 24.56, 24.64, 24.44, 24.44, 24.44, 24.36, 24.36, 24.4, 24.44, 24.44, 24.48, 24.48, 24.48, 24.48, 24.48, 24.72, 24.8, 24.88, 24.92, 24.96, 24.88, 24.8, 24.64, 24.68, 24.8, 24.84, 25.08, 24.76, 24.88, 24.96, 24.96, 24.96, 24.68, 24.52, 24.4, 24.12, 24.12, 24.4, 24.28, 24.32, 24.28, 24.44, 24.36, 24.6, 24.64, 24.56, 24.48, 24.44, 24.56, 24.4, 24.56, 24.16, 24.16, 24.16, 24.04, 24.08, 24.08, 24.12, 24.08, 24.08, 24.08, 24.16, 24.48, 24.6, 24.6, 24.92, 24.88, 24.76, 24.6, 24.68, 24.52, 24.64, 24.72, 24.76, 24.72, 24.72, 24.68, 24.6, 24.44, 24.6, 24.72, 24.76, 24.84, 24.92, 24.72, 24.52, 24.48, 24.44, 24.52, 24.64, 24.68, 24.68, 24.64, 24.48, 24.52, 24.56, 24.52, 24.52, 24.72, 24.84, 24.92, 24.64, 24.64, 24.64, 24.44, 24.6, 24.68, 24.76, 24.84, 24.84, 24.64, 24.6, 24.84, 24.84, 24.96, 24.96, 25.0, 25.0, 24.92, 24.92, 24.92, 24.92, 24.8, 24.8, 24.64, 24.68, 24.84, 24.84, 24.88, 25.08, 25.04, 25.08, 25.0, 25.08, 25.08, 25.36, 25.24, 25.24, 25.04, 24.88, 24.76, 24.76, 24.8, 24.72, 24.72, 24.76, 24.88, 24.84, 24.72, 24.56, 24.52, 24.32, 24.24, 24.48, 24.64, 24.88, 25.12, 25.2, 25.12, 25.2, 24.96, 24.96, 24.76, 24.76, 24.8, 24.64, 24.96, 24.88, 24.88, 25.16, 25.0, 24.92, 24.76, 24.48, 24.36, 24.36, 24.4, 24.48, 24.52, 24.76, 24.76, 24.72, 24.84, 24.88, 24.88, 24.88, 24.72, 24.84, 24.8, 24.96, 24.84, 24.88, 24.6, 24.44, 24.52, 24.56, 24.52, 24.64, 24.72, 24.64, 24.48, 24.44, 24.4, 24.36, 24.32, 24.36, 24.44, 24.44, 24.44, 24.4, 24.24, 24.28, 24.28, 24.72, 25.16, 25.44, 25.48, 25.6, 25.32, 25.2, 25.12, 24.88, 24.84, 24.88, 24.8, 24.76, 24.84, 24.8, 24.68, 24.68, 24.52, 24.6, 24.52, 24.76, 24.52, 24.56, 24.64, 24.24, 24.32, 24.68, 24.6, 24.72, 24.76, 25.04, 25.24, 25.24, 25.04, 24.72, 24.64, 24.72, 24.88, 24.88, 24.76, 24.68, 24.44, 24.44, 24.44, 24.52, 24.6, 24.6, 24.52, 24.44, 24.44, 24.48, 24.56, 24.56, 24.56, 24.52, 24.64, 24.56, 24.84, 24.84, 24.64, 24.64, 24.48, 24.52, 24.56, 24.56, 24.8, 24.88, 24.72, 24.76, 24.44, 24.44, 24.48, 24.64, 24.72, 24.76, 24.72, 24.6, 24.52, 24.64, 24.48, 24.56, 24.56, 24.56, 24.44, 24.32, 24.36, 24.8, 24.76, 24.96, 24.92, 24.8, 24.68, 24.72, 24.56, 24.52, 24.28, 24.56, 24.68, 24.84, 24.76, 24.76, 24.8, 24.72, 24.68, 24.68, 24.64, 24.56, 24.52, 24.72, 24.68, 24.72, 24.6, 24.64, 24.52, 24.44, 24.52, 24.48, 24.56, 24.72, 24.6, 24.8, 24.72, 24.68, 24.84, 25.0, 25.0, 25.0, 25.16, 25.08, 24.92, 24.88, 24.76, 24.68, 24.76, 24.68, 24.8, 24.6, 24.6, 24.56, 24.6, 24.48, 24.6, 24.52, 24.68, 24.68, 24.48, 24.68, 24.76, 24.76, 24.68, 24.8, 24.8, 24.64, 24.8, 24.68, 24.72, 24.72, 24.72, 24.84, 24.8, 24.72, 24.6, 24.68, 24.36, 24.6, 24.6, 24.56, 24.52, 24.52, 24.72, 24.72, 24.96, 24.96, 24.88, 24.6, 24.64, 24.36, 24.48, 24.48, 24.64, 24.68, 24.92, 24.8, 24.72, 24.64, 24.48, 24.48, 24.4, 24.6, 24.68, 24.64, 24.64, 24.64, 24.84, 24.96, 24.8, 24.72, 24.8, 24.44, 24.32, 24.6, 24.56, 24.44, 24.56, 24.32, 24.24, 24.2, 24.2, 24.16, 24.24, 24.48, 24.64, 24.6, 24.68, 24.68, 24.72, 24.72, 24.52, 24.52, 24.64, 24.68, 24.92, 24.92, 24.92, 24.96, 24.84, 24.52, 24.68, 24.44, 24.48, 24.44, 24.48, 24.52, 24.44, 24.6, 24.8, 24.8, 24.68, 24.92, 24.8, 24.68, 24.88, 24.76, 24.4, 24.52, 24.4, 24.48, 24.76, 24.88, 25.04, 24.92, 24.64, 24.6, 24.6, 24.76, 24.88, 24.92, 24.92, 24.92, 24.72, 24.52, 24.4, 24.48, 24.48, 24.52, 24.68, 24.68, 24.72, 24.8, 24.84, 25.0, 24.96, 25.04, 24.92, 24.68, 24.44, 24.56, 24.48, 24.68, 24.68, 24.64, 24.76, 24.72, 24.76, 24.56, 24.56, 24.48, 24.44, 24.56, 24.56, 24.44, 24.48, 24.64, 24.4, 24.44, 24.48, 24.36, 24.48, 24.76, 24.88, 24.6, 24.6, 24.6, 24.4, 24.4, 24.56, 24.6, 24.64, 24.88, 24.76, 24.64, 24.64, 24.48, 24.48, 24.6, 24.76, 24.84, 24.96, 24.76, 24.68, 24.56, 24.64, 24.36, 24.36, 24.52, 24.8, 24.84, 25.0, 25.12, 24.88, 24.8, 24.6, 24.52, 24.32, 24.44, 24.52, 24.68, 24.72, 24.48, 24.44, 24.28, 24.2, 24.2, 24.4, 24.44, 24.44, 24.6, 24.76, 24.64, 24.88, 25.04, 24.96, 24.92, 24.72, 24.44, 24.28, 24.32, 24.6, 24.68, 24.8, 24.96, 24.88, 25.0, 24.92, 24.68, 24.56, 24.4, 24.4, 24.12, 24.12, 24.24, 24.16, 24.36, 24.48, 24.52, 24.48, 24.52, 24.48, 24.4, 24.4, 24.48, 24.68, 24.8, 25.0, 24.8, 24.96, 24.8, 24.64, 24.68, 24.68, 24.4, 24.4, 24.44, 24.28, 24.24, 24.36, 24.52, 24.52, 24.44, 24.52, 24.44, 24.52, 24.64, 24.52, 24.36, 24.4, 24.2, 24.12, 24.32, 24.4, 24.56, 24.56, 24.72, 24.52, 24.48, 24.64, 24.64, 24.64, 24.76, 24.72, 24.76, 24.84, 25.04, 25.08, 25.04, 24.76, 24.52, 24.56, 24.4, 24.52, 24.48, 24.64, 24.56, 24.56, 24.48, 24.4, 24.44, 24.4, 24.4, 24.84, 24.8, 24.64, 24.76, 24.56, 24.56, 24.6, 24.56, 24.56, 24.56, 24.52, 24.4, 24.28, 24.64, 24.64, 24.92, 24.92, 24.88, 25.12, 25.4, 25.72, 26.56, 26.92, 27.24, 27.44, 27.76, 27.88, 27.52, 27.28, 27.32, 26.76, 26.24, 26.32, 25.08, 25.2, 25.56, 25.84, 26.44, 26.44, 26.88, 26.72, 26.16, 25.84, 25.36, 25.08, 25.4, 25.4, 25.56, 25.56, 25.6, 25.92, 26.32, 26.64, 27.2, 27.44, 27.4, 27.4, 27.12, 26.52, 26.84, 26.84, 26.6, 26.72, 26.96, 26.12, 25.72, 25.4, 25.16, 24.92, 24.96, 24.84, 24.52, 24.2, 24.04, 24.04, 24.4, 24.52, 24.72, 24.8, 24.64, 24.56, 24.48, 24.48, 24.36, 24.44, 24.32, 24.32, 24.28, 24.32, 24.48, 24.52, 24.6, 24.44, 24.48, 24.52, 24.6, 24.52, 24.68, 24.56, 24.6, 24.8, 24.96, 24.84, 24.76, 24.76, 24.76, 24.72, 24.68, 24.8, 24.68, 24.6, 24.6, 24.48, 24.36, 24.36, 24.44, 24.44, 24.48, 24.8, 24.56, 24.56, 24.4, 24.36, 24.2, 24.44, 24.56, 24.56, 24.8, 24.76, 24.96, 25.0, 24.72, 24.64, 24.4, 24.4, 24.44, 24.44, 24.52, 24.52, 24.44, 24.6, 24.84, 24.92, 24.96, 24.84, 24.6, 24.8, 24.64, 24.64, 24.64, 24.48, 24.64, 24.56, 24.56, 24.68, 24.68, 24.68, 24.96, 24.8, 24.76, 24.76, 24.68, 24.76, 24.72, 24.72, 24.68, 24.56, 24.6, 24.56, 24.72, 24.72, 25.0, 25.2, 25.04, 25.12, 25.04, 24.96, 24.68, 24.72, 24.64, 24.56, 24.76, 24.72, 24.6, 24.52, 24.76, 24.8, 24.8, 24.84, 24.76, 24.6, 24.68, 24.68, 24.72, 24.8, 24.64, 24.6, 24.36, 24.4, 24.36, 24.52, 24.6, 24.72, 24.56, 24.4, 24.52, 24.44, 24.48, 24.52, 24.52, 24.56, 24.76, 24.72, 24.96, 24.96, 25.0, 24.92, 25.0, 24.76, 24.64, 24.64, 24.76, 24.52, 24.64, 24.6, 24.76, 24.6, 24.8, 24.84, 24.8, 24.76, 24.68, 24.24, 23.96, 23.92, 23.84, 23.84, 23.8, 24.36, 24.32, 24.56, 24.56, 24.64, 24.56, 24.6, 24.68, 24.76, 24.92, 24.88, 25.04, 24.96, 24.8, 24.44, 24.24, 24.16, 24.16, 24.36, 24.6, 24.6, 24.52, 24.76, 24.64, 24.36, 24.44, 24.36, 24.44, 24.64, 24.76, 24.76, 24.64, 24.64, 24.6, 24.48, 24.52, 24.48, 24.4, 24.36, 24.48, 24.36, 24.6, 24.6, 24.92, 25.04, 25.0, 24.96, 24.6, 24.68, 24.6, 24.76, 24.88, 24.96, 24.92, 24.68, 24.64, 24.52, 24.48, 24.44, 24.68, 24.68, 24.68, 24.72, 24.84, 24.84, 24.88, 24.88, 24.8, 24.6, 24.36, 24.52, 24.6, 24.52, 24.64, 24.76, 24.72, 24.64, 24.52, 24.36, 24.36, 24.08, 24.08, 24.24, 24.6, 24.84, 25.0, 25.0, 24.88, 24.88, 24.88, 24.72, 24.64, 24.64, 24.76, 24.8, 24.96, 24.92, 24.76, 24.72, 24.52, 24.48, 24.64, 24.8, 24.68, 24.84, 24.76, 24.64, 24.68, 24.68, 24.52, 24.44, 24.48] -1953.7896041870117 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 90000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 1889.6461987495422, 'TIME_S_1KI': 1889.6461987495422, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 46014.76951049807, 'W': 23.55154793120378} -[20.2, 20.08, 20.12, 19.96, 20.0, 20.0, 20.04, 20.04, 19.92, 20.12, 20.08, 20.04, 20.24, 20.4, 20.4, 20.44, 20.44, 20.12, 20.12, 20.2] -362.65999999999997 -18.133 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 90000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 1889.6461987495422, 'TIME_S_1KI': 1889.6461987495422, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 46014.76951049807, 'W': 23.55154793120378, 'J_1KI': 46014.76951049807, 'W_1KI': 23.55154793120378, 'W_D': 5.418547931203779, 'J_D': 10586.702617774983, 'W_D_1KI': 5.418547931203779, 'J_D_1KI': 5.418547931203779} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_1e-05.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_1e-05.json deleted file mode 100644 index e115dec..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_1e-05.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 53329, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.33877921104431, "TIME_S_1KI": 0.4001346211450489, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 541.4117899322509, "W": 22.47116935228423, "J_1KI": 10.152295935274447, "W_1KI": 0.42136866155908104, "W_D": 4.265169352284232, "J_D": 102.76336478900909, "W_D_1KI": 0.07997842360224704, "J_D_1KI": 0.0014997172945723158} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_1e-05.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_1e-05.output deleted file mode 100644 index e2a45bb..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_1e-05.output +++ /dev/null @@ -1,62 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 30000 -sd 1e-05 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.39377737045288086} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 8999, 9000, 9000]), - col_indices=tensor([10394, 25541, 5557, ..., 25175, 23986, 28004]), - values=tensor([0.8334, 0.8462, 0.9277, ..., 0.8850, 0.0932, 0.4483]), - size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) -tensor([0.3238, 0.7549, 0.3676, ..., 0.0953, 0.4629, 0.1375]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 9000 -Density: 1e-05 -Time: 0.39377737045288086 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 53329 -ss 30000 -sd 1e-05 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.33877921104431} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 8999, 9000, 9000]), - col_indices=tensor([19970, 26420, 19050, ..., 11684, 15529, 21908]), - values=tensor([0.5268, 0.0229, 0.8842, ..., 0.2264, 0.1987, 0.6579]), - size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) -tensor([0.3153, 0.9988, 0.0667, ..., 0.8874, 0.8455, 0.6438]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 9000 -Density: 1e-05 -Time: 21.33877921104431 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 8999, 9000, 9000]), - col_indices=tensor([19970, 26420, 19050, ..., 11684, 15529, 21908]), - values=tensor([0.5268, 0.0229, 0.8842, ..., 0.2264, 0.1987, 0.6579]), - size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) -tensor([0.3153, 0.9988, 0.0667, ..., 0.8874, 0.8455, 0.6438]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 9000 -Density: 1e-05 -Time: 21.33877921104431 seconds - -[20.04, 20.04, 20.12, 20.16, 20.4, 20.32, 20.4, 20.36, 20.2, 20.16] -[19.76, 19.88, 23.52, 24.72, 26.8, 26.8, 27.72, 28.52, 25.4, 24.2, 24.0, 24.12, 23.96, 24.08, 24.08, 23.92, 24.0, 24.0, 24.16, 24.28, 24.4, 24.44, 24.48] -24.093618869781494 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 53329, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.33877921104431, 'TIME_S_1KI': 0.4001346211450489, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 541.4117899322509, 'W': 22.47116935228423} -[20.04, 20.04, 20.12, 20.16, 20.4, 20.32, 20.4, 20.36, 20.2, 20.16, 19.84, 19.92, 20.0, 20.12, 20.12, 20.44, 20.48, 20.48, 20.48, 20.12] -364.12 -18.206 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 53329, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.33877921104431, 'TIME_S_1KI': 0.4001346211450489, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 541.4117899322509, 'W': 22.47116935228423, 'J_1KI': 10.152295935274447, 'W_1KI': 0.42136866155908104, 'W_D': 4.265169352284232, 'J_D': 102.76336478900909, 'W_D_1KI': 0.07997842360224704, 'J_D_1KI': 0.0014997172945723158} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0001.json deleted file mode 100644 index ddc6fac..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0001.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 3411, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.881499767303467, "TIME_S_1KI": 6.121811717180729, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 532.9655063343048, "W": 22.190313426181827, "J_1KI": 156.24904905725734, "W_1KI": 6.505515516324194, "W_D": 3.8713134261818247, "J_D": 92.98095438027374, "W_D_1KI": 1.134949699848087, "J_D_1KI": 0.3327322485629103} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0005.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0005.json deleted file mode 100644 index e80940c..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0005.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.0005, "TIME_S": 27.37552046775818, "TIME_S_1KI": 27.37552046775818, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 709.9588974285126, "W": 22.617473628428268, "J_1KI": 709.9588974285126, "W_1KI": 22.617473628428268, "W_D": 4.155473628428268, "J_D": 130.43965581655505, "W_D_1KI": 4.155473628428268, "J_D_1KI": 4.155473628428268} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0005.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0005.output deleted file mode 100644 index 5ee77f1..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0005.output +++ /dev/null @@ -1,45 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 0.0005 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.0005, "TIME_S": 27.37552046775818} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 27, 46, ..., 1249943, - 1249977, 1250000]), - col_indices=tensor([ 1915, 6358, 8298, ..., 42036, 43103, 48835]), - values=tensor([0.4919, 0.4887, 0.0616, ..., 0.3370, 0.2927, 0.3892]), - size=(50000, 50000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.0947, 0.0414, 0.5709, ..., 0.1435, 0.2486, 0.5038]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 1250000 -Density: 0.0005 -Time: 27.37552046775818 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 27, 46, ..., 1249943, - 1249977, 1250000]), - col_indices=tensor([ 1915, 6358, 8298, ..., 42036, 43103, 48835]), - values=tensor([0.4919, 0.4887, 0.0616, ..., 0.3370, 0.2927, 0.3892]), - size=(50000, 50000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.0947, 0.0414, 0.5709, ..., 0.1435, 0.2486, 0.5038]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 1250000 -Density: 0.0005 -Time: 27.37552046775818 seconds - -[20.24, 20.24, 20.44, 20.44, 20.52, 20.84, 20.8, 20.8, 20.52, 20.48] -[20.44, 20.44, 21.24, 22.44, 23.88, 24.76, 25.84, 25.32, 25.32, 25.04, 24.24, 24.36, 24.44, 24.64, 24.84, 24.72, 24.52, 24.56, 24.28, 24.44, 24.4, 24.4, 24.44, 24.2, 24.08, 24.16, 24.08, 24.32, 24.52, 24.52] -31.389840841293335 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 27.37552046775818, 'TIME_S_1KI': 27.37552046775818, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 709.9588974285126, 'W': 22.617473628428268} -[20.24, 20.24, 20.44, 20.44, 20.52, 20.84, 20.8, 20.8, 20.52, 20.48, 20.56, 20.56, 20.64, 20.6, 20.32, 20.36, 20.2, 20.32, 20.72, 20.56] -369.24 -18.462 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 27.37552046775818, 'TIME_S_1KI': 27.37552046775818, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 709.9588974285126, 'W': 22.617473628428268, 'J_1KI': 709.9588974285126, 'W_1KI': 22.617473628428268, 'W_D': 4.155473628428268, 'J_D': 130.43965581655505, 'W_D_1KI': 4.155473628428268, 'J_D_1KI': 4.155473628428268} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.001.json deleted file mode 100644 index 8992275..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.001.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 54.24125528335571, "TIME_S_1KI": 54.24125528335571, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1372.0545160293577, "W": 23.357171683962374, "J_1KI": 1372.0545160293577, "W_1KI": 23.357171683962374, "W_D": 5.006171683962375, "J_D": 294.0741524674891, "W_D_1KI": 5.006171683962375, "J_D_1KI": 5.006171683962375} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.005.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.005.json deleted file mode 100644 index 5b8cd5a..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.005.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.005, "TIME_S": 267.4636125564575, "TIME_S_1KI": 267.4636125564575, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 6714.934566097259, "W": 23.431218104999314, "J_1KI": 6714.934566097259, "W_1KI": 23.431218104999314, "W_D": 5.143218104999313, "J_D": 1473.9469744796756, "W_D_1KI": 5.143218104999313, "J_D_1KI": 5.143218104999313} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.005.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.005.output deleted file mode 100644 index d7cdb54..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.005.output +++ /dev/null @@ -1,45 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 0.005 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.005, "TIME_S": 267.4636125564575} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 245, 505, ..., 12499495, - 12499738, 12500000]), - col_indices=tensor([ 233, 421, 423, ..., 49587, 49831, 49917]), - values=tensor([0.0085, 0.6781, 0.7487, ..., 0.0311, 0.6051, 0.4921]), - size=(50000, 50000), nnz=12500000, layout=torch.sparse_csr) -tensor([0.9687, 0.6648, 0.3251, ..., 0.0954, 0.1242, 0.9203]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 12500000 -Density: 0.005 -Time: 267.4636125564575 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 245, 505, ..., 12499495, - 12499738, 12500000]), - col_indices=tensor([ 233, 421, 423, ..., 49587, 49831, 49917]), - values=tensor([0.0085, 0.6781, 0.7487, ..., 0.0311, 0.6051, 0.4921]), - size=(50000, 50000), nnz=12500000, layout=torch.sparse_csr) -tensor([0.9687, 0.6648, 0.3251, ..., 0.0954, 0.1242, 0.9203]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 12500000 -Density: 0.005 -Time: 267.4636125564575 seconds - -[20.32, 20.36, 20.44, 20.44, 20.44, 20.6, 20.6, 20.64, 20.64, 20.8] -[20.68, 20.84, 21.36, 22.52, 24.16, 25.64, 27.64, 28.36, 28.44, 28.44, 27.88, 26.96, 25.68, 25.0, 24.68, 24.68, 24.88, 25.0, 25.08, 25.0, 24.72, 24.6, 24.68, 24.44, 24.32, 24.4, 24.32, 24.12, 24.36, 24.6, 24.6, 24.6, 24.48, 24.72, 24.76, 24.72, 24.84, 24.92, 24.72, 24.72, 24.6, 24.44, 24.56, 24.6, 24.36, 24.48, 24.56, 24.36, 24.36, 24.32, 24.4, 24.32, 24.44, 24.44, 24.6, 24.6, 24.56, 24.52, 24.28, 24.28, 24.32, 24.28, 24.52, 24.4, 24.44, 24.24, 24.12, 24.12, 24.32, 24.52, 24.8, 25.0, 25.04, 24.72, 24.72, 24.72, 24.56, 24.24, 24.24, 24.16, 24.12, 24.0, 24.16, 24.4, 24.4, 24.56, 24.68, 24.76, 24.68, 24.72, 24.56, 24.6, 24.68, 24.8, 24.84, 24.88, 24.84, 24.84, 24.72, 24.52, 24.48, 24.44, 24.36, 24.4, 24.56, 24.32, 24.28, 24.4, 24.52, 24.36, 24.76, 24.88, 24.8, 24.72, 24.84, 24.88, 24.84, 24.92, 24.88, 24.88, 24.8, 24.76, 24.68, 24.48, 24.52, 24.44, 24.44, 24.56, 24.56, 24.64, 24.52, 24.4, 24.6, 24.64, 24.72, 24.52, 24.36, 24.48, 24.48, 24.68, 24.56, 24.56, 24.88, 24.92, 24.96, 25.12, 25.12, 24.88, 24.6, 24.6, 24.4, 24.6, 24.88, 24.8, 24.6, 24.56, 24.48, 24.52, 24.68, 24.92, 24.96, 24.72, 24.76, 24.76, 24.6, 24.6, 24.64, 24.52, 24.48, 24.48, 24.6, 24.64, 24.6, 24.56, 24.56, 24.28, 24.44, 24.32, 24.24, 24.2, 24.12, 24.2, 24.44, 24.56, 24.48, 24.48, 24.44, 24.48, 24.64, 24.84, 24.84, 24.96, 24.68, 24.72, 24.44, 24.76, 24.72, 24.6, 24.72, 24.76, 24.6, 24.72, 25.08, 24.72, 24.88, 24.92, 25.0, 25.0, 25.04, 25.2, 25.08, 24.92, 24.56, 24.44, 24.48, 24.36, 24.64, 24.64, 24.68, 24.6, 24.44, 24.48, 24.28, 24.24, 24.4, 24.52, 24.4, 24.24, 24.4, 24.4, 24.36, 24.36, 24.56, 24.76, 24.76, 24.72, 24.8, 24.72, 24.64, 24.56, 24.44, 24.24, 24.32, 24.32, 24.6, 24.64, 24.6, 24.64, 24.68, 24.52, 24.8, 24.8, 24.8, 24.88, 24.76, 24.68, 24.64, 24.56, 24.6, 24.72, 24.64, 24.48, 24.56, 24.48, 24.48, 24.36, 24.44, 24.44, 24.56, 24.76, 24.68, 24.68, 24.72] -286.5806863307953 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 267.4636125564575, 'TIME_S_1KI': 267.4636125564575, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 6714.934566097259, 'W': 23.431218104999314} -[20.32, 20.36, 20.44, 20.44, 20.44, 20.6, 20.6, 20.64, 20.64, 20.8, 20.04, 20.04, 20.04, 19.92, 20.12, 20.08, 20.12, 20.16, 20.32, 20.44] -365.76 -18.288 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 267.4636125564575, 'TIME_S_1KI': 267.4636125564575, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 6714.934566097259, 'W': 23.431218104999314, 'J_1KI': 6714.934566097259, 'W_1KI': 23.431218104999314, 'W_D': 5.143218104999313, 'J_D': 1473.9469744796756, 'W_D_1KI': 5.143218104999313, 'J_D_1KI': 5.143218104999313} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.01.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.01.json deleted file mode 100644 index 789132f..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.01.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 535.8486552238464, "TIME_S_1KI": 535.8486552238464, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 13280.309822225587, "W": 23.46860300867941, "J_1KI": 13280.309822225587, "W_1KI": 23.46860300867941, "W_D": 4.95160300867941, "J_D": 2801.991326352374, "W_D_1KI": 4.95160300867941, "J_D_1KI": 4.95160300867941} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.01.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.01.output deleted file mode 100644 index 209aa36..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.01.output +++ /dev/null @@ -1,45 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 0.01 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 535.8486552238464} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 524, 1011, ..., 24999011, - 24999504, 25000000]), - col_indices=tensor([ 192, 200, 454, ..., 49935, 49965, 49995]), - values=tensor([0.7895, 0.2997, 0.5746, ..., 0.4223, 0.3918, 0.3456]), - size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) -tensor([0.4665, 0.6238, 0.5276, ..., 0.6350, 0.6391, 0.4023]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 25000000 -Density: 0.01 -Time: 535.8486552238464 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 524, 1011, ..., 24999011, - 24999504, 25000000]), - col_indices=tensor([ 192, 200, 454, ..., 49935, 49965, 49995]), - values=tensor([0.7895, 0.2997, 0.5746, ..., 0.4223, 0.3918, 0.3456]), - size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) -tensor([0.4665, 0.6238, 0.5276, ..., 0.6350, 0.6391, 0.4023]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 25000000 -Density: 0.01 -Time: 535.8486552238464 seconds - -[19.88, 20.2, 20.24, 20.52, 20.64, 20.6, 20.68, 20.56, 20.56, 20.64] -[20.64, 20.68, 20.44, 22.0, 22.56, 24.6, 26.28, 27.32, 28.6, 28.84, 29.2, 28.92, 29.32, 28.08, 27.28, 26.68, 26.0, 26.0, 24.96, 24.8, 24.88, 24.96, 24.84, 24.72, 24.48, 24.56, 24.6, 24.64, 24.56, 24.48, 24.48, 24.36, 24.48, 24.64, 24.52, 24.64, 24.44, 24.52, 24.36, 24.36, 24.44, 24.44, 24.56, 24.88, 24.92, 24.96, 24.96, 24.8, 24.64, 24.56, 24.48, 24.64, 24.56, 24.52, 24.64, 24.72, 24.84, 24.92, 24.88, 24.72, 24.68, 24.68, 24.8, 24.72, 24.56, 24.36, 24.16, 23.96, 24.08, 24.4, 24.52, 24.6, 24.76, 24.8, 24.92, 24.96, 24.84, 24.84, 24.6, 24.44, 24.52, 24.48, 24.64, 24.64, 25.0, 24.8, 24.88, 24.56, 24.52, 24.44, 24.56, 24.52, 24.72, 24.76, 24.44, 24.44, 24.56, 24.36, 24.4, 24.48, 24.44, 24.4, 24.64, 24.84, 24.72, 24.72, 24.6, 24.52, 24.28, 24.28, 24.52, 24.64, 24.72, 24.68, 24.56, 24.36, 24.48, 24.4, 24.28, 24.48, 24.52, 24.32, 24.56, 24.52, 24.4, 24.32, 24.36, 24.36, 24.32, 24.4, 24.44, 24.24, 24.4, 24.36, 24.28, 24.44, 24.4, 24.44, 24.4, 24.8, 24.68, 24.64, 24.72, 24.32, 24.08, 24.2, 24.48, 24.44, 24.6, 24.6, 24.44, 24.4, 24.48, 24.6, 24.52, 24.68, 24.52, 24.64, 24.76, 24.72, 24.64, 24.56, 24.48, 24.52, 24.76, 24.52, 24.76, 24.76, 24.88, 24.92, 24.96, 24.96, 24.68, 24.72, 24.64, 24.56, 24.52, 24.52, 24.52, 24.48, 24.36, 24.44, 24.56, 24.48, 24.84, 24.88, 24.76, 24.64, 24.44, 24.52, 24.52, 24.56, 24.48, 24.48, 24.52, 24.52, 24.56, 24.64, 24.6, 24.68, 24.52, 24.32, 24.24, 24.2, 24.44, 24.8, 25.12, 25.0, 25.04, 24.88, 24.76, 24.84, 24.84, 24.84, 24.68, 24.68, 24.64, 24.68, 24.6, 24.72, 24.72, 24.64, 24.48, 24.36, 24.44, 24.36, 24.56, 24.56, 24.52, 24.56, 24.64, 24.36, 24.52, 24.6, 24.44, 24.6, 24.68, 24.68, 24.48, 24.48, 24.32, 24.2, 24.28, 24.52, 24.6, 24.6, 24.72, 24.64, 24.64, 24.44, 24.48, 24.36, 24.6, 24.68, 24.76, 24.68, 24.68, 24.6, 24.56, 24.56, 24.56, 24.48, 24.4, 24.44, 24.56, 24.52, 24.64, 24.56, 24.52, 24.44, 24.36, 24.32, 24.2, 24.24, 24.2, 24.24, 24.52, 24.64, 24.52, 24.64, 24.72, 24.72, 24.6, 24.52, 24.84, 25.0, 24.88, 25.04, 24.96, 24.6, 24.36, 24.44, 24.28, 24.32, 24.36, 24.56, 24.6, 24.48, 24.64, 24.84, 24.76, 24.92, 25.0, 25.0, 24.8, 24.72, 24.84, 24.76, 24.68, 24.52, 24.4, 24.44, 24.44, 24.6, 24.84, 24.76, 24.64, 24.64, 24.56, 24.64, 24.64, 24.52, 24.72, 24.48, 24.48, 24.48, 24.64, 24.64, 24.76, 24.52, 24.56, 24.6, 24.4, 24.4, 24.84, 24.76, 24.72, 25.0, 24.72, 24.64, 24.48, 24.36, 24.32, 24.32, 24.28, 24.48, 24.6, 24.6, 24.64, 24.72, 24.84, 24.92, 24.88, 24.8, 24.72, 24.68, 24.88, 24.88, 24.6, 24.52, 24.36, 24.2, 24.48, 24.64, 24.72, 24.72, 24.92, 24.72, 24.6, 24.6, 24.64, 24.36, 24.32, 24.52, 24.6, 24.68, 24.72, 24.92, 24.76, 24.76, 24.72, 24.72, 24.64, 24.72, 24.76, 24.84, 24.76, 24.92, 25.04, 24.92, 24.72, 24.72, 24.68, 24.64, 24.72, 24.84, 24.72, 24.68, 24.6, 24.32, 24.28, 24.4, 24.36, 24.48, 24.6, 24.64, 24.8, 24.88, 25.0, 25.08, 24.92, 24.96, 24.8, 24.8, 24.68, 24.56, 24.56, 24.44, 24.48, 24.52, 24.52, 24.72, 24.8, 24.8, 24.92, 24.8, 24.52, 24.68, 24.8, 25.08, 25.12, 24.96, 24.92, 24.72, 24.8, 24.8, 24.92, 25.08, 24.84, 24.8, 24.64, 24.36, 24.32, 24.52, 24.6, 24.6, 24.84, 24.64, 24.52, 24.56, 24.56, 24.64, 24.88, 25.04, 24.92, 24.72, 24.68, 24.68, 24.6, 24.64, 24.8, 24.8, 24.72, 24.44, 24.44, 24.28, 24.32, 24.4, 24.56, 24.32, 24.44, 24.44, 24.52, 24.6, 24.56, 24.52, 24.52, 24.44, 24.6, 24.6, 24.44, 24.48, 24.68, 24.72, 24.84, 25.0, 24.96, 24.92, 24.96, 25.0, 24.8, 24.72, 24.56, 24.56, 24.2, 24.32, 24.36, 24.24, 24.24, 24.36, 24.28, 24.28, 24.52, 24.32, 24.36, 24.64, 24.72, 24.92, 24.92, 24.72, 24.72, 24.56, 24.56, 24.52, 24.6, 24.48, 24.76, 24.48, 24.6, 24.6, 24.6, 24.44, 24.44, 24.44, 24.6, 24.44, 24.6, 24.52, 24.8, 24.6, 24.52, 24.48, 24.24, 24.04, 24.28, 24.2, 24.32, 24.56, 24.68] -565.8756005764008 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 535.8486552238464, 'TIME_S_1KI': 535.8486552238464, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 13280.309822225587, 'W': 23.46860300867941} -[19.88, 20.2, 20.24, 20.52, 20.64, 20.6, 20.68, 20.56, 20.56, 20.64, 20.6, 20.6, 20.48, 20.52, 20.32, 20.32, 20.6, 20.96, 21.36, 21.24] -370.34 -18.517 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 535.8486552238464, 'TIME_S_1KI': 535.8486552238464, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 13280.309822225587, 'W': 23.46860300867941, 'J_1KI': 13280.309822225587, 'W_1KI': 23.46860300867941, 'W_D': 4.95160300867941, 'J_D': 2801.991326352374, 'W_D_1KI': 4.95160300867941, 'J_D_1KI': 4.95160300867941} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_1e-05.json deleted file mode 100644 index 918a20d..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_1e-05.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 21239, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 20.893531799316406, "TIME_S_1KI": 0.9837342529929096, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 567.132219734192, "W": 22.611941270368835, "J_1KI": 26.7023974638256, "W_1KI": 1.0646424629393492, "W_D": 4.100941270368832, "J_D": 102.85609262180327, "W_D_1KI": 0.19308542164738604, "J_D_1KI": 0.009091078753584728} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_1e-05.output deleted file mode 100644 index bf1327e..0000000 --- a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_1e-05.output +++ /dev/null @@ -1,62 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 1e-05 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.9887256622314453} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 24999, 25000, 25000]), - col_indices=tensor([37749, 5687, 46660, ..., 48444, 47762, 13606]), - values=tensor([0.6973, 0.6140, 0.4905, ..., 0.2540, 0.0834, 0.5554]), - size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.8263, 0.0637, 0.7656, ..., 0.0179, 0.5334, 0.7448]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 25000 -Density: 1e-05 -Time: 0.9887256622314453 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 21239 -ss 50000 -sd 1e-05 -c 1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 20.893531799316406} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 25000, 25000, 25000]), - col_indices=tensor([17445, 34363, 49525, ..., 23738, 42338, 13045]), - values=tensor([0.8308, 0.1110, 0.1320, ..., 0.5346, 0.9645, 0.6427]), - size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.4506, 0.3540, 0.2946, ..., 0.2277, 0.1153, 0.5755]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 25000 -Density: 1e-05 -Time: 20.893531799316406 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 25000, 25000, 25000]), - col_indices=tensor([17445, 34363, 49525, ..., 23738, 42338, 13045]), - values=tensor([0.8308, 0.1110, 0.1320, ..., 0.5346, 0.9645, 0.6427]), - size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.4506, 0.3540, 0.2946, ..., 0.2277, 0.1153, 0.5755]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 25000 -Density: 1e-05 -Time: 20.893531799316406 seconds - -[20.28, 20.2, 20.12, 20.32, 20.4, 20.4, 20.52, 20.44, 20.28, 20.28] -[20.36, 20.36, 20.32, 21.48, 22.48, 24.48, 25.64, 26.08, 25.96, 25.2, 25.16, 25.16, 25.12, 25.12, 25.16, 25.36, 25.32, 25.24, 25.64, 25.64, 25.56, 25.72, 25.76, 25.8] -25.081093788146973 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 21239, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 20.893531799316406, 'TIME_S_1KI': 0.9837342529929096, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 567.132219734192, 'W': 22.611941270368835} -[20.28, 20.2, 20.12, 20.32, 20.4, 20.4, 20.52, 20.44, 20.28, 20.28, 20.6, 20.72, 20.84, 20.84, 20.72, 20.8, 20.8, 20.8, 20.96, 20.96] -370.22 -18.511000000000003 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 21239, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 20.893531799316406, 'TIME_S_1KI': 0.9837342529929096, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 567.132219734192, 'W': 22.611941270368835, 'J_1KI': 26.7023974638256, 'W_1KI': 1.0646424629393492, 'W_D': 4.100941270368832, 'J_D': 102.85609262180327, 'W_D_1KI': 0.19308542164738604, 'J_D_1KI': 0.009091078753584728} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.0001.json new file mode 100644 index 0000000..4c97264 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 6154, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.661418676376343, "TIME_S_1KI": 1.732437223980556, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 888.1215419101716, "W": 66.29, "J_1KI": 144.31614265683646, "W_1KI": 10.771855703607411, "W_D": 31.486250000000005, "J_D": 421.8376361286641, "W_D_1KI": 5.116387715307118, "J_D_1KI": 0.8313922189319334} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.0001.output new file mode 100644 index 0000000..3c6753a --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.0001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 1.7059962749481201} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 10, 28, ..., 999981, + 999989, 1000000]), + col_indices=tensor([10839, 13780, 19162, ..., 70763, 71204, 84111]), + values=tensor([0.3862, 0.3703, 0.4692, ..., 0.8959, 0.7094, 0.8230]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.6738, 0.0568, 0.8510, ..., 0.5567, 0.5192, 0.1431]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 1.7059962749481201 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '6154', '-ss', '100000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.661418676376343} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 19, 22, ..., 999983, + 999992, 1000000]), + col_indices=tensor([ 4495, 11307, 13629, ..., 46229, 59792, 89876]), + values=tensor([0.8364, 0.7832, 0.5169, ..., 0.6963, 0.9299, 0.6811]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.2491, 0.3919, 0.1225, ..., 0.6201, 0.7425, 0.7393]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 10.661418676376343 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 19, 22, ..., 999983, + 999992, 1000000]), + col_indices=tensor([ 4495, 11307, 13629, ..., 46229, 59792, 89876]), + values=tensor([0.8364, 0.7832, 0.5169, ..., 0.6963, 0.9299, 0.6811]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.2491, 0.3919, 0.1225, ..., 0.6201, 0.7425, 0.7393]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 10.661418676376343 seconds + +[39.48, 39.2, 39.2, 38.44, 38.38, 38.41, 38.43, 38.34, 38.9, 38.82] +[66.29] +13.3975191116333 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 6154, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.661418676376343, 'TIME_S_1KI': 1.732437223980556, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 888.1215419101716, 'W': 66.29} +[39.48, 39.2, 39.2, 38.44, 38.38, 38.41, 38.43, 38.34, 38.9, 38.82, 39.78, 38.22, 38.35, 38.27, 38.77, 38.41, 38.95, 38.84, 38.8, 38.25] +696.075 +34.80375 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 6154, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.661418676376343, 'TIME_S_1KI': 1.732437223980556, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 888.1215419101716, 'W': 66.29, 'J_1KI': 144.31614265683646, 'W_1KI': 10.771855703607411, 'W_D': 31.486250000000005, 'J_D': 421.8376361286641, 'W_D_1KI': 5.116387715307118, 'J_D_1KI': 0.8313922189319334} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.001.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.001.json new file mode 100644 index 0000000..28fc497 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 16.51292133331299, "TIME_S_1KI": 16.51292133331299, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1675.715212612152, "W": 77.36, "J_1KI": 1675.715212612152, "W_1KI": 77.36, "W_D": 42.0475, "J_D": 910.8019054073095, "W_D_1KI": 42.0475, "J_D_1KI": 42.0475} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.001.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.001.output new file mode 100644 index 0000000..d1f2742 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.001.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 16.51292133331299} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 85, 184, ..., 9999802, + 9999894, 10000000]), + col_indices=tensor([ 1647, 2383, 2584, ..., 98263, 98777, 99734]), + values=tensor([0.1681, 0.5843, 0.2619, ..., 0.7600, 0.0011, 0.9501]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.3789, 0.7363, 0.6915, ..., 0.8879, 0.6465, 0.7586]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 16.51292133331299 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 85, 184, ..., 9999802, + 9999894, 10000000]), + col_indices=tensor([ 1647, 2383, 2584, ..., 98263, 98777, 99734]), + values=tensor([0.1681, 0.5843, 0.2619, ..., 0.7600, 0.0011, 0.9501]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.3789, 0.7363, 0.6915, ..., 0.8879, 0.6465, 0.7586]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 16.51292133331299 seconds + +[39.67, 38.57, 40.75, 44.07, 38.52, 39.19, 39.95, 38.76, 38.89, 38.37] +[77.36] +21.661261796951294 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 16.51292133331299, 'TIME_S_1KI': 16.51292133331299, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1675.715212612152, 'W': 77.36} +[39.67, 38.57, 40.75, 44.07, 38.52, 39.19, 39.95, 38.76, 38.89, 38.37, 39.54, 38.41, 38.76, 38.62, 39.0, 38.84, 38.88, 38.44, 38.6, 38.42] +706.25 +35.3125 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 16.51292133331299, 'TIME_S_1KI': 16.51292133331299, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1675.715212612152, 'W': 77.36, 'J_1KI': 1675.715212612152, 'W_1KI': 77.36, 'W_D': 42.0475, 'J_D': 910.8019054073095, 'W_D_1KI': 42.0475, 'J_D_1KI': 42.0475} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_100000_1e-05.json new file mode 100644 index 0000000..8f7419f --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_100000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 12077, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.322007656097412, "TIME_S_1KI": 0.8546830881922176, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 838.5464090538024, "W": 64.47, "J_1KI": 69.43333684307382, "W_1KI": 5.3382462532085775, "W_D": 29.621750000000006, "J_D": 385.28326496648793, "W_D_1KI": 2.452740746874224, "J_D_1KI": 0.20309188928328428} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_100000_1e-05.output similarity index 58% rename from pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_1e-05.output rename to pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_100000_1e-05.output index 1f19b8b..d689d8c 100644 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_1e-05.output +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_100000_1e-05.output @@ -1,14 +1,14 @@ ['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.8651721477508545} +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.8693974018096924} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 3, ..., 99999, 100000, +tensor(crow_indices=tensor([ 0, 1, 1, ..., 99998, 100000, 100000]), - col_indices=tensor([90599, 28958, 57214, ..., 84272, 90301, 79327]), - values=tensor([0.9831, 0.6502, 0.8427, ..., 0.3005, 0.4197, 0.6469]), + col_indices=tensor([57795, 90642, 37628, ..., 28610, 559, 98027]), + values=tensor([0.1696, 0.5341, 0.5606, ..., 0.7529, 0.5749, 0.6066]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.7674, 0.7013, 0.3294, ..., 0.7372, 0.8879, 0.9691]) +tensor([0.7238, 0.7083, 0.7900, ..., 0.2093, 0.5825, 0.4482]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,19 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 0.8651721477508545 seconds +Time: 0.8693974018096924 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '24272', '-ss', '100000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 20.77256941795349} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '12077', '-ss', '100000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.322007656097412} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 3, ..., 99999, 100000, +tensor(crow_indices=tensor([ 0, 0, 0, ..., 100000, 100000, 100000]), - col_indices=tensor([13062, 27623, 58180, ..., 66636, 6102, 47055]), - values=tensor([0.6006, 0.9692, 0.3277, ..., 0.8424, 0.3843, 0.6842]), + col_indices=tensor([ 3486, 41765, 3206, ..., 33238, 50080, 42417]), + values=tensor([0.6049, 0.2829, 0.2416, ..., 0.9238, 0.5292, 0.5723]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.8442, 0.5820, 0.8888, ..., 0.9824, 0.3648, 0.8783]) +tensor([0.4597, 0.0749, 0.9185, ..., 0.4582, 0.2319, 0.2322]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -36,16 +36,16 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 20.77256941795349 seconds +Time: 10.322007656097412 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 3, ..., 99999, 100000, +tensor(crow_indices=tensor([ 0, 0, 0, ..., 100000, 100000, 100000]), - col_indices=tensor([13062, 27623, 58180, ..., 66636, 6102, 47055]), - values=tensor([0.6006, 0.9692, 0.3277, ..., 0.8424, 0.3843, 0.6842]), + col_indices=tensor([ 3486, 41765, 3206, ..., 33238, 50080, 42417]), + values=tensor([0.6049, 0.2829, 0.2416, ..., 0.9238, 0.5292, 0.5723]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.8442, 0.5820, 0.8888, ..., 0.9824, 0.3648, 0.8783]) +tensor([0.4597, 0.0749, 0.9185, ..., 0.4582, 0.2319, 0.2322]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -53,13 +53,13 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 20.77256941795349 seconds +Time: 10.322007656097412 seconds -[39.23, 38.93, 39.06, 38.59, 38.47, 39.34, 39.72, 38.43, 38.47, 38.55] -[63.94] -23.23910665512085 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 24272, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 20.77256941795349, 'TIME_S_1KI': 0.8558243827436343, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1485.908479528427, 'W': 63.94} -[39.23, 38.93, 39.06, 38.59, 38.47, 39.34, 39.72, 38.43, 38.47, 38.55, 40.18, 38.38, 38.82, 38.77, 39.08, 39.46, 38.9, 38.51, 38.41, 38.33] -699.4849999999999 -34.97425 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 24272, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 20.77256941795349, 'TIME_S_1KI': 0.8558243827436343, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1485.908479528427, 'W': 63.94, 'J_1KI': 61.21903755473084, 'W_1KI': 2.6343111404087014, 'W_D': 28.96575, 'J_D': 673.1381535955668, 'W_D_1KI': 1.193381262359921, 'J_D_1KI': 0.049166993340471365} +[39.73, 38.57, 38.91, 38.66, 38.65, 38.36, 38.94, 39.73, 38.42, 38.47] +[64.47] +13.006769180297852 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 12077, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.322007656097412, 'TIME_S_1KI': 0.8546830881922176, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 838.5464090538024, 'W': 64.47} +[39.73, 38.57, 38.91, 38.66, 38.65, 38.36, 38.94, 39.73, 38.42, 38.47, 39.26, 38.5, 38.85, 38.41, 38.98, 38.35, 38.75, 38.41, 38.37, 38.75] +696.9649999999999 +34.84824999999999 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 12077, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.322007656097412, 'TIME_S_1KI': 0.8546830881922176, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 838.5464090538024, 'W': 64.47, 'J_1KI': 69.43333684307382, 'W_1KI': 5.3382462532085775, 'W_D': 29.621750000000006, 'J_D': 385.28326496648793, 'W_D_1KI': 2.452740746874224, 'J_D_1KI': 0.20309188928328428} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.0001.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.0001.json new file mode 100644 index 0000000..9dc0eed --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 238697, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.480466604232788, "TIME_S_1KI": 0.04390698921324017, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1152.02081230402, "W": 58.89, "J_1KI": 4.826289447726699, "W_1KI": 0.24671445388924035, "W_D": 23.781499999999994, "J_D": 465.21961195123185, "W_D_1KI": 0.09963049388974303, "J_D_1KI": 0.0004173931548772839} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.0001.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.0001.output new file mode 100644 index 0000000..9b8fd23 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.0001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.05536341667175293} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 3, ..., 9998, 9998, 10000]), + col_indices=tensor([8403, 1214, 9126, ..., 1351, 3891, 9766]), + values=tensor([0.6664, 0.5402, 0.6356, ..., 0.4443, 0.7393, 0.7343]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.3881, 0.9820, 0.4323, ..., 0.4549, 0.5025, 0.0926]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 0.05536341667175293 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '189655', '-ss', '10000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 8.342687606811523} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 9997, 9997, 10000]), + col_indices=tensor([1328, 2584, 2989, ..., 4729, 4835, 7640]), + values=tensor([0.4337, 0.1976, 0.1440, ..., 0.2725, 0.2860, 0.2817]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.7295, 0.2766, 0.3418, ..., 0.0114, 0.7550, 0.8307]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 8.342687606811523 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '238697', '-ss', '10000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.480466604232788} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 9996, 9997, 10000]), + col_indices=tensor([9286, 7396, 732, ..., 1484, 5299, 9027]), + values=tensor([0.3440, 0.6043, 0.5062, ..., 0.2355, 0.1186, 0.4561]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.0996, 0.8226, 0.2068, ..., 0.2572, 0.9962, 0.0083]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.480466604232788 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 9996, 9997, 10000]), + col_indices=tensor([9286, 7396, 732, ..., 1484, 5299, 9027]), + values=tensor([0.3440, 0.6043, 0.5062, ..., 0.2355, 0.1186, 0.4561]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.0996, 0.8226, 0.2068, ..., 0.2572, 0.9962, 0.0083]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.480466604232788 seconds + +[40.64, 38.78, 39.02, 39.34, 38.69, 38.38, 38.42, 38.49, 38.47, 38.38] +[58.89] +19.562248468399048 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 238697, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.480466604232788, 'TIME_S_1KI': 0.04390698921324017, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1152.02081230402, 'W': 58.89} +[40.64, 38.78, 39.02, 39.34, 38.69, 38.38, 38.42, 38.49, 38.47, 38.38, 44.89, 39.96, 38.48, 39.7, 39.01, 38.35, 38.7, 38.38, 38.58, 38.93] +702.1700000000001 +35.10850000000001 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 238697, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.480466604232788, 'TIME_S_1KI': 0.04390698921324017, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1152.02081230402, 'W': 58.89, 'J_1KI': 4.826289447726699, 'W_1KI': 0.24671445388924035, 'W_D': 23.781499999999994, 'J_D': 465.21961195123185, 'W_D_1KI': 0.09963049388974303, 'J_D_1KI': 0.0004173931548772839} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.001.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.001.json new file mode 100644 index 0000000..80c52ca --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 75618, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.541181087493896, "TIME_S_1KI": 0.13940042169184447, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 940.5316159009933, "W": 66.47, "J_1KI": 12.437932977611062, "W_1KI": 0.8790235129202042, "W_D": 31.600500000000004, "J_D": 447.1380973112584, "W_D_1KI": 0.41789653257160997, "J_D_1KI": 0.005526416098965987} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.001.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.001.output new file mode 100644 index 0000000..9b49c17 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.001.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.16539597511291504} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 9, 17, ..., 99980, 99988, + 100000]), + col_indices=tensor([2312, 2519, 3298, ..., 9035, 9400, 9910]), + values=tensor([0.1410, 0.2218, 0.1849, ..., 0.4652, 0.0649, 0.3640]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.4363, 0.0084, 0.9005, ..., 0.6999, 0.4782, 0.9424]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 0.16539597511291504 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '63484', '-ss', '10000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 8.8150315284729} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 11, 21, ..., 99981, 99989, + 100000]), + col_indices=tensor([ 457, 1232, 2417, ..., 8600, 9856, 9966]), + values=tensor([0.5653, 0.7705, 0.0640, ..., 0.9989, 0.3761, 0.2052]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.7731, 0.4840, 0.8355, ..., 0.4086, 0.2552, 0.3939]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 8.8150315284729 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '75618', '-ss', '10000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.541181087493896} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 15, ..., 99981, 99989, + 100000]), + col_indices=tensor([ 812, 4021, 6538, ..., 8729, 9196, 9676]), + values=tensor([0.8795, 0.6481, 0.9606, ..., 0.0277, 0.7911, 0.3727]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.1908, 0.4704, 0.2059, ..., 0.1529, 0.3275, 0.9276]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.541181087493896 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 15, ..., 99981, 99989, + 100000]), + col_indices=tensor([ 812, 4021, 6538, ..., 8729, 9196, 9676]), + values=tensor([0.8795, 0.6481, 0.9606, ..., 0.0277, 0.7911, 0.3727]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.1908, 0.4704, 0.2059, ..., 0.1529, 0.3275, 0.9276]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.541181087493896 seconds + +[38.98, 38.52, 38.36, 38.43, 38.45, 38.57, 38.52, 38.55, 38.55, 38.4] +[66.47] +14.149715900421143 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 75618, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.541181087493896, 'TIME_S_1KI': 0.13940042169184447, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 940.5316159009933, 'W': 66.47} +[38.98, 38.52, 38.36, 38.43, 38.45, 38.57, 38.52, 38.55, 38.55, 38.4, 39.0, 38.48, 38.51, 39.07, 38.73, 38.62, 38.94, 38.66, 38.36, 43.76] +697.3899999999999 +34.869499999999995 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 75618, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.541181087493896, 'TIME_S_1KI': 0.13940042169184447, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 940.5316159009933, 'W': 66.47, 'J_1KI': 12.437932977611062, 'W_1KI': 0.8790235129202042, 'W_D': 31.600500000000004, 'J_D': 447.1380973112584, 'W_D_1KI': 0.41789653257160997, 'J_D_1KI': 0.005526416098965987} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.01.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.01.json new file mode 100644 index 0000000..e580351 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 10094, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.424894571304321, "TIME_S_1KI": 1.0327813127902044, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 874.2127872061731, "W": 66.43, "J_1KI": 86.60717131030047, "W_1KI": 6.581137309292649, "W_D": 31.351250000000007, "J_D": 412.5796122971178, "W_D_1KI": 3.1059292649098484, "J_D_1KI": 0.3077005414018078} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.01.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.01.output new file mode 100644 index 0000000..c679aff --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.01.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 1.040170669555664} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 84, 184, ..., 999814, + 999899, 1000000]), + col_indices=tensor([ 171, 251, 472, ..., 9843, 9880, 9941]), + values=tensor([0.4805, 0.3615, 0.2747, ..., 0.6607, 0.4074, 0.0301]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.4780, 0.2256, 0.5818, ..., 0.3209, 0.4621, 0.5747]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 1.040170669555664 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '10094', '-ss', '10000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.424894571304321} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 106, 205, ..., 999816, + 999911, 1000000]), + col_indices=tensor([ 83, 89, 669, ..., 9640, 9974, 9983]), + values=tensor([0.6432, 0.8453, 0.7190, ..., 0.8302, 0.0770, 0.7390]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.4670, 0.3263, 0.5346, ..., 0.9779, 0.3626, 0.9957]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.424894571304321 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 106, 205, ..., 999816, + 999911, 1000000]), + col_indices=tensor([ 83, 89, 669, ..., 9640, 9974, 9983]), + values=tensor([0.6432, 0.8453, 0.7190, ..., 0.8302, 0.0770, 0.7390]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.4670, 0.3263, 0.5346, ..., 0.9779, 0.3626, 0.9957]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.424894571304321 seconds + +[39.35, 40.11, 43.57, 38.24, 39.46, 38.59, 38.37, 38.38, 38.28, 38.71] +[66.43] +13.15990948677063 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 10094, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.424894571304321, 'TIME_S_1KI': 1.0327813127902044, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 874.2127872061731, 'W': 66.43} +[39.35, 40.11, 43.57, 38.24, 39.46, 38.59, 38.37, 38.38, 38.28, 38.71, 40.11, 38.48, 38.37, 38.48, 38.37, 38.22, 38.39, 39.48, 38.33, 38.74] +701.575 +35.07875 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 10094, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.424894571304321, 'TIME_S_1KI': 1.0327813127902044, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 874.2127872061731, 'W': 66.43, 'J_1KI': 86.60717131030047, 'W_1KI': 6.581137309292649, 'W_D': 31.351250000000007, 'J_D': 412.5796122971178, 'W_D_1KI': 3.1059292649098484, 'J_D_1KI': 0.3077005414018078} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.05.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.05.json new file mode 100644 index 0000000..73d3b47 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1758, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.496397256851196, "TIME_S_1KI": 5.970646903783388, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1131.7024735164641, "W": 74.58, "J_1KI": 643.7442966532789, "W_1KI": 42.42320819112628, "W_D": 39.617, "J_D": 601.1619320635796, "W_D_1KI": 22.535267349260522, "J_D_1KI": 12.818695875574814} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.05.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.05.output new file mode 100644 index 0000000..78fc6b7 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.05.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 5.972491502761841} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 519, 993, ..., 4998959, + 4999496, 5000000]), + col_indices=tensor([ 17, 61, 73, ..., 9901, 9911, 9920]), + values=tensor([0.3098, 0.8299, 0.3979, ..., 0.3415, 0.7398, 0.5378]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.6888, 0.9764, 0.3608, ..., 0.4208, 0.9222, 0.1586]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 5.972491502761841 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1758', '-ss', '10000', '-sd', '0.05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.496397256851196} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 496, 998, ..., 4999016, + 4999498, 5000000]), + col_indices=tensor([ 25, 29, 69, ..., 9894, 9911, 9997]), + values=tensor([0.8031, 0.3187, 0.9076, ..., 0.2949, 0.8412, 0.6618]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.4316, 0.0196, 0.7556, ..., 0.1123, 0.7172, 0.6330]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 10.496397256851196 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 496, 998, ..., 4999016, + 4999498, 5000000]), + col_indices=tensor([ 25, 29, 69, ..., 9894, 9911, 9997]), + values=tensor([0.8031, 0.3187, 0.9076, ..., 0.2949, 0.8412, 0.6618]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.4316, 0.0196, 0.7556, ..., 0.1123, 0.7172, 0.6330]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 10.496397256851196 seconds + +[39.62, 38.84, 38.53, 38.4, 38.53, 38.95, 38.67, 38.93, 38.95, 38.34] +[74.58] +15.174342632293701 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1758, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.496397256851196, 'TIME_S_1KI': 5.970646903783388, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1131.7024735164641, 'W': 74.58} +[39.62, 38.84, 38.53, 38.4, 38.53, 38.95, 38.67, 38.93, 38.95, 38.34, 39.14, 38.64, 38.84, 38.7, 38.86, 38.26, 38.63, 38.26, 38.4, 44.64] +699.26 +34.963 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1758, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.496397256851196, 'TIME_S_1KI': 5.970646903783388, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1131.7024735164641, 'W': 74.58, 'J_1KI': 643.7442966532789, 'W_1KI': 42.42320819112628, 'W_D': 39.617, 'J_D': 601.1619320635796, 'W_D_1KI': 22.535267349260522, 'J_D_1KI': 12.818695875574814} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.1.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.1.json new file mode 100644 index 0000000..6bba238 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.1.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 14.862756252288818, "TIME_S_1KI": 14.862756252288818, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1509.8221988201142, "W": 77.42, "J_1KI": 1509.8221988201142, "W_1KI": 77.42, "W_D": 42.230500000000006, "J_D": 823.5668608534337, "W_D_1KI": 42.230500000000006, "J_D_1KI": 42.230500000000006} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.1.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.1.output new file mode 100644 index 0000000..550e30b --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.1.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.1', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 14.862756252288818} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1022, 2054, ..., 9998064, + 9999016, 10000000]), + col_indices=tensor([ 8, 12, 13, ..., 9969, 9975, 9983]), + values=tensor([0.6048, 0.0895, 0.3093, ..., 0.2729, 0.9589, 0.2791]), + size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.8686, 0.6857, 0.7903, ..., 0.7591, 0.3670, 0.6215]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000000 +Density: 0.1 +Time: 14.862756252288818 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1022, 2054, ..., 9998064, + 9999016, 10000000]), + col_indices=tensor([ 8, 12, 13, ..., 9969, 9975, 9983]), + values=tensor([0.6048, 0.0895, 0.3093, ..., 0.2729, 0.9589, 0.2791]), + size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.8686, 0.6857, 0.7903, ..., 0.7591, 0.3670, 0.6215]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000000 +Density: 0.1 +Time: 14.862756252288818 seconds + +[44.78, 38.35, 39.08, 38.71, 38.47, 39.2, 39.52, 39.83, 39.49, 40.27] +[77.42] +19.501707553863525 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 14.862756252288818, 'TIME_S_1KI': 14.862756252288818, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1509.8221988201142, 'W': 77.42} +[44.78, 38.35, 39.08, 38.71, 38.47, 39.2, 39.52, 39.83, 39.49, 40.27, 40.17, 38.57, 38.51, 38.69, 38.5, 38.97, 38.48, 38.73, 38.88, 38.4] +703.79 +35.189499999999995 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 14.862756252288818, 'TIME_S_1KI': 14.862756252288818, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1509.8221988201142, 'W': 77.42, 'J_1KI': 1509.8221988201142, 'W_1KI': 77.42, 'W_D': 42.230500000000006, 'J_D': 823.5668608534337, 'W_D_1KI': 42.230500000000006, 'J_D_1KI': 42.230500000000006} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_1e-05.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_1e-05.json new file mode 100644 index 0000000..721cd64 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 361507, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.549095392227173, "TIME_S_1KI": 0.029180888315377497, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 862.0974852204322, "W": 65.27, "J_1KI": 2.3847324815852313, "W_1KI": 0.18054975422329303, "W_D": 30.177249999999994, "J_D": 398.58635415762654, "W_D_1KI": 0.08347625357185336, "J_D_1KI": 0.0002309118594435332} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_1e-05.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_1e-05.output new file mode 100644 index 0000000..4ba6f6a --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_10000_1e-05.output @@ -0,0 +1,1307 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.043045759201049805} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([1583, 2010, 5254, 7979, 6044, 1811, 7275, 5124, 1436, + 6977, 5579, 4446, 9531, 9948, 1649, 1369, 7922, 7653, + 2659, 6213, 259, 9933, 1809, 5407, 6617, 1048, 9736, + 8197, 4865, 8298, 9784, 82, 5539, 325, 4902, 1683, + 7666, 621, 9636, 2101, 9761, 740, 4832, 605, 5884, + 3975, 9597, 4053, 6617, 1715, 7682, 8784, 4868, 6631, + 4385, 6313, 6260, 3586, 9177, 2920, 7526, 5398, 7541, + 248, 3734, 7646, 6276, 8109, 2125, 9714, 6281, 1353, + 5963, 2603, 264, 3737, 9675, 9238, 2280, 9506, 9180, + 8024, 6153, 5553, 3522, 6695, 1640, 8954, 8297, 6626, + 843, 9222, 5001, 3481, 6513, 5429, 9771, 5585, 8988, + 5464, 3454, 6624, 6512, 7330, 6444, 6199, 5861, 4510, + 672, 6028, 7721, 5884, 2715, 1700, 4921, 4515, 9810, + 242, 3364, 5002, 1424, 3751, 9511, 8727, 7691, 6098, + 8102, 5389, 3846, 102, 6605, 6800, 5446, 4429, 9979, + 6051, 887, 6347, 5680, 5275, 2705, 9887, 8702, 7450, + 9613, 1435, 9601, 9924, 7389, 9934, 1462, 4302, 946, + 584, 8440, 8214, 4233, 5454, 4216, 6174, 9492, 1467, + 7415, 3149, 3551, 5073, 7523, 8960, 4752, 7424, 4426, + 2828, 4638, 8921, 7283, 9829, 5888, 286, 7407, 6914, + 7286, 465, 3805, 1983, 2183, 7470, 8061, 9434, 9295, + 8270, 5079, 1562, 9550, 5203, 9993, 4115, 392, 600, + 8605, 4591, 7089, 1143, 4551, 580, 3847, 8259, 1796, + 2339, 8992, 9416, 7284, 9062, 8162, 205, 4452, 8143, + 669, 7123, 4261, 3096, 5227, 4884, 7762, 4252, 52, + 3294, 1781, 9880, 1607, 4053, 2502, 5482, 6906, 2035, + 3232, 7130, 8453, 2375, 5456, 7258, 5074, 1652, 861, + 2762, 5646, 7995, 1392, 97, 3679, 7567, 6422, 8241, + 7836, 1183, 6034, 142, 9235, 4509, 6760, 4561, 9070, + 2031, 9065, 6375, 4040, 9160, 4623, 5781, 9376, 5259, + 8317, 6466, 1257, 2274, 1048, 3553, 9336, 8350, 2160, + 4368, 2869, 233, 8694, 1453, 4399, 705, 4421, 79, + 2161, 6601, 6000, 6535, 869, 6199, 4248, 4356, 4542, + 4670, 9521, 6660, 9199, 5986, 7398, 9596, 5813, 6088, + 7831, 753, 5374, 9257, 2827, 3291, 6819, 4035, 7713, + 4013, 7218, 2279, 2871, 1326, 1811, 2703, 1574, 5900, + 1155, 1352, 9694, 8175, 2074, 3391, 9502, 4148, 8642, + 2600, 2104, 2058, 3036, 4818, 8770, 2956, 8526, 9775, + 225, 4118, 7042, 6449, 5064, 4207, 1756, 8969, 2588, + 1096, 1153, 7117, 4392, 9511, 4215, 2271, 4504, 5309, + 2046, 8527, 4173, 3449, 7352, 1698, 7327, 3267, 1105, + 6661, 3644, 2703, 5379, 701, 6814, 1440, 6092, 1140, + 2239, 412, 4967, 1213, 7822, 3780, 5299, 7074, 5185, + 2666, 9098, 4903, 8017, 846, 4723, 3624, 9337, 5755, + 3369, 3913, 8577, 7137, 8463, 7938, 5325, 4521, 5290, + 6218, 1511, 1273, 4386, 8704, 1619, 195, 3249, 4064, + 773, 7448, 8201, 3121, 301, 4372, 1634, 7663, 2937, + 4689, 3712, 2187, 7632, 4046, 6463, 6448, 2875, 2814, + 9857, 2905, 9752, 7090, 3694, 7956, 4390, 5280, 7018, + 7056, 2989, 6712, 9231, 5247, 2513, 738, 431, 1726, + 2666, 6815, 9509, 646, 9632, 2730, 9313, 4866, 8557, + 1201, 4486, 5168, 9202, 7420, 4285, 5922, 3677, 2027, + 3975, 6254, 498, 5210, 204, 3290, 3533, 9875, 2505, + 6720, 3641, 9914, 1958, 3109, 7127, 2799, 7390, 179, + 7325, 9320, 2800, 2350, 7555, 8269, 7272, 8574, 8049, + 6676, 3970, 285, 8780, 1108, 1111, 9658, 6160, 6280, + 9914, 5935, 5918, 9764, 548, 2210, 2619, 1696, 4207, + 1063, 9914, 4231, 1029, 9243, 3982, 7733, 8072, 6321, + 6035, 5297, 7545, 9721, 4364, 9434, 6360, 7476, 2533, + 7275, 8433, 3934, 6724, 1068, 4014, 8204, 9682, 9063, + 1493, 2469, 2999, 3214, 9658, 2217, 9114, 3111, 8598, + 4210, 3973, 1496, 4445, 7146, 1795, 4717, 7849, 7512, + 1191, 1515, 3311, 6622, 939, 4014, 9088, 9339, 7424, + 7262, 6339, 7032, 9476, 7001, 4460, 2692, 4399, 7886, + 7047, 7669, 9359, 864, 5049, 7040, 4096, 4298, 9623, + 4192, 5872, 9144, 7397, 6121, 280, 9465, 5892, 966, + 5574, 5723, 2834, 9950, 3081, 5143, 5667, 8402, 2784, + 5766, 6218, 8186, 8713, 1780, 6821, 8450, 7019, 6189, + 8952, 9208, 1484, 7762, 3939, 7602, 4668, 3210, 4330, + 5716, 7241, 405, 335, 3412, 8477, 9234, 3584, 5207, + 6179, 7712, 5919, 8037, 4123, 7316, 7474, 2679, 8523, + 3986, 1694, 5901, 9022, 9607, 9829, 9846, 6902, 4585, + 9022, 2079, 9614, 8663, 5819, 1097, 3118, 5088, 8749, + 4025, 4321, 5154, 6517, 880, 4285, 4711, 2326, 4162, + 4920, 8690, 2593, 488, 4694, 1259, 587, 7957, 4395, + 8376, 7054, 2133, 3697, 5563, 9686, 918, 2978, 8239, + 6797, 7376, 9376, 1457, 3934, 2176, 9476, 3211, 3186, + 7396, 5390, 2250, 176, 8978, 9325, 2806, 6907, 8181, + 4346, 5066, 99, 1478, 770, 7246, 8629, 9961, 3268, + 1790, 5846, 8686, 1633, 492, 1478, 6673, 1726, 8741, + 7768, 7527, 1121, 1733, 1273, 9650, 7653, 6076, 194, + 8769, 8199, 4604, 7252, 9298, 9566, 567, 6639, 4728, + 9542, 8173, 2780, 2516, 4192, 9184, 6994, 6018, 9797, + 590, 9338, 8251, 3777, 8162, 13, 8005, 188, 2602, + 9738, 4060, 9649, 9986, 8500, 4315, 5221, 4141, 4921, + 6691, 8158, 9615, 4239, 6096, 9428, 555, 6830, 9510, + 9880, 2716, 808, 4588, 557, 5422, 4795, 165, 4359, + 1300, 4655, 4817, 1957, 4576, 6824, 6342, 1040, 8141, + 4172, 8691, 48, 277, 8256, 9583, 4203, 1779, 5112, + 3616, 9838, 1376, 7998, 2797, 6753, 8079, 8276, 1987, + 19, 4354, 9286, 2615, 6740, 9487, 3627, 5231, 5312, + 390, 7185, 7779, 5971, 3543, 6278, 8106, 9509, 758, + 4532, 5244, 8649, 3081, 5562, 7090, 2064, 5447, 6233, + 2085, 2494, 1501, 8471, 526, 9417, 5830, 1825, 355, + 1862, 4324, 2868, 9563, 2266, 3962, 389, 6200, 6403, + 663, 5817, 7056, 8981, 4928, 9712, 1095, 3893, 9576, + 2748, 7578, 3941, 2877, 4899, 2380, 6793, 4371, 8114, + 4922, 6923, 2351, 8578, 3122, 5644, 6934, 4317, 6902, + 6045, 9795, 1482, 6773, 9968, 5852, 9269, 9520, 4391, + 2401, 9617, 2668, 7256, 4772, 1903, 3373, 4316, 1692, + 5034, 8118, 7083, 2393, 9148, 5891, 1781, 9855, 721, + 9905, 3195, 2413, 4717, 5913, 670, 1557, 3791, 7460, + 3616, 5334, 4133, 1405, 3039, 7529, 4796, 4803, 2152, + 5840, 2128, 9084, 8408, 3604, 6581, 5669, 6068, 7009, + 3479, 7465, 7540, 8897, 4413, 3315, 6549, 1677, 8701, + 2788, 2678, 3442, 3734, 1118, 4316, 9381, 9006, 4108, + 5912, 826, 6724, 7846, 460, 6304, 2843, 4879, 6744, + 6163, 4479, 222, 1812, 3520, 9850, 935, 9282, 4410, + 4179, 6820, 3994, 5429, 7733, 2102, 2864, 556, 4530, + 6540, 2911, 8663, 2630, 3513, 9220, 6390, 5701, 7953, + 7398, 6782, 5778, 7647, 1313, 5401, 5563, 9720, 5486, + 7709]), + values=tensor([0.6630, 0.9503, 0.0770, 0.9226, 0.1778, 0.8279, 0.0536, + 0.5325, 0.8085, 0.7558, 0.2260, 0.6523, 0.1197, 0.0283, + 0.8139, 0.4165, 0.5589, 0.9775, 0.8148, 0.2087, 0.7767, + 0.9982, 0.1484, 0.2622, 0.3615, 0.4355, 0.0185, 0.0082, + 0.8837, 0.4983, 0.6604, 0.5671, 0.1006, 0.6141, 0.5716, + 0.6764, 0.1529, 0.3165, 0.4084, 0.1229, 0.1096, 0.8308, + 0.6585, 0.1950, 0.5085, 0.3697, 0.4971, 0.2796, 0.2744, + 0.7057, 0.5504, 0.4942, 0.5020, 0.9849, 0.7865, 0.4277, + 0.7720, 0.9203, 0.4083, 0.5834, 0.2993, 0.4296, 0.1742, + 0.7625, 0.5725, 0.0721, 0.6285, 0.8961, 0.7799, 0.9867, + 0.4023, 0.0461, 0.2516, 0.8722, 0.3041, 0.0596, 0.3822, + 0.7562, 0.7884, 0.2916, 0.8113, 0.7857, 0.6486, 0.1687, + 0.2654, 0.6660, 0.5205, 0.5807, 0.1636, 0.7524, 0.7303, + 0.3845, 0.9418, 0.8240, 0.9533, 0.9406, 0.6844, 0.7416, + 0.8718, 0.0156, 0.8172, 0.4208, 0.9722, 0.5292, 0.3721, + 0.6191, 0.9317, 0.6666, 0.7072, 0.3855, 0.2294, 0.8589, + 0.8908, 0.4834, 0.3423, 0.7789, 0.1241, 0.4564, 0.1890, + 0.2563, 0.9107, 0.6748, 0.1334, 0.8151, 0.7204, 0.8972, + 0.1073, 0.8907, 0.0744, 0.5882, 0.8889, 0.6790, 0.8885, + 0.6658, 0.2075, 0.9175, 0.9938, 0.4163, 0.0696, 0.8712, + 0.9168, 0.3235, 0.4716, 0.9854, 0.8143, 0.7879, 0.4607, + 0.4850, 0.6066, 0.6913, 0.7193, 0.2839, 0.8347, 0.2095, + 0.8353, 0.4546, 0.8880, 0.7210, 0.8453, 0.8916, 0.7714, + 0.9868, 0.0515, 0.5239, 0.5681, 0.1820, 0.5272, 0.5691, + 0.4175, 0.5907, 0.4424, 0.0668, 0.0128, 0.9282, 0.7583, + 0.0221, 0.5736, 0.2285, 0.6693, 0.2730, 0.2836, 0.9157, + 0.5434, 0.9795, 0.1769, 0.6107, 0.7322, 0.8412, 0.2757, + 0.3098, 0.3578, 0.3820, 0.2329, 0.4037, 0.0151, 0.1326, + 0.7184, 0.6578, 0.8297, 0.6581, 0.3428, 0.9501, 0.6670, + 0.8806, 0.8754, 0.7223, 0.7669, 0.3788, 0.8755, 0.2260, + 0.4669, 0.9844, 0.0082, 0.2669, 0.6026, 0.2689, 0.0429, + 0.7489, 0.3726, 0.0159, 0.3927, 0.8172, 0.3282, 0.0575, + 0.9974, 0.1350, 0.5672, 0.4689, 0.7961, 0.5402, 0.4963, + 0.2623, 0.5421, 0.8354, 0.9905, 0.6240, 0.8519, 0.1978, + 0.6499, 0.5759, 0.2503, 0.1102, 0.8574, 0.7008, 0.3233, + 0.4296, 0.2435, 0.6516, 0.7119, 0.5430, 0.4755, 0.2341, + 0.5926, 0.0770, 0.8351, 0.6430, 0.9481, 0.7289, 0.4034, + 0.1701, 0.7125, 0.8934, 0.3081, 0.6354, 0.7915, 0.1404, + 0.9513, 0.8453, 0.0850, 0.0642, 0.8424, 0.2306, 0.9822, + 0.5022, 0.4984, 0.4800, 0.2218, 0.9723, 0.7497, 0.9084, + 0.4784, 0.7804, 0.1238, 0.0880, 0.9711, 0.5284, 0.2542, + 0.4913, 0.0373, 0.9479, 0.7298, 0.5961, 0.2747, 0.8281, + 0.3376, 0.6719, 0.5355, 0.2467, 0.1814, 0.6034, 0.3903, + 0.8079, 0.6634, 0.1089, 0.4461, 0.0248, 0.7098, 0.8937, + 0.6958, 0.2081, 0.8237, 0.3634, 0.3255, 0.3011, 0.8487, + 0.1664, 0.0299, 0.4550, 0.8746, 0.8226, 0.5176, 0.2105, + 0.8160, 0.9892, 0.5189, 0.1660, 0.0722, 0.9487, 0.8604, + 0.8181, 0.8144, 0.0561, 0.2179, 0.2462, 0.1360, 0.7312, + 0.5931, 0.6399, 0.4488, 0.9270, 0.1570, 0.5666, 0.0921, + 0.9507, 0.7374, 0.9303, 0.9871, 0.0275, 0.0396, 0.7157, + 0.7314, 0.4516, 0.5880, 0.5629, 0.7503, 0.5107, 0.0122, + 0.0074, 0.8876, 0.3382, 0.7626, 0.8644, 0.8030, 0.7340, + 0.8979, 0.6798, 0.6990, 0.8131, 0.0632, 0.8141, 0.9434, + 0.5737, 0.8869, 0.6157, 0.9858, 0.1492, 0.1949, 0.5858, + 0.8066, 0.7969, 0.1033, 0.7643, 0.6380, 0.5493, 0.8582, + 0.1931, 0.2076, 0.1054, 0.0371, 0.2378, 0.8212, 0.4451, + 0.9355, 0.1414, 0.2556, 0.4392, 0.9159, 0.8704, 0.5855, + 0.5298, 0.0073, 0.3946, 0.2827, 0.6593, 0.2170, 0.1559, + 0.0455, 0.0804, 0.3042, 0.1902, 0.1499, 0.4571, 0.2421, + 0.2416, 0.9852, 0.9579, 0.6952, 0.6187, 0.8878, 0.9344, + 0.1083, 0.7885, 0.6837, 0.3299, 0.6348, 0.5837, 0.6662, + 0.7313, 0.3365, 0.6725, 0.8139, 0.5019, 0.3039, 0.0443, + 0.3934, 0.1305, 0.6780, 0.3155, 0.0219, 0.7662, 0.6555, + 0.1320, 0.2374, 0.6933, 0.5809, 0.5466, 0.6377, 0.3020, + 0.1965, 0.5168, 0.4464, 0.2304, 0.0432, 0.9550, 0.9132, + 0.3859, 0.2031, 0.3693, 0.8159, 0.9889, 0.9524, 0.3432, + 0.9314, 0.8808, 0.9456, 0.6866, 0.3442, 0.3810, 0.2142, + 0.1117, 0.1744, 0.1056, 0.5794, 0.4455, 0.7572, 0.7078, + 0.3687, 0.4666, 0.7407, 0.7029, 0.4882, 0.4880, 0.1980, + 0.7023, 0.6681, 0.3423, 0.8422, 0.4851, 0.3016, 0.7606, + 0.3490, 0.7330, 0.1476, 0.1495, 0.7345, 0.5988, 0.7147, + 0.9822, 0.6029, 0.8218, 0.8268, 0.6557, 0.2332, 0.7667, + 0.0044, 0.4372, 0.0163, 0.9516, 0.7012, 0.6660, 0.1956, + 0.0351, 0.8338, 0.8275, 0.6101, 0.8723, 0.8245, 0.0823, + 0.2151, 0.2357, 0.3441, 0.6542, 0.6748, 0.6120, 0.6830, + 0.9101, 0.3363, 0.6175, 0.2109, 0.7948, 0.1254, 0.3320, + 0.4047, 0.8548, 0.2724, 0.0547, 0.0778, 0.5829, 0.7401, + 0.7010, 0.5091, 0.4745, 0.7438, 0.0620, 0.6122, 0.3501, + 0.7476, 0.3391, 0.5091, 0.9092, 0.8341, 0.1950, 0.5236, + 0.7056, 0.1342, 0.3505, 0.7257, 0.4253, 0.6642, 0.1578, + 0.1206, 0.9648, 0.8145, 0.6922, 0.2614, 0.5366, 0.4982, + 0.1154, 0.6473, 0.8548, 0.3066, 0.1033, 0.1884, 0.1407, + 0.6633, 0.9702, 0.8613, 0.8238, 0.6722, 0.6006, 0.6815, + 0.1240, 0.9769, 0.1594, 0.1592, 0.7939, 0.7089, 0.7574, + 0.7724, 0.7991, 0.0521, 0.1390, 0.5925, 0.9554, 0.5527, + 0.3929, 0.3007, 0.1885, 0.5802, 0.9953, 0.8505, 0.7792, + 0.7177, 0.7694, 0.9788, 0.1512, 0.0267, 0.7016, 0.1441, + 0.2745, 0.3479, 0.2525, 0.2337, 0.5448, 0.7971, 0.7101, + 0.4871, 0.7275, 0.0547, 0.1591, 0.6937, 0.7809, 0.7092, + 0.5201, 0.8475, 0.9010, 0.4869, 0.9890, 0.2146, 0.1450, + 0.9848, 0.0270, 0.0118, 0.0203, 0.7924, 0.2769, 0.6145, + 0.6071, 0.6017, 0.9106, 0.8197, 0.5817, 0.4479, 0.4907, + 0.2678, 0.4969, 0.5055, 0.5426, 0.5791, 0.8993, 0.7838, + 0.7690, 0.7852, 0.3688, 0.8160, 0.2079, 0.3793, 0.0739, + 0.5666, 0.4022, 0.9864, 0.3167, 0.6305, 0.3557, 0.3387, + 0.0828, 0.3478, 0.2152, 0.7658, 0.2613, 0.2753, 0.3668, + 0.0262, 0.0671, 0.9363, 0.6576, 0.6551, 0.4846, 0.8404, + 0.2088, 0.7480, 0.7314, 0.0171, 0.1082, 0.8451, 0.8946, + 0.0525, 0.5191, 0.9442, 0.8675, 0.0810, 0.1833, 0.6438, + 0.4552, 0.3045, 0.4082, 0.8689, 0.6683, 0.1434, 0.4421, + 0.8382, 0.0615, 0.9346, 0.9201, 0.3514, 0.2008, 0.9937, + 0.6121, 0.0783, 0.0490, 0.9787, 0.7461, 0.6146, 0.8319, + 0.8274, 0.2768, 0.5834, 0.3309, 0.3199, 0.2056, 0.8142, + 0.8941, 0.8025, 0.5653, 0.7564, 0.5742, 0.2219, 0.3180, + 0.5125, 0.8124, 0.7601, 0.2726, 0.1730, 0.3593, 0.3373, + 0.4692, 0.9228, 0.9147, 0.2409, 0.6852, 0.8612, 0.6749, + 0.1014, 0.9540, 0.1357, 0.7184, 0.6814, 0.5570, 0.7995, + 0.7039, 0.6331, 0.7100, 0.7276, 0.8540, 0.6804, 0.1364, + 0.3489, 0.7310, 0.1063, 0.2338, 0.8823, 0.4673, 0.2555, + 0.6167, 0.7623, 0.3031, 0.8515, 0.4643, 0.9082, 0.2171, + 0.0778, 0.6489, 0.8915, 0.5582, 0.7660, 0.2890, 0.4197, + 0.5005, 0.0508, 0.7572, 0.3797, 0.1183, 0.9101, 0.8882, + 0.5287, 0.0878, 0.2431, 0.2083, 0.8905, 0.2357, 0.5134, + 0.9562, 0.2161, 0.9351, 0.4696, 0.5955, 0.3703, 0.1321, + 0.5021, 0.2072, 0.4348, 0.7568, 0.6269, 0.1888, 0.6508, + 0.7362, 0.7266, 0.2942, 0.5439, 0.3775, 0.0531, 0.4822, + 0.1171, 0.7194, 0.5961, 0.0788, 0.7347, 0.2944, 0.5051, + 0.4234, 0.1811, 0.7851, 0.4131, 0.9675, 0.0834, 0.4549, + 0.3090, 0.4735, 0.2600, 0.9700, 0.4791, 0.4860, 0.9793, + 0.1782, 0.1251, 0.0561, 0.1267, 0.4222, 0.2756, 0.5840, + 0.9312, 0.7700, 0.0651, 0.8242, 0.0918, 0.6772, 0.2307, + 0.6185, 0.2052, 0.0318, 0.2899, 0.0400, 0.8978, 0.7673, + 0.1941, 0.1098, 0.6272, 0.1911, 0.5689, 0.7419, 0.2110, + 0.5718, 0.0873, 0.7370, 0.5046, 0.2710, 0.0251, 0.9665, + 0.4711, 0.3015, 0.6301, 0.4981, 0.9277, 0.2392, 0.1183, + 0.4019, 0.2169, 0.9822, 0.6515, 0.1332, 0.4805, 0.5861, + 0.5485, 0.5998, 0.1326, 0.7170, 0.7154, 0.4803, 0.1293, + 0.9035, 0.3781, 0.2599, 0.8153, 0.9982, 0.5549, 0.7963, + 0.6153, 0.5282, 0.8208, 0.7625, 0.3001, 0.8081, 0.0388, + 0.7114, 0.7782, 0.5048, 0.3137, 0.5784, 0.9730, 0.4431, + 0.4536, 0.3100, 0.6520, 0.2606, 0.8882, 0.1650, 0.9834, + 0.5674, 0.4688, 0.3389, 0.4291, 0.4446, 0.5716, 0.8014, + 0.3987, 0.6453, 0.1096, 0.5652, 0.9221, 0.8967, 0.0894, + 0.2612, 0.3509, 0.6985, 0.7305, 0.1395, 0.1928, 0.1405, + 0.9620, 0.6290, 0.2470, 0.3081, 0.4298, 0.1092, 0.7591, + 0.5871, 0.5192, 0.1299, 0.2518, 0.0236, 0.9061, 0.5083, + 0.1286, 0.8821, 0.0292, 0.9269, 0.0310, 0.7251, 0.3297, + 0.9879, 0.2589, 0.3124, 0.1632, 0.7470, 0.5454, 0.8446, + 0.7783, 0.6341, 0.9530, 0.0359, 0.0134, 0.0892, 0.9552, + 0.4086, 0.1451, 0.7356, 0.2482, 0.4823, 0.7400, 0.5225, + 0.5147, 0.8299, 0.9223, 0.5481, 0.2230, 0.4704, 0.7526, + 0.9367, 0.9192, 0.2550, 0.0140, 0.7589, 0.7582, 0.2471, + 0.6001, 0.8208, 0.0590, 0.9928, 0.6332, 0.0738]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.8647, 0.0597, 0.7485, ..., 0.2087, 0.0137, 0.4402]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 0.043045759201049805 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '243926', '-ss', '10000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.084842920303345} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([3973, 7951, 6448, 7869, 8084, 9579, 2166, 6078, 8362, + 8338, 8347, 5231, 6954, 9251, 1588, 5032, 2102, 2793, + 9690, 6831, 9069, 2808, 4275, 4074, 907, 3545, 5544, + 6941, 2356, 797, 2644, 6095, 4109, 3561, 6200, 28, + 557, 6355, 1990, 951, 69, 8267, 3139, 215, 6612, + 2860, 9213, 3348, 7098, 6592, 1146, 7228, 789, 9196, + 4382, 7744, 7817, 1180, 1510, 4317, 7077, 4265, 6219, + 9856, 311, 1497, 5748, 2535, 7861, 2853, 1662, 4174, + 4694, 7392, 5450, 3394, 4805, 2432, 1322, 8861, 6678, + 3023, 1316, 4128, 2030, 3793, 8525, 8443, 1161, 991, + 1447, 2471, 6828, 2582, 6332, 4483, 41, 4006, 219, + 5990, 1636, 3986, 5354, 8312, 8664, 9463, 4528, 141, + 3941, 4470, 6778, 5188, 9246, 7613, 8447, 2428, 1539, + 9970, 4662, 9881, 2741, 7672, 7933, 80, 6971, 8473, + 4272, 6382, 3599, 7720, 123, 2250, 1458, 8861, 4899, + 9782, 2839, 4678, 9108, 4080, 1338, 5595, 1158, 3764, + 4696, 3832, 8401, 5959, 1183, 231, 7893, 8235, 8841, + 2906, 1812, 2502, 6071, 3913, 3016, 804, 4126, 2806, + 4482, 5376, 1238, 5593, 4938, 3143, 1445, 6781, 2527, + 6429, 9354, 624, 1378, 7349, 9901, 6199, 3158, 4135, + 5456, 7226, 9816, 792, 5368, 6449, 9103, 9270, 6930, + 493, 654, 3407, 9216, 5688, 1755, 6223, 5657, 2654, + 9831, 3125, 361, 7126, 2218, 2602, 5098, 4761, 1205, + 8621, 115, 9888, 3031, 2585, 352, 4367, 811, 5475, + 2429, 7689, 3224, 5662, 6948, 6079, 5550, 9463, 1122, + 5894, 8681, 6785, 9288, 7944, 7865, 6760, 9011, 5553, + 4825, 6415, 2355, 898, 3403, 9170, 561, 9126, 4234, + 4025, 5940, 1906, 5324, 7757, 4713, 9775, 1276, 3050, + 1845, 2151, 1470, 5517, 6107, 2126, 169, 7316, 5147, + 7143, 5798, 7485, 2100, 1175, 3639, 2292, 7216, 5739, + 4604, 5676, 7900, 1743, 5543, 496, 5438, 3033, 6300, + 9625, 7884, 868, 6764, 7790, 4603, 4275, 2542, 7679, + 2517, 753, 1188, 9, 9628, 825, 1504, 4738, 4503, + 3667, 2724, 2437, 9981, 5492, 4742, 4297, 8972, 2110, + 5788, 2844, 1894, 1956, 849, 4784, 2604, 1766, 9559, + 8830, 513, 8376, 2625, 9089, 5995, 224, 4591, 8437, + 3546, 8082, 5587, 7269, 7261, 1050, 8775, 8368, 9710, + 3130, 7138, 1877, 1810, 714, 7162, 6619, 5709, 5555, + 9176, 4508, 3812, 9450, 8136, 3068, 6301, 8245, 2547, + 3686, 2549, 4881, 760, 7053, 4068, 2932, 8510, 5794, + 3610, 5663, 6536, 6323, 7083, 9722, 3009, 5541, 1592, + 8519, 4330, 9599, 8483, 5422, 8749, 7140, 7425, 3258, + 4071, 3508, 440, 3491, 8958, 227, 1822, 1899, 4417, + 4130, 5376, 7607, 2711, 5070, 8453, 5974, 5725, 3102, + 4319, 1136, 5353, 2913, 2100, 2380, 7803, 8429, 7033, + 9865, 4179, 2758, 7091, 9712, 3940, 1660, 2738, 1161, + 1273, 1987, 8698, 9908, 1522, 5855, 6557, 5362, 6199, + 5495, 3618, 2810, 4992, 2049, 5628, 2971, 7729, 8844, + 8814, 237, 6048, 2296, 9533, 7612, 7926, 9780, 925, + 8697, 4822, 2510, 5570, 1858, 3634, 978, 9466, 3386, + 5188, 7331, 2020, 4713, 1236, 507, 3473, 8015, 4093, + 2302, 6423, 8539, 9221, 3, 6883, 8377, 9158, 2785, + 7310, 6982, 1898, 4277, 8390, 9571, 9839, 1183, 4005, + 7487, 5970, 6616, 6116, 6012, 1446, 5537, 5387, 1151, + 2755, 3911, 5651, 5271, 3235, 386, 4450, 6442, 6100, + 3848, 6984, 2294, 4300, 3422, 41, 1221, 8412, 5345, + 4518, 2990, 4466, 2619, 6417, 7807, 6949, 2231, 5092, + 8664, 1107, 988, 4816, 494, 6420, 3491, 453, 3600, + 7054, 2027, 3564, 1710, 9554, 5472, 8900, 9386, 9031, + 1816, 8149, 7567, 8266, 3663, 9033, 5921, 364, 8749, + 6698, 9060, 756, 9355, 9834, 1694, 9007, 8663, 6164, + 4533, 453, 3525, 2999, 1620, 8551, 5584, 7302, 3431, + 3511, 1151, 2693, 6701, 2811, 1846, 3914, 8113, 4732, + 1710, 1768, 4864, 3721, 6244, 7942, 2108, 6527, 3669, + 9755, 6535, 6335, 1200, 5012, 8614, 6815, 9348, 9957, + 5437, 7361, 3722, 976, 9311, 7143, 6455, 9740, 8884, + 3173, 3993, 7603, 353, 4034, 6110, 6153, 8098, 8815, + 2092, 5561, 6424, 9337, 488, 1819, 5055, 9226, 3017, + 4576, 898, 1858, 9119, 597, 6301, 2611, 6385, 9665, + 5459, 358, 3146, 9108, 9707, 1541, 9224, 4402, 9579, + 3681, 9452, 1698, 7040, 3635, 9172, 7054, 3774, 3656, + 6702, 2178, 7785, 5385, 919, 2093, 7462, 2285, 9457, + 7427, 4598, 3631, 4308, 7505, 7302, 2092, 7835, 4224, + 3882, 7590, 9918, 7814, 756, 9050, 2847, 7772, 7696, + 3977, 171, 1283, 9421, 5242, 3078, 4953, 7874, 4620, + 4267, 7589, 331, 7280, 5130, 4485, 3121, 6860, 8138, + 9853, 8960, 2877, 9855, 2762, 9180, 8810, 4152, 3051, + 3629, 8822, 2644, 3273, 9726, 2350, 9066, 6303, 8018, + 5285, 1079, 2137, 4590, 4781, 8984, 5550, 1556, 9883, + 9833, 9681, 4081, 9689, 673, 4409, 5987, 6177, 8822, + 6139, 8036, 5927, 4714, 6545, 838, 9662, 2644, 5070, + 3487, 3165, 5195, 3829, 6379, 2232, 5754, 5129, 5848, + 3894, 8283, 5980, 9902, 3662, 8890, 8853, 7110, 9795, + 7642, 7103, 469, 4810, 6688, 2429, 4076, 5306, 9979, + 1005, 5135, 7240, 217, 8643, 9053, 6814, 9298, 2894, + 2956, 6801, 5613, 8067, 4531, 7499, 8653, 2058, 7557, + 4361, 1877, 3469, 8406, 121, 4566, 7838, 1546, 7137, + 4932, 2801, 8544, 3003, 8745, 6652, 473, 4604, 8791, + 639, 3375, 5223, 2802, 4534, 7871, 7405, 7614, 7083, + 843, 5874, 5304, 4212, 528, 4583, 223, 4030, 2578, + 141, 353, 5303, 9898, 6794, 7807, 3099, 9090, 5793, + 758, 3061, 5500, 4165, 6157, 5208, 7754, 1844, 5707, + 3293, 5083, 2302, 690, 1183, 1997, 5490, 4852, 2205, + 7232, 7597, 6171, 1383, 4301, 5376, 664, 168, 2009, + 2094, 399, 3659, 3084, 5546, 7468, 2182, 3513, 2614, + 8010, 278, 6465, 4957, 8539, 7108, 9242, 2256, 2890, + 8404, 3586, 6800, 8966, 5769, 8430, 6846, 6811, 7644, + 7111, 317, 8434, 8264, 6583, 9847, 3990, 5681, 2242, + 1436, 1513, 9864, 3452, 6689, 6046, 7561, 4932, 3944, + 3218, 1928, 7678, 8172, 4776, 5768, 1423, 8354, 4677, + 3404, 6672, 7842, 4930, 9021, 1299, 7118, 1359, 3096, + 9765, 756, 9451, 1433, 7324, 129, 7736, 2685, 402, + 4229, 7359, 2482, 8948, 9187, 8125, 7326, 2103, 1079, + 9957, 336, 3873, 8288, 3188, 9701, 7293, 9132, 9723, + 9022, 7867, 4259, 3133, 9090, 6528, 9027, 8659, 1507, + 7617, 4841, 45, 3093, 3583, 4343, 5982, 8161, 6155, + 7739, 6985, 8567, 9853, 723, 6930, 7751, 6992, 7484, + 1228, 8212, 8093, 5964, 2926, 1855, 8661, 8972, 1067, + 8476, 2481, 2860, 3244, 2959, 6123, 2484, 6976, 5707, + 149, 8194, 1354, 3355, 7336, 2434, 3067, 2904, 7963, + 9385, 9454, 6997, 2534, 2719, 9409, 566, 9588, 6159, + 6836]), + values=tensor([0.1595, 0.3574, 0.1569, 0.1927, 0.3455, 0.5475, 0.2360, + 0.1267, 0.8383, 0.2014, 0.9754, 0.6677, 0.1560, 0.5822, + 0.1680, 0.8880, 0.2016, 0.4887, 0.3651, 0.0525, 0.8366, + 0.9019, 0.0584, 0.5934, 0.4533, 0.4719, 0.3162, 0.0856, + 0.7503, 0.4555, 0.9429, 0.4009, 0.2620, 0.7629, 0.8959, + 0.8100, 0.4815, 0.9912, 0.3905, 0.7870, 0.9051, 0.8110, + 0.3963, 0.7546, 0.5404, 0.9403, 0.6281, 0.8601, 0.2128, + 0.9335, 0.8597, 0.6945, 0.6850, 0.0122, 0.8533, 0.8021, + 0.9410, 0.6950, 0.0132, 0.6242, 0.6252, 0.4892, 0.9799, + 0.2600, 0.5261, 0.3792, 0.5610, 0.3160, 0.6218, 0.2206, + 0.4237, 0.9982, 0.6522, 0.9333, 0.4171, 0.0460, 0.8531, + 0.2544, 0.1701, 0.8725, 0.4151, 0.7436, 0.8380, 0.0031, + 0.3674, 0.8777, 0.9995, 0.2664, 0.8279, 0.9505, 0.7657, + 0.0903, 0.6663, 0.4719, 0.7276, 0.6169, 0.8148, 0.4273, + 0.3201, 0.1031, 0.2252, 0.8940, 0.3381, 0.8762, 0.7333, + 0.0849, 0.8563, 0.6688, 0.1880, 0.9474, 0.8424, 0.7469, + 0.9112, 0.2026, 0.6237, 0.9001, 0.2204, 0.9422, 0.4954, + 0.2980, 0.9255, 0.7271, 0.1643, 0.0068, 0.3178, 0.5072, + 0.3845, 0.1691, 0.3369, 0.7974, 0.8022, 0.9517, 0.0776, + 0.3732, 0.7589, 0.9862, 0.5735, 0.0931, 0.9904, 0.2630, + 0.6907, 0.2327, 0.9485, 0.3933, 0.0070, 0.5468, 0.1908, + 0.4896, 0.4702, 0.2500, 0.3063, 0.1212, 0.3153, 0.1618, + 0.7622, 0.8638, 0.1344, 0.6568, 0.5980, 0.9557, 0.8515, + 0.2277, 0.3628, 0.2727, 0.0373, 0.9037, 0.4799, 0.3062, + 0.6071, 0.8382, 0.4268, 0.8911, 0.8229, 0.2938, 0.0976, + 0.8421, 0.7644, 0.9978, 0.3199, 0.6222, 0.4954, 0.9778, + 0.0275, 0.7170, 0.6011, 0.1531, 0.5312, 0.9783, 0.8205, + 0.8456, 0.4085, 0.4253, 0.7621, 0.1505, 0.1381, 0.3816, + 0.5020, 0.0751, 0.7124, 0.3677, 0.0986, 0.0496, 0.6638, + 0.3861, 0.0351, 0.3193, 0.4186, 0.4530, 0.9467, 0.4987, + 0.3540, 0.1193, 0.8914, 0.4872, 0.4479, 0.6686, 0.2751, + 0.6904, 0.3039, 0.5511, 0.0068, 0.1531, 0.4781, 0.0240, + 0.0954, 0.4173, 0.8675, 0.3561, 0.5523, 0.8362, 0.8739, + 0.2651, 0.1857, 0.6250, 0.3480, 0.8560, 0.1622, 0.0542, + 0.0157, 0.5141, 0.3731, 0.1157, 0.9155, 0.3058, 0.7435, + 0.7859, 0.4688, 0.0056, 0.1613, 0.7726, 0.0041, 0.3619, + 0.2268, 0.9956, 0.9510, 0.3827, 0.0067, 0.1149, 0.7615, + 0.9664, 0.8445, 0.0184, 0.4913, 0.9609, 0.7391, 0.2482, + 0.6660, 0.0209, 0.8868, 0.7347, 0.8362, 0.2449, 0.8127, + 0.7980, 0.3277, 0.9091, 0.5022, 0.3583, 0.2423, 0.2692, + 0.1713, 0.8883, 0.9609, 0.9490, 0.5907, 0.4577, 0.2866, + 0.7624, 0.0106, 0.3356, 0.3755, 0.3176, 0.2329, 0.6294, + 0.2743, 0.3101, 0.4588, 0.4036, 0.2885, 0.0873, 0.1858, + 0.6210, 0.6215, 0.7748, 0.7653, 0.5778, 0.6956, 0.8102, + 0.5336, 0.2692, 0.9831, 0.1045, 0.0380, 0.6104, 0.9903, + 0.9600, 0.4662, 0.6465, 0.0804, 0.3548, 0.4656, 0.2254, + 0.5211, 0.0469, 0.0289, 0.7491, 0.2704, 0.0359, 0.3814, + 0.7932, 0.0705, 0.6724, 0.6843, 0.5705, 0.8756, 0.5358, + 0.2306, 0.2562, 0.1388, 0.0248, 0.6323, 0.9284, 0.8278, + 0.7314, 0.2155, 0.2294, 0.0161, 0.6530, 0.5020, 0.7866, + 0.8715, 0.3957, 0.6929, 0.8887, 0.2496, 0.0985, 0.9688, + 0.1963, 0.1758, 0.9882, 0.3141, 0.5378, 0.2842, 0.7512, + 0.7785, 0.2724, 0.7845, 0.7457, 0.7853, 0.4491, 0.0892, + 0.6755, 0.0822, 0.3497, 0.2198, 0.2096, 0.7362, 0.7000, + 0.7558, 0.6886, 0.3624, 0.4586, 0.4677, 0.6188, 0.3817, + 0.9762, 0.6388, 0.3421, 0.3758, 0.4427, 0.6492, 0.6447, + 0.3194, 0.7097, 0.4354, 0.7354, 0.5318, 0.8658, 0.7094, + 0.6004, 0.9097, 0.9603, 0.8838, 0.0910, 0.6694, 0.1681, + 0.2590, 0.0355, 0.8694, 0.7102, 0.2759, 0.5787, 0.4767, + 0.3597, 0.7267, 0.6895, 0.4960, 0.8730, 0.2749, 0.1586, + 0.6161, 0.7990, 0.8168, 0.0944, 0.7334, 0.9960, 0.2785, + 0.0470, 0.3508, 0.4295, 0.0284, 0.0051, 0.3737, 0.5871, + 0.4284, 0.8218, 0.9847, 0.3679, 0.1207, 0.2346, 0.4243, + 0.9559, 0.2612, 0.4282, 0.3933, 0.2705, 0.3399, 0.6871, + 0.4253, 0.3048, 0.5530, 0.8665, 0.9604, 0.7933, 0.5495, + 0.3547, 0.6941, 0.3034, 0.1736, 0.2158, 0.5342, 0.2303, + 0.3372, 0.4158, 0.6518, 0.9761, 0.7109, 0.3505, 0.9214, + 0.1522, 0.0453, 0.0191, 0.9590, 0.8644, 0.7588, 0.8704, + 0.1540, 0.2129, 0.5901, 0.1942, 0.5206, 0.2060, 0.2277, + 0.7450, 0.0777, 0.9499, 0.5353, 0.5186, 0.1737, 0.7503, + 0.8631, 0.7618, 0.5550, 0.2174, 0.3974, 0.1521, 0.6051, + 0.4034, 0.4703, 0.9003, 0.2967, 0.9908, 0.5484, 0.1785, + 0.4706, 0.1583, 0.1875, 0.9349, 0.1669, 0.1316, 0.9691, + 0.6559, 0.8500, 0.6218, 0.3967, 0.4572, 0.9139, 0.6810, + 0.1586, 0.1486, 0.8315, 0.8096, 0.9857, 0.7295, 0.3313, + 0.2901, 0.7519, 0.2999, 0.4506, 0.2748, 0.0649, 0.1849, + 0.4934, 0.1966, 0.2320, 0.1827, 0.6308, 0.8147, 0.3176, + 0.1413, 0.7432, 0.0179, 0.7421, 0.3941, 0.5882, 0.7801, + 0.9334, 0.1856, 0.6599, 0.6152, 0.2121, 0.9447, 0.7494, + 0.0679, 0.1033, 0.5551, 0.1571, 0.0595, 0.8123, 0.0859, + 0.9549, 0.1265, 0.5115, 0.4947, 0.6271, 0.6976, 0.8284, + 0.6156, 0.3197, 0.4649, 0.6608, 0.0350, 0.6588, 0.4689, + 0.8863, 0.6367, 0.8396, 0.7628, 0.4943, 0.9468, 0.0315, + 0.9582, 0.2547, 0.1886, 0.6267, 0.7794, 0.4776, 0.4022, + 0.5361, 0.7915, 0.8303, 0.9516, 0.0065, 0.0486, 0.5721, + 0.6300, 0.7896, 0.2178, 0.6430, 0.6654, 0.7293, 0.9324, + 0.0904, 0.0029, 0.6017, 0.9638, 0.4045, 0.4907, 0.9349, + 0.3193, 0.8456, 0.7305, 0.1329, 0.8873, 0.6186, 0.7027, + 0.8375, 0.5304, 0.7685, 0.9669, 0.0769, 0.5929, 0.9438, + 0.8255, 0.1349, 0.9462, 0.6909, 0.5550, 0.8560, 0.1634, + 0.1474, 0.2667, 0.0145, 0.8628, 0.5634, 0.9169, 0.9663, + 0.2805, 0.7481, 0.5412, 0.6579, 0.1723, 0.4958, 0.1952, + 0.2705, 0.8297, 0.8781, 0.9300, 0.4932, 0.4241, 0.8045, + 0.7911, 0.2353, 0.7012, 0.0295, 0.4429, 0.5761, 0.6847, + 0.7203, 0.0226, 0.4063, 0.4252, 0.4095, 0.6422, 0.3906, + 0.9874, 0.3819, 0.4620, 0.5675, 0.5519, 0.8265, 0.6693, + 0.1202, 0.8118, 0.1855, 0.3789, 0.0306, 0.3898, 0.5980, + 0.1281, 0.5170, 0.3924, 0.7384, 0.2157, 0.0988, 0.9655, + 0.9173, 0.2438, 0.6109, 0.4547, 0.7814, 0.3018, 0.9140, + 0.4492, 0.0868, 0.3575, 0.8858, 0.7853, 0.5862, 0.9430, + 0.2082, 0.5310, 0.7981, 0.9057, 0.9136, 0.6813, 0.3059, + 0.8130, 0.5169, 0.0825, 0.2122, 0.0361, 0.0680, 0.7877, + 0.1443, 0.9315, 0.9537, 0.6573, 0.6673, 0.6096, 0.7720, + 0.4006, 0.2793, 0.9923, 0.9568, 0.7372, 0.4581, 0.2225, + 0.4795, 0.3467, 0.5454, 0.8269, 0.7995, 0.9928, 0.1039, + 0.1411, 0.1543, 0.1304, 0.0386, 0.3874, 0.3397, 0.3370, + 0.6393, 0.6802, 0.4644, 0.5235, 0.9807, 0.7889, 0.1021, + 0.9696, 0.0877, 0.1046, 0.8426, 0.2928, 0.7682, 0.8307, + 0.0498, 0.3274, 0.2247, 0.5502, 0.2341, 0.4460, 0.7793, + 0.0766, 0.4276, 0.5283, 0.7434, 0.7790, 0.6635, 0.9685, + 0.5303, 0.3645, 0.0898, 0.4529, 0.3974, 0.9204, 0.8693, + 0.1193, 0.3095, 0.1361, 0.1585, 0.0797, 0.0386, 0.4867, + 0.8062, 0.7372, 0.7472, 0.2565, 0.7787, 0.5623, 0.0895, + 0.4141, 0.0579, 0.2073, 0.2739, 0.2587, 0.0279, 0.8989, + 0.3379, 0.3508, 0.9852, 0.3682, 0.7416, 0.4370, 0.7560, + 0.6964, 0.0462, 0.8293, 0.5669, 0.8160, 0.4919, 0.0343, + 0.3307, 0.6785, 0.5043, 0.5529, 0.4214, 0.9726, 0.0919, + 0.4339, 0.1688, 0.9404, 0.3583, 0.5260, 0.7457, 0.6037, + 0.4126, 0.8261, 0.6361, 0.7849, 0.4720, 0.4658, 0.4472, + 0.6965, 0.6849, 0.1463, 0.7329, 0.7205, 0.6296, 0.3943, + 0.6225, 0.5935, 0.3962, 0.5131, 0.0094, 0.1853, 0.3726, + 0.2671, 0.8018, 0.8606, 0.1727, 0.4492, 0.1565, 0.2321, + 0.5274, 0.3800, 0.7385, 0.1726, 0.8828, 0.5176, 0.5197, + 0.2711, 0.2519, 0.5041, 0.2737, 0.3773, 0.8524, 0.9013, + 0.3757, 0.2440, 0.0248, 0.3047, 0.1741, 0.1625, 0.4159, + 0.6619, 0.4663, 0.5995, 0.1867, 0.1602, 0.9925, 0.4213, + 0.1398, 0.2159, 0.0078, 0.9534, 0.2005, 0.1991, 0.9875, + 0.8102, 0.7752, 0.4701, 0.4231, 0.4248, 0.2862, 0.3896, + 0.6863, 0.8315, 0.2118, 0.5451, 0.2655, 0.0905, 0.5261, + 0.8693, 0.4019, 0.1497, 0.3541, 0.0860, 0.0962, 0.2879, + 0.5698, 0.1106, 0.6799, 0.8942, 0.7616, 0.6926, 0.1966, + 0.4551, 0.7681, 0.0079, 0.9274, 0.5069, 0.8968, 0.3655, + 0.2959, 0.0872, 0.0693, 0.7746, 0.5158, 0.7922, 0.0759, + 0.3888, 0.0874, 0.3282, 0.5900, 0.7945, 0.8309, 0.9513, + 0.3391, 0.1582, 0.6222, 0.7213, 0.2696, 0.2995, 0.0623, + 0.7078, 0.2954, 0.4316, 0.2744, 0.6635, 0.6872, 0.8983, + 0.7149, 0.3497, 0.3162, 0.0296, 0.5639, 0.7317, 0.1808, + 0.5588, 0.4835, 0.1889, 0.2880, 0.0596, 0.9660, 0.6453, + 0.2374, 0.0690, 0.2719, 0.9133, 0.2929, 0.5555, 0.7051, + 0.3500, 0.3031, 0.8234, 0.6216, 0.6849, 0.6063, 0.7426, + 0.6347, 0.2320, 0.0786, 0.4232, 0.7048, 0.8846, 0.7739, + 0.9266, 0.8791, 0.1752, 0.0562, 0.4849, 0.4175, 0.0203, + 0.7363, 0.1222, 0.4577, 0.5149, 0.7902, 0.1347]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.8197, 0.8953, 0.9337, ..., 0.6014, 0.8565, 0.4467]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 7.084842920303345 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '361507', '-ss', '10000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.549095392227173} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 999, 999, 1000]), + col_indices=tensor([3175, 1540, 6513, 4566, 9706, 3242, 7522, 361, 3563, + 273, 8050, 6972, 5246, 100, 2674, 5918, 3629, 808, + 6317, 2665, 3236, 7680, 4047, 5897, 1768, 5781, 8933, + 8413, 7478, 8640, 5353, 4488, 7437, 3716, 4046, 1102, + 6131, 2784, 5612, 6734, 6293, 813, 8222, 4409, 7568, + 7734, 4823, 4746, 71, 9732, 5731, 7539, 5376, 3975, + 4034, 5323, 3781, 4198, 6205, 3448, 5920, 4554, 964, + 2149, 3775, 4363, 7665, 7615, 1360, 740, 9444, 8107, + 1702, 5055, 4887, 338, 8496, 5258, 6306, 4365, 8779, + 3316, 6271, 7936, 5465, 5927, 2341, 8746, 8614, 4168, + 7453, 8302, 1818, 3772, 900, 570, 1621, 1384, 1313, + 5863, 7529, 2013, 14, 7644, 4866, 5872, 4394, 6186, + 7063, 8838, 961, 1908, 8272, 1397, 5498, 6793, 4939, + 7488, 3334, 7992, 2581, 6595, 9145, 5581, 4949, 2140, + 6797, 414, 1120, 5151, 8169, 7479, 5174, 1884, 9527, + 2164, 3682, 8813, 2069, 8178, 7946, 3103, 3936, 5349, + 2278, 6902, 2920, 1610, 3303, 3215, 9428, 1830, 2118, + 5807, 1813, 6966, 2320, 7242, 2061, 1142, 8325, 1748, + 6423, 3895, 9860, 3334, 1571, 7560, 9529, 2255, 5990, + 7873, 1082, 5084, 4882, 8756, 2595, 3740, 8442, 4906, + 4146, 3172, 76, 1682, 3498, 5746, 4339, 3299, 2674, + 4896, 7065, 1329, 4780, 8089, 9997, 1942, 3826, 4131, + 731, 9928, 4711, 108, 4149, 1842, 8173, 1747, 9110, + 443, 1885, 4298, 1140, 4797, 448, 4550, 429, 8474, + 4481, 6412, 6907, 8449, 3203, 1144, 8022, 5563, 2882, + 5617, 6692, 1347, 1909, 5954, 8651, 3933, 1838, 8274, + 2192, 3777, 9060, 791, 4605, 3528, 4962, 9087, 4984, + 2397, 5548, 7709, 3017, 2309, 3655, 6073, 8413, 9630, + 431, 1679, 7855, 1854, 2512, 7892, 7672, 3225, 8437, + 1273, 8525, 6002, 4821, 6282, 236, 2495, 4787, 7877, + 8952, 9372, 4533, 4631, 5234, 8335, 9577, 6036, 98, + 2704, 5610, 6864, 5127, 6489, 9983, 9754, 5784, 4497, + 7982, 8077, 5919, 4969, 6009, 6638, 5854, 2056, 7764, + 3940, 5182, 6794, 6660, 8586, 4187, 8042, 2416, 8812, + 3619, 6316, 9827, 3289, 3690, 1654, 2607, 451, 2745, + 5265, 4289, 6960, 1869, 7932, 5618, 4964, 3986, 215, + 9920, 528, 1074, 6998, 9786, 9451, 4860, 7150, 5317, + 2922, 1331, 9263, 8341, 4258, 5180, 5269, 5128, 4740, + 9937, 9856, 7158, 6339, 836, 9058, 8365, 1840, 9851, + 5665, 7487, 3732, 179, 4366, 2315, 9267, 1373, 2275, + 7848, 5845, 8794, 6211, 6941, 2, 804, 8730, 5269, + 7518, 2707, 7073, 3598, 7548, 8402, 55, 4035, 7643, + 9945, 7893, 5968, 8491, 1584, 8889, 7265, 5390, 8665, + 4508, 3535, 723, 893, 7985, 4490, 7267, 4951, 8120, + 1353, 6368, 4704, 5448, 5441, 8473, 9294, 3369, 4289, + 3173, 9667, 8648, 3368, 3676, 7114, 9123, 9879, 2618, + 2041, 2076, 9915, 2059, 7375, 4830, 5178, 3566, 6066, + 9528, 432, 3275, 9207, 9228, 898, 9740, 704, 7175, + 1810, 4839, 9301, 7082, 7045, 9236, 5459, 6824, 2386, + 9099, 2425, 6745, 8533, 9747, 7091, 7333, 6526, 5056, + 8568, 3601, 9200, 611, 9078, 7305, 7509, 8202, 2800, + 676, 4144, 2431, 6051, 523, 4438, 7508, 8507, 4826, + 9235, 9404, 1554, 6190, 1800, 8838, 8616, 9273, 1919, + 210, 323, 3095, 2911, 1383, 7516, 3916, 6756, 186, + 1597, 4025, 9811, 1346, 7942, 8460, 4239, 3491, 9614, + 1574, 3026, 1308, 2921, 9065, 7897, 1949, 5662, 3969, + 6445, 2108, 3419, 7470, 7688, 9282, 1284, 1190, 7548, + 5183, 1643, 8925, 2434, 1016, 3356, 4259, 736, 9699, + 4586, 9185, 7689, 8664, 6332, 6646, 6512, 3621, 87, + 6668, 2483, 2434, 1838, 4859, 4139, 6036, 8716, 5847, + 9068, 1235, 5372, 1971, 6227, 1556, 4067, 4084, 9394, + 8499, 8204, 8364, 6391, 8186, 3868, 7454, 4389, 3681, + 5817, 3764, 3744, 6962, 5091, 9055, 6773, 4867, 6944, + 2264, 652, 3256, 2751, 8863, 7674, 2641, 9240, 2245, + 9330, 8024, 9843, 4610, 82, 200, 8852, 5519, 2948, + 1600, 4032, 1320, 5925, 2330, 9335, 8707, 6761, 5646, + 813, 1857, 537, 7443, 5765, 3517, 7296, 7246, 6140, + 7043, 8305, 6878, 7142, 1532, 5166, 1412, 718, 9870, + 5087, 452, 3492, 6284, 6960, 7980, 454, 5109, 9800, + 5047, 2964, 1824, 5078, 6124, 9571, 9534, 2567, 8828, + 4193, 1120, 3726, 1508, 8125, 1525, 2609, 983, 9289, + 6898, 5932, 8744, 6717, 5439, 4405, 853, 7405, 3237, + 2345, 6750, 8221, 667, 5951, 632, 9570, 2101, 6091, + 3022, 3318, 4966, 5463, 4525, 9617, 5713, 8112, 7764, + 1714, 3834, 6463, 7656, 4347, 9414, 6948, 9428, 7757, + 709, 2683, 5160, 5955, 5530, 6376, 3284, 4446, 5698, + 2275, 2092, 6675, 5841, 5301, 6848, 9042, 3714, 5714, + 3313, 8575, 5834, 1116, 3984, 2225, 8925, 9909, 7358, + 9350, 6525, 5220, 7818, 1339, 6950, 9289, 9181, 9998, + 7845, 6947, 9177, 8578, 4463, 1874, 70, 2789, 9195, + 4686, 2356, 4115, 1229, 3411, 9168, 3818, 4667, 6830, + 6742, 8796, 4708, 6334, 9212, 955, 1317, 5763, 7646, + 8855, 9864, 5649, 4410, 9725, 7835, 2594, 4904, 9545, + 1567, 3913, 9838, 887, 929, 6237, 8603, 266, 8794, + 4699, 6401, 8344, 7226, 8586, 183, 9072, 8396, 1293, + 7009, 8570, 6640, 2705, 4187, 2146, 1943, 5404, 4534, + 3765, 8271, 1936, 8038, 6160, 6410, 5531, 6130, 449, + 6410, 825, 5772, 7843, 6366, 8489, 3632, 1857, 6681, + 6911, 6206, 9698, 5731, 2691, 7020, 9437, 9086, 7250, + 9133, 8448, 9615, 9805, 7718, 7430, 8451, 617, 7119, + 3608, 2957, 8156, 2628, 381, 2102, 5147, 1812, 7632, + 6080, 3801, 6557, 3664, 7115, 4747, 9946, 933, 9043, + 1209, 8903, 2470, 7079, 2590, 4242, 1267, 2310, 1880, + 1533, 8678, 2879, 5347, 3885, 2968, 7456, 8838, 419, + 3883, 1590, 8133, 338, 7811, 610, 5462, 8096, 5384, + 2656, 3961, 9755, 4315, 8580, 1978, 7459, 2728, 6364, + 3022, 540, 8591, 2436, 6393, 2785, 2076, 2351, 7720, + 3071, 210, 3880, 3780, 5455, 4217, 6253, 1690, 7922, + 8344, 3819, 673, 5739, 9352, 339, 2786, 4845, 1565, + 3191, 9970, 5600, 5489, 5182, 6938, 5244, 6170, 2279, + 5161, 5371, 3300, 45, 6679, 8740, 7633, 4511, 1112, + 1547, 359, 8586, 849, 9883, 8268, 2875, 7310, 8225, + 1860, 3766, 6124, 7431, 5973, 1224, 8189, 1700, 9843, + 2201, 8620, 3055, 1358, 7636, 5811, 5697, 3368, 2604, + 2311, 8744, 5512, 4770, 1238, 7759, 9050, 3348, 7125, + 1114, 7201, 7256, 5261, 6468, 3791, 4716, 1684, 3831, + 2665, 4866, 2193, 1393, 7781, 4603, 2849, 4725, 1778, + 9535, 4976, 3128, 4153, 976, 3584, 9384, 4201, 3066, + 3919, 5286, 1666, 9720, 5671, 8474, 8596, 6477, 9376, + 8643, 5995, 856, 6368, 3119, 9235, 7286, 4524, 7608, + 8305, 1316, 3514, 8323, 3763, 5982, 5171, 9325, 2051, + 3757]), + values=tensor([5.4503e-02, 2.9508e-01, 2.7621e-01, 5.9220e-01, + 6.7599e-01, 6.9875e-01, 7.2193e-02, 4.2622e-01, + 4.4064e-01, 4.9415e-01, 4.8448e-01, 4.6026e-01, + 8.3385e-01, 6.8127e-01, 7.4836e-01, 9.8446e-01, + 4.5546e-01, 1.1369e-01, 7.1924e-01, 1.0264e-01, + 9.0307e-01, 6.5371e-02, 4.6885e-02, 6.4486e-01, + 7.8103e-01, 2.8906e-01, 4.3815e-01, 3.8670e-01, + 4.1476e-01, 1.4529e-01, 4.5266e-02, 8.7285e-01, + 8.3886e-01, 5.0968e-01, 1.9297e-01, 8.7115e-01, + 4.2403e-01, 1.7959e-01, 7.8896e-01, 8.3163e-01, + 2.2324e-01, 2.8136e-01, 1.9157e-02, 7.8786e-01, + 2.7574e-01, 1.6824e-01, 8.9669e-01, 2.4513e-01, + 5.8585e-01, 3.7827e-01, 2.4067e-01, 5.7494e-01, + 7.5649e-01, 5.4031e-01, 1.9831e-01, 2.0146e-01, + 3.5111e-03, 1.4887e-01, 9.3482e-01, 8.9867e-01, + 7.3926e-01, 8.9432e-01, 7.7800e-01, 7.8593e-02, + 9.0410e-01, 1.3148e-01, 2.7506e-02, 2.8367e-01, + 3.7537e-01, 4.9944e-01, 9.2122e-01, 2.8280e-01, + 1.5841e-01, 6.6171e-01, 2.7753e-01, 7.5495e-01, + 7.8495e-01, 4.0801e-01, 5.1023e-02, 6.5582e-01, + 8.4918e-01, 4.8003e-02, 3.5027e-01, 9.2382e-01, + 4.3491e-01, 2.8400e-01, 4.9820e-01, 4.0135e-01, + 9.0951e-01, 8.1196e-01, 1.4390e-01, 3.9182e-01, + 9.1794e-01, 4.1848e-01, 8.6036e-01, 6.1219e-01, + 8.7067e-01, 8.2945e-01, 3.9732e-01, 7.8015e-01, + 8.9715e-02, 8.2485e-02, 3.5463e-01, 9.2038e-01, + 3.3054e-01, 6.8980e-01, 8.3428e-01, 6.7282e-01, + 9.0467e-01, 9.8824e-01, 2.3744e-01, 7.6530e-01, + 5.0061e-01, 1.5883e-01, 5.3783e-01, 7.9345e-01, + 3.7436e-01, 2.0235e-01, 7.7143e-01, 5.2818e-01, + 5.0000e-01, 1.1490e-02, 9.7408e-01, 2.0383e-01, + 6.8759e-02, 4.2208e-01, 7.0805e-01, 3.5602e-01, + 1.4045e-01, 1.8772e-01, 8.2939e-01, 2.6640e-01, + 7.5430e-01, 6.3779e-01, 9.8984e-01, 3.1603e-03, + 6.1629e-01, 4.2752e-01, 4.2494e-01, 3.2776e-01, + 7.0716e-01, 6.0492e-01, 2.4134e-01, 9.9805e-01, + 7.8767e-01, 9.6566e-01, 1.7115e-01, 7.1157e-02, + 4.0609e-01, 9.1913e-01, 4.0558e-01, 7.9724e-01, + 9.6047e-01, 2.4534e-01, 6.7326e-01, 7.3496e-01, + 2.5675e-01, 1.7448e-01, 6.2499e-02, 5.6949e-01, + 7.5770e-01, 3.9893e-01, 5.3252e-01, 4.1528e-01, + 3.5445e-01, 9.4052e-01, 9.9915e-01, 3.2511e-01, + 2.7636e-01, 9.6422e-01, 1.8532e-02, 4.8863e-01, + 1.6115e-01, 4.8734e-01, 4.4591e-01, 1.2811e-01, + 5.5702e-01, 6.3130e-01, 1.8993e-01, 5.4511e-01, + 2.1032e-01, 6.5660e-01, 2.6576e-01, 8.1915e-01, + 5.9613e-01, 3.3776e-01, 6.2370e-01, 8.7516e-01, + 6.3332e-01, 9.1021e-01, 5.9864e-01, 2.2683e-01, + 3.7532e-01, 3.4357e-01, 9.2278e-01, 1.0352e-01, + 7.7095e-01, 3.3999e-01, 3.1460e-01, 9.0103e-01, + 3.5506e-01, 8.8805e-01, 5.7371e-01, 2.3930e-01, + 8.7840e-01, 6.0017e-01, 4.8130e-01, 4.4910e-01, + 5.3282e-01, 8.6422e-02, 2.0105e-01, 4.1225e-01, + 3.6155e-01, 6.2255e-01, 1.8640e-01, 8.2609e-01, + 1.7861e-01, 4.5248e-01, 8.8949e-01, 9.6998e-01, + 2.6238e-01, 6.4922e-01, 6.7744e-01, 8.7497e-01, + 5.2727e-02, 2.5528e-03, 5.5124e-01, 8.9615e-01, + 7.7634e-01, 5.0560e-01, 6.4556e-01, 3.4657e-01, + 3.1546e-01, 2.4480e-02, 6.3994e-01, 1.1798e-01, + 7.4735e-01, 7.7755e-01, 4.2687e-01, 2.0743e-01, + 4.1103e-01, 4.7313e-01, 6.6535e-01, 1.5899e-01, + 5.0196e-01, 1.5159e-01, 1.8033e-01, 4.0226e-01, + 4.0348e-01, 5.4168e-01, 4.0167e-01, 1.6018e-01, + 2.5039e-01, 3.4686e-01, 2.5177e-01, 4.9281e-01, + 5.0762e-01, 8.7205e-01, 5.2584e-02, 7.4358e-01, + 3.1876e-01, 2.8162e-01, 6.8347e-01, 8.9200e-01, + 2.3220e-01, 1.1302e-01, 4.9947e-01, 3.5588e-01, + 6.1641e-01, 2.4231e-01, 6.5140e-02, 4.4885e-02, + 3.2197e-01, 6.1080e-01, 7.8795e-01, 2.6929e-02, + 5.8856e-01, 2.4904e-01, 8.5655e-01, 8.7065e-01, + 2.1587e-01, 7.8035e-01, 9.2913e-01, 2.1233e-01, + 6.0794e-02, 7.7621e-01, 5.9383e-01, 7.7282e-01, + 2.1097e-01, 4.5931e-01, 1.2216e-01, 5.5394e-01, + 8.2536e-01, 9.4006e-01, 6.9903e-01, 2.3400e-01, + 1.6489e-01, 9.9877e-01, 3.9160e-03, 9.6684e-01, + 6.2591e-01, 2.5349e-01, 8.7857e-01, 4.9299e-01, + 2.8608e-01, 9.5114e-01, 1.4473e-01, 6.2640e-01, + 4.5802e-01, 5.0106e-02, 6.0613e-01, 8.2241e-02, + 7.2741e-01, 7.5131e-01, 8.4107e-01, 2.1466e-01, + 8.8673e-01, 8.0627e-01, 7.4367e-01, 8.8514e-01, + 9.2521e-01, 6.5036e-01, 6.8984e-01, 2.2250e-01, + 1.8633e-01, 6.5714e-01, 9.9674e-01, 9.5767e-01, + 9.8742e-01, 1.4499e-01, 6.8279e-01, 8.4327e-01, + 3.1676e-01, 9.4538e-01, 2.0070e-02, 7.2806e-01, + 2.1770e-01, 8.0038e-01, 1.4197e-02, 2.4290e-01, + 5.8603e-01, 8.5921e-01, 3.7803e-02, 5.9046e-01, + 1.3055e-03, 5.8856e-01, 3.0292e-01, 9.3443e-02, + 9.6541e-01, 6.2831e-01, 4.3760e-01, 1.1317e-01, + 2.1064e-01, 5.8110e-01, 7.5660e-01, 9.2549e-01, + 1.3727e-02, 1.6075e-02, 3.0759e-01, 3.7790e-01, + 2.1176e-01, 1.3578e-01, 4.7314e-01, 1.6872e-01, + 2.7121e-01, 4.5927e-01, 2.9240e-01, 7.4103e-01, + 3.2311e-01, 5.0994e-01, 5.8812e-01, 1.0297e-01, + 9.3280e-01, 1.1119e-02, 2.3125e-01, 9.4903e-01, + 9.5077e-01, 6.3578e-01, 3.0323e-01, 9.1593e-01, + 6.8375e-01, 7.8254e-01, 4.1770e-01, 8.4649e-01, + 3.4911e-01, 1.4315e-02, 4.6432e-01, 1.0495e-01, + 8.9960e-01, 5.6481e-01, 9.8227e-01, 9.4531e-04, + 1.6178e-01, 7.1270e-01, 9.0622e-01, 2.5614e-02, + 5.3965e-02, 6.0181e-01, 4.7567e-01, 7.3600e-01, + 1.4436e-01, 9.4179e-01, 8.0074e-01, 9.8982e-01, + 8.1912e-01, 5.9117e-01, 1.4834e-01, 8.6032e-01, + 6.1336e-01, 7.8548e-01, 7.9831e-01, 5.4864e-02, + 5.7972e-01, 8.9770e-01, 9.8146e-02, 1.3538e-01, + 2.5634e-03, 9.7743e-01, 6.5789e-01, 4.9119e-01, + 1.4415e-01, 4.5435e-01, 9.3861e-01, 2.4903e-01, + 9.8609e-01, 1.0273e-01, 6.1532e-02, 8.6587e-01, + 9.9411e-01, 6.9395e-02, 5.1601e-01, 8.8388e-01, + 5.1906e-01, 3.4757e-01, 7.0502e-01, 9.7708e-01, + 6.1776e-01, 7.0773e-01, 5.8744e-02, 7.0159e-01, + 6.4261e-01, 1.6001e-01, 1.0469e-02, 2.6232e-01, + 2.3191e-01, 3.1641e-01, 5.8909e-01, 9.7064e-02, + 8.2228e-01, 2.6238e-01, 6.7340e-01, 6.6894e-01, + 1.2005e-02, 3.5561e-01, 8.9801e-01, 6.5307e-01, + 2.9558e-01, 8.5369e-01, 6.1529e-02, 2.8934e-01, + 9.6447e-01, 5.9228e-01, 5.6285e-02, 4.7556e-01, + 8.7048e-01, 3.6616e-01, 4.2623e-01, 9.2599e-01, + 6.2658e-01, 6.7118e-01, 6.5435e-01, 5.6091e-01, + 5.3675e-02, 3.3015e-01, 4.7517e-01, 9.0024e-01, + 8.8494e-02, 8.2825e-01, 8.8778e-01, 8.7782e-01, + 5.8637e-01, 6.8125e-01, 5.4448e-01, 8.7589e-02, + 2.4761e-01, 7.0949e-01, 6.1296e-01, 5.8345e-01, + 2.3981e-01, 9.4679e-01, 5.9791e-01, 5.4437e-01, + 9.2743e-01, 5.6804e-01, 2.0049e-01, 6.7777e-01, + 9.3903e-01, 3.3628e-01, 7.2323e-01, 1.5931e-01, + 5.0401e-01, 3.4850e-01, 3.1155e-01, 9.9494e-01, + 3.4038e-01, 5.7178e-01, 7.0324e-01, 3.0201e-01, + 1.0997e-01, 8.8095e-01, 3.8991e-01, 2.3953e-01, + 8.6688e-01, 1.8669e-01, 2.9318e-01, 8.1412e-01, + 7.5600e-01, 3.5357e-01, 5.3145e-01, 5.3373e-01, + 8.5296e-01, 7.1799e-01, 4.4404e-01, 1.4435e-01, + 4.3572e-01, 1.5025e-01, 1.9665e-01, 6.8243e-01, + 7.0719e-01, 4.6621e-01, 9.9873e-01, 1.9092e-01, + 3.4845e-01, 3.2613e-01, 1.3621e-01, 3.7010e-03, + 2.5735e-01, 6.3842e-01, 7.9218e-01, 5.3496e-01, + 8.3599e-01, 8.7940e-01, 9.2095e-01, 4.8514e-01, + 4.7299e-02, 5.9454e-01, 8.7756e-01, 8.1858e-01, + 3.0753e-01, 1.0135e-01, 8.9628e-01, 8.7531e-01, + 2.4338e-01, 7.6256e-01, 2.7974e-01, 7.3112e-01, + 4.5748e-01, 9.6845e-01, 4.6279e-01, 2.2181e-01, + 5.2307e-02, 3.8183e-01, 8.9776e-01, 7.9512e-01, + 5.4519e-01, 1.8232e-01, 4.2318e-01, 6.8070e-01, + 6.7107e-01, 3.5950e-01, 3.3105e-01, 1.5345e-01, + 5.0364e-01, 6.3834e-01, 2.5384e-01, 8.9469e-01, + 8.5636e-01, 8.5903e-02, 6.8240e-01, 9.1985e-01, + 1.5333e-01, 6.3524e-01, 3.8410e-01, 9.5777e-01, + 6.3208e-01, 6.9916e-01, 5.0984e-01, 9.4018e-01, + 8.5347e-01, 6.0579e-01, 4.0323e-01, 7.2110e-02, + 3.0391e-01, 8.5004e-01, 4.0011e-01, 2.1766e-01, + 2.4996e-01, 8.3817e-01, 3.3134e-01, 1.6257e-01, + 7.7411e-01, 1.8474e-01, 3.7528e-01, 2.2447e-01, + 3.3097e-01, 7.9759e-01, 6.5413e-01, 4.2646e-01, + 1.9429e-01, 3.9184e-01, 9.8345e-01, 7.0461e-01, + 9.2992e-01, 5.5353e-01, 2.4215e-01, 8.8896e-01, + 1.4076e-01, 5.3922e-01, 5.3680e-01, 3.4086e-01, + 3.6827e-02, 6.8591e-01, 5.7598e-01, 9.2286e-01, + 1.5534e-01, 8.4442e-01, 9.7693e-01, 6.3237e-01, + 2.1297e-01, 7.2103e-01, 6.7295e-01, 7.7213e-01, + 7.7624e-01, 4.4250e-01, 7.6173e-01, 6.3408e-01, + 8.4143e-01, 8.0697e-01, 1.1873e-01, 1.2005e-02, + 3.7617e-01, 2.0706e-01, 4.9533e-01, 9.6023e-01, + 3.1793e-01, 4.0810e-01, 8.9848e-02, 1.4669e-01, + 2.3224e-02, 3.4590e-01, 1.5016e-01, 6.8482e-01, + 5.4447e-02, 5.0062e-01, 2.7224e-02, 4.2357e-01, + 7.2193e-02, 7.5728e-01, 3.9624e-01, 1.7947e-01, + 9.8249e-01, 8.6582e-01, 5.8813e-01, 6.1141e-01, + 2.0695e-01, 2.9035e-03, 8.2408e-01, 8.7966e-01, + 4.3094e-01, 9.2415e-01, 4.9195e-01, 2.6851e-01, + 6.1337e-01, 9.4270e-01, 9.2968e-01, 8.5545e-01, + 3.7090e-01, 7.3166e-01, 4.3200e-01, 9.2318e-04, + 6.8527e-01, 3.8630e-01, 2.9276e-01, 9.4452e-01, + 5.5661e-01, 3.3534e-01, 6.0022e-01, 4.5533e-01, + 3.0979e-01, 4.2662e-01, 8.1662e-02, 9.0957e-01, + 3.3693e-02, 5.6665e-01, 2.1704e-01, 6.4408e-02, + 1.1745e-01, 1.8148e-01, 3.5404e-01, 5.3128e-01, + 5.1695e-01, 6.1276e-01, 9.1890e-01, 3.0434e-02, + 1.9294e-01, 4.4383e-01, 1.9963e-01, 3.9245e-01, + 2.8135e-01, 9.1337e-01, 5.9610e-01, 9.7742e-01, + 3.5662e-01, 1.7009e-01, 5.2935e-01, 9.5236e-01, + 7.5234e-01, 8.9560e-01, 9.9574e-02, 2.1619e-01, + 4.6299e-02, 4.5196e-01, 9.5694e-01, 9.2056e-02, + 5.7164e-01, 9.0188e-03, 5.9236e-01, 2.7750e-02, + 5.3824e-01, 1.4417e-01, 9.9993e-01, 2.4670e-01, + 2.9559e-01, 9.7206e-02, 4.1621e-02, 8.3694e-01, + 8.3051e-01, 5.6169e-01, 8.8527e-01, 5.1914e-01, + 4.0201e-01, 7.8341e-01, 2.9365e-01, 2.9879e-01, + 2.8162e-01, 2.0121e-01, 6.6932e-01, 6.1473e-01, + 4.9632e-03, 3.8050e-01, 3.4448e-01, 5.3838e-02, + 2.7405e-01, 8.6591e-01, 7.3213e-01, 5.1101e-01, + 9.6397e-01, 5.3489e-01, 4.2717e-01, 1.4181e-01, + 4.3734e-01, 3.5588e-01, 6.4507e-01, 7.1977e-01, + 2.5664e-01, 4.3752e-01, 5.2081e-01, 8.3232e-01, + 8.3341e-01, 8.8012e-01, 8.1018e-01, 1.3653e-01, + 6.9665e-01, 2.1682e-01, 7.9394e-01, 1.1105e-01, + 4.9175e-01, 7.1874e-01, 4.2673e-01, 3.5619e-02, + 1.7445e-01, 4.2686e-01, 2.4267e-01, 3.1348e-01, + 2.1916e-01, 8.6054e-01, 5.1870e-02, 8.2679e-01, + 7.7808e-01, 1.0574e-01, 3.0661e-01, 2.6611e-01, + 4.3519e-01, 4.6871e-01, 3.5600e-01, 7.0874e-01, + 8.7795e-02, 4.4678e-01, 7.8626e-01, 1.9312e-01, + 8.1397e-01, 8.8447e-01, 4.1526e-02, 2.2637e-01, + 4.1953e-02, 2.2587e-01, 9.1774e-01, 3.7696e-01, + 1.0103e-01, 7.8365e-01, 7.9119e-01, 3.6537e-02, + 5.2353e-02, 5.9226e-01, 5.7444e-01, 3.5985e-01, + 2.3526e-01, 4.1637e-01, 4.6316e-01, 5.2774e-01, + 2.3136e-01, 7.7246e-02, 8.8505e-01, 8.9057e-01, + 6.2438e-01, 4.2260e-01, 5.4818e-01, 4.1466e-01, + 9.8218e-01, 7.6989e-01, 9.9061e-01, 9.1208e-01, + 1.9061e-01, 3.1493e-01, 5.1772e-01, 5.6560e-01, + 6.4220e-01, 1.7290e-02, 8.9717e-01, 1.8223e-01, + 2.3977e-01, 2.0508e-01, 1.4863e-01, 1.4836e-01, + 6.5533e-01, 2.5762e-01, 6.0459e-01, 9.4558e-01, + 8.1865e-01, 6.7206e-01, 4.9234e-01, 9.2049e-01, + 2.8530e-01, 1.8503e-01, 5.5805e-01, 4.8402e-01, + 5.6399e-02, 1.9669e-01, 1.0907e-01, 8.8177e-01, + 6.3074e-01, 5.6872e-02, 7.5582e-02, 1.6196e-01, + 7.5413e-01, 9.1751e-01, 8.2396e-01, 4.8314e-02, + 4.0233e-01, 4.7439e-01, 8.6903e-01, 6.4683e-01, + 4.0413e-01, 9.6644e-01, 4.3207e-01, 2.1787e-01, + 3.8462e-01, 5.8970e-02, 9.5603e-01, 2.9289e-01, + 1.1430e-02, 5.0879e-01, 8.8051e-01, 7.5483e-01, + 1.0664e-01, 6.4358e-01, 7.3353e-02, 5.7649e-01, + 9.0772e-01, 1.2860e-01, 3.5405e-01, 5.8783e-01, + 5.1844e-02, 6.6979e-01, 3.9982e-01, 5.7713e-01, + 9.5423e-01, 4.5051e-01, 2.8531e-01, 1.4108e-02, + 8.0540e-01, 4.4277e-01, 8.9220e-01, 2.6249e-01, + 2.4123e-01, 5.4797e-01, 6.6492e-01, 2.0508e-01, + 6.7675e-01, 4.1081e-01, 5.6068e-02, 2.2294e-01, + 4.1645e-01, 9.4258e-01, 4.8056e-01, 1.9642e-01, + 8.7808e-01, 2.3744e-01, 8.4309e-01, 5.2265e-01, + 7.4547e-01, 8.2721e-01, 9.3542e-01, 3.4692e-01, + 2.9115e-02, 7.3087e-02, 3.0307e-01, 9.5155e-01, + 2.1303e-01, 7.1446e-01, 9.1782e-01, 8.7408e-01, + 5.8906e-01, 8.3877e-01, 2.7997e-01, 4.6594e-01, + 4.2045e-01, 5.5887e-01, 8.2414e-01, 6.5204e-01, + 1.5283e-01, 4.0072e-02, 4.2285e-02, 9.5155e-01, + 7.6513e-02, 6.7783e-01, 2.9920e-01, 9.2939e-01, + 1.2315e-01, 2.4026e-01, 1.7920e-01, 6.1226e-02, + 6.4655e-01, 9.9832e-01, 4.3253e-01, 7.2332e-01, + 7.3881e-01, 7.6725e-01, 1.0282e-01, 6.2526e-02, + 6.6880e-02, 7.1237e-01, 1.8045e-01, 2.8368e-01, + 8.1627e-01, 3.2290e-01, 7.1207e-01, 9.3336e-01, + 5.8264e-01, 8.6629e-01, 1.0427e-01, 4.1347e-01, + 1.2616e-01, 9.6273e-01, 2.5433e-01, 7.5316e-01, + 9.7344e-01, 2.8688e-01, 7.9705e-01, 3.3331e-01, + 9.6254e-01, 9.1487e-01, 2.8480e-01, 3.2055e-01, + 3.9523e-01, 3.6145e-01, 4.5015e-01, 9.4686e-01, + 3.2711e-02, 8.9001e-01, 1.9633e-02, 3.7308e-01, + 5.9301e-01, 8.8253e-01, 8.2784e-01, 4.4139e-01, + 6.6233e-01, 5.8030e-01, 7.4490e-01, 9.5820e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.1332, 0.3872, 0.9921, ..., 0.6563, 0.0596, 0.5136]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.549095392227173 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 999, 999, 1000]), + col_indices=tensor([3175, 1540, 6513, 4566, 9706, 3242, 7522, 361, 3563, + 273, 8050, 6972, 5246, 100, 2674, 5918, 3629, 808, + 6317, 2665, 3236, 7680, 4047, 5897, 1768, 5781, 8933, + 8413, 7478, 8640, 5353, 4488, 7437, 3716, 4046, 1102, + 6131, 2784, 5612, 6734, 6293, 813, 8222, 4409, 7568, + 7734, 4823, 4746, 71, 9732, 5731, 7539, 5376, 3975, + 4034, 5323, 3781, 4198, 6205, 3448, 5920, 4554, 964, + 2149, 3775, 4363, 7665, 7615, 1360, 740, 9444, 8107, + 1702, 5055, 4887, 338, 8496, 5258, 6306, 4365, 8779, + 3316, 6271, 7936, 5465, 5927, 2341, 8746, 8614, 4168, + 7453, 8302, 1818, 3772, 900, 570, 1621, 1384, 1313, + 5863, 7529, 2013, 14, 7644, 4866, 5872, 4394, 6186, + 7063, 8838, 961, 1908, 8272, 1397, 5498, 6793, 4939, + 7488, 3334, 7992, 2581, 6595, 9145, 5581, 4949, 2140, + 6797, 414, 1120, 5151, 8169, 7479, 5174, 1884, 9527, + 2164, 3682, 8813, 2069, 8178, 7946, 3103, 3936, 5349, + 2278, 6902, 2920, 1610, 3303, 3215, 9428, 1830, 2118, + 5807, 1813, 6966, 2320, 7242, 2061, 1142, 8325, 1748, + 6423, 3895, 9860, 3334, 1571, 7560, 9529, 2255, 5990, + 7873, 1082, 5084, 4882, 8756, 2595, 3740, 8442, 4906, + 4146, 3172, 76, 1682, 3498, 5746, 4339, 3299, 2674, + 4896, 7065, 1329, 4780, 8089, 9997, 1942, 3826, 4131, + 731, 9928, 4711, 108, 4149, 1842, 8173, 1747, 9110, + 443, 1885, 4298, 1140, 4797, 448, 4550, 429, 8474, + 4481, 6412, 6907, 8449, 3203, 1144, 8022, 5563, 2882, + 5617, 6692, 1347, 1909, 5954, 8651, 3933, 1838, 8274, + 2192, 3777, 9060, 791, 4605, 3528, 4962, 9087, 4984, + 2397, 5548, 7709, 3017, 2309, 3655, 6073, 8413, 9630, + 431, 1679, 7855, 1854, 2512, 7892, 7672, 3225, 8437, + 1273, 8525, 6002, 4821, 6282, 236, 2495, 4787, 7877, + 8952, 9372, 4533, 4631, 5234, 8335, 9577, 6036, 98, + 2704, 5610, 6864, 5127, 6489, 9983, 9754, 5784, 4497, + 7982, 8077, 5919, 4969, 6009, 6638, 5854, 2056, 7764, + 3940, 5182, 6794, 6660, 8586, 4187, 8042, 2416, 8812, + 3619, 6316, 9827, 3289, 3690, 1654, 2607, 451, 2745, + 5265, 4289, 6960, 1869, 7932, 5618, 4964, 3986, 215, + 9920, 528, 1074, 6998, 9786, 9451, 4860, 7150, 5317, + 2922, 1331, 9263, 8341, 4258, 5180, 5269, 5128, 4740, + 9937, 9856, 7158, 6339, 836, 9058, 8365, 1840, 9851, + 5665, 7487, 3732, 179, 4366, 2315, 9267, 1373, 2275, + 7848, 5845, 8794, 6211, 6941, 2, 804, 8730, 5269, + 7518, 2707, 7073, 3598, 7548, 8402, 55, 4035, 7643, + 9945, 7893, 5968, 8491, 1584, 8889, 7265, 5390, 8665, + 4508, 3535, 723, 893, 7985, 4490, 7267, 4951, 8120, + 1353, 6368, 4704, 5448, 5441, 8473, 9294, 3369, 4289, + 3173, 9667, 8648, 3368, 3676, 7114, 9123, 9879, 2618, + 2041, 2076, 9915, 2059, 7375, 4830, 5178, 3566, 6066, + 9528, 432, 3275, 9207, 9228, 898, 9740, 704, 7175, + 1810, 4839, 9301, 7082, 7045, 9236, 5459, 6824, 2386, + 9099, 2425, 6745, 8533, 9747, 7091, 7333, 6526, 5056, + 8568, 3601, 9200, 611, 9078, 7305, 7509, 8202, 2800, + 676, 4144, 2431, 6051, 523, 4438, 7508, 8507, 4826, + 9235, 9404, 1554, 6190, 1800, 8838, 8616, 9273, 1919, + 210, 323, 3095, 2911, 1383, 7516, 3916, 6756, 186, + 1597, 4025, 9811, 1346, 7942, 8460, 4239, 3491, 9614, + 1574, 3026, 1308, 2921, 9065, 7897, 1949, 5662, 3969, + 6445, 2108, 3419, 7470, 7688, 9282, 1284, 1190, 7548, + 5183, 1643, 8925, 2434, 1016, 3356, 4259, 736, 9699, + 4586, 9185, 7689, 8664, 6332, 6646, 6512, 3621, 87, + 6668, 2483, 2434, 1838, 4859, 4139, 6036, 8716, 5847, + 9068, 1235, 5372, 1971, 6227, 1556, 4067, 4084, 9394, + 8499, 8204, 8364, 6391, 8186, 3868, 7454, 4389, 3681, + 5817, 3764, 3744, 6962, 5091, 9055, 6773, 4867, 6944, + 2264, 652, 3256, 2751, 8863, 7674, 2641, 9240, 2245, + 9330, 8024, 9843, 4610, 82, 200, 8852, 5519, 2948, + 1600, 4032, 1320, 5925, 2330, 9335, 8707, 6761, 5646, + 813, 1857, 537, 7443, 5765, 3517, 7296, 7246, 6140, + 7043, 8305, 6878, 7142, 1532, 5166, 1412, 718, 9870, + 5087, 452, 3492, 6284, 6960, 7980, 454, 5109, 9800, + 5047, 2964, 1824, 5078, 6124, 9571, 9534, 2567, 8828, + 4193, 1120, 3726, 1508, 8125, 1525, 2609, 983, 9289, + 6898, 5932, 8744, 6717, 5439, 4405, 853, 7405, 3237, + 2345, 6750, 8221, 667, 5951, 632, 9570, 2101, 6091, + 3022, 3318, 4966, 5463, 4525, 9617, 5713, 8112, 7764, + 1714, 3834, 6463, 7656, 4347, 9414, 6948, 9428, 7757, + 709, 2683, 5160, 5955, 5530, 6376, 3284, 4446, 5698, + 2275, 2092, 6675, 5841, 5301, 6848, 9042, 3714, 5714, + 3313, 8575, 5834, 1116, 3984, 2225, 8925, 9909, 7358, + 9350, 6525, 5220, 7818, 1339, 6950, 9289, 9181, 9998, + 7845, 6947, 9177, 8578, 4463, 1874, 70, 2789, 9195, + 4686, 2356, 4115, 1229, 3411, 9168, 3818, 4667, 6830, + 6742, 8796, 4708, 6334, 9212, 955, 1317, 5763, 7646, + 8855, 9864, 5649, 4410, 9725, 7835, 2594, 4904, 9545, + 1567, 3913, 9838, 887, 929, 6237, 8603, 266, 8794, + 4699, 6401, 8344, 7226, 8586, 183, 9072, 8396, 1293, + 7009, 8570, 6640, 2705, 4187, 2146, 1943, 5404, 4534, + 3765, 8271, 1936, 8038, 6160, 6410, 5531, 6130, 449, + 6410, 825, 5772, 7843, 6366, 8489, 3632, 1857, 6681, + 6911, 6206, 9698, 5731, 2691, 7020, 9437, 9086, 7250, + 9133, 8448, 9615, 9805, 7718, 7430, 8451, 617, 7119, + 3608, 2957, 8156, 2628, 381, 2102, 5147, 1812, 7632, + 6080, 3801, 6557, 3664, 7115, 4747, 9946, 933, 9043, + 1209, 8903, 2470, 7079, 2590, 4242, 1267, 2310, 1880, + 1533, 8678, 2879, 5347, 3885, 2968, 7456, 8838, 419, + 3883, 1590, 8133, 338, 7811, 610, 5462, 8096, 5384, + 2656, 3961, 9755, 4315, 8580, 1978, 7459, 2728, 6364, + 3022, 540, 8591, 2436, 6393, 2785, 2076, 2351, 7720, + 3071, 210, 3880, 3780, 5455, 4217, 6253, 1690, 7922, + 8344, 3819, 673, 5739, 9352, 339, 2786, 4845, 1565, + 3191, 9970, 5600, 5489, 5182, 6938, 5244, 6170, 2279, + 5161, 5371, 3300, 45, 6679, 8740, 7633, 4511, 1112, + 1547, 359, 8586, 849, 9883, 8268, 2875, 7310, 8225, + 1860, 3766, 6124, 7431, 5973, 1224, 8189, 1700, 9843, + 2201, 8620, 3055, 1358, 7636, 5811, 5697, 3368, 2604, + 2311, 8744, 5512, 4770, 1238, 7759, 9050, 3348, 7125, + 1114, 7201, 7256, 5261, 6468, 3791, 4716, 1684, 3831, + 2665, 4866, 2193, 1393, 7781, 4603, 2849, 4725, 1778, + 9535, 4976, 3128, 4153, 976, 3584, 9384, 4201, 3066, + 3919, 5286, 1666, 9720, 5671, 8474, 8596, 6477, 9376, + 8643, 5995, 856, 6368, 3119, 9235, 7286, 4524, 7608, + 8305, 1316, 3514, 8323, 3763, 5982, 5171, 9325, 2051, + 3757]), + values=tensor([5.4503e-02, 2.9508e-01, 2.7621e-01, 5.9220e-01, + 6.7599e-01, 6.9875e-01, 7.2193e-02, 4.2622e-01, + 4.4064e-01, 4.9415e-01, 4.8448e-01, 4.6026e-01, + 8.3385e-01, 6.8127e-01, 7.4836e-01, 9.8446e-01, + 4.5546e-01, 1.1369e-01, 7.1924e-01, 1.0264e-01, + 9.0307e-01, 6.5371e-02, 4.6885e-02, 6.4486e-01, + 7.8103e-01, 2.8906e-01, 4.3815e-01, 3.8670e-01, + 4.1476e-01, 1.4529e-01, 4.5266e-02, 8.7285e-01, + 8.3886e-01, 5.0968e-01, 1.9297e-01, 8.7115e-01, + 4.2403e-01, 1.7959e-01, 7.8896e-01, 8.3163e-01, + 2.2324e-01, 2.8136e-01, 1.9157e-02, 7.8786e-01, + 2.7574e-01, 1.6824e-01, 8.9669e-01, 2.4513e-01, + 5.8585e-01, 3.7827e-01, 2.4067e-01, 5.7494e-01, + 7.5649e-01, 5.4031e-01, 1.9831e-01, 2.0146e-01, + 3.5111e-03, 1.4887e-01, 9.3482e-01, 8.9867e-01, + 7.3926e-01, 8.9432e-01, 7.7800e-01, 7.8593e-02, + 9.0410e-01, 1.3148e-01, 2.7506e-02, 2.8367e-01, + 3.7537e-01, 4.9944e-01, 9.2122e-01, 2.8280e-01, + 1.5841e-01, 6.6171e-01, 2.7753e-01, 7.5495e-01, + 7.8495e-01, 4.0801e-01, 5.1023e-02, 6.5582e-01, + 8.4918e-01, 4.8003e-02, 3.5027e-01, 9.2382e-01, + 4.3491e-01, 2.8400e-01, 4.9820e-01, 4.0135e-01, + 9.0951e-01, 8.1196e-01, 1.4390e-01, 3.9182e-01, + 9.1794e-01, 4.1848e-01, 8.6036e-01, 6.1219e-01, + 8.7067e-01, 8.2945e-01, 3.9732e-01, 7.8015e-01, + 8.9715e-02, 8.2485e-02, 3.5463e-01, 9.2038e-01, + 3.3054e-01, 6.8980e-01, 8.3428e-01, 6.7282e-01, + 9.0467e-01, 9.8824e-01, 2.3744e-01, 7.6530e-01, + 5.0061e-01, 1.5883e-01, 5.3783e-01, 7.9345e-01, + 3.7436e-01, 2.0235e-01, 7.7143e-01, 5.2818e-01, + 5.0000e-01, 1.1490e-02, 9.7408e-01, 2.0383e-01, + 6.8759e-02, 4.2208e-01, 7.0805e-01, 3.5602e-01, + 1.4045e-01, 1.8772e-01, 8.2939e-01, 2.6640e-01, + 7.5430e-01, 6.3779e-01, 9.8984e-01, 3.1603e-03, + 6.1629e-01, 4.2752e-01, 4.2494e-01, 3.2776e-01, + 7.0716e-01, 6.0492e-01, 2.4134e-01, 9.9805e-01, + 7.8767e-01, 9.6566e-01, 1.7115e-01, 7.1157e-02, + 4.0609e-01, 9.1913e-01, 4.0558e-01, 7.9724e-01, + 9.6047e-01, 2.4534e-01, 6.7326e-01, 7.3496e-01, + 2.5675e-01, 1.7448e-01, 6.2499e-02, 5.6949e-01, + 7.5770e-01, 3.9893e-01, 5.3252e-01, 4.1528e-01, + 3.5445e-01, 9.4052e-01, 9.9915e-01, 3.2511e-01, + 2.7636e-01, 9.6422e-01, 1.8532e-02, 4.8863e-01, + 1.6115e-01, 4.8734e-01, 4.4591e-01, 1.2811e-01, + 5.5702e-01, 6.3130e-01, 1.8993e-01, 5.4511e-01, + 2.1032e-01, 6.5660e-01, 2.6576e-01, 8.1915e-01, + 5.9613e-01, 3.3776e-01, 6.2370e-01, 8.7516e-01, + 6.3332e-01, 9.1021e-01, 5.9864e-01, 2.2683e-01, + 3.7532e-01, 3.4357e-01, 9.2278e-01, 1.0352e-01, + 7.7095e-01, 3.3999e-01, 3.1460e-01, 9.0103e-01, + 3.5506e-01, 8.8805e-01, 5.7371e-01, 2.3930e-01, + 8.7840e-01, 6.0017e-01, 4.8130e-01, 4.4910e-01, + 5.3282e-01, 8.6422e-02, 2.0105e-01, 4.1225e-01, + 3.6155e-01, 6.2255e-01, 1.8640e-01, 8.2609e-01, + 1.7861e-01, 4.5248e-01, 8.8949e-01, 9.6998e-01, + 2.6238e-01, 6.4922e-01, 6.7744e-01, 8.7497e-01, + 5.2727e-02, 2.5528e-03, 5.5124e-01, 8.9615e-01, + 7.7634e-01, 5.0560e-01, 6.4556e-01, 3.4657e-01, + 3.1546e-01, 2.4480e-02, 6.3994e-01, 1.1798e-01, + 7.4735e-01, 7.7755e-01, 4.2687e-01, 2.0743e-01, + 4.1103e-01, 4.7313e-01, 6.6535e-01, 1.5899e-01, + 5.0196e-01, 1.5159e-01, 1.8033e-01, 4.0226e-01, + 4.0348e-01, 5.4168e-01, 4.0167e-01, 1.6018e-01, + 2.5039e-01, 3.4686e-01, 2.5177e-01, 4.9281e-01, + 5.0762e-01, 8.7205e-01, 5.2584e-02, 7.4358e-01, + 3.1876e-01, 2.8162e-01, 6.8347e-01, 8.9200e-01, + 2.3220e-01, 1.1302e-01, 4.9947e-01, 3.5588e-01, + 6.1641e-01, 2.4231e-01, 6.5140e-02, 4.4885e-02, + 3.2197e-01, 6.1080e-01, 7.8795e-01, 2.6929e-02, + 5.8856e-01, 2.4904e-01, 8.5655e-01, 8.7065e-01, + 2.1587e-01, 7.8035e-01, 9.2913e-01, 2.1233e-01, + 6.0794e-02, 7.7621e-01, 5.9383e-01, 7.7282e-01, + 2.1097e-01, 4.5931e-01, 1.2216e-01, 5.5394e-01, + 8.2536e-01, 9.4006e-01, 6.9903e-01, 2.3400e-01, + 1.6489e-01, 9.9877e-01, 3.9160e-03, 9.6684e-01, + 6.2591e-01, 2.5349e-01, 8.7857e-01, 4.9299e-01, + 2.8608e-01, 9.5114e-01, 1.4473e-01, 6.2640e-01, + 4.5802e-01, 5.0106e-02, 6.0613e-01, 8.2241e-02, + 7.2741e-01, 7.5131e-01, 8.4107e-01, 2.1466e-01, + 8.8673e-01, 8.0627e-01, 7.4367e-01, 8.8514e-01, + 9.2521e-01, 6.5036e-01, 6.8984e-01, 2.2250e-01, + 1.8633e-01, 6.5714e-01, 9.9674e-01, 9.5767e-01, + 9.8742e-01, 1.4499e-01, 6.8279e-01, 8.4327e-01, + 3.1676e-01, 9.4538e-01, 2.0070e-02, 7.2806e-01, + 2.1770e-01, 8.0038e-01, 1.4197e-02, 2.4290e-01, + 5.8603e-01, 8.5921e-01, 3.7803e-02, 5.9046e-01, + 1.3055e-03, 5.8856e-01, 3.0292e-01, 9.3443e-02, + 9.6541e-01, 6.2831e-01, 4.3760e-01, 1.1317e-01, + 2.1064e-01, 5.8110e-01, 7.5660e-01, 9.2549e-01, + 1.3727e-02, 1.6075e-02, 3.0759e-01, 3.7790e-01, + 2.1176e-01, 1.3578e-01, 4.7314e-01, 1.6872e-01, + 2.7121e-01, 4.5927e-01, 2.9240e-01, 7.4103e-01, + 3.2311e-01, 5.0994e-01, 5.8812e-01, 1.0297e-01, + 9.3280e-01, 1.1119e-02, 2.3125e-01, 9.4903e-01, + 9.5077e-01, 6.3578e-01, 3.0323e-01, 9.1593e-01, + 6.8375e-01, 7.8254e-01, 4.1770e-01, 8.4649e-01, + 3.4911e-01, 1.4315e-02, 4.6432e-01, 1.0495e-01, + 8.9960e-01, 5.6481e-01, 9.8227e-01, 9.4531e-04, + 1.6178e-01, 7.1270e-01, 9.0622e-01, 2.5614e-02, + 5.3965e-02, 6.0181e-01, 4.7567e-01, 7.3600e-01, + 1.4436e-01, 9.4179e-01, 8.0074e-01, 9.8982e-01, + 8.1912e-01, 5.9117e-01, 1.4834e-01, 8.6032e-01, + 6.1336e-01, 7.8548e-01, 7.9831e-01, 5.4864e-02, + 5.7972e-01, 8.9770e-01, 9.8146e-02, 1.3538e-01, + 2.5634e-03, 9.7743e-01, 6.5789e-01, 4.9119e-01, + 1.4415e-01, 4.5435e-01, 9.3861e-01, 2.4903e-01, + 9.8609e-01, 1.0273e-01, 6.1532e-02, 8.6587e-01, + 9.9411e-01, 6.9395e-02, 5.1601e-01, 8.8388e-01, + 5.1906e-01, 3.4757e-01, 7.0502e-01, 9.7708e-01, + 6.1776e-01, 7.0773e-01, 5.8744e-02, 7.0159e-01, + 6.4261e-01, 1.6001e-01, 1.0469e-02, 2.6232e-01, + 2.3191e-01, 3.1641e-01, 5.8909e-01, 9.7064e-02, + 8.2228e-01, 2.6238e-01, 6.7340e-01, 6.6894e-01, + 1.2005e-02, 3.5561e-01, 8.9801e-01, 6.5307e-01, + 2.9558e-01, 8.5369e-01, 6.1529e-02, 2.8934e-01, + 9.6447e-01, 5.9228e-01, 5.6285e-02, 4.7556e-01, + 8.7048e-01, 3.6616e-01, 4.2623e-01, 9.2599e-01, + 6.2658e-01, 6.7118e-01, 6.5435e-01, 5.6091e-01, + 5.3675e-02, 3.3015e-01, 4.7517e-01, 9.0024e-01, + 8.8494e-02, 8.2825e-01, 8.8778e-01, 8.7782e-01, + 5.8637e-01, 6.8125e-01, 5.4448e-01, 8.7589e-02, + 2.4761e-01, 7.0949e-01, 6.1296e-01, 5.8345e-01, + 2.3981e-01, 9.4679e-01, 5.9791e-01, 5.4437e-01, + 9.2743e-01, 5.6804e-01, 2.0049e-01, 6.7777e-01, + 9.3903e-01, 3.3628e-01, 7.2323e-01, 1.5931e-01, + 5.0401e-01, 3.4850e-01, 3.1155e-01, 9.9494e-01, + 3.4038e-01, 5.7178e-01, 7.0324e-01, 3.0201e-01, + 1.0997e-01, 8.8095e-01, 3.8991e-01, 2.3953e-01, + 8.6688e-01, 1.8669e-01, 2.9318e-01, 8.1412e-01, + 7.5600e-01, 3.5357e-01, 5.3145e-01, 5.3373e-01, + 8.5296e-01, 7.1799e-01, 4.4404e-01, 1.4435e-01, + 4.3572e-01, 1.5025e-01, 1.9665e-01, 6.8243e-01, + 7.0719e-01, 4.6621e-01, 9.9873e-01, 1.9092e-01, + 3.4845e-01, 3.2613e-01, 1.3621e-01, 3.7010e-03, + 2.5735e-01, 6.3842e-01, 7.9218e-01, 5.3496e-01, + 8.3599e-01, 8.7940e-01, 9.2095e-01, 4.8514e-01, + 4.7299e-02, 5.9454e-01, 8.7756e-01, 8.1858e-01, + 3.0753e-01, 1.0135e-01, 8.9628e-01, 8.7531e-01, + 2.4338e-01, 7.6256e-01, 2.7974e-01, 7.3112e-01, + 4.5748e-01, 9.6845e-01, 4.6279e-01, 2.2181e-01, + 5.2307e-02, 3.8183e-01, 8.9776e-01, 7.9512e-01, + 5.4519e-01, 1.8232e-01, 4.2318e-01, 6.8070e-01, + 6.7107e-01, 3.5950e-01, 3.3105e-01, 1.5345e-01, + 5.0364e-01, 6.3834e-01, 2.5384e-01, 8.9469e-01, + 8.5636e-01, 8.5903e-02, 6.8240e-01, 9.1985e-01, + 1.5333e-01, 6.3524e-01, 3.8410e-01, 9.5777e-01, + 6.3208e-01, 6.9916e-01, 5.0984e-01, 9.4018e-01, + 8.5347e-01, 6.0579e-01, 4.0323e-01, 7.2110e-02, + 3.0391e-01, 8.5004e-01, 4.0011e-01, 2.1766e-01, + 2.4996e-01, 8.3817e-01, 3.3134e-01, 1.6257e-01, + 7.7411e-01, 1.8474e-01, 3.7528e-01, 2.2447e-01, + 3.3097e-01, 7.9759e-01, 6.5413e-01, 4.2646e-01, + 1.9429e-01, 3.9184e-01, 9.8345e-01, 7.0461e-01, + 9.2992e-01, 5.5353e-01, 2.4215e-01, 8.8896e-01, + 1.4076e-01, 5.3922e-01, 5.3680e-01, 3.4086e-01, + 3.6827e-02, 6.8591e-01, 5.7598e-01, 9.2286e-01, + 1.5534e-01, 8.4442e-01, 9.7693e-01, 6.3237e-01, + 2.1297e-01, 7.2103e-01, 6.7295e-01, 7.7213e-01, + 7.7624e-01, 4.4250e-01, 7.6173e-01, 6.3408e-01, + 8.4143e-01, 8.0697e-01, 1.1873e-01, 1.2005e-02, + 3.7617e-01, 2.0706e-01, 4.9533e-01, 9.6023e-01, + 3.1793e-01, 4.0810e-01, 8.9848e-02, 1.4669e-01, + 2.3224e-02, 3.4590e-01, 1.5016e-01, 6.8482e-01, + 5.4447e-02, 5.0062e-01, 2.7224e-02, 4.2357e-01, + 7.2193e-02, 7.5728e-01, 3.9624e-01, 1.7947e-01, + 9.8249e-01, 8.6582e-01, 5.8813e-01, 6.1141e-01, + 2.0695e-01, 2.9035e-03, 8.2408e-01, 8.7966e-01, + 4.3094e-01, 9.2415e-01, 4.9195e-01, 2.6851e-01, + 6.1337e-01, 9.4270e-01, 9.2968e-01, 8.5545e-01, + 3.7090e-01, 7.3166e-01, 4.3200e-01, 9.2318e-04, + 6.8527e-01, 3.8630e-01, 2.9276e-01, 9.4452e-01, + 5.5661e-01, 3.3534e-01, 6.0022e-01, 4.5533e-01, + 3.0979e-01, 4.2662e-01, 8.1662e-02, 9.0957e-01, + 3.3693e-02, 5.6665e-01, 2.1704e-01, 6.4408e-02, + 1.1745e-01, 1.8148e-01, 3.5404e-01, 5.3128e-01, + 5.1695e-01, 6.1276e-01, 9.1890e-01, 3.0434e-02, + 1.9294e-01, 4.4383e-01, 1.9963e-01, 3.9245e-01, + 2.8135e-01, 9.1337e-01, 5.9610e-01, 9.7742e-01, + 3.5662e-01, 1.7009e-01, 5.2935e-01, 9.5236e-01, + 7.5234e-01, 8.9560e-01, 9.9574e-02, 2.1619e-01, + 4.6299e-02, 4.5196e-01, 9.5694e-01, 9.2056e-02, + 5.7164e-01, 9.0188e-03, 5.9236e-01, 2.7750e-02, + 5.3824e-01, 1.4417e-01, 9.9993e-01, 2.4670e-01, + 2.9559e-01, 9.7206e-02, 4.1621e-02, 8.3694e-01, + 8.3051e-01, 5.6169e-01, 8.8527e-01, 5.1914e-01, + 4.0201e-01, 7.8341e-01, 2.9365e-01, 2.9879e-01, + 2.8162e-01, 2.0121e-01, 6.6932e-01, 6.1473e-01, + 4.9632e-03, 3.8050e-01, 3.4448e-01, 5.3838e-02, + 2.7405e-01, 8.6591e-01, 7.3213e-01, 5.1101e-01, + 9.6397e-01, 5.3489e-01, 4.2717e-01, 1.4181e-01, + 4.3734e-01, 3.5588e-01, 6.4507e-01, 7.1977e-01, + 2.5664e-01, 4.3752e-01, 5.2081e-01, 8.3232e-01, + 8.3341e-01, 8.8012e-01, 8.1018e-01, 1.3653e-01, + 6.9665e-01, 2.1682e-01, 7.9394e-01, 1.1105e-01, + 4.9175e-01, 7.1874e-01, 4.2673e-01, 3.5619e-02, + 1.7445e-01, 4.2686e-01, 2.4267e-01, 3.1348e-01, + 2.1916e-01, 8.6054e-01, 5.1870e-02, 8.2679e-01, + 7.7808e-01, 1.0574e-01, 3.0661e-01, 2.6611e-01, + 4.3519e-01, 4.6871e-01, 3.5600e-01, 7.0874e-01, + 8.7795e-02, 4.4678e-01, 7.8626e-01, 1.9312e-01, + 8.1397e-01, 8.8447e-01, 4.1526e-02, 2.2637e-01, + 4.1953e-02, 2.2587e-01, 9.1774e-01, 3.7696e-01, + 1.0103e-01, 7.8365e-01, 7.9119e-01, 3.6537e-02, + 5.2353e-02, 5.9226e-01, 5.7444e-01, 3.5985e-01, + 2.3526e-01, 4.1637e-01, 4.6316e-01, 5.2774e-01, + 2.3136e-01, 7.7246e-02, 8.8505e-01, 8.9057e-01, + 6.2438e-01, 4.2260e-01, 5.4818e-01, 4.1466e-01, + 9.8218e-01, 7.6989e-01, 9.9061e-01, 9.1208e-01, + 1.9061e-01, 3.1493e-01, 5.1772e-01, 5.6560e-01, + 6.4220e-01, 1.7290e-02, 8.9717e-01, 1.8223e-01, + 2.3977e-01, 2.0508e-01, 1.4863e-01, 1.4836e-01, + 6.5533e-01, 2.5762e-01, 6.0459e-01, 9.4558e-01, + 8.1865e-01, 6.7206e-01, 4.9234e-01, 9.2049e-01, + 2.8530e-01, 1.8503e-01, 5.5805e-01, 4.8402e-01, + 5.6399e-02, 1.9669e-01, 1.0907e-01, 8.8177e-01, + 6.3074e-01, 5.6872e-02, 7.5582e-02, 1.6196e-01, + 7.5413e-01, 9.1751e-01, 8.2396e-01, 4.8314e-02, + 4.0233e-01, 4.7439e-01, 8.6903e-01, 6.4683e-01, + 4.0413e-01, 9.6644e-01, 4.3207e-01, 2.1787e-01, + 3.8462e-01, 5.8970e-02, 9.5603e-01, 2.9289e-01, + 1.1430e-02, 5.0879e-01, 8.8051e-01, 7.5483e-01, + 1.0664e-01, 6.4358e-01, 7.3353e-02, 5.7649e-01, + 9.0772e-01, 1.2860e-01, 3.5405e-01, 5.8783e-01, + 5.1844e-02, 6.6979e-01, 3.9982e-01, 5.7713e-01, + 9.5423e-01, 4.5051e-01, 2.8531e-01, 1.4108e-02, + 8.0540e-01, 4.4277e-01, 8.9220e-01, 2.6249e-01, + 2.4123e-01, 5.4797e-01, 6.6492e-01, 2.0508e-01, + 6.7675e-01, 4.1081e-01, 5.6068e-02, 2.2294e-01, + 4.1645e-01, 9.4258e-01, 4.8056e-01, 1.9642e-01, + 8.7808e-01, 2.3744e-01, 8.4309e-01, 5.2265e-01, + 7.4547e-01, 8.2721e-01, 9.3542e-01, 3.4692e-01, + 2.9115e-02, 7.3087e-02, 3.0307e-01, 9.5155e-01, + 2.1303e-01, 7.1446e-01, 9.1782e-01, 8.7408e-01, + 5.8906e-01, 8.3877e-01, 2.7997e-01, 4.6594e-01, + 4.2045e-01, 5.5887e-01, 8.2414e-01, 6.5204e-01, + 1.5283e-01, 4.0072e-02, 4.2285e-02, 9.5155e-01, + 7.6513e-02, 6.7783e-01, 2.9920e-01, 9.2939e-01, + 1.2315e-01, 2.4026e-01, 1.7920e-01, 6.1226e-02, + 6.4655e-01, 9.9832e-01, 4.3253e-01, 7.2332e-01, + 7.3881e-01, 7.6725e-01, 1.0282e-01, 6.2526e-02, + 6.6880e-02, 7.1237e-01, 1.8045e-01, 2.8368e-01, + 8.1627e-01, 3.2290e-01, 7.1207e-01, 9.3336e-01, + 5.8264e-01, 8.6629e-01, 1.0427e-01, 4.1347e-01, + 1.2616e-01, 9.6273e-01, 2.5433e-01, 7.5316e-01, + 9.7344e-01, 2.8688e-01, 7.9705e-01, 3.3331e-01, + 9.6254e-01, 9.1487e-01, 2.8480e-01, 3.2055e-01, + 3.9523e-01, 3.6145e-01, 4.5015e-01, 9.4686e-01, + 3.2711e-02, 8.9001e-01, 1.9633e-02, 3.7308e-01, + 5.9301e-01, 8.8253e-01, 8.2784e-01, 4.4139e-01, + 6.6233e-01, 5.8030e-01, 7.4490e-01, 9.5820e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.1332, 0.3872, 0.9921, ..., 0.6563, 0.0596, 0.5136]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.549095392227173 seconds + +[45.65, 38.89, 39.88, 38.76, 38.37, 38.3, 38.7, 38.8, 39.08, 38.56] +[65.27] +13.208173513412476 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 361507, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.549095392227173, 'TIME_S_1KI': 0.029180888315377497, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 862.0974852204322, 'W': 65.27} +[45.65, 38.89, 39.88, 38.76, 38.37, 38.3, 38.7, 38.8, 39.08, 38.56, 39.02, 38.54, 38.45, 38.34, 38.8, 39.14, 38.83, 39.15, 38.35, 39.72] +701.855 +35.09275 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 361507, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.549095392227173, 'TIME_S_1KI': 0.029180888315377497, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 862.0974852204322, 'W': 65.27, 'J_1KI': 2.3847324815852313, 'W_1KI': 0.18054975422329303, 'W_D': 30.177249999999994, 'J_D': 398.58635415762654, 'W_D_1KI': 0.08347625357185336, 'J_D_1KI': 0.0002309118594435332} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_500000_1e-05.json new file mode 100644 index 0000000..98e0f55 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_500000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1357, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.362020254135132, "TIME_S_1KI": 7.635976605847555, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 997.3382936573029, "W": 74.92, "J_1KI": 734.9582119803264, "W_1KI": 55.21002210759028, "W_D": 39.366, "J_D": 524.0419016032218, "W_D_1KI": 29.00957995578482, "J_D_1KI": 21.377730254815635} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_500000_1e-05.output similarity index 56% rename from pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_1e-05.output rename to pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_500000_1e-05.output index b6ef67e..f772ea4 100644 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_1e-05.output +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_500000_1e-05.output @@ -1,15 +1,15 @@ ['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.669674634933472} +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.737008094787598} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 10, 17, ..., 2499990, - 2499993, 2500000]), - col_indices=tensor([ 52473, 65771, 123815, ..., 335848, 435662, - 475263]), - values=tensor([0.2082, 0.2192, 0.6702, ..., 0.7546, 0.3364, 0.5504]), +tensor(crow_indices=tensor([ 0, 6, 9, ..., 2499995, + 2499998, 2500000]), + col_indices=tensor([ 13538, 14404, 124427, ..., 299545, 64656, + 263709]), + values=tensor([0.6726, 0.7704, 0.5503, ..., 0.8434, 0.2560, 0.2989]), size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.6123, 0.6429, 0.4015, ..., 0.8475, 0.6522, 0.4492]) +tensor([0.7902, 0.8995, 0.9133, ..., 0.8775, 0.6765, 0.9460]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -17,20 +17,20 @@ Rows: 500000 Size: 250000000000 NNZ: 2500000 Density: 1e-05 -Time: 7.669674634933472 seconds +Time: 7.737008094787598 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '2738', '-ss', '500000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.017223119735718} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1357', '-ss', '500000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.362020254135132} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 8, ..., 2499990, +tensor(crow_indices=tensor([ 0, 7, 12, ..., 2499987, 2499995, 2500000]), - col_indices=tensor([334289, 479579, 4894, ..., 301830, 313714, - 458526]), - values=tensor([0.7811, 0.4358, 0.2037, ..., 0.6487, 0.4394, 0.7955]), + col_indices=tensor([ 74385, 156503, 312661, ..., 102229, 341067, + 464580]), + values=tensor([0.2383, 0.0369, 0.7603, ..., 0.0658, 0.9688, 0.3918]), size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.3985, 0.6545, 0.8794, ..., 0.0163, 0.4728, 0.5226]) +tensor([0.4224, 0.2766, 0.2547, ..., 0.2726, 0.8333, 0.3690]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -38,17 +38,17 @@ Rows: 500000 Size: 250000000000 NNZ: 2500000 Density: 1e-05 -Time: 21.017223119735718 seconds +Time: 10.362020254135132 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 8, ..., 2499990, +tensor(crow_indices=tensor([ 0, 7, 12, ..., 2499987, 2499995, 2500000]), - col_indices=tensor([334289, 479579, 4894, ..., 301830, 313714, - 458526]), - values=tensor([0.7811, 0.4358, 0.2037, ..., 0.6487, 0.4394, 0.7955]), + col_indices=tensor([ 74385, 156503, 312661, ..., 102229, 341067, + 464580]), + values=tensor([0.2383, 0.0369, 0.7603, ..., 0.0658, 0.9688, 0.3918]), size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.3985, 0.6545, 0.8794, ..., 0.0163, 0.4728, 0.5226]) +tensor([0.4224, 0.2766, 0.2547, ..., 0.2726, 0.8333, 0.3690]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -56,13 +56,13 @@ Rows: 500000 Size: 250000000000 NNZ: 2500000 Density: 1e-05 -Time: 21.017223119735718 seconds +Time: 10.362020254135132 seconds -[39.49, 38.83, 40.75, 42.9, 39.3, 39.29, 38.89, 38.88, 38.79, 38.76] -[76.16] -23.792272090911865 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 2738, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.017223119735718, 'TIME_S_1KI': 7.676122395812899, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1812.0194424438475, 'W': 76.16} -[39.49, 38.83, 40.75, 42.9, 39.3, 39.29, 38.89, 38.88, 38.79, 38.76, 40.02, 38.88, 38.89, 38.66, 38.84, 38.71, 38.92, 38.66, 38.76, 39.18] -706.675 -35.333749999999995 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 2738, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.017223119735718, 'TIME_S_1KI': 7.676122395812899, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1812.0194424438475, 'W': 76.16, 'J_1KI': 661.804033032815, 'W_1KI': 27.81592403214025, 'W_D': 40.82625, 'J_D': 971.3492484515906, 'W_D_1KI': 14.910975164353543, 'J_D_1KI': 5.445936875220432} +[40.3, 38.79, 39.14, 38.79, 39.0, 38.98, 38.53, 44.02, 38.67, 38.42] +[74.92] +13.31204342842102 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1357, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.362020254135132, 'TIME_S_1KI': 7.635976605847555, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 997.3382936573029, 'W': 74.92} +[40.3, 38.79, 39.14, 38.79, 39.0, 38.98, 38.53, 44.02, 38.67, 38.42, 39.44, 38.36, 38.82, 38.43, 45.76, 38.31, 39.93, 38.5, 38.79, 38.36] +711.08 +35.554 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1357, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.362020254135132, 'TIME_S_1KI': 7.635976605847555, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 997.3382936573029, 'W': 74.92, 'J_1KI': 734.9582119803264, 'W_1KI': 55.21002210759028, 'W_D': 39.366, 'J_D': 524.0419016032218, 'W_D_1KI': 29.00957995578482, 'J_D_1KI': 21.377730254815635} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.0001.json new file mode 100644 index 0000000..0569add --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 15401, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.70950984954834, "TIME_S_1KI": 0.6953775631159236, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 846.8573481559754, "W": 65.04, "J_1KI": 54.987166298031, "W_1KI": 4.223102395948315, "W_D": 30.268000000000008, "J_D": 394.10636860370647, "W_D_1KI": 1.9653269268229343, "J_D_1KI": 0.12761034522582523} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.0001.output similarity index 58% rename from pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0001.output rename to pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.0001.output index 114c64b..5835407 100644 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0001.output +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.0001.output @@ -1,14 +1,14 @@ ['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.6844191551208496} +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.6817739009857178} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 5, 9, ..., 249993, 249996, +tensor(crow_indices=tensor([ 0, 3, 11, ..., 249990, 249996, 250000]), - col_indices=tensor([ 8529, 23824, 37106, ..., 11640, 15800, 34725]), - values=tensor([0.8073, 0.5844, 0.8147, ..., 0.3062, 0.9804, 0.2233]), + col_indices=tensor([22352, 25754, 44016, ..., 24187, 38739, 43878]), + values=tensor([0.9987, 0.7536, 0.3762, ..., 0.2868, 0.8081, 0.6848]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.0481, 0.3329, 0.6398, ..., 0.2932, 0.9523, 0.8115]) +tensor([0.2548, 0.4461, 0.9076, ..., 0.8528, 0.8836, 0.6180]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -16,19 +16,19 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 0.6844191551208496 seconds +Time: 0.6817739009857178 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '30682', '-ss', '50000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.60400652885437} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '15401', '-ss', '50000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.70950984954834} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 5, 10, ..., 249991, 249996, +tensor(crow_indices=tensor([ 0, 5, 9, ..., 249990, 249994, 250000]), - col_indices=tensor([ 1625, 14875, 16966, ..., 28233, 46165, 49230]), - values=tensor([0.7686, 0.4498, 0.3631, ..., 0.7737, 0.9073, 0.9265]), + col_indices=tensor([21278, 27457, 27912, ..., 25636, 33177, 40764]), + values=tensor([0.5508, 0.6259, 0.1639, ..., 0.1456, 0.5920, 0.1745]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.0406, 0.0267, 0.6076, ..., 0.5503, 0.5752, 0.3050]) +tensor([0.3112, 0.1298, 0.2276, ..., 0.1739, 0.6060, 0.6815]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -36,16 +36,16 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 20.60400652885437 seconds +Time: 10.70950984954834 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 5, 10, ..., 249991, 249996, +tensor(crow_indices=tensor([ 0, 5, 9, ..., 249990, 249994, 250000]), - col_indices=tensor([ 1625, 14875, 16966, ..., 28233, 46165, 49230]), - values=tensor([0.7686, 0.4498, 0.3631, ..., 0.7737, 0.9073, 0.9265]), + col_indices=tensor([21278, 27457, 27912, ..., 25636, 33177, 40764]), + values=tensor([0.5508, 0.6259, 0.1639, ..., 0.1456, 0.5920, 0.1745]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.0406, 0.0267, 0.6076, ..., 0.5503, 0.5752, 0.3050]) +tensor([0.3112, 0.1298, 0.2276, ..., 0.1739, 0.6060, 0.6815]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -53,13 +53,13 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 20.60400652885437 seconds +Time: 10.70950984954834 seconds -[43.14, 38.95, 39.67, 38.57, 38.57, 38.52, 38.64, 38.47, 38.93, 38.56] -[65.18] -23.7065691947937 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 30682, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.60400652885437, 'TIME_S_1KI': 0.6715340111092618, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1545.1941801166536, 'W': 65.18} -[43.14, 38.95, 39.67, 38.57, 38.57, 38.52, 38.64, 38.47, 38.93, 38.56, 40.45, 38.49, 38.69, 38.62, 38.51, 38.64, 38.59, 38.5, 39.32, 39.14] -700.325 -35.01625 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 30682, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.60400652885437, 'TIME_S_1KI': 0.6715340111092618, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1545.1941801166536, 'W': 65.18, 'J_1KI': 50.36158594995938, 'W_1KI': 2.1243725963105407, 'W_D': 30.163750000000007, 'J_D': 715.0790265494587, 'W_D_1KI': 0.9831089889837691, 'J_D_1KI': 0.032041880874251} +[39.37, 38.33, 39.38, 39.01, 38.5, 38.38, 38.36, 38.51, 38.52, 38.33] +[65.04] +13.020561933517456 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 15401, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.70950984954834, 'TIME_S_1KI': 0.6953775631159236, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 846.8573481559754, 'W': 65.04} +[39.37, 38.33, 39.38, 39.01, 38.5, 38.38, 38.36, 38.51, 38.52, 38.33, 40.16, 38.83, 38.77, 38.25, 38.69, 38.32, 38.3, 38.47, 38.28, 39.22] +695.4399999999999 +34.772 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 15401, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.70950984954834, 'TIME_S_1KI': 0.6953775631159236, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 846.8573481559754, 'W': 65.04, 'J_1KI': 54.987166298031, 'W_1KI': 4.223102395948315, 'W_D': 30.268000000000008, 'J_D': 394.10636860370647, 'W_D_1KI': 1.9653269268229343, 'J_D_1KI': 0.12761034522582523} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.001.json new file mode 100644 index 0000000..4fe2ca5 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 3498, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.43606948852539, "TIME_S_1KI": 2.983438961842593, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 938.4889250850676, "W": 69.66, "J_1KI": 268.29300316897303, "W_1KI": 19.914236706689536, "W_D": 34.37075, "J_D": 463.0572526825667, "W_D_1KI": 9.82582904516867, "J_D_1KI": 2.8089848613975614} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.001.output similarity index 55% rename from pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.001.output rename to pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.001.output index 452da36..08291b1 100644 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.001.output +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.001.output @@ -1,14 +1,14 @@ ['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 3.0004022121429443} +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 3.0015740394592285} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 47, 90, ..., 2499903, - 2499954, 2500000]), - col_indices=tensor([ 2310, 2538, 3521, ..., 46920, 47069, 48673]), - values=tensor([0.5437, 0.3122, 0.8737, ..., 0.7809, 0.3023, 0.2727]), +tensor(crow_indices=tensor([ 0, 44, 103, ..., 2499905, + 2499956, 2500000]), + col_indices=tensor([ 226, 2395, 3856, ..., 46208, 48736, 49649]), + values=tensor([0.2794, 0.3289, 0.9047, ..., 0.2004, 0.4257, 0.7682]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.6467, 0.8674, 0.4268, ..., 0.4389, 0.3661, 0.7175]) +tensor([0.4960, 0.6719, 0.9417, ..., 0.9330, 0.7654, 0.9120]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -16,19 +16,19 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 3.0004022121429443 seconds +Time: 3.0015740394592285 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '6999', '-ss', '50000', '-sd', '0.001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 20.897379159927368} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '3498', '-ss', '50000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.43606948852539} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 48, 100, ..., 2499890, - 2499936, 2500000]), - col_indices=tensor([ 2219, 5577, 6326, ..., 48217, 48582, 49573]), - values=tensor([0.8831, 0.9308, 0.4380, ..., 0.8264, 0.2520, 0.0049]), +tensor(crow_indices=tensor([ 0, 53, 101, ..., 2499890, + 2499947, 2500000]), + col_indices=tensor([ 1, 302, 356, ..., 47860, 48391, 48616]), + values=tensor([0.1949, 0.9610, 0.6433, ..., 0.8236, 0.0074, 0.9971]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.1681, 0.1881, 0.9636, ..., 0.5462, 0.5477, 0.9460]) +tensor([0.6285, 0.6234, 0.6444, ..., 0.5791, 0.7727, 0.1804]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -36,16 +36,16 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 20.897379159927368 seconds +Time: 10.43606948852539 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 48, 100, ..., 2499890, - 2499936, 2500000]), - col_indices=tensor([ 2219, 5577, 6326, ..., 48217, 48582, 49573]), - values=tensor([0.8831, 0.9308, 0.4380, ..., 0.8264, 0.2520, 0.0049]), +tensor(crow_indices=tensor([ 0, 53, 101, ..., 2499890, + 2499947, 2500000]), + col_indices=tensor([ 1, 302, 356, ..., 47860, 48391, 48616]), + values=tensor([0.1949, 0.9610, 0.6433, ..., 0.8236, 0.0074, 0.9971]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.1681, 0.1881, 0.9636, ..., 0.5462, 0.5477, 0.9460]) +tensor([0.6285, 0.6234, 0.6444, ..., 0.5791, 0.7727, 0.1804]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -53,13 +53,13 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 20.897379159927368 seconds +Time: 10.43606948852539 seconds -[39.8, 38.87, 39.22, 38.93, 38.9, 38.99, 38.89, 38.48, 38.43, 39.67] -[70.47] -23.88610005378723 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 6999, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 20.897379159927368, 'TIME_S_1KI': 2.9857664180493457, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1683.2534707903862, 'W': 70.47} -[39.8, 38.87, 39.22, 38.93, 38.9, 38.99, 38.89, 38.48, 38.43, 39.67, 39.45, 38.51, 39.01, 38.47, 38.42, 38.44, 39.43, 38.73, 38.56, 39.45] -699.4649999999999 -34.97324999999999 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 6999, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 20.897379159927368, 'TIME_S_1KI': 2.9857664180493457, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1683.2534707903862, 'W': 70.47, 'J_1KI': 240.49913856127822, 'W_1KI': 10.068581225889414, 'W_D': 35.496750000000006, 'J_D': 847.8789220842721, 'W_D_1KI': 5.071688812687528, 'J_D_1KI': 0.724630491882773} +[38.98, 38.56, 38.59, 38.25, 38.75, 38.31, 38.43, 38.27, 38.33, 43.32] +[69.66] +13.472422122955322 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3498, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.43606948852539, 'TIME_S_1KI': 2.983438961842593, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 938.4889250850676, 'W': 69.66} +[38.98, 38.56, 38.59, 38.25, 38.75, 38.31, 38.43, 38.27, 38.33, 43.32, 39.04, 38.73, 38.9, 38.87, 38.44, 45.59, 38.97, 38.44, 40.32, 38.73] +705.785 +35.289249999999996 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3498, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.43606948852539, 'TIME_S_1KI': 2.983438961842593, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 938.4889250850676, 'W': 69.66, 'J_1KI': 268.29300316897303, 'W_1KI': 19.914236706689536, 'W_D': 34.37075, 'J_D': 463.0572526825667, 'W_D_1KI': 9.82582904516867, 'J_D_1KI': 2.8089848613975614} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_50000_1e-05.json new file mode 100644 index 0000000..5c43412 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_50000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 35695, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.507647275924683, "TIME_S_1KI": 0.2943730851918947, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 842.3661928725243, "W": 64.41, "J_1KI": 23.598996858734395, "W_1KI": 1.8044544053789044, "W_D": 29.134750000000004, "J_D": 381.0297847817541, "W_D_1KI": 0.8162137554279313, "J_D_1KI": 0.02286633297178684} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_50000_1e-05.output similarity index 58% rename from pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_1e-05.output rename to pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_50000_1e-05.output index b01c98d..c6e8d71 100644 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_1e-05.output +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_50000_1e-05.output @@ -1,13 +1,13 @@ ['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.31334519386291504} +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.3123207092285156} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 25000, 25000, 25000]), - col_indices=tensor([33825, 38381, 10898, ..., 16973, 5749, 12690]), - values=tensor([0.0927, 0.2822, 0.8971, ..., 0.4021, 0.1329, 0.8374]), +tensor(crow_indices=tensor([ 0, 3, 3, ..., 25000, 25000, 25000]), + col_indices=tensor([ 1731, 4163, 39043, ..., 48142, 1105, 32715]), + values=tensor([0.9730, 0.5233, 0.5883, ..., 0.0098, 0.9466, 0.3610]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.5931, 0.9062, 0.9804, ..., 0.6131, 0.7776, 0.6003]) +tensor([0.3233, 0.5001, 0.4757, ..., 0.9452, 0.0190, 0.8013]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -15,18 +15,18 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 0.31334519386291504 seconds +Time: 0.3123207092285156 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '67018', '-ss', '50000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 19.641794443130493} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '33619', '-ss', '50000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.88913083076477} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 24999, 25000, 25000]), - col_indices=tensor([16677, 19807, 33770, ..., 39614, 2095, 28370]), - values=tensor([0.9725, 0.0867, 0.0870, ..., 0.5654, 0.5916, 0.4400]), + col_indices=tensor([10235, 29693, 19116, ..., 40289, 44691, 23523]), + values=tensor([0.1639, 0.2137, 0.2836, ..., 0.1546, 0.8297, 0.2686]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.2944, 0.4597, 0.6320, ..., 0.6057, 0.1898, 0.1566]) +tensor([0.0511, 0.8204, 0.3831, ..., 0.1304, 0.0964, 0.0598]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -34,18 +34,18 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 19.641794443130493 seconds +Time: 9.88913083076477 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '71652', '-ss', '50000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.077060222625732} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '35695', '-ss', '50000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.507647275924683} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 3, ..., 24998, 24998, 25000]), - col_indices=tensor([32921, 41293, 48516, ..., 42072, 6133, 17318]), - values=tensor([0.8803, 0.8660, 0.8154, ..., 0.4754, 0.7296, 0.3650]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 24999, 24999, 25000]), + col_indices=tensor([19065, 20351, 39842, ..., 40423, 9509, 47347]), + values=tensor([0.9158, 0.3839, 0.2352, ..., 0.6644, 0.6974, 0.4594]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.6139, 0.5193, 0.8626, ..., 0.9070, 0.3972, 0.6619]) +tensor([0.0381, 0.0022, 0.0479, ..., 0.9299, 0.2975, 0.9449]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -53,15 +53,15 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 21.077060222625732 seconds +Time: 10.507647275924683 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 3, ..., 24998, 24998, 25000]), - col_indices=tensor([32921, 41293, 48516, ..., 42072, 6133, 17318]), - values=tensor([0.8803, 0.8660, 0.8154, ..., 0.4754, 0.7296, 0.3650]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 24999, 24999, 25000]), + col_indices=tensor([19065, 20351, 39842, ..., 40423, 9509, 47347]), + values=tensor([0.9158, 0.3839, 0.2352, ..., 0.6644, 0.6974, 0.4594]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.6139, 0.5193, 0.8626, ..., 0.9070, 0.3972, 0.6619]) +tensor([0.0381, 0.0022, 0.0479, ..., 0.9299, 0.2975, 0.9449]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -69,13 +69,13 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 21.077060222625732 seconds +Time: 10.507647275924683 seconds -[65.71, 63.81, 50.02, 60.96, 68.38, 61.87, 58.96, 64.5, 60.78, 39.15] -[73.31] -23.674875736236572 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 71652, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.077060222625732, 'TIME_S_1KI': 0.29415871465731214, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1735.6051402235032, 'W': 73.31} -[65.71, 63.81, 50.02, 60.96, 68.38, 61.87, 58.96, 64.5, 60.78, 39.15, 39.3, 40.05, 38.69, 39.1, 39.07, 38.76, 39.16, 39.36, 38.75, 39.09] -893.845 -44.69225 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 71652, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.077060222625732, 'TIME_S_1KI': 0.29415871465731214, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1735.6051402235032, 'W': 73.31, 'J_1KI': 24.222703347059444, 'W_1KI': 1.0231396192709206, 'W_D': 28.61775, 'J_D': 677.5216751006842, 'W_D_1KI': 0.39939917936694025, 'J_D_1KI': 0.005574152561923467} +[39.22, 44.39, 40.14, 38.47, 39.94, 38.41, 38.49, 38.91, 39.41, 38.82] +[64.41] +13.078189611434937 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 35695, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.507647275924683, 'TIME_S_1KI': 0.2943730851918947, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 842.3661928725243, 'W': 64.41} +[39.22, 44.39, 40.14, 38.47, 39.94, 38.41, 38.49, 38.91, 39.41, 38.82, 39.08, 38.6, 38.48, 38.48, 38.48, 38.38, 38.83, 39.42, 38.84, 38.55] +705.5049999999999 +35.27524999999999 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 35695, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.507647275924683, 'TIME_S_1KI': 0.2943730851918947, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 842.3661928725243, 'W': 64.41, 'J_1KI': 23.598996858734395, 'W_1KI': 1.8044544053789044, 'W_D': 29.134750000000004, 'J_D': 381.0297847817541, 'W_D_1KI': 0.8162137554279313, 'J_D_1KI': 0.02286633297178684} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.0001.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.0001.json new file mode 100644 index 0000000..cbaf9ec --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 478217, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.855157613754272, "TIME_S_1KI": 0.022699229876299402, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 856.2491577148438, "W": 64.87, "J_1KI": 1.7905033859416202, "W_1KI": 0.1356497155057223, "W_D": 29.804500000000004, "J_D": 393.40339172363286, "W_D_1KI": 0.06232421683043473, "J_D_1KI": 0.00013032622602382335} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.0001.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.0001.output new file mode 100644 index 0000000..dc99150 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.0001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.03418374061584473} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 2500, 2500, 2500]), + col_indices=tensor([3258, 3666, 785, ..., 592, 2528, 4295]), + values=tensor([0.0745, 0.3346, 0.7433, ..., 0.4561, 0.1450, 0.7729]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.6815, 0.4251, 0.0154, ..., 0.8636, 0.4620, 0.2584]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 0.03418374061584473 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '307163', '-ss', '5000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 6.744239568710327} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 2, ..., 2500, 2500, 2500]), + col_indices=tensor([1557, 2371, 1241, ..., 4745, 784, 3444]), + values=tensor([0.6224, 0.1480, 0.3479, ..., 0.3226, 0.4259, 0.8584]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.6292, 0.0071, 0.7726, ..., 0.8443, 0.3847, 0.4326]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 6.744239568710327 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '478217', '-ss', '5000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.855157613754272} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 2499, 2499, 2500]), + col_indices=tensor([ 537, 942, 2250, ..., 4421, 3640, 3689]), + values=tensor([0.2431, 0.3591, 0.7204, ..., 0.2868, 0.0163, 0.2334]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.9258, 0.9006, 0.7252, ..., 0.7255, 0.3779, 0.2202]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 10.855157613754272 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 2499, 2499, 2500]), + col_indices=tensor([ 537, 942, 2250, ..., 4421, 3640, 3689]), + values=tensor([0.2431, 0.3591, 0.7204, ..., 0.2868, 0.0163, 0.2334]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.9258, 0.9006, 0.7252, ..., 0.7255, 0.3779, 0.2202]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 10.855157613754272 seconds + +[39.25, 38.14, 38.36, 38.18, 38.58, 38.56, 38.4, 38.47, 38.48, 38.68] +[64.87] +13.199462890625 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 478217, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.855157613754272, 'TIME_S_1KI': 0.022699229876299402, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 856.2491577148438, 'W': 64.87} +[39.25, 38.14, 38.36, 38.18, 38.58, 38.56, 38.4, 38.47, 38.48, 38.68, 39.07, 38.8, 38.23, 39.53, 38.54, 38.21, 38.59, 38.49, 41.46, 47.58] +701.31 +35.0655 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 478217, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.855157613754272, 'TIME_S_1KI': 0.022699229876299402, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 856.2491577148438, 'W': 64.87, 'J_1KI': 1.7905033859416202, 'W_1KI': 0.1356497155057223, 'W_D': 29.804500000000004, 'J_D': 393.40339172363286, 'W_D_1KI': 0.06232421683043473, 'J_D_1KI': 0.00013032622602382335} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.001.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.001.json new file mode 100644 index 0000000..34a1b0c --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 248678, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.619725465774536, "TIME_S_1KI": 0.04270472444596843, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 878.5904247951509, "W": 65.93, "J_1KI": 3.5330444381696444, "W_1KI": 0.2651219649506591, "W_D": 31.137750000000004, "J_D": 414.9450781080723, "W_D_1KI": 0.12521312701565881, "J_D_1KI": 0.0005035150958897} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.001.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.001.output new file mode 100644 index 0000000..c454cf5 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.05426168441772461} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 9, ..., 24991, 24997, 25000]), + col_indices=tensor([1287, 1316, 2359, ..., 1751, 2298, 3529]), + values=tensor([0.1773, 0.9664, 0.4947, ..., 0.2806, 0.9364, 0.2474]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.5449, 0.4697, 0.1251, ..., 0.6031, 0.3711, 0.9109]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 0.05426168441772461 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '193506', '-ss', '5000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 8.17044973373413} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 7, 10, ..., 24989, 24995, 25000]), + col_indices=tensor([ 563, 1432, 1628, ..., 3910, 4925, 4964]), + values=tensor([0.0779, 0.2473, 0.4860, ..., 0.8752, 0.7145, 0.0936]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.5862, 0.8689, 0.7521, ..., 0.3378, 0.8388, 0.0430]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 8.17044973373413 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '248678', '-ss', '5000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.619725465774536} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 5, ..., 24990, 24993, 25000]), + col_indices=tensor([ 49, 355, 745, ..., 2877, 3597, 4425]), + values=tensor([0.2389, 0.4883, 0.4431, ..., 0.9568, 0.0569, 0.8170]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.9647, 0.9839, 0.1030, ..., 0.7979, 0.9168, 0.5702]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 10.619725465774536 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 5, ..., 24990, 24993, 25000]), + col_indices=tensor([ 49, 355, 745, ..., 2877, 3597, 4425]), + values=tensor([0.2389, 0.4883, 0.4431, ..., 0.9568, 0.0569, 0.8170]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.9647, 0.9839, 0.1030, ..., 0.7979, 0.9168, 0.5702]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 10.619725465774536 seconds + +[39.55, 38.57, 38.5, 38.49, 39.15, 38.5, 38.44, 38.52, 38.74, 38.66] +[65.93] +13.326109886169434 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 248678, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.619725465774536, 'TIME_S_1KI': 0.04270472444596843, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 878.5904247951509, 'W': 65.93} +[39.55, 38.57, 38.5, 38.49, 39.15, 38.5, 38.44, 38.52, 38.74, 38.66, 39.58, 38.56, 38.38, 38.87, 38.31, 38.44, 38.39, 38.74, 38.99, 38.72] +695.845 +34.79225 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 248678, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.619725465774536, 'TIME_S_1KI': 0.04270472444596843, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 878.5904247951509, 'W': 65.93, 'J_1KI': 3.5330444381696444, 'W_1KI': 0.2651219649506591, 'W_D': 31.137750000000004, 'J_D': 414.9450781080723, 'W_D_1KI': 0.12521312701565881, 'J_D_1KI': 0.0005035150958897} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.01.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.01.json new file mode 100644 index 0000000..163b6dc --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 39651, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.074631690979004, "TIME_S_1KI": 0.25408266351363157, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 909.2396620059013, "W": 71.91, "J_1KI": 22.931065093084698, "W_1KI": 1.8135734281607019, "W_D": 21.342999999999996, "J_D": 269.8637478263378, "W_D_1KI": 0.5382714181231241, "J_D_1KI": 0.013575229328973395} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.01.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.01.output new file mode 100644 index 0000000..5c37580 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.01.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.26480770111083984} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 43, 97, ..., 249898, 249949, + 250000]), + col_indices=tensor([ 46, 106, 224, ..., 4804, 4890, 4986]), + values=tensor([0.9512, 0.1564, 0.8337, ..., 0.0764, 0.6147, 0.8806]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.5067, 0.1013, 0.0742, ..., 0.2212, 0.5429, 0.9437]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 0.26480770111083984 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '39651', '-ss', '5000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.074631690979004} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 49, 105, ..., 249900, 249947, + 250000]), + col_indices=tensor([ 129, 155, 285, ..., 4713, 4736, 4825]), + values=tensor([0.9050, 0.4779, 0.3101, ..., 0.9077, 0.5485, 0.2382]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.7723, 0.0685, 0.7362, ..., 0.7986, 0.1054, 0.6909]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 10.074631690979004 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 49, 105, ..., 249900, 249947, + 250000]), + col_indices=tensor([ 129, 155, 285, ..., 4713, 4736, 4825]), + values=tensor([0.9050, 0.4779, 0.3101, ..., 0.9077, 0.5485, 0.2382]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.7723, 0.0685, 0.7362, ..., 0.7986, 0.1054, 0.6909]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 10.074631690979004 seconds + +[39.13, 38.4, 39.4, 38.95, 39.01, 38.64, 38.39, 62.19, 64.39, 63.32] +[71.91] +12.644133806228638 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 39651, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.074631690979004, 'TIME_S_1KI': 0.25408266351363157, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 909.2396620059013, 'W': 71.91} +[39.13, 38.4, 39.4, 38.95, 39.01, 38.64, 38.39, 62.19, 64.39, 63.32, 68.24, 64.54, 66.6, 65.57, 64.04, 68.19, 66.94, 66.24, 69.2, 70.61] +1011.34 +50.567 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 39651, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.074631690979004, 'TIME_S_1KI': 0.25408266351363157, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 909.2396620059013, 'W': 71.91, 'J_1KI': 22.931065093084698, 'W_1KI': 1.8135734281607019, 'W_D': 21.342999999999996, 'J_D': 269.8637478263378, 'W_D_1KI': 0.5382714181231241, 'J_D_1KI': 0.013575229328973395} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.05.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.05.json new file mode 100644 index 0000000..c6f366b --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 8104, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.399449348449707, "TIME_S_1KI": 1.2832489324345642, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 868.1994806170463, "W": 65.85, "J_1KI": 107.132216265677, "W_1KI": 8.125616979269497, "W_D": 30.541749999999993, "J_D": 402.67777505141487, "W_D_1KI": 3.768725320829219, "J_D_1KI": 0.46504507907566867} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.05.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.05.output new file mode 100644 index 0000000..440ed84 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.05.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 1.2955126762390137} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 222, 488, ..., 1249497, + 1249743, 1250000]), + col_indices=tensor([ 0, 1, 24, ..., 4925, 4934, 4978]), + values=tensor([0.4956, 0.3294, 0.5952, ..., 0.4990, 0.9373, 0.9148]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.4962, 0.1920, 0.2421, ..., 0.8601, 0.2392, 0.4151]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 1.2955126762390137 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '8104', '-ss', '5000', '-sd', '0.05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.399449348449707} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 238, 495, ..., 1249467, + 1249713, 1250000]), + col_indices=tensor([ 4, 6, 45, ..., 4913, 4952, 4965]), + values=tensor([0.6573, 0.3725, 0.2540, ..., 0.9752, 0.8782, 0.5831]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.7880, 0.7423, 0.8544, ..., 0.3557, 0.5396, 0.2540]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 10.399449348449707 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 238, 495, ..., 1249467, + 1249713, 1250000]), + col_indices=tensor([ 4, 6, 45, ..., 4913, 4952, 4965]), + values=tensor([0.6573, 0.3725, 0.2540, ..., 0.9752, 0.8782, 0.5831]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.7880, 0.7423, 0.8544, ..., 0.3557, 0.5396, 0.2540]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 10.399449348449707 seconds + +[39.35, 38.88, 44.16, 39.47, 38.8, 39.17, 38.52, 38.75, 38.59, 39.07] +[65.85] +13.184502363204956 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 8104, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.399449348449707, 'TIME_S_1KI': 1.2832489324345642, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 868.1994806170463, 'W': 65.85} +[39.35, 38.88, 44.16, 39.47, 38.8, 39.17, 38.52, 38.75, 38.59, 39.07, 39.04, 39.89, 38.99, 38.43, 38.88, 38.64, 38.45, 39.36, 39.15, 38.61] +706.165 +35.30825 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 8104, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.399449348449707, 'TIME_S_1KI': 1.2832489324345642, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 868.1994806170463, 'W': 65.85, 'J_1KI': 107.132216265677, 'W_1KI': 8.125616979269497, 'W_D': 30.541749999999993, 'J_D': 402.67777505141487, 'W_D_1KI': 3.768725320829219, 'J_D_1KI': 0.46504507907566867} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.1.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.1.json new file mode 100644 index 0000000..f20d05f --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.1.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 3588, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.469439029693604, "TIME_S_1KI": 2.9179038544296554, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 926.2283216476441, "W": 68.56, "J_1KI": 258.1461320088194, "W_1KI": 19.108138238573023, "W_D": 33.73800000000001, "J_D": 455.7918774175645, "W_D_1KI": 9.403010033444819, "J_D_1KI": 2.620682840982391} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.1.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.1.output new file mode 100644 index 0000000..3e39a46 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_0.1.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.1', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 2.925701141357422} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 485, 1004, ..., 2498982, + 2499482, 2500000]), + col_indices=tensor([ 18, 27, 28, ..., 4963, 4979, 4987]), + values=tensor([0.5744, 0.1591, 0.4039, ..., 0.3146, 0.5536, 0.6554]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.8562, 0.0559, 0.5751, ..., 0.9013, 0.4689, 0.3374]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 2.925701141357422 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '3588', '-ss', '5000', '-sd', '0.1', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.469439029693604} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 486, 1006, ..., 2498987, + 2499524, 2500000]), + col_indices=tensor([ 6, 12, 25, ..., 4979, 4985, 4986]), + values=tensor([0.9526, 0.5714, 0.7457, ..., 0.5995, 0.2741, 0.0768]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.9940, 0.0288, 0.0030, ..., 0.3299, 0.0903, 0.2227]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 10.469439029693604 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 486, 1006, ..., 2498987, + 2499524, 2500000]), + col_indices=tensor([ 6, 12, 25, ..., 4979, 4985, 4986]), + values=tensor([0.9526, 0.5714, 0.7457, ..., 0.5995, 0.2741, 0.0768]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.9940, 0.0288, 0.0030, ..., 0.3299, 0.0903, 0.2227]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 10.469439029693604 seconds + +[39.61, 38.42, 39.72, 38.79, 38.63, 38.61, 38.72, 38.24, 38.41, 38.4] +[68.56] +13.509747982025146 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3588, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.469439029693604, 'TIME_S_1KI': 2.9179038544296554, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 926.2283216476441, 'W': 68.56} +[39.61, 38.42, 39.72, 38.79, 38.63, 38.61, 38.72, 38.24, 38.41, 38.4, 39.84, 38.26, 38.74, 38.59, 38.81, 38.31, 38.94, 38.63, 38.58, 38.23] +696.4399999999999 +34.821999999999996 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3588, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.469439029693604, 'TIME_S_1KI': 2.9179038544296554, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 926.2283216476441, 'W': 68.56, 'J_1KI': 258.1461320088194, 'W_1KI': 19.108138238573023, 'W_D': 33.73800000000001, 'J_D': 455.7918774175645, 'W_D_1KI': 9.403010033444819, 'J_D_1KI': 2.620682840982391} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_1e-05.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_1e-05.json new file mode 100644 index 0000000..d170a6b --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 565598, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.406220436096191, "TIME_S_1KI": 0.018398616041952396, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 847.5254345631599, "W": 64.13, "J_1KI": 1.498459037272338, "W_1KI": 0.11338441790812556, "W_D": 29.180249999999987, "J_D": 385.6386100407241, "W_D_1KI": 0.05159185499241509, "J_D_1KI": 9.121647352433192e-05} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_1e-05.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_1e-05.output new file mode 100644 index 0000000..4a0b8d8 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_10_10_10_synthetic_5000_1e-05.output @@ -0,0 +1,329 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.055680274963378906} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([4927, 850, 790, 511, 1, 4275, 3659, 3202, 4099, + 3346, 1589, 716, 4620, 4989, 3861, 2882, 2487, 356, + 3163, 4196, 2032, 713, 507, 4615, 4269, 4035, 1320, + 655, 4926, 1128, 2992, 3058, 2439, 4007, 3555, 1710, + 2353, 655, 2875, 397, 2586, 4948, 858, 1089, 783, + 1767, 1975, 2378, 3541, 1407, 868, 4760, 4954, 4948, + 2154, 3756, 192, 4715, 2175, 343, 3413, 855, 3051, + 4256, 4765, 3143, 3774, 3357, 1362, 3915, 3187, 3177, + 3730, 4948, 4331, 2972, 3797, 963, 1487, 1791, 3014, + 3104, 4150, 4779, 2304, 1176, 1597, 3268, 4290, 3867, + 1778, 4097, 4190, 1835, 2167, 1131, 4492, 3907, 2098, + 4204, 4273, 3262, 2220, 4871, 3645, 4702, 4344, 3548, + 398, 3919, 762, 3209, 941, 2587, 4871, 1294, 846, + 4270, 1587, 490, 3776, 205, 4893, 4944, 3389, 1241, + 319, 1205, 149, 2679, 835, 185, 1679, 305, 803, + 3987, 4919, 1049, 2984, 150, 2222, 3548, 4559, 2082, + 773, 3809, 333, 4072, 2819, 773, 1940, 3544, 2429, + 4213, 3874, 3370, 3390, 3737, 2306, 2576, 3944, 3962, + 2700, 3672, 1959, 2924, 1160, 2820, 201, 3021, 1400, + 2786, 3009, 3104, 1799, 1722, 1307, 4435, 3240, 3490, + 3514, 3928, 2870, 339, 280, 3127, 278, 43, 1063, + 3176, 1262, 2341, 4542, 3316, 4835, 2103, 3750, 2839, + 1642, 4880, 4963, 1368, 4924, 2484, 1087, 26, 3186, + 4671, 3346, 1979, 748, 800, 144, 54, 3361, 3955, + 4948, 2768, 2175, 216, 0, 934, 3902, 3054, 854, + 1551, 310, 382, 1750, 779, 4286, 2768, 4550, 2371, + 2027, 2115, 2210, 4053, 3461, 4944, 349, 2236, 2467, + 2141, 1730, 73, 1349, 3773, 2561, 2961]), + values=tensor([0.0052, 0.9685, 0.5552, 0.5554, 0.3769, 0.8417, 0.2484, + 0.8557, 0.2810, 0.1770, 0.3815, 0.5491, 0.2804, 0.7014, + 0.4668, 0.6665, 0.6885, 0.4406, 0.0793, 0.0505, 0.2168, + 0.2768, 0.8793, 0.5292, 0.6124, 0.8331, 0.8520, 0.8953, + 0.2979, 0.9092, 0.1021, 0.9939, 0.8355, 0.6875, 0.6744, + 0.7797, 0.7132, 0.1964, 0.7787, 0.7395, 0.3653, 0.6907, + 0.2135, 0.4345, 0.6550, 0.1169, 0.1290, 0.6211, 0.7886, + 0.4978, 0.8807, 0.4515, 0.8365, 0.6929, 0.0657, 0.2646, + 0.3895, 0.0998, 0.4953, 0.3952, 0.3596, 0.9459, 0.2141, + 0.1718, 0.1717, 0.3607, 0.1199, 0.7175, 0.8124, 0.4557, + 0.0741, 0.2089, 0.8742, 0.1642, 0.0425, 0.9409, 0.3852, + 0.8648, 0.0435, 0.7984, 0.2433, 0.6033, 0.1259, 0.5531, + 0.2437, 0.6326, 0.4382, 0.6680, 0.3511, 0.0596, 0.0831, + 0.8185, 0.6864, 0.6621, 0.0203, 0.2915, 0.7632, 0.4015, + 0.1622, 0.5710, 0.1068, 0.3154, 0.7156, 0.1137, 0.7110, + 0.7922, 0.6817, 0.4208, 0.8226, 0.6751, 0.5470, 0.6580, + 0.9115, 0.2395, 0.8631, 0.8946, 0.8633, 0.9964, 0.1781, + 0.0456, 0.7692, 0.7333, 0.7567, 0.4246, 0.7150, 0.3292, + 0.8102, 0.3763, 0.7077, 0.9596, 0.7799, 0.8995, 0.4237, + 0.8044, 0.0028, 0.6094, 0.0822, 0.3516, 0.1473, 0.3747, + 0.2994, 0.6148, 0.9715, 0.8176, 0.8036, 0.4058, 0.2036, + 0.3753, 0.4509, 0.2117, 0.5735, 0.9721, 0.6964, 0.3733, + 0.2389, 0.5980, 0.7861, 0.1124, 0.7224, 0.2736, 0.1517, + 0.1578, 0.1015, 0.9540, 0.9804, 0.5457, 0.1059, 0.7649, + 0.7606, 0.0359, 0.3684, 0.4744, 0.3881, 0.5669, 0.6894, + 0.8642, 0.1190, 0.1465, 0.4614, 0.1113, 0.6697, 0.9048, + 0.9025, 0.8550, 0.3322, 0.9950, 0.8601, 0.6688, 0.9556, + 0.6649, 0.0390, 0.6075, 0.3304, 0.8947, 0.7252, 0.7691, + 0.7526, 0.8639, 0.4721, 0.9403, 0.4391, 0.6933, 0.1244, + 0.9914, 0.2708, 0.4335, 0.8597, 0.4714, 0.6817, 0.8948, + 0.1646, 0.6199, 0.1780, 0.7119, 0.3391, 0.9514, 0.4224, + 0.9358, 0.1033, 0.8786, 0.4834, 0.9743, 0.3774, 0.6356, + 0.0241, 0.9866, 0.3267, 0.8949, 0.2494, 0.9412, 0.8442, + 0.7104, 0.1721, 0.4102, 0.7763, 0.4723, 0.0485, 0.1320, + 0.4711, 0.1941, 0.9435, 0.7325, 0.9932, 0.9457, 0.1546, + 0.7522, 0.6262, 0.4856, 0.7356, 0.9269]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.4907, 0.7631, 0.4016, ..., 0.1364, 0.7839, 0.0874]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 0.055680274963378906 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '188576', '-ss', '5000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 3.5007991790771484} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([1945, 1023, 4059, 2482, 4205, 303, 4777, 854, 2860, + 3128, 1003, 4735, 2788, 4977, 4888, 1184, 1747, 1500, + 1488, 4664, 4234, 267, 2917, 1657, 2512, 4827, 4561, + 702, 1237, 3411, 3165, 543, 1337, 83, 2870, 335, + 3814, 4999, 149, 4519, 2422, 4719, 798, 1942, 1622, + 3623, 4934, 3536, 2679, 1799, 4397, 3267, 2356, 3096, + 939, 547, 3544, 3068, 871, 1836, 3638, 2030, 3514, + 3175, 329, 4905, 2001, 311, 2973, 4563, 1817, 1048, + 929, 4023, 2988, 4454, 1785, 1847, 1514, 4852, 2649, + 3063, 1763, 4293, 987, 4530, 3247, 562, 3333, 1092, + 3107, 2490, 531, 4875, 990, 2781, 1158, 1668, 810, + 4571, 1453, 4830, 4987, 542, 1478, 3139, 2797, 4337, + 4005, 1729, 1210, 1760, 2876, 492, 717, 4559, 1380, + 2637, 1249, 2077, 2637, 1153, 3843, 4108, 3845, 3286, + 4892, 4744, 3227, 2586, 83, 679, 2941, 1087, 894, + 781, 3420, 957, 2881, 2363, 2348, 2617, 2659, 1938, + 1995, 162, 900, 4007, 2523, 4470, 4394, 2657, 1289, + 3860, 3369, 1091, 538, 136, 430, 3091, 862, 1648, + 643, 490, 4863, 2809, 1365, 1101, 1331, 516, 1710, + 2693, 2751, 328, 677, 727, 1218, 3858, 2408, 4041, + 4770, 1765, 2463, 3676, 4301, 3125, 2410, 3828, 4357, + 3454, 2697, 3913, 3850, 2386, 3319, 2739, 967, 2681, + 2619, 1855, 848, 4820, 42, 3478, 2615, 4379, 3969, + 318, 169, 4793, 3405, 1411, 1550, 4436, 2892, 2747, + 2076, 4350, 3765, 3931, 2191, 4279, 3507, 1647, 3640, + 24, 2376, 2290, 3244, 118, 4586, 1505, 1122, 1321, + 3378, 2663, 1121, 2193, 4996, 4050, 1149, 1171, 674, + 98, 868, 2491, 2360, 3984, 4243, 3717]), + values=tensor([0.8923, 0.2170, 0.4055, 0.4662, 0.6388, 0.1130, 0.3558, + 0.8111, 0.3477, 0.3800, 0.1079, 0.8330, 0.9521, 0.2703, + 0.3856, 0.0011, 0.5451, 0.8270, 0.6026, 0.6871, 0.2987, + 0.0297, 0.9583, 0.5169, 0.4017, 0.2171, 0.4756, 0.5607, + 0.0472, 0.1280, 0.3544, 0.8497, 0.3044, 0.7975, 0.4038, + 0.2219, 0.0782, 0.3625, 0.4265, 0.7585, 0.5674, 0.8855, + 0.8283, 0.3415, 0.0517, 0.5793, 0.6358, 0.0955, 0.8953, + 0.4821, 0.5628, 0.3527, 0.5347, 0.9985, 0.4438, 0.9458, + 0.8619, 0.6814, 0.4148, 0.2273, 0.3882, 0.1003, 0.0543, + 0.4150, 0.9185, 0.0166, 0.8297, 0.5190, 0.1538, 0.6141, + 0.2637, 0.0598, 0.8180, 0.7469, 0.0453, 0.5538, 0.8701, + 0.6469, 0.0982, 0.7176, 0.0465, 0.3670, 0.5104, 0.4937, + 0.2148, 0.7740, 0.3290, 0.8672, 0.1889, 0.4020, 0.0735, + 0.7646, 0.0051, 0.2270, 0.0781, 0.9331, 0.9272, 0.2719, + 0.1297, 0.3201, 0.5551, 0.7162, 0.8369, 0.6662, 0.1046, + 0.5488, 0.7113, 0.7847, 0.2788, 0.8185, 0.6566, 0.4871, + 0.5299, 0.6218, 0.8570, 0.1819, 0.5175, 0.1532, 0.4515, + 0.3371, 0.8231, 0.7575, 0.8237, 0.2542, 0.7977, 0.3121, + 0.6201, 0.3327, 0.3804, 0.3314, 0.3106, 0.6784, 0.7520, + 0.4798, 0.5547, 0.5647, 0.4448, 0.9580, 0.7896, 0.4903, + 0.1080, 0.8992, 0.5980, 0.8970, 0.6636, 0.7995, 0.6348, + 0.1663, 0.2370, 0.3831, 0.4667, 0.7285, 0.6074, 0.1379, + 0.1650, 0.4365, 0.1346, 0.0493, 0.9094, 0.8343, 0.5503, + 0.6878, 0.9726, 0.3666, 0.9441, 0.6828, 0.4331, 0.9621, + 0.0173, 0.9911, 0.0894, 0.4748, 0.0217, 0.1933, 0.3591, + 0.5607, 0.7065, 0.9013, 0.5608, 0.5400, 0.0070, 0.9469, + 0.6275, 0.4975, 0.8745, 0.1132, 0.5527, 0.6696, 0.7603, + 0.2454, 0.5447, 0.0979, 0.6116, 0.0408, 0.5683, 0.5779, + 0.1881, 0.0095, 0.3924, 0.6268, 0.9119, 0.2320, 0.0019, + 0.0175, 0.8569, 0.7934, 0.3311, 0.4757, 0.7819, 0.0089, + 0.0688, 0.2934, 0.7037, 0.0307, 0.4797, 0.2771, 0.4270, + 0.8332, 0.6054, 0.8327, 0.8285, 0.2236, 0.0301, 0.9022, + 0.2426, 0.5397, 0.0668, 0.3464, 0.5399, 0.2689, 0.4924, + 0.7416, 0.9953, 0.1583, 0.4326, 0.2863, 0.4395, 0.4620, + 0.4220, 0.0019, 0.8210, 0.7450, 0.1671, 0.2691, 0.2129, + 0.6046, 0.1184, 0.5733, 0.5791, 0.6764]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.1655, 0.0894, 0.3335, ..., 0.5896, 0.4748, 0.7424]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 3.5007991790771484 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '565598', '-ss', '5000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.406220436096191} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 249, 249, 250]), + col_indices=tensor([3711, 2509, 1480, 2246, 4155, 2306, 315, 3219, 781, + 3895, 3381, 2148, 1468, 1317, 2648, 3838, 486, 2691, + 4269, 1833, 4130, 2494, 2935, 4534, 1404, 631, 2237, + 3119, 2408, 4857, 3452, 3551, 652, 1979, 294, 2907, + 4341, 963, 1166, 1723, 2311, 2016, 4067, 2454, 3108, + 4422, 594, 1090, 1798, 1231, 1189, 3083, 3007, 2134, + 3681, 526, 4251, 1258, 2420, 4062, 326, 2947, 386, + 3623, 4002, 1015, 2488, 2914, 344, 749, 2046, 3369, + 2183, 4810, 804, 4709, 4216, 4774, 3285, 1736, 1631, + 1116, 2085, 4390, 2715, 1633, 1339, 4203, 1468, 3776, + 4650, 1964, 1644, 3484, 556, 1113, 359, 2615, 4829, + 4748, 1322, 159, 1685, 3154, 4693, 4031, 1252, 1027, + 678, 4884, 997, 1416, 284, 2922, 2849, 4079, 606, + 470, 1943, 1148, 4302, 4930, 4799, 1057, 474, 2030, + 3336, 862, 2916, 4504, 1767, 3103, 2022, 3927, 3702, + 2754, 2164, 4564, 2862, 341, 1369, 1305, 4261, 2181, + 1646, 3936, 3010, 930, 4647, 2915, 4405, 3874, 1229, + 1875, 855, 1323, 963, 2816, 4148, 4829, 4066, 4913, + 691, 4066, 1415, 2632, 3157, 1676, 346, 4763, 246, + 2345, 1525, 4678, 2542, 2753, 3445, 3912, 2714, 1361, + 733, 3308, 420, 1698, 1705, 3596, 4607, 2749, 2452, + 4692, 611, 3476, 336, 999, 2085, 3920, 2039, 3357, + 4270, 3263, 3475, 3737, 446, 1786, 2984, 2510, 2736, + 3086, 1080, 3428, 4087, 375, 2103, 1319, 4228, 2727, + 4839, 645, 2259, 3905, 3083, 2174, 1253, 1258, 2465, + 3785, 2824, 24, 1918, 2335, 918, 1175, 3575, 2352, + 4164, 2100, 1603, 715, 4639, 1853, 3257, 1572, 4514, + 2943, 1003, 4748, 1038, 1012, 3061, 294]), + values=tensor([0.0072, 0.2895, 0.9639, 0.0057, 0.4191, 0.2094, 0.7103, + 0.8218, 0.3375, 0.5039, 0.5062, 0.5584, 0.5972, 0.9352, + 0.8333, 0.7188, 0.6342, 0.9555, 0.9103, 0.1687, 0.2984, + 0.7732, 0.0449, 0.0772, 0.1352, 0.5023, 0.0443, 0.4171, + 0.2148, 0.7142, 0.2678, 0.2649, 0.5734, 0.2586, 0.1803, + 0.3367, 0.7155, 0.6815, 0.6287, 0.8390, 0.5032, 0.1992, + 0.5162, 0.5707, 0.0670, 0.5923, 0.5384, 0.7500, 0.0960, + 0.4905, 0.7846, 0.7390, 0.3348, 0.9396, 0.2679, 0.8099, + 0.4907, 0.0176, 0.1919, 0.5036, 0.7682, 0.7675, 0.5778, + 0.9394, 0.8838, 0.1647, 0.2045, 0.3204, 0.5816, 0.4877, + 0.4316, 0.5907, 0.3880, 0.5556, 0.6079, 0.5805, 0.9477, + 0.7717, 0.2301, 0.4363, 0.4192, 0.7264, 0.9246, 0.5163, + 0.0957, 0.1670, 0.3706, 0.2621, 0.2557, 0.7081, 0.3520, + 0.9207, 0.5713, 0.9991, 0.2774, 0.9953, 0.3693, 0.6174, + 0.8286, 0.4524, 0.9605, 0.1877, 0.9322, 0.0179, 0.6890, + 0.8811, 0.8437, 0.1818, 0.1680, 0.0986, 0.7979, 0.9912, + 0.8202, 0.1132, 0.4257, 0.5766, 0.6866, 0.1937, 0.7442, + 0.9210, 0.2915, 0.9278, 0.6093, 0.0128, 0.7291, 0.8036, + 0.5824, 0.8528, 0.6888, 0.3925, 0.4263, 0.3416, 0.9010, + 0.2543, 0.7049, 0.8368, 0.2533, 0.1239, 0.2556, 0.3482, + 0.6122, 0.3407, 0.8598, 0.6533, 0.0993, 0.8400, 0.5464, + 0.2659, 0.0791, 0.9360, 0.6384, 0.4202, 0.5451, 0.6770, + 0.9558, 0.2536, 0.5924, 0.5367, 0.4377, 0.3759, 0.9344, + 0.0785, 0.9178, 0.5703, 0.2621, 0.7840, 0.6650, 0.5173, + 0.7316, 0.8675, 0.0573, 0.5592, 0.5656, 0.1368, 0.7342, + 0.4891, 0.5212, 0.5980, 0.9850, 0.3144, 0.9416, 0.3586, + 0.5874, 0.8863, 0.8557, 0.4322, 0.3167, 0.3279, 0.7906, + 0.9595, 0.6426, 0.5182, 0.3380, 0.6725, 0.1898, 0.5553, + 0.6660, 0.7693, 0.0543, 0.1495, 0.4661, 0.0013, 0.2189, + 0.2756, 0.4230, 0.3033, 0.9296, 0.0600, 0.3160, 0.8967, + 0.7981, 0.0839, 0.1133, 0.3382, 0.5864, 0.5344, 0.5684, + 0.8353, 0.4735, 0.5909, 0.0547, 0.2196, 0.1029, 0.2516, + 0.4455, 0.6775, 0.1108, 0.8486, 0.1605, 0.0632, 0.7729, + 0.1033, 0.7416, 0.1100, 0.7509, 0.4420, 0.1639, 0.2794, + 0.8260, 0.8724, 0.3230, 0.8818, 0.5434, 0.6423, 0.5673, + 0.7089, 0.6119, 0.9976, 0.0416, 0.2792]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.0013, 0.0858, 0.8984, ..., 0.5676, 0.8612, 0.3338]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 10.406220436096191 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 249, 249, 250]), + col_indices=tensor([3711, 2509, 1480, 2246, 4155, 2306, 315, 3219, 781, + 3895, 3381, 2148, 1468, 1317, 2648, 3838, 486, 2691, + 4269, 1833, 4130, 2494, 2935, 4534, 1404, 631, 2237, + 3119, 2408, 4857, 3452, 3551, 652, 1979, 294, 2907, + 4341, 963, 1166, 1723, 2311, 2016, 4067, 2454, 3108, + 4422, 594, 1090, 1798, 1231, 1189, 3083, 3007, 2134, + 3681, 526, 4251, 1258, 2420, 4062, 326, 2947, 386, + 3623, 4002, 1015, 2488, 2914, 344, 749, 2046, 3369, + 2183, 4810, 804, 4709, 4216, 4774, 3285, 1736, 1631, + 1116, 2085, 4390, 2715, 1633, 1339, 4203, 1468, 3776, + 4650, 1964, 1644, 3484, 556, 1113, 359, 2615, 4829, + 4748, 1322, 159, 1685, 3154, 4693, 4031, 1252, 1027, + 678, 4884, 997, 1416, 284, 2922, 2849, 4079, 606, + 470, 1943, 1148, 4302, 4930, 4799, 1057, 474, 2030, + 3336, 862, 2916, 4504, 1767, 3103, 2022, 3927, 3702, + 2754, 2164, 4564, 2862, 341, 1369, 1305, 4261, 2181, + 1646, 3936, 3010, 930, 4647, 2915, 4405, 3874, 1229, + 1875, 855, 1323, 963, 2816, 4148, 4829, 4066, 4913, + 691, 4066, 1415, 2632, 3157, 1676, 346, 4763, 246, + 2345, 1525, 4678, 2542, 2753, 3445, 3912, 2714, 1361, + 733, 3308, 420, 1698, 1705, 3596, 4607, 2749, 2452, + 4692, 611, 3476, 336, 999, 2085, 3920, 2039, 3357, + 4270, 3263, 3475, 3737, 446, 1786, 2984, 2510, 2736, + 3086, 1080, 3428, 4087, 375, 2103, 1319, 4228, 2727, + 4839, 645, 2259, 3905, 3083, 2174, 1253, 1258, 2465, + 3785, 2824, 24, 1918, 2335, 918, 1175, 3575, 2352, + 4164, 2100, 1603, 715, 4639, 1853, 3257, 1572, 4514, + 2943, 1003, 4748, 1038, 1012, 3061, 294]), + values=tensor([0.0072, 0.2895, 0.9639, 0.0057, 0.4191, 0.2094, 0.7103, + 0.8218, 0.3375, 0.5039, 0.5062, 0.5584, 0.5972, 0.9352, + 0.8333, 0.7188, 0.6342, 0.9555, 0.9103, 0.1687, 0.2984, + 0.7732, 0.0449, 0.0772, 0.1352, 0.5023, 0.0443, 0.4171, + 0.2148, 0.7142, 0.2678, 0.2649, 0.5734, 0.2586, 0.1803, + 0.3367, 0.7155, 0.6815, 0.6287, 0.8390, 0.5032, 0.1992, + 0.5162, 0.5707, 0.0670, 0.5923, 0.5384, 0.7500, 0.0960, + 0.4905, 0.7846, 0.7390, 0.3348, 0.9396, 0.2679, 0.8099, + 0.4907, 0.0176, 0.1919, 0.5036, 0.7682, 0.7675, 0.5778, + 0.9394, 0.8838, 0.1647, 0.2045, 0.3204, 0.5816, 0.4877, + 0.4316, 0.5907, 0.3880, 0.5556, 0.6079, 0.5805, 0.9477, + 0.7717, 0.2301, 0.4363, 0.4192, 0.7264, 0.9246, 0.5163, + 0.0957, 0.1670, 0.3706, 0.2621, 0.2557, 0.7081, 0.3520, + 0.9207, 0.5713, 0.9991, 0.2774, 0.9953, 0.3693, 0.6174, + 0.8286, 0.4524, 0.9605, 0.1877, 0.9322, 0.0179, 0.6890, + 0.8811, 0.8437, 0.1818, 0.1680, 0.0986, 0.7979, 0.9912, + 0.8202, 0.1132, 0.4257, 0.5766, 0.6866, 0.1937, 0.7442, + 0.9210, 0.2915, 0.9278, 0.6093, 0.0128, 0.7291, 0.8036, + 0.5824, 0.8528, 0.6888, 0.3925, 0.4263, 0.3416, 0.9010, + 0.2543, 0.7049, 0.8368, 0.2533, 0.1239, 0.2556, 0.3482, + 0.6122, 0.3407, 0.8598, 0.6533, 0.0993, 0.8400, 0.5464, + 0.2659, 0.0791, 0.9360, 0.6384, 0.4202, 0.5451, 0.6770, + 0.9558, 0.2536, 0.5924, 0.5367, 0.4377, 0.3759, 0.9344, + 0.0785, 0.9178, 0.5703, 0.2621, 0.7840, 0.6650, 0.5173, + 0.7316, 0.8675, 0.0573, 0.5592, 0.5656, 0.1368, 0.7342, + 0.4891, 0.5212, 0.5980, 0.9850, 0.3144, 0.9416, 0.3586, + 0.5874, 0.8863, 0.8557, 0.4322, 0.3167, 0.3279, 0.7906, + 0.9595, 0.6426, 0.5182, 0.3380, 0.6725, 0.1898, 0.5553, + 0.6660, 0.7693, 0.0543, 0.1495, 0.4661, 0.0013, 0.2189, + 0.2756, 0.4230, 0.3033, 0.9296, 0.0600, 0.3160, 0.8967, + 0.7981, 0.0839, 0.1133, 0.3382, 0.5864, 0.5344, 0.5684, + 0.8353, 0.4735, 0.5909, 0.0547, 0.2196, 0.1029, 0.2516, + 0.4455, 0.6775, 0.1108, 0.8486, 0.1605, 0.0632, 0.7729, + 0.1033, 0.7416, 0.1100, 0.7509, 0.4420, 0.1639, 0.2794, + 0.8260, 0.8724, 0.3230, 0.8818, 0.5434, 0.6423, 0.5673, + 0.7089, 0.6119, 0.9976, 0.0416, 0.2792]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.0013, 0.0858, 0.8984, ..., 0.5676, 0.8612, 0.3338]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 10.406220436096191 seconds + +[39.5, 43.3, 38.37, 38.43, 38.66, 38.52, 38.75, 38.13, 38.31, 39.28] +[64.13] +13.215740442276001 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 565598, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.406220436096191, 'TIME_S_1KI': 0.018398616041952396, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 847.5254345631599, 'W': 64.13} +[39.5, 43.3, 38.37, 38.43, 38.66, 38.52, 38.75, 38.13, 38.31, 39.28, 40.56, 38.94, 38.24, 38.25, 38.39, 38.16, 38.85, 38.41, 38.49, 38.25] +698.9950000000001 +34.94975000000001 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 565598, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.406220436096191, 'TIME_S_1KI': 0.018398616041952396, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 847.5254345631599, 'W': 64.13, 'J_1KI': 1.498459037272338, 'W_1KI': 0.11338441790812556, 'W_D': 29.180249999999987, 'J_D': 385.6386100407241, 'W_D_1KI': 0.05159185499241509, 'J_D_1KI': 9.121647352433192e-05} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_1000000_1e-05.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_1000000_1e-05.json deleted file mode 100644 index 0c0f3d2..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_1000000_1e-05.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [1000000, 1000000], "MATRIX_ROWS": 1000000, "MATRIX_SIZE": 1000000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 1e-05, "TIME_S": 28.845969438552856, "TIME_S_1KI": 28.845969438552856, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2585.6487583732605, "W": 78.16, "J_1KI": 2585.6487583732605, "W_1KI": 78.16, "W_D": 43.0085, "J_D": 1422.784987519145, "W_D_1KI": 43.0085, "J_D_1KI": 43.0085} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_1000000_1e-05.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_1000000_1e-05.output deleted file mode 100644 index 89364a9..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_1000000_1e-05.output +++ /dev/null @@ -1,47 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '1000000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [1000000, 1000000], "MATRIX_ROWS": 1000000, "MATRIX_SIZE": 1000000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 1e-05, "TIME_S": 28.845969438552856} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 6, 13, ..., 9999985, - 9999990, 10000000]), - col_indices=tensor([129131, 466272, 498291, ..., 666802, 863606, - 946629]), - values=tensor([0.5704, 0.0489, 0.8998, ..., 0.0930, 0.7201, 0.2084]), - size=(1000000, 1000000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.9798, 0.4611, 0.5869, ..., 0.0442, 0.2383, 0.1498]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([1000000, 1000000]) -Rows: 1000000 -Size: 1000000000000 -NNZ: 10000000 -Density: 1e-05 -Time: 28.845969438552856 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 6, 13, ..., 9999985, - 9999990, 10000000]), - col_indices=tensor([129131, 466272, 498291, ..., 666802, 863606, - 946629]), - values=tensor([0.5704, 0.0489, 0.8998, ..., 0.0930, 0.7201, 0.2084]), - size=(1000000, 1000000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.9798, 0.4611, 0.5869, ..., 0.0442, 0.2383, 0.1498]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([1000000, 1000000]) -Rows: 1000000 -Size: 1000000000000 -NNZ: 10000000 -Density: 1e-05 -Time: 28.845969438552856 seconds - -[40.14, 38.78, 39.11, 39.29, 39.32, 38.69, 39.29, 38.91, 39.05, 39.11] -[78.16] -33.081483602523804 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [1000000, 1000000], 'MATRIX_ROWS': 1000000, 'MATRIX_SIZE': 1000000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 28.845969438552856, 'TIME_S_1KI': 28.845969438552856, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2585.6487583732605, 'W': 78.16} -[40.14, 38.78, 39.11, 39.29, 39.32, 38.69, 39.29, 38.91, 39.05, 39.11, 40.65, 38.68, 39.17, 39.0, 39.16, 39.21, 38.7, 38.72, 38.68, 38.64] -703.03 -35.1515 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [1000000, 1000000], 'MATRIX_ROWS': 1000000, 'MATRIX_SIZE': 1000000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 28.845969438552856, 'TIME_S_1KI': 28.845969438552856, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2585.6487583732605, 'W': 78.16, 'J_1KI': 2585.6487583732605, 'W_1KI': 78.16, 'W_D': 43.0085, 'J_D': 1422.784987519145, 'W_D_1KI': 43.0085, 'J_D_1KI': 43.0085} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0001.json deleted file mode 100644 index 11555aa..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0001.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 12281, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 21.43535876274109, "TIME_S_1KI": 1.7454082536227578, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1544.854190015793, "W": 65.9, "J_1KI": 125.79221480464072, "W_1KI": 5.366012539695466, "W_D": 30.747500000000002, "J_D": 720.7952080047131, "W_D_1KI": 2.503664196726651, "J_D_1KI": 0.20386484787286466} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0005.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0005.json deleted file mode 100644 index 0a9c6a6..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0005.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 2942, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.0005, "TIME_S": 20.68795394897461, "TIME_S_1KI": 7.03193540073916, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1874.2356022763252, "W": 76.49, "J_1KI": 637.0617274902532, "W_1KI": 25.9993201903467, "W_D": 40.7645, "J_D": 998.8531469341516, "W_D_1KI": 13.856050305914344, "J_D_1KI": 4.709738377265243} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0005.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0005.output deleted file mode 100644 index 5c997f3..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0005.output +++ /dev/null @@ -1,65 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.0005', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.0005, "TIME_S": 7.137338638305664} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 52, 98, ..., 4999908, - 4999951, 5000000]), - col_indices=tensor([ 774, 4471, 4915, ..., 92493, 94807, 99005]), - values=tensor([0.1957, 0.1752, 0.4711, ..., 0.3350, 0.8302, 0.4161]), - size=(100000, 100000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.5056, 0.9806, 0.9907, ..., 0.9600, 0.9702, 0.1169]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([100000, 100000]) -Rows: 100000 -Size: 10000000000 -NNZ: 5000000 -Density: 0.0005 -Time: 7.137338638305664 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '2942', '-ss', '100000', '-sd', '0.0005', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.0005, "TIME_S": 20.68795394897461} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 45, 79, ..., 4999902, - 4999950, 5000000]), - col_indices=tensor([11504, 12222, 12883, ..., 96456, 97352, 97598]), - values=tensor([0.3754, 0.5479, 0.7533, ..., 0.2937, 0.0115, 0.1659]), - size=(100000, 100000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.4390, 0.1553, 0.7240, ..., 0.6581, 0.8843, 0.0193]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([100000, 100000]) -Rows: 100000 -Size: 10000000000 -NNZ: 5000000 -Density: 0.0005 -Time: 20.68795394897461 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 45, 79, ..., 4999902, - 4999950, 5000000]), - col_indices=tensor([11504, 12222, 12883, ..., 96456, 97352, 97598]), - values=tensor([0.3754, 0.5479, 0.7533, ..., 0.2937, 0.0115, 0.1659]), - size=(100000, 100000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.4390, 0.1553, 0.7240, ..., 0.6581, 0.8843, 0.0193]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([100000, 100000]) -Rows: 100000 -Size: 10000000000 -NNZ: 5000000 -Density: 0.0005 -Time: 20.68795394897461 seconds - -[40.56, 38.51, 39.43, 38.93, 54.59, 38.38, 38.52, 38.39, 39.6, 38.42] -[76.49] -24.50301480293274 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 2942, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 20.68795394897461, 'TIME_S_1KI': 7.03193540073916, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1874.2356022763252, 'W': 76.49} -[40.56, 38.51, 39.43, 38.93, 54.59, 38.38, 38.52, 38.39, 39.6, 38.42, 39.81, 38.45, 38.58, 38.39, 38.5, 38.48, 38.64, 39.27, 39.03, 38.85] -714.51 -35.7255 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 2942, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 20.68795394897461, 'TIME_S_1KI': 7.03193540073916, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1874.2356022763252, 'W': 76.49, 'J_1KI': 637.0617274902532, 'W_1KI': 25.9993201903467, 'W_D': 40.7645, 'J_D': 998.8531469341516, 'W_D_1KI': 13.856050305914344, 'J_D_1KI': 4.709738377265243} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.001.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.001.json deleted file mode 100644 index 7cc2d82..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.001.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1260, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 21.127803564071655, "TIME_S_1KI": 16.768098066723535, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2030.2760949325561, "W": 77.88, "J_1KI": 1611.3302340734572, "W_1KI": 61.80952380952381, "W_D": 42.534, "J_D": 1108.8310660228728, "W_D_1KI": 33.75714285714285, "J_D_1KI": 26.791383219954643} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.005.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.005.json deleted file mode 100644 index 378f4a9..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.005.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 50000000, "MATRIX_DENSITY": 0.005, "TIME_S": 80.02073836326599, "TIME_S_1KI": 80.02073836326599, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 7205.058165025711, "W": 78.13, "J_1KI": 7205.058165025711, "W_1KI": 78.13, "W_D": 42.671499999999995, "J_D": 3935.116338012218, "W_D_1KI": 42.671499999999995, "J_D_1KI": 42.671499999999995} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.005.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.005.output deleted file mode 100644 index bd8189d..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.005.output +++ /dev/null @@ -1,45 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.005', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 50000000, "MATRIX_DENSITY": 0.005, "TIME_S": 80.02073836326599} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 526, 1009, ..., 49999039, - 49999525, 50000000]), - col_indices=tensor([ 783, 789, 851, ..., 99387, 99562, 99965]), - values=tensor([0.0435, 0.6996, 0.0280, ..., 0.1403, 0.1144, 0.7500]), - size=(100000, 100000), nnz=50000000, layout=torch.sparse_csr) -tensor([0.9356, 0.8803, 0.8700, ..., 0.3387, 0.6442, 0.0455]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([100000, 100000]) -Rows: 100000 -Size: 10000000000 -NNZ: 50000000 -Density: 0.005 -Time: 80.02073836326599 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 526, 1009, ..., 49999039, - 49999525, 50000000]), - col_indices=tensor([ 783, 789, 851, ..., 99387, 99562, 99965]), - values=tensor([0.0435, 0.6996, 0.0280, ..., 0.1403, 0.1144, 0.7500]), - size=(100000, 100000), nnz=50000000, layout=torch.sparse_csr) -tensor([0.9356, 0.8803, 0.8700, ..., 0.3387, 0.6442, 0.0455]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([100000, 100000]) -Rows: 100000 -Size: 10000000000 -NNZ: 50000000 -Density: 0.005 -Time: 80.02073836326599 seconds - -[39.78, 38.73, 38.83, 38.73, 40.16, 38.51, 39.25, 38.91, 39.2, 38.87] -[78.13] -92.21884250640869 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 50000000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 80.02073836326599, 'TIME_S_1KI': 80.02073836326599, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 7205.058165025711, 'W': 78.13} -[39.78, 38.73, 38.83, 38.73, 40.16, 38.51, 39.25, 38.91, 39.2, 38.87, 39.46, 38.64, 39.23, 44.76, 39.46, 39.36, 38.92, 38.68, 39.19, 39.11] -709.17 -35.4585 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 50000000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 80.02073836326599, 'TIME_S_1KI': 80.02073836326599, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 7205.058165025711, 'W': 78.13, 'J_1KI': 7205.058165025711, 'W_1KI': 78.13, 'W_D': 42.671499999999995, 'J_D': 3935.116338012218, 'W_D_1KI': 42.671499999999995, 'J_D_1KI': 42.671499999999995} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_1e-05.json deleted file mode 100644 index 8e3d7eb..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_1e-05.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 24272, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 20.77256941795349, "TIME_S_1KI": 0.8558243827436343, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1485.908479528427, "W": 63.94, "J_1KI": 61.21903755473084, "W_1KI": 2.6343111404087014, "W_D": 28.96575, "J_D": 673.1381535955668, "W_D_1KI": 1.193381262359921, "J_D_1KI": 0.049166993340471365} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_3000000_1e-05.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_3000000_1e-05.json deleted file mode 100644 index 39218a0..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_3000000_1e-05.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [3000000, 3000000], "MATRIX_ROWS": 3000000, "MATRIX_SIZE": 9000000000000, "MATRIX_NNZ": 90000000, "MATRIX_DENSITY": 1e-05, "TIME_S": 191.72871232032776, "TIME_S_1KI": 191.72871232032776, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 16829.73738718033, "W": 76.6, "J_1KI": 16829.73738718033, "W_1KI": 76.6, "W_D": 41.25525, "J_D": 9064.164795593619, "W_D_1KI": 41.25525, "J_D_1KI": 41.25525} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_3000000_1e-05.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_3000000_1e-05.output deleted file mode 100644 index 100fb4b..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_3000000_1e-05.output +++ /dev/null @@ -1,51 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '3000000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [3000000, 3000000], "MATRIX_ROWS": 3000000, "MATRIX_SIZE": 9000000000000, "MATRIX_NNZ": 90000000, "MATRIX_DENSITY": 1e-05, "TIME_S": 191.72871232032776} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 23, 45, ..., 89999934, - 89999968, 90000000]), - col_indices=tensor([ 247582, 664315, 879297, ..., 2581992, 2759433, - 2830895]), - values=tensor([2.7185e-04, 1.6444e-01, 5.9424e-01, ..., - 8.6814e-02, 3.3148e-01, 4.3454e-01]), - size=(3000000, 3000000), nnz=90000000, layout=torch.sparse_csr) -tensor([2.7160e-02, 3.7741e-01, 2.6824e-01, ..., 9.4002e-01, 3.9211e-01, - 5.3889e-04]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([3000000, 3000000]) -Rows: 3000000 -Size: 9000000000000 -NNZ: 90000000 -Density: 1e-05 -Time: 191.72871232032776 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 23, 45, ..., 89999934, - 89999968, 90000000]), - col_indices=tensor([ 247582, 664315, 879297, ..., 2581992, 2759433, - 2830895]), - values=tensor([2.7185e-04, 1.6444e-01, 5.9424e-01, ..., - 8.6814e-02, 3.3148e-01, 4.3454e-01]), - size=(3000000, 3000000), nnz=90000000, layout=torch.sparse_csr) -tensor([2.7160e-02, 3.7741e-01, 2.6824e-01, ..., 9.4002e-01, 3.9211e-01, - 5.3889e-04]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([3000000, 3000000]) -Rows: 3000000 -Size: 9000000000000 -NNZ: 90000000 -Density: 1e-05 -Time: 191.72871232032776 seconds - -[40.3, 39.61, 39.02, 39.13, 38.86, 39.07, 38.9, 39.42, 39.4, 39.23] -[76.6] -219.7093653678894 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [3000000, 3000000], 'MATRIX_ROWS': 3000000, 'MATRIX_SIZE': 9000000000000, 'MATRIX_NNZ': 90000000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 191.72871232032776, 'TIME_S_1KI': 191.72871232032776, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 16829.73738718033, 'W': 76.6} -[40.3, 39.61, 39.02, 39.13, 38.86, 39.07, 38.9, 39.42, 39.4, 39.23, 40.08, 39.53, 39.61, 39.13, 38.92, 38.85, 39.16, 39.29, 39.5, 39.38] -706.895 -35.34475 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [3000000, 3000000], 'MATRIX_ROWS': 3000000, 'MATRIX_SIZE': 9000000000000, 'MATRIX_NNZ': 90000000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 191.72871232032776, 'TIME_S_1KI': 191.72871232032776, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 16829.73738718033, 'W': 76.6, 'J_1KI': 16829.73738718033, 'W_1KI': 76.6, 'W_D': 41.25525, 'J_D': 9064.164795593619, 'W_D_1KI': 41.25525, 'J_D_1KI': 41.25525} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0001.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0001.json deleted file mode 100644 index 4b4dea9..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0001.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1063, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 9000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.793079614639282, "TIME_S_1KI": 19.560752224496035, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1982.0967997741698, "W": 77.38, "J_1KI": 1864.625399599407, "W_1KI": 72.793979303857, "W_D": 42.05524999999999, "J_D": 1077.2496308956142, "W_D_1KI": 39.56279397930385, "J_D_1KI": 37.21805642455677} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0001.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0001.output deleted file mode 100644 index b2c76a2..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0001.output +++ /dev/null @@ -1,68 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '300000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 9000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 19.742191314697266} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 21, 53, ..., 8999946, - 8999970, 9000000]), - col_indices=tensor([ 7507, 16267, 30874, ..., 240828, 243309, - 292990]), - values=tensor([0.1523, 0.7416, 0.9394, ..., 0.2210, 0.2823, 0.7452]), - size=(300000, 300000), nnz=9000000, layout=torch.sparse_csr) -tensor([0.6931, 0.4096, 0.6953, ..., 0.1410, 0.7837, 0.2675]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([300000, 300000]) -Rows: 300000 -Size: 90000000000 -NNZ: 9000000 -Density: 0.0001 -Time: 19.742191314697266 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1063', '-ss', '300000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 9000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.793079614639282} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 31, 54, ..., 8999928, - 8999960, 9000000]), - col_indices=tensor([ 1108, 2325, 17171, ..., 276191, 279985, - 288044]), - values=tensor([0.7163, 0.0556, 0.2109, ..., 0.2836, 0.9162, 0.9781]), - size=(300000, 300000), nnz=9000000, layout=torch.sparse_csr) -tensor([0.4023, 0.6004, 0.3990, ..., 0.2499, 0.0207, 0.8980]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([300000, 300000]) -Rows: 300000 -Size: 90000000000 -NNZ: 9000000 -Density: 0.0001 -Time: 20.793079614639282 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 31, 54, ..., 8999928, - 8999960, 9000000]), - col_indices=tensor([ 1108, 2325, 17171, ..., 276191, 279985, - 288044]), - values=tensor([0.7163, 0.0556, 0.2109, ..., 0.2836, 0.9162, 0.9781]), - size=(300000, 300000), nnz=9000000, layout=torch.sparse_csr) -tensor([0.4023, 0.6004, 0.3990, ..., 0.2499, 0.0207, 0.8980]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([300000, 300000]) -Rows: 300000 -Size: 90000000000 -NNZ: 9000000 -Density: 0.0001 -Time: 20.793079614639282 seconds - -[39.41, 38.59, 38.99, 39.22, 38.71, 38.78, 38.62, 38.49, 38.71, 38.61] -[77.38] -25.61510467529297 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1063, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [300000, 300000], 'MATRIX_ROWS': 300000, 'MATRIX_SIZE': 90000000000, 'MATRIX_NNZ': 9000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.793079614639282, 'TIME_S_1KI': 19.560752224496035, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1982.0967997741698, 'W': 77.38} -[39.41, 38.59, 38.99, 39.22, 38.71, 38.78, 38.62, 38.49, 38.71, 38.61, 40.8, 38.54, 38.59, 45.03, 39.84, 38.78, 38.85, 38.74, 39.11, 38.99] -706.4950000000001 -35.32475000000001 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1063, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [300000, 300000], 'MATRIX_ROWS': 300000, 'MATRIX_SIZE': 90000000000, 'MATRIX_NNZ': 9000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.793079614639282, 'TIME_S_1KI': 19.560752224496035, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1982.0967997741698, 'W': 77.38, 'J_1KI': 1864.625399599407, 'W_1KI': 72.793979303857, 'W_D': 42.05524999999999, 'J_D': 1077.2496308956142, 'W_D_1KI': 39.56279397930385, 'J_D_1KI': 37.21805642455677} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0005.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0005.json deleted file mode 100644 index 9826631..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0005.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 45000000, "MATRIX_DENSITY": 0.0005, "TIME_S": 82.70979857444763, "TIME_S_1KI": 82.70979857444763, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 7617.53978612423, "W": 78.7, "J_1KI": 7617.53978612423, "W_1KI": 78.7, "W_D": 43.10925, "J_D": 4172.635667407572, "W_D_1KI": 43.10925, "J_D_1KI": 43.10925} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0005.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0005.output deleted file mode 100644 index 1d00751..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0005.output +++ /dev/null @@ -1,47 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '300000', '-sd', '0.0005', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 45000000, "MATRIX_DENSITY": 0.0005, "TIME_S": 82.70979857444763} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 152, 293, ..., 44999682, - 44999844, 45000000]), - col_indices=tensor([ 3223, 3275, 5832, ..., 294123, 295027, - 295416]), - values=tensor([0.3881, 0.9495, 0.6878, ..., 0.4195, 0.0754, 0.7743]), - size=(300000, 300000), nnz=45000000, layout=torch.sparse_csr) -tensor([0.1554, 0.9886, 0.7175, ..., 0.9350, 0.8453, 0.9634]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([300000, 300000]) -Rows: 300000 -Size: 90000000000 -NNZ: 45000000 -Density: 0.0005 -Time: 82.70979857444763 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 152, 293, ..., 44999682, - 44999844, 45000000]), - col_indices=tensor([ 3223, 3275, 5832, ..., 294123, 295027, - 295416]), - values=tensor([0.3881, 0.9495, 0.6878, ..., 0.4195, 0.0754, 0.7743]), - size=(300000, 300000), nnz=45000000, layout=torch.sparse_csr) -tensor([0.1554, 0.9886, 0.7175, ..., 0.9350, 0.8453, 0.9634]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([300000, 300000]) -Rows: 300000 -Size: 90000000000 -NNZ: 45000000 -Density: 0.0005 -Time: 82.70979857444763 seconds - -[40.11, 39.46, 38.73, 39.77, 38.75, 39.19, 44.18, 39.79, 38.69, 39.03] -[78.7] -96.79211926460266 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [300000, 300000], 'MATRIX_ROWS': 300000, 'MATRIX_SIZE': 90000000000, 'MATRIX_NNZ': 45000000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 82.70979857444763, 'TIME_S_1KI': 82.70979857444763, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 7617.53978612423, 'W': 78.7} -[40.11, 39.46, 38.73, 39.77, 38.75, 39.19, 44.18, 39.79, 38.69, 39.03, 40.06, 38.93, 39.06, 39.1, 39.39, 38.81, 40.25, 39.15, 38.9, 40.13] -711.8149999999999 -35.59075 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [300000, 300000], 'MATRIX_ROWS': 300000, 'MATRIX_SIZE': 90000000000, 'MATRIX_NNZ': 45000000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 82.70979857444763, 'TIME_S_1KI': 82.70979857444763, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 7617.53978612423, 'W': 78.7, 'J_1KI': 7617.53978612423, 'W_1KI': 78.7, 'W_D': 43.10925, 'J_D': 4172.635667407572, 'W_D_1KI': 43.10925, 'J_D_1KI': 43.10925} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.001.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.001.json deleted file mode 100644 index b74a472..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.001.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 90000000, "MATRIX_DENSITY": 0.001, "TIME_S": 156.8496162891388, "TIME_S_1KI": 156.8496162891388, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 14006.660120918752, "W": 78.01, "J_1KI": 14006.660120918752, "W_1KI": 78.01, "W_D": 42.747000000000014, "J_D": 7675.204463388207, "W_D_1KI": 42.747000000000014, "J_D_1KI": 42.747000000000014} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.001.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.001.output deleted file mode 100644 index 798bebb..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.001.output +++ /dev/null @@ -1,47 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '300000', '-sd', '0.001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 90000000, "MATRIX_DENSITY": 0.001, "TIME_S": 156.8496162891388} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 283, 569, ..., 89999415, - 89999689, 90000000]), - col_indices=tensor([ 2602, 2894, 4432, ..., 298607, 298963, - 299275]), - values=tensor([0.8641, 0.5339, 0.9185, ..., 0.5269, 0.1925, 0.1221]), - size=(300000, 300000), nnz=90000000, layout=torch.sparse_csr) -tensor([0.4486, 0.1676, 0.4646, ..., 0.7992, 0.4354, 0.7205]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([300000, 300000]) -Rows: 300000 -Size: 90000000000 -NNZ: 90000000 -Density: 0.001 -Time: 156.8496162891388 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 283, 569, ..., 89999415, - 89999689, 90000000]), - col_indices=tensor([ 2602, 2894, 4432, ..., 298607, 298963, - 299275]), - values=tensor([0.8641, 0.5339, 0.9185, ..., 0.5269, 0.1925, 0.1221]), - size=(300000, 300000), nnz=90000000, layout=torch.sparse_csr) -tensor([0.4486, 0.1676, 0.4646, ..., 0.7992, 0.4354, 0.7205]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([300000, 300000]) -Rows: 300000 -Size: 90000000000 -NNZ: 90000000 -Density: 0.001 -Time: 156.8496162891388 seconds - -[41.21, 38.89, 39.08, 39.22, 38.89, 38.77, 38.88, 39.4, 38.92, 38.72] -[78.01] -179.54954648017883 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [300000, 300000], 'MATRIX_ROWS': 300000, 'MATRIX_SIZE': 90000000000, 'MATRIX_NNZ': 90000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 156.8496162891388, 'TIME_S_1KI': 156.8496162891388, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 14006.660120918752, 'W': 78.01} -[41.21, 38.89, 39.08, 39.22, 38.89, 38.77, 38.88, 39.4, 38.92, 38.72, 39.91, 38.95, 39.72, 39.54, 39.0, 39.29, 39.46, 38.83, 39.09, 38.82] -705.2599999999999 -35.26299999999999 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [300000, 300000], 'MATRIX_ROWS': 300000, 'MATRIX_SIZE': 90000000000, 'MATRIX_NNZ': 90000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 156.8496162891388, 'TIME_S_1KI': 156.8496162891388, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 14006.660120918752, 'W': 78.01, 'J_1KI': 14006.660120918752, 'W_1KI': 78.01, 'W_D': 42.747000000000014, 'J_D': 7675.204463388207, 'W_D_1KI': 42.747000000000014, 'J_D_1KI': 42.747000000000014} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_1e-05.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_1e-05.json deleted file mode 100644 index e1aa60a..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_1e-05.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 5359, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 1e-05, "TIME_S": 20.92583179473877, "TIME_S_1KI": 3.9048016037952546, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1549.9649752044677, "W": 65.36, "J_1KI": 289.2265301743735, "W_1KI": 12.196305280835977, "W_D": 30.458, "J_D": 722.2893698711395, "W_D_1KI": 5.68352304534428, "J_D_1KI": 1.0605566421616497} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_1e-05.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_1e-05.output deleted file mode 100644 index 219c53d..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_1e-05.output +++ /dev/null @@ -1,68 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '300000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 1e-05, "TIME_S": 3.918142080307007} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 8, ..., 899997, 899998, - 900000]), - col_indices=tensor([ 53227, 167745, 185678, ..., 77368, 81779, - 166650]), - values=tensor([0.4014, 0.7044, 0.9681, ..., 0.8398, 0.4850, 0.3713]), - size=(300000, 300000), nnz=900000, layout=torch.sparse_csr) -tensor([0.1108, 0.9813, 0.9578, ..., 0.9978, 0.7777, 0.0486]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([300000, 300000]) -Rows: 300000 -Size: 90000000000 -NNZ: 900000 -Density: 1e-05 -Time: 3.918142080307007 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '5359', '-ss', '300000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 1e-05, "TIME_S": 20.92583179473877} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 5, ..., 899994, 899995, - 900000]), - col_indices=tensor([ 27767, 11526, 53261, ..., 95027, 105010, - 203459]), - values=tensor([0.0853, 0.1452, 0.4972, ..., 0.6342, 0.0274, 0.2283]), - size=(300000, 300000), nnz=900000, layout=torch.sparse_csr) -tensor([0.6261, 0.3964, 0.4952, ..., 0.8021, 0.8822, 0.0136]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([300000, 300000]) -Rows: 300000 -Size: 90000000000 -NNZ: 900000 -Density: 1e-05 -Time: 20.92583179473877 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 5, ..., 899994, 899995, - 900000]), - col_indices=tensor([ 27767, 11526, 53261, ..., 95027, 105010, - 203459]), - values=tensor([0.0853, 0.1452, 0.4972, ..., 0.6342, 0.0274, 0.2283]), - size=(300000, 300000), nnz=900000, layout=torch.sparse_csr) -tensor([0.6261, 0.3964, 0.4952, ..., 0.8021, 0.8822, 0.0136]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([300000, 300000]) -Rows: 300000 -Size: 90000000000 -NNZ: 900000 -Density: 1e-05 -Time: 20.92583179473877 seconds - -[39.87, 38.56, 38.69, 39.11, 38.77, 38.59, 38.92, 38.89, 38.6, 38.62] -[65.36] -23.714274406433105 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 5359, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [300000, 300000], 'MATRIX_ROWS': 300000, 'MATRIX_SIZE': 90000000000, 'MATRIX_NNZ': 900000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 20.92583179473877, 'TIME_S_1KI': 3.9048016037952546, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1549.9649752044677, 'W': 65.36} -[39.87, 38.56, 38.69, 39.11, 38.77, 38.59, 38.92, 38.89, 38.6, 38.62, 39.84, 38.63, 38.77, 38.47, 38.56, 38.46, 38.55, 38.86, 39.14, 38.61] -698.04 -34.902 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 5359, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [300000, 300000], 'MATRIX_ROWS': 300000, 'MATRIX_SIZE': 90000000000, 'MATRIX_NNZ': 900000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 20.92583179473877, 'TIME_S_1KI': 3.9048016037952546, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1549.9649752044677, 'W': 65.36, 'J_1KI': 289.2265301743735, 'W_1KI': 12.196305280835977, 'W_D': 30.458, 'J_D': 722.2893698711395, 'W_D_1KI': 5.68352304534428, 'J_D_1KI': 1.0605566421616497} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0001.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0001.json deleted file mode 100644 index 9bbde60..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0001.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 55249, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.486661672592163, "TIME_S_1KI": 0.37080601771239596, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1479.9529262781143, "W": 64.5, "J_1KI": 26.78696313558823, "W_1KI": 1.167441944650582, "W_D": 29.78750000000001, "J_D": 683.4743843644859, "W_D_1KI": 0.5391500298647941, "J_D_1KI": 0.009758548206570147} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0001.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0001.output deleted file mode 100644 index 616b7ef..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0001.output +++ /dev/null @@ -1,62 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.3800966739654541} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 4, ..., 89996, 89999, 90000]), - col_indices=tensor([ 1221, 15892, 17835, ..., 22172, 27458, 10275]), - values=tensor([0.6309, 0.5140, 0.9291, ..., 0.9679, 0.2956, 0.6723]), - size=(30000, 30000), nnz=90000, layout=torch.sparse_csr) -tensor([0.8758, 0.8303, 0.8564, ..., 0.1623, 0.2512, 0.5347]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 90000 -Density: 0.0001 -Time: 0.3800966739654541 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '55249', '-ss', '30000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.486661672592163} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 7, ..., 89993, 89996, 90000]), - col_indices=tensor([ 3466, 7549, 9181, ..., 12705, 16674, 29218]), - values=tensor([0.0628, 0.6253, 0.0638, ..., 0.6445, 0.5421, 0.6895]), - size=(30000, 30000), nnz=90000, layout=torch.sparse_csr) -tensor([0.0380, 0.3127, 0.8894, ..., 0.0355, 0.5164, 0.5166]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 90000 -Density: 0.0001 -Time: 20.486661672592163 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 7, ..., 89993, 89996, 90000]), - col_indices=tensor([ 3466, 7549, 9181, ..., 12705, 16674, 29218]), - values=tensor([0.0628, 0.6253, 0.0638, ..., 0.6445, 0.5421, 0.6895]), - size=(30000, 30000), nnz=90000, layout=torch.sparse_csr) -tensor([0.0380, 0.3127, 0.8894, ..., 0.0355, 0.5164, 0.5166]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 90000 -Density: 0.0001 -Time: 20.486661672592163 seconds - -[39.55, 38.61, 38.56, 38.2, 38.29, 38.62, 38.69, 39.07, 38.21, 38.58] -[64.5] -22.945006608963013 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 55249, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 90000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.486661672592163, 'TIME_S_1KI': 0.37080601771239596, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1479.9529262781143, 'W': 64.5} -[39.55, 38.61, 38.56, 38.2, 38.29, 38.62, 38.69, 39.07, 38.21, 38.58, 39.63, 38.76, 38.33, 38.68, 38.62, 38.18, 38.6, 38.43, 38.25, 38.54] -694.2499999999999 -34.71249999999999 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 55249, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 90000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.486661672592163, 'TIME_S_1KI': 0.37080601771239596, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1479.9529262781143, 'W': 64.5, 'J_1KI': 26.78696313558823, 'W_1KI': 1.167441944650582, 'W_D': 29.78750000000001, 'J_D': 683.4743843644859, 'W_D_1KI': 0.5391500298647941, 'J_D_1KI': 0.009758548206570147} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0005.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0005.json deleted file mode 100644 index 80e5199..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0005.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 34887, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 450000, "MATRIX_DENSITY": 0.0005, "TIME_S": 20.488590478897095, "TIME_S_1KI": 0.5872843889958177, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1541.8012697553634, "W": 66.46, "J_1KI": 44.194148816331676, "W_1KI": 1.905007595952647, "W_D": 31.609249999999996, "J_D": 733.3009597654938, "W_D_1KI": 0.9060466649468283, "J_D_1KI": 0.025970896464208106} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0005.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0005.output deleted file mode 100644 index ccdbe37..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0005.output +++ /dev/null @@ -1,65 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.0005', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 450000, "MATRIX_DENSITY": 0.0005, "TIME_S": 0.6019301414489746} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 16, 37, ..., 449975, 449988, - 450000]), - col_indices=tensor([ 264, 1229, 1878, ..., 24507, 28043, 28225]), - values=tensor([0.5098, 0.2540, 0.2183, ..., 0.6993, 0.8002, 0.9164]), - size=(30000, 30000), nnz=450000, layout=torch.sparse_csr) -tensor([0.9266, 0.1174, 0.4919, ..., 0.2483, 0.0597, 0.7571]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 450000 -Density: 0.0005 -Time: 0.6019301414489746 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '34887', '-ss', '30000', '-sd', '0.0005', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 450000, "MATRIX_DENSITY": 0.0005, "TIME_S": 20.488590478897095} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 15, 31, ..., 449970, 449990, - 450000]), - col_indices=tensor([ 170, 825, 5087, ..., 18453, 22268, 25473]), - values=tensor([0.8450, 0.9269, 0.6663, ..., 0.1685, 0.3198, 0.2341]), - size=(30000, 30000), nnz=450000, layout=torch.sparse_csr) -tensor([0.4348, 0.7206, 0.1155, ..., 0.4036, 0.9348, 0.9025]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 450000 -Density: 0.0005 -Time: 20.488590478897095 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 15, 31, ..., 449970, 449990, - 450000]), - col_indices=tensor([ 170, 825, 5087, ..., 18453, 22268, 25473]), - values=tensor([0.8450, 0.9269, 0.6663, ..., 0.1685, 0.3198, 0.2341]), - size=(30000, 30000), nnz=450000, layout=torch.sparse_csr) -tensor([0.4348, 0.7206, 0.1155, ..., 0.4036, 0.9348, 0.9025]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 450000 -Density: 0.0005 -Time: 20.488590478897095 seconds - -[39.44, 38.55, 38.49, 38.28, 38.9, 38.59, 38.27, 39.46, 38.91, 38.62] -[66.46] -23.198935747146606 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 34887, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 450000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 20.488590478897095, 'TIME_S_1KI': 0.5872843889958177, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1541.8012697553634, 'W': 66.46} -[39.44, 38.55, 38.49, 38.28, 38.9, 38.59, 38.27, 39.46, 38.91, 38.62, 38.9, 40.17, 38.27, 38.69, 38.64, 38.67, 38.48, 38.59, 38.33, 38.49] -697.015 -34.85075 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 34887, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 450000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 20.488590478897095, 'TIME_S_1KI': 0.5872843889958177, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1541.8012697553634, 'W': 66.46, 'J_1KI': 44.194148816331676, 'W_1KI': 1.905007595952647, 'W_D': 31.609249999999996, 'J_D': 733.3009597654938, 'W_D_1KI': 0.9060466649468283, 'J_D_1KI': 0.025970896464208106} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.001.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.001.json deleted file mode 100644 index 6b2d57a..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.001.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 20725, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 0.001, "TIME_S": 20.679001569747925, "TIME_S_1KI": 0.9977805341253522, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1558.1207911372185, "W": 66.77, "J_1KI": 75.18073781120475, "W_1KI": 3.2217129071170083, "W_D": 31.95525, "J_D": 745.6962619587779, "W_D_1KI": 1.541869722557298, "J_D_1KI": 0.07439660904980931} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.001.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.001.output deleted file mode 100644 index 5dedece..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.001.output +++ /dev/null @@ -1,65 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 0.001, "TIME_S": 1.0132288932800293} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 29, 66, ..., 899946, 899968, - 900000]), - col_indices=tensor([ 3782, 4225, 4981, ..., 28194, 28873, 29915]), - values=tensor([0.9172, 0.4074, 0.0680, ..., 0.0394, 0.1843, 0.7343]), - size=(30000, 30000), nnz=900000, layout=torch.sparse_csr) -tensor([0.0798, 0.0011, 0.8799, ..., 0.7150, 0.2962, 0.9319]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 900000 -Density: 0.001 -Time: 1.0132288932800293 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '20725', '-ss', '30000', '-sd', '0.001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 0.001, "TIME_S": 20.679001569747925} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 26, 62, ..., 899937, 899971, - 900000]), - col_indices=tensor([ 143, 864, 1272, ..., 28362, 29224, 29939]), - values=tensor([0.4085, 0.1763, 0.0566, ..., 0.6744, 0.4746, 0.4502]), - size=(30000, 30000), nnz=900000, layout=torch.sparse_csr) -tensor([0.4289, 0.5358, 0.7834, ..., 0.0567, 0.8331, 0.5874]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 900000 -Density: 0.001 -Time: 20.679001569747925 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 26, 62, ..., 899937, 899971, - 900000]), - col_indices=tensor([ 143, 864, 1272, ..., 28362, 29224, 29939]), - values=tensor([0.4085, 0.1763, 0.0566, ..., 0.6744, 0.4746, 0.4502]), - size=(30000, 30000), nnz=900000, layout=torch.sparse_csr) -tensor([0.4289, 0.5358, 0.7834, ..., 0.0567, 0.8331, 0.5874]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 900000 -Density: 0.001 -Time: 20.679001569747925 seconds - -[39.66, 38.47, 38.7, 38.29, 38.39, 38.27, 38.73, 40.46, 38.83, 38.77] -[66.77] -23.335641622543335 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 20725, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 900000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 20.679001569747925, 'TIME_S_1KI': 0.9977805341253522, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1558.1207911372185, 'W': 66.77} -[39.66, 38.47, 38.7, 38.29, 38.39, 38.27, 38.73, 40.46, 38.83, 38.77, 39.05, 38.32, 38.41, 38.47, 38.31, 38.24, 38.86, 38.82, 38.88, 38.21] -696.295 -34.81475 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 20725, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 900000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 20.679001569747925, 'TIME_S_1KI': 0.9977805341253522, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1558.1207911372185, 'W': 66.77, 'J_1KI': 75.18073781120475, 'W_1KI': 3.2217129071170083, 'W_D': 31.95525, 'J_D': 745.6962619587779, 'W_D_1KI': 1.541869722557298, 'J_D_1KI': 0.07439660904980931} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.005.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.005.json deleted file mode 100644 index 465580a..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.005.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 3915, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 4500000, "MATRIX_DENSITY": 0.005, "TIME_S": 20.893795013427734, "TIME_S_1KI": 5.336856963838502, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1813.4314341068268, "W": 74.06, "J_1KI": 463.2008771664947, "W_1KI": 18.91698595146871, "W_D": 38.97975, "J_D": 954.4572501164675, "W_D_1KI": 9.956513409961687, "J_D_1KI": 2.543170730513841} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.005.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.005.output deleted file mode 100644 index 8f37edd..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.005.output +++ /dev/null @@ -1,65 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.005', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 4500000, "MATRIX_DENSITY": 0.005, "TIME_S": 5.36383318901062} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 155, 299, ..., 4499724, - 4499869, 4500000]), - col_indices=tensor([ 264, 391, 402, ..., 28982, 29660, 29822]), - values=tensor([0.6346, 0.1316, 0.6696, ..., 0.4424, 0.6280, 0.5777]), - size=(30000, 30000), nnz=4500000, layout=torch.sparse_csr) -tensor([0.7068, 0.8368, 0.5788, ..., 0.2748, 0.1756, 0.1861]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 4500000 -Density: 0.005 -Time: 5.36383318901062 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '3915', '-ss', '30000', '-sd', '0.005', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 4500000, "MATRIX_DENSITY": 0.005, "TIME_S": 20.893795013427734} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 154, 308, ..., 4499718, - 4499857, 4500000]), - col_indices=tensor([ 610, 1343, 1528, ..., 29102, 29121, 29420]), - values=tensor([0.4309, 0.4085, 0.5621, ..., 0.6007, 0.1982, 0.6029]), - size=(30000, 30000), nnz=4500000, layout=torch.sparse_csr) -tensor([0.1648, 0.4135, 0.3012, ..., 0.9678, 0.7893, 0.8451]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 4500000 -Density: 0.005 -Time: 20.893795013427734 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 154, 308, ..., 4499718, - 4499857, 4500000]), - col_indices=tensor([ 610, 1343, 1528, ..., 29102, 29121, 29420]), - values=tensor([0.4309, 0.4085, 0.5621, ..., 0.6007, 0.1982, 0.6029]), - size=(30000, 30000), nnz=4500000, layout=torch.sparse_csr) -tensor([0.1648, 0.4135, 0.3012, ..., 0.9678, 0.7893, 0.8451]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 4500000 -Density: 0.005 -Time: 20.893795013427734 seconds - -[39.73, 38.52, 38.68, 38.37, 38.44, 38.79, 38.97, 38.82, 38.35, 38.46] -[74.06] -24.485976696014404 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3915, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 4500000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 20.893795013427734, 'TIME_S_1KI': 5.336856963838502, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1813.4314341068268, 'W': 74.06} -[39.73, 38.52, 38.68, 38.37, 38.44, 38.79, 38.97, 38.82, 38.35, 38.46, 39.31, 38.45, 39.17, 38.79, 38.86, 38.46, 38.42, 40.19, 42.43, 38.29] -701.605 -35.08025 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3915, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 4500000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 20.893795013427734, 'TIME_S_1KI': 5.336856963838502, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1813.4314341068268, 'W': 74.06, 'J_1KI': 463.2008771664947, 'W_1KI': 18.91698595146871, 'W_D': 38.97975, 'J_D': 954.4572501164675, 'W_D_1KI': 9.956513409961687, 'J_D_1KI': 2.543170730513841} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.01.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.01.json deleted file mode 100644 index a4676a2..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.01.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1556, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000000, "MATRIX_DENSITY": 0.01, "TIME_S": 21.02338671684265, "TIME_S_1KI": 13.51117398254669, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1995.9884867286682, "W": 77.72, "J_1KI": 1282.768950339761, "W_1KI": 49.948586118251924, "W_D": 42.48775, "J_D": 1091.1613462044, "W_D_1KI": 27.305751928020563, "J_D_1KI": 17.54868375836797} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.01.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.01.output deleted file mode 100644 index d1812b6..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.01.output +++ /dev/null @@ -1,65 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.01', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000000, "MATRIX_DENSITY": 0.01, "TIME_S": 13.49134111404419} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 301, 621, ..., 8999428, - 8999715, 9000000]), - col_indices=tensor([ 350, 633, 742, ..., 29783, 29873, 29944]), - values=tensor([0.6028, 0.5433, 0.5346, ..., 0.4728, 0.8732, 0.8469]), - size=(30000, 30000), nnz=9000000, layout=torch.sparse_csr) -tensor([0.9726, 0.3801, 0.1059, ..., 0.5337, 0.8863, 0.3497]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 9000000 -Density: 0.01 -Time: 13.49134111404419 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1556', '-ss', '30000', '-sd', '0.01', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000000, "MATRIX_DENSITY": 0.01, "TIME_S": 21.02338671684265} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 286, 540, ..., 8999445, - 8999721, 9000000]), - col_indices=tensor([ 47, 65, 169, ..., 29629, 29825, 29922]), - values=tensor([0.0693, 0.5848, 0.3473, ..., 0.1079, 0.3518, 0.8477]), - size=(30000, 30000), nnz=9000000, layout=torch.sparse_csr) -tensor([0.4830, 0.8793, 0.7685, ..., 0.7345, 0.8852, 0.3790]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 9000000 -Density: 0.01 -Time: 21.02338671684265 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 286, 540, ..., 8999445, - 8999721, 9000000]), - col_indices=tensor([ 47, 65, 169, ..., 29629, 29825, 29922]), - values=tensor([0.0693, 0.5848, 0.3473, ..., 0.1079, 0.3518, 0.8477]), - size=(30000, 30000), nnz=9000000, layout=torch.sparse_csr) -tensor([0.4830, 0.8793, 0.7685, ..., 0.7345, 0.8852, 0.3790]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 9000000 -Density: 0.01 -Time: 21.02338671684265 seconds - -[39.69, 38.9, 38.91, 42.35, 40.35, 38.51, 38.87, 38.42, 38.6, 38.45] -[77.72] -25.68178701400757 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1556, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 21.02338671684265, 'TIME_S_1KI': 13.51117398254669, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1995.9884867286682, 'W': 77.72} -[39.69, 38.9, 38.91, 42.35, 40.35, 38.51, 38.87, 38.42, 38.6, 38.45, 39.21, 38.97, 38.49, 40.7, 38.5, 38.41, 38.96, 38.84, 38.98, 38.42] -704.645 -35.23225 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1556, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 21.02338671684265, 'TIME_S_1KI': 13.51117398254669, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1995.9884867286682, 'W': 77.72, 'J_1KI': 1282.768950339761, 'W_1KI': 49.948586118251924, 'W_D': 42.48775, 'J_D': 1091.1613462044, 'W_D_1KI': 27.305751928020563, 'J_D_1KI': 17.54868375836797} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.05.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.05.json deleted file mode 100644 index 7f038bb..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.05.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 45000000, "MATRIX_DENSITY": 0.05, "TIME_S": 67.5497567653656, "TIME_S_1KI": 67.5497567653656, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 6177.228344964981, "W": 78.3, "J_1KI": 6177.228344964981, "W_1KI": 78.3, "W_D": 42.846000000000004, "J_D": 3380.198284398079, "W_D_1KI": 42.846000000000004, "J_D_1KI": 42.846000000000004} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.05.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.05.output deleted file mode 100644 index 509a893..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.05.output +++ /dev/null @@ -1,45 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 45000000, "MATRIX_DENSITY": 0.05, "TIME_S": 67.5497567653656} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1454, 2998, ..., 44997015, - 44998496, 45000000]), - col_indices=tensor([ 16, 34, 52, ..., 29923, 29949, 29997]), - values=tensor([0.3150, 0.1901, 0.4388, ..., 0.7749, 0.7841, 0.0957]), - size=(30000, 30000), nnz=45000000, layout=torch.sparse_csr) -tensor([0.5511, 0.2744, 0.0926, ..., 0.8323, 0.9167, 0.9679]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 45000000 -Density: 0.05 -Time: 67.5497567653656 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1454, 2998, ..., 44997015, - 44998496, 45000000]), - col_indices=tensor([ 16, 34, 52, ..., 29923, 29949, 29997]), - values=tensor([0.3150, 0.1901, 0.4388, ..., 0.7749, 0.7841, 0.0957]), - size=(30000, 30000), nnz=45000000, layout=torch.sparse_csr) -tensor([0.5511, 0.2744, 0.0926, ..., 0.8323, 0.9167, 0.9679]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 45000000 -Density: 0.05 -Time: 67.5497567653656 seconds - -[39.5, 38.95, 38.67, 41.05, 38.61, 38.51, 38.69, 44.88, 39.32, 38.97] -[78.3] -78.89180517196655 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 45000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 67.5497567653656, 'TIME_S_1KI': 67.5497567653656, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 6177.228344964981, 'W': 78.3} -[39.5, 38.95, 38.67, 41.05, 38.61, 38.51, 38.69, 44.88, 39.32, 38.97, 39.34, 39.37, 38.66, 38.66, 38.66, 38.61, 39.18, 39.8, 39.03, 39.05] -709.0799999999999 -35.45399999999999 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 45000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 67.5497567653656, 'TIME_S_1KI': 67.5497567653656, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 6177.228344964981, 'W': 78.3, 'J_1KI': 6177.228344964981, 'W_1KI': 78.3, 'W_D': 42.846000000000004, 'J_D': 3380.198284398079, 'W_D_1KI': 42.846000000000004, 'J_D_1KI': 42.846000000000004} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.1.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.1.json deleted file mode 100644 index 9a9fc75..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.1.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000000, "MATRIX_DENSITY": 0.1, "TIME_S": 133.26440334320068, "TIME_S_1KI": 133.26440334320068, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 11974.481567811967, "W": 77.72, "J_1KI": 11974.481567811967, "W_1KI": 77.72, "W_D": 41.982749999999996, "J_D": 6468.369352046549, "W_D_1KI": 41.982749999999996, "J_D_1KI": 41.982749999999996} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.1.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.1.output deleted file mode 100644 index 09ee6f8..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.1.output +++ /dev/null @@ -1,45 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.1', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000000, "MATRIX_DENSITY": 0.1, "TIME_S": 133.26440334320068} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3021, 6099, ..., 89993867, - 89996977, 90000000]), - col_indices=tensor([ 3, 4, 14, ..., 29943, 29960, 29964]), - values=tensor([0.6910, 0.0984, 0.4875, ..., 0.7473, 0.5068, 0.5297]), - size=(30000, 30000), nnz=90000000, layout=torch.sparse_csr) -tensor([0.9263, 0.2732, 0.6847, ..., 0.8727, 0.6781, 0.2367]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 90000000 -Density: 0.1 -Time: 133.26440334320068 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3021, 6099, ..., 89993867, - 89996977, 90000000]), - col_indices=tensor([ 3, 4, 14, ..., 29943, 29960, 29964]), - values=tensor([0.6910, 0.0984, 0.4875, ..., 0.7473, 0.5068, 0.5297]), - size=(30000, 30000), nnz=90000000, layout=torch.sparse_csr) -tensor([0.9263, 0.2732, 0.6847, ..., 0.8727, 0.6781, 0.2367]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 90000000 -Density: 0.1 -Time: 133.26440334320068 seconds - -[39.6, 39.07, 38.84, 44.59, 38.99, 38.94, 39.08, 38.61, 39.42, 39.07] -[77.72] -154.07207369804382 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 90000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 133.26440334320068, 'TIME_S_1KI': 133.26440334320068, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 11974.481567811967, 'W': 77.72} -[39.6, 39.07, 38.84, 44.59, 38.99, 38.94, 39.08, 38.61, 39.42, 39.07, 40.74, 38.83, 39.58, 40.58, 41.0, 38.76, 38.99, 38.91, 38.77, 44.16] -714.745 -35.73725 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 90000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 133.26440334320068, 'TIME_S_1KI': 133.26440334320068, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 11974.481567811967, 'W': 77.72, 'J_1KI': 11974.481567811967, 'W_1KI': 77.72, 'W_D': 41.982749999999996, 'J_D': 6468.369352046549, 'W_D_1KI': 41.982749999999996, 'J_D_1KI': 41.982749999999996} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_1e-05.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_1e-05.json deleted file mode 100644 index 1c62691..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_1e-05.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 175149, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 20.99797296524048, "TIME_S_1KI": 0.11988634228708402, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1522.755680565834, "W": 64.38, "J_1KI": 8.694058661858383, "W_1KI": 0.36757275234229136, "W_D": 29.668999999999997, "J_D": 701.7495850684642, "W_D_1KI": 0.16939291688790686, "J_D_1KI": 0.0009671360777846684} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_1e-05.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_1e-05.output deleted file mode 100644 index 3d76ec3..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_1e-05.output +++ /dev/null @@ -1,81 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.14505624771118164} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 9000, 9000, 9000]), - col_indices=tensor([ 9793, 24410, 9766, ..., 25093, 22416, 28253]), - values=tensor([0.6564, 0.9558, 0.9015, ..., 0.1425, 0.1152, 0.5551]), - size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) -tensor([0.6628, 0.4963, 0.8694, ..., 0.1058, 0.0731, 0.1152]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 9000 -Density: 1e-05 -Time: 0.14505624771118164 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '144771', '-ss', '30000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 17.35769486427307} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 9000, 9000, 9000]), - col_indices=tensor([23214, 17022, 19042, ..., 25316, 9102, 1076]), - values=tensor([0.7231, 0.3079, 0.5530, ..., 0.2799, 0.6458, 0.4353]), - size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) -tensor([0.5188, 0.8305, 0.1941, ..., 0.8435, 0.1201, 0.3717]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 9000 -Density: 1e-05 -Time: 17.35769486427307 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '175149', '-ss', '30000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 20.99797296524048} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 8999, 8999, 9000]), - col_indices=tensor([ 6289, 7348, 12538, ..., 3410, 26024, 8619]), - values=tensor([0.6330, 0.6673, 0.9719, ..., 0.9831, 0.5544, 0.1794]), - size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) -tensor([0.5417, 0.7572, 0.7994, ..., 0.0522, 0.2469, 0.9706]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 9000 -Density: 1e-05 -Time: 20.99797296524048 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 8999, 8999, 9000]), - col_indices=tensor([ 6289, 7348, 12538, ..., 3410, 26024, 8619]), - values=tensor([0.6330, 0.6673, 0.9719, ..., 0.9831, 0.5544, 0.1794]), - size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) -tensor([0.5417, 0.7572, 0.7994, ..., 0.0522, 0.2469, 0.9706]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 9000 -Density: 1e-05 -Time: 20.99797296524048 seconds - -[38.91, 38.61, 38.98, 38.21, 38.26, 38.52, 38.56, 39.49, 38.59, 38.29] -[64.38] -23.65262007713318 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 175149, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 20.99797296524048, 'TIME_S_1KI': 0.11988634228708402, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1522.755680565834, 'W': 64.38} -[38.91, 38.61, 38.98, 38.21, 38.26, 38.52, 38.56, 39.49, 38.59, 38.29, 39.46, 38.49, 38.32, 38.33, 38.28, 38.28, 38.38, 38.51, 38.81, 38.54] -694.22 -34.711 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 175149, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 20.99797296524048, 'TIME_S_1KI': 0.11988634228708402, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1522.755680565834, 'W': 64.38, 'J_1KI': 8.694058661858383, 'W_1KI': 0.36757275234229136, 'W_D': 29.668999999999997, 'J_D': 701.7495850684642, 'W_D_1KI': 0.16939291688790686, 'J_D_1KI': 0.0009671360777846684} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_0.0001.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_0.0001.json deleted file mode 100644 index d3de446..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_0.0001.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 53.28069806098938, "TIME_S_1KI": 53.28069806098938, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 4799.690837917327, "W": 80.74, "J_1KI": 4799.690837917327, "W_1KI": 80.74, "W_D": 45.05724999999999, "J_D": 2678.484889853238, "W_D_1KI": 45.05724999999999, "J_D_1KI": 45.05724999999999} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_0.0001.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_0.0001.output deleted file mode 100644 index c127bed..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_0.0001.output +++ /dev/null @@ -1,47 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 53.28069806098938} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 53, 102, ..., 24999886, - 24999937, 25000000]), - col_indices=tensor([ 16979, 17933, 30686, ..., 481834, 490973, - 494514]), - values=tensor([0.3572, 0.8267, 0.7501, ..., 0.1157, 0.6125, 0.1407]), - size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) -tensor([0.1123, 0.0430, 0.5296, ..., 0.1520, 0.8075, 0.3691]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([500000, 500000]) -Rows: 500000 -Size: 250000000000 -NNZ: 25000000 -Density: 0.0001 -Time: 53.28069806098938 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 53, 102, ..., 24999886, - 24999937, 25000000]), - col_indices=tensor([ 16979, 17933, 30686, ..., 481834, 490973, - 494514]), - values=tensor([0.3572, 0.8267, 0.7501, ..., 0.1157, 0.6125, 0.1407]), - size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) -tensor([0.1123, 0.0430, 0.5296, ..., 0.1520, 0.8075, 0.3691]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([500000, 500000]) -Rows: 500000 -Size: 250000000000 -NNZ: 25000000 -Density: 0.0001 -Time: 53.28069806098938 seconds - -[39.46, 39.23, 39.42, 39.24, 38.85, 39.3, 38.79, 39.04, 38.81, 39.05] -[80.74] -59.44625759124756 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 53.28069806098938, 'TIME_S_1KI': 53.28069806098938, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 4799.690837917327, 'W': 80.74} -[39.46, 39.23, 39.42, 39.24, 38.85, 39.3, 38.79, 39.04, 38.81, 39.05, 39.8, 38.77, 39.08, 40.74, 39.37, 39.16, 39.3, 47.07, 38.83, 39.0] -713.6550000000001 -35.682750000000006 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 53.28069806098938, 'TIME_S_1KI': 53.28069806098938, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 4799.690837917327, 'W': 80.74, 'J_1KI': 4799.690837917327, 'W_1KI': 80.74, 'W_D': 45.05724999999999, 'J_D': 2678.484889853238, 'W_D_1KI': 45.05724999999999, 'J_D_1KI': 45.05724999999999} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_1e-05.json deleted file mode 100644 index 19009e3..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_1e-05.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 2738, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.017223119735718, "TIME_S_1KI": 7.676122395812899, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1812.0194424438475, "W": 76.16, "J_1KI": 661.804033032815, "W_1KI": 27.81592403214025, "W_D": 40.82625, "J_D": 971.3492484515906, "W_D_1KI": 14.910975164353543, "J_D_1KI": 5.445936875220432} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0001.json deleted file mode 100644 index b0cdcc0..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0001.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 30682, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.60400652885437, "TIME_S_1KI": 0.6715340111092618, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1545.1941801166536, "W": 65.18, "J_1KI": 50.36158594995938, "W_1KI": 2.1243725963105407, "W_D": 30.163750000000007, "J_D": 715.0790265494587, "W_D_1KI": 0.9831089889837691, "J_D_1KI": 0.032041880874251} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0005.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0005.json deleted file mode 100644 index e7d785e..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0005.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 14725, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.0005, "TIME_S": 20.75746774673462, "TIME_S_1KI": 1.4096752289802799, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1579.229201145172, "W": 66.94, "J_1KI": 107.24816306588606, "W_1KI": 4.546010186757215, "W_D": 32.068, "J_D": 756.5390203514098, "W_D_1KI": 2.177792869269949, "J_D_1KI": 0.14789764816773848} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0005.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0005.output deleted file mode 100644 index ac0ade3..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0005.output +++ /dev/null @@ -1,65 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.0005', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.0005, "TIME_S": 1.4260749816894531} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 22, 46, ..., 1249956, - 1249973, 1250000]), - col_indices=tensor([ 3380, 4310, 7517, ..., 40689, 41242, 47374]), - values=tensor([0.8200, 0.1077, 0.6690, ..., 0.5575, 0.1139, 0.4853]), - size=(50000, 50000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.0332, 0.0813, 0.1673, ..., 0.7573, 0.1508, 0.1365]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 1250000 -Density: 0.0005 -Time: 1.4260749816894531 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '14725', '-ss', '50000', '-sd', '0.0005', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.0005, "TIME_S": 20.75746774673462} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 28, 52, ..., 1249951, - 1249977, 1250000]), - col_indices=tensor([ 344, 2189, 2223, ..., 35575, 37368, 38958]), - values=tensor([0.6875, 0.6607, 0.3048, ..., 0.8392, 0.7333, 0.1352]), - size=(50000, 50000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.9792, 0.5124, 0.4372, ..., 0.1755, 0.2227, 0.5082]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 1250000 -Density: 0.0005 -Time: 20.75746774673462 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 28, 52, ..., 1249951, - 1249977, 1250000]), - col_indices=tensor([ 344, 2189, 2223, ..., 35575, 37368, 38958]), - values=tensor([0.6875, 0.6607, 0.3048, ..., 0.8392, 0.7333, 0.1352]), - size=(50000, 50000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.9792, 0.5124, 0.4372, ..., 0.1755, 0.2227, 0.5082]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 1250000 -Density: 0.0005 -Time: 20.75746774673462 seconds - -[39.99, 38.86, 39.01, 38.83, 38.77, 38.47, 38.81, 38.72, 39.0, 38.37] -[66.94] -23.59171199798584 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 14725, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 20.75746774673462, 'TIME_S_1KI': 1.4096752289802799, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1579.229201145172, 'W': 66.94} -[39.99, 38.86, 39.01, 38.83, 38.77, 38.47, 38.81, 38.72, 39.0, 38.37, 39.4, 38.41, 39.01, 38.37, 38.38, 39.17, 38.41, 38.71, 38.46, 38.34] -697.4399999999999 -34.872 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 14725, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 20.75746774673462, 'TIME_S_1KI': 1.4096752289802799, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1579.229201145172, 'W': 66.94, 'J_1KI': 107.24816306588606, 'W_1KI': 4.546010186757215, 'W_D': 32.068, 'J_D': 756.5390203514098, 'W_D_1KI': 2.177792869269949, 'J_D_1KI': 0.14789764816773848} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.001.json deleted file mode 100644 index 3e8eb72..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.001.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 6999, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 20.897379159927368, "TIME_S_1KI": 2.9857664180493457, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1683.2534707903862, "W": 70.47, "J_1KI": 240.49913856127822, "W_1KI": 10.068581225889414, "W_D": 35.496750000000006, "J_D": 847.8789220842721, "W_D_1KI": 5.071688812687528, "J_D_1KI": 0.724630491882773} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.005.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.005.json deleted file mode 100644 index 7504f86..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.005.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1085, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.005, "TIME_S": 20.97959613800049, "TIME_S_1KI": 19.336033306912892, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2081.730987071991, "W": 77.68, "J_1KI": 1918.6460710340932, "W_1KI": 71.59447004608295, "W_D": 42.64725000000001, "J_D": 1142.8952347889544, "W_D_1KI": 39.306221198156685, "J_D_1KI": 36.22693197986791} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.005.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.005.output deleted file mode 100644 index 4a5e75c..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.005.output +++ /dev/null @@ -1,65 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.005', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.005, "TIME_S": 19.343926906585693} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 284, 572, ..., 12499476, - 12499735, 12500000]), - col_indices=tensor([ 166, 205, 430, ..., 49351, 49645, 49668]), - values=tensor([0.0452, 0.2727, 0.3621, ..., 0.2139, 0.8914, 0.4747]), - size=(50000, 50000), nnz=12500000, layout=torch.sparse_csr) -tensor([0.9835, 0.4490, 0.0492, ..., 0.9538, 0.9723, 0.7788]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 12500000 -Density: 0.005 -Time: 19.343926906585693 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1085', '-ss', '50000', '-sd', '0.005', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.005, "TIME_S": 20.97959613800049} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 246, 489, ..., 12499492, - 12499760, 12500000]), - col_indices=tensor([ 25, 267, 758, ..., 49421, 49749, 49833]), - values=tensor([0.1040, 0.5728, 0.3234, ..., 0.7341, 0.5414, 0.1257]), - size=(50000, 50000), nnz=12500000, layout=torch.sparse_csr) -tensor([0.8524, 0.8502, 0.2995, ..., 0.6737, 0.1053, 0.0588]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 12500000 -Density: 0.005 -Time: 20.97959613800049 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 246, 489, ..., 12499492, - 12499760, 12500000]), - col_indices=tensor([ 25, 267, 758, ..., 49421, 49749, 49833]), - values=tensor([0.1040, 0.5728, 0.3234, ..., 0.7341, 0.5414, 0.1257]), - size=(50000, 50000), nnz=12500000, layout=torch.sparse_csr) -tensor([0.8524, 0.8502, 0.2995, ..., 0.6737, 0.1053, 0.0588]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 12500000 -Density: 0.005 -Time: 20.97959613800049 seconds - -[39.14, 39.08, 38.98, 38.87, 38.6, 38.74, 38.49, 39.78, 38.46, 38.7] -[77.68] -26.798802614212036 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1085, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 20.97959613800049, 'TIME_S_1KI': 19.336033306912892, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2081.730987071991, 'W': 77.68} -[39.14, 39.08, 38.98, 38.87, 38.6, 38.74, 38.49, 39.78, 38.46, 38.7, 40.03, 38.43, 38.73, 38.45, 38.99, 38.54, 39.08, 39.02, 40.09, 38.78] -700.655 -35.03275 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1085, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 20.97959613800049, 'TIME_S_1KI': 19.336033306912892, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2081.730987071991, 'W': 77.68, 'J_1KI': 1918.6460710340932, 'W_1KI': 71.59447004608295, 'W_D': 42.64725000000001, 'J_D': 1142.8952347889544, 'W_D_1KI': 39.306221198156685, 'J_D_1KI': 36.22693197986791} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.01.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.01.json deleted file mode 100644 index 446b456..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.01.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 37.82172966003418, "TIME_S_1KI": 37.82172966003418, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 3731.490132689476, "W": 78.5, "J_1KI": 3731.490132689476, "W_1KI": 78.5, "W_D": 43.14625000000001, "J_D": 2050.9529444274312, "W_D_1KI": 43.14625000000001, "J_D_1KI": 43.14625000000001} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.01.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.01.output deleted file mode 100644 index 607e614..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.01.output +++ /dev/null @@ -1,45 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.01', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 37.82172966003418} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 478, 967, ..., 24999023, - 24999517, 25000000]), - col_indices=tensor([ 55, 61, 67, ..., 49814, 49816, 49912]), - values=tensor([0.1124, 0.8573, 0.8758, ..., 0.9585, 0.5286, 0.9143]), - size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) -tensor([0.5266, 0.3019, 0.6446, ..., 0.2615, 0.0113, 0.3544]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 25000000 -Density: 0.01 -Time: 37.82172966003418 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 478, 967, ..., 24999023, - 24999517, 25000000]), - col_indices=tensor([ 55, 61, 67, ..., 49814, 49816, 49912]), - values=tensor([0.1124, 0.8573, 0.8758, ..., 0.9585, 0.5286, 0.9143]), - size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) -tensor([0.5266, 0.3019, 0.6446, ..., 0.2615, 0.0113, 0.3544]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 25000000 -Density: 0.01 -Time: 37.82172966003418 seconds - -[39.15, 39.92, 38.57, 38.55, 39.15, 44.43, 38.71, 39.58, 38.59, 38.46] -[78.5] -47.53490614891052 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 37.82172966003418, 'TIME_S_1KI': 37.82172966003418, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3731.490132689476, 'W': 78.5} -[39.15, 39.92, 38.57, 38.55, 39.15, 44.43, 38.71, 39.58, 38.59, 38.46, 40.51, 38.75, 38.64, 38.52, 38.8, 39.78, 38.55, 38.77, 39.3, 38.81] -707.0749999999998 -35.35374999999999 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 37.82172966003418, 'TIME_S_1KI': 37.82172966003418, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3731.490132689476, 'W': 78.5, 'J_1KI': 3731.490132689476, 'W_1KI': 78.5, 'W_D': 43.14625000000001, 'J_D': 2050.9529444274312, 'W_D_1KI': 43.14625000000001, 'J_D_1KI': 43.14625000000001} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_1e-05.json deleted file mode 100644 index 116c34c..0000000 --- a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_1e-05.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 71652, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.077060222625732, "TIME_S_1KI": 0.29415871465731214, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1735.6051402235032, "W": 73.31, "J_1KI": 24.222703347059444, "W_1KI": 1.0231396192709206, "W_D": 28.61775, "J_D": 677.5216751006842, "W_D_1KI": 0.39939917936694025, "J_D_1KI": 0.005574152561923467} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_100000_0.0001.json new file mode 100644 index 0000000..027433b --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_100000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 3626, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.40371823310852, "TIME_S_1KI": 2.869199733344876, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 756.9219121170044, "W": 52.54, "J_1KI": 208.74845894015564, "W_1KI": 14.489795918367347, "W_D": 36.50025, "J_D": 525.8439098353386, "W_D_1KI": 10.066257584114727, "J_D_1KI": 2.776132814151883} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_100000_0.0001.output similarity index 57% rename from pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0001.output rename to pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_100000_0.0001.output index 00d043f..8a43e29 100644 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0001.output +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_100000_0.0001.output @@ -1,14 +1,14 @@ ['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 2.8750712871551514} +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 2.89510178565979} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 11, 18, ..., 999987, - 999994, 1000000]), - col_indices=tensor([ 72, 12664, 19832, ..., 78809, 83339, 93425]), - values=tensor([0.5785, 0.6431, 0.7942, ..., 0.9990, 0.0590, 0.8738]), +tensor(crow_indices=tensor([ 0, 8, 17, ..., 999968, + 999983, 1000000]), + col_indices=tensor([23348, 35658, 56723, ..., 82423, 86979, 88187]), + values=tensor([0.8917, 0.1559, 0.5748, ..., 0.5915, 0.7647, 0.8715]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.6025, 0.9571, 0.3756, ..., 0.4137, 0.6855, 0.5355]) +tensor([0.4707, 0.9474, 0.3412, ..., 0.5588, 0.8812, 0.4153]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,19 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 2.8750712871551514 seconds +Time: 2.89510178565979 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '7304', '-ss', '100000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.99964690208435} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '3626', '-ss', '100000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.40371823310852} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 8, 17, ..., 999983, - 999991, 1000000]), - col_indices=tensor([41096, 50256, 52141, ..., 67700, 76057, 98450]), - values=tensor([0.9809, 0.6280, 0.2788, ..., 0.6940, 0.2813, 0.2359]), +tensor(crow_indices=tensor([ 0, 5, 15, ..., 999979, + 999990, 1000000]), + col_indices=tensor([16760, 54124, 62778, ..., 86983, 90495, 98787]), + values=tensor([0.0638, 0.0650, 0.2338, ..., 0.3776, 0.7465, 0.0262]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.7723, 0.9147, 0.2969, ..., 0.3023, 0.2205, 0.3351]) +tensor([0.7059, 0.4263, 0.8303, ..., 0.6514, 0.5791, 0.5612]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -36,16 +36,16 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 20.99964690208435 seconds +Time: 10.40371823310852 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 8, 17, ..., 999983, - 999991, 1000000]), - col_indices=tensor([41096, 50256, 52141, ..., 67700, 76057, 98450]), - values=tensor([0.9809, 0.6280, 0.2788, ..., 0.6940, 0.2813, 0.2359]), +tensor(crow_indices=tensor([ 0, 5, 15, ..., 999979, + 999990, 1000000]), + col_indices=tensor([16760, 54124, 62778, ..., 86983, 90495, 98787]), + values=tensor([0.0638, 0.0650, 0.2338, ..., 0.3776, 0.7465, 0.0262]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.7723, 0.9147, 0.2969, ..., 0.3023, 0.2205, 0.3351]) +tensor([0.7059, 0.4263, 0.8303, ..., 0.6514, 0.5791, 0.5612]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -53,13 +53,13 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 20.99964690208435 seconds +Time: 10.40371823310852 seconds -[19.43, 17.9, 18.08, 18.16, 18.32, 17.98, 18.9, 18.21, 18.25, 17.86] -[48.21] -25.009644031524658 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 7304, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.99964690208435, 'TIME_S_1KI': 2.8750885681933664, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1205.7149387598038, 'W': 48.21} -[19.43, 17.9, 18.08, 18.16, 18.32, 17.98, 18.9, 18.21, 18.25, 17.86, 18.22, 17.66, 18.06, 18.08, 17.89, 18.02, 17.74, 17.97, 18.02, 18.1] -326.04499999999996 -16.302249999999997 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 7304, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.99964690208435, 'TIME_S_1KI': 2.8750885681933664, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1205.7149387598038, 'W': 48.21, 'J_1KI': 165.07597737675297, 'W_1KI': 6.600492880613363, 'W_D': 31.907750000000004, 'J_D': 798.001469346881, 'W_D_1KI': 4.368530941949617, 'J_D_1KI': 0.5981011694892684} +[18.45, 17.61, 17.77, 17.55, 17.61, 17.99, 17.58, 18.4, 17.81, 17.62] +[52.54] +14.406583786010742 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3626, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.40371823310852, 'TIME_S_1KI': 2.869199733344876, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 756.9219121170044, 'W': 52.54} +[18.45, 17.61, 17.77, 17.55, 17.61, 17.99, 17.58, 18.4, 17.81, 17.62, 18.49, 17.87, 17.62, 17.77, 17.72, 17.81, 18.01, 17.57, 17.69, 18.27] +320.79499999999996 +16.039749999999998 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3626, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.40371823310852, 'TIME_S_1KI': 2.869199733344876, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 756.9219121170044, 'W': 52.54, 'J_1KI': 208.74845894015564, 'W_1KI': 14.489795918367347, 'W_D': 36.50025, 'J_D': 525.8439098353386, 'W_D_1KI': 10.066257584114727, 'J_D_1KI': 2.776132814151883} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_100000_0.001.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_100000_0.001.json new file mode 100644 index 0000000..46cf4d4 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_100000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 27.417505741119385, "TIME_S_1KI": 27.417505741119385, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1870.535600104332, "W": 53.17, "J_1KI": 1870.535600104332, "W_1KI": 53.17, "W_D": 36.779250000000005, "J_D": 1293.9043910125495, "W_D_1KI": 36.779250000000005, "J_D_1KI": 36.779250000000005} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.001.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_100000_0.001.output similarity index 55% rename from pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.001.output rename to pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_100000_0.001.output index 1b57712..523884d 100644 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.001.output +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_100000_0.001.output @@ -1,14 +1,14 @@ ['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 27.55906629562378} +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 27.417505741119385} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 125, 225, ..., 9999802, - 9999889, 10000000]), - col_indices=tensor([ 1628, 2146, 2363, ..., 95541, 97818, 98495]), - values=tensor([0.1115, 0.6662, 0.7909, ..., 0.2161, 0.9828, 0.9922]), +tensor(crow_indices=tensor([ 0, 87, 206, ..., 9999814, + 9999907, 10000000]), + col_indices=tensor([ 430, 1206, 1283, ..., 96095, 96254, 99884]), + values=tensor([0.0855, 0.2486, 0.3160, ..., 0.5781, 0.8085, 0.1274]), size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.3917, 0.2257, 0.3594, ..., 0.6468, 0.3908, 0.8732]) +tensor([0.4876, 0.8099, 0.9530, ..., 0.3051, 0.4863, 0.6986]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,16 +16,16 @@ Rows: 100000 Size: 10000000000 NNZ: 10000000 Density: 0.001 -Time: 27.55906629562378 seconds +Time: 27.417505741119385 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 125, 225, ..., 9999802, - 9999889, 10000000]), - col_indices=tensor([ 1628, 2146, 2363, ..., 95541, 97818, 98495]), - values=tensor([0.1115, 0.6662, 0.7909, ..., 0.2161, 0.9828, 0.9922]), +tensor(crow_indices=tensor([ 0, 87, 206, ..., 9999814, + 9999907, 10000000]), + col_indices=tensor([ 430, 1206, 1283, ..., 96095, 96254, 99884]), + values=tensor([0.0855, 0.2486, 0.3160, ..., 0.5781, 0.8085, 0.1274]), size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.3917, 0.2257, 0.3594, ..., 0.6468, 0.3908, 0.8732]) +tensor([0.4876, 0.8099, 0.9530, ..., 0.3051, 0.4863, 0.6986]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -33,13 +33,13 @@ Rows: 100000 Size: 10000000000 NNZ: 10000000 Density: 0.001 -Time: 27.55906629562378 seconds +Time: 27.417505741119385 seconds -[18.54, 17.96, 18.27, 17.87, 17.85, 17.91, 18.31, 18.22, 18.21, 17.84] -[48.51] -35.544212341308594 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 27.55906629562378, 'TIME_S_1KI': 27.55906629562378, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1724.2497406768798, 'W': 48.51} -[18.54, 17.96, 18.27, 17.87, 17.85, 17.91, 18.31, 18.22, 18.21, 17.84, 39.12, 40.67, 39.37, 39.18, 39.34, 39.09, 38.69, 39.74, 39.23, 39.25] -517.2850000000001 -25.864250000000006 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 27.55906629562378, 'TIME_S_1KI': 27.55906629562378, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1724.2497406768798, 'W': 48.51, 'J_1KI': 1724.2497406768798, 'W_1KI': 48.51, 'W_D': 22.645749999999992, 'J_D': 804.9253466281888, 'W_D_1KI': 22.645749999999992, 'J_D_1KI': 22.645749999999992} +[18.51, 17.88, 18.06, 17.74, 17.69, 18.37, 18.17, 17.77, 18.14, 17.72] +[53.17] +35.18028211593628 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 27.417505741119385, 'TIME_S_1KI': 27.417505741119385, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1870.535600104332, 'W': 53.17} +[18.51, 17.88, 18.06, 17.74, 17.69, 18.37, 18.17, 17.77, 18.14, 17.72, 18.92, 17.72, 17.91, 22.37, 18.39, 17.62, 17.83, 17.88, 17.9, 17.6] +327.815 +16.39075 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 27.417505741119385, 'TIME_S_1KI': 27.417505741119385, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1870.535600104332, 'W': 53.17, 'J_1KI': 1870.535600104332, 'W_1KI': 53.17, 'W_D': 36.779250000000005, 'J_D': 1293.9043910125495, 'W_D_1KI': 36.779250000000005, 'J_D_1KI': 36.779250000000005} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_100000_1e-05.json new file mode 100644 index 0000000..fb45506 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_100000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 7957, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.378219842910767, "TIME_S_1KI": 1.3042880285171252, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 722.9498359966278, "W": 51.18, "J_1KI": 90.85708633864871, "W_1KI": 6.432072389091366, "W_D": 34.9585, "J_D": 493.81089960312846, "W_D_1KI": 4.3934271710443635, "J_D_1KI": 0.5521461821093834} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_100000_1e-05.output similarity index 54% rename from pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_1e-05.output rename to pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_100000_1e-05.output index 2e16cf3..f2950b1 100644 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_1e-05.output +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_100000_1e-05.output @@ -1,14 +1,14 @@ ['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 1.3139328956604004} +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 1.319572925567627} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 100000, 100000, +tensor(crow_indices=tensor([ 0, 3, 4, ..., 99998, 100000, 100000]), - col_indices=tensor([39907, 27987, 76798, ..., 32180, 99907, 17440]), - values=tensor([0.1487, 0.6263, 0.1935, ..., 0.3652, 0.0716, 0.9913]), + col_indices=tensor([ 8050, 18600, 47626, ..., 72573, 7071, 11396]), + values=tensor([0.6679, 0.8144, 0.2788, ..., 0.2480, 0.1170, 0.9852]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.5233, 0.9086, 0.0476, ..., 0.5287, 0.8958, 0.9684]) +tensor([0.3322, 0.6851, 0.8140, ..., 0.1719, 0.4686, 0.0560]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,19 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 1.3139328956604004 seconds +Time: 1.319572925567627 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '15982', '-ss', '100000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 20.790293216705322} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '7957', '-ss', '100000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.378219842910767} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 2, ..., 99999, 99999, +tensor(crow_indices=tensor([ 0, 1, 5, ..., 99999, 99999, 100000]), - col_indices=tensor([ 6594, 93201, 43608, ..., 41278, 68005, 16586]), - values=tensor([0.8802, 0.5778, 0.4721, ..., 0.6728, 0.8802, 0.6767]), + col_indices=tensor([79139, 34438, 57240, ..., 99522, 68399, 1834]), + values=tensor([0.8717, 0.0754, 0.3550, ..., 0.4586, 0.3508, 0.4372]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.6356, 0.8811, 0.4031, ..., 0.8985, 0.9999, 0.3835]) +tensor([0.1033, 0.1471, 0.4199, ..., 0.6623, 0.5752, 0.0388]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -36,16 +36,16 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 20.790293216705322 seconds +Time: 10.378219842910767 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 2, ..., 99999, 99999, +tensor(crow_indices=tensor([ 0, 1, 5, ..., 99999, 99999, 100000]), - col_indices=tensor([ 6594, 93201, 43608, ..., 41278, 68005, 16586]), - values=tensor([0.8802, 0.5778, 0.4721, ..., 0.6728, 0.8802, 0.6767]), + col_indices=tensor([79139, 34438, 57240, ..., 99522, 68399, 1834]), + values=tensor([0.8717, 0.0754, 0.3550, ..., 0.4586, 0.3508, 0.4372]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.6356, 0.8811, 0.4031, ..., 0.8985, 0.9999, 0.3835]) +tensor([0.1033, 0.1471, 0.4199, ..., 0.6623, 0.5752, 0.0388]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -53,13 +53,13 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 20.790293216705322 seconds +Time: 10.378219842910767 seconds -[18.44, 18.07, 17.97, 17.94, 21.94, 18.0, 18.46, 18.26, 18.2, 18.27] -[46.93] -24.59538173675537 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 15982, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 20.790293216705322, 'TIME_S_1KI': 1.300856789932757, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1154.2612649059295, 'W': 46.92999999999999} -[18.44, 18.07, 17.97, 17.94, 21.94, 18.0, 18.46, 18.26, 18.2, 18.27, 18.3, 17.85, 18.0, 18.05, 18.14, 17.86, 17.89, 17.78, 18.15, 17.72] -328.925 -16.44625 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 15982, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 20.790293216705322, 'TIME_S_1KI': 1.300856789932757, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1154.2612649059295, 'W': 46.92999999999999, 'J_1KI': 72.22257945851142, 'W_1KI': 2.936428482042297, 'W_D': 30.483749999999993, 'J_D': 749.7594680178164, 'W_D_1KI': 1.907380177699912, 'J_D_1KI': 0.11934552482166888} +[19.98, 17.81, 17.8, 18.03, 17.89, 17.86, 17.65, 18.02, 17.79, 17.59] +[51.18] +14.12563180923462 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 7957, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.378219842910767, 'TIME_S_1KI': 1.3042880285171252, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 722.9498359966278, 'W': 51.18} +[19.98, 17.81, 17.8, 18.03, 17.89, 17.86, 17.65, 18.02, 17.79, 17.59, 18.5, 18.06, 17.99, 17.58, 17.86, 17.88, 17.85, 17.69, 17.49, 22.29] +324.43 +16.2215 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 7957, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.378219842910767, 'TIME_S_1KI': 1.3042880285171252, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 722.9498359966278, 'W': 51.18, 'J_1KI': 90.85708633864871, 'W_1KI': 6.432072389091366, 'W_D': 34.9585, 'J_D': 493.81089960312846, 'W_D_1KI': 4.3934271710443635, 'J_D_1KI': 0.5521461821093834} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.0001.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.0001.json new file mode 100644 index 0000000..641470f --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 83764, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.409894704818726, "TIME_S_1KI": 0.12427647563175977, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 711.6688519239426, "W": 50.42, "J_1KI": 8.49611828379665, "W_1KI": 0.6019292297407001, "W_D": 34.06175, "J_D": 480.7752185049654, "W_D_1KI": 0.40663948713050957, "J_D_1KI": 0.004854585348485144} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.0001.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.0001.output new file mode 100644 index 0000000..168b413 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.0001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.13988041877746582} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 5, ..., 9997, 9998, 10000]), + col_indices=tensor([5444, 7298, 2758, ..., 5406, 201, 2159]), + values=tensor([0.2785, 0.9301, 0.1173, ..., 0.6105, 0.0625, 0.6073]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.9117, 0.7600, 0.5676, ..., 0.4107, 0.0296, 0.3559]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 0.13988041877746582 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '75064', '-ss', '10000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.409368753433228} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 3, ..., 9999, 9999, 10000]), + col_indices=tensor([ 559, 1691, 3057, ..., 6770, 161, 9445]), + values=tensor([0.2390, 0.7843, 0.4833, ..., 0.8916, 0.1224, 0.1645]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.9833, 0.3493, 0.9306, ..., 0.5004, 0.5453, 0.7909]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 9.409368753433228 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '83764', '-ss', '10000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.409894704818726} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 5, ..., 9999, 10000, 10000]), + col_indices=tensor([1791, 2178, 4941, ..., 8437, 8977, 5726]), + values=tensor([0.7542, 0.7473, 0.0826, ..., 0.7863, 0.2178, 0.9123]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.0349, 0.7342, 0.7720, ..., 0.6458, 0.8179, 0.1428]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.409894704818726 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 5, ..., 9999, 10000, 10000]), + col_indices=tensor([1791, 2178, 4941, ..., 8437, 8977, 5726]), + values=tensor([0.7542, 0.7473, 0.0826, ..., 0.7863, 0.2178, 0.9123]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.0349, 0.7342, 0.7720, ..., 0.6458, 0.8179, 0.1428]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.409894704818726 seconds + +[18.39, 17.85, 18.37, 17.98, 17.9, 18.07, 21.28, 18.76, 18.12, 17.67] +[50.42] +14.11481261253357 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 83764, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.409894704818726, 'TIME_S_1KI': 0.12427647563175977, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 711.6688519239426, 'W': 50.42} +[18.39, 17.85, 18.37, 17.98, 17.9, 18.07, 21.28, 18.76, 18.12, 17.67, 18.33, 17.97, 17.87, 17.66, 17.77, 17.96, 17.86, 17.77, 17.81, 17.94] +327.16499999999996 +16.358249999999998 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 83764, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.409894704818726, 'TIME_S_1KI': 0.12427647563175977, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 711.6688519239426, 'W': 50.42, 'J_1KI': 8.49611828379665, 'W_1KI': 0.6019292297407001, 'W_D': 34.06175, 'J_D': 480.7752185049654, 'W_D_1KI': 0.40663948713050957, 'J_D_1KI': 0.004854585348485144} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.001.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.001.json new file mode 100644 index 0000000..b3d9f1e --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 33076, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.000443935394287, "TIME_S_1KI": 0.30234744030095195, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 713.14643699646, "W": 51.71, "J_1KI": 21.560842816436693, "W_1KI": 1.5633692103035435, "W_D": 35.256, "J_D": 486.2249232788086, "W_D_1KI": 1.065908816059983, "J_D_1KI": 0.03222604958459254} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.001.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.001.output new file mode 100644 index 0000000..108ea7e --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.31745004653930664} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 13, 25, ..., 99974, 99988, + 100000]), + col_indices=tensor([ 189, 1046, 1680, ..., 7652, 7822, 9876]), + values=tensor([0.3200, 0.6172, 0.8426, ..., 0.6310, 0.2892, 0.4983]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.5979, 0.0691, 0.5787, ..., 0.1637, 0.0173, 0.7657]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 0.31745004653930664 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '33076', '-ss', '10000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.000443935394287} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 16, ..., 99975, 99984, + 100000]), + col_indices=tensor([2058, 2088, 2648, ..., 8443, 9183, 9230]), + values=tensor([0.6058, 0.3120, 0.6569, ..., 0.6120, 0.0868, 0.9498]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.4574, 0.0884, 0.9388, ..., 0.4572, 0.8159, 0.8640]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.000443935394287 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 16, ..., 99975, 99984, + 100000]), + col_indices=tensor([2058, 2088, 2648, ..., 8443, 9183, 9230]), + values=tensor([0.6058, 0.3120, 0.6569, ..., 0.6120, 0.0868, 0.9498]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.4574, 0.0884, 0.9388, ..., 0.4572, 0.8159, 0.8640]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.000443935394287 seconds + +[18.4, 17.89, 17.86, 18.15, 21.93, 17.6, 17.74, 17.84, 17.81, 17.8] +[51.71] +13.791267395019531 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 33076, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.000443935394287, 'TIME_S_1KI': 0.30234744030095195, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 713.14643699646, 'W': 51.71} +[18.4, 17.89, 17.86, 18.15, 21.93, 17.6, 17.74, 17.84, 17.81, 17.8, 22.42, 17.97, 17.98, 17.67, 18.14, 18.06, 18.09, 18.36, 17.77, 17.82] +329.08000000000004 +16.454 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 33076, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.000443935394287, 'TIME_S_1KI': 0.30234744030095195, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 713.14643699646, 'W': 51.71, 'J_1KI': 21.560842816436693, 'W_1KI': 1.5633692103035435, 'W_D': 35.256, 'J_D': 486.2249232788086, 'W_D_1KI': 1.065908816059983, 'J_D_1KI': 0.03222604958459254} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.01.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.01.json new file mode 100644 index 0000000..ec86a79 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 5536, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.43858790397644, "TIME_S_1KI": 1.885583075140253, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 757.4033546972274, "W": 52.18, "J_1KI": 136.81418979357431, "W_1KI": 9.425578034682081, "W_D": 35.855000000000004, "J_D": 520.4426462757588, "W_D_1KI": 6.476697976878613, "J_D_1KI": 1.1699237674997496} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.01.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.01.output new file mode 100644 index 0000000..cdf759d --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.01.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 1.8966615200042725} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 98, 196, ..., 999798, + 999896, 1000000]), + col_indices=tensor([ 136, 346, 355, ..., 9896, 9907, 9979]), + values=tensor([0.5884, 0.9037, 0.2601, ..., 0.4944, 0.5993, 0.9598]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.5307, 0.6978, 0.6134, ..., 0.5179, 0.0970, 0.9420]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 1.8966615200042725 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '5536', '-ss', '10000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.43858790397644} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 90, 180, ..., 999793, + 999892, 1000000]), + col_indices=tensor([ 10, 80, 127, ..., 9954, 9956, 9988]), + values=tensor([0.2975, 0.8577, 0.6251, ..., 0.1783, 0.1753, 0.5886]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.4757, 0.0822, 0.0813, ..., 0.4411, 0.1352, 0.6104]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.43858790397644 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 90, 180, ..., 999793, + 999892, 1000000]), + col_indices=tensor([ 10, 80, 127, ..., 9954, 9956, 9988]), + values=tensor([0.2975, 0.8577, 0.6251, ..., 0.1783, 0.1753, 0.5886]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.4757, 0.0822, 0.0813, ..., 0.4411, 0.1352, 0.6104]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.43858790397644 seconds + +[18.3, 18.15, 17.72, 17.62, 17.65, 18.51, 19.15, 17.59, 17.78, 18.09] +[52.18] +14.515204191207886 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 5536, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.43858790397644, 'TIME_S_1KI': 1.885583075140253, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 757.4033546972274, 'W': 52.18} +[18.3, 18.15, 17.72, 17.62, 17.65, 18.51, 19.15, 17.59, 17.78, 18.09, 18.11, 18.06, 18.06, 18.01, 19.44, 18.82, 18.14, 17.87, 17.86, 17.64] +326.5 +16.325 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 5536, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.43858790397644, 'TIME_S_1KI': 1.885583075140253, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 757.4033546972274, 'W': 52.18, 'J_1KI': 136.81418979357431, 'W_1KI': 9.425578034682081, 'W_D': 35.855000000000004, 'J_D': 520.4426462757588, 'W_D_1KI': 6.476697976878613, 'J_D_1KI': 1.1699237674997496} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.05.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.05.json new file mode 100644 index 0000000..4abbf3f --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.659594058990479, "TIME_S_1KI": 10.659594058990479, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 944.4377518177032, "W": 52.04, "J_1KI": 944.4377518177032, "W_1KI": 52.04, "W_D": 22.411249999999995, "J_D": 406.72618304044, "W_D_1KI": 22.411249999999995, "J_D_1KI": 22.411249999999995} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.05.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.05.output new file mode 100644 index 0000000..e447139 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.05.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.659594058990479} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 491, 987, ..., 4999032, + 4999549, 5000000]), + col_indices=tensor([ 2, 62, 63, ..., 9943, 9957, 9997]), + values=tensor([0.7700, 0.3306, 0.4646, ..., 0.1296, 0.2152, 0.2390]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.3463, 0.4470, 0.4445, ..., 0.6886, 0.1263, 0.4488]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 10.659594058990479 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 491, 987, ..., 4999032, + 4999549, 5000000]), + col_indices=tensor([ 2, 62, 63, ..., 9943, 9957, 9997]), + values=tensor([0.7700, 0.3306, 0.4646, ..., 0.1296, 0.2152, 0.2390]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.3463, 0.4470, 0.4445, ..., 0.6886, 0.1263, 0.4488]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 10.659594058990479 seconds + +[18.53, 17.91, 17.8, 17.55, 17.82, 18.2, 17.7, 17.96, 22.04, 18.01] +[52.04] +18.148304224014282 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.659594058990479, 'TIME_S_1KI': 10.659594058990479, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 944.4377518177032, 'W': 52.04} +[18.53, 17.91, 17.8, 17.55, 17.82, 18.2, 17.7, 17.96, 22.04, 18.01, 43.17, 47.09, 51.95, 51.61, 51.61, 46.81, 50.13, 50.7, 46.45, 18.78] +592.575 +29.628750000000004 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.659594058990479, 'TIME_S_1KI': 10.659594058990479, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 944.4377518177032, 'W': 52.04, 'J_1KI': 944.4377518177032, 'W_1KI': 52.04, 'W_D': 22.411249999999995, 'J_D': 406.72618304044, 'W_D_1KI': 22.411249999999995, 'J_D_1KI': 22.411249999999995} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.1.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.1.json new file mode 100644 index 0000000..3316ce4 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.1.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 26.374675512313843, "TIME_S_1KI": 26.374675512313843, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1870.3769276547432, "W": 52.87, "J_1KI": 1870.3769276547432, "W_1KI": 52.87, "W_D": 36.2005, "J_D": 1280.661622272849, "W_D_1KI": 36.2005, "J_D_1KI": 36.2005} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.1.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.1.output new file mode 100644 index 0000000..fb57672 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_0.1.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.1', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 26.374675512313843} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1071, 2053, ..., 9998024, + 9999000, 10000000]), + col_indices=tensor([ 3, 4, 5, ..., 9980, 9985, 9995]), + values=tensor([0.3665, 0.1961, 0.0802, ..., 0.1951, 0.2808, 0.5332]), + size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.6172, 0.4719, 0.5685, ..., 0.7751, 0.3390, 0.5446]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000000 +Density: 0.1 +Time: 26.374675512313843 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1071, 2053, ..., 9998024, + 9999000, 10000000]), + col_indices=tensor([ 3, 4, 5, ..., 9980, 9985, 9995]), + values=tensor([0.3665, 0.1961, 0.0802, ..., 0.1951, 0.2808, 0.5332]), + size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.6172, 0.4719, 0.5685, ..., 0.7751, 0.3390, 0.5446]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000000 +Density: 0.1 +Time: 26.374675512313843 seconds + +[18.71, 18.02, 18.12, 18.01, 22.7, 19.43, 18.17, 18.48, 18.54, 18.36] +[52.87] +35.376904249191284 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 26.374675512313843, 'TIME_S_1KI': 26.374675512313843, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1870.3769276547432, 'W': 52.87} +[18.71, 18.02, 18.12, 18.01, 22.7, 19.43, 18.17, 18.48, 18.54, 18.36, 18.41, 17.86, 17.86, 18.01, 17.87, 17.66, 17.87, 17.6, 18.07, 22.76] +333.39 +16.6695 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 26.374675512313843, 'TIME_S_1KI': 26.374675512313843, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1870.3769276547432, 'W': 52.87, 'J_1KI': 1870.3769276547432, 'W_1KI': 52.87, 'W_D': 36.2005, 'J_D': 1280.661622272849, 'W_D_1KI': 36.2005, 'J_D_1KI': 36.2005} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_1e-05.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_1e-05.json new file mode 100644 index 0000000..bb313c5 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 225815, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.501307487487793, "TIME_S_1KI": 0.046504029792032386, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 725.5277880001069, "W": 50.86, "J_1KI": 3.2129300002218932, "W_1KI": 0.22522861634523836, "W_D": 34.5345, "J_D": 492.64135656094555, "W_D_1KI": 0.15293271040453468, "J_D_1KI": 0.0006772477931250567} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_1e-05.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_1e-05.output new file mode 100644 index 0000000..9f5c396 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_10000_1e-05.output @@ -0,0 +1,1307 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.06352877616882324} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 1000, 1000, 1000]), + col_indices=tensor([8818, 4997, 6295, 3180, 5518, 5172, 746, 5244, 2210, + 743, 966, 3996, 5220, 1403, 3538, 8509, 4502, 3785, + 3874, 817, 2474, 8625, 1826, 7378, 3372, 3487, 3692, + 2823, 4014, 5568, 2853, 458, 6380, 403, 9884, 6452, + 9461, 3174, 4128, 3727, 4746, 3692, 3559, 764, 7725, + 9740, 2443, 7797, 959, 9783, 3882, 305, 8658, 3439, + 5219, 6204, 295, 2674, 5653, 2515, 9433, 6942, 4787, + 2622, 8901, 7171, 1978, 5705, 8547, 5754, 1645, 8716, + 7164, 3964, 7058, 652, 9812, 2558, 4701, 5177, 98, + 4410, 1873, 4795, 9496, 1552, 8229, 5835, 111, 9027, + 4842, 5493, 1576, 7272, 2867, 9784, 7469, 4609, 150, + 9289, 6828, 2031, 511, 5367, 206, 9469, 1196, 6, + 6915, 5850, 9888, 478, 1163, 4552, 2977, 4780, 2098, + 8590, 2673, 6656, 6488, 6316, 4862, 2997, 7612, 1952, + 2112, 7509, 4782, 1126, 7937, 6476, 235, 4623, 3076, + 3989, 6113, 2417, 6645, 7779, 1104, 5344, 4301, 6259, + 1752, 8337, 8322, 7835, 1908, 7672, 4448, 5034, 60, + 7057, 2837, 8532, 8189, 5873, 1420, 6709, 490, 6751, + 8214, 372, 7996, 3737, 3617, 4217, 2087, 3924, 715, + 7031, 927, 4709, 9269, 6784, 9714, 1522, 6663, 5719, + 4381, 6868, 7211, 9670, 8059, 6497, 7248, 8162, 2084, + 7034, 9399, 6368, 805, 1972, 1288, 6192, 6971, 8158, + 839, 2511, 8665, 9067, 2039, 5911, 3156, 7465, 1110, + 1361, 5583, 6290, 6815, 9577, 8273, 5080, 5829, 4439, + 4517, 7692, 6404, 3416, 4236, 9336, 4572, 6801, 7025, + 3277, 3132, 7625, 3681, 2623, 3841, 8373, 5724, 5264, + 4286, 5692, 9344, 6955, 4289, 9500, 6700, 8199, 366, + 3802, 521, 2483, 8095, 5552, 6282, 9877, 4904, 2556, + 5298, 3693, 2380, 4385, 4412, 1834, 9121, 5659, 8347, + 2368, 6268, 3224, 9192, 3527, 71, 5299, 3747, 9127, + 7913, 3584, 6170, 5219, 9969, 8558, 7471, 1869, 6249, + 6314, 8214, 9604, 4989, 9678, 9005, 899, 327, 9154, + 420, 7636, 9194, 2023, 6652, 3649, 2734, 7531, 6034, + 6367, 2297, 2439, 8543, 8665, 2261, 7803, 6026, 5718, + 1460, 3052, 5066, 4649, 5088, 3888, 7634, 3125, 1031, + 357, 4186, 379, 1160, 3285, 8329, 8278, 5375, 6589, + 3332, 2502, 5635, 2777, 4131, 8236, 5364, 4119, 4773, + 7426, 3813, 7568, 4300, 251, 7007, 6592, 520, 5616, + 184, 5912, 159, 2430, 7561, 1581, 8783, 1948, 4824, + 8861, 1027, 7384, 7064, 3762, 9883, 5055, 9889, 2136, + 6878, 134, 439, 8931, 7319, 4846, 7379, 9994, 2529, + 7477, 8567, 4006, 6282, 7117, 311, 9326, 7719, 5997, + 9451, 2406, 6518, 3299, 9691, 2738, 7672, 4868, 7911, + 5072, 1199, 7673, 5307, 9429, 3333, 4281, 9947, 8085, + 8514, 3607, 8741, 6796, 1858, 1016, 1779, 480, 6356, + 7534, 7821, 5353, 6971, 7947, 3649, 3547, 6610, 7945, + 8983, 2902, 2404, 3640, 3470, 7115, 4331, 3001, 7217, + 6067, 6675, 9033, 113, 8511, 2978, 3828, 5547, 6128, + 5943, 9133, 7396, 340, 5013, 3866, 5429, 3843, 4232, + 4224, 5836, 9527, 5393, 5619, 3765, 7060, 7312, 8751, + 9882, 3644, 2436, 1894, 9420, 4432, 3471, 689, 2661, + 8498, 9018, 5541, 8913, 8885, 2798, 7235, 4793, 2889, + 22, 4074, 7934, 4211, 9089, 1688, 2377, 3141, 1578, + 736, 6921, 8872, 2373, 2510, 5342, 5747, 7007, 5681, + 4089, 3866, 3383, 4848, 2721, 2600, 8073, 2987, 4596, + 8224, 7575, 1778, 7724, 7661, 9433, 1516, 5355, 8800, + 9206, 6526, 8742, 5734, 1218, 9890, 6353, 6953, 9936, + 5027, 6686, 7991, 7405, 4870, 3524, 2831, 4892, 3114, + 8610, 5079, 7688, 3999, 6035, 4304, 578, 5348, 8238, + 6971, 6365, 7448, 5465, 1168, 9574, 125, 360, 8670, + 1031, 3631, 9612, 6050, 4553, 5025, 7956, 621, 7664, + 5616, 5980, 3672, 5851, 1472, 5912, 974, 7527, 6936, + 3930, 214, 2108, 966, 7534, 3091, 9626, 1342, 2734, + 6495, 7050, 5771, 9438, 4075, 4885, 2053, 5699, 1233, + 1947, 9922, 2071, 7358, 4113, 4493, 1101, 5450, 1849, + 5005, 4209, 7972, 9327, 8652, 1919, 9648, 2341, 6003, + 5957, 8870, 4062, 7506, 7950, 234, 5860, 9966, 6514, + 573, 417, 3838, 134, 311, 3466, 651, 6202, 7365, + 7013, 2031, 8636, 3247, 4845, 4825, 8910, 614, 665, + 3996, 6221, 9001, 1244, 1489, 3803, 788, 9532, 7970, + 902, 9287, 5113, 9135, 8459, 3179, 9001, 7566, 887, + 7657, 5624, 5814, 4435, 543, 3492, 150, 4412, 7874, + 9601, 4359, 2434, 2790, 8199, 7856, 9975, 7047, 450, + 7905, 9286, 7834, 1567, 5836, 541, 7574, 6346, 2293, + 1724, 4573, 8919, 2574, 7423, 9764, 900, 9870, 4793, + 6813, 5501, 6220, 5209, 4493, 9942, 3899, 1850, 9402, + 4899, 967, 1495, 5010, 551, 8509, 1348, 6653, 5443, + 38, 5351, 7236, 6333, 2748, 6974, 5517, 5271, 2671, + 2099, 2279, 5546, 7405, 6267, 4157, 6136, 7672, 7732, + 2068, 5252, 730, 2034, 517, 6990, 3368, 1064, 8937, + 3732, 9471, 232, 46, 2596, 29, 6547, 1283, 4106, + 3755, 441, 8420, 2767, 4347, 8108, 6894, 3712, 9224, + 5559, 3154, 1897, 9474, 5775, 9076, 9330, 6478, 4842, + 5819, 4627, 3308, 8268, 8302, 7939, 3972, 2816, 1671, + 654, 3190, 1461, 8667, 2709, 4129, 6596, 5313, 8247, + 8111, 6549, 9761, 4895, 7369, 7306, 5691, 6366, 6366, + 1632, 1006, 1565, 8757, 8307, 7957, 6655, 8497, 6101, + 789, 5192, 8243, 4023, 8662, 8468, 184, 4890, 8196, + 4665, 195, 8889, 4145, 6127, 6961, 1552, 9768, 9245, + 9336, 2960, 3225, 8928, 1942, 7053, 4234, 7272, 4267, + 2453, 9231, 6135, 9573, 8580, 5701, 9618, 625, 1243, + 8497, 1674, 290, 8086, 6464, 782, 4299, 375, 1982, + 1301, 2328, 2966, 9273, 2957, 5839, 2534, 9510, 3891, + 6678, 118, 6417, 2293, 7076, 8464, 8118, 1840, 6882, + 1749, 2518, 1180, 5249, 3941, 7393, 4780, 2412, 1116, + 3560, 4248, 9195, 3261, 7262, 8391, 4018, 9884, 3637, + 708, 6472, 8166, 9273, 6239, 3301, 2615, 8039, 9504, + 2277, 7369, 9363, 169, 2266, 7615, 341, 752, 1755, + 3496, 7393, 1717, 3157, 4288, 6859, 4916, 1821, 2886, + 3627, 7457, 2496, 3885, 6234, 4545, 6510, 9711, 3708, + 9103, 6471, 9205, 9987, 390, 8226, 9671, 9512, 4146, + 2072, 4493, 8377, 7389, 6002, 5643, 6690, 6821, 7003, + 639, 833, 3000, 7750, 1465, 2933, 1680, 1789, 3599, + 7744, 1866, 406, 4679, 8328, 3373, 8553, 137, 3824, + 647, 9373, 6325, 3601, 826, 7215, 3418, 1045, 2194, + 8870, 2266, 5573, 2823, 855, 4619, 4378, 9555, 8804, + 1524, 5955, 362, 470, 9979, 9421, 5896, 6593, 8227, + 1504, 9829, 7218, 9534, 7521, 4807, 5986, 9951, 2099, + 1648, 4145, 9786, 8587, 4042, 9042, 868, 4796, 7815, + 9322, 5225, 6497, 1773, 8345, 1473, 4874, 5455, 8676, + 956, 3326, 6466, 4895, 6950, 9662, 956, 5289, 402, + 9854]), + values=tensor([3.3413e-01, 9.6154e-01, 9.2428e-01, 4.3740e-01, + 5.0672e-01, 6.7183e-01, 1.7642e-01, 6.2591e-01, + 1.8806e-01, 5.1543e-01, 2.7472e-01, 8.7819e-01, + 3.0617e-01, 1.9266e-01, 2.5253e-01, 1.7604e-01, + 9.6939e-01, 9.3065e-01, 6.8263e-01, 3.3567e-01, + 6.7566e-01, 7.2445e-01, 8.4903e-01, 6.8276e-01, + 8.9068e-01, 9.4827e-01, 2.9850e-03, 4.8301e-01, + 7.5776e-01, 2.0438e-01, 6.8328e-01, 9.5097e-01, + 5.5850e-01, 5.8555e-01, 4.8689e-01, 7.4699e-01, + 3.5636e-01, 6.3398e-02, 7.2154e-01, 6.4758e-01, + 7.1128e-01, 5.3896e-01, 4.4886e-01, 8.3528e-01, + 8.0431e-01, 4.5542e-01, 8.4234e-01, 9.1079e-01, + 8.9773e-01, 5.2581e-01, 1.7418e-01, 2.7136e-01, + 7.3759e-01, 5.3422e-01, 7.0519e-01, 9.5438e-02, + 5.0885e-01, 2.5722e-01, 5.8427e-01, 4.4767e-01, + 1.3592e-01, 8.3711e-01, 2.3871e-01, 3.4095e-01, + 5.8466e-01, 9.8314e-01, 7.3868e-01, 7.4283e-01, + 1.9128e-01, 7.5101e-01, 5.7700e-01, 2.9889e-01, + 4.5959e-01, 4.2145e-01, 2.5057e-01, 7.5680e-01, + 4.6999e-01, 8.4990e-01, 6.7075e-02, 5.3521e-01, + 5.4071e-01, 6.9243e-01, 1.3893e-01, 1.6825e-01, + 1.4559e-01, 2.9361e-01, 4.0267e-01, 4.6702e-02, + 7.4439e-01, 9.2611e-01, 5.3385e-01, 5.8174e-01, + 8.3240e-01, 3.8714e-02, 3.6481e-02, 9.8895e-01, + 3.5439e-01, 4.9898e-01, 7.1920e-01, 5.2686e-01, + 3.8192e-01, 3.2391e-01, 4.2722e-01, 2.9358e-01, + 3.8674e-01, 9.0560e-01, 5.9147e-02, 7.5979e-01, + 2.1172e-01, 7.8685e-01, 7.1357e-01, 3.5759e-01, + 5.5162e-01, 4.4878e-01, 1.8497e-01, 6.2065e-01, + 2.6438e-01, 8.4614e-02, 2.3238e-01, 9.6334e-01, + 3.0934e-01, 3.6143e-01, 1.2818e-01, 4.2707e-01, + 5.8897e-01, 6.2555e-01, 1.5839e-01, 1.1931e-01, + 6.0302e-01, 4.7008e-01, 3.4107e-01, 8.7125e-01, + 3.7647e-01, 3.7313e-01, 6.9521e-01, 9.1572e-01, + 9.9820e-01, 5.3099e-01, 3.5865e-01, 6.3793e-01, + 9.8776e-01, 4.9652e-01, 4.7539e-01, 7.7584e-01, + 3.3199e-01, 3.9594e-01, 1.9223e-01, 5.0865e-01, + 7.8381e-01, 6.4350e-01, 3.3288e-01, 1.5435e-02, + 3.2685e-01, 5.0507e-01, 6.4444e-02, 2.3900e-01, + 6.9439e-01, 9.2867e-01, 6.7916e-01, 9.8867e-02, + 6.4876e-01, 9.1622e-01, 2.6086e-01, 5.7986e-01, + 8.7320e-01, 5.1780e-01, 1.4542e-01, 3.4482e-01, + 5.5641e-01, 5.0377e-01, 4.4889e-01, 4.4496e-01, + 9.2119e-01, 3.7454e-01, 4.5180e-02, 5.2673e-01, + 7.3967e-01, 9.0447e-02, 2.8158e-02, 5.3280e-01, + 2.0659e-01, 9.2580e-01, 2.4951e-02, 9.0341e-01, + 9.1063e-01, 6.9181e-01, 9.9889e-01, 7.1868e-01, + 7.3530e-01, 3.2916e-01, 4.5052e-01, 6.6286e-01, + 7.5088e-01, 2.9739e-01, 8.4962e-01, 7.8855e-01, + 6.7181e-02, 2.5548e-01, 5.1131e-01, 8.0204e-01, + 7.8482e-02, 9.2621e-01, 4.2595e-01, 4.0279e-01, + 2.1659e-01, 4.6389e-01, 5.1602e-01, 2.4603e-01, + 8.4689e-02, 1.5638e-01, 4.8617e-01, 3.0228e-01, + 1.2974e-02, 7.0727e-01, 4.6162e-02, 6.9480e-01, + 5.3946e-01, 5.4407e-01, 7.1006e-01, 7.4908e-01, + 9.1735e-02, 6.7248e-01, 8.6916e-02, 6.5322e-01, + 6.3607e-01, 3.9262e-01, 5.9178e-01, 2.6405e-01, + 2.5459e-01, 3.5071e-01, 1.0168e-01, 6.2308e-01, + 2.9867e-01, 5.7428e-01, 5.3193e-01, 4.2365e-01, + 1.2457e-01, 2.4644e-01, 9.1203e-01, 1.6859e-01, + 1.6178e-01, 8.6987e-02, 9.2550e-01, 5.4948e-01, + 7.0272e-01, 4.1025e-01, 6.9905e-01, 9.3853e-01, + 3.8478e-01, 2.7231e-01, 8.7451e-01, 1.6185e-01, + 2.1615e-01, 8.3915e-01, 9.3369e-01, 4.6497e-02, + 1.3231e-01, 8.2041e-01, 1.8464e-01, 6.1141e-01, + 1.7747e-01, 6.2373e-02, 3.1910e-01, 4.0769e-01, + 9.2121e-01, 5.5775e-01, 9.9630e-01, 4.8526e-01, + 8.6126e-01, 8.4215e-01, 6.3503e-01, 2.3170e-01, + 9.8023e-01, 6.3946e-01, 5.6702e-01, 7.7645e-01, + 5.4873e-01, 9.3943e-01, 8.6454e-01, 6.2600e-01, + 1.5287e-01, 3.9319e-02, 8.5149e-01, 5.6868e-02, + 7.1982e-01, 9.1464e-01, 5.2991e-01, 6.2555e-01, + 4.1212e-01, 5.2963e-01, 1.2844e-01, 9.9335e-01, + 9.6476e-01, 3.7956e-01, 9.2300e-01, 4.6692e-01, + 4.0223e-01, 5.0942e-01, 7.1786e-01, 2.0918e-02, + 5.8405e-02, 6.9935e-01, 9.4314e-01, 7.2617e-01, + 7.6302e-01, 9.5543e-01, 5.2211e-01, 5.1296e-01, + 7.7800e-01, 1.2704e-01, 5.8003e-01, 9.0919e-01, + 8.2907e-01, 1.6851e-01, 2.8117e-01, 7.6064e-01, + 3.8642e-01, 5.8016e-02, 1.5644e-01, 6.8292e-01, + 4.0441e-01, 2.8108e-01, 8.4916e-01, 2.2913e-02, + 3.8522e-01, 7.0529e-01, 1.0784e-01, 8.9236e-02, + 5.4299e-02, 4.4178e-01, 4.4945e-01, 3.8154e-02, + 1.8942e-01, 3.8126e-01, 4.0344e-01, 8.3251e-01, + 2.9117e-01, 8.3230e-01, 3.7680e-02, 4.8312e-01, + 2.3530e-01, 3.8031e-02, 4.8939e-01, 8.2329e-01, + 5.6083e-01, 4.9221e-01, 2.8147e-01, 8.2134e-01, + 8.8106e-01, 9.6345e-01, 8.5673e-02, 8.3601e-01, + 9.0416e-01, 3.2669e-01, 6.6247e-01, 3.7821e-01, + 6.2048e-01, 3.8196e-01, 4.1013e-01, 4.6001e-01, + 5.2872e-02, 2.2035e-01, 8.4768e-01, 6.9547e-01, + 5.2226e-01, 8.0056e-01, 6.1057e-01, 8.9496e-01, + 7.9516e-02, 8.6518e-02, 9.6564e-01, 7.5278e-01, + 3.0018e-01, 3.1016e-01, 3.2145e-01, 1.3818e-01, + 1.5719e-02, 9.3330e-01, 1.1458e-01, 7.9328e-01, + 6.1409e-01, 7.9912e-01, 8.1155e-01, 8.1719e-01, + 9.5110e-01, 9.0720e-01, 9.0330e-01, 3.5557e-01, + 8.9821e-01, 3.2569e-01, 8.2973e-01, 5.7229e-01, + 4.6707e-01, 1.6807e-01, 6.1908e-01, 5.3227e-01, + 1.6841e-01, 7.5433e-01, 1.5976e-01, 8.1569e-01, + 9.8174e-01, 8.0700e-01, 8.0758e-01, 2.5587e-01, + 8.0716e-01, 1.4534e-01, 6.4834e-01, 4.8418e-01, + 4.2206e-01, 5.1555e-01, 6.2372e-01, 1.8478e-01, + 6.2172e-01, 7.6542e-01, 2.0146e-01, 3.4389e-01, + 2.6014e-01, 5.4968e-01, 2.2724e-01, 7.3462e-02, + 4.9419e-01, 2.8888e-01, 6.1621e-01, 7.8133e-01, + 1.2898e-01, 3.1743e-01, 9.4942e-01, 5.0322e-01, + 1.1519e-01, 8.9371e-01, 9.9778e-01, 1.1507e-01, + 4.7869e-01, 1.5039e-01, 5.0710e-01, 1.1949e-01, + 7.1555e-01, 8.6586e-01, 9.9749e-01, 9.7706e-01, + 9.7198e-01, 6.4097e-01, 6.5528e-01, 4.5529e-01, + 7.2320e-01, 5.6966e-01, 8.2813e-01, 3.0838e-01, + 5.8695e-01, 5.3551e-01, 6.6446e-01, 6.4615e-01, + 2.8057e-01, 4.2723e-01, 8.8389e-01, 3.2057e-01, + 2.5664e-01, 4.9971e-01, 8.2847e-01, 9.1802e-01, + 3.9503e-03, 1.7917e-01, 5.6674e-01, 5.9594e-02, + 2.9573e-01, 7.5324e-01, 9.8288e-01, 9.6041e-01, + 2.5792e-01, 6.3506e-01, 9.4713e-01, 5.5160e-01, + 8.7668e-01, 5.4248e-01, 8.4704e-01, 3.5258e-01, + 5.4899e-01, 1.7759e-01, 8.5356e-01, 1.8781e-01, + 8.5644e-01, 9.6625e-01, 9.8773e-01, 1.7599e-01, + 9.3049e-03, 1.1167e-01, 5.5962e-01, 4.1542e-01, + 8.6926e-01, 8.5629e-01, 7.4983e-01, 9.6038e-02, + 8.0905e-01, 2.8552e-01, 8.2475e-01, 2.8115e-01, + 6.2389e-02, 9.2871e-01, 1.8106e-01, 8.8332e-01, + 5.6800e-01, 4.5719e-01, 1.6232e-01, 6.9521e-01, + 5.9495e-01, 5.5107e-01, 3.7398e-02, 2.3840e-01, + 7.6451e-01, 1.6915e-01, 4.2375e-01, 8.5118e-01, + 5.8113e-01, 6.7525e-02, 6.7553e-01, 5.1583e-01, + 1.7408e-01, 5.3300e-01, 5.0256e-01, 8.0241e-01, + 5.4870e-01, 1.7516e-02, 8.0299e-01, 8.7076e-01, + 1.9071e-01, 9.0709e-01, 9.9797e-01, 4.1422e-01, + 2.4372e-01, 6.7107e-02, 1.4709e-01, 3.1995e-01, + 7.7356e-01, 7.0764e-01, 7.2801e-01, 8.7525e-02, + 4.9250e-01, 7.7304e-01, 8.0663e-01, 2.7071e-02, + 4.8988e-02, 4.0919e-02, 7.3029e-01, 6.4353e-01, + 7.8818e-01, 9.4565e-01, 7.5804e-01, 7.6888e-01, + 9.3870e-01, 8.2402e-01, 3.9508e-01, 5.9546e-01, + 5.4638e-02, 5.9375e-01, 9.1096e-01, 3.5543e-01, + 5.0710e-02, 1.0874e-01, 7.5845e-01, 6.2126e-01, + 2.1767e-01, 5.2358e-01, 3.5926e-01, 5.4564e-02, + 7.9008e-01, 6.1479e-01, 4.7427e-01, 2.2081e-01, + 4.3878e-01, 9.0154e-01, 2.2267e-01, 2.3302e-02, + 6.2728e-01, 7.2256e-01, 8.4482e-01, 4.3277e-01, + 4.1845e-01, 6.0946e-01, 9.9849e-01, 6.8789e-02, + 3.2314e-01, 1.1939e-01, 2.8754e-02, 8.9296e-01, + 9.7598e-01, 2.7956e-01, 7.5135e-01, 5.2820e-01, + 7.3256e-01, 7.1043e-01, 2.3368e-01, 6.4732e-01, + 5.7605e-01, 9.2871e-02, 5.8319e-02, 5.9050e-01, + 6.6527e-01, 1.5119e-01, 3.9390e-01, 5.3447e-01, + 8.9445e-02, 6.4077e-01, 6.2757e-01, 9.4870e-01, + 5.2767e-02, 5.3053e-01, 9.8813e-01, 6.1004e-01, + 6.2611e-01, 5.3778e-01, 6.3170e-01, 8.3799e-01, + 3.9200e-01, 2.0112e-01, 9.2461e-01, 1.9096e-02, + 2.1625e-01, 2.4502e-01, 8.2892e-01, 9.6210e-01, + 2.7158e-01, 6.5096e-01, 2.0859e-01, 7.9354e-01, + 3.6660e-01, 8.9057e-01, 7.1135e-01, 5.5623e-03, + 7.5296e-01, 6.8111e-01, 7.7528e-02, 5.9745e-02, + 9.5325e-01, 7.4659e-01, 2.7298e-01, 1.2532e-01, + 4.4855e-01, 3.5666e-01, 8.7559e-01, 8.0018e-01, + 4.3854e-02, 4.8713e-01, 7.0706e-01, 1.4292e-01, + 6.6608e-01, 4.3445e-01, 8.3296e-01, 6.4635e-01, + 1.8399e-01, 7.7778e-01, 5.9029e-02, 9.1834e-02, + 9.3319e-01, 2.9954e-01, 3.1840e-01, 1.8707e-01, + 1.6916e-02, 9.6409e-01, 7.4541e-01, 7.9703e-02, + 9.7434e-01, 1.0020e-01, 2.7892e-01, 7.1368e-01, + 4.7674e-01, 6.4478e-01, 5.2522e-01, 8.6860e-01, + 9.4748e-01, 6.5723e-02, 8.7105e-01, 7.5428e-01, + 3.6689e-01, 8.0115e-03, 4.1276e-01, 1.5636e-01, + 9.1725e-01, 6.9545e-01, 1.3289e-02, 8.9995e-01, + 2.0639e-01, 1.9138e-01, 9.4419e-01, 2.5837e-01, + 8.7362e-01, 3.4040e-01, 7.2384e-01, 3.3064e-01, + 8.9279e-01, 4.2820e-01, 5.7483e-01, 5.3771e-01, + 2.4929e-01, 3.1792e-01, 7.1197e-01, 5.0460e-01, + 2.6674e-01, 9.4672e-02, 3.4302e-01, 8.1671e-01, + 4.8547e-01, 2.8213e-01, 1.6782e-01, 9.6716e-01, + 3.0221e-01, 1.3908e-01, 6.7492e-01, 2.2244e-01, + 2.8707e-02, 5.1882e-01, 4.1038e-01, 9.9815e-01, + 9.6759e-01, 6.7923e-01, 3.4796e-01, 5.0600e-01, + 5.5888e-04, 2.9575e-01, 5.7722e-01, 1.9569e-01, + 3.7543e-01, 7.8717e-01, 2.5436e-01, 9.0124e-01, + 4.0404e-01, 2.7663e-01, 7.6533e-01, 3.5933e-01, + 7.5821e-01, 1.6975e-01, 9.4532e-01, 2.3711e-01, + 8.0138e-01, 3.2955e-01, 5.6015e-01, 9.2748e-01, + 8.4579e-01, 5.1898e-01, 4.0725e-01, 5.7184e-01, + 6.5866e-01, 3.2435e-01, 1.5454e-01, 2.7207e-02, + 1.2155e-01, 8.1870e-01, 7.1106e-01, 4.8694e-01, + 9.8429e-01, 8.0534e-01, 9.9535e-01, 7.2043e-01, + 1.8504e-01, 1.3436e-01, 1.5534e-02, 1.3554e-01, + 6.6736e-01, 6.5617e-01, 3.4409e-01, 6.1274e-01, + 1.2646e-01, 5.9901e-03, 7.0636e-01, 1.2071e-01, + 3.6276e-01, 5.6897e-01, 1.5409e-01, 3.7871e-01, + 7.3209e-01, 4.9497e-01, 8.0639e-01, 3.4676e-01, + 7.5146e-01, 3.7860e-01, 2.0107e-01, 1.6325e-01, + 3.1191e-02, 3.5857e-02, 4.0769e-01, 8.7428e-01, + 2.4569e-01, 1.4399e-01, 6.9912e-01, 2.7792e-01, + 5.5729e-01, 3.7241e-01, 8.6404e-01, 3.7650e-01, + 9.4704e-01, 9.7985e-01, 8.1096e-01, 9.4533e-01, + 8.1956e-01, 8.7672e-01, 2.7292e-01, 1.9319e-01, + 4.6081e-01, 1.7064e-01, 2.6865e-02, 5.2624e-01, + 2.5369e-02, 5.9603e-01, 6.9433e-02, 3.8668e-01, + 3.3346e-01, 9.8204e-01, 3.6774e-01, 6.5913e-01, + 7.0554e-01, 9.4439e-01, 2.4802e-01, 9.2182e-01, + 6.1579e-01, 3.3392e-01, 1.2702e-02, 8.4271e-01, + 9.1801e-01, 4.5016e-01, 6.1777e-01, 2.0341e-01, + 8.9939e-01, 9.5834e-01, 2.5519e-01, 5.2982e-01, + 1.1985e-01, 6.6381e-03, 9.7890e-01, 1.7337e-01, + 8.9119e-01, 1.5043e-01, 4.6040e-01, 6.9538e-01, + 9.2558e-01, 5.7281e-01, 6.3030e-01, 3.8118e-01, + 2.3229e-01, 3.4195e-01, 7.7987e-01, 8.1058e-01, + 2.0181e-01, 7.2688e-01, 9.4281e-01, 2.3447e-01, + 9.7234e-01, 8.0731e-01, 6.3180e-01, 7.0109e-01, + 3.5266e-01, 8.5632e-01, 7.4654e-01, 4.3216e-01, + 8.7903e-01, 6.9429e-01, 8.1585e-01, 8.9722e-01, + 6.7023e-01, 6.4708e-01, 6.5524e-01, 9.6414e-01, + 2.0021e-01, 7.2708e-01, 3.7007e-01, 7.7144e-01, + 9.4777e-01, 9.2591e-01, 4.2859e-01, 2.3407e-01, + 8.4389e-01, 9.4705e-01, 7.1472e-01, 3.5134e-01, + 4.9152e-01, 3.1197e-01, 8.8038e-01, 3.8248e-01, + 5.9123e-01, 4.3307e-01, 4.4155e-02, 5.2431e-01, + 8.9782e-01, 2.7591e-01, 9.8361e-02, 9.4181e-01, + 7.8504e-01, 4.7174e-01, 6.9580e-01, 6.5364e-01, + 5.2368e-02, 9.6495e-01, 2.4019e-01, 1.6985e-01, + 5.8895e-01, 4.9707e-01, 6.6860e-01, 1.5414e-01, + 7.6333e-01, 1.9743e-01, 5.6171e-01, 2.0281e-01, + 6.4197e-01, 5.8021e-02, 4.9562e-02, 9.5483e-01, + 4.3674e-01, 5.2614e-01, 2.4113e-01, 3.4303e-01, + 3.9772e-01, 3.9798e-01, 1.3877e-02, 7.9278e-01, + 6.5379e-01, 4.2851e-01, 3.9171e-01, 8.2409e-01, + 2.3082e-01, 5.4049e-01, 3.2908e-01, 5.0166e-01, + 9.3871e-01, 9.6652e-01, 1.5463e-01, 3.0043e-01, + 9.3627e-01, 2.4720e-01, 3.6368e-01, 2.6467e-01, + 8.8606e-02, 4.2096e-01, 6.4731e-01, 2.2082e-01, + 9.3578e-02, 9.4451e-01, 8.8364e-01, 1.9562e-02, + 4.3969e-01, 7.3790e-01, 1.6640e-01, 4.2768e-01, + 9.8714e-01, 7.6766e-01, 1.2558e-01, 7.3721e-01, + 6.0219e-01, 3.5863e-01, 4.8847e-01, 4.5578e-01, + 1.6342e-01, 1.1963e-01, 4.7580e-01, 6.3141e-01, + 6.9461e-01, 5.9385e-01, 4.9160e-01, 3.8014e-01, + 5.8303e-01, 6.1575e-01, 8.0137e-01, 6.6537e-01, + 2.6899e-01, 6.0576e-01, 1.7340e-01, 1.3601e-01, + 6.8659e-02, 9.3027e-01, 9.1185e-01, 5.6535e-01, + 7.2279e-01, 1.0745e-01, 3.4131e-01, 6.6057e-01, + 6.1837e-02, 2.9305e-01, 2.6054e-01, 9.2548e-01, + 9.7730e-02, 3.3059e-01, 5.6727e-01, 5.3952e-01, + 5.6284e-01, 6.6863e-01, 1.4912e-01, 3.1011e-01, + 3.8308e-01, 7.6274e-01, 5.0556e-01, 9.7555e-02, + 1.2835e-02, 2.3082e-01, 9.3417e-01, 2.9390e-01, + 8.9799e-01, 9.0230e-01, 4.8453e-01, 2.6455e-02, + 7.3056e-01, 6.0896e-01, 8.5559e-01, 8.0240e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.7941, 0.9355, 0.0308, ..., 0.8188, 0.6700, 0.4642]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 0.06352877616882324 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '165279', '-ss', '10000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.6851487159729} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([2315, 6513, 5907, 3877, 2077, 4860, 5985, 658, 3064, + 8525, 1554, 9709, 6171, 3486, 5590, 6539, 972, 2273, + 5380, 8899, 6597, 4928, 5344, 7693, 7209, 5497, 5006, + 3737, 6805, 5, 330, 5450, 3346, 4927, 7186, 6849, + 6070, 1061, 6235, 2264, 2970, 871, 39, 7564, 7449, + 540, 713, 6220, 3148, 1912, 3294, 2937, 9597, 7507, + 3495, 6431, 2416, 1295, 7098, 5465, 1017, 9139, 435, + 8876, 8838, 4376, 9730, 4842, 7867, 8061, 9281, 1949, + 7658, 8915, 1137, 8442, 5195, 2389, 1625, 4385, 9310, + 997, 7413, 1331, 821, 9963, 9388, 5618, 5626, 5767, + 8489, 4236, 8701, 4618, 4742, 7946, 9243, 4145, 2575, + 9322, 4983, 502, 5054, 8120, 5509, 950, 1703, 8746, + 5612, 5946, 6745, 899, 2969, 5501, 795, 6775, 3060, + 4478, 4772, 111, 6722, 9089, 3583, 9218, 5182, 7957, + 723, 1921, 8516, 8853, 9391, 3891, 3586, 408, 9632, + 1991, 4664, 4499, 6491, 7245, 6684, 5166, 6649, 2730, + 3764, 3979, 6730, 3057, 5867, 8792, 4125, 2218, 1533, + 5113, 7306, 5629, 5666, 5756, 131, 1440, 4944, 1266, + 5547, 6384, 2635, 2386, 8693, 1504, 7092, 8653, 7778, + 2636, 3625, 8515, 4909, 1332, 7115, 46, 3082, 8953, + 2740, 4800, 4283, 1774, 4225, 292, 3512, 7009, 2971, + 6652, 8465, 9733, 2887, 6111, 7989, 2817, 4663, 1923, + 5670, 8962, 6085, 7418, 2581, 1436, 7330, 4785, 3036, + 3497, 8572, 5589, 5748, 168, 146, 4212, 1605, 6080, + 6547, 7776, 8665, 7614, 4514, 7188, 5813, 1254, 83, + 3317, 1019, 7137, 6527, 9364, 1207, 9501, 3408, 5904, + 5098, 9112, 3018, 9136, 275, 3010, 3146, 4521, 9038, + 8663, 5537, 7480, 4120, 6347, 3307, 3876, 1966, 4488, + 7356, 8804, 7499, 2292, 1821, 2366, 679, 7496, 3642, + 7851, 3895, 5333, 6043, 3040, 2060, 7503, 9570, 6468, + 9921, 6762, 8463, 431, 9394, 9548, 5002, 143, 6444, + 4188, 2769, 1658, 754, 9146, 35, 8308, 9618, 6981, + 8171, 4639, 4311, 7585, 2093, 5417, 6050, 4800, 3966, + 68, 3535, 1877, 9901, 7212, 160, 9196, 7598, 8686, + 6459, 5732, 9734, 1901, 5872, 2435, 6827, 8564, 411, + 2508, 935, 5852, 782, 3300, 3365, 1207, 2855, 6266, + 6339, 1878, 2354, 4008, 2005, 8422, 8494, 1208, 6928, + 9919, 6641, 5584, 7833, 7971, 7706, 117, 7671, 6445, + 3503, 7807, 9156, 7726, 3805, 8990, 4918, 3437, 947, + 5513, 7974, 1699, 602, 2418, 6721, 9677, 7914, 8170, + 7859, 6859, 5449, 5042, 6974, 7845, 2054, 8751, 5481, + 609, 9970, 7529, 8241, 4224, 2112, 3651, 3543, 6721, + 6512, 2707, 895, 1696, 8169, 2551, 3584, 4349, 8797, + 6569, 8786, 814, 7884, 795, 4759, 2568, 8712, 6395, + 2376, 2854, 9680, 9824, 4978, 6870, 1035, 6724, 6385, + 2724, 3362, 3157, 6954, 6295, 6284, 8052, 6210, 9985, + 5704, 1387, 1737, 8196, 1817, 2478, 499, 2716, 9666, + 2649, 8326, 3038, 5612, 5747, 5253, 7760, 7762, 8190, + 5198, 7436, 5477, 908, 5864, 8768, 4487, 5721, 8514, + 2770, 3160, 858, 3764, 2567, 1045, 7482, 9942, 4484, + 714, 7788, 2437, 1928, 5540, 9718, 4746, 5999, 4394, + 2451, 4934, 4618, 7277, 8390, 5242, 5664, 4531, 5254, + 2664, 6785, 3111, 8855, 1575, 7155, 2279, 3860, 7237, + 4317, 6030, 6927, 6636, 5874, 451, 7617, 8535, 8288, + 5524, 9627, 4794, 1623, 1947, 8686, 8221, 9300, 3618, + 8878, 6915, 8820, 6629, 7951, 106, 3146, 9602, 5845, + 2110, 4299, 3613, 3887, 6227, 9498, 3595, 9744, 6732, + 8028, 2558, 8469, 8400, 336, 8305, 3221, 313, 9784, + 8593, 2965, 4984, 1558, 8138, 8231, 188, 8906, 4075, + 3180, 8176, 6316, 6167, 1757, 7807, 9343, 8645, 3483, + 3083, 954, 6927, 4269, 9259, 7661, 1288, 2678, 349, + 8128, 4950, 288, 6455, 4211, 5346, 9619, 4911, 6243, + 5585, 6049, 7705, 5262, 4934, 687, 6806, 7031, 7189, + 8152, 1593, 1512, 7777, 4562, 5778, 188, 165, 851, + 9217, 9696, 387, 1187, 4686, 9168, 428, 443, 5429, + 1268, 1031, 8490, 5288, 3849, 8658, 9815, 6717, 2946, + 9846, 2189, 7877, 6892, 6114, 5690, 3539, 3875, 8647, + 5913, 9153, 5410, 5082, 8686, 4080, 4841, 3835, 6259, + 9692, 5253, 6567, 9889, 1892, 2598, 5841, 6642, 1912, + 2847, 4155, 9394, 45, 3186, 5518, 2725, 3823, 2828, + 3126, 1420, 1261, 1840, 8806, 1627, 8317, 8294, 8778, + 3609, 3309, 3042, 9161, 1484, 2164, 9609, 1817, 3834, + 1189, 4748, 7797, 3354, 6115, 8720, 316, 642, 3345, + 24, 6446, 8295, 8271, 3087, 558, 1408, 4598, 3725, + 5827, 5509, 9209, 5228, 1370, 3966, 9996, 2251, 3719, + 3698, 7069, 3534, 4982, 3549, 1769, 9864, 8408, 1196, + 5773, 2758, 1803, 6057, 4608, 4593, 3639, 7190, 6855, + 5704, 8269, 3483, 3815, 8231, 1102, 5330, 5479, 2933, + 2683, 9799, 5021, 4354, 5026, 26, 5990, 1519, 2981, + 2846, 6169, 7895, 7110, 7523, 1066, 2130, 2514, 2031, + 8315, 8096, 8743, 1462, 9117, 5, 8824, 1514, 8690, + 7118, 4872, 9226, 4653, 9397, 3337, 4234, 8473, 7337, + 3884, 4204, 3019, 6455, 1104, 1521, 2106, 7198, 68, + 1136, 8467, 5599, 2846, 6369, 220, 3258, 7063, 730, + 601, 4313, 8486, 1812, 8291, 7501, 8040, 26, 1851, + 4760, 1321, 6337, 767, 3219, 1341, 714, 2192, 4423, + 5541, 5328, 3308, 3321, 5762, 8360, 2556, 7025, 2849, + 4886, 7558, 3167, 165, 2861, 466, 1092, 4637, 5199, + 6366, 1107, 4052, 1221, 2488, 9112, 1215, 6851, 5671, + 2053, 5106, 15, 9782, 9430, 7179, 550, 4466, 2830, + 6796, 461, 1034, 2492, 5827, 371, 3140, 5149, 2316, + 7847, 8655, 2571, 1599, 9980, 95, 7985, 4055, 2189, + 899, 1470, 3741, 8781, 7702, 6356, 984, 9256, 9634, + 4567, 4413, 9245, 5875, 1291, 1891, 5874, 5278, 9292, + 7181, 9589, 1784, 9464, 604, 3108, 4857, 2372, 4063, + 5107, 3555, 5411, 2141, 7436, 6706, 5143, 8475, 4088, + 1500, 9848, 3062, 2678, 836, 3467, 7996, 1248, 3127, + 4401, 7913, 1336, 2190, 5928, 73, 584, 8208, 8274, + 7052, 4521, 3177, 7849, 7214, 3806, 5722, 8664, 6344, + 1619, 1332, 6519, 1084, 4436, 5718, 7294, 3470, 2911, + 3695, 9537, 8937, 3345, 3742, 4531, 6513, 6431, 26, + 2346, 6918, 8006, 920, 5177, 210, 4057, 7906, 7248, + 3947, 2905, 2235, 306, 9708, 4594, 7250, 8229, 8875, + 1622, 846, 3105, 9418, 2883, 6853, 3856, 8008, 1331, + 2240, 3167, 5030, 5185, 1340, 1723, 1644, 4799, 6542, + 1478, 2423, 8569, 5524, 5971, 649, 6159, 2769, 1175, + 4322, 6680, 7151, 7748, 6327, 2772, 5891, 6447, 7572, + 2458, 3372, 7703, 4630, 9445, 8200, 1529, 6569, 2949, + 5965, 1056, 1481, 2301, 1636, 6216, 4562, 1939, 4023, + 614, 8330, 8596, 5870, 5267, 228, 8401, 9249, 6395, + 92, 4819, 5568, 1371, 1083, 8144, 9850, 4272, 5130, + 2209]), + values=tensor([8.6258e-01, 7.0528e-01, 8.9060e-01, 1.2632e-01, + 4.5563e-01, 6.6045e-01, 3.0092e-01, 9.7052e-01, + 4.8919e-02, 4.0764e-01, 7.7300e-01, 6.5404e-02, + 5.4979e-01, 8.0336e-01, 9.5192e-01, 3.7841e-01, + 8.0208e-01, 1.0151e-01, 8.5149e-01, 7.2534e-01, + 5.5997e-01, 1.3926e-01, 9.5254e-01, 9.1344e-01, + 4.1506e-01, 2.3270e-01, 2.8990e-01, 7.5387e-01, + 7.4473e-01, 7.0246e-01, 8.3206e-01, 6.5414e-01, + 2.5564e-01, 7.6579e-01, 7.7270e-01, 4.2267e-01, + 3.1006e-01, 3.4269e-01, 3.5526e-01, 9.3057e-01, + 9.6563e-02, 4.1280e-02, 4.7926e-01, 1.2473e-01, + 4.8461e-01, 7.8876e-02, 6.4119e-02, 9.4254e-01, + 1.1308e-01, 8.8908e-01, 7.5728e-01, 5.8280e-01, + 8.8847e-01, 7.7586e-01, 1.3915e-01, 9.1771e-02, + 4.5336e-01, 1.2809e-01, 6.5940e-01, 4.2233e-01, + 8.8184e-01, 2.6616e-02, 1.0459e-01, 6.7414e-01, + 2.3815e-01, 2.0330e-01, 2.4639e-02, 9.9792e-01, + 6.7680e-01, 7.2355e-01, 5.5501e-01, 3.3324e-01, + 3.2105e-01, 2.1791e-01, 9.5292e-01, 3.8432e-01, + 9.2398e-01, 1.9293e-01, 5.4469e-01, 3.5666e-01, + 5.5969e-01, 2.7763e-01, 2.3221e-02, 3.5759e-04, + 8.0557e-01, 1.8923e-01, 5.8292e-01, 3.9627e-01, + 7.3948e-01, 1.7041e-01, 1.1789e-01, 9.3322e-01, + 1.0791e-01, 7.0921e-01, 2.0004e-01, 8.8851e-01, + 3.4656e-01, 5.4702e-01, 2.7115e-01, 5.9585e-01, + 5.2729e-01, 3.6243e-01, 1.1079e-01, 2.2523e-01, + 2.1144e-01, 8.3509e-01, 4.2526e-01, 4.9317e-01, + 7.2731e-01, 2.3582e-01, 9.3508e-01, 5.3966e-01, + 1.0993e-01, 1.5191e-01, 4.5350e-01, 2.9441e-01, + 4.7183e-01, 5.2142e-01, 1.7420e-01, 5.8166e-02, + 6.9334e-01, 5.1245e-01, 5.5905e-01, 3.9385e-01, + 8.9043e-01, 7.1150e-01, 5.7970e-01, 5.8002e-01, + 5.4458e-01, 4.0697e-01, 3.6366e-01, 2.9923e-01, + 2.1028e-01, 2.5941e-01, 1.1346e-01, 1.9881e-01, + 3.7219e-01, 6.8616e-01, 3.5857e-01, 2.8390e-01, + 8.1470e-01, 2.1647e-01, 8.2945e-01, 1.7039e-01, + 9.2725e-01, 3.7820e-01, 4.5789e-01, 3.9648e-01, + 6.1922e-01, 8.5985e-01, 7.9265e-01, 1.6149e-01, + 3.5320e-01, 5.8308e-01, 9.0209e-01, 7.4476e-01, + 4.2686e-01, 6.2860e-01, 7.2772e-01, 2.5235e-01, + 1.1409e-01, 9.2918e-01, 6.8618e-01, 4.1873e-01, + 9.3854e-01, 1.3502e-01, 5.5618e-01, 1.3702e-01, + 4.1709e-01, 9.3472e-01, 1.8129e-01, 9.4820e-01, + 8.2794e-02, 2.1226e-01, 3.6720e-03, 4.8224e-02, + 5.3950e-01, 4.0388e-01, 2.3913e-01, 5.5803e-01, + 7.3623e-02, 6.4578e-01, 4.8277e-01, 6.7790e-01, + 2.3775e-01, 8.0072e-01, 9.1382e-02, 2.8452e-01, + 2.1676e-01, 2.0981e-01, 4.4176e-01, 2.7794e-01, + 8.3250e-01, 2.4127e-01, 5.7781e-02, 2.2104e-01, + 9.3391e-01, 2.2715e-01, 6.5312e-01, 6.2274e-01, + 2.5685e-01, 4.7442e-01, 2.9903e-01, 7.7858e-01, + 5.7041e-02, 7.9584e-01, 2.6641e-01, 3.0436e-01, + 6.3655e-01, 8.2758e-01, 5.6285e-01, 3.2258e-01, + 6.7511e-02, 5.4900e-01, 1.9819e-01, 3.4191e-01, + 1.3793e-01, 7.6774e-01, 7.1828e-01, 5.7111e-02, + 1.0691e-01, 9.7809e-01, 9.2257e-01, 9.9542e-01, + 3.0046e-01, 9.8827e-01, 3.4283e-01, 1.7532e-01, + 7.7669e-02, 8.1315e-01, 6.6867e-01, 4.8788e-02, + 3.2304e-02, 7.5275e-02, 6.6643e-01, 3.6447e-01, + 6.0187e-01, 2.9229e-01, 5.8431e-01, 2.2281e-01, + 7.1742e-01, 1.0215e-01, 8.2338e-01, 7.7100e-02, + 8.5923e-01, 1.4953e-01, 2.1530e-01, 1.0293e-01, + 4.9104e-01, 1.9647e-01, 7.2264e-01, 5.8338e-01, + 5.9546e-01, 8.4965e-01, 5.2402e-01, 1.8564e-01, + 4.9718e-01, 9.6137e-01, 2.9624e-01, 5.8891e-01, + 1.7958e-01, 3.1799e-01, 7.5606e-01, 8.8768e-01, + 4.9711e-01, 4.9336e-01, 9.3411e-01, 9.0131e-01, + 8.5228e-01, 4.7423e-01, 1.6452e-01, 4.6910e-01, + 3.7699e-01, 8.7542e-01, 8.0623e-01, 2.6126e-01, + 8.5229e-01, 5.5935e-01, 2.7236e-01, 9.9458e-01, + 4.9580e-01, 3.4747e-02, 4.8415e-01, 5.1958e-01, + 6.9504e-01, 2.5548e-01, 3.0528e-01, 7.1730e-01, + 3.8145e-01, 2.0093e-02, 6.2916e-01, 3.3482e-01, + 5.2828e-01, 9.4216e-01, 3.3977e-01, 4.1521e-01, + 9.5372e-01, 7.7047e-01, 1.0023e-01, 3.5710e-01, + 7.3857e-01, 6.8809e-02, 7.4386e-01, 4.3718e-01, + 1.8658e-01, 5.7370e-01, 4.5150e-01, 7.0198e-02, + 6.8435e-01, 5.5671e-01, 8.2365e-02, 1.0064e-01, + 2.5875e-01, 6.8293e-01, 9.4793e-01, 9.9080e-01, + 4.3473e-01, 1.0381e-01, 5.0057e-01, 7.3879e-01, + 9.3982e-01, 3.4285e-01, 9.7702e-01, 3.8211e-01, + 6.6050e-01, 9.8690e-01, 7.3652e-01, 3.2843e-01, + 4.2444e-02, 2.5252e-01, 8.8356e-01, 2.2553e-01, + 1.8416e-01, 7.8172e-01, 8.0046e-01, 5.1290e-01, + 3.5366e-01, 5.9034e-01, 8.3100e-01, 6.6707e-01, + 8.4675e-02, 9.7004e-02, 3.5214e-01, 7.7826e-01, + 4.3537e-01, 2.3609e-01, 1.3677e-01, 3.2106e-01, + 7.8817e-01, 8.3369e-01, 2.7975e-01, 9.9545e-01, + 9.6692e-01, 3.9647e-01, 5.1961e-01, 2.8142e-01, + 4.5836e-01, 4.3857e-01, 4.4516e-01, 7.1314e-01, + 1.7621e-01, 9.2860e-02, 8.4755e-01, 4.3613e-01, + 7.3509e-01, 8.0642e-01, 2.9694e-02, 3.4008e-02, + 9.2426e-01, 3.2348e-01, 2.8616e-01, 4.2552e-01, + 8.4735e-01, 4.1948e-01, 3.0574e-01, 3.7392e-01, + 5.4896e-01, 1.9431e-01, 5.7118e-01, 4.6320e-01, + 3.8569e-01, 3.6416e-01, 2.2456e-02, 3.1990e-01, + 3.5266e-01, 1.2688e-01, 6.1160e-01, 7.2708e-01, + 5.6045e-01, 2.5060e-01, 4.9716e-01, 7.2309e-01, + 4.7966e-02, 1.2364e-01, 2.2141e-01, 1.3711e-01, + 3.9034e-01, 6.7146e-01, 6.2663e-01, 1.9251e-01, + 5.1129e-01, 8.1609e-02, 9.4985e-01, 3.9532e-01, + 1.6509e-02, 6.1501e-01, 2.2691e-01, 2.0927e-02, + 2.0748e-01, 6.8899e-01, 8.6433e-02, 3.9669e-01, + 6.9160e-02, 1.5549e-01, 3.8321e-01, 1.2232e-01, + 9.4562e-01, 6.8881e-01, 6.1696e-01, 4.2100e-01, + 5.4252e-01, 3.9009e-01, 6.8385e-01, 7.9578e-01, + 1.5056e-02, 7.6275e-01, 5.4209e-02, 8.7610e-01, + 8.5376e-01, 6.0599e-01, 2.8684e-01, 6.4263e-01, + 9.3010e-01, 8.0589e-01, 3.5734e-01, 2.0317e-01, + 3.3933e-01, 9.9563e-01, 2.2093e-01, 6.5015e-01, + 9.6797e-01, 5.9242e-01, 7.6016e-01, 3.0456e-01, + 4.9245e-01, 3.0952e-01, 6.6456e-01, 4.3460e-01, + 6.2089e-01, 8.4494e-01, 6.1761e-01, 2.1979e-01, + 4.7127e-01, 4.0187e-01, 1.7874e-01, 4.7424e-01, + 6.8399e-01, 6.7148e-01, 9.2348e-01, 6.8470e-02, + 2.1234e-01, 5.9731e-01, 2.1177e-02, 1.4386e-01, + 4.5326e-01, 8.1515e-01, 8.1113e-01, 2.4470e-01, + 1.8209e-01, 1.7176e-01, 5.4850e-01, 3.2891e-01, + 4.6976e-01, 8.2868e-02, 5.0932e-01, 5.1633e-01, + 4.5595e-01, 8.3960e-01, 2.0220e-01, 6.6244e-01, + 6.4238e-01, 4.7242e-01, 9.3861e-01, 2.6402e-01, + 6.6982e-01, 7.4495e-01, 9.8999e-01, 9.0582e-01, + 5.0527e-01, 2.6714e-01, 9.7670e-02, 3.6567e-01, + 3.8412e-01, 6.2592e-01, 5.2075e-01, 7.8355e-01, + 9.9082e-01, 9.8918e-01, 7.2479e-01, 8.1508e-02, + 3.3672e-01, 6.3762e-02, 5.3834e-01, 4.7174e-01, + 1.2926e-01, 9.9884e-01, 4.9716e-01, 7.3407e-01, + 7.1173e-01, 4.9329e-01, 1.6675e-01, 5.9213e-01, + 6.1003e-01, 7.7121e-01, 7.1368e-01, 6.8332e-02, + 3.2691e-01, 1.1772e-01, 1.4419e-01, 2.2637e-01, + 1.8844e-01, 3.8315e-01, 2.1113e-01, 5.9147e-01, + 4.0637e-01, 7.6620e-01, 6.3290e-01, 7.0888e-01, + 4.1142e-01, 1.8429e-01, 7.1186e-01, 4.0633e-01, + 4.3527e-01, 1.0853e-01, 1.3609e-01, 7.3986e-01, + 6.4089e-01, 8.8251e-01, 6.6967e-01, 8.3393e-01, + 9.3056e-01, 7.1752e-01, 8.6294e-01, 5.8911e-01, + 5.1638e-01, 4.2786e-01, 3.9803e-01, 7.7440e-02, + 4.3829e-01, 6.5063e-01, 5.1549e-01, 8.2076e-01, + 6.9963e-02, 1.6012e-01, 3.8326e-01, 1.3349e-01, + 9.8517e-01, 8.8342e-01, 2.5190e-01, 1.6117e-01, + 6.5414e-01, 9.0065e-01, 9.2371e-03, 3.6861e-01, + 6.8362e-01, 6.3026e-01, 4.4740e-01, 1.3820e-01, + 3.0137e-01, 2.6217e-01, 2.5735e-01, 5.6040e-01, + 8.6859e-01, 1.8929e-01, 1.6536e-01, 4.7060e-01, + 7.3877e-01, 5.4422e-01, 5.3028e-01, 7.9555e-01, + 1.2884e-01, 4.8681e-01, 2.8536e-01, 5.7157e-01, + 2.0760e-02, 7.8334e-01, 4.9999e-01, 8.1263e-01, + 1.8957e-01, 1.8857e-01, 4.2172e-01, 5.9307e-01, + 6.8538e-01, 5.4944e-01, 6.2613e-01, 4.0387e-01, + 2.1974e-01, 4.2153e-01, 4.3924e-01, 6.8757e-01, + 3.2899e-01, 4.1687e-01, 3.2791e-01, 7.9799e-01, + 2.3111e-01, 6.8751e-01, 9.6699e-01, 8.0224e-01, + 8.4370e-01, 5.4973e-01, 5.7027e-01, 6.3729e-01, + 2.8420e-01, 9.7973e-02, 7.0540e-01, 4.3504e-01, + 7.4693e-01, 1.6761e-02, 8.3801e-01, 5.6735e-01, + 4.1883e-01, 4.6145e-01, 6.7365e-01, 3.9648e-01, + 2.9496e-01, 4.0270e-01, 1.5795e-02, 8.0503e-01, + 8.6951e-01, 2.9612e-01, 4.6891e-01, 4.9634e-01, + 1.6087e-01, 6.7111e-01, 8.2315e-01, 6.0957e-01, + 1.9295e-01, 7.9043e-01, 2.4667e-01, 3.5145e-01, + 4.3326e-01, 9.2553e-01, 1.7285e-01, 4.9663e-01, + 7.5709e-01, 7.3305e-01, 6.5591e-01, 1.6922e-01, + 9.7852e-02, 7.0028e-02, 4.0960e-01, 9.6666e-01, + 9.8033e-01, 1.8625e-01, 3.3433e-01, 9.0699e-02, + 8.8832e-01, 1.1216e-01, 6.7428e-02, 6.6405e-01, + 5.6008e-01, 3.5558e-01, 3.2086e-01, 6.4313e-01, + 6.6564e-01, 8.6180e-01, 3.9292e-01, 9.9089e-01, + 4.0120e-01, 2.3650e-01, 3.6857e-01, 8.7558e-01, + 1.2504e-01, 7.5624e-01, 4.2258e-01, 3.9465e-01, + 8.1754e-01, 2.0309e-01, 4.0634e-01, 1.7315e-01, + 1.9344e-01, 7.2119e-02, 8.3024e-02, 2.9133e-01, + 4.3479e-01, 6.7282e-01, 8.6958e-02, 7.6394e-01, + 6.8277e-01, 7.9329e-01, 8.8151e-01, 8.2960e-01, + 8.1719e-01, 8.5229e-01, 5.5712e-01, 4.1049e-01, + 2.4757e-01, 9.0586e-01, 1.4366e-01, 3.1020e-01, + 3.5280e-01, 2.9786e-01, 5.0803e-01, 3.5710e-01, + 2.3543e-01, 9.6762e-01, 2.8875e-01, 8.9645e-01, + 2.4041e-01, 8.2229e-03, 7.8572e-01, 8.5687e-02, + 8.7011e-01, 1.6728e-01, 1.6690e-01, 9.1501e-01, + 2.6593e-01, 8.6687e-01, 8.6199e-02, 8.5561e-01, + 1.6618e-01, 6.8007e-01, 7.1649e-01, 2.9972e-01, + 1.2971e-03, 9.4611e-01, 7.9622e-01, 8.3496e-01, + 5.7596e-01, 3.1512e-01, 7.8760e-01, 2.0723e-01, + 5.7829e-01, 1.1079e-01, 2.5915e-01, 6.4582e-01, + 3.7963e-01, 6.6160e-01, 6.7616e-02, 4.6793e-01, + 2.6347e-01, 9.2833e-01, 5.5353e-01, 7.1987e-01, + 8.2195e-01, 4.3576e-01, 5.9578e-01, 5.4960e-01, + 7.6790e-01, 5.0350e-01, 1.6330e-01, 4.4980e-01, + 8.1475e-01, 8.2107e-01, 4.1167e-01, 5.2435e-01, + 7.9072e-01, 9.3812e-01, 2.5123e-02, 9.5534e-01, + 5.1101e-01, 1.1638e-01, 5.3786e-03, 9.8278e-01, + 2.1734e-01, 6.4647e-01, 1.6399e-01, 6.0609e-01, + 9.3545e-01, 1.5524e-01, 1.8395e-01, 5.2700e-01, + 8.8524e-01, 8.9978e-01, 3.3954e-01, 7.9557e-01, + 9.2616e-01, 7.8200e-01, 8.5199e-01, 9.1200e-01, + 8.7588e-01, 3.0321e-01, 5.6257e-01, 9.9862e-01, + 2.4910e-01, 1.7283e-01, 9.2654e-01, 9.7156e-01, + 3.6401e-01, 3.2947e-01, 3.3530e-01, 6.5351e-01, + 9.8423e-01, 3.9352e-01, 1.5021e-01, 8.9702e-01, + 8.0842e-01, 3.5295e-01, 9.6435e-01, 9.2943e-01, + 4.6951e-01, 7.4679e-01, 3.0707e-02, 7.4355e-01, + 3.2675e-01, 8.4080e-01, 9.7647e-01, 5.1300e-01, + 8.5035e-01, 8.6314e-01, 8.7472e-01, 8.3684e-01, + 3.4789e-01, 4.0210e-01, 9.2233e-01, 4.5365e-01, + 5.5333e-01, 1.8570e-01, 4.1967e-02, 1.6211e-01, + 9.2523e-01, 5.5357e-01, 8.2017e-01, 7.4827e-01, + 2.9538e-01, 8.4459e-01, 6.0769e-01, 2.7657e-01, + 9.2496e-01, 4.9726e-01, 5.6693e-01, 2.6585e-01, + 8.7549e-01, 1.1184e-02, 8.0465e-01, 2.6346e-01, + 6.5631e-02, 5.3764e-01, 9.1495e-01, 3.1091e-01, + 9.6606e-01, 6.9022e-01, 8.3325e-01, 4.6344e-01, + 5.4954e-01, 6.3646e-01, 3.4287e-01, 3.4056e-01, + 3.4792e-02, 8.2077e-01, 4.3962e-01, 9.2306e-01, + 6.3618e-01, 8.7709e-01, 2.3326e-01, 8.6772e-01, + 9.6968e-01, 1.5316e-01, 4.7019e-01, 2.3939e-01, + 8.4352e-01, 8.0994e-01, 3.2247e-01, 8.7148e-01, + 5.7326e-01, 9.1918e-01, 9.8467e-01, 2.6205e-01, + 6.0807e-01, 1.5648e-02, 4.4449e-01, 8.2402e-01, + 5.4313e-01, 5.8309e-01, 1.5459e-01, 7.0926e-01, + 8.6123e-01, 5.4907e-01, 4.5772e-01, 9.1321e-01, + 5.8474e-01, 5.9303e-01, 7.8580e-01, 2.9711e-01, + 4.6384e-01, 3.0213e-01, 8.8351e-01, 6.0581e-01, + 3.2728e-01, 4.9952e-01, 4.1434e-01, 6.3278e-01, + 4.1366e-01, 2.7552e-01, 5.4264e-01, 1.2186e-01, + 1.3860e-01, 1.4550e-01, 5.5313e-01, 3.8997e-01, + 5.2577e-01, 4.5122e-01, 1.2593e-01, 5.5669e-01, + 4.9823e-02, 2.8409e-02, 6.3327e-01, 5.1417e-01, + 6.9790e-01, 9.5954e-02, 5.4878e-01, 4.6796e-01, + 8.3287e-01, 6.9688e-01, 3.0482e-01, 5.9031e-01, + 1.3253e-01, 4.6403e-01, 2.0383e-01, 6.8453e-01, + 1.0846e-01, 2.2057e-01, 7.1628e-01, 2.1954e-01, + 7.9697e-01, 7.2314e-02, 4.1365e-01, 6.8219e-01, + 9.7902e-01, 4.7276e-01, 5.1219e-01, 1.9369e-01, + 6.1233e-01, 8.4391e-01, 5.1670e-01, 6.3502e-01, + 8.6315e-01, 4.4413e-02, 2.2785e-01, 4.8562e-01, + 2.4673e-01, 3.4092e-01, 3.8043e-01, 4.9876e-01, + 3.6324e-01, 4.0648e-01, 1.3136e-01, 2.6742e-01, + 5.5688e-01, 4.3080e-01, 3.4861e-01, 3.1019e-02, + 1.7662e-01, 2.9944e-01, 7.3278e-01, 2.5329e-01, + 4.5397e-01, 8.7188e-01, 2.7853e-01, 2.6008e-01, + 7.7165e-01, 7.1359e-01, 4.5360e-02, 3.2456e-01, + 9.2683e-02, 6.8130e-01, 1.4100e-01, 9.9045e-01, + 2.1901e-01, 9.5740e-01, 2.3954e-01, 4.0705e-01, + 6.1890e-01, 1.7349e-01, 3.4682e-01, 9.6567e-01, + 3.8795e-01, 1.4728e-01, 7.7217e-02, 4.0736e-01, + 7.4286e-01, 4.3040e-01, 3.6512e-01, 5.6225e-01, + 5.8228e-01, 4.9701e-01, 3.4542e-01, 7.7128e-01, + 7.9901e-01, 1.3439e-01, 5.9351e-01, 9.6899e-01, + 1.9404e-01, 5.9343e-01, 6.9413e-01, 3.5619e-01, + 5.8933e-02, 5.3074e-01, 3.6413e-01, 2.2481e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.5425, 0.1860, 0.7804, ..., 0.3375, 0.7494, 0.4073]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 7.6851487159729 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '225815', '-ss', '10000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.501307487487793} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([ 621, 8067, 8701, 6486, 5538, 5824, 379, 1918, 5000, + 5124, 6265, 1757, 7171, 5785, 2098, 8110, 8680, 9293, + 3536, 8102, 4182, 8879, 9877, 2040, 7911, 510, 3802, + 7722, 6811, 1404, 2410, 8431, 3523, 6495, 6498, 6685, + 7173, 7872, 4534, 9047, 7100, 8447, 6072, 5630, 5799, + 190, 6891, 1441, 9822, 4335, 8399, 1784, 1404, 5633, + 6623, 2518, 6475, 3954, 4736, 1500, 5281, 4391, 6371, + 886, 805, 6503, 5528, 1428, 6887, 8163, 4623, 5541, + 4640, 3383, 6444, 4711, 4505, 3203, 7934, 4654, 687, + 7329, 1943, 6395, 8455, 1952, 3346, 9199, 2955, 3712, + 7082, 8540, 6711, 1353, 3492, 6382, 9227, 3128, 4738, + 7860, 8372, 15, 1552, 8319, 9811, 3777, 9596, 8620, + 4064, 4884, 9629, 5329, 7715, 7613, 6097, 4214, 6601, + 8769, 7774, 2256, 3188, 9906, 6088, 7859, 2481, 3977, + 5219, 4949, 6267, 3615, 4199, 9995, 444, 6572, 6590, + 7908, 8736, 1682, 7932, 9231, 9498, 4969, 8032, 7386, + 3757, 5388, 5500, 7007, 497, 6899, 924, 5470, 4242, + 8349, 988, 321, 277, 6809, 2621, 4996, 3392, 2070, + 8599, 2865, 1951, 2114, 8145, 435, 2953, 956, 2814, + 1486, 8770, 3701, 8858, 3904, 8946, 1921, 2720, 8762, + 9358, 9717, 5029, 4186, 4041, 3158, 5636, 5605, 4525, + 5593, 7451, 6146, 5196, 850, 4025, 7864, 9672, 7108, + 777, 2450, 9967, 3039, 7352, 7620, 5364, 1636, 7924, + 9792, 4541, 3656, 1580, 8687, 4603, 7545, 1231, 9649, + 2748, 7212, 6116, 9217, 2342, 1946, 3303, 6323, 5879, + 4477, 5340, 4516, 5722, 3754, 6742, 650, 8207, 6470, + 2264, 3353, 2048, 8251, 400, 1044, 8345, 2532, 2124, + 1395, 5517, 6024, 3422, 7067, 1645, 6318, 3535, 6960, + 308, 4401, 9204, 1112, 4901, 4265, 8909, 888, 7274, + 2714, 4875, 7150, 2797, 4106, 4244, 2138, 3876, 2559, + 3408, 2983, 6763, 1791, 1130, 1328, 3454, 3597, 3047, + 9406, 8234, 2404, 5313, 8028, 8018, 4816, 2500, 8560, + 3279, 4533, 506, 4358, 9720, 9432, 5299, 1497, 4103, + 4459, 2841, 3387, 6518, 8285, 1486, 4206, 317, 3410, + 1281, 6931, 471, 5237, 7799, 9052, 1693, 1883, 977, + 3915, 377, 6991, 2617, 5482, 7380, 2319, 6326, 4913, + 63, 6407, 6245, 8595, 8116, 5131, 5553, 3847, 9485, + 7909, 3795, 8618, 7145, 3635, 6413, 9128, 3130, 8692, + 2576, 4366, 8928, 6249, 7783, 8379, 9553, 1007, 4718, + 1322, 4530, 5651, 4480, 2964, 4421, 6311, 2055, 9796, + 5531, 7518, 7953, 2916, 7603, 6190, 5496, 6074, 3416, + 4536, 338, 5349, 4767, 7727, 61, 2223, 5727, 6702, + 1168, 3309, 6908, 120, 2145, 7426, 217, 6262, 4322, + 710, 1996, 1502, 6744, 3362, 9551, 9541, 4765, 5555, + 7677, 3714, 9116, 9201, 9677, 808, 3444, 7948, 3547, + 3147, 8821, 4131, 7853, 4873, 3727, 8956, 9242, 463, + 6102, 3207, 2647, 2009, 6976, 8113, 5383, 9950, 9210, + 2607, 6196, 3792, 5279, 4469, 6166, 8307, 3139, 8294, + 3045, 8587, 5732, 6420, 4767, 6384, 3262, 6516, 9124, + 5629, 9140, 4268, 7884, 9280, 2845, 4396, 1695, 5892, + 9646, 4870, 474, 711, 5269, 9561, 510, 234, 6036, + 1463, 1833, 5092, 1789, 1299, 8945, 842, 2582, 1165, + 9387, 4647, 18, 2357, 8595, 5475, 9627, 2152, 6592, + 7559, 3616, 6551, 6061, 5016, 351, 6411, 5971, 9815, + 8118, 3528, 9738, 1760, 6048, 7402, 1939, 2804, 8305, + 1191, 7749, 4316, 6651, 179, 6542, 9648, 2265, 7391, + 7426, 6846, 1001, 1073, 1131, 6087, 4908, 4135, 4320, + 7720, 1601, 7467, 9773, 8874, 2360, 6153, 8937, 6481, + 3762, 9196, 7483, 944, 7320, 7745, 860, 3192, 2592, + 5428, 1558, 4118, 6406, 4829, 7167, 5223, 5427, 1349, + 5294, 7920, 7467, 9863, 7414, 1430, 2272, 4749, 9366, + 5823, 7199, 7730, 4037, 4741, 8062, 2210, 4947, 2286, + 3927, 3530, 6602, 7303, 6039, 6871, 649, 2184, 5850, + 8991, 9883, 1962, 7997, 8066, 2827, 485, 73, 5074, + 4027, 8247, 1956, 466, 6094, 7363, 8807, 3485, 4713, + 8857, 4550, 6148, 5177, 6630, 3729, 5962, 2364, 8027, + 1540, 5512, 8420, 1833, 166, 185, 1717, 5236, 2057, + 1920, 8729, 7603, 7798, 4581, 7903, 2753, 3830, 1012, + 3358, 98, 1431, 3548, 1765, 7173, 2113, 1774, 5074, + 9875, 5748, 6477, 3076, 4013, 5494, 142, 6261, 1546, + 735, 8132, 3760, 3833, 8392, 2866, 3747, 2238, 5039, + 9991, 3930, 3295, 4281, 6582, 1507, 2339, 8308, 4795, + 6042, 9144, 5178, 7200, 1854, 5289, 1036, 263, 4673, + 1755, 7843, 9590, 1674, 1997, 5404, 7842, 2316, 4765, + 903, 4521, 1615, 9734, 2683, 9393, 4743, 465, 2256, + 1490, 4969, 5519, 7553, 9750, 1156, 9506, 2573, 7753, + 8858, 2242, 2353, 4052, 130, 5566, 7279, 9261, 2032, + 5574, 9697, 2307, 6357, 4851, 125, 7010, 9557, 7434, + 1764, 5376, 8681, 520, 1147, 3019, 2766, 4221, 6787, + 913, 9582, 7327, 3426, 4085, 9753, 397, 1757, 2467, + 6219, 9421, 4979, 4880, 9636, 399, 4017, 6742, 7711, + 4977, 597, 3788, 7425, 4538, 5803, 7511, 707, 6862, + 4448, 2935, 796, 5761, 8972, 3222, 5360, 4073, 3780, + 7587, 3935, 3659, 3516, 3305, 6397, 835, 8897, 2260, + 8074, 4151, 59, 9881, 5722, 4749, 4490, 8386, 9531, + 1681, 8322, 7280, 7383, 9110, 9496, 3979, 1667, 1609, + 605, 7186, 3289, 9548, 9178, 3499, 8700, 8958, 6798, + 4712, 6079, 3652, 2893, 6478, 6228, 2105, 1064, 1126, + 594, 1239, 5010, 9616, 2691, 5967, 1503, 1488, 3756, + 3247, 4285, 4420, 2495, 3105, 2726, 8612, 1019, 7638, + 301, 3462, 8224, 7646, 2804, 892, 3360, 9148, 9972, + 4302, 6615, 1094, 5589, 9642, 9897, 7341, 5880, 2250, + 504, 6779, 1200, 8941, 3565, 8375, 7844, 9898, 7773, + 866, 2804, 8221, 7345, 7948, 44, 1443, 2712, 6139, + 27, 5009, 6474, 7863, 6279, 2280, 2088, 3757, 8456, + 8642, 2733, 1757, 7233, 5141, 3949, 8447, 2690, 3294, + 2211, 161, 6191, 1188, 871, 3978, 5524, 3757, 7095, + 4586, 4518, 8935, 4168, 5727, 4325, 5573, 274, 8627, + 5160, 6998, 5604, 9203, 1927, 6912, 3284, 5635, 8095, + 4022, 8206, 1927, 9163, 7500, 7635, 8229, 2377, 4284, + 5090, 9687, 8448, 6150, 8497, 8068, 7265, 2977, 4847, + 9227, 4643, 5971, 3091, 9617, 1463, 3964, 7383, 3704, + 5970, 2528, 4339, 780, 6389, 7456, 1723, 7888, 8852, + 109, 5808, 2711, 1313, 97, 5642, 753, 4358, 9054, + 5886, 9449, 104, 2884, 1499, 7364, 9304, 4311, 9143, + 7421, 2337, 2694, 3377, 3997, 3023, 7414, 4869, 419, + 3257, 224, 4395, 7186, 1420, 2887, 9106, 1717, 5082, + 3894, 8215, 6787, 4497, 3468, 9059, 3488, 9487, 7280, + 6265, 4060, 8912, 5499, 4442, 7535, 6018, 6368, 1204, + 8864, 9258, 6588, 5167, 2209, 2012, 4429, 8470, 8234, + 9211, 4382, 7963, 5391, 591, 4867, 8168, 9279, 897, + 4170]), + values=tensor([0.4878, 0.2366, 0.8733, 0.8071, 0.3473, 0.2387, 0.9164, + 0.3754, 0.7791, 0.5219, 0.2035, 0.6398, 0.4422, 0.3796, + 0.7410, 0.0343, 0.0746, 0.6347, 0.0691, 0.8108, 0.6743, + 0.7644, 0.4125, 0.8362, 0.4857, 0.8892, 0.4751, 0.0020, + 0.5709, 0.6384, 0.1497, 0.3464, 0.3034, 0.5189, 0.2843, + 0.8914, 0.9227, 0.3685, 0.3834, 0.0155, 0.1265, 0.8952, + 0.3893, 0.8670, 0.7098, 0.4601, 0.8885, 0.0046, 0.1082, + 0.5850, 0.3348, 0.6623, 0.6228, 0.0161, 0.7512, 0.8534, + 0.5169, 0.3788, 0.1287, 0.4768, 0.5501, 0.8770, 0.6106, + 0.3540, 0.4183, 0.1505, 0.6415, 0.2760, 0.4263, 0.1294, + 0.2381, 0.3413, 0.7792, 0.3560, 0.7846, 0.6195, 0.9067, + 0.9607, 0.5449, 0.5238, 0.7187, 0.7121, 0.1293, 0.8894, + 0.0511, 0.0830, 0.2825, 0.4900, 0.0409, 0.2002, 0.4854, + 0.3856, 0.8627, 0.8310, 0.5780, 0.7482, 0.3676, 0.5167, + 0.4530, 0.8058, 0.4658, 0.0519, 0.2134, 0.3241, 0.3833, + 0.1132, 0.1256, 0.5042, 0.0189, 0.1971, 0.1400, 0.7715, + 0.1621, 0.0713, 0.8856, 0.2929, 0.3989, 0.8128, 0.0289, + 0.2640, 0.5075, 0.4705, 0.8865, 0.9171, 0.4145, 0.4919, + 0.4500, 0.5633, 0.3618, 0.0032, 0.3175, 0.9427, 0.8902, + 0.2880, 0.6791, 0.9616, 0.0047, 0.8354, 0.3680, 0.2314, + 0.5566, 0.6728, 0.8761, 0.3109, 0.4191, 0.1257, 0.0231, + 0.4635, 0.8760, 0.8559, 0.1650, 0.1720, 0.8840, 0.1952, + 0.5716, 0.4436, 0.6030, 0.9799, 0.4962, 0.0060, 0.0091, + 0.1820, 0.1058, 0.9674, 0.3332, 0.5543, 0.3055, 0.7098, + 0.5098, 0.5712, 0.3186, 0.2511, 0.9486, 0.2897, 0.7906, + 0.4682, 0.9460, 0.4947, 0.0711, 0.2903, 0.4667, 0.5414, + 0.0305, 0.9032, 0.1444, 0.0549, 0.4534, 0.0693, 0.9432, + 0.7050, 0.0278, 0.6850, 0.1700, 0.0189, 0.3286, 0.1955, + 0.6291, 0.1692, 0.8585, 0.9646, 0.7537, 0.6946, 0.7438, + 0.4102, 0.6268, 0.2998, 0.4067, 0.3522, 0.5813, 0.2936, + 0.9445, 0.1475, 0.9903, 0.8673, 0.8393, 0.5631, 0.2710, + 0.4872, 0.2561, 0.4261, 0.0249, 0.8866, 0.7154, 0.7262, + 0.4255, 0.2060, 0.4915, 0.5716, 0.3734, 0.5359, 0.0582, + 0.7274, 0.3193, 0.1823, 0.9469, 0.1962, 0.8306, 0.0367, + 0.3559, 0.8060, 0.2544, 0.7597, 0.1912, 0.5306, 0.2236, + 0.1306, 0.0906, 0.3830, 0.2840, 0.1455, 0.7884, 0.5093, + 0.2096, 0.7409, 0.5736, 0.0118, 0.2511, 0.1254, 0.6493, + 0.5987, 0.1422, 0.7590, 0.3750, 0.0146, 0.3755, 0.5252, + 0.4470, 0.1730, 0.8157, 0.1781, 0.3561, 0.5010, 0.2990, + 0.7060, 0.9531, 0.0424, 0.8444, 0.0333, 0.9215, 0.3468, + 0.6299, 0.5208, 0.5070, 0.7369, 0.3345, 0.6893, 0.6628, + 0.0479, 0.2533, 0.8987, 0.9263, 0.7389, 0.2881, 0.3437, + 0.4669, 0.0061, 0.2705, 0.7551, 0.5375, 0.9128, 0.4733, + 0.3625, 0.3041, 0.3906, 0.4750, 0.5152, 0.6836, 0.5047, + 0.3035, 0.6463, 0.6891, 0.4384, 0.3322, 0.0632, 0.1828, + 0.0306, 0.6593, 0.7636, 0.2683, 0.3746, 0.6911, 0.2833, + 0.2470, 0.5171, 0.6073, 0.6043, 0.2759, 0.6224, 0.0070, + 0.6025, 0.5674, 0.9167, 0.4212, 0.0308, 0.3773, 0.8746, + 0.6407, 0.5547, 0.0444, 0.6266, 0.5499, 0.1996, 0.9428, + 0.8289, 0.3044, 0.3689, 0.5795, 0.4388, 0.9210, 0.7518, + 0.6388, 0.2171, 0.2636, 0.4873, 0.6059, 0.1825, 0.2514, + 0.8353, 0.3177, 0.0671, 0.6724, 0.2137, 0.9634, 0.1659, + 0.8310, 0.1283, 0.7040, 0.7122, 0.7650, 0.2004, 0.0295, + 0.0888, 0.3593, 0.6433, 0.9173, 0.5749, 0.5966, 0.6545, + 0.8191, 0.5699, 0.1636, 0.7580, 0.4365, 0.7079, 0.9192, + 0.9281, 0.8754, 0.6240, 0.7560, 0.6668, 0.9111, 0.9369, + 0.0367, 0.7533, 0.4804, 0.3166, 0.9053, 0.4957, 0.5130, + 0.7835, 0.3616, 0.2789, 0.5579, 0.6716, 0.4682, 0.6876, + 0.0966, 0.9182, 0.5997, 0.8196, 0.3189, 0.4501, 0.8553, + 0.2473, 0.0680, 0.4275, 0.1537, 0.0899, 0.7313, 0.8241, + 0.3081, 0.6292, 0.1662, 0.0904, 0.5149, 0.6344, 0.2456, + 0.2729, 0.2756, 0.6668, 0.4375, 0.7295, 0.4340, 0.2948, + 0.0278, 0.7870, 0.4490, 0.1408, 0.9227, 0.4041, 0.8449, + 0.5107, 0.6642, 0.1322, 0.7169, 0.8679, 0.3739, 0.7236, + 0.4248, 0.5882, 0.9469, 0.8184, 0.8365, 0.8779, 0.1038, + 0.8810, 0.9769, 0.5428, 0.3538, 0.9830, 0.9676, 0.1831, + 0.0084, 0.5971, 0.7115, 0.1927, 0.2619, 0.1005, 0.5333, + 0.2042, 0.2705, 0.6258, 0.9835, 0.9394, 0.7617, 0.3233, + 0.0297, 0.9049, 0.3704, 0.8040, 0.8975, 0.1579, 0.5446, + 0.2183, 0.2325, 0.0639, 0.2768, 0.2461, 0.4765, 0.2089, + 0.9111, 0.6567, 0.5216, 0.9797, 0.3080, 0.5219, 0.5582, + 0.3741, 0.2265, 0.1644, 0.9904, 0.9096, 0.6977, 0.7378, + 0.6163, 0.2973, 0.5170, 0.1559, 0.9194, 0.1883, 0.3665, + 0.6107, 0.4618, 0.4740, 0.0187, 0.8554, 0.8371, 0.2227, + 0.9554, 0.1756, 0.1396, 0.9691, 0.1329, 0.2855, 0.2852, + 0.5955, 0.2284, 0.7196, 0.1940, 0.7502, 0.5298, 0.9924, + 0.7439, 0.6637, 0.2900, 0.6522, 0.0204, 0.0933, 0.3725, + 0.2785, 0.1362, 0.2224, 0.2585, 0.4365, 0.6210, 0.9700, + 0.5368, 0.3375, 0.9444, 0.7297, 0.5092, 0.3376, 0.8591, + 0.9008, 0.5379, 0.9510, 0.9421, 0.0713, 0.2091, 0.6298, + 0.4005, 0.7776, 0.4989, 0.8706, 0.2922, 0.3070, 0.0813, + 0.5714, 0.2514, 0.4480, 0.5234, 0.0360, 0.0758, 0.3730, + 0.7634, 0.0856, 0.8934, 0.6490, 0.5291, 0.3184, 0.3037, + 0.3443, 0.5792, 0.5490, 0.5327, 0.4678, 0.2006, 0.8032, + 0.9436, 0.9189, 0.7953, 0.9640, 0.0058, 0.7983, 0.6143, + 0.9639, 0.7438, 0.7417, 0.1685, 0.5369, 0.7292, 0.5840, + 0.3088, 0.6745, 0.1144, 0.4342, 0.4148, 0.3081, 0.3141, + 0.7523, 0.9548, 0.1159, 0.9214, 0.7606, 0.1319, 0.0108, + 0.5213, 0.7386, 0.2722, 0.3665, 0.1771, 0.0556, 0.9859, + 0.0054, 0.2965, 0.3687, 0.8425, 0.4479, 0.3524, 0.2824, + 0.4727, 0.3410, 0.8501, 0.7125, 0.9448, 0.2352, 0.2937, + 0.6534, 0.3739, 0.6671, 0.8901, 0.3611, 0.4255, 0.2194, + 0.1776, 0.7356, 0.6315, 0.2672, 0.6863, 0.5095, 0.5719, + 0.6850, 0.4423, 0.4707, 0.8096, 0.8117, 0.4330, 0.1565, + 0.6528, 0.3855, 0.7960, 0.8457, 0.9509, 0.4271, 0.9874, + 0.2012, 0.1858, 0.4458, 0.2549, 0.0069, 0.9617, 0.8083, + 0.8286, 0.3440, 0.6245, 0.1685, 0.2887, 0.8351, 0.3371, + 0.8326, 0.2133, 0.4971, 0.1969, 0.9997, 0.0108, 0.8265, + 0.2603, 0.2486, 0.1123, 0.3933, 0.1972, 0.1286, 0.2410, + 0.9427, 0.8517, 0.1056, 0.4498, 0.3528, 0.4997, 0.1873, + 0.9308, 0.5270, 0.1818, 0.0192, 0.5147, 0.6995, 0.3808, + 0.1801, 0.1254, 0.8616, 0.9334, 0.6635, 0.6097, 0.9317, + 0.0639, 0.5688, 0.1321, 0.2406, 0.0702, 0.3025, 0.5470, + 0.2516, 0.7748, 0.5947, 0.3008, 0.0640, 0.6075, 0.7333, + 0.2489, 0.8087, 0.9366, 0.5301, 0.5997, 0.9710, 0.1167, + 0.8349, 0.0943, 0.3077, 0.1781, 0.0964, 0.5114, 0.2721, + 0.4485, 0.5358, 0.9249, 0.1281, 0.7787, 0.9696, 0.7641, + 0.9267, 0.8005, 0.2565, 0.9156, 0.0177, 0.4399, 0.6139, + 0.6561, 0.2921, 0.2455, 0.0677, 0.8007, 0.1673, 0.6272, + 0.9708, 0.7757, 0.7844, 0.4143, 0.7244, 0.3178, 0.2015, + 0.7092, 0.6947, 0.5693, 0.4803, 0.3248, 0.5740, 0.1234, + 0.7532, 0.8432, 0.5693, 0.7346, 0.8612, 0.6697, 0.0106, + 0.9867, 0.9456, 0.7600, 0.4214, 0.7451, 0.1923, 0.8683, + 0.7611, 0.2801, 0.7750, 0.6682, 0.9146, 0.0443, 0.5069, + 0.8481, 0.2446, 0.9950, 0.4152, 0.1745, 0.1637, 0.2428, + 0.6569, 0.4895, 0.4090, 0.9641, 0.2949, 0.4773, 0.4363, + 0.3083, 0.0374, 0.4019, 0.0579, 0.0686, 0.4139, 0.1952, + 0.0362, 0.0311, 0.8833, 0.6790, 0.8853, 0.7058, 0.2329, + 0.9566, 0.6724, 0.9699, 0.2549, 0.0950, 0.9403, 0.8375, + 0.7841, 0.9563, 0.7054, 0.1040, 0.8158, 0.8050, 0.1655, + 0.1587, 0.3559, 0.9451, 0.7518, 0.4895, 0.3845, 0.5434, + 0.2137, 0.1454, 0.9690, 0.7963, 0.0141, 0.6547, 0.3894, + 0.1222, 0.1580, 0.2599, 0.1493, 0.3838, 0.7658, 0.2010, + 0.8027, 0.8916, 0.5453, 0.4941, 0.7164, 0.8434, 0.4222, + 0.2960, 0.0732, 0.0275, 0.3155, 0.9582, 0.2006, 0.5100, + 0.3835, 0.7693, 0.0825, 0.5403, 0.0058, 0.5775, 0.4579, + 0.7231, 0.5432, 0.1385, 0.9942, 0.7281, 0.1494, 0.2026, + 0.0383, 0.2089, 0.1678, 0.3352, 0.3308, 0.9511, 0.9479, + 0.3486, 0.6349, 0.3617, 0.1790, 0.9290, 0.9003, 0.7128, + 0.2573, 0.5128, 0.2734, 0.8333, 0.7565, 0.2114, 0.0550, + 0.1806, 0.7785, 0.3657, 0.1751, 0.5105, 0.4138, 0.6648, + 0.0988, 0.5462, 0.5957, 0.0841, 0.7102, 0.7202, 0.1878, + 0.8772, 0.4902, 0.6123, 0.9058, 0.6380, 0.2081, 0.1591, + 0.1205, 0.1672, 0.9664, 0.6634, 0.6646, 0.2765, 0.4269, + 0.5829, 0.8144, 0.4256, 0.2309, 0.0615, 0.0926, 0.0573, + 0.0407, 0.6434, 0.2531, 0.0667, 0.6337, 0.0241, 0.7295, + 0.9133, 0.7637, 0.9403, 0.7968, 0.3787, 0.2873, 0.0225, + 0.1808, 0.3069, 0.1014, 0.5506, 0.2895, 0.7186, 0.5054, + 0.4710, 0.7466, 0.0956, 0.6689, 0.1987, 0.9374, 0.4713, + 0.8415, 0.9657, 0.9038, 0.1088, 0.8688, 0.2488, 0.6505, + 0.9593, 0.4610, 0.7212, 0.1418, 0.6637, 0.4566, 0.9474, + 0.6935, 0.5967, 0.6983, 0.4944, 0.8522, 0.4429, 0.6141, + 0.6725, 0.8987, 0.3589, 0.1096, 0.3360, 0.7261]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.5928, 0.5923, 0.2769, ..., 0.7868, 0.2495, 0.0989]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.501307487487793 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([ 621, 8067, 8701, 6486, 5538, 5824, 379, 1918, 5000, + 5124, 6265, 1757, 7171, 5785, 2098, 8110, 8680, 9293, + 3536, 8102, 4182, 8879, 9877, 2040, 7911, 510, 3802, + 7722, 6811, 1404, 2410, 8431, 3523, 6495, 6498, 6685, + 7173, 7872, 4534, 9047, 7100, 8447, 6072, 5630, 5799, + 190, 6891, 1441, 9822, 4335, 8399, 1784, 1404, 5633, + 6623, 2518, 6475, 3954, 4736, 1500, 5281, 4391, 6371, + 886, 805, 6503, 5528, 1428, 6887, 8163, 4623, 5541, + 4640, 3383, 6444, 4711, 4505, 3203, 7934, 4654, 687, + 7329, 1943, 6395, 8455, 1952, 3346, 9199, 2955, 3712, + 7082, 8540, 6711, 1353, 3492, 6382, 9227, 3128, 4738, + 7860, 8372, 15, 1552, 8319, 9811, 3777, 9596, 8620, + 4064, 4884, 9629, 5329, 7715, 7613, 6097, 4214, 6601, + 8769, 7774, 2256, 3188, 9906, 6088, 7859, 2481, 3977, + 5219, 4949, 6267, 3615, 4199, 9995, 444, 6572, 6590, + 7908, 8736, 1682, 7932, 9231, 9498, 4969, 8032, 7386, + 3757, 5388, 5500, 7007, 497, 6899, 924, 5470, 4242, + 8349, 988, 321, 277, 6809, 2621, 4996, 3392, 2070, + 8599, 2865, 1951, 2114, 8145, 435, 2953, 956, 2814, + 1486, 8770, 3701, 8858, 3904, 8946, 1921, 2720, 8762, + 9358, 9717, 5029, 4186, 4041, 3158, 5636, 5605, 4525, + 5593, 7451, 6146, 5196, 850, 4025, 7864, 9672, 7108, + 777, 2450, 9967, 3039, 7352, 7620, 5364, 1636, 7924, + 9792, 4541, 3656, 1580, 8687, 4603, 7545, 1231, 9649, + 2748, 7212, 6116, 9217, 2342, 1946, 3303, 6323, 5879, + 4477, 5340, 4516, 5722, 3754, 6742, 650, 8207, 6470, + 2264, 3353, 2048, 8251, 400, 1044, 8345, 2532, 2124, + 1395, 5517, 6024, 3422, 7067, 1645, 6318, 3535, 6960, + 308, 4401, 9204, 1112, 4901, 4265, 8909, 888, 7274, + 2714, 4875, 7150, 2797, 4106, 4244, 2138, 3876, 2559, + 3408, 2983, 6763, 1791, 1130, 1328, 3454, 3597, 3047, + 9406, 8234, 2404, 5313, 8028, 8018, 4816, 2500, 8560, + 3279, 4533, 506, 4358, 9720, 9432, 5299, 1497, 4103, + 4459, 2841, 3387, 6518, 8285, 1486, 4206, 317, 3410, + 1281, 6931, 471, 5237, 7799, 9052, 1693, 1883, 977, + 3915, 377, 6991, 2617, 5482, 7380, 2319, 6326, 4913, + 63, 6407, 6245, 8595, 8116, 5131, 5553, 3847, 9485, + 7909, 3795, 8618, 7145, 3635, 6413, 9128, 3130, 8692, + 2576, 4366, 8928, 6249, 7783, 8379, 9553, 1007, 4718, + 1322, 4530, 5651, 4480, 2964, 4421, 6311, 2055, 9796, + 5531, 7518, 7953, 2916, 7603, 6190, 5496, 6074, 3416, + 4536, 338, 5349, 4767, 7727, 61, 2223, 5727, 6702, + 1168, 3309, 6908, 120, 2145, 7426, 217, 6262, 4322, + 710, 1996, 1502, 6744, 3362, 9551, 9541, 4765, 5555, + 7677, 3714, 9116, 9201, 9677, 808, 3444, 7948, 3547, + 3147, 8821, 4131, 7853, 4873, 3727, 8956, 9242, 463, + 6102, 3207, 2647, 2009, 6976, 8113, 5383, 9950, 9210, + 2607, 6196, 3792, 5279, 4469, 6166, 8307, 3139, 8294, + 3045, 8587, 5732, 6420, 4767, 6384, 3262, 6516, 9124, + 5629, 9140, 4268, 7884, 9280, 2845, 4396, 1695, 5892, + 9646, 4870, 474, 711, 5269, 9561, 510, 234, 6036, + 1463, 1833, 5092, 1789, 1299, 8945, 842, 2582, 1165, + 9387, 4647, 18, 2357, 8595, 5475, 9627, 2152, 6592, + 7559, 3616, 6551, 6061, 5016, 351, 6411, 5971, 9815, + 8118, 3528, 9738, 1760, 6048, 7402, 1939, 2804, 8305, + 1191, 7749, 4316, 6651, 179, 6542, 9648, 2265, 7391, + 7426, 6846, 1001, 1073, 1131, 6087, 4908, 4135, 4320, + 7720, 1601, 7467, 9773, 8874, 2360, 6153, 8937, 6481, + 3762, 9196, 7483, 944, 7320, 7745, 860, 3192, 2592, + 5428, 1558, 4118, 6406, 4829, 7167, 5223, 5427, 1349, + 5294, 7920, 7467, 9863, 7414, 1430, 2272, 4749, 9366, + 5823, 7199, 7730, 4037, 4741, 8062, 2210, 4947, 2286, + 3927, 3530, 6602, 7303, 6039, 6871, 649, 2184, 5850, + 8991, 9883, 1962, 7997, 8066, 2827, 485, 73, 5074, + 4027, 8247, 1956, 466, 6094, 7363, 8807, 3485, 4713, + 8857, 4550, 6148, 5177, 6630, 3729, 5962, 2364, 8027, + 1540, 5512, 8420, 1833, 166, 185, 1717, 5236, 2057, + 1920, 8729, 7603, 7798, 4581, 7903, 2753, 3830, 1012, + 3358, 98, 1431, 3548, 1765, 7173, 2113, 1774, 5074, + 9875, 5748, 6477, 3076, 4013, 5494, 142, 6261, 1546, + 735, 8132, 3760, 3833, 8392, 2866, 3747, 2238, 5039, + 9991, 3930, 3295, 4281, 6582, 1507, 2339, 8308, 4795, + 6042, 9144, 5178, 7200, 1854, 5289, 1036, 263, 4673, + 1755, 7843, 9590, 1674, 1997, 5404, 7842, 2316, 4765, + 903, 4521, 1615, 9734, 2683, 9393, 4743, 465, 2256, + 1490, 4969, 5519, 7553, 9750, 1156, 9506, 2573, 7753, + 8858, 2242, 2353, 4052, 130, 5566, 7279, 9261, 2032, + 5574, 9697, 2307, 6357, 4851, 125, 7010, 9557, 7434, + 1764, 5376, 8681, 520, 1147, 3019, 2766, 4221, 6787, + 913, 9582, 7327, 3426, 4085, 9753, 397, 1757, 2467, + 6219, 9421, 4979, 4880, 9636, 399, 4017, 6742, 7711, + 4977, 597, 3788, 7425, 4538, 5803, 7511, 707, 6862, + 4448, 2935, 796, 5761, 8972, 3222, 5360, 4073, 3780, + 7587, 3935, 3659, 3516, 3305, 6397, 835, 8897, 2260, + 8074, 4151, 59, 9881, 5722, 4749, 4490, 8386, 9531, + 1681, 8322, 7280, 7383, 9110, 9496, 3979, 1667, 1609, + 605, 7186, 3289, 9548, 9178, 3499, 8700, 8958, 6798, + 4712, 6079, 3652, 2893, 6478, 6228, 2105, 1064, 1126, + 594, 1239, 5010, 9616, 2691, 5967, 1503, 1488, 3756, + 3247, 4285, 4420, 2495, 3105, 2726, 8612, 1019, 7638, + 301, 3462, 8224, 7646, 2804, 892, 3360, 9148, 9972, + 4302, 6615, 1094, 5589, 9642, 9897, 7341, 5880, 2250, + 504, 6779, 1200, 8941, 3565, 8375, 7844, 9898, 7773, + 866, 2804, 8221, 7345, 7948, 44, 1443, 2712, 6139, + 27, 5009, 6474, 7863, 6279, 2280, 2088, 3757, 8456, + 8642, 2733, 1757, 7233, 5141, 3949, 8447, 2690, 3294, + 2211, 161, 6191, 1188, 871, 3978, 5524, 3757, 7095, + 4586, 4518, 8935, 4168, 5727, 4325, 5573, 274, 8627, + 5160, 6998, 5604, 9203, 1927, 6912, 3284, 5635, 8095, + 4022, 8206, 1927, 9163, 7500, 7635, 8229, 2377, 4284, + 5090, 9687, 8448, 6150, 8497, 8068, 7265, 2977, 4847, + 9227, 4643, 5971, 3091, 9617, 1463, 3964, 7383, 3704, + 5970, 2528, 4339, 780, 6389, 7456, 1723, 7888, 8852, + 109, 5808, 2711, 1313, 97, 5642, 753, 4358, 9054, + 5886, 9449, 104, 2884, 1499, 7364, 9304, 4311, 9143, + 7421, 2337, 2694, 3377, 3997, 3023, 7414, 4869, 419, + 3257, 224, 4395, 7186, 1420, 2887, 9106, 1717, 5082, + 3894, 8215, 6787, 4497, 3468, 9059, 3488, 9487, 7280, + 6265, 4060, 8912, 5499, 4442, 7535, 6018, 6368, 1204, + 8864, 9258, 6588, 5167, 2209, 2012, 4429, 8470, 8234, + 9211, 4382, 7963, 5391, 591, 4867, 8168, 9279, 897, + 4170]), + values=tensor([0.4878, 0.2366, 0.8733, 0.8071, 0.3473, 0.2387, 0.9164, + 0.3754, 0.7791, 0.5219, 0.2035, 0.6398, 0.4422, 0.3796, + 0.7410, 0.0343, 0.0746, 0.6347, 0.0691, 0.8108, 0.6743, + 0.7644, 0.4125, 0.8362, 0.4857, 0.8892, 0.4751, 0.0020, + 0.5709, 0.6384, 0.1497, 0.3464, 0.3034, 0.5189, 0.2843, + 0.8914, 0.9227, 0.3685, 0.3834, 0.0155, 0.1265, 0.8952, + 0.3893, 0.8670, 0.7098, 0.4601, 0.8885, 0.0046, 0.1082, + 0.5850, 0.3348, 0.6623, 0.6228, 0.0161, 0.7512, 0.8534, + 0.5169, 0.3788, 0.1287, 0.4768, 0.5501, 0.8770, 0.6106, + 0.3540, 0.4183, 0.1505, 0.6415, 0.2760, 0.4263, 0.1294, + 0.2381, 0.3413, 0.7792, 0.3560, 0.7846, 0.6195, 0.9067, + 0.9607, 0.5449, 0.5238, 0.7187, 0.7121, 0.1293, 0.8894, + 0.0511, 0.0830, 0.2825, 0.4900, 0.0409, 0.2002, 0.4854, + 0.3856, 0.8627, 0.8310, 0.5780, 0.7482, 0.3676, 0.5167, + 0.4530, 0.8058, 0.4658, 0.0519, 0.2134, 0.3241, 0.3833, + 0.1132, 0.1256, 0.5042, 0.0189, 0.1971, 0.1400, 0.7715, + 0.1621, 0.0713, 0.8856, 0.2929, 0.3989, 0.8128, 0.0289, + 0.2640, 0.5075, 0.4705, 0.8865, 0.9171, 0.4145, 0.4919, + 0.4500, 0.5633, 0.3618, 0.0032, 0.3175, 0.9427, 0.8902, + 0.2880, 0.6791, 0.9616, 0.0047, 0.8354, 0.3680, 0.2314, + 0.5566, 0.6728, 0.8761, 0.3109, 0.4191, 0.1257, 0.0231, + 0.4635, 0.8760, 0.8559, 0.1650, 0.1720, 0.8840, 0.1952, + 0.5716, 0.4436, 0.6030, 0.9799, 0.4962, 0.0060, 0.0091, + 0.1820, 0.1058, 0.9674, 0.3332, 0.5543, 0.3055, 0.7098, + 0.5098, 0.5712, 0.3186, 0.2511, 0.9486, 0.2897, 0.7906, + 0.4682, 0.9460, 0.4947, 0.0711, 0.2903, 0.4667, 0.5414, + 0.0305, 0.9032, 0.1444, 0.0549, 0.4534, 0.0693, 0.9432, + 0.7050, 0.0278, 0.6850, 0.1700, 0.0189, 0.3286, 0.1955, + 0.6291, 0.1692, 0.8585, 0.9646, 0.7537, 0.6946, 0.7438, + 0.4102, 0.6268, 0.2998, 0.4067, 0.3522, 0.5813, 0.2936, + 0.9445, 0.1475, 0.9903, 0.8673, 0.8393, 0.5631, 0.2710, + 0.4872, 0.2561, 0.4261, 0.0249, 0.8866, 0.7154, 0.7262, + 0.4255, 0.2060, 0.4915, 0.5716, 0.3734, 0.5359, 0.0582, + 0.7274, 0.3193, 0.1823, 0.9469, 0.1962, 0.8306, 0.0367, + 0.3559, 0.8060, 0.2544, 0.7597, 0.1912, 0.5306, 0.2236, + 0.1306, 0.0906, 0.3830, 0.2840, 0.1455, 0.7884, 0.5093, + 0.2096, 0.7409, 0.5736, 0.0118, 0.2511, 0.1254, 0.6493, + 0.5987, 0.1422, 0.7590, 0.3750, 0.0146, 0.3755, 0.5252, + 0.4470, 0.1730, 0.8157, 0.1781, 0.3561, 0.5010, 0.2990, + 0.7060, 0.9531, 0.0424, 0.8444, 0.0333, 0.9215, 0.3468, + 0.6299, 0.5208, 0.5070, 0.7369, 0.3345, 0.6893, 0.6628, + 0.0479, 0.2533, 0.8987, 0.9263, 0.7389, 0.2881, 0.3437, + 0.4669, 0.0061, 0.2705, 0.7551, 0.5375, 0.9128, 0.4733, + 0.3625, 0.3041, 0.3906, 0.4750, 0.5152, 0.6836, 0.5047, + 0.3035, 0.6463, 0.6891, 0.4384, 0.3322, 0.0632, 0.1828, + 0.0306, 0.6593, 0.7636, 0.2683, 0.3746, 0.6911, 0.2833, + 0.2470, 0.5171, 0.6073, 0.6043, 0.2759, 0.6224, 0.0070, + 0.6025, 0.5674, 0.9167, 0.4212, 0.0308, 0.3773, 0.8746, + 0.6407, 0.5547, 0.0444, 0.6266, 0.5499, 0.1996, 0.9428, + 0.8289, 0.3044, 0.3689, 0.5795, 0.4388, 0.9210, 0.7518, + 0.6388, 0.2171, 0.2636, 0.4873, 0.6059, 0.1825, 0.2514, + 0.8353, 0.3177, 0.0671, 0.6724, 0.2137, 0.9634, 0.1659, + 0.8310, 0.1283, 0.7040, 0.7122, 0.7650, 0.2004, 0.0295, + 0.0888, 0.3593, 0.6433, 0.9173, 0.5749, 0.5966, 0.6545, + 0.8191, 0.5699, 0.1636, 0.7580, 0.4365, 0.7079, 0.9192, + 0.9281, 0.8754, 0.6240, 0.7560, 0.6668, 0.9111, 0.9369, + 0.0367, 0.7533, 0.4804, 0.3166, 0.9053, 0.4957, 0.5130, + 0.7835, 0.3616, 0.2789, 0.5579, 0.6716, 0.4682, 0.6876, + 0.0966, 0.9182, 0.5997, 0.8196, 0.3189, 0.4501, 0.8553, + 0.2473, 0.0680, 0.4275, 0.1537, 0.0899, 0.7313, 0.8241, + 0.3081, 0.6292, 0.1662, 0.0904, 0.5149, 0.6344, 0.2456, + 0.2729, 0.2756, 0.6668, 0.4375, 0.7295, 0.4340, 0.2948, + 0.0278, 0.7870, 0.4490, 0.1408, 0.9227, 0.4041, 0.8449, + 0.5107, 0.6642, 0.1322, 0.7169, 0.8679, 0.3739, 0.7236, + 0.4248, 0.5882, 0.9469, 0.8184, 0.8365, 0.8779, 0.1038, + 0.8810, 0.9769, 0.5428, 0.3538, 0.9830, 0.9676, 0.1831, + 0.0084, 0.5971, 0.7115, 0.1927, 0.2619, 0.1005, 0.5333, + 0.2042, 0.2705, 0.6258, 0.9835, 0.9394, 0.7617, 0.3233, + 0.0297, 0.9049, 0.3704, 0.8040, 0.8975, 0.1579, 0.5446, + 0.2183, 0.2325, 0.0639, 0.2768, 0.2461, 0.4765, 0.2089, + 0.9111, 0.6567, 0.5216, 0.9797, 0.3080, 0.5219, 0.5582, + 0.3741, 0.2265, 0.1644, 0.9904, 0.9096, 0.6977, 0.7378, + 0.6163, 0.2973, 0.5170, 0.1559, 0.9194, 0.1883, 0.3665, + 0.6107, 0.4618, 0.4740, 0.0187, 0.8554, 0.8371, 0.2227, + 0.9554, 0.1756, 0.1396, 0.9691, 0.1329, 0.2855, 0.2852, + 0.5955, 0.2284, 0.7196, 0.1940, 0.7502, 0.5298, 0.9924, + 0.7439, 0.6637, 0.2900, 0.6522, 0.0204, 0.0933, 0.3725, + 0.2785, 0.1362, 0.2224, 0.2585, 0.4365, 0.6210, 0.9700, + 0.5368, 0.3375, 0.9444, 0.7297, 0.5092, 0.3376, 0.8591, + 0.9008, 0.5379, 0.9510, 0.9421, 0.0713, 0.2091, 0.6298, + 0.4005, 0.7776, 0.4989, 0.8706, 0.2922, 0.3070, 0.0813, + 0.5714, 0.2514, 0.4480, 0.5234, 0.0360, 0.0758, 0.3730, + 0.7634, 0.0856, 0.8934, 0.6490, 0.5291, 0.3184, 0.3037, + 0.3443, 0.5792, 0.5490, 0.5327, 0.4678, 0.2006, 0.8032, + 0.9436, 0.9189, 0.7953, 0.9640, 0.0058, 0.7983, 0.6143, + 0.9639, 0.7438, 0.7417, 0.1685, 0.5369, 0.7292, 0.5840, + 0.3088, 0.6745, 0.1144, 0.4342, 0.4148, 0.3081, 0.3141, + 0.7523, 0.9548, 0.1159, 0.9214, 0.7606, 0.1319, 0.0108, + 0.5213, 0.7386, 0.2722, 0.3665, 0.1771, 0.0556, 0.9859, + 0.0054, 0.2965, 0.3687, 0.8425, 0.4479, 0.3524, 0.2824, + 0.4727, 0.3410, 0.8501, 0.7125, 0.9448, 0.2352, 0.2937, + 0.6534, 0.3739, 0.6671, 0.8901, 0.3611, 0.4255, 0.2194, + 0.1776, 0.7356, 0.6315, 0.2672, 0.6863, 0.5095, 0.5719, + 0.6850, 0.4423, 0.4707, 0.8096, 0.8117, 0.4330, 0.1565, + 0.6528, 0.3855, 0.7960, 0.8457, 0.9509, 0.4271, 0.9874, + 0.2012, 0.1858, 0.4458, 0.2549, 0.0069, 0.9617, 0.8083, + 0.8286, 0.3440, 0.6245, 0.1685, 0.2887, 0.8351, 0.3371, + 0.8326, 0.2133, 0.4971, 0.1969, 0.9997, 0.0108, 0.8265, + 0.2603, 0.2486, 0.1123, 0.3933, 0.1972, 0.1286, 0.2410, + 0.9427, 0.8517, 0.1056, 0.4498, 0.3528, 0.4997, 0.1873, + 0.9308, 0.5270, 0.1818, 0.0192, 0.5147, 0.6995, 0.3808, + 0.1801, 0.1254, 0.8616, 0.9334, 0.6635, 0.6097, 0.9317, + 0.0639, 0.5688, 0.1321, 0.2406, 0.0702, 0.3025, 0.5470, + 0.2516, 0.7748, 0.5947, 0.3008, 0.0640, 0.6075, 0.7333, + 0.2489, 0.8087, 0.9366, 0.5301, 0.5997, 0.9710, 0.1167, + 0.8349, 0.0943, 0.3077, 0.1781, 0.0964, 0.5114, 0.2721, + 0.4485, 0.5358, 0.9249, 0.1281, 0.7787, 0.9696, 0.7641, + 0.9267, 0.8005, 0.2565, 0.9156, 0.0177, 0.4399, 0.6139, + 0.6561, 0.2921, 0.2455, 0.0677, 0.8007, 0.1673, 0.6272, + 0.9708, 0.7757, 0.7844, 0.4143, 0.7244, 0.3178, 0.2015, + 0.7092, 0.6947, 0.5693, 0.4803, 0.3248, 0.5740, 0.1234, + 0.7532, 0.8432, 0.5693, 0.7346, 0.8612, 0.6697, 0.0106, + 0.9867, 0.9456, 0.7600, 0.4214, 0.7451, 0.1923, 0.8683, + 0.7611, 0.2801, 0.7750, 0.6682, 0.9146, 0.0443, 0.5069, + 0.8481, 0.2446, 0.9950, 0.4152, 0.1745, 0.1637, 0.2428, + 0.6569, 0.4895, 0.4090, 0.9641, 0.2949, 0.4773, 0.4363, + 0.3083, 0.0374, 0.4019, 0.0579, 0.0686, 0.4139, 0.1952, + 0.0362, 0.0311, 0.8833, 0.6790, 0.8853, 0.7058, 0.2329, + 0.9566, 0.6724, 0.9699, 0.2549, 0.0950, 0.9403, 0.8375, + 0.7841, 0.9563, 0.7054, 0.1040, 0.8158, 0.8050, 0.1655, + 0.1587, 0.3559, 0.9451, 0.7518, 0.4895, 0.3845, 0.5434, + 0.2137, 0.1454, 0.9690, 0.7963, 0.0141, 0.6547, 0.3894, + 0.1222, 0.1580, 0.2599, 0.1493, 0.3838, 0.7658, 0.2010, + 0.8027, 0.8916, 0.5453, 0.4941, 0.7164, 0.8434, 0.4222, + 0.2960, 0.0732, 0.0275, 0.3155, 0.9582, 0.2006, 0.5100, + 0.3835, 0.7693, 0.0825, 0.5403, 0.0058, 0.5775, 0.4579, + 0.7231, 0.5432, 0.1385, 0.9942, 0.7281, 0.1494, 0.2026, + 0.0383, 0.2089, 0.1678, 0.3352, 0.3308, 0.9511, 0.9479, + 0.3486, 0.6349, 0.3617, 0.1790, 0.9290, 0.9003, 0.7128, + 0.2573, 0.5128, 0.2734, 0.8333, 0.7565, 0.2114, 0.0550, + 0.1806, 0.7785, 0.3657, 0.1751, 0.5105, 0.4138, 0.6648, + 0.0988, 0.5462, 0.5957, 0.0841, 0.7102, 0.7202, 0.1878, + 0.8772, 0.4902, 0.6123, 0.9058, 0.6380, 0.2081, 0.1591, + 0.1205, 0.1672, 0.9664, 0.6634, 0.6646, 0.2765, 0.4269, + 0.5829, 0.8144, 0.4256, 0.2309, 0.0615, 0.0926, 0.0573, + 0.0407, 0.6434, 0.2531, 0.0667, 0.6337, 0.0241, 0.7295, + 0.9133, 0.7637, 0.9403, 0.7968, 0.3787, 0.2873, 0.0225, + 0.1808, 0.3069, 0.1014, 0.5506, 0.2895, 0.7186, 0.5054, + 0.4710, 0.7466, 0.0956, 0.6689, 0.1987, 0.9374, 0.4713, + 0.8415, 0.9657, 0.9038, 0.1088, 0.8688, 0.2488, 0.6505, + 0.9593, 0.4610, 0.7212, 0.1418, 0.6637, 0.4566, 0.9474, + 0.6935, 0.5967, 0.6983, 0.4944, 0.8522, 0.4429, 0.6141, + 0.6725, 0.8987, 0.3589, 0.1096, 0.3360, 0.7261]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.5928, 0.5923, 0.2769, ..., 0.7868, 0.2495, 0.0989]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.501307487487793 seconds + +[18.25, 18.14, 17.95, 17.87, 17.91, 17.96, 17.87, 17.59, 18.03, 17.97] +[50.86] +14.265194416046143 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 225815, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.501307487487793, 'TIME_S_1KI': 0.046504029792032386, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 725.5277880001069, 'W': 50.86} +[18.25, 18.14, 17.95, 17.87, 17.91, 17.96, 17.87, 17.59, 18.03, 17.97, 17.9, 17.6, 18.05, 17.8, 18.18, 17.66, 17.82, 21.98, 18.23, 17.62] +326.51 +16.325499999999998 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 225815, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.501307487487793, 'TIME_S_1KI': 0.046504029792032386, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 725.5277880001069, 'W': 50.86, 'J_1KI': 3.2129300002218932, 'W_1KI': 0.22522861634523836, 'W_D': 34.5345, 'J_D': 492.64135656094555, 'W_D_1KI': 0.15293271040453468, 'J_D_1KI': 0.0006772477931250567} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_500000_1e-05.json new file mode 100644 index 0000000..f1d93dd --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_500000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 13.435759782791138, "TIME_S_1KI": 13.435759782791138, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 971.6288854122162, "W": 53.4, "J_1KI": 971.6288854122162, "W_1KI": 53.4, "W_D": 37.34824999999999, "J_D": 679.562519093573, "W_D_1KI": 37.34824999999999, "J_D_1KI": 37.34824999999999} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_500000_1e-05.output new file mode 100644 index 0000000..35674e7 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_500000_1e-05.output @@ -0,0 +1,47 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 13.435759782791138} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 8, ..., 2499995, + 2499996, 2500000]), + col_indices=tensor([ 61754, 291279, 469696, ..., 173785, 177543, + 423232]), + values=tensor([0.5269, 0.9088, 0.4901, ..., 0.3381, 0.9016, 0.0517]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.7575, 0.8230, 0.6656, ..., 0.2327, 0.7437, 0.7040]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 13.435759782791138 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 8, ..., 2499995, + 2499996, 2500000]), + col_indices=tensor([ 61754, 291279, 469696, ..., 173785, 177543, + 423232]), + values=tensor([0.5269, 0.9088, 0.4901, ..., 0.3381, 0.9016, 0.0517]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.7575, 0.8230, 0.6656, ..., 0.2327, 0.7437, 0.7040]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 13.435759782791138 seconds + +[18.26, 17.5, 18.12, 17.51, 17.77, 17.68, 17.73, 17.56, 17.86, 17.52] +[53.4] +18.195297479629517 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 13.435759782791138, 'TIME_S_1KI': 13.435759782791138, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 971.6288854122162, 'W': 53.4} +[18.26, 17.5, 18.12, 17.51, 17.77, 17.68, 17.73, 17.56, 17.86, 17.52, 18.07, 17.37, 18.42, 19.11, 17.73, 17.65, 18.23, 17.55, 17.59, 17.46] +321.035 +16.051750000000002 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 13.435759782791138, 'TIME_S_1KI': 13.435759782791138, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 971.6288854122162, 'W': 53.4, 'J_1KI': 971.6288854122162, 'W_1KI': 53.4, 'W_D': 37.34824999999999, 'J_D': 679.562519093573, 'W_D_1KI': 37.34824999999999, 'J_D_1KI': 37.34824999999999} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_50000_0.0001.json new file mode 100644 index 0000000..af9c51f --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_50000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 9021, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.444438695907593, "TIME_S_1KI": 1.1577916745269474, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 735.9580717468261, "W": 51.98, "J_1KI": 81.58275931125442, "W_1KI": 5.762110630750471, "W_D": 35.674749999999996, "J_D": 505.1004274730682, "W_D_1KI": 3.9546336326349625, "J_D_1KI": 0.43838084831337576} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_50000_0.0001.output similarity index 53% rename from pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0001.output rename to pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_50000_0.0001.output index a874d29..945b881 100644 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0001.output +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_50000_0.0001.output @@ -1,14 +1,14 @@ ['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 1.1573309898376465} +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 1.1638367176055908} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 7, 12, ..., 249987, 249995, +tensor(crow_indices=tensor([ 0, 5, 10, ..., 249989, 249992, 250000]), - col_indices=tensor([ 2662, 3637, 9309, ..., 20434, 25231, 37285]), - values=tensor([0.2333, 0.4961, 0.7423, ..., 0.5095, 0.9257, 0.2343]), + col_indices=tensor([ 5085, 27218, 28258, ..., 33170, 33475, 34242]), + values=tensor([0.4699, 0.9594, 0.0965, ..., 0.7443, 0.7286, 0.0273]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.2799, 0.1370, 0.8773, ..., 0.1897, 0.8081, 0.5839]) +tensor([0.3938, 0.4910, 0.8553, ..., 0.5913, 0.5925, 0.7936]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -16,19 +16,19 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 1.1573309898376465 seconds +Time: 1.1638367176055908 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '18145', '-ss', '50000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.748866319656372} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '9021', '-ss', '50000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.444438695907593} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 8, ..., 249992, 249993, +tensor(crow_indices=tensor([ 0, 5, 13, ..., 249988, 249994, 250000]), - col_indices=tensor([ 4160, 33356, 44413, ..., 34267, 38517, 46233]), - values=tensor([0.6958, 0.8946, 0.2330, ..., 0.2200, 0.1570, 0.6240]), + col_indices=tensor([ 3969, 14280, 16197, ..., 14337, 15782, 32993]), + values=tensor([0.2139, 0.2141, 0.1060, ..., 0.9818, 0.6790, 0.2416]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.7770, 0.7832, 0.7648, ..., 0.3539, 0.1104, 0.8005]) +tensor([0.8858, 0.9490, 0.2990, ..., 0.1473, 0.1815, 0.8776]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -36,16 +36,16 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 20.748866319656372 seconds +Time: 10.444438695907593 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 8, ..., 249992, 249993, +tensor(crow_indices=tensor([ 0, 5, 13, ..., 249988, 249994, 250000]), - col_indices=tensor([ 4160, 33356, 44413, ..., 34267, 38517, 46233]), - values=tensor([0.6958, 0.8946, 0.2330, ..., 0.2200, 0.1570, 0.6240]), + col_indices=tensor([ 3969, 14280, 16197, ..., 14337, 15782, 32993]), + values=tensor([0.2139, 0.2141, 0.1060, ..., 0.9818, 0.6790, 0.2416]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.7770, 0.7832, 0.7648, ..., 0.3539, 0.1104, 0.8005]) +tensor([0.8858, 0.9490, 0.2990, ..., 0.1473, 0.1815, 0.8776]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -53,13 +53,13 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 20.748866319656372 seconds +Time: 10.444438695907593 seconds -[18.17, 18.03, 18.03, 18.1, 17.95, 18.76, 18.0, 18.04, 18.64, 21.07] -[47.52] -24.489142179489136 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 18145, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.748866319656372, 'TIME_S_1KI': 1.1435032416454325, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1163.7240363693238, 'W': 47.52} -[18.17, 18.03, 18.03, 18.1, 17.95, 18.76, 18.0, 18.04, 18.64, 21.07, 18.03, 17.85, 18.06, 18.05, 18.34, 17.99, 17.97, 18.26, 17.91, 18.02] -327.625 -16.38125 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 18145, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.748866319656372, 'TIME_S_1KI': 1.1435032416454325, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1163.7240363693238, 'W': 47.52, 'J_1KI': 64.13469475719613, 'W_1KI': 2.6189032791402593, 'W_D': 31.13875, 'J_D': 762.5612760415673, 'W_D_1KI': 1.7161063653899147, 'J_D_1KI': 0.09457736926921546} +[18.28, 18.06, 17.98, 18.51, 17.98, 18.02, 19.12, 19.17, 17.99, 18.0] +[51.98] +14.158485412597656 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 9021, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.444438695907593, 'TIME_S_1KI': 1.1577916745269474, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 735.9580717468261, 'W': 51.98} +[18.28, 18.06, 17.98, 18.51, 17.98, 18.02, 19.12, 19.17, 17.99, 18.0, 18.49, 17.73, 18.15, 17.89, 18.02, 17.91, 17.85, 17.6, 17.85, 17.78] +326.105 +16.30525 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 9021, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.444438695907593, 'TIME_S_1KI': 1.1577916745269474, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 735.9580717468261, 'W': 51.98, 'J_1KI': 81.58275931125442, 'W_1KI': 5.762110630750471, 'W_D': 35.674749999999996, 'J_D': 505.1004274730682, 'W_D_1KI': 3.9546336326349625, 'J_D_1KI': 0.43838084831337576} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_50000_0.001.json new file mode 100644 index 0000000..0738cf0 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_50000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1973, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.479424238204956, "TIME_S_1KI": 5.311416238319795, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 791.6620005321503, "W": 53.24, "J_1KI": 401.2478461896352, "W_1KI": 26.984287886467307, "W_D": 37.20700000000001, "J_D": 553.2563496205807, "W_D_1KI": 18.858084135833757, "J_D_1KI": 9.558076095202107} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_50000_0.001.output similarity index 56% rename from pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.001.output rename to pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_50000_0.001.output index b99ed97..3bd1995 100644 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.001.output +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_50000_0.001.output @@ -1,14 +1,14 @@ ['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 5.365004062652588} +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 5.321045160293579} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 43, 96, ..., 2499913, - 2499951, 2500000]), - col_indices=tensor([ 152, 193, 2640, ..., 47928, 48233, 48479]), - values=tensor([0.0424, 0.9841, 0.8826, ..., 0.5350, 0.0103, 0.5454]), +tensor(crow_indices=tensor([ 0, 54, 97, ..., 2499896, + 2499948, 2500000]), + col_indices=tensor([ 176, 180, 853, ..., 47415, 47956, 49304]), + values=tensor([0.4358, 0.1204, 0.8362, ..., 0.7793, 0.3332, 0.4077]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.5585, 0.2658, 0.0418, ..., 0.1878, 0.1276, 0.9658]) +tensor([0.9660, 0.1174, 0.2174, ..., 0.0235, 0.8944, 0.4447]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -16,19 +16,19 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 5.365004062652588 seconds +Time: 5.321045160293579 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '3914', '-ss', '50000', '-sd', '0.001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 20.652085304260254} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1973', '-ss', '50000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.479424238204956} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 43, 92, ..., 2499909, - 2499953, 2500000]), - col_indices=tensor([ 375, 697, 898, ..., 48167, 48194, 49268]), - values=tensor([0.2181, 0.7785, 0.7713, ..., 0.8896, 0.2915, 0.3579]), +tensor(crow_indices=tensor([ 0, 43, 100, ..., 2499912, + 2499964, 2500000]), + col_indices=tensor([ 471, 539, 1515, ..., 46324, 49367, 49678]), + values=tensor([0.0688, 0.1954, 0.6278, ..., 0.4403, 0.6708, 0.8543]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.4723, 0.0239, 0.8312, ..., 0.6749, 0.1846, 0.8368]) +tensor([0.7713, 0.8001, 0.0882, ..., 0.6644, 0.4702, 0.2491]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -36,16 +36,16 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 20.652085304260254 seconds +Time: 10.479424238204956 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 43, 92, ..., 2499909, - 2499953, 2500000]), - col_indices=tensor([ 375, 697, 898, ..., 48167, 48194, 49268]), - values=tensor([0.2181, 0.7785, 0.7713, ..., 0.8896, 0.2915, 0.3579]), +tensor(crow_indices=tensor([ 0, 43, 100, ..., 2499912, + 2499964, 2500000]), + col_indices=tensor([ 471, 539, 1515, ..., 46324, 49367, 49678]), + values=tensor([0.0688, 0.1954, 0.6278, ..., 0.4403, 0.6708, 0.8543]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.4723, 0.0239, 0.8312, ..., 0.6749, 0.1846, 0.8368]) +tensor([0.7713, 0.8001, 0.0882, ..., 0.6644, 0.4702, 0.2491]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -53,13 +53,13 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 20.652085304260254 seconds +Time: 10.479424238204956 seconds -[18.41, 18.63, 18.36, 18.08, 17.92, 18.1, 17.9, 18.13, 17.86, 17.84] -[48.73] -25.40042018890381 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3914, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 20.652085304260254, 'TIME_S_1KI': 5.276465330674567, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1237.7624758052825, 'W': 48.73} -[18.41, 18.63, 18.36, 18.08, 17.92, 18.1, 17.9, 18.13, 17.86, 17.84, 18.24, 18.29, 17.98, 17.83, 18.07, 17.97, 17.88, 21.28, 17.93, 18.42] -328.66499999999996 -16.433249999999997 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3914, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 20.652085304260254, 'TIME_S_1KI': 5.276465330674567, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1237.7624758052825, 'W': 48.73, 'J_1KI': 316.2397740943491, 'W_1KI': 12.450178845171179, 'W_D': 32.29675, 'J_D': 820.3510207359792, 'W_D_1KI': 8.25159683188554, 'J_D_1KI': 2.1082260684429075} +[18.09, 17.68, 17.78, 17.6, 17.88, 17.97, 17.49, 17.67, 17.75, 17.8] +[53.24] +14.86968445777893 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1973, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.479424238204956, 'TIME_S_1KI': 5.311416238319795, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 791.6620005321503, 'W': 53.24} +[18.09, 17.68, 17.78, 17.6, 17.88, 17.97, 17.49, 17.67, 17.75, 17.8, 18.63, 17.66, 18.2, 17.66, 17.95, 17.62, 18.05, 17.65, 17.58, 18.42] +320.65999999999997 +16.032999999999998 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1973, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.479424238204956, 'TIME_S_1KI': 5.311416238319795, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 791.6620005321503, 'W': 53.24, 'J_1KI': 401.2478461896352, 'W_1KI': 26.984287886467307, 'W_D': 37.20700000000001, 'J_D': 553.2563496205807, 'W_D_1KI': 18.858084135833757, 'J_D_1KI': 9.558076095202107} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_50000_1e-05.json new file mode 100644 index 0000000..0990f32 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_50000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 21464, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.162778615951538, "TIME_S_1KI": 0.47348018151097365, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 708.2274965262413, "W": 50.99, "J_1KI": 32.99606301370859, "W_1KI": 2.3756056653000375, "W_D": 25.345, "J_D": 352.0303176987171, "W_D_1KI": 1.1808143868803578, "J_D_1KI": 0.055013715378324536} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_50000_1e-05.output similarity index 57% rename from pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_1e-05.output rename to pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_50000_1e-05.output index 0874c10..eca4709 100644 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_1e-05.output +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_50000_1e-05.output @@ -1,13 +1,13 @@ ['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.49491095542907715} +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.4891834259033203} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 24999, 24999, 25000]), - col_indices=tensor([48293, 21867, 31172, ..., 8085, 31082, 49903]), - values=tensor([0.7536, 0.0496, 0.9146, ..., 0.3335, 0.2529, 0.5168]), +tensor(crow_indices=tensor([ 0, 0, 2, ..., 25000, 25000, 25000]), + col_indices=tensor([16409, 39665, 45486, ..., 40216, 44015, 30698]), + values=tensor([0.3828, 0.2137, 0.3194, ..., 0.5609, 0.6557, 0.9594]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.5953, 0.1156, 0.8276, ..., 0.3405, 0.8051, 0.4714]) +tensor([0.1367, 0.4150, 0.8251, ..., 0.6451, 0.2178, 0.9645]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -15,18 +15,18 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 0.49491095542907715 seconds +Time: 0.4891834259033203 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '42431', '-ss', '50000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 20.11350655555725} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '21464', '-ss', '50000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.162778615951538} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 25000, 25000, 25000]), - col_indices=tensor([ 5529, 8530, 10143, ..., 49628, 3004, 27732]), - values=tensor([0.0410, 0.4304, 0.2964, ..., 0.9705, 0.5689, 0.1235]), +tensor(crow_indices=tensor([ 0, 0, 2, ..., 24997, 24999, 25000]), + col_indices=tensor([27591, 28713, 10997, ..., 3373, 26495, 43984]), + values=tensor([0.0595, 0.2219, 0.9508, ..., 0.7420, 0.6896, 0.8252]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.9110, 0.1233, 0.5259, ..., 0.7671, 0.0751, 0.3217]) +tensor([0.4890, 0.2230, 0.0247, ..., 0.5863, 0.9029, 0.3113]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -34,15 +34,15 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 20.11350655555725 seconds +Time: 10.162778615951538 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 25000, 25000, 25000]), - col_indices=tensor([ 5529, 8530, 10143, ..., 49628, 3004, 27732]), - values=tensor([0.0410, 0.4304, 0.2964, ..., 0.9705, 0.5689, 0.1235]), +tensor(crow_indices=tensor([ 0, 0, 2, ..., 24997, 24999, 25000]), + col_indices=tensor([27591, 28713, 10997, ..., 3373, 26495, 43984]), + values=tensor([0.0595, 0.2219, 0.9508, ..., 0.7420, 0.6896, 0.8252]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.9110, 0.1233, 0.5259, ..., 0.7671, 0.0751, 0.3217]) +tensor([0.4890, 0.2230, 0.0247, ..., 0.5863, 0.9029, 0.3113]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -50,13 +50,13 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 20.11350655555725 seconds +Time: 10.162778615951538 seconds -[18.38, 18.06, 17.97, 17.82, 18.09, 18.18, 18.18, 18.07, 18.17, 18.01] -[46.64] -23.783000946044922 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 42431, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 20.11350655555725, 'TIME_S_1KI': 0.47402857711478047, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1109.2391641235351, 'W': 46.64} -[18.38, 18.06, 17.97, 17.82, 18.09, 18.18, 18.18, 18.07, 18.17, 18.01, 18.57, 18.17, 17.88, 17.88, 17.9, 17.94, 18.68, 18.4, 18.2, 17.96] -326.05 -16.302500000000002 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 42431, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 20.11350655555725, 'TIME_S_1KI': 0.47402857711478047, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1109.2391641235351, 'W': 46.64, 'J_1KI': 26.142187648736424, 'W_1KI': 1.0991963422969055, 'W_D': 30.3375, 'J_D': 721.5167912006378, 'W_D_1KI': 0.7149843274964058, 'J_D_1KI': 0.01685051795848332} +[22.1, 18.96, 18.21, 17.89, 17.76, 17.62, 17.96, 18.44, 17.92, 17.8] +[50.99] +13.88953709602356 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 21464, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.162778615951538, 'TIME_S_1KI': 0.47348018151097365, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 708.2274965262413, 'W': 50.99} +[22.1, 18.96, 18.21, 17.89, 17.76, 17.62, 17.96, 18.44, 17.92, 17.8, 27.02, 48.47, 52.31, 52.11, 52.93, 45.58, 32.74, 23.06, 18.26, 18.44] +512.9000000000001 +25.645000000000003 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 21464, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.162778615951538, 'TIME_S_1KI': 0.47348018151097365, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 708.2274965262413, 'W': 50.99, 'J_1KI': 32.99606301370859, 'W_1KI': 2.3756056653000375, 'W_D': 25.345, 'J_D': 352.0303176987171, 'W_D_1KI': 1.1808143868803578, 'J_D_1KI': 0.055013715378324536} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.0001.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.0001.json new file mode 100644 index 0000000..cdd4446 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 220548, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.518115997314453, "TIME_S_1KI": 0.04769082466091034, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 712.8332035136224, "W": 50.77000000000001, "J_1KI": 3.2321000576456025, "W_1KI": 0.23019932168960958, "W_D": 34.49475000000001, "J_D": 484.32151165848984, "W_D_1KI": 0.15640472822242782, "J_D_1KI": 0.0007091641194770654} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.0001.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.0001.output new file mode 100644 index 0000000..0444e69 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.0001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.06373429298400879} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 2496, 2500, 2500]), + col_indices=tensor([ 225, 423, 3600, ..., 1030, 3468, 3660]), + values=tensor([0.7007, 0.4494, 0.9248, ..., 0.2922, 0.0433, 0.9500]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.8445, 0.6906, 0.6660, ..., 0.8648, 0.6232, 0.6893]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 0.06373429298400879 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '164746', '-ss', '5000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 7.8433122634887695} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 2500, 2500, 2500]), + col_indices=tensor([3043, 3415, 2314, ..., 4144, 83, 2442]), + values=tensor([0.9885, 0.5870, 0.9255, ..., 0.0554, 0.8705, 0.0319]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.7612, 0.3828, 0.3624, ..., 0.7209, 0.0836, 0.1248]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 7.8433122634887695 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '220548', '-ss', '5000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.518115997314453} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 4, ..., 2499, 2500, 2500]), + col_indices=tensor([1110, 1648, 1178, ..., 3403, 882, 3863]), + values=tensor([0.7053, 0.9818, 0.3657, ..., 0.7070, 0.0906, 0.0064]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.7696, 0.8663, 0.2054, ..., 0.2110, 0.6343, 0.9754]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 10.518115997314453 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 4, ..., 2499, 2500, 2500]), + col_indices=tensor([1110, 1648, 1178, ..., 3403, 882, 3863]), + values=tensor([0.7053, 0.9818, 0.3657, ..., 0.7070, 0.0906, 0.0064]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.7696, 0.8663, 0.2054, ..., 0.2110, 0.6343, 0.9754]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 10.518115997314453 seconds + +[18.38, 17.72, 18.11, 17.9, 17.72, 18.84, 18.26, 17.75, 18.1, 19.21] +[50.77] +14.040441274642944 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 220548, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.518115997314453, 'TIME_S_1KI': 0.04769082466091034, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 712.8332035136224, 'W': 50.77000000000001} +[18.38, 17.72, 18.11, 17.9, 17.72, 18.84, 18.26, 17.75, 18.1, 19.21, 18.75, 19.27, 17.62, 17.61, 18.13, 17.64, 17.82, 17.78, 18.21, 17.71] +325.505 +16.27525 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 220548, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.518115997314453, 'TIME_S_1KI': 0.04769082466091034, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 712.8332035136224, 'W': 50.77000000000001, 'J_1KI': 3.2321000576456025, 'W_1KI': 0.23019932168960958, 'W_D': 34.49475000000001, 'J_D': 484.32151165848984, 'W_D_1KI': 0.15640472822242782, 'J_D_1KI': 0.0007091641194770654} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.001.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.001.json new file mode 100644 index 0000000..8603573 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 110820, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.466707706451416, "TIME_S_1KI": 0.0944478226534147, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 732.0924870371819, "W": 51.05, "J_1KI": 6.606140471369625, "W_1KI": 0.46065692113336937, "W_D": 34.78399999999999, "J_D": 498.82673984527577, "W_D_1KI": 0.3138783613066233, "J_D_1KI": 0.0028323259457374416} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.001.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.001.output new file mode 100644 index 0000000..d9f1f9f --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.10903120040893555} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 12, ..., 24993, 24997, 25000]), + col_indices=tensor([ 238, 1233, 1853, ..., 2176, 2430, 4262]), + values=tensor([0.6643, 0.7436, 0.3106, ..., 0.6873, 0.4400, 0.9022]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.1554, 0.8998, 0.5501, ..., 0.9645, 0.8024, 0.0587]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 0.10903120040893555 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '96302', '-ss', '5000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 9.124423503875732} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 5, ..., 24990, 24996, 25000]), + col_indices=tensor([ 172, 514, 1428, ..., 3067, 4065, 4821]), + values=tensor([0.3942, 0.3525, 0.9893, ..., 0.1091, 0.2236, 0.5194]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.3072, 0.9146, 0.5714, ..., 0.0055, 0.2166, 0.7033]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 9.124423503875732 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '110820', '-ss', '5000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.466707706451416} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 9, ..., 24990, 24995, 25000]), + col_indices=tensor([ 254, 2428, 3765, ..., 2763, 3021, 4452]), + values=tensor([0.4991, 0.2229, 0.1709, ..., 0.9765, 0.1191, 0.1560]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.0044, 0.7640, 0.5767, ..., 0.5512, 0.1474, 0.2527]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 10.466707706451416 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 9, ..., 24990, 24995, 25000]), + col_indices=tensor([ 254, 2428, 3765, ..., 2763, 3021, 4452]), + values=tensor([0.4991, 0.2229, 0.1709, ..., 0.9765, 0.1191, 0.1560]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.0044, 0.7640, 0.5767, ..., 0.5512, 0.1474, 0.2527]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 10.466707706451416 seconds + +[18.71, 18.12, 17.8, 18.17, 17.79, 18.66, 18.24, 17.82, 17.96, 18.33] +[51.05] +14.340695142745972 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 110820, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.466707706451416, 'TIME_S_1KI': 0.0944478226534147, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 732.0924870371819, 'W': 51.05} +[18.71, 18.12, 17.8, 18.17, 17.79, 18.66, 18.24, 17.82, 17.96, 18.33, 18.24, 17.71, 17.88, 18.05, 17.89, 18.02, 18.2, 18.01, 17.96, 18.8] +325.32000000000005 +16.266000000000002 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 110820, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.466707706451416, 'TIME_S_1KI': 0.0944478226534147, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 732.0924870371819, 'W': 51.05, 'J_1KI': 6.606140471369625, 'W_1KI': 0.46065692113336937, 'W_D': 34.78399999999999, 'J_D': 498.82673984527577, 'W_D_1KI': 0.3138783613066233, 'J_D_1KI': 0.0028323259457374416} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.01.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.01.json new file mode 100644 index 0000000..480b88c --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 20672, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.150692462921143, "TIME_S_1KI": 0.4910358196072534, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 730.3927840781212, "W": 52.39, "J_1KI": 35.332468270032955, "W_1KI": 2.534345975232198, "W_D": 36.085, "J_D": 503.07737380146983, "W_D_1KI": 1.7455979102167183, "J_D_1KI": 0.08444262336574683} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.01.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.01.output new file mode 100644 index 0000000..a5c980d --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.01.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.5079245567321777} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 49, 95, ..., 249890, 249948, + 250000]), + col_indices=tensor([ 55, 65, 142, ..., 4926, 4940, 4998]), + values=tensor([0.9119, 0.0018, 0.8572, ..., 0.6690, 0.1772, 0.9395]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.5150, 0.8940, 0.4191, ..., 0.2946, 0.8617, 0.5629]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 0.5079245567321777 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '20672', '-ss', '5000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.150692462921143} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 43, 97, ..., 249889, 249944, + 250000]), + col_indices=tensor([ 6, 85, 316, ..., 4939, 4964, 4997]), + values=tensor([0.9982, 0.1843, 0.4498, ..., 0.0146, 0.5221, 0.3769]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.3609, 0.3004, 0.4171, ..., 0.6127, 0.3616, 0.7085]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 10.150692462921143 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 43, 97, ..., 249889, 249944, + 250000]), + col_indices=tensor([ 6, 85, 316, ..., 4939, 4964, 4997]), + values=tensor([0.9982, 0.1843, 0.4498, ..., 0.0146, 0.5221, 0.3769]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.3609, 0.3004, 0.4171, ..., 0.6127, 0.3616, 0.7085]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 10.150692462921143 seconds + +[18.49, 17.73, 17.92, 17.82, 17.93, 17.75, 17.92, 17.66, 18.2, 17.78] +[52.39] +13.9414541721344 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 20672, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.150692462921143, 'TIME_S_1KI': 0.4910358196072534, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 730.3927840781212, 'W': 52.39} +[18.49, 17.73, 17.92, 17.82, 17.93, 17.75, 17.92, 17.66, 18.2, 17.78, 18.3, 17.44, 17.89, 17.79, 17.89, 17.6, 18.39, 22.34, 17.77, 17.55] +326.1 +16.305 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 20672, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.150692462921143, 'TIME_S_1KI': 0.4910358196072534, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 730.3927840781212, 'W': 52.39, 'J_1KI': 35.332468270032955, 'W_1KI': 2.534345975232198, 'W_D': 36.085, 'J_D': 503.07737380146983, 'W_D_1KI': 1.7455979102167183, 'J_D_1KI': 0.08444262336574683} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.05.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.05.json new file mode 100644 index 0000000..e52e6e6 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 4507, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.511178016662598, "TIME_S_1KI": 2.332189486723452, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 757.7805129575729, "W": 51.93, "J_1KI": 168.13412756990746, "W_1KI": 11.522076769469715, "W_D": 35.70625, "J_D": 521.0379441708326, "W_D_1KI": 7.922398491235855, "J_D_1KI": 1.7577986446052485} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.05.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.05.output new file mode 100644 index 0000000..a885cd8 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.05.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 2.3295679092407227} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 254, 504, ..., 1249528, + 1249756, 1250000]), + col_indices=tensor([ 6, 36, 59, ..., 4952, 4989, 4991]), + values=tensor([0.0659, 0.7749, 0.0668, ..., 0.7589, 0.1810, 0.5312]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.3067, 0.0072, 0.7740, ..., 0.2122, 0.3107, 0.3197]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 2.3295679092407227 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '4507', '-ss', '5000', '-sd', '0.05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.511178016662598} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 219, 483, ..., 1249530, + 1249766, 1250000]), + col_indices=tensor([ 20, 32, 102, ..., 4974, 4977, 4994]), + values=tensor([0.6920, 0.8171, 0.6223, ..., 0.4625, 0.9983, 0.7249]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.2561, 0.5591, 0.5400, ..., 0.8818, 0.4529, 0.6860]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 10.511178016662598 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 219, 483, ..., 1249530, + 1249766, 1250000]), + col_indices=tensor([ 20, 32, 102, ..., 4974, 4977, 4994]), + values=tensor([0.6920, 0.8171, 0.6223, ..., 0.4625, 0.9983, 0.7249]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.2561, 0.5591, 0.5400, ..., 0.8818, 0.4529, 0.6860]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 10.511178016662598 seconds + +[18.39, 17.88, 18.12, 17.92, 17.75, 18.25, 17.78, 17.64, 17.79, 18.46] +[51.93] +14.592345714569092 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 4507, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.511178016662598, 'TIME_S_1KI': 2.332189486723452, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 757.7805129575729, 'W': 51.93} +[18.39, 17.88, 18.12, 17.92, 17.75, 18.25, 17.78, 17.64, 17.79, 18.46, 18.69, 17.8, 17.97, 17.87, 17.86, 17.58, 17.99, 19.45, 18.2, 17.71] +324.47499999999997 +16.22375 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 4507, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.511178016662598, 'TIME_S_1KI': 2.332189486723452, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 757.7805129575729, 'W': 51.93, 'J_1KI': 168.13412756990746, 'W_1KI': 11.522076769469715, 'W_D': 35.70625, 'J_D': 521.0379441708326, 'W_D_1KI': 7.922398491235855, 'J_D_1KI': 1.7577986446052485} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.1.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.1.json new file mode 100644 index 0000000..635a552 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.1.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 2058, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.45784878730774, "TIME_S_1KI": 5.08155917750619, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 785.1421909189224, "W": 52.34, "J_1KI": 381.5073813988933, "W_1KI": 25.432458697764822, "W_D": 35.778000000000006, "J_D": 536.6988404030801, "W_D_1KI": 17.384839650145775, "J_D_1KI": 8.44744395050815} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.1.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.1.output new file mode 100644 index 0000000..4a3b3d8 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_0.1.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.1', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 5.10130500793457} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 521, 995, ..., 2499020, + 2499527, 2500000]), + col_indices=tensor([ 19, 49, 51, ..., 4986, 4987, 4995]), + values=tensor([0.7936, 0.5375, 0.7301, ..., 0.7605, 0.2307, 0.9856]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.5487, 0.7747, 0.8035, ..., 0.5625, 0.3730, 0.5706]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 5.10130500793457 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '2058', '-ss', '5000', '-sd', '0.1', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.45784878730774} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 509, 1017, ..., 2498984, + 2499497, 2500000]), + col_indices=tensor([ 6, 22, 24, ..., 4979, 4998, 4999]), + values=tensor([0.4917, 0.1142, 0.9293, ..., 0.2344, 0.9124, 0.9917]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.7101, 0.7759, 0.4138, ..., 0.4795, 0.2601, 0.9117]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 10.45784878730774 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 509, 1017, ..., 2498984, + 2499497, 2500000]), + col_indices=tensor([ 6, 22, 24, ..., 4979, 4998, 4999]), + values=tensor([0.4917, 0.1142, 0.9293, ..., 0.2344, 0.9124, 0.9917]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.7101, 0.7759, 0.4138, ..., 0.4795, 0.2601, 0.9117]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 10.45784878730774 seconds + +[17.93, 17.71, 18.06, 17.99, 17.73, 17.68, 22.42, 18.22, 17.93, 17.72] +[52.34] +15.000806093215942 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 2058, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.45784878730774, 'TIME_S_1KI': 5.08155917750619, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 785.1421909189224, 'W': 52.34} +[17.93, 17.71, 18.06, 17.99, 17.73, 17.68, 22.42, 18.22, 17.93, 17.72, 17.97, 22.23, 18.27, 18.03, 17.94, 17.65, 17.66, 17.82, 18.34, 17.5] +331.24 +16.562 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 2058, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.45784878730774, 'TIME_S_1KI': 5.08155917750619, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 785.1421909189224, 'W': 52.34, 'J_1KI': 381.5073813988933, 'W_1KI': 25.432458697764822, 'W_D': 35.778000000000006, 'J_D': 536.6988404030801, 'W_D_1KI': 17.384839650145775, 'J_D_1KI': 8.44744395050815} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_1e-05.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_1e-05.json new file mode 100644 index 0000000..6c5cd21 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 359075, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.526627540588379, "TIME_S_1KI": 0.029315957782046587, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 727.3910086989404, "W": 50.77, "J_1KI": 2.0257355947892233, "W_1KI": 0.14139107428810138, "W_D": 34.40475000000001, "J_D": 492.92310038477194, "W_D_1KI": 0.09581494116827963, "J_D_1KI": 0.00026683824039066943} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_1e-05.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_1e-05.output new file mode 100644 index 0000000..f806f78 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_10_10_10_synthetic_5000_1e-05.output @@ -0,0 +1,329 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.11398792266845703} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([ 241, 1973, 126, 4921, 4422, 2653, 3082, 2201, 909, + 773, 2476, 1101, 4124, 1149, 4932, 4150, 708, 3916, + 3901, 3756, 2285, 2145, 2412, 4449, 1421, 1959, 273, + 295, 438, 3557, 1406, 2159, 1555, 1352, 2308, 123, + 422, 816, 1668, 2887, 824, 2337, 308, 3497, 990, + 532, 4077, 543, 4572, 3537, 2814, 363, 2178, 459, + 194, 3590, 3027, 4470, 4045, 3521, 3600, 3448, 3378, + 3735, 2740, 4248, 3124, 1351, 4670, 655, 21, 1574, + 1992, 4925, 3906, 2630, 1378, 3476, 2249, 1157, 791, + 4242, 829, 3492, 751, 3125, 155, 1550, 3503, 3772, + 4314, 2771, 3009, 651, 454, 3292, 4403, 3040, 3507, + 2608, 4119, 1826, 4717, 3363, 464, 3190, 2566, 1334, + 3602, 3134, 4282, 4686, 3398, 415, 1914, 1278, 3697, + 3496, 579, 3955, 1068, 4099, 763, 3707, 3389, 1217, + 1044, 4869, 1375, 3824, 2384, 1580, 1119, 2286, 4182, + 194, 4854, 2427, 3130, 4857, 3962, 2164, 2297, 3429, + 4738, 1374, 1526, 1469, 698, 2341, 4993, 1945, 4526, + 2645, 2777, 3401, 889, 4389, 444, 1509, 4747, 2279, + 4668, 72, 129, 1221, 3493, 378, 595, 67, 1157, + 1657, 2497, 2001, 1078, 4882, 3030, 2378, 193, 2365, + 3970, 4956, 3547, 158, 4478, 3594, 3986, 4843, 4633, + 1401, 3655, 934, 1838, 4467, 1935, 2294, 329, 1885, + 2444, 2560, 3870, 4475, 843, 2939, 3686, 4333, 3066, + 1183, 367, 3706, 3954, 4842, 1757, 4835, 4167, 4982, + 1096, 3863, 1904, 2261, 4656, 4688, 3811, 4079, 2898, + 525, 3689, 59, 2698, 369, 2440, 1363, 4533, 2450, + 3223, 1033, 4049, 3368, 2542, 4831, 3226, 3742, 4496, + 434, 1015, 2564, 1295, 3848, 4039, 804]), + values=tensor([0.2184, 0.5485, 0.5631, 0.7186, 0.3971, 0.9050, 0.7143, + 0.7288, 0.3895, 0.9734, 0.7253, 0.3854, 0.7553, 0.4272, + 0.9870, 0.8470, 0.2594, 0.4864, 0.4236, 0.8391, 0.1976, + 0.0203, 0.1892, 0.3198, 0.2335, 0.4485, 0.4766, 0.2460, + 0.8756, 0.2717, 0.6013, 0.3920, 0.2318, 0.2314, 0.6325, + 0.7402, 0.4011, 0.6801, 0.0374, 0.5386, 0.8760, 0.4919, + 0.9099, 0.6426, 0.0752, 0.2458, 0.7495, 0.4949, 0.4717, + 0.8587, 0.9263, 0.5756, 0.1987, 0.1048, 0.8736, 0.4765, + 0.2414, 0.4379, 0.9381, 0.5720, 0.7831, 0.1225, 0.0871, + 0.1953, 0.0019, 0.7763, 0.7548, 0.3103, 0.4088, 0.9386, + 0.6409, 0.3915, 0.4398, 0.8886, 0.6326, 0.8708, 0.6836, + 0.2686, 0.0291, 0.4089, 0.8430, 0.7311, 0.2220, 0.0973, + 0.4335, 0.3659, 0.1254, 0.1858, 0.2947, 0.6441, 0.6573, + 0.8939, 0.8485, 0.7258, 0.8542, 0.3356, 0.6753, 0.2728, + 0.1795, 0.8246, 0.2224, 0.2674, 0.8957, 0.1897, 0.5785, + 0.0612, 0.0570, 0.6450, 0.0772, 0.5313, 0.3238, 0.7938, + 0.9961, 0.4101, 0.7007, 0.3996, 0.0865, 0.3609, 0.3202, + 0.4978, 0.4886, 0.2294, 0.1102, 0.5506, 0.2172, 0.1849, + 0.3574, 0.0197, 0.0592, 0.3653, 0.9739, 0.5626, 0.3629, + 0.5946, 0.5286, 0.9497, 0.4607, 0.1036, 0.7227, 0.1313, + 0.2695, 0.1429, 0.5049, 0.5045, 0.0131, 0.8291, 0.1488, + 0.2606, 0.8600, 0.2356, 0.5905, 0.8817, 0.3417, 0.2576, + 0.1052, 0.2996, 0.2243, 0.4829, 0.2637, 0.4923, 0.6774, + 0.3415, 0.2189, 0.4198, 0.9822, 0.0220, 0.9119, 0.7410, + 0.2466, 0.2072, 0.8839, 0.7516, 0.8153, 0.2575, 0.8303, + 0.9406, 0.0281, 0.0637, 0.8256, 0.0137, 0.8551, 0.6904, + 0.7955, 0.7126, 0.4854, 0.7077, 0.7877, 0.2703, 0.2627, + 0.1225, 0.6814, 0.1981, 0.0012, 0.1101, 0.2261, 0.0650, + 0.7540, 0.2474, 0.6597, 0.2387, 0.2473, 0.3505, 0.4892, + 0.1885, 0.9295, 0.0390, 0.0947, 0.3171, 0.4778, 0.2438, + 0.6996, 0.4455, 0.6953, 0.9830, 0.4988, 0.5386, 0.2650, + 0.2674, 0.7866, 0.9811, 0.0823, 0.0951, 0.2368, 0.8950, + 0.6075, 0.7359, 0.6430, 0.6470, 0.0664, 0.2765, 0.1109, + 0.1504, 0.4845, 0.0431, 0.3770, 0.2384, 0.0687, 0.8824, + 0.9446, 0.8249, 0.8327, 0.3623, 0.1484, 0.9592, 0.8566, + 0.3466, 0.6434, 0.1142, 0.1855, 0.2031]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.1137, 0.5017, 0.2439, ..., 0.6384, 0.0681, 0.9585]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 0.11398792266845703 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '92115', '-ss', '5000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 2.6936018466949463} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([ 137, 3972, 2939, 2536, 3585, 3536, 4694, 4081, 1091, + 3547, 2158, 1560, 4654, 3916, 1298, 1826, 148, 3363, + 2515, 695, 1436, 2549, 3112, 1426, 4349, 4876, 3863, + 2266, 79, 3433, 3354, 3087, 4915, 1126, 3703, 2213, + 4969, 2103, 3978, 4220, 3833, 3752, 4926, 1827, 2953, + 4810, 372, 1434, 633, 4328, 3235, 2981, 1886, 1672, + 4865, 3611, 2035, 3841, 2469, 1487, 1861, 3293, 4642, + 1604, 4933, 4004, 2061, 3358, 3726, 2632, 960, 126, + 2232, 2877, 895, 621, 3810, 4400, 2844, 3004, 2625, + 1260, 1779, 776, 2146, 1667, 3230, 539, 2113, 1737, + 4402, 465, 2922, 3985, 142, 4315, 2921, 2750, 885, + 710, 4008, 1590, 1261, 4292, 3623, 3503, 1672, 3336, + 2572, 3267, 2993, 70, 1995, 836, 1449, 4056, 4774, + 1934, 3439, 2960, 4562, 3889, 2634, 1182, 2896, 3385, + 205, 905, 4516, 1281, 169, 4524, 563, 927, 1718, + 3751, 3566, 1379, 2664, 985, 2775, 4965, 4796, 483, + 2960, 2505, 3939, 4782, 2656, 1648, 2553, 588, 2612, + 4485, 4017, 1943, 4451, 4661, 1851, 2653, 4614, 956, + 1822, 2814, 2160, 1989, 3032, 922, 291, 1256, 4491, + 941, 544, 161, 604, 1328, 4789, 747, 3093, 4018, + 1261, 4345, 1576, 1083, 2753, 4075, 244, 4712, 4715, + 4014, 1207, 4378, 15, 4207, 1970, 605, 1755, 1089, + 2896, 831, 501, 3378, 2699, 1900, 724, 1190, 1825, + 660, 181, 3354, 4952, 4827, 2686, 26, 1403, 2918, + 3156, 1375, 2817, 2786, 1609, 3155, 1989, 2470, 2850, + 3165, 3975, 2060, 233, 699, 4823, 3317, 293, 1836, + 3608, 3776, 669, 4280, 4958, 4125, 2468, 2256, 2146, + 4901, 2841, 3736, 283, 190, 3398, 1922]), + values=tensor([0.6695, 0.9833, 0.1432, 0.4161, 0.8392, 0.4519, 0.7335, + 0.9958, 0.0219, 0.7710, 0.5001, 0.2641, 0.3766, 0.7103, + 0.8540, 0.5709, 0.1682, 0.2996, 0.5530, 0.5173, 0.8745, + 0.0752, 0.4820, 0.5228, 0.0339, 0.6709, 0.2580, 0.8586, + 0.8878, 0.0878, 0.4393, 0.2211, 0.2258, 0.4333, 0.0038, + 0.6951, 0.6433, 0.6381, 0.3492, 0.3731, 0.0316, 0.8649, + 0.6734, 0.3206, 0.8321, 0.7226, 0.7357, 0.0634, 0.0931, + 0.4512, 0.1531, 0.6138, 0.4706, 0.7999, 0.4089, 0.8748, + 0.3486, 0.7322, 0.2439, 0.0715, 0.7807, 0.3511, 0.5350, + 0.1040, 0.6618, 0.9284, 0.6439, 0.1028, 0.6967, 0.1672, + 0.5232, 0.5990, 0.4131, 0.6209, 0.5668, 0.8927, 0.9754, + 0.2705, 0.6686, 0.2720, 0.2523, 0.2520, 0.2777, 0.2306, + 0.5601, 0.0701, 0.1220, 0.1669, 0.9340, 0.1957, 0.8919, + 0.8514, 0.7327, 0.5276, 0.8049, 0.2768, 0.0387, 0.1098, + 0.9042, 0.1414, 0.1252, 0.7087, 0.5489, 0.2450, 0.4588, + 0.9771, 0.4450, 0.1355, 0.9129, 0.4808, 0.5735, 0.9337, + 0.9658, 0.9256, 0.5364, 0.1244, 0.5347, 0.7434, 0.1846, + 0.7849, 0.7576, 0.0427, 0.2369, 0.3048, 0.5296, 0.9086, + 0.0541, 0.8841, 0.4305, 0.9907, 0.3676, 0.5804, 0.6895, + 0.9332, 0.0270, 0.3121, 0.8208, 0.8474, 0.2569, 0.4957, + 0.4133, 0.6520, 0.4588, 0.6225, 0.1027, 0.6632, 0.5190, + 0.0735, 0.1854, 0.8500, 0.6470, 0.2594, 0.7205, 0.8914, + 0.0489, 0.8156, 0.5306, 0.3119, 0.3137, 0.3120, 0.6417, + 0.2258, 0.6597, 0.8453, 0.6987, 0.4225, 0.5177, 0.2802, + 0.5315, 0.3767, 0.2520, 0.2831, 0.1536, 0.0334, 0.8465, + 0.7641, 0.9707, 0.5313, 0.7595, 0.4109, 0.8430, 0.9004, + 0.8413, 0.0821, 0.3632, 0.3777, 0.5912, 0.8961, 0.4075, + 0.0738, 0.9507, 0.9062, 0.2136, 0.1959, 0.6942, 0.6367, + 0.2811, 0.0027, 0.4216, 0.1826, 0.7776, 0.8261, 0.0554, + 0.1191, 0.5231, 0.1729, 0.5584, 0.7643, 0.0823, 0.4499, + 0.5024, 0.9288, 0.5019, 0.4372, 0.1384, 0.0776, 0.5461, + 0.7228, 0.2015, 0.8892, 0.2697, 0.1194, 0.6369, 0.9915, + 0.3322, 0.2044, 0.1389, 0.4917, 0.1141, 0.5811, 0.5234, + 0.7081, 0.5358, 0.2162, 0.4906, 0.8753, 0.4064, 0.6721, + 0.7143, 0.7824, 0.2108, 0.1572, 0.2915, 0.4564, 0.4382, + 0.0848, 0.7623, 0.7257, 0.3674, 0.7093]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.1760, 0.3447, 0.5672, ..., 0.4540, 0.2179, 0.2738]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 2.6936018466949463 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '359075', '-ss', '5000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.526627540588379} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([3778, 4984, 4122, 2676, 3957, 4059, 4909, 4911, 2572, + 1267, 1150, 3364, 3576, 4257, 4803, 3469, 2315, 1996, + 1589, 4554, 3627, 222, 735, 2019, 1196, 3402, 918, + 508, 1833, 3932, 3749, 3244, 4451, 1193, 3387, 2934, + 4933, 2676, 1892, 1253, 2562, 3303, 93, 1367, 4037, + 388, 4569, 3905, 2205, 438, 2955, 2830, 2546, 3603, + 3071, 4886, 2701, 3617, 3981, 2453, 1634, 906, 2460, + 4767, 4482, 2328, 3968, 2373, 709, 1470, 1396, 1265, + 427, 2495, 18, 4172, 3266, 4196, 702, 133, 2624, + 2942, 4262, 4579, 1940, 2403, 42, 1771, 590, 3624, + 3674, 2977, 3577, 3648, 673, 1388, 4388, 17, 194, + 155, 552, 2075, 1300, 4736, 849, 2848, 3737, 3431, + 4900, 4636, 211, 2218, 935, 599, 2948, 4874, 369, + 966, 947, 3488, 346, 1181, 1472, 1637, 372, 1874, + 4884, 172, 214, 771, 3131, 1713, 3058, 4267, 3602, + 2760, 3398, 3174, 9, 318, 4703, 779, 2824, 4515, + 2540, 3491, 647, 4310, 4641, 1357, 289, 349, 73, + 908, 1015, 1680, 677, 202, 1047, 1747, 4308, 1250, + 3160, 3099, 2970, 2272, 3209, 2339, 1660, 4649, 642, + 2647, 4042, 3441, 1713, 3501, 3454, 4660, 2114, 1751, + 4938, 3300, 396, 1888, 1868, 2474, 3021, 4177, 1556, + 3530, 583, 156, 782, 534, 780, 3712, 1163, 3018, + 2652, 2501, 1137, 3069, 4789, 548, 1908, 709, 3367, + 4443, 1991, 4909, 152, 2054, 2229, 14, 2251, 1027, + 3732, 288, 642, 4326, 2761, 4086, 1629, 946, 4083, + 1089, 2210, 3114, 3172, 376, 4660, 3852, 3198, 3613, + 592, 1388, 3114, 4183, 4318, 1850, 4771, 843, 2522, + 2774, 2939, 3529, 1857, 2895, 2137, 4447]), + values=tensor([0.4475, 0.8812, 0.1292, 0.7293, 0.6267, 0.0108, 0.5387, + 0.9156, 0.4928, 0.6543, 0.3448, 0.7375, 0.4487, 0.3828, + 0.2863, 0.2902, 0.7640, 0.5621, 0.0700, 0.7401, 0.8451, + 0.9099, 0.0211, 0.8004, 0.5172, 0.0685, 0.5469, 0.9562, + 0.9763, 0.1102, 0.0709, 0.8735, 0.6816, 0.5541, 0.7172, + 0.8388, 0.7596, 0.0622, 0.0743, 0.1726, 0.6490, 0.2165, + 0.6650, 0.7371, 0.8810, 0.8711, 0.2280, 0.6052, 0.7488, + 0.7562, 0.5277, 0.9948, 0.0106, 0.0299, 0.7667, 0.5618, + 0.6094, 0.9214, 0.6504, 0.8772, 0.7922, 0.0380, 0.8257, + 0.9627, 0.8457, 0.9488, 0.7481, 0.0656, 0.7384, 0.8073, + 0.8799, 0.1542, 0.7486, 0.0058, 0.8291, 0.9889, 0.8922, + 0.2911, 0.9747, 0.0465, 0.1509, 0.5817, 0.7676, 0.1559, + 0.4514, 0.2238, 0.9216, 0.0912, 0.0562, 0.6927, 0.2560, + 0.7407, 0.7561, 0.5126, 0.8908, 0.4965, 0.0086, 0.7725, + 0.2468, 0.7667, 0.7880, 0.6098, 0.9369, 0.5035, 0.3626, + 0.7343, 0.2151, 0.1827, 0.2696, 0.7224, 0.6480, 0.0746, + 0.6229, 0.9622, 0.8016, 0.2190, 0.3391, 0.8517, 0.1344, + 0.9710, 0.8151, 0.7634, 0.9047, 0.8447, 0.3478, 0.4789, + 0.5543, 0.6475, 0.6794, 0.8153, 0.2995, 0.6764, 0.2993, + 0.4440, 0.6818, 0.5702, 0.7074, 0.4488, 0.4032, 0.6268, + 0.7286, 0.4749, 0.3646, 0.0331, 0.4227, 0.8138, 0.3173, + 0.0403, 0.2636, 0.3980, 0.1390, 0.1641, 0.6671, 0.5330, + 0.3639, 0.7467, 0.8967, 0.7753, 0.2492, 0.1215, 0.6986, + 0.6107, 0.6922, 0.6270, 0.0513, 0.3708, 0.4140, 0.6870, + 0.6642, 0.1925, 0.0944, 0.4210, 0.5791, 0.4516, 0.5935, + 0.1022, 0.0482, 0.6022, 0.6705, 0.3885, 0.1005, 0.3611, + 0.3535, 0.1700, 0.7214, 0.8017, 0.2409, 0.4915, 0.6710, + 0.5749, 0.1541, 0.6514, 0.2028, 0.1566, 0.2795, 0.9275, + 0.1313, 0.4671, 0.8621, 0.0474, 0.9495, 0.4065, 0.1561, + 0.3930, 0.1891, 0.0713, 0.9951, 0.8365, 0.9415, 0.9314, + 0.4274, 0.7485, 0.9571, 0.9768, 0.5673, 0.4241, 0.5508, + 0.4033, 0.2950, 0.2855, 0.8415, 0.9844, 0.7770, 0.3923, + 0.5787, 0.9241, 0.3429, 0.2388, 0.7432, 0.5287, 0.4894, + 0.3564, 0.1539, 0.3683, 0.3338, 0.2500, 0.3763, 0.4479, + 0.2028, 0.8079, 0.0187, 0.3962, 0.2530, 0.6932, 0.4307, + 0.2510, 0.2498, 0.5817, 0.8657, 0.8402]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.7545, 0.7162, 0.2861, ..., 0.9381, 0.3630, 0.3493]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 10.526627540588379 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([3778, 4984, 4122, 2676, 3957, 4059, 4909, 4911, 2572, + 1267, 1150, 3364, 3576, 4257, 4803, 3469, 2315, 1996, + 1589, 4554, 3627, 222, 735, 2019, 1196, 3402, 918, + 508, 1833, 3932, 3749, 3244, 4451, 1193, 3387, 2934, + 4933, 2676, 1892, 1253, 2562, 3303, 93, 1367, 4037, + 388, 4569, 3905, 2205, 438, 2955, 2830, 2546, 3603, + 3071, 4886, 2701, 3617, 3981, 2453, 1634, 906, 2460, + 4767, 4482, 2328, 3968, 2373, 709, 1470, 1396, 1265, + 427, 2495, 18, 4172, 3266, 4196, 702, 133, 2624, + 2942, 4262, 4579, 1940, 2403, 42, 1771, 590, 3624, + 3674, 2977, 3577, 3648, 673, 1388, 4388, 17, 194, + 155, 552, 2075, 1300, 4736, 849, 2848, 3737, 3431, + 4900, 4636, 211, 2218, 935, 599, 2948, 4874, 369, + 966, 947, 3488, 346, 1181, 1472, 1637, 372, 1874, + 4884, 172, 214, 771, 3131, 1713, 3058, 4267, 3602, + 2760, 3398, 3174, 9, 318, 4703, 779, 2824, 4515, + 2540, 3491, 647, 4310, 4641, 1357, 289, 349, 73, + 908, 1015, 1680, 677, 202, 1047, 1747, 4308, 1250, + 3160, 3099, 2970, 2272, 3209, 2339, 1660, 4649, 642, + 2647, 4042, 3441, 1713, 3501, 3454, 4660, 2114, 1751, + 4938, 3300, 396, 1888, 1868, 2474, 3021, 4177, 1556, + 3530, 583, 156, 782, 534, 780, 3712, 1163, 3018, + 2652, 2501, 1137, 3069, 4789, 548, 1908, 709, 3367, + 4443, 1991, 4909, 152, 2054, 2229, 14, 2251, 1027, + 3732, 288, 642, 4326, 2761, 4086, 1629, 946, 4083, + 1089, 2210, 3114, 3172, 376, 4660, 3852, 3198, 3613, + 592, 1388, 3114, 4183, 4318, 1850, 4771, 843, 2522, + 2774, 2939, 3529, 1857, 2895, 2137, 4447]), + values=tensor([0.4475, 0.8812, 0.1292, 0.7293, 0.6267, 0.0108, 0.5387, + 0.9156, 0.4928, 0.6543, 0.3448, 0.7375, 0.4487, 0.3828, + 0.2863, 0.2902, 0.7640, 0.5621, 0.0700, 0.7401, 0.8451, + 0.9099, 0.0211, 0.8004, 0.5172, 0.0685, 0.5469, 0.9562, + 0.9763, 0.1102, 0.0709, 0.8735, 0.6816, 0.5541, 0.7172, + 0.8388, 0.7596, 0.0622, 0.0743, 0.1726, 0.6490, 0.2165, + 0.6650, 0.7371, 0.8810, 0.8711, 0.2280, 0.6052, 0.7488, + 0.7562, 0.5277, 0.9948, 0.0106, 0.0299, 0.7667, 0.5618, + 0.6094, 0.9214, 0.6504, 0.8772, 0.7922, 0.0380, 0.8257, + 0.9627, 0.8457, 0.9488, 0.7481, 0.0656, 0.7384, 0.8073, + 0.8799, 0.1542, 0.7486, 0.0058, 0.8291, 0.9889, 0.8922, + 0.2911, 0.9747, 0.0465, 0.1509, 0.5817, 0.7676, 0.1559, + 0.4514, 0.2238, 0.9216, 0.0912, 0.0562, 0.6927, 0.2560, + 0.7407, 0.7561, 0.5126, 0.8908, 0.4965, 0.0086, 0.7725, + 0.2468, 0.7667, 0.7880, 0.6098, 0.9369, 0.5035, 0.3626, + 0.7343, 0.2151, 0.1827, 0.2696, 0.7224, 0.6480, 0.0746, + 0.6229, 0.9622, 0.8016, 0.2190, 0.3391, 0.8517, 0.1344, + 0.9710, 0.8151, 0.7634, 0.9047, 0.8447, 0.3478, 0.4789, + 0.5543, 0.6475, 0.6794, 0.8153, 0.2995, 0.6764, 0.2993, + 0.4440, 0.6818, 0.5702, 0.7074, 0.4488, 0.4032, 0.6268, + 0.7286, 0.4749, 0.3646, 0.0331, 0.4227, 0.8138, 0.3173, + 0.0403, 0.2636, 0.3980, 0.1390, 0.1641, 0.6671, 0.5330, + 0.3639, 0.7467, 0.8967, 0.7753, 0.2492, 0.1215, 0.6986, + 0.6107, 0.6922, 0.6270, 0.0513, 0.3708, 0.4140, 0.6870, + 0.6642, 0.1925, 0.0944, 0.4210, 0.5791, 0.4516, 0.5935, + 0.1022, 0.0482, 0.6022, 0.6705, 0.3885, 0.1005, 0.3611, + 0.3535, 0.1700, 0.7214, 0.8017, 0.2409, 0.4915, 0.6710, + 0.5749, 0.1541, 0.6514, 0.2028, 0.1566, 0.2795, 0.9275, + 0.1313, 0.4671, 0.8621, 0.0474, 0.9495, 0.4065, 0.1561, + 0.3930, 0.1891, 0.0713, 0.9951, 0.8365, 0.9415, 0.9314, + 0.4274, 0.7485, 0.9571, 0.9768, 0.5673, 0.4241, 0.5508, + 0.4033, 0.2950, 0.2855, 0.8415, 0.9844, 0.7770, 0.3923, + 0.5787, 0.9241, 0.3429, 0.2388, 0.7432, 0.5287, 0.4894, + 0.3564, 0.1539, 0.3683, 0.3338, 0.2500, 0.3763, 0.4479, + 0.2028, 0.8079, 0.0187, 0.3962, 0.2530, 0.6932, 0.4307, + 0.2510, 0.2498, 0.5817, 0.8657, 0.8402]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.7545, 0.7162, 0.2861, ..., 0.9381, 0.3630, 0.3493]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 10.526627540588379 seconds + +[18.43, 17.7, 18.24, 17.84, 17.84, 17.8, 18.19, 17.69, 17.91, 17.97] +[50.77] +14.327181577682495 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 359075, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.526627540588379, 'TIME_S_1KI': 0.029315957782046587, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 727.3910086989404, 'W': 50.77} +[18.43, 17.7, 18.24, 17.84, 17.84, 17.8, 18.19, 17.69, 17.91, 17.97, 18.65, 17.88, 17.9, 17.81, 18.36, 17.89, 17.8, 17.9, 21.76, 18.54] +327.305 +16.36525 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 359075, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.526627540588379, 'TIME_S_1KI': 0.029315957782046587, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 727.3910086989404, 'W': 50.77, 'J_1KI': 2.0257355947892233, 'W_1KI': 0.14139107428810138, 'W_D': 34.40475000000001, 'J_D': 492.92310038477194, 'W_D_1KI': 0.09581494116827963, 'J_D_1KI': 0.00026683824039066943} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_1000000_1e-05.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_1000000_1e-05.json deleted file mode 100644 index 72b0c08..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_1000000_1e-05.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [1000000, 1000000], "MATRIX_ROWS": 1000000, "MATRIX_SIZE": 1000000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 1e-05, "TIME_S": 66.54721975326538, "TIME_S_1KI": 66.54721975326538, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 3619.1285343217846, "W": 48.66, "J_1KI": 3619.1285343217846, "W_1KI": 48.66, "W_D": 32.3165, "J_D": 2403.5669395686386, "W_D_1KI": 32.3165, "J_D_1KI": 32.3165} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_1000000_1e-05.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_1000000_1e-05.output deleted file mode 100644 index 88175d1..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_1000000_1e-05.output +++ /dev/null @@ -1,47 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '1000000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [1000000, 1000000], "MATRIX_ROWS": 1000000, "MATRIX_SIZE": 1000000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 1e-05, "TIME_S": 66.54721975326538} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 10, 21, ..., 9999976, - 9999986, 10000000]), - col_indices=tensor([ 54005, 89807, 113734, ..., 908702, 925766, - 933923]), - values=tensor([0.9939, 0.7767, 0.0078, ..., 0.2146, 0.1281, 0.5768]), - size=(1000000, 1000000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.8058, 0.8985, 0.9859, ..., 0.2784, 0.2654, 0.0031]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([1000000, 1000000]) -Rows: 1000000 -Size: 1000000000000 -NNZ: 10000000 -Density: 1e-05 -Time: 66.54721975326538 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 10, 21, ..., 9999976, - 9999986, 10000000]), - col_indices=tensor([ 54005, 89807, 113734, ..., 908702, 925766, - 933923]), - values=tensor([0.9939, 0.7767, 0.0078, ..., 0.2146, 0.1281, 0.5768]), - size=(1000000, 1000000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.8058, 0.8985, 0.9859, ..., 0.2784, 0.2654, 0.0031]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([1000000, 1000000]) -Rows: 1000000 -Size: 1000000000000 -NNZ: 10000000 -Density: 1e-05 -Time: 66.54721975326538 seconds - -[18.44, 17.85, 17.91, 17.76, 18.24, 18.72, 18.35, 17.95, 18.1, 18.22] -[48.66] -74.37584328651428 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [1000000, 1000000], 'MATRIX_ROWS': 1000000, 'MATRIX_SIZE': 1000000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 66.54721975326538, 'TIME_S_1KI': 66.54721975326538, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3619.1285343217846, 'W': 48.66} -[18.44, 17.85, 17.91, 17.76, 18.24, 18.72, 18.35, 17.95, 18.1, 18.22, 18.26, 17.74, 18.13, 17.82, 17.99, 18.0, 18.47, 17.87, 17.8, 21.42] -326.87 -16.3435 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [1000000, 1000000], 'MATRIX_ROWS': 1000000, 'MATRIX_SIZE': 1000000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 66.54721975326538, 'TIME_S_1KI': 66.54721975326538, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3619.1285343217846, 'W': 48.66, 'J_1KI': 3619.1285343217846, 'W_1KI': 48.66, 'W_D': 32.3165, 'J_D': 2403.5669395686386, 'W_D_1KI': 32.3165, 'J_D_1KI': 32.3165} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0001.json deleted file mode 100644 index 7aceaa7..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0001.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 7304, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.99964690208435, "TIME_S_1KI": 2.8750885681933664, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1205.7149387598038, "W": 48.21, "J_1KI": 165.07597737675297, "W_1KI": 6.600492880613363, "W_D": 31.907750000000004, "J_D": 798.001469346881, "W_D_1KI": 4.368530941949617, "J_D_1KI": 0.5981011694892684} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0005.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0005.json deleted file mode 100644 index 62dfba2..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0005.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1831, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.0005, "TIME_S": 20.986559629440308, "TIME_S_1KI": 11.461802091447463, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1301.7127650523184, "W": 48.96999999999999, "J_1KI": 710.9299645288469, "W_1KI": 26.74494811578372, "W_D": 32.56024999999999, "J_D": 865.5113959218857, "W_D_1KI": 17.782768978700158, "J_D_1KI": 9.712052964882664} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0005.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0005.output deleted file mode 100644 index 1517cae..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0005.output +++ /dev/null @@ -1,65 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.0005', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.0005, "TIME_S": 11.463933229446411} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 45, 93, ..., 4999886, - 4999950, 5000000]), - col_indices=tensor([ 115, 4142, 9033, ..., 95272, 97957, 99327]), - values=tensor([0.3001, 0.5395, 0.4547, ..., 0.4945, 0.6230, 0.1383]), - size=(100000, 100000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.4447, 0.7495, 0.9824, ..., 0.5428, 0.2940, 0.4090]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([100000, 100000]) -Rows: 100000 -Size: 10000000000 -NNZ: 5000000 -Density: 0.0005 -Time: 11.463933229446411 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1831', '-ss', '100000', '-sd', '0.0005', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.0005, "TIME_S": 20.986559629440308} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 47, 90, ..., 4999886, - 4999944, 5000000]), - col_indices=tensor([ 1153, 2047, 4582, ..., 97809, 98430, 99156]), - values=tensor([0.1070, 0.5860, 0.6550, ..., 0.5725, 0.6043, 0.9156]), - size=(100000, 100000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.2942, 0.6403, 0.2970, ..., 0.2270, 0.6172, 0.6041]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([100000, 100000]) -Rows: 100000 -Size: 10000000000 -NNZ: 5000000 -Density: 0.0005 -Time: 20.986559629440308 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 47, 90, ..., 4999886, - 4999944, 5000000]), - col_indices=tensor([ 1153, 2047, 4582, ..., 97809, 98430, 99156]), - values=tensor([0.1070, 0.5860, 0.6550, ..., 0.5725, 0.6043, 0.9156]), - size=(100000, 100000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.2942, 0.6403, 0.2970, ..., 0.2270, 0.6172, 0.6041]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([100000, 100000]) -Rows: 100000 -Size: 10000000000 -NNZ: 5000000 -Density: 0.0005 -Time: 20.986559629440308 seconds - -[18.11, 17.74, 18.14, 18.38, 18.12, 18.97, 17.92, 18.11, 17.89, 21.28] -[48.97] -26.581841230392456 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1831, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 20.986559629440308, 'TIME_S_1KI': 11.461802091447463, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1301.7127650523184, 'W': 48.96999999999999} -[18.11, 17.74, 18.14, 18.38, 18.12, 18.97, 17.92, 18.11, 17.89, 21.28, 18.44, 17.94, 18.29, 17.78, 17.91, 18.22, 17.95, 18.14, 18.84, 17.88] -328.19500000000005 -16.409750000000003 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1831, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 20.986559629440308, 'TIME_S_1KI': 11.461802091447463, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1301.7127650523184, 'W': 48.96999999999999, 'J_1KI': 710.9299645288469, 'W_1KI': 26.74494811578372, 'W_D': 32.56024999999999, 'J_D': 865.5113959218857, 'W_D_1KI': 17.782768978700158, 'J_D_1KI': 9.712052964882664} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.001.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.001.json deleted file mode 100644 index 03d76fb..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.001.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 27.55906629562378, "TIME_S_1KI": 27.55906629562378, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1724.2497406768798, "W": 48.51, "J_1KI": 1724.2497406768798, "W_1KI": 48.51, "W_D": 22.645749999999992, "J_D": 804.9253466281888, "W_D_1KI": 22.645749999999992, "J_D_1KI": 22.645749999999992} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.005.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.005.json deleted file mode 100644 index b8a679c..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.005.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 50000000, "MATRIX_DENSITY": 0.005, "TIME_S": 152.2796802520752, "TIME_S_1KI": 152.2796802520752, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 24430.853182520867, "W": 40.51, "J_1KI": 24430.853182520867, "W_1KI": 40.51, "W_D": 24.2635, "J_D": 14632.880923083067, "W_D_1KI": 24.2635, "J_D_1KI": 24.2635} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.005.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.005.output deleted file mode 100644 index 3163e2f..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.005.output +++ /dev/null @@ -1,45 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.005', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 50000000, "MATRIX_DENSITY": 0.005, "TIME_S": 152.2796802520752} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 501, 992, ..., 49999019, - 49999505, 50000000]), - col_indices=tensor([ 35, 43, 383, ..., 99897, 99938, 99967]), - values=tensor([0.4513, 0.8581, 0.1042, ..., 0.5255, 0.8133, 0.9103]), - size=(100000, 100000), nnz=50000000, layout=torch.sparse_csr) -tensor([0.9931, 0.5926, 0.5381, ..., 0.5378, 0.4212, 0.4881]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([100000, 100000]) -Rows: 100000 -Size: 10000000000 -NNZ: 50000000 -Density: 0.005 -Time: 152.2796802520752 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 501, 992, ..., 49999019, - 49999505, 50000000]), - col_indices=tensor([ 35, 43, 383, ..., 99897, 99938, 99967]), - values=tensor([0.4513, 0.8581, 0.1042, ..., 0.5255, 0.8133, 0.9103]), - size=(100000, 100000), nnz=50000000, layout=torch.sparse_csr) -tensor([0.9931, 0.5926, 0.5381, ..., 0.5378, 0.4212, 0.4881]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([100000, 100000]) -Rows: 100000 -Size: 10000000000 -NNZ: 50000000 -Density: 0.005 -Time: 152.2796802520752 seconds - -[18.54, 17.77, 17.99, 18.91, 17.96, 17.85, 17.94, 17.96, 17.92, 17.99] -[40.51] -603.0820336341858 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 50000000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 152.2796802520752, 'TIME_S_1KI': 152.2796802520752, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 24430.853182520867, 'W': 40.51} -[18.54, 17.77, 17.99, 18.91, 17.96, 17.85, 17.94, 17.96, 17.92, 17.99, 18.55, 18.48, 18.08, 18.21, 17.89, 17.61, 18.0, 17.78, 18.03, 18.02] -324.92999999999995 -16.246499999999997 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 50000000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 152.2796802520752, 'TIME_S_1KI': 152.2796802520752, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 24430.853182520867, 'W': 40.51, 'J_1KI': 24430.853182520867, 'W_1KI': 40.51, 'W_D': 24.2635, 'J_D': 14632.880923083067, 'W_D_1KI': 24.2635, 'J_D_1KI': 24.2635} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_1e-05.json deleted file mode 100644 index 0a18e77..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_1e-05.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 15982, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 20.790293216705322, "TIME_S_1KI": 1.300856789932757, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1154.2612649059295, "W": 46.92999999999999, "J_1KI": 72.22257945851142, "W_1KI": 2.936428482042297, "W_D": 30.483749999999993, "J_D": 749.7594680178164, "W_D_1KI": 1.907380177699912, "J_D_1KI": 0.11934552482166888} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_3000000_1e-05.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_3000000_1e-05.json deleted file mode 100644 index e69de29..0000000 diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_3000000_1e-05.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_3000000_1e-05.output deleted file mode 100644 index 95dcd7c..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_3000000_1e-05.output +++ /dev/null @@ -1,10 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '3000000', '-sd', '1e-05', '-c', '1'] -Traceback (most recent call last): - File "/nfshomes/vut/ampere_research/pytorch/run.py", line 129, in - program_result = run_program(program( - ^^^^^^^^^^^^^^^^^^^^ - File "/nfshomes/vut/ampere_research/pytorch/run.py", line 95, in run_program - process.check_returncode() - File "/usr/lib64/python3.11/subprocess.py", line 502, in check_returncode - raise CalledProcessError(self.returncode, self.args, self.stdout, -subprocess.CalledProcessError: Command '['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '3000000', '-sd', '1e-05', '-c', '1']' died with . diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0001.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0001.json deleted file mode 100644 index b220cd4..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0001.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 9000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 43.59297776222229, "TIME_S_1KI": 43.59297776222229, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2443.445860421658, "W": 47.95000000000001, "J_1KI": 2443.445860421658, "W_1KI": 47.95000000000001, "W_D": 31.519750000000013, "J_D": 1606.1898364760286, "W_D_1KI": 31.519750000000013, "J_D_1KI": 31.519750000000013} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0001.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0001.output deleted file mode 100644 index 48e92e3..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0001.output +++ /dev/null @@ -1,47 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '300000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 9000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 43.59297776222229} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 25, 55, ..., 8999936, - 8999970, 9000000]), - col_indices=tensor([ 9127, 10614, 42656, ..., 264952, 278523, - 294763]), - values=tensor([0.1591, 0.4772, 0.9607, ..., 0.8861, 0.4140, 0.1211]), - size=(300000, 300000), nnz=9000000, layout=torch.sparse_csr) -tensor([0.3992, 0.8236, 0.1831, ..., 0.0857, 0.3847, 0.6830]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([300000, 300000]) -Rows: 300000 -Size: 90000000000 -NNZ: 9000000 -Density: 0.0001 -Time: 43.59297776222229 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 25, 55, ..., 8999936, - 8999970, 9000000]), - col_indices=tensor([ 9127, 10614, 42656, ..., 264952, 278523, - 294763]), - values=tensor([0.1591, 0.4772, 0.9607, ..., 0.8861, 0.4140, 0.1211]), - size=(300000, 300000), nnz=9000000, layout=torch.sparse_csr) -tensor([0.3992, 0.8236, 0.1831, ..., 0.0857, 0.3847, 0.6830]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([300000, 300000]) -Rows: 300000 -Size: 90000000000 -NNZ: 9000000 -Density: 0.0001 -Time: 43.59297776222229 seconds - -[18.34, 18.1, 18.78, 20.56, 17.99, 18.51, 17.93, 18.03, 17.94, 18.04] -[47.95] -50.95820355415344 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [300000, 300000], 'MATRIX_ROWS': 300000, 'MATRIX_SIZE': 90000000000, 'MATRIX_NNZ': 9000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 43.59297776222229, 'TIME_S_1KI': 43.59297776222229, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2443.445860421658, 'W': 47.95000000000001} -[18.34, 18.1, 18.78, 20.56, 17.99, 18.51, 17.93, 18.03, 17.94, 18.04, 18.97, 18.18, 18.43, 17.75, 17.93, 17.87, 17.94, 18.08, 17.97, 17.88] -328.60499999999996 -16.430249999999997 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [300000, 300000], 'MATRIX_ROWS': 300000, 'MATRIX_SIZE': 90000000000, 'MATRIX_NNZ': 9000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 43.59297776222229, 'TIME_S_1KI': 43.59297776222229, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2443.445860421658, 'W': 47.95000000000001, 'J_1KI': 2443.445860421658, 'W_1KI': 47.95000000000001, 'W_D': 31.519750000000013, 'J_D': 1606.1898364760286, 'W_D_1KI': 31.519750000000013, 'J_D_1KI': 31.519750000000013} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0005.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0005.json deleted file mode 100644 index efafaea..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0005.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 45000000, "MATRIX_DENSITY": 0.0005, "TIME_S": 233.5992555618286, "TIME_S_1KI": 233.5992555618286, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 24127.435356621743, "W": 44.42, "J_1KI": 24127.435356621743, "W_1KI": 44.42, "W_D": 28.19375, "J_D": 15313.887451277675, "W_D_1KI": 28.19375, "J_D_1KI": 28.19375} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0005.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0005.output deleted file mode 100644 index f20383f..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0005.output +++ /dev/null @@ -1,47 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '300000', '-sd', '0.0005', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 45000000, "MATRIX_DENSITY": 0.0005, "TIME_S": 233.5992555618286} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 130, 284, ..., 44999682, - 44999844, 45000000]), - col_indices=tensor([ 1852, 3586, 4765, ..., 295056, 296384, - 297411]), - values=tensor([0.2696, 0.5396, 0.2299, ..., 0.9264, 0.4734, 0.5186]), - size=(300000, 300000), nnz=45000000, layout=torch.sparse_csr) -tensor([0.0972, 0.1995, 0.9087, ..., 0.4631, 0.8051, 0.0013]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([300000, 300000]) -Rows: 300000 -Size: 90000000000 -NNZ: 45000000 -Density: 0.0005 -Time: 233.5992555618286 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 130, 284, ..., 44999682, - 44999844, 45000000]), - col_indices=tensor([ 1852, 3586, 4765, ..., 295056, 296384, - 297411]), - values=tensor([0.2696, 0.5396, 0.2299, ..., 0.9264, 0.4734, 0.5186]), - size=(300000, 300000), nnz=45000000, layout=torch.sparse_csr) -tensor([0.0972, 0.1995, 0.9087, ..., 0.4631, 0.8051, 0.0013]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([300000, 300000]) -Rows: 300000 -Size: 90000000000 -NNZ: 45000000 -Density: 0.0005 -Time: 233.5992555618286 seconds - -[18.63, 18.36, 17.97, 17.94, 18.0, 17.84, 17.92, 17.85, 18.12, 17.92] -[44.42] -543.1660368442535 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [300000, 300000], 'MATRIX_ROWS': 300000, 'MATRIX_SIZE': 90000000000, 'MATRIX_NNZ': 45000000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 233.5992555618286, 'TIME_S_1KI': 233.5992555618286, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 24127.435356621743, 'W': 44.42} -[18.63, 18.36, 17.97, 17.94, 18.0, 17.84, 17.92, 17.85, 18.12, 17.92, 18.74, 17.84, 18.23, 17.69, 18.02, 17.95, 18.42, 17.86, 17.99, 17.76] -324.525 -16.22625 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [300000, 300000], 'MATRIX_ROWS': 300000, 'MATRIX_SIZE': 90000000000, 'MATRIX_NNZ': 45000000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 233.5992555618286, 'TIME_S_1KI': 233.5992555618286, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 24127.435356621743, 'W': 44.42, 'J_1KI': 24127.435356621743, 'W_1KI': 44.42, 'W_D': 28.19375, 'J_D': 15313.887451277675, 'W_D_1KI': 28.19375, 'J_D_1KI': 28.19375} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.001.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.001.json deleted file mode 100644 index e69de29..0000000 diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.001.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.001.output deleted file mode 100644 index 30ff4c4..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.001.output +++ /dev/null @@ -1,10 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '300000', '-sd', '0.001', '-c', '1'] -Traceback (most recent call last): - File "/nfshomes/vut/ampere_research/pytorch/run.py", line 129, in - program_result = run_program(program( - ^^^^^^^^^^^^^^^^^^^^ - File "/nfshomes/vut/ampere_research/pytorch/run.py", line 95, in run_program - process.check_returncode() - File "/usr/lib64/python3.11/subprocess.py", line 502, in check_returncode - raise CalledProcessError(self.returncode, self.args, self.stdout, -subprocess.CalledProcessError: Command '['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '300000', '-sd', '0.001', '-c', '1']' died with . diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_1e-05.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_1e-05.json deleted file mode 100644 index 49d4d09..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_1e-05.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 3598, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.015570878982544, "TIME_S_1KI": 5.840903523897316, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1199.0254331445694, "W": 48.06, "J_1KI": 333.24775796124777, "W_1KI": 13.357420789327406, "W_D": 31.746750000000002, "J_D": 792.0341379459501, "W_D_1KI": 8.823443579766536, "J_D_1KI": 2.4523189493514552} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_1e-05.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_1e-05.output deleted file mode 100644 index 46d6c02..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_1e-05.output +++ /dev/null @@ -1,68 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '300000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 1e-05, "TIME_S": 5.835606575012207} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 5, 7, ..., 899996, 899998, - 900000]), - col_indices=tensor([100602, 129512, 176801, ..., 48622, 26613, - 190176]), - values=tensor([0.1487, 0.8854, 0.0841, ..., 0.8808, 0.2948, 0.6815]), - size=(300000, 300000), nnz=900000, layout=torch.sparse_csr) -tensor([0.5133, 0.8774, 0.0043, ..., 0.0470, 0.1306, 0.4977]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([300000, 300000]) -Rows: 300000 -Size: 90000000000 -NNZ: 900000 -Density: 1e-05 -Time: 5.835606575012207 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '3598', '-ss', '300000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.015570878982544} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 5, ..., 899988, 899992, - 900000]), - col_indices=tensor([ 18941, 81855, 33867, ..., 201457, 255893, - 299263]), - values=tensor([0.5587, 0.5974, 0.8127, ..., 0.5995, 0.0776, 0.5594]), - size=(300000, 300000), nnz=900000, layout=torch.sparse_csr) -tensor([0.7686, 0.4534, 0.3324, ..., 0.2462, 0.7149, 0.9702]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([300000, 300000]) -Rows: 300000 -Size: 90000000000 -NNZ: 900000 -Density: 1e-05 -Time: 21.015570878982544 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 5, ..., 899988, 899992, - 900000]), - col_indices=tensor([ 18941, 81855, 33867, ..., 201457, 255893, - 299263]), - values=tensor([0.5587, 0.5974, 0.8127, ..., 0.5995, 0.0776, 0.5594]), - size=(300000, 300000), nnz=900000, layout=torch.sparse_csr) -tensor([0.7686, 0.4534, 0.3324, ..., 0.2462, 0.7149, 0.9702]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([300000, 300000]) -Rows: 300000 -Size: 90000000000 -NNZ: 900000 -Density: 1e-05 -Time: 21.015570878982544 seconds - -[18.25, 18.65, 17.9, 17.84, 17.95, 18.05, 18.67, 17.88, 18.3, 18.01] -[48.06] -24.948510885238647 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3598, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [300000, 300000], 'MATRIX_ROWS': 300000, 'MATRIX_SIZE': 90000000000, 'MATRIX_NNZ': 900000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.015570878982544, 'TIME_S_1KI': 5.840903523897316, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1199.0254331445694, 'W': 48.06} -[18.25, 18.65, 17.9, 17.84, 17.95, 18.05, 18.67, 17.88, 18.3, 18.01, 18.4, 18.0, 17.84, 18.93, 18.16, 17.77, 18.14, 17.83, 18.06, 17.93] -326.265 -16.31325 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3598, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [300000, 300000], 'MATRIX_ROWS': 300000, 'MATRIX_SIZE': 90000000000, 'MATRIX_NNZ': 900000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.015570878982544, 'TIME_S_1KI': 5.840903523897316, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1199.0254331445694, 'W': 48.06, 'J_1KI': 333.24775796124777, 'W_1KI': 13.357420789327406, 'W_D': 31.746750000000002, 'J_D': 792.0341379459501, 'W_D_1KI': 8.823443579766536, 'J_D_1KI': 2.4523189493514552} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0001.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0001.json deleted file mode 100644 index aa132a9..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0001.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 33277, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.4328293800354, "TIME_S_1KI": 0.6140225795605192, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1130.1519185829163, "W": 46.86, "J_1KI": 33.96195325849435, "W_1KI": 1.408179823902395, "W_D": 30.543249999999997, "J_D": 736.6306570050716, "W_D_1KI": 0.9178486642425698, "J_D_1KI": 0.027582073631714693} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0001.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0001.output deleted file mode 100644 index 5969df1..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0001.output +++ /dev/null @@ -1,62 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.6310491561889648} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 7, ..., 89994, 89997, 90000]), - col_indices=tensor([ 2667, 5647, 6980, ..., 2168, 3268, 28772]), - values=tensor([0.1347, 0.9532, 0.3607, ..., 0.9962, 0.2520, 0.4682]), - size=(30000, 30000), nnz=90000, layout=torch.sparse_csr) -tensor([0.4612, 0.6559, 0.6162, ..., 0.2529, 0.9562, 0.7602]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 90000 -Density: 0.0001 -Time: 0.6310491561889648 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '33277', '-ss', '30000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.4328293800354} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 6, ..., 89998, 89999, 90000]), - col_indices=tensor([13602, 24899, 9076, ..., 25653, 15048, 9911]), - values=tensor([0.7061, 0.1886, 0.4037, ..., 0.8692, 0.8414, 0.2535]), - size=(30000, 30000), nnz=90000, layout=torch.sparse_csr) -tensor([0.8274, 0.3618, 0.1359, ..., 0.5733, 0.1118, 0.0977]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 90000 -Density: 0.0001 -Time: 20.4328293800354 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 6, ..., 89998, 89999, 90000]), - col_indices=tensor([13602, 24899, 9076, ..., 25653, 15048, 9911]), - values=tensor([0.7061, 0.1886, 0.4037, ..., 0.8692, 0.8414, 0.2535]), - size=(30000, 30000), nnz=90000, layout=torch.sparse_csr) -tensor([0.8274, 0.3618, 0.1359, ..., 0.5733, 0.1118, 0.0977]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 90000 -Density: 0.0001 -Time: 20.4328293800354 seconds - -[18.45, 18.04, 18.2, 18.12, 18.16, 18.2, 18.24, 17.92, 17.99, 18.02] -[46.86] -24.11762523651123 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 33277, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 90000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.4328293800354, 'TIME_S_1KI': 0.6140225795605192, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1130.1519185829163, 'W': 46.86} -[18.45, 18.04, 18.2, 18.12, 18.16, 18.2, 18.24, 17.92, 17.99, 18.02, 18.46, 18.14, 18.16, 18.26, 17.95, 18.13, 18.04, 18.32, 17.97, 18.06] -326.33500000000004 -16.316750000000003 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 33277, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 90000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.4328293800354, 'TIME_S_1KI': 0.6140225795605192, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1130.1519185829163, 'W': 46.86, 'J_1KI': 33.96195325849435, 'W_1KI': 1.408179823902395, 'W_D': 30.543249999999997, 'J_D': 736.6306570050716, 'W_D_1KI': 0.9178486642425698, 'J_D_1KI': 0.027582073631714693} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0005.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0005.json deleted file mode 100644 index e7b3ed3..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0005.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 18733, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 450000, "MATRIX_DENSITY": 0.0005, "TIME_S": 20.639018058776855, "TIME_S_1KI": 1.1017465466704133, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1175.502190952301, "W": 47.87, "J_1KI": 62.75034382919452, "W_1KI": 2.55538354774996, "W_D": 31.414249999999996, "J_D": 771.4125695033073, "W_D_1KI": 1.6769470987028237, "J_D_1KI": 0.0895183418941346} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0005.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0005.output deleted file mode 100644 index 2f47860..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0005.output +++ /dev/null @@ -1,65 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.0005', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 450000, "MATRIX_DENSITY": 0.0005, "TIME_S": 1.1210110187530518} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 10, 29, ..., 449963, 449981, - 450000]), - col_indices=tensor([ 792, 5705, 11402, ..., 28541, 29300, 29723]), - values=tensor([0.4108, 0.9785, 0.1600, ..., 0.6171, 0.0607, 0.2902]), - size=(30000, 30000), nnz=450000, layout=torch.sparse_csr) -tensor([0.8871, 0.5462, 0.8388, ..., 0.2778, 0.5429, 0.3514]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 450000 -Density: 0.0005 -Time: 1.1210110187530518 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '18733', '-ss', '30000', '-sd', '0.0005', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 450000, "MATRIX_DENSITY": 0.0005, "TIME_S": 20.639018058776855} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 11, 20, ..., 449977, 449985, - 450000]), - col_indices=tensor([ 220, 1019, 9874, ..., 23783, 27634, 29111]), - values=tensor([0.9174, 0.1323, 0.6653, ..., 0.3636, 0.2491, 0.8467]), - size=(30000, 30000), nnz=450000, layout=torch.sparse_csr) -tensor([0.9099, 0.7629, 0.0246, ..., 0.7433, 0.9009, 0.8261]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 450000 -Density: 0.0005 -Time: 20.639018058776855 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 11, 20, ..., 449977, 449985, - 450000]), - col_indices=tensor([ 220, 1019, 9874, ..., 23783, 27634, 29111]), - values=tensor([0.9174, 0.1323, 0.6653, ..., 0.3636, 0.2491, 0.8467]), - size=(30000, 30000), nnz=450000, layout=torch.sparse_csr) -tensor([0.9099, 0.7629, 0.0246, ..., 0.7433, 0.9009, 0.8261]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 450000 -Density: 0.0005 -Time: 20.639018058776855 seconds - -[18.47, 17.86, 18.03, 18.06, 18.18, 18.04, 18.02, 21.6, 18.44, 17.85] -[47.87] -24.556135177612305 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 18733, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 450000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 20.639018058776855, 'TIME_S_1KI': 1.1017465466704133, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1175.502190952301, 'W': 47.87} -[18.47, 17.86, 18.03, 18.06, 18.18, 18.04, 18.02, 21.6, 18.44, 17.85, 18.05, 18.82, 17.94, 18.23, 17.84, 17.88, 17.89, 18.05, 18.07, 17.96] -329.11500000000007 -16.455750000000002 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 18733, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 450000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 20.639018058776855, 'TIME_S_1KI': 1.1017465466704133, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1175.502190952301, 'W': 47.87, 'J_1KI': 62.75034382919452, 'W_1KI': 2.55538354774996, 'W_D': 31.414249999999996, 'J_D': 771.4125695033073, 'W_D_1KI': 1.6769470987028237, 'J_D_1KI': 0.0895183418941346} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.001.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.001.json deleted file mode 100644 index a79d073..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.001.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 11640, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 0.001, "TIME_S": 20.839291095733643, "TIME_S_1KI": 1.790317104444471, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1197.1045216155053, "W": 48.31, "J_1KI": 102.84403106662417, "W_1KI": 4.150343642611684, "W_D": 31.900750000000002, "J_D": 790.4891754900814, "W_D_1KI": 2.7406142611683855, "J_D_1KI": 0.2354479605814764} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.001.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.001.output deleted file mode 100644 index 4ec6b31..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.001.output +++ /dev/null @@ -1,65 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 0.001, "TIME_S": 1.804121494293213} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 31, 61, ..., 899944, 899973, - 900000]), - col_indices=tensor([ 214, 468, 621, ..., 27947, 28785, 29886]), - values=tensor([0.5497, 0.2471, 0.3999, ..., 0.8981, 0.5437, 0.4393]), - size=(30000, 30000), nnz=900000, layout=torch.sparse_csr) -tensor([0.3080, 0.4231, 0.6575, ..., 0.3533, 0.8148, 0.0442]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 900000 -Density: 0.001 -Time: 1.804121494293213 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '11640', '-ss', '30000', '-sd', '0.001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 0.001, "TIME_S": 20.839291095733643} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 32, 54, ..., 899931, 899971, - 900000]), - col_indices=tensor([ 1264, 2511, 3373, ..., 24630, 25069, 29984]), - values=tensor([0.3611, 0.1242, 0.5465, ..., 0.3866, 0.2436, 0.7931]), - size=(30000, 30000), nnz=900000, layout=torch.sparse_csr) -tensor([0.0647, 0.2891, 0.3015, ..., 0.6009, 0.0656, 0.2202]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 900000 -Density: 0.001 -Time: 20.839291095733643 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 32, 54, ..., 899931, 899971, - 900000]), - col_indices=tensor([ 1264, 2511, 3373, ..., 24630, 25069, 29984]), - values=tensor([0.3611, 0.1242, 0.5465, ..., 0.3866, 0.2436, 0.7931]), - size=(30000, 30000), nnz=900000, layout=torch.sparse_csr) -tensor([0.0647, 0.2891, 0.3015, ..., 0.6009, 0.0656, 0.2202]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 900000 -Density: 0.001 -Time: 20.839291095733643 seconds - -[18.3, 17.96, 21.33, 17.75, 18.29, 18.22, 17.9, 17.9, 18.0, 18.1] -[48.31] -24.779642343521118 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 11640, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 900000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 20.839291095733643, 'TIME_S_1KI': 1.790317104444471, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1197.1045216155053, 'W': 48.31} -[18.3, 17.96, 21.33, 17.75, 18.29, 18.22, 17.9, 17.9, 18.0, 18.1, 18.54, 17.81, 18.9, 17.85, 18.01, 17.86, 18.01, 17.93, 18.05, 17.89] -328.185 -16.40925 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 11640, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 900000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 20.839291095733643, 'TIME_S_1KI': 1.790317104444471, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1197.1045216155053, 'W': 48.31, 'J_1KI': 102.84403106662417, 'W_1KI': 4.150343642611684, 'W_D': 31.900750000000002, 'J_D': 790.4891754900814, 'W_D_1KI': 2.7406142611683855, 'J_D_1KI': 0.2354479605814764} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.005.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.005.json deleted file mode 100644 index 4201fbb..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.005.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 2157, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 4500000, "MATRIX_DENSITY": 0.005, "TIME_S": 20.902870178222656, "TIME_S_1KI": 9.690714037191773, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1295.0206210327149, "W": 48.72, "J_1KI": 600.3804455413606, "W_1KI": 22.58692628650904, "W_D": 32.4265, "J_D": 861.9250034465789, "W_D_1KI": 15.03314789058878, "J_D_1KI": 6.96947051024051} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.005.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.005.output deleted file mode 100644 index 98b9204..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.005.output +++ /dev/null @@ -1,65 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.005', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 4500000, "MATRIX_DENSITY": 0.005, "TIME_S": 9.735076665878296} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 157, 297, ..., 4499702, - 4499846, 4500000]), - col_indices=tensor([ 52, 107, 115, ..., 29647, 29660, 29851]), - values=tensor([0.0696, 0.1442, 0.4515, ..., 0.9885, 0.1135, 0.9052]), - size=(30000, 30000), nnz=4500000, layout=torch.sparse_csr) -tensor([0.6712, 0.0504, 0.9004, ..., 0.5534, 0.8230, 0.9335]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 4500000 -Density: 0.005 -Time: 9.735076665878296 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '2157', '-ss', '30000', '-sd', '0.005', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 4500000, "MATRIX_DENSITY": 0.005, "TIME_S": 20.902870178222656} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 143, 285, ..., 4499715, - 4499860, 4500000]), - col_indices=tensor([ 156, 239, 621, ..., 29559, 29678, 29713]), - values=tensor([0.8567, 0.6051, 0.6450, ..., 0.7880, 0.1108, 0.6079]), - size=(30000, 30000), nnz=4500000, layout=torch.sparse_csr) -tensor([0.9332, 0.3072, 0.5823, ..., 0.4039, 0.3932, 0.8837]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 4500000 -Density: 0.005 -Time: 20.902870178222656 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 143, 285, ..., 4499715, - 4499860, 4500000]), - col_indices=tensor([ 156, 239, 621, ..., 29559, 29678, 29713]), - values=tensor([0.8567, 0.6051, 0.6450, ..., 0.7880, 0.1108, 0.6079]), - size=(30000, 30000), nnz=4500000, layout=torch.sparse_csr) -tensor([0.9332, 0.3072, 0.5823, ..., 0.4039, 0.3932, 0.8837]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 4500000 -Density: 0.005 -Time: 20.902870178222656 seconds - -[18.31, 18.87, 18.08, 17.97, 18.03, 17.81, 18.09, 17.94, 17.97, 17.95] -[48.72] -26.580883026123047 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 2157, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 4500000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 20.902870178222656, 'TIME_S_1KI': 9.690714037191773, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1295.0206210327149, 'W': 48.72} -[18.31, 18.87, 18.08, 17.97, 18.03, 17.81, 18.09, 17.94, 17.97, 17.95, 18.88, 17.75, 18.5, 17.89, 18.12, 18.19, 18.06, 17.82, 18.14, 18.14] -325.87 -16.2935 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 2157, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 4500000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 20.902870178222656, 'TIME_S_1KI': 9.690714037191773, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1295.0206210327149, 'W': 48.72, 'J_1KI': 600.3804455413606, 'W_1KI': 22.58692628650904, 'W_D': 32.4265, 'J_D': 861.9250034465789, 'W_D_1KI': 15.03314789058878, 'J_D_1KI': 6.96947051024051} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.01.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.01.json deleted file mode 100644 index 46b364e..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.01.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000000, "MATRIX_DENSITY": 0.01, "TIME_S": 24.740506410598755, "TIME_S_1KI": 24.740506410598755, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1555.6125507831573, "W": 48.26, "J_1KI": 1555.6125507831573, "W_1KI": 48.26, "W_D": 31.86275, "J_D": 1027.063692550063, "W_D_1KI": 31.862749999999995, "J_D_1KI": 31.862749999999995} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.01.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.01.output deleted file mode 100644 index 5a27d6d..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.01.output +++ /dev/null @@ -1,45 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.01', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000000, "MATRIX_DENSITY": 0.01, "TIME_S": 24.740506410598755} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 261, 540, ..., 8999386, - 8999702, 9000000]), - col_indices=tensor([ 87, 89, 474, ..., 29936, 29945, 29986]), - values=tensor([0.1960, 0.4552, 0.3026, ..., 0.0541, 0.8647, 0.1885]), - size=(30000, 30000), nnz=9000000, layout=torch.sparse_csr) -tensor([0.5184, 0.4657, 0.5829, ..., 0.6124, 0.1016, 0.6788]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 9000000 -Density: 0.01 -Time: 24.740506410598755 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 261, 540, ..., 8999386, - 8999702, 9000000]), - col_indices=tensor([ 87, 89, 474, ..., 29936, 29945, 29986]), - values=tensor([0.1960, 0.4552, 0.3026, ..., 0.0541, 0.8647, 0.1885]), - size=(30000, 30000), nnz=9000000, layout=torch.sparse_csr) -tensor([0.5184, 0.4657, 0.5829, ..., 0.6124, 0.1016, 0.6788]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 9000000 -Density: 0.01 -Time: 24.740506410598755 seconds - -[18.57, 18.03, 17.81, 17.79, 18.07, 17.83, 17.76, 17.79, 22.13, 17.94] -[48.26] -32.233994007110596 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 24.740506410598755, 'TIME_S_1KI': 24.740506410598755, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1555.6125507831573, 'W': 48.26} -[18.57, 18.03, 17.81, 17.79, 18.07, 17.83, 17.76, 17.79, 22.13, 17.94, 18.41, 18.28, 18.04, 17.85, 18.14, 17.76, 17.85, 17.98, 18.37, 18.01] -327.945 -16.39725 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 24.740506410598755, 'TIME_S_1KI': 24.740506410598755, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1555.6125507831573, 'W': 48.26, 'J_1KI': 1555.6125507831573, 'W_1KI': 48.26, 'W_D': 31.86275, 'J_D': 1027.063692550063, 'W_D_1KI': 31.862749999999995, 'J_D_1KI': 31.862749999999995} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.05.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.05.json deleted file mode 100644 index e69de29..0000000 diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.05.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.05.output deleted file mode 100644 index 1e221b3..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.05.output +++ /dev/null @@ -1,10 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.05', '-c', '1'] -Traceback (most recent call last): - File "/nfshomes/vut/ampere_research/pytorch/run.py", line 129, in - program_result = run_program(program( - ^^^^^^^^^^^^^^^^^^^^ - File "/nfshomes/vut/ampere_research/pytorch/run.py", line 95, in run_program - process.check_returncode() - File "/usr/lib64/python3.11/subprocess.py", line 502, in check_returncode - raise CalledProcessError(self.returncode, self.args, self.stdout, -subprocess.CalledProcessError: Command '['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.05', '-c', '1']' died with . diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.1.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.1.json deleted file mode 100644 index e69de29..0000000 diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.1.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.1.output deleted file mode 100644 index 3d666e4..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.1.output +++ /dev/null @@ -1,10 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.1', '-c', '1'] -Traceback (most recent call last): - File "/nfshomes/vut/ampere_research/pytorch/run.py", line 129, in - program_result = run_program(program( - ^^^^^^^^^^^^^^^^^^^^ - File "/nfshomes/vut/ampere_research/pytorch/run.py", line 95, in run_program - process.check_returncode() - File "/usr/lib64/python3.11/subprocess.py", line 502, in check_returncode - raise CalledProcessError(self.returncode, self.args, self.stdout, -subprocess.CalledProcessError: Command '['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.1', '-c', '1']' died with . diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_1e-05.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_1e-05.json deleted file mode 100644 index 0a79d7f..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_1e-05.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 107895, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.02440118789673, "TIME_S_1KI": 0.1948598284248272, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1153.7907242584229, "W": 46.480000000000004, "J_1KI": 10.69364404521454, "W_1KI": 0.4307891931970898, "W_D": 30.00775, "J_D": 744.893795306921, "W_D_1KI": 0.2781199314148014, "J_D_1KI": 0.002577690638257578} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_1e-05.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_1e-05.output deleted file mode 100644 index b924b07..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_1e-05.output +++ /dev/null @@ -1,81 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.21645355224609375} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 1, ..., 8999, 9000, 9000]), - col_indices=tensor([14460, 16831, 822, ..., 6744, 9809, 7337]), - values=tensor([0.8017, 0.3190, 0.3138, ..., 0.7835, 0.9662, 0.5600]), - size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) -tensor([0.9173, 0.3762, 0.0968, ..., 0.4714, 0.2077, 0.2375]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 9000 -Density: 1e-05 -Time: 0.21645355224609375 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '97018', '-ss', '30000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 18.88284707069397} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 9000, 9000, 9000]), - col_indices=tensor([ 9904, 14426, 27453, ..., 21883, 11984, 20369]), - values=tensor([0.0383, 0.4855, 0.7841, ..., 0.2563, 0.0898, 0.2306]), - size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) -tensor([0.3139, 0.0953, 0.3077, ..., 0.3327, 0.7858, 0.4046]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 9000 -Density: 1e-05 -Time: 18.88284707069397 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '107895', '-ss', '30000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.02440118789673} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 9000, 9000, 9000]), - col_indices=tensor([ 4725, 5479, 22893, ..., 1358, 17086, 18996]), - values=tensor([0.5818, 0.4877, 0.3711, ..., 0.0217, 0.6305, 0.8996]), - size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) -tensor([0.9504, 0.0026, 0.0759, ..., 0.7751, 0.7432, 0.9903]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 9000 -Density: 1e-05 -Time: 21.02440118789673 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 9000, 9000, 9000]), - col_indices=tensor([ 4725, 5479, 22893, ..., 1358, 17086, 18996]), - values=tensor([0.5818, 0.4877, 0.3711, ..., 0.0217, 0.6305, 0.8996]), - size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) -tensor([0.9504, 0.0026, 0.0759, ..., 0.7751, 0.7432, 0.9903]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([30000, 30000]) -Rows: 30000 -Size: 900000000 -NNZ: 9000 -Density: 1e-05 -Time: 21.02440118789673 seconds - -[18.53, 17.93, 18.18, 18.25, 18.09, 18.04, 18.17, 18.3, 18.1, 18.0] -[46.48] -24.82338047027588 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 107895, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.02440118789673, 'TIME_S_1KI': 0.1948598284248272, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1153.7907242584229, 'W': 46.480000000000004} -[18.53, 17.93, 18.18, 18.25, 18.09, 18.04, 18.17, 18.3, 18.1, 18.0, 21.62, 17.95, 18.69, 18.08, 18.06, 18.24, 18.11, 18.56, 18.5, 18.24] -329.44500000000005 -16.472250000000003 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 107895, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.02440118789673, 'TIME_S_1KI': 0.1948598284248272, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1153.7907242584229, 'W': 46.480000000000004, 'J_1KI': 10.69364404521454, 'W_1KI': 0.4307891931970898, 'W_D': 30.00775, 'J_D': 744.893795306921, 'W_D_1KI': 0.2781199314148014, 'J_D_1KI': 0.002577690638257578} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_0.0001.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_0.0001.json deleted file mode 100644 index bdc1501..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_0.0001.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 145.63775444030762, "TIME_S_1KI": 145.63775444030762, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 8970.34398475647, "W": 47.33, "J_1KI": 8970.34398475647, "W_1KI": 47.33, "W_D": 20.887749999999997, "J_D": 3958.806308210372, "W_D_1KI": 20.887749999999997, "J_D_1KI": 20.887749999999997} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_0.0001.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_0.0001.output deleted file mode 100644 index 53f20ab..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_0.0001.output +++ /dev/null @@ -1,47 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '0.0001', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 145.63775444030762} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 54, 110, ..., 24999911, - 24999950, 25000000]), - col_indices=tensor([ 8959, 17884, 23107, ..., 479254, 480973, - 488093]), - values=tensor([0.9355, 0.2752, 0.4481, ..., 0.8378, 0.5445, 0.7672]), - size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) -tensor([0.8528, 0.7383, 0.2866, ..., 0.1948, 0.0294, 0.9953]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([500000, 500000]) -Rows: 500000 -Size: 250000000000 -NNZ: 25000000 -Density: 0.0001 -Time: 145.63775444030762 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 54, 110, ..., 24999911, - 24999950, 25000000]), - col_indices=tensor([ 8959, 17884, 23107, ..., 479254, 480973, - 488093]), - values=tensor([0.9355, 0.2752, 0.4481, ..., 0.8378, 0.5445, 0.7672]), - size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) -tensor([0.8528, 0.7383, 0.2866, ..., 0.1948, 0.0294, 0.9953]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([500000, 500000]) -Rows: 500000 -Size: 250000000000 -NNZ: 25000000 -Density: 0.0001 -Time: 145.63775444030762 seconds - -[18.47, 18.19, 18.09, 17.89, 17.96, 17.92, 17.83, 17.75, 17.84, 19.05] -[47.33] -189.52765655517578 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 145.63775444030762, 'TIME_S_1KI': 145.63775444030762, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 8970.34398475647, 'W': 47.33} -[18.47, 18.19, 18.09, 17.89, 17.96, 17.92, 17.83, 17.75, 17.84, 19.05, 46.69, 47.22, 47.59, 46.72, 46.73, 40.63, 39.32, 36.13, 23.63, 30.6] -528.845 -26.44225 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 145.63775444030762, 'TIME_S_1KI': 145.63775444030762, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 8970.34398475647, 'W': 47.33, 'J_1KI': 8970.34398475647, 'W_1KI': 47.33, 'W_D': 20.887749999999997, 'J_D': 3958.806308210372, 'W_D_1KI': 20.887749999999997, 'J_D_1KI': 20.887749999999997} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_1e-05.json deleted file mode 100644 index 4c5f481..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_1e-05.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1584, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.39402437210083, "TIME_S_1KI": 13.506328517740423, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1269.1197284793855, "W": 49.09, "J_1KI": 801.2119497975918, "W_1KI": 30.99116161616162, "W_D": 32.84400000000001, "J_D": 849.1132279930117, "W_D_1KI": 20.73484848484849, "J_D_1KI": 13.090182124273037} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_1e-05.output deleted file mode 100644 index fddfb78..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_1e-05.output +++ /dev/null @@ -1,68 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 13.255852460861206} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 7, 12, ..., 2499986, - 2499994, 2500000]), - col_indices=tensor([ 32665, 199892, 257011, ..., 396065, 419080, - 487395]), - values=tensor([0.3748, 0.5935, 0.2005, ..., 0.1065, 0.8464, 0.2707]), - size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.0132, 0.8881, 0.5277, ..., 0.7521, 0.8271, 0.6760]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([500000, 500000]) -Rows: 500000 -Size: 250000000000 -NNZ: 2500000 -Density: 1e-05 -Time: 13.255852460861206 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1584', '-ss', '500000', '-sd', '1e-05', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.39402437210083} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 9, 15, ..., 2499992, - 2499996, 2500000]), - col_indices=tensor([ 21234, 111933, 179128, ..., 123034, 350119, - 388488]), - values=tensor([0.5221, 0.0977, 0.5310, ..., 0.7164, 0.7480, 0.4663]), - size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.3196, 0.7899, 0.9317, ..., 0.3730, 0.0273, 0.1855]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([500000, 500000]) -Rows: 500000 -Size: 250000000000 -NNZ: 2500000 -Density: 1e-05 -Time: 21.39402437210083 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 9, 15, ..., 2499992, - 2499996, 2500000]), - col_indices=tensor([ 21234, 111933, 179128, ..., 123034, 350119, - 388488]), - values=tensor([0.5221, 0.0977, 0.5310, ..., 0.7164, 0.7480, 0.4663]), - size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.3196, 0.7899, 0.9317, ..., 0.3730, 0.0273, 0.1855]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([500000, 500000]) -Rows: 500000 -Size: 250000000000 -NNZ: 2500000 -Density: 1e-05 -Time: 21.39402437210083 seconds - -[18.22, 18.42, 18.08, 18.01, 17.97, 17.95, 18.16, 18.01, 18.24, 17.86] -[49.09] -25.852917671203613 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1584, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.39402437210083, 'TIME_S_1KI': 13.506328517740423, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1269.1197284793855, 'W': 49.09} -[18.22, 18.42, 18.08, 18.01, 17.97, 17.95, 18.16, 18.01, 18.24, 17.86, 18.17, 18.05, 17.89, 17.96, 18.01, 17.98, 17.96, 17.9, 18.04, 18.33] -324.91999999999996 -16.246 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1584, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.39402437210083, 'TIME_S_1KI': 13.506328517740423, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1269.1197284793855, 'W': 49.09, 'J_1KI': 801.2119497975918, 'W_1KI': 30.99116161616162, 'W_D': 32.84400000000001, 'J_D': 849.1132279930117, 'W_D_1KI': 20.73484848484849, 'J_D_1KI': 13.090182124273037} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0001.json deleted file mode 100644 index e4cd738..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0001.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 18145, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.748866319656372, "TIME_S_1KI": 1.1435032416454325, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1163.7240363693238, "W": 47.52, "J_1KI": 64.13469475719613, "W_1KI": 2.6189032791402593, "W_D": 31.13875, "J_D": 762.5612760415673, "W_D_1KI": 1.7161063653899147, "J_D_1KI": 0.09457736926921546} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0005.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0005.json deleted file mode 100644 index f35b37b..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0005.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 8093, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.0005, "TIME_S": 20.65882921218872, "TIME_S_1KI": 2.5526787609278045, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1204.7929471635819, "W": 48.53, "J_1KI": 148.86852182918346, "W_1KI": 5.996540219943161, "W_D": 32.0905, "J_D": 796.6702672770023, "W_D_1KI": 3.965216854071419, "J_D_1KI": 0.48995636402711223} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0005.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0005.output deleted file mode 100644 index e222138..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0005.output +++ /dev/null @@ -1,65 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.0005', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.0005, "TIME_S": 2.594694137573242} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 27, 51, ..., 1249948, - 1249974, 1250000]), - col_indices=tensor([ 1900, 3832, 3916, ..., 43370, 44397, 46024]), - values=tensor([0.8523, 0.5318, 0.4293, ..., 0.0706, 0.5129, 0.4581]), - size=(50000, 50000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.7048, 0.2686, 0.1617, ..., 0.3130, 0.5850, 0.3952]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 1250000 -Density: 0.0005 -Time: 2.594694137573242 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '8093', '-ss', '50000', '-sd', '0.0005', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.0005, "TIME_S": 20.65882921218872} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 31, 51, ..., 1249949, - 1249978, 1250000]), - col_indices=tensor([ 2007, 2541, 6490, ..., 44052, 45524, 48586]), - values=tensor([0.7205, 0.3330, 0.8983, ..., 0.6824, 0.5041, 0.2342]), - size=(50000, 50000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.2974, 0.0968, 0.2938, ..., 0.7419, 0.3048, 0.3649]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 1250000 -Density: 0.0005 -Time: 20.65882921218872 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 31, 51, ..., 1249949, - 1249978, 1250000]), - col_indices=tensor([ 2007, 2541, 6490, ..., 44052, 45524, 48586]), - values=tensor([0.7205, 0.3330, 0.8983, ..., 0.6824, 0.5041, 0.2342]), - size=(50000, 50000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.2974, 0.0968, 0.2938, ..., 0.7419, 0.3048, 0.3649]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 1250000 -Density: 0.0005 -Time: 20.65882921218872 seconds - -[18.26, 17.93, 19.82, 19.92, 18.14, 18.3, 17.92, 18.17, 18.01, 17.89] -[48.53] -24.825735569000244 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 8093, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 20.65882921218872, 'TIME_S_1KI': 2.5526787609278045, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1204.7929471635819, 'W': 48.53} -[18.26, 17.93, 19.82, 19.92, 18.14, 18.3, 17.92, 18.17, 18.01, 17.89, 18.17, 18.47, 18.36, 17.94, 18.08, 17.71, 18.06, 18.03, 17.85, 17.84] -328.79 -16.439500000000002 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 8093, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 20.65882921218872, 'TIME_S_1KI': 2.5526787609278045, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1204.7929471635819, 'W': 48.53, 'J_1KI': 148.86852182918346, 'W_1KI': 5.996540219943161, 'W_D': 32.0905, 'J_D': 796.6702672770023, 'W_D_1KI': 3.965216854071419, 'J_D_1KI': 0.48995636402711223} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.001.json deleted file mode 100644 index b01cbb8..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.001.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 3914, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 20.652085304260254, "TIME_S_1KI": 5.276465330674567, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1237.7624758052825, "W": 48.73, "J_1KI": 316.2397740943491, "W_1KI": 12.450178845171179, "W_D": 32.29675, "J_D": 820.3510207359792, "W_D_1KI": 8.25159683188554, "J_D_1KI": 2.1082260684429075} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.005.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.005.json deleted file mode 100644 index b7790eb..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.005.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.005, "TIME_S": 35.204474687576294, "TIME_S_1KI": 35.204474687576294, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2211.0711840987206, "W": 48.25, "J_1KI": 2211.0711840987206, "W_1KI": 48.25, "W_D": 31.797500000000003, "J_D": 1457.1302793031932, "W_D_1KI": 31.797500000000007, "J_D_1KI": 31.797500000000007} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.005.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.005.output deleted file mode 100644 index e6456ba..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.005.output +++ /dev/null @@ -1,45 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.005', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.005, "TIME_S": 35.204474687576294} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 258, 483, ..., 12499493, - 12499749, 12500000]), - col_indices=tensor([ 83, 353, 999, ..., 49462, 49644, 49677]), - values=tensor([0.4021, 0.2117, 0.1170, ..., 0.4112, 0.6043, 0.8924]), - size=(50000, 50000), nnz=12500000, layout=torch.sparse_csr) -tensor([0.5812, 0.1638, 0.8038, ..., 0.6848, 0.2982, 0.3371]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 12500000 -Density: 0.005 -Time: 35.204474687576294 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 258, 483, ..., 12499493, - 12499749, 12500000]), - col_indices=tensor([ 83, 353, 999, ..., 49462, 49644, 49677]), - values=tensor([0.4021, 0.2117, 0.1170, ..., 0.4112, 0.6043, 0.8924]), - size=(50000, 50000), nnz=12500000, layout=torch.sparse_csr) -tensor([0.5812, 0.1638, 0.8038, ..., 0.6848, 0.2982, 0.3371]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 12500000 -Density: 0.005 -Time: 35.204474687576294 seconds - -[18.49, 20.96, 18.34, 17.83, 18.46, 17.92, 17.89, 18.07, 18.14, 17.83] -[48.25] -45.82530951499939 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 35.204474687576294, 'TIME_S_1KI': 35.204474687576294, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2211.0711840987206, 'W': 48.25} -[18.49, 20.96, 18.34, 17.83, 18.46, 17.92, 17.89, 18.07, 18.14, 17.83, 18.4, 17.93, 18.23, 18.54, 18.36, 18.08, 18.03, 17.87, 18.07, 17.94] -329.04999999999995 -16.452499999999997 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 35.204474687576294, 'TIME_S_1KI': 35.204474687576294, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2211.0711840987206, 'W': 48.25, 'J_1KI': 2211.0711840987206, 'W_1KI': 48.25, 'W_D': 31.797500000000003, 'J_D': 1457.1302793031932, 'W_D_1KI': 31.797500000000007, 'J_D_1KI': 31.797500000000007} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.01.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.01.json deleted file mode 100644 index 17bdd0a..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.01.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 71.75394105911255, "TIME_S_1KI": 71.75394105911255, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 5446.096093916894, "W": 46.45, "J_1KI": 5446.096093916894, "W_1KI": 46.45, "W_D": 30.238500000000002, "J_D": 3545.3557962520126, "W_D_1KI": 30.238500000000002, "J_D_1KI": 30.238500000000002} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.01.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.01.output deleted file mode 100644 index 0c0f915..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.01.output +++ /dev/null @@ -1,45 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.01', '-c', '1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 71.75394105911255} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 525, 1034, ..., 24998963, - 24999515, 25000000]), - col_indices=tensor([ 177, 318, 326, ..., 49654, 49818, 49958]), - values=tensor([0.8680, 0.9679, 0.4484, ..., 0.6827, 0.9201, 0.6726]), - size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) -tensor([0.0409, 0.1065, 0.8971, ..., 0.2398, 0.1614, 0.8383]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 25000000 -Density: 0.01 -Time: 71.75394105911255 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 525, 1034, ..., 24998963, - 24999515, 25000000]), - col_indices=tensor([ 177, 318, 326, ..., 49654, 49818, 49958]), - values=tensor([0.8680, 0.9679, 0.4484, ..., 0.6827, 0.9201, 0.6726]), - size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) -tensor([0.0409, 0.1065, 0.8971, ..., 0.2398, 0.1614, 0.8383]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 25000000 -Density: 0.01 -Time: 71.75394105911255 seconds - -[18.42, 17.83, 17.87, 17.83, 18.36, 17.93, 17.78, 17.97, 18.31, 17.74] -[46.45] -117.24641752243042 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 71.75394105911255, 'TIME_S_1KI': 71.75394105911255, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 5446.096093916894, 'W': 46.45} -[18.42, 17.83, 17.87, 17.83, 18.36, 17.93, 17.78, 17.97, 18.31, 17.74, 18.62, 17.9, 18.04, 17.88, 18.17, 17.99, 17.87, 18.14, 17.94, 18.06] -324.23 -16.2115 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 71.75394105911255, 'TIME_S_1KI': 71.75394105911255, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 5446.096093916894, 'W': 46.45, 'J_1KI': 5446.096093916894, 'W_1KI': 46.45, 'W_D': 30.238500000000002, 'J_D': 3545.3557962520126, 'W_D_1KI': 30.238500000000002, 'J_D_1KI': 30.238500000000002} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_1e-05.json deleted file mode 100644 index cd77447..0000000 --- a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_1e-05.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 42431, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 20.11350655555725, "TIME_S_1KI": 0.47402857711478047, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1109.2391641235351, "W": 46.64, "J_1KI": 26.142187648736424, "W_1KI": 1.0991963422969055, "W_D": 30.3375, "J_D": 721.5167912006378, "W_D_1KI": 0.7149843274964058, "J_D_1KI": 0.01685051795848332} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_0.0001.json index 41d6bb0..b76a936 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_0.0001.json +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_0.0001.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 17.146100997924805, "TIME_S_1KI": 17.146100997924805, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1342.6130161285403, "W": 65.43610945887401, "J_1KI": 1342.6130161285403, "W_1KI": 65.43610945887401, "W_D": 46.466109458874016, "J_D": 953.388028173447, "W_D_1KI": 46.466109458874016, "J_D_1KI": 46.466109458874016} +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 690, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 15.003246307373047, "TIME_S_1KI": 21.74383522807688, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 736.2026811027528, "W": 51.180846035126734, "J_1KI": 1066.960407395294, "W_1KI": 74.1751391813431, "W_D": 35.27984603512673, "J_D": 507.4772937932015, "W_D_1KI": 51.1302116451112, "J_D_1KI": 74.10175600740754} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_0.0001.output index 451f542..175c45d 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_0.0001.output +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_0.0001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 17.146100997924805} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 100000 -sd 0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 1.520033359527588} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 9, 17, ..., 999972, - 999990, 1000000]), - col_indices=tensor([13952, 31113, 48803, ..., 72766, 82982, 86351]), - values=tensor([0.4430, 0.0507, 0.5237, ..., 0.5341, 0.7602, 0.3481]), +tensor(crow_indices=tensor([ 0, 9, 21, ..., 999972, + 999987, 1000000]), + col_indices=tensor([ 5448, 9227, 13530, ..., 69235, 78462, 82074]), + values=tensor([0.3723, 0.4802, 0.5484, ..., 0.8279, 0.7827, 0.0235]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.1669, 0.1860, 0.1675, ..., 0.5137, 0.0308, 0.0638]) +tensor([0.9343, 0.5585, 0.5996, ..., 0.1233, 0.3217, 0.3044]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,16 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 17.146100997924805 seconds +Time: 1.520033359527588 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 690 -ss 100000 -sd 0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 15.003246307373047} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 9, 17, ..., 999972, - 999990, 1000000]), - col_indices=tensor([13952, 31113, 48803, ..., 72766, 82982, 86351]), - values=tensor([0.4430, 0.0507, 0.5237, ..., 0.5341, 0.7602, 0.3481]), +tensor(crow_indices=tensor([ 0, 11, 20, ..., 999982, + 999992, 1000000]), + col_indices=tensor([ 122, 3109, 10697, ..., 57820, 90383, 91253]), + values=tensor([0.9003, 0.9806, 0.3302, ..., 0.9034, 0.0249, 0.7877]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.1669, 0.1860, 0.1675, ..., 0.5137, 0.0308, 0.0638]) +tensor([0.6863, 0.9695, 0.8316, ..., 0.5738, 0.3295, 0.1413]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -33,13 +36,30 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 17.146100997924805 seconds +Time: 15.003246307373047 seconds -[21.44, 21.28, 21.16, 21.16, 20.96, 20.96, 20.96, 21.0, 21.24, 21.4] -[21.44, 21.28, 21.92, 23.96, 24.84, 38.64, 55.84, 70.04, 84.52, 91.04, 91.04, 91.56, 90.84, 89.12, 88.88, 89.24, 89.64, 88.8, 89.08, 90.0] -20.517922401428223 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 17.146100997924805, 'TIME_S_1KI': 17.146100997924805, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1342.6130161285403, 'W': 65.43610945887401} -[21.44, 21.28, 21.16, 21.16, 20.96, 20.96, 20.96, 21.0, 21.24, 21.4, 21.16, 21.04, 21.08, 20.92, 20.88, 20.88, 21.04, 20.96, 21.2, 21.36] -379.4 -18.97 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 17.146100997924805, 'TIME_S_1KI': 17.146100997924805, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1342.6130161285403, 'W': 65.43610945887401, 'J_1KI': 1342.6130161285403, 'W_1KI': 65.43610945887401, 'W_D': 46.466109458874016, 'J_D': 953.388028173447, 'W_D_1KI': 46.466109458874016, 'J_D_1KI': 46.466109458874016} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 11, 20, ..., 999982, + 999992, 1000000]), + col_indices=tensor([ 122, 3109, 10697, ..., 57820, 90383, 91253]), + values=tensor([0.9003, 0.9806, 0.3302, ..., 0.9034, 0.0249, 0.7877]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.6863, 0.9695, 0.8316, ..., 0.5738, 0.3295, 0.1413]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 15.003246307373047 seconds + +[17.56, 17.56, 17.72, 17.72, 17.72, 17.92, 17.92, 17.64, 17.48, 17.56] +[17.24, 17.28, 18.12, 18.12, 20.28, 29.36, 44.04, 63.04, 74.68, 91.04, 91.28, 91.4, 88.68, 90.76] +14.384339809417725 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 690, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 15.003246307373047, 'TIME_S_1KI': 21.74383522807688, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 736.2026811027528, 'W': 51.180846035126734} +[17.56, 17.56, 17.72, 17.72, 17.72, 17.92, 17.92, 17.64, 17.48, 17.56, 17.84, 17.84, 17.6, 17.92, 17.8, 17.8, 17.68, 17.52, 17.16, 17.08] +318.02000000000004 +15.901000000000002 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 690, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 15.003246307373047, 'TIME_S_1KI': 21.74383522807688, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 736.2026811027528, 'W': 51.180846035126734, 'J_1KI': 1066.960407395294, 'W_1KI': 74.1751391813431, 'W_D': 35.27984603512673, 'J_D': 507.4772937932015, 'W_D_1KI': 51.1302116451112, 'J_D_1KI': 74.10175600740754} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_0.001.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_0.001.json index c78bc8a..a46b44b 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_0.001.json +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_0.001.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 159.18061113357544, "TIME_S_1KI": 159.18061113357544, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 13305.551260681154, "W": 81.94491850885544, "J_1KI": 13305.551260681154, "W_1KI": 81.94491850885544, "W_D": 61.991918508855434, "J_D": 10065.7449476676, "W_D_1KI": 61.991918508855434, "J_D_1KI": 61.991918508855434} +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 14.453001976013184, "TIME_S_1KI": 144.53001976013184, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1049.84748960495, "W": 50.98554654857658, "J_1KI": 10498.4748960495, "W_1KI": 509.85546548576576, "W_D": 35.17954654857658, "J_D": 724.3848723731041, "W_D_1KI": 351.7954654857658, "J_D_1KI": 3517.954654857658} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_0.001.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_0.001.output index a21bcbb..f3d22b6 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_0.001.output +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_0.001.output @@ -1,15 +1,14 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 0.001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 159.18061113357544} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 100000 -sd 0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 14.453001976013184} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 95, 182, ..., 9999785, - 9999891, 10000000]), - col_indices=tensor([ 2375, 2397, 2562, ..., 95994, 97725, 99229]), - values=tensor([3.2988e-01, 7.8520e-04, 8.6482e-01, ..., - 9.5198e-01, 4.5600e-01, 9.5863e-01]), +tensor(crow_indices=tensor([ 0, 101, 216, ..., 9999796, + 9999906, 10000000]), + col_indices=tensor([ 2079, 2370, 2404, ..., 91560, 92604, 94393]), + values=tensor([0.9041, 0.3243, 0.4250, ..., 0.8376, 0.1046, 0.5896]), size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.4135, 0.2091, 0.0976, ..., 0.1293, 0.9759, 0.9614]) +tensor([0.3984, 0.6112, 0.9728, ..., 0.2358, 0.4123, 0.2200]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -17,17 +16,16 @@ Rows: 100000 Size: 10000000000 NNZ: 10000000 Density: 0.001 -Time: 159.18061113357544 seconds +Time: 14.453001976013184 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 95, 182, ..., 9999785, - 9999891, 10000000]), - col_indices=tensor([ 2375, 2397, 2562, ..., 95994, 97725, 99229]), - values=tensor([3.2988e-01, 7.8520e-04, 8.6482e-01, ..., - 9.5198e-01, 4.5600e-01, 9.5863e-01]), +tensor(crow_indices=tensor([ 0, 101, 216, ..., 9999796, + 9999906, 10000000]), + col_indices=tensor([ 2079, 2370, 2404, ..., 91560, 92604, 94393]), + values=tensor([0.9041, 0.3243, 0.4250, ..., 0.8376, 0.1046, 0.5896]), size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.4135, 0.2091, 0.0976, ..., 0.1293, 0.9759, 0.9614]) +tensor([0.3984, 0.6112, 0.9728, ..., 0.2358, 0.4123, 0.2200]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -35,13 +33,13 @@ Rows: 100000 Size: 10000000000 NNZ: 10000000 Density: 0.001 -Time: 159.18061113357544 seconds +Time: 14.453001976013184 seconds -[22.04, 21.88, 21.96, 22.12, 21.96, 21.92, 22.08, 22.08, 22.24, 22.08] -[22.12, 22.0, 22.4, 24.16, 25.0, 26.76, 35.48, 36.76, 45.64, 60.64, 68.76, 79.68, 90.72, 91.28, 91.28, 90.96, 89.36, 89.36, 87.68, 88.24, 87.52, 88.44, 91.68, 90.56, 91.8, 92.44, 92.04, 93.12, 92.52, 92.52, 92.88, 91.88, 91.24, 91.12, 90.44, 89.64, 89.48, 89.16, 87.68, 85.84, 85.0, 86.96, 88.04, 88.04, 88.0, 89.08, 87.48, 87.52, 86.2, 84.8, 84.64, 85.48, 85.76, 86.32, 87.44, 87.44, 88.64, 89.72, 89.72, 89.4, 87.64, 88.72, 89.0, 89.12, 89.76, 91.04, 88.36, 87.88, 86.68, 87.88, 86.48, 86.8, 86.68, 87.68, 87.68, 86.8, 87.56, 86.76, 84.72, 85.2, 85.08, 85.44, 86.48, 85.92, 86.4, 86.84, 84.56, 83.28, 84.6, 84.6, 85.76, 88.64, 88.68, 89.48, 90.88, 87.96, 88.04, 89.64, 89.6, 88.16, 88.6, 87.04, 86.96, 86.24, 86.24, 87.56, 87.32, 88.48, 89.36, 88.68, 89.56, 88.2, 85.8, 85.8, 86.36, 86.36, 88.2, 88.52, 91.48, 91.48, 91.08, 90.04, 89.24, 88.08, 88.36, 89.92, 89.76, 90.6, 89.4, 87.04, 84.72, 85.04, 83.32, 84.92, 84.92, 84.2, 85.16, 84.0, 84.2, 83.92, 84.84, 84.84, 87.04, 88.68, 91.04, 91.52, 89.88, 89.96, 89.44, 89.44, 88.36, 88.12, 90.24, 89.76, 88.8, 88.0, 86.72, 86.4] -162.37188959121704 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 159.18061113357544, 'TIME_S_1KI': 159.18061113357544, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 13305.551260681154, 'W': 81.94491850885544} -[22.04, 21.88, 21.96, 22.12, 21.96, 21.92, 22.08, 22.08, 22.24, 22.08, 21.88, 22.04, 22.48, 22.64, 22.36, 22.6, 22.6, 22.44, 21.76, 21.8] -399.06000000000006 -19.953000000000003 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 159.18061113357544, 'TIME_S_1KI': 159.18061113357544, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 13305.551260681154, 'W': 81.94491850885544, 'J_1KI': 13305.551260681154, 'W_1KI': 81.94491850885544, 'W_D': 61.991918508855434, 'J_D': 10065.7449476676, 'W_D_1KI': 61.991918508855434, 'J_D_1KI': 61.991918508855434} +[17.32, 17.28, 17.28, 17.36, 17.64, 17.72, 17.68, 17.92, 17.88, 17.72] +[17.76, 17.96, 18.52, 20.36, 21.52, 25.36, 25.36, 31.2, 31.76, 45.88, 58.28, 65.88, 77.32, 84.48, 83.76, 84.4, 84.16, 84.96, 85.8, 86.16] +20.5910804271698 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 14.453001976013184, 'TIME_S_1KI': 144.53001976013184, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1049.84748960495, 'W': 50.98554654857658} +[17.32, 17.28, 17.28, 17.36, 17.64, 17.72, 17.68, 17.92, 17.88, 17.72, 17.16, 17.24, 17.32, 17.32, 17.44, 17.8, 17.76, 17.76, 17.72, 17.8] +316.12 +15.806000000000001 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 14.453001976013184, 'TIME_S_1KI': 144.53001976013184, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1049.84748960495, 'W': 50.98554654857658, 'J_1KI': 10498.4748960495, 'W_1KI': 509.85546548576576, 'W_D': 35.17954654857658, 'J_D': 724.3848723731041, 'W_D_1KI': 351.7954654857658, 'J_D_1KI': 3517.954654857658} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_1e-05.json index dc43877..c8834ef 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_1e-05.json +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_1e-05.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 3301, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 12.605360507965088, "TIME_S_1KI": 3.8186490481566455, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 881.8972729587555, "W": 57.01281240597429, "J_1KI": 267.1606400965633, "W_1KI": 17.27137606966807, "W_D": 37.77781240597429, "J_D": 584.3625026237966, "W_D_1KI": 11.444353955157311, "J_D_1KI": 3.466935460514181} +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 4862, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 16.123133897781372, "TIME_S_1KI": 3.316152591069801, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1103.8810626983643, "W": 59.41987873604025, "J_1KI": 227.04258796757802, "W_1KI": 12.221283162492854, "W_D": 43.51287873604025, "J_D": 808.3665574879647, "W_D_1KI": 8.949584273146904, "J_D_1KI": 1.8407207472535796} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_1e-05.output index 842e972..7c14ca6 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_1e-05.output +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_1e-05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 3.180464267730713} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 100000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.3613910675048828} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 2, ..., 99997, 99997, +tensor(crow_indices=tensor([ 0, 0, 2, ..., 99999, 100000, 100000]), - col_indices=tensor([ 3926, 50379, 15277, ..., 29136, 40772, 68436]), - values=tensor([0.5699, 0.5366, 0.1661, ..., 0.2141, 0.3018, 0.3946]), + col_indices=tensor([27177, 91140, 35351, ..., 36842, 63353, 40213]), + values=tensor([0.8085, 0.0220, 0.0238, ..., 0.9528, 0.8072, 0.8356]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.8865, 0.6102, 0.2945, ..., 0.5701, 0.8700, 0.6634]) +tensor([0.5173, 0.6337, 0.4770, ..., 0.8095, 0.3804, 0.7829]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,19 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 3.180464267730713 seconds +Time: 0.3613910675048828 seconds -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 3301 -ss 100000 -sd 1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 12.605360507965088} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 2905 -ss 100000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 6.272582054138184} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99997, 99998, +tensor(crow_indices=tensor([ 0, 1, 1, ..., 99996, 99997, 100000]), - col_indices=tensor([33916, 32242, 16140, ..., 45457, 58350, 84955]), - values=tensor([0.9718, 0.7827, 0.4187, ..., 0.1750, 0.8602, 0.7313]), + col_indices=tensor([57428, 26674, 73957, ..., 55311, 85675, 87326]), + values=tensor([0.1133, 0.1214, 0.0575, ..., 0.3604, 0.8021, 0.3274]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.7754, 0.6786, 0.3605, ..., 0.9739, 0.1301, 0.4075]) +tensor([0.7862, 0.8717, 0.9240, ..., 0.8758, 0.8236, 0.0748]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -36,16 +36,19 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 12.605360507965088 seconds +Time: 6.272582054138184 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 4862 -ss 100000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 16.123133897781372} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99997, 99998, +tensor(crow_indices=tensor([ 0, 1, 3, ..., 99999, 100000, 100000]), - col_indices=tensor([33916, 32242, 16140, ..., 45457, 58350, 84955]), - values=tensor([0.9718, 0.7827, 0.4187, ..., 0.1750, 0.8602, 0.7313]), + col_indices=tensor([36017, 48507, 97216, ..., 44545, 10809, 6488]), + values=tensor([0.2196, 0.1379, 0.1607, ..., 0.1720, 0.9833, 0.1649]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.7754, 0.6786, 0.3605, ..., 0.9739, 0.1301, 0.4075]) +tensor([0.6606, 0.9945, 0.6366, ..., 0.7352, 0.9827, 0.2989]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -53,13 +56,30 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 12.605360507965088 seconds +Time: 16.123133897781372 seconds -[21.24, 21.24, 21.36, 21.4, 21.52, 21.72, 21.56, 21.64, 21.48, 21.48] -[21.4, 21.4, 21.8, 22.88, 23.96, 35.92, 52.84, 66.08, 81.2, 91.72, 90.6, 91.36, 91.84, 91.24, 91.24] -15.46840500831604 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 3301, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 12.605360507965088, 'TIME_S_1KI': 3.8186490481566455, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 881.8972729587555, 'W': 57.01281240597429} -[21.24, 21.24, 21.36, 21.4, 21.52, 21.72, 21.56, 21.64, 21.48, 21.48, 21.28, 21.28, 21.32, 21.48, 21.6, 21.48, 21.28, 21.12, 20.84, 20.76] -384.69999999999993 -19.234999999999996 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 3301, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 12.605360507965088, 'TIME_S_1KI': 3.8186490481566455, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 881.8972729587555, 'W': 57.01281240597429, 'J_1KI': 267.1606400965633, 'W_1KI': 17.27137606966807, 'W_D': 37.77781240597429, 'J_D': 584.3625026237966, 'W_D_1KI': 11.444353955157311, 'J_D_1KI': 3.466935460514181} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 3, ..., 99999, 100000, + 100000]), + col_indices=tensor([36017, 48507, 97216, ..., 44545, 10809, 6488]), + values=tensor([0.2196, 0.1379, 0.1607, ..., 0.1720, 0.9833, 0.1649]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.6606, 0.9945, 0.6366, ..., 0.7352, 0.9827, 0.2989]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 16.123133897781372 seconds + +[17.72, 17.76, 17.68, 17.88, 17.72, 17.52, 17.6, 17.48, 17.6, 17.6] +[17.72, 17.72, 17.8, 21.08, 22.76, 35.32, 49.56, 66.44, 76.68, 89.56, 88.0, 87.44, 86.52, 85.84, 85.76, 86.6, 86.04, 85.28] +18.57763910293579 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4862, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 16.123133897781372, 'TIME_S_1KI': 3.316152591069801, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1103.8810626983643, 'W': 59.41987873604025} +[17.72, 17.76, 17.68, 17.88, 17.72, 17.52, 17.6, 17.48, 17.6, 17.6, 17.8, 17.8, 17.76, 17.68, 17.76, 17.88, 17.72, 17.48, 17.52, 17.48] +318.14 +15.907 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4862, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 16.123133897781372, 'TIME_S_1KI': 3.316152591069801, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1103.8810626983643, 'W': 59.41987873604025, 'J_1KI': 227.04258796757802, 'W_1KI': 12.221283162492854, 'W_D': 43.51287873604025, 'J_D': 808.3665574879647, 'W_D_1KI': 8.949584273146904, 'J_D_1KI': 1.8407207472535796} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_5e-05.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_5e-05.json new file mode 100644 index 0000000..0831cb8 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1295, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 13.363306522369385, "TIME_S_1KI": 10.319155615729255, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1148.1477067947387, "W": 58.62479671787461, "J_1KI": 886.600545787443, "W_1KI": 45.27011329565607, "W_D": 42.857796717874606, "J_D": 839.3561048357486, "W_D_1KI": 33.09482372036649, "J_D_1KI": 25.55584843271544} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_5e-05.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_5e-05.output new file mode 100644 index 0000000..fe6c43d --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_5e-05.output @@ -0,0 +1,65 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 100000 -sd 5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.8107287883758545} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 7, 12, ..., 499988, 499996, + 500000]), + col_indices=tensor([ 2924, 5581, 32898, ..., 25573, 35176, 44980]), + values=tensor([0.4338, 0.2090, 0.8667, ..., 0.7968, 0.4161, 0.0285]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.7311, 0.8750, 0.4611, ..., 0.2473, 0.3600, 0.7684]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 0.8107287883758545 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1295 -ss 100000 -sd 5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 13.363306522369385} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 7, ..., 499992, 499997, + 500000]), + col_indices=tensor([20312, 45798, 57469, ..., 9915, 72511, 98823]), + values=tensor([0.2450, 0.9842, 0.2161, ..., 0.8948, 0.9103, 0.6478]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.2448, 0.6389, 0.3272, ..., 0.3843, 0.8480, 0.1017]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 13.363306522369385 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 7, ..., 499992, 499997, + 500000]), + col_indices=tensor([20312, 45798, 57469, ..., 9915, 72511, 98823]), + values=tensor([0.2450, 0.9842, 0.2161, ..., 0.8948, 0.9103, 0.6478]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.2448, 0.6389, 0.3272, ..., 0.3843, 0.8480, 0.1017]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 13.363306522369385 seconds + +[17.48, 17.6, 17.56, 17.72, 17.52, 17.48, 17.56, 17.6, 17.6, 17.8] +[18.0, 17.84, 17.76, 18.88, 19.6, 35.4, 49.36, 64.12, 77.28, 86.8, 84.84, 85.28, 83.64, 83.64, 82.96, 82.4, 81.96, 80.44, 80.16] +19.58467698097229 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1295, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 13.363306522369385, 'TIME_S_1KI': 10.319155615729255, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1148.1477067947387, 'W': 58.62479671787461} +[17.48, 17.6, 17.56, 17.72, 17.52, 17.48, 17.56, 17.6, 17.6, 17.8, 17.64, 17.44, 17.36, 17.52, 17.36, 17.2, 17.52, 17.44, 17.6, 17.6] +315.34 +15.767 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1295, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 13.363306522369385, 'TIME_S_1KI': 10.319155615729255, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1148.1477067947387, 'W': 58.62479671787461, 'J_1KI': 886.600545787443, 'W_1KI': 45.27011329565607, 'W_D': 42.857796717874606, 'J_D': 839.3561048357486, 'W_D_1KI': 33.09482372036649, 'J_D_1KI': 25.55584843271544} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.0001.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.0001.json index b901590..30708d9 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.0001.json +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.0001.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 32089, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.109246492385864, "TIME_S_1KI": 0.3150377541333748, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 318.60778367996215, "W": 22.396548812340328, "J_1KI": 9.92887854654125, "W_1KI": 0.6979509742385342, "W_D": 4.033548812340328, "J_D": 57.38027131915093, "W_D_1KI": 0.1256988005964763, "J_D_1KI": 0.003917192826092315} +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 33188, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.848255395889282, "TIME_S_1KI": 0.3268728274041606, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 283.2797647285461, "W": 19.966696619139725, "J_1KI": 8.535608193580394, "W_1KI": 0.6016239791231688, "W_D": 4.899696619139723, "J_D": 69.51499950075144, "W_D_1KI": 0.14763458536638915, "J_D_1KI": 0.0044484327276843785} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.0001.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.0001.output index 8b8a1a7..ce5f5e4 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.0001.output +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.0001.output @@ -1,13 +1,13 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.3272056579589844} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.039971351623535156} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 10000, 10000, 10000]), - col_indices=tensor([ 654, 4587, 9013, ..., 1787, 1854, 8773]), - values=tensor([0.1124, 0.2109, 0.1818, ..., 0.9520, 0.5472, 0.0091]), +tensor(crow_indices=tensor([ 0, 1, 2, ..., 9999, 9999, 10000]), + col_indices=tensor([5709, 5957, 5382, ..., 8260, 3428, 9778]), + values=tensor([0.1410, 0.8327, 0.5618, ..., 0.6127, 0.7950, 0.7693]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.1189, 0.4488, 0.9345, ..., 0.0324, 0.3464, 0.4030]) +tensor([0.9182, 0.7141, 0.2679, ..., 0.7671, 0.9231, 0.7252]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -15,18 +15,18 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 0.3272056579589844 seconds +Time: 0.039971351623535156 seconds -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 32089 -ss 10000 -sd 0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.109246492385864} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 26268 -ss 10000 -sd 0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 8.310471773147583} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 1, ..., 9996, 9998, 10000]), - col_indices=tensor([6261, 1350, 3983, ..., 9586, 2579, 6781]), - values=tensor([0.3771, 0.7405, 0.3284, ..., 0.1626, 0.7239, 0.9996]), +tensor(crow_indices=tensor([ 0, 0, 2, ..., 9999, 9999, 10000]), + col_indices=tensor([6011, 6260, 4075, ..., 5576, 1824, 8975]), + values=tensor([0.9641, 0.0766, 0.9967, ..., 0.9539, 0.3769, 0.8002]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.1818, 0.1444, 0.2139, ..., 0.0964, 0.7255, 0.0411]) +tensor([0.0022, 0.8912, 0.7670, ..., 0.3905, 0.8453, 0.1961]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -34,15 +34,18 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 10.109246492385864 seconds +Time: 8.310471773147583 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 33188 -ss 10000 -sd 0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.848255395889282} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 1, ..., 9996, 9998, 10000]), - col_indices=tensor([6261, 1350, 3983, ..., 9586, 2579, 6781]), - values=tensor([0.3771, 0.7405, 0.3284, ..., 0.1626, 0.7239, 0.9996]), +tensor(crow_indices=tensor([ 0, 3, 4, ..., 9995, 9997, 10000]), + col_indices=tensor([1948, 7195, 8876, ..., 111, 6612, 9607]), + values=tensor([0.9860, 0.8888, 0.2852, ..., 0.2300, 0.3266, 0.6773]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.1818, 0.1444, 0.2139, ..., 0.0964, 0.7255, 0.0411]) +tensor([0.8303, 0.1186, 0.7718, ..., 0.9103, 0.1807, 0.5186]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -50,13 +53,29 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 10.109246492385864 seconds +Time: 10.848255395889282 seconds -[20.52, 20.4, 20.52, 20.52, 20.52, 20.32, 20.32, 20.2, 20.36, 20.24] -[20.32, 20.48, 20.88, 25.52, 26.52, 27.24, 27.6, 24.68, 23.88, 23.88, 23.36, 23.6, 23.68, 23.6] -14.225753545761108 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 32089, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.109246492385864, 'TIME_S_1KI': 0.3150377541333748, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 318.60778367996215, 'W': 22.396548812340328} -[20.52, 20.4, 20.52, 20.52, 20.52, 20.32, 20.32, 20.2, 20.36, 20.24, 20.72, 20.52, 20.6, 20.4, 20.32, 20.52, 20.44, 20.32, 20.16, 20.16] -367.26 -18.363 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 32089, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.109246492385864, 'TIME_S_1KI': 0.3150377541333748, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 318.60778367996215, 'W': 22.396548812340328, 'J_1KI': 9.92887854654125, 'W_1KI': 0.6979509742385342, 'W_D': 4.033548812340328, 'J_D': 57.38027131915093, 'W_D_1KI': 0.1256988005964763, 'J_D_1KI': 0.003917192826092315} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 4, ..., 9995, 9997, 10000]), + col_indices=tensor([1948, 7195, 8876, ..., 111, 6612, 9607]), + values=tensor([0.9860, 0.8888, 0.2852, ..., 0.2300, 0.3266, 0.6773]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.8303, 0.1186, 0.7718, ..., 0.9103, 0.1807, 0.5186]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.848255395889282 seconds + +[17.16, 17.24, 17.28, 17.28, 17.12, 16.8, 16.4, 16.48, 16.32, 16.6] +[16.76, 16.84, 20.04, 22.12, 23.96, 24.76, 24.76, 25.32, 22.2, 20.84, 19.88, 20.16, 20.24, 20.04] +14.187613010406494 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 33188, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.848255395889282, 'TIME_S_1KI': 0.3268728274041606, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 283.2797647285461, 'W': 19.966696619139725} +[17.16, 17.24, 17.28, 17.28, 17.12, 16.8, 16.4, 16.48, 16.32, 16.6, 16.72, 16.48, 16.8, 16.64, 16.64, 16.68, 16.68, 16.56, 16.44, 16.52] +301.34000000000003 +15.067000000000002 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 33188, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.848255395889282, 'TIME_S_1KI': 0.3268728274041606, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 283.2797647285461, 'W': 19.966696619139725, 'J_1KI': 8.535608193580394, 'W_1KI': 0.6016239791231688, 'W_D': 4.899696619139723, 'J_D': 69.51499950075144, 'W_D_1KI': 0.14763458536638915, 'J_D_1KI': 0.0044484327276843785} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.001.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.001.json index 28a5b99..9b3c069 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.001.json +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.001.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 4566, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.211250305175781, "TIME_S_1KI": 2.236366689701222, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 296.4135251998902, "W": 22.432139051903395, "J_1KI": 64.91754822599435, "W_1KI": 4.912864444131274, "W_D": 4.068139051903394, "J_D": 53.75552614879615, "W_D_1KI": 0.8909634366849307, "J_D_1KI": 0.19512996861255602} +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 4682, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.500732183456421, "TIME_S_1KI": 2.2427877367484883, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 298.49395805358887, "W": 21.02945948615313, "J_1KI": 63.753515175905356, "W_1KI": 4.491554781322753, "W_D": 5.974459486153128, "J_D": 84.80199219703674, "W_D_1KI": 1.2760485873885365, "J_D_1KI": 0.27254348299627007} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.001.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.001.output index f081110..faf5980 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.001.output +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 2.2992472648620605} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.2965726852416992} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 7, 16, ..., 99980, 99989, +tensor(crow_indices=tensor([ 0, 10, 21, ..., 99978, 99991, 100000]), - col_indices=tensor([ 655, 1592, 1705, ..., 9238, 9783, 9811]), - values=tensor([0.0624, 0.8226, 0.1738, ..., 0.6448, 0.8074, 0.7220]), + col_indices=tensor([ 670, 2215, 2340, ..., 5626, 6766, 7426]), + values=tensor([0.8454, 0.9971, 0.8602, ..., 0.7286, 0.6853, 0.9650]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.5841, 0.1855, 0.2176, ..., 0.5967, 0.9561, 0.0240]) +tensor([0.8368, 0.0517, 0.8880, ..., 0.1583, 0.3761, 0.3465]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,19 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 2.2992472648620605 seconds +Time: 0.2965726852416992 seconds -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 4566 -ss 10000 -sd 0.001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.211250305175781} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 3540 -ss 10000 -sd 0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 7.9380598068237305} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 14, 28, ..., 99989, 99992, +tensor(crow_indices=tensor([ 0, 9, 19, ..., 99981, 99990, 100000]), - col_indices=tensor([ 778, 1147, 3454, ..., 4854, 5919, 8867]), - values=tensor([0.6002, 0.4939, 0.0259, ..., 0.9282, 0.0584, 0.5342]), + col_indices=tensor([ 218, 1968, 1988, ..., 6580, 8417, 9626]), + values=tensor([0.6495, 0.9774, 0.8878, ..., 0.7618, 0.8151, 0.2290]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.8806, 0.9663, 0.5124, ..., 0.2617, 0.2277, 0.6355]) +tensor([0.1753, 0.6932, 0.8031, ..., 0.2090, 0.4929, 0.1708]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -36,16 +36,19 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 10.211250305175781 seconds +Time: 7.9380598068237305 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 4682 -ss 10000 -sd 0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.500732183456421} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 14, 28, ..., 99989, 99992, +tensor(crow_indices=tensor([ 0, 6, 20, ..., 99977, 99983, 100000]), - col_indices=tensor([ 778, 1147, 3454, ..., 4854, 5919, 8867]), - values=tensor([0.6002, 0.4939, 0.0259, ..., 0.9282, 0.0584, 0.5342]), + col_indices=tensor([ 32, 224, 1507, ..., 8865, 9626, 9660]), + values=tensor([0.3062, 0.4385, 0.1947, ..., 0.8116, 0.9937, 0.3510]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.8806, 0.9663, 0.5124, ..., 0.2617, 0.2277, 0.6355]) +tensor([0.0637, 0.2734, 0.9054, ..., 0.1369, 0.8787, 0.2539]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -53,13 +56,30 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 10.211250305175781 seconds +Time: 10.500732183456421 seconds -[20.52, 20.28, 20.28, 20.24, 20.2, 20.2, 20.16, 20.44, 20.56, 20.64] -[20.68, 20.52, 20.84, 21.8, 22.68, 26.2, 26.72, 26.88, 26.88, 26.92, 24.56, 24.6, 24.48] -13.21378779411316 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4566, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.211250305175781, 'TIME_S_1KI': 2.236366689701222, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 296.4135251998902, 'W': 22.432139051903395} -[20.52, 20.28, 20.28, 20.24, 20.2, 20.2, 20.16, 20.44, 20.56, 20.64, 20.56, 20.52, 20.32, 20.28, 20.24, 20.4, 20.6, 20.68, 20.68, 20.68] -367.28000000000003 -18.364 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4566, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.211250305175781, 'TIME_S_1KI': 2.236366689701222, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 296.4135251998902, 'W': 22.432139051903395, 'J_1KI': 64.91754822599435, 'W_1KI': 4.912864444131274, 'W_D': 4.068139051903394, 'J_D': 53.75552614879615, 'W_D_1KI': 0.8909634366849307, 'J_D_1KI': 0.19512996861255602} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 20, ..., 99977, 99983, + 100000]), + col_indices=tensor([ 32, 224, 1507, ..., 8865, 9626, 9660]), + values=tensor([0.3062, 0.4385, 0.1947, ..., 0.8116, 0.9937, 0.3510]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.0637, 0.2734, 0.9054, ..., 0.1369, 0.8787, 0.2539]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.500732183456421 seconds + +[16.56, 16.28, 16.36, 16.32, 16.4, 16.32, 16.36, 16.44, 16.36, 16.28] +[16.24, 15.96, 19.32, 19.32, 21.08, 28.0, 29.28, 30.04, 27.12, 25.96, 20.44, 20.04, 19.96, 19.96] +14.194086074829102 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4682, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.500732183456421, 'TIME_S_1KI': 2.2427877367484883, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 298.49395805358887, 'W': 21.02945948615313} +[16.56, 16.28, 16.36, 16.32, 16.4, 16.32, 16.36, 16.44, 16.36, 16.28, 16.52, 16.8, 17.04, 17.04, 17.16, 17.48, 17.4, 17.4, 16.84, 16.84] +301.1 +15.055000000000001 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4682, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.500732183456421, 'TIME_S_1KI': 2.2427877367484883, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 298.49395805358887, 'W': 21.02945948615313, 'J_1KI': 63.753515175905356, 'W_1KI': 4.491554781322753, 'W_D': 5.974459486153128, 'J_D': 84.80199219703674, 'W_D_1KI': 1.2760485873885365, 'J_D_1KI': 0.27254348299627007} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.01.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.01.json index 123a4ab..b135810 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.01.json +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.01.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 21.205244779586792, "TIME_S_1KI": 21.205244779586792, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 620.3200452423096, "W": 24.48389957916532, "J_1KI": 620.3200452423096, "W_1KI": 24.48389957916532, "W_D": 6.114899579165321, "J_D": 154.92608811497686, "W_D_1KI": 6.114899579165321, "J_D_1KI": 6.114899579165321} +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 481, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.463550806045532, "TIME_S_1KI": 21.75374387951254, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 332.4283616256714, "W": 23.410421194984455, "J_1KI": 691.1192549390258, "W_1KI": 48.67031433468701, "W_D": 6.792421194984453, "J_D": 96.45249141454698, "W_D_1KI": 14.121457785830463, "J_D_1KI": 29.35854009528163} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.01.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.01.output index 9e8858d..bf59b23 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.01.output +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.01.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.01'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 21.205244779586792} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 2.1813583374023438} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 87, 190, ..., 999787, - 999893, 1000000]), - col_indices=tensor([ 40, 232, 261, ..., 9741, 9779, 9904]), - values=tensor([0.6083, 0.3635, 0.2569, ..., 0.1971, 0.1171, 0.3174]), +tensor(crow_indices=tensor([ 0, 110, 205, ..., 999812, + 999909, 1000000]), + col_indices=tensor([ 238, 361, 384, ..., 9612, 9634, 9698]), + values=tensor([0.5750, 0.8151, 0.3516, ..., 0.9302, 0.8544, 0.3311]), size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.7546, 0.0325, 0.8716, ..., 0.3834, 0.9539, 0.7452]) +tensor([0.6330, 0.0586, 0.5281, ..., 0.1634, 0.9727, 0.9265]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,16 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 1000000 Density: 0.01 -Time: 21.205244779586792 seconds +Time: 2.1813583374023438 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 481 -ss 10000 -sd 0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.463550806045532} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 87, 190, ..., 999787, - 999893, 1000000]), - col_indices=tensor([ 40, 232, 261, ..., 9741, 9779, 9904]), - values=tensor([0.6083, 0.3635, 0.2569, ..., 0.1971, 0.1171, 0.3174]), +tensor(crow_indices=tensor([ 0, 92, 212, ..., 999818, + 999919, 1000000]), + col_indices=tensor([ 159, 190, 205, ..., 9628, 9649, 9961]), + values=tensor([0.6162, 0.4289, 0.4486, ..., 0.9461, 0.6549, 0.6632]), size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.7546, 0.0325, 0.8716, ..., 0.3834, 0.9539, 0.7452]) +tensor([0.8230, 0.2220, 0.9348, ..., 0.2779, 0.8915, 0.3439]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -33,13 +36,30 @@ Rows: 10000 Size: 100000000 NNZ: 1000000 Density: 0.01 -Time: 21.205244779586792 seconds +Time: 10.463550806045532 seconds -[20.12, 20.4, 20.4, 20.36, 20.16, 20.24, 20.32, 20.32, 20.32, 20.52] -[20.52, 20.76, 21.12, 22.84, 24.76, 33.76, 34.6, 34.52, 33.84, 26.88, 24.24, 24.24, 24.12, 24.12, 24.04, 24.0, 24.0, 24.04, 24.12, 23.96, 24.0, 24.12, 23.96, 23.96, 24.0] -25.335835218429565 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 21.205244779586792, 'TIME_S_1KI': 21.205244779586792, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 620.3200452423096, 'W': 24.48389957916532} -[20.12, 20.4, 20.4, 20.36, 20.16, 20.24, 20.32, 20.32, 20.32, 20.52, 20.52, 20.56, 20.6, 20.44, 20.44, 20.32, 20.28, 20.64, 20.68, 20.64] -367.38 -18.369 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 21.205244779586792, 'TIME_S_1KI': 21.205244779586792, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 620.3200452423096, 'W': 24.48389957916532, 'J_1KI': 620.3200452423096, 'W_1KI': 24.48389957916532, 'W_D': 6.114899579165321, 'J_D': 154.92608811497686, 'W_D_1KI': 6.114899579165321, 'J_D_1KI': 6.114899579165321} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 92, 212, ..., 999818, + 999919, 1000000]), + col_indices=tensor([ 159, 190, 205, ..., 9628, 9649, 9961]), + values=tensor([0.6162, 0.4289, 0.4486, ..., 0.9461, 0.6549, 0.6632]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.8230, 0.2220, 0.9348, ..., 0.2779, 0.8915, 0.3439]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.463550806045532 seconds + +[20.24, 19.08, 17.84, 18.08, 19.12, 19.88, 20.84, 22.4, 22.4, 22.88] +[22.68, 22.68, 21.44, 22.2, 23.24, 31.92, 32.08, 31.76, 30.52, 23.92, 21.88, 21.88, 22.0, 22.24] +14.200016260147095 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 481, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.463550806045532, 'TIME_S_1KI': 21.75374387951254, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 332.4283616256714, 'W': 23.410421194984455} +[20.24, 19.08, 17.84, 18.08, 19.12, 19.88, 20.84, 22.4, 22.4, 22.88, 16.72, 17.0, 17.08, 16.92, 17.04, 16.84, 16.64, 16.56, 16.56, 16.32] +332.36 +16.618000000000002 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 481, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.463550806045532, 'TIME_S_1KI': 21.75374387951254, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 332.4283616256714, 'W': 23.410421194984455, 'J_1KI': 691.1192549390258, 'W_1KI': 48.67031433468701, 'W_D': 6.792421194984453, 'J_D': 96.45249141454698, 'W_D_1KI': 14.121457785830463, 'J_D_1KI': 29.35854009528163} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.05.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.05.json index 054792b..18a5242 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.05.json +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.05.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 106.56615614891052, "TIME_S_1KI": 106.56615614891052, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2781.6071025085453, "W": 24.542113905929394, "J_1KI": 2781.6071025085453, "W_1KI": 24.542113905929394, "W_D": 6.099113905929396, "J_D": 691.2745423955923, "W_D_1KI": 6.099113905929396, "J_D_1KI": 6.099113905929396} +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 11.54654312133789, "TIME_S_1KI": 115.4654312133789, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 353.263671875, "W": 21.71035974754772, "J_1KI": 3532.63671875, "W_1KI": 217.1035974754772, "W_D": 6.712359747547719, "J_D": 109.22126021575927, "W_D_1KI": 67.1235974754772, "J_D_1KI": 671.235974754772} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.05.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.05.output index 1064fac..d49136b 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.05.output +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 106.56615614891052} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 11.54654312133789} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 509, 1020, ..., 4998992, - 4999488, 5000000]), - col_indices=tensor([ 3, 11, 31, ..., 9971, 9976, 9990]), - values=tensor([0.8435, 0.0304, 0.5451, ..., 0.3255, 0.3710, 0.6386]), +tensor(crow_indices=tensor([ 0, 487, 979, ..., 4998949, + 4999474, 5000000]), + col_indices=tensor([ 0, 2, 9, ..., 9960, 9969, 9987]), + values=tensor([0.4699, 0.5377, 0.9444, ..., 0.8781, 0.2092, 0.8180]), size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.1386, 0.0671, 0.1165, ..., 0.0400, 0.5375, 0.5366]) +tensor([0.7212, 0.1994, 0.8974, ..., 0.2164, 0.6888, 0.0461]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,16 +16,16 @@ Rows: 10000 Size: 100000000 NNZ: 5000000 Density: 0.05 -Time: 106.56615614891052 seconds +Time: 11.54654312133789 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 509, 1020, ..., 4998992, - 4999488, 5000000]), - col_indices=tensor([ 3, 11, 31, ..., 9971, 9976, 9990]), - values=tensor([0.8435, 0.0304, 0.5451, ..., 0.3255, 0.3710, 0.6386]), +tensor(crow_indices=tensor([ 0, 487, 979, ..., 4998949, + 4999474, 5000000]), + col_indices=tensor([ 0, 2, 9, ..., 9960, 9969, 9987]), + values=tensor([0.4699, 0.5377, 0.9444, ..., 0.8781, 0.2092, 0.8180]), size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.1386, 0.0671, 0.1165, ..., 0.0400, 0.5375, 0.5366]) +tensor([0.7212, 0.1994, 0.8974, ..., 0.2164, 0.6888, 0.0461]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -33,13 +33,13 @@ Rows: 10000 Size: 100000000 NNZ: 5000000 Density: 0.05 -Time: 106.56615614891052 seconds +Time: 11.54654312133789 seconds -[20.4, 20.64, 20.52, 20.56, 20.6, 20.52, 20.56, 20.52, 20.2, 20.56] -[20.56, 20.68, 20.68, 24.36, 26.16, 32.64, 39.96, 40.52, 36.88, 36.0, 27.96, 24.36, 24.12, 24.28, 24.28, 24.44, 24.64, 24.72, 24.6, 24.36, 24.2, 23.96, 24.12, 24.08, 24.12, 24.24, 24.24, 24.28, 24.68, 24.56, 24.72, 24.84, 24.88, 24.56, 24.48, 24.32, 24.44, 24.52, 24.52, 24.72, 24.68, 24.68, 24.28, 24.0, 23.92, 23.84, 24.0, 24.24, 24.44, 24.48, 24.44, 24.44, 24.64, 24.68, 24.76, 24.72, 24.68, 24.52, 24.56, 24.64, 24.52, 24.68, 24.44, 24.44, 24.4, 24.64, 24.8, 24.68, 24.76, 24.64, 24.4, 24.12, 24.48, 24.56, 24.72, 24.72, 24.8, 24.96, 24.52, 24.32, 24.36, 24.24, 24.08, 24.04, 23.96, 24.08, 24.4, 24.48, 24.48, 24.64, 24.76, 24.4, 24.36, 24.4, 24.56, 24.68, 24.68, 24.48, 24.36, 24.2, 24.2, 24.56, 24.48, 24.4, 24.36, 24.44, 24.36, 24.44, 24.36, 24.64, 24.52, 24.48] -113.34015941619873 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 106.56615614891052, 'TIME_S_1KI': 106.56615614891052, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2781.6071025085453, 'W': 24.542113905929394} -[20.4, 20.64, 20.52, 20.56, 20.6, 20.52, 20.56, 20.52, 20.2, 20.56, 20.52, 20.48, 20.48, 20.56, 20.48, 20.36, 20.48, 20.52, 20.44, 20.4] -368.85999999999996 -18.442999999999998 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 106.56615614891052, 'TIME_S_1KI': 106.56615614891052, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2781.6071025085453, 'W': 24.542113905929394, 'J_1KI': 2781.6071025085453, 'W_1KI': 24.542113905929394, 'W_D': 6.099113905929396, 'J_D': 691.2745423955923, 'W_D_1KI': 6.099113905929396, 'J_D_1KI': 6.099113905929396} +[16.56, 16.48, 16.72, 16.72, 16.8, 16.8, 16.64, 16.52, 16.52, 16.48] +[16.44, 16.64, 17.04, 18.24, 19.64, 27.0, 30.2, 30.0, 30.0, 30.08, 26.08, 22.8, 20.4, 20.48, 20.64, 20.48] +16.271663665771484 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 11.54654312133789, 'TIME_S_1KI': 115.4654312133789, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 353.263671875, 'W': 21.71035974754772} +[16.56, 16.48, 16.72, 16.72, 16.8, 16.8, 16.64, 16.52, 16.52, 16.48, 16.52, 16.36, 16.6, 16.84, 16.68, 16.68, 16.68, 16.96, 16.76, 16.84] +299.96000000000004 +14.998000000000001 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 11.54654312133789, 'TIME_S_1KI': 115.4654312133789, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 353.263671875, 'W': 21.71035974754772, 'J_1KI': 3532.63671875, 'W_1KI': 217.1035974754772, 'W_D': 6.712359747547719, 'J_D': 109.22126021575927, 'W_D_1KI': 67.1235974754772, 'J_D_1KI': 671.235974754772} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.1.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.1.json index 175168f..94990e6 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.1.json +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.1.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 210.99842429161072, "TIME_S_1KI": 210.99842429161072, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 5320.685762977602, "W": 24.45864835325204, "J_1KI": 5320.685762977602, "W_1KI": 24.45864835325204, "W_D": 6.0876483532520425, "J_D": 1324.2949264960312, "W_D_1KI": 6.0876483532520425, "J_D_1KI": 6.0876483532520425} +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 21.129345178604126, "TIME_S_1KI": 211.29345178604126, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 619.1563564968109, "W": 21.836067076186225, "J_1KI": 6191.563564968109, "W_1KI": 218.36067076186225, "W_D": 6.581067076186224, "J_D": 186.6045519340038, "W_D_1KI": 65.81067076186224, "J_D_1KI": 658.1067076186224} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.1.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.1.output index 1928ba2..12caf81 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.1.output +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.1.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 210.99842429161072} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 0.1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 21.129345178604126} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1065, 2071, ..., 9998045, - 9999047, 10000000]), - col_indices=tensor([ 6, 19, 22, ..., 9974, 9992, 9993]), - values=tensor([0.1921, 0.6014, 0.9806, ..., 0.7679, 0.7737, 0.6028]), +tensor(crow_indices=tensor([ 0, 944, 1951, ..., 9997982, + 9998990, 10000000]), + col_indices=tensor([ 12, 17, 18, ..., 9973, 9979, 9988]), + values=tensor([0.0454, 0.8748, 0.1892, ..., 0.1417, 0.8974, 0.6226]), size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.1676, 0.2617, 0.2303, ..., 0.3636, 0.4445, 0.4181]) +tensor([0.7518, 0.8666, 0.4972, ..., 0.4338, 0.0856, 0.8852]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,16 +16,16 @@ Rows: 10000 Size: 100000000 NNZ: 10000000 Density: 0.1 -Time: 210.99842429161072 seconds +Time: 21.129345178604126 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1065, 2071, ..., 9998045, - 9999047, 10000000]), - col_indices=tensor([ 6, 19, 22, ..., 9974, 9992, 9993]), - values=tensor([0.1921, 0.6014, 0.9806, ..., 0.7679, 0.7737, 0.6028]), +tensor(crow_indices=tensor([ 0, 944, 1951, ..., 9997982, + 9998990, 10000000]), + col_indices=tensor([ 12, 17, 18, ..., 9973, 9979, 9988]), + values=tensor([0.0454, 0.8748, 0.1892, ..., 0.1417, 0.8974, 0.6226]), size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.1676, 0.2617, 0.2303, ..., 0.3636, 0.4445, 0.4181]) +tensor([0.7518, 0.8666, 0.4972, ..., 0.4338, 0.0856, 0.8852]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -33,13 +33,13 @@ Rows: 10000 Size: 100000000 NNZ: 10000000 Density: 0.1 -Time: 210.99842429161072 seconds +Time: 21.129345178604126 seconds -[20.48, 20.52, 20.52, 20.68, 20.64, 20.64, 20.6, 20.56, 20.36, 20.48] -[20.52, 20.6, 21.44, 23.16, 24.32, 34.12, 34.12, 35.68, 38.2, 37.44, 37.12, 27.84, 27.04, 24.4, 24.44, 24.4, 24.32, 24.48, 24.48, 24.36, 24.44, 24.72, 25.0, 24.92, 24.96, 24.96, 24.52, 24.4, 24.32, 24.24, 24.36, 24.36, 24.64, 24.56, 24.44, 24.52, 24.4, 24.6, 24.68, 24.84, 24.88, 24.64, 24.52, 24.52, 24.6, 24.48, 24.4, 24.28, 24.28, 24.32, 24.44, 24.44, 24.56, 24.52, 24.2, 24.16, 24.16, 24.12, 24.32, 24.36, 24.28, 24.28, 24.0, 24.12, 24.24, 24.4, 24.56, 25.04, 25.04, 24.84, 24.8, 24.76, 24.48, 24.44, 24.56, 24.48, 24.48, 24.4, 24.48, 24.36, 24.48, 24.48, 24.6, 24.68, 25.0, 25.0, 24.84, 24.76, 24.68, 24.44, 24.52, 24.52, 24.6, 24.6, 24.76, 24.48, 24.52, 24.4, 24.16, 24.24, 24.0, 24.24, 24.12, 24.24, 24.44, 24.44, 24.8, 24.8, 24.72, 24.64, 24.52, 24.28, 24.24, 24.16, 24.2, 24.32, 24.48, 24.32, 24.32, 24.28, 24.28, 24.32, 24.52, 24.56, 24.56, 24.6, 24.48, 24.4, 24.28, 24.24, 24.24, 24.24, 24.32, 24.48, 24.4, 24.4, 24.2, 24.08, 24.24, 24.4, 24.64, 24.68, 24.64, 24.64, 24.8, 24.6, 24.72, 24.8, 24.76, 24.76, 24.92, 25.08, 24.92, 24.88, 24.68, 24.68, 24.48, 24.32, 24.64, 24.68, 24.92, 24.92, 24.8, 24.68, 24.64, 24.44, 24.6, 24.6, 24.68, 24.52, 24.4, 24.44, 24.36, 24.12, 24.32, 24.24, 24.16, 24.24, 24.0, 24.24, 24.24, 24.44, 24.44, 24.6, 24.64, 24.44, 24.36, 24.48, 24.4, 24.64, 24.44, 24.64, 24.64, 24.6, 24.44, 24.64, 24.64, 24.32, 24.36, 24.24, 24.08, 24.36, 24.4, 24.48, 24.56, 24.56, 24.44, 24.32, 24.2, 24.36, 24.56, 24.68, 24.76, 24.92, 24.88] -217.5380129814148 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 210.99842429161072, 'TIME_S_1KI': 210.99842429161072, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 5320.685762977602, 'W': 24.45864835325204} -[20.48, 20.52, 20.52, 20.68, 20.64, 20.64, 20.6, 20.56, 20.36, 20.48, 20.4, 20.36, 20.32, 20.32, 20.2, 20.2, 20.28, 20.16, 20.24, 20.28] -367.41999999999996 -18.371 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 210.99842429161072, 'TIME_S_1KI': 210.99842429161072, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 5320.685762977602, 'W': 24.45864835325204, 'J_1KI': 5320.685762977602, 'W_1KI': 24.45864835325204, 'W_D': 6.0876483532520425, 'J_D': 1324.2949264960312, 'W_D_1KI': 6.0876483532520425, 'J_D_1KI': 6.0876483532520425} +[16.8, 16.76, 16.76, 16.76, 16.88, 16.92, 16.92, 17.0, 17.04, 17.04] +[16.88, 17.04, 20.52, 21.6, 23.68, 23.68, 29.08, 30.56, 30.32, 30.08, 28.48, 23.96, 23.32, 20.92, 20.92, 21.08, 21.44, 21.44, 20.92, 20.72, 20.64, 20.4, 20.4, 20.56, 20.44, 20.36, 20.48, 20.68] +28.354756116867065 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 21.129345178604126, 'TIME_S_1KI': 211.29345178604126, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 619.1563564968109, 'W': 21.836067076186225} +[16.8, 16.76, 16.76, 16.76, 16.88, 16.92, 16.92, 17.0, 17.04, 17.04, 17.12, 17.28, 17.24, 17.24, 16.84, 16.64, 16.96, 16.72, 17.12, 17.08] +305.1 +15.255 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 21.129345178604126, 'TIME_S_1KI': 211.29345178604126, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 619.1563564968109, 'W': 21.836067076186225, 'J_1KI': 6191.563564968109, 'W_1KI': 218.36067076186225, 'W_D': 6.581067076186224, 'J_D': 186.6045519340038, 'W_D_1KI': 65.81067076186224, 'J_D_1KI': 658.1067076186224} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.2.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.2.json new file mode 100644 index 0000000..364c8ea --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.2.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 42.021928787231445, "TIME_S_1KI": 420.21928787231445, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1136.679587249756, "W": 21.603080734566593, "J_1KI": 11366.79587249756, "W_1KI": 216.03080734566592, "W_D": 6.324080734566593, "J_D": 332.751312992096, "W_D_1KI": 63.24080734566592, "J_D_1KI": 632.4080734566592} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.2.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.2.output new file mode 100644 index 0000000..b23f94c --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.2.output @@ -0,0 +1,45 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 0.2'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 42.021928787231445} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1977, 4005, ..., 19996092, + 19998061, 20000000]), + col_indices=tensor([ 0, 21, 29, ..., 9987, 9990, 9994]), + values=tensor([0.7851, 0.1514, 0.2063, ..., 0.8497, 0.4761, 0.4899]), + size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) +tensor([0.7703, 0.2799, 0.3874, ..., 0.1897, 0.4899, 0.7472]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 20000000 +Density: 0.2 +Time: 42.021928787231445 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1977, 4005, ..., 19996092, + 19998061, 20000000]), + col_indices=tensor([ 0, 21, 29, ..., 9987, 9990, 9994]), + values=tensor([0.7851, 0.1514, 0.2063, ..., 0.8497, 0.4761, 0.4899]), + size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) +tensor([0.7703, 0.2799, 0.3874, ..., 0.1897, 0.4899, 0.7472]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 20000000 +Density: 0.2 +Time: 42.021928787231445 seconds + +[16.84, 16.68, 16.68, 16.88, 16.96, 17.08, 17.12, 17.24, 17.0, 17.0] +[16.76, 16.8, 19.84, 20.68, 22.88, 22.88, 24.36, 33.76, 31.92, 32.48, 31.68, 31.64, 25.4, 24.92, 23.64, 20.2, 20.04, 20.04, 20.04, 19.84, 20.12, 20.36, 20.72, 20.76, 20.48, 20.32, 20.4, 20.28, 20.76, 20.84, 20.84, 20.92, 21.0, 20.96, 20.8, 20.8, 20.84, 20.6, 20.56, 20.56, 20.84, 20.76, 20.76, 20.8, 21.0, 21.08, 20.8, 20.96, 20.72, 20.72, 20.72, 20.76] +52.61655044555664 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 42.021928787231445, 'TIME_S_1KI': 420.21928787231445, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1136.679587249756, 'W': 21.603080734566593} +[16.84, 16.68, 16.68, 16.88, 16.96, 17.08, 17.12, 17.24, 17.0, 17.0, 17.2, 17.16, 17.08, 16.84, 16.84, 16.8, 17.0, 17.04, 17.16, 17.0] +305.58 +15.279 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 42.021928787231445, 'TIME_S_1KI': 420.21928787231445, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1136.679587249756, 'W': 21.603080734566593, 'J_1KI': 11366.79587249756, 'W_1KI': 216.03080734566592, 'W_D': 6.324080734566593, 'J_D': 332.751312992096, 'W_D_1KI': 63.24080734566592, 'J_D_1KI': 632.4080734566592} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.3.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.3.json new file mode 100644 index 0000000..f2ba0ed --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.3.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 63.62427043914795, "TIME_S_1KI": 636.2427043914795, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1670.8393529319762, "W": 21.725499941161722, "J_1KI": 16708.393529319765, "W_1KI": 217.2549994116172, "W_D": 6.518499941161723, "J_D": 501.3171735184193, "W_D_1KI": 65.18499941161723, "J_D_1KI": 651.8499941161723} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.3.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.3.output new file mode 100644 index 0000000..6258d91 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.3.output @@ -0,0 +1,45 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 0.3'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 63.62427043914795} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2940, 5882, ..., 29993962, + 29997042, 30000000]), + col_indices=tensor([ 8, 14, 15, ..., 9977, 9993, 9996]), + values=tensor([0.8256, 0.2654, 0.0882, ..., 0.9659, 0.5243, 0.2720]), + size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) +tensor([0.4780, 0.6736, 0.3887, ..., 0.7294, 0.7408, 0.5543]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 30000000 +Density: 0.3 +Time: 63.62427043914795 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2940, 5882, ..., 29993962, + 29997042, 30000000]), + col_indices=tensor([ 8, 14, 15, ..., 9977, 9993, 9996]), + values=tensor([0.8256, 0.2654, 0.0882, ..., 0.9659, 0.5243, 0.2720]), + size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) +tensor([0.4780, 0.6736, 0.3887, ..., 0.7294, 0.7408, 0.5543]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 30000000 +Density: 0.3 +Time: 63.62427043914795 seconds + +[16.52, 16.44, 16.52, 16.76, 16.76, 16.68, 17.12, 16.6, 16.6, 16.64] +[16.76, 16.68, 16.6, 20.16, 21.48, 23.48, 24.68, 31.48, 34.68, 34.64, 35.08, 35.08, 34.68, 24.92, 25.84, 25.44, 24.52, 23.52, 20.92, 20.76, 20.76, 20.88, 20.6, 20.8, 20.8, 20.96, 20.88, 20.6, 20.8, 20.56, 20.44, 20.52, 20.48, 20.8, 20.56, 20.6, 20.6, 20.68, 20.72, 20.68, 20.88, 20.92, 20.8, 20.8, 20.52, 20.56, 20.68, 20.96, 20.8, 20.8, 20.92, 20.8, 20.56, 20.68, 20.8, 20.72, 20.8, 21.12, 21.24, 21.16, 21.12, 21.12, 21.04, 20.6, 20.36, 20.2, 20.4, 20.48, 20.52, 20.88, 20.64, 20.32, 20.4, 20.4, 20.4, 20.4] +76.90683102607727 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 63.62427043914795, 'TIME_S_1KI': 636.2427043914795, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1670.8393529319762, 'W': 21.725499941161722} +[16.52, 16.44, 16.52, 16.76, 16.76, 16.68, 17.12, 16.6, 16.6, 16.64, 16.32, 16.72, 16.92, 17.2, 17.32, 17.52, 17.16, 17.24, 17.28, 17.12] +304.14 +15.206999999999999 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 63.62427043914795, 'TIME_S_1KI': 636.2427043914795, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1670.8393529319762, 'W': 21.725499941161722, 'J_1KI': 16708.393529319765, 'W_1KI': 217.2549994116172, 'W_D': 6.518499941161723, 'J_D': 501.3171735184193, 'W_D_1KI': 65.18499941161723, 'J_D_1KI': 651.8499941161723} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_1e-05.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_1e-05.json index 40d44d2..66821f5 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_1e-05.json +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_1e-05.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 142926, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.514646053314209, "TIME_S_1KI": 0.07356706304880994, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 341.9344939994813, "W": 24.04792007204229, "J_1KI": 2.3923883268228403, "W_1KI": 0.1682543419114947, "W_D": 4.089920072042293, "J_D": 58.15408343601235, "W_D_1KI": 0.02861564776207473, "J_D_1KI": 0.00020021303165326625} +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 141552, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.798607587814331, "TIME_S_1KI": 0.07628721309352274, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 269.76709407806396, "W": 18.985490730093364, "J_1KI": 1.9057808725985077, "W_1KI": 0.13412379005661076, "W_D": 4.025490730093365, "J_D": 57.198676185607916, "W_D_1KI": 0.028438246934648505, "J_D_1KI": 0.0002009031799949736} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_1e-05.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_1e-05.output index e3d4653..2de78b8 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_1e-05.output +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_1e-05.output @@ -1,645 +1,266 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.08297038078308105} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 999, 999, 1000]), - col_indices=tensor([9541, 4744, 3707, 3759, 5602, 648, 5760, 9547, 5348, - 1622, 5522, 1425, 7886, 8949, 1399, 4987, 2045, 2195, - 1877, 8225, 7439, 3742, 1704, 9009, 2824, 6038, 7459, - 2392, 4934, 1115, 7057, 1326, 9427, 1487, 6052, 271, - 2404, 6442, 2401, 5281, 847, 9237, 5881, 2117, 9030, - 4040, 5058, 3876, 5704, 2576, 376, 9599, 6293, 631, - 3850, 2531, 5459, 4807, 1976, 4129, 6044, 7528, 128, - 620, 4258, 707, 3186, 4767, 6203, 7053, 3266, 3634, - 6287, 7059, 8930, 8238, 249, 9263, 6668, 2968, 8693, - 1448, 3963, 9472, 8236, 7658, 21, 522, 5082, 5332, - 4645, 2332, 6408, 7231, 8736, 9779, 4215, 3799, 2187, - 9640, 706, 3366, 478, 6738, 3826, 4896, 4399, 9716, - 617, 1830, 9549, 4294, 2027, 1533, 9629, 7815, 4667, - 4504, 5733, 7722, 3123, 8029, 3228, 5140, 2985, 4485, - 906, 8472, 993, 7143, 5174, 5432, 8332, 4083, 2173, - 2104, 5924, 4632, 1377, 420, 8402, 112, 8458, 5830, - 9221, 5106, 3118, 6351, 6259, 8778, 5907, 9815, 391, - 7254, 9485, 4166, 1814, 2095, 177, 6065, 4798, 3294, - 9118, 4002, 6468, 4676, 4594, 1033, 5568, 2567, 2946, - 7002, 6944, 4198, 2354, 5428, 7206, 480, 6548, 8449, - 121, 5762, 8140, 9120, 3426, 1673, 7470, 1305, 2311, - 979, 2867, 3482, 4187, 1379, 5373, 5104, 9058, 7249, - 5269, 8473, 4187, 4514, 9226, 1893, 4287, 720, 3491, - 9637, 605, 6889, 21, 1152, 4929, 3127, 8079, 678, - 4219, 9741, 975, 5212, 6243, 1307, 5836, 8196, 5327, - 8749, 6752, 6677, 4788, 6827, 8125, 2049, 1591, 7592, - 449, 4957, 6437, 2880, 1837, 2987, 3733, 5822, 2888, - 2962, 4631, 3914, 466, 7123, 9568, 7077, 239, 8789, - 8002, 7541, 1395, 9017, 1554, 8609, 1114, 359, 1644, - 9296, 2622, 6861, 1946, 6878, 3199, 6756, 6576, 8441, - 6782, 9208, 3800, 6755, 9307, 2546, 2751, 9936, 3072, - 5887, 1740, 5436, 8353, 856, 3061, 4683, 282, 2344, - 2737, 8185, 6739, 1483, 9825, 4566, 2572, 5286, 3306, - 6854, 1701, 8164, 6844, 5021, 3885, 1016, 8535, 7619, - 101, 9406, 391, 7997, 5109, 9604, 6641, 4700, 8743, - 1701, 220, 1307, 2989, 4960, 7899, 4634, 4188, 3055, - 6943, 153, 1825, 1183, 7470, 7761, 3324, 6926, 5802, - 3938, 9690, 4429, 4674, 8612, 5692, 7360, 969, 4901, - 9007, 2615, 7523, 6755, 185, 2934, 1782, 331, 1633, - 3371, 7658, 1018, 3353, 1634, 820, 3145, 941, 5177, - 2302, 2110, 1609, 719, 4268, 1250, 9968, 7113, 8855, - 3206, 8475, 311, 8174, 4801, 1395, 6530, 9861, 2603, - 6826, 85, 7072, 714, 1333, 6273, 6592, 6272, 6781, - 7226, 9564, 844, 2453, 3858, 1470, 282, 2103, 8485, - 5275, 7636, 8340, 1822, 1514, 8469, 2978, 3108, 133, - 6732, 4349, 1378, 4402, 8475, 2621, 7780, 7910, 7351, - 454, 5154, 5529, 239, 9795, 2440, 372, 7445, 5618, - 6124, 7886, 9761, 4160, 4373, 8833, 4133, 7330, 6076, - 8022, 6116, 6026, 2241, 568, 8188, 7934, 3070, 687, - 6581, 2801, 8072, 9446, 7672, 7543, 2735, 8790, 6750, - 2435, 364, 2240, 8373, 4384, 6069, 763, 1226, 5310, - 4872, 229, 6569, 7105, 3232, 7585, 1692, 1949, 6461, - 3474, 9239, 5258, 3042, 3559, 3298, 2221, 889, 3662, - 4913, 8642, 9462, 7196, 5711, 4175, 8477, 909, 5344, - 471, 1089, 1178, 9304, 462, 5816, 9392, 8552, 8175, - 4186, 1379, 132, 2058, 1333, 3506, 5750, 5286, 6785, - 2512, 1490, 3067, 5556, 8616, 8391, 5802, 7892, 2802, - 9850, 4207, 3567, 9679, 6481, 8657, 4164, 9760, 863, - 4307, 1945, 8026, 9148, 1985, 8852, 8820, 9340, 1797, - 5164, 4959, 4437, 4761, 4864, 7285, 7565, 196, 3013, - 6185, 7044, 4674, 3370, 4764, 350, 5347, 7665, 8484, - 7882, 7045, 4719, 9202, 8269, 765, 5695, 517, 2931, - 2386, 5592, 6863, 5538, 4404, 2308, 140, 8498, 6481, - 2265, 5235, 2164, 5730, 3545, 7134, 5747, 2128, 7195, - 7411, 666, 9008, 6534, 5424, 5680, 9864, 5882, 2993, - 123, 686, 3088, 5442, 7924, 8422, 78, 1660, 7484, - 4893, 3377, 1762, 2672, 4381, 1747, 4470, 9134, 3417, - 7518, 9749, 6445, 7612, 2235, 7530, 4349, 4645, 9668, - 7802, 5907, 8700, 3950, 7901, 9114, 7278, 8890, 5296, - 4639, 4921, 100, 8333, 2024, 8807, 8382, 8961, 3676, - 2295, 2336, 2200, 3037, 3243, 5295, 6730, 4483, 5652, - 662, 617, 8803, 5537, 638, 1053, 1772, 5947, 1838, - 3087, 9574, 1480, 8561, 8008, 4768, 8041, 7377, 8623, - 9299, 762, 4570, 491, 7087, 8236, 7559, 9409, 9162, - 524, 7031, 471, 6861, 9065, 3463, 2863, 291, 855, - 7520, 779, 5540, 546, 7857, 2216, 6601, 8433, 3148, - 3193, 5437, 5398, 8297, 4601, 2085, 446, 1186, 7874, - 49, 2902, 4494, 4795, 9053, 5402, 2927, 1586, 2565, - 3662, 7583, 3948, 9561, 4265, 1480, 6933, 3561, 9357, - 6654, 9272, 16, 5294, 4582, 434, 9323, 4257, 6550, - 439, 4475, 1292, 7441, 2779, 3364, 303, 1742, 8608, - 4940, 283, 1474, 5120, 6422, 7514, 8440, 98, 5308, - 6398, 8201, 2915, 9890, 80, 1028, 4946, 7280, 4830, - 5039, 531, 9983, 6776, 3446, 1751, 7222, 3393, 3069, - 6417, 6795, 7190, 5, 7815, 7449, 9933, 448, 5005, - 3829, 3087, 5073, 7828, 5094, 8389, 6515, 6607, 694, - 4895, 9154, 3645, 7477, 5173, 7516, 3264, 395, 7092, - 0, 2973, 5818, 7270, 3567, 4322, 9395, 3622, 9001, - 5300, 9919, 8509, 5820, 8624, 3338, 5648, 7551, 2911, - 8001, 6269, 2252, 5808, 6497, 1687, 100, 4383, 6655, - 6964, 378, 3127, 7892, 1232, 3286, 761, 4445, 6154, - 8590, 8402, 3197, 6599, 6950, 3285, 6632, 2219, 1903, - 1826, 7632, 4217, 5122, 8776, 2643, 6045, 3552, 2331, - 3115, 6795, 2145, 8980, 5758, 4362, 2066, 2549, 375, - 3104, 1826, 892, 4202, 5456, 3650, 3778, 9617, 654, - 4447, 3824, 8476, 8365, 3371, 9281, 1588, 6978, 5331, - 4140, 6941, 2280, 1280, 6139, 3922, 8516, 7621, 4047, - 7929, 3546, 9284, 4482, 292, 4047, 8471, 4714, 3211, - 1190, 3085, 6119, 5172, 4634, 7577, 7971, 8378, 4996, - 8046, 3791, 1349, 5753, 7442, 9559, 4997, 9437, 2243, - 3590, 695, 6145, 4980, 1687, 3024, 1752, 1880, 5394, - 7171, 5473, 5654, 108, 1736, 1313, 9637, 2835, 5680, - 1109, 5141, 2910, 4505, 9202, 7567, 2403, 6573, 6279, - 3929, 4270, 7176, 7680, 2471, 8, 2651, 502, 6640, - 5575, 9260, 684, 8227, 8967, 6539, 4250, 5738, 1807, - 6590, 5958, 2048, 5979, 5237, 871, 7398, 4074, 7923, - 9737, 9408, 5924, 8041, 490, 617, 2006, 8839, 6330, - 6648, 948, 1030, 6508, 4791, 181, 1638, 4576, 7413, - 2243, 4743, 7952, 5078, 5305, 8747, 3414, 8140, 4079, - 4138, 6251, 453, 3816, 2039, 2570, 2032, 6570, 2327, - 6142, 2428, 8486, 6130, 1400, 6957, 3996, 5971, 9089, - 4617]), - values=tensor([0.0817, 0.3324, 0.2756, 0.6529, 0.0896, 0.5656, 0.0562, - 0.4958, 0.4951, 0.3804, 0.3913, 0.4986, 0.1152, 0.1822, - 0.5453, 0.4131, 0.4576, 0.1197, 0.2604, 0.1916, 0.8289, - 0.6367, 0.0901, 0.5957, 0.0365, 0.0416, 0.8103, 0.1183, - 0.0534, 0.1256, 0.7461, 0.7831, 0.6998, 0.1898, 0.8061, - 0.6526, 0.2984, 0.8242, 0.5560, 0.1775, 0.6071, 0.6878, - 0.3123, 0.5956, 0.9749, 0.6123, 0.4526, 0.9383, 0.2173, - 0.4194, 0.3042, 0.2147, 0.3605, 0.3101, 0.4656, 0.6783, - 0.8804, 0.5205, 0.2973, 0.3305, 0.1315, 0.3205, 0.6762, - 0.7007, 0.6919, 0.1581, 0.4172, 0.2771, 0.4730, 0.9555, - 0.1116, 0.2319, 0.9065, 0.7883, 0.2534, 0.5646, 0.0194, - 0.9142, 0.2745, 0.3458, 0.3269, 0.0011, 0.3403, 0.7824, - 0.7760, 0.6047, 0.7120, 0.2145, 0.3576, 0.3861, 0.9892, - 0.0628, 0.3553, 0.7317, 0.2389, 0.8487, 0.7424, 0.5264, - 0.0977, 0.3521, 0.5096, 0.4635, 0.3465, 0.4397, 0.6133, - 0.4956, 0.5784, 0.0080, 0.2648, 0.3588, 0.5910, 0.9636, - 0.2005, 0.4097, 0.7264, 0.2984, 0.7441, 0.6180, 0.2407, - 0.3332, 0.2608, 0.2432, 0.7611, 0.9934, 0.4942, 0.8188, - 0.7399, 0.1434, 0.0613, 0.0393, 0.3178, 0.5208, 0.4807, - 0.9491, 0.1732, 0.3057, 0.6323, 0.2840, 0.0857, 0.3659, - 0.6422, 0.3427, 0.7232, 0.7929, 0.7683, 0.7166, 0.7357, - 0.4486, 0.4382, 0.6550, 0.8314, 0.6931, 0.9646, 0.1363, - 0.3561, 0.7267, 0.3216, 0.7646, 0.3590, 0.4617, 0.6470, - 0.2146, 0.9869, 0.9043, 0.4331, 0.1225, 0.8001, 0.8156, - 0.4221, 0.2266, 0.0278, 0.3100, 0.5343, 0.5996, 0.0218, - 0.2255, 0.8666, 0.0921, 0.5170, 0.5002, 0.8058, 0.9057, - 0.7074, 0.4990, 0.2247, 0.0751, 0.7773, 0.4371, 0.1745, - 0.8389, 0.7204, 0.8341, 0.7818, 0.1989, 0.1221, 0.1256, - 0.0509, 0.2962, 0.3159, 0.7937, 0.4473, 0.9974, 0.7679, - 0.8988, 0.8844, 0.3530, 0.1562, 0.1444, 0.5256, 0.9271, - 0.1544, 0.8028, 0.8695, 0.9904, 0.5524, 0.4400, 0.3464, - 0.5814, 0.1913, 0.3013, 0.3557, 0.5804, 0.2758, 0.6828, - 0.7603, 0.3179, 0.2023, 0.7568, 0.7129, 0.6977, 0.7234, - 0.5232, 0.1407, 0.1867, 0.6312, 0.3493, 0.2358, 0.2023, - 0.0344, 0.4407, 0.5310, 0.0044, 0.2378, 0.6973, 0.0137, - 0.5245, 0.7504, 0.6317, 0.7374, 0.0195, 0.6845, 0.0597, - 0.6321, 0.4952, 0.0872, 0.8851, 0.2804, 0.4050, 0.0050, - 0.1130, 0.6505, 0.7950, 0.2115, 0.2993, 0.1143, 0.4572, - 0.8875, 0.8814, 0.8625, 0.5617, 0.2849, 0.3643, 0.8161, - 0.6732, 0.6625, 0.4192, 0.6920, 0.8966, 0.1811, 0.8719, - 0.4458, 0.4760, 0.1150, 0.9313, 0.4163, 0.1915, 0.2079, - 0.0153, 0.4544, 0.0330, 0.2888, 0.1259, 0.9069, 0.5548, - 0.1893, 0.3501, 0.4221, 0.9917, 0.0121, 0.3270, 0.7156, - 0.2522, 0.6695, 0.7573, 0.2663, 0.5688, 0.2007, 0.7497, - 0.7560, 0.7047, 0.2696, 0.0660, 0.0453, 0.4273, 0.1997, - 0.5561, 0.7041, 0.1107, 0.1287, 0.5815, 0.8808, 0.2873, - 0.5226, 0.7030, 0.4660, 0.0939, 0.3134, 0.9852, 0.6741, - 0.8244, 0.4734, 0.7806, 0.6942, 0.2882, 0.9682, 0.2573, - 0.7582, 0.4071, 0.6318, 0.4490, 0.5707, 0.5003, 0.1227, - 0.8669, 0.8759, 0.8600, 0.6640, 0.7634, 0.8157, 0.5906, - 0.4248, 0.0924, 0.7679, 0.2320, 0.0924, 0.3941, 0.2849, - 0.3425, 0.0017, 0.7135, 0.3043, 0.2758, 0.9349, 0.5956, - 0.8303, 0.0031, 0.6584, 0.3357, 0.8757, 0.0305, 0.6211, - 0.2884, 0.0857, 0.6294, 0.3816, 0.7433, 0.3867, 0.8719, - 0.5933, 0.0204, 0.3468, 0.5173, 0.0113, 0.6487, 0.2899, - 0.5825, 0.3059, 0.2157, 0.0161, 0.3893, 0.9304, 0.9388, - 0.5243, 0.0960, 0.4812, 0.4725, 0.9715, 0.1631, 0.7809, - 0.6492, 0.1889, 0.1408, 0.9297, 0.0583, 0.6888, 0.7196, - 0.4419, 0.4790, 0.9863, 0.1516, 0.3857, 0.7772, 0.5479, - 0.1246, 0.1139, 0.8454, 0.9043, 0.4449, 0.0395, 0.3981, - 0.6749, 0.9915, 0.0804, 0.9193, 0.4484, 0.5317, 0.4042, - 0.1191, 0.2550, 0.5178, 0.8187, 0.1465, 0.9720, 0.9634, - 0.1792, 0.6615, 0.5088, 0.5711, 0.2939, 0.0127, 0.9277, - 0.1686, 0.1396, 0.2487, 0.3406, 0.4117, 0.2784, 0.6035, - 0.0437, 0.5559, 0.9654, 0.8026, 0.4075, 0.3219, 0.7411, - 0.4938, 0.1727, 0.0259, 0.4851, 0.4359, 0.8209, 0.4590, - 0.5953, 0.4870, 0.7732, 0.0140, 0.5012, 0.3847, 0.3942, - 0.7438, 0.2238, 0.2840, 0.7133, 0.4377, 0.5948, 0.0613, - 0.9004, 0.2558, 0.2815, 0.7586, 0.1277, 0.1779, 0.7971, - 0.8889, 0.6839, 0.9304, 0.1337, 0.0863, 0.5723, 0.7632, - 0.8215, 0.4734, 0.0235, 0.4371, 0.2377, 0.2194, 0.9009, - 0.1041, 0.1399, 0.5555, 0.2350, 0.9756, 0.8238, 0.9442, - 0.2386, 0.7770, 0.6882, 0.8382, 0.9836, 0.4286, 0.0273, - 0.1999, 0.4582, 0.6792, 0.0648, 0.2691, 0.5502, 0.4637, - 0.7617, 0.0493, 0.7476, 0.9823, 0.6312, 0.2691, 0.2460, - 0.3885, 0.6715, 0.1922, 0.9393, 0.3584, 0.8462, 0.5889, - 0.4623, 0.7005, 0.5433, 0.8171, 0.3575, 0.3988, 0.6973, - 0.3605, 0.5650, 0.3760, 0.3743, 0.8906, 0.6556, 0.7020, - 0.5717, 0.5752, 0.3086, 0.4426, 0.8997, 0.2466, 0.9552, - 0.6396, 0.3873, 0.9308, 0.0452, 0.3753, 0.1970, 0.1210, - 0.0206, 0.2376, 0.4144, 0.8517, 0.8711, 0.1329, 0.6279, - 0.2544, 0.4642, 0.3918, 0.9007, 0.8631, 0.0275, 0.1831, - 0.6674, 0.8479, 0.6164, 0.6963, 0.1093, 0.9533, 0.4838, - 0.2932, 0.4954, 0.1620, 0.9153, 0.7978, 0.3760, 0.8694, - 0.6228, 0.4794, 0.2675, 0.3026, 0.1733, 0.8510, 0.9908, - 0.1169, 0.4773, 0.6671, 0.4542, 0.6433, 0.0132, 0.6663, - 0.3987, 0.6998, 0.2512, 0.4261, 0.8144, 0.0960, 0.7782, - 0.9103, 0.4597, 0.3097, 0.1387, 0.0805, 0.8676, 0.5323, - 0.3246, 0.3286, 0.4306, 0.9227, 0.1738, 0.2852, 0.8836, - 0.0592, 0.1647, 0.2312, 0.2516, 0.5752, 0.2805, 0.3541, - 0.7951, 0.0344, 0.4524, 0.1500, 0.0111, 0.3956, 0.6602, - 0.5921, 0.1514, 0.7099, 0.6694, 0.4804, 0.6940, 0.8492, - 0.1261, 0.3396, 0.5449, 0.2074, 0.6074, 0.3429, 0.2216, - 0.6768, 0.1514, 0.7176, 0.0448, 0.9166, 0.7625, 0.5947, - 0.1545, 0.5043, 0.0812, 0.5959, 0.6349, 0.5955, 0.1004, - 0.3380, 0.0700, 0.0342, 0.0885, 0.3430, 0.2529, 0.0027, - 0.7070, 0.1130, 0.2282, 0.2090, 0.0431, 0.9000, 0.6519, - 0.2230, 0.0220, 0.9269, 0.3636, 0.6531, 0.1093, 0.7667, - 0.2473, 0.7301, 0.0039, 0.0397, 0.7610, 0.3959, 0.5400, - 0.2628, 0.0274, 0.9532, 0.9422, 0.7334, 0.9018, 0.8690, - 0.8687, 0.3716, 0.6446, 0.8175, 0.1866, 0.3804, 0.9523, - 0.4158, 0.7545, 0.9008, 0.2091, 0.7603, 0.5331, 0.1940, - 0.1623, 0.1586, 0.1761, 0.3807, 0.0418, 0.4181, 0.0160, - 0.9350, 0.6667, 0.6291, 0.5327, 0.5502, 0.5467, 0.9540, - 0.0470, 0.6373, 0.7509, 0.3675, 0.1645, 0.1072, 0.0673, - 0.8707, 0.0270, 0.9565, 0.5479, 0.2174, 0.4603, 0.9839, - 0.4645, 0.2758, 0.4296, 0.3252, 0.1194, 0.1371, 0.9899, - 0.1554, 0.7690, 0.5689, 0.2289, 0.9166, 0.9043, 0.3346, - 0.8792, 0.6861, 0.5513, 0.2430, 0.1260, 0.0470, 0.9050, - 0.4004, 0.0033, 0.0611, 0.1735, 0.1599, 0.4032, 0.4661, - 0.0732, 0.2595, 0.2423, 0.9369, 0.7653, 0.8036, 0.9951, - 0.0034, 0.4292, 0.1415, 0.9688, 0.9983, 0.6291, 0.5436, - 0.0863, 0.6037, 0.5761, 0.4015, 0.7436, 0.9753, 0.2716, - 0.8796, 0.0534, 0.4733, 0.8091, 0.9332, 0.2263, 0.3176, - 0.3512, 0.2493, 0.5729, 0.0704, 0.8962, 0.1707, 0.1135, - 0.8467, 0.6882, 0.9935, 0.3400, 0.2498, 0.2447, 0.8298, - 0.8150, 0.8426, 0.1330, 0.3878, 0.9726, 0.9707, 0.7150, - 0.4710, 0.0623, 0.6977, 0.7884, 0.4121, 0.3697, 0.3835, - 0.4860, 0.0844, 0.4479, 0.3716, 0.2737, 0.9644, 0.4482, - 0.9930, 0.8318, 0.2931, 0.8408, 0.2954, 0.0520, 0.5236, - 0.4472, 0.9887, 0.5716, 0.7562, 0.6651, 0.3047, 0.3675, - 0.8282, 0.9803, 0.2975, 0.5105, 0.4052, 0.0133, 0.9321, - 0.4885, 0.0556, 0.6918, 0.2006, 0.1741, 0.5760, 0.8190, - 0.0021, 0.7613, 0.0689, 0.7771, 0.5264, 0.8286, 0.2391, - 0.6763, 0.5535, 0.1525, 0.2182, 0.4348, 0.3820, 0.9335, - 0.5563, 0.9960, 0.3871, 0.0877, 0.0141, 0.6386, 0.5328, - 0.1731, 0.1060, 0.9121, 0.8926, 0.1029, 0.0562, 0.0653, - 0.6791, 0.8703, 0.7902, 0.7955, 0.5877, 0.6016, 0.4912, - 0.6143, 0.5149, 0.0770, 0.7110, 0.5924, 0.8024, 0.9858, - 0.9002, 0.2315, 0.6982, 0.8543, 0.1439, 0.4223, 0.7190, - 0.8957, 0.6891, 0.7359, 0.3991, 0.2488, 0.2533, 0.5914, - 0.3081, 0.0652, 0.8204, 0.9876, 0.3309, 0.3805, 0.1439, - 0.6788, 0.0601, 0.5734, 0.5869, 0.0099, 0.8126, 0.8660, - 0.9370, 0.5609, 0.3940, 0.9325, 0.4409, 0.8003, 0.0643, - 0.4975, 0.5948, 0.3429, 0.7397, 0.1599, 0.8032, 0.6662, - 0.1716, 0.3067, 0.0747, 0.6650, 0.1468, 0.8085, 0.0751, - 0.1078, 0.9092, 0.2473, 0.7171, 0.8866, 0.9998, 0.0188, - 0.9325, 0.8602, 0.9123, 0.0834, 0.7823, 0.5623, 0.8899, - 0.0826, 0.3431, 0.6992, 0.8431, 0.0184, 0.7131, 0.6557, - 0.5015, 0.1589, 0.7364, 0.6955, 0.5067, 0.8526, 0.8096, - 0.3737, 0.9192, 0.4640, 0.3804, 0.1650, 0.8279, 0.3043, - 0.6932, 0.1415, 0.2659, 0.9686, 0.1255, 0.9335, 0.5951, - 0.1200, 0.6279, 0.3021, 0.5054, 0.7498, 0.9300]), - size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.3956, 0.7164, 0.0973, ..., 0.3827, 0.2591, 0.9120]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([10000, 10000]) -Rows: 10000 -Size: 100000000 -NNZ: 1000 -Density: 1e-05 -Time: 0.08297038078308105 seconds - -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 126551 -ss 10000 -sd 1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.296976089477539} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.015316009521484375} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), - col_indices=tensor([2203, 8070, 6104, 2428, 4613, 3691, 9216, 6131, 986, - 1730, 6958, 2260, 4558, 2092, 2006, 9924, 3804, 2564, - 5756, 576, 814, 3989, 9107, 9017, 2713, 9863, 8001, - 9467, 7238, 1363, 9398, 4896, 8714, 9465, 4527, 6808, - 4270, 8132, 5071, 5387, 3531, 2819, 3588, 8860, 7711, - 4509, 4060, 8225, 9781, 1914, 9703, 2545, 3005, 3104, - 4703, 8485, 6067, 7353, 1027, 5410, 1587, 9191, 8130, - 8157, 1425, 6163, 9593, 3371, 7685, 6829, 4626, 8915, - 1311, 7290, 440, 3282, 7867, 22, 3899, 6800, 1514, - 595, 3471, 8537, 4459, 3417, 3245, 2994, 2279, 3612, - 5485, 4122, 7064, 2573, 859, 2863, 2677, 882, 3375, - 6097, 560, 5991, 5047, 8895, 9241, 4674, 9649, 6858, - 3246, 9585, 8205, 7288, 4121, 4129, 6302, 1407, 2683, - 4197, 6829, 2730, 4635, 6651, 3516, 2085, 6454, 3953, - 3127, 1809, 5559, 9738, 8898, 9261, 9515, 3314, 7768, - 794, 6834, 3227, 9446, 1230, 827, 1252, 220, 8489, - 855, 7889, 5405, 7748, 9778, 5951, 5522, 7387, 4027, - 3243, 2512, 3211, 5658, 9449, 7125, 3650, 4431, 1409, - 5023, 3664, 6578, 4422, 81, 2134, 2573, 2082, 4265, - 1, 1299, 2520, 9560, 369, 834, 6073, 607, 9635, - 3220, 8991, 3844, 3111, 79, 5873, 1469, 1414, 1669, - 2402, 7083, 8005, 8131, 3849, 8975, 1406, 1709, 9509, - 9322, 5478, 6392, 8167, 4964, 8012, 1247, 6947, 492, - 5502, 9258, 8435, 4381, 4384, 4616, 5035, 5332, 9216, - 4758, 223, 5905, 5295, 6281, 6325, 874, 4275, 1196, - 907, 8753, 7533, 2899, 3573, 8331, 4144, 6932, 4514, - 5706, 2018, 1635, 5997, 6880, 9687, 5733, 968, 3215, - 4789, 3046, 2766, 1354, 6560, 250, 4919, 3881, 4599, - 9929, 49, 5524, 3820, 6379, 6125, 7324, 7190, 1053, - 8572, 4649, 4497, 6964, 4702, 3371, 3519, 4705, 5770, - 7207, 3247, 8382, 5606, 5189, 7084, 2091, 851, 2970, - 4260, 7264, 3037, 7294, 2799, 2435, 994, 7786, 50, - 137, 3024, 4329, 8246, 3487, 9160, 4357, 6374, 4578, - 3084, 8512, 3805, 8783, 4545, 3075, 8998, 6150, 8002, - 9235, 8013, 1410, 6201, 7896, 1803, 1659, 2365, 7524, - 2540, 860, 2113, 3665, 220, 6885, 2996, 3121, 6717, - 3124, 3123, 2327, 5986, 7952, 6749, 8836, 1431, 1233, - 8546, 1284, 3995, 6295, 7141, 933, 5680, 698, 7824, - 3798, 2416, 833, 2206, 390, 4971, 3542, 1017, 4917, - 1705, 3232, 6117, 2366, 8495, 987, 9155, 7947, 4804, - 2278, 9809, 2782, 3734, 8724, 7913, 6403, 133, 2239, - 3641, 3889, 9871, 1811, 3463, 3717, 1593, 8115, 2235, - 8102, 5120, 4120, 3687, 2270, 4118, 9945, 2153, 8052, - 4067, 1046, 7678, 1145, 7144, 9857, 8603, 8656, 1825, - 6561, 3115, 4772, 4801, 1445, 6506, 7814, 2334, 669, - 7071, 8094, 8732, 9343, 2995, 4089, 3929, 4195, 3364, - 4826, 1046, 1965, 9119, 2221, 5697, 4306, 8392, 4000, - 1314, 7733, 222, 4923, 8727, 377, 7813, 2942, 6781, - 2779, 6680, 275, 1927, 578, 901, 4815, 7847, 4500, - 5895, 7430, 9148, 8737, 7766, 4137, 1921, 3545, 3372, - 6961, 5424, 1908, 7475, 978, 5922, 7184, 5876, 1595, - 1870, 4510, 1358, 7136, 6410, 4251, 6841, 8561, 8172, - 1896, 9607, 9709, 8921, 1183, 656, 8788, 942, 9442, - 7234, 4436, 1048, 9534, 4815, 2582, 3070, 9281, 203, - 5641, 6727, 2072, 9560, 39, 6723, 4687, 2794, 9220, - 177, 9385, 4212, 4876, 3680, 6089, 3597, 863, 1316, - 5476, 2167, 3459, 5624, 189, 3976, 8052, 2759, 3827, - 8852, 4077, 1047, 5939, 4584, 8043, 124, 6754, 8135, - 5064, 4280, 7450, 2649, 5581, 9046, 9374, 9717, 2516, - 7802, 7519, 6921, 1554, 6572, 1784, 9115, 2535, 4537, - 1672, 3052, 889, 8741, 6704, 7355, 4983, 8502, 8868, - 9650, 885, 4823, 436, 9214, 2460, 8284, 6491, 676, - 4008, 7147, 3384, 4842, 9737, 9603, 3241, 4443, 1705, - 9234, 443, 3961, 7764, 4999, 8724, 5854, 7791, 2685, - 6856, 7159, 7750, 3061, 3138, 153, 9827, 5145, 1256, - 2986, 2702, 2566, 7183, 1523, 9458, 4652, 9100, 467, - 7615, 1579, 8406, 9693, 6591, 7334, 5403, 5974, 5067, - 9785, 8874, 199, 8449, 2400, 6888, 3685, 9886, 7200, - 1332, 5963, 110, 4201, 2711, 4898, 740, 2675, 7214, - 7643, 9912, 5306, 9704, 7070, 5421, 1246, 848, 2476, - 2436, 1632, 2063, 9359, 7466, 5474, 7388, 670, 3441, - 7099, 2564, 7117, 3094, 8348, 5006, 5310, 8977, 9764, - 7476, 4698, 5674, 9514, 8801, 2326, 4772, 6895, 9024, - 7485, 59, 3242, 4738, 9347, 9411, 51, 128, 7669, - 2153, 9786, 7877, 6652, 500, 2831, 5627, 9814, 7421, - 3662, 7258, 6824, 2732, 779, 782, 1347, 1128, 3384, - 9653, 2064, 6895, 3777, 2192, 2350, 6464, 4053, 8115, - 715, 8676, 697, 9651, 8044, 6194, 8860, 2577, 5601, - 8500, 1536, 6432, 2853, 8362, 2559, 7948, 1547, 4483, - 124, 1248, 4441, 7765, 9200, 7275, 5824, 6575, 5666, - 7475, 8698, 524, 6309, 5746, 9469, 7136, 7881, 5591, - 4343, 4183, 6021, 8006, 8580, 2479, 8443, 5007, 9798, - 6901, 4183, 1862, 7458, 6952, 8784, 5289, 9179, 505, - 7718, 254, 4280, 6727, 899, 8563, 2051, 2526, 5757, - 4380, 9893, 5125, 7484, 7297, 9995, 8131, 215, 7074, - 7162, 2006, 4499, 4869, 3518, 2378, 4153, 6968, 1442, - 8757, 3057, 6701, 8852, 4010, 4108, 9282, 2784, 874, - 9790, 2747, 5860, 7947, 6373, 6086, 4578, 8630, 4151, - 6801, 6433, 7435, 2601, 5810, 5068, 9640, 2033, 3837, - 6373, 7479, 6685, 9978, 8435, 6793, 1755, 4535, 158, - 4180, 1458, 6643, 4030, 7015, 6456, 6425, 5795, 66, - 4025, 1892, 4234, 1818, 5326, 2573, 2047, 2380, 8013, - 6938, 6487, 1993, 4660, 1169, 7130, 4275, 6198, 8838, - 2966, 2990, 8290, 3481, 124, 5066, 725, 7696, 4989, - 606, 9009, 2894, 9478, 2578, 9312, 9050, 8788, 1973, - 3445, 6134, 7656, 4090, 7761, 5634, 762, 1647, 5677, - 593, 3370, 5429, 533, 1628, 9370, 9263, 8062, 4918, - 344, 3503, 9937, 4395, 9484, 2793, 388, 5323, 4811, - 6635, 2130, 5954, 8462, 6924, 7812, 5275, 7164, 8533, - 9766, 3406, 1290, 4866, 8350, 3852, 1536, 6847, 2750, - 5182, 414, 4463, 7754, 7042, 7946, 1638, 1936, 5714, - 8230, 7178, 1457, 2906, 3679, 3332, 9755, 3508, 9815, - 3722, 3280, 3392, 3, 4826, 8383, 2706, 1081, 9374, - 2696, 4302, 6134, 7001, 9622, 4154, 5304, 8119, 8707, - 6705, 6702, 9552, 218, 832, 5899, 6057, 4190, 9314, - 7211, 2465, 7158, 795, 6968, 2907, 6533, 9384, 4871, - 7063, 9105, 1997, 4143, 6738, 8938, 3326, 7281, 1919, - 6127, 4657, 717, 8817, 2622, 7951, 9908, 6193, 7461, - 464, 8858, 4626, 1061, 7945, 8814, 4776, 6101, 583, - 6964, 956, 3562, 8191, 266, 9137, 1584, 6212, 6132, - 879, 3947, 2479, 3185, 6697, 2396, 6654, 1304, 5344, - 5776]), - values=tensor([2.5644e-01, 4.1340e-01, 8.8889e-01, 1.9996e-01, - 4.1859e-02, 4.5272e-01, 7.2267e-01, 9.2313e-01, - 9.7517e-01, 7.7641e-01, 6.5399e-01, 8.9647e-01, - 1.7929e-01, 2.1581e-01, 5.3999e-01, 2.7286e-01, - 3.3424e-01, 6.1854e-01, 7.0136e-01, 9.5008e-01, - 4.9345e-02, 3.2535e-01, 1.8620e-01, 9.8061e-01, - 1.8253e-01, 2.0059e-01, 5.9405e-01, 3.2028e-01, - 2.1950e-01, 9.9764e-02, 2.7925e-01, 1.2994e-01, - 6.0075e-01, 3.7837e-01, 4.7839e-02, 8.9279e-01, - 8.9909e-01, 1.8536e-02, 3.2654e-01, 9.2951e-01, - 5.0888e-01, 6.3988e-01, 3.9143e-01, 6.6039e-01, - 3.8083e-01, 8.8251e-01, 2.6190e-01, 9.5779e-01, - 4.0488e-01, 3.0840e-01, 7.4333e-01, 4.2414e-01, - 1.3552e-01, 6.3083e-01, 4.7621e-01, 8.6985e-01, - 1.4839e-01, 1.0087e-01, 3.0747e-01, 3.6247e-01, - 6.8986e-01, 2.7555e-03, 2.8920e-01, 8.2021e-01, - 4.1169e-01, 3.4318e-01, 2.5672e-01, 8.2270e-01, - 1.1811e-01, 3.1785e-01, 7.1889e-01, 4.2142e-01, - 3.0678e-01, 7.3338e-01, 5.9492e-01, 7.2248e-01, - 5.5072e-01, 3.5848e-01, 1.9054e-01, 9.7639e-01, - 7.4231e-01, 7.7266e-01, 2.5707e-01, 5.9393e-01, - 2.6795e-01, 7.7478e-01, 6.9466e-01, 4.8878e-01, - 6.4934e-01, 7.5196e-01, 6.9616e-01, 2.4523e-01, - 6.2998e-01, 8.6084e-01, 4.4823e-01, 5.1248e-01, - 6.0152e-01, 9.6506e-01, 1.5632e-01, 5.6839e-01, - 5.8601e-01, 3.5900e-01, 4.6999e-01, 2.0880e-01, - 6.6149e-01, 3.9173e-01, 7.6911e-01, 4.0235e-01, - 3.9630e-01, 9.2252e-01, 4.9607e-01, 2.4618e-02, - 9.5154e-01, 8.1269e-01, 1.9962e-01, 8.8695e-01, - 1.6389e-02, 9.9990e-01, 5.5126e-01, 5.8829e-01, - 3.1227e-01, 9.1196e-01, 7.8596e-01, 7.8259e-01, - 4.5294e-02, 4.8300e-02, 1.2913e-01, 8.2020e-01, - 3.9272e-01, 2.1128e-01, 8.6470e-01, 5.2628e-01, - 3.2533e-01, 1.7183e-01, 9.7494e-01, 5.3183e-01, - 1.9788e-01, 3.0667e-01, 1.2459e-01, 9.5696e-01, - 7.1166e-02, 9.8344e-01, 9.4402e-01, 5.9193e-01, - 3.8362e-02, 5.8093e-01, 2.7557e-01, 3.8264e-01, - 4.8925e-01, 2.6829e-01, 2.9458e-01, 7.6507e-01, - 8.6870e-01, 1.0706e-01, 8.2619e-01, 5.1984e-01, - 9.0042e-01, 2.2765e-01, 1.4051e-01, 9.3497e-01, - 6.1117e-01, 4.5945e-01, 4.1776e-01, 6.4888e-02, - 1.7439e-01, 7.3618e-01, 7.2456e-01, 7.2943e-01, - 6.3655e-01, 1.4152e-01, 9.1240e-01, 4.9941e-01, - 8.3074e-02, 6.2482e-01, 3.1784e-01, 9.5719e-01, - 6.2235e-01, 5.8051e-01, 9.7046e-01, 3.8059e-01, - 7.2437e-02, 3.0079e-01, 5.6747e-01, 1.2020e-01, - 9.7281e-01, 3.0302e-01, 6.5420e-01, 9.3100e-01, - 2.9623e-01, 9.7796e-01, 6.4885e-01, 2.5046e-01, - 2.2500e-01, 5.1568e-01, 7.4939e-01, 6.9754e-01, - 2.4394e-02, 9.2791e-01, 6.2239e-01, 5.8880e-01, - 7.9577e-02, 6.7327e-01, 3.3226e-01, 7.1189e-01, - 5.6001e-01, 9.0082e-01, 7.1409e-01, 5.3241e-01, - 9.4765e-02, 4.5222e-01, 8.1863e-01, 2.6081e-01, - 6.5638e-01, 8.6753e-01, 9.3524e-01, 2.5574e-01, - 8.2265e-01, 9.2571e-01, 4.3655e-01, 1.6080e-01, - 6.6905e-01, 5.8232e-01, 2.7328e-01, 3.9513e-01, - 1.7389e-01, 3.4148e-01, 7.5659e-01, 8.8088e-01, - 8.3409e-01, 7.5722e-02, 2.0101e-01, 9.8377e-01, - 8.3191e-01, 9.4678e-01, 2.2290e-01, 4.9474e-01, - 2.4686e-01, 4.7861e-01, 5.3301e-02, 5.0420e-01, - 9.7119e-01, 9.6644e-01, 3.6103e-01, 8.9844e-01, - 1.4760e-01, 5.5127e-01, 4.1634e-01, 4.5118e-01, - 5.3946e-01, 9.3326e-03, 9.8142e-02, 6.4986e-01, - 4.0779e-01, 3.3042e-01, 9.3167e-01, 8.0811e-01, - 1.0668e-01, 7.3926e-01, 3.5195e-01, 1.8629e-01, - 9.7074e-01, 7.5546e-01, 5.5758e-01, 9.6364e-01, - 5.4358e-01, 1.6670e-01, 7.5163e-01, 8.1226e-01, - 6.1329e-01, 5.3328e-01, 9.6244e-01, 3.1540e-01, - 7.4758e-01, 3.0115e-01, 8.5486e-01, 7.3290e-02, - 9.8182e-01, 6.7740e-02, 9.5535e-01, 4.4933e-01, - 7.5007e-01, 3.6242e-01, 7.1763e-01, 2.6345e-01, - 4.6614e-01, 5.1043e-01, 9.3626e-01, 6.3715e-01, - 6.5932e-01, 2.7592e-01, 7.6444e-01, 6.0384e-01, - 7.8070e-01, 6.4287e-01, 4.5029e-01, 6.7633e-02, - 2.6546e-01, 6.0429e-01, 8.7571e-01, 1.9989e-01, - 8.8128e-01, 7.5303e-01, 9.9882e-01, 9.3341e-01, - 2.7616e-01, 4.8772e-01, 4.2568e-01, 7.3833e-01, - 7.7753e-01, 7.5636e-01, 8.3979e-01, 4.9876e-01, - 5.4339e-01, 6.1354e-02, 6.5538e-01, 8.6207e-01, - 2.8227e-02, 9.6964e-01, 9.2079e-01, 1.9484e-01, - 3.1203e-01, 1.6012e-01, 7.6943e-01, 6.5909e-01, - 6.5009e-01, 7.3086e-01, 6.2292e-01, 2.0275e-01, - 8.5049e-01, 4.8021e-01, 6.8391e-01, 8.2231e-01, - 6.5688e-01, 1.7624e-01, 2.9741e-01, 9.7814e-01, - 9.1427e-02, 7.6719e-01, 8.6114e-01, 2.3766e-03, - 4.8613e-01, 3.3859e-01, 7.3026e-01, 5.4892e-01, - 6.0711e-01, 3.1343e-02, 3.5572e-01, 2.7095e-01, - 4.5192e-01, 2.3350e-02, 2.0788e-01, 7.3319e-01, - 3.5718e-01, 8.3615e-01, 6.7478e-01, 2.1315e-01, - 5.8013e-01, 4.3802e-01, 7.8964e-01, 9.2608e-01, - 7.6007e-01, 8.7289e-01, 8.7554e-02, 7.4286e-01, - 8.6107e-01, 8.4040e-01, 6.1997e-01, 1.6524e-02, - 5.4761e-01, 1.9732e-01, 1.1518e-02, 1.7061e-01, - 8.1962e-01, 4.6316e-01, 1.8305e-02, 9.2708e-01, - 6.5729e-01, 4.8195e-01, 3.6484e-01, 6.7632e-01, - 6.5134e-01, 9.5068e-01, 1.0191e-01, 5.3523e-02, - 1.7437e-01, 9.4209e-01, 9.2081e-01, 6.7183e-02, - 4.5612e-01, 1.5881e-01, 2.6373e-01, 8.2337e-01, - 1.4498e-01, 4.5870e-01, 6.1453e-01, 5.0354e-01, - 7.5720e-01, 3.8739e-01, 7.3122e-01, 4.6802e-01, - 8.0048e-01, 4.9856e-01, 5.5596e-01, 7.2690e-01, - 3.5513e-01, 6.6211e-01, 9.6917e-01, 6.1725e-01, - 5.2916e-01, 8.4048e-01, 1.5088e-01, 7.7128e-01, - 1.9156e-01, 5.4016e-01, 5.7565e-01, 2.1934e-01, - 9.9619e-01, 8.1849e-04, 1.5205e-01, 5.7917e-01, - 8.4933e-01, 4.1169e-02, 7.4237e-01, 7.6301e-01, - 5.0152e-01, 8.0053e-01, 3.0855e-01, 1.0288e-01, - 2.5025e-01, 4.0389e-01, 7.0350e-01, 3.0858e-02, - 6.7947e-01, 8.4275e-01, 8.8528e-01, 3.6206e-01, - 5.9201e-02, 3.5994e-01, 2.0028e-01, 8.5520e-01, - 9.1181e-01, 3.9883e-01, 8.3835e-01, 4.3379e-01, - 2.6269e-01, 2.2338e-01, 3.8007e-01, 4.8995e-02, - 4.3151e-01, 5.4724e-01, 6.2329e-01, 7.1941e-01, - 3.5283e-01, 4.0846e-01, 4.0751e-02, 2.5253e-01, - 6.0487e-01, 3.9308e-01, 7.1244e-01, 1.3455e-01, - 6.4672e-01, 6.2530e-01, 5.3092e-01, 2.7846e-01, - 6.9308e-01, 1.4305e-01, 8.8981e-02, 7.4971e-01, - 7.6341e-01, 7.2273e-02, 1.8169e-01, 4.3213e-01, - 9.9740e-01, 3.9864e-02, 6.4685e-01, 2.8629e-01, - 7.2650e-02, 6.4796e-01, 2.3873e-01, 3.8527e-01, - 8.9744e-01, 3.7869e-01, 7.5353e-01, 2.6838e-01, - 2.9179e-01, 4.0297e-01, 2.2256e-01, 5.4265e-01, - 5.3049e-01, 8.5609e-01, 8.1699e-01, 6.7556e-01, - 4.5882e-03, 5.5027e-01, 3.6230e-01, 6.4707e-01, - 4.1756e-01, 9.2974e-01, 9.8266e-01, 7.8941e-01, - 4.2315e-03, 2.7125e-01, 6.0007e-01, 4.5247e-01, - 1.3985e-01, 4.4653e-01, 2.4965e-01, 7.8715e-01, - 4.5617e-02, 4.9657e-01, 9.0861e-01, 1.6663e-01, - 3.1933e-01, 2.2962e-01, 5.5708e-01, 1.0271e-02, - 8.4316e-01, 5.4472e-01, 7.3045e-01, 7.1526e-01, - 4.4407e-01, 6.9262e-01, 1.7777e-01, 4.1474e-01, - 4.1441e-01, 2.8247e-01, 8.2215e-01, 5.4061e-01, - 5.8557e-01, 1.2954e-01, 8.6512e-01, 3.7346e-01, - 9.7639e-01, 6.2218e-01, 6.4892e-01, 4.7474e-01, - 2.9746e-01, 7.8039e-02, 7.7508e-02, 3.9386e-02, - 8.9450e-02, 4.1531e-02, 3.3179e-01, 2.5929e-01, - 8.8076e-01, 4.5451e-01, 6.5253e-01, 6.2584e-01, - 2.1029e-01, 5.9882e-01, 6.7269e-01, 6.1554e-01, - 2.1835e-01, 1.3371e-01, 2.1393e-01, 3.2298e-01, - 6.2778e-01, 5.3887e-01, 8.5574e-01, 8.9290e-01, - 4.7363e-01, 5.0497e-01, 8.9594e-01, 8.7902e-01, - 3.8137e-01, 8.1184e-01, 8.8479e-01, 1.5249e-01, - 6.7019e-01, 6.9002e-01, 1.2700e-01, 6.0877e-01, - 1.0355e-01, 4.8291e-01, 6.0360e-01, 8.7069e-01, - 1.5130e-01, 1.8137e-01, 5.4702e-01, 4.7769e-01, - 2.4143e-01, 9.2093e-01, 4.0588e-01, 7.2948e-01, - 1.4843e-02, 2.6549e-01, 5.1936e-01, 6.5236e-02, - 4.8623e-01, 8.5154e-01, 9.1855e-01, 1.5040e-01, - 4.8009e-01, 6.0119e-01, 4.3431e-01, 5.5707e-01, - 4.0824e-02, 3.3741e-01, 8.5017e-01, 7.1405e-01, - 1.0416e-01, 7.9003e-02, 1.7283e-01, 3.4951e-01, - 4.9567e-01, 8.6852e-01, 8.4830e-01, 6.2344e-01, - 3.1355e-01, 9.9906e-01, 8.1478e-01, 9.5230e-01, - 1.6444e-01, 9.8398e-01, 6.6864e-01, 3.2892e-01, - 9.3508e-01, 6.5058e-01, 6.8678e-01, 5.5765e-01, - 7.3767e-01, 6.6605e-01, 2.1626e-01, 1.7300e-01, - 1.0184e-01, 2.7474e-01, 7.6279e-02, 3.4215e-01, - 5.9838e-01, 3.9154e-01, 7.0390e-01, 9.7144e-01, - 9.7173e-01, 2.4035e-02, 7.6844e-01, 5.2377e-01, - 8.2957e-01, 2.1413e-01, 5.4171e-01, 3.9619e-01, - 2.8764e-02, 4.1875e-02, 1.4137e-01, 5.0321e-01, - 1.8595e-01, 5.1899e-01, 8.3020e-01, 4.2297e-01, - 2.6879e-01, 6.9489e-01, 8.5420e-01, 5.4989e-01, - 2.3704e-02, 9.4223e-01, 3.4710e-01, 6.2781e-01, - 1.7831e-01, 6.3560e-01, 9.5015e-01, 4.8756e-01, - 4.9172e-01, 4.4354e-02, 8.0058e-01, 1.9326e-01, - 8.8187e-01, 4.5301e-01, 4.7846e-01, 4.6055e-01, - 6.9147e-01, 6.3841e-01, 5.5214e-02, 9.2087e-01, - 6.9432e-01, 7.5196e-01, 4.1958e-01, 6.8695e-01, - 2.6582e-01, 3.0347e-01, 9.1425e-01, 8.9327e-02, - 7.6973e-01, 7.6899e-02, 9.2230e-01, 3.1543e-01, - 4.4251e-01, 9.0630e-01, 6.7820e-01, 8.3933e-01, - 9.4875e-01, 1.8882e-01, 9.9541e-01, 7.1216e-01, - 8.7728e-01, 4.3430e-01, 5.3255e-01, 2.2379e-01, - 7.1012e-01, 7.4961e-01, 5.3055e-02, 4.8019e-01, - 4.3443e-01, 6.9804e-01, 2.4958e-01, 7.7851e-01, - 6.8751e-01, 8.9559e-01, 9.8910e-01, 5.4960e-01, - 6.7338e-01, 7.5675e-01, 3.9315e-01, 7.4544e-02, - 7.8019e-01, 1.6178e-01, 8.4115e-02, 1.0903e-01, - 7.6844e-01, 4.5180e-03, 5.9662e-01, 1.2902e-01, - 5.1261e-01, 1.4645e-01, 6.8718e-01, 7.0734e-01, - 2.4311e-01, 7.0618e-01, 8.5873e-01, 8.2221e-01, - 2.5583e-01, 4.2945e-01, 5.8827e-01, 8.1189e-01, - 4.3496e-01, 6.7312e-01, 3.8112e-01, 1.4863e-01, - 3.4030e-01, 3.5958e-01, 9.2091e-01, 9.9895e-01, - 5.1970e-01, 1.0638e-01, 5.3834e-01, 3.0344e-01, - 6.5353e-02, 6.3903e-02, 6.8394e-01, 7.1237e-01, - 7.2614e-01, 2.8107e-01, 9.4215e-01, 1.9339e-01, - 3.2766e-01, 6.6328e-01, 4.6436e-01, 7.2002e-01, - 3.7498e-01, 9.1908e-02, 2.8070e-02, 3.6489e-01, - 8.7565e-01, 8.9904e-01, 1.4724e-01, 1.8502e-01, - 6.2364e-01, 2.5974e-01, 9.4038e-01, 7.0849e-01, - 5.6427e-01, 4.7039e-01, 3.1376e-03, 2.8992e-01, - 8.4344e-01, 8.2341e-01, 3.0603e-01, 3.0914e-01, - 6.9608e-02, 4.2120e-01, 7.8318e-02, 6.2189e-01, - 1.1195e-01, 8.9439e-01, 9.9288e-01, 5.7460e-01, - 3.6105e-01, 9.9265e-01, 9.1951e-02, 2.6031e-01, - 9.2668e-01, 2.1713e-01, 7.0902e-01, 8.1788e-01, - 7.4976e-01, 4.7434e-01, 1.1619e-01, 1.2965e-01, - 6.0275e-01, 1.7535e-01, 3.6080e-01, 8.9028e-01, - 3.9348e-01, 1.5106e-01, 3.7276e-01, 5.8945e-01, - 2.9236e-01, 2.4562e-01, 3.0066e-01, 7.6287e-01, - 9.9890e-01, 5.1364e-01, 9.7297e-02, 2.6798e-01, - 5.1337e-02, 7.7922e-01, 9.0723e-01, 4.5419e-01, - 4.9457e-01, 1.6032e-01, 7.3101e-01, 5.3987e-01, - 7.2490e-01, 6.1795e-01, 7.4445e-01, 6.6125e-01, - 7.6080e-01, 4.2675e-01, 4.2235e-01, 1.7015e-01, - 7.2438e-01, 9.4198e-01, 4.6468e-01, 9.0142e-02, - 4.7565e-01, 2.3678e-01, 8.3100e-02, 9.5983e-01, - 8.9786e-01, 6.5702e-01, 6.2276e-01, 5.7525e-01, - 6.5825e-01, 9.4434e-01, 9.8952e-01, 2.5318e-01, - 4.7310e-01, 1.2816e-02, 7.7734e-01, 4.2004e-01, - 4.3964e-01, 1.3846e-02, 6.6626e-01, 3.4767e-01, - 6.3387e-01, 5.3276e-01, 7.5902e-01, 2.3507e-01, - 2.0220e-01, 5.1960e-01, 7.1115e-01, 3.4339e-01, - 7.4781e-01, 8.1715e-01, 8.2597e-01, 6.3771e-01, - 5.5599e-01, 2.8860e-01, 9.7519e-01, 1.7405e-01, - 2.4765e-01, 3.9022e-01, 7.0591e-01, 3.5410e-01, - 5.0492e-01, 7.7335e-01, 6.5399e-01, 2.5890e-01, - 1.7992e-01, 2.8937e-02, 3.9978e-01, 6.4485e-01, - 9.8804e-01, 2.6525e-01, 8.2352e-02, 4.5200e-01, - 3.7706e-01, 3.6888e-01, 4.6742e-01, 2.2734e-01, - 8.0517e-01, 5.3933e-01, 9.4715e-01, 9.0092e-01, - 1.7050e-01, 5.7693e-01, 8.3203e-01, 1.3006e-01, - 1.0404e-03, 1.5028e-01, 4.2248e-01, 2.9590e-01, - 1.7078e-01, 7.3796e-01, 7.4155e-01, 8.7998e-01, - 4.7809e-01, 7.3390e-02, 9.7648e-01, 5.1828e-01, - 1.7042e-01, 3.3970e-01, 9.5290e-01, 4.0381e-01, - 7.7718e-01, 3.9948e-01, 6.7108e-01, 4.2412e-01, - 3.3090e-01, 7.4833e-01, 7.3278e-01, 7.2853e-01, - 6.9950e-01, 8.1746e-01, 3.1753e-01, 1.0600e-01, - 4.4370e-01, 6.9105e-01, 8.7701e-01, 7.3030e-02, - 5.1421e-01, 2.8882e-01, 6.5366e-01, 2.3271e-01, - 7.2580e-01, 7.4486e-02, 8.4800e-02, 5.6108e-01, - 4.2216e-01, 7.9148e-01, 6.7937e-01, 3.8844e-01, - 5.1370e-01, 8.9399e-01, 7.3522e-01, 9.0791e-01, - 2.4611e-01, 4.7796e-01, 1.5963e-01, 9.2416e-01, - 1.1957e-01, 2.7998e-01, 5.6346e-01, 2.9692e-01, - 6.8561e-01, 4.5870e-03, 9.7147e-01, 7.5045e-01, - 3.6538e-01, 4.5510e-01, 5.6387e-01, 3.5971e-01, - 3.3289e-01, 6.0219e-01, 6.2316e-01, 4.1027e-01, - 8.5536e-01, 2.2988e-01, 2.9483e-01, 5.2633e-01, - 3.4637e-01, 8.8604e-01, 8.9721e-01, 8.2901e-02, - 9.3086e-01, 8.5600e-01, 7.4177e-01, 6.5607e-01, - 8.4765e-01, 8.9582e-01, 3.7468e-01, 5.4245e-01, - 6.8428e-01, 4.0500e-01, 5.1662e-01, 1.8751e-01, - 5.3619e-01, 2.3998e-01, 3.6662e-01, 3.1969e-01, - 4.1226e-01, 7.0012e-01, 3.1767e-01, 2.0586e-01, - 8.8678e-01, 4.7686e-01, 9.4057e-01, 6.6187e-01, - 6.3070e-01, 8.9669e-01, 3.3070e-01, 5.7151e-01]), + col_indices=tensor([9112, 5292, 3575, 5961, 5092, 9328, 2019, 8963, 6545, + 7422, 818, 4088, 407, 2015, 64, 4328, 8365, 6206, + 9094, 5899, 6513, 5954, 4347, 8726, 6057, 3857, 2262, + 5262, 3242, 3739, 9546, 2710, 9191, 261, 5342, 5031, + 4219, 1193, 8424, 3055, 1118, 7444, 3421, 4719, 884, + 9797, 6413, 7746, 2915, 8061, 1921, 7039, 8615, 6298, + 8962, 4075, 2597, 5310, 5194, 9913, 649, 821, 1630, + 6166, 2303, 666, 4248, 9703, 9421, 933, 8076, 2414, + 2921, 3906, 2279, 4858, 3629, 8129, 746, 1260, 8400, + 3559, 6490, 9630, 9771, 2054, 6368, 4294, 59, 1873, + 8913, 6245, 1629, 8022, 7105, 7514, 7136, 705, 7667, + 598, 5268, 8736, 8255, 3780, 9168, 855, 891, 5701, + 1088, 5566, 9882, 6656, 6138, 1874, 1409, 2224, 9088, + 5917, 2460, 1920, 8927, 3689, 9209, 2413, 7383, 5435, + 1164, 4656, 1145, 9858, 1276, 1566, 4567, 6670, 8019, + 77, 4463, 9904, 1378, 6274, 6811, 7718, 6698, 6133, + 1817, 5750, 9902, 8179, 7778, 9310, 3186, 2889, 6830, + 3732, 9331, 80, 4061, 9725, 2461, 365, 5801, 7394, + 1364, 7916, 4458, 9726, 1384, 8245, 4422, 1021, 8441, + 8635, 9830, 6237, 8296, 9417, 1755, 5150, 8755, 573, + 6482, 6077, 4649, 5929, 3346, 2879, 2567, 9845, 9617, + 7984, 1423, 20, 9389, 7465, 1857, 6041, 81, 3754, + 3443, 6292, 8270, 777, 2884, 6004, 5456, 7516, 4457, + 2299, 9549, 3283, 8815, 7872, 6555, 9764, 3765, 3453, + 3743, 966, 1219, 6368, 7586, 7598, 502, 5829, 8794, + 426, 1814, 9137, 7261, 9402, 2755, 22, 4007, 5976, + 44, 8313, 1900, 8548, 3115, 7074, 1012, 8434, 6097, + 7768, 5045, 3244, 2886, 1954, 541, 5982, 5878, 5999, + 4618, 9582, 4847, 7320, 9835, 5610, 1305, 8884, 6363, + 6478, 839, 5162, 9728, 5499, 1528, 5689, 3183, 7129, + 2488, 4352, 928, 8220, 1382, 3689, 8735, 2195, 9727, + 771, 6448, 8679, 1573, 5638, 2952, 6446, 4389, 8540, + 4711, 8193, 7117, 2236, 5186, 1639, 2122, 9434, 4600, + 6263, 5259, 9546, 979, 6158, 4405, 3909, 3341, 4623, + 4859, 8302, 4199, 6104, 2336, 9661, 8228, 7721, 9724, + 9263, 6964, 9466, 2887, 6905, 9477, 5133, 4559, 533, + 2189, 788, 3859, 2643, 7749, 7409, 8072, 2895, 4935, + 3245, 8702, 7464, 5201, 7428, 20, 9781, 4720, 1259, + 9047, 5360, 2447, 5616, 727, 910, 8863, 9370, 6403, + 6786, 6714, 5315, 5973, 2498, 2170, 4132, 8638, 1133, + 5562, 8468, 1057, 3841, 5439, 5548, 364, 3661, 4774, + 5311, 8396, 2293, 3242, 6666, 9193, 5519, 7639, 9475, + 3599, 3244, 2790, 1000, 3648, 8996, 802, 8274, 5880, + 3912, 7828, 7630, 88, 1120, 4545, 662, 8080, 8593, + 2010, 2001, 5509, 1694, 1693, 9968, 188, 5356, 2456, + 5653, 1100, 9884, 8606, 5679, 1447, 3651, 3652, 4270, + 4855, 4081, 6277, 7485, 8206, 943, 9917, 8822, 8258, + 9850, 3678, 6542, 8398, 7438, 4466, 4288, 3429, 1080, + 3756, 619, 8368, 2943, 5279, 4660, 7902, 7718, 2077, + 4700, 6225, 6141, 3048, 5583, 5672, 4237, 9220, 6789, + 8111, 8353, 6234, 7938, 6008, 8305, 6276, 297, 9555, + 5707, 1837, 2743, 2829, 3042, 4370, 7388, 411, 7128, + 8906, 2135, 2863, 8798, 9039, 1464, 3844, 5839, 7296, + 2402, 5778, 6693, 1937, 753, 3696, 9554, 7527, 2292, + 1677, 6534, 2459, 4599, 1635, 4597, 5136, 8224, 1999, + 8607, 1884, 7826, 4374, 308, 5413, 6530, 4467, 4307, + 1520, 5060, 5277, 5551, 2836, 8168, 4583, 6885, 7397, + 5086, 2166, 9687, 6985, 782, 3027, 3733, 5636, 3222, + 7058, 3585, 5104, 9529, 2646, 8519, 9774, 6453, 1089, + 4686, 8416, 5947, 3116, 5175, 8420, 7199, 8094, 9363, + 5867, 977, 7349, 1138, 8895, 8226, 6801, 1193, 7834, + 270, 5919, 3616, 9787, 5305, 1621, 9604, 7543, 6013, + 1208, 3164, 2863, 3384, 9301, 2260, 8403, 6920, 6068, + 5765, 6466, 4, 435, 2987, 5160, 1159, 5240, 7665, + 7666, 3496, 5890, 4087, 2953, 5050, 4444, 9104, 2002, + 2471, 8127, 5828, 6674, 2055, 338, 861, 9115, 7320, + 5987, 2695, 7595, 1847, 5469, 5364, 131, 9179, 7641, + 950, 6916, 2403, 4215, 3306, 372, 8899, 6595, 9275, + 9627, 6167, 7426, 8582, 6983, 176, 5262, 6497, 2411, + 5764, 3749, 2701, 4911, 6555, 8022, 3195, 6448, 88, + 3416, 512, 1476, 3734, 9571, 5879, 8312, 9489, 4113, + 9717, 371, 1290, 2779, 4391, 6234, 2856, 3490, 1940, + 9905, 1525, 994, 3707, 929, 5995, 5360, 7010, 5650, + 8880, 951, 6174, 5544, 4925, 6103, 5678, 4768, 3960, + 2589, 2623, 2714, 910, 2437, 5839, 6147, 8012, 6910, + 3761, 374, 344, 2233, 8593, 1259, 791, 3808, 9483, + 3657, 9667, 1835, 262, 6735, 8158, 1317, 3345, 593, + 9900, 4517, 43, 7724, 7756, 8051, 2464, 2382, 9551, + 482, 4411, 9983, 8638, 3604, 5980, 6568, 498, 884, + 9577, 1204, 8829, 2143, 8709, 5032, 8066, 4401, 2060, + 5903, 5267, 8698, 5847, 5943, 7454, 1160, 8740, 9725, + 1839, 5588, 4536, 704, 5542, 6133, 6713, 1191, 4737, + 9399, 4710, 6386, 7107, 8125, 104, 1397, 1398, 5125, + 3131, 2162, 8266, 675, 2153, 3931, 9784, 7854, 3433, + 1129, 6921, 4688, 2676, 7539, 2908, 159, 4716, 1238, + 3207, 1609, 6019, 8773, 1910, 6472, 7137, 9086, 8335, + 696, 7521, 729, 751, 3579, 5449, 8063, 6228, 2390, + 7376, 4836, 8275, 7154, 3050, 2576, 1473, 8343, 2610, + 7357, 3457, 410, 3334, 1324, 5461, 8837, 3534, 9245, + 7741, 3589, 1706, 4804, 9563, 1793, 2579, 2082, 8159, + 5577, 6674, 1427, 6129, 9640, 4057, 5553, 3970, 7282, + 9122, 3611, 9436, 8975, 6478, 8150, 1984, 2504, 4171, + 7462, 3550, 3994, 7069, 7248, 4676, 4904, 254, 8661, + 438, 7287, 9117, 2771, 7521, 2100, 6071, 7282, 9158, + 6042, 7770, 8275, 8513, 4678, 3085, 5802, 2613, 9576, + 3338, 5128, 2956, 544, 9210, 477, 521, 1403, 2461, + 9392, 8604, 1695, 5759, 8186, 8157, 9519, 6561, 9941, + 3767, 3185, 2012, 3106, 9408, 3943, 6742, 6790, 3649, + 2308, 3780, 5471, 9861, 2028, 220, 5009, 5916, 1418, + 7499, 7134, 5634, 2982, 2159, 5007, 6379, 1644, 1585, + 655, 2063, 509, 4928, 4419, 5224, 6728, 1096, 5532, + 7183, 8187, 9649, 6985, 850, 2224, 2125, 5250, 2441, + 2746, 5010, 9796, 7532, 4370, 5895, 816, 964, 9747, + 142, 9638, 2350, 593, 1466, 2605, 5324, 3252, 9029, + 8442, 930, 4343, 9939, 6148, 3972, 3871, 2071, 3696, + 8203, 3524, 2625, 1316, 1646, 6666, 529, 6459, 989, + 5600, 8399, 1285, 8481, 7590, 29, 8642, 6338, 8582, + 762, 2654, 667, 5523, 3773, 4019, 1164, 6494, 6234, + 2145, 3360, 6578, 3672, 4448, 9661, 2981, 1353, 5538, + 5490, 6854, 5331, 4417, 8287, 9963, 1542, 9640, 5716, + 2268, 5783, 3828, 2802, 3884, 6132, 9548, 5307, 8501, + 2200]), + values=tensor([0.9419, 0.1524, 0.6218, 0.8687, 0.7562, 0.7677, 0.3979, + 0.9838, 0.6947, 0.4933, 0.1301, 0.2967, 0.8344, 0.5735, + 0.9834, 0.9958, 0.7271, 0.2308, 0.3268, 0.5366, 0.3581, + 0.1114, 0.7784, 0.4911, 0.1357, 0.4900, 0.8647, 0.2578, + 0.0862, 0.4816, 0.6605, 0.6509, 0.5868, 0.1831, 0.6063, + 0.9861, 0.3291, 0.5581, 0.6974, 0.9991, 0.9943, 0.2495, + 0.7625, 0.5401, 0.7095, 0.7088, 0.7284, 0.6546, 0.9421, + 0.9648, 0.1593, 0.7038, 0.5084, 0.3162, 0.5113, 0.2822, + 0.9359, 0.1984, 0.8329, 0.6721, 0.0232, 0.0056, 0.2146, + 0.4983, 0.4969, 0.9219, 0.1003, 0.5479, 0.3558, 0.7477, + 0.6115, 0.2532, 0.6522, 0.9992, 0.4170, 0.8240, 0.1605, + 0.8999, 0.9924, 0.9449, 0.9921, 0.5871, 0.5119, 0.1034, + 0.9235, 0.5163, 0.6439, 0.4713, 0.2523, 0.6757, 0.9199, + 0.4059, 0.3534, 0.1535, 0.6795, 0.7794, 0.2738, 0.5412, + 0.6588, 0.5045, 0.2670, 0.8080, 0.1721, 0.4191, 0.2213, + 0.1215, 0.5896, 0.0276, 0.4051, 0.0606, 0.7105, 0.3300, + 0.4106, 0.7694, 0.3908, 0.3300, 0.1863, 0.9625, 0.9792, + 0.7697, 0.4510, 0.7286, 0.3380, 0.0833, 0.2386, 0.2422, + 0.2105, 0.7153, 0.0126, 0.8818, 0.6452, 0.7286, 0.3076, + 0.4200, 0.4807, 0.0386, 0.4801, 0.6112, 0.2188, 0.3858, + 0.6821, 0.3694, 0.1392, 0.6327, 0.5410, 0.3909, 0.7069, + 0.1312, 0.6250, 0.0480, 0.8549, 0.5135, 0.3555, 0.7340, + 0.5811, 0.9088, 0.1032, 0.1489, 0.2774, 0.2296, 0.4495, + 0.1487, 0.9200, 0.5402, 0.0202, 0.1078, 0.2516, 0.0530, + 0.5956, 0.3365, 0.3965, 0.5546, 0.6031, 0.2539, 0.5550, + 0.2459, 0.4351, 0.8734, 0.9592, 0.8627, 0.9645, 0.9888, + 0.0276, 0.4813, 0.8493, 0.9115, 0.1586, 0.0765, 0.6361, + 0.9602, 0.6837, 0.3314, 0.7764, 0.3676, 0.5147, 0.2879, + 0.7930, 0.3046, 0.9136, 0.3619, 0.8794, 0.7331, 0.7243, + 0.5387, 0.8338, 0.0246, 0.0508, 0.2668, 0.8956, 0.4222, + 0.5078, 0.8587, 0.1868, 0.2753, 0.0682, 0.7738, 0.7703, + 0.8842, 0.9299, 0.7459, 0.0157, 0.4309, 0.8926, 0.2625, + 0.8518, 0.5178, 0.5814, 0.1994, 0.2824, 0.5835, 0.0235, + 0.5291, 0.9061, 0.9534, 0.0623, 0.2911, 0.7065, 0.7912, + 0.3245, 0.5227, 0.8463, 0.5932, 0.9274, 0.1290, 0.1611, + 0.8205, 0.7713, 0.8694, 0.8998, 0.4222, 0.2481, 0.8594, + 0.5966, 0.3578, 0.7561, 0.5612, 0.9178, 0.8585, 0.6036, + 0.8103, 0.3002, 0.8454, 0.2318, 0.3982, 0.7981, 0.3046, + 0.4387, 0.6304, 0.9387, 0.6685, 0.0773, 0.6743, 0.7880, + 0.2724, 0.2127, 0.2579, 0.6638, 0.3307, 0.4078, 0.4611, + 0.2895, 0.5460, 0.4074, 0.2836, 0.0658, 0.5132, 0.7184, + 0.0086, 0.2446, 0.0312, 0.3818, 0.3470, 0.9987, 0.8897, + 0.4455, 0.4200, 0.2110, 0.0170, 0.2269, 0.7015, 0.4058, + 0.9687, 0.0766, 0.1367, 0.6704, 0.0153, 0.3212, 0.0176, + 0.4644, 0.2227, 0.7908, 0.0782, 0.2919, 0.8451, 0.5976, + 0.2473, 0.4640, 0.5505, 0.5809, 0.2989, 0.1468, 0.9500, + 0.3546, 0.0940, 0.8787, 0.7992, 0.7177, 0.5259, 0.8114, + 0.0774, 0.0167, 0.2662, 0.3178, 0.3026, 0.5005, 0.5937, + 0.5755, 0.4120, 0.1624, 0.4236, 0.9572, 0.1195, 0.8325, + 0.5589, 0.0781, 0.5692, 0.2217, 0.7537, 0.5700, 0.7103, + 0.7619, 0.2773, 0.0054, 0.4076, 0.0417, 0.9429, 0.6666, + 0.3130, 0.3752, 0.5850, 0.5828, 0.3646, 0.6606, 0.8812, + 0.8699, 0.6326, 0.1294, 0.3652, 0.1063, 0.3989, 0.2296, + 0.2561, 0.2038, 0.4856, 0.2115, 0.2677, 0.5171, 0.1168, + 0.0241, 0.6735, 0.7119, 0.7784, 0.2445, 0.7568, 0.4921, + 0.7068, 0.3231, 0.3789, 0.2044, 0.4127, 0.4285, 0.4637, + 0.9276, 0.2871, 0.0196, 0.6856, 0.2086, 0.8049, 0.5030, + 0.1551, 0.8769, 0.7722, 0.6771, 0.2796, 0.5061, 0.0514, + 0.2069, 0.4519, 0.6146, 0.0401, 0.7884, 0.8928, 0.1753, + 0.7534, 0.6318, 0.5825, 0.1058, 0.3381, 0.6609, 0.8592, + 0.1686, 0.2129, 0.2167, 0.4535, 0.8999, 0.2380, 0.4550, + 0.3194, 0.8715, 0.6805, 0.2977, 0.1180, 0.4624, 0.3632, + 0.0919, 0.3659, 0.3251, 0.3164, 0.3733, 0.2507, 0.2841, + 0.6267, 0.7667, 0.1658, 0.2106, 0.0127, 0.6038, 0.9089, + 0.4336, 0.4538, 0.2798, 0.7512, 0.9252, 0.8121, 0.4723, + 0.7860, 0.4615, 0.2088, 0.9765, 0.2109, 0.9559, 0.5039, + 0.9927, 0.1420, 0.6840, 0.8661, 0.4242, 0.4038, 0.3666, + 0.7210, 0.8886, 0.9968, 0.3170, 0.9198, 0.6665, 0.7540, + 0.6145, 0.7453, 0.6836, 0.0079, 0.6941, 0.0866, 0.0031, + 0.2017, 0.0065, 0.0384, 0.9053, 0.7335, 0.9115, 0.2172, + 0.2567, 0.1205, 0.4361, 0.8961, 0.5130, 0.3240, 0.8733, + 0.7390, 0.2479, 0.0175, 0.9269, 0.1145, 0.4122, 0.4735, + 0.1742, 0.2389, 0.1684, 0.3168, 0.1924, 0.1236, 0.4187, + 0.4623, 0.9975, 0.8678, 0.2889, 0.3517, 0.7091, 0.3332, + 0.9999, 0.5389, 0.2389, 0.1080, 0.5787, 0.9800, 0.8558, + 0.0630, 0.0153, 0.1451, 0.4288, 0.5911, 0.4383, 0.7038, + 0.9016, 0.9862, 0.5629, 0.0913, 0.5216, 0.0805, 0.8630, + 0.5475, 0.9317, 0.0118, 0.3983, 0.7472, 0.6659, 0.5661, + 0.8338, 0.0422, 0.5743, 0.1600, 0.5976, 0.2809, 0.1125, + 0.4399, 0.7717, 0.4561, 0.7256, 0.1621, 0.0820, 0.8140, + 0.0876, 0.8240, 0.8347, 0.2352, 0.3461, 0.5639, 0.8348, + 0.2411, 0.2358, 0.1766, 0.8525, 0.3548, 0.9754, 0.6037, + 0.4568, 0.0645, 0.2813, 0.1774, 0.7397, 0.4609, 0.8191, + 0.3010, 0.4836, 0.9086, 0.3092, 0.8842, 0.1688, 0.5204, + 0.4125, 0.8982, 0.5637, 0.8321, 0.1566, 0.9723, 0.6668, + 0.9762, 0.3312, 0.8818, 0.1159, 0.9962, 0.9987, 0.3133, + 0.5044, 0.1359, 0.4905, 0.8045, 0.5800, 0.3357, 0.6064, + 0.3912, 0.1467, 0.8994, 0.9625, 0.4036, 0.9552, 0.3418, + 0.0859, 0.0108, 0.4910, 0.3283, 0.5233, 0.5467, 0.3156, + 0.8281, 0.7394, 0.2690, 0.9744, 0.6414, 0.6867, 0.8652, + 0.1889, 0.1663, 0.1405, 0.4948, 0.0840, 0.6008, 0.5443, + 0.4155, 0.4281, 0.2116, 0.4298, 0.8508, 0.1255, 0.4732, + 0.9480, 0.7508, 0.4759, 0.8987, 0.4490, 0.0439, 0.9165, + 0.1613, 0.1714, 0.5982, 0.2093, 0.4536, 0.6336, 0.0431, + 0.5964, 0.6823, 0.9029, 0.0699, 0.3806, 0.0497, 0.7357, + 0.1694, 0.0286, 0.6138, 0.3334, 0.6829, 0.9751, 0.2773, + 0.8377, 0.5984, 0.0468, 0.8367, 0.4483, 0.8092, 0.3294, + 0.4584, 0.5056, 0.4772, 0.6300, 0.2983, 0.0246, 0.2509, + 0.0554, 0.8305, 0.0779, 0.2888, 0.3687, 0.6734, 0.4892, + 0.6403, 0.8594, 0.3164, 0.2151, 0.6638, 0.4833, 0.2775, + 0.8670, 0.3530, 0.3362, 0.0667, 0.0039, 0.2958, 0.4611, + 0.8969, 0.4913, 0.5028, 0.2409, 0.4242, 0.4639, 0.6091, + 0.4342, 0.7204, 0.4175, 0.9777, 0.0265, 0.9729, 0.7386, + 0.0448, 0.2047, 0.9187, 0.1396, 0.6324, 0.1331, 0.4202, + 0.8775, 0.7537, 0.5040, 0.3992, 0.6867, 0.4340, 0.9415, + 0.1384, 0.3816, 0.3686, 0.8722, 0.6098, 0.9188, 0.7850, + 0.8822, 0.4949, 0.0392, 0.6331, 0.0948, 0.8931, 0.8620, + 0.1994, 0.6761, 0.0973, 0.2537, 0.4015, 0.3324, 0.4775, + 0.8446, 0.8239, 0.8515, 0.2371, 0.2909, 0.6105, 0.7363, + 0.1806, 0.2458, 0.4418, 0.9172, 0.1027, 0.3665, 0.7822, + 0.8082, 0.3933, 0.0369, 0.7168, 0.8492, 0.4962, 0.1940, + 0.6763, 0.0429, 0.4543, 0.6495, 0.8034, 0.5999, 0.2784, + 0.9127, 0.6404, 0.0464, 0.5851, 0.6435, 0.9494, 0.8839, + 0.8651, 0.1417, 0.8417, 0.9900, 0.9699, 0.7335, 0.6386, + 0.9418, 0.5679, 0.2693, 0.6588, 0.1472, 0.9922, 0.3796, + 0.8868, 0.1143, 0.8328, 0.3848, 0.1063, 0.7051, 0.4142, + 0.7126, 0.4323, 0.6031, 0.5715, 0.2782, 0.6345, 0.3381, + 0.8477, 0.7664, 0.2106, 0.5225, 0.1520, 0.3002, 0.7031, + 0.9238, 0.4058, 0.1139, 0.1480, 0.9764, 0.4270, 0.2600, + 0.9333, 0.2794, 0.6468, 0.6423, 0.1334, 0.0294, 0.5212, + 0.8696, 0.2381, 0.9706, 0.6807, 0.1174, 0.1191, 0.9581, + 0.2531, 0.5576, 0.1977, 0.3556, 0.0861, 0.6770, 0.3195, + 0.5369, 0.7386, 0.0730, 0.9206, 0.7720, 0.6605, 0.4471, + 0.0248, 0.9663, 0.1581, 0.8167, 0.5993, 0.8833, 0.0649, + 0.0611, 0.8784, 0.2448, 0.4650, 0.9544, 0.9479, 0.1518, + 0.0437, 0.9857, 0.3792, 0.0676, 0.3550, 0.6595, 0.0586, + 0.4581, 0.2105, 0.0507, 0.6273, 0.4066, 0.6590, 0.4389, + 0.7618, 0.7600, 0.5286, 0.2619, 0.2052, 0.1600, 0.6812, + 0.2262, 0.1949, 0.2984, 0.1847, 0.7597, 0.8327, 0.3651, + 0.6843, 0.6989, 0.5748, 0.8175, 0.9017, 0.5440, 0.9000, + 0.8242, 0.3536, 0.6788, 0.4515, 0.6560, 0.7385, 0.1301, + 0.6121, 0.9098, 0.6224, 0.9725, 0.4414, 0.2350, 0.6079, + 0.7587, 0.7617, 0.6482, 0.2990, 0.3517, 0.1562, 0.3369, + 0.3247, 0.5464, 0.7908, 0.7880, 0.4408, 0.8916, 0.2765, + 0.4959, 0.0729, 0.2794, 0.6614, 0.8756, 0.3920, 0.6706, + 0.6288, 0.4740, 0.9397, 0.6608, 0.2196, 0.0473, 0.5088, + 0.0610, 0.9391, 0.7491, 0.7894, 0.7759, 0.1647, 0.6719, + 0.4100, 0.2124, 0.9261, 0.1591, 0.3181, 0.7087, 0.7252, + 0.2191, 0.3099, 0.6307, 0.3026, 0.4511, 0.2841, 0.7426, + 0.5396, 0.7791, 0.6038, 0.1869, 0.7513, 0.3030, 0.5002, + 0.3280, 0.7800, 0.6094, 0.9292, 0.6542, 0.8481, 0.9804, + 0.8992, 0.6104, 0.2123, 0.5077, 0.0578, 0.7525, 0.6613, + 0.4603, 0.7024, 0.4804, 0.7634, 0.3067, 0.6368]), size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.6841, 0.8830, 0.8336, ..., 0.0293, 0.2899, 0.6914]) +tensor([0.8762, 0.1751, 0.9607, ..., 0.4579, 0.7370, 0.8447]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -647,378 +268,378 @@ Rows: 10000 Size: 100000000 NNZ: 1000 Density: 1e-05 -Time: 9.296976089477539 seconds +Time: 0.015316009521484375 seconds -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 142926 -ss 10000 -sd 1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.514646053314209} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 68555 -ss 10000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 5.085230827331543} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), - col_indices=tensor([4116, 7192, 1414, 602, 9261, 9755, 3418, 3677, 1346, - 4915, 1923, 5999, 8929, 3632, 514, 7579, 9728, 993, - 4226, 2729, 2969, 7063, 8946, 3199, 2641, 3551, 3369, - 5419, 1831, 1652, 6779, 7428, 3773, 5376, 162, 579, - 7703, 6315, 199, 8043, 3670, 9337, 2098, 2118, 8554, - 2706, 4081, 7007, 1627, 5281, 2169, 7536, 2244, 9570, - 3079, 5784, 1151, 8783, 1389, 8630, 6457, 6608, 4618, - 9063, 5053, 6181, 9948, 5748, 552, 4335, 6638, 3245, - 5740, 6165, 6638, 3389, 4075, 7308, 3538, 1808, 7667, - 6538, 3469, 3661, 4798, 9461, 4545, 9042, 8936, 6823, - 3214, 2364, 8082, 6264, 8924, 2858, 8926, 6581, 6873, - 4238, 1490, 2662, 5578, 4356, 3367, 3328, 2236, 5544, - 9846, 3138, 7106, 9710, 3457, 1720, 9664, 7549, 5930, - 186, 2220, 5945, 7396, 6063, 9045, 7005, 4888, 8764, - 4115, 6721, 9214, 1263, 9026, 6945, 128, 3992, 9195, - 1474, 898, 6799, 6691, 3804, 4100, 3045, 4269, 7083, - 7634, 6955, 7626, 3398, 9853, 5960, 6034, 6094, 1156, - 179, 4425, 7472, 1643, 3634, 5583, 4054, 7495, 8640, - 7830, 4823, 8512, 2700, 1579, 955, 2712, 5607, 4060, - 5276, 5257, 5785, 8404, 113, 7405, 3608, 3433, 3557, - 6849, 1586, 7863, 4221, 9310, 989, 7433, 3566, 8151, - 6016, 311, 1505, 3718, 1327, 7984, 3830, 167, 458, - 1529, 4687, 5720, 3066, 2390, 9640, 22, 1812, 4977, - 5871, 208, 5078, 2553, 6038, 7129, 4310, 282, 7188, - 2629, 1264, 6276, 1900, 4410, 2767, 3442, 8825, 8207, - 9184, 696, 4991, 9290, 793, 7381, 5472, 9417, 843, - 7337, 5992, 4392, 6955, 6527, 4732, 1836, 2887, 3302, - 1246, 4380, 7016, 2283, 2360, 339, 4662, 7184, 8502, - 5643, 5095, 1512, 8433, 2939, 1784, 9937, 1906, 9377, - 4250, 5487, 5234, 4792, 8152, 7183, 2215, 7833, 3347, - 5213, 732, 5590, 2763, 4277, 7806, 3532, 1529, 9333, - 4668, 9843, 4597, 3627, 8649, 8703, 873, 4071, 3905, - 7625, 2889, 4631, 9159, 8732, 933, 5436, 4772, 8351, - 1495, 1952, 2186, 1108, 4949, 2677, 1933, 3185, 4340, - 5683, 5723, 8381, 9022, 2370, 9966, 5403, 9733, 2198, - 1637, 6841, 4735, 9117, 8560, 917, 3319, 1371, 5395, - 9003, 4729, 166, 4382, 5364, 8859, 5190, 7650, 5699, - 8419, 9352, 522, 3927, 2679, 4262, 9505, 590, 7467, - 8458, 9407, 3144, 2243, 9605, 8976, 1644, 2029, 7253, - 258, 2996, 9166, 6182, 3685, 448, 388, 9009, 1003, - 8225, 5809, 5225, 5068, 7864, 1148, 1681, 8631, 9776, - 2434, 9005, 570, 3704, 421, 1541, 2997, 1138, 443, - 8928, 4642, 2073, 2012, 8211, 4813, 5727, 2486, 2677, - 2787, 9420, 1109, 597, 365, 1642, 876, 5405, 9802, - 7033, 1434, 7253, 4790, 1231, 1111, 5807, 2216, 8736, - 4015, 4599, 8996, 3935, 942, 449, 9751, 9186, 7778, - 1387, 8588, 7679, 2605, 4391, 4798, 2000, 5117, 3414, - 1861, 49, 3127, 3681, 1232, 3277, 4285, 4110, 2170, - 1131, 3609, 305, 4308, 1078, 3550, 8680, 9527, 3657, - 5580, 3942, 7339, 4571, 6030, 3953, 2251, 4453, 7552, - 1958, 1501, 1056, 6071, 8794, 5497, 2466, 5840, 5755, - 4350, 6652, 9676, 7696, 5668, 5716, 6802, 2756, 2844, - 2076, 9916, 4254, 4247, 1549, 6255, 136, 9745, 4708, - 8246, 5741, 3283, 9856, 3884, 7212, 2451, 4506, 3332, - 2802, 546, 1107, 6908, 7485, 6240, 3041, 3085, 3258, - 8550, 9847, 4893, 2038, 9539, 625, 7440, 4196, 5182, - 3039, 1354, 4896, 920, 8631, 5555, 3241, 4037, 7927, - 7978, 2714, 4090, 1155, 2312, 8957, 8647, 1625, 2284, - 5120, 2713, 6756, 1447, 5297, 9292, 191, 9719, 512, - 3285, 1008, 1631, 2282, 1, 8384, 4959, 4082, 6943, - 5026, 1284, 2559, 7835, 8876, 7406, 9259, 6431, 2124, - 5249, 886, 3877, 9616, 7440, 7935, 2953, 4353, 8630, - 6873, 6450, 7974, 2907, 6853, 1731, 1734, 7915, 627, - 1848, 9651, 8072, 325, 9090, 3952, 2190, 6969, 5724, - 4737, 4971, 5930, 9065, 795, 2734, 7142, 1334, 1101, - 6976, 2804, 9022, 4770, 8850, 2321, 2915, 4870, 317, - 200, 1907, 4202, 8058, 468, 2452, 3052, 4111, 8780, - 2827, 6426, 5414, 9074, 2589, 6068, 209, 6819, 6948, - 7804, 7353, 5400, 8311, 624, 4794, 4250, 9150, 7304, - 7383, 244, 3241, 8673, 824, 8833, 5120, 347, 3945, - 9530, 4501, 8187, 5682, 9083, 4685, 9255, 3954, 6003, - 1181, 7405, 4909, 2035, 5243, 7589, 7209, 2811, 8638, - 6620, 998, 4062, 4859, 2372, 2608, 3632, 9769, 7028, - 4263, 7696, 6057, 9107, 4050, 223, 2225, 9966, 6759, - 8412, 3222, 9059, 9449, 3803, 5159, 6770, 4309, 803, - 3956, 6109, 2635, 8651, 9493, 6196, 8647, 3760, 7476, - 2703, 4996, 7071, 454, 6200, 1008, 6621, 5370, 4441, - 9279, 2513, 9418, 7493, 7526, 4237, 4698, 7251, 6897, - 2020, 7731, 9984, 3559, 4926, 9283, 2622, 1954, 1488, - 3911, 7884, 2789, 6162, 5229, 4168, 282, 389, 5316, - 1498, 4458, 3561, 8943, 9282, 8236, 2217, 2559, 1819, - 1350, 706, 7116, 9065, 8837, 4066, 7679, 6388, 3799, - 9827, 4686, 9282, 6788, 6841, 1373, 7434, 8130, 3964, - 8166, 3594, 3817, 6355, 3458, 2124, 3724, 9463, 6106, - 9252, 7691, 2416, 3575, 1616, 9144, 6977, 3531, 6725, - 6763, 1340, 5794, 8225, 5653, 9046, 9095, 7748, 6148, - 7023, 3605, 4097, 7017, 1954, 2458, 616, 3576, 4392, - 1508, 4668, 9858, 6665, 8198, 7943, 9561, 6812, 4402, - 7065, 911, 6654, 5206, 2290, 2647, 2858, 4004, 7033, - 1456, 4004, 5009, 7018, 441, 1434, 616, 9192, 4014, - 4224, 3305, 5685, 5038, 1879, 2513, 2975, 7217, 6734, - 4346, 2451, 4252, 1359, 1897, 1558, 1518, 8946, 1045, - 2687, 5779, 3825, 7875, 7903, 3483, 3272, 5342, 4112, - 6056, 4149, 9046, 6331, 5493, 5740, 4356, 9840, 2344, - 8131, 1983, 3832, 1085, 6587, 7944, 5354, 9757, 9494, - 6772, 4253, 3448, 1844, 3828, 8186, 561, 2149, 277, - 7639, 7736, 9923, 874, 4782, 7514, 9258, 25, 3290, - 9135, 821, 7578, 3691, 6954, 4378, 106, 3717, 4341, - 7878, 4081, 3382, 2833, 5381, 1369, 1198, 8238, 509, - 8127, 7888, 3507, 99, 1906, 6992, 375, 2939, 9900, - 3554, 9933, 4200, 9872, 7049, 4972, 7060, 9575, 558, - 4822, 5894, 5066, 5665, 2353, 8349, 8831, 6355, 6847, - 4671, 7517, 5761, 7668, 862, 525, 7306, 1582, 5763, - 7813, 8159, 6461, 9837, 487, 5618, 551, 6758, 6315, - 7722, 5312, 2191, 6095, 5151, 3304, 6873, 8430, 6063, - 9471, 4395, 9467, 7290, 1009, 2539, 6217, 7375, 2928, - 8340, 8978, 9118, 6252, 7166, 2776, 341, 5357, 7950, - 2900, 8133, 6787, 2966, 2483, 5175, 1262, 2317, 2466, - 7698, 6866, 558, 1985, 7535, 6044, 3673, 7654, 8927, - 6144, 8580, 3529, 9842, 2172, 4769, 2277, 2207, 1695, - 234, 4499, 3795, 4016, 695, 3395, 6723, 2800, 2814, - 7062]), - values=tensor([1.3767e-01, 7.1628e-01, 8.6135e-01, 7.1511e-01, - 9.5089e-01, 2.4757e-01, 9.3760e-03, 7.7773e-01, - 4.0669e-01, 9.1069e-01, 1.2601e-01, 5.4040e-01, - 3.7319e-02, 3.2172e-01, 9.1567e-01, 8.9101e-01, - 2.2712e-02, 6.3215e-01, 1.8351e-01, 5.7793e-01, - 6.9901e-01, 5.3678e-01, 4.7677e-01, 5.0165e-02, - 5.6649e-01, 6.3104e-01, 3.0293e-01, 7.4977e-01, - 7.3472e-02, 2.8601e-01, 5.5054e-01, 3.5579e-01, - 3.6622e-01, 6.5500e-01, 6.2994e-01, 3.6452e-01, - 2.0704e-01, 1.0247e-01, 2.5826e-01, 5.2540e-02, - 7.3130e-02, 6.3376e-01, 5.9810e-01, 4.9090e-01, - 6.8296e-02, 5.3917e-01, 1.1966e-01, 1.8500e-01, - 3.0815e-01, 5.8388e-01, 4.2982e-01, 5.6405e-02, - 4.8100e-01, 2.6901e-01, 3.0648e-03, 7.4291e-01, - 1.2739e-01, 3.2902e-01, 7.3718e-01, 7.4258e-01, - 9.6792e-01, 2.1717e-01, 2.0890e-01, 5.2258e-01, - 6.8834e-01, 3.6326e-01, 6.9665e-01, 6.8825e-01, - 6.2143e-01, 6.2623e-01, 6.1424e-01, 7.0805e-01, - 4.0377e-01, 5.0286e-01, 3.1606e-01, 1.0216e-01, - 8.7212e-01, 2.5393e-01, 4.3722e-01, 4.5099e-01, - 6.2296e-01, 6.7718e-01, 1.1725e-01, 7.5117e-01, - 6.1649e-01, 2.0645e-01, 1.5527e-01, 5.8584e-01, - 6.5559e-01, 9.7418e-01, 5.7488e-01, 4.5016e-01, - 1.0108e-02, 7.8700e-01, 8.5952e-01, 3.6767e-01, - 6.6708e-01, 3.9792e-01, 2.1940e-01, 4.4322e-01, - 7.0303e-01, 3.4139e-01, 3.9259e-01, 8.8211e-01, - 8.8687e-01, 7.0191e-01, 4.6733e-01, 4.5169e-01, - 1.3884e-01, 7.2389e-01, 1.0696e-01, 1.9507e-01, - 5.4738e-01, 6.7276e-01, 9.7900e-02, 5.0607e-01, - 6.0787e-01, 3.7552e-01, 6.9448e-01, 9.9517e-01, - 6.9703e-01, 4.5115e-01, 2.7976e-01, 3.3528e-01, - 6.2057e-01, 8.6211e-01, 7.0540e-01, 7.0073e-01, - 7.5910e-01, 7.0805e-01, 6.8043e-01, 9.2129e-01, - 3.8606e-02, 8.1173e-01, 6.8589e-01, 8.8272e-01, - 8.5540e-01, 8.5966e-01, 2.5725e-01, 6.2432e-02, - 2.0565e-01, 7.6464e-01, 6.2149e-01, 7.0689e-01, - 9.6943e-01, 9.1375e-01, 6.9609e-01, 1.0540e-01, - 9.0816e-01, 1.5889e-01, 5.7258e-01, 5.5242e-01, - 4.2908e-01, 4.4953e-01, 6.5806e-01, 8.4537e-01, - 8.1500e-02, 5.0051e-01, 6.5699e-01, 1.6438e-01, - 1.5049e-02, 4.9899e-01, 3.9120e-01, 3.2732e-01, - 3.8565e-01, 8.2901e-01, 4.0085e-01, 6.0713e-01, - 7.0000e-01, 3.0412e-01, 6.0281e-01, 2.5542e-02, - 4.3786e-02, 1.8718e-01, 8.7005e-01, 9.4782e-01, - 5.9295e-01, 7.8689e-03, 8.5626e-01, 6.4375e-01, - 3.2275e-01, 4.2197e-01, 3.6112e-01, 6.2448e-02, - 9.7853e-01, 8.6224e-01, 7.4828e-01, 5.8071e-01, - 8.7233e-01, 5.0843e-01, 2.8581e-01, 6.4133e-01, - 7.0918e-01, 9.5194e-01, 6.1273e-01, 8.5849e-01, - 4.9317e-01, 5.7639e-02, 9.9630e-01, 3.7211e-01, - 3.4682e-01, 1.1154e-01, 2.5831e-03, 6.3374e-01, - 6.6874e-01, 3.9360e-01, 3.5838e-01, 8.5471e-01, - 7.0322e-01, 8.2311e-01, 5.4150e-01, 5.7026e-01, - 6.5821e-01, 1.3975e-01, 7.7260e-02, 1.1189e-01, - 5.2080e-01, 1.2715e-02, 6.9032e-01, 7.5638e-01, - 2.0518e-01, 5.5927e-01, 8.3030e-02, 5.5062e-01, - 3.2127e-01, 1.0789e-01, 9.1260e-01, 6.4350e-01, - 9.9466e-01, 5.5812e-01, 2.5897e-01, 1.4537e-01, - 8.8427e-01, 2.4431e-01, 5.3467e-01, 1.1437e-01, - 2.2271e-01, 3.6377e-01, 5.0688e-01, 4.0210e-01, - 9.6214e-02, 7.4145e-01, 4.1409e-01, 2.7186e-01, - 6.8016e-01, 3.4039e-01, 5.5569e-01, 9.7247e-02, - 6.0054e-01, 9.7719e-01, 1.3649e-01, 9.9753e-01, - 8.3259e-01, 6.4755e-01, 3.9749e-01, 9.0807e-01, - 2.1147e-01, 5.0004e-01, 5.3220e-02, 3.1762e-01, - 3.3833e-01, 7.7938e-01, 6.2849e-01, 4.7457e-01, - 1.7438e-02, 8.1308e-01, 2.8307e-01, 6.7284e-01, - 5.1861e-01, 3.3344e-01, 9.1361e-01, 6.0753e-01, - 7.0133e-01, 3.6039e-01, 5.5368e-02, 9.3108e-01, - 3.5189e-01, 9.7164e-01, 3.9002e-01, 5.2678e-01, - 2.8953e-03, 9.8500e-01, 7.3340e-01, 9.2830e-01, - 4.0230e-01, 7.7052e-01, 9.5800e-02, 3.1615e-01, - 5.9244e-01, 9.0208e-01, 1.2767e-01, 1.5811e-01, - 8.0315e-01, 6.2049e-01, 3.9867e-01, 5.8587e-01, - 5.4263e-01, 5.8712e-01, 6.4417e-01, 2.5094e-01, - 5.7318e-03, 4.2910e-01, 4.9714e-01, 1.2439e-01, - 6.8645e-01, 2.7117e-01, 9.4144e-01, 1.0741e-01, - 6.0964e-01, 4.9124e-01, 1.2215e-01, 6.2184e-01, - 9.5970e-01, 1.4042e-01, 3.8926e-01, 2.5587e-01, - 2.3181e-01, 1.5447e-01, 2.6754e-01, 2.8396e-01, - 4.9732e-01, 7.7233e-01, 7.2055e-01, 2.6804e-01, - 5.2721e-01, 2.8004e-02, 4.0875e-01, 1.0355e-01, - 3.8021e-01, 1.6312e-01, 9.3351e-01, 4.0357e-01, - 9.6564e-01, 9.5352e-01, 2.3033e-01, 1.8023e-01, - 8.9340e-01, 3.6181e-01, 5.5393e-01, 3.3373e-01, - 6.1869e-01, 1.4247e-01, 3.8655e-02, 1.5970e-01, - 1.5518e-01, 8.9244e-01, 2.1298e-01, 7.1235e-01, - 5.5568e-01, 5.8432e-01, 1.9164e-01, 2.3690e-01, - 9.5455e-01, 7.2857e-01, 3.7214e-01, 5.5532e-01, - 8.8376e-01, 5.9028e-01, 2.0300e-01, 6.3695e-01, - 3.3213e-01, 9.5342e-02, 7.7225e-01, 6.6953e-02, - 1.6999e-01, 9.4302e-01, 2.6314e-01, 3.3727e-01, - 2.7787e-01, 8.0225e-01, 6.5075e-01, 7.4035e-01, - 5.3106e-01, 5.4790e-01, 3.1026e-01, 2.2004e-02, - 9.0580e-01, 7.6487e-01, 5.6201e-01, 1.1201e-01, - 1.5233e-02, 3.8437e-01, 6.1598e-02, 3.1117e-01, - 3.2700e-01, 8.9412e-01, 3.9616e-01, 5.3201e-01, - 6.4656e-01, 2.1046e-01, 3.6325e-01, 9.2194e-01, - 6.3959e-01, 3.9911e-01, 4.4881e-01, 1.0553e-01, - 2.5978e-01, 1.8512e-01, 3.9395e-01, 5.4669e-02, - 6.8945e-01, 8.0965e-01, 3.2951e-01, 5.4811e-01, - 3.0211e-02, 6.8181e-01, 3.2372e-01, 9.3662e-01, - 6.8499e-01, 6.4111e-01, 5.8163e-01, 3.5869e-01, - 2.8411e-01, 4.3117e-01, 1.3450e-01, 4.8766e-01, - 7.0478e-01, 5.3516e-01, 6.7174e-01, 8.0094e-01, - 8.1062e-01, 2.7839e-02, 8.6884e-01, 7.9628e-01, - 1.2090e-01, 9.4127e-02, 2.6206e-01, 7.1621e-02, - 9.6549e-01, 9.9012e-02, 8.1580e-01, 6.2717e-01, - 3.7858e-02, 6.6910e-01, 1.1367e-01, 4.4587e-01, - 2.1667e-01, 6.2027e-01, 6.0694e-01, 4.8314e-01, - 8.9715e-01, 1.2495e-01, 4.0892e-01, 5.4664e-01, - 2.0868e-01, 3.7281e-01, 7.2776e-01, 3.9380e-01, - 7.7841e-01, 7.2770e-01, 5.5081e-01, 4.5550e-01, - 1.1337e-01, 6.0070e-01, 1.7006e-01, 8.9155e-01, - 3.4892e-04, 8.9357e-01, 9.6087e-01, 3.6593e-02, - 5.8737e-01, 3.6900e-02, 7.9887e-01, 6.1905e-01, - 9.3419e-01, 1.0042e-01, 7.9304e-01, 5.8615e-01, - 7.2710e-01, 5.8139e-01, 2.5740e-02, 1.1614e-01, - 8.0492e-01, 1.9472e-01, 6.4306e-01, 7.9291e-01, - 8.8424e-01, 2.4042e-01, 6.6614e-01, 9.9409e-01, - 3.9403e-01, 4.6506e-01, 4.8211e-01, 5.6363e-01, - 6.0078e-01, 8.3139e-02, 7.8203e-01, 4.7756e-01, - 8.5709e-01, 5.7873e-01, 7.6714e-02, 3.9206e-01, - 6.8500e-01, 9.6940e-01, 2.5652e-01, 8.8082e-01, - 3.7856e-01, 9.2438e-01, 4.7830e-01, 1.4020e-01, - 5.2884e-01, 3.1246e-01, 6.5357e-01, 3.5125e-01, - 8.1007e-01, 7.6288e-01, 4.0573e-01, 2.6397e-01, - 7.7222e-01, 4.6844e-01, 6.6931e-01, 3.7442e-02, - 7.3587e-01, 1.7894e-01, 1.9269e-01, 5.3208e-02, - 1.7345e-01, 3.2373e-01, 8.6054e-01, 9.6058e-01, - 3.3684e-01, 1.2915e-01, 3.7259e-01, 8.5330e-02, - 8.7195e-01, 4.1642e-01, 1.4156e-02, 5.6366e-01, - 2.0687e-02, 4.5670e-01, 9.4825e-01, 4.6193e-01, - 9.6608e-01, 7.2678e-01, 1.0354e-01, 4.0029e-01, - 8.7647e-01, 7.6570e-01, 2.0229e-01, 2.0324e-01, - 5.5069e-01, 9.8105e-01, 3.4961e-01, 9.6117e-01, - 1.2299e-01, 8.9272e-01, 8.4714e-01, 8.7303e-01, - 8.8032e-01, 6.5685e-01, 5.8322e-01, 5.8733e-01, - 2.6798e-01, 6.5585e-01, 4.5400e-01, 5.2309e-03, - 9.9176e-01, 9.0773e-01, 9.4229e-01, 8.4914e-01, - 1.9365e-01, 5.8394e-01, 9.0261e-01, 5.1355e-01, - 4.1587e-01, 2.4801e-01, 2.7669e-01, 5.5044e-01, - 2.4672e-01, 4.0436e-01, 2.4099e-01, 5.0330e-01, - 9.5869e-01, 7.6414e-01, 1.2318e-01, 8.6587e-01, - 7.4214e-01, 6.6104e-03, 1.1094e-01, 4.0845e-01, - 1.1767e-01, 9.0883e-01, 7.2050e-01, 9.7280e-01, - 9.8324e-01, 1.3704e-01, 4.0185e-01, 3.4497e-01, - 7.4353e-01, 9.0031e-01, 2.0494e-01, 2.5380e-01, - 5.2888e-01, 2.1441e-02, 4.0249e-01, 5.3610e-01, - 5.2276e-01, 3.3112e-01, 2.3875e-02, 9.2410e-01, - 5.6142e-02, 8.6019e-01, 3.4566e-01, 5.7521e-01, - 3.8381e-01, 2.0229e-01, 5.4861e-01, 2.1478e-01, - 3.3400e-01, 2.2956e-01, 3.0797e-01, 5.1339e-01, - 4.1802e-01, 1.9688e-01, 6.2325e-01, 3.2738e-01, - 4.8917e-01, 3.2538e-01, 5.1070e-01, 7.4161e-01, - 7.0588e-01, 3.9899e-01, 5.2221e-01, 1.5384e-01, - 3.5179e-01, 4.8115e-01, 2.7363e-01, 2.8002e-01, - 4.2415e-01, 2.1545e-01, 7.6635e-01, 4.4319e-01, - 1.0434e-01, 5.3882e-01, 1.7751e-01, 9.7206e-01, - 5.0674e-01, 3.4560e-01, 3.2579e-01, 5.4960e-01, - 3.2111e-01, 9.7020e-01, 8.9102e-01, 3.3955e-01, - 7.4355e-01, 1.1853e-01, 7.3761e-01, 5.9870e-01, - 6.3084e-01, 5.2364e-01, 6.9109e-01, 9.7319e-01, - 4.4327e-01, 6.7270e-01, 5.0866e-01, 5.8518e-02, - 8.6936e-01, 2.0647e-01, 7.9599e-01, 8.3871e-01, - 8.4882e-01, 4.8923e-01, 9.0385e-01, 5.4210e-01, - 8.2097e-02, 4.4715e-01, 3.9892e-02, 9.7745e-01, - 2.1047e-02, 7.0280e-01, 1.6161e-01, 5.8636e-01, - 5.1251e-02, 3.7167e-01, 6.3274e-01, 6.2298e-02, - 7.4293e-01, 7.9914e-01, 8.7203e-01, 9.6482e-01, - 5.6499e-01, 3.8671e-01, 7.0059e-01, 7.3199e-01, - 9.2567e-01, 7.3812e-01, 1.6861e-01, 7.4046e-01, - 8.1607e-01, 4.6992e-01, 7.2711e-01, 9.1487e-01, - 4.1156e-01, 5.1202e-01, 3.5986e-01, 3.3062e-01, - 2.9725e-01, 1.6921e-01, 5.4909e-01, 1.2069e-01, - 3.5195e-01, 7.6383e-01, 7.4288e-01, 2.4758e-01, - 3.8444e-01, 5.8266e-02, 2.4042e-01, 3.0919e-01, - 1.7204e-01, 6.1885e-01, 2.9065e-01, 1.3719e-02, - 4.0827e-01, 1.3647e-01, 1.4959e-02, 9.9494e-01, - 5.1923e-01, 5.6432e-01, 9.4876e-01, 5.7473e-01, - 9.7697e-01, 1.8048e-02, 5.6856e-01, 1.5324e-01, - 1.0664e-01, 5.3795e-01, 7.1911e-01, 1.5088e-01, - 6.3302e-01, 1.3568e-02, 5.4872e-01, 9.1526e-01, - 9.6402e-01, 6.2534e-01, 7.4570e-01, 5.7812e-01, - 3.7302e-01, 2.3742e-01, 4.2409e-02, 4.5568e-01, - 5.1109e-01, 4.5050e-01, 6.3292e-01, 8.9476e-01, - 7.5507e-01, 6.3026e-01, 4.1196e-01, 4.5580e-01, - 5.6006e-01, 6.5274e-01, 9.8682e-01, 3.8258e-01, - 9.0774e-01, 5.1524e-01, 3.1276e-01, 8.3507e-01, - 3.6866e-01, 8.7038e-01, 1.8687e-01, 8.7445e-01, - 3.4415e-01, 2.8866e-01, 2.8929e-01, 1.2231e-01, - 9.4505e-01, 4.2536e-01, 6.2981e-01, 4.8049e-01, - 2.0686e-01, 1.7140e-01, 8.2123e-01, 5.0642e-01, - 9.1534e-01, 5.8595e-01, 7.0950e-01, 3.9363e-01, - 1.4897e-01, 8.5593e-01, 3.9573e-01, 4.2217e-01, - 1.3321e-01, 8.2831e-01, 3.5401e-01, 8.5123e-01, - 9.7129e-01, 3.5101e-01, 2.9517e-01, 7.8648e-01, - 1.9865e-01, 7.6650e-01, 8.6624e-01, 6.6334e-01, - 5.3911e-02, 2.1179e-01, 7.9277e-01, 3.3075e-01, - 9.7451e-02, 2.2374e-01, 6.0424e-01, 3.4120e-01, - 1.6678e-01, 7.3058e-01, 1.4131e-01, 3.2380e-01, - 8.0025e-02, 8.7760e-02, 2.1083e-01, 2.1844e-01, - 6.6954e-02, 4.9328e-01, 7.2243e-01, 8.3534e-01, - 9.9053e-01, 2.3837e-01, 1.9357e-01, 5.5049e-01, - 6.7173e-01, 6.2973e-03, 2.5163e-01, 4.1258e-01, - 6.6680e-01, 5.0225e-01, 6.5658e-01, 7.9015e-01, - 4.6985e-01, 9.5341e-01, 1.8942e-01, 9.6505e-01, - 5.9884e-01, 7.6761e-01, 9.9066e-01, 1.7115e-01, - 1.5569e-01, 6.6473e-01, 4.0053e-01, 1.1972e-01, - 1.4245e-01, 7.4121e-01, 4.5033e-01, 7.0448e-01, - 8.4109e-01, 9.6275e-01, 5.6967e-01, 4.6629e-01, - 4.6346e-01, 8.8916e-01, 5.7855e-01, 5.9218e-01, - 9.7444e-01, 5.1624e-01, 5.3685e-01, 3.2910e-01, - 4.5445e-03, 3.8540e-01, 9.5888e-01, 5.3370e-01, - 5.2745e-01, 7.0115e-01, 1.7582e-02, 7.0961e-01, - 4.8579e-01, 4.4872e-01, 1.8650e-01, 9.1635e-01, - 7.1700e-01, 7.1226e-01, 3.2373e-01, 9.7173e-01, - 9.5299e-01, 8.4083e-01, 2.5068e-01, 3.3961e-01, - 2.8141e-01, 1.6843e-01, 7.2851e-01, 3.5589e-01, - 4.7044e-01, 3.3914e-01, 9.9225e-01, 8.3744e-01, - 6.3322e-01, 2.6791e-01, 1.4790e-01, 8.5573e-01, - 8.6051e-03, 6.8401e-01, 8.5940e-01, 3.1405e-01, - 8.0239e-01, 5.3587e-01, 7.6761e-02, 1.9059e-01, - 5.5597e-01, 2.2680e-01, 5.0511e-01, 7.4720e-01, - 5.6044e-01, 1.2904e-01, 2.6998e-02, 2.6815e-02, - 1.4811e-01, 5.7710e-01, 3.8720e-01, 3.1164e-01, - 5.0377e-01, 6.6323e-01, 3.0251e-01, 7.6729e-01, - 4.0920e-01, 2.6721e-01, 4.7283e-01, 7.9623e-01, - 3.3513e-01, 9.2036e-01, 3.7500e-01, 1.7646e-01, - 4.9155e-01, 6.1185e-01, 7.4077e-01, 7.1092e-01, - 5.2796e-02, 7.3738e-01, 3.3700e-02, 5.8595e-01, - 7.1338e-01, 1.9473e-01, 7.7258e-01, 8.6642e-01, - 3.1804e-01, 9.2864e-01, 3.4002e-01, 5.8527e-01, - 3.2231e-01, 2.5907e-01, 2.4104e-02, 9.6474e-01, - 7.6358e-01, 2.8793e-01, 2.4963e-01, 3.2547e-03, - 3.7889e-01, 7.2848e-01, 7.8352e-01, 6.5869e-01, - 6.7556e-01, 9.9946e-01, 7.1099e-01, 7.8559e-01, - 2.4594e-01, 7.5866e-01, 2.1889e-01, 8.6192e-01, - 1.0492e-01, 6.6974e-01, 1.9110e-01, 4.2178e-01, - 5.2211e-01, 5.7968e-01, 4.3791e-01, 1.6162e-01, - 1.8223e-01, 4.0645e-01, 8.0597e-01, 1.8599e-01, - 8.5659e-01, 8.8819e-01, 4.3915e-01, 2.0250e-01, - 7.8476e-02, 6.6803e-01, 7.7438e-01, 2.0798e-02, - 6.5758e-01, 3.2100e-01, 3.5731e-04, 2.1289e-01, - 2.5481e-01, 6.2077e-01, 2.4535e-01, 8.8808e-01, - 3.0564e-01, 8.8046e-01, 1.5537e-01, 2.9485e-01, - 4.3426e-01, 1.5200e-01, 2.3927e-01, 4.1251e-02, - 2.6271e-01, 5.8274e-01, 5.6945e-02, 1.4017e-01, - 3.0720e-01, 3.6401e-01, 1.6795e-01, 6.9631e-02, - 6.9758e-01, 5.9161e-01, 8.3040e-01, 9.4507e-01]), + col_indices=tensor([5549, 4311, 3241, 5542, 7620, 1988, 9532, 4491, 7500, + 4898, 3159, 1258, 6868, 335, 9155, 7115, 9938, 3068, + 4095, 7787, 2876, 5241, 3578, 3454, 7989, 7487, 5119, + 9460, 589, 1959, 8998, 1257, 4995, 3427, 1603, 8939, + 5925, 8459, 1032, 7868, 2079, 7633, 5392, 1940, 403, + 1541, 5211, 2249, 6169, 1536, 600, 3741, 1855, 2078, + 9467, 4376, 9886, 140, 7626, 2658, 4941, 2404, 1127, + 9326, 3998, 7203, 3548, 3845, 7541, 6009, 5880, 6410, + 8529, 8533, 3424, 4363, 2126, 3596, 3335, 3666, 9687, + 545, 5692, 9731, 4506, 9205, 961, 2972, 1083, 2410, + 9819, 5938, 1114, 738, 303, 4876, 608, 9920, 1043, + 2303, 3667, 1648, 2528, 6777, 9350, 5247, 2380, 2637, + 2051, 2983, 6090, 8443, 1485, 8407, 3852, 1200, 3501, + 2069, 8613, 311, 7821, 1110, 1230, 771, 2825, 2694, + 2831, 4517, 1613, 165, 4836, 9488, 5628, 1028, 8908, + 4232, 8787, 7402, 313, 3216, 3478, 8545, 1053, 6740, + 4075, 1942, 9361, 3819, 870, 2654, 7876, 1915, 6408, + 4819, 6068, 6165, 3715, 4592, 7086, 5068, 2369, 932, + 4895, 6064, 8025, 9284, 5199, 6337, 8148, 1045, 5028, + 501, 6243, 2043, 2137, 8791, 7547, 7501, 4276, 8489, + 8133, 1778, 2390, 2799, 8745, 7560, 5221, 552, 9809, + 1029, 9837, 3177, 7973, 1442, 4595, 6945, 371, 2047, + 2944, 2906, 6498, 4469, 5406, 5052, 7367, 933, 4447, + 2055, 2312, 5395, 3952, 712, 7636, 4991, 7542, 5071, + 4454, 4646, 9187, 2398, 7029, 242, 1303, 2080, 397, + 3296, 3588, 6026, 6025, 7104, 6897, 6113, 7634, 6734, + 4805, 8677, 4803, 2213, 4955, 4012, 3203, 2270, 8248, + 7769, 3668, 3425, 2655, 6439, 8554, 9308, 0, 7354, + 7253, 2174, 4104, 4444, 2290, 9428, 6233, 1866, 7587, + 3521, 719, 6920, 4896, 9532, 6571, 2230, 8694, 7233, + 1233, 636, 3293, 9047, 165, 7097, 9322, 6128, 7810, + 2149, 2341, 6666, 5136, 9684, 2136, 4547, 1610, 9629, + 4739, 7954, 7857, 5262, 7124, 5253, 140, 5788, 9593, + 808, 975, 2558, 2499, 1436, 2400, 9017, 178, 43, + 8816, 5056, 9697, 5824, 9857, 5803, 7232, 1952, 6200, + 4884, 4917, 8256, 7548, 7004, 880, 6839, 5048, 1085, + 6600, 2059, 1674, 219, 2299, 6249, 353, 8171, 7355, + 8683, 7342, 8967, 524, 9396, 4980, 9008, 5424, 845, + 8258, 3895, 3766, 7658, 6607, 7066, 4890, 6141, 7787, + 112, 7248, 7565, 9127, 1557, 5497, 8834, 1027, 911, + 5589, 8373, 3154, 5794, 7004, 4726, 2964, 5607, 7111, + 2769, 9679, 355, 4618, 1775, 9626, 5328, 1984, 2250, + 2090, 8585, 4747, 7137, 4998, 6039, 3795, 740, 1205, + 1619, 4997, 8185, 8214, 4583, 4093, 9636, 7799, 1874, + 7419, 1200, 8029, 7740, 3308, 5274, 3619, 2357, 899, + 1736, 4072, 415, 4070, 2248, 4814, 2946, 8794, 9445, + 6337, 9432, 4000, 7916, 9175, 9859, 7482, 7810, 6689, + 2981, 9118, 2494, 5004, 7307, 6762, 3643, 6961, 6980, + 2197, 3909, 3079, 438, 6429, 795, 73, 1026, 979, + 8384, 3755, 7922, 411, 4115, 3082, 528, 3768, 7563, + 6437, 4847, 8646, 6464, 6868, 4170, 7703, 1806, 6256, + 5263, 3894, 4106, 4889, 7034, 8952, 1641, 6916, 6302, + 5046, 1726, 68, 4468, 19, 2245, 4083, 3913, 7807, + 2460, 7156, 5834, 7509, 1278, 2636, 9991, 6660, 356, + 7389, 3994, 2360, 5328, 3156, 3549, 1186, 4409, 3178, + 6057, 4081, 3933, 3196, 3467, 6356, 957, 7072, 6056, + 1517, 9932, 8236, 3059, 3518, 7725, 5374, 253, 6103, + 9053, 5451, 3843, 8745, 3424, 2609, 5589, 2776, 2372, + 7125, 6217, 61, 5880, 7087, 9463, 3614, 9996, 51, + 4653, 539, 4104, 147, 7735, 4532, 9631, 6016, 4264, + 7189, 2124, 5360, 5338, 3217, 2096, 2341, 5867, 8239, + 2211, 6275, 6944, 5486, 3694, 8641, 2576, 6016, 3141, + 1, 2692, 9626, 549, 6556, 2800, 9006, 8047, 8733, + 8001, 8352, 8195, 6963, 4005, 7067, 3512, 4209, 9954, + 4445, 3646, 8905, 4713, 3526, 9003, 7451, 3437, 219, + 1503, 8839, 7882, 345, 6970, 4236, 2208, 5512, 8927, + 9951, 3787, 1901, 5577, 1088, 9910, 3298, 9382, 5591, + 9483, 7472, 9189, 60, 7374, 1511, 1324, 9001, 4608, + 5517, 5004, 5129, 7089, 1404, 7860, 699, 3528, 2226, + 1012, 1401, 8016, 4790, 2726, 6318, 8383, 1848, 6756, + 4556, 3436, 1808, 8982, 5, 3514, 278, 3993, 4715, + 213, 7894, 2785, 3705, 6527, 5420, 6147, 9936, 913, + 5219, 3050, 7066, 9881, 9308, 7445, 5575, 7043, 4840, + 1951, 3401, 1568, 3685, 4270, 197, 386, 2602, 7271, + 2689, 4939, 7521, 9720, 7213, 4350, 8459, 8461, 1245, + 7252, 516, 6211, 441, 2127, 7899, 3164, 1347, 8168, + 1675, 6484, 2975, 6772, 4995, 6275, 7968, 3036, 4636, + 8825, 8994, 4389, 3513, 2409, 7963, 8754, 1654, 9887, + 8968, 1585, 6186, 7899, 7431, 811, 7807, 9296, 9932, + 5090, 5043, 7917, 3680, 8993, 116, 1344, 2602, 6020, + 4409, 3996, 63, 8531, 2822, 1480, 6085, 4912, 9387, + 6576, 1534, 4978, 9762, 1093, 8697, 8777, 5374, 5581, + 7441, 5246, 5968, 1885, 7897, 2975, 4762, 3125, 2488, + 4768, 9657, 6999, 6361, 7556, 908, 266, 4115, 2029, + 6944, 9578, 5384, 6233, 3049, 7347, 2202, 2797, 6742, + 7052, 1750, 5660, 4425, 8800, 5195, 122, 475, 666, + 2091, 3067, 1595, 3773, 1980, 7656, 6000, 4626, 3490, + 8811, 2139, 7508, 1457, 7313, 1673, 2130, 5629, 3544, + 2197, 3987, 2008, 3661, 1996, 5074, 9955, 6834, 9013, + 2610, 61, 6725, 217, 1994, 3874, 7317, 2288, 7046, + 2138, 5148, 3006, 483, 4607, 9598, 1030, 6362, 5693, + 2535, 138, 933, 5602, 5934, 6478, 1869, 48, 1045, + 9153, 7656, 3285, 6621, 9725, 8888, 3411, 4535, 631, + 3055, 1164, 1333, 7342, 831, 3411, 7166, 1880, 6529, + 2636, 9466, 1237, 4517, 8045, 7254, 7616, 5855, 9583, + 196, 4085, 2628, 4971, 2455, 2757, 942, 9895, 7185, + 5273, 4956, 6187, 2588, 7001, 6614, 8140, 5545, 5915, + 3587, 7135, 877, 154, 7304, 9965, 8199, 8045, 2731, + 8307, 7114, 1128, 5242, 3191, 3118, 320, 7211, 7380, + 157, 3611, 5108, 657, 6019, 7596, 6799, 3299, 1717, + 9758, 7744, 1030, 3550, 7635, 8504, 4578, 9913, 3711, + 5056, 5815, 3389, 1558, 3687, 6256, 8891, 9548, 1985, + 544, 1687, 4379, 3053, 2465, 2164, 3167, 3551, 215, + 8811, 373, 6584, 1223, 6182, 3783, 6774, 4105, 4491, + 1691, 2126, 6272, 8878, 5848, 4533, 6683, 2810, 9188, + 1364, 9342, 4748, 6153, 8042, 3464, 8775, 4628, 1962, + 8094, 9114, 1543, 1701, 94, 2356, 9228, 5976, 4299, + 8430, 2075, 4774, 4949, 6412, 5320, 4378, 5355, 8428, + 7672, 9514, 6847, 4732, 9295, 1375, 9467, 4035, 4088, + 8389, 2352, 882, 7081, 3147, 6746, 9986, 2742, 7502, + 309, 8743, 4501, 8545, 4706, 1495, 254, 3125, 2344, + 6817]), + values=tensor([2.8840e-01, 4.4183e-01, 1.3721e-01, 8.1096e-01, + 4.1966e-01, 2.5994e-01, 3.7630e-01, 9.8367e-01, + 4.1568e-01, 2.1859e-01, 3.0153e-01, 3.2703e-01, + 7.8175e-01, 6.1920e-01, 9.9573e-01, 4.3919e-01, + 3.2517e-01, 5.0981e-01, 3.5351e-03, 9.0989e-01, + 6.7808e-01, 3.7911e-02, 4.0401e-01, 9.3286e-01, + 9.7730e-01, 9.8442e-01, 7.7077e-01, 7.3182e-01, + 4.8449e-01, 5.2800e-01, 8.8383e-02, 3.0085e-01, + 4.8370e-01, 1.7831e-01, 1.6859e-01, 4.7312e-01, + 1.7065e-01, 3.5337e-01, 9.7315e-01, 2.8214e-02, + 8.7500e-01, 7.8286e-01, 1.8664e-01, 2.4130e-01, + 1.7065e-01, 8.6065e-01, 6.3363e-01, 9.7779e-01, + 8.0725e-01, 9.9678e-01, 9.1147e-02, 1.8360e-01, + 4.8954e-01, 8.8423e-01, 3.4003e-01, 9.0388e-01, + 4.6861e-01, 1.7894e-01, 1.1389e-01, 4.6669e-02, + 7.7478e-01, 5.4584e-01, 8.6114e-01, 7.9349e-01, + 1.6974e-01, 4.3423e-01, 5.6248e-02, 4.5439e-01, + 5.0219e-01, 9.2351e-01, 2.6826e-01, 3.8333e-01, + 9.0307e-01, 7.2118e-01, 7.7457e-01, 1.6562e-01, + 5.4879e-01, 3.3296e-01, 1.4218e-01, 4.3012e-01, + 7.4206e-01, 6.6912e-01, 1.5511e-03, 8.2296e-01, + 8.0557e-01, 1.0555e-01, 2.0850e-01, 4.0289e-01, + 2.4296e-02, 1.4722e-01, 5.2017e-01, 9.0282e-01, + 8.1596e-01, 4.9496e-01, 8.8061e-01, 5.2639e-01, + 7.3326e-01, 5.2719e-01, 2.9275e-02, 2.2815e-01, + 8.3470e-01, 9.7604e-01, 3.8310e-01, 8.6305e-01, + 8.2162e-01, 3.7334e-01, 1.6936e-01, 9.0413e-01, + 2.3517e-01, 8.0772e-01, 6.7720e-01, 7.1841e-01, + 9.7242e-01, 5.7008e-01, 5.2057e-01, 3.3845e-01, + 2.9399e-01, 1.0539e-01, 7.1592e-01, 6.1387e-01, + 8.5398e-01, 9.5324e-01, 1.1651e-01, 2.6991e-01, + 3.6423e-01, 4.1949e-01, 7.9844e-01, 6.9822e-01, + 4.6081e-01, 2.8289e-01, 9.0768e-01, 6.5808e-01, + 9.1438e-01, 7.0070e-01, 4.9658e-01, 5.4039e-01, + 5.5886e-01, 9.2690e-01, 3.3048e-02, 5.1747e-01, + 2.0464e-01, 5.6253e-01, 2.9711e-01, 1.8511e-01, + 8.2642e-01, 8.8128e-01, 4.4636e-01, 4.8270e-01, + 9.8079e-01, 2.7729e-01, 6.7355e-01, 2.7171e-01, + 8.3580e-01, 6.7101e-02, 7.8897e-01, 1.8105e-01, + 8.3328e-01, 9.0933e-01, 2.5938e-02, 8.9679e-01, + 6.6176e-01, 8.6587e-01, 3.0818e-01, 5.4161e-01, + 3.3177e-01, 8.1727e-01, 7.3641e-01, 4.8683e-01, + 6.6534e-01, 2.4498e-01, 1.0098e-01, 5.1743e-01, + 6.1353e-01, 5.1134e-02, 1.3179e-01, 2.8674e-01, + 5.6531e-02, 9.1340e-01, 9.4780e-02, 7.7755e-01, + 9.7366e-01, 9.4401e-01, 9.1712e-01, 7.3659e-02, + 4.5041e-01, 6.0334e-01, 1.7813e-01, 5.8013e-01, + 4.4415e-01, 9.2524e-02, 5.5202e-01, 2.1924e-01, + 8.9768e-02, 8.7639e-01, 3.4106e-01, 8.9521e-01, + 4.3736e-01, 9.6161e-01, 3.0577e-01, 7.2673e-01, + 5.6922e-01, 9.1136e-01, 1.6725e-01, 4.6346e-01, + 5.0976e-01, 5.1232e-01, 7.7783e-01, 9.9038e-01, + 6.3570e-02, 7.5502e-01, 4.3562e-01, 1.6386e-01, + 4.4897e-01, 5.7603e-01, 9.5300e-01, 8.4625e-01, + 7.8549e-01, 7.0669e-01, 8.8842e-01, 4.6161e-01, + 1.0886e-01, 9.9797e-01, 7.7704e-01, 4.4745e-01, + 5.5348e-01, 7.9816e-01, 7.5833e-01, 9.0172e-01, + 6.5109e-01, 3.3934e-01, 9.6855e-01, 3.9876e-01, + 2.7865e-01, 2.3499e-01, 8.3360e-01, 1.2160e-01, + 4.8235e-01, 5.5299e-01, 3.3846e-01, 2.5896e-01, + 1.1429e-01, 5.2068e-01, 4.0576e-01, 1.0800e-01, + 1.1673e-01, 1.9148e-01, 5.3974e-01, 6.1500e-02, + 7.3862e-01, 4.0671e-02, 1.4820e-01, 3.2336e-01, + 5.6085e-01, 2.9156e-01, 2.7142e-01, 5.1415e-01, + 7.3523e-01, 9.0248e-01, 7.5671e-01, 4.9535e-01, + 7.9571e-01, 7.4643e-01, 7.8957e-01, 4.1524e-01, + 4.5184e-01, 6.5274e-02, 3.1191e-01, 7.9157e-01, + 2.7545e-02, 9.2301e-01, 9.9453e-01, 2.4729e-01, + 4.2412e-01, 3.6611e-01, 9.3792e-01, 9.9284e-01, + 5.1807e-01, 7.8474e-01, 1.1153e-01, 2.7679e-01, + 5.1358e-01, 4.8805e-02, 8.5891e-01, 2.0175e-01, + 1.4589e-01, 9.3637e-02, 5.3722e-01, 7.6807e-01, + 6.8017e-01, 5.2222e-01, 5.5103e-01, 3.4505e-01, + 9.7557e-01, 9.3842e-02, 6.2360e-01, 7.1001e-01, + 5.3117e-01, 1.7962e-01, 3.6912e-01, 6.7579e-01, + 1.0135e-01, 6.7780e-01, 1.8499e-01, 9.2320e-01, + 2.0157e-01, 8.5156e-01, 6.2098e-01, 8.7820e-01, + 5.7171e-01, 5.8453e-01, 9.9270e-01, 2.8080e-01, + 1.8687e-02, 8.7414e-01, 1.7689e-01, 2.9132e-01, + 1.9790e-01, 3.0467e-01, 3.5501e-01, 5.7991e-01, + 5.4925e-01, 7.5190e-01, 8.8675e-01, 1.4479e-01, + 8.1647e-01, 8.5290e-01, 9.0125e-01, 1.6470e-01, + 9.9914e-01, 9.4545e-01, 1.9357e-02, 1.8278e-01, + 5.5496e-02, 8.5773e-01, 6.8462e-01, 2.8210e-01, + 9.6506e-01, 7.4561e-01, 9.4014e-01, 6.6528e-02, + 3.4719e-01, 5.7601e-02, 4.6877e-01, 8.0231e-01, + 8.7718e-01, 7.6647e-01, 5.4947e-01, 6.9274e-02, + 2.6517e-01, 7.9298e-01, 7.4926e-01, 3.8426e-01, + 8.0665e-01, 8.1102e-01, 3.9734e-02, 4.8270e-01, + 2.7288e-01, 8.5640e-01, 9.0925e-01, 9.8226e-01, + 9.3178e-01, 1.3909e-01, 4.3400e-01, 3.4806e-01, + 5.9163e-02, 4.1550e-01, 5.7548e-01, 9.3041e-01, + 5.5564e-01, 8.0414e-01, 4.8781e-01, 8.2555e-01, + 9.5966e-01, 1.1761e-01, 5.4737e-01, 4.5517e-01, + 2.3339e-01, 3.3553e-01, 5.0046e-01, 9.1915e-01, + 2.3385e-01, 8.0373e-01, 8.4412e-01, 5.9031e-01, + 3.0581e-02, 3.1007e-01, 7.9126e-01, 8.8832e-01, + 1.8686e-01, 6.4693e-01, 7.3473e-01, 3.9851e-01, + 2.5276e-01, 7.5542e-01, 5.4021e-01, 7.7912e-01, + 8.0820e-01, 8.3534e-01, 3.3797e-01, 3.1584e-01, + 3.1064e-01, 4.4400e-01, 3.2848e-01, 7.7776e-01, + 8.5737e-01, 3.0283e-01, 5.6505e-01, 1.0186e-01, + 5.9803e-02, 5.5969e-01, 3.5781e-01, 6.9147e-01, + 8.0119e-01, 9.8082e-01, 8.5171e-01, 7.8022e-01, + 3.9640e-01, 9.0353e-01, 9.0919e-01, 9.3838e-01, + 9.7094e-01, 4.5839e-01, 4.4371e-01, 7.0686e-01, + 2.4518e-01, 1.3004e-01, 6.9358e-01, 4.2710e-01, + 6.7932e-01, 4.6308e-01, 8.1491e-01, 1.7000e-01, + 3.0062e-01, 7.7898e-01, 6.1484e-01, 4.0302e-01, + 9.5065e-01, 8.1030e-01, 9.3582e-03, 2.2491e-01, + 6.8609e-03, 1.2118e-01, 2.9171e-03, 9.3268e-01, + 7.7786e-01, 7.5091e-01, 9.5908e-01, 6.1182e-03, + 1.1122e-01, 2.2413e-01, 2.2139e-01, 7.5067e-01, + 9.7482e-01, 6.9779e-01, 3.9209e-02, 4.0097e-01, + 4.2371e-01, 6.4973e-01, 9.5894e-01, 8.5062e-02, + 5.8204e-01, 6.8671e-01, 5.1221e-01, 4.0473e-01, + 7.2026e-01, 1.2949e-01, 2.9672e-01, 9.2554e-01, + 2.0556e-01, 9.6803e-01, 3.5591e-01, 9.3032e-01, + 5.6400e-01, 1.5262e-01, 4.7225e-01, 9.9073e-01, + 8.9405e-01, 9.6195e-01, 9.9314e-01, 2.3625e-01, + 5.1743e-01, 1.1974e-01, 9.0363e-01, 8.6600e-01, + 8.0337e-01, 9.6559e-01, 2.6426e-01, 3.4869e-01, + 2.5160e-01, 9.6810e-02, 9.6466e-02, 4.3477e-01, + 5.1657e-01, 2.9493e-04, 6.7096e-01, 6.4018e-01, + 3.3778e-01, 9.4351e-02, 1.1026e-01, 5.3561e-01, + 3.6227e-01, 3.7598e-01, 8.5462e-01, 5.9498e-02, + 9.2387e-01, 7.9899e-02, 3.4728e-01, 1.0305e-01, + 4.6347e-01, 2.2397e-01, 1.3323e-01, 5.8151e-01, + 7.8188e-01, 7.5203e-01, 2.3923e-01, 8.7475e-01, + 3.0265e-01, 5.6830e-01, 1.2483e-02, 8.4118e-01, + 3.6248e-01, 7.1321e-02, 3.8929e-01, 7.3302e-01, + 2.9683e-02, 3.3447e-04, 3.4344e-01, 7.5402e-01, + 3.3043e-01, 3.5817e-01, 1.0547e-01, 5.2731e-01, + 3.5698e-01, 5.2197e-01, 2.1774e-02, 8.4981e-01, + 3.1434e-01, 4.3985e-01, 3.3751e-01, 8.2447e-01, + 9.0353e-01, 3.5193e-01, 9.9614e-01, 5.6655e-01, + 4.4749e-01, 1.7903e-02, 5.5607e-01, 5.5539e-01, + 4.6695e-01, 1.7420e-01, 6.8828e-01, 5.0139e-01, + 2.8580e-02, 2.6173e-01, 9.4751e-01, 1.9893e-01, + 8.5899e-01, 5.1191e-01, 8.7673e-01, 9.1152e-01, + 2.6874e-01, 4.6410e-01, 8.2734e-01, 6.1037e-01, + 1.6229e-01, 2.8812e-01, 8.8686e-01, 7.5397e-01, + 5.7413e-01, 7.9610e-01, 2.7033e-02, 9.3147e-01, + 1.6480e-01, 8.9252e-01, 6.1944e-01, 2.5837e-01, + 6.7630e-01, 4.4219e-02, 7.2525e-01, 7.9502e-01, + 4.1810e-01, 2.8494e-01, 5.8932e-02, 5.1582e-01, + 1.8311e-01, 4.1472e-01, 4.7158e-02, 4.5326e-01, + 3.3751e-01, 9.6958e-01, 8.9434e-01, 1.4553e-01, + 3.6062e-01, 5.6479e-01, 3.4382e-01, 5.0365e-01, + 6.0594e-01, 6.7806e-02, 1.6118e-01, 8.6570e-01, + 4.0710e-01, 2.4099e-01, 6.6341e-01, 7.4617e-01, + 6.2105e-01, 9.9820e-01, 2.9075e-01, 7.0006e-01, + 2.9853e-01, 2.3004e-02, 1.5685e-01, 3.4050e-01, + 2.7630e-01, 7.4879e-01, 3.9249e-01, 8.5814e-01, + 2.9174e-01, 7.5799e-01, 7.4573e-01, 1.4019e-01, + 6.8477e-01, 3.3049e-01, 5.9636e-01, 3.2202e-01, + 1.4347e-02, 5.9175e-01, 1.7777e-01, 8.4410e-01, + 7.7933e-01, 4.2032e-01, 5.5168e-01, 9.9130e-03, + 7.4954e-02, 1.4053e-01, 6.4507e-01, 8.5374e-01, + 1.0934e-01, 8.0720e-01, 6.0686e-01, 5.7376e-01, + 4.4972e-01, 7.2877e-01, 8.2845e-01, 5.5441e-01, + 1.8664e-03, 6.9860e-01, 2.3945e-01, 4.9831e-01, + 8.3538e-01, 2.4266e-01, 8.0127e-02, 3.2858e-01, + 7.2302e-02, 3.0432e-01, 3.2243e-01, 2.3603e-02, + 1.9193e-01, 7.7673e-01, 5.5788e-01, 6.9296e-01, + 1.6739e-01, 6.4205e-01, 4.9813e-01, 5.3317e-01, + 4.5772e-01, 1.0799e-01, 8.3504e-01, 7.2689e-01, + 6.4582e-01, 3.5702e-01, 2.6752e-01, 5.0306e-01, + 2.5481e-01, 4.2631e-01, 7.2228e-01, 6.4601e-01, + 4.7649e-01, 7.0767e-02, 5.7134e-01, 9.5651e-01, + 4.8798e-01, 3.5081e-01, 8.1035e-01, 2.2577e-01, + 8.9774e-01, 9.8753e-01, 3.2962e-01, 5.9843e-01, + 4.4286e-01, 8.9385e-01, 8.4978e-01, 9.8700e-01, + 6.9001e-01, 1.0624e-01, 5.2676e-01, 2.1199e-01, + 7.7498e-01, 9.6944e-01, 8.7014e-01, 2.3069e-01, + 4.9641e-01, 3.0380e-01, 2.2540e-01, 6.8408e-01, + 1.6711e-01, 8.1494e-01, 5.3474e-01, 4.7828e-01, + 1.1990e-01, 8.3419e-01, 5.3938e-01, 9.8791e-01, + 6.0981e-01, 2.8847e-01, 2.3305e-01, 2.4698e-01, + 4.4778e-01, 2.1873e-02, 1.3042e-03, 3.7369e-01, + 9.7526e-01, 1.0262e-01, 7.6608e-01, 9.2036e-01, + 8.3530e-01, 6.3795e-01, 4.3448e-01, 2.4097e-01, + 3.5225e-01, 9.3811e-02, 5.2934e-01, 4.5612e-01, + 7.4354e-01, 8.7226e-01, 8.6587e-01, 8.9845e-01, + 3.8513e-01, 3.8296e-02, 9.1128e-01, 8.1981e-01, + 1.4811e-01, 9.0155e-01, 6.4841e-01, 4.4068e-01, + 9.8688e-01, 9.9709e-01, 4.2270e-01, 6.9585e-01, + 2.7717e-01, 5.9451e-02, 9.5034e-01, 6.1396e-01, + 5.8699e-01, 5.6065e-01, 9.7675e-01, 7.6908e-01, + 4.3459e-01, 2.6185e-01, 3.3918e-01, 8.8475e-01, + 9.9469e-01, 5.1719e-01, 1.2536e-02, 7.9953e-01, + 5.8694e-02, 6.8508e-02, 1.3971e-02, 9.1346e-01, + 5.7906e-01, 8.7957e-01, 8.7184e-01, 7.9957e-01, + 6.6740e-01, 8.8910e-01, 2.3765e-01, 1.5346e-01, + 8.2845e-01, 6.1739e-02, 5.9085e-01, 9.9421e-01, + 1.1093e-01, 8.7460e-01, 7.9463e-01, 3.9043e-01, + 4.2107e-01, 9.3567e-01, 5.7116e-01, 9.5562e-01, + 1.4046e-01, 9.5840e-01, 7.2657e-01, 8.9020e-01, + 3.1909e-02, 6.2548e-01, 7.6863e-01, 2.7453e-01, + 5.2984e-01, 2.9711e-01, 4.6701e-01, 5.1813e-02, + 3.6967e-01, 6.3356e-01, 6.8065e-01, 7.5516e-01, + 4.5039e-01, 3.1351e-01, 6.9119e-01, 6.1214e-01, + 5.8392e-01, 8.1954e-02, 5.3556e-02, 6.7371e-01, + 4.6413e-01, 7.7358e-01, 3.2483e-01, 3.2597e-01, + 6.2412e-01, 9.0713e-02, 1.2413e-01, 5.7210e-01, + 8.7935e-01, 2.8617e-01, 3.7725e-01, 2.9843e-01, + 9.4261e-01, 3.6302e-01, 4.7908e-02, 6.4665e-01, + 9.3962e-01, 8.7430e-02, 9.9035e-01, 8.1030e-01, + 9.0691e-02, 7.7773e-01, 5.4666e-02, 4.8836e-01, + 5.3026e-01, 5.7899e-01, 8.0673e-01, 2.0044e-01, + 1.9934e-01, 2.8598e-01, 7.4524e-01, 1.2927e-01, + 9.2808e-01, 9.2045e-01, 3.8985e-01, 5.5247e-01, + 5.7464e-01, 5.7580e-02, 1.4284e-01, 4.7990e-02, + 4.3020e-01, 8.2560e-01, 8.1836e-01, 5.9019e-01, + 8.9344e-01, 8.7895e-01, 3.3983e-01, 5.4129e-01, + 9.0138e-01, 6.8974e-01, 8.1632e-01, 3.1266e-01, + 9.1417e-01, 6.4220e-01, 9.6898e-01, 4.5624e-01, + 7.5150e-01, 8.2712e-01, 3.1443e-01, 3.8511e-01, + 3.0069e-01, 5.4418e-01, 7.7085e-01, 7.1004e-01, + 9.0850e-01, 2.8569e-01, 2.8229e-01, 8.2281e-01, + 3.9838e-01, 5.0278e-01, 8.3763e-02, 9.3758e-01, + 9.9311e-01, 1.9914e-01, 5.0422e-01, 1.3989e-01, + 6.7582e-01, 9.3789e-01, 8.2716e-03, 8.7877e-01, + 4.9822e-01, 2.0486e-01, 2.8594e-01, 6.3313e-01, + 3.0356e-01, 4.3013e-01, 6.1970e-01, 3.6020e-01, + 9.6547e-01, 6.1613e-01, 6.4540e-01, 7.4650e-01, + 6.1805e-01, 8.3533e-01, 8.5825e-01, 1.7147e-02, + 1.2759e-01, 3.6667e-01, 3.3350e-01, 6.2218e-01, + 6.5278e-01, 2.5488e-01, 6.1015e-01, 9.2496e-01, + 8.2075e-02, 6.5632e-01, 7.0234e-01, 7.5650e-01, + 2.0221e-01, 1.0267e-01, 1.1805e-03, 2.4251e-01, + 9.2195e-01, 7.5362e-01, 9.2722e-01, 8.3398e-01, + 2.6393e-01, 4.1074e-01, 5.8470e-01, 4.7939e-01, + 9.9882e-01, 1.5441e-01, 2.9312e-01, 6.3439e-01, + 5.9746e-01, 4.5249e-01, 7.6343e-01, 6.6838e-01, + 2.6124e-01, 6.3346e-01, 8.9367e-01, 5.0087e-01, + 7.9238e-01, 3.7238e-01, 3.5710e-01, 3.5431e-01, + 4.2045e-01, 2.7507e-01, 6.1473e-01, 9.4034e-01, + 4.8498e-01, 5.8045e-01, 7.1439e-01, 2.6115e-01, + 8.6137e-01, 8.0278e-01, 3.6885e-01, 6.1547e-01, + 3.4485e-01, 8.5126e-01, 9.5304e-01, 2.8787e-01, + 4.7971e-01, 1.8011e-01, 9.1167e-01, 4.1315e-01, + 8.2359e-02, 1.3913e-01, 4.7291e-01, 9.7543e-01, + 4.5087e-01, 4.6225e-01, 8.0787e-01, 7.3710e-02, + 2.2523e-01, 2.4144e-01, 2.3303e-01, 3.6756e-01, + 6.4454e-01, 6.0330e-01, 3.3924e-01, 8.9650e-01, + 3.5891e-01, 7.6267e-02, 8.8689e-01, 1.9321e-01, + 9.8928e-01, 1.6353e-01, 9.4096e-01, 1.6797e-01, + 5.8028e-01, 9.4390e-01, 1.7118e-01, 7.7669e-01, + 1.5969e-01, 1.8190e-01, 7.3046e-01, 7.7660e-01]), size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.7781, 0.3926, 0.9305, ..., 0.7246, 0.2621, 0.2068]) +tensor([0.4288, 0.6749, 0.2273, ..., 0.2100, 0.8485, 0.9690]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -1026,375 +647,271 @@ Rows: 10000 Size: 100000000 NNZ: 1000 Density: 1e-05 -Time: 10.514646053314209 seconds +Time: 5.085230827331543 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 141552 -ss 10000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.798607587814331} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), - col_indices=tensor([4116, 7192, 1414, 602, 9261, 9755, 3418, 3677, 1346, - 4915, 1923, 5999, 8929, 3632, 514, 7579, 9728, 993, - 4226, 2729, 2969, 7063, 8946, 3199, 2641, 3551, 3369, - 5419, 1831, 1652, 6779, 7428, 3773, 5376, 162, 579, - 7703, 6315, 199, 8043, 3670, 9337, 2098, 2118, 8554, - 2706, 4081, 7007, 1627, 5281, 2169, 7536, 2244, 9570, - 3079, 5784, 1151, 8783, 1389, 8630, 6457, 6608, 4618, - 9063, 5053, 6181, 9948, 5748, 552, 4335, 6638, 3245, - 5740, 6165, 6638, 3389, 4075, 7308, 3538, 1808, 7667, - 6538, 3469, 3661, 4798, 9461, 4545, 9042, 8936, 6823, - 3214, 2364, 8082, 6264, 8924, 2858, 8926, 6581, 6873, - 4238, 1490, 2662, 5578, 4356, 3367, 3328, 2236, 5544, - 9846, 3138, 7106, 9710, 3457, 1720, 9664, 7549, 5930, - 186, 2220, 5945, 7396, 6063, 9045, 7005, 4888, 8764, - 4115, 6721, 9214, 1263, 9026, 6945, 128, 3992, 9195, - 1474, 898, 6799, 6691, 3804, 4100, 3045, 4269, 7083, - 7634, 6955, 7626, 3398, 9853, 5960, 6034, 6094, 1156, - 179, 4425, 7472, 1643, 3634, 5583, 4054, 7495, 8640, - 7830, 4823, 8512, 2700, 1579, 955, 2712, 5607, 4060, - 5276, 5257, 5785, 8404, 113, 7405, 3608, 3433, 3557, - 6849, 1586, 7863, 4221, 9310, 989, 7433, 3566, 8151, - 6016, 311, 1505, 3718, 1327, 7984, 3830, 167, 458, - 1529, 4687, 5720, 3066, 2390, 9640, 22, 1812, 4977, - 5871, 208, 5078, 2553, 6038, 7129, 4310, 282, 7188, - 2629, 1264, 6276, 1900, 4410, 2767, 3442, 8825, 8207, - 9184, 696, 4991, 9290, 793, 7381, 5472, 9417, 843, - 7337, 5992, 4392, 6955, 6527, 4732, 1836, 2887, 3302, - 1246, 4380, 7016, 2283, 2360, 339, 4662, 7184, 8502, - 5643, 5095, 1512, 8433, 2939, 1784, 9937, 1906, 9377, - 4250, 5487, 5234, 4792, 8152, 7183, 2215, 7833, 3347, - 5213, 732, 5590, 2763, 4277, 7806, 3532, 1529, 9333, - 4668, 9843, 4597, 3627, 8649, 8703, 873, 4071, 3905, - 7625, 2889, 4631, 9159, 8732, 933, 5436, 4772, 8351, - 1495, 1952, 2186, 1108, 4949, 2677, 1933, 3185, 4340, - 5683, 5723, 8381, 9022, 2370, 9966, 5403, 9733, 2198, - 1637, 6841, 4735, 9117, 8560, 917, 3319, 1371, 5395, - 9003, 4729, 166, 4382, 5364, 8859, 5190, 7650, 5699, - 8419, 9352, 522, 3927, 2679, 4262, 9505, 590, 7467, - 8458, 9407, 3144, 2243, 9605, 8976, 1644, 2029, 7253, - 258, 2996, 9166, 6182, 3685, 448, 388, 9009, 1003, - 8225, 5809, 5225, 5068, 7864, 1148, 1681, 8631, 9776, - 2434, 9005, 570, 3704, 421, 1541, 2997, 1138, 443, - 8928, 4642, 2073, 2012, 8211, 4813, 5727, 2486, 2677, - 2787, 9420, 1109, 597, 365, 1642, 876, 5405, 9802, - 7033, 1434, 7253, 4790, 1231, 1111, 5807, 2216, 8736, - 4015, 4599, 8996, 3935, 942, 449, 9751, 9186, 7778, - 1387, 8588, 7679, 2605, 4391, 4798, 2000, 5117, 3414, - 1861, 49, 3127, 3681, 1232, 3277, 4285, 4110, 2170, - 1131, 3609, 305, 4308, 1078, 3550, 8680, 9527, 3657, - 5580, 3942, 7339, 4571, 6030, 3953, 2251, 4453, 7552, - 1958, 1501, 1056, 6071, 8794, 5497, 2466, 5840, 5755, - 4350, 6652, 9676, 7696, 5668, 5716, 6802, 2756, 2844, - 2076, 9916, 4254, 4247, 1549, 6255, 136, 9745, 4708, - 8246, 5741, 3283, 9856, 3884, 7212, 2451, 4506, 3332, - 2802, 546, 1107, 6908, 7485, 6240, 3041, 3085, 3258, - 8550, 9847, 4893, 2038, 9539, 625, 7440, 4196, 5182, - 3039, 1354, 4896, 920, 8631, 5555, 3241, 4037, 7927, - 7978, 2714, 4090, 1155, 2312, 8957, 8647, 1625, 2284, - 5120, 2713, 6756, 1447, 5297, 9292, 191, 9719, 512, - 3285, 1008, 1631, 2282, 1, 8384, 4959, 4082, 6943, - 5026, 1284, 2559, 7835, 8876, 7406, 9259, 6431, 2124, - 5249, 886, 3877, 9616, 7440, 7935, 2953, 4353, 8630, - 6873, 6450, 7974, 2907, 6853, 1731, 1734, 7915, 627, - 1848, 9651, 8072, 325, 9090, 3952, 2190, 6969, 5724, - 4737, 4971, 5930, 9065, 795, 2734, 7142, 1334, 1101, - 6976, 2804, 9022, 4770, 8850, 2321, 2915, 4870, 317, - 200, 1907, 4202, 8058, 468, 2452, 3052, 4111, 8780, - 2827, 6426, 5414, 9074, 2589, 6068, 209, 6819, 6948, - 7804, 7353, 5400, 8311, 624, 4794, 4250, 9150, 7304, - 7383, 244, 3241, 8673, 824, 8833, 5120, 347, 3945, - 9530, 4501, 8187, 5682, 9083, 4685, 9255, 3954, 6003, - 1181, 7405, 4909, 2035, 5243, 7589, 7209, 2811, 8638, - 6620, 998, 4062, 4859, 2372, 2608, 3632, 9769, 7028, - 4263, 7696, 6057, 9107, 4050, 223, 2225, 9966, 6759, - 8412, 3222, 9059, 9449, 3803, 5159, 6770, 4309, 803, - 3956, 6109, 2635, 8651, 9493, 6196, 8647, 3760, 7476, - 2703, 4996, 7071, 454, 6200, 1008, 6621, 5370, 4441, - 9279, 2513, 9418, 7493, 7526, 4237, 4698, 7251, 6897, - 2020, 7731, 9984, 3559, 4926, 9283, 2622, 1954, 1488, - 3911, 7884, 2789, 6162, 5229, 4168, 282, 389, 5316, - 1498, 4458, 3561, 8943, 9282, 8236, 2217, 2559, 1819, - 1350, 706, 7116, 9065, 8837, 4066, 7679, 6388, 3799, - 9827, 4686, 9282, 6788, 6841, 1373, 7434, 8130, 3964, - 8166, 3594, 3817, 6355, 3458, 2124, 3724, 9463, 6106, - 9252, 7691, 2416, 3575, 1616, 9144, 6977, 3531, 6725, - 6763, 1340, 5794, 8225, 5653, 9046, 9095, 7748, 6148, - 7023, 3605, 4097, 7017, 1954, 2458, 616, 3576, 4392, - 1508, 4668, 9858, 6665, 8198, 7943, 9561, 6812, 4402, - 7065, 911, 6654, 5206, 2290, 2647, 2858, 4004, 7033, - 1456, 4004, 5009, 7018, 441, 1434, 616, 9192, 4014, - 4224, 3305, 5685, 5038, 1879, 2513, 2975, 7217, 6734, - 4346, 2451, 4252, 1359, 1897, 1558, 1518, 8946, 1045, - 2687, 5779, 3825, 7875, 7903, 3483, 3272, 5342, 4112, - 6056, 4149, 9046, 6331, 5493, 5740, 4356, 9840, 2344, - 8131, 1983, 3832, 1085, 6587, 7944, 5354, 9757, 9494, - 6772, 4253, 3448, 1844, 3828, 8186, 561, 2149, 277, - 7639, 7736, 9923, 874, 4782, 7514, 9258, 25, 3290, - 9135, 821, 7578, 3691, 6954, 4378, 106, 3717, 4341, - 7878, 4081, 3382, 2833, 5381, 1369, 1198, 8238, 509, - 8127, 7888, 3507, 99, 1906, 6992, 375, 2939, 9900, - 3554, 9933, 4200, 9872, 7049, 4972, 7060, 9575, 558, - 4822, 5894, 5066, 5665, 2353, 8349, 8831, 6355, 6847, - 4671, 7517, 5761, 7668, 862, 525, 7306, 1582, 5763, - 7813, 8159, 6461, 9837, 487, 5618, 551, 6758, 6315, - 7722, 5312, 2191, 6095, 5151, 3304, 6873, 8430, 6063, - 9471, 4395, 9467, 7290, 1009, 2539, 6217, 7375, 2928, - 8340, 8978, 9118, 6252, 7166, 2776, 341, 5357, 7950, - 2900, 8133, 6787, 2966, 2483, 5175, 1262, 2317, 2466, - 7698, 6866, 558, 1985, 7535, 6044, 3673, 7654, 8927, - 6144, 8580, 3529, 9842, 2172, 4769, 2277, 2207, 1695, - 234, 4499, 3795, 4016, 695, 3395, 6723, 2800, 2814, - 7062]), - values=tensor([1.3767e-01, 7.1628e-01, 8.6135e-01, 7.1511e-01, - 9.5089e-01, 2.4757e-01, 9.3760e-03, 7.7773e-01, - 4.0669e-01, 9.1069e-01, 1.2601e-01, 5.4040e-01, - 3.7319e-02, 3.2172e-01, 9.1567e-01, 8.9101e-01, - 2.2712e-02, 6.3215e-01, 1.8351e-01, 5.7793e-01, - 6.9901e-01, 5.3678e-01, 4.7677e-01, 5.0165e-02, - 5.6649e-01, 6.3104e-01, 3.0293e-01, 7.4977e-01, - 7.3472e-02, 2.8601e-01, 5.5054e-01, 3.5579e-01, - 3.6622e-01, 6.5500e-01, 6.2994e-01, 3.6452e-01, - 2.0704e-01, 1.0247e-01, 2.5826e-01, 5.2540e-02, - 7.3130e-02, 6.3376e-01, 5.9810e-01, 4.9090e-01, - 6.8296e-02, 5.3917e-01, 1.1966e-01, 1.8500e-01, - 3.0815e-01, 5.8388e-01, 4.2982e-01, 5.6405e-02, - 4.8100e-01, 2.6901e-01, 3.0648e-03, 7.4291e-01, - 1.2739e-01, 3.2902e-01, 7.3718e-01, 7.4258e-01, - 9.6792e-01, 2.1717e-01, 2.0890e-01, 5.2258e-01, - 6.8834e-01, 3.6326e-01, 6.9665e-01, 6.8825e-01, - 6.2143e-01, 6.2623e-01, 6.1424e-01, 7.0805e-01, - 4.0377e-01, 5.0286e-01, 3.1606e-01, 1.0216e-01, - 8.7212e-01, 2.5393e-01, 4.3722e-01, 4.5099e-01, - 6.2296e-01, 6.7718e-01, 1.1725e-01, 7.5117e-01, - 6.1649e-01, 2.0645e-01, 1.5527e-01, 5.8584e-01, - 6.5559e-01, 9.7418e-01, 5.7488e-01, 4.5016e-01, - 1.0108e-02, 7.8700e-01, 8.5952e-01, 3.6767e-01, - 6.6708e-01, 3.9792e-01, 2.1940e-01, 4.4322e-01, - 7.0303e-01, 3.4139e-01, 3.9259e-01, 8.8211e-01, - 8.8687e-01, 7.0191e-01, 4.6733e-01, 4.5169e-01, - 1.3884e-01, 7.2389e-01, 1.0696e-01, 1.9507e-01, - 5.4738e-01, 6.7276e-01, 9.7900e-02, 5.0607e-01, - 6.0787e-01, 3.7552e-01, 6.9448e-01, 9.9517e-01, - 6.9703e-01, 4.5115e-01, 2.7976e-01, 3.3528e-01, - 6.2057e-01, 8.6211e-01, 7.0540e-01, 7.0073e-01, - 7.5910e-01, 7.0805e-01, 6.8043e-01, 9.2129e-01, - 3.8606e-02, 8.1173e-01, 6.8589e-01, 8.8272e-01, - 8.5540e-01, 8.5966e-01, 2.5725e-01, 6.2432e-02, - 2.0565e-01, 7.6464e-01, 6.2149e-01, 7.0689e-01, - 9.6943e-01, 9.1375e-01, 6.9609e-01, 1.0540e-01, - 9.0816e-01, 1.5889e-01, 5.7258e-01, 5.5242e-01, - 4.2908e-01, 4.4953e-01, 6.5806e-01, 8.4537e-01, - 8.1500e-02, 5.0051e-01, 6.5699e-01, 1.6438e-01, - 1.5049e-02, 4.9899e-01, 3.9120e-01, 3.2732e-01, - 3.8565e-01, 8.2901e-01, 4.0085e-01, 6.0713e-01, - 7.0000e-01, 3.0412e-01, 6.0281e-01, 2.5542e-02, - 4.3786e-02, 1.8718e-01, 8.7005e-01, 9.4782e-01, - 5.9295e-01, 7.8689e-03, 8.5626e-01, 6.4375e-01, - 3.2275e-01, 4.2197e-01, 3.6112e-01, 6.2448e-02, - 9.7853e-01, 8.6224e-01, 7.4828e-01, 5.8071e-01, - 8.7233e-01, 5.0843e-01, 2.8581e-01, 6.4133e-01, - 7.0918e-01, 9.5194e-01, 6.1273e-01, 8.5849e-01, - 4.9317e-01, 5.7639e-02, 9.9630e-01, 3.7211e-01, - 3.4682e-01, 1.1154e-01, 2.5831e-03, 6.3374e-01, - 6.6874e-01, 3.9360e-01, 3.5838e-01, 8.5471e-01, - 7.0322e-01, 8.2311e-01, 5.4150e-01, 5.7026e-01, - 6.5821e-01, 1.3975e-01, 7.7260e-02, 1.1189e-01, - 5.2080e-01, 1.2715e-02, 6.9032e-01, 7.5638e-01, - 2.0518e-01, 5.5927e-01, 8.3030e-02, 5.5062e-01, - 3.2127e-01, 1.0789e-01, 9.1260e-01, 6.4350e-01, - 9.9466e-01, 5.5812e-01, 2.5897e-01, 1.4537e-01, - 8.8427e-01, 2.4431e-01, 5.3467e-01, 1.1437e-01, - 2.2271e-01, 3.6377e-01, 5.0688e-01, 4.0210e-01, - 9.6214e-02, 7.4145e-01, 4.1409e-01, 2.7186e-01, - 6.8016e-01, 3.4039e-01, 5.5569e-01, 9.7247e-02, - 6.0054e-01, 9.7719e-01, 1.3649e-01, 9.9753e-01, - 8.3259e-01, 6.4755e-01, 3.9749e-01, 9.0807e-01, - 2.1147e-01, 5.0004e-01, 5.3220e-02, 3.1762e-01, - 3.3833e-01, 7.7938e-01, 6.2849e-01, 4.7457e-01, - 1.7438e-02, 8.1308e-01, 2.8307e-01, 6.7284e-01, - 5.1861e-01, 3.3344e-01, 9.1361e-01, 6.0753e-01, - 7.0133e-01, 3.6039e-01, 5.5368e-02, 9.3108e-01, - 3.5189e-01, 9.7164e-01, 3.9002e-01, 5.2678e-01, - 2.8953e-03, 9.8500e-01, 7.3340e-01, 9.2830e-01, - 4.0230e-01, 7.7052e-01, 9.5800e-02, 3.1615e-01, - 5.9244e-01, 9.0208e-01, 1.2767e-01, 1.5811e-01, - 8.0315e-01, 6.2049e-01, 3.9867e-01, 5.8587e-01, - 5.4263e-01, 5.8712e-01, 6.4417e-01, 2.5094e-01, - 5.7318e-03, 4.2910e-01, 4.9714e-01, 1.2439e-01, - 6.8645e-01, 2.7117e-01, 9.4144e-01, 1.0741e-01, - 6.0964e-01, 4.9124e-01, 1.2215e-01, 6.2184e-01, - 9.5970e-01, 1.4042e-01, 3.8926e-01, 2.5587e-01, - 2.3181e-01, 1.5447e-01, 2.6754e-01, 2.8396e-01, - 4.9732e-01, 7.7233e-01, 7.2055e-01, 2.6804e-01, - 5.2721e-01, 2.8004e-02, 4.0875e-01, 1.0355e-01, - 3.8021e-01, 1.6312e-01, 9.3351e-01, 4.0357e-01, - 9.6564e-01, 9.5352e-01, 2.3033e-01, 1.8023e-01, - 8.9340e-01, 3.6181e-01, 5.5393e-01, 3.3373e-01, - 6.1869e-01, 1.4247e-01, 3.8655e-02, 1.5970e-01, - 1.5518e-01, 8.9244e-01, 2.1298e-01, 7.1235e-01, - 5.5568e-01, 5.8432e-01, 1.9164e-01, 2.3690e-01, - 9.5455e-01, 7.2857e-01, 3.7214e-01, 5.5532e-01, - 8.8376e-01, 5.9028e-01, 2.0300e-01, 6.3695e-01, - 3.3213e-01, 9.5342e-02, 7.7225e-01, 6.6953e-02, - 1.6999e-01, 9.4302e-01, 2.6314e-01, 3.3727e-01, - 2.7787e-01, 8.0225e-01, 6.5075e-01, 7.4035e-01, - 5.3106e-01, 5.4790e-01, 3.1026e-01, 2.2004e-02, - 9.0580e-01, 7.6487e-01, 5.6201e-01, 1.1201e-01, - 1.5233e-02, 3.8437e-01, 6.1598e-02, 3.1117e-01, - 3.2700e-01, 8.9412e-01, 3.9616e-01, 5.3201e-01, - 6.4656e-01, 2.1046e-01, 3.6325e-01, 9.2194e-01, - 6.3959e-01, 3.9911e-01, 4.4881e-01, 1.0553e-01, - 2.5978e-01, 1.8512e-01, 3.9395e-01, 5.4669e-02, - 6.8945e-01, 8.0965e-01, 3.2951e-01, 5.4811e-01, - 3.0211e-02, 6.8181e-01, 3.2372e-01, 9.3662e-01, - 6.8499e-01, 6.4111e-01, 5.8163e-01, 3.5869e-01, - 2.8411e-01, 4.3117e-01, 1.3450e-01, 4.8766e-01, - 7.0478e-01, 5.3516e-01, 6.7174e-01, 8.0094e-01, - 8.1062e-01, 2.7839e-02, 8.6884e-01, 7.9628e-01, - 1.2090e-01, 9.4127e-02, 2.6206e-01, 7.1621e-02, - 9.6549e-01, 9.9012e-02, 8.1580e-01, 6.2717e-01, - 3.7858e-02, 6.6910e-01, 1.1367e-01, 4.4587e-01, - 2.1667e-01, 6.2027e-01, 6.0694e-01, 4.8314e-01, - 8.9715e-01, 1.2495e-01, 4.0892e-01, 5.4664e-01, - 2.0868e-01, 3.7281e-01, 7.2776e-01, 3.9380e-01, - 7.7841e-01, 7.2770e-01, 5.5081e-01, 4.5550e-01, - 1.1337e-01, 6.0070e-01, 1.7006e-01, 8.9155e-01, - 3.4892e-04, 8.9357e-01, 9.6087e-01, 3.6593e-02, - 5.8737e-01, 3.6900e-02, 7.9887e-01, 6.1905e-01, - 9.3419e-01, 1.0042e-01, 7.9304e-01, 5.8615e-01, - 7.2710e-01, 5.8139e-01, 2.5740e-02, 1.1614e-01, - 8.0492e-01, 1.9472e-01, 6.4306e-01, 7.9291e-01, - 8.8424e-01, 2.4042e-01, 6.6614e-01, 9.9409e-01, - 3.9403e-01, 4.6506e-01, 4.8211e-01, 5.6363e-01, - 6.0078e-01, 8.3139e-02, 7.8203e-01, 4.7756e-01, - 8.5709e-01, 5.7873e-01, 7.6714e-02, 3.9206e-01, - 6.8500e-01, 9.6940e-01, 2.5652e-01, 8.8082e-01, - 3.7856e-01, 9.2438e-01, 4.7830e-01, 1.4020e-01, - 5.2884e-01, 3.1246e-01, 6.5357e-01, 3.5125e-01, - 8.1007e-01, 7.6288e-01, 4.0573e-01, 2.6397e-01, - 7.7222e-01, 4.6844e-01, 6.6931e-01, 3.7442e-02, - 7.3587e-01, 1.7894e-01, 1.9269e-01, 5.3208e-02, - 1.7345e-01, 3.2373e-01, 8.6054e-01, 9.6058e-01, - 3.3684e-01, 1.2915e-01, 3.7259e-01, 8.5330e-02, - 8.7195e-01, 4.1642e-01, 1.4156e-02, 5.6366e-01, - 2.0687e-02, 4.5670e-01, 9.4825e-01, 4.6193e-01, - 9.6608e-01, 7.2678e-01, 1.0354e-01, 4.0029e-01, - 8.7647e-01, 7.6570e-01, 2.0229e-01, 2.0324e-01, - 5.5069e-01, 9.8105e-01, 3.4961e-01, 9.6117e-01, - 1.2299e-01, 8.9272e-01, 8.4714e-01, 8.7303e-01, - 8.8032e-01, 6.5685e-01, 5.8322e-01, 5.8733e-01, - 2.6798e-01, 6.5585e-01, 4.5400e-01, 5.2309e-03, - 9.9176e-01, 9.0773e-01, 9.4229e-01, 8.4914e-01, - 1.9365e-01, 5.8394e-01, 9.0261e-01, 5.1355e-01, - 4.1587e-01, 2.4801e-01, 2.7669e-01, 5.5044e-01, - 2.4672e-01, 4.0436e-01, 2.4099e-01, 5.0330e-01, - 9.5869e-01, 7.6414e-01, 1.2318e-01, 8.6587e-01, - 7.4214e-01, 6.6104e-03, 1.1094e-01, 4.0845e-01, - 1.1767e-01, 9.0883e-01, 7.2050e-01, 9.7280e-01, - 9.8324e-01, 1.3704e-01, 4.0185e-01, 3.4497e-01, - 7.4353e-01, 9.0031e-01, 2.0494e-01, 2.5380e-01, - 5.2888e-01, 2.1441e-02, 4.0249e-01, 5.3610e-01, - 5.2276e-01, 3.3112e-01, 2.3875e-02, 9.2410e-01, - 5.6142e-02, 8.6019e-01, 3.4566e-01, 5.7521e-01, - 3.8381e-01, 2.0229e-01, 5.4861e-01, 2.1478e-01, - 3.3400e-01, 2.2956e-01, 3.0797e-01, 5.1339e-01, - 4.1802e-01, 1.9688e-01, 6.2325e-01, 3.2738e-01, - 4.8917e-01, 3.2538e-01, 5.1070e-01, 7.4161e-01, - 7.0588e-01, 3.9899e-01, 5.2221e-01, 1.5384e-01, - 3.5179e-01, 4.8115e-01, 2.7363e-01, 2.8002e-01, - 4.2415e-01, 2.1545e-01, 7.6635e-01, 4.4319e-01, - 1.0434e-01, 5.3882e-01, 1.7751e-01, 9.7206e-01, - 5.0674e-01, 3.4560e-01, 3.2579e-01, 5.4960e-01, - 3.2111e-01, 9.7020e-01, 8.9102e-01, 3.3955e-01, - 7.4355e-01, 1.1853e-01, 7.3761e-01, 5.9870e-01, - 6.3084e-01, 5.2364e-01, 6.9109e-01, 9.7319e-01, - 4.4327e-01, 6.7270e-01, 5.0866e-01, 5.8518e-02, - 8.6936e-01, 2.0647e-01, 7.9599e-01, 8.3871e-01, - 8.4882e-01, 4.8923e-01, 9.0385e-01, 5.4210e-01, - 8.2097e-02, 4.4715e-01, 3.9892e-02, 9.7745e-01, - 2.1047e-02, 7.0280e-01, 1.6161e-01, 5.8636e-01, - 5.1251e-02, 3.7167e-01, 6.3274e-01, 6.2298e-02, - 7.4293e-01, 7.9914e-01, 8.7203e-01, 9.6482e-01, - 5.6499e-01, 3.8671e-01, 7.0059e-01, 7.3199e-01, - 9.2567e-01, 7.3812e-01, 1.6861e-01, 7.4046e-01, - 8.1607e-01, 4.6992e-01, 7.2711e-01, 9.1487e-01, - 4.1156e-01, 5.1202e-01, 3.5986e-01, 3.3062e-01, - 2.9725e-01, 1.6921e-01, 5.4909e-01, 1.2069e-01, - 3.5195e-01, 7.6383e-01, 7.4288e-01, 2.4758e-01, - 3.8444e-01, 5.8266e-02, 2.4042e-01, 3.0919e-01, - 1.7204e-01, 6.1885e-01, 2.9065e-01, 1.3719e-02, - 4.0827e-01, 1.3647e-01, 1.4959e-02, 9.9494e-01, - 5.1923e-01, 5.6432e-01, 9.4876e-01, 5.7473e-01, - 9.7697e-01, 1.8048e-02, 5.6856e-01, 1.5324e-01, - 1.0664e-01, 5.3795e-01, 7.1911e-01, 1.5088e-01, - 6.3302e-01, 1.3568e-02, 5.4872e-01, 9.1526e-01, - 9.6402e-01, 6.2534e-01, 7.4570e-01, 5.7812e-01, - 3.7302e-01, 2.3742e-01, 4.2409e-02, 4.5568e-01, - 5.1109e-01, 4.5050e-01, 6.3292e-01, 8.9476e-01, - 7.5507e-01, 6.3026e-01, 4.1196e-01, 4.5580e-01, - 5.6006e-01, 6.5274e-01, 9.8682e-01, 3.8258e-01, - 9.0774e-01, 5.1524e-01, 3.1276e-01, 8.3507e-01, - 3.6866e-01, 8.7038e-01, 1.8687e-01, 8.7445e-01, - 3.4415e-01, 2.8866e-01, 2.8929e-01, 1.2231e-01, - 9.4505e-01, 4.2536e-01, 6.2981e-01, 4.8049e-01, - 2.0686e-01, 1.7140e-01, 8.2123e-01, 5.0642e-01, - 9.1534e-01, 5.8595e-01, 7.0950e-01, 3.9363e-01, - 1.4897e-01, 8.5593e-01, 3.9573e-01, 4.2217e-01, - 1.3321e-01, 8.2831e-01, 3.5401e-01, 8.5123e-01, - 9.7129e-01, 3.5101e-01, 2.9517e-01, 7.8648e-01, - 1.9865e-01, 7.6650e-01, 8.6624e-01, 6.6334e-01, - 5.3911e-02, 2.1179e-01, 7.9277e-01, 3.3075e-01, - 9.7451e-02, 2.2374e-01, 6.0424e-01, 3.4120e-01, - 1.6678e-01, 7.3058e-01, 1.4131e-01, 3.2380e-01, - 8.0025e-02, 8.7760e-02, 2.1083e-01, 2.1844e-01, - 6.6954e-02, 4.9328e-01, 7.2243e-01, 8.3534e-01, - 9.9053e-01, 2.3837e-01, 1.9357e-01, 5.5049e-01, - 6.7173e-01, 6.2973e-03, 2.5163e-01, 4.1258e-01, - 6.6680e-01, 5.0225e-01, 6.5658e-01, 7.9015e-01, - 4.6985e-01, 9.5341e-01, 1.8942e-01, 9.6505e-01, - 5.9884e-01, 7.6761e-01, 9.9066e-01, 1.7115e-01, - 1.5569e-01, 6.6473e-01, 4.0053e-01, 1.1972e-01, - 1.4245e-01, 7.4121e-01, 4.5033e-01, 7.0448e-01, - 8.4109e-01, 9.6275e-01, 5.6967e-01, 4.6629e-01, - 4.6346e-01, 8.8916e-01, 5.7855e-01, 5.9218e-01, - 9.7444e-01, 5.1624e-01, 5.3685e-01, 3.2910e-01, - 4.5445e-03, 3.8540e-01, 9.5888e-01, 5.3370e-01, - 5.2745e-01, 7.0115e-01, 1.7582e-02, 7.0961e-01, - 4.8579e-01, 4.4872e-01, 1.8650e-01, 9.1635e-01, - 7.1700e-01, 7.1226e-01, 3.2373e-01, 9.7173e-01, - 9.5299e-01, 8.4083e-01, 2.5068e-01, 3.3961e-01, - 2.8141e-01, 1.6843e-01, 7.2851e-01, 3.5589e-01, - 4.7044e-01, 3.3914e-01, 9.9225e-01, 8.3744e-01, - 6.3322e-01, 2.6791e-01, 1.4790e-01, 8.5573e-01, - 8.6051e-03, 6.8401e-01, 8.5940e-01, 3.1405e-01, - 8.0239e-01, 5.3587e-01, 7.6761e-02, 1.9059e-01, - 5.5597e-01, 2.2680e-01, 5.0511e-01, 7.4720e-01, - 5.6044e-01, 1.2904e-01, 2.6998e-02, 2.6815e-02, - 1.4811e-01, 5.7710e-01, 3.8720e-01, 3.1164e-01, - 5.0377e-01, 6.6323e-01, 3.0251e-01, 7.6729e-01, - 4.0920e-01, 2.6721e-01, 4.7283e-01, 7.9623e-01, - 3.3513e-01, 9.2036e-01, 3.7500e-01, 1.7646e-01, - 4.9155e-01, 6.1185e-01, 7.4077e-01, 7.1092e-01, - 5.2796e-02, 7.3738e-01, 3.3700e-02, 5.8595e-01, - 7.1338e-01, 1.9473e-01, 7.7258e-01, 8.6642e-01, - 3.1804e-01, 9.2864e-01, 3.4002e-01, 5.8527e-01, - 3.2231e-01, 2.5907e-01, 2.4104e-02, 9.6474e-01, - 7.6358e-01, 2.8793e-01, 2.4963e-01, 3.2547e-03, - 3.7889e-01, 7.2848e-01, 7.8352e-01, 6.5869e-01, - 6.7556e-01, 9.9946e-01, 7.1099e-01, 7.8559e-01, - 2.4594e-01, 7.5866e-01, 2.1889e-01, 8.6192e-01, - 1.0492e-01, 6.6974e-01, 1.9110e-01, 4.2178e-01, - 5.2211e-01, 5.7968e-01, 4.3791e-01, 1.6162e-01, - 1.8223e-01, 4.0645e-01, 8.0597e-01, 1.8599e-01, - 8.5659e-01, 8.8819e-01, 4.3915e-01, 2.0250e-01, - 7.8476e-02, 6.6803e-01, 7.7438e-01, 2.0798e-02, - 6.5758e-01, 3.2100e-01, 3.5731e-04, 2.1289e-01, - 2.5481e-01, 6.2077e-01, 2.4535e-01, 8.8808e-01, - 3.0564e-01, 8.8046e-01, 1.5537e-01, 2.9485e-01, - 4.3426e-01, 1.5200e-01, 2.3927e-01, 4.1251e-02, - 2.6271e-01, 5.8274e-01, 5.6945e-02, 1.4017e-01, - 3.0720e-01, 3.6401e-01, 1.6795e-01, 6.9631e-02, - 6.9758e-01, 5.9161e-01, 8.3040e-01, 9.4507e-01]), + col_indices=tensor([3726, 7095, 4684, 2020, 836, 1255, 7107, 2910, 7765, + 3618, 8004, 8576, 4555, 2122, 3631, 3042, 6509, 854, + 5117, 7246, 7468, 4038, 6190, 4788, 6872, 1487, 1270, + 5894, 3327, 4557, 2868, 4373, 8003, 1239, 2993, 4213, + 4878, 8600, 9710, 4771, 8192, 5937, 3800, 5340, 2757, + 7379, 410, 167, 7636, 1048, 2438, 5415, 3035, 8972, + 8984, 1069, 8135, 9320, 5730, 3547, 7645, 6319, 8708, + 4794, 9059, 642, 937, 2015, 2851, 401, 5086, 3408, + 3671, 8044, 1220, 336, 7855, 7629, 930, 2750, 1987, + 9765, 3121, 9993, 829, 9850, 1435, 2979, 5489, 3796, + 4432, 9879, 9991, 2308, 6643, 3959, 9751, 638, 1357, + 4879, 6697, 7016, 2005, 3140, 2355, 1476, 7190, 9157, + 586, 8925, 8359, 7415, 6315, 5275, 7818, 5569, 2433, + 2192, 6764, 8455, 1408, 5314, 6201, 4055, 2442, 1110, + 8696, 5368, 8279, 443, 7835, 3502, 7362, 1330, 775, + 9823, 1517, 4273, 5726, 452, 5679, 1189, 861, 4804, + 3949, 9279, 5272, 3517, 1449, 1605, 1487, 9465, 4077, + 1506, 7136, 8000, 3536, 5423, 6093, 3644, 4106, 578, + 4413, 8078, 3736, 1232, 8907, 611, 6360, 4917, 5521, + 8890, 8861, 4942, 8337, 4548, 4613, 1027, 8700, 6909, + 958, 3790, 2989, 8565, 911, 5630, 6072, 1354, 9245, + 1994, 8552, 1111, 4146, 7268, 4683, 8105, 4378, 9360, + 6653, 8808, 5006, 4328, 5559, 3943, 4417, 7458, 2312, + 116, 5416, 6906, 1303, 5319, 7254, 8596, 3357, 6527, + 8398, 8704, 8210, 823, 4023, 1928, 9697, 2295, 5245, + 8970, 1573, 3796, 4232, 3566, 6537, 4098, 575, 7372, + 366, 6301, 8492, 2459, 7103, 5364, 5367, 4901, 9480, + 278, 5400, 7252, 9075, 5325, 1810, 7648, 324, 2329, + 8, 3227, 8008, 8213, 741, 1909, 4083, 9465, 4927, + 4913, 2356, 2450, 8390, 5767, 5848, 2748, 9467, 3514, + 4253, 2231, 1205, 4867, 6627, 4336, 5974, 7755, 3790, + 221, 6230, 4840, 1706, 8664, 7040, 1728, 4302, 8186, + 7438, 2847, 378, 6914, 377, 2565, 6264, 2119, 4808, + 8605, 8197, 5489, 4175, 5779, 6350, 3342, 6552, 3810, + 3380, 2149, 6531, 4018, 9838, 7109, 6420, 2314, 8276, + 8549, 3270, 8204, 1510, 99, 9666, 881, 9634, 6348, + 5206, 5717, 6256, 9140, 2894, 55, 7420, 6909, 8907, + 9934, 7455, 256, 6416, 3264, 139, 9653, 9104, 120, + 4401, 5358, 2182, 3677, 5160, 5409, 8367, 6563, 4808, + 6260, 2681, 8624, 9491, 9352, 8644, 896, 2705, 7108, + 2245, 6339, 6089, 2552, 2272, 1181, 6435, 563, 8137, + 1459, 7439, 2939, 7035, 867, 6590, 8094, 5026, 4423, + 4770, 7804, 7887, 761, 2953, 9927, 2073, 9826, 6475, + 9197, 874, 7559, 607, 1174, 7682, 3265, 6020, 6386, + 5306, 8737, 3204, 8378, 33, 4395, 8617, 1260, 266, + 2349, 7503, 7582, 3161, 3035, 9262, 8314, 2986, 5564, + 2126, 6464, 7360, 5226, 3325, 1629, 8069, 7692, 7794, + 4182, 2653, 7141, 4784, 5328, 9808, 7261, 1363, 8658, + 9123, 3810, 2620, 9643, 1362, 3134, 7384, 7296, 5209, + 6036, 7751, 7232, 736, 6172, 4771, 6452, 9215, 8373, + 5885, 7654, 3268, 8433, 3826, 1191, 4084, 6339, 3322, + 2278, 9573, 752, 1314, 9267, 6354, 6143, 35, 7253, + 1096, 5121, 7153, 7760, 1966, 6253, 3182, 9955, 1848, + 5514, 2387, 9249, 933, 7029, 186, 2702, 6241, 8466, + 1489, 3322, 5487, 5027, 3772, 1949, 4952, 2162, 9526, + 1901, 4241, 3525, 396, 3698, 5708, 9938, 9685, 4339, + 2948, 209, 6838, 1145, 5442, 7328, 5423, 6485, 1415, + 7421, 1724, 9251, 933, 6123, 4946, 5577, 7971, 9846, + 5274, 2640, 4773, 3064, 9692, 9463, 1802, 2781, 6650, + 4562, 991, 4382, 6448, 7016, 6327, 1852, 5951, 1025, + 7839, 4680, 3410, 4015, 1478, 3864, 5981, 6067, 988, + 2131, 7857, 2239, 375, 7733, 1730, 8801, 1787, 6496, + 1921, 8121, 6115, 2130, 7431, 2124, 1900, 3400, 3093, + 2034, 8191, 8469, 3659, 2287, 1005, 9444, 6813, 6960, + 3470, 8573, 1717, 3039, 2558, 4596, 4880, 4472, 7262, + 5686, 6336, 2458, 2937, 9212, 6313, 6778, 8810, 9277, + 928, 1704, 6201, 8834, 7081, 7414, 5902, 2525, 6986, + 4360, 144, 652, 1234, 5719, 484, 2482, 5766, 4021, + 4006, 6231, 1726, 4378, 3881, 6930, 8631, 3608, 4246, + 75, 8644, 7232, 8461, 8874, 3157, 9402, 5888, 3476, + 3276, 9018, 5589, 8991, 2990, 7947, 2115, 8859, 6426, + 1953, 3665, 3323, 3802, 5811, 8129, 4154, 4205, 5918, + 2014, 5679, 7180, 635, 5363, 4653, 1897, 3249, 6982, + 678, 2068, 9858, 2498, 9298, 382, 644, 7370, 2418, + 8329, 5775, 8507, 7061, 9961, 4182, 287, 2359, 5919, + 8303, 3664, 2342, 4924, 2424, 8480, 1042, 4823, 3665, + 6553, 4427, 9234, 7736, 4966, 935, 6525, 8224, 4229, + 311, 9329, 7173, 6315, 1432, 9741, 5248, 4687, 1042, + 3524, 3804, 6875, 7125, 7161, 3553, 195, 2516, 9006, + 3709, 8580, 57, 2078, 1413, 9823, 6439, 5603, 3945, + 4348, 2406, 4610, 6846, 5704, 6321, 9398, 4952, 1295, + 738, 1206, 9447, 1290, 7633, 6389, 2334, 2897, 916, + 3131, 3092, 1954, 7671, 2004, 8145, 1483, 4726, 1441, + 9782, 9165, 5535, 6096, 1612, 3414, 7082, 3936, 7625, + 116, 6121, 9652, 4539, 5938, 5687, 6276, 1101, 1633, + 6510, 9508, 5331, 5376, 9358, 2109, 2723, 7391, 4555, + 2365, 6412, 3706, 6937, 5899, 2966, 8411, 6231, 9569, + 2849, 6339, 4931, 6281, 2950, 4951, 973, 1306, 6662, + 8109, 5095, 9232, 9872, 443, 8647, 7506, 8104, 8756, + 9936, 686, 4823, 2682, 3740, 3137, 923, 9193, 8324, + 4020, 1627, 6261, 9840, 304, 4142, 1317, 5620, 8274, + 3594, 572, 272, 1611, 5193, 347, 416, 442, 6874, + 8019, 1732, 1301, 6279, 8538, 2543, 4932, 6155, 3059, + 3059, 4499, 9216, 1298, 4595, 9507, 1178, 62, 1121, + 2558, 3614, 1585, 9579, 2799, 9710, 2223, 2927, 6219, + 1930, 1468, 3790, 7212, 2706, 1924, 107, 5637, 3603, + 8882, 6287, 8286, 8516, 3947, 4130, 4658, 4839, 7052, + 5285, 9433, 2234, 8542, 478, 1484, 8586, 9538, 899, + 6365, 3422, 1846, 4728, 2876, 7973, 1396, 5267, 8176, + 201, 8298, 5151, 9727, 4317, 6828, 3372, 2733, 3465, + 1632, 1856, 2211, 4987, 6790, 3737, 9878, 8936, 3754, + 4531, 7583, 4001, 4220, 5379, 7676, 9403, 5140, 5873, + 7088, 8903, 2296, 2171, 9394, 1645, 9743, 4507, 9272, + 2477, 8320, 7982, 3456, 5868, 9002, 5854, 753, 6254, + 29, 7699, 1129, 8991, 4514, 3222, 4361, 7378, 3047, + 9627, 6076, 4663, 3561, 5068, 9330, 6752, 8500, 1957, + 9072, 5138, 8731, 1067, 4146, 1100, 4646, 1538, 8687, + 8992, 6143, 9364, 7127, 9769, 2434, 7246, 2305, 7691, + 4140, 198, 608, 1773, 6904, 7875, 2110, 7719, 282, + 4734, 4064, 2354, 1595, 7483, 992, 7146, 9086, 2639, + 12, 4356, 2592, 9295, 444, 3493, 9301, 5028, 8522, + 1719]), + values=tensor([0.8600, 0.5616, 0.7072, 0.3175, 0.5762, 0.8898, 0.7613, + 0.6444, 0.1843, 0.4299, 0.9701, 0.9160, 0.9531, 0.4047, + 0.1402, 0.4728, 0.0686, 0.5538, 0.1157, 0.4298, 0.8825, + 0.1354, 0.8143, 0.5913, 0.0480, 0.3359, 0.5316, 0.6111, + 0.8620, 0.8841, 0.0457, 0.2228, 0.0040, 0.0383, 0.6512, + 0.9426, 0.9603, 0.6779, 0.3036, 0.2358, 0.8460, 0.4662, + 0.3348, 0.0817, 0.8411, 0.0542, 0.1380, 0.3042, 0.1998, + 0.2999, 0.4133, 0.8056, 0.7595, 0.1627, 0.9131, 0.7276, + 0.6625, 0.1656, 0.8899, 0.5354, 0.8460, 0.1291, 0.5991, + 0.0805, 0.4357, 0.4936, 0.4524, 0.3191, 0.7007, 0.0375, + 0.6902, 0.4198, 0.3498, 0.7962, 0.5312, 0.3669, 0.5804, + 0.4017, 0.9393, 0.3637, 0.5425, 0.4731, 0.0877, 0.9094, + 0.7214, 0.9414, 0.9950, 0.2474, 0.5511, 0.8001, 0.0442, + 0.9555, 0.3790, 0.0597, 0.0816, 0.0893, 0.0727, 0.0855, + 0.8418, 0.0900, 0.4889, 0.1537, 0.1078, 0.3076, 0.1132, + 0.3499, 0.2464, 0.3119, 0.7397, 0.5203, 0.7296, 0.3076, + 0.0908, 0.5180, 0.8820, 0.2955, 0.7721, 0.2443, 0.4412, + 0.0643, 0.1279, 0.8697, 0.6469, 0.3773, 0.3600, 0.5487, + 0.3518, 0.6432, 0.2385, 0.7556, 0.7224, 0.2014, 0.8943, + 0.1852, 0.9558, 0.6299, 0.3671, 0.9896, 0.6391, 0.1768, + 0.0298, 0.7972, 0.7124, 0.7051, 0.9680, 0.5269, 0.0532, + 0.0232, 0.6522, 0.9276, 0.9199, 0.4637, 0.4411, 0.9074, + 0.0961, 0.7283, 0.8054, 0.0583, 0.2110, 0.5960, 0.2328, + 0.9165, 0.5817, 0.5985, 0.0950, 0.4392, 0.8056, 0.8382, + 0.3675, 0.5339, 0.7866, 0.5051, 0.9951, 0.7743, 0.5281, + 0.2536, 0.4500, 0.8310, 0.7085, 0.2637, 0.3306, 0.5037, + 0.3989, 0.2457, 0.9774, 0.4426, 0.8629, 0.9169, 0.4122, + 0.5182, 0.4459, 0.2392, 0.3915, 0.8545, 0.1335, 0.2459, + 0.0435, 0.8607, 0.2092, 0.1152, 0.2264, 0.8530, 0.0610, + 0.5909, 0.8510, 0.9060, 0.1898, 0.9730, 0.5210, 0.5104, + 0.4607, 0.9295, 0.4482, 0.7724, 0.0968, 0.9352, 0.3537, + 0.8985, 0.5128, 0.0067, 0.2582, 0.7387, 0.7979, 0.7165, + 0.3443, 0.7560, 0.5700, 0.8397, 0.1771, 0.8402, 0.3091, + 0.9997, 0.1542, 0.0685, 0.8646, 0.3574, 0.0226, 0.7519, + 0.6524, 0.0072, 0.1165, 0.5114, 0.0917, 0.6314, 0.9212, + 0.5712, 0.7090, 0.0393, 0.1201, 0.8493, 0.2898, 0.8259, + 0.4117, 0.6401, 0.8024, 0.9462, 0.0945, 0.6655, 0.6495, + 0.4999, 0.2014, 0.1871, 0.0303, 0.7432, 0.6428, 0.9133, + 0.2792, 0.0556, 0.1388, 0.0015, 0.6331, 0.2758, 0.8367, + 0.8769, 0.0407, 0.6240, 0.7762, 0.1332, 0.5250, 0.1198, + 0.5519, 0.3094, 0.1346, 0.0647, 0.4742, 0.5731, 0.8318, + 0.2796, 0.5726, 0.3119, 0.9865, 0.9941, 0.5736, 0.5420, + 0.2171, 0.5354, 0.9426, 0.6173, 0.1128, 0.0283, 0.7768, + 0.9444, 0.6839, 0.6100, 0.7668, 0.0394, 0.8433, 0.0499, + 0.7761, 0.2587, 0.7427, 0.8822, 0.5529, 0.7552, 0.8520, + 0.8179, 0.9600, 0.0466, 0.5899, 0.0884, 0.9116, 0.1822, + 0.4571, 0.9885, 0.1750, 0.1838, 0.7352, 0.3448, 0.7858, + 0.2306, 0.7624, 0.8788, 0.3283, 0.6481, 0.6658, 0.3363, + 0.3090, 0.0330, 0.1595, 0.9700, 0.3235, 0.4224, 0.0628, + 0.0681, 0.2514, 0.1198, 0.5855, 0.6518, 0.4456, 0.5212, + 0.5722, 0.1297, 0.2828, 0.7370, 0.0325, 0.1233, 0.8781, + 0.1529, 0.3239, 0.4868, 0.4461, 0.0181, 0.9715, 0.6327, + 0.0701, 0.9788, 0.7771, 0.3935, 0.2992, 0.4526, 0.2252, + 0.9195, 0.1472, 0.6317, 0.3246, 0.5631, 0.7653, 0.3490, + 0.2479, 0.8149, 0.9333, 0.5535, 0.7152, 0.7420, 0.8502, + 0.5933, 0.4264, 0.3490, 0.4412, 0.9800, 0.1953, 0.5818, + 0.4513, 0.1650, 0.3902, 0.4948, 0.7564, 0.9652, 0.1048, + 0.4943, 0.8495, 0.3903, 0.7487, 0.4664, 0.0427, 0.1690, + 0.7279, 0.3082, 0.6150, 0.2912, 0.2094, 0.9971, 0.3723, + 0.7357, 0.3658, 0.4009, 0.9999, 0.6043, 0.9117, 0.7334, + 0.5824, 0.0506, 0.7330, 0.0230, 0.4406, 0.0807, 0.6942, + 0.2245, 0.2485, 0.5748, 0.8330, 0.7840, 0.7060, 0.2348, + 0.0035, 0.5364, 0.0187, 0.6599, 0.9337, 0.6053, 0.1831, + 0.4356, 0.0679, 0.0908, 0.3894, 0.8661, 0.9286, 0.5274, + 0.2198, 0.1337, 0.5968, 0.2616, 0.9505, 0.9894, 0.6963, + 0.4705, 0.2413, 0.0355, 0.0514, 0.8694, 0.1783, 0.6758, + 0.2101, 0.3192, 0.4910, 0.5302, 0.4899, 0.5359, 0.1925, + 0.2343, 0.0188, 0.3525, 0.6944, 0.1704, 0.1291, 0.7572, + 0.5869, 0.4575, 0.5402, 0.3083, 0.7036, 0.7430, 0.3675, + 0.5465, 0.0686, 0.3712, 0.7453, 0.8458, 0.5033, 0.3961, + 0.8154, 0.6781, 0.6892, 0.5106, 0.8864, 0.2284, 0.3130, + 0.1335, 0.9835, 0.3056, 0.3963, 0.3066, 0.8333, 0.1173, + 0.1717, 0.1906, 0.5577, 0.8909, 0.5702, 0.9202, 0.0098, + 0.9034, 0.1638, 0.7871, 0.0602, 0.1046, 0.7108, 0.1792, + 0.5907, 0.9144, 0.7471, 0.9590, 0.3509, 0.9697, 0.2362, + 0.7800, 0.2561, 0.6928, 0.6592, 0.6715, 0.3954, 0.9109, + 0.8543, 0.2309, 0.9931, 0.3675, 0.9653, 0.9348, 0.8702, + 0.8780, 0.0545, 0.0095, 0.1323, 0.2713, 0.1104, 0.0360, + 0.7644, 0.3254, 0.2794, 0.7010, 0.6247, 0.7531, 0.2093, + 0.4077, 0.7399, 0.9364, 0.9070, 0.3612, 0.1375, 0.2106, + 0.6888, 0.0838, 0.3848, 0.1242, 0.2979, 0.7983, 0.3405, + 0.6686, 0.9463, 0.7854, 0.8071, 0.4226, 0.2682, 0.4134, + 0.9403, 0.2631, 0.8116, 0.3477, 0.7616, 0.0356, 0.3800, + 0.4796, 0.9664, 0.9730, 0.3146, 0.3811, 0.3444, 0.8364, + 0.4593, 0.2380, 0.3529, 0.8631, 0.8304, 0.7458, 0.2703, + 0.8323, 0.2629, 0.9141, 0.3840, 0.6975, 0.0508, 0.9536, + 0.3777, 0.3904, 0.8044, 0.1828, 0.1908, 0.1226, 0.5426, + 0.6712, 0.1985, 0.0131, 0.9193, 0.7070, 0.7883, 0.2011, + 0.5491, 0.4025, 0.3145, 0.0253, 0.2556, 0.4276, 0.9673, + 0.4027, 0.7313, 0.3000, 0.8244, 0.6521, 0.0329, 0.9128, + 0.1532, 0.7920, 0.6837, 0.1740, 0.6020, 0.4749, 0.1878, + 0.6918, 0.3430, 0.8863, 0.0954, 0.2221, 0.0196, 0.9170, + 0.2529, 0.8027, 0.9234, 0.7784, 0.4154, 0.7635, 0.3669, + 0.0588, 0.6705, 0.6605, 0.4654, 0.5060, 0.1257, 0.2869, + 0.1042, 0.7987, 0.7289, 0.1239, 0.7381, 0.3130, 0.2067, + 0.2775, 0.8959, 0.6030, 0.6860, 0.7855, 0.9485, 0.1748, + 0.7731, 0.6068, 0.3676, 0.3474, 0.3768, 0.8882, 0.3443, + 0.2956, 0.9448, 0.4045, 0.2381, 0.2525, 0.2118, 0.1224, + 0.6778, 0.2811, 0.1046, 0.4058, 0.6707, 0.0635, 0.5605, + 0.3192, 0.2209, 0.6866, 0.2181, 0.4822, 0.4068, 0.9604, + 0.5810, 0.0649, 0.5097, 0.1731, 0.2222, 0.3090, 0.8573, + 0.2342, 0.2229, 0.3303, 0.5365, 0.1241, 0.0313, 0.7432, + 0.3762, 0.5850, 0.5199, 0.0453, 0.7767, 0.0550, 0.5852, + 0.6872, 0.3713, 0.6670, 0.1341, 0.8513, 0.2874, 0.5203, + 0.7337, 0.0145, 0.5286, 0.0318, 0.0106, 0.8079, 0.5923, + 0.1886, 0.8415, 0.1474, 0.3036, 0.7165, 0.9739, 0.2050, + 0.0209, 0.3028, 0.8424, 0.4722, 0.9670, 0.8856, 0.7059, + 0.8881, 0.4477, 0.3433, 0.8833, 0.6854, 0.9979, 0.4134, + 0.6004, 0.9236, 0.5985, 0.8387, 0.3869, 0.9226, 0.8476, + 0.2815, 0.5644, 0.8983, 0.8519, 0.4415, 0.5941, 0.4933, + 0.3941, 0.0630, 0.8087, 0.5422, 0.7823, 0.0794, 0.7566, + 0.8197, 0.3825, 0.5699, 0.9195, 0.6894, 0.8052, 0.9060, + 0.8181, 0.6439, 0.3874, 0.8570, 0.7838, 0.5526, 0.0770, + 0.5884, 0.8769, 0.0709, 0.5994, 0.2015, 0.1734, 0.9822, + 0.8660, 0.0374, 0.8196, 0.5480, 0.3620, 0.6184, 0.3047, + 0.1654, 0.6492, 0.4554, 0.0477, 0.9808, 0.2615, 0.3836, + 0.1987, 0.6319, 0.9715, 0.7191, 0.5039, 0.7992, 0.8664, + 0.0815, 0.4937, 0.8132, 0.9455, 0.3586, 0.8318, 0.8930, + 0.1422, 0.4286, 0.9237, 0.7140, 0.1449, 0.5233, 0.9544, + 0.6412, 0.0940, 0.5388, 0.3539, 0.9951, 0.5860, 0.5837, + 0.0540, 0.2181, 0.6021, 0.1546, 0.1818, 0.6251, 0.6991, + 0.5441, 0.4257, 0.3883, 0.4987, 0.7504, 0.8178, 0.0667, + 0.3423, 0.4631, 0.0636, 0.6995, 0.6845, 0.1335, 0.5769, + 0.3366, 0.8741, 0.7448, 0.5158, 0.4520, 0.7964, 0.5429, + 0.3853, 0.3489, 0.7282, 0.3002, 0.4892, 0.4084, 0.7785, + 0.6224, 0.6482, 0.1360, 0.3743, 0.3204, 0.3293, 0.5975, + 0.8635, 0.1468, 0.1420, 0.1950, 0.5502, 0.3099, 0.4665, + 0.2473, 0.9781, 0.4882, 0.8615, 0.4379, 0.3304, 0.9224, + 0.6375, 0.4835, 0.7192, 0.6721, 0.7342, 0.5743, 0.9239, + 0.9773, 0.2213, 0.3478, 0.7032, 0.0574, 0.8041, 0.3853, + 0.1147, 0.0390, 0.9320, 0.5858, 0.0975, 0.5982, 0.1467, + 0.9118, 0.4835, 0.9183, 0.3489, 0.0389, 0.2553, 0.5860, + 0.2665, 0.6450, 0.3179, 0.5337, 0.7581, 0.4409, 0.1177, + 0.0512, 0.8850, 0.2142, 0.1547, 0.5876, 0.8678, 0.5430, + 0.4686, 0.4656, 0.5329, 0.4015, 0.3146, 0.2257, 0.1820, + 0.9287, 0.0585, 0.6678, 0.0868, 0.7648, 0.2970, 0.6893, + 0.7312, 0.6106, 0.1958, 0.8679, 0.9976, 0.5849, 0.7869, + 0.3363, 0.5231, 0.9619, 0.1567, 0.1143, 0.9307, 0.2825, + 0.3303, 0.5892, 0.7606, 0.7858, 0.0785, 0.3935, 0.0941, + 0.7542, 0.7552, 0.7909, 0.6337, 0.4503, 0.8151, 0.1544, + 0.0385, 0.1762, 0.7871, 0.9429, 0.7065, 0.2556, 0.7752, + 0.3810, 0.5819, 0.5096, 0.6816, 0.5826, 0.0960, 0.1244, + 0.3464, 0.1206, 0.8110, 0.0102, 0.2242, 0.3161]), size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.7781, 0.3926, 0.9305, ..., 0.7246, 0.2621, 0.2068]) +tensor([0.0219, 0.9207, 0.3669, ..., 0.7955, 0.2670, 0.3543]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -1402,13 +919,282 @@ Rows: 10000 Size: 100000000 NNZ: 1000 Density: 1e-05 -Time: 10.514646053314209 seconds +Time: 10.798607587814331 seconds -[21.04, 21.72, 22.28, 22.76, 23.44, 23.84, 24.4, 25.56, 26.08, 25.56] -[25.56, 25.8, 25.36, 25.76, 26.12, 26.96, 27.2, 26.52, 26.28, 25.72, 25.56, 25.04, 24.92, 24.92] -14.21888017654419 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 142926, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.514646053314209, 'TIME_S_1KI': 0.07356706304880994, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 341.9344939994813, 'W': 24.04792007204229} -[21.04, 21.72, 22.28, 22.76, 23.44, 23.84, 24.4, 25.56, 26.08, 25.56, 20.64, 20.76, 20.84, 20.68, 20.84, 20.92, 20.48, 20.28, 20.36, 20.6] -399.15999999999997 -19.958 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 142926, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.514646053314209, 'TIME_S_1KI': 0.07356706304880994, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 341.9344939994813, 'W': 24.04792007204229, 'J_1KI': 2.3923883268228403, 'W_1KI': 0.1682543419114947, 'W_D': 4.089920072042293, 'J_D': 58.15408343601235, 'W_D_1KI': 0.02861564776207473, 'J_D_1KI': 0.00020021303165326625} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([3726, 7095, 4684, 2020, 836, 1255, 7107, 2910, 7765, + 3618, 8004, 8576, 4555, 2122, 3631, 3042, 6509, 854, + 5117, 7246, 7468, 4038, 6190, 4788, 6872, 1487, 1270, + 5894, 3327, 4557, 2868, 4373, 8003, 1239, 2993, 4213, + 4878, 8600, 9710, 4771, 8192, 5937, 3800, 5340, 2757, + 7379, 410, 167, 7636, 1048, 2438, 5415, 3035, 8972, + 8984, 1069, 8135, 9320, 5730, 3547, 7645, 6319, 8708, + 4794, 9059, 642, 937, 2015, 2851, 401, 5086, 3408, + 3671, 8044, 1220, 336, 7855, 7629, 930, 2750, 1987, + 9765, 3121, 9993, 829, 9850, 1435, 2979, 5489, 3796, + 4432, 9879, 9991, 2308, 6643, 3959, 9751, 638, 1357, + 4879, 6697, 7016, 2005, 3140, 2355, 1476, 7190, 9157, + 586, 8925, 8359, 7415, 6315, 5275, 7818, 5569, 2433, + 2192, 6764, 8455, 1408, 5314, 6201, 4055, 2442, 1110, + 8696, 5368, 8279, 443, 7835, 3502, 7362, 1330, 775, + 9823, 1517, 4273, 5726, 452, 5679, 1189, 861, 4804, + 3949, 9279, 5272, 3517, 1449, 1605, 1487, 9465, 4077, + 1506, 7136, 8000, 3536, 5423, 6093, 3644, 4106, 578, + 4413, 8078, 3736, 1232, 8907, 611, 6360, 4917, 5521, + 8890, 8861, 4942, 8337, 4548, 4613, 1027, 8700, 6909, + 958, 3790, 2989, 8565, 911, 5630, 6072, 1354, 9245, + 1994, 8552, 1111, 4146, 7268, 4683, 8105, 4378, 9360, + 6653, 8808, 5006, 4328, 5559, 3943, 4417, 7458, 2312, + 116, 5416, 6906, 1303, 5319, 7254, 8596, 3357, 6527, + 8398, 8704, 8210, 823, 4023, 1928, 9697, 2295, 5245, + 8970, 1573, 3796, 4232, 3566, 6537, 4098, 575, 7372, + 366, 6301, 8492, 2459, 7103, 5364, 5367, 4901, 9480, + 278, 5400, 7252, 9075, 5325, 1810, 7648, 324, 2329, + 8, 3227, 8008, 8213, 741, 1909, 4083, 9465, 4927, + 4913, 2356, 2450, 8390, 5767, 5848, 2748, 9467, 3514, + 4253, 2231, 1205, 4867, 6627, 4336, 5974, 7755, 3790, + 221, 6230, 4840, 1706, 8664, 7040, 1728, 4302, 8186, + 7438, 2847, 378, 6914, 377, 2565, 6264, 2119, 4808, + 8605, 8197, 5489, 4175, 5779, 6350, 3342, 6552, 3810, + 3380, 2149, 6531, 4018, 9838, 7109, 6420, 2314, 8276, + 8549, 3270, 8204, 1510, 99, 9666, 881, 9634, 6348, + 5206, 5717, 6256, 9140, 2894, 55, 7420, 6909, 8907, + 9934, 7455, 256, 6416, 3264, 139, 9653, 9104, 120, + 4401, 5358, 2182, 3677, 5160, 5409, 8367, 6563, 4808, + 6260, 2681, 8624, 9491, 9352, 8644, 896, 2705, 7108, + 2245, 6339, 6089, 2552, 2272, 1181, 6435, 563, 8137, + 1459, 7439, 2939, 7035, 867, 6590, 8094, 5026, 4423, + 4770, 7804, 7887, 761, 2953, 9927, 2073, 9826, 6475, + 9197, 874, 7559, 607, 1174, 7682, 3265, 6020, 6386, + 5306, 8737, 3204, 8378, 33, 4395, 8617, 1260, 266, + 2349, 7503, 7582, 3161, 3035, 9262, 8314, 2986, 5564, + 2126, 6464, 7360, 5226, 3325, 1629, 8069, 7692, 7794, + 4182, 2653, 7141, 4784, 5328, 9808, 7261, 1363, 8658, + 9123, 3810, 2620, 9643, 1362, 3134, 7384, 7296, 5209, + 6036, 7751, 7232, 736, 6172, 4771, 6452, 9215, 8373, + 5885, 7654, 3268, 8433, 3826, 1191, 4084, 6339, 3322, + 2278, 9573, 752, 1314, 9267, 6354, 6143, 35, 7253, + 1096, 5121, 7153, 7760, 1966, 6253, 3182, 9955, 1848, + 5514, 2387, 9249, 933, 7029, 186, 2702, 6241, 8466, + 1489, 3322, 5487, 5027, 3772, 1949, 4952, 2162, 9526, + 1901, 4241, 3525, 396, 3698, 5708, 9938, 9685, 4339, + 2948, 209, 6838, 1145, 5442, 7328, 5423, 6485, 1415, + 7421, 1724, 9251, 933, 6123, 4946, 5577, 7971, 9846, + 5274, 2640, 4773, 3064, 9692, 9463, 1802, 2781, 6650, + 4562, 991, 4382, 6448, 7016, 6327, 1852, 5951, 1025, + 7839, 4680, 3410, 4015, 1478, 3864, 5981, 6067, 988, + 2131, 7857, 2239, 375, 7733, 1730, 8801, 1787, 6496, + 1921, 8121, 6115, 2130, 7431, 2124, 1900, 3400, 3093, + 2034, 8191, 8469, 3659, 2287, 1005, 9444, 6813, 6960, + 3470, 8573, 1717, 3039, 2558, 4596, 4880, 4472, 7262, + 5686, 6336, 2458, 2937, 9212, 6313, 6778, 8810, 9277, + 928, 1704, 6201, 8834, 7081, 7414, 5902, 2525, 6986, + 4360, 144, 652, 1234, 5719, 484, 2482, 5766, 4021, + 4006, 6231, 1726, 4378, 3881, 6930, 8631, 3608, 4246, + 75, 8644, 7232, 8461, 8874, 3157, 9402, 5888, 3476, + 3276, 9018, 5589, 8991, 2990, 7947, 2115, 8859, 6426, + 1953, 3665, 3323, 3802, 5811, 8129, 4154, 4205, 5918, + 2014, 5679, 7180, 635, 5363, 4653, 1897, 3249, 6982, + 678, 2068, 9858, 2498, 9298, 382, 644, 7370, 2418, + 8329, 5775, 8507, 7061, 9961, 4182, 287, 2359, 5919, + 8303, 3664, 2342, 4924, 2424, 8480, 1042, 4823, 3665, + 6553, 4427, 9234, 7736, 4966, 935, 6525, 8224, 4229, + 311, 9329, 7173, 6315, 1432, 9741, 5248, 4687, 1042, + 3524, 3804, 6875, 7125, 7161, 3553, 195, 2516, 9006, + 3709, 8580, 57, 2078, 1413, 9823, 6439, 5603, 3945, + 4348, 2406, 4610, 6846, 5704, 6321, 9398, 4952, 1295, + 738, 1206, 9447, 1290, 7633, 6389, 2334, 2897, 916, + 3131, 3092, 1954, 7671, 2004, 8145, 1483, 4726, 1441, + 9782, 9165, 5535, 6096, 1612, 3414, 7082, 3936, 7625, + 116, 6121, 9652, 4539, 5938, 5687, 6276, 1101, 1633, + 6510, 9508, 5331, 5376, 9358, 2109, 2723, 7391, 4555, + 2365, 6412, 3706, 6937, 5899, 2966, 8411, 6231, 9569, + 2849, 6339, 4931, 6281, 2950, 4951, 973, 1306, 6662, + 8109, 5095, 9232, 9872, 443, 8647, 7506, 8104, 8756, + 9936, 686, 4823, 2682, 3740, 3137, 923, 9193, 8324, + 4020, 1627, 6261, 9840, 304, 4142, 1317, 5620, 8274, + 3594, 572, 272, 1611, 5193, 347, 416, 442, 6874, + 8019, 1732, 1301, 6279, 8538, 2543, 4932, 6155, 3059, + 3059, 4499, 9216, 1298, 4595, 9507, 1178, 62, 1121, + 2558, 3614, 1585, 9579, 2799, 9710, 2223, 2927, 6219, + 1930, 1468, 3790, 7212, 2706, 1924, 107, 5637, 3603, + 8882, 6287, 8286, 8516, 3947, 4130, 4658, 4839, 7052, + 5285, 9433, 2234, 8542, 478, 1484, 8586, 9538, 899, + 6365, 3422, 1846, 4728, 2876, 7973, 1396, 5267, 8176, + 201, 8298, 5151, 9727, 4317, 6828, 3372, 2733, 3465, + 1632, 1856, 2211, 4987, 6790, 3737, 9878, 8936, 3754, + 4531, 7583, 4001, 4220, 5379, 7676, 9403, 5140, 5873, + 7088, 8903, 2296, 2171, 9394, 1645, 9743, 4507, 9272, + 2477, 8320, 7982, 3456, 5868, 9002, 5854, 753, 6254, + 29, 7699, 1129, 8991, 4514, 3222, 4361, 7378, 3047, + 9627, 6076, 4663, 3561, 5068, 9330, 6752, 8500, 1957, + 9072, 5138, 8731, 1067, 4146, 1100, 4646, 1538, 8687, + 8992, 6143, 9364, 7127, 9769, 2434, 7246, 2305, 7691, + 4140, 198, 608, 1773, 6904, 7875, 2110, 7719, 282, + 4734, 4064, 2354, 1595, 7483, 992, 7146, 9086, 2639, + 12, 4356, 2592, 9295, 444, 3493, 9301, 5028, 8522, + 1719]), + values=tensor([0.8600, 0.5616, 0.7072, 0.3175, 0.5762, 0.8898, 0.7613, + 0.6444, 0.1843, 0.4299, 0.9701, 0.9160, 0.9531, 0.4047, + 0.1402, 0.4728, 0.0686, 0.5538, 0.1157, 0.4298, 0.8825, + 0.1354, 0.8143, 0.5913, 0.0480, 0.3359, 0.5316, 0.6111, + 0.8620, 0.8841, 0.0457, 0.2228, 0.0040, 0.0383, 0.6512, + 0.9426, 0.9603, 0.6779, 0.3036, 0.2358, 0.8460, 0.4662, + 0.3348, 0.0817, 0.8411, 0.0542, 0.1380, 0.3042, 0.1998, + 0.2999, 0.4133, 0.8056, 0.7595, 0.1627, 0.9131, 0.7276, + 0.6625, 0.1656, 0.8899, 0.5354, 0.8460, 0.1291, 0.5991, + 0.0805, 0.4357, 0.4936, 0.4524, 0.3191, 0.7007, 0.0375, + 0.6902, 0.4198, 0.3498, 0.7962, 0.5312, 0.3669, 0.5804, + 0.4017, 0.9393, 0.3637, 0.5425, 0.4731, 0.0877, 0.9094, + 0.7214, 0.9414, 0.9950, 0.2474, 0.5511, 0.8001, 0.0442, + 0.9555, 0.3790, 0.0597, 0.0816, 0.0893, 0.0727, 0.0855, + 0.8418, 0.0900, 0.4889, 0.1537, 0.1078, 0.3076, 0.1132, + 0.3499, 0.2464, 0.3119, 0.7397, 0.5203, 0.7296, 0.3076, + 0.0908, 0.5180, 0.8820, 0.2955, 0.7721, 0.2443, 0.4412, + 0.0643, 0.1279, 0.8697, 0.6469, 0.3773, 0.3600, 0.5487, + 0.3518, 0.6432, 0.2385, 0.7556, 0.7224, 0.2014, 0.8943, + 0.1852, 0.9558, 0.6299, 0.3671, 0.9896, 0.6391, 0.1768, + 0.0298, 0.7972, 0.7124, 0.7051, 0.9680, 0.5269, 0.0532, + 0.0232, 0.6522, 0.9276, 0.9199, 0.4637, 0.4411, 0.9074, + 0.0961, 0.7283, 0.8054, 0.0583, 0.2110, 0.5960, 0.2328, + 0.9165, 0.5817, 0.5985, 0.0950, 0.4392, 0.8056, 0.8382, + 0.3675, 0.5339, 0.7866, 0.5051, 0.9951, 0.7743, 0.5281, + 0.2536, 0.4500, 0.8310, 0.7085, 0.2637, 0.3306, 0.5037, + 0.3989, 0.2457, 0.9774, 0.4426, 0.8629, 0.9169, 0.4122, + 0.5182, 0.4459, 0.2392, 0.3915, 0.8545, 0.1335, 0.2459, + 0.0435, 0.8607, 0.2092, 0.1152, 0.2264, 0.8530, 0.0610, + 0.5909, 0.8510, 0.9060, 0.1898, 0.9730, 0.5210, 0.5104, + 0.4607, 0.9295, 0.4482, 0.7724, 0.0968, 0.9352, 0.3537, + 0.8985, 0.5128, 0.0067, 0.2582, 0.7387, 0.7979, 0.7165, + 0.3443, 0.7560, 0.5700, 0.8397, 0.1771, 0.8402, 0.3091, + 0.9997, 0.1542, 0.0685, 0.8646, 0.3574, 0.0226, 0.7519, + 0.6524, 0.0072, 0.1165, 0.5114, 0.0917, 0.6314, 0.9212, + 0.5712, 0.7090, 0.0393, 0.1201, 0.8493, 0.2898, 0.8259, + 0.4117, 0.6401, 0.8024, 0.9462, 0.0945, 0.6655, 0.6495, + 0.4999, 0.2014, 0.1871, 0.0303, 0.7432, 0.6428, 0.9133, + 0.2792, 0.0556, 0.1388, 0.0015, 0.6331, 0.2758, 0.8367, + 0.8769, 0.0407, 0.6240, 0.7762, 0.1332, 0.5250, 0.1198, + 0.5519, 0.3094, 0.1346, 0.0647, 0.4742, 0.5731, 0.8318, + 0.2796, 0.5726, 0.3119, 0.9865, 0.9941, 0.5736, 0.5420, + 0.2171, 0.5354, 0.9426, 0.6173, 0.1128, 0.0283, 0.7768, + 0.9444, 0.6839, 0.6100, 0.7668, 0.0394, 0.8433, 0.0499, + 0.7761, 0.2587, 0.7427, 0.8822, 0.5529, 0.7552, 0.8520, + 0.8179, 0.9600, 0.0466, 0.5899, 0.0884, 0.9116, 0.1822, + 0.4571, 0.9885, 0.1750, 0.1838, 0.7352, 0.3448, 0.7858, + 0.2306, 0.7624, 0.8788, 0.3283, 0.6481, 0.6658, 0.3363, + 0.3090, 0.0330, 0.1595, 0.9700, 0.3235, 0.4224, 0.0628, + 0.0681, 0.2514, 0.1198, 0.5855, 0.6518, 0.4456, 0.5212, + 0.5722, 0.1297, 0.2828, 0.7370, 0.0325, 0.1233, 0.8781, + 0.1529, 0.3239, 0.4868, 0.4461, 0.0181, 0.9715, 0.6327, + 0.0701, 0.9788, 0.7771, 0.3935, 0.2992, 0.4526, 0.2252, + 0.9195, 0.1472, 0.6317, 0.3246, 0.5631, 0.7653, 0.3490, + 0.2479, 0.8149, 0.9333, 0.5535, 0.7152, 0.7420, 0.8502, + 0.5933, 0.4264, 0.3490, 0.4412, 0.9800, 0.1953, 0.5818, + 0.4513, 0.1650, 0.3902, 0.4948, 0.7564, 0.9652, 0.1048, + 0.4943, 0.8495, 0.3903, 0.7487, 0.4664, 0.0427, 0.1690, + 0.7279, 0.3082, 0.6150, 0.2912, 0.2094, 0.9971, 0.3723, + 0.7357, 0.3658, 0.4009, 0.9999, 0.6043, 0.9117, 0.7334, + 0.5824, 0.0506, 0.7330, 0.0230, 0.4406, 0.0807, 0.6942, + 0.2245, 0.2485, 0.5748, 0.8330, 0.7840, 0.7060, 0.2348, + 0.0035, 0.5364, 0.0187, 0.6599, 0.9337, 0.6053, 0.1831, + 0.4356, 0.0679, 0.0908, 0.3894, 0.8661, 0.9286, 0.5274, + 0.2198, 0.1337, 0.5968, 0.2616, 0.9505, 0.9894, 0.6963, + 0.4705, 0.2413, 0.0355, 0.0514, 0.8694, 0.1783, 0.6758, + 0.2101, 0.3192, 0.4910, 0.5302, 0.4899, 0.5359, 0.1925, + 0.2343, 0.0188, 0.3525, 0.6944, 0.1704, 0.1291, 0.7572, + 0.5869, 0.4575, 0.5402, 0.3083, 0.7036, 0.7430, 0.3675, + 0.5465, 0.0686, 0.3712, 0.7453, 0.8458, 0.5033, 0.3961, + 0.8154, 0.6781, 0.6892, 0.5106, 0.8864, 0.2284, 0.3130, + 0.1335, 0.9835, 0.3056, 0.3963, 0.3066, 0.8333, 0.1173, + 0.1717, 0.1906, 0.5577, 0.8909, 0.5702, 0.9202, 0.0098, + 0.9034, 0.1638, 0.7871, 0.0602, 0.1046, 0.7108, 0.1792, + 0.5907, 0.9144, 0.7471, 0.9590, 0.3509, 0.9697, 0.2362, + 0.7800, 0.2561, 0.6928, 0.6592, 0.6715, 0.3954, 0.9109, + 0.8543, 0.2309, 0.9931, 0.3675, 0.9653, 0.9348, 0.8702, + 0.8780, 0.0545, 0.0095, 0.1323, 0.2713, 0.1104, 0.0360, + 0.7644, 0.3254, 0.2794, 0.7010, 0.6247, 0.7531, 0.2093, + 0.4077, 0.7399, 0.9364, 0.9070, 0.3612, 0.1375, 0.2106, + 0.6888, 0.0838, 0.3848, 0.1242, 0.2979, 0.7983, 0.3405, + 0.6686, 0.9463, 0.7854, 0.8071, 0.4226, 0.2682, 0.4134, + 0.9403, 0.2631, 0.8116, 0.3477, 0.7616, 0.0356, 0.3800, + 0.4796, 0.9664, 0.9730, 0.3146, 0.3811, 0.3444, 0.8364, + 0.4593, 0.2380, 0.3529, 0.8631, 0.8304, 0.7458, 0.2703, + 0.8323, 0.2629, 0.9141, 0.3840, 0.6975, 0.0508, 0.9536, + 0.3777, 0.3904, 0.8044, 0.1828, 0.1908, 0.1226, 0.5426, + 0.6712, 0.1985, 0.0131, 0.9193, 0.7070, 0.7883, 0.2011, + 0.5491, 0.4025, 0.3145, 0.0253, 0.2556, 0.4276, 0.9673, + 0.4027, 0.7313, 0.3000, 0.8244, 0.6521, 0.0329, 0.9128, + 0.1532, 0.7920, 0.6837, 0.1740, 0.6020, 0.4749, 0.1878, + 0.6918, 0.3430, 0.8863, 0.0954, 0.2221, 0.0196, 0.9170, + 0.2529, 0.8027, 0.9234, 0.7784, 0.4154, 0.7635, 0.3669, + 0.0588, 0.6705, 0.6605, 0.4654, 0.5060, 0.1257, 0.2869, + 0.1042, 0.7987, 0.7289, 0.1239, 0.7381, 0.3130, 0.2067, + 0.2775, 0.8959, 0.6030, 0.6860, 0.7855, 0.9485, 0.1748, + 0.7731, 0.6068, 0.3676, 0.3474, 0.3768, 0.8882, 0.3443, + 0.2956, 0.9448, 0.4045, 0.2381, 0.2525, 0.2118, 0.1224, + 0.6778, 0.2811, 0.1046, 0.4058, 0.6707, 0.0635, 0.5605, + 0.3192, 0.2209, 0.6866, 0.2181, 0.4822, 0.4068, 0.9604, + 0.5810, 0.0649, 0.5097, 0.1731, 0.2222, 0.3090, 0.8573, + 0.2342, 0.2229, 0.3303, 0.5365, 0.1241, 0.0313, 0.7432, + 0.3762, 0.5850, 0.5199, 0.0453, 0.7767, 0.0550, 0.5852, + 0.6872, 0.3713, 0.6670, 0.1341, 0.8513, 0.2874, 0.5203, + 0.7337, 0.0145, 0.5286, 0.0318, 0.0106, 0.8079, 0.5923, + 0.1886, 0.8415, 0.1474, 0.3036, 0.7165, 0.9739, 0.2050, + 0.0209, 0.3028, 0.8424, 0.4722, 0.9670, 0.8856, 0.7059, + 0.8881, 0.4477, 0.3433, 0.8833, 0.6854, 0.9979, 0.4134, + 0.6004, 0.9236, 0.5985, 0.8387, 0.3869, 0.9226, 0.8476, + 0.2815, 0.5644, 0.8983, 0.8519, 0.4415, 0.5941, 0.4933, + 0.3941, 0.0630, 0.8087, 0.5422, 0.7823, 0.0794, 0.7566, + 0.8197, 0.3825, 0.5699, 0.9195, 0.6894, 0.8052, 0.9060, + 0.8181, 0.6439, 0.3874, 0.8570, 0.7838, 0.5526, 0.0770, + 0.5884, 0.8769, 0.0709, 0.5994, 0.2015, 0.1734, 0.9822, + 0.8660, 0.0374, 0.8196, 0.5480, 0.3620, 0.6184, 0.3047, + 0.1654, 0.6492, 0.4554, 0.0477, 0.9808, 0.2615, 0.3836, + 0.1987, 0.6319, 0.9715, 0.7191, 0.5039, 0.7992, 0.8664, + 0.0815, 0.4937, 0.8132, 0.9455, 0.3586, 0.8318, 0.8930, + 0.1422, 0.4286, 0.9237, 0.7140, 0.1449, 0.5233, 0.9544, + 0.6412, 0.0940, 0.5388, 0.3539, 0.9951, 0.5860, 0.5837, + 0.0540, 0.2181, 0.6021, 0.1546, 0.1818, 0.6251, 0.6991, + 0.5441, 0.4257, 0.3883, 0.4987, 0.7504, 0.8178, 0.0667, + 0.3423, 0.4631, 0.0636, 0.6995, 0.6845, 0.1335, 0.5769, + 0.3366, 0.8741, 0.7448, 0.5158, 0.4520, 0.7964, 0.5429, + 0.3853, 0.3489, 0.7282, 0.3002, 0.4892, 0.4084, 0.7785, + 0.6224, 0.6482, 0.1360, 0.3743, 0.3204, 0.3293, 0.5975, + 0.8635, 0.1468, 0.1420, 0.1950, 0.5502, 0.3099, 0.4665, + 0.2473, 0.9781, 0.4882, 0.8615, 0.4379, 0.3304, 0.9224, + 0.6375, 0.4835, 0.7192, 0.6721, 0.7342, 0.5743, 0.9239, + 0.9773, 0.2213, 0.3478, 0.7032, 0.0574, 0.8041, 0.3853, + 0.1147, 0.0390, 0.9320, 0.5858, 0.0975, 0.5982, 0.1467, + 0.9118, 0.4835, 0.9183, 0.3489, 0.0389, 0.2553, 0.5860, + 0.2665, 0.6450, 0.3179, 0.5337, 0.7581, 0.4409, 0.1177, + 0.0512, 0.8850, 0.2142, 0.1547, 0.5876, 0.8678, 0.5430, + 0.4686, 0.4656, 0.5329, 0.4015, 0.3146, 0.2257, 0.1820, + 0.9287, 0.0585, 0.6678, 0.0868, 0.7648, 0.2970, 0.6893, + 0.7312, 0.6106, 0.1958, 0.8679, 0.9976, 0.5849, 0.7869, + 0.3363, 0.5231, 0.9619, 0.1567, 0.1143, 0.9307, 0.2825, + 0.3303, 0.5892, 0.7606, 0.7858, 0.0785, 0.3935, 0.0941, + 0.7542, 0.7552, 0.7909, 0.6337, 0.4503, 0.8151, 0.1544, + 0.0385, 0.1762, 0.7871, 0.9429, 0.7065, 0.2556, 0.7752, + 0.3810, 0.5819, 0.5096, 0.6816, 0.5826, 0.0960, 0.1244, + 0.3464, 0.1206, 0.8110, 0.0102, 0.2242, 0.3161]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.0219, 0.9207, 0.3669, ..., 0.7955, 0.2670, 0.3543]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.798607587814331 seconds + +[16.32, 16.4, 16.24, 16.76, 16.72, 17.12, 17.44, 17.24, 17.36, 17.12] +[16.8, 16.56, 16.56, 19.68, 21.72, 23.52, 24.24, 24.8, 20.88, 20.0, 19.92, 19.92, 19.64, 19.64] +14.209118843078613 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 141552, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.798607587814331, 'TIME_S_1KI': 0.07628721309352274, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 269.76709407806396, 'W': 18.985490730093364} +[16.32, 16.4, 16.24, 16.76, 16.72, 17.12, 17.44, 17.24, 17.36, 17.12, 16.28, 16.24, 16.24, 16.36, 16.6, 16.4, 16.24, 16.4, 16.44, 16.28] +299.2 +14.959999999999999 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 141552, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.798607587814331, 'TIME_S_1KI': 0.07628721309352274, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 269.76709407806396, 'W': 18.985490730093364, 'J_1KI': 1.9057808725985077, 'W_1KI': 0.13412379005661076, 'W_D': 4.025490730093365, 'J_D': 57.198676185607916, 'W_D_1KI': 0.028438246934648505, 'J_D_1KI': 0.0002009031799949736} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_5e-05.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_5e-05.json new file mode 100644 index 0000000..ccc8254 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 52454, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.6396803855896, "TIME_S_1KI": 0.20283830376309908, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 254.19103302001952, "W": 17.900584259593533, "J_1KI": 4.845979963778158, "W_1KI": 0.3412625206770415, "W_D": 2.811584259593534, "J_D": 39.92492630434038, "W_D_1KI": 0.05360095053939707, "J_D_1KI": 0.0010218658355777839} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_5e-05.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_5e-05.output new file mode 100644 index 0000000..6f0e024 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_5e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.02812814712524414} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 2, ..., 4998, 4999, 5000]), + col_indices=tensor([4541, 9541, 3383, ..., 9920, 3344, 2731]), + values=tensor([0.3320, 0.1825, 0.5042, ..., 0.6612, 0.1900, 0.5121]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.0144, 0.2553, 0.6494, ..., 0.0787, 0.9201, 0.6475]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 0.02812814712524414 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 37329 -ss 10000 -sd 5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 7.472296953201294} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 4999, 4999, 5000]), + col_indices=tensor([6333, 2190, 7526, ..., 2226, 3084, 9881]), + values=tensor([0.4590, 0.1089, 0.5094, ..., 0.8341, 0.9457, 0.0387]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.3900, 0.6084, 0.4843, ..., 0.7689, 0.5332, 0.9837]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 7.472296953201294 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 52454 -ss 10000 -sd 5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.6396803855896} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 5000, 5000, 5000]), + col_indices=tensor([2165, 7276, 636, ..., 1970, 2680, 2527]), + values=tensor([0.0210, 0.6731, 0.7347, ..., 0.2518, 0.3264, 0.9787]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.5715, 0.5141, 0.9224, ..., 0.0062, 0.8236, 0.9187]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 10.6396803855896 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 5000, 5000, 5000]), + col_indices=tensor([2165, 7276, 636, ..., 1970, 2680, 2527]), + values=tensor([0.0210, 0.6731, 0.7347, ..., 0.2518, 0.3264, 0.9787]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.5715, 0.5141, 0.9224, ..., 0.0062, 0.8236, 0.9187]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 10.6396803855896 seconds + +[16.64, 16.48, 16.64, 16.84, 17.0, 16.8, 16.72, 16.4, 16.4, 16.2] +[16.28, 16.44, 16.8, 17.88, 19.0, 19.88, 20.6, 20.92, 20.48, 20.0, 20.12, 20.12, 19.92, 19.84] +14.20015287399292 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 52454, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.6396803855896, 'TIME_S_1KI': 0.20283830376309908, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 254.19103302001952, 'W': 17.900584259593533} +[16.64, 16.48, 16.64, 16.84, 17.0, 16.8, 16.72, 16.4, 16.4, 16.2, 16.72, 16.92, 16.8, 16.88, 17.04, 17.16, 16.96, 16.8, 16.84, 16.64] +301.78 +15.088999999999999 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 52454, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.6396803855896, 'TIME_S_1KI': 0.20283830376309908, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 254.19103302001952, 'W': 17.900584259593533, 'J_1KI': 4.845979963778158, 'W_1KI': 0.3412625206770415, 'W_D': 2.811584259593534, 'J_D': 39.92492630434038, 'W_D_1KI': 0.05360095053939707, 'J_D_1KI': 0.0010218658355777839} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_0.0001.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_0.0001.json new file mode 100644 index 0000000..2f5c509 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 22.72194480895996, "TIME_S_1KI": 227.2194480895996, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2080.890781612396, "W": 61.453409935621025, "J_1KI": 20808.90781612396, "W_1KI": 614.5340993562103, "W_D": 45.112409935621024, "J_D": 1527.5636953213213, "W_D_1KI": 451.12409935621025, "J_D_1KI": 4511.240993562103} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_0.0001.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_0.0001.output new file mode 100644 index 0000000..4a89b40 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_0.0001.output @@ -0,0 +1,47 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 500000 -sd 0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 22.72194480895996} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 56, 116, ..., 24999900, + 24999953, 25000000]), + col_indices=tensor([ 647, 4700, 33413, ..., 445020, 463377, + 482076]), + values=tensor([0.2494, 0.9199, 0.9974, ..., 0.2647, 0.3316, 0.8056]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.1920, 0.0118, 0.3050, ..., 0.0609, 0.1776, 0.7503]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 22.72194480895996 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 56, 116, ..., 24999900, + 24999953, 25000000]), + col_indices=tensor([ 647, 4700, 33413, ..., 445020, 463377, + 482076]), + values=tensor([0.2494, 0.9199, 0.9974, ..., 0.2647, 0.3316, 0.8056]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.1920, 0.0118, 0.3050, ..., 0.0609, 0.1776, 0.7503]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 22.72194480895996 seconds + +[17.96, 18.12, 17.96, 17.96, 17.88, 17.96, 17.88, 17.92, 17.76, 17.8] +[17.8, 17.6, 18.48, 20.36, 21.4, 22.72, 22.72, 24.08, 25.12, 34.04, 34.44, 33.88, 34.28, 32.56, 45.4, 59.36, 77.8, 92.4, 98.2, 98.2, 95.48, 95.96, 96.12, 95.0, 93.72, 96.32, 96.24, 93.28, 93.88, 93.4, 91.28, 91.4, 93.2] +33.8612744808197 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 22.72194480895996, 'TIME_S_1KI': 227.2194480895996, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2080.890781612396, 'W': 61.453409935621025} +[17.96, 18.12, 17.96, 17.96, 17.88, 17.96, 17.88, 17.92, 17.76, 17.8, 17.72, 18.0, 18.44, 18.6, 18.6, 18.64, 18.76, 18.48, 18.16, 17.92] +326.82000000000005 +16.341 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 22.72194480895996, 'TIME_S_1KI': 227.2194480895996, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2080.890781612396, 'W': 61.453409935621025, 'J_1KI': 20808.90781612396, 'W_1KI': 614.5340993562103, 'W_D': 45.112409935621024, 'J_D': 1527.5636953213213, 'W_D_1KI': 451.12409935621025, 'J_D_1KI': 4511.240993562103} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_1e-05.json index 510a9ba..208d33f 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_1e-05.json +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_1e-05.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 37.050822496414185, "TIME_S_1KI": 37.050822496414185, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 3160.1361892318723, "W": 76.88509213042873, "J_1KI": 3160.1361892318723, "W_1KI": 76.88509213042873, "W_D": 56.91509213042873, "J_D": 2339.3279161286355, "W_D_1KI": 56.91509213042873, "J_D_1KI": 56.91509213042873} +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 279, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 12.429174900054932, "TIME_S_1KI": 44.549013978691505, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 925.7997315406801, "W": 55.99377793769148, "J_1KI": 3318.2786076726884, "W_1KI": 200.69454457953935, "W_D": 40.002777937691484, "J_D": 661.4049353270533, "W_D_1KI": 143.37913239315944, "J_D_1KI": 513.9037003339048} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_1e-05.output index 259a25f..2fab080 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_1e-05.output +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_1e-05.output @@ -1,15 +1,15 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 500000 -sd 1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 37.050822496414185} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 500000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 4.175914764404297} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 7, ..., 2499993, - 2499998, 2500000]), - col_indices=tensor([159663, 166958, 205263, ..., 483859, 36662, - 138241]), - values=tensor([0.8479, 0.2779, 0.6227, ..., 0.0012, 0.5209, 0.2466]), +tensor(crow_indices=tensor([ 0, 5, 9, ..., 2499991, + 2499995, 2500000]), + col_indices=tensor([236491, 268930, 282894, ..., 290854, 362096, + 428990]), + values=tensor([0.4942, 0.2006, 0.6461, ..., 0.6339, 0.7923, 0.0061]), size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.9479, 0.6643, 0.5077, ..., 0.6908, 0.0479, 0.6658]) +tensor([0.6272, 0.4782, 0.6613, ..., 0.5722, 0.7323, 0.6099]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -17,17 +17,20 @@ Rows: 500000 Size: 250000000000 NNZ: 2500000 Density: 1e-05 -Time: 37.050822496414185 seconds +Time: 4.175914764404297 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 251 -ss 500000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.986790895462036} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 7, ..., 2499993, +tensor(crow_indices=tensor([ 0, 3, 4, ..., 2499995, 2499998, 2500000]), - col_indices=tensor([159663, 166958, 205263, ..., 483859, 36662, - 138241]), - values=tensor([0.8479, 0.2779, 0.6227, ..., 0.0012, 0.5209, 0.2466]), + col_indices=tensor([168226, 184311, 332682, ..., 175948, 40749, + 152556]), + values=tensor([0.8367, 0.0584, 0.1423, ..., 0.1509, 0.1566, 0.6036]), size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.9479, 0.6643, 0.5077, ..., 0.6908, 0.0479, 0.6658]) +tensor([0.8910, 0.6965, 0.0939, ..., 0.1566, 0.5700, 0.8005]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -35,13 +38,73 @@ Rows: 500000 Size: 250000000000 NNZ: 2500000 Density: 1e-05 -Time: 37.050822496414185 seconds +Time: 9.986790895462036 seconds -[22.44, 22.28, 22.0, 22.08, 22.44, 22.44, 22.24, 22.28, 22.28, 21.92] -[21.84, 21.84, 22.08, 23.32, 24.04, 37.0, 51.0, 68.72, 84.04, 93.2, 93.2, 96.84, 97.16, 96.0, 93.56, 93.56, 93.4, 92.48, 94.2, 94.4, 93.76, 94.28, 92.52, 92.4, 93.48, 93.48, 95.4, 93.6, 93.04, 91.68, 87.68, 87.08, 87.96, 88.4, 87.72, 87.2, 88.56, 88.0, 89.28, 89.12] -41.1020667552948 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 37.050822496414185, 'TIME_S_1KI': 37.050822496414185, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3160.1361892318723, 'W': 76.88509213042873} -[22.44, 22.28, 22.0, 22.08, 22.44, 22.44, 22.24, 22.28, 22.28, 21.92, 21.72, 21.72, 21.8, 22.04, 22.2, 22.32, 22.48, 22.44, 22.24, 22.16] -399.4 -19.97 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 37.050822496414185, 'TIME_S_1KI': 37.050822496414185, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3160.1361892318723, 'W': 76.88509213042873, 'J_1KI': 3160.1361892318723, 'W_1KI': 76.88509213042873, 'W_D': 56.91509213042873, 'J_D': 2339.3279161286355, 'W_D_1KI': 56.91509213042873, 'J_D_1KI': 56.91509213042873} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 263 -ss 500000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.86619520187378} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 4, ..., 2499987, + 2499997, 2500000]), + col_indices=tensor([120869, 339930, 358219, ..., 35981, 71933, + 400518]), + values=tensor([0.0243, 0.7300, 0.4495, ..., 0.8433, 0.9453, 0.9296]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.0560, 0.8217, 0.0541, ..., 0.5269, 0.7792, 0.2112]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 9.86619520187378 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 279 -ss 500000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 12.429174900054932} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 4, ..., 2499986, + 2499991, 2500000]), + col_indices=tensor([ 4708, 62252, 239037, ..., 346193, 443276, + 467019]), + values=tensor([0.7542, 0.0207, 0.5398, ..., 0.0649, 0.4673, 0.8331]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.8471, 0.4897, 0.4001, ..., 0.3407, 0.6143, 0.4869]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 12.429174900054932 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 4, ..., 2499986, + 2499991, 2500000]), + col_indices=tensor([ 4708, 62252, 239037, ..., 346193, 443276, + 467019]), + values=tensor([0.7542, 0.0207, 0.5398, ..., 0.0649, 0.4673, 0.8331]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.8471, 0.4897, 0.4001, ..., 0.3407, 0.6143, 0.4869]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 12.429174900054932 seconds + +[17.72, 17.72, 17.84, 17.8, 17.8, 18.04, 17.92, 17.8, 17.72, 17.32] +[17.36, 17.64, 18.04, 20.2, 21.44, 35.64, 48.92, 66.32, 77.96, 77.96, 91.04, 90.76, 89.6, 87.56, 86.4, 84.76] +16.53397512435913 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 279, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 12.429174900054932, 'TIME_S_1KI': 44.549013978691505, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 925.7997315406801, 'W': 55.99377793769148} +[17.72, 17.72, 17.84, 17.8, 17.8, 18.04, 17.92, 17.8, 17.72, 17.32, 17.84, 17.72, 17.8, 17.92, 17.8, 17.72, 17.6, 17.72, 17.72, 17.48] +319.82 +15.991 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 279, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 12.429174900054932, 'TIME_S_1KI': 44.549013978691505, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 925.7997315406801, 'W': 55.99377793769148, 'J_1KI': 3318.2786076726884, 'W_1KI': 200.69454457953935, 'W_D': 40.002777937691484, 'J_D': 661.4049353270533, 'W_D_1KI': 143.37913239315944, 'J_D_1KI': 513.9037003339048} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_5e-05.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_5e-05.json new file mode 100644 index 0000000..fd07ea0 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 16.55699610710144, "TIME_S_1KI": 165.5699610710144, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1413.1975269508362, "W": 57.485721407839506, "J_1KI": 14131.97526950836, "W_1KI": 574.857214078395, "W_D": 41.59072140783951, "J_D": 1022.44354246974, "W_D_1KI": 415.9072140783951, "J_D_1KI": 4159.072140783951} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_5e-05.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_5e-05.output new file mode 100644 index 0000000..33e7f40 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_5e-05.output @@ -0,0 +1,47 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 500000 -sd 5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 16.55699610710144} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 27, 44, ..., 12499945, + 12499971, 12500000]), + col_indices=tensor([ 7086, 20899, 31000, ..., 441979, 480995, + 482795]), + values=tensor([0.3494, 0.1791, 0.5321, ..., 0.0256, 0.8127, 0.6614]), + size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.9181, 0.2128, 0.6316, ..., 0.6360, 0.7946, 0.3835]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 12500000 +Density: 5e-05 +Time: 16.55699610710144 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 27, 44, ..., 12499945, + 12499971, 12500000]), + col_indices=tensor([ 7086, 20899, 31000, ..., 441979, 480995, + 482795]), + values=tensor([0.3494, 0.1791, 0.5321, ..., 0.0256, 0.8127, 0.6614]), + size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.9181, 0.2128, 0.6316, ..., 0.6360, 0.7946, 0.3835]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 12500000 +Density: 5e-05 +Time: 16.55699610710144 seconds + +[17.52, 17.52, 17.88, 17.84, 17.84, 17.64, 17.48, 17.72, 17.44, 17.28] +[17.4, 17.16, 20.64, 21.36, 23.44, 25.32, 33.76, 33.76, 31.56, 35.12, 47.32, 60.6, 67.04, 80.92, 86.0, 85.72, 87.24, 88.0, 90.8, 92.64, 93.72, 92.0, 92.0, 90.8] +24.583452939987183 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 16.55699610710144, 'TIME_S_1KI': 165.5699610710144, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1413.1975269508362, 'W': 57.485721407839506} +[17.52, 17.52, 17.88, 17.84, 17.84, 17.64, 17.48, 17.72, 17.44, 17.28, 18.0, 17.76, 17.6, 17.64, 17.44, 17.4, 17.8, 17.88, 17.76, 17.72] +317.9 +15.895 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 16.55699610710144, 'TIME_S_1KI': 165.5699610710144, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1413.1975269508362, 'W': 57.485721407839506, 'J_1KI': 14131.97526950836, 'W_1KI': 574.857214078395, 'W_D': 41.59072140783951, 'J_D': 1022.44354246974, 'W_D_1KI': 415.9072140783951, 'J_D_1KI': 4159.072140783951} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.0001.json index 372bd49..9346872 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.0001.json +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.0001.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.036840677261353, "TIME_S_1KI": 10.036840677261353, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 692.6639336013795, "W": 51.991207713568286, "J_1KI": 692.6639336013795, "W_1KI": 51.991207713568286, "W_D": 33.03220771356828, "J_D": 440.0786197633745, "W_D_1KI": 33.03220771356828, "J_D_1KI": 33.03220771356828} +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1658, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 14.466236591339111, "TIME_S_1KI": 8.725112540011526, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1691.1909151077273, "W": 65.36355506616682, "J_1KI": 1020.0186460239609, "W_1KI": 39.423133333031856, "W_D": 49.293555066166824, "J_D": 1275.40205573082, "W_D_1KI": 29.730732850522816, "J_D_1KI": 17.93168446955538} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.0001.output index 338ad01..686a0dc 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.0001.output +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.0001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.036840677261353} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 50000 -sd 0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.8603906631469727} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 11, 16, ..., 249987, 249992, +tensor(crow_indices=tensor([ 0, 6, 11, ..., 249990, 249996, 250000]), - col_indices=tensor([ 4880, 10510, 11344, ..., 23863, 34979, 45750]), - values=tensor([0.1743, 0.6413, 0.1893, ..., 0.8376, 0.7119, 0.1905]), + col_indices=tensor([ 116, 2220, 2597, ..., 31423, 34504, 36695]), + values=tensor([0.0356, 0.7526, 0.0114, ..., 0.2051, 0.2717, 0.4326]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.5173, 0.4884, 0.4084, ..., 0.9473, 0.2501, 0.4146]) +tensor([0.6822, 0.2973, 0.4245, ..., 0.4266, 0.4462, 0.3842]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -16,16 +16,19 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 10.036840677261353 seconds +Time: 0.8603906631469727 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1220 -ss 50000 -sd 0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 7.725424766540527} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 11, 16, ..., 249987, 249992, +tensor(crow_indices=tensor([ 0, 3, 12, ..., 249990, 249995, 250000]), - col_indices=tensor([ 4880, 10510, 11344, ..., 23863, 34979, 45750]), - values=tensor([0.1743, 0.6413, 0.1893, ..., 0.8376, 0.7119, 0.1905]), + col_indices=tensor([ 1339, 17035, 23748, ..., 19329, 30492, 33219]), + values=tensor([0.1487, 0.4152, 0.3651, ..., 0.6580, 0.7478, 0.7026]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.5173, 0.4884, 0.4084, ..., 0.9473, 0.2501, 0.4146]) +tensor([0.4336, 0.1383, 0.7901, ..., 0.8031, 0.7630, 0.0295]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -33,13 +36,50 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 10.036840677261353 seconds +Time: 7.725424766540527 seconds -[21.04, 21.04, 21.36, 21.48, 21.32, 21.52, 21.4, 21.16, 21.08, 21.12] -[21.08, 21.08, 21.08, 22.4, 23.64, 33.72, 51.68, 65.48, 81.88, 95.88, 94.44, 94.2, 93.16] -13.322712898254395 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.036840677261353, 'TIME_S_1KI': 10.036840677261353, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 692.6639336013795, 'W': 51.991207713568286} -[21.04, 21.04, 21.36, 21.48, 21.32, 21.52, 21.4, 21.16, 21.08, 21.12, 21.08, 21.04, 20.96, 20.96, 20.76, 20.68, 20.64, 20.84, 20.92, 20.8] -379.18 -18.959 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.036840677261353, 'TIME_S_1KI': 10.036840677261353, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 692.6639336013795, 'W': 51.991207713568286, 'J_1KI': 692.6639336013795, 'W_1KI': 51.991207713568286, 'W_D': 33.03220771356828, 'J_D': 440.0786197633745, 'W_D_1KI': 33.03220771356828, 'J_D_1KI': 33.03220771356828} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1658 -ss 50000 -sd 0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 14.466236591339111} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 7, ..., 249989, 249992, + 250000]), + col_indices=tensor([14878, 23641, 26434, ..., 39221, 43609, 44125]), + values=tensor([0.9348, 0.1734, 0.7472, ..., 0.0129, 0.0523, 0.4218]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.4659, 0.1302, 0.1589, ..., 0.1214, 0.1279, 0.7413]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 14.466236591339111 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 7, ..., 249989, 249992, + 250000]), + col_indices=tensor([14878, 23641, 26434, ..., 39221, 43609, 44125]), + values=tensor([0.9348, 0.1734, 0.7472, ..., 0.0129, 0.0523, 0.4218]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.4659, 0.1302, 0.1589, ..., 0.1214, 0.1279, 0.7413]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 14.466236591339111 seconds + +[18.12, 18.08, 18.12, 18.12, 18.08, 18.0, 17.76, 17.64, 17.48, 17.48] +[17.28, 17.4, 17.28, 19.64, 20.44, 35.08, 49.0, 64.92, 77.28, 86.8, 86.8, 86.52, 85.52, 84.64, 84.32, 84.0, 84.16, 84.16, 84.24, 84.24, 84.04, 84.28, 82.92, 82.4, 81.88] +25.87360668182373 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1658, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 14.466236591339111, 'TIME_S_1KI': 8.725112540011526, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1691.1909151077273, 'W': 65.36355506616682} +[18.12, 18.08, 18.12, 18.12, 18.08, 18.0, 17.76, 17.64, 17.48, 17.48, 18.04, 17.84, 17.8, 17.64, 17.76, 17.92, 17.8, 17.8, 17.72, 18.04] +321.4 +16.07 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1658, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 14.466236591339111, 'TIME_S_1KI': 8.725112540011526, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1691.1909151077273, 'W': 65.36355506616682, 'J_1KI': 1020.0186460239609, 'W_1KI': 39.423133333031856, 'W_D': 49.293555066166824, 'J_D': 1275.40205573082, 'W_D_1KI': 29.730732850522816, 'J_D_1KI': 17.93168446955538} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.001.json index aeffedd..c314337 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.001.json +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.001.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 64.77457070350647, "TIME_S_1KI": 64.77457070350647, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 4994.562112493517, "W": 73.50821663676467, "J_1KI": 4994.562112493517, "W_1KI": 73.50821663676467, "W_D": 54.114216636764674, "J_D": 3676.8245582232494, "W_D_1KI": 54.114216636764674, "J_D_1KI": 54.114216636764674} +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 135, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.963478088378906, "TIME_S_1KI": 81.21094880280671, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 582.8568821525573, "W": 43.83509814272925, "J_1KI": 4317.458386315239, "W_1KI": 324.7044306868833, "W_D": 28.06209814272925, "J_D": 373.12992837095254, "W_D_1KI": 207.8673936498463, "J_D_1KI": 1539.758471480343} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.001.output index 56ca1f5..514e8a4 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.001.output +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 0.001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 64.77457070350647} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 50000 -sd 0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 8.26869797706604} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 48, 96, ..., 2499908, - 2499960, 2500000]), - col_indices=tensor([ 291, 1039, 1041, ..., 49096, 49434, 49928]), - values=tensor([0.5586, 0.2987, 0.2608, ..., 0.4587, 0.5222, 0.8471]), +tensor(crow_indices=tensor([ 0, 44, 102, ..., 2499900, + 2499955, 2500000]), + col_indices=tensor([ 878, 3105, 3271, ..., 44510, 45389, 45985]), + values=tensor([0.2421, 0.0051, 0.2486, ..., 0.1294, 0.9249, 0.4412]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.1693, 0.3191, 0.9556, ..., 0.1736, 0.4599, 0.2505]) +tensor([0.3218, 0.5110, 0.5510, ..., 0.0407, 0.3623, 0.3415]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -16,16 +16,19 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 64.77457070350647 seconds +Time: 8.26869797706604 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 126 -ss 50000 -sd 0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 9.729291677474976} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 48, 96, ..., 2499908, - 2499960, 2500000]), - col_indices=tensor([ 291, 1039, 1041, ..., 49096, 49434, 49928]), - values=tensor([0.5586, 0.2987, 0.2608, ..., 0.4587, 0.5222, 0.8471]), +tensor(crow_indices=tensor([ 0, 44, 101, ..., 2499906, + 2499957, 2500000]), + col_indices=tensor([ 430, 2871, 2934, ..., 46471, 47392, 47877]), + values=tensor([0.4189, 0.2667, 0.2640, ..., 0.7329, 0.4126, 0.0437]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.1693, 0.3191, 0.9556, ..., 0.1736, 0.4599, 0.2505]) +tensor([0.6895, 0.8779, 0.8508, ..., 0.5330, 0.3990, 0.7739]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -33,13 +36,50 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 64.77457070350647 seconds +Time: 9.729291677474976 seconds -[21.48, 21.56, 21.32, 21.36, 21.52, 21.32, 21.32, 21.4, 21.44, 21.56] -[21.64, 21.6, 22.08, 23.76, 24.8, 35.36, 47.08, 60.56, 71.04, 80.24, 82.48, 82.48, 82.88, 83.68, 82.36, 82.16, 82.04, 80.88, 80.72, 80.88, 80.44, 80.6, 80.44, 80.8, 80.56, 79.4, 78.92, 78.92, 78.4, 78.64, 80.36, 81.28, 82.52, 82.68, 81.64, 81.52, 81.32, 81.2, 80.48, 80.32, 82.04, 81.64, 81.64, 82.44, 82.48, 81.2, 81.08, 81.04, 81.44, 81.2, 81.68, 81.32, 81.0, 81.28, 81.36, 81.24, 81.36, 81.36, 81.88, 82.48, 83.6, 83.4, 83.64, 82.8, 82.56, 82.36] -67.94563031196594 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 64.77457070350647, 'TIME_S_1KI': 64.77457070350647, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 4994.562112493517, 'W': 73.50821663676467} -[21.48, 21.56, 21.32, 21.36, 21.52, 21.32, 21.32, 21.4, 21.44, 21.56, 21.88, 21.92, 21.8, 21.52, 21.68, 21.52, 21.68, 21.68, 21.6, 21.56] -387.88 -19.394 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 64.77457070350647, 'TIME_S_1KI': 64.77457070350647, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 4994.562112493517, 'W': 73.50821663676467, 'J_1KI': 4994.562112493517, 'W_1KI': 73.50821663676467, 'W_D': 54.114216636764674, 'J_D': 3676.8245582232494, 'W_D_1KI': 54.114216636764674, 'J_D_1KI': 54.114216636764674} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 135 -ss 50000 -sd 0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.963478088378906} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 51, 106, ..., 2499884, + 2499945, 2500000]), + col_indices=tensor([ 1316, 2608, 2921, ..., 47281, 49169, 49691]), + values=tensor([0.1237, 0.8262, 0.6046, ..., 0.7531, 0.6389, 0.8086]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.9516, 0.0943, 0.1293, ..., 0.9488, 0.5626, 0.5458]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 10.963478088378906 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 51, 106, ..., 2499884, + 2499945, 2500000]), + col_indices=tensor([ 1316, 2608, 2921, ..., 47281, 49169, 49691]), + values=tensor([0.1237, 0.8262, 0.6046, ..., 0.7531, 0.6389, 0.8086]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.9516, 0.0943, 0.1293, ..., 0.9488, 0.5626, 0.5458]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 10.963478088378906 seconds + +[17.96, 17.88, 17.56, 17.44, 17.36, 17.24, 17.44, 17.68, 17.68, 17.68] +[17.88, 17.88, 17.88, 22.04, 23.04, 29.76, 42.2, 54.16, 64.96, 76.44, 81.04, 80.44, 80.44] +13.296579837799072 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 135, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.963478088378906, 'TIME_S_1KI': 81.21094880280671, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 582.8568821525573, 'W': 43.83509814272925} +[17.96, 17.88, 17.56, 17.44, 17.36, 17.24, 17.44, 17.68, 17.68, 17.68, 17.84, 17.6, 17.48, 17.48, 17.52, 17.32, 17.4, 17.36, 17.44, 17.68] +315.46 +15.773 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 135, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.963478088378906, 'TIME_S_1KI': 81.21094880280671, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 582.8568821525573, 'W': 43.83509814272925, 'J_1KI': 4317.458386315239, 'W_1KI': 324.7044306868833, 'W_D': 28.06209814272925, 'J_D': 373.12992837095254, 'W_D_1KI': 207.8673936498463, 'J_D_1KI': 1539.758471480343} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.01.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.01.json new file mode 100644 index 0000000..de9236a --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 30.498249053955078, "TIME_S_1KI": 304.9824905395508, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2007.0959778976435, "W": 47.944381683758614, "J_1KI": 20070.959778976434, "W_1KI": 479.44381683758616, "W_D": 32.291381683758615, "J_D": 1351.8143319842811, "W_D_1KI": 322.9138168375861, "J_D_1KI": 3229.138168375861} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.01.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.01.output new file mode 100644 index 0000000..9e427ef --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.01.output @@ -0,0 +1,45 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 50000 -sd 0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 30.498249053955078} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 519, 1009, ..., 24999042, + 24999488, 25000000]), + col_indices=tensor([ 129, 342, 437, ..., 49566, 49630, 49865]), + values=tensor([0.8700, 0.4704, 0.0527, ..., 0.4978, 0.7115, 0.5319]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.3352, 0.1102, 0.4216, ..., 0.1668, 0.6074, 0.9924]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 30.498249053955078 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 519, 1009, ..., 24999042, + 24999488, 25000000]), + col_indices=tensor([ 129, 342, 437, ..., 49566, 49630, 49865]), + values=tensor([0.8700, 0.4704, 0.0527, ..., 0.4978, 0.7115, 0.5319]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.3352, 0.1102, 0.4216, ..., 0.1668, 0.6074, 0.9924]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 30.498249053955078 seconds + +[17.68, 17.6, 17.56, 17.16, 17.16, 17.0, 17.0, 17.08, 17.36, 17.4] +[17.52, 17.72, 18.04, 18.88, 20.68, 21.64, 23.68, 24.04, 31.04, 33.36, 33.36, 32.8, 32.72, 32.52, 28.16, 34.64, 41.2, 49.36, 57.8, 58.4, 58.92, 62.72, 62.72, 61.04, 61.04, 59.8, 60.88, 61.56, 64.04, 67.12, 70.76, 68.32, 68.92, 65.8, 66.72, 65.88, 65.84, 68.88, 68.88, 67.08, 67.04] +41.863006830215454 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 30.498249053955078, 'TIME_S_1KI': 304.9824905395508, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2007.0959778976435, 'W': 47.944381683758614} +[17.68, 17.6, 17.56, 17.16, 17.16, 17.0, 17.0, 17.08, 17.36, 17.4, 17.56, 17.4, 17.44, 17.44, 17.4, 17.6, 17.56, 17.52, 17.6, 17.72] +313.05999999999995 +15.652999999999997 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 30.498249053955078, 'TIME_S_1KI': 304.9824905395508, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2007.0959778976435, 'W': 47.944381683758614, 'J_1KI': 20070.959778976434, 'W_1KI': 479.44381683758616, 'W_D': 32.291381683758615, 'J_D': 1351.8143319842811, 'W_D_1KI': 322.9138168375861, 'J_D_1KI': 3229.138168375861} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_1e-05.json index 2428814..5f4cac5 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_1e-05.json +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_1e-05.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 6367, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 14.819957971572876, "TIME_S_1KI": 2.3276202248426068, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 977.0843494701387, "W": 58.720628093786544, "J_1KI": 153.46071139785437, "W_1KI": 9.222652441304625, "W_D": 39.857628093786545, "J_D": 663.2126712820532, "W_D_1KI": 6.260032683176778, "J_D_1KI": 0.9831997303560197} +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 8811, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 14.461963891983032, "TIME_S_1KI": 1.6413532961052129, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1601.2496216583254, "W": 63.889106877708535, "J_1KI": 181.7330180068466, "W_1KI": 7.251061954115144, "W_D": 47.822106877708535, "J_D": 1198.5631712055208, "W_D_1KI": 5.4275458946440285, "J_D_1KI": 0.6159965832078116} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_1e-05.output index c94062e..6d049d2 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_1e-05.output +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_1e-05.output @@ -1,13 +1,13 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 2.0054540634155273} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 50000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.2421858310699463} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 2, ..., 25000, 25000, 25000]), - col_indices=tensor([29300, 37118, 28917, ..., 16725, 28059, 47397]), - values=tensor([0.1773, 0.7310, 0.0095, ..., 0.4568, 0.7722, 0.2574]), +tensor(crow_indices=tensor([ 0, 2, 2, ..., 24999, 25000, 25000]), + col_indices=tensor([11801, 48673, 42443, ..., 35599, 34008, 22453]), + values=tensor([0.3951, 0.6998, 0.6224, ..., 0.4352, 0.5927, 0.1013]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.0745, 0.0507, 0.1628, ..., 0.0663, 0.8219, 0.2626]) +tensor([0.6391, 0.6971, 0.7049, ..., 0.7658, 0.2053, 0.9702]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -15,18 +15,19 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 2.0054540634155273 seconds +Time: 0.2421858310699463 seconds -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 5235 -ss 50000 -sd 1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 8.632020473480225} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 4335 -ss 50000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 6.2435102462768555} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 1, ..., 25000, 25000, 25000]), - col_indices=tensor([ 6005, 4214, 13465, ..., 35902, 7875, 2053]), - values=tensor([0.3591, 0.3792, 0.0771, ..., 0.2893, 0.2529, 0.4673]), +tensor(crow_indices=tensor([ 0, 1, 2, ..., 25000, 25000, 25000]), + col_indices=tensor([48470, 32812, 24371, ..., 21811, 5693, 27792]), + values=tensor([7.9337e-01, 8.6969e-01, 2.1228e-02, ..., + 3.1628e-01, 5.2154e-01, 8.3659e-04]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.1098, 0.6338, 0.4539, ..., 0.7586, 0.0998, 0.7821]) +tensor([0.5123, 0.3871, 0.5639, ..., 0.2434, 0.7885, 0.9337]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -34,18 +35,18 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 8.632020473480225 seconds +Time: 6.2435102462768555 seconds -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 6367 -ss 50000 -sd 1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 14.819957971572876} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 7290 -ss 50000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.1812264919281} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 25000, 25000, 25000]), - col_indices=tensor([30839, 39998, 2326, ..., 30652, 20576, 5061]), - values=tensor([0.3250, 0.6882, 0.6966, ..., 0.0105, 0.7219, 0.0367]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 24999, 25000, 25000]), + col_indices=tensor([ 1561, 34915, 11685, ..., 9985, 24943, 27218]), + values=tensor([0.3207, 0.5476, 0.7721, ..., 0.5221, 0.2072, 0.7139]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.0417, 0.5559, 0.6322, ..., 0.5652, 0.2111, 0.1243]) +tensor([0.7737, 0.6011, 0.2764, ..., 0.4575, 0.9058, 0.1946]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -53,15 +54,18 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 14.819957971572876 seconds +Time: 9.1812264919281 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 8337 -ss 50000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.935004234313965} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 25000, 25000, 25000]), - col_indices=tensor([30839, 39998, 2326, ..., 30652, 20576, 5061]), - values=tensor([0.3250, 0.6882, 0.6966, ..., 0.0105, 0.7219, 0.0367]), +tensor(crow_indices=tensor([ 0, 1, 2, ..., 24999, 25000, 25000]), + col_indices=tensor([ 4660, 37796, 36819, ..., 14791, 855, 165]), + values=tensor([0.6560, 0.1119, 0.0106, ..., 0.5425, 0.3178, 0.8843]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.0417, 0.5559, 0.6322, ..., 0.5652, 0.2111, 0.1243]) +tensor([0.7672, 0.9593, 0.0238, ..., 0.4054, 0.5730, 0.7422]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -69,13 +73,48 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 14.819957971572876 seconds +Time: 9.935004234313965 seconds -[20.72, 20.6, 20.92, 21.12, 21.0, 21.04, 21.08, 20.8, 20.88, 21.08] -[20.96, 21.0, 21.0, 24.32, 26.04, 35.64, 50.52, 67.6, 77.24, 93.48, 91.28, 89.6, 88.96, 88.4, 88.92, 90.04] -16.63954186439514 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 6367, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 14.819957971572876, 'TIME_S_1KI': 2.3276202248426068, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 977.0843494701387, 'W': 58.720628093786544} -[20.72, 20.6, 20.92, 21.12, 21.0, 21.04, 21.08, 20.8, 20.88, 21.08, 20.88, 20.92, 20.68, 20.84, 21.0, 21.0, 20.92, 21.32, 21.28, 21.04] -377.26 -18.863 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 6367, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 14.819957971572876, 'TIME_S_1KI': 2.3276202248426068, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 977.0843494701387, 'W': 58.720628093786544, 'J_1KI': 153.46071139785437, 'W_1KI': 9.222652441304625, 'W_D': 39.857628093786545, 'J_D': 663.2126712820532, 'W_D_1KI': 6.260032683176778, 'J_D_1KI': 0.9831997303560197} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 8811 -ss 50000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 14.461963891983032} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 24997, 24998, 25000]), + col_indices=tensor([ 8691, 13268, 31788, ..., 20611, 3075, 9688]), + values=tensor([0.8778, 0.6640, 0.4350, ..., 0.9614, 0.5782, 0.7592]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.9817, 0.3893, 0.5308, ..., 0.4402, 0.5461, 0.2337]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 14.461963891983032 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 24997, 24998, 25000]), + col_indices=tensor([ 8691, 13268, 31788, ..., 20611, 3075, 9688]), + values=tensor([0.8778, 0.6640, 0.4350, ..., 0.9614, 0.5782, 0.7592]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.9817, 0.3893, 0.5308, ..., 0.4402, 0.5461, 0.2337]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 14.461963891983032 seconds + +[18.04, 17.96, 17.84, 17.68, 17.72, 17.8, 17.84, 17.92, 17.8, 17.8] +[17.8, 17.64, 17.64, 18.72, 19.96, 31.88, 49.36, 63.92, 79.84, 91.32, 91.4, 91.0, 90.8, 90.72, 90.68, 90.12, 89.48, 88.76, 88.76, 87.32, 86.72, 85.68, 84.4, 82.12] +25.062952041625977 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 8811, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 14.461963891983032, 'TIME_S_1KI': 1.6413532961052129, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1601.2496216583254, 'W': 63.889106877708535} +[18.04, 17.96, 17.84, 17.68, 17.72, 17.8, 17.84, 17.92, 17.8, 17.8, 18.0, 17.84, 17.72, 17.92, 17.96, 17.88, 18.12, 17.92, 17.68, 17.64] +321.34000000000003 +16.067 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 8811, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 14.461963891983032, 'TIME_S_1KI': 1.6413532961052129, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1601.2496216583254, 'W': 63.889106877708535, 'J_1KI': 181.7330180068466, 'W_1KI': 7.251061954115144, 'W_D': 47.822106877708535, 'J_D': 1198.5631712055208, 'W_D_1KI': 5.4275458946440285, 'J_D_1KI': 0.6159965832078116} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_5e-05.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_5e-05.json new file mode 100644 index 0000000..a856634 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 3016, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 12.238471984863281, "TIME_S_1KI": 4.057848801347242, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1021.0734484481814, "W": 58.16446532539802, "J_1KI": 338.5522043926331, "W_1KI": 19.285300174203588, "W_D": 42.31446532539802, "J_D": 742.827717702389, "W_D_1KI": 14.02999513441579, "J_D_1KI": 4.651855150668366} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_5e-05.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_5e-05.output new file mode 100644 index 0000000..0ab6a55 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_5e-05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 50000 -sd 5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.37006235122680664} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 5, ..., 124994, 124997, + 125000]), + col_indices=tensor([ 3192, 33329, 36206, ..., 17521, 36763, 39198]), + values=tensor([0.7954, 0.1728, 0.6419, ..., 0.6370, 0.0715, 0.4891]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.4965, 0.4773, 0.1313, ..., 0.0503, 0.1495, 0.6552]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 0.37006235122680664 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 2837 -ss 50000 -sd 5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 9.87511658668518} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 4, ..., 124994, 124997, + 125000]), + col_indices=tensor([18930, 21812, 35293, ..., 949, 2935, 28377]), + values=tensor([0.1354, 0.7141, 0.1182, ..., 0.8833, 0.5348, 0.3796]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.0699, 0.1291, 0.1295, ..., 0.2384, 0.2084, 0.3934]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 9.87511658668518 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 3016 -ss 50000 -sd 5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 12.238471984863281} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 8, ..., 124995, 124998, + 125000]), + col_indices=tensor([ 1947, 25944, 43942, ..., 29833, 871, 28509]), + values=tensor([0.4807, 0.5814, 0.8403, ..., 0.1650, 0.5150, 0.8001]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.7842, 0.6693, 0.1792, ..., 0.7791, 0.2472, 0.4723]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 12.238471984863281 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 8, ..., 124995, 124998, + 125000]), + col_indices=tensor([ 1947, 25944, 43942, ..., 29833, 871, 28509]), + values=tensor([0.4807, 0.5814, 0.8403, ..., 0.1650, 0.5150, 0.8001]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.7842, 0.6693, 0.1792, ..., 0.7791, 0.2472, 0.4723]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 12.238471984863281 seconds + +[17.56, 17.48, 17.4, 17.56, 17.72, 17.76, 17.48, 17.56, 17.56, 17.52] +[17.52, 17.68, 17.76, 20.16, 20.96, 34.48, 49.64, 65.8, 77.8, 88.2, 87.72, 86.68, 86.76, 87.64, 87.64, 89.04, 89.44] +17.554935693740845 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 3016, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 12.238471984863281, 'TIME_S_1KI': 4.057848801347242, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1021.0734484481814, 'W': 58.16446532539802} +[17.56, 17.48, 17.4, 17.56, 17.72, 17.76, 17.48, 17.56, 17.56, 17.52, 17.72, 17.84, 17.8, 17.68, 17.68, 17.52, 17.56, 17.6, 17.48, 17.84] +317.0 +15.85 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 3016, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 12.238471984863281, 'TIME_S_1KI': 4.057848801347242, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1021.0734484481814, 'W': 58.16446532539802, 'J_1KI': 338.5522043926331, 'W_1KI': 19.285300174203588, 'W_D': 42.31446532539802, 'J_D': 742.827717702389, 'W_D_1KI': 14.02999513441579, 'J_D_1KI': 4.651855150668366} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.0001.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.0001.json index fef2205..fa80299 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.0001.json +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.0001.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 97519, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.570974826812744, "TIME_S_1KI": 0.10839913070081465, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 315.3015551567077, "W": 22.190891521159134, "J_1KI": 3.233232038440793, "W_1KI": 0.22755454343419368, "W_D": 3.682891521159135, "J_D": 52.32874141120907, "W_D_1KI": 0.037765886864704674, "J_D_1KI": 0.00038726696197361203} +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 93664, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.030004501342773, "TIME_S_1KI": 0.107084947272621, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 253.85587940216067, "W": 17.876929919933424, "J_1KI": 2.7102822792338643, "W_1KI": 0.19086233686297213, "W_D": 2.859929919933423, "J_D": 40.61156071567538, "W_D_1KI": 0.03053392893676784, "J_D_1KI": 0.00032599428741851555} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.0001.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.0001.output index c6cbfe2..c2bcc94 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.0001.output +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.0001.output @@ -1,13 +1,13 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.11602067947387695} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.018899202346801758} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 2500, 2500, 2500]), - col_indices=tensor([ 613, 2610, 3896, ..., 2268, 1349, 1721]), - values=tensor([0.3594, 0.2050, 0.8766, ..., 0.2511, 0.4340, 0.6606]), +tensor(crow_indices=tensor([ 0, 0, 2, ..., 2499, 2500, 2500]), + col_indices=tensor([1031, 4368, 4092, ..., 190, 4399, 1962]), + values=tensor([0.5248, 0.7492, 0.4749, ..., 0.9820, 0.4892, 0.6710]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.7862, 0.0116, 0.6512, ..., 0.0192, 0.3599, 0.4463]) +tensor([0.7298, 0.5753, 0.5464, ..., 0.2530, 0.5594, 0.0214]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -15,18 +15,18 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 0.11602067947387695 seconds +Time: 0.018899202346801758 seconds -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 90501 -ss 5000 -sd 0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.744299173355103} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 55557 -ss 5000 -sd 0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 6.228086948394775} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 1, ..., 2497, 2498, 2500]), - col_indices=tensor([3869, 881, 2923, ..., 3064, 1070, 3092]), - values=tensor([0.3867, 0.1123, 0.7736, ..., 0.1665, 0.3688, 0.6121]), +tensor(crow_indices=tensor([ 0, 1, 2, ..., 2499, 2500, 2500]), + col_indices=tensor([ 532, 4399, 2173, ..., 2637, 3554, 2146]), + values=tensor([0.0459, 0.9731, 0.3457, ..., 0.8215, 0.1549, 0.6550]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.7562, 0.4892, 0.9144, ..., 0.6968, 0.8474, 0.7157]) +tensor([0.2796, 0.3928, 0.8109, ..., 0.2089, 0.4148, 0.7694]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -34,18 +34,18 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 9.744299173355103 seconds +Time: 6.228086948394775 seconds -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 97519 -ss 5000 -sd 0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.570974826812744} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 93664 -ss 5000 -sd 0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.030004501342773} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 2497, 2499, 2500]), - col_indices=tensor([4211, 3231, 4340, ..., 2446, 2540, 154]), - values=tensor([0.2167, 0.9555, 0.6550, ..., 0.2361, 0.5850, 0.4084]), +tensor(crow_indices=tensor([ 0, 0, 1, ..., 2498, 2498, 2500]), + col_indices=tensor([1824, 1160, 4169, ..., 4733, 1262, 4559]), + values=tensor([0.9986, 0.6087, 0.2000, ..., 0.7208, 0.5140, 0.1151]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.3692, 0.1411, 0.4138, ..., 0.1913, 0.1315, 0.0581]) +tensor([0.6500, 0.1776, 0.6063, ..., 0.2915, 0.3213, 0.4804]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,15 +53,15 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 10.570974826812744 seconds +Time: 10.030004501342773 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 2497, 2499, 2500]), - col_indices=tensor([4211, 3231, 4340, ..., 2446, 2540, 154]), - values=tensor([0.2167, 0.9555, 0.6550, ..., 0.2361, 0.5850, 0.4084]), +tensor(crow_indices=tensor([ 0, 0, 1, ..., 2498, 2498, 2500]), + col_indices=tensor([1824, 1160, 4169, ..., 4733, 1262, 4559]), + values=tensor([0.9986, 0.6087, 0.2000, ..., 0.7208, 0.5140, 0.1151]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.3692, 0.1411, 0.4138, ..., 0.1913, 0.1315, 0.0581]) +tensor([0.6500, 0.1776, 0.6063, ..., 0.2915, 0.3213, 0.4804]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -69,13 +69,13 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 10.570974826812744 seconds +Time: 10.030004501342773 seconds -[20.44, 20.44, 20.48, 20.4, 20.48, 20.68, 20.76, 20.76, 20.72, 20.88] -[20.64, 20.56, 21.92, 23.68, 23.68, 25.04, 25.48, 26.12, 24.52, 24.44, 23.92, 24.04, 24.32, 24.36] -14.20860242843628 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 97519, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.570974826812744, 'TIME_S_1KI': 0.10839913070081465, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 315.3015551567077, 'W': 22.190891521159134} -[20.44, 20.44, 20.48, 20.4, 20.48, 20.68, 20.76, 20.76, 20.72, 20.88, 20.4, 20.52, 20.56, 20.56, 20.56, 20.6, 20.52, 20.4, 20.6, 20.52] -370.15999999999997 -18.508 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 97519, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.570974826812744, 'TIME_S_1KI': 0.10839913070081465, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 315.3015551567077, 'W': 22.190891521159134, 'J_1KI': 3.233232038440793, 'W_1KI': 0.22755454343419368, 'W_D': 3.682891521159135, 'J_D': 52.32874141120907, 'W_D_1KI': 0.037765886864704674, 'J_D_1KI': 0.00038726696197361203} +[16.8, 16.8, 17.16, 17.24, 17.04, 16.96, 16.96, 17.0, 16.6, 17.0] +[16.8, 16.84, 17.08, 18.24, 19.2, 19.72, 20.36, 20.2, 20.2, 20.04, 19.8, 19.8, 20.0, 19.96] +14.200194358825684 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 93664, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.030004501342773, 'TIME_S_1KI': 0.107084947272621, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 253.85587940216067, 'W': 17.876929919933424} +[16.8, 16.8, 17.16, 17.24, 17.04, 16.96, 16.96, 17.0, 16.6, 17.0, 16.72, 16.48, 16.44, 16.48, 16.32, 16.48, 16.4, 16.28, 16.28, 16.32] +300.34000000000003 +15.017000000000001 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 93664, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.030004501342773, 'TIME_S_1KI': 0.107084947272621, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 253.85587940216067, 'W': 17.876929919933424, 'J_1KI': 2.7102822792338643, 'W_1KI': 0.19086233686297213, 'W_D': 2.859929919933423, 'J_D': 40.61156071567538, 'W_D_1KI': 0.03053392893676784, 'J_D_1KI': 0.00032599428741851555} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.001.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.001.json index 6041c9a..37907ba 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.001.json +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.001.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 17764, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.691047191619873, "TIME_S_1KI": 0.6018378288459735, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 329.0331690597534, "W": 23.15708952749249, "J_1KI": 18.522470674383776, "W_1KI": 1.3035965732657337, "W_D": 4.568089527492493, "J_D": 64.90681706762312, "W_D_1KI": 0.2571543305276116, "J_D_1KI": 0.01447615010851225} +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 17878, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.553908824920654, "TIME_S_1KI": 0.5903293894686572, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 275.88499256134037, "W": 19.43945882245899, "J_1KI": 15.431535549912763, "W_1KI": 1.0873396813099334, "W_D": 4.574458822458993, "J_D": 64.92076501369485, "W_D_1KI": 0.2558708369201808, "J_D_1KI": 0.014312050392671485} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.001.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.001.output index 626c252..e1fffa0 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.001.output +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.001.output @@ -1,13 +1,13 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.6273210048675537} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.06726479530334473} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 7, ..., 24988, 24996, 25000]), - col_indices=tensor([1892, 2918, 4655, ..., 2029, 2603, 3010]), - values=tensor([0.8283, 0.5273, 0.2909, ..., 0.5828, 0.6477, 0.7502]), +tensor(crow_indices=tensor([ 0, 11, 16, ..., 24990, 24996, 25000]), + col_indices=tensor([ 219, 546, 972, ..., 2610, 3216, 3318]), + values=tensor([0.2561, 0.1283, 0.3219, ..., 0.1859, 0.9829, 0.7598]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.8412, 0.7891, 0.2404, ..., 0.8503, 0.9914, 0.6212]) +tensor([0.7133, 0.2668, 0.2369, ..., 0.2811, 0.0980, 0.8981]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -15,18 +15,18 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 0.6273210048675537 seconds +Time: 0.06726479530334473 seconds -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 16737 -ss 5000 -sd 0.001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 9.892534494400024} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 15609 -ss 5000 -sd 0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 9.167168855667114} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 10, ..., 24991, 24996, 25000]), - col_indices=tensor([4752, 479, 2068, ..., 1338, 4478, 4539]), - values=tensor([0.3996, 0.8763, 0.4834, ..., 0.3300, 0.4860, 0.9993]), +tensor(crow_indices=tensor([ 0, 9, 17, ..., 24994, 24998, 25000]), + col_indices=tensor([ 299, 1244, 1941, ..., 4267, 280, 4025]), + values=tensor([0.2861, 0.6940, 0.5528, ..., 0.3063, 0.0705, 0.3058]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.9991, 0.1904, 0.1090, ..., 0.8295, 0.4248, 0.2043]) +tensor([0.7288, 0.9023, 0.1050, ..., 0.1276, 0.6415, 0.2460]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -34,18 +34,18 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 9.892534494400024 seconds +Time: 9.167168855667114 seconds -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 17764 -ss 5000 -sd 0.001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.691047191619873} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 17878 -ss 5000 -sd 0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.553908824920654} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 8, 15, ..., 24992, 24996, 25000]), - col_indices=tensor([1098, 1490, 1639, ..., 3549, 3645, 4602]), - values=tensor([0.2763, 0.7775, 0.9451, ..., 0.5590, 0.3508, 0.3085]), +tensor(crow_indices=tensor([ 0, 6, 13, ..., 24995, 24998, 25000]), + col_indices=tensor([1009, 1198, 2341, ..., 3808, 999, 4327]), + values=tensor([0.4127, 0.3151, 0.8058, ..., 0.6562, 0.4614, 0.0831]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.1047, 0.7118, 0.3308, ..., 0.3344, 0.9893, 0.0200]) +tensor([0.8967, 0.5216, 0.2765, ..., 0.9189, 0.4761, 0.3303]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,15 +53,15 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 10.691047191619873 seconds +Time: 10.553908824920654 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 8, 15, ..., 24992, 24996, 25000]), - col_indices=tensor([1098, 1490, 1639, ..., 3549, 3645, 4602]), - values=tensor([0.2763, 0.7775, 0.9451, ..., 0.5590, 0.3508, 0.3085]), +tensor(crow_indices=tensor([ 0, 6, 13, ..., 24995, 24998, 25000]), + col_indices=tensor([1009, 1198, 2341, ..., 3808, 999, 4327]), + values=tensor([0.4127, 0.3151, 0.8058, ..., 0.6562, 0.4614, 0.0831]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.1047, 0.7118, 0.3308, ..., 0.3344, 0.9893, 0.0200]) +tensor([0.8967, 0.5216, 0.2765, ..., 0.9189, 0.4761, 0.3303]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -69,13 +69,13 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 10.691047191619873 seconds +Time: 10.553908824920654 seconds -[20.44, 20.2, 20.44, 20.64, 20.6, 20.72, 21.04, 21.04, 21.04, 20.88] -[20.72, 20.68, 20.52, 21.28, 23.28, 29.52, 30.36, 30.6, 30.4, 23.8, 23.72, 23.72, 23.84, 23.92] -14.208744525909424 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 17764, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.691047191619873, 'TIME_S_1KI': 0.6018378288459735, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 329.0331690597534, 'W': 23.15708952749249} -[20.44, 20.2, 20.44, 20.64, 20.6, 20.72, 21.04, 21.04, 21.04, 20.88, 20.68, 20.8, 20.72, 20.4, 20.32, 20.52, 20.64, 20.6, 20.72, 20.68] -371.78 -18.589 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 17764, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.691047191619873, 'TIME_S_1KI': 0.6018378288459735, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 329.0331690597534, 'W': 23.15708952749249, 'J_1KI': 18.522470674383776, 'W_1KI': 1.3035965732657337, 'W_D': 4.568089527492493, 'J_D': 64.90681706762312, 'W_D_1KI': 0.2571543305276116, 'J_D_1KI': 0.01447615010851225} +[16.32, 16.36, 16.36, 16.56, 16.68, 16.68, 16.64, 16.56, 16.68, 16.52] +[16.44, 16.88, 16.88, 17.92, 19.12, 25.32, 25.8, 25.92, 25.32, 22.16, 19.68, 19.6, 19.64, 19.4] +14.192009925842285 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 17878, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.553908824920654, 'TIME_S_1KI': 0.5903293894686572, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 275.88499256134037, 'W': 19.43945882245899} +[16.32, 16.36, 16.36, 16.56, 16.68, 16.68, 16.64, 16.56, 16.68, 16.52, 16.52, 16.4, 16.4, 16.2, 16.28, 16.36, 16.32, 16.64, 17.04, 16.92] +297.29999999999995 +14.864999999999998 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 17878, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.553908824920654, 'TIME_S_1KI': 0.5903293894686572, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 275.88499256134037, 'W': 19.43945882245899, 'J_1KI': 15.431535549912763, 'W_1KI': 1.0873396813099334, 'W_D': 4.574458822458993, 'J_D': 64.92076501369485, 'W_D_1KI': 0.2558708369201808, 'J_D_1KI': 0.014312050392671485} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.01.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.01.json index 5558ea5..b2ee0da 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.01.json +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.01.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1959, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 11.120546340942383, "TIME_S_1KI": 5.676644380266659, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 339.91848049163815, "W": 23.94849862540507, "J_1KI": 173.51632490640029, "W_1KI": 12.224858920574308, "W_D": 5.3214986254050665, "J_D": 75.53190515112868, "W_D_1KI": 2.716436255949498, "J_D_1KI": 1.3866443368808055} +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1934, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.419332265853882, "TIME_S_1KI": 5.38745205059663, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 296.42124423980715, "W": 20.84298720811279, "J_1KI": 153.26848202678755, "W_1KI": 10.777139197576416, "W_D": 5.978987208112789, "J_D": 85.03094157409672, "W_D_1KI": 3.0915135512475644, "J_D_1KI": 1.598507523912908} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.01.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.01.output index c4f4108..048fad0 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.01.output +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.01.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.01'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 5.658592224121094} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.6361579895019531} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 40, 84, ..., 249908, 249949, +tensor(crow_indices=tensor([ 0, 45, 88, ..., 249912, 249956, 250000]), - col_indices=tensor([ 330, 398, 412, ..., 4758, 4825, 4990]), - values=tensor([0.1241, 0.3411, 0.2552, ..., 0.9324, 0.8443, 0.4144]), + col_indices=tensor([ 150, 155, 160, ..., 4906, 4918, 4974]), + values=tensor([0.5565, 0.2611, 0.6011, ..., 0.5545, 0.3341, 0.9118]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.9270, 0.0262, 0.1807, ..., 0.7250, 0.9803, 0.9114]) +tensor([0.3996, 0.8652, 0.4997, ..., 0.5638, 0.5133, 0.5074]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,19 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 5.658592224121094 seconds +Time: 0.6361579895019531 seconds -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1855 -ss 5000 -sd 0.01'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 9.939346075057983} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1650 -ss 5000 -sd 0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 8.95723843574524} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 42, 99, ..., 249900, 249944, +tensor(crow_indices=tensor([ 0, 48, 105, ..., 249902, 249944, 250000]), - col_indices=tensor([ 71, 83, 134, ..., 4502, 4510, 4544]), - values=tensor([0.1222, 0.9313, 0.0593, ..., 0.6337, 0.4012, 0.6808]), + col_indices=tensor([ 142, 192, 269, ..., 4444, 4647, 4854]), + values=tensor([0.2391, 0.6427, 0.3721, ..., 0.7376, 0.6381, 0.7309]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.6318, 0.1040, 0.0347, ..., 0.9714, 0.1743, 0.3337]) +tensor([0.0904, 0.1755, 0.9906, ..., 0.2784, 0.3906, 0.1798]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -36,19 +36,19 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 9.939346075057983 seconds +Time: 8.95723843574524 seconds -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1959 -ss 5000 -sd 0.01'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 11.120546340942383} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1934 -ss 5000 -sd 0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.419332265853882} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 52, 94, ..., 249896, 249940, +tensor(crow_indices=tensor([ 0, 67, 123, ..., 249901, 249950, 250000]), - col_indices=tensor([ 62, 114, 171, ..., 4675, 4821, 4860]), - values=tensor([0.5686, 0.1100, 0.2304, ..., 0.6863, 0.4817, 0.3965]), + col_indices=tensor([ 77, 297, 304, ..., 4744, 4962, 4980]), + values=tensor([0.1458, 0.7428, 0.5307, ..., 0.5713, 0.0836, 0.9823]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.8036, 0.6564, 0.9943, ..., 0.3026, 0.0525, 0.3398]) +tensor([0.8374, 0.5393, 0.4548, ..., 0.1972, 0.5711, 0.3877]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -56,16 +56,16 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 11.120546340942383 seconds +Time: 10.419332265853882 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 52, 94, ..., 249896, 249940, +tensor(crow_indices=tensor([ 0, 67, 123, ..., 249901, 249950, 250000]), - col_indices=tensor([ 62, 114, 171, ..., 4675, 4821, 4860]), - values=tensor([0.5686, 0.1100, 0.2304, ..., 0.6863, 0.4817, 0.3965]), + col_indices=tensor([ 77, 297, 304, ..., 4744, 4962, 4980]), + values=tensor([0.1458, 0.7428, 0.5307, ..., 0.5713, 0.0836, 0.9823]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.8036, 0.6564, 0.9943, ..., 0.3026, 0.0525, 0.3398]) +tensor([0.8374, 0.5393, 0.4548, ..., 0.1972, 0.5711, 0.3877]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -73,13 +73,13 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 11.120546340942383 seconds +Time: 10.419332265853882 seconds -[20.4, 20.56, 20.84, 20.88, 21.08, 21.16, 21.16, 20.92, 20.72, 20.76] -[20.2, 20.2, 20.96, 22.4, 23.64, 30.44, 31.56, 31.08, 30.2, 30.2, 24.44, 24.12, 24.04, 23.84] -14.19372820854187 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1959, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 11.120546340942383, 'TIME_S_1KI': 5.676644380266659, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 339.91848049163815, 'W': 23.94849862540507} -[20.4, 20.56, 20.84, 20.88, 21.08, 21.16, 21.16, 20.92, 20.72, 20.76, 20.32, 20.52, 20.64, 20.6, 20.44, 20.28, 20.44, 20.6, 20.64, 20.64] -372.54 -18.627000000000002 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1959, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 11.120546340942383, 'TIME_S_1KI': 5.676644380266659, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 339.91848049163815, 'W': 23.94849862540507, 'J_1KI': 173.51632490640029, 'W_1KI': 12.224858920574308, 'W_D': 5.3214986254050665, 'J_D': 75.53190515112868, 'W_D_1KI': 2.716436255949498, 'J_D_1KI': 1.3866443368808055} +[16.44, 16.56, 16.48, 16.6, 16.72, 16.56, 16.72, 16.6, 16.72, 16.64] +[16.6, 16.56, 16.56, 20.2, 20.72, 28.04, 28.92, 29.0, 26.44, 26.36, 20.12, 20.28, 20.2, 20.4] +14.221629619598389 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1934, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.419332265853882, 'TIME_S_1KI': 5.38745205059663, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 296.42124423980715, 'W': 20.84298720811279} +[16.44, 16.56, 16.48, 16.6, 16.72, 16.56, 16.72, 16.6, 16.72, 16.64, 16.68, 16.44, 16.44, 16.2, 16.24, 16.32, 16.56, 16.56, 16.52, 16.32] +297.28 +14.863999999999999 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1934, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.419332265853882, 'TIME_S_1KI': 5.38745205059663, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 296.42124423980715, 'W': 20.84298720811279, 'J_1KI': 153.26848202678755, 'W_1KI': 10.777139197576416, 'W_D': 5.978987208112789, 'J_D': 85.03094157409672, 'W_D_1KI': 3.0915135512475644, 'J_D_1KI': 1.598507523912908} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.05.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.05.json index 88b3edd..e125259 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.05.json +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.05.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 26.64292335510254, "TIME_S_1KI": 26.64292335510254, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 738.6764411926268, "W": 24.280702381341985, "J_1KI": 738.6764411926268, "W_1KI": 24.280702381341985, "W_D": 5.882702381341982, "J_D": 178.96573136138895, "W_D_1KI": 5.882702381341982, "J_D_1KI": 5.882702381341982} +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 394, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.532436847686768, "TIME_S_1KI": 26.732073217479105, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 305.06099658966065, "W": 21.37670924510136, "J_1KI": 774.2664888062453, "W_1KI": 54.25560722106944, "W_D": 6.54270924510136, "J_D": 93.36916079187395, "W_D_1KI": 16.60586102817604, "J_D_1KI": 42.146855401462034} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.05.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.05.output index d050d33..49ea4fe 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.05.output +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 26.64292335510254} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 2.876847505569458} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 258, 500, ..., 1249494, - 1249753, 1250000]), - col_indices=tensor([ 51, 83, 92, ..., 4940, 4981, 4997]), - values=tensor([0.9970, 0.1345, 0.9294, ..., 0.5035, 0.6973, 0.4629]), +tensor(crow_indices=tensor([ 0, 270, 507, ..., 1249492, + 1249752, 1250000]), + col_indices=tensor([ 22, 47, 49, ..., 4884, 4921, 4983]), + values=tensor([0.5298, 0.6030, 0.6480, ..., 0.1911, 0.5303, 0.8187]), size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.6657, 0.7944, 0.8404, ..., 0.5502, 0.2324, 0.9138]) +tensor([0.2222, 0.3805, 0.6044, ..., 0.3111, 0.2543, 0.4407]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,16 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 1250000 Density: 0.05 -Time: 26.64292335510254 seconds +Time: 2.876847505569458 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 364 -ss 5000 -sd 0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 9.686374425888062} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 258, 500, ..., 1249494, - 1249753, 1250000]), - col_indices=tensor([ 51, 83, 92, ..., 4940, 4981, 4997]), - values=tensor([0.9970, 0.1345, 0.9294, ..., 0.5035, 0.6973, 0.4629]), +tensor(crow_indices=tensor([ 0, 236, 499, ..., 1249504, + 1249745, 1250000]), + col_indices=tensor([ 18, 50, 76, ..., 4926, 4932, 4975]), + values=tensor([0.1676, 0.6835, 0.4526, ..., 0.3904, 0.9402, 0.3969]), size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.6657, 0.7944, 0.8404, ..., 0.5502, 0.2324, 0.9138]) +tensor([0.5247, 0.4082, 0.5074, ..., 0.5246, 0.7808, 0.6822]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -33,13 +36,50 @@ Rows: 5000 Size: 25000000 NNZ: 1250000 Density: 0.05 -Time: 26.64292335510254 seconds +Time: 9.686374425888062 seconds -[20.76, 20.56, 20.76, 20.24, 20.0, 20.0, 19.96, 19.88, 20.0, 20.0] -[20.2, 20.56, 20.84, 23.48, 25.48, 31.96, 32.48, 32.96, 29.96, 29.16, 23.84, 23.8, 23.88, 23.88, 24.28, 24.2, 24.36, 24.32, 23.8, 24.12, 24.2, 24.36, 24.28, 24.24, 24.24, 24.24, 24.32, 24.24, 24.48, 24.52] -30.422367095947266 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 26.64292335510254, 'TIME_S_1KI': 26.64292335510254, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 738.6764411926268, 'W': 24.280702381341985} -[20.76, 20.56, 20.76, 20.24, 20.0, 20.0, 19.96, 19.88, 20.0, 20.0, 20.52, 20.44, 20.56, 20.64, 20.52, 20.76, 20.64, 20.92, 20.96, 20.96] -367.96000000000004 -18.398000000000003 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 26.64292335510254, 'TIME_S_1KI': 26.64292335510254, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 738.6764411926268, 'W': 24.280702381341985, 'J_1KI': 738.6764411926268, 'W_1KI': 24.280702381341985, 'W_D': 5.882702381341982, 'J_D': 178.96573136138895, 'W_D_1KI': 5.882702381341982, 'J_D_1KI': 5.882702381341982} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 394 -ss 5000 -sd 0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.532436847686768} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 285, 546, ..., 1249527, + 1249741, 1250000]), + col_indices=tensor([ 14, 79, 87, ..., 4936, 4956, 4998]), + values=tensor([0.7519, 0.7358, 0.0306, ..., 0.8162, 0.7664, 0.2246]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.9515, 0.5215, 0.2042, ..., 0.7715, 0.5250, 0.3133]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 10.532436847686768 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 285, 546, ..., 1249527, + 1249741, 1250000]), + col_indices=tensor([ 14, 79, 87, ..., 4936, 4956, 4998]), + values=tensor([0.7519, 0.7358, 0.0306, ..., 0.8162, 0.7664, 0.2246]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.9515, 0.5215, 0.2042, ..., 0.7715, 0.5250, 0.3133]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 10.532436847686768 seconds + +[16.32, 16.28, 16.04, 16.2, 16.32, 16.36, 16.36, 16.36, 16.64, 16.6] +[16.72, 16.84, 17.04, 21.76, 24.68, 30.6, 31.68, 29.24, 27.56, 20.44, 20.44, 20.32, 20.44, 20.32] +14.270718336105347 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 394, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.532436847686768, 'TIME_S_1KI': 26.732073217479105, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 305.06099658966065, 'W': 21.37670924510136} +[16.32, 16.28, 16.04, 16.2, 16.32, 16.36, 16.36, 16.36, 16.64, 16.6, 16.32, 16.36, 16.44, 16.6, 16.76, 16.8, 16.64, 16.76, 16.76, 16.76] +296.68 +14.834 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 394, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.532436847686768, 'TIME_S_1KI': 26.732073217479105, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 305.06099658966065, 'W': 21.37670924510136, 'J_1KI': 774.2664888062453, 'W_1KI': 54.25560722106944, 'W_D': 6.54270924510136, 'J_D': 93.36916079187395, 'W_D_1KI': 16.60586102817604, 'J_D_1KI': 42.146855401462034} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.1.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.1.json index 70fec2c..5879ae9 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.1.json +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.1.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 53.09800863265991, "TIME_S_1KI": 53.09800863265991, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1383.3292028236385, "W": 24.387974690726086, "J_1KI": 1383.3292028236385, "W_1KI": 24.387974690726086, "W_D": 5.857974690726085, "J_D": 332.2747198915477, "W_D_1KI": 5.857974690726085, "J_D_1KI": 5.857974690726085} +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 197, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.453055620193481, "TIME_S_1KI": 53.06119604159128, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 328.8498130035401, "W": 21.582740338257725, "J_1KI": 1669.2883908809142, "W_1KI": 109.55705755460775, "W_D": 6.5647403382577245, "J_D": 100.02500140476232, "W_D_1KI": 33.32355501653667, "J_D_1KI": 169.15510160678514} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.1.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.1.output index 20994df..45da6ca 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.1.output +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.1.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 53.09800863265991} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 0.1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 5.324424982070923} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 484, 997, ..., 2498998, - 2499500, 2500000]), - col_indices=tensor([ 3, 13, 35, ..., 4966, 4993, 4997]), - values=tensor([0.0178, 0.5574, 0.8921, ..., 0.2131, 0.1882, 0.3495]), +tensor(crow_indices=tensor([ 0, 475, 961, ..., 2499006, + 2499520, 2500000]), + col_indices=tensor([ 15, 18, 19, ..., 4987, 4990, 4996]), + values=tensor([0.8221, 0.3138, 0.3999, ..., 0.4846, 0.5872, 0.2809]), size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.5571, 0.9138, 0.4400, ..., 0.1682, 0.6225, 0.2202]) +tensor([0.6625, 0.6086, 0.7821, ..., 0.8108, 0.2752, 0.8534]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,16 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 2500000 Density: 0.1 -Time: 53.09800863265991 seconds +Time: 5.324424982070923 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 197 -ss 5000 -sd 0.1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.453055620193481} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 484, 997, ..., 2498998, - 2499500, 2500000]), - col_indices=tensor([ 3, 13, 35, ..., 4966, 4993, 4997]), - values=tensor([0.0178, 0.5574, 0.8921, ..., 0.2131, 0.1882, 0.3495]), +tensor(crow_indices=tensor([ 0, 504, 990, ..., 2498981, + 2499511, 2500000]), + col_indices=tensor([ 3, 15, 19, ..., 4959, 4975, 4978]), + values=tensor([0.1275, 0.4769, 0.3626, ..., 0.0765, 0.7881, 0.0735]), size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.5571, 0.9138, 0.4400, ..., 0.1682, 0.6225, 0.2202]) +tensor([0.2182, 0.1034, 0.8832, ..., 0.0679, 0.0105, 0.3546]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -33,13 +36,30 @@ Rows: 5000 Size: 25000000 NNZ: 2500000 Density: 0.1 -Time: 53.09800863265991 seconds +Time: 10.453055620193481 seconds -[20.6, 20.6, 20.72, 20.68, 20.72, 20.8, 20.84, 20.8, 20.92, 20.52] -[20.6, 20.4, 23.56, 24.32, 24.32, 28.84, 34.48, 35.48, 33.04, 32.72, 26.72, 24.2, 24.24, 24.24, 24.0, 24.0, 23.96, 23.96, 23.88, 23.96, 23.96, 23.92, 23.92, 23.68, 23.64, 23.76, 24.08, 24.12, 24.08, 24.08, 24.32, 24.08, 23.92, 24.04, 24.0, 23.96, 24.12, 24.24, 24.28, 24.24, 24.2, 23.92, 23.92, 24.0, 24.2, 24.24, 24.4, 24.2, 24.16, 24.0, 24.16, 24.32, 24.36, 24.36, 24.36, 24.12] -56.72177457809448 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 53.09800863265991, 'TIME_S_1KI': 53.09800863265991, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1383.3292028236385, 'W': 24.387974690726086} -[20.6, 20.6, 20.72, 20.68, 20.72, 20.8, 20.84, 20.8, 20.92, 20.52, 20.32, 20.36, 20.4, 20.48, 20.44, 20.64, 20.48, 20.36, 20.48, 20.32] -370.6 -18.53 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 53.09800863265991, 'TIME_S_1KI': 53.09800863265991, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1383.3292028236385, 'W': 24.387974690726086, 'J_1KI': 1383.3292028236385, 'W_1KI': 24.387974690726086, 'W_D': 5.857974690726085, 'J_D': 332.2747198915477, 'W_D_1KI': 5.857974690726085, 'J_D_1KI': 5.857974690726085} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 504, 990, ..., 2498981, + 2499511, 2500000]), + col_indices=tensor([ 3, 15, 19, ..., 4959, 4975, 4978]), + values=tensor([0.1275, 0.4769, 0.3626, ..., 0.0765, 0.7881, 0.0735]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.2182, 0.1034, 0.8832, ..., 0.0679, 0.0105, 0.3546]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 10.453055620193481 seconds + +[16.48, 16.56, 16.52, 16.6, 16.92, 17.2, 17.24, 17.32, 17.32, 17.2] +[17.2, 17.08, 16.8, 20.08, 22.0, 28.44, 31.8, 32.0, 28.2, 27.28, 20.16, 20.32, 20.56, 20.56, 20.32] +15.236703395843506 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 197, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.453055620193481, 'TIME_S_1KI': 53.06119604159128, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 328.8498130035401, 'W': 21.582740338257725} +[16.48, 16.56, 16.52, 16.6, 16.92, 17.2, 17.24, 17.32, 17.32, 17.2, 16.8, 16.52, 16.44, 16.56, 16.44, 16.36, 16.4, 16.48, 16.24, 16.0] +300.36 +15.018 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 197, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.453055620193481, 'TIME_S_1KI': 53.06119604159128, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 328.8498130035401, 'W': 21.582740338257725, 'J_1KI': 1669.2883908809142, 'W_1KI': 109.55705755460775, 'W_D': 6.5647403382577245, 'J_D': 100.02500140476232, 'W_D_1KI': 33.32355501653667, 'J_D_1KI': 169.15510160678514} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.2.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.2.json new file mode 100644 index 0000000..22c3547 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.2.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.520986080169678, "TIME_S_1KI": 105.20986080169678, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 343.0604390716553, "W": 22.467293864380782, "J_1KI": 3430.604390716553, "W_1KI": 224.67293864380784, "W_D": 7.879293864380783, "J_D": 120.3115083198548, "W_D_1KI": 78.79293864380782, "J_D_1KI": 787.9293864380782} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.2.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.2.output new file mode 100644 index 0000000..46cc854 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.2.output @@ -0,0 +1,45 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 0.2'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.520986080169678} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1010, 1992, ..., 4998032, + 4999035, 5000000]), + col_indices=tensor([ 7, 20, 27, ..., 4987, 4995, 4999]), + values=tensor([0.6859, 0.1805, 0.1498, ..., 0.8538, 0.5250, 0.8232]), + size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.6117, 0.2257, 0.9695, ..., 0.2383, 0.1591, 0.7207]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 5000000 +Density: 0.2 +Time: 10.520986080169678 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1010, 1992, ..., 4998032, + 4999035, 5000000]), + col_indices=tensor([ 7, 20, 27, ..., 4987, 4995, 4999]), + values=tensor([0.6859, 0.1805, 0.1498, ..., 0.8538, 0.5250, 0.8232]), + size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.6117, 0.2257, 0.9695, ..., 0.2383, 0.1591, 0.7207]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 5000000 +Density: 0.2 +Time: 10.520986080169678 seconds + +[16.36, 16.04, 16.16, 15.96, 15.88, 15.88, 16.04, 16.04, 16.28, 16.32] +[16.4, 16.48, 16.8, 20.24, 21.88, 29.72, 32.92, 30.52, 30.52, 30.68, 27.2, 20.4, 20.72, 20.84, 20.72] +15.269326210021973 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.520986080169678, 'TIME_S_1KI': 105.20986080169678, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 343.0604390716553, 'W': 22.467293864380782} +[16.36, 16.04, 16.16, 15.96, 15.88, 15.88, 16.04, 16.04, 16.28, 16.32, 16.84, 17.08, 16.68, 16.36, 16.32, 16.0, 16.08, 16.08, 16.04, 16.16] +291.76 +14.588 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.520986080169678, 'TIME_S_1KI': 105.20986080169678, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 343.0604390716553, 'W': 22.467293864380782, 'J_1KI': 3430.604390716553, 'W_1KI': 224.67293864380784, 'W_D': 7.879293864380783, 'J_D': 120.3115083198548, 'W_D_1KI': 78.79293864380782, 'J_D_1KI': 787.9293864380782} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.3.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.3.json new file mode 100644 index 0000000..1e920c1 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.3.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 16.019237279891968, "TIME_S_1KI": 160.19237279891968, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 445.7399830436707, "W": 20.90802632853554, "J_1KI": 4457.399830436707, "W_1KI": 209.08026328535541, "W_D": 5.958026328535542, "J_D": 127.0196676111222, "W_D_1KI": 59.58026328535542, "J_D_1KI": 595.8026328535542} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.3.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.3.output new file mode 100644 index 0000000..039e7ba --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.3.output @@ -0,0 +1,45 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 0.3'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 16.019237279891968} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1526, 3031, ..., 7497025, + 7498559, 7500000]), + col_indices=tensor([ 0, 3, 7, ..., 4995, 4996, 4999]), + values=tensor([0.4727, 0.1556, 0.1081, ..., 0.9285, 0.0937, 0.3872]), + size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) +tensor([0.9962, 0.8284, 0.0086, ..., 0.9887, 0.5066, 0.4274]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 7500000 +Density: 0.3 +Time: 16.019237279891968 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1526, 3031, ..., 7497025, + 7498559, 7500000]), + col_indices=tensor([ 0, 3, 7, ..., 4995, 4996, 4999]), + values=tensor([0.4727, 0.1556, 0.1081, ..., 0.9285, 0.0937, 0.3872]), + size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) +tensor([0.9962, 0.8284, 0.0086, ..., 0.9887, 0.5066, 0.4274]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 7500000 +Density: 0.3 +Time: 16.019237279891968 seconds + +[16.44, 16.68, 16.72, 16.56, 16.6, 16.76, 16.84, 16.84, 16.68, 16.52] +[16.44, 16.48, 16.8, 17.84, 18.92, 25.84, 27.76, 29.92, 29.96, 29.48, 23.32, 23.32, 20.24, 20.12, 20.24, 20.04, 20.04, 20.24, 20.28, 20.2, 20.12] +21.319084644317627 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 16.019237279891968, 'TIME_S_1KI': 160.19237279891968, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 445.7399830436707, 'W': 20.90802632853554} +[16.44, 16.68, 16.72, 16.56, 16.6, 16.76, 16.84, 16.84, 16.68, 16.52, 16.44, 16.44, 16.56, 16.56, 16.72, 16.64, 16.56, 16.52, 16.4, 16.44] +299.0 +14.95 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 16.019237279891968, 'TIME_S_1KI': 160.19237279891968, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 445.7399830436707, 'W': 20.90802632853554, 'J_1KI': 4457.399830436707, 'W_1KI': 209.08026328535541, 'W_D': 5.958026328535542, 'J_D': 127.0196676111222, 'W_D_1KI': 59.58026328535542, 'J_D_1KI': 595.8026328535542} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.4.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.4.json new file mode 100644 index 0000000..d6dabaf --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.4.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.4, "TIME_S": 21.045433044433594, "TIME_S_1KI": 210.45433044433594, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 590.3603710937499, "W": 21.581829265499348, "J_1KI": 5903.603710937499, "W_1KI": 215.81829265499348, "W_D": 6.281829265499347, "J_D": 171.83636339187612, "W_D_1KI": 62.81829265499347, "J_D_1KI": 628.1829265499347} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.4.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.4.output new file mode 100644 index 0000000..bcbbf0c --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.4.output @@ -0,0 +1,45 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 0.4'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.4, "TIME_S": 21.045433044433594} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2076, 4151, ..., 9996002, + 9998013, 10000000]), + col_indices=tensor([ 1, 14, 15, ..., 4994, 4998, 4999]), + values=tensor([0.5831, 0.7619, 0.5912, ..., 0.7349, 0.2932, 0.8119]), + size=(5000, 5000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.6981, 0.1886, 0.6279, ..., 0.1836, 0.5536, 0.9370]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 10000000 +Density: 0.4 +Time: 21.045433044433594 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2076, 4151, ..., 9996002, + 9998013, 10000000]), + col_indices=tensor([ 1, 14, 15, ..., 4994, 4998, 4999]), + values=tensor([0.5831, 0.7619, 0.5912, ..., 0.7349, 0.2932, 0.8119]), + size=(5000, 5000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.6981, 0.1886, 0.6279, ..., 0.1836, 0.5536, 0.9370]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 10000000 +Density: 0.4 +Time: 21.045433044433594 seconds + +[16.72, 16.72, 16.28, 16.36, 16.28, 17.72, 18.32, 19.12, 19.12, 19.28] +[18.6, 17.76, 17.4, 20.72, 22.2, 26.08, 32.2, 30.12, 32.12, 31.16, 23.52, 23.52, 22.96, 20.28, 20.12, 20.24, 20.28, 20.28, 20.32, 20.32, 20.2, 20.12, 20.28, 20.28, 20.48, 20.6, 20.48] +27.35451030731201 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.4, 'TIME_S': 21.045433044433594, 'TIME_S_1KI': 210.45433044433594, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 590.3603710937499, 'W': 21.581829265499348} +[16.72, 16.72, 16.28, 16.36, 16.28, 17.72, 18.32, 19.12, 19.12, 19.28, 16.44, 16.48, 16.36, 16.32, 16.32, 16.52, 16.72, 16.56, 16.4, 16.36] +306.0 +15.3 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.4, 'TIME_S': 21.045433044433594, 'TIME_S_1KI': 210.45433044433594, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 590.3603710937499, 'W': 21.581829265499348, 'J_1KI': 5903.603710937499, 'W_1KI': 215.81829265499348, 'W_D': 6.281829265499347, 'J_D': 171.83636339187612, 'W_D_1KI': 62.81829265499347, 'J_D_1KI': 628.1829265499347} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.5.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.5.json new file mode 100644 index 0000000..edd5f52 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.5.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 26.53720736503601, "TIME_S_1KI": 265.3720736503601, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 691.3309565734863, "W": 20.656596648884427, "J_1KI": 6913.309565734863, "W_1KI": 206.56596648884428, "W_D": 5.692596648884429, "J_D": 190.5187167835236, "W_D_1KI": 56.92596648884429, "J_D_1KI": 569.2596648884429} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.5.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.5.output new file mode 100644 index 0000000..7bfb817 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_0.5.output @@ -0,0 +1,45 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 0.5'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 26.53720736503601} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2531, 5099, ..., 12494952, + 12497469, 12500000]), + col_indices=tensor([ 0, 7, 9, ..., 4997, 4998, 4999]), + values=tensor([0.6564, 0.0127, 0.9586, ..., 0.9277, 0.7224, 0.6295]), + size=(5000, 5000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.9909, 0.2884, 0.1156, ..., 0.4898, 0.4767, 0.4308]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 12500000 +Density: 0.5 +Time: 26.53720736503601 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2531, 5099, ..., 12494952, + 12497469, 12500000]), + col_indices=tensor([ 0, 7, 9, ..., 4997, 4998, 4999]), + values=tensor([0.6564, 0.0127, 0.9586, ..., 0.9277, 0.7224, 0.6295]), + size=(5000, 5000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.9909, 0.2884, 0.1156, ..., 0.4898, 0.4767, 0.4308]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 12500000 +Density: 0.5 +Time: 26.53720736503601 seconds + +[16.56, 16.48, 16.36, 16.32, 16.28, 16.28, 16.52, 16.48, 16.8, 16.84] +[16.84, 16.88, 16.84, 18.36, 18.96, 19.92, 26.16, 27.2, 30.16, 30.2, 27.92, 24.32, 23.48, 20.0, 20.0, 20.32, 20.36, 20.32, 20.48, 20.28, 20.2, 20.28, 20.2, 20.12, 20.08, 19.92, 19.92, 19.92, 20.04, 20.04, 20.2, 20.32, 20.16] +33.4678053855896 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.5, 'TIME_S': 26.53720736503601, 'TIME_S_1KI': 265.3720736503601, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 691.3309565734863, 'W': 20.656596648884427} +[16.56, 16.48, 16.36, 16.32, 16.28, 16.28, 16.52, 16.48, 16.8, 16.84, 16.6, 16.96, 16.88, 17.08, 17.04, 16.88, 16.6, 16.6, 16.52, 16.4] +299.28 +14.963999999999999 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.5, 'TIME_S': 26.53720736503601, 'TIME_S_1KI': 265.3720736503601, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 691.3309565734863, 'W': 20.656596648884427, 'J_1KI': 6913.309565734863, 'W_1KI': 206.56596648884428, 'W_D': 5.692596648884429, 'J_D': 190.5187167835236, 'W_D_1KI': 56.92596648884429, 'J_D_1KI': 569.2596648884429} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_1e-05.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_1e-05.json index 7d0783d..50a61b1 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_1e-05.json +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_1e-05.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 275920, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.428882360458374, "TIME_S_1KI": 0.037796761236801875, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 315.0905113220215, "W": 22.127187461407587, "J_1KI": 1.141963291251165, "W_1KI": 0.08019421376271234, "W_D": 3.664187461407586, "J_D": 52.177923778533895, "W_D_1KI": 0.013279890770540686, "J_D_1KI": 4.812949684887172e-05} +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 277466, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.306395292282104, "TIME_S_1KI": 0.037144714279522914, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 274.4401516246796, "W": 19.314621204373413, "J_1KI": 0.9890947057465764, "W_1KI": 0.06961076746114267, "W_D": 4.503621204373411, "J_D": 63.99165032076835, "W_D_1KI": 0.016231254295565625, "J_D_1KI": 5.849817381432545e-05} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_1e-05.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_1e-05.output index a254447..19817c6 100644 --- a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_1e-05.output +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_1e-05.output @@ -1,291 +1,75 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.04542350769042969} +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.012943029403686523} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([1381, 3398, 2478, 1052, 529, 491, 2775, 3229, 1279, - 3454, 296, 3084, 4650, 2467, 784, 568, 918, 741, - 4819, 1730, 837, 408, 1523, 948, 4825, 1342, 952, - 2524, 3378, 2774, 370, 2319, 3980, 4108, 276, 4067, - 3823, 3153, 3158, 540, 2360, 1999, 1044, 1298, 4540, - 533, 3507, 1489, 2361, 1008, 555, 3416, 305, 3290, - 1136, 3809, 4448, 2408, 3611, 2892, 2540, 3779, 2041, - 4793, 4839, 534, 3664, 2180, 4711, 4601, 1136, 3681, - 165, 2858, 2937, 1364, 4737, 4916, 4412, 4772, 4253, - 200, 1254, 2702, 3949, 1138, 3253, 4523, 3563, 4932, - 724, 1152, 3157, 1713, 4323, 2340, 951, 3022, 1343, - 2260, 3881, 2605, 161, 4434, 3331, 1742, 2563, 4238, - 127, 3937, 396, 2283, 1557, 1554, 3292, 4855, 4197, - 4720, 716, 85, 4379, 3823, 2263, 2186, 2869, 1787, - 1168, 2429, 3045, 2919, 2350, 3479, 2094, 1065, 340, - 1288, 1877, 3764, 3457, 509, 1055, 3089, 605, 1110, - 3765, 3334, 3358, 602, 1278, 2312, 2279, 3749, 3299, - 4530, 804, 4261, 418, 4624, 585, 3050, 3236, 596, - 2133, 933, 4209, 3895, 174, 765, 3980, 381, 2181, - 2969, 46, 3997, 2920, 1083, 1216, 4056, 126, 248, - 1696, 352, 2821, 625, 3058, 4954, 4557, 865, 2010, - 2268, 2460, 1542, 329, 4649, 4740, 2546, 1491, 1783, - 2436, 2269, 2383, 734, 4372, 4876, 3373, 210, 4004, - 4560, 1501, 3320, 2378, 1630, 757, 3013, 4961, 4950, - 3415, 2145, 1401, 3711, 4355, 611, 1420, 3710, 4405, - 2508, 3816, 3, 3115, 4093, 2712, 1642, 4784, 2945, - 3902, 1255, 2147, 1010, 3088, 1205, 4589, 714, 2492, - 1954, 4006, 3877, 588, 962, 61, 4470]), - values=tensor([6.2379e-01, 5.1445e-01, 5.2888e-01, 6.4643e-01, - 3.6807e-01, 4.6260e-01, 2.5238e-01, 5.8157e-01, - 8.8267e-01, 2.6474e-01, 2.8446e-01, 9.5475e-01, - 4.8999e-01, 6.6621e-01, 3.2615e-02, 2.5044e-01, - 4.5496e-01, 3.7415e-01, 2.9199e-01, 2.8386e-01, - 7.1383e-01, 3.1109e-01, 1.1332e-01, 2.2089e-01, - 2.1912e-01, 5.6452e-01, 4.7190e-01, 5.8604e-01, - 7.8763e-01, 9.5122e-01, 1.1018e-01, 1.3969e-01, - 7.2800e-01, 6.6977e-01, 2.9413e-01, 6.1351e-01, - 4.9889e-01, 3.4691e-01, 3.9756e-01, 7.5031e-01, - 1.4612e-01, 6.6037e-01, 2.5630e-01, 9.1057e-02, - 8.2140e-01, 9.9620e-01, 5.5939e-01, 1.0762e-01, - 7.8811e-01, 5.4825e-01, 1.0084e-01, 8.9423e-01, - 7.7729e-01, 2.7164e-01, 7.0220e-01, 1.6836e-01, - 5.3765e-01, 2.0228e-01, 1.5568e-02, 8.3985e-01, - 2.3206e-01, 6.7022e-01, 4.7791e-01, 6.4798e-01, - 6.7036e-01, 1.6005e-01, 7.3101e-01, 9.4913e-01, - 2.2292e-01, 4.6540e-01, 7.6590e-01, 2.9344e-01, - 5.6223e-01, 8.4355e-01, 8.4945e-01, 1.4869e-01, - 2.8265e-01, 3.2754e-01, 5.8549e-01, 9.8812e-01, - 5.4427e-01, 9.3814e-01, 8.4516e-01, 1.7512e-01, - 1.2307e-02, 2.2939e-01, 7.7071e-01, 1.9977e-01, - 6.3831e-01, 1.4402e-01, 3.9596e-02, 8.3780e-01, - 6.9744e-01, 5.2304e-02, 1.7853e-01, 2.9282e-01, - 5.7428e-01, 3.6008e-01, 1.5117e-01, 8.0683e-01, - 6.9041e-02, 5.8242e-01, 9.0514e-01, 7.4588e-01, - 7.5412e-01, 9.1699e-01, 3.8286e-01, 9.6918e-01, - 7.4727e-01, 1.2312e-01, 4.8375e-01, 3.6856e-01, - 5.6299e-01, 5.3561e-01, 1.4061e-01, 8.9669e-01, - 2.2440e-02, 2.9850e-01, 1.9549e-01, 5.4525e-01, - 3.6535e-01, 4.3468e-01, 5.3884e-01, 4.1129e-01, - 3.4185e-02, 4.7048e-01, 7.9007e-01, 7.4755e-01, - 6.5822e-01, 7.8901e-01, 5.2911e-01, 9.3945e-02, - 3.8728e-01, 2.4384e-01, 9.0271e-01, 7.7139e-01, - 4.5138e-01, 3.9539e-01, 2.1438e-01, 3.5791e-01, - 1.8080e-01, 7.7421e-01, 4.8385e-01, 4.9788e-02, - 2.4055e-01, 7.0484e-01, 7.2661e-02, 1.7125e-01, - 5.6265e-01, 4.2036e-01, 3.2309e-01, 4.4267e-01, - 4.4235e-01, 6.4529e-02, 6.4435e-01, 3.7245e-02, - 9.3981e-02, 9.3849e-01, 7.6635e-01, 9.8748e-01, - 9.3709e-01, 4.7264e-01, 7.2366e-01, 2.8555e-01, - 6.0730e-01, 1.6315e-01, 1.9633e-01, 8.5030e-01, - 7.9308e-01, 8.9903e-01, 3.8550e-01, 1.0205e-01, - 7.1600e-01, 9.5343e-01, 5.6221e-01, 2.4332e-01, - 6.6738e-01, 6.3110e-01, 3.8857e-01, 3.1838e-01, - 9.9205e-01, 1.5720e-01, 5.2410e-01, 9.2976e-01, - 8.2543e-01, 3.3559e-01, 1.9409e-01, 5.6249e-01, - 6.4364e-01, 8.7136e-01, 7.9123e-01, 7.6006e-01, - 9.7435e-01, 1.3732e-04, 3.9675e-01, 1.5987e-01, - 8.7277e-01, 3.2665e-01, 2.4849e-01, 2.3783e-01, - 3.9434e-01, 2.1570e-01, 3.9410e-01, 1.8711e-01, - 8.7186e-01, 1.4542e-01, 2.5107e-01, 4.2214e-01, - 7.4868e-01, 9.8246e-01, 2.5484e-01, 6.8204e-01, - 1.5039e-01, 8.1100e-01, 5.5721e-01, 9.9490e-01, - 3.7944e-01, 6.0125e-01, 9.3454e-01, 4.8494e-01, - 6.9766e-01, 2.8071e-01, 2.0905e-01, 4.3587e-01, - 6.3412e-01, 5.5937e-01, 8.4498e-01, 7.4208e-01, - 3.0776e-01, 2.2212e-01, 1.0559e-01, 9.4254e-02, - 5.3053e-01, 9.3270e-01, 9.7013e-01, 2.7741e-01, - 1.3997e-01, 8.6033e-01, 4.2915e-01, 3.5325e-01, - 4.6135e-02, 7.5784e-01, 9.8773e-01, 1.4273e-01, - 6.0358e-01, 8.2895e-01, 4.6077e-01, 8.1063e-01, - 7.6600e-01, 4.0656e-01]), size=(5000, 5000), nnz=250, - layout=torch.sparse_csr) -tensor([0.9879, 0.6356, 0.7019, ..., 0.7112, 0.3671, 0.2365]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([5000, 5000]) -Rows: 5000 -Size: 25000000 -NNZ: 250 -Density: 1e-05 -Time: 0.04542350769042969 seconds - -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 231157 -ss 5000 -sd 1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 8.796557664871216} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([3111, 1505, 3032, 732, 1363, 1458, 3691, 3479, 1828, - 3597, 4499, 2546, 4494, 4076, 1227, 315, 2912, 2533, - 3803, 3134, 640, 3070, 2300, 518, 2692, 231, 1494, - 3318, 4971, 422, 3082, 2927, 1622, 1132, 2842, 2550, - 858, 3774, 4214, 4966, 4389, 2049, 2398, 2999, 1799, - 2832, 2153, 27, 34, 4389, 312, 3190, 379, 1601, - 1697, 913, 4636, 815, 4061, 1986, 3680, 3169, 4367, - 3393, 3057, 2291, 4827, 23, 1618, 1053, 4545, 3302, - 3422, 4006, 1426, 4955, 4591, 3417, 1313, 3429, 107, - 4218, 3106, 1189, 3912, 4842, 4429, 3575, 3485, 3490, - 882, 360, 4104, 4077, 3992, 276, 3250, 2773, 1205, - 2877, 11, 3594, 1465, 1515, 1908, 3956, 3184, 720, - 1889, 1976, 1938, 4120, 4297, 973, 1625, 917, 1536, - 2392, 3682, 3004, 1179, 4481, 3988, 2811, 4539, 2610, - 1976, 4913, 2042, 484, 1934, 490, 618, 789, 166, - 350, 2451, 3722, 1235, 3537, 525, 2266, 4975, 4220, - 4123, 3129, 2765, 1943, 1088, 691, 3776, 4218, 1634, - 1744, 4688, 1575, 542, 1973, 3945, 1064, 4591, 2998, - 3960, 1404, 946, 565, 2717, 36, 3767, 131, 100, - 2765, 4203, 3784, 4608, 1970, 2801, 2408, 747, 3408, - 4944, 1175, 4949, 618, 3984, 4254, 2862, 67, 4254, - 4339, 3511, 3739, 1527, 1863, 4544, 3760, 3855, 3369, - 2589, 951, 3624, 662, 1187, 539, 768, 3623, 925, - 2247, 4155, 2098, 4222, 3094, 317, 3926, 4819, 4144, - 1170, 4442, 3477, 1185, 1554, 3509, 4061, 4484, 3086, - 3305, 1690, 502, 3177, 194, 4284, 4380, 4057, 3450, - 3635, 259, 715, 4710, 2651, 3054, 874, 3683, 2173, - 4229, 1021, 1554, 2109, 4700, 2191, 703]), - values=tensor([2.0669e-01, 3.0419e-01, 7.9177e-01, 9.1054e-01, - 3.8881e-01, 2.6543e-02, 3.2408e-01, 6.6356e-01, - 8.8613e-01, 5.9837e-02, 3.7951e-02, 3.4136e-01, - 1.1472e-01, 7.0817e-01, 3.4534e-01, 8.1697e-01, - 7.8754e-01, 7.8023e-01, 9.8801e-01, 9.9044e-01, - 1.5503e-01, 7.4190e-01, 2.0235e-02, 6.9844e-01, - 5.3330e-01, 1.2781e-01, 4.3680e-01, 3.2064e-01, - 5.9791e-01, 2.7496e-01, 7.0680e-01, 8.9543e-01, - 4.9085e-01, 6.2210e-02, 9.5831e-01, 7.1969e-01, - 4.5026e-01, 7.6189e-01, 6.9882e-01, 6.1830e-01, - 5.8254e-01, 7.1547e-01, 4.9443e-02, 2.3599e-01, - 3.0458e-01, 4.0447e-02, 3.1721e-01, 5.4475e-01, - 3.5915e-01, 3.9749e-01, 9.9941e-01, 1.6159e-01, - 4.4237e-01, 1.9078e-02, 2.7571e-01, 2.7359e-01, - 9.9205e-01, 8.2766e-01, 8.6948e-01, 5.9782e-01, - 9.2542e-02, 7.7287e-01, 2.5357e-01, 1.8439e-01, - 7.9355e-01, 4.9629e-01, 5.9496e-01, 8.0447e-01, - 7.1515e-01, 5.4041e-02, 2.8823e-01, 9.8319e-01, - 4.7970e-01, 7.2357e-01, 7.7834e-01, 3.4206e-01, - 2.4327e-01, 1.9641e-01, 4.3483e-01, 8.9675e-01, - 4.0813e-01, 7.5780e-01, 6.0567e-01, 9.2070e-01, - 9.5528e-01, 1.0617e-01, 7.5111e-01, 7.6998e-01, - 6.0210e-01, 1.4799e-01, 4.0369e-01, 5.5275e-01, - 5.6840e-01, 3.7878e-02, 3.9622e-01, 1.8217e-01, - 3.4162e-01, 6.7866e-01, 7.1868e-01, 6.7883e-01, - 1.2529e-01, 4.3035e-01, 9.3351e-01, 8.2335e-02, - 5.3977e-01, 1.7512e-01, 6.0881e-01, 8.6248e-01, - 7.3078e-02, 1.8153e-01, 3.9403e-01, 4.1817e-01, - 3.3126e-01, 3.6032e-01, 8.9726e-01, 2.7930e-01, - 4.8792e-01, 1.3891e-01, 2.4751e-01, 2.7167e-01, - 5.0927e-01, 4.1055e-01, 5.6724e-01, 2.4879e-01, - 2.5197e-02, 1.5971e-01, 3.7132e-01, 4.2815e-01, - 4.7405e-01, 7.3214e-03, 9.0357e-01, 8.8350e-01, - 4.2344e-01, 8.0222e-01, 7.7010e-01, 2.6446e-02, - 5.6419e-01, 5.7975e-01, 5.3498e-01, 9.6349e-01, - 3.2383e-01, 4.7991e-02, 4.7514e-01, 2.0036e-01, - 8.6415e-04, 9.9960e-01, 5.2178e-01, 6.4406e-01, - 9.3008e-01, 5.5881e-01, 5.6610e-01, 7.9121e-01, - 9.2545e-02, 1.7558e-01, 4.5158e-01, 3.8172e-01, - 6.0582e-02, 5.0875e-01, 2.3341e-01, 8.0988e-01, - 8.7313e-02, 4.8022e-01, 2.4678e-01, 8.3788e-01, - 7.9942e-01, 9.3012e-01, 5.4482e-01, 5.7269e-01, - 2.2313e-01, 5.1440e-01, 8.5668e-01, 2.1900e-01, - 1.4248e-01, 6.0751e-01, 5.3076e-01, 8.7603e-01, - 4.7428e-01, 2.8933e-01, 1.1634e-01, 8.0641e-01, - 3.4647e-01, 2.6982e-01, 7.9889e-01, 7.3652e-01, - 8.6185e-02, 6.1090e-01, 1.8993e-01, 2.4439e-01, - 7.7528e-01, 5.1831e-01, 9.1209e-01, 4.2962e-02, - 9.5979e-01, 7.4704e-01, 3.4324e-02, 9.3159e-01, - 6.9336e-01, 2.2471e-02, 9.5922e-01, 8.1222e-02, - 8.0286e-01, 4.4178e-01, 5.1294e-01, 9.6079e-02, - 2.4623e-01, 2.3545e-01, 5.7434e-01, 4.0688e-01, - 6.4868e-01, 4.6111e-01, 2.1279e-01, 9.6345e-01, - 6.5069e-01, 5.7718e-01, 3.1769e-01, 1.3943e-01, - 2.0508e-01, 8.1624e-01, 7.2834e-01, 6.5481e-01, - 8.5438e-01, 5.3953e-01, 9.2988e-01, 1.0805e-01, - 2.8558e-01, 3.1275e-01, 1.8994e-01, 9.4125e-01, - 5.2808e-01, 8.8916e-01, 2.7744e-01, 1.4636e-01, - 6.6310e-01, 3.0763e-01, 3.7309e-01, 1.1286e-01, - 4.0607e-01, 5.7583e-01, 9.4268e-01, 7.0912e-01, - 7.5993e-01, 4.2294e-01, 2.2556e-01, 6.7211e-01, - 7.0234e-01, 5.8525e-02, 2.9419e-01, 7.4268e-01, - 2.3487e-01, 5.2578e-01]), size=(5000, 5000), nnz=250, - layout=torch.sparse_csr) -tensor([0.6897, 0.5913, 0.2174, ..., 0.0385, 0.9360, 0.0281]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([5000, 5000]) -Rows: 5000 -Size: 25000000 -NNZ: 250 -Density: 1e-05 -Time: 8.796557664871216 seconds - -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 275920 -ss 5000 -sd 1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.428882360458374} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([1877, 1947, 3773, 1993, 3968, 2885, 3290, 1001, 3173, - 4910, 3638, 1123, 363, 1623, 2284, 1294, 3337, 1282, - 4527, 2181, 2496, 1486, 3269, 4914, 4411, 4627, 359, - 3937, 665, 2560, 4669, 1367, 4279, 2817, 2471, 714, - 3730, 1285, 2127, 1225, 3561, 1263, 4928, 962, 4246, - 2702, 4253, 1515, 1836, 1347, 3425, 3010, 841, 367, - 1474, 2557, 196, 3492, 4052, 1834, 372, 3142, 1541, - 3239, 1385, 3426, 430, 2192, 532, 4474, 1430, 267, - 833, 2225, 483, 2285, 3698, 4524, 1621, 1341, 4764, - 3118, 3570, 1901, 1111, 4654, 3844, 3263, 2577, 3400, - 4581, 4373, 3789, 4354, 2343, 2834, 3928, 1783, 4873, - 2054, 1997, 2249, 2170, 946, 1584, 4950, 1563, 3039, - 584, 2993, 3861, 3063, 1816, 784, 2505, 3309, 3091, - 3813, 1955, 2014, 1513, 2785, 1124, 4921, 2653, 215, - 1720, 4008, 467, 2665, 934, 4083, 732, 447, 3024, - 3508, 4583, 1928, 3999, 2112, 430, 3549, 2224, 4453, - 292, 788, 4633, 434, 1519, 2797, 4314, 3456, 1463, - 1133, 1520, 2779, 195, 566, 4705, 4339, 87, 3759, - 1171, 632, 4702, 4443, 3675, 4063, 3423, 1515, 3264, - 3975, 3586, 907, 4416, 890, 2296, 2089, 4867, 4932, - 4241, 1398, 950, 4682, 2581, 4604, 1861, 1492, 4359, - 3001, 171, 3190, 4056, 2779, 2102, 2341, 2228, 666, - 4124, 3282, 4080, 1125, 1782, 4068, 4582, 1989, 1861, - 2397, 1906, 3592, 4009, 2809, 3893, 4602, 4885, 4329, - 1546, 3221, 1533, 1812, 711, 832, 3637, 2430, 702, - 1951, 2527, 1663, 4378, 3187, 1848, 1976, 4944, 1611, - 3986, 4768, 1832, 171, 533, 127, 3370, 4616, 3556, - 3675, 2756, 3820, 3848, 2775, 4085, 1946]), - values=tensor([0.3630, 0.4957, 0.7258, 0.9637, 0.5431, 0.7370, 0.5194, - 0.1412, 0.9194, 0.8806, 0.2809, 0.4495, 0.3054, 0.7229, - 0.6894, 0.5378, 0.4829, 0.7917, 0.1077, 0.9396, 0.0834, - 0.8145, 0.2291, 0.0220, 0.8667, 0.8206, 0.7176, 0.1748, - 0.5433, 0.5398, 0.6732, 0.5495, 0.1751, 0.1751, 0.5534, - 0.4533, 0.5127, 0.9043, 0.7276, 0.3139, 0.4018, 0.6593, - 0.5712, 0.8906, 0.5321, 0.0490, 0.8603, 0.3211, 0.9292, - 0.2516, 0.5976, 0.6960, 0.6822, 0.0183, 0.1419, 0.0510, - 0.5915, 0.9381, 0.7663, 0.9175, 0.1026, 0.1428, 0.3603, - 0.1690, 0.2574, 0.9703, 0.3816, 0.3120, 0.6138, 0.6402, - 0.0171, 0.1702, 0.0571, 0.1251, 0.4789, 0.2100, 0.4597, - 0.8236, 0.2093, 0.3392, 0.8809, 0.8206, 0.6653, 0.7105, - 0.9427, 0.4744, 0.2605, 0.1657, 0.1195, 0.1792, 0.5307, - 0.1174, 0.6758, 0.8184, 0.0607, 0.0558, 0.3782, 0.8926, - 0.6897, 0.9924, 0.7956, 0.0060, 0.2666, 0.9269, 0.6602, - 0.5276, 0.2277, 0.4849, 0.8321, 0.2135, 0.2296, 0.7282, - 0.5446, 0.1493, 0.5845, 0.2697, 0.2635, 0.0055, 0.3342, - 0.6531, 0.8835, 0.6970, 0.3925, 0.6332, 0.2833, 0.7464, - 0.9403, 0.9564, 0.8529, 0.8534, 0.4902, 0.3672, 0.4884, - 0.3826, 0.8277, 0.2524, 0.5006, 0.8262, 0.8556, 0.5518, - 0.9345, 0.1818, 0.7419, 0.5510, 0.7359, 0.2338, 0.5242, - 0.8847, 0.7894, 0.5148, 0.5220, 0.3152, 0.5588, 0.6758, - 0.0222, 0.8094, 0.8800, 0.5482, 0.7029, 0.4511, 0.5521, - 0.1426, 0.5819, 0.4684, 0.3203, 0.4558, 0.0605, 0.4645, - 0.6967, 0.5420, 0.5383, 0.3399, 0.6017, 0.2217, 0.2779, - 0.6034, 0.6186, 0.5877, 0.7226, 0.4771, 0.2736, 0.9442, - 0.4016, 0.5813, 0.3926, 0.6636, 0.2000, 0.5234, 0.8594, - 0.4283, 0.8253, 0.1300, 0.3810, 0.0496, 0.8722, 0.5976, - 0.0028, 0.5374, 0.0379, 0.0610, 0.9205, 0.9022, 0.6780, - 0.7337, 0.3928, 0.7007, 0.0730, 0.0899, 0.4352, 0.2480, - 0.7721, 0.6286, 0.0462, 0.5434, 0.2214, 0.2005, 0.5352, - 0.2866, 0.1634, 0.3716, 0.1574, 0.2559, 0.6104, 0.9417, - 0.5436, 0.9351, 0.6446, 0.8506, 0.6360, 0.5124, 0.9341, - 0.9751, 0.4728, 0.6908, 0.5778, 0.2603, 0.9571, 0.5985, - 0.0453, 0.2921, 0.4748, 0.9573, 0.6189, 0.2369, 0.4918, - 0.2829, 0.0867, 0.8730, 0.1781, 0.6966]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 249, 249, 250]), + col_indices=tensor([1969, 3660, 2508, 3210, 4469, 2580, 1634, 4852, 2880, + 4171, 145, 1923, 1759, 292, 976, 2609, 4097, 2004, + 2150, 921, 866, 680, 1106, 3111, 2786, 1102, 3351, + 842, 4401, 1712, 443, 1843, 4964, 3710, 2157, 2831, + 4456, 4953, 180, 4915, 1729, 1065, 1121, 4037, 4202, + 790, 3058, 490, 2402, 821, 2529, 697, 3606, 4981, + 1841, 2976, 2610, 4155, 4902, 3543, 1747, 1961, 3342, + 3548, 4564, 2128, 4095, 930, 3054, 2352, 4784, 3523, + 1341, 4422, 1218, 1510, 1390, 865, 1724, 166, 3901, + 1272, 2149, 1488, 1813, 2931, 985, 697, 3723, 958, + 3733, 65, 4612, 4936, 1010, 4190, 432, 2031, 1484, + 3237, 225, 3100, 3677, 30, 1750, 2122, 2814, 1486, + 4879, 4720, 3646, 3648, 1716, 344, 4485, 818, 3342, + 1481, 4585, 2091, 1043, 1961, 466, 2604, 1267, 2219, + 379, 4743, 1233, 4480, 2900, 1400, 1058, 3165, 3216, + 1136, 4573, 4401, 106, 3885, 340, 2591, 62, 4321, + 4518, 4971, 529, 1453, 2522, 1821, 3359, 1768, 3615, + 560, 3497, 2950, 4004, 3758, 1175, 749, 2979, 552, + 596, 1500, 318, 4113, 4216, 349, 3504, 1704, 2177, + 110, 1213, 2730, 623, 979, 4943, 5, 3100, 4274, + 1196, 1212, 1292, 4837, 2749, 2657, 2151, 116, 3452, + 1048, 4726, 3050, 2235, 3572, 3103, 2468, 336, 256, + 3689, 3259, 4778, 4872, 4322, 4966, 992, 1906, 4507, + 3887, 3908, 4661, 4040, 2063, 4632, 2722, 1787, 3381, + 2148, 4178, 2261, 3851, 1401, 2459, 2100, 1771, 2949, + 4688, 3574, 4745, 4027, 705, 4556, 616, 3800, 1985, + 763, 4632, 1608, 1959, 3621, 896, 2004, 4509, 4069, + 2954, 1079, 553, 3501, 741, 537, 251]), + values=tensor([0.4598, 0.9685, 0.1022, 0.6570, 0.2626, 0.0213, 0.4956, + 0.5380, 0.8437, 0.5470, 0.0848, 0.9620, 0.0264, 0.2693, + 0.6692, 0.6401, 0.9283, 0.8706, 0.6275, 0.5943, 0.3989, + 0.0766, 0.9946, 0.3522, 0.5912, 0.5773, 0.4771, 0.7005, + 0.3650, 0.1154, 0.5630, 0.9184, 0.7700, 0.6786, 0.7164, + 0.8177, 0.4007, 0.8722, 0.7773, 0.2355, 0.0635, 0.3183, + 0.2674, 0.1684, 0.4826, 0.2298, 0.6975, 0.5790, 0.7160, + 0.7090, 0.3192, 0.5709, 0.6972, 0.7933, 0.5030, 0.7005, + 0.6711, 0.9473, 0.3130, 0.7328, 0.0053, 0.6263, 0.3400, + 0.8317, 0.2127, 0.6912, 0.5279, 0.3351, 0.9454, 0.0502, + 0.5418, 0.3942, 0.6647, 0.1585, 0.1151, 0.4637, 0.2766, + 0.6645, 0.2561, 0.3586, 0.9007, 0.5641, 0.9024, 0.0924, + 0.7442, 0.4202, 0.9456, 0.3672, 0.6816, 0.6385, 0.3813, + 0.9352, 0.7740, 0.6736, 0.3753, 0.4691, 0.5509, 0.9780, + 0.7039, 0.8897, 0.5298, 0.1267, 0.2404, 0.1878, 0.8542, + 0.5178, 0.8945, 0.4190, 0.8436, 0.0710, 0.7443, 0.1508, + 0.8032, 0.7493, 0.7469, 0.6805, 0.5330, 0.9512, 0.6693, + 0.2875, 0.6060, 0.0101, 0.6329, 0.2104, 0.2244, 0.8216, + 0.9850, 0.4320, 0.6288, 0.3139, 0.5255, 0.8128, 0.7760, + 0.1620, 0.7643, 0.1907, 0.2993, 0.8513, 0.3012, 0.8852, + 0.2619, 0.0229, 0.3957, 0.9602, 0.2258, 0.9232, 0.3917, + 0.9188, 0.1363, 0.2426, 0.1136, 0.6949, 0.1461, 0.1346, + 0.9068, 0.3140, 0.4405, 0.5547, 0.7829, 0.5939, 0.7712, + 0.2027, 0.1672, 0.0139, 0.3950, 0.5428, 0.8675, 0.7414, + 0.0223, 0.4081, 0.0576, 0.0795, 0.5466, 0.8051, 0.7481, + 0.9772, 0.6723, 0.3420, 0.3703, 0.9258, 0.7375, 0.0725, + 0.3308, 0.3117, 0.7279, 0.7861, 0.0210, 0.0730, 0.7490, + 0.2970, 0.3351, 0.7560, 0.6932, 0.1496, 0.7733, 0.0425, + 0.6190, 0.6584, 0.3857, 0.2533, 0.8724, 0.8049, 0.1764, + 0.5947, 0.7425, 0.4336, 0.4669, 0.5320, 0.4576, 0.7077, + 0.9652, 0.4590, 0.0046, 0.8577, 0.7045, 0.2574, 0.6998, + 0.6151, 0.3438, 0.0111, 0.9822, 0.5390, 0.2832, 0.0368, + 0.2525, 0.0950, 0.9720, 0.8354, 0.5121, 0.4167, 0.7493, + 0.0233, 0.0628, 0.4681, 0.4028, 0.7881, 0.6370, 0.0526, + 0.9211, 0.1381, 0.0723, 0.8459, 0.6295, 0.9210, 0.7735, + 0.6887, 0.7409, 0.5606, 0.9654, 0.1055]), size=(5000, 5000), nnz=250, layout=torch.sparse_csr) -tensor([0.7582, 0.3275, 0.7400, ..., 0.8955, 0.3174, 0.3280]) +tensor([0.8735, 0.3833, 0.2694, ..., 0.9142, 0.8243, 0.1368]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -293,77 +77,161 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 10.428882360458374 seconds +Time: 0.012943029403686523 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 81124 -ss 5000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 3.069929599761963} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 249, 250, 250]), + col_indices=tensor([4942, 4831, 3020, 4398, 15, 273, 1128, 112, 3723, + 3585, 170, 3865, 4631, 2789, 948, 1973, 2152, 1168, + 2755, 4895, 2445, 616, 942, 1070, 15, 1656, 1361, + 381, 4008, 517, 700, 1825, 1420, 3779, 3711, 3163, + 2300, 1341, 3184, 1297, 1550, 2711, 522, 3966, 1184, + 705, 4226, 2826, 2546, 3410, 4394, 1120, 1279, 3317, + 623, 3259, 183, 314, 3816, 2320, 512, 2393, 3294, + 3842, 3425, 455, 1652, 4397, 4874, 478, 513, 654, + 1631, 4536, 2192, 2601, 483, 4710, 64, 1715, 545, + 2242, 2044, 2755, 1543, 1597, 1787, 451, 1992, 2258, + 3437, 2378, 4190, 1069, 538, 3841, 4601, 4983, 2955, + 805, 2644, 3782, 688, 4775, 1057, 1887, 2840, 250, + 1640, 4588, 2355, 3842, 4628, 1450, 1276, 2776, 1876, + 703, 2888, 1093, 3936, 2831, 3151, 3865, 1871, 2237, + 1038, 3246, 1430, 323, 1681, 4674, 4158, 2884, 296, + 1248, 3609, 4395, 2571, 3253, 2353, 1909, 2894, 3695, + 4937, 191, 309, 1354, 2926, 2944, 4425, 3127, 3554, + 4775, 2727, 2655, 3557, 3449, 1163, 2318, 4832, 772, + 2251, 4810, 985, 1751, 1979, 3306, 2880, 4074, 740, + 443, 4107, 3879, 2043, 2031, 1254, 2409, 1790, 4884, + 4795, 4046, 3848, 914, 1554, 1268, 549, 3310, 1243, + 1703, 3704, 1174, 859, 2408, 4434, 1686, 3699, 3911, + 241, 4764, 2817, 4123, 1459, 2878, 3106, 16, 1449, + 1804, 3917, 2039, 916, 3993, 4637, 4103, 646, 344, + 4563, 2694, 3833, 3678, 2981, 1194, 2210, 1306, 1590, + 4934, 1620, 3680, 1815, 2507, 2898, 4255, 91, 4315, + 1006, 2747, 1763, 4043, 3117, 1987, 1941, 903, 4871, + 2123, 2041, 2574, 168, 2922, 2931, 3435]), + values=tensor([0.2833, 0.5136, 0.0459, 0.1040, 0.7712, 0.7813, 0.1004, + 0.0062, 0.4357, 0.2247, 0.8578, 0.6295, 0.0947, 0.0842, + 0.8159, 0.8756, 0.7754, 0.3890, 0.9475, 0.7902, 0.1690, + 0.2878, 0.8893, 0.3483, 0.2502, 0.4294, 0.6224, 0.2795, + 0.6981, 0.6980, 0.8634, 0.5843, 0.9074, 0.4490, 0.0617, + 0.7705, 0.8034, 0.4257, 0.7807, 0.9320, 0.2211, 0.0095, + 0.0758, 0.1987, 0.1954, 0.2907, 0.0185, 0.5826, 0.8663, + 0.7792, 0.8892, 0.0709, 0.3218, 0.2257, 0.4393, 0.5281, + 0.5105, 0.4052, 0.7907, 0.7483, 0.7892, 0.7607, 0.5190, + 0.1815, 0.1591, 0.5976, 0.6474, 0.6874, 0.8319, 0.0260, + 0.0388, 0.4193, 0.6536, 0.3715, 0.0266, 0.9481, 0.0870, + 0.8892, 0.7519, 0.8104, 0.4144, 0.7611, 0.0463, 0.1582, + 0.3558, 0.3084, 0.5278, 0.9900, 0.2019, 0.3355, 0.5727, + 0.0312, 0.7009, 0.2438, 0.6987, 0.0688, 0.4630, 0.8762, + 0.0429, 0.9174, 0.3364, 0.0108, 0.6176, 0.8302, 0.3550, + 0.6954, 0.9373, 0.8688, 0.2691, 0.2429, 0.5154, 0.3210, + 0.8363, 0.5592, 0.6375, 0.9608, 0.3593, 0.4214, 0.9371, + 0.5875, 0.2839, 0.6313, 0.8389, 0.0214, 0.7557, 0.6381, + 0.6212, 0.9792, 0.4905, 0.7606, 0.5632, 0.9431, 0.6739, + 0.1004, 0.5870, 0.3454, 0.2936, 0.8579, 0.0211, 0.1297, + 0.0434, 0.1458, 0.3630, 0.6936, 0.4422, 0.1285, 0.0197, + 0.5356, 0.2039, 0.0330, 0.8242, 0.3233, 0.8126, 0.8089, + 0.1323, 0.4931, 0.0051, 0.9759, 0.3736, 0.9694, 0.3810, + 0.6330, 0.9848, 0.5658, 0.7909, 0.5722, 0.8562, 0.9056, + 0.3408, 0.6105, 0.9888, 0.2522, 0.9582, 0.6931, 0.8565, + 0.8791, 0.4252, 0.0752, 0.4302, 0.2072, 0.9998, 0.0920, + 0.9465, 0.9645, 0.2478, 0.6900, 0.8499, 0.9862, 0.6104, + 0.7144, 0.8192, 0.7493, 0.2478, 0.5926, 0.6255, 0.9983, + 0.1475, 0.4227, 0.7128, 0.3703, 0.4025, 0.7491, 0.2392, + 0.8266, 0.0100, 0.6364, 0.4916, 0.8482, 0.7480, 0.7567, + 0.6271, 0.0847, 0.4248, 0.2642, 0.0890, 0.5453, 0.8654, + 0.6751, 0.0013, 0.9619, 0.9277, 0.1302, 0.1956, 0.7206, + 0.7741, 0.7104, 0.3550, 0.2532, 0.0939, 0.7434, 0.5649, + 0.0455, 0.1135, 0.6381, 0.8138, 0.5254, 0.5858, 0.1065, + 0.1493, 0.3104, 0.8119, 0.6904, 0.9596, 0.5459, 0.5380, + 0.4871, 0.4126, 0.3848, 0.8347, 0.6321]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.3638, 0.9432, 0.7166, ..., 0.3961, 0.0448, 0.0792]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 3.069929599761963 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 277466 -ss 5000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.306395292282104} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([1877, 1947, 3773, 1993, 3968, 2885, 3290, 1001, 3173, - 4910, 3638, 1123, 363, 1623, 2284, 1294, 3337, 1282, - 4527, 2181, 2496, 1486, 3269, 4914, 4411, 4627, 359, - 3937, 665, 2560, 4669, 1367, 4279, 2817, 2471, 714, - 3730, 1285, 2127, 1225, 3561, 1263, 4928, 962, 4246, - 2702, 4253, 1515, 1836, 1347, 3425, 3010, 841, 367, - 1474, 2557, 196, 3492, 4052, 1834, 372, 3142, 1541, - 3239, 1385, 3426, 430, 2192, 532, 4474, 1430, 267, - 833, 2225, 483, 2285, 3698, 4524, 1621, 1341, 4764, - 3118, 3570, 1901, 1111, 4654, 3844, 3263, 2577, 3400, - 4581, 4373, 3789, 4354, 2343, 2834, 3928, 1783, 4873, - 2054, 1997, 2249, 2170, 946, 1584, 4950, 1563, 3039, - 584, 2993, 3861, 3063, 1816, 784, 2505, 3309, 3091, - 3813, 1955, 2014, 1513, 2785, 1124, 4921, 2653, 215, - 1720, 4008, 467, 2665, 934, 4083, 732, 447, 3024, - 3508, 4583, 1928, 3999, 2112, 430, 3549, 2224, 4453, - 292, 788, 4633, 434, 1519, 2797, 4314, 3456, 1463, - 1133, 1520, 2779, 195, 566, 4705, 4339, 87, 3759, - 1171, 632, 4702, 4443, 3675, 4063, 3423, 1515, 3264, - 3975, 3586, 907, 4416, 890, 2296, 2089, 4867, 4932, - 4241, 1398, 950, 4682, 2581, 4604, 1861, 1492, 4359, - 3001, 171, 3190, 4056, 2779, 2102, 2341, 2228, 666, - 4124, 3282, 4080, 1125, 1782, 4068, 4582, 1989, 1861, - 2397, 1906, 3592, 4009, 2809, 3893, 4602, 4885, 4329, - 1546, 3221, 1533, 1812, 711, 832, 3637, 2430, 702, - 1951, 2527, 1663, 4378, 3187, 1848, 1976, 4944, 1611, - 3986, 4768, 1832, 171, 533, 127, 3370, 4616, 3556, - 3675, 2756, 3820, 3848, 2775, 4085, 1946]), - values=tensor([0.3630, 0.4957, 0.7258, 0.9637, 0.5431, 0.7370, 0.5194, - 0.1412, 0.9194, 0.8806, 0.2809, 0.4495, 0.3054, 0.7229, - 0.6894, 0.5378, 0.4829, 0.7917, 0.1077, 0.9396, 0.0834, - 0.8145, 0.2291, 0.0220, 0.8667, 0.8206, 0.7176, 0.1748, - 0.5433, 0.5398, 0.6732, 0.5495, 0.1751, 0.1751, 0.5534, - 0.4533, 0.5127, 0.9043, 0.7276, 0.3139, 0.4018, 0.6593, - 0.5712, 0.8906, 0.5321, 0.0490, 0.8603, 0.3211, 0.9292, - 0.2516, 0.5976, 0.6960, 0.6822, 0.0183, 0.1419, 0.0510, - 0.5915, 0.9381, 0.7663, 0.9175, 0.1026, 0.1428, 0.3603, - 0.1690, 0.2574, 0.9703, 0.3816, 0.3120, 0.6138, 0.6402, - 0.0171, 0.1702, 0.0571, 0.1251, 0.4789, 0.2100, 0.4597, - 0.8236, 0.2093, 0.3392, 0.8809, 0.8206, 0.6653, 0.7105, - 0.9427, 0.4744, 0.2605, 0.1657, 0.1195, 0.1792, 0.5307, - 0.1174, 0.6758, 0.8184, 0.0607, 0.0558, 0.3782, 0.8926, - 0.6897, 0.9924, 0.7956, 0.0060, 0.2666, 0.9269, 0.6602, - 0.5276, 0.2277, 0.4849, 0.8321, 0.2135, 0.2296, 0.7282, - 0.5446, 0.1493, 0.5845, 0.2697, 0.2635, 0.0055, 0.3342, - 0.6531, 0.8835, 0.6970, 0.3925, 0.6332, 0.2833, 0.7464, - 0.9403, 0.9564, 0.8529, 0.8534, 0.4902, 0.3672, 0.4884, - 0.3826, 0.8277, 0.2524, 0.5006, 0.8262, 0.8556, 0.5518, - 0.9345, 0.1818, 0.7419, 0.5510, 0.7359, 0.2338, 0.5242, - 0.8847, 0.7894, 0.5148, 0.5220, 0.3152, 0.5588, 0.6758, - 0.0222, 0.8094, 0.8800, 0.5482, 0.7029, 0.4511, 0.5521, - 0.1426, 0.5819, 0.4684, 0.3203, 0.4558, 0.0605, 0.4645, - 0.6967, 0.5420, 0.5383, 0.3399, 0.6017, 0.2217, 0.2779, - 0.6034, 0.6186, 0.5877, 0.7226, 0.4771, 0.2736, 0.9442, - 0.4016, 0.5813, 0.3926, 0.6636, 0.2000, 0.5234, 0.8594, - 0.4283, 0.8253, 0.1300, 0.3810, 0.0496, 0.8722, 0.5976, - 0.0028, 0.5374, 0.0379, 0.0610, 0.9205, 0.9022, 0.6780, - 0.7337, 0.3928, 0.7007, 0.0730, 0.0899, 0.4352, 0.2480, - 0.7721, 0.6286, 0.0462, 0.5434, 0.2214, 0.2005, 0.5352, - 0.2866, 0.1634, 0.3716, 0.1574, 0.2559, 0.6104, 0.9417, - 0.5436, 0.9351, 0.6446, 0.8506, 0.6360, 0.5124, 0.9341, - 0.9751, 0.4728, 0.6908, 0.5778, 0.2603, 0.9571, 0.5985, - 0.0453, 0.2921, 0.4748, 0.9573, 0.6189, 0.2369, 0.4918, - 0.2829, 0.0867, 0.8730, 0.1781, 0.6966]), + col_indices=tensor([2530, 1671, 1710, 529, 4147, 2671, 774, 3521, 3142, + 4079, 2231, 3137, 198, 1214, 3263, 994, 2667, 2294, + 182, 3631, 1055, 2979, 71, 3078, 4821, 3439, 3949, + 2018, 1636, 1734, 4146, 1819, 670, 2737, 4839, 929, + 652, 4064, 1709, 1446, 637, 485, 3208, 2342, 4556, + 3470, 1760, 3837, 1164, 826, 2500, 338, 4213, 1539, + 2699, 7, 3593, 628, 2634, 1851, 2277, 2906, 1873, + 3675, 109, 933, 39, 1888, 3153, 1802, 2749, 4653, + 10, 1407, 3436, 4501, 1652, 4732, 4648, 3990, 3869, + 1528, 3105, 3115, 2926, 448, 1508, 3766, 414, 0, + 99, 1356, 732, 2391, 4307, 374, 3096, 3847, 1168, + 2149, 2270, 3071, 2538, 4038, 1887, 3751, 3671, 1345, + 271, 1144, 828, 1558, 3741, 642, 1130, 26, 2512, + 1351, 4437, 62, 3040, 3132, 4639, 4608, 3358, 1316, + 2346, 4344, 2385, 4204, 358, 3346, 4011, 297, 728, + 1635, 4143, 3858, 4661, 2365, 4156, 4923, 3921, 4212, + 419, 1025, 1912, 1997, 3589, 965, 4863, 581, 2400, + 2128, 2335, 3936, 4843, 1018, 2088, 3052, 1843, 3652, + 3264, 2342, 212, 2423, 2603, 526, 4357, 2538, 2326, + 4304, 4490, 19, 2158, 4734, 2481, 4574, 1764, 4922, + 1924, 1668, 665, 3628, 4416, 779, 3359, 3281, 668, + 2259, 684, 1693, 262, 2335, 2116, 2444, 285, 472, + 1695, 1989, 2831, 2933, 4834, 3892, 2679, 43, 338, + 1143, 3133, 3290, 2874, 3505, 1654, 2420, 3323, 4487, + 4528, 2876, 3002, 3959, 635, 1503, 2493, 4974, 3994, + 3304, 3215, 2609, 4509, 2631, 2777, 683, 3623, 3596, + 2685, 115, 2166, 1456, 3440, 4502, 1541, 136, 4160, + 2313, 2928, 4917, 3863, 3827, 2109, 4794]), + values=tensor([0.1255, 0.3198, 0.8133, 0.3742, 0.0163, 0.1439, 0.7607, + 0.6784, 0.8830, 0.0545, 0.8528, 0.7242, 0.8352, 0.4737, + 0.9256, 0.7090, 0.7451, 0.5297, 0.6794, 0.7283, 0.9067, + 0.0313, 0.2449, 0.1565, 0.6919, 0.4035, 0.9905, 0.2192, + 0.0562, 0.4841, 0.8665, 0.8712, 0.9887, 0.8805, 0.4264, + 0.9291, 0.7188, 0.3153, 0.5767, 0.0112, 0.8354, 0.4919, + 0.1313, 0.2676, 0.8495, 0.9700, 0.8615, 0.6450, 0.0071, + 0.4545, 0.8713, 0.2228, 0.4878, 0.1926, 0.0886, 0.8092, + 0.4330, 0.1067, 0.1112, 0.2683, 0.4340, 0.7229, 0.1649, + 0.0932, 0.0193, 0.5783, 0.2193, 0.3091, 0.4364, 0.5673, + 0.8010, 0.5772, 0.0521, 0.5829, 0.4101, 0.3786, 0.0283, + 0.4786, 0.3304, 0.3446, 0.7315, 0.6206, 0.8294, 0.4404, + 0.4676, 0.0871, 0.3497, 0.0069, 0.9043, 0.8947, 0.1952, + 0.6809, 0.4255, 0.1696, 0.7442, 0.9124, 0.8603, 0.9907, + 0.1133, 0.2677, 0.6551, 0.8223, 0.8137, 0.2411, 0.5924, + 0.7002, 0.4248, 0.2041, 0.8601, 0.8179, 0.6180, 0.7986, + 0.0067, 0.6255, 0.0265, 0.4455, 0.0788, 0.2798, 0.3073, + 0.9253, 0.6087, 0.7948, 0.9058, 0.2527, 0.3922, 0.9638, + 0.1626, 0.4231, 0.5916, 0.0663, 0.3747, 0.8133, 0.1672, + 0.4958, 0.1234, 0.2670, 0.0752, 0.3763, 0.6411, 0.3294, + 0.4132, 0.2682, 0.3319, 0.1004, 0.6692, 0.2485, 0.0663, + 0.1318, 0.4180, 0.2011, 0.4748, 0.2487, 0.0200, 0.3002, + 0.6475, 0.2552, 0.7456, 0.9304, 0.8959, 0.8069, 0.8309, + 0.8055, 0.5114, 0.9547, 0.4277, 0.3391, 0.6653, 0.7441, + 0.9317, 0.2522, 0.9794, 0.9450, 0.7609, 0.7552, 0.3464, + 0.2683, 0.6131, 0.7507, 0.3858, 0.2947, 0.5291, 0.7914, + 0.4452, 0.6309, 0.6569, 0.3974, 0.5452, 0.9065, 0.8000, + 0.7314, 0.8661, 0.0826, 0.0659, 0.8406, 0.3397, 0.6235, + 0.6886, 0.4334, 0.9899, 0.6808, 0.0386, 0.9324, 0.6160, + 0.2724, 0.3632, 0.4386, 0.4733, 0.7494, 0.2806, 0.7238, + 0.0116, 0.8061, 0.3580, 0.8134, 0.7511, 0.4690, 0.9418, + 0.0495, 0.8282, 0.9024, 0.7411, 0.2424, 0.5263, 0.6983, + 0.9412, 0.6025, 0.1977, 0.9907, 0.4170, 0.2685, 0.9711, + 0.6755, 0.6817, 0.5130, 0.8481, 0.9901, 0.9980, 0.3527, + 0.5949, 0.5533, 0.2777, 0.4754, 0.0948, 0.6148, 0.7233, + 0.0545, 0.7637, 0.1155, 0.4005, 0.7155]), size=(5000, 5000), nnz=250, layout=torch.sparse_csr) -tensor([0.7582, 0.3275, 0.7400, ..., 0.8955, 0.3174, 0.3280]) +tensor([0.1431, 0.4969, 0.0611, ..., 0.8896, 0.3924, 0.7446]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -371,13 +239,91 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 10.428882360458374 seconds +Time: 10.306395292282104 seconds -[20.56, 20.68, 20.64, 20.44, 20.64, 20.48, 20.48, 20.64, 20.68, 20.72] -[20.84, 20.84, 21.12, 24.24, 25.12, 25.84, 26.16, 24.96, 23.68, 23.68, 23.56, 23.8, 24.0, 23.88] -14.239971160888672 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 275920, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.428882360458374, 'TIME_S_1KI': 0.037796761236801875, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 315.0905113220215, 'W': 22.127187461407587} -[20.56, 20.68, 20.64, 20.44, 20.64, 20.48, 20.48, 20.64, 20.68, 20.72, 20.56, 20.72, 20.56, 20.64, 20.56, 20.24, 20.2, 20.44, 20.2, 20.2] -369.26 -18.463 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 275920, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.428882360458374, 'TIME_S_1KI': 0.037796761236801875, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 315.0905113220215, 'W': 22.127187461407587, 'J_1KI': 1.141963291251165, 'W_1KI': 0.08019421376271234, 'W_D': 3.664187461407586, 'J_D': 52.177923778533895, 'W_D_1KI': 0.013279890770540686, 'J_D_1KI': 4.812949684887172e-05} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([2530, 1671, 1710, 529, 4147, 2671, 774, 3521, 3142, + 4079, 2231, 3137, 198, 1214, 3263, 994, 2667, 2294, + 182, 3631, 1055, 2979, 71, 3078, 4821, 3439, 3949, + 2018, 1636, 1734, 4146, 1819, 670, 2737, 4839, 929, + 652, 4064, 1709, 1446, 637, 485, 3208, 2342, 4556, + 3470, 1760, 3837, 1164, 826, 2500, 338, 4213, 1539, + 2699, 7, 3593, 628, 2634, 1851, 2277, 2906, 1873, + 3675, 109, 933, 39, 1888, 3153, 1802, 2749, 4653, + 10, 1407, 3436, 4501, 1652, 4732, 4648, 3990, 3869, + 1528, 3105, 3115, 2926, 448, 1508, 3766, 414, 0, + 99, 1356, 732, 2391, 4307, 374, 3096, 3847, 1168, + 2149, 2270, 3071, 2538, 4038, 1887, 3751, 3671, 1345, + 271, 1144, 828, 1558, 3741, 642, 1130, 26, 2512, + 1351, 4437, 62, 3040, 3132, 4639, 4608, 3358, 1316, + 2346, 4344, 2385, 4204, 358, 3346, 4011, 297, 728, + 1635, 4143, 3858, 4661, 2365, 4156, 4923, 3921, 4212, + 419, 1025, 1912, 1997, 3589, 965, 4863, 581, 2400, + 2128, 2335, 3936, 4843, 1018, 2088, 3052, 1843, 3652, + 3264, 2342, 212, 2423, 2603, 526, 4357, 2538, 2326, + 4304, 4490, 19, 2158, 4734, 2481, 4574, 1764, 4922, + 1924, 1668, 665, 3628, 4416, 779, 3359, 3281, 668, + 2259, 684, 1693, 262, 2335, 2116, 2444, 285, 472, + 1695, 1989, 2831, 2933, 4834, 3892, 2679, 43, 338, + 1143, 3133, 3290, 2874, 3505, 1654, 2420, 3323, 4487, + 4528, 2876, 3002, 3959, 635, 1503, 2493, 4974, 3994, + 3304, 3215, 2609, 4509, 2631, 2777, 683, 3623, 3596, + 2685, 115, 2166, 1456, 3440, 4502, 1541, 136, 4160, + 2313, 2928, 4917, 3863, 3827, 2109, 4794]), + values=tensor([0.1255, 0.3198, 0.8133, 0.3742, 0.0163, 0.1439, 0.7607, + 0.6784, 0.8830, 0.0545, 0.8528, 0.7242, 0.8352, 0.4737, + 0.9256, 0.7090, 0.7451, 0.5297, 0.6794, 0.7283, 0.9067, + 0.0313, 0.2449, 0.1565, 0.6919, 0.4035, 0.9905, 0.2192, + 0.0562, 0.4841, 0.8665, 0.8712, 0.9887, 0.8805, 0.4264, + 0.9291, 0.7188, 0.3153, 0.5767, 0.0112, 0.8354, 0.4919, + 0.1313, 0.2676, 0.8495, 0.9700, 0.8615, 0.6450, 0.0071, + 0.4545, 0.8713, 0.2228, 0.4878, 0.1926, 0.0886, 0.8092, + 0.4330, 0.1067, 0.1112, 0.2683, 0.4340, 0.7229, 0.1649, + 0.0932, 0.0193, 0.5783, 0.2193, 0.3091, 0.4364, 0.5673, + 0.8010, 0.5772, 0.0521, 0.5829, 0.4101, 0.3786, 0.0283, + 0.4786, 0.3304, 0.3446, 0.7315, 0.6206, 0.8294, 0.4404, + 0.4676, 0.0871, 0.3497, 0.0069, 0.9043, 0.8947, 0.1952, + 0.6809, 0.4255, 0.1696, 0.7442, 0.9124, 0.8603, 0.9907, + 0.1133, 0.2677, 0.6551, 0.8223, 0.8137, 0.2411, 0.5924, + 0.7002, 0.4248, 0.2041, 0.8601, 0.8179, 0.6180, 0.7986, + 0.0067, 0.6255, 0.0265, 0.4455, 0.0788, 0.2798, 0.3073, + 0.9253, 0.6087, 0.7948, 0.9058, 0.2527, 0.3922, 0.9638, + 0.1626, 0.4231, 0.5916, 0.0663, 0.3747, 0.8133, 0.1672, + 0.4958, 0.1234, 0.2670, 0.0752, 0.3763, 0.6411, 0.3294, + 0.4132, 0.2682, 0.3319, 0.1004, 0.6692, 0.2485, 0.0663, + 0.1318, 0.4180, 0.2011, 0.4748, 0.2487, 0.0200, 0.3002, + 0.6475, 0.2552, 0.7456, 0.9304, 0.8959, 0.8069, 0.8309, + 0.8055, 0.5114, 0.9547, 0.4277, 0.3391, 0.6653, 0.7441, + 0.9317, 0.2522, 0.9794, 0.9450, 0.7609, 0.7552, 0.3464, + 0.2683, 0.6131, 0.7507, 0.3858, 0.2947, 0.5291, 0.7914, + 0.4452, 0.6309, 0.6569, 0.3974, 0.5452, 0.9065, 0.8000, + 0.7314, 0.8661, 0.0826, 0.0659, 0.8406, 0.3397, 0.6235, + 0.6886, 0.4334, 0.9899, 0.6808, 0.0386, 0.9324, 0.6160, + 0.2724, 0.3632, 0.4386, 0.4733, 0.7494, 0.2806, 0.7238, + 0.0116, 0.8061, 0.3580, 0.8134, 0.7511, 0.4690, 0.9418, + 0.0495, 0.8282, 0.9024, 0.7411, 0.2424, 0.5263, 0.6983, + 0.9412, 0.6025, 0.1977, 0.9907, 0.4170, 0.2685, 0.9711, + 0.6755, 0.6817, 0.5130, 0.8481, 0.9901, 0.9980, 0.3527, + 0.5949, 0.5533, 0.2777, 0.4754, 0.0948, 0.6148, 0.7233, + 0.0545, 0.7637, 0.1155, 0.4005, 0.7155]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.1431, 0.4969, 0.0611, ..., 0.8896, 0.3924, 0.7446]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 10.306395292282104 seconds + +[16.56, 16.4, 16.72, 16.72, 16.84, 16.92, 17.04, 16.64, 16.64, 16.64] +[16.68, 16.8, 19.52, 20.28, 22.4, 23.28, 23.28, 24.04, 21.56, 21.2, 20.08, 19.92, 19.76, 19.72] +14.208932638168335 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 277466, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.306395292282104, 'TIME_S_1KI': 0.037144714279522914, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 274.4401516246796, 'W': 19.314621204373413} +[16.56, 16.4, 16.72, 16.72, 16.84, 16.92, 17.04, 16.64, 16.64, 16.64, 16.24, 16.2, 16.2, 16.48, 16.12, 16.2, 16.2, 16.16, 16.0, 16.04] +296.22 +14.811000000000002 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 277466, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.306395292282104, 'TIME_S_1KI': 0.037144714279522914, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 274.4401516246796, 'W': 19.314621204373413, 'J_1KI': 0.9890947057465764, 'W_1KI': 0.06961076746114267, 'W_D': 4.503621204373411, 'J_D': 63.99165032076835, 'W_D_1KI': 0.016231254295565625, 'J_D_1KI': 5.849817381432545e-05} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_5e-05.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_5e-05.json new file mode 100644 index 0000000..ed92a63 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 147819, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.450809717178345, "TIME_S_1KI": 0.07070004341240534, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 270.7087575721741, "W": 19.037186911173507, "J_1KI": 1.831352921966554, "W_1KI": 0.12878714448868891, "W_D": 4.033186911173505, "J_D": 57.35190933799741, "W_D_1KI": 0.027284631279967428, "J_D_1KI": 0.00018458135476472868} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_5e-05.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_5e-05.output new file mode 100644 index 0000000..3732e5f --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_5000_5e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.015123844146728516} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1250, 1250, 1250]), + col_indices=tensor([3446, 3211, 1459, ..., 3404, 1400, 4328]), + values=tensor([0.9299, 0.4025, 0.7514, ..., 0.4501, 0.7034, 0.4301]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.5652, 0.8868, 0.6802, ..., 0.3723, 0.2839, 0.7363]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 0.015123844146728516 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 69426 -ss 5000 -sd 5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 4.931497573852539} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 1250, 1250, 1250]), + col_indices=tensor([2025, 3924, 898, ..., 1281, 3893, 4108]), + values=tensor([0.0304, 0.7639, 0.3864, ..., 0.2285, 0.7727, 0.3264]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.1740, 0.1105, 0.4664, ..., 0.6286, 0.2183, 0.7582]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 4.931497573852539 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 147819 -ss 5000 -sd 5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.450809717178345} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 1250, 1250, 1250]), + col_indices=tensor([4384, 3481, 3445, ..., 2544, 3259, 4103]), + values=tensor([0.0351, 0.6486, 0.3996, ..., 0.8336, 0.2691, 0.7388]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.9301, 0.0450, 0.3581, ..., 0.7152, 0.3980, 0.2103]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 10.450809717178345 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 1250, 1250, 1250]), + col_indices=tensor([4384, 3481, 3445, ..., 2544, 3259, 4103]), + values=tensor([0.0351, 0.6486, 0.3996, ..., 0.8336, 0.2691, 0.7388]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.9301, 0.0450, 0.3581, ..., 0.7152, 0.3980, 0.2103]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 10.450809717178345 seconds + +[16.36, 16.36, 16.6, 16.8, 16.76, 16.88, 16.88, 16.64, 16.44, 16.48] +[16.72, 16.76, 17.08, 20.92, 22.6, 23.2, 24.36, 21.56, 20.88, 20.88, 19.84, 19.92, 19.92, 20.04] +14.219997882843018 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 147819, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.450809717178345, 'TIME_S_1KI': 0.07070004341240534, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 270.7087575721741, 'W': 19.037186911173507} +[16.36, 16.36, 16.6, 16.8, 16.76, 16.88, 16.88, 16.64, 16.44, 16.48, 16.52, 16.72, 16.68, 16.76, 16.76, 16.76, 16.6, 16.68, 16.72, 16.72] +300.08000000000004 +15.004000000000001 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 147819, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.450809717178345, 'TIME_S_1KI': 0.07070004341240534, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 270.7087575721741, 'W': 19.037186911173507, 'J_1KI': 1.831352921966554, 'W_1KI': 0.12878714448868891, 'W_D': 4.033186911173505, 'J_D': 57.35190933799741, 'W_D_1KI': 0.027284631279967428, 'J_D_1KI': 0.00018458135476472868} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.0001.json index 4a28d6c..4ca7cf3 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.0001.json +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.0001.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 70787, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 11.243863582611084, "TIME_S_1KI": 0.15884079820604183, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2065.8814449405672, "W": 142.52, "J_1KI": 29.184475185282146, "W_1KI": 2.01336403576928, "W_D": 106.74100000000001, "J_D": 1547.2512722032072, "W_D_1KI": 1.5079181205588599, "J_D_1KI": 0.02130218995802704} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 67064, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.610118389129639, "TIME_S_1KI": 0.15820885108448107, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1755.3175721168518, "W": 134.25, "J_1KI": 26.173767924920252, "W_1KI": 2.0018191578193965, "W_D": 98.104, "J_D": 1282.7089392547607, "W_D_1KI": 1.4628414648693786, "J_D_1KI": 0.021812618765200086} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.0001.output index 320d8b0..6ec2345 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.0001.output +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.0001.output @@ -1,34 +1,14 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.22568225860595703} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '100000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.05684256553649902} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 9, 21, ..., 999976, - 999987, 1000000]), - col_indices=tensor([66167, 77335, 80388, ..., 91843, 96961, 99110]), - values=tensor([0.4269, 0.3181, 0.3880, ..., 0.8858, 0.0510, 0.2541]), - size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.0143, 0.7097, 0.7299, ..., 0.1191, 0.1743, 0.7741]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([100000, 100000]) -Rows: 100000 -Size: 10000000000 -NNZ: 1000000 -Density: 0.0001 -Time: 0.22568225860595703 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '46525', '-ss', '100000', '-sd', '0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 6.901124477386475} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 9, 22, ..., 999980, +tensor(crow_indices=tensor([ 0, 13, 23, ..., 999979, 999991, 1000000]), - col_indices=tensor([ 6899, 15825, 20330, ..., 53773, 69034, 81991]), - values=tensor([0.2590, 0.4256, 0.8626, ..., 0.0809, 0.7182, 0.1540]), + col_indices=tensor([ 4525, 11074, 13753, ..., 80507, 85385, 86427]), + values=tensor([0.4106, 0.9983, 0.2404, ..., 0.2427, 0.2624, 0.7034]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.5717, 0.8218, 0.0250, ..., 0.8733, 0.0737, 0.0088]) +tensor([0.4963, 0.1898, 0.5953, ..., 0.4144, 0.1558, 0.0288]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -36,19 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 6.901124477386475 seconds +Time: 0.05684256553649902 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '70787', '-ss', '100000', '-sd', '0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 11.243863582611084} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '18472', '-ss', '100000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 2.8920857906341553} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 11, 22, ..., 999983, - 999990, 1000000]), - col_indices=tensor([ 361, 1115, 8788, ..., 71181, 76543, 91304]), - values=tensor([0.4904, 0.2440, 0.4094, ..., 0.6184, 0.1804, 0.3924]), +tensor(crow_indices=tensor([ 0, 8, 17, ..., 999981, + 999989, 1000000]), + col_indices=tensor([ 8653, 22699, 39303, ..., 86578, 89246, 90775]), + values=tensor([0.9948, 0.4799, 0.6025, ..., 0.7759, 0.3812, 0.6990]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.2770, 0.4028, 0.6616, ..., 0.6682, 0.3245, 0.3679]) +tensor([0.4256, 0.6072, 0.2987, ..., 0.6512, 0.1573, 0.7068]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -56,16 +36,19 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 11.243863582611084 seconds +Time: 2.8920857906341553 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '67064', '-ss', '100000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.610118389129639} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 11, 22, ..., 999983, - 999990, 1000000]), - col_indices=tensor([ 361, 1115, 8788, ..., 71181, 76543, 91304]), - values=tensor([0.4904, 0.2440, 0.4094, ..., 0.6184, 0.1804, 0.3924]), +tensor(crow_indices=tensor([ 0, 9, 22, ..., 999983, + 999993, 1000000]), + col_indices=tensor([27755, 29395, 33124, ..., 74386, 97777, 99456]), + values=tensor([0.7148, 0.9361, 0.5875, ..., 0.1256, 0.4168, 0.2712]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.2770, 0.4028, 0.6616, ..., 0.6682, 0.3245, 0.3679]) +tensor([0.0632, 0.1399, 0.4829, ..., 0.0512, 0.0510, 0.5050]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -73,13 +56,30 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 11.243863582611084 seconds +Time: 10.610118389129639 seconds -[40.71, 39.67, 39.62, 40.0, 39.39, 40.7, 39.22, 40.0, 39.3, 39.88] -[142.52] -14.495379209518433 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 70787, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 11.243863582611084, 'TIME_S_1KI': 0.15884079820604183, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2065.8814449405672, 'W': 142.52} -[40.71, 39.67, 39.62, 40.0, 39.39, 40.7, 39.22, 40.0, 39.3, 39.88, 39.86, 40.15, 39.35, 40.1, 39.35, 40.22, 39.27, 39.7, 39.16, 40.31] -715.5799999999999 -35.778999999999996 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 70787, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 11.243863582611084, 'TIME_S_1KI': 0.15884079820604183, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2065.8814449405672, 'W': 142.52, 'J_1KI': 29.184475185282146, 'W_1KI': 2.01336403576928, 'W_D': 106.74100000000001, 'J_D': 1547.2512722032072, 'W_D_1KI': 1.5079181205588599, 'J_D_1KI': 0.02130218995802704} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 9, 22, ..., 999983, + 999993, 1000000]), + col_indices=tensor([27755, 29395, 33124, ..., 74386, 97777, 99456]), + values=tensor([0.7148, 0.9361, 0.5875, ..., 0.1256, 0.4168, 0.2712]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.0632, 0.1399, 0.4829, ..., 0.0512, 0.0510, 0.5050]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 10.610118389129639 seconds + +[42.15, 40.1, 39.72, 39.74, 39.84, 40.12, 39.64, 39.58, 39.89, 39.55] +[134.25] +13.074991226196289 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 67064, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.610118389129639, 'TIME_S_1KI': 0.15820885108448107, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1755.3175721168518, 'W': 134.25} +[42.15, 40.1, 39.72, 39.74, 39.84, 40.12, 39.64, 39.58, 39.89, 39.55, 42.7, 40.22, 40.9, 40.07, 39.72, 39.89, 39.69, 39.67, 39.56, 44.74] +722.9200000000001 +36.146 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 67064, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.610118389129639, 'TIME_S_1KI': 0.15820885108448107, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1755.3175721168518, 'W': 134.25, 'J_1KI': 26.173767924920252, 'W_1KI': 2.0018191578193965, 'W_D': 98.104, 'J_D': 1282.7089392547607, 'W_D_1KI': 1.4628414648693786, 'J_D_1KI': 0.021812618765200086} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.001.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.001.json index 0f55c41..97a1aaa 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.001.json +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.001.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 4257, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 11.433454513549805, "TIME_S_1KI": 2.685800919321072, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1901.6043726658822, "W": 126.17, "J_1KI": 446.7005808470477, "W_1KI": 29.638242894056848, "W_D": 90.424, "J_D": 1362.8491225643158, "W_D_1KI": 21.241249706365988, "J_D_1KI": 4.989722740513504} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 3865, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.6199471950531, "TIME_S_1KI": 2.7477224308028725, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1736.0991844940186, "W": 125.54, "J_1KI": 449.1847825340281, "W_1KI": 32.48124191461837, "W_D": 89.51725000000002, "J_D": 1237.938702589989, "W_D_1KI": 23.160996119016822, "J_D_1KI": 5.992495761711985} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.001.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.001.output index dc2dadc..ab63507 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.001.output +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 2.4663901329040527} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '100000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.29607152938842773} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 118, 225, ..., 9999805, - 9999897, 10000000]), - col_indices=tensor([ 1682, 1744, 2076, ..., 96929, 97254, 99780]), - values=tensor([0.4019, 0.5057, 0.8739, ..., 0.0479, 0.2913, 0.6813]), +tensor(crow_indices=tensor([ 0, 108, 205, ..., 9999797, + 9999886, 10000000]), + col_indices=tensor([ 1353, 2200, 3779, ..., 96854, 97028, 97339]), + values=tensor([0.4346, 0.2367, 0.4770, ..., 0.1479, 0.4649, 0.9103]), size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.2475, 0.7795, 0.3565, ..., 0.8481, 0.6371, 0.4321]) +tensor([0.4412, 0.7177, 0.2059, ..., 0.3280, 0.0589, 0.7180]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,19 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 10000000 Density: 0.001 -Time: 2.4663901329040527 seconds +Time: 0.29607152938842773 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '4257', '-ss', '100000', '-sd', '0.001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 11.433454513549805} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '3546', '-ss', '100000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 9.63291883468628} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 96, 213, ..., 9999811, - 9999904, 10000000]), - col_indices=tensor([ 561, 663, 1931, ..., 97741, 99513, 99851]), - values=tensor([0.7974, 0.7905, 0.8203, ..., 0.5966, 0.6231, 0.2009]), +tensor(crow_indices=tensor([ 0, 92, 201, ..., 9999814, + 9999913, 10000000]), + col_indices=tensor([ 1097, 1389, 2328, ..., 96293, 96542, 99036]), + values=tensor([0.4476, 0.1977, 0.6820, ..., 0.8020, 0.1490, 0.2819]), size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.4967, 0.7208, 0.9275, ..., 0.8267, 0.3582, 0.8531]) +tensor([0.6506, 0.9195, 0.4022, ..., 0.6497, 0.8706, 0.8621]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -36,16 +36,19 @@ Rows: 100000 Size: 10000000000 NNZ: 10000000 Density: 0.001 -Time: 11.433454513549805 seconds +Time: 9.63291883468628 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '3865', '-ss', '100000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.6199471950531} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 96, 213, ..., 9999811, - 9999904, 10000000]), - col_indices=tensor([ 561, 663, 1931, ..., 97741, 99513, 99851]), - values=tensor([0.7974, 0.7905, 0.8203, ..., 0.5966, 0.6231, 0.2009]), +tensor(crow_indices=tensor([ 0, 98, 197, ..., 9999799, + 9999902, 10000000]), + col_indices=tensor([ 2919, 3313, 3728, ..., 97238, 97697, 98577]), + values=tensor([0.4198, 0.7828, 0.7567, ..., 0.6995, 0.0988, 0.1528]), size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.4967, 0.7208, 0.9275, ..., 0.8267, 0.3582, 0.8531]) +tensor([0.5695, 0.4144, 0.5638, ..., 0.3431, 0.2067, 0.0841]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -53,13 +56,30 @@ Rows: 100000 Size: 10000000000 NNZ: 10000000 Density: 0.001 -Time: 11.433454513549805 seconds +Time: 10.6199471950531 seconds -[41.19, 39.18, 40.43, 39.7, 39.84, 39.19, 40.16, 39.17, 40.24, 39.08] -[126.17] -15.071763277053833 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4257, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 11.433454513549805, 'TIME_S_1KI': 2.685800919321072, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1901.6043726658822, 'W': 126.17} -[41.19, 39.18, 40.43, 39.7, 39.84, 39.19, 40.16, 39.17, 40.24, 39.08, 41.18, 39.54, 39.33, 39.89, 39.75, 39.57, 39.78, 39.56, 39.24, 39.25] -714.9200000000001 -35.746 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4257, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 11.433454513549805, 'TIME_S_1KI': 2.685800919321072, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1901.6043726658822, 'W': 126.17, 'J_1KI': 446.7005808470477, 'W_1KI': 29.638242894056848, 'W_D': 90.424, 'J_D': 1362.8491225643158, 'W_D_1KI': 21.241249706365988, 'J_D_1KI': 4.989722740513504} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 98, 197, ..., 9999799, + 9999902, 10000000]), + col_indices=tensor([ 2919, 3313, 3728, ..., 97238, 97697, 98577]), + values=tensor([0.4198, 0.7828, 0.7567, ..., 0.6995, 0.0988, 0.1528]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.5695, 0.4144, 0.5638, ..., 0.3431, 0.2067, 0.0841]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 10.6199471950531 seconds + +[41.63, 40.06, 40.05, 39.72, 39.88, 39.71, 40.32, 40.32, 40.26, 39.8] +[125.54] +13.829051971435547 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3865, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.6199471950531, 'TIME_S_1KI': 2.7477224308028725, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1736.0991844940186, 'W': 125.54} +[41.63, 40.06, 40.05, 39.72, 39.88, 39.71, 40.32, 40.32, 40.26, 39.8, 40.39, 39.7, 39.76, 39.75, 39.78, 40.5, 39.95, 39.84, 40.11, 39.67] +720.4549999999999 +36.022749999999995 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3865, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.6199471950531, 'TIME_S_1KI': 2.7477224308028725, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1736.0991844940186, 'W': 125.54, 'J_1KI': 449.1847825340281, 'W_1KI': 32.48124191461837, 'W_D': 89.51725000000002, 'J_D': 1237.938702589989, 'W_D_1KI': 23.160996119016822, 'J_D_1KI': 5.992495761711985} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_1e-05.json index 382c4a4..9be5a17 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_1e-05.json +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_1e-05.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 103292, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.412234544754028, "TIME_S_1KI": 0.10080388166318813, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1494.9555576324462, "W": 114.72, "J_1KI": 14.473101088491328, "W_1KI": 1.1106378035085003, "W_D": 77.68374999999999, "J_D": 1012.3235163897275, "W_D_1KI": 0.7520790574294233, "J_D_1KI": 0.0072810968654825475} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 102064, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.524274349212646, "TIME_S_1KI": 0.10311446101674092, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1601.1415306377412, "W": 113.64000000000001, "J_1KI": 15.687622772355983, "W_1KI": 1.1134190311961123, "W_D": 77.54950000000002, "J_D": 1092.6410166331532, "W_D_1KI": 0.7598124706066784, "J_D_1KI": 0.007444470828173288} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_1e-05.output index a8441fc..a8ac003 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_1e-05.output +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_1e-05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.13699960708618164} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '100000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.051177263259887695} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 3, ..., 99999, 99999, +tensor(crow_indices=tensor([ 0, 0, 1, ..., 100000, 100000, 100000]), - col_indices=tensor([ 8916, 68486, 49297, ..., 83214, 51117, 46502]), - values=tensor([0.0565, 0.4187, 0.1663, ..., 0.8089, 0.3832, 0.9501]), + col_indices=tensor([ 5338, 33433, 17911, ..., 60039, 74427, 45774]), + values=tensor([0.9933, 0.3915, 0.2951, ..., 0.3503, 0.7922, 0.2614]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.6605, 0.5566, 0.3055, ..., 0.1791, 0.1309, 0.6380]) +tensor([0.6274, 0.9288, 0.1155, ..., 0.7548, 0.5951, 0.2372]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,19 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 0.13699960708618164 seconds +Time: 0.051177263259887695 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '76642', '-ss', '100000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.790924310684204} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '20516', '-ss', '100000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 2.11061429977417} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 1, ..., 99997, 99998, +tensor(crow_indices=tensor([ 0, 2, 2, ..., 99999, 100000, 100000]), - col_indices=tensor([17249, 94297, 21433, ..., 88389, 79911, 81112]), - values=tensor([0.0934, 0.2541, 0.4263, ..., 0.3405, 0.2702, 0.1947]), + col_indices=tensor([35938, 84023, 26382, ..., 80961, 25218, 78065]), + values=tensor([0.1771, 0.7263, 0.1955, ..., 0.1569, 0.5183, 0.0872]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.1521, 0.7703, 0.8999, ..., 0.0235, 0.4756, 0.0049]) +tensor([0.4261, 0.9316, 0.9486, ..., 0.4583, 0.3074, 0.5243]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -36,19 +36,19 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 7.790924310684204 seconds +Time: 2.11061429977417 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '103292', '-ss', '100000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.412234544754028} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '102064', '-ss', '100000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.524274349212646} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 3, ..., 99998, 99999, +tensor(crow_indices=tensor([ 0, 2, 3, ..., 100000, 100000, 100000]), - col_indices=tensor([40816, 84426, 84611, ..., 44515, 10095, 58427]), - values=tensor([0.3036, 0.7331, 0.5691, ..., 0.0050, 0.0920, 0.5982]), + col_indices=tensor([ 7923, 87583, 82060, ..., 33729, 87076, 106]), + values=tensor([0.1731, 0.5965, 0.6757, ..., 0.8844, 0.0621, 0.1000]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.8398, 0.7355, 0.2034, ..., 0.0172, 0.0859, 0.7739]) +tensor([0.3641, 0.2409, 0.5686, ..., 0.5557, 0.7015, 0.9398]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -56,16 +56,16 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 10.412234544754028 seconds +Time: 10.524274349212646 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 3, ..., 99998, 99999, +tensor(crow_indices=tensor([ 0, 2, 3, ..., 100000, 100000, 100000]), - col_indices=tensor([40816, 84426, 84611, ..., 44515, 10095, 58427]), - values=tensor([0.3036, 0.7331, 0.5691, ..., 0.0050, 0.0920, 0.5982]), + col_indices=tensor([ 7923, 87583, 82060, ..., 33729, 87076, 106]), + values=tensor([0.1731, 0.5965, 0.6757, ..., 0.8844, 0.0621, 0.1000]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.8398, 0.7355, 0.2034, ..., 0.0172, 0.0859, 0.7739]) +tensor([0.3641, 0.2409, 0.5686, ..., 0.5557, 0.7015, 0.9398]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -73,13 +73,13 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 10.412234544754028 seconds +Time: 10.524274349212646 seconds -[39.92, 39.29, 39.24, 40.21, 39.35, 45.54, 40.38, 40.14, 39.43, 39.27] -[114.72] -13.031342029571533 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 103292, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.412234544754028, 'TIME_S_1KI': 0.10080388166318813, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1494.9555576324462, 'W': 114.72} -[39.92, 39.29, 39.24, 40.21, 39.35, 45.54, 40.38, 40.14, 39.43, 39.27, 39.96, 39.14, 45.44, 43.38, 51.52, 39.13, 40.45, 39.57, 39.41, 39.06] -740.7250000000001 -37.03625000000001 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 103292, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.412234544754028, 'TIME_S_1KI': 0.10080388166318813, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1494.9555576324462, 'W': 114.72, 'J_1KI': 14.473101088491328, 'W_1KI': 1.1106378035085003, 'W_D': 77.68374999999999, 'J_D': 1012.3235163897275, 'W_D_1KI': 0.7520790574294233, 'J_D_1KI': 0.0072810968654825475} +[40.73, 39.59, 39.74, 39.73, 39.63, 39.83, 40.08, 39.98, 40.09, 39.48] +[113.64] +14.089594602584839 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 102064, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.524274349212646, 'TIME_S_1KI': 0.10311446101674092, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1601.1415306377412, 'W': 113.64000000000001} +[40.73, 39.59, 39.74, 39.73, 39.63, 39.83, 40.08, 39.98, 40.09, 39.48, 40.32, 39.82, 39.63, 39.81, 39.64, 39.48, 39.85, 39.99, 44.93, 39.45] +721.81 +36.0905 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 102064, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.524274349212646, 'TIME_S_1KI': 0.10311446101674092, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1601.1415306377412, 'W': 113.64000000000001, 'J_1KI': 15.687622772355983, 'W_1KI': 1.1134190311961123, 'W_D': 77.54950000000002, 'J_D': 1092.6410166331532, 'W_D_1KI': 0.7598124706066784, 'J_D_1KI': 0.007444470828173288} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_5e-05.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_5e-05.json new file mode 100644 index 0000000..24bf6da --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 83443, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.331598043441772, "TIME_S_1KI": 0.12381623435688761, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1753.1380189323427, "W": 133.96, "J_1KI": 21.010007057899916, "W_1KI": 1.6054072840142373, "W_D": 97.99700000000001, "J_D": 1282.489298606396, "W_D_1KI": 1.1744184652996656, "J_D_1KI": 0.014074499542198454} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_5e-05.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_5e-05.output new file mode 100644 index 0000000..566b51a --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_5e-05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '100000', '-sd', '5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.04202604293823242} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 10, ..., 499989, 499993, + 500000]), + col_indices=tensor([44479, 4048, 15938, ..., 81904, 89204, 96058]), + values=tensor([0.8024, 0.2371, 0.1804, ..., 0.7304, 0.5867, 0.0881]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.7637, 0.3596, 0.9771, ..., 0.6123, 0.8042, 0.6339]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 0.04202604293823242 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '24984', '-ss', '100000', '-sd', '5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 3.1438426971435547} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 7, 12, ..., 499992, 499996, + 500000]), + col_indices=tensor([25849, 26475, 42516, ..., 54532, 74351, 87242]), + values=tensor([0.9779, 0.7287, 0.9943, ..., 0.8976, 0.9175, 0.6342]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.3426, 0.5652, 0.2473, ..., 0.4439, 0.3784, 0.0403]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 3.1438426971435547 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '83443', '-ss', '100000', '-sd', '5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.331598043441772} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 9, ..., 499992, 499996, + 500000]), + col_indices=tensor([44464, 48782, 50602, ..., 44812, 48851, 96308]), + values=tensor([0.0768, 0.4231, 0.3229, ..., 0.7263, 0.8571, 0.9151]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.5899, 0.0490, 0.9717, ..., 0.2037, 0.9811, 0.9760]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 10.331598043441772 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 9, ..., 499992, 499996, + 500000]), + col_indices=tensor([44464, 48782, 50602, ..., 44812, 48851, 96308]), + values=tensor([0.0768, 0.4231, 0.3229, ..., 0.7263, 0.8571, 0.9151]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.5899, 0.0490, 0.9717, ..., 0.2037, 0.9811, 0.9760]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 10.331598043441772 seconds + +[41.17, 39.77, 40.36, 40.06, 41.66, 39.61, 39.74, 39.58, 39.55, 39.78] +[133.96] +13.087026119232178 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 83443, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.331598043441772, 'TIME_S_1KI': 0.12381623435688761, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1753.1380189323427, 'W': 133.96} +[41.17, 39.77, 40.36, 40.06, 41.66, 39.61, 39.74, 39.58, 39.55, 39.78, 41.11, 39.76, 39.73, 39.7, 39.67, 40.13, 39.73, 39.66, 39.62, 39.8] +719.26 +35.963 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 83443, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.331598043441772, 'TIME_S_1KI': 0.12381623435688761, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1753.1380189323427, 'W': 133.96, 'J_1KI': 21.010007057899916, 'W_1KI': 1.6054072840142373, 'W_D': 97.99700000000001, 'J_D': 1282.489298606396, 'W_D_1KI': 1.1744184652996656, 'J_D_1KI': 0.014074499542198454} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.0001.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.0001.json index 2ba417a..846867c 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.0001.json +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.0001.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 289765, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.56649661064148, "TIME_S_1KI": 0.03646574503698334, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1246.5325114130974, "W": 97.77, "J_1KI": 4.3018739717118955, "W_1KI": 0.33741135057719185, "W_D": 62.23799999999999, "J_D": 793.5122271180152, "W_D_1KI": 0.21478784532293407, "J_D_1KI": 0.0007412484093073148} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 288187, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.643323421478271, "TIME_S_1KI": 0.03693200394701451, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1243.6877346038818, "W": 98.76, "J_1KI": 4.315558073764194, "W_1KI": 0.34269415344897586, "W_D": 63.04600000000001, "J_D": 793.9402279853822, "W_D_1KI": 0.21876767515536788, "J_D_1KI": 0.0007591170842382477} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.0001.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.0001.output index 4b8f527..c5c4dec 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.0001.output +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.0001.output @@ -1,13 +1,13 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.053604841232299805} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.02071547508239746} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 10000, 10000, 10000]), - col_indices=tensor([4181, 1858, 2276, ..., 2485, 7240, 8510]), - values=tensor([0.9106, 0.2407, 0.2677, ..., 0.1883, 0.5204, 0.9919]), +tensor(crow_indices=tensor([ 0, 1, 2, ..., 9998, 9999, 10000]), + col_indices=tensor([ 662, 2214, 9373, ..., 9890, 1994, 4209]), + values=tensor([0.5116, 0.1051, 0.5373, ..., 0.4151, 0.7725, 0.9175]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.4673, 0.8867, 0.2183, ..., 0.9392, 0.5032, 0.8250]) +tensor([0.1401, 0.0502, 0.3458, ..., 0.2506, 0.9913, 0.9973]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -15,18 +15,18 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 0.053604841232299805 seconds +Time: 0.02071547508239746 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '195877', '-ss', '10000', '-sd', '0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 7.097846031188965} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '50686', '-ss', '10000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 1.8467259407043457} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 1, ..., 9997, 9998, 10000]), - col_indices=tensor([6113, 1564, 232, ..., 3255, 2043, 9640]), - values=tensor([0.7859, 0.4083, 0.3727, ..., 0.9664, 0.2618, 0.1646]), +tensor(crow_indices=tensor([ 0, 3, 5, ..., 9998, 10000, 10000]), + col_indices=tensor([2329, 7525, 8810, ..., 9177, 1519, 2359]), + values=tensor([0.1835, 0.9536, 0.7906, ..., 0.4035, 0.0564, 0.3832]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.1848, 0.2081, 0.2382, ..., 0.7788, 0.6054, 0.6678]) +tensor([0.5918, 0.9817, 0.1058, ..., 0.3816, 0.0120, 0.7112]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -34,18 +34,18 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 7.097846031188965 seconds +Time: 1.8467259407043457 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '289765', '-ss', '10000', '-sd', '0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.56649661064148} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '288187', '-ss', '10000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.643323421478271} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 10000, 10000, 10000]), - col_indices=tensor([4848, 1770, 22, ..., 2903, 374, 1123]), - values=tensor([0.4832, 0.4922, 0.1673, ..., 0.2881, 0.3225, 0.2417]), +tensor(crow_indices=tensor([ 0, 1, 2, ..., 9998, 9998, 10000]), + col_indices=tensor([5118, 9103, 6912, ..., 6081, 2494, 7728]), + values=tensor([0.1845, 0.4117, 0.0579, ..., 0.8363, 0.9429, 0.5429]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.7933, 0.2380, 0.0639, ..., 0.5554, 0.1913, 0.9685]) +tensor([0.5505, 0.3516, 0.4265, ..., 0.6375, 0.7561, 0.2541]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -53,15 +53,15 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 10.56649661064148 seconds +Time: 10.643323421478271 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 10000, 10000, 10000]), - col_indices=tensor([4848, 1770, 22, ..., 2903, 374, 1123]), - values=tensor([0.4832, 0.4922, 0.1673, ..., 0.2881, 0.3225, 0.2417]), +tensor(crow_indices=tensor([ 0, 1, 2, ..., 9998, 9998, 10000]), + col_indices=tensor([5118, 9103, 6912, ..., 6081, 2494, 7728]), + values=tensor([0.1845, 0.4117, 0.0579, ..., 0.8363, 0.9429, 0.5429]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.7933, 0.2380, 0.0639, ..., 0.5554, 0.1913, 0.9685]) +tensor([0.5505, 0.3516, 0.4265, ..., 0.6375, 0.7561, 0.2541]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -69,13 +69,13 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 10.56649661064148 seconds +Time: 10.643323421478271 seconds -[39.58, 39.81, 39.03, 39.86, 38.88, 39.9, 39.07, 38.97, 41.59, 39.84] -[97.77] -12.749642133712769 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 289765, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.56649661064148, 'TIME_S_1KI': 0.03646574503698334, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1246.5325114130974, 'W': 97.77} -[39.58, 39.81, 39.03, 39.86, 38.88, 39.9, 39.07, 38.97, 41.59, 39.84, 40.25, 39.66, 38.91, 39.84, 38.8, 39.81, 38.94, 39.0, 38.89, 39.69] -710.6400000000001 -35.532000000000004 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 289765, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.56649661064148, 'TIME_S_1KI': 0.03646574503698334, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1246.5325114130974, 'W': 97.77, 'J_1KI': 4.3018739717118955, 'W_1KI': 0.33741135057719185, 'W_D': 62.23799999999999, 'J_D': 793.5122271180152, 'W_D_1KI': 0.21478784532293407, 'J_D_1KI': 0.0007412484093073148} +[40.51, 40.09, 39.52, 39.33, 39.47, 39.48, 39.43, 39.77, 39.53, 39.82] +[98.76] +12.59303092956543 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 288187, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.643323421478271, 'TIME_S_1KI': 0.03693200394701451, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1243.6877346038818, 'W': 98.76} +[40.51, 40.09, 39.52, 39.33, 39.47, 39.48, 39.43, 39.77, 39.53, 39.82, 41.15, 40.14, 40.36, 39.64, 39.34, 39.28, 39.84, 39.18, 39.56, 39.16] +714.28 +35.714 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 288187, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.643323421478271, 'TIME_S_1KI': 0.03693200394701451, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1243.6877346038818, 'W': 98.76, 'J_1KI': 4.315558073764194, 'W_1KI': 0.34269415344897586, 'W_D': 63.04600000000001, 'J_D': 793.9402279853822, 'W_D_1KI': 0.21876767515536788, 'J_D_1KI': 0.0007591170842382477} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.001.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.001.json index 463b3c7..d5b0fd0 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.001.json +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.001.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 132694, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.224570512771606, "TIME_S_1KI": 0.07705375158463537, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1067.35663690567, "W": 103.59999999999998, "J_1KI": 8.043744531822615, "W_1KI": 0.7807436658778842, "W_D": 68.22474999999997, "J_D": 702.8971014838812, "W_D_1KI": 0.5141509789440364, "J_D_1KI": 0.003874711584126158} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 192082, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.38179612159729, "TIME_S_1KI": 0.054048771470503694, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1536.0875409460068, "W": 107.47, "J_1KI": 7.997040539696623, "W_1KI": 0.5595006299392968, "W_D": 71.52775, "J_D": 1022.3586638773679, "W_D_1KI": 0.3723813267250445, "J_D_1KI": 0.0019386581081259277} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.001.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.001.output index f18d35d..41b527b 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.001.output +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.07912898063659668} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.02809286117553711} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 9, 15, ..., 99979, 99988, +tensor(crow_indices=tensor([ 0, 6, 18, ..., 99983, 99993, 100000]), - col_indices=tensor([ 430, 646, 878, ..., 7983, 8028, 8773]), - values=tensor([0.1249, 0.1009, 0.6404, ..., 0.8347, 0.6604, 0.7086]), + col_indices=tensor([2653, 3722, 5304, ..., 7707, 8674, 8869]), + values=tensor([0.5856, 0.9425, 0.9349, ..., 0.4089, 0.4268, 0.7151]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.6668, 0.6238, 0.5068, ..., 0.0173, 0.0134, 0.2844]) +tensor([0.5412, 0.5320, 0.4895, ..., 0.9332, 0.4774, 0.7844]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,19 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 0.07912898063659668 seconds +Time: 0.02809286117553711 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '132694', '-ss', '10000', '-sd', '0.001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.224570512771606} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '37376', '-ss', '10000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 2.043123722076416} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 11, 19, ..., 99972, 99988, +tensor(crow_indices=tensor([ 0, 18, 27, ..., 99987, 99996, 100000]), - col_indices=tensor([ 681, 2736, 3433, ..., 9108, 9366, 9692]), - values=tensor([0.5511, 0.6516, 0.1231, ..., 0.0939, 0.8699, 0.6381]), + col_indices=tensor([ 496, 1705, 2513, ..., 6230, 8377, 9882]), + values=tensor([0.7106, 0.5928, 0.5041, ..., 0.9691, 0.8218, 0.7424]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.2594, 0.0089, 0.5427, ..., 0.9106, 0.5838, 0.6290]) +tensor([0.6869, 0.6587, 0.3624, ..., 0.7168, 0.6886, 0.1198]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -36,16 +36,19 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 10.224570512771606 seconds +Time: 2.043123722076416 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '192082', '-ss', '10000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.38179612159729} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 11, 19, ..., 99972, 99988, +tensor(crow_indices=tensor([ 0, 14, 28, ..., 99972, 99987, 100000]), - col_indices=tensor([ 681, 2736, 3433, ..., 9108, 9366, 9692]), - values=tensor([0.5511, 0.6516, 0.1231, ..., 0.0939, 0.8699, 0.6381]), + col_indices=tensor([ 27, 2567, 2642, ..., 7209, 7267, 7735]), + values=tensor([0.8851, 0.6027, 0.9664, ..., 0.7310, 0.7426, 0.3698]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.2594, 0.0089, 0.5427, ..., 0.9106, 0.5838, 0.6290]) +tensor([0.8025, 0.3022, 0.3457, ..., 0.3811, 0.1140, 0.9144]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -53,13 +56,30 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 10.224570512771606 seconds +Time: 10.38179612159729 seconds -[39.52, 39.72, 39.2, 38.94, 38.87, 40.37, 39.0, 39.66, 38.95, 39.86] -[103.6] -10.302670240402222 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 132694, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.224570512771606, 'TIME_S_1KI': 0.07705375158463537, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1067.35663690567, 'W': 103.59999999999998} -[39.52, 39.72, 39.2, 38.94, 38.87, 40.37, 39.0, 39.66, 38.95, 39.86, 39.41, 39.62, 39.01, 39.67, 38.86, 38.84, 38.84, 39.8, 38.92, 39.68] -707.505 -35.37525 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 132694, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.224570512771606, 'TIME_S_1KI': 0.07705375158463537, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1067.35663690567, 'W': 103.59999999999998, 'J_1KI': 8.043744531822615, 'W_1KI': 0.7807436658778842, 'W_D': 68.22474999999997, 'J_D': 702.8971014838812, 'W_D_1KI': 0.5141509789440364, 'J_D_1KI': 0.003874711584126158} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 14, 28, ..., 99972, 99987, + 100000]), + col_indices=tensor([ 27, 2567, 2642, ..., 7209, 7267, 7735]), + values=tensor([0.8851, 0.6027, 0.9664, ..., 0.7310, 0.7426, 0.3698]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.8025, 0.3022, 0.3457, ..., 0.3811, 0.1140, 0.9144]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.38179612159729 seconds + +[40.11, 39.55, 39.33, 44.82, 39.9, 39.64, 39.98, 39.29, 39.99, 39.21] +[107.47] +14.293175220489502 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 192082, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.38179612159729, 'TIME_S_1KI': 0.054048771470503694, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1536.0875409460068, 'W': 107.47} +[40.11, 39.55, 39.33, 44.82, 39.9, 39.64, 39.98, 39.29, 39.99, 39.21, 40.63, 39.47, 39.85, 39.28, 39.66, 39.35, 39.46, 39.87, 39.78, 39.3] +718.845 +35.94225 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 192082, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.38179612159729, 'TIME_S_1KI': 0.054048771470503694, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1536.0875409460068, 'W': 107.47, 'J_1KI': 7.997040539696623, 'W_1KI': 0.5595006299392968, 'W_D': 71.52775, 'J_D': 1022.3586638773679, 'W_D_1KI': 0.3723813267250445, 'J_D_1KI': 0.0019386581081259277} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.01.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.01.json index 995b9fb..c0a8393 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.01.json +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.01.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 107069, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 11.18355131149292, "TIME_S_1KI": 0.10445181435796468, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1763.49504935503, "W": 132.69, "J_1KI": 16.470640889099833, "W_1KI": 1.2392942868617434, "W_D": 96.9815, "J_D": 1288.9169879344702, "W_D_1KI": 0.905785054497567, "J_D_1KI": 0.008459825481675993} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 102052, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.32213807106018, "TIME_S_1KI": 0.10114586750931075, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1720.3125169992445, "W": 134.17, "J_1KI": 16.857215115815904, "W_1KI": 1.3147219064790499, "W_D": 98.29849999999999, "J_D": 1260.3722139990327, "W_D_1KI": 0.9632197311174694, "J_D_1KI": 0.0094385189032794} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.01.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.01.output index afaa491..3b630d1 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.01.output +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.01.output @@ -1,74 +1,14 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.01'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.1338520050048828} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.04350447654724121} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 91, 190, ..., 999794, - 999887, 1000000]), - col_indices=tensor([ 40, 344, 548, ..., 9830, 9841, 9960]), - values=tensor([0.4008, 0.1162, 0.8586, ..., 0.0804, 0.9517, 0.8982]), - size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.6204, 0.8036, 0.5749, ..., 0.0150, 0.4782, 0.5342]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([10000, 10000]) -Rows: 10000 -Size: 100000000 -NNZ: 1000000 -Density: 0.01 -Time: 0.1338520050048828 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '78444', '-ss', '10000', '-sd', '0.01'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 8.085982084274292} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 93, 187, ..., 999812, - 999901, 1000000]), - col_indices=tensor([ 276, 302, 470, ..., 9539, 9540, 9930]), - values=tensor([0.4664, 0.1616, 0.7456, ..., 0.5929, 0.0487, 0.3579]), - size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.7338, 0.4039, 0.6812, ..., 0.4093, 0.7174, 0.1386]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([10000, 10000]) -Rows: 10000 -Size: 100000000 -NNZ: 1000000 -Density: 0.01 -Time: 8.085982084274292 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '101862', '-ss', '10000', '-sd', '0.01'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 9.98931097984314} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 97, 208, ..., 999782, - 999887, 1000000]), - col_indices=tensor([ 113, 292, 413, ..., 9756, 9814, 9863]), - values=tensor([0.7037, 0.4902, 0.2249, ..., 0.1343, 0.1681, 0.3653]), - size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.0898, 0.3365, 0.9954, ..., 0.9623, 0.9055, 0.9870]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([10000, 10000]) -Rows: 10000 -Size: 100000000 -NNZ: 1000000 -Density: 0.01 -Time: 9.98931097984314 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '107069', '-ss', '10000', '-sd', '0.01'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 11.18355131149292} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 101, 199, ..., 999771, +tensor(crow_indices=tensor([ 0, 98, 200, ..., 999802, 999895, 1000000]), - col_indices=tensor([ 30, 45, 94, ..., 9508, 9668, 9839]), - values=tensor([0.9351, 0.0667, 0.7279, ..., 0.8651, 0.3266, 0.8240]), + col_indices=tensor([ 47, 93, 107, ..., 9931, 9947, 9964]), + values=tensor([0.2387, 0.2735, 0.7135, ..., 0.1692, 0.6802, 0.4186]), size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.5009, 0.1141, 0.1222, ..., 0.6365, 0.9492, 0.1421]) +tensor([0.2660, 0.3479, 0.7430, ..., 0.3350, 0.7379, 0.6869]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -76,16 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 1000000 Density: 0.01 -Time: 11.18355131149292 seconds +Time: 0.04350447654724121 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '24135', '-ss', '10000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 2.483203411102295} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 101, 199, ..., 999771, - 999895, 1000000]), - col_indices=tensor([ 30, 45, 94, ..., 9508, 9668, 9839]), - values=tensor([0.9351, 0.0667, 0.7279, ..., 0.8651, 0.3266, 0.8240]), +tensor(crow_indices=tensor([ 0, 121, 211, ..., 999813, + 999902, 1000000]), + col_indices=tensor([ 152, 193, 233, ..., 9824, 9889, 9990]), + values=tensor([0.9787, 0.2142, 0.0572, ..., 0.5889, 0.8836, 0.8390]), size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.5009, 0.1141, 0.1222, ..., 0.6365, 0.9492, 0.1421]) +tensor([0.2484, 0.0072, 0.5266, ..., 0.8378, 0.3257, 0.7895]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -93,13 +36,50 @@ Rows: 10000 Size: 100000000 NNZ: 1000000 Density: 0.01 -Time: 11.18355131149292 seconds +Time: 2.483203411102295 seconds -[39.9, 40.21, 39.53, 40.02, 39.22, 40.03, 39.19, 40.06, 39.89, 39.6] -[132.69] -13.29033875465393 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 107069, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 11.18355131149292, 'TIME_S_1KI': 0.10445181435796468, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1763.49504935503, 'W': 132.69} -[39.9, 40.21, 39.53, 40.02, 39.22, 40.03, 39.19, 40.06, 39.89, 39.6, 40.49, 39.14, 39.91, 39.61, 39.91, 39.69, 39.58, 39.1, 39.07, 40.03] -714.1700000000001 -35.7085 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 107069, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 11.18355131149292, 'TIME_S_1KI': 0.10445181435796468, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1763.49504935503, 'W': 132.69, 'J_1KI': 16.470640889099833, 'W_1KI': 1.2392942868617434, 'W_D': 96.9815, 'J_D': 1288.9169879344702, 'W_D_1KI': 0.905785054497567, 'J_D_1KI': 0.008459825481675993} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '102052', '-ss', '10000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.32213807106018} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 109, 197, ..., 999808, + 999909, 1000000]), + col_indices=tensor([ 12, 158, 312, ..., 9915, 9965, 9970]), + values=tensor([0.1097, 0.7996, 0.8802, ..., 0.2965, 0.2793, 0.1775]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.4138, 0.6115, 0.5428, ..., 0.5829, 0.0748, 0.9104]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.32213807106018 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 109, 197, ..., 999808, + 999909, 1000000]), + col_indices=tensor([ 12, 158, 312, ..., 9915, 9965, 9970]), + values=tensor([0.1097, 0.7996, 0.8802, ..., 0.2965, 0.2793, 0.1775]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.4138, 0.6115, 0.5428, ..., 0.5829, 0.0748, 0.9104]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.32213807106018 seconds + +[40.44, 39.51, 39.85, 40.81, 39.86, 41.16, 39.43, 39.73, 39.64, 39.53] +[134.17] +12.821886539459229 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 102052, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.32213807106018, 'TIME_S_1KI': 0.10114586750931075, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1720.3125169992445, 'W': 134.17} +[40.44, 39.51, 39.85, 40.81, 39.86, 41.16, 39.43, 39.73, 39.64, 39.53, 40.32, 40.34, 39.64, 39.51, 39.49, 39.33, 39.71, 39.95, 39.67, 39.31] +717.43 +35.8715 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 102052, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.32213807106018, 'TIME_S_1KI': 0.10114586750931075, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1720.3125169992445, 'W': 134.17, 'J_1KI': 16.857215115815904, 'W_1KI': 1.3147219064790499, 'W_D': 98.29849999999999, 'J_D': 1260.3722139990327, 'W_D_1KI': 0.9632197311174694, 'J_D_1KI': 0.0094385189032794} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.05.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.05.json index 05bc7cf..0c8793e 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.05.json +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.05.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 28163, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.459697484970093, "TIME_S_1KI": 0.371398554307783, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2122.055966448784, "W": 150.9, "J_1KI": 75.34907383619587, "W_1KI": 5.358093953058979, "W_D": 115.1085, "J_D": 1618.7321352814438, "W_D_1KI": 4.087224372403509, "J_D_1KI": 0.1451274499308848} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 27901, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.459260940551758, "TIME_S_1KI": 0.3748704684617669, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2101.511001520157, "W": 151.74, "J_1KI": 75.32027531343526, "W_1KI": 5.43851474857532, "W_D": 115.6735, "J_D": 1602.0108925421239, "W_D_1KI": 4.145854987276442, "J_D_1KI": 0.14859162708420637} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.05.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.05.output index e823d57..d46dec8 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.05.output +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 0.4528634548187256} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 0.07326960563659668} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 492, 984, ..., 4999007, - 4999498, 5000000]), - col_indices=tensor([ 17, 26, 49, ..., 9943, 9965, 9968]), - values=tensor([0.3785, 0.7951, 0.2972, ..., 0.3720, 0.7853, 0.1204]), +tensor(crow_indices=tensor([ 0, 503, 989, ..., 4998955, + 4999450, 5000000]), + col_indices=tensor([ 38, 72, 81, ..., 9956, 9978, 9983]), + values=tensor([0.2927, 0.3163, 0.4567, ..., 0.1935, 0.9639, 0.3715]), size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.5665, 0.1637, 0.5801, ..., 0.5211, 0.8646, 0.6970]) +tensor([0.4283, 0.0472, 0.5653, ..., 0.2916, 0.5894, 0.9993]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,19 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 5000000 Density: 0.05 -Time: 0.4528634548187256 seconds +Time: 0.07326960563659668 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '23185', '-ss', '10000', '-sd', '0.05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 8.643981695175171} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '14330', '-ss', '10000', '-sd', '0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 5.392660140991211} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 462, 943, ..., 4999021, - 4999500, 5000000]), - col_indices=tensor([ 4, 33, 72, ..., 9956, 9968, 9998]), - values=tensor([0.9717, 0.2077, 0.4481, ..., 0.1268, 0.5535, 0.1753]), +tensor(crow_indices=tensor([ 0, 524, 1025, ..., 4998972, + 4999489, 5000000]), + col_indices=tensor([ 6, 15, 16, ..., 9973, 9985, 9996]), + values=tensor([0.1466, 0.4320, 0.8734, ..., 0.2839, 0.7163, 0.2149]), size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.9761, 0.2557, 0.3900, ..., 0.3250, 0.2223, 0.7021]) +tensor([0.6711, 0.1737, 0.7087, ..., 0.1819, 0.7746, 0.6924]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -36,19 +36,19 @@ Rows: 10000 Size: 100000000 NNZ: 5000000 Density: 0.05 -Time: 8.643981695175171 seconds +Time: 5.392660140991211 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '28163', '-ss', '10000', '-sd', '0.05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.459697484970093} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '27901', '-ss', '10000', '-sd', '0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.459260940551758} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 510, 1022, ..., 4999000, - 4999485, 5000000]), - col_indices=tensor([ 31, 34, 40, ..., 9926, 9941, 9984]), - values=tensor([0.9067, 0.8635, 0.5661, ..., 0.0254, 0.7052, 0.7869]), +tensor(crow_indices=tensor([ 0, 478, 963, ..., 4998976, + 4999469, 5000000]), + col_indices=tensor([ 4, 6, 8, ..., 9977, 9981, 9998]), + values=tensor([0.4938, 0.7817, 0.2868, ..., 0.2355, 0.4075, 0.9137]), size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.2490, 0.1590, 0.1294, ..., 0.2235, 0.7822, 0.7952]) +tensor([0.7828, 0.6669, 0.8649, ..., 0.0217, 0.0077, 0.7398]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -56,16 +56,16 @@ Rows: 10000 Size: 100000000 NNZ: 5000000 Density: 0.05 -Time: 10.459697484970093 seconds +Time: 10.459260940551758 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 510, 1022, ..., 4999000, - 4999485, 5000000]), - col_indices=tensor([ 31, 34, 40, ..., 9926, 9941, 9984]), - values=tensor([0.9067, 0.8635, 0.5661, ..., 0.0254, 0.7052, 0.7869]), +tensor(crow_indices=tensor([ 0, 478, 963, ..., 4998976, + 4999469, 5000000]), + col_indices=tensor([ 4, 6, 8, ..., 9977, 9981, 9998]), + values=tensor([0.4938, 0.7817, 0.2868, ..., 0.2355, 0.4075, 0.9137]), size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.2490, 0.1590, 0.1294, ..., 0.2235, 0.7822, 0.7952]) +tensor([0.7828, 0.6669, 0.8649, ..., 0.0217, 0.0077, 0.7398]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -73,13 +73,13 @@ Rows: 10000 Size: 100000000 NNZ: 5000000 Density: 0.05 -Time: 10.459697484970093 seconds +Time: 10.459260940551758 seconds -[40.87, 39.6, 40.38, 39.19, 40.47, 39.26, 39.48, 39.2, 40.2, 39.44] -[150.9] -14.062663793563843 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 28163, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.459697484970093, 'TIME_S_1KI': 0.371398554307783, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2122.055966448784, 'W': 150.9} -[40.87, 39.6, 40.38, 39.19, 40.47, 39.26, 39.48, 39.2, 40.2, 39.44, 41.45, 39.66, 39.99, 39.31, 39.56, 39.24, 40.15, 39.52, 39.84, 39.8] -715.8299999999999 -35.7915 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 28163, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.459697484970093, 'TIME_S_1KI': 0.371398554307783, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2122.055966448784, 'W': 150.9, 'J_1KI': 75.34907383619587, 'W_1KI': 5.358093953058979, 'W_D': 115.1085, 'J_D': 1618.7321352814438, 'W_D_1KI': 4.087224372403509, 'J_D_1KI': 0.1451274499308848} +[40.28, 39.74, 40.09, 39.52, 39.81, 39.49, 40.09, 39.86, 39.96, 39.9] +[151.74] +13.849420070648193 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 27901, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.459260940551758, 'TIME_S_1KI': 0.3748704684617669, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2101.511001520157, 'W': 151.74} +[40.28, 39.74, 40.09, 39.52, 39.81, 39.49, 40.09, 39.86, 39.96, 39.9, 41.6, 42.09, 41.06, 39.67, 39.75, 39.6, 39.57, 40.11, 40.26, 39.54] +721.33 +36.066500000000005 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 27901, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.459260940551758, 'TIME_S_1KI': 0.3748704684617669, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2101.511001520157, 'W': 151.74, 'J_1KI': 75.32027531343526, 'W_1KI': 5.43851474857532, 'W_D': 115.6735, 'J_D': 1602.0108925421239, 'W_D_1KI': 4.145854987276442, 'J_D_1KI': 0.14859162708420637} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.1.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.1.json index 8638631..2bdc411 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.1.json +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.1.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 5238, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 11.192334175109863, "TIME_S_1KI": 2.1367571926517495, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2038.619791316986, "W": 124.02, "J_1KI": 389.1981273991955, "W_1KI": 23.676975945017183, "W_D": 88.21424999999999, "J_D": 1450.0509266746044, "W_D_1KI": 16.841208476517753, "J_D_1KI": 3.2151982582126295} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 4895, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 11.465762615203857, "TIME_S_1KI": 2.3423416987137604, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1961.564714949131, "W": 125.13, "J_1KI": 400.72823594466416, "W_1KI": 25.562819203268642, "W_D": 88.61599999999999, "J_D": 1389.1634202823636, "W_D_1KI": 18.10337078651685, "J_D_1KI": 3.698339282230205} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.1.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.1.output index 6292d32..c73c74f 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.1.output +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.1.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 2.209188461303711} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 0.26529860496520996} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 961, 2007, ..., 9997952, - 9998968, 10000000]), - col_indices=tensor([ 14, 18, 26, ..., 9968, 9972, 9997]), - values=tensor([0.9669, 0.3653, 0.3089, ..., 0.5289, 0.5202, 0.9028]), +tensor(crow_indices=tensor([ 0, 948, 1895, ..., 9998021, + 9999002, 10000000]), + col_indices=tensor([ 3, 4, 24, ..., 9958, 9984, 9986]), + values=tensor([0.2249, 0.5337, 0.8362, ..., 0.6636, 0.7975, 0.6242]), size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.8016, 0.0222, 0.4456, ..., 0.4115, 0.6943, 0.5313]) +tensor([0.1264, 0.7394, 0.5519, ..., 0.0745, 0.0081, 0.2644]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,19 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 10000000 Density: 0.1 -Time: 2.209188461303711 seconds +Time: 0.26529860496520996 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '4752', '-ss', '10000', '-sd', '0.1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 9.52530813217163} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '3957', '-ss', '10000', '-sd', '0.1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 8.487387418746948} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 954, 1940, ..., 9998038, - 9998994, 10000000]), - col_indices=tensor([ 0, 3, 4, ..., 9964, 9979, 9998]), - values=tensor([0.5875, 0.0019, 0.5119, ..., 0.4152, 0.5002, 0.2921]), +tensor(crow_indices=tensor([ 0, 978, 1933, ..., 9998004, + 9999014, 10000000]), + col_indices=tensor([ 3, 5, 6, ..., 9972, 9982, 9998]), + values=tensor([0.7080, 0.9187, 0.9413, ..., 0.1315, 0.2244, 0.9797]), size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.8144, 0.0248, 0.0526, ..., 0.0067, 0.4287, 0.2758]) +tensor([0.5306, 0.8726, 0.4027, ..., 0.7037, 0.0033, 0.8016]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -36,19 +36,19 @@ Rows: 10000 Size: 100000000 NNZ: 10000000 Density: 0.1 -Time: 9.52530813217163 seconds +Time: 8.487387418746948 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '5238', '-ss', '10000', '-sd', '0.1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 11.192334175109863} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '4895', '-ss', '10000', '-sd', '0.1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 11.465762615203857} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1001, 2002, ..., 9997918, - 9998966, 10000000]), - col_indices=tensor([ 9, 21, 97, ..., 9973, 9981, 9990]), - values=tensor([0.6111, 0.6801, 0.6895, ..., 0.1092, 0.3002, 0.2815]), +tensor(crow_indices=tensor([ 0, 986, 1965, ..., 9997996, + 9999022, 10000000]), + col_indices=tensor([ 5, 25, 37, ..., 9984, 9993, 9998]), + values=tensor([0.8800, 0.4752, 0.0446, ..., 0.6391, 0.5084, 0.8692]), size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.0277, 0.0823, 0.3111, ..., 0.6513, 0.2238, 0.0558]) +tensor([0.6122, 0.5951, 0.3953, ..., 0.4999, 0.2315, 0.6538]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -56,16 +56,16 @@ Rows: 10000 Size: 100000000 NNZ: 10000000 Density: 0.1 -Time: 11.192334175109863 seconds +Time: 11.465762615203857 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1001, 2002, ..., 9997918, - 9998966, 10000000]), - col_indices=tensor([ 9, 21, 97, ..., 9973, 9981, 9990]), - values=tensor([0.6111, 0.6801, 0.6895, ..., 0.1092, 0.3002, 0.2815]), +tensor(crow_indices=tensor([ 0, 986, 1965, ..., 9997996, + 9999022, 10000000]), + col_indices=tensor([ 5, 25, 37, ..., 9984, 9993, 9998]), + values=tensor([0.8800, 0.4752, 0.0446, ..., 0.6391, 0.5084, 0.8692]), size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.0277, 0.0823, 0.3111, ..., 0.6513, 0.2238, 0.0558]) +tensor([0.6122, 0.5951, 0.3953, ..., 0.4999, 0.2315, 0.6538]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -73,13 +73,13 @@ Rows: 10000 Size: 100000000 NNZ: 10000000 Density: 0.1 -Time: 11.192334175109863 seconds +Time: 11.465762615203857 seconds -[41.1, 40.26, 39.38, 39.47, 39.45, 40.18, 39.58, 40.31, 39.46, 40.14] -[124.02] -16.437830924987793 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 5238, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 11.192334175109863, 'TIME_S_1KI': 2.1367571926517495, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2038.619791316986, 'W': 124.02} -[41.1, 40.26, 39.38, 39.47, 39.45, 40.18, 39.58, 40.31, 39.46, 40.14, 40.09, 40.24, 39.54, 40.08, 39.32, 40.12, 39.35, 39.35, 39.19, 40.34] -716.115 -35.80575 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 5238, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 11.192334175109863, 'TIME_S_1KI': 2.1367571926517495, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2038.619791316986, 'W': 124.02, 'J_1KI': 389.1981273991955, 'W_1KI': 23.676975945017183, 'W_D': 88.21424999999999, 'J_D': 1450.0509266746044, 'W_D_1KI': 16.841208476517753, 'J_D_1KI': 3.2151982582126295} +[40.6, 45.25, 40.43, 39.72, 40.94, 40.35, 40.49, 39.74, 42.24, 39.59] +[125.13] +15.676214456558228 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4895, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 11.465762615203857, 'TIME_S_1KI': 2.3423416987137604, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1961.564714949131, 'W': 125.13} +[40.6, 45.25, 40.43, 39.72, 40.94, 40.35, 40.49, 39.74, 42.24, 39.59, 41.13, 40.62, 40.17, 40.53, 40.27, 40.01, 39.62, 39.57, 39.92, 39.5] +730.2800000000001 +36.514 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4895, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 11.465762615203857, 'TIME_S_1KI': 2.3423416987137604, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1961.564714949131, 'W': 125.13, 'J_1KI': 400.72823594466416, 'W_1KI': 25.562819203268642, 'W_D': 88.61599999999999, 'J_D': 1389.1634202823636, 'W_D_1KI': 18.10337078651685, 'J_D_1KI': 3.698339282230205} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.2.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.2.json new file mode 100644 index 0000000..0c05e29 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.2.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 2082, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.557694435119629, "TIME_S_1KI": 5.070938729644394, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1859.5419220256806, "W": 120.04, "J_1KI": 893.1517396857256, "W_1KI": 57.656099903938525, "W_D": 83.7395, "J_D": 1297.2101864334345, "W_D_1KI": 40.22070124879924, "J_D_1KI": 19.31830031162307} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.2.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.2.output new file mode 100644 index 0000000..68bbca5 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.2.output @@ -0,0 +1,65 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.2'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 0.5041141510009766} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2037, 4062, ..., 19995956, + 19997954, 20000000]), + col_indices=tensor([ 0, 3, 5, ..., 9996, 9997, 9998]), + values=tensor([0.3088, 0.0777, 0.1762, ..., 0.6057, 0.6562, 0.8467]), + size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) +tensor([0.5661, 0.3739, 0.3594, ..., 0.8068, 0.7143, 0.9609]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 20000000 +Density: 0.2 +Time: 0.5041141510009766 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '2082', '-ss', '10000', '-sd', '0.2'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.557694435119629} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1900, 3860, ..., 19996021, + 19998015, 20000000]), + col_indices=tensor([ 0, 3, 11, ..., 9989, 9992, 9996]), + values=tensor([0.1071, 0.4523, 0.1080, ..., 0.2881, 0.4034, 0.8495]), + size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) +tensor([0.3748, 0.6654, 0.9133, ..., 0.7126, 0.6760, 0.9288]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 20000000 +Density: 0.2 +Time: 10.557694435119629 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1900, 3860, ..., 19996021, + 19998015, 20000000]), + col_indices=tensor([ 0, 3, 11, ..., 9989, 9992, 9996]), + values=tensor([0.1071, 0.4523, 0.1080, ..., 0.2881, 0.4034, 0.8495]), + size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) +tensor([0.3748, 0.6654, 0.9133, ..., 0.7126, 0.6760, 0.9288]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 20000000 +Density: 0.2 +Time: 10.557694435119629 seconds + +[40.83, 40.15, 39.72, 39.76, 39.84, 39.84, 40.49, 39.96, 40.13, 39.73] +[120.04] +15.491019010543823 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 2082, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.557694435119629, 'TIME_S_1KI': 5.070938729644394, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1859.5419220256806, 'W': 120.04} +[40.83, 40.15, 39.72, 39.76, 39.84, 39.84, 40.49, 39.96, 40.13, 39.73, 41.31, 40.05, 40.38, 40.21, 39.71, 39.65, 45.13, 39.78, 40.38, 39.79] +726.01 +36.3005 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 2082, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.557694435119629, 'TIME_S_1KI': 5.070938729644394, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1859.5419220256806, 'W': 120.04, 'J_1KI': 893.1517396857256, 'W_1KI': 57.656099903938525, 'W_D': 83.7395, 'J_D': 1297.2101864334345, 'W_D_1KI': 40.22070124879924, 'J_D_1KI': 19.31830031162307} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.3.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.3.json new file mode 100644 index 0000000..b94bf6c --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.3.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 1470, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.845632314682007, "TIME_S_1KI": 7.377981166450344, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2161.157882115841, "W": 117.03, "J_1KI": 1470.1754300107762, "W_1KI": 79.61224489795917, "W_D": 80.6345, "J_D": 1489.0531081386805, "W_D_1KI": 54.853401360544225, "J_D_1KI": 37.315239020778385} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.3.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.3.output new file mode 100644 index 0000000..4e7bca2 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.3.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.3'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 0.7518825531005859} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2974, 5950, ..., 29994087, + 29997108, 30000000]), + col_indices=tensor([ 6, 8, 10, ..., 9985, 9992, 9996]), + values=tensor([0.7151, 0.6737, 0.4043, ..., 0.5812, 0.5679, 0.6733]), + size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) +tensor([0.6135, 0.6008, 0.5882, ..., 0.6628, 0.8539, 0.9204]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 30000000 +Density: 0.3 +Time: 0.7518825531005859 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1396', '-ss', '10000', '-sd', '0.3'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 9.968559503555298} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3001, 6027, ..., 29994039, + 29997052, 30000000]), + col_indices=tensor([ 7, 11, 16, ..., 9989, 9996, 9999]), + values=tensor([0.2908, 0.3192, 0.9662, ..., 0.5726, 0.8523, 0.1200]), + size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) +tensor([0.6009, 0.9845, 0.3791, ..., 0.1987, 0.1714, 0.4278]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 30000000 +Density: 0.3 +Time: 9.968559503555298 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1470', '-ss', '10000', '-sd', '0.3'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.845632314682007} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2929, 5851, ..., 29993945, + 29997029, 30000000]), + col_indices=tensor([ 6, 7, 11, ..., 9986, 9997, 9998]), + values=tensor([0.6210, 0.5427, 0.8130, ..., 0.4194, 0.0441, 0.7442]), + size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) +tensor([0.0141, 0.0033, 0.5199, ..., 0.4699, 0.7276, 0.5761]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 30000000 +Density: 0.3 +Time: 10.845632314682007 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2929, 5851, ..., 29993945, + 29997029, 30000000]), + col_indices=tensor([ 6, 7, 11, ..., 9986, 9997, 9998]), + values=tensor([0.6210, 0.5427, 0.8130, ..., 0.4194, 0.0441, 0.7442]), + size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) +tensor([0.0141, 0.0033, 0.5199, ..., 0.4699, 0.7276, 0.5761]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 30000000 +Density: 0.3 +Time: 10.845632314682007 seconds + +[46.28, 39.97, 40.2, 40.69, 40.27, 40.47, 40.33, 41.03, 39.84, 40.37] +[117.03] +18.466699838638306 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 1470, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.845632314682007, 'TIME_S_1KI': 7.377981166450344, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2161.157882115841, 'W': 117.03} +[46.28, 39.97, 40.2, 40.69, 40.27, 40.47, 40.33, 41.03, 39.84, 40.37, 41.81, 40.41, 40.59, 39.82, 40.04, 39.71, 39.78, 40.7, 39.78, 40.1] +727.9100000000001 +36.395500000000006 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 1470, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.845632314682007, 'TIME_S_1KI': 7.377981166450344, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2161.157882115841, 'W': 117.03, 'J_1KI': 1470.1754300107762, 'W_1KI': 79.61224489795917, 'W_D': 80.6345, 'J_D': 1489.0531081386805, 'W_D_1KI': 54.853401360544225, 'J_D_1KI': 37.315239020778385} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_1e-05.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_1e-05.json index 4449f80..b4516b2 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_1e-05.json +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_1e-05.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 362169, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.681929588317871, "TIME_S_1KI": 0.029494323336116207, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1262.685609395504, "W": 96.13, "J_1KI": 3.4864541399056903, "W_1KI": 0.2654285706396737, "W_D": 60.50875, "J_D": 794.7937986841798, "W_D_1KI": 0.1670732448111241, "J_D_1KI": 0.0004613129362566208} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 366482, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 11.093939065933228, "TIME_S_1KI": 0.0302714432521467, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1264.2006668257713, "W": 98.79, "J_1KI": 3.4495573229402026, "W_1KI": 0.26956303447372587, "W_D": 62.66125, "J_D": 801.866525297463, "W_D_1KI": 0.17098043014390885, "J_D_1KI": 0.0004665452331735497} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_1e-05.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_1e-05.output index f681b74..b43f8ba 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_1e-05.output +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_1e-05.output @@ -1,373 +1,1024 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.044791460037231445} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.019162416458129883} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([2508, 9046, 543, 4312, 1967, 3077, 2314, 3402, 8716, + 3244, 7898, 5856, 5314, 5976, 2342, 2492, 8104, 2147, + 1979, 1751, 5860, 9783, 5705, 5222, 9824, 95, 1929, + 8803, 8548, 677, 1693, 5788, 5523, 9109, 5789, 1810, + 1126, 4820, 9808, 8419, 2599, 1229, 2963, 1212, 2144, + 3318, 3062, 2566, 7505, 6545, 1590, 1285, 717, 2005, + 5957, 3726, 9706, 857, 1431, 3655, 7849, 8981, 2848, + 7191, 9483, 8286, 6981, 629, 346, 7910, 8938, 1876, + 6475, 566, 6786, 4287, 8002, 5447, 9857, 7286, 3753, + 6095, 8322, 7342, 5732, 7297, 8559, 2193, 1470, 9896, + 4441, 3719, 1687, 3912, 4005, 7511, 4689, 9996, 5681, + 3721, 5011, 1299, 193, 7161, 1139, 8246, 6024, 9167, + 5912, 3347, 8644, 5448, 9677, 2358, 2275, 4573, 5804, + 6640, 677, 4332, 7242, 5152, 3155, 2691, 5318, 3888, + 7771, 2370, 9442, 9350, 2217, 3939, 1845, 8407, 8949, + 3238, 6161, 7398, 563, 6153, 7042, 5316, 6185, 8259, + 7444, 4523, 6325, 9519, 7963, 8735, 3571, 4162, 6945, + 7239, 9555, 8362, 6689, 825, 2005, 7392, 6469, 6550, + 1091, 7670, 3483, 3477, 6190, 5573, 9375, 3852, 897, + 8739, 4969, 3239, 4179, 9098, 2727, 7551, 1657, 3410, + 9763, 2836, 8969, 3741, 1805, 806, 7323, 1341, 9366, + 4238, 7055, 1855, 6557, 2199, 3076, 961, 56, 4684, + 8459, 6449, 916, 1241, 3555, 6490, 6076, 4659, 6608, + 1972, 7464, 3684, 7276, 202, 4934, 2937, 6629, 8676, + 2854, 9198, 3221, 1881, 9527, 3491, 900, 551, 3477, + 7557, 5144, 2172, 5733, 2720, 3420, 7237, 7166, 9810, + 146, 2108, 2851, 228, 520, 2516, 469, 991, 7850, + 1010, 9739, 3913, 4444, 2689, 1467, 901, 7088, 235, + 7464, 8041, 9413, 9292, 9837, 5114, 68, 289, 3415, + 4247, 7541, 9998, 3514, 9674, 2670, 3572, 2167, 8523, + 1517, 6861, 179, 4531, 7528, 4118, 3477, 1329, 9307, + 6276, 937, 7241, 4841, 2423, 4555, 3917, 1683, 3585, + 9720, 9352, 5341, 6902, 9150, 1840, 8548, 9758, 2673, + 665, 8946, 4675, 2273, 3021, 7214, 5707, 6328, 3736, + 1078, 7132, 2785, 1506, 6694, 7725, 9559, 241, 6974, + 365, 3095, 3437, 5609, 2248, 2372, 9786, 6037, 6108, + 7705, 1458, 6266, 400, 8324, 6775, 3201, 1369, 6843, + 7707, 9241, 1615, 9217, 1863, 2989, 2014, 2316, 4769, + 5768, 5885, 5440, 3265, 6889, 6583, 7730, 647, 9106, + 4087, 6087, 4403, 9274, 4471, 7401, 2762, 3931, 6965, + 3164, 938, 527, 5512, 7910, 4668, 5448, 6709, 6557, + 7876, 2822, 1072, 7234, 7990, 680, 6351, 365, 8734, + 3355, 2213, 5195, 7229, 9067, 2511, 3762, 8881, 3507, + 8462, 498, 1315, 6134, 3211, 3461, 4219, 3233, 6852, + 4989, 108, 8007, 9484, 5952, 2542, 8868, 678, 6135, + 2042, 6083, 8113, 8376, 7391, 510, 8516, 672, 6513, + 3857, 4529, 1142, 2241, 2953, 8752, 7337, 485, 9766, + 7738, 1630, 4671, 1054, 3709, 3629, 1425, 6145, 3112, + 1557, 5971, 4707, 2420, 7428, 3073, 7043, 4518, 3258, + 8324, 4576, 9820, 1738, 4288, 4568, 5120, 2665, 5670, + 1160, 3431, 2936, 6123, 3465, 6501, 3805, 5189, 2086, + 6398, 7063, 7290, 1186, 1870, 6160, 4041, 9566, 9903, + 8671, 3136, 161, 9574, 903, 9086, 6744, 9121, 576, + 5200, 5674, 3097, 5935, 1757, 3232, 3580, 6609, 4322, + 3945, 8444, 3852, 1569, 5504, 6603, 1547, 878, 7861, + 8802, 3561, 6575, 4591, 301, 5462, 5293, 1550, 7795, + 7430, 4734, 185, 8890, 5875, 1566, 7507, 6627, 9171, + 1332, 7105, 4247, 5478, 9026, 7544, 154, 3320, 6187, + 9024, 5315, 5066, 2631, 6631, 4897, 3673, 328, 228, + 3166, 2519, 3745, 6596, 6669, 3088, 9711, 8165, 899, + 9589, 36, 3957, 496, 115, 6166, 3688, 1766, 2307, + 361, 8690, 3683, 5585, 8112, 1232, 4580, 3944, 1072, + 3051, 3242, 8587, 3766, 5601, 892, 958, 4286, 1119, + 8408, 8953, 1339, 9703, 8899, 4918, 8984, 90, 9279, + 2372, 4341, 1706, 6214, 6370, 5149, 5092, 1777, 9441, + 9154, 96, 8248, 9257, 324, 4153, 3647, 3530, 8044, + 6156, 5365, 6116, 6837, 5051, 5730, 9232, 9397, 1594, + 8693, 8301, 9952, 6466, 8737, 1882, 7563, 1802, 8052, + 5900, 5405, 9630, 5275, 397, 43, 1118, 3111, 7822, + 1550, 6255, 9674, 8999, 4005, 803, 8997, 3496, 9830, + 8865, 2267, 8584, 1911, 3802, 5884, 3569, 5747, 6116, + 2421, 6562, 9781, 1610, 9382, 4873, 3318, 7129, 1019, + 4920, 9241, 9316, 5277, 42, 7494, 521, 5458, 1264, + 2824, 4185, 5776, 9545, 1226, 5004, 3090, 5089, 5606, + 2635, 730, 1318, 7015, 5910, 1589, 2576, 5832, 8341, + 510, 1635, 9237, 9840, 9042, 2447, 2076, 1317, 6375, + 2349, 753, 5583, 461, 8308, 3246, 9965, 6828, 2813, + 5244, 8142, 3664, 9159, 2387, 8232, 3360, 3745, 9932, + 8242, 9581, 583, 7106, 1310, 8310, 9223, 9897, 891, + 3817, 669, 1332, 8246, 7894, 4436, 9573, 8485, 883, + 6017, 9583, 1812, 1526, 9934, 6848, 545, 1911, 9192, + 9042, 1264, 2751, 4412, 3662, 7224, 2779, 4696, 305, + 5292, 260, 4859, 3014, 8257, 6456, 630, 7298, 2761, + 6571, 1472, 237, 547, 1959, 9753, 241, 8232, 658, + 5617, 1683, 4236, 4952, 233, 3496, 5512, 1296, 2703, + 824, 6138, 8526, 4191, 8549, 1882, 3569, 880, 1859, + 3403, 3955, 3780, 9117, 9017, 4182, 8874, 6980, 6107, + 6696, 2541, 5309, 129, 1202, 6760, 6885, 2142, 3488, + 5352, 1138, 5951, 6874, 3225, 7748, 1683, 7358, 5735, + 6474, 9585, 2307, 1145, 6405, 344, 6696, 7602, 6515, + 6579, 4160, 476, 4879, 2338, 3519, 6083, 7770, 8803, + 874, 61, 5281, 3911, 7063, 496, 6813, 3096, 9178, + 9609, 9207, 4316, 298, 2152, 4674, 1655, 2709, 1060, + 1886, 4678, 5984, 8258, 3381, 1591, 2352, 5598, 2384, + 6485, 3129, 2612, 5258, 50, 7930, 121, 1164, 2557, + 7206, 332, 277, 8421, 8500, 3337, 425, 29, 4235, + 1351, 6801, 7552, 2348, 1388, 7634, 6330, 462, 92, + 7088, 6060, 755, 8641, 9588, 7108, 2787, 4729, 7562, + 1723, 9127, 2961, 5309, 3629, 9214, 609, 7748, 5877, + 8710, 813, 774, 4114, 8416, 9164, 6941, 8479, 9249, + 2209, 1935, 7138, 6867, 4080, 6512, 6310, 1493, 4434, + 2113, 1980, 842, 7628, 543, 6712, 7464, 8278, 9046, + 252, 3576, 5501, 7511, 8121, 9681, 2157, 2047, 8548, + 1713, 9404, 312, 6465, 1352, 745, 2058, 4123, 364, + 3279, 206, 6153, 6439, 2407, 2611, 8191, 5859, 4752, + 2250, 2606, 5278, 8499, 5121, 6146, 1399, 707, 9543, + 9512, 8626, 4838, 1640, 8865, 3626, 1378, 1243, 7236, + 2803, 749, 5378, 8175, 205, 2154, 4279, 8991, 3947, + 1049, 8403, 5710, 6926, 9939, 7498, 1591, 3403, 5973, + 3803, 6876, 4161, 9117, 6935, 2368, 4884, 1751, 2199, + 7506, 7285, 9043, 5992, 4277, 9161, 865, 8138, 3793, + 2124]), + values=tensor([9.5707e-01, 7.5111e-02, 5.2267e-01, 7.5134e-01, + 4.3950e-01, 1.0462e-01, 5.2766e-01, 8.0984e-01, + 3.6860e-01, 6.2700e-01, 2.7206e-01, 2.2086e-01, + 7.5800e-02, 5.2988e-01, 9.7607e-01, 6.6976e-01, + 1.0378e-01, 2.4656e-01, 7.2340e-02, 8.2021e-01, + 5.8758e-01, 3.6488e-01, 4.8457e-01, 9.5443e-01, + 8.5500e-01, 7.0430e-02, 4.0168e-01, 9.6994e-01, + 7.6007e-01, 5.2134e-01, 6.0309e-01, 2.0268e-02, + 6.4190e-01, 5.1957e-01, 1.7394e-02, 5.2587e-01, + 8.3287e-01, 5.4658e-01, 2.9352e-01, 5.8028e-01, + 2.3292e-01, 5.6525e-01, 3.0481e-01, 5.9132e-01, + 5.4885e-01, 4.3601e-01, 1.8604e-01, 7.6863e-01, + 4.0955e-01, 1.9418e-01, 8.1744e-01, 2.2905e-01, + 6.2145e-01, 4.2411e-01, 9.6454e-01, 6.9999e-01, + 2.5102e-01, 7.2112e-01, 5.4737e-03, 2.1960e-01, + 2.7281e-01, 9.8861e-01, 2.3502e-01, 1.8402e-02, + 7.3555e-01, 1.7015e-01, 8.0917e-01, 3.6306e-01, + 9.5127e-01, 9.5612e-01, 6.5620e-01, 9.4079e-01, + 8.4929e-02, 1.9682e-01, 2.9972e-01, 7.5136e-01, + 9.5920e-01, 8.9681e-01, 9.3731e-01, 7.0940e-01, + 3.4216e-01, 5.2653e-01, 4.4805e-01, 3.5030e-01, + 4.8871e-01, 6.7711e-01, 2.1250e-01, 6.4504e-01, + 8.9757e-01, 2.0048e-01, 7.0915e-01, 3.4982e-01, + 3.7719e-01, 5.1148e-01, 5.1377e-01, 4.0306e-01, + 9.0690e-01, 9.4781e-01, 4.2681e-01, 8.2944e-01, + 3.6292e-02, 1.1525e-01, 2.1119e-01, 4.8411e-01, + 5.4486e-01, 6.4081e-01, 7.2189e-01, 7.4429e-01, + 5.2306e-01, 2.1619e-01, 9.8409e-01, 1.4917e-01, + 7.9852e-01, 7.8111e-01, 1.8563e-01, 1.2931e-01, + 6.3740e-01, 4.9304e-01, 1.5550e-01, 5.8621e-01, + 6.4899e-01, 7.7558e-01, 3.3227e-01, 2.4952e-01, + 8.7603e-01, 8.7279e-01, 2.4448e-01, 5.2727e-01, + 6.1779e-01, 6.0647e-01, 4.6651e-01, 1.5071e-01, + 2.6441e-01, 7.8739e-01, 7.4962e-01, 1.1566e-01, + 2.0523e-01, 6.1684e-02, 1.3500e-01, 3.5001e-01, + 4.2839e-01, 1.0545e-01, 3.1092e-01, 1.9727e-01, + 2.2556e-01, 8.2536e-01, 5.3360e-01, 5.6445e-02, + 2.8582e-01, 9.0706e-01, 3.2536e-01, 5.8741e-01, + 6.7535e-01, 2.1045e-01, 2.8517e-01, 8.8253e-01, + 4.3607e-01, 1.1168e-01, 1.0718e-01, 9.9590e-01, + 2.8048e-01, 7.4511e-01, 5.0053e-01, 6.2593e-01, + 5.9607e-01, 4.4446e-02, 9.8355e-01, 5.2331e-01, + 5.2200e-01, 8.5502e-01, 6.4442e-01, 9.0020e-01, + 8.6652e-01, 3.0542e-01, 5.0427e-01, 7.5490e-01, + 7.0590e-01, 4.5354e-01, 9.5344e-01, 7.8571e-01, + 8.1908e-01, 4.9790e-01, 5.0901e-01, 6.2748e-01, + 8.1486e-01, 2.4903e-01, 4.0531e-01, 5.0243e-01, + 7.1026e-01, 6.1145e-01, 9.9286e-01, 9.2958e-02, + 9.5266e-01, 9.8567e-02, 6.6328e-01, 7.4995e-01, + 1.6322e-01, 4.7215e-01, 2.8642e-01, 4.0280e-01, + 4.1682e-01, 8.7567e-01, 3.3333e-01, 6.2409e-01, + 5.1732e-01, 5.0235e-01, 5.9038e-01, 9.6075e-01, + 6.4711e-01, 1.9445e-01, 6.6739e-01, 1.7538e-01, + 4.7512e-01, 7.0938e-01, 7.6463e-01, 9.7284e-01, + 6.7293e-01, 7.1057e-01, 1.6317e-01, 5.3806e-01, + 2.3246e-01, 3.3440e-01, 6.4813e-01, 1.4413e-01, + 6.7799e-01, 6.9199e-01, 2.7005e-01, 8.5967e-01, + 9.5025e-01, 5.7371e-01, 5.3952e-01, 8.1204e-01, + 8.6498e-01, 1.0209e-01, 1.7641e-01, 9.0414e-01, + 9.8256e-01, 1.4095e-01, 1.1876e-02, 6.2645e-01, + 6.8777e-01, 3.0740e-01, 2.6030e-01, 8.3542e-01, + 5.9327e-01, 4.4948e-01, 3.7350e-01, 1.0986e-04, + 2.3860e-01, 9.1896e-02, 5.3594e-01, 9.6019e-01, + 1.6538e-01, 1.1255e-01, 3.6157e-01, 8.2704e-01, + 4.6706e-01, 9.2369e-01, 5.7754e-02, 8.8497e-01, + 4.0691e-01, 1.4109e-01, 8.9898e-01, 4.6571e-01, + 6.6921e-01, 1.3252e-01, 1.8881e-01, 9.8200e-01, + 1.0344e-01, 8.4811e-01, 1.5001e-01, 2.3035e-01, + 5.0531e-01, 5.4044e-01, 1.5758e-01, 2.7234e-01, + 2.9591e-02, 5.5223e-01, 5.2184e-01, 1.3019e-01, + 5.4173e-01, 3.8830e-02, 1.7101e-01, 4.2637e-01, + 1.9357e-01, 8.3596e-01, 2.2751e-01, 3.1702e-02, + 5.1308e-01, 8.9139e-01, 7.0073e-01, 1.9805e-02, + 7.1449e-01, 8.6626e-01, 6.7742e-01, 9.7350e-02, + 9.6125e-02, 1.0821e-02, 2.0755e-01, 8.5136e-01, + 9.6269e-01, 2.9214e-01, 7.5108e-01, 9.3964e-01, + 3.7916e-01, 4.1542e-01, 5.8698e-02, 6.6382e-02, + 6.7280e-01, 5.8834e-01, 6.9868e-01, 2.9465e-01, + 8.0107e-01, 9.9069e-01, 9.1914e-01, 8.1978e-01, + 2.3299e-01, 8.9070e-01, 4.4949e-01, 3.9548e-01, + 6.8903e-02, 5.1778e-01, 5.0884e-01, 9.6649e-01, + 7.8248e-01, 7.9469e-01, 8.4596e-01, 4.1456e-01, + 5.6304e-01, 2.4162e-01, 7.7596e-01, 3.7262e-01, + 1.9690e-01, 8.7898e-01, 5.7855e-01, 8.8490e-01, + 7.9846e-01, 9.8537e-01, 2.5265e-01, 4.1278e-01, + 2.8090e-01, 7.7330e-01, 3.6348e-01, 1.2010e-01, + 4.8836e-02, 3.9874e-01, 3.6603e-01, 9.7665e-01, + 6.6776e-01, 8.6239e-01, 5.8508e-01, 6.2472e-01, + 4.6666e-01, 7.1718e-01, 5.8015e-01, 1.7355e-01, + 6.4883e-01, 6.9474e-01, 5.5885e-01, 8.0919e-01, + 2.1098e-02, 5.1721e-01, 3.2513e-01, 4.7559e-01, + 6.9479e-01, 5.7204e-02, 8.2071e-01, 7.9470e-01, + 1.5832e-01, 9.6615e-01, 8.8939e-01, 3.4476e-01, + 4.2795e-01, 2.4169e-01, 1.1676e-01, 8.6470e-01, + 8.2056e-01, 6.5573e-01, 9.8935e-01, 5.7272e-01, + 7.3601e-01, 7.9089e-02, 3.3822e-01, 4.0108e-01, + 9.6395e-01, 4.8080e-01, 5.9846e-01, 3.8560e-01, + 4.7398e-01, 5.5866e-01, 1.9426e-01, 6.3002e-01, + 3.6931e-01, 1.9150e-01, 9.5172e-01, 6.8593e-01, + 9.0949e-01, 7.7968e-01, 8.8743e-01, 7.2524e-01, + 5.8547e-01, 4.0587e-02, 7.9930e-01, 4.9416e-01, + 2.2101e-01, 3.5603e-01, 3.6054e-01, 8.1873e-01, + 4.9506e-01, 4.8170e-01, 1.9852e-02, 8.4708e-01, + 5.5999e-02, 9.3643e-01, 8.9081e-01, 5.2429e-01, + 3.4433e-01, 9.9034e-01, 7.5270e-01, 9.8192e-02, + 8.3430e-01, 4.0506e-01, 5.7351e-01, 5.8198e-01, + 7.8535e-01, 3.1474e-01, 3.7672e-01, 9.5581e-01, + 5.0140e-01, 9.4484e-01, 8.7129e-01, 7.1288e-01, + 5.5956e-01, 4.2823e-01, 5.7999e-01, 2.1299e-01, + 4.2089e-01, 2.2957e-01, 7.9354e-01, 7.6309e-02, + 3.4527e-01, 7.3564e-01, 3.1080e-02, 5.3529e-01, + 6.7180e-01, 5.7907e-01, 3.1932e-01, 7.5232e-01, + 9.5640e-01, 2.7941e-01, 3.0238e-01, 2.3890e-01, + 7.8927e-01, 3.9851e-01, 9.3470e-01, 5.2208e-01, + 2.6565e-01, 9.7156e-01, 5.3434e-02, 1.7433e-01, + 6.3462e-01, 4.0678e-01, 7.6080e-01, 7.5007e-01, + 8.8465e-01, 5.6181e-01, 1.8341e-01, 7.3839e-01, + 1.2657e-01, 4.0856e-02, 1.9742e-01, 5.7758e-01, + 9.1472e-01, 7.0792e-01, 2.2052e-01, 8.3225e-01, + 3.2311e-01, 3.3219e-01, 7.1413e-01, 9.1565e-01, + 3.5997e-01, 7.4105e-03, 6.0376e-01, 7.2324e-01, + 1.4783e-01, 6.7320e-01, 3.7075e-01, 2.5924e-02, + 9.4362e-01, 9.0266e-01, 1.6865e-01, 1.1705e-01, + 5.1386e-01, 8.8878e-01, 7.2176e-02, 4.6214e-01, + 5.6413e-01, 8.8627e-01, 1.4536e-01, 9.9284e-01, + 2.1084e-01, 2.8486e-01, 4.9650e-01, 2.9385e-02, + 6.2964e-01, 4.5897e-01, 1.2506e-01, 3.2973e-01, + 3.5741e-01, 1.1022e-01, 4.5569e-01, 6.9577e-01, + 5.5279e-01, 2.7969e-01, 8.5986e-01, 2.6368e-01, + 6.4340e-01, 9.2902e-01, 8.9041e-01, 3.8571e-01, + 5.3481e-01, 6.3246e-01, 2.9579e-01, 8.7994e-01, + 7.3501e-01, 1.8278e-01, 8.7146e-01, 6.8984e-01, + 9.7701e-01, 2.6879e-01, 4.7228e-01, 4.6858e-01, + 6.5356e-01, 3.4051e-01, 1.3083e-01, 5.5078e-01, + 9.9590e-01, 6.7336e-01, 5.2390e-01, 9.9667e-01, + 3.6021e-01, 8.2597e-01, 9.1583e-02, 8.8522e-01, + 6.2531e-01, 7.7626e-01, 2.4642e-01, 7.1187e-01, + 8.5251e-01, 3.2244e-01, 8.3217e-01, 5.6333e-01, + 9.0624e-01, 1.0129e-01, 1.7179e-01, 2.2377e-01, + 1.3904e-01, 1.0345e-01, 3.5301e-01, 9.2239e-01, + 1.7381e-01, 8.5612e-01, 4.7815e-02, 6.3335e-01, + 8.3647e-01, 9.1361e-01, 4.4021e-01, 9.0607e-01, + 9.6051e-01, 3.7103e-01, 7.5892e-01, 4.9115e-02, + 4.7167e-01, 2.2361e-01, 5.0125e-02, 5.7553e-01, + 3.8853e-01, 1.8018e-03, 2.1029e-01, 6.3036e-01, + 5.1485e-01, 2.6272e-01, 3.7676e-01, 4.0031e-01, + 5.5369e-01, 8.5186e-01, 9.5478e-01, 9.7874e-01, + 6.0960e-01, 5.7114e-01, 1.6926e-01, 9.7937e-01, + 2.8179e-01, 6.0239e-01, 1.5084e-01, 4.4762e-01, + 1.8913e-02, 7.4072e-02, 1.9277e-01, 9.7400e-01, + 6.4101e-01, 9.2459e-01, 9.2259e-01, 2.5328e-01, + 4.3386e-01, 7.5744e-01, 2.6380e-01, 1.8999e-01, + 2.9650e-01, 1.2204e-01, 6.3492e-01, 9.8427e-01, + 6.6209e-01, 2.3144e-01, 1.9369e-01, 6.9676e-01, + 7.7157e-01, 7.1536e-01, 1.9457e-01, 9.1369e-01, + 3.7470e-01, 4.8812e-01, 2.0180e-01, 8.6489e-01, + 8.3156e-01, 4.2700e-01, 5.5408e-01, 1.2690e-01, + 6.1767e-01, 8.0178e-01, 6.5887e-01, 3.7992e-01, + 3.4861e-02, 7.4799e-01, 5.4430e-01, 2.7734e-01, + 7.8324e-01, 7.5679e-01, 3.7977e-01, 9.8697e-01, + 2.1210e-01, 5.3826e-01, 9.8583e-01, 5.6862e-01, + 1.2409e-01, 4.7137e-01, 3.8364e-02, 7.9660e-02, + 1.0900e-01, 5.8409e-01, 3.5038e-01, 4.7469e-01, + 3.2646e-01, 9.7963e-01, 4.0955e-02, 7.7282e-01, + 2.3795e-01, 9.1451e-01, 6.2383e-02, 8.7752e-01, + 4.7785e-01, 6.3873e-01, 8.5135e-01, 6.3066e-01, + 9.2024e-01, 9.7095e-01, 6.0603e-01, 1.6173e-01, + 1.3692e-01, 9.7430e-02, 4.6913e-01, 1.3027e-01, + 6.4550e-01, 3.7097e-01, 1.0917e-01, 2.2626e-01, + 2.8272e-01, 9.3467e-01, 4.9372e-01, 1.1127e-02, + 2.9856e-01, 3.5094e-01, 6.7278e-01, 8.7179e-01, + 6.1750e-01, 9.3689e-01, 4.8396e-01, 7.8289e-01, + 6.7812e-01, 5.5047e-01, 6.6028e-01, 3.8193e-01, + 4.4025e-01, 4.7649e-02, 7.8513e-02, 8.4372e-01, + 1.5700e-01, 6.6635e-01, 6.0490e-02, 1.8217e-02, + 4.2363e-01, 7.2664e-01, 8.3042e-01, 2.0481e-01, + 7.7507e-01, 9.7178e-01, 2.8840e-01, 2.2320e-02, + 2.4571e-01, 3.1488e-01, 5.5842e-01, 4.4275e-01, + 6.1188e-01, 9.9512e-01, 2.2123e-01, 7.4091e-01, + 3.2291e-01, 6.8756e-01, 9.3283e-01, 5.8119e-01, + 3.3596e-01, 7.2542e-01, 4.1198e-01, 6.8787e-02, + 8.8370e-01, 9.5542e-01, 2.2005e-01, 1.3328e-01, + 8.7725e-02, 1.6866e-01, 2.6482e-01, 2.0425e-01, + 9.5978e-01, 8.7192e-01, 8.3889e-01, 8.5559e-01, + 1.8737e-01, 6.5055e-01, 3.7960e-01, 9.6932e-01, + 8.8268e-02, 4.3796e-01, 2.4756e-01, 5.3141e-01, + 5.8335e-01, 1.5163e-01, 4.6407e-01, 2.2600e-01, + 7.3892e-02, 1.8333e-01, 3.7744e-01, 6.2963e-01, + 3.5785e-01, 6.6981e-01, 3.8519e-01, 9.8844e-02, + 8.4155e-01, 9.8768e-01, 2.6869e-01, 6.6979e-01, + 3.9017e-01, 7.5747e-01, 8.9913e-01, 9.6730e-01, + 8.6778e-01, 8.9518e-01, 1.3607e-02, 7.1872e-01, + 4.9862e-01, 9.7831e-01, 3.5029e-01, 6.3459e-01, + 7.2985e-01, 3.1857e-01, 3.9858e-01, 8.7370e-01, + 7.2291e-01, 6.5606e-01, 4.2614e-01, 9.7369e-01, + 4.8132e-01, 3.9773e-01, 4.9498e-01, 9.3882e-01, + 6.7264e-01, 1.4831e-01, 5.6335e-01, 1.3523e-01, + 8.0317e-01, 4.7686e-01, 7.9812e-01, 1.6696e-01, + 1.1332e-01, 9.1364e-02, 5.8808e-01, 9.8429e-01, + 1.5637e-01, 2.4472e-01, 8.7386e-01, 6.3707e-01, + 5.1617e-01, 4.9782e-02, 8.8919e-01, 8.8265e-01, + 1.0222e-02, 2.0402e-01, 9.7026e-01, 8.6356e-01, + 1.9645e-01, 5.4133e-01, 7.4024e-01, 3.8777e-01, + 7.1005e-02, 2.4800e-01, 8.5222e-02, 6.5517e-01, + 4.2196e-01, 9.1175e-02, 1.1579e-01, 3.4600e-01, + 2.4814e-01, 4.3545e-01, 4.5340e-02, 1.3988e-01, + 9.2241e-01, 8.9701e-01, 4.8420e-01, 1.0904e-01, + 5.2898e-02, 5.7708e-01, 2.3747e-01, 4.6528e-01, + 2.2433e-01, 9.1101e-01, 8.3910e-01, 2.2365e-01, + 4.4439e-02, 4.6479e-01, 2.9108e-01, 6.7486e-01, + 2.7214e-01, 3.8601e-01, 1.6734e-01, 8.3921e-01, + 1.9230e-01, 9.9649e-01, 9.2040e-01, 5.7493e-01, + 2.5505e-02, 4.8876e-01, 2.6393e-01, 2.7271e-01, + 5.4310e-01, 8.6927e-01, 5.3533e-02, 1.9992e-01, + 5.7080e-01, 4.0119e-01, 2.5005e-01, 2.9507e-01, + 7.8395e-01, 3.1151e-01, 8.1157e-01, 6.1728e-01, + 8.6581e-01, 8.8523e-01, 8.1788e-01, 7.3004e-01, + 1.6512e-01, 3.2868e-02, 3.0387e-02, 2.1487e-01, + 6.6144e-01, 2.1608e-01, 8.9192e-01, 2.3551e-01, + 8.1202e-01, 2.6274e-01, 9.1459e-01, 7.5205e-01, + 7.3392e-01, 5.9391e-01, 2.2391e-01, 9.4922e-02, + 3.3381e-03, 9.6530e-01, 7.1320e-01, 5.3214e-01, + 5.2087e-01, 2.4255e-01, 9.0107e-01, 9.7729e-01, + 3.0352e-01, 9.8847e-01, 1.6505e-01, 5.9415e-01, + 7.8564e-01, 3.1263e-01, 1.5197e-01, 2.2146e-01, + 8.6721e-02, 5.5948e-01, 3.9253e-01, 3.7220e-01, + 5.3485e-01, 8.5741e-01, 8.0291e-01, 1.4914e-01, + 8.5698e-02, 4.0980e-01, 7.9854e-02, 3.0832e-01, + 3.0797e-01, 8.7825e-01, 6.1055e-01, 5.3491e-02, + 3.0791e-02, 3.7147e-01, 7.7878e-01, 3.4236e-01, + 4.5054e-01, 1.5377e-02, 5.9456e-02, 5.9733e-01, + 4.9498e-01, 1.1290e-01, 8.5009e-01, 8.0132e-01, + 6.7297e-01, 9.7824e-02, 9.2051e-01, 1.9335e-01, + 2.4769e-01, 1.6690e-01, 5.0092e-01, 5.4391e-01, + 7.2974e-01, 5.6050e-01, 3.7368e-01, 8.9801e-01, + 3.7280e-01, 1.0774e-01, 2.2172e-02, 3.1493e-01, + 5.8527e-01, 7.1807e-01, 7.0470e-01, 1.1035e-01, + 2.5102e-01, 7.6188e-01, 7.9622e-01, 9.4422e-01, + 1.5518e-01, 3.1240e-02, 3.5932e-01, 1.9391e-01, + 1.0883e-01, 8.0519e-01, 6.5322e-01, 2.7200e-01, + 3.6103e-01, 4.5282e-01, 9.1939e-01, 4.6131e-01, + 3.8575e-01, 8.8690e-01, 4.9604e-01, 9.2190e-01, + 8.9283e-01, 5.2838e-01, 1.4113e-01, 4.4667e-01, + 2.2835e-01, 8.8676e-01, 4.8873e-01, 9.5014e-01, + 5.1040e-01, 8.4321e-01, 5.9227e-01, 4.5634e-01, + 8.5767e-01, 8.2056e-01, 3.4810e-01, 1.9600e-01, + 2.8430e-01, 7.0722e-01, 6.5270e-01, 7.1032e-01, + 5.2650e-01, 9.3358e-01, 4.5651e-01, 1.3223e-01, + 6.9249e-01, 3.3404e-01, 3.4727e-01, 2.1805e-01, + 2.2592e-02, 4.9539e-01, 7.1062e-02, 1.8299e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.4331, 0.6450, 0.9910, ..., 0.2595, 0.5081, 0.5389]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 0.019162416458129883 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '54794', '-ss', '10000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 1.6940038204193115} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([7911, 3161, 1262, 5192, 2357, 7680, 3052, 5022, 1293, + 7499, 7977, 6646, 8728, 6750, 3375, 7755, 8716, 989, + 2588, 5755, 4685, 6627, 6922, 2935, 5765, 5675, 6658, + 7409, 1352, 5956, 5147, 9211, 2687, 6131, 3712, 585, + 972, 5746, 1667, 2824, 532, 1593, 3811, 2678, 9253, + 6720, 7376, 2847, 3241, 3587, 6951, 8223, 340, 5643, + 5214, 8395, 1798, 7092, 3059, 6235, 7618, 486, 1778, + 3237, 6697, 2502, 70, 2828, 606, 6952, 9286, 5888, + 3027, 7384, 4383, 6428, 4570, 1783, 1294, 7026, 2076, + 4918, 1488, 770, 957, 9836, 1056, 2315, 474, 4971, + 3554, 7405, 3832, 8094, 428, 4395, 7438, 9704, 1633, + 6658, 2294, 942, 9262, 5660, 6854, 8366, 1078, 2854, + 2434, 3985, 3190, 6248, 4349, 7344, 8178, 4674, 4996, + 6996, 4763, 2253, 1593, 2769, 2167, 4085, 6424, 9420, + 1242, 4354, 6300, 5604, 1686, 343, 7940, 6599, 3332, + 608, 9023, 9655, 8459, 2336, 1618, 2580, 2819, 4817, + 7559, 8620, 7978, 3358, 9453, 7322, 6766, 7975, 3814, + 2608, 1766, 6541, 541, 4726, 3955, 8201, 8104, 2555, + 2228, 8697, 1378, 8871, 834, 5468, 3992, 9300, 86, + 2146, 9398, 545, 591, 5437, 3320, 3820, 8590, 4135, + 3007, 2522, 3922, 759, 5236, 2202, 5387, 7098, 8105, + 3515, 2202, 6617, 5113, 2562, 4701, 3458, 7765, 7192, + 5627, 6408, 9799, 6567, 37, 4616, 271, 7974, 5307, + 9377, 7332, 242, 7565, 8542, 4407, 5590, 7693, 2731, + 2564, 8507, 8892, 8486, 4127, 1297, 9765, 3824, 1756, + 2347, 1093, 902, 2490, 5112, 7578, 5964, 7096, 3492, + 4916, 3077, 6301, 2536, 5861, 1994, 5412, 4184, 9482, + 5468, 6176, 4074, 3736, 5024, 9965, 8881, 7464, 2623, + 7850, 5867, 9092, 7361, 2749, 846, 3270, 8221, 7657, + 5496, 1168, 6665, 6181, 6205, 2270, 71, 245, 7836, + 4101, 8588, 9378, 9346, 9253, 744, 9634, 1404, 1681, + 2033, 4795, 7187, 7704, 9971, 4828, 565, 2094, 6252, + 5611, 2984, 5542, 4429, 355, 2391, 7037, 3331, 7438, + 5605, 5312, 7733, 9542, 2583, 2261, 2389, 2273, 3645, + 3262, 6647, 1886, 8483, 8073, 2214, 4868, 6777, 8269, + 220, 9717, 5193, 6143, 4955, 3714, 2595, 1190, 5189, + 9733, 4412, 3274, 76, 3147, 2339, 1088, 8301, 86, + 524, 2350, 3099, 415, 3796, 2977, 9907, 1395, 6139, + 3508, 4520, 9604, 3340, 6041, 595, 5957, 587, 1195, + 3410, 8756, 8453, 6996, 1505, 8596, 2662, 1437, 6740, + 7061, 9248, 4638, 2125, 1555, 5142, 5829, 750, 446, + 1115, 4258, 132, 8639, 8024, 4417, 7514, 9888, 5171, + 3804, 9336, 7399, 7498, 3446, 517, 7466, 8729, 1786, + 5529, 3386, 5123, 5833, 8522, 7193, 4596, 3871, 9148, + 2138, 2608, 1676, 5641, 518, 8701, 9620, 1125, 9274, + 49, 13, 2714, 3823, 7010, 8129, 8631, 2865, 1750, + 395, 7820, 5688, 9017, 6767, 3565, 4202, 6678, 2244, + 4721, 9333, 8878, 5819, 3634, 8317, 592, 1447, 3012, + 6300, 8346, 1608, 1213, 80, 7267, 4298, 6409, 2292, + 1670, 6487, 5529, 8657, 2479, 6350, 6733, 7577, 2776, + 1458, 945, 8267, 2346, 8008, 3294, 2469, 7020, 2715, + 4869, 2481, 110, 4234, 4845, 890, 5463, 618, 8967, + 4348, 4756, 6306, 3882, 9183, 1947, 8107, 5369, 2472, + 2945, 5358, 9391, 1200, 4322, 8117, 5100, 4644, 6706, + 1082, 1513, 5226, 9231, 7175, 4584, 8366, 633, 1495, + 9566, 7257, 4456, 3124, 5334, 3920, 5125, 2467, 1786, + 6231, 6395, 2461, 1514, 7642, 3727, 7424, 7613, 140, + 1890, 4821, 1469, 8259, 8978, 1802, 5378, 6805, 3869, + 3783, 3061, 8658, 5541, 472, 3859, 5961, 4577, 2988, + 7578, 2133, 7348, 1104, 8479, 3907, 7659, 5190, 50, + 2069, 5632, 5929, 7650, 8492, 5399, 5679, 9805, 3063, + 5599, 7144, 9305, 7057, 6281, 1286, 2319, 3291, 9287, + 6547, 67, 7805, 2707, 2756, 5914, 771, 1219, 7868, + 5501, 6882, 9791, 7785, 1336, 5478, 8053, 5806, 7905, + 3258, 9112, 5104, 8343, 355, 2229, 5367, 3909, 5464, + 6309, 3948, 8995, 9885, 961, 7409, 259, 5234, 1566, + 6742, 4902, 8034, 5441, 8932, 8602, 8641, 2237, 3033, + 9579, 7336, 5320, 4915, 4711, 249, 8378, 2695, 4635, + 92, 567, 6131, 6716, 4080, 593, 9208, 2994, 3780, + 2398, 5252, 9333, 6118, 8719, 1357, 5108, 235, 4942, + 1134, 1638, 6292, 3484, 3730, 5250, 2588, 5449, 8152, + 3481, 8309, 8874, 8518, 9128, 7674, 540, 7089, 6715, + 9035, 4981, 6442, 2568, 3698, 4804, 8943, 9401, 5794, + 9163, 6978, 9060, 5634, 2027, 2034, 1419, 2698, 183, + 7135, 9013, 6760, 5936, 2836, 9968, 4826, 125, 558, + 4114, 8419, 405, 4366, 2095, 5583, 4237, 5302, 1643, + 9648, 2160, 4098, 7817, 4906, 2647, 1861, 3658, 3239, + 7570, 9370, 1637, 5703, 5705, 4124, 7739, 3422, 7854, + 374, 4555, 5446, 8087, 1258, 7641, 3331, 206, 3865, + 5881, 2468, 7763, 6628, 5348, 3313, 1312, 6220, 7644, + 2313, 2844, 4936, 8483, 7091, 8320, 4877, 8564, 3187, + 7061, 8879, 9360, 4897, 4797, 5039, 1909, 3193, 7560, + 7693, 3282, 6661, 6942, 7250, 971, 5884, 8450, 9680, + 3181, 9619, 3815, 7862, 3788, 2853, 1779, 620, 2071, + 7700, 9810, 9051, 7192, 1172, 513, 1386, 4644, 9842, + 8082, 2156, 1625, 6587, 1021, 7260, 7201, 4689, 6301, + 3054, 353, 719, 3436, 2864, 3509, 2571, 8255, 3289, + 2857, 9690, 7954, 7304, 3426, 8079, 286, 5262, 2657, + 9448, 9159, 1770, 1621, 7884, 4261, 6666, 4278, 4311, + 7112, 8402, 1282, 8940, 4636, 3650, 8680, 7177, 7540, + 4412, 8615, 2593, 7393, 8896, 8921, 925, 9474, 1231, + 9773, 527, 5255, 560, 8846, 659, 7410, 8294, 942, + 381, 8693, 7884, 7087, 7532, 7167, 4092, 5794, 5787, + 1151, 2797, 6916, 9663, 9835, 638, 5822, 4133, 7949, + 2884, 3556, 5839, 4844, 9052, 2314, 7830, 3146, 2062, + 4109, 7795, 1041, 8997, 551, 976, 8822, 2074, 4611, + 9870, 9228, 3272, 764, 4377, 9210, 5300, 6377, 8413, + 8545, 7738, 2478, 981, 8075, 2541, 730, 3435, 6845, + 5767, 9726, 1931, 5221, 4111, 3176, 1229, 2817, 2841, + 4797, 7580, 1623, 3843, 1681, 230, 6130, 6583, 5659, + 1878, 8027, 707, 3549, 2451, 852, 509, 669, 881, + 8913, 9704, 6400, 4696, 2366, 2605, 200, 1715, 7757, + 2614, 8597, 2968, 9280, 1679, 6206, 4716, 535, 4893, + 9648, 755, 7542, 2709, 8355, 4740, 8184, 1893, 4039, + 8992, 4769, 9806, 5916, 3331, 2004, 6705, 5834, 6838, + 3763, 2856, 3248, 7450, 851, 7429, 3879, 5390, 1163, + 6404, 5606, 1150, 1948, 251, 8914, 5922, 4549, 8687, + 2810, 7589, 9366, 9847, 3758, 1716, 1962, 2678, 4578, + 3134, 7173, 219, 8841, 5097, 3735, 2863, 5504, 1245, + 4000, 1797, 2381, 29, 3878, 2914, 2744, 2104, 7360, + 1303, 8133, 533, 2444, 608, 8144, 3134, 7588, 4660, + 219]), + values=tensor([8.4162e-01, 2.9686e-01, 6.3714e-01, 1.6817e-01, + 1.6215e-01, 6.1437e-01, 1.6080e-01, 4.0610e-01, + 7.3645e-01, 9.7877e-01, 8.8529e-01, 8.5771e-01, + 2.8589e-02, 2.0612e-02, 9.9026e-01, 9.0065e-02, + 3.1218e-01, 2.7400e-01, 6.6157e-01, 3.2569e-01, + 1.7011e-01, 4.0876e-01, 6.9676e-01, 5.2962e-01, + 4.7625e-01, 5.2877e-02, 6.4254e-01, 8.4744e-01, + 5.7453e-01, 9.2040e-01, 9.7805e-01, 8.0590e-01, + 4.4096e-01, 1.8318e-01, 8.9755e-01, 2.8005e-01, + 2.3996e-01, 1.8286e-01, 1.7292e-01, 7.1175e-01, + 2.0714e-02, 4.9211e-01, 5.1628e-01, 5.1485e-01, + 8.2763e-01, 1.8358e-01, 8.4319e-01, 4.9073e-01, + 1.8916e-01, 5.6885e-01, 3.3605e-01, 6.3594e-01, + 5.1482e-01, 4.9282e-01, 5.9958e-01, 7.0978e-01, + 1.7567e-01, 1.1230e-02, 2.8903e-01, 9.9449e-01, + 1.0897e-01, 3.9189e-01, 5.9951e-01, 6.7777e-01, + 8.9047e-01, 6.3510e-01, 8.1965e-01, 8.2343e-01, + 5.8432e-01, 2.8112e-01, 3.4195e-02, 8.1705e-01, + 2.9005e-01, 1.3897e-01, 6.9293e-01, 1.5391e-01, + 2.2869e-01, 8.3383e-01, 5.4870e-02, 5.6915e-01, + 3.8852e-01, 2.6519e-01, 4.5692e-01, 5.4502e-02, + 5.7453e-01, 7.9181e-01, 5.6057e-01, 7.9160e-01, + 4.4644e-01, 5.0880e-01, 7.4451e-01, 3.2819e-01, + 8.0628e-01, 8.6929e-01, 3.4416e-01, 7.6103e-01, + 3.6389e-01, 3.5701e-01, 8.2362e-01, 6.3586e-01, + 8.3509e-01, 8.9715e-01, 8.8398e-01, 8.3148e-01, + 8.4779e-01, 9.5284e-01, 8.3857e-01, 6.0527e-01, + 2.4645e-01, 8.9898e-01, 4.8666e-01, 8.8162e-01, + 6.1103e-01, 7.0425e-01, 6.8737e-01, 9.5292e-01, + 1.6806e-02, 4.9765e-01, 7.8396e-01, 8.0695e-01, + 7.4330e-01, 8.0275e-01, 4.5302e-01, 8.7655e-01, + 7.2798e-01, 7.4388e-01, 9.7066e-02, 1.6811e-01, + 1.8099e-01, 2.9537e-01, 2.8883e-01, 6.7815e-01, + 7.5316e-01, 1.1697e-01, 4.4732e-01, 7.4137e-01, + 6.2402e-01, 4.4193e-01, 6.8972e-01, 9.3106e-01, + 3.8489e-01, 6.1625e-01, 7.1358e-01, 1.2465e-01, + 8.8973e-01, 4.3619e-01, 3.8639e-01, 6.1804e-01, + 3.4197e-01, 5.8895e-02, 7.7694e-01, 9.2218e-03, + 4.0218e-01, 3.5958e-01, 5.1621e-01, 2.1586e-02, + 1.8157e-01, 7.4709e-01, 1.2399e-01, 5.7793e-02, + 8.7317e-01, 3.4726e-01, 5.8867e-01, 9.9642e-01, + 1.2702e-01, 3.3654e-01, 5.9711e-01, 9.5511e-01, + 7.8878e-02, 1.0158e-01, 8.9875e-01, 4.1339e-01, + 3.2155e-01, 9.3632e-01, 2.3121e-01, 5.1482e-01, + 3.4904e-01, 7.3977e-01, 5.6021e-01, 6.6210e-01, + 3.0267e-01, 5.9350e-03, 8.0584e-01, 1.7500e-01, + 4.5025e-01, 2.9967e-01, 6.1546e-01, 8.6159e-01, + 3.5830e-01, 6.4170e-01, 3.6363e-01, 7.0448e-01, + 8.1901e-01, 2.5682e-01, 1.0264e-01, 5.9217e-01, + 1.0416e-01, 3.9465e-01, 8.6154e-01, 2.6364e-01, + 9.8520e-01, 3.4529e-01, 6.1024e-01, 9.4500e-01, + 4.5989e-01, 1.2879e-02, 1.0827e-02, 6.9805e-01, + 9.4260e-01, 2.2079e-02, 1.8200e-01, 2.3832e-02, + 1.8420e-01, 3.2436e-01, 5.0197e-01, 5.8627e-01, + 6.7237e-01, 5.7570e-01, 5.1838e-01, 5.0143e-01, + 7.0347e-01, 5.7707e-01, 2.1966e-01, 5.2688e-01, + 9.8927e-01, 3.2737e-01, 3.0341e-01, 8.9357e-02, + 9.6648e-01, 6.1951e-01, 8.4411e-01, 5.1367e-02, + 9.2186e-01, 3.2165e-02, 5.2456e-02, 8.1840e-01, + 6.5262e-01, 1.4597e-01, 3.5673e-01, 6.4159e-01, + 3.6264e-01, 6.3084e-02, 8.3980e-01, 2.7736e-01, + 2.9819e-01, 8.1897e-01, 3.4132e-01, 4.9222e-01, + 3.9032e-01, 7.3209e-02, 6.3313e-01, 9.4217e-01, + 8.0046e-02, 8.8661e-01, 5.4139e-02, 9.1303e-01, + 6.2584e-01, 8.8930e-01, 6.4369e-01, 1.6622e-01, + 9.3592e-01, 7.0938e-01, 3.8339e-01, 6.4713e-01, + 2.2843e-01, 9.2113e-01, 6.4446e-03, 5.0513e-01, + 7.8366e-02, 4.3885e-01, 8.3500e-01, 2.3568e-01, + 2.3491e-01, 4.6610e-01, 4.7569e-01, 7.3570e-03, + 3.8697e-01, 3.0485e-02, 9.0027e-01, 3.9759e-01, + 3.0559e-01, 3.6608e-01, 8.3416e-01, 4.2041e-01, + 5.2523e-01, 4.0730e-02, 2.0952e-01, 2.7056e-01, + 7.0586e-01, 8.2052e-01, 2.9046e-01, 8.7390e-01, + 6.6215e-01, 9.9736e-01, 8.2920e-01, 9.5761e-01, + 4.7888e-01, 8.5421e-01, 1.9642e-01, 4.6196e-01, + 2.6211e-01, 4.3134e-01, 5.5166e-01, 3.0145e-02, + 2.4152e-01, 9.4430e-01, 8.6994e-01, 7.1148e-01, + 2.3961e-01, 3.3245e-01, 5.5968e-01, 1.9932e-01, + 3.6100e-02, 4.2814e-01, 9.4590e-01, 7.4276e-01, + 5.4453e-01, 1.6084e-01, 2.2574e-01, 3.1439e-01, + 3.7958e-02, 8.4663e-01, 2.3722e-01, 2.8379e-01, + 5.7939e-01, 6.0883e-01, 5.5850e-01, 3.0063e-01, + 4.9289e-01, 6.4727e-02, 3.2414e-01, 2.7767e-02, + 1.5239e-01, 4.5157e-01, 6.5935e-01, 8.5589e-01, + 8.2281e-01, 1.3098e-01, 5.7403e-01, 8.8951e-01, + 2.3362e-01, 4.4099e-01, 2.9584e-01, 2.1959e-01, + 9.8822e-01, 7.6077e-01, 3.2764e-02, 2.2886e-01, + 1.5180e-01, 2.4079e-02, 2.9072e-01, 1.0037e-01, + 8.8988e-01, 7.2298e-01, 4.5100e-01, 7.2322e-01, + 5.2411e-02, 7.5577e-01, 6.5300e-01, 1.9748e-01, + 4.6204e-01, 7.1756e-02, 5.5358e-01, 6.3139e-01, + 1.1557e-01, 8.2697e-01, 8.2970e-01, 9.8441e-01, + 9.1614e-02, 3.1059e-03, 7.4810e-01, 9.8221e-01, + 1.2364e-01, 1.9347e-01, 1.9584e-02, 9.5603e-01, + 6.7176e-01, 6.8425e-01, 1.9972e-01, 5.4195e-01, + 6.3874e-01, 7.5708e-01, 7.9813e-01, 3.3289e-01, + 8.7933e-01, 7.3670e-01, 6.5968e-01, 2.5864e-01, + 6.8278e-01, 3.0164e-01, 9.2539e-01, 4.0284e-01, + 4.5093e-01, 8.7324e-01, 8.0143e-01, 4.8116e-01, + 3.4355e-01, 8.8919e-01, 1.5159e-01, 7.5020e-01, + 9.8429e-01, 9.9678e-01, 4.1278e-01, 7.5484e-01, + 4.7396e-01, 2.1042e-01, 7.2843e-02, 1.4297e-01, + 6.7845e-01, 8.5086e-02, 5.1551e-01, 4.9162e-01, + 9.7966e-01, 3.6049e-01, 4.7386e-01, 5.7859e-01, + 7.0943e-01, 9.1205e-02, 6.6770e-01, 5.3590e-01, + 3.9755e-01, 9.6597e-01, 1.8599e-01, 4.7860e-01, + 4.2112e-02, 1.8189e-01, 2.4269e-01, 7.7636e-01, + 9.7677e-01, 1.4310e-01, 6.1272e-02, 1.4161e-01, + 5.1371e-01, 6.6644e-01, 6.0793e-01, 5.3914e-01, + 2.2731e-01, 8.7603e-01, 2.9862e-01, 4.6113e-01, + 4.3524e-01, 9.1175e-01, 3.9624e-01, 1.0346e-01, + 6.1379e-01, 4.7208e-01, 2.6070e-01, 5.2191e-01, + 3.9442e-01, 1.4743e-01, 3.8716e-01, 3.7503e-01, + 1.3589e-01, 5.0473e-01, 6.7728e-01, 9.0319e-01, + 6.1190e-01, 1.9275e-01, 3.5936e-01, 6.4987e-01, + 3.1396e-01, 2.8159e-01, 8.3147e-02, 4.5551e-01, + 6.6356e-01, 7.0244e-02, 1.7106e-02, 6.4133e-02, + 6.5616e-02, 2.5462e-01, 7.3261e-01, 5.0907e-01, + 6.7076e-01, 4.0218e-01, 6.6139e-01, 1.8017e-01, + 2.0269e-01, 2.6760e-01, 6.2695e-01, 7.8797e-01, + 9.1126e-01, 8.1648e-01, 3.9421e-01, 4.6220e-01, + 6.8836e-01, 5.0359e-01, 6.4967e-01, 9.8028e-01, + 9.1023e-01, 1.1718e-01, 4.9634e-01, 5.6551e-01, + 6.8389e-01, 3.6489e-01, 3.9624e-01, 5.3191e-01, + 5.4360e-01, 8.7333e-01, 6.8269e-01, 7.5760e-01, + 1.1377e-01, 1.5015e-01, 4.3439e-02, 6.1503e-01, + 3.4363e-01, 4.3709e-01, 6.4079e-01, 7.8204e-01, + 1.1716e-01, 5.7515e-01, 6.4631e-02, 1.4533e-01, + 5.2120e-01, 8.7179e-01, 4.7879e-01, 9.3303e-02, + 2.1845e-01, 6.3517e-01, 6.8688e-01, 3.5430e-01, + 9.3739e-01, 7.0591e-01, 7.7055e-01, 7.5304e-01, + 3.9056e-02, 1.4006e-02, 2.2822e-01, 9.9645e-01, + 5.4400e-02, 8.0951e-01, 1.8179e-01, 1.9010e-01, + 3.0349e-01, 2.4530e-01, 3.4986e-01, 4.8871e-01, + 3.9206e-01, 5.5413e-01, 6.4310e-02, 9.0201e-01, + 2.0129e-01, 7.2874e-01, 7.4927e-01, 4.7834e-01, + 1.0777e-02, 2.5515e-01, 2.9574e-01, 6.6742e-01, + 5.9485e-01, 3.8711e-01, 1.8718e-01, 8.6283e-01, + 9.1934e-01, 8.9372e-01, 2.7499e-01, 3.4311e-02, + 5.7311e-01, 2.1089e-01, 4.2092e-01, 2.0315e-01, + 3.0962e-01, 1.3347e-01, 9.5185e-01, 4.1612e-01, + 4.3202e-01, 2.5416e-01, 7.7755e-01, 7.1075e-01, + 4.2297e-01, 2.0397e-01, 1.3687e-01, 9.6658e-01, + 3.0341e-01, 9.1344e-01, 5.3464e-01, 4.7718e-01, + 7.5356e-01, 8.8694e-01, 8.9264e-01, 8.1240e-02, + 7.6203e-02, 3.2592e-01, 5.3572e-02, 7.7634e-02, + 7.7625e-01, 1.5836e-02, 5.8242e-01, 2.1002e-01, + 8.9491e-02, 6.8441e-01, 6.4412e-01, 2.9177e-02, + 6.1618e-01, 1.2632e-01, 5.3563e-01, 5.0509e-01, + 5.5684e-02, 5.2367e-01, 2.2220e-01, 6.6590e-01, + 3.5274e-01, 2.7941e-01, 3.9525e-01, 1.3783e-01, + 9.9827e-01, 2.9496e-01, 3.3969e-02, 7.0416e-01, + 6.2724e-03, 3.5413e-01, 4.3579e-01, 2.8431e-01, + 6.6274e-01, 5.5869e-03, 4.6483e-01, 9.4265e-01, + 1.9390e-01, 2.6871e-01, 8.9957e-01, 7.6910e-01, + 9.2851e-01, 8.5764e-01, 2.8679e-01, 5.6221e-02, + 6.3789e-01, 4.9980e-01, 2.9834e-01, 1.6547e-01, + 7.2863e-01, 7.4335e-01, 1.7202e-01, 6.0711e-01, + 6.2744e-01, 2.3141e-01, 7.7128e-01, 6.9575e-01, + 6.1477e-01, 3.6069e-01, 4.9022e-02, 9.4412e-01, + 3.5188e-02, 5.7942e-01, 2.9890e-02, 8.4625e-01, + 7.8233e-01, 8.3817e-01, 5.2931e-01, 7.8769e-01, + 5.6272e-01, 7.8863e-01, 1.4452e-03, 7.3161e-02, + 6.3288e-01, 7.0660e-01, 5.5303e-01, 6.9013e-02, + 9.2833e-01, 6.1609e-01, 2.7628e-01, 3.8301e-01, + 7.8596e-01, 8.8683e-01, 7.7771e-01, 2.8419e-01, + 6.9736e-02, 9.6704e-01, 8.8528e-01, 2.2352e-01, + 2.4524e-01, 8.5698e-01, 6.4514e-01, 6.2044e-01, + 8.3695e-01, 9.1677e-01, 1.1584e-01, 7.9561e-01, + 9.3166e-01, 2.7498e-01, 9.4050e-01, 3.5642e-01, + 3.1322e-01, 3.1113e-01, 9.8499e-01, 7.1392e-02, + 3.1345e-01, 7.0182e-01, 8.1882e-01, 4.9724e-01, + 5.4993e-01, 8.6382e-01, 6.3868e-01, 1.5000e-02, + 5.5265e-01, 2.4538e-01, 9.4592e-02, 7.1374e-01, + 7.2630e-01, 8.8515e-01, 8.8786e-01, 8.9234e-01, + 8.5142e-03, 2.3346e-01, 2.8292e-01, 2.9767e-01, + 8.2406e-01, 9.4692e-01, 2.3154e-01, 6.5589e-02, + 9.1864e-01, 6.0994e-01, 7.0920e-01, 9.5407e-01, + 6.2214e-01, 5.5778e-01, 6.0645e-01, 4.8067e-01, + 2.8270e-01, 1.7280e-01, 1.0979e-01, 9.5386e-01, + 6.6667e-01, 7.6987e-01, 9.1941e-01, 3.8360e-01, + 8.9910e-02, 8.7933e-01, 6.6930e-01, 4.3986e-01, + 5.4556e-01, 4.9679e-01, 4.7997e-01, 1.4883e-01, + 4.5139e-01, 1.8357e-01, 2.4832e-01, 3.7126e-01, + 9.7198e-01, 3.6657e-01, 2.2981e-01, 1.6650e-02, + 6.3243e-01, 1.5482e-01, 8.0779e-01, 1.6308e-01, + 4.8827e-01, 1.8842e-01, 9.6686e-01, 7.4347e-01, + 6.0157e-01, 4.7871e-01, 4.4855e-02, 8.6666e-01, + 9.0341e-01, 7.7832e-01, 1.2656e-01, 4.6982e-01, + 6.7927e-01, 2.0556e-01, 4.8391e-01, 1.0870e-01, + 6.0179e-01, 8.6866e-01, 5.9287e-02, 3.0958e-01, + 3.3432e-01, 5.5680e-01, 6.7654e-01, 5.0669e-01, + 3.4185e-01, 1.6502e-01, 2.0130e-01, 4.4286e-01, + 1.0996e-01, 7.5754e-01, 3.4793e-01, 2.8929e-01, + 7.9544e-01, 1.0781e-02, 9.4940e-01, 4.9267e-01, + 7.7169e-01, 5.1969e-01, 6.1145e-01, 8.8191e-01, + 3.8444e-01, 2.4200e-01, 1.7867e-01, 8.6492e-01, + 8.4970e-01, 5.0800e-01, 5.6133e-01, 6.4340e-01, + 5.8533e-01, 6.0481e-01, 2.3846e-01, 1.4102e-01, + 3.7119e-01, 5.6156e-01, 2.8298e-01, 7.1845e-01, + 1.4668e-01, 4.7663e-01, 4.2636e-01, 1.0275e-02, + 2.9743e-01, 1.1376e-02, 7.0160e-02, 4.7251e-01, + 9.5838e-02, 8.5482e-01, 7.9510e-01, 3.6924e-01, + 9.5391e-01, 4.9116e-01, 3.0690e-04, 8.6869e-01, + 9.4535e-01, 3.7650e-01, 9.4503e-01, 9.6097e-01, + 5.9794e-03, 4.1384e-01, 2.2876e-01, 5.0617e-01, + 2.3170e-02, 3.0538e-01, 4.0455e-01, 9.4603e-02, + 2.0357e-01, 2.1517e-01, 9.0257e-01, 3.8634e-01, + 2.4908e-01, 8.0986e-02, 3.9443e-01, 2.4807e-01, + 2.8439e-01, 4.2593e-01, 3.6809e-01, 1.9789e-01, + 9.8594e-01, 8.9386e-01, 6.2015e-01, 1.7708e-01, + 3.8974e-01, 7.4022e-01, 5.4677e-01, 4.3473e-01, + 3.6837e-01, 3.6400e-01, 9.9743e-01, 7.1220e-01, + 8.7479e-01, 2.2457e-01, 8.5053e-01, 4.2955e-01, + 7.5176e-01, 1.0062e-01, 7.3583e-01, 2.5060e-02, + 5.0283e-02, 8.5963e-01, 4.0599e-01, 9.0739e-01, + 2.8833e-01, 2.1531e-01, 1.5452e-02, 9.4690e-01, + 3.1250e-01, 5.6093e-01, 6.1900e-01, 7.3466e-01, + 7.2323e-01, 8.9401e-01, 7.7222e-01, 9.3134e-01, + 6.5260e-01, 8.7584e-01, 4.5350e-01, 7.4368e-01, + 5.8671e-02, 3.5188e-01, 8.3654e-02, 3.3309e-01, + 1.0706e-01, 4.1255e-01, 7.9140e-01, 2.8887e-01, + 7.8441e-02, 2.1380e-01, 9.3099e-01, 4.7350e-01, + 9.2422e-01, 1.4535e-01, 3.3640e-01, 9.2002e-01, + 5.7304e-01, 6.5916e-01, 8.6914e-01, 2.5138e-01, + 3.1603e-01, 3.5203e-01, 3.1131e-02, 6.5641e-01, + 5.7494e-01, 4.7371e-01, 5.0827e-01, 1.5062e-01, + 5.8503e-01, 8.7183e-01, 7.0288e-01, 9.2990e-01, + 1.5908e-01, 4.9748e-01, 9.3223e-01, 9.9643e-01, + 3.8223e-01, 7.7110e-02, 3.4388e-02, 8.0052e-01, + 8.6565e-01, 2.9712e-01, 8.5471e-01, 8.6162e-01, + 4.4628e-01, 5.6741e-01, 4.0056e-02, 7.8839e-01, + 8.9395e-01, 6.8466e-01, 3.0041e-01, 2.2500e-02, + 1.8457e-01, 1.3861e-01, 1.0338e-01, 4.6879e-01, + 9.2662e-01, 7.4286e-01, 5.5725e-01, 5.3379e-01, + 6.8767e-01, 7.4719e-01, 9.0113e-01, 7.7449e-01, + 8.9973e-01, 7.3285e-01, 2.0062e-01, 1.0561e-01, + 4.3906e-01, 3.1029e-01, 6.7605e-01, 7.1638e-01, + 5.8611e-01, 9.9285e-01, 6.1233e-01, 8.2145e-01, + 3.1992e-01, 5.9686e-01, 6.7828e-01, 7.8322e-01, + 3.7277e-01, 3.7731e-01, 6.0362e-01, 1.4908e-01, + 5.2504e-01, 7.4365e-01, 2.2895e-01, 4.0076e-01, + 3.6715e-01, 8.1935e-01, 9.5313e-01, 5.8028e-01, + 4.6037e-01, 2.6326e-01, 5.8730e-01, 3.8793e-01, + 9.9606e-01, 9.6277e-01, 2.9002e-01, 4.2454e-01, + 2.8341e-01, 2.3389e-01, 3.9656e-01, 8.9761e-01, + 7.3352e-01, 1.8460e-01, 7.1116e-01, 2.3146e-01, + 5.8144e-01, 9.4575e-02, 8.3670e-01, 7.9219e-01, + 4.0643e-01, 1.8008e-01, 1.0599e-02, 4.8597e-01, + 2.9480e-01, 2.6967e-01, 8.8380e-03, 9.0770e-02]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.8612, 0.4581, 0.7630, ..., 0.0492, 0.2811, 0.3451]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 1.6940038204193115 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '339631', '-ss', '10000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.730679035186768} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 1, ..., 1000, 1000, 1000]), - col_indices=tensor([9942, 6806, 8769, 3673, 2619, 2553, 2772, 6991, 9638, - 9629, 9158, 6212, 5182, 5529, 2344, 2346, 122, 7028, - 7511, 9451, 4244, 8815, 1200, 2761, 1166, 6428, 9856, - 2930, 9598, 6209, 16, 6638, 3115, 8422, 341, 3611, - 4039, 5496, 6552, 2918, 7299, 3837, 4809, 8784, 5749, - 9600, 4871, 9986, 6240, 7865, 4521, 404, 5612, 1687, - 5902, 3802, 2584, 2467, 9251, 3413, 7567, 6873, 3539, - 8911, 7564, 7425, 2467, 625, 4370, 372, 8146, 8364, - 5870, 4156, 5185, 5695, 8355, 2444, 2534, 1085, 2679, - 4192, 212, 5765, 9043, 9562, 368, 6724, 3302, 4229, - 1540, 4914, 9319, 7555, 3461, 9031, 1147, 9150, 6690, - 6357, 2415, 7319, 8280, 2601, 5406, 9377, 8412, 2908, - 2289, 9994, 4235, 8030, 4945, 152, 5704, 9454, 8885, - 7225, 8831, 9647, 762, 4585, 7294, 145, 5869, 493, - 6535, 84, 8418, 9444, 2282, 5835, 1126, 9329, 748, - 8059, 2437, 570, 5259, 2869, 6288, 7792, 2863, 6751, - 9752, 5574, 334, 7333, 4012, 5158, 8497, 5025, 6045, - 1734, 2277, 239, 1951, 5145, 6040, 4852, 1447, 7301, - 317, 7241, 5360, 9458, 9704, 7421, 686, 2876, 1216, - 8271, 4137, 6301, 6977, 8699, 9602, 3545, 2095, 5436, - 4475, 3858, 5601, 7872, 1697, 548, 846, 3712, 9584, - 6665, 6252, 4905, 2560, 8014, 4900, 4619, 1257, 3531, - 7648, 9919, 1852, 3326, 4487, 8506, 3919, 4981, 2513, - 7034, 6039, 9368, 7985, 4762, 5739, 2376, 986, 7556, - 1499, 1795, 8163, 3423, 2347, 6873, 6384, 1650, 8313, - 1196, 3938, 4396, 4553, 256, 9625, 9715, 2295, 5530, - 2128, 2920, 6394, 606, 8650, 4056, 9691, 8190, 8835, - 2767, 5109, 2152, 4962, 8309, 5313, 6703, 2055, 9418, - 9662, 829, 6489, 7349, 3629, 1976, 8133, 6494, 5734, - 3252, 9708, 2337, 7894, 9875, 1792, 1256, 340, 3043, - 7104, 8638, 2625, 1402, 3119, 7724, 7377, 4854, 1943, - 3768, 5032, 1038, 6327, 9140, 1764, 4701, 3680, 2758, - 2546, 8118, 1804, 8727, 7673, 8782, 7074, 310, 3245, - 391, 6460, 3188, 8731, 3986, 6485, 8364, 9727, 7173, - 7564, 6534, 1936, 864, 8838, 2305, 9565, 3858, 5712, - 1491, 4027, 3486, 7521, 1061, 9919, 6389, 8021, 6560, - 761, 4944, 9904, 7319, 1344, 4628, 8534, 6548, 8512, - 385, 5328, 1168, 4717, 5409, 9729, 7942, 6217, 1140, - 6456, 9909, 4138, 5953, 2961, 3523, 366, 7674, 7623, - 5122, 6041, 7023, 8946, 9960, 7313, 1781, 9275, 8786, - 2793, 9858, 4453, 4477, 9647, 1864, 7307, 688, 8021, - 1271, 6194, 1642, 2595, 6785, 3354, 1878, 5043, 398, - 6171, 6178, 8258, 9103, 5415, 9993, 7921, 2009, 5112, - 9130, 5024, 2285, 7569, 928, 3252, 5928, 5366, 3721, - 906, 2764, 261, 6097, 8713, 8271, 9037, 6526, 6608, - 3246, 6379, 2233, 734, 3569, 1130, 4701, 7544, 4759, - 5149, 7792, 8774, 166, 2005, 4199, 4556, 405, 1574, - 4504, 6872, 2121, 9764, 7754, 1920, 849, 8901, 7940, - 2276, 1164, 4120, 3418, 8433, 8534, 2124, 1407, 9941, - 8774, 3610, 6962, 7686, 9032, 2501, 4402, 5592, 7149, - 1724, 2964, 1881, 4166, 5565, 1691, 7145, 7629, 8845, - 5778, 206, 3304, 5476, 570, 233, 913, 8795, 1676, - 6523, 671, 6568, 8802, 6787, 3359, 8229, 5832, 4670, - 477, 3563, 6128, 2958, 8344, 2798, 5123, 7555, 1622, - 9944, 6188, 6831, 7880, 6553, 1015, 6573, 5109, 1750, - 455, 3272, 8257, 9704, 4102, 5542, 791, 2798, 442, - 6524, 2897, 5385, 5704, 4657, 1049, 2358, 3633, 4630, - 5093, 6143, 4158, 3721, 8602, 3915, 5080, 6602, 9642, - 3328, 3344, 5460, 9320, 8841, 3042, 7058, 3244, 8323, - 8239, 1899, 1584, 4159, 2074, 4693, 5541, 1069, 755, - 9961, 9720, 495, 7177, 2223, 5138, 6093, 65, 7686, - 4825, 6890, 9342, 2012, 1306, 5055, 8966, 6745, 742, - 2888, 353, 3930, 6018, 6027, 7409, 9284, 9749, 7080, - 4273, 1569, 4695, 4151, 2688, 6916, 3566, 7902, 3827, - 8197, 4739, 6589, 323, 7630, 5907, 4514, 6979, 3763, - 1884, 8832, 7994, 2246, 3533, 9618, 1720, 7610, 7239, - 638, 9292, 4783, 493, 349, 6931, 9183, 7694, 7367, - 1455, 8291, 5297, 6531, 9027, 3125, 5165, 1747, 2395, - 9976, 8105, 7540, 1664, 1747, 7632, 4682, 3958, 4031, - 9459, 7772, 6428, 3341, 592, 8185, 3222, 7813, 4883, - 1644, 7288, 3169, 5960, 5478, 1407, 4342, 1302, 6549, - 1358, 2842, 1329, 1540, 5662, 713, 3921, 8485, 4113, - 6858, 8797, 8861, 6915, 3146, 4236, 2551, 2825, 849, - 2700, 211, 8951, 6730, 4377, 6981, 9070, 2290, 1419, - 7032, 5090, 514, 785, 7157, 6042, 5604, 826, 1805, - 2110, 9775, 7352, 2136, 6043, 1903, 471, 6462, 3922, - 4650, 2275, 1415, 6685, 619, 1933, 8766, 3982, 3889, - 6078, 9649, 3244, 543, 4606, 5534, 6411, 8037, 3869, - 5767, 2501, 7323, 6010, 9987, 2988, 3771, 2195, 3286, - 4114, 4746, 5123, 9347, 59, 3399, 1134, 9616, 2805, - 6005, 2217, 6562, 4260, 4451, 4510, 6796, 3816, 8731, - 7099, 6120, 8783, 5843, 1286, 6064, 2505, 8992, 1831, - 1649, 2921, 725, 1022, 4968, 1923, 2310, 8148, 7666, - 7235, 3908, 5293, 59, 2659, 3454, 8439, 4164, 5105, - 930, 3399, 9150, 7660, 4670, 8057, 6043, 7343, 200, - 6766, 1610, 5601, 4418, 5607, 7065, 2665, 1090, 2907, - 6313, 259, 3791, 4708, 4342, 8329, 2983, 3117, 4878, - 4741, 5590, 5320, 4437, 4003, 6000, 8321, 6759, 1334, - 2279, 7391, 4187, 1434, 4008, 2700, 6956, 4315, 3611, - 3430, 9868, 5792, 4357, 9903, 8075, 5220, 1738, 163, - 3665, 4478, 702, 5727, 7653, 563, 6002, 2891, 8761, - 7287, 2250, 9470, 9219, 7870, 9501, 6831, 5057, 4220, - 7687, 2932, 5610, 3763, 3667, 3671, 3384, 2786, 4287, - 269, 9210, 2349, 3391, 12, 5994, 653, 2936, 9025, - 9494, 3399, 9419, 4942, 9380, 4459, 7473, 5954, 1447, - 1094, 7179, 3014, 2886, 6512, 7645, 9938, 3613, 9440, - 6699, 7451, 2452, 4865, 9654, 2308, 6980, 6767, 7495, - 1334, 9014, 782, 6309, 7997, 5366, 1284, 7925, 6962, - 3877, 1913, 1050, 9127, 2886, 1116, 6198, 6893, 1633, - 1350, 4166, 753, 3204, 1614, 5868, 245, 204, 1115, - 1068, 2494, 2135, 610, 9686, 9370, 6836, 5359, 4868, - 7140, 5229, 2658, 9723, 5848, 6639, 5836, 9766, 4393, - 5965, 1792, 8813, 7097, 4138, 3337, 895, 1120, 1285, - 4137, 8921, 4411, 3735, 1316, 3715, 7962, 401, 6803, - 3966, 9926, 7525, 847, 9443, 9072, 3130, 2543, 9739, - 4094, 6274, 2243, 7488, 626, 4122, 9743, 8348, 3980, - 4481, 111, 5455, 8904, 2079, 3488, 2101, 5755, 4829, - 7759, 8914, 9977, 7145, 6318, 581, 5259, 3348, 8544, - 4370, 4181, 1392, 3682, 710, 3677, 8541, 8499, 2889, - 5891, 4997, 7492, 1001, 3000, 8360, 5825, 6503, 7921, - 561, 3570, 9317, 9337, 9296, 4665, 296, 1083, 2303, - 1499]), - values=tensor([2.4924e-01, 5.5138e-01, 7.8146e-01, 8.2664e-01, - 2.7727e-01, 5.3856e-01, 5.5038e-01, 4.7936e-01, - 2.2536e-01, 6.0665e-01, 1.5763e-01, 6.9703e-01, - 9.2250e-03, 4.2884e-01, 9.9821e-01, 7.4158e-01, - 4.9950e-01, 4.8715e-01, 3.3051e-01, 6.3825e-01, - 1.8452e-01, 3.5967e-01, 7.5729e-01, 6.6116e-01, - 8.4341e-01, 3.7098e-01, 1.0038e-01, 5.9421e-01, - 9.3194e-01, 7.9934e-02, 3.0214e-01, 4.7105e-01, - 8.8123e-01, 2.0326e-01, 1.1678e-01, 7.3860e-02, - 3.7616e-01, 8.1842e-01, 1.2910e-01, 6.7836e-01, - 9.8021e-01, 9.8681e-01, 5.8566e-01, 5.5548e-01, - 9.2199e-01, 1.9900e-01, 4.2619e-01, 4.4780e-01, - 8.1135e-02, 9.5799e-01, 6.8159e-01, 4.9863e-01, - 9.0361e-01, 1.3871e-02, 2.6091e-01, 7.0264e-01, - 1.6233e-01, 5.7701e-01, 8.7766e-01, 9.9341e-01, - 7.9165e-03, 2.3394e-01, 3.4769e-01, 4.0280e-01, - 1.9959e-01, 8.9790e-01, 1.6539e-01, 4.2376e-01, - 5.1947e-01, 7.9921e-01, 6.2961e-01, 1.4656e-01, - 7.1967e-01, 5.1173e-01, 5.0499e-02, 5.8913e-02, - 7.2658e-01, 5.5097e-01, 6.6169e-01, 5.3772e-01, - 5.7568e-01, 2.5232e-01, 7.7131e-01, 8.5382e-01, - 1.9579e-01, 1.9993e-01, 7.2402e-02, 9.0475e-01, - 4.3615e-01, 7.8768e-01, 1.5065e-01, 5.6517e-01, - 6.0863e-01, 9.5781e-01, 3.3373e-01, 9.9653e-01, - 6.7533e-02, 1.2064e-01, 2.3851e-01, 9.1146e-01, - 8.8718e-01, 8.3923e-01, 1.6753e-01, 8.6985e-02, - 6.1194e-01, 4.6784e-01, 1.0674e-01, 1.8346e-01, - 9.5304e-01, 8.9043e-01, 7.9426e-01, 2.7578e-01, - 1.9633e-01, 7.5511e-01, 1.0642e-01, 9.0760e-01, - 6.4200e-01, 9.6876e-01, 8.4995e-01, 3.9660e-01, - 4.8973e-01, 2.5945e-01, 6.1922e-01, 8.1803e-01, - 2.0832e-01, 4.4811e-01, 4.7957e-01, 1.2390e-01, - 5.2610e-01, 4.4958e-01, 3.5176e-01, 2.4695e-01, - 7.4385e-01, 3.0128e-01, 7.0146e-01, 2.2427e-01, - 6.6222e-01, 4.9559e-02, 8.9363e-01, 4.6390e-01, - 8.1540e-01, 3.7867e-01, 5.7745e-01, 7.3291e-01, - 8.8115e-01, 9.7559e-01, 7.0693e-01, 6.0469e-01, - 6.3235e-01, 5.7336e-01, 8.5036e-01, 4.6214e-01, - 9.9242e-01, 5.1481e-01, 8.2094e-01, 4.9814e-01, - 1.6092e-01, 5.8114e-01, 6.0381e-01, 4.0373e-01, - 4.7548e-01, 5.1946e-01, 2.6720e-01, 3.7324e-01, - 4.7349e-01, 4.1972e-01, 1.7257e-01, 8.5210e-01, - 9.6499e-01, 2.3452e-01, 5.3354e-01, 5.7176e-01, - 9.5613e-01, 4.3309e-01, 7.1907e-01, 2.2168e-01, - 9.0472e-01, 8.5620e-02, 8.3562e-01, 6.9347e-01, - 6.9805e-01, 9.4473e-01, 2.9112e-01, 7.4302e-01, - 1.6621e-01, 6.8722e-01, 3.5179e-01, 4.1800e-01, - 3.4271e-01, 1.6154e-01, 9.2278e-01, 1.7938e-01, - 1.8291e-01, 8.4643e-01, 4.1537e-01, 7.2976e-02, - 7.0126e-01, 1.6574e-01, 8.8985e-01, 5.6868e-01, - 2.2932e-01, 6.2724e-01, 8.0478e-01, 4.3911e-02, - 1.1564e-01, 3.2750e-01, 6.3111e-01, 3.2014e-01, - 6.9135e-01, 9.5862e-02, 7.5360e-01, 8.3627e-01, - 4.6759e-01, 6.4025e-01, 7.0735e-01, 9.8115e-01, - 6.3451e-01, 1.0593e-01, 3.2573e-01, 8.4476e-01, - 4.8491e-01, 6.4618e-01, 2.5010e-03, 9.0118e-01, - 6.4617e-01, 1.5072e-01, 1.3331e-01, 9.2066e-02, - 1.1781e-01, 4.3006e-01, 1.5840e-01, 7.2118e-02, - 1.1382e-01, 8.0212e-01, 9.5499e-01, 3.6425e-01, - 8.1942e-01, 6.5808e-01, 9.5776e-01, 5.7078e-01, - 9.4575e-01, 3.9544e-01, 5.7117e-02, 1.0347e-03, - 5.8737e-01, 8.9480e-01, 9.5353e-02, 7.7283e-01, - 2.2356e-01, 3.6268e-01, 9.3671e-01, 6.2627e-01, - 9.9028e-01, 9.1172e-01, 1.1874e-01, 2.6596e-01, - 9.6236e-01, 7.2565e-01, 8.1658e-01, 7.7070e-01, - 2.2315e-01, 4.7096e-01, 4.7573e-01, 3.3760e-01, - 8.0342e-01, 4.7336e-02, 5.6825e-01, 9.4337e-01, - 3.4038e-01, 7.7040e-01, 5.0426e-01, 4.1706e-01, - 9.9961e-01, 2.1652e-01, 1.8457e-01, 3.3187e-01, - 5.8180e-01, 4.4096e-01, 2.1837e-01, 7.9119e-01, - 8.0254e-02, 7.4263e-02, 9.8646e-02, 9.4248e-01, - 2.3779e-01, 4.2431e-01, 1.9629e-01, 3.3304e-01, - 2.4919e-01, 1.0402e-01, 9.8188e-01, 5.4736e-01, - 1.4913e-01, 5.7587e-03, 5.6445e-01, 5.2484e-01, - 4.6956e-01, 9.3184e-01, 6.3000e-01, 1.4646e-01, - 2.1142e-01, 3.0428e-01, 1.5525e-01, 8.3433e-01, - 1.7066e-01, 7.8048e-01, 8.2016e-01, 7.0435e-01, - 4.4059e-01, 5.8760e-01, 4.5425e-01, 8.0602e-01, - 8.9803e-01, 9.3025e-01, 6.3674e-01, 1.5054e-01, - 7.9866e-01, 6.4346e-01, 7.8825e-01, 4.1129e-01, - 3.0173e-01, 4.0360e-01, 5.0553e-01, 5.9107e-01, - 6.1689e-01, 4.9456e-02, 3.4377e-03, 4.8057e-01, - 5.6853e-01, 1.8120e-01, 6.7514e-01, 2.6397e-01, - 4.2324e-01, 2.1411e-01, 5.0331e-01, 3.6631e-01, - 8.4193e-01, 7.6145e-01, 1.8110e-01, 9.6180e-01, - 7.2500e-01, 5.4517e-01, 7.1281e-01, 6.9551e-01, - 4.5515e-01, 6.2912e-01, 3.2411e-01, 8.1114e-01, - 4.2773e-01, 4.0519e-01, 7.6529e-01, 5.2978e-01, - 5.9559e-01, 8.3615e-01, 3.0327e-01, 1.9611e-02, - 1.6059e-01, 1.0841e-01, 9.3860e-01, 8.2645e-02, - 3.3380e-01, 5.7353e-01, 1.9475e-01, 5.8015e-01, - 3.0263e-01, 4.7505e-01, 2.4008e-01, 4.1915e-01, - 9.6386e-01, 4.6302e-01, 3.7857e-01, 5.2904e-01, - 3.9195e-01, 4.2521e-01, 5.9112e-01, 3.9671e-02, - 6.6317e-01, 3.5780e-01, 4.1139e-01, 2.1541e-01, - 2.8728e-01, 2.3802e-01, 6.2230e-01, 5.2438e-01, - 1.6292e-01, 9.8509e-01, 3.8738e-01, 1.7958e-01, - 7.4241e-01, 3.9140e-01, 9.1800e-01, 3.9747e-01, - 8.1517e-01, 4.7486e-01, 8.3183e-01, 8.7475e-01, - 9.3295e-01, 2.1605e-01, 9.9052e-01, 4.1845e-01, - 1.3601e-01, 2.7985e-01, 4.7862e-01, 2.9639e-02, - 8.0394e-01, 9.1266e-01, 4.0342e-01, 5.3304e-01, - 4.2243e-01, 6.2229e-01, 8.8835e-01, 7.7187e-01, - 9.6127e-01, 7.1745e-02, 4.1095e-01, 2.3731e-01, - 1.2356e-01, 1.4723e-01, 1.9539e-01, 1.8195e-01, - 1.5048e-01, 8.5689e-01, 2.0479e-01, 2.5676e-01, - 9.5713e-02, 3.2840e-01, 4.7391e-01, 9.6484e-01, - 4.8540e-01, 6.4549e-01, 5.0639e-01, 8.5705e-01, - 3.9350e-01, 2.9806e-01, 7.9391e-01, 4.8825e-01, - 1.8922e-02, 8.1563e-01, 6.7073e-01, 2.0636e-02, - 2.8434e-01, 7.2627e-01, 5.6622e-01, 4.9554e-03, - 9.2989e-01, 3.0267e-01, 9.6246e-01, 1.6650e-01, - 7.9689e-01, 3.8212e-01, 1.2655e-01, 2.6349e-01, - 2.9628e-01, 9.9809e-01, 9.6335e-02, 8.2620e-01, - 4.6294e-01, 5.3004e-01, 2.3693e-02, 9.0363e-01, - 7.1222e-01, 9.1051e-01, 3.3602e-01, 4.9970e-01, - 8.9474e-01, 2.8768e-02, 9.7860e-01, 3.1968e-01, - 5.6426e-01, 2.5855e-01, 2.4516e-01, 9.1417e-01, - 9.5623e-01, 9.8092e-01, 2.8219e-01, 1.0553e-01, - 3.6981e-01, 9.7224e-01, 6.4610e-02, 5.7271e-01, - 5.9765e-01, 4.0143e-01, 1.5411e-01, 7.8939e-04, - 5.0172e-01, 7.5011e-01, 9.9409e-01, 6.8790e-01, - 9.1909e-02, 2.8329e-01, 3.8006e-01, 4.1212e-01, - 4.4012e-01, 3.8773e-02, 5.7842e-01, 9.2291e-01, - 3.9389e-01, 3.9145e-01, 1.2421e-01, 8.3754e-01, - 2.7956e-01, 6.7254e-01, 5.2784e-01, 9.9964e-01, - 3.6905e-01, 4.3423e-01, 3.4668e-01, 8.4768e-01, - 1.5393e-01, 9.4602e-01, 4.5881e-01, 7.5602e-01, - 6.3106e-01, 1.3235e-01, 7.9169e-01, 6.0500e-01, - 9.9974e-01, 4.7588e-01, 7.8411e-01, 8.5292e-01, - 7.0966e-01, 3.2951e-01, 1.8374e-01, 4.8875e-02, - 6.2695e-01, 9.1931e-02, 3.4192e-01, 8.1190e-01, - 3.3725e-01, 7.3935e-01, 1.5630e-01, 5.1945e-01, - 1.9381e-03, 6.9304e-01, 1.8504e-01, 2.9373e-02, - 4.8455e-01, 2.6428e-01, 5.0484e-01, 1.5646e-01, - 1.2197e-01, 3.9943e-02, 3.2333e-01, 1.0585e-01, - 7.4663e-01, 6.6620e-01, 1.1201e-01, 1.2826e-01, - 5.2111e-01, 6.9997e-01, 5.4975e-02, 2.0518e-01, - 1.2700e-01, 6.2330e-01, 8.2410e-01, 2.4900e-02, - 7.5291e-01, 8.0129e-01, 1.7765e-01, 9.2550e-01, - 2.5432e-01, 2.0637e-01, 6.5874e-01, 7.2007e-01, - 8.6407e-01, 7.8405e-01, 3.1032e-01, 7.8214e-01, - 3.5389e-01, 2.7424e-01, 5.9024e-01, 4.8824e-01, - 4.7086e-02, 3.8939e-01, 4.8563e-01, 9.5702e-01, - 6.7629e-01, 7.0684e-01, 3.6810e-01, 2.3133e-01, - 4.9902e-01, 8.7202e-01, 6.7479e-02, 6.1566e-01, - 7.8290e-02, 8.3791e-02, 9.2649e-01, 8.2998e-01, - 4.0801e-01, 4.7014e-01, 5.2634e-01, 5.3655e-02, - 9.7252e-01, 2.8148e-01, 8.5595e-01, 4.6484e-01, - 7.1190e-01, 7.0612e-01, 4.2393e-01, 5.2695e-01, - 5.5544e-01, 8.8769e-01, 1.5139e-01, 8.5190e-01, - 3.1040e-01, 6.9579e-01, 8.6276e-01, 6.1546e-01, - 5.2896e-01, 8.0480e-01, 8.2431e-01, 5.0802e-01, - 6.0537e-01, 1.3267e-01, 3.3537e-01, 4.0026e-01, - 1.6728e-01, 8.3436e-01, 1.1422e-01, 3.5781e-01, - 6.9035e-01, 6.6937e-01, 7.5611e-01, 5.5854e-01, - 8.5495e-01, 7.5287e-01, 7.5036e-01, 4.6923e-01, - 5.2440e-01, 7.9414e-01, 7.6271e-01, 7.5863e-01, - 2.9887e-01, 7.8542e-01, 5.6485e-01, 8.6153e-01, - 7.6895e-01, 4.8096e-01, 5.7635e-01, 2.8813e-01, - 6.7009e-01, 9.0793e-01, 1.0755e-01, 9.1873e-01, - 5.5044e-03, 2.9826e-01, 5.9487e-01, 1.0568e-01, - 6.7877e-01, 2.8805e-01, 4.7307e-02, 6.5816e-01, - 5.1192e-01, 9.3067e-01, 5.4036e-01, 5.0440e-03, - 8.1461e-02, 7.3561e-01, 1.3695e-01, 4.4846e-01, - 2.4019e-01, 9.6165e-01, 8.1744e-01, 8.2709e-01, - 9.0129e-01, 7.3287e-01, 1.3276e-01, 8.3131e-01, - 9.3111e-01, 4.6789e-03, 3.3066e-01, 8.6225e-01, - 2.6819e-01, 4.8301e-01, 7.6794e-01, 8.3168e-01, - 9.0917e-01, 9.3363e-01, 4.8256e-01, 2.5947e-01, - 7.1854e-01, 1.3071e-01, 2.9768e-01, 6.0585e-02, - 4.9797e-01, 2.2186e-02, 4.1198e-02, 9.5089e-01, - 2.7744e-01, 2.8217e-01, 3.7438e-01, 7.9073e-01, - 6.5584e-01, 8.1943e-01, 7.8162e-01, 6.2981e-01, - 3.1742e-01, 6.8479e-01, 5.9751e-01, 4.8636e-01, - 8.1575e-01, 7.6156e-01, 1.3590e-01, 3.9901e-01, - 2.9372e-02, 6.9592e-01, 2.5219e-02, 9.0885e-01, - 9.3676e-01, 2.4186e-01, 5.4210e-01, 7.0052e-01, - 3.1218e-01, 2.4049e-02, 9.4194e-01, 3.1506e-01, - 7.5257e-01, 8.3315e-01, 2.1755e-01, 9.4989e-01, - 2.3775e-01, 6.9686e-01, 5.6024e-01, 1.4900e-01, - 2.6360e-01, 9.2505e-01, 5.2813e-01, 6.8236e-03, - 8.1968e-01, 1.5283e-01, 7.0831e-01, 5.0894e-01, - 1.7449e-01, 2.2853e-01, 9.1910e-01, 4.5896e-01, - 2.3797e-01, 4.9876e-01, 8.3151e-01, 8.0057e-01, - 1.5198e-01, 4.0839e-01, 5.3457e-01, 8.2773e-01, - 8.9742e-01, 3.6585e-01, 1.1885e-01, 7.5058e-02, - 5.1360e-01, 1.2993e-01, 6.4074e-01, 2.8187e-01, - 1.5563e-01, 4.7918e-01, 9.4829e-01, 9.6510e-01, - 1.2993e-01, 2.1684e-01, 3.9242e-02, 2.6542e-01, - 5.4851e-01, 5.3385e-01, 5.4087e-01, 8.5787e-01, - 9.7202e-01, 9.3432e-01, 1.8668e-01, 7.5762e-01, - 5.1326e-01, 8.0687e-01, 2.8309e-01, 9.0047e-01, - 7.3313e-01, 3.7340e-01, 1.3043e-01, 2.4492e-01, - 8.1951e-01, 4.0491e-01, 7.4743e-01, 7.6936e-01, - 6.8520e-01, 1.5566e-01, 5.9978e-02, 9.6069e-01, - 6.9248e-01, 3.0915e-01, 6.2034e-01, 6.1596e-01, - 3.6484e-01, 1.7480e-01, 8.4653e-01, 9.2050e-01, - 8.2065e-01, 2.9857e-01, 9.9175e-01, 1.3310e-01, - 6.5255e-01, 6.7877e-01, 2.6678e-01, 1.8992e-01, - 8.7519e-01, 2.4946e-01, 9.0498e-01, 3.5220e-01, - 3.5595e-01, 3.0962e-01, 5.8717e-01, 8.5492e-01, - 1.7066e-01, 1.2676e-01, 4.3909e-01, 9.9948e-01, - 2.9805e-01, 8.4656e-01, 3.4993e-01, 3.4980e-01, - 5.0013e-01, 6.5333e-01, 3.5691e-01, 8.4393e-01, - 8.5806e-01, 8.3126e-01, 8.3977e-01, 8.9279e-01, - 1.6967e-01, 5.3311e-01, 7.5568e-01, 4.9048e-01, - 3.9135e-01, 9.3910e-01, 6.5958e-01, 2.2055e-01, - 4.7845e-02, 9.4879e-01, 3.0447e-02, 5.7881e-01, - 4.8934e-01, 5.3255e-01, 5.2117e-01, 9.8542e-01, - 7.8901e-01, 9.8935e-01, 8.4588e-01, 5.8553e-01, - 7.0732e-01, 5.2210e-01, 4.2421e-01, 1.3138e-01, - 3.7579e-03, 2.3797e-02, 6.2773e-01, 7.8251e-01, - 1.5153e-01, 5.3533e-01, 3.0818e-01, 1.8187e-01, - 2.9566e-01, 9.3623e-01, 2.6786e-01, 3.7307e-01, - 3.6606e-02, 5.0726e-01, 8.7810e-01, 7.6366e-01, - 5.9947e-02, 5.6156e-01, 8.0858e-01, 4.2154e-01, - 8.7809e-01, 9.5811e-01, 1.1582e-01, 9.2928e-01, - 2.9681e-01, 7.2658e-03, 1.5538e-01, 6.5074e-01, - 3.9636e-02, 8.9436e-01, 7.8744e-01, 8.9518e-01, - 9.8470e-01, 5.6734e-01, 7.0415e-01, 9.3305e-01, - 5.0412e-01, 6.9225e-01, 3.7680e-01, 6.1826e-02, - 9.2996e-01, 8.0182e-01, 5.8778e-01, 7.6905e-01, - 7.1401e-01, 2.8426e-01, 5.8863e-01, 7.7111e-01, - 3.4084e-01, 8.9029e-01, 5.9812e-01, 9.9864e-01, - 9.5608e-01, 6.0548e-01, 6.6852e-01, 8.4302e-01, - 3.6006e-01, 3.3586e-02, 3.8115e-01, 9.1830e-03, - 3.8398e-01, 4.1210e-02, 6.9895e-01, 7.1032e-01, - 3.0120e-01, 9.6801e-01, 1.0851e-01, 8.0637e-01, - 3.8750e-01, 9.1804e-01, 1.1349e-01, 1.4880e-01, - 5.5597e-01, 5.7805e-01, 4.9664e-01, 8.5710e-01, - 2.7043e-01, 1.8423e-01, 3.7186e-01, 2.7686e-01, - 8.2085e-01, 9.0786e-01, 7.9438e-01, 8.5465e-01, - 3.3007e-01, 5.5600e-01, 8.5585e-01, 7.9228e-01, - 6.0820e-01, 8.9734e-01, 3.4185e-01, 2.6683e-01, - 4.6811e-01, 8.9853e-01, 8.4435e-02, 8.5459e-01, - 4.8374e-01, 8.1887e-01, 2.0131e-01, 9.6681e-01, - 1.9732e-01, 4.5077e-01, 1.5893e-01, 5.5802e-02, - 9.5327e-01, 9.9846e-01, 9.0623e-01, 5.7046e-01, - 5.4920e-01, 1.9134e-01, 8.3989e-01, 8.6713e-01, - 9.7239e-01, 2.8320e-01, 9.3550e-01, 6.0737e-01, - 3.9692e-01, 8.8510e-01, 4.8390e-01, 1.8367e-01, - 8.8882e-01, 1.8523e-01, 9.4789e-01, 5.0970e-01, - 6.8785e-01, 3.3279e-01, 9.8456e-01, 7.4517e-02, - 7.4611e-01, 6.3282e-01, 3.2770e-02, 4.9303e-01, - 1.2047e-01, 2.8452e-01, 6.4498e-01, 3.3432e-01, - 5.6706e-01, 4.1401e-01, 8.8033e-01, 6.5752e-01, - 7.1826e-01, 2.3947e-01, 8.1152e-02, 9.2556e-01, - 5.9988e-01, 8.5251e-01, 3.7673e-01, 3.4441e-01, - 9.2290e-01, 3.5271e-01, 4.6772e-01, 3.3679e-01]), + col_indices=tensor([4972, 1405, 2738, 821, 7457, 7836, 7120, 5534, 695, + 6668, 7153, 1083, 1806, 3581, 349, 2928, 9019, 9318, + 9657, 5964, 9091, 9508, 6651, 348, 2668, 9801, 712, + 819, 3104, 2583, 7723, 85, 5857, 6849, 7363, 7282, + 890, 1906, 2514, 9264, 7871, 8221, 7845, 1927, 471, + 2360, 1083, 3678, 1270, 9654, 9373, 7266, 9755, 6534, + 9043, 6484, 9707, 3465, 997, 9966, 6876, 4035, 1407, + 8477, 4573, 4827, 5524, 7695, 5419, 327, 5516, 1549, + 7525, 9004, 8876, 6314, 2296, 6027, 9452, 72, 7459, + 3044, 8559, 628, 5871, 4084, 7963, 158, 9675, 7550, + 1796, 3225, 8892, 8104, 445, 2716, 8203, 4628, 6210, + 6301, 5576, 3974, 7025, 8928, 9625, 8171, 958, 6404, + 7807, 8154, 451, 3321, 6728, 5234, 6976, 1597, 9431, + 4125, 7315, 3074, 7163, 9117, 5604, 3258, 3491, 1302, + 780, 3021, 7140, 4452, 7130, 506, 742, 4904, 4779, + 9113, 8947, 7664, 7637, 7987, 302, 2532, 7421, 9325, + 6951, 8027, 5405, 1574, 4570, 9089, 7665, 528, 4791, + 1506, 5090, 7803, 281, 4795, 4297, 886, 3647, 8898, + 3120, 2601, 2574, 3655, 4214, 5707, 7550, 3370, 2324, + 3105, 7422, 3066, 3760, 2726, 2303, 8568, 327, 2589, + 4688, 3603, 3785, 9818, 9283, 469, 9286, 2273, 8934, + 9475, 2423, 1816, 6319, 9100, 1702, 4299, 4023, 4882, + 7771, 666, 7807, 7905, 397, 3796, 7251, 6833, 7018, + 1044, 9904, 4747, 3464, 5425, 3407, 175, 604, 2034, + 5882, 7224, 7439, 7369, 6262, 2750, 1254, 2862, 9223, + 4910, 6784, 6117, 9740, 1422, 8971, 7737, 1310, 9814, + 9075, 1744, 3303, 5610, 8739, 407, 7188, 9037, 2975, + 1568, 2983, 3434, 8327, 2274, 5215, 604, 2230, 2563, + 9134, 7881, 5093, 3453, 5598, 6471, 8742, 985, 2483, + 2627, 1373, 280, 8576, 3642, 7906, 7329, 9906, 6733, + 1745, 6623, 7734, 9790, 7276, 5528, 4362, 3188, 4638, + 4280, 2963, 1142, 372, 5049, 2909, 7165, 3193, 6148, + 2271, 1609, 1609, 3499, 5181, 9245, 9403, 2085, 5724, + 1181, 1771, 2960, 1899, 6350, 6779, 7732, 2210, 1463, + 9426, 5307, 9888, 664, 9851, 9122, 4726, 1985, 4843, + 7919, 8459, 1506, 1424, 6535, 3932, 1577, 8292, 9293, + 4141, 260, 3379, 4488, 4, 9670, 8903, 4311, 6111, + 7184, 4147, 9673, 2790, 579, 3619, 2848, 7168, 4487, + 6706, 3418, 9886, 3386, 9654, 7227, 6301, 8182, 2042, + 5889, 8620, 4715, 2314, 6102, 7812, 4452, 8306, 3245, + 7661, 4687, 9454, 372, 2859, 4089, 1590, 2543, 5916, + 5118, 5541, 2765, 9023, 1245, 8801, 911, 9153, 8331, + 2736, 8562, 6910, 738, 6503, 5375, 4609, 3990, 2407, + 9645, 8807, 6638, 1515, 7548, 7650, 8775, 7638, 2895, + 6146, 8851, 53, 3827, 901, 3926, 4196, 8539, 6422, + 4461, 7590, 8706, 9720, 3957, 975, 1113, 7177, 3493, + 2456, 3981, 2750, 1678, 6119, 1019, 1015, 1019, 2970, + 6212, 4435, 9544, 7136, 3621, 5132, 6730, 1344, 8173, + 9568, 9492, 3762, 8302, 9499, 2078, 7665, 8552, 646, + 4448, 2453, 4214, 4831, 3595, 6202, 6664, 5181, 1561, + 6495, 6356, 988, 6217, 6069, 4983, 5304, 5430, 6831, + 4249, 4868, 5418, 5675, 8390, 9467, 6739, 6570, 383, + 7997, 8462, 8831, 1856, 398, 1814, 9850, 683, 2765, + 7155, 6554, 5795, 7478, 9531, 9477, 5234, 8954, 6229, + 5571, 6549, 4977, 4582, 7552, 1900, 5253, 2076, 9585, + 1810, 4182, 1517, 8795, 4585, 8047, 1703, 8851, 7992, + 9840, 7872, 8668, 1604, 1226, 7542, 2036, 8321, 8280, + 6516, 7301, 5800, 6655, 556, 7240, 1925, 6371, 8117, + 4008, 1573, 297, 4617, 3500, 1096, 8348, 7795, 2166, + 9919, 7046, 907, 4373, 9942, 7959, 4612, 2191, 7471, + 1551, 1253, 9622, 5451, 6375, 2718, 9172, 1328, 2206, + 6610, 8512, 9620, 3166, 70, 7979, 8362, 4317, 9319, + 7145, 9471, 1102, 6052, 3736, 7897, 3018, 9318, 4626, + 3035, 3845, 5367, 445, 1352, 6964, 3743, 6956, 6815, + 8871, 4156, 4269, 4098, 3309, 4397, 5465, 3229, 1823, + 6544, 3842, 8845, 3484, 822, 6074, 4146, 9045, 7757, + 2777, 66, 9385, 2615, 599, 3543, 2303, 1567, 9769, + 3202, 4399, 2891, 5597, 2945, 5620, 5806, 4689, 9005, + 4553, 137, 7443, 892, 7777, 7252, 8060, 4460, 732, + 8162, 7391, 2245, 7604, 9063, 1073, 7517, 4465, 394, + 9244, 8, 9498, 9116, 9485, 5995, 3554, 4940, 8129, + 1458, 4587, 2078, 1470, 3731, 5211, 8596, 5666, 6142, + 3359, 1472, 8209, 9872, 1611, 3338, 6557, 3513, 3864, + 4827, 2518, 9053, 530, 3073, 418, 1537, 6645, 7411, + 2104, 9688, 8234, 7188, 7937, 4386, 6521, 9854, 2965, + 8265, 9490, 2081, 612, 4080, 5175, 9752, 1944, 2111, + 791, 5228, 349, 166, 4411, 9072, 6256, 1725, 7501, + 2904, 3632, 5352, 2745, 3201, 3650, 4953, 3431, 9310, + 9213, 5480, 3794, 6746, 4307, 2422, 1271, 9553, 7121, + 8150, 7353, 1417, 870, 806, 3925, 4907, 2082, 5868, + 6597, 5497, 4547, 6014, 1707, 4907, 455, 5675, 355, + 6173, 5131, 1727, 6109, 8687, 7982, 736, 6797, 2166, + 1063, 4073, 7028, 1072, 3289, 5899, 2997, 9326, 5623, + 1788, 1089, 8209, 9870, 4781, 9452, 2450, 7131, 2788, + 2853, 5511, 9849, 2656, 7920, 674, 1300, 8932, 416, + 8093, 9874, 7324, 5225, 4621, 926, 980, 8985, 1462, + 7040, 9170, 9555, 8932, 9914, 219, 2964, 7753, 6648, + 2390, 6208, 5248, 5320, 4117, 7437, 430, 4484, 2611, + 5121, 8916, 1447, 5161, 1499, 9794, 1265, 4597, 8256, + 1496, 7641, 2433, 6962, 8984, 1170, 5695, 5461, 547, + 9880, 7152, 272, 80, 1601, 2649, 2962, 4267, 9755, + 1424, 3921, 9152, 9785, 972, 1812, 7994, 2298, 8551, + 708, 668, 3575, 9762, 8171, 2486, 2048, 3839, 1631, + 1897, 7990, 4894, 2240, 6177, 6171, 9539, 2465, 9722, + 9336, 2467, 6414, 2170, 3729, 1314, 3949, 8063, 6208, + 823, 5984, 6659, 6415, 2310, 7658, 6846, 2561, 8927, + 5336, 4676, 5025, 5266, 9954, 5759, 4786, 389, 1969, + 8561, 5438, 7925, 6769, 2925, 3548, 5821, 4979, 5495, + 4420, 2929, 4317, 8343, 6738, 1023, 1264, 816, 5153, + 6387, 9609, 7627, 9609, 8951, 8523, 9734, 7325, 692, + 9657, 595, 9347, 5128, 5970, 6833, 8478, 2254, 1877, + 386, 8236, 3505, 9182, 9403, 1371, 4925, 3513, 8183, + 6878, 3320, 8021, 3631, 1112, 3099, 3784, 132, 834, + 2343, 2612, 8494, 4918, 7861, 7283, 6749, 3142, 1632, + 4302, 8980, 7897, 515, 2749, 5212, 8365, 982, 7831, + 4787, 5300, 7623, 7109, 9010, 3076, 1284, 467, 7979, + 5644, 8907, 7522, 6202, 6272, 5531, 9124, 4043, 7300, + 250, 3433, 7921, 7720, 9874, 1712, 2699, 8196, 3473, + 3245, 9036, 8606, 942, 3651, 8212, 979, 3999, 790, + 7368, 4160, 7287, 156, 3177, 9487, 6150, 318, 6342, + 8617, 6278, 8278, 8892, 1288, 6740, 9226, 7056, 9217, + 1811]), + values=tensor([0.6196, 0.0114, 0.0780, 0.5906, 0.7505, 0.5993, 0.7945, + 0.6434, 0.3118, 0.3104, 0.2388, 0.2046, 0.7622, 0.0777, + 0.2242, 0.6515, 0.2665, 0.6905, 0.5118, 0.3093, 0.1972, + 0.8279, 0.7758, 0.5459, 0.1846, 0.6189, 0.2595, 0.9186, + 0.9405, 0.9879, 0.1042, 0.7520, 0.4405, 0.4499, 0.2446, + 0.5636, 0.5715, 0.4879, 0.0724, 0.4352, 0.0923, 0.1412, + 0.7009, 0.0672, 0.7384, 0.5888, 0.4764, 0.9840, 0.4351, + 0.7794, 0.0814, 0.2714, 0.4090, 0.8987, 0.3438, 0.2136, + 0.2617, 0.9509, 0.7670, 0.2193, 0.5040, 0.9778, 0.5290, + 0.4287, 0.4993, 0.6605, 0.4552, 0.9814, 0.6170, 0.0979, + 0.2177, 0.2630, 0.6411, 0.5989, 0.5365, 0.6080, 0.2088, + 0.6048, 0.4912, 0.3916, 0.1699, 0.3572, 0.0296, 0.1407, + 0.2305, 0.8274, 0.8609, 0.2424, 0.0171, 0.3855, 0.8338, + 0.0725, 0.1924, 0.3285, 0.2749, 0.2272, 0.8472, 0.4564, + 0.0152, 0.9213, 0.6620, 0.1417, 0.5779, 0.7029, 0.8146, + 0.0682, 0.3470, 0.1203, 0.3985, 0.2526, 0.9231, 0.2354, + 0.8514, 0.4049, 0.6712, 0.6265, 0.6751, 0.7498, 0.8617, + 0.8223, 0.5316, 0.8207, 0.7825, 0.3233, 0.8320, 0.0205, + 0.8938, 0.9868, 0.4228, 0.0904, 0.1323, 0.2104, 0.5759, + 0.7486, 0.0044, 0.1971, 0.8234, 0.8820, 0.6865, 0.9321, + 0.1935, 0.5814, 0.3290, 0.8572, 0.7029, 0.1494, 0.4076, + 0.6910, 0.7343, 0.6929, 0.6184, 0.4509, 0.3354, 0.0941, + 0.8616, 0.1833, 0.4475, 0.8165, 0.7540, 0.0272, 0.8090, + 0.0075, 0.3321, 0.8506, 0.8823, 0.3041, 0.9698, 0.2208, + 0.0487, 0.0944, 0.5882, 0.4789, 0.2189, 0.7276, 0.4046, + 0.6510, 0.9386, 0.5425, 0.0569, 0.9029, 0.3170, 0.4560, + 0.5885, 0.3819, 0.2215, 0.3602, 0.5884, 0.5067, 0.6889, + 0.4126, 0.5286, 0.8708, 0.3178, 0.5978, 0.0567, 0.3482, + 0.7129, 0.2828, 0.9540, 0.1061, 0.9066, 0.0741, 0.4504, + 0.7678, 0.9215, 0.2588, 0.3298, 0.0216, 0.3903, 0.8528, + 0.9555, 0.5742, 0.2240, 0.8449, 0.7139, 0.5892, 0.2852, + 0.5518, 0.0411, 0.1811, 0.1596, 0.8581, 0.7313, 0.1657, + 0.9703, 0.4189, 0.2887, 0.6831, 0.2369, 0.7634, 0.0408, + 0.1000, 0.5756, 0.0151, 0.0558, 0.6882, 0.9572, 0.3370, + 0.9688, 0.4463, 0.3662, 0.7410, 0.8981, 0.8137, 0.7748, + 0.5107, 0.2607, 0.4339, 0.7448, 0.8445, 0.3417, 0.7647, + 0.9351, 0.4583, 0.4626, 0.8247, 0.0549, 0.7239, 0.1440, + 0.1775, 0.0044, 0.8569, 0.9508, 0.9056, 0.7959, 0.1560, + 0.6764, 0.7063, 0.5503, 0.9575, 0.2693, 0.8490, 0.4128, + 0.9714, 0.7818, 0.2400, 0.9716, 0.6862, 0.9725, 0.7942, + 0.6956, 0.0325, 0.8764, 0.6559, 0.7553, 0.5630, 0.4887, + 0.4200, 0.4990, 0.6213, 0.7425, 0.5404, 0.5604, 0.6518, + 0.0938, 0.0682, 0.2423, 0.9653, 0.1080, 0.3011, 0.1907, + 0.9731, 0.6522, 0.5311, 0.7260, 0.4884, 0.7901, 0.0902, + 0.8898, 0.7591, 0.1705, 0.1715, 0.3061, 0.0252, 0.3621, + 0.2712, 0.6191, 0.9504, 0.7431, 0.1438, 0.4641, 0.1864, + 0.8295, 0.2078, 0.4217, 0.6064, 0.8959, 0.2519, 0.3506, + 0.8294, 0.1176, 0.3434, 0.4118, 0.0391, 0.7786, 0.0788, + 0.3045, 0.2730, 0.0333, 0.9811, 0.5870, 0.5459, 0.4360, + 0.7475, 0.4862, 0.2886, 0.3649, 0.8278, 0.5869, 0.3199, + 0.6849, 0.0285, 0.4652, 0.5037, 0.2746, 0.7393, 0.6614, + 0.8444, 0.4003, 0.6111, 0.3264, 0.6698, 0.0865, 0.1122, + 0.8565, 0.1133, 0.1540, 0.9887, 0.7073, 0.1087, 0.5905, + 0.7220, 0.0133, 0.1397, 0.8300, 0.0324, 0.8468, 0.3611, + 0.2452, 0.3323, 0.2390, 0.8962, 0.8835, 0.5849, 0.8184, + 0.7935, 0.0660, 0.7531, 0.0935, 0.0932, 0.0297, 0.7930, + 0.4667, 0.6703, 0.2160, 0.8538, 0.6976, 0.7919, 0.6943, + 0.5213, 0.4328, 0.9720, 0.9873, 0.3954, 0.1633, 0.0324, + 0.1143, 0.9281, 0.5805, 0.4522, 0.1840, 0.3413, 0.7327, + 0.8227, 0.7055, 0.4474, 0.9122, 0.5135, 0.1786, 0.5499, + 0.6141, 0.0692, 0.4429, 0.4518, 0.1137, 0.3476, 0.6665, + 0.4712, 0.6495, 0.4523, 0.1555, 0.4635, 0.4607, 0.8030, + 0.8073, 0.9042, 0.2096, 0.7414, 0.3257, 0.5309, 0.6492, + 0.5166, 0.4222, 0.1800, 0.6811, 0.2543, 0.7807, 0.8292, + 0.0337, 0.3617, 0.3639, 0.6057, 0.9194, 0.7802, 0.0115, + 0.4737, 0.1007, 0.6828, 0.4037, 0.6724, 0.8920, 0.1067, + 0.2017, 0.4498, 0.1470, 0.6942, 0.3285, 0.6704, 0.5841, + 0.6335, 0.3846, 0.4546, 0.4434, 0.2040, 0.5921, 0.4102, + 0.9338, 0.0085, 0.3554, 0.7339, 0.9378, 0.6361, 0.4532, + 0.8577, 0.0919, 0.8382, 0.8771, 0.9330, 0.9355, 0.3061, + 0.1102, 0.2291, 0.2677, 0.0542, 0.0233, 0.9935, 0.2414, + 0.5357, 0.0318, 0.7366, 0.4385, 0.9397, 0.9292, 0.4194, + 0.0669, 0.0388, 0.1712, 0.0651, 0.0535, 0.4304, 0.4725, + 0.6864, 0.1406, 0.9443, 0.6677, 0.0116, 0.4935, 0.0069, + 0.5753, 0.7223, 0.1602, 0.1981, 0.8268, 0.1964, 0.1201, + 0.4187, 0.9315, 0.6910, 0.1607, 0.8515, 0.6607, 0.1831, + 0.4073, 0.4556, 0.6316, 0.3967, 0.7742, 0.0299, 0.8444, + 0.4225, 0.4172, 0.0107, 0.7973, 0.1650, 0.5326, 0.3424, + 0.1339, 0.3026, 0.2960, 0.8852, 0.5235, 0.3847, 0.9486, + 0.9744, 0.7896, 0.0970, 0.8576, 0.9830, 0.8277, 0.6377, + 0.6529, 0.3114, 0.3164, 0.5753, 0.9730, 0.1173, 0.7698, + 0.0827, 0.2026, 0.6431, 0.6275, 0.9894, 0.9420, 0.4072, + 0.0354, 0.6950, 0.2008, 0.8919, 0.9516, 0.2605, 0.2712, + 0.3361, 0.8498, 0.9614, 0.7851, 0.9593, 0.8290, 0.5531, + 0.4367, 0.7236, 0.1173, 0.3492, 0.3041, 0.4874, 0.6287, + 0.4729, 0.9250, 0.4853, 0.7466, 0.5273, 0.7349, 0.8320, + 0.4933, 0.8099, 0.6428, 0.4210, 0.3452, 0.1825, 0.1989, + 0.0157, 0.5749, 0.0068, 0.8464, 0.1640, 0.6036, 0.8043, + 0.1153, 0.1076, 0.3058, 0.3746, 0.4799, 0.3056, 0.9610, + 0.9127, 0.1886, 0.6659, 0.9943, 0.2424, 0.3077, 0.7229, + 0.1714, 0.4319, 0.1211, 0.4333, 0.8060, 0.0129, 0.3734, + 0.2043, 0.8662, 0.0012, 0.7686, 0.9359, 0.7522, 0.5003, + 0.8250, 0.6805, 0.4069, 0.5015, 0.3243, 0.2291, 0.6806, + 0.3313, 0.5285, 0.2989, 0.5609, 0.2452, 0.4071, 0.5377, + 0.6963, 0.5657, 0.0299, 0.3653, 0.3895, 0.5235, 0.1440, + 0.6253, 0.9459, 0.1675, 0.0939, 0.6242, 0.6776, 0.4588, + 0.7446, 0.8041, 0.5422, 0.2562, 0.4694, 0.6440, 0.4271, + 0.2793, 0.9064, 0.9594, 0.0651, 0.7852, 0.2015, 0.1116, + 0.8944, 0.6879, 0.1163, 0.9220, 0.0269, 0.3468, 0.8496, + 0.0650, 0.6194, 0.8677, 0.0084, 0.7029, 0.1122, 0.9175, + 0.6419, 0.6504, 0.1891, 0.4529, 0.1905, 0.8371, 0.7381, + 0.0046, 0.0964, 0.3131, 0.0824, 0.0035, 0.8733, 0.0679, + 0.3019, 0.0364, 0.0796, 0.9762, 0.3044, 0.5891, 0.5660, + 0.3560, 0.7397, 0.3023, 0.7408, 0.9024, 0.2952, 0.3074, + 0.6006, 0.7129, 0.0891, 0.3833, 0.2026, 0.5861, 0.2465, + 0.9574, 0.5804, 0.7353, 0.6099, 0.7893, 0.5485, 0.6035, + 0.2349, 0.9017, 0.3856, 0.5056, 0.0559, 0.3784, 0.5241, + 0.2260, 0.3588, 0.0084, 0.9935, 0.5469, 0.0778, 0.5282, + 0.6435, 0.6276, 0.8416, 0.0584, 0.0156, 0.0848, 0.6834, + 0.9575, 0.2536, 0.5391, 0.2540, 0.8715, 0.2861, 0.5460, + 0.7418, 0.0582, 0.9596, 0.0844, 0.4428, 0.3021, 0.7742, + 0.6810, 0.4964, 0.7090, 0.4618, 0.1299, 0.8111, 0.3574, + 0.2849, 0.4554, 0.2968, 0.9678, 0.0744, 0.2541, 0.3812, + 0.5255, 0.2774, 0.7182, 0.6545, 0.3975, 0.7431, 0.2071, + 0.5491, 0.9683, 0.3905, 0.1637, 0.7412, 0.4003, 0.0465, + 0.7927, 0.1817, 0.9405, 0.6939, 0.2323, 0.2436, 0.5829, + 0.6947, 0.0693, 0.6028, 0.7684, 0.0952, 0.9277, 0.4091, + 0.9988, 0.6707, 0.1396, 0.1664, 0.2853, 0.2971, 0.9641, + 0.1686, 0.0860, 0.6361, 0.7716, 0.8737, 0.6248, 0.0015, + 0.3479, 0.1224, 0.1738, 0.6328, 0.2988, 0.9543, 0.5409, + 0.0047, 0.1434, 0.4069, 0.6226, 0.8539, 0.0827, 0.8015, + 0.2080, 0.8185, 0.6100, 0.2443, 0.4521, 0.2640, 0.8834, + 0.8696, 0.2577, 0.6036, 0.3935, 0.5480, 0.9590, 0.9883, + 0.7734, 0.5568, 0.6996, 0.0841, 0.9604, 0.4231, 0.9460, + 0.7411, 0.8125, 0.9801, 0.0252, 0.0568, 0.4796, 0.9708, + 0.3495, 0.6681, 0.3051, 0.6744, 0.6027, 0.3956, 0.2149, + 0.6839, 0.9513, 0.7049, 0.9582, 0.9253, 0.8298, 0.8000, + 0.7741, 0.1759, 0.5742, 0.7797, 0.5900, 0.6486, 0.5787, + 0.2751, 0.3526, 0.0315, 0.3035, 0.6247, 0.4841, 0.5887, + 0.1239, 0.9917, 0.3466, 0.9117, 0.5496, 0.3028, 0.9246, + 0.4866, 0.4419, 0.3541, 0.1189, 0.6739, 0.6026, 0.2252, + 0.8252, 0.4125, 0.4146, 0.0962, 0.2742, 0.6324, 0.9534, + 0.6412, 0.1798, 0.3442, 0.4388, 0.5642, 0.0475, 0.3987, + 0.9407, 0.2760, 0.9317, 0.9750, 0.2067, 0.0954, 0.3279, + 0.9463, 0.0269, 0.3547, 0.9989, 0.6845, 0.0502, 0.2075, + 0.9402, 0.9150, 0.2132, 0.4162, 0.9616, 0.9976, 0.1376, + 0.2488, 0.9598, 0.7374, 0.5987, 0.2084, 0.2543, 0.9909, + 0.9516, 0.5972, 0.2731, 0.2157, 0.3846, 0.1856, 0.3478, + 0.8278, 0.9150, 0.8429, 0.1244, 0.6218, 0.9288, 0.3402, + 0.1837, 0.8875, 0.3500, 0.7672, 0.3250, 0.7786, 0.8135, + 0.0048, 0.4153, 0.0159, 0.0130, 0.8717, 0.9126, 0.3962, + 0.4043, 0.1810, 0.9416, 0.6720, 0.1907, 0.4396, 0.7264, + 0.0043, 0.4775, 0.5628, 0.5494, 0.7407, 0.3406]), size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.4545, 0.4841, 0.5462, ..., 0.7193, 0.8873, 0.8657]) +tensor([0.4250, 0.1408, 0.2235, ..., 0.5768, 0.6841, 0.8384]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -375,650 +1026,378 @@ Rows: 10000 Size: 100000000 NNZ: 1000 Density: 1e-05 -Time: 0.044791460037231445 seconds +Time: 9.730679035186768 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '234419', '-ss', '10000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 6.79626727104187} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 999, 999, 1000]), - col_indices=tensor([9785, 166, 4732, 1054, 2677, 737, 2692, 6702, 6696, - 4987, 1461, 2792, 4644, 6824, 7514, 9831, 4632, 9574, - 5878, 8004, 2663, 8554, 6382, 4503, 7552, 2495, 4359, - 3665, 8415, 1378, 7600, 5186, 955, 5619, 8737, 8271, - 4450, 9961, 761, 5226, 9765, 6949, 7600, 499, 6338, - 2186, 620, 8240, 8992, 3003, 4300, 6850, 7631, 6276, - 6344, 3045, 5424, 4843, 6655, 214, 8437, 1153, 3048, - 3945, 6705, 6578, 503, 4280, 3660, 2187, 4388, 1729, - 3826, 9897, 4722, 8899, 9116, 9862, 250, 3435, 9656, - 2133, 229, 8648, 3790, 2892, 3215, 8841, 9321, 9370, - 7919, 5258, 2328, 1718, 8273, 9787, 6605, 3738, 1986, - 5382, 5473, 3182, 6931, 2297, 7008, 4903, 4955, 9265, - 754, 4714, 8976, 5504, 5461, 5298, 6045, 8621, 5402, - 6079, 8510, 4644, 6547, 2179, 8728, 6010, 134, 4499, - 1213, 8522, 835, 4809, 3944, 8041, 9806, 7565, 7536, - 4656, 4837, 2879, 6946, 3464, 619, 62, 5432, 9820, - 4952, 996, 8581, 5377, 7694, 9712, 7485, 8052, 3987, - 792, 320, 7566, 9599, 1370, 2235, 8718, 1363, 2332, - 5027, 3430, 1039, 1637, 55, 6337, 6636, 2980, 6048, - 6985, 3464, 5945, 8651, 8573, 3606, 1490, 865, 905, - 1490, 3435, 6844, 9031, 3965, 6482, 2873, 1087, 9063, - 2290, 2149, 1390, 7730, 2893, 8310, 7722, 8741, 6862, - 5350, 1281, 3410, 4660, 4916, 1233, 3316, 6898, 6188, - 5449, 741, 3875, 9700, 9872, 3389, 7597, 8144, 8722, - 9746, 1550, 1244, 7613, 4719, 4426, 9724, 1811, 8910, - 8345, 957, 9931, 7286, 1642, 1, 4022, 8010, 1904, - 1644, 4817, 7131, 4114, 3549, 4195, 2668, 4121, 4405, - 2741, 2430, 2265, 1112, 7943, 3629, 7844, 7608, 8287, - 9308, 5998, 9737, 8595, 1962, 8938, 343, 6874, 9789, - 9356, 8225, 1546, 3553, 2148, 3996, 9245, 6048, 8823, - 3398, 6498, 7428, 9499, 2417, 812, 7761, 7774, 8309, - 9098, 6784, 5574, 3988, 2354, 3852, 2415, 6591, 8240, - 4397, 6666, 9763, 2093, 3435, 2169, 9681, 9101, 9169, - 7306, 3087, 7043, 543, 3648, 5184, 1467, 4507, 844, - 4286, 2769, 7533, 3344, 2717, 6573, 2325, 2539, 2728, - 7418, 3180, 681, 8690, 9379, 9577, 6255, 572, 2901, - 6468, 4233, 8000, 3259, 916, 6238, 442, 3591, 4793, - 3309, 9434, 9985, 363, 3303, 1400, 4359, 7518, 3644, - 5004, 6752, 6531, 4932, 1594, 4176, 8596, 7996, 9452, - 4255, 2970, 2679, 9053, 9602, 7809, 5895, 9805, 3931, - 4450, 2689, 8816, 4218, 8262, 3650, 6736, 2445, 3979, - 3263, 3314, 7848, 6269, 9437, 2493, 1316, 3709, 5881, - 2851, 4568, 7456, 1023, 6351, 8957, 9431, 9809, 7905, - 5620, 9526, 6013, 5365, 6397, 6944, 7671, 5462, 4356, - 941, 2415, 1563, 7405, 8273, 1303, 7168, 7136, 689, - 7807, 9742, 99, 8146, 7835, 9875, 2644, 7093, 8194, - 4600, 4882, 5801, 1693, 4045, 2037, 8709, 6551, 7297, - 7733, 8443, 3612, 1144, 1583, 4915, 632, 5411, 9764, - 8966, 6912, 2517, 8723, 5338, 6627, 4780, 5074, 252, - 2764, 4409, 9443, 5542, 3491, 7522, 6229, 6706, 2379, - 4994, 3715, 4338, 8970, 3455, 2391, 3173, 2189, 189, - 3152, 8308, 2747, 8707, 9978, 2579, 3596, 3717, 7074, - 8374, 9463, 9789, 3344, 8397, 1857, 7053, 8019, 9174, - 7289, 7973, 1302, 5745, 2471, 8049, 4561, 1609, 5496, - 5420, 6442, 9170, 3047, 7465, 7581, 2958, 6201, 6776, - 9868, 628, 9925, 8329, 2691, 3342, 8858, 7611, 5869, - 4294, 6350, 8022, 6784, 8177, 180, 2444, 827, 1240, - 2070, 9651, 5806, 3667, 5899, 9120, 4564, 7566, 8581, - 2122, 4232, 8576, 1265, 6962, 2886, 6630, 13, 977, - 4882, 3358, 9434, 7172, 312, 1663, 2578, 5247, 3309, - 6660, 1669, 2730, 6017, 5873, 3715, 6468, 4145, 2235, - 1635, 9287, 6498, 1723, 1950, 5564, 1206, 5112, 1902, - 9985, 2005, 4744, 140, 2793, 319, 6150, 378, 5699, - 9535, 1978, 7927, 9858, 9618, 5584, 6047, 5793, 9146, - 871, 5971, 2761, 6573, 1303, 8144, 7546, 7583, 8871, - 5806, 1270, 1551, 8880, 4357, 2001, 1191, 4948, 1497, - 5338, 6389, 4432, 9166, 6271, 599, 2576, 2105, 5266, - 6760, 940, 2516, 7029, 150, 1814, 6143, 119, 5761, - 6997, 1805, 9581, 3150, 1685, 2677, 5907, 3244, 6569, - 636, 5239, 328, 2606, 9873, 5694, 312, 8146, 4066, - 2356, 3554, 3284, 5042, 4281, 5763, 9098, 2638, 8485, - 6772, 5511, 6169, 5242, 6099, 4348, 7529, 4802, 8127, - 5016, 3710, 6553, 7372, 8670, 6112, 7508, 4879, 8626, - 5415, 173, 2999, 7878, 2740, 5648, 6256, 4717, 680, - 285, 2248, 6576, 6946, 8315, 6648, 6232, 3819, 207, - 2750, 1785, 9384, 4909, 4623, 6412, 4459, 7968, 1566, - 1457, 4773, 5497, 3497, 561, 561, 9827, 5162, 1927, - 5564, 5333, 2833, 2273, 2965, 3538, 9578, 4834, 9669, - 7936, 3482, 1294, 964, 2949, 1061, 6428, 4856, 8359, - 823, 835, 7553, 4805, 9310, 4440, 3742, 8345, 2534, - 2048, 2597, 1463, 3578, 8817, 698, 3041, 2184, 2470, - 6677, 6761, 6266, 8828, 403, 1862, 1860, 190, 6193, - 938, 4044, 6995, 9429, 9407, 237, 9495, 7714, 4774, - 6105, 3412, 1344, 1515, 4894, 9334, 4967, 7979, 8072, - 3534, 9065, 5060, 5244, 3805, 9427, 9942, 1579, 8946, - 6693, 6377, 5190, 6721, 8176, 1310, 9299, 3278, 7860, - 2977, 6676, 6683, 7050, 7867, 7581, 7620, 7222, 4756, - 6631, 6324, 5272, 9699, 4919, 8937, 1647, 8728, 3792, - 6721, 9851, 1772, 4894, 9362, 610, 8497, 6604, 2645, - 3943, 1830, 4247, 8187, 570, 3436, 2219, 4749, 7757, - 3374, 6190, 5390, 2365, 4451, 7704, 1737, 1474, 4069, - 4728, 1831, 420, 6368, 8431, 6243, 8033, 4258, 3893, - 27, 4401, 7951, 8739, 3130, 228, 7784, 7785, 1501, - 6951, 7338, 1793, 3222, 3729, 4330, 1726, 1335, 5426, - 4562, 4180, 8211, 2920, 5185, 9818, 731, 4604, 4720, - 7330, 9485, 961, 8821, 4694, 6303, 151, 3936, 5654, - 5697, 1356, 5185, 1362, 1778, 2202, 507, 5473, 8330, - 3989, 7967, 7406, 5227, 8280, 7073, 6810, 5099, 1669, - 1698, 7489, 8524, 9942, 7528, 1663, 4243, 2507, 1395, - 2964, 8529, 3047, 8014, 8347, 9122, 4984, 165, 397, - 5886, 7762, 6635, 8641, 9864, 5736, 8655, 5186, 6739, - 5510, 573, 352, 8688, 3386, 9209, 9968, 6024, 4140, - 5923, 473, 8204, 486, 5334, 1333, 7972, 8566, 475, - 5771, 9094, 1294, 1428, 7487, 6295, 8728, 6230, 592, - 7838, 8672, 1400, 7420, 2487, 7365, 9344, 2707, 4067, - 7923, 6146, 3694, 3458, 1082, 3163, 220, 6283, 4440, - 4207, 9808, 1906, 7825, 6343, 6969, 3880, 8804, 3924, - 4573, 6298, 8864, 3426, 8181, 3978, 3247, 565, 1550, - 402, 5683, 3735, 538, 4968, 3623, 6448, 4374, 4484, - 4981, 9965, 3979, 6037, 7993, 3906, 6774, 4197, 4077, - 6141, 5665, 216, 4728, 3404, 3490, 5845, 5442, 5936, - 2392]), - values=tensor([0.6789, 0.7902, 0.6880, 0.1459, 0.9506, 0.7545, 0.6244, - 0.9289, 0.9189, 0.9462, 0.9513, 0.6797, 0.9583, 0.6521, - 0.3572, 0.8716, 0.5241, 0.6472, 0.3203, 0.1422, 0.9924, - 0.9883, 0.3178, 0.6373, 0.7734, 0.0675, 0.9563, 0.6053, - 0.5349, 0.5673, 0.0327, 0.1179, 0.7077, 0.4694, 0.1771, - 0.1262, 0.5569, 0.0846, 0.1154, 0.8467, 0.3122, 0.2151, - 0.7148, 0.7408, 0.8150, 0.4660, 0.4917, 0.7673, 0.7452, - 0.0313, 0.3956, 0.8268, 0.3175, 0.4706, 0.4333, 0.5467, - 0.1812, 0.4264, 0.6242, 0.2334, 0.7860, 0.1513, 0.2008, - 0.5709, 0.5899, 0.1116, 0.6313, 0.6602, 0.1966, 0.5433, - 0.7515, 0.3064, 0.3549, 0.5620, 0.0543, 0.9463, 0.5389, - 0.6761, 0.7393, 0.6158, 0.0063, 0.2471, 0.4723, 0.9199, - 0.3569, 0.4061, 0.7383, 0.7275, 0.0079, 0.6368, 0.9169, - 0.6344, 0.7352, 0.2038, 0.6882, 0.0692, 0.7620, 0.4514, - 0.2523, 0.8680, 0.1348, 0.7845, 0.5002, 0.5098, 0.3488, - 0.4607, 0.0221, 0.4555, 0.4226, 0.6131, 0.7187, 0.3428, - 0.3065, 0.6724, 0.0711, 0.0179, 0.7366, 0.6267, 0.9128, - 0.1224, 0.7126, 0.0754, 0.8619, 0.7825, 0.0545, 0.2356, - 0.9584, 0.3541, 0.2836, 0.6314, 0.8234, 0.7482, 0.4493, - 0.8483, 0.4729, 0.3589, 0.4188, 0.1103, 0.2255, 0.9961, - 0.6787, 0.3921, 0.6680, 0.8683, 0.7021, 0.3865, 0.3920, - 0.1658, 0.1678, 0.4939, 0.4618, 0.4732, 0.1460, 0.5450, - 0.9787, 0.9696, 0.4490, 0.7981, 0.3843, 0.2315, 0.8056, - 0.3525, 0.1190, 0.4883, 0.6625, 0.0183, 0.5766, 0.1702, - 0.8525, 0.4266, 0.9885, 0.3533, 0.6524, 0.3520, 0.6675, - 0.3686, 0.0718, 0.4867, 0.4731, 0.5922, 0.1762, 0.0984, - 0.8628, 0.4134, 0.8916, 0.3533, 0.5971, 0.5074, 0.7582, - 0.8871, 0.2236, 0.9584, 0.0325, 0.3111, 0.7335, 0.9248, - 0.3610, 0.5237, 0.4724, 0.6363, 0.3785, 0.9824, 0.9725, - 0.9776, 0.6421, 0.3971, 0.9485, 0.6001, 0.7926, 0.8669, - 0.3153, 0.5971, 0.1508, 0.4626, 0.0885, 0.4864, 0.3318, - 0.5636, 0.0911, 0.0185, 0.5989, 0.9966, 0.4528, 0.8918, - 0.5935, 0.5481, 0.7258, 0.2687, 0.0530, 0.6100, 0.7098, - 0.6023, 0.2883, 0.5201, 0.3796, 0.5485, 0.0840, 0.2270, - 0.1228, 0.3948, 0.5803, 0.8700, 0.9491, 0.8250, 0.0603, - 0.9919, 0.7306, 0.4249, 0.6130, 0.9492, 0.3756, 0.7245, - 0.3148, 0.4093, 0.9728, 0.5261, 0.7680, 0.2256, 0.5492, - 0.4073, 0.1262, 0.9579, 0.7958, 0.6185, 0.5787, 0.0032, - 0.9180, 0.4937, 0.1203, 0.4035, 0.9433, 0.1036, 0.5838, - 0.8351, 0.6111, 0.8175, 0.9802, 0.7183, 0.1991, 0.1161, - 0.6332, 0.0124, 0.5364, 0.6217, 0.8091, 0.1122, 0.8740, - 0.1163, 0.2222, 0.2785, 0.6702, 0.0683, 0.2947, 0.0833, - 0.2798, 0.6418, 0.4443, 0.5947, 0.1590, 0.9468, 0.9361, - 0.8112, 0.8660, 0.6981, 0.5697, 0.3167, 0.0366, 0.6335, - 0.3897, 0.4571, 0.1447, 0.5764, 0.9037, 0.2483, 0.1549, - 0.1009, 0.0249, 0.7044, 0.2023, 0.8346, 0.6547, 0.8912, - 0.2294, 0.5760, 0.6906, 0.9669, 0.7653, 0.8821, 0.3934, - 0.3027, 0.6247, 0.6525, 0.0866, 0.7292, 0.9329, 0.7996, - 0.4288, 0.8616, 0.1508, 0.0988, 0.9403, 0.2822, 0.5955, - 0.6875, 0.8665, 0.1816, 0.1480, 0.4114, 0.1188, 0.7739, - 0.8942, 0.9570, 0.7041, 0.1444, 0.6212, 0.3491, 0.5667, - 0.0588, 0.7926, 0.9206, 0.1582, 0.5243, 0.4413, 0.5215, - 0.1245, 0.7716, 0.8320, 0.5173, 0.9502, 0.7001, 0.2561, - 0.0911, 0.9197, 0.7119, 0.6127, 0.0767, 0.0934, 0.5759, - 0.1581, 0.2199, 0.0678, 0.8478, 0.9549, 0.6215, 0.0890, - 0.3431, 0.8983, 0.2304, 0.5093, 0.4202, 0.5025, 0.0728, - 0.6820, 0.4595, 0.8151, 0.9650, 0.1367, 0.0489, 0.6894, - 0.8815, 0.1798, 0.4118, 0.0768, 0.3094, 0.1640, 0.8421, - 0.4927, 0.7588, 0.0142, 0.6189, 0.5015, 0.3806, 0.0976, - 0.9793, 0.6681, 0.7480, 0.0182, 0.1909, 0.2189, 0.9142, - 0.2607, 0.9170, 0.6085, 0.3877, 0.5892, 0.9975, 0.3059, - 0.7882, 0.2019, 0.1535, 0.0071, 0.8506, 0.3449, 0.0641, - 0.1592, 0.1108, 0.5805, 0.7587, 0.2160, 0.6041, 0.3713, - 0.6770, 0.7587, 0.2265, 0.8945, 0.1762, 0.0243, 0.4669, - 0.3152, 0.4374, 0.1957, 0.7650, 0.5132, 0.2117, 0.2264, - 0.0215, 0.5030, 0.8658, 0.2647, 0.3502, 0.1551, 0.6560, - 0.0067, 0.9332, 0.9856, 0.5894, 0.1238, 0.2676, 0.8649, - 0.9565, 0.9902, 0.1696, 0.6772, 0.6676, 0.3453, 0.5280, - 0.8229, 0.0610, 0.7282, 0.8611, 0.5029, 0.4703, 0.3124, - 0.1888, 0.4355, 0.4695, 0.3041, 0.5282, 0.9095, 0.8104, - 0.8367, 0.7223, 0.9052, 0.4773, 0.1809, 0.7066, 0.3981, - 0.4859, 0.7926, 0.8979, 0.4406, 0.1512, 0.0689, 0.2600, - 0.9449, 0.2340, 0.8871, 0.5326, 0.6894, 0.3020, 0.6115, - 0.7125, 0.5080, 0.9386, 0.7392, 0.9728, 0.3697, 0.5130, - 0.6615, 0.2833, 0.2191, 0.0319, 0.5162, 0.1457, 0.6820, - 0.2960, 0.7626, 0.5209, 0.8942, 0.7534, 0.1675, 0.9981, - 0.2741, 0.5042, 0.5185, 0.8251, 0.1458, 0.4001, 0.7294, - 0.2939, 0.6680, 0.2563, 0.2107, 0.3729, 0.0109, 0.9675, - 0.0578, 0.6678, 0.4549, 0.7095, 0.2695, 0.1911, 0.4045, - 0.5293, 0.9947, 0.5724, 0.2173, 0.6766, 0.8022, 0.6141, - 0.6448, 0.5921, 0.5903, 0.6152, 0.3252, 0.8434, 0.9784, - 0.8383, 0.0725, 0.0125, 0.5696, 0.7371, 0.3359, 0.5988, - 0.4416, 0.1805, 0.0079, 0.6909, 0.1542, 0.8025, 0.6226, - 0.6922, 0.6664, 0.0150, 0.7185, 0.7912, 0.0152, 0.7974, - 0.2282, 0.4197, 0.1100, 0.6712, 0.2565, 0.3027, 0.8066, - 0.0145, 0.7787, 0.9272, 0.7222, 0.8899, 0.5677, 0.3948, - 0.8801, 0.6723, 0.2421, 0.7796, 0.9543, 0.4170, 0.8510, - 0.5686, 0.0369, 0.5583, 0.2476, 0.4567, 0.0569, 0.0422, - 0.7673, 0.1146, 0.1025, 0.3896, 0.6882, 0.0079, 0.0575, - 0.2938, 0.3742, 0.1241, 0.9931, 0.6975, 0.8840, 0.9317, - 0.9806, 0.1991, 0.8507, 0.4474, 0.7682, 0.9940, 0.5509, - 0.4476, 0.7719, 0.9465, 0.2149, 0.3612, 0.6837, 0.4167, - 0.4345, 0.1294, 0.1271, 0.2882, 0.5067, 0.0450, 0.8480, - 0.1928, 0.6057, 0.1393, 0.3987, 0.3605, 0.7978, 0.8175, - 0.8621, 0.1783, 0.9752, 0.8469, 0.7340, 0.7713, 0.8094, - 0.4586, 0.2030, 0.5868, 0.6787, 0.2227, 0.5771, 0.9455, - 0.5256, 0.7684, 0.1435, 0.8857, 0.6764, 0.8431, 0.5715, - 0.5742, 0.3102, 0.7053, 0.0466, 0.5354, 0.9759, 0.9769, - 0.6314, 0.6683, 0.5229, 0.9126, 0.1509, 0.6751, 0.3712, - 0.8980, 0.2049, 0.9006, 0.7145, 0.7721, 0.4147, 0.2585, - 0.1378, 0.4957, 0.6236, 0.9588, 0.0152, 0.6439, 0.0593, - 0.4480, 0.3219, 0.0447, 0.6693, 0.7359, 0.9794, 0.7913, - 0.2646, 0.3215, 0.4910, 0.9212, 0.3717, 0.5255, 0.8015, - 0.8731, 0.1589, 0.7259, 0.8090, 0.2892, 0.6692, 0.7370, - 0.0452, 0.5279, 0.1164, 0.0026, 0.7695, 0.9104, 0.0238, - 0.5287, 0.7956, 0.9774, 0.6709, 0.3624, 0.8096, 0.3404, - 0.9704, 0.4556, 0.6822, 0.4708, 0.0329, 0.1830, 0.1833, - 0.7752, 0.6472, 0.4138, 0.0312, 0.2551, 0.4062, 0.8502, - 0.2761, 0.8020, 0.0066, 0.8883, 0.6981, 0.4518, 0.8034, - 0.4933, 0.5625, 0.9452, 0.5704, 0.9596, 0.2546, 0.2030, - 0.5089, 0.0746, 0.2748, 0.9859, 0.8348, 0.9564, 0.0150, - 0.3617, 0.1413, 0.1737, 0.4018, 0.9606, 0.1423, 0.0622, - 0.5796, 0.0817, 0.4728, 0.0171, 0.3767, 0.2690, 0.4534, - 0.7834, 0.8071, 0.5450, 0.3163, 0.7240, 0.4062, 0.1469, - 0.5680, 0.7525, 0.6942, 0.2851, 0.2253, 0.9506, 0.6311, - 0.4609, 0.7752, 0.0674, 0.4022, 0.3995, 0.4727, 0.0350, - 0.3858, 0.8519, 0.1195, 0.7131, 0.5292, 0.5361, 0.8114, - 0.6976, 0.3862, 0.7850, 0.4965, 0.7133, 0.8944, 0.3454, - 0.5340, 0.0656, 0.3090, 0.8753, 0.3874, 0.7150, 0.1140, - 0.4992, 0.0324, 0.6353, 0.3283, 0.2429, 0.4620, 0.9287, - 0.8808, 0.8444, 0.4240, 0.1702, 0.9976, 0.9382, 0.1850, - 0.8858, 0.1261, 0.9756, 0.4941, 0.2977, 0.5118, 0.2978, - 0.5911, 0.0582, 0.3975, 0.7762, 0.1481, 0.7249, 0.2508, - 0.7751, 0.1051, 0.1815, 0.1046, 0.6943, 0.9499, 0.0430, - 0.6363, 0.0555, 0.2334, 0.6807, 0.9349, 0.9559, 0.0426, - 0.3891, 0.5208, 0.6682, 0.3815, 0.1620, 0.7040, 0.2277, - 0.6885, 0.9317, 0.1255, 0.2406, 0.1268, 0.4589, 0.2181, - 0.5125, 0.4312, 0.9217, 0.8160, 0.2655, 0.7553, 0.9031, - 0.6256, 0.9847, 0.7372, 0.6988, 0.0718, 0.8149, 0.4826, - 0.1186, 0.6546, 0.7683, 0.3108, 0.4796, 0.4682, 0.7402, - 0.1076, 0.7661, 0.7417, 0.6991, 0.6571, 0.0263, 0.5552, - 0.2429, 0.8947, 0.1852, 0.1789, 0.8343, 0.7982, 0.5512, - 0.8384, 0.1415, 0.4222, 0.9175, 0.0831, 0.6484, 0.5993, - 0.0336, 0.4340, 0.6749, 0.5075, 0.0886, 0.8148, 0.0117, - 0.5726, 0.4007, 0.9413, 0.7008, 0.0370, 0.4034, 0.4933, - 0.3499, 0.2260, 0.2600, 0.0656, 0.7231, 0.6211, 0.1323, - 0.0193, 0.4824, 0.8021, 0.7255, 0.4971, 0.8956, 0.2693, - 0.9646, 0.5171, 0.5343, 0.0358, 0.4159, 0.6660, 0.7518, - 0.0503, 0.0125, 0.4369, 0.9636, 0.6190, 0.9032, 0.3743, - 0.4704, 0.6239, 0.5965, 0.7163, 0.7018, 0.9679, 0.4373, - 0.2329, 0.4447, 0.1422, 0.5236, 0.5473, 0.3643, 0.1588, - 0.7733, 0.3704, 0.5703, 0.6240, 0.5476, 0.3470, 0.5155, - 0.8772, 0.0399, 0.9311, 0.7430, 0.6122, 0.6405]), - size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.8987, 0.7248, 0.0383, ..., 0.6918, 0.0447, 0.2254]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([10000, 10000]) -Rows: 10000 -Size: 100000000 -NNZ: 1000 -Density: 1e-05 -Time: 6.79626727104187 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '362169', '-ss', '10000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.681929588317871} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '366482', '-ss', '10000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 11.093939065933228} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), - col_indices=tensor([1138, 3141, 5372, 6298, 9895, 5592, 6656, 4614, 931, - 6509, 2541, 488, 1171, 1072, 9057, 8648, 305, 9468, - 8935, 3721, 8788, 4223, 1394, 7441, 8183, 7526, 7164, - 9501, 2074, 6095, 6430, 1576, 7765, 4984, 8210, 5345, - 6644, 4874, 9665, 9793, 4608, 6072, 7262, 5461, 8184, - 6119, 899, 3855, 5088, 3002, 502, 2723, 2838, 2671, - 245, 5685, 2372, 8774, 3148, 7424, 9384, 3212, 8505, - 9938, 1175, 4045, 4800, 98, 907, 4698, 1099, 3556, - 6117, 539, 3430, 5205, 6742, 549, 1013, 7399, 5538, - 6070, 13, 7425, 1069, 3892, 5623, 622, 3112, 6779, - 5841, 5246, 7130, 3748, 8292, 4888, 3930, 4486, 404, - 1247, 8728, 8238, 569, 8783, 9166, 5690, 2454, 272, - 8698, 4860, 6880, 3565, 3134, 6354, 865, 434, 9144, - 921, 4245, 143, 7627, 7460, 9895, 5538, 9555, 1920, - 9046, 6039, 3817, 9183, 833, 9223, 1343, 7435, 74, - 2910, 7431, 4730, 9568, 7053, 553, 6586, 3902, 2102, - 4819, 4670, 639, 3073, 9896, 2444, 4693, 9856, 1357, - 8765, 9020, 4841, 7320, 6909, 6799, 6398, 5965, 3749, - 7728, 1534, 7555, 9916, 8346, 6649, 7695, 1555, 9453, - 3570, 2292, 7726, 9222, 1870, 8326, 5496, 9558, 9331, - 1953, 8958, 9671, 4151, 4367, 6771, 6034, 9364, 5920, - 1930, 4407, 1393, 7699, 5074, 9853, 2420, 4723, 1193, - 3555, 5221, 6242, 9462, 9524, 8904, 4357, 599, 5063, - 9306, 1035, 2970, 3581, 438, 1012, 1578, 6514, 1246, - 280, 9934, 9599, 1347, 7451, 9057, 9941, 2507, 6869, - 4825, 8824, 6274, 4478, 1408, 6086, 4878, 2420, 9493, - 8982, 2379, 609, 5624, 3583, 2173, 3341, 2149, 6472, - 8232, 4799, 2443, 9805, 3726, 1960, 2222, 4203, 9706, - 6042, 2127, 9512, 2848, 5472, 464, 7833, 9395, 4397, - 1252, 536, 150, 1099, 2496, 571, 7941, 6943, 7304, - 7511, 2241, 5493, 562, 6009, 2047, 7239, 7266, 8450, - 3771, 5993, 8725, 8763, 3254, 7903, 1883, 306, 172, - 4496, 8646, 114, 4663, 5065, 5972, 5609, 5112, 7979, - 2267, 3998, 628, 3262, 4723, 5522, 333, 771, 7789, - 7411, 6161, 939, 510, 2157, 7502, 5114, 7332, 1071, - 911, 7141, 1103, 2384, 9370, 6550, 3084, 7659, 5517, - 5645, 8343, 428, 5819, 2990, 2152, 8255, 9437, 8453, - 6828, 9261, 236, 1646, 2971, 9539, 3535, 2506, 2597, - 2970, 9785, 1861, 7103, 1286, 1000, 3469, 315, 3221, - 8558, 2959, 2957, 7965, 5562, 4795, 8592, 264, 7999, - 8407, 7957, 1456, 1284, 5753, 340, 9594, 4789, 2049, - 2443, 8386, 9750, 2724, 1350, 7113, 7702, 9893, 426, - 7946, 8480, 6869, 2951, 6923, 3651, 4947, 76, 246, - 3064, 9432, 8890, 9830, 3454, 5349, 2099, 4006, 3982, - 1400, 6701, 8208, 6231, 6572, 7108, 169, 3663, 1024, - 3861, 1643, 3067, 7537, 5626, 9156, 2530, 1256, 9586, - 1939, 1349, 9610, 3932, 8683, 6507, 692, 9567, 4786, - 7294, 9227, 5955, 3765, 95, 7099, 9975, 1773, 2563, - 8275, 417, 4896, 2261, 6841, 8549, 5658, 7531, 1862, - 8554, 7945, 3708, 1599, 7281, 6945, 5282, 5274, 8382, - 9544, 6608, 5018, 9387, 8311, 4840, 5052, 5898, 3273, - 6811, 9335, 9665, 7323, 4598, 206, 8472, 1143, 5942, - 5752, 1091, 8080, 5491, 4152, 6519, 1287, 5968, 347, - 8460, 9287, 6222, 8593, 6122, 9463, 5973, 9569, 9864, - 8581, 7157, 1274, 7748, 9974, 703, 4340, 3457, 5165, - 636, 8506, 2388, 4697, 6336, 2157, 965, 2983, 4117, - 5342, 5035, 7690, 8511, 5702, 1730, 435, 2888, 3925, - 5632, 1145, 8990, 6840, 2995, 3673, 4357, 1488, 6718, - 3409, 5307, 9890, 3580, 194, 415, 75, 1173, 582, - 8512, 2152, 3651, 1736, 4406, 9709, 5688, 2037, 9202, - 616, 4398, 9978, 961, 4749, 6199, 2766, 420, 5891, - 2035, 4203, 6034, 9532, 4073, 3543, 9399, 5243, 1736, - 5205, 3639, 7636, 7945, 1076, 8052, 8786, 7516, 1783, - 592, 9245, 3631, 8018, 7142, 4227, 1771, 8550, 3919, - 40, 9025, 7922, 8752, 4829, 6233, 6992, 2147, 8671, - 1125, 9695, 1968, 1143, 899, 7218, 5368, 7349, 8299, - 4130, 2489, 1943, 8450, 8922, 2692, 6194, 2109, 3488, - 648, 128, 2619, 8466, 3510, 8010, 2563, 4452, 2449, - 3117, 3222, 8819, 6314, 2193, 4531, 9312, 6323, 8594, - 3258, 9109, 1332, 8418, 7949, 2357, 3619, 7354, 3313, - 61, 518, 2284, 2088, 1386, 2415, 3436, 7167, 5622, - 8607, 8065, 8996, 6833, 8899, 6018, 2523, 5619, 500, - 9741, 447, 3804, 906, 3011, 8029, 494, 31, 1574, - 8607, 3528, 2944, 1180, 3791, 1961, 4136, 1334, 7857, - 6620, 8883, 2382, 315, 5796, 2019, 5530, 8196, 2757, - 6981, 3617, 4634, 9758, 8925, 1556, 8556, 6115, 2436, - 456, 4547, 7030, 3590, 4197, 848, 7813, 2702, 1882, - 1803, 4494, 3216, 104, 2415, 973, 9057, 8136, 2617, - 9231, 6621, 2270, 5728, 4475, 2926, 1275, 5702, 6247, - 6804, 4756, 6356, 6362, 2856, 4487, 6258, 4333, 7608, - 5197, 8900, 2423, 8906, 4613, 4914, 7823, 7748, 1843, - 5989, 1493, 7321, 237, 2861, 4827, 700, 4808, 5985, - 9382, 3661, 2628, 1573, 4286, 4564, 6813, 6649, 2611, - 1727, 5253, 3700, 4473, 5116, 4990, 8314, 4529, 7271, - 3677, 1911, 1114, 6546, 6706, 5817, 4555, 8804, 7540, - 3808, 5203, 8535, 8025, 6109, 5300, 5651, 2490, 6109, - 6132, 3901, 8640, 7135, 8793, 5811, 9495, 4735, 1699, - 1439, 220, 2921, 4550, 4963, 9167, 1303, 244, 3665, - 7823, 7172, 8799, 8427, 6074, 1240, 3154, 9837, 5939, - 5156, 4695, 6283, 3037, 9601, 9741, 7245, 2434, 1037, - 8802, 6544, 3585, 8380, 1858, 9428, 7153, 8077, 6766, - 8197, 9547, 1973, 8258, 6508, 713, 5126, 1339, 2979, - 1166, 8047, 6847, 97, 8865, 3971, 3769, 8192, 8150, - 4789, 7871, 1531, 5674, 1575, 9808, 2800, 6837, 1264, - 6679, 5873, 3502, 1872, 8788, 1902, 7193, 7418, 5329, - 8259, 9419, 7793, 5540, 71, 6690, 4936, 794, 6462, - 2182, 6189, 1966, 9133, 7350, 871, 4346, 699, 3324, - 5869, 158, 5971, 2372, 694, 8303, 12, 2318, 1223, - 7659, 4487, 8019, 6915, 6927, 6928, 4811, 355, 3455, - 6747, 8341, 6371, 2538, 3410, 239, 3646, 5943, 6770, - 1495, 9724, 2133, 6260, 7065, 1361, 359, 4604, 3980, - 579, 6628, 3682, 1853, 6084, 9735, 8312, 1840, 4876, - 8912, 6208, 6859, 9839, 6928, 2236, 4449, 4135, 4776, - 6464, 2481, 4925, 9412, 3456, 2660, 9544, 6110, 6742, - 9061, 610, 5758, 1002, 4547, 8135, 324, 2486, 1852, - 8322, 5074, 4466, 826, 7401, 1853, 6438, 2899, 5836, - 427, 7933, 2044, 8055, 3683, 9649, 6408, 5387, 4196, - 3681, 7448, 3637, 8192, 6445, 6771, 10, 729, 9265, - 8381, 8151, 4992, 7160, 9680, 7981, 8403, 1251, 8075, - 8608, 9794, 3487, 7890, 6077, 7271, 18, 389, 9327, - 834, 2577, 4035, 1431, 7927, 9393, 643, 1226, 3816, - 5933]), - values=tensor([1.9375e-01, 3.5125e-01, 2.0768e-01, 2.6967e-01, - 6.5553e-01, 5.3217e-01, 3.3343e-01, 6.1229e-01, - 8.1898e-01, 5.0937e-01, 7.4774e-01, 5.1207e-01, - 8.0001e-01, 3.5041e-01, 6.7059e-01, 3.7672e-01, - 9.3472e-01, 9.3036e-01, 2.3990e-01, 8.7663e-01, - 4.6996e-01, 5.0217e-02, 8.4756e-01, 7.8975e-01, - 1.1314e-01, 4.4290e-01, 2.0680e-01, 9.2084e-02, - 3.5472e-01, 9.4380e-01, 7.9234e-01, 8.1876e-01, - 2.3511e-01, 7.6869e-01, 4.2133e-02, 1.0330e-01, - 1.7268e-01, 7.6007e-01, 3.8309e-03, 9.1460e-01, - 7.3496e-01, 4.9658e-01, 2.1053e-01, 4.7699e-01, - 5.0002e-01, 8.1406e-01, 5.4606e-01, 4.2159e-01, - 2.6297e-01, 2.4520e-01, 9.6103e-01, 7.7868e-01, - 7.6457e-01, 6.2481e-01, 4.5144e-01, 1.9487e-01, - 3.0538e-01, 3.2455e-02, 6.4771e-01, 8.8797e-01, - 9.3051e-01, 9.7039e-01, 9.7735e-01, 3.0647e-01, - 9.6008e-02, 6.3088e-01, 8.0975e-01, 5.3515e-01, - 8.0786e-01, 2.9740e-01, 2.4833e-01, 2.6441e-01, - 3.2550e-01, 2.1987e-01, 1.3930e-02, 1.7247e-01, - 6.8496e-01, 8.3630e-01, 7.5016e-01, 8.7730e-01, - 2.1744e-02, 6.2953e-01, 2.2457e-01, 2.0815e-01, - 1.6450e-01, 7.3002e-01, 4.9950e-01, 3.0029e-02, - 7.4701e-02, 6.2437e-01, 7.7434e-01, 3.8994e-01, - 1.0852e-01, 7.4616e-01, 4.7554e-01, 7.9127e-01, - 4.2656e-01, 7.7188e-01, 3.6412e-01, 2.5388e-01, - 9.3166e-01, 4.7512e-01, 3.1345e-01, 9.4634e-01, - 4.9501e-01, 2.5802e-01, 2.9731e-01, 4.5345e-01, - 4.5427e-01, 2.7223e-01, 3.0850e-01, 5.9089e-01, - 2.3642e-01, 7.7402e-01, 9.5831e-01, 4.5183e-01, - 4.4635e-01, 3.4103e-01, 1.9752e-01, 4.1907e-01, - 9.4180e-01, 8.3566e-01, 7.5022e-01, 3.4154e-01, - 8.8228e-01, 7.0899e-02, 1.2527e-01, 7.8104e-01, - 6.4557e-01, 3.4866e-01, 2.6732e-01, 6.2958e-01, - 1.1325e-01, 7.9593e-01, 6.9074e-01, 4.4629e-01, - 2.5885e-01, 7.2330e-01, 8.2253e-01, 9.8244e-01, - 7.9844e-01, 4.3702e-01, 9.6241e-01, 7.5657e-01, - 5.3837e-01, 1.8624e-01, 3.8968e-01, 3.4892e-01, - 7.0278e-01, 5.5261e-01, 4.0352e-01, 3.3248e-02, - 2.7925e-01, 1.5770e-01, 4.3930e-01, 1.5049e-01, - 4.8475e-01, 3.8261e-01, 5.0227e-01, 6.2634e-01, - 4.8135e-01, 9.1814e-01, 4.0382e-02, 9.3517e-01, - 5.1252e-01, 3.4347e-01, 6.1408e-01, 4.7550e-01, - 8.2509e-03, 7.1485e-01, 4.8130e-01, 1.2004e-01, - 3.3123e-01, 3.7004e-01, 4.8796e-01, 6.7218e-01, - 5.1642e-01, 2.9873e-01, 6.9024e-01, 1.8738e-01, - 6.7151e-01, 1.0462e-01, 2.4549e-01, 6.9732e-01, - 4.1806e-01, 4.7981e-02, 9.3086e-01, 4.1645e-02, - 3.4142e-01, 4.8380e-01, 4.8247e-01, 8.9969e-01, - 8.6323e-01, 9.7268e-01, 5.6983e-01, 1.3965e-02, - 5.9431e-01, 2.9727e-01, 1.6227e-02, 9.8379e-01, - 7.9038e-01, 8.8241e-01, 5.7714e-01, 3.3784e-02, - 1.0960e-01, 3.1070e-01, 5.3521e-01, 7.0199e-01, - 6.5999e-01, 2.7917e-01, 9.8173e-02, 6.2497e-01, - 9.5182e-01, 6.6789e-02, 1.5393e-02, 6.2254e-01, - 1.0971e-01, 8.8447e-01, 5.4323e-01, 2.1015e-01, - 6.6007e-01, 8.2753e-01, 3.6703e-01, 7.4051e-01, - 6.6966e-01, 9.7913e-01, 4.0712e-01, 3.4707e-01, - 3.8309e-01, 2.3070e-01, 2.2715e-01, 7.7305e-01, - 3.7610e-01, 3.4003e-01, 5.8650e-01, 5.8454e-01, - 3.8920e-01, 2.4417e-01, 2.4715e-02, 1.6482e-01, - 6.8219e-01, 4.0944e-01, 1.2251e-01, 8.3378e-01, - 2.8858e-01, 4.5315e-01, 3.7387e-01, 5.1960e-01, - 6.3346e-01, 5.5499e-02, 4.5719e-01, 8.2993e-01, - 8.1787e-01, 3.3558e-01, 2.6451e-01, 5.5224e-01, - 3.1647e-01, 7.8278e-01, 2.1696e-01, 6.5586e-01, - 2.1644e-01, 9.5937e-01, 7.6861e-01, 8.0010e-01, - 6.6128e-01, 1.2187e-01, 9.4748e-01, 9.0035e-01, - 7.1037e-01, 1.8546e-01, 7.1352e-01, 1.8524e-01, - 7.4925e-01, 2.6708e-01, 7.6244e-01, 4.1247e-01, - 1.4128e-01, 4.9211e-01, 3.7997e-01, 7.0780e-01, - 3.8386e-02, 6.6816e-01, 6.0148e-01, 9.0383e-01, - 7.2595e-01, 6.8359e-01, 2.9584e-01, 8.2414e-02, - 1.5712e-01, 4.9752e-01, 1.1561e-01, 2.6694e-01, - 7.7841e-01, 1.6152e-01, 9.8172e-01, 1.9818e-01, - 1.4269e-01, 8.9879e-02, 5.0250e-01, 5.7802e-01, - 6.6528e-01, 3.6557e-02, 1.2972e-01, 6.6852e-01, - 4.9575e-01, 8.1221e-01, 6.6098e-01, 8.1005e-02, - 3.3205e-01, 2.1959e-01, 7.2778e-01, 9.9336e-01, - 6.7973e-02, 8.8482e-01, 2.5671e-01, 8.5151e-01, - 1.4303e-01, 9.4333e-01, 1.3749e-01, 3.5676e-01, - 9.2539e-01, 3.5622e-01, 8.1502e-01, 9.8078e-01, - 3.7427e-01, 5.4771e-01, 4.4970e-01, 3.5472e-01, - 6.8737e-01, 8.9441e-01, 4.3924e-01, 9.0130e-01, - 7.3301e-01, 2.3730e-01, 1.4503e-01, 1.6294e-01, - 7.4797e-01, 3.0663e-01, 9.1635e-01, 2.2485e-01, - 8.1593e-01, 6.9641e-01, 5.8876e-01, 2.5397e-01, - 2.7194e-01, 2.3151e-01, 4.6512e-01, 3.3600e-01, - 1.2084e-01, 7.4145e-01, 8.1178e-01, 4.2986e-01, - 3.2717e-01, 8.9582e-01, 3.8058e-03, 1.1514e-01, - 2.6151e-01, 8.6861e-01, 3.9034e-01, 3.7204e-01, - 5.0550e-01, 2.5962e-01, 7.9080e-01, 7.3126e-01, - 1.9304e-01, 2.7548e-01, 4.0413e-01, 6.4024e-01, - 3.0537e-01, 6.4800e-02, 2.9508e-01, 4.4554e-01, - 7.4376e-01, 3.5356e-01, 1.2386e-01, 9.0646e-01, - 4.4257e-01, 9.9428e-01, 3.9815e-01, 1.0579e-01, - 5.3899e-01, 8.8053e-01, 4.1755e-01, 2.6286e-01, - 8.6265e-01, 3.5440e-01, 4.1767e-01, 4.3722e-01, - 2.2701e-01, 2.0119e-01, 2.0168e-01, 7.4481e-01, - 3.1458e-01, 9.1105e-01, 5.1549e-01, 4.9528e-01, - 7.2489e-01, 6.9358e-01, 9.4876e-01, 1.4933e-01, - 1.0757e-01, 7.4461e-01, 3.5457e-01, 2.9405e-01, - 3.7800e-01, 3.5033e-01, 2.4629e-01, 4.0123e-01, - 8.0207e-01, 3.0032e-01, 1.9983e-01, 3.7397e-01, - 1.0202e-01, 9.9367e-01, 7.3515e-01, 8.2278e-01, - 1.1699e-01, 7.4263e-02, 4.8947e-01, 7.3849e-01, - 1.1436e-01, 4.7523e-01, 7.7099e-01, 7.2400e-01, - 6.5547e-02, 5.7163e-01, 3.2211e-01, 6.7657e-01, - 5.1329e-02, 1.2576e-01, 8.5341e-01, 1.3857e-01, - 6.3257e-01, 4.3927e-01, 4.0713e-01, 7.1751e-01, - 8.1961e-01, 5.3252e-01, 3.3088e-01, 5.8053e-01, - 1.4918e-01, 8.0005e-01, 3.7335e-01, 9.6447e-02, - 1.7216e-01, 1.0099e-01, 1.5519e-01, 3.6774e-01, - 8.7242e-01, 4.4847e-01, 5.5891e-01, 3.0216e-01, - 8.5587e-01, 3.0503e-01, 4.5505e-01, 7.7470e-01, - 7.5445e-01, 7.0880e-01, 4.5444e-01, 9.8342e-01, - 9.9777e-01, 7.5503e-01, 9.8966e-01, 4.0026e-01, - 6.9843e-01, 1.9249e-03, 7.8839e-01, 1.3053e-01, - 1.3274e-01, 8.4923e-02, 4.2804e-01, 1.5293e-01, - 9.0170e-01, 4.9992e-01, 7.7254e-01, 7.4648e-01, - 6.2388e-01, 8.5497e-01, 8.2756e-01, 3.8686e-01, - 9.8151e-02, 5.4863e-01, 2.5265e-01, 7.3707e-01, - 2.0151e-01, 5.7024e-01, 2.8365e-01, 3.5556e-01, - 2.8799e-01, 1.3107e-02, 5.3341e-01, 3.5237e-01, - 8.8548e-01, 5.9289e-01, 5.4342e-01, 1.7633e-01, - 6.3070e-01, 5.3768e-01, 2.2342e-01, 3.3247e-01, - 6.9090e-01, 4.1567e-01, 1.1222e-01, 4.7518e-02, - 9.4288e-01, 9.5518e-01, 7.6795e-01, 5.0269e-01, - 3.6134e-01, 6.0356e-01, 8.3473e-01, 9.6104e-01, - 6.3423e-01, 1.6210e-02, 4.0034e-01, 9.7914e-01, - 3.9605e-02, 1.7596e-01, 5.7872e-01, 6.7935e-01, - 4.1868e-01, 8.3560e-01, 4.0556e-01, 4.8967e-02, - 2.2949e-01, 1.0615e-01, 5.7564e-01, 7.4653e-02, - 9.0806e-01, 6.0640e-01, 4.3840e-01, 7.2256e-01, - 2.0422e-01, 4.2972e-01, 5.8503e-01, 7.7506e-01, - 9.7508e-01, 9.4505e-01, 6.4491e-01, 2.1982e-01, - 2.7546e-01, 7.7442e-01, 5.0277e-01, 6.9720e-02, - 7.4204e-01, 6.0831e-01, 1.1658e-01, 5.0890e-01, - 1.1812e-01, 6.0273e-01, 8.2931e-01, 9.8180e-01, - 1.5799e-01, 9.8569e-01, 4.0228e-01, 4.0955e-01, - 4.7497e-02, 8.9661e-02, 4.9936e-01, 1.1148e-01, - 9.0756e-01, 4.0268e-01, 8.9360e-01, 2.2851e-01, - 2.0956e-01, 1.7882e-01, 2.9301e-01, 8.3386e-01, - 6.4286e-01, 9.9061e-01, 5.6455e-02, 7.0386e-01, - 1.2706e-01, 8.6843e-01, 1.9036e-01, 7.5009e-01, - 9.0547e-01, 3.5391e-02, 3.8624e-01, 1.1931e-01, - 9.4649e-01, 6.8202e-01, 9.5564e-01, 1.1891e-01, - 8.1752e-01, 4.3762e-01, 5.5711e-01, 2.5729e-01, - 3.5776e-01, 4.0330e-01, 2.2345e-01, 8.0837e-01, - 9.1913e-01, 5.1379e-01, 1.0360e-01, 8.8191e-01, - 6.7996e-01, 9.4555e-02, 6.2440e-01, 2.8075e-01, - 4.6693e-01, 5.4747e-01, 4.7497e-01, 8.5070e-02, - 5.6932e-02, 6.4648e-01, 1.2477e-03, 2.0721e-01, - 6.8915e-01, 8.7342e-01, 5.7258e-01, 8.6224e-01, - 5.7939e-01, 9.9515e-01, 2.0583e-01, 2.1518e-01, - 8.9509e-01, 8.0367e-01, 6.4277e-01, 5.0827e-01, - 2.5676e-02, 5.8560e-02, 4.3004e-01, 4.5788e-01, - 6.6471e-01, 3.9649e-01, 2.0012e-01, 4.3487e-01, - 9.0304e-01, 2.2243e-01, 3.0464e-01, 8.5268e-01, - 5.6222e-01, 2.4369e-01, 8.6137e-01, 7.8472e-02, - 9.1993e-02, 6.5703e-01, 2.8403e-01, 8.8040e-01, - 2.8392e-01, 7.7439e-01, 9.3284e-01, 2.0412e-01, - 4.0388e-01, 8.1648e-01, 2.1973e-01, 5.7573e-01, - 9.2892e-02, 7.5088e-01, 3.0786e-01, 1.8024e-01, - 6.5532e-01, 6.1457e-02, 2.1697e-01, 1.0836e-01, - 3.9118e-01, 4.9190e-01, 9.4466e-01, 2.1653e-01, - 2.9599e-01, 7.5911e-01, 4.5813e-03, 2.5706e-01, - 2.5307e-01, 2.9388e-01, 5.5978e-01, 8.8650e-01, - 4.8734e-01, 4.7580e-01, 9.1478e-01, 1.2022e-01, - 8.6153e-01, 4.8555e-01, 8.7075e-01, 8.6253e-01, - 1.4431e-01, 3.4625e-01, 2.9820e-01, 3.7020e-01, - 7.2331e-01, 5.3627e-01, 3.3997e-01, 4.2166e-01, - 3.2381e-01, 3.9761e-01, 7.5745e-01, 6.5813e-01, - 6.4982e-01, 2.8336e-01, 5.7049e-01, 7.2874e-01, - 4.0575e-01, 8.7412e-02, 8.6145e-01, 4.1196e-01, - 8.0483e-01, 1.8391e-01, 5.7371e-02, 8.4034e-01, - 5.2513e-01, 6.0727e-01, 1.5458e-01, 2.0643e-01, - 5.1326e-01, 6.6117e-01, 9.5947e-01, 7.8681e-01, - 6.7698e-01, 9.6081e-01, 4.5145e-01, 6.0458e-01, - 5.2329e-01, 4.8816e-01, 6.4831e-01, 5.4729e-01, - 5.0501e-01, 3.9862e-03, 4.3458e-01, 8.2356e-02, - 4.4194e-01, 4.6046e-01, 8.6119e-01, 7.2362e-01, - 3.3762e-01, 5.7168e-01, 3.7204e-01, 4.6616e-01, - 2.8453e-01, 8.4184e-01, 9.1507e-01, 7.3000e-01, - 2.3497e-01, 4.7039e-01, 3.0436e-01, 7.3392e-01, - 2.0230e-01, 7.5799e-01, 8.0132e-01, 2.6207e-01, - 4.1549e-01, 4.5825e-01, 3.5712e-04, 8.6380e-01, - 2.5643e-01, 1.4106e-01, 4.6769e-01, 1.6319e-01, - 4.2617e-01, 6.8278e-01, 9.9952e-01, 7.2726e-01, - 5.3935e-01, 7.4477e-01, 6.4322e-01, 3.4132e-01, - 9.1885e-01, 8.9713e-01, 7.1047e-01, 6.7622e-01, - 5.4440e-01, 6.6700e-01, 5.7860e-01, 2.7002e-02, - 4.8064e-01, 4.6679e-01, 3.5471e-01, 7.7442e-01, - 1.8786e-01, 7.3381e-01, 5.6379e-01, 1.0770e-01, - 3.8089e-01, 4.8584e-01, 9.5384e-01, 8.6167e-01, - 2.0388e-02, 5.9740e-01, 6.5420e-01, 9.4518e-01, - 6.0007e-01, 9.4668e-01, 2.4456e-01, 1.9964e-01, - 7.2138e-01, 2.1021e-01, 4.1505e-02, 7.3214e-01, - 5.7585e-01, 2.6983e-01, 2.1348e-01, 2.7068e-01, - 6.3100e-02, 4.9250e-01, 2.3708e-01, 6.1793e-01, - 1.5893e-01, 5.2076e-01, 6.7793e-01, 7.4495e-01, - 4.5389e-02, 3.7724e-02, 2.2370e-01, 3.9055e-01, - 1.2615e-01, 3.4002e-01, 3.5834e-01, 7.8782e-02, - 4.9173e-01, 4.1157e-01, 6.6417e-01, 6.4484e-01, - 5.0083e-01, 4.2959e-01, 9.8685e-01, 3.5260e-01, - 4.2792e-02, 1.3207e-01, 9.1311e-01, 9.6641e-01, - 8.9353e-01, 7.3994e-01, 9.4765e-01, 6.5472e-01, - 1.5391e-01, 8.8154e-01, 6.2777e-01, 1.8012e-02, - 7.1259e-01, 6.7197e-01, 7.7261e-01, 4.6110e-01, - 6.2714e-01, 9.6933e-01, 6.1243e-01, 6.0628e-01, - 7.6382e-01, 9.6854e-01, 5.1705e-01, 8.5856e-01, - 3.1705e-01, 7.2350e-01, 9.4389e-02, 2.9574e-01, - 9.1463e-01, 2.0940e-01, 1.7609e-01, 7.3978e-01, - 9.2575e-01, 6.8811e-01, 1.6098e-01, 6.4482e-02, - 2.5061e-02, 5.2998e-01, 9.8449e-01, 5.4429e-01, - 6.8862e-01, 9.4297e-01, 7.7867e-01, 1.7015e-01, - 7.0622e-01, 3.6348e-01, 3.8057e-01, 7.0215e-01, - 8.9386e-01, 7.3907e-03, 6.8824e-01, 7.3556e-01, - 2.5358e-01, 6.8417e-01, 3.7956e-01, 4.3455e-01, - 3.0873e-01, 4.7848e-01, 8.7651e-01, 5.9179e-01, - 2.4253e-01, 9.6398e-01, 4.9589e-01, 9.5203e-01, - 9.5415e-01, 8.6776e-01, 1.1685e-01, 3.3088e-01, - 7.7341e-01, 8.3175e-01, 5.7462e-01, 1.3990e-01, - 9.0461e-01, 6.0410e-01, 8.4851e-01, 9.6942e-01, - 8.4864e-01, 6.3279e-01, 9.6144e-01, 1.5080e-01, - 8.9336e-02, 9.6933e-01, 4.5647e-01, 7.3363e-01, - 3.9520e-01, 5.6769e-01, 1.2489e-01, 5.1997e-01, - 1.6970e-01, 5.2122e-02, 4.9514e-01, 5.7753e-01, - 3.1179e-01, 8.2135e-01, 3.0969e-01, 1.9110e-01, - 9.3857e-02, 5.3521e-01, 3.5248e-01, 6.2581e-01, - 9.7808e-01, 5.1285e-01, 9.7337e-01, 2.5133e-01, - 4.4027e-01, 4.3065e-01, 2.5723e-01, 1.2854e-01, - 9.8939e-02, 9.0984e-01, 8.7231e-01, 9.3467e-01, - 7.2945e-01, 3.0576e-01, 1.3236e-01, 7.1361e-02, - 3.9339e-01, 3.1714e-01, 3.2872e-01, 5.1748e-01, - 5.5217e-01, 4.1788e-01, 7.8429e-01, 6.7386e-02, - 7.7600e-01, 4.0606e-01, 6.8449e-01, 5.7668e-02, - 9.0049e-01, 8.6218e-01, 3.3053e-01, 7.6311e-01, - 5.8454e-01, 1.8191e-01, 9.8940e-01, 1.1427e-02, - 6.7147e-01, 3.5037e-01, 8.0766e-01, 9.2500e-01, - 1.0255e-01, 9.5627e-01, 4.2546e-02, 1.7540e-01, - 5.4745e-01, 5.9252e-01, 1.4245e-01, 4.0475e-01, - 9.8581e-01, 3.8861e-01, 8.0536e-01, 6.9424e-01, - 6.3616e-01, 7.9450e-01, 3.0102e-01, 4.6604e-01, - 4.0082e-01, 7.9423e-01, 6.0621e-02, 7.6039e-01, - 2.8130e-01, 7.6283e-01, 8.3019e-01, 4.7440e-01, - 9.3373e-01, 2.3127e-01, 9.8599e-01, 1.0451e-01, - 4.4318e-01, 4.3340e-01, 1.2718e-01, 6.7560e-01, - 8.0438e-01, 2.4075e-01, 5.0321e-01, 2.8248e-01, - 6.0269e-01, 1.4597e-01, 1.3511e-01, 1.7491e-01, - 8.6251e-01, 4.5483e-01, 7.5964e-01, 2.8131e-01]), + col_indices=tensor([5850, 8366, 5592, 2122, 6679, 1664, 2469, 7640, 8756, + 2915, 7211, 1515, 5525, 1719, 3439, 4040, 8857, 5364, + 6132, 895, 3852, 156, 8811, 9741, 357, 3518, 4399, + 7286, 180, 9528, 5416, 6953, 1721, 2595, 7283, 9795, + 7825, 5079, 6282, 136, 4669, 6702, 3303, 3010, 2380, + 2256, 7997, 5883, 9682, 9926, 8146, 9663, 3941, 6670, + 9041, 817, 4692, 3045, 7544, 9848, 5442, 871, 3702, + 7376, 94, 6327, 3751, 7760, 7748, 920, 3358, 4678, + 8037, 93, 1218, 9719, 1249, 634, 196, 2894, 7487, + 1159, 8188, 332, 5966, 4396, 4268, 8665, 6886, 7804, + 7445, 4388, 7265, 7541, 8403, 5348, 9890, 2631, 5205, + 8499, 4507, 2643, 7756, 857, 4020, 8538, 7850, 4986, + 7312, 3766, 1567, 2852, 7235, 6927, 653, 379, 1077, + 6334, 4614, 1987, 3571, 6355, 1814, 6184, 9414, 2153, + 8882, 3562, 6625, 5036, 2967, 1233, 9339, 4935, 5597, + 9689, 4093, 5663, 8161, 6587, 3112, 612, 6031, 2698, + 3403, 9263, 9319, 8735, 104, 2810, 3672, 5639, 8827, + 5048, 8805, 1031, 9837, 9524, 6912, 3766, 3659, 7073, + 737, 797, 5226, 7104, 3103, 6515, 4992, 1665, 5226, + 6199, 6712, 6310, 7443, 3988, 2676, 2322, 244, 3312, + 4295, 2693, 9044, 9455, 7558, 2076, 364, 3468, 4685, + 2690, 1818, 1795, 8073, 8740, 3982, 5591, 7437, 4434, + 6272, 8601, 5896, 7206, 452, 124, 6062, 3722, 2858, + 3166, 6119, 1841, 8789, 9596, 5567, 5894, 7970, 5360, + 9933, 6197, 3790, 8303, 9150, 3759, 378, 6338, 8692, + 3037, 225, 8540, 8302, 3869, 1980, 7102, 3526, 84, + 2428, 5319, 4508, 9845, 2414, 8840, 833, 2752, 1575, + 8598, 7280, 7141, 2098, 7332, 9471, 7172, 6064, 5586, + 6496, 4719, 7246, 9857, 461, 1971, 1577, 2883, 521, + 887, 7601, 1096, 7587, 8032, 9839, 9759, 3694, 4208, + 2775, 4747, 9442, 6136, 6253, 7707, 4233, 955, 7815, + 9711, 2360, 974, 4097, 9684, 7356, 2815, 7178, 3217, + 6396, 7951, 6798, 3086, 4009, 4560, 5258, 4636, 5136, + 484, 5572, 9213, 7528, 8274, 5548, 1629, 8245, 2276, + 9250, 7073, 612, 1264, 8789, 9413, 9556, 4024, 8035, + 4389, 2075, 2015, 6780, 9946, 8182, 3173, 4875, 4374, + 7146, 6566, 1212, 3788, 6737, 1525, 4118, 597, 1164, + 95, 8578, 5382, 7, 4863, 8244, 8410, 5238, 6413, + 1176, 8621, 5893, 5470, 5285, 4907, 1576, 9176, 6701, + 5861, 5303, 5175, 2021, 3075, 7189, 9086, 6729, 1443, + 4021, 3184, 1282, 194, 3967, 741, 191, 6596, 1251, + 1613, 4577, 1550, 7988, 7486, 1702, 7074, 9193, 1036, + 2186, 5023, 2564, 6337, 940, 1519, 8948, 8449, 9328, + 479, 6279, 8562, 8923, 2685, 1574, 5617, 5722, 970, + 640, 8699, 1647, 1059, 8229, 1516, 892, 441, 4405, + 4899, 5037, 6072, 8409, 3457, 6678, 8778, 5168, 4725, + 1582, 2499, 3623, 3399, 2800, 6268, 2077, 192, 5047, + 1851, 3023, 9282, 7259, 5334, 5942, 1157, 8925, 7158, + 2680, 8224, 1863, 9792, 1845, 5045, 6307, 5364, 7590, + 3501, 3167, 5703, 4100, 6744, 3117, 6631, 2272, 3513, + 1946, 3024, 5825, 1185, 1348, 6559, 74, 4615, 3419, + 4395, 7611, 6167, 8539, 9714, 7761, 9431, 2318, 6641, + 1733, 4522, 5800, 6094, 9427, 1318, 4807, 6951, 6988, + 2813, 985, 7549, 9176, 9180, 4980, 2792, 4241, 7249, + 1163, 61, 7125, 2555, 6886, 8991, 196, 9270, 35, + 1529, 3941, 7793, 7718, 7033, 4030, 6810, 850, 9329, + 5979, 6544, 751, 4582, 8368, 565, 7754, 7052, 3290, + 8677, 983, 7257, 1909, 8475, 6667, 894, 6714, 9857, + 238, 8379, 8656, 2402, 83, 4439, 4472, 7734, 2074, + 3272, 618, 1715, 8742, 745, 2543, 7748, 5408, 6663, + 8178, 2886, 7594, 1196, 5498, 3894, 893, 8965, 6034, + 6443, 2520, 5737, 483, 2405, 4283, 6209, 1176, 448, + 606, 958, 8428, 3541, 8984, 1463, 4865, 173, 2388, + 4515, 610, 3428, 834, 1897, 3416, 3506, 6850, 7650, + 1567, 2088, 4588, 3271, 6086, 2429, 5007, 1641, 3405, + 5664, 2262, 1925, 5269, 9056, 8204, 5139, 609, 3768, + 1372, 8780, 3638, 7690, 2428, 8787, 4274, 9543, 7138, + 8745, 2025, 668, 6826, 8790, 6413, 9920, 6540, 348, + 4430, 4748, 8976, 1596, 914, 2089, 5266, 7048, 2343, + 5663, 5852, 3682, 5650, 2554, 2359, 5522, 968, 4538, + 556, 900, 332, 6036, 4210, 6798, 9668, 7214, 3249, + 934, 7260, 1264, 9553, 9573, 1341, 5076, 7088, 723, + 8670, 6474, 3175, 9943, 1202, 328, 6087, 194, 8768, + 258, 7554, 9741, 2069, 3477, 9790, 8686, 2875, 4984, + 7848, 4751, 5568, 9759, 8560, 7437, 4239, 7813, 4618, + 6633, 990, 5961, 926, 7923, 4657, 2745, 2212, 9361, + 5154, 9425, 4873, 6600, 5372, 8037, 7620, 2502, 3781, + 7433, 6170, 819, 1336, 484, 3513, 4395, 19, 8130, + 7693, 6153, 6352, 4202, 7488, 1192, 4764, 7301, 6821, + 6865, 6976, 937, 1234, 1710, 549, 5075, 6580, 8729, + 4805, 1375, 3711, 1305, 4371, 3503, 8608, 3833, 3074, + 1072, 7655, 4667, 966, 192, 6852, 7586, 1491, 9585, + 8090, 3373, 1438, 2850, 8318, 8429, 9764, 8245, 7536, + 1862, 6568, 9277, 3906, 4401, 671, 9709, 9370, 6046, + 9211, 9673, 4331, 921, 674, 7979, 374, 7224, 8804, + 5223, 9172, 2758, 3516, 3647, 8604, 8106, 9070, 2337, + 3498, 3861, 2253, 9022, 3709, 4466, 2031, 9776, 7382, + 6631, 6983, 229, 9213, 4744, 5134, 2773, 3818, 2045, + 3684, 5192, 2488, 8503, 6845, 9997, 5752, 1325, 8942, + 352, 1614, 4161, 7427, 7988, 1814, 8864, 5443, 6505, + 9390, 1752, 5714, 9392, 1996, 5576, 5760, 390, 6435, + 7898, 7417, 7401, 1217, 7128, 1412, 6756, 7275, 5202, + 2409, 1660, 2736, 5263, 8336, 8044, 3978, 3020, 5519, + 7853, 8427, 824, 1792, 4254, 4572, 5695, 1587, 1988, + 4588, 728, 1627, 3761, 5276, 8300, 992, 8389, 3069, + 3780, 9133, 145, 9462, 7403, 1537, 9647, 5057, 3362, + 9039, 6376, 8446, 4900, 5977, 7345, 4098, 447, 1820, + 252, 9481, 6404, 6592, 1295, 8043, 4753, 3605, 3518, + 2606, 2287, 9068, 9762, 699, 1959, 5988, 6313, 7817, + 5094, 8321, 2706, 7762, 8810, 5984, 698, 2889, 3562, + 3511, 7298, 3188, 9974, 5668, 6020, 8731, 9606, 2958, + 8385, 4702, 6639, 3111, 8106, 914, 952, 5956, 6944, + 6389, 6930, 4511, 693, 2408, 8878, 4458, 6005, 4687, + 5262, 264, 7556, 7239, 6348, 319, 3127, 4870, 9830, + 6495, 9430, 82, 2845, 2158, 7553, 2485, 4718, 9487, + 9863, 2351, 9993, 9611, 7651, 6752, 9890, 4226, 7914, + 1090, 3994, 273, 9314, 2869, 8105, 8063, 8350, 5143, + 2771, 6914, 6289, 1069, 6603, 7055, 1101, 2035, 1775, + 4440, 1100, 9988, 6654, 8779, 3492, 65, 3068, 7601, + 6582, 5059, 9136, 6153, 4692, 6999, 662, 8797, 8102, + 5680, 9525, 2546, 5756, 4348, 7370, 557, 1546, 4320, + 5734]), + values=tensor([1.6341e-01, 5.4230e-01, 5.9412e-01, 6.2649e-01, + 6.1492e-01, 1.1463e-02, 8.8850e-01, 3.1827e-01, + 1.4850e-01, 1.7623e-01, 5.0631e-01, 8.7356e-01, + 2.6593e-01, 3.7335e-01, 6.7543e-01, 8.1424e-01, + 3.7460e-01, 6.9153e-01, 8.0907e-01, 8.3914e-01, + 9.7417e-02, 3.4410e-04, 1.3414e-01, 2.2155e-01, + 6.0112e-02, 8.4328e-01, 2.7848e-01, 1.4958e-01, + 7.9439e-01, 7.7172e-01, 2.7028e-01, 1.6852e-01, + 6.2794e-01, 3.7628e-01, 7.9275e-01, 2.0746e-01, + 6.5757e-02, 6.6970e-01, 1.3521e-02, 6.0790e-01, + 5.0451e-01, 9.2714e-01, 7.8707e-01, 4.1523e-01, + 5.5244e-01, 9.7376e-01, 6.7472e-01, 9.9321e-01, + 9.5176e-01, 6.2001e-01, 7.8968e-01, 3.0430e-01, + 8.2453e-01, 9.4042e-02, 5.1519e-01, 8.5738e-01, + 5.8535e-01, 8.7087e-01, 6.5326e-01, 1.7395e-01, + 3.0247e-01, 7.3945e-02, 4.1833e-01, 8.0312e-01, + 8.8320e-01, 5.1558e-01, 2.5666e-01, 5.6112e-01, + 5.5084e-01, 7.0649e-01, 3.5059e-01, 7.8879e-01, + 5.2108e-02, 9.8239e-01, 3.4744e-01, 5.8319e-01, + 9.1928e-02, 4.9802e-02, 8.4140e-01, 2.0825e-01, + 6.5549e-01, 3.3967e-02, 4.5861e-01, 3.1781e-01, + 7.2623e-01, 4.3890e-01, 9.1717e-01, 6.7930e-01, + 2.2711e-01, 5.3114e-01, 9.4610e-01, 1.2012e-01, + 3.8896e-01, 9.0657e-01, 8.7514e-01, 9.4601e-01, + 6.8092e-01, 4.2792e-01, 7.8983e-01, 7.0867e-01, + 6.8668e-01, 7.3584e-01, 4.8951e-01, 1.1601e-01, + 5.8369e-01, 8.1548e-02, 4.6998e-01, 8.2472e-01, + 8.1798e-01, 6.4792e-01, 7.9098e-01, 4.6883e-01, + 5.3531e-01, 9.9356e-01, 2.4036e-01, 4.8060e-01, + 2.8861e-01, 8.7768e-01, 7.6854e-01, 2.6962e-01, + 9.4503e-01, 7.5491e-01, 6.3333e-01, 3.9724e-01, + 6.1673e-01, 9.9300e-01, 8.4452e-02, 6.1927e-01, + 7.8274e-01, 9.4288e-01, 5.5703e-01, 9.9018e-01, + 8.7030e-01, 6.7458e-01, 7.1377e-01, 3.9155e-01, + 4.0923e-01, 1.9269e-01, 7.8647e-01, 1.7260e-01, + 1.9351e-01, 1.6644e-02, 6.3159e-01, 4.2569e-01, + 3.5414e-01, 1.5447e-01, 6.0382e-01, 1.1039e-01, + 7.4996e-01, 9.7809e-01, 4.9703e-01, 6.8052e-02, + 4.0995e-03, 1.5993e-01, 2.5589e-01, 6.1582e-01, + 4.1141e-01, 8.3175e-01, 9.2280e-02, 6.6768e-01, + 2.1373e-01, 7.4338e-01, 3.8856e-01, 4.0554e-01, + 2.4237e-01, 6.8970e-01, 5.1570e-01, 2.2133e-04, + 8.5322e-01, 4.7984e-01, 4.1539e-01, 8.1641e-01, + 5.1215e-01, 7.5280e-01, 4.9588e-04, 8.3219e-01, + 1.3510e-01, 5.6800e-01, 8.8518e-01, 9.6846e-01, + 2.4576e-01, 9.1717e-01, 4.6194e-01, 4.1655e-01, + 8.5447e-01, 1.2544e-01, 6.0240e-01, 5.7586e-01, + 2.2428e-01, 4.5450e-01, 2.4531e-01, 3.5914e-01, + 5.8131e-01, 4.4973e-01, 3.0343e-01, 8.7101e-01, + 5.4478e-01, 5.0386e-01, 6.8135e-01, 4.2381e-01, + 3.1555e-02, 3.0972e-01, 2.4608e-01, 1.9970e-01, + 4.6368e-01, 9.9803e-01, 8.2862e-01, 8.5141e-01, + 8.7867e-01, 4.8625e-01, 5.2020e-01, 4.1959e-01, + 1.7473e-01, 2.5225e-01, 7.2666e-01, 9.2040e-01, + 1.8559e-01, 6.3520e-01, 4.5196e-01, 9.4681e-01, + 9.5216e-01, 1.0019e-01, 9.7707e-01, 4.5094e-01, + 5.0805e-01, 5.1974e-01, 5.3486e-01, 1.8077e-01, + 8.5364e-01, 7.2740e-01, 4.8004e-01, 6.8966e-01, + 2.0804e-01, 7.7792e-01, 6.3289e-01, 1.2722e-01, + 9.0620e-01, 4.9687e-01, 5.6847e-01, 1.3671e-01, + 4.0281e-01, 1.7219e-01, 1.9050e-01, 6.2485e-01, + 1.0260e-01, 2.5271e-02, 9.4031e-01, 9.4275e-01, + 7.8410e-03, 3.3465e-02, 3.6601e-01, 2.9329e-01, + 2.0289e-01, 8.1331e-01, 9.6038e-01, 7.8543e-01, + 8.1769e-01, 9.2929e-01, 5.1055e-01, 3.5358e-01, + 4.8515e-01, 3.5044e-01, 1.9924e-01, 8.1918e-01, + 2.9889e-01, 3.7500e-02, 2.3185e-01, 6.2795e-01, + 5.8909e-01, 1.2007e-01, 7.5640e-01, 8.0080e-01, + 8.4206e-01, 2.3327e-01, 8.8223e-01, 9.9512e-01, + 2.9164e-01, 4.3867e-01, 7.8315e-01, 9.6653e-01, + 4.0617e-01, 6.9039e-01, 4.3199e-01, 8.2813e-01, + 3.5563e-01, 9.1892e-01, 5.9521e-01, 8.9108e-01, + 3.7947e-01, 2.0591e-01, 6.7351e-01, 5.7368e-01, + 2.8254e-01, 6.7739e-02, 4.4276e-01, 9.7228e-01, + 4.6186e-01, 6.9010e-01, 8.4715e-01, 1.5150e-01, + 2.0227e-01, 3.6577e-01, 9.5994e-01, 2.5249e-01, + 6.5535e-02, 5.6708e-01, 7.2591e-01, 7.0050e-01, + 4.6753e-01, 9.1326e-02, 6.7496e-01, 5.8336e-01, + 3.1459e-01, 4.7441e-01, 6.5107e-01, 2.7592e-01, + 1.4742e-01, 4.5510e-01, 7.4301e-01, 4.8033e-01, + 1.4801e-01, 7.7726e-01, 9.3909e-01, 8.1948e-01, + 2.9724e-01, 8.1459e-01, 4.7430e-01, 3.8389e-01, + 5.8885e-02, 3.1119e-01, 5.3076e-01, 1.4421e-01, + 9.6859e-01, 9.4119e-01, 8.4274e-01, 8.1548e-02, + 4.2885e-02, 1.4390e-01, 9.9599e-01, 9.8519e-01, + 5.8954e-01, 4.9409e-01, 6.5081e-01, 4.7729e-01, + 7.1507e-01, 2.3377e-01, 3.5997e-01, 9.6579e-01, + 3.9773e-01, 2.1377e-02, 3.5134e-01, 6.4577e-01, + 9.9705e-01, 4.8704e-01, 4.2052e-01, 3.9684e-01, + 9.2759e-01, 3.0995e-01, 3.1089e-01, 7.6678e-01, + 5.4422e-04, 9.2904e-01, 1.6571e-01, 9.8144e-01, + 7.6337e-01, 8.8536e-01, 1.6786e-01, 9.4677e-01, + 3.5525e-01, 3.5127e-01, 1.3314e-01, 8.7067e-01, + 2.8725e-01, 6.7870e-01, 3.3831e-01, 4.6605e-01, + 7.4196e-01, 8.8785e-01, 9.6258e-01, 7.7168e-01, + 4.8538e-01, 2.0843e-01, 6.4007e-01, 1.9033e-01, + 3.4627e-01, 1.1059e-01, 7.1554e-01, 5.5574e-01, + 7.6910e-01, 7.3835e-01, 2.8739e-01, 6.9284e-01, + 7.5175e-02, 9.9640e-01, 9.1137e-01, 2.2022e-01, + 4.9205e-01, 9.0083e-01, 5.1433e-01, 4.3040e-01, + 3.8550e-01, 4.9743e-01, 2.3713e-01, 2.5804e-01, + 8.8147e-02, 9.0523e-02, 8.5804e-01, 1.4407e-01, + 3.2087e-01, 6.9830e-01, 5.0311e-02, 5.9795e-01, + 2.3588e-01, 9.7651e-01, 1.1260e-01, 6.7643e-01, + 7.7883e-01, 4.7514e-01, 7.6449e-01, 3.5045e-01, + 7.3614e-01, 8.8137e-01, 4.6469e-01, 4.9258e-01, + 8.1075e-01, 6.2703e-01, 1.2233e-01, 2.7440e-01, + 6.9122e-01, 7.3033e-01, 3.4342e-02, 1.2576e-01, + 8.0974e-01, 4.0072e-01, 6.0245e-01, 1.5077e-02, + 4.1940e-01, 2.0633e-01, 7.1347e-01, 8.3114e-01, + 3.1728e-01, 3.9989e-01, 6.0468e-01, 2.0407e-01, + 8.7073e-01, 4.3857e-01, 8.9954e-02, 6.5643e-01, + 5.8418e-01, 3.5790e-01, 6.7886e-01, 9.5451e-01, + 3.6580e-01, 3.0585e-01, 7.6034e-01, 6.5825e-02, + 2.9720e-01, 3.1525e-01, 3.2830e-01, 7.9663e-02, + 7.4797e-01, 4.5439e-01, 4.4041e-01, 6.1706e-01, + 1.4869e-01, 3.7743e-01, 6.0526e-01, 7.4958e-01, + 1.3105e-01, 3.9610e-01, 8.5301e-01, 8.1549e-01, + 8.5854e-02, 7.4522e-01, 7.4950e-01, 3.7042e-01, + 2.4261e-01, 1.7942e-01, 8.2764e-01, 1.6097e-01, + 2.2542e-01, 5.2571e-01, 1.0887e-01, 3.8000e-02, + 8.1497e-01, 8.0201e-01, 9.4936e-01, 2.6775e-01, + 9.4312e-01, 9.3715e-01, 6.7901e-02, 4.0906e-01, + 1.5251e-01, 2.4190e-01, 2.4089e-01, 2.6151e-01, + 6.2245e-01, 4.6082e-01, 5.0570e-01, 2.5937e-01, + 3.5881e-01, 2.2385e-01, 2.8770e-02, 1.7716e-01, + 5.4713e-02, 5.1027e-01, 3.1178e-02, 6.5533e-01, + 2.2465e-01, 6.9285e-01, 2.5103e-01, 3.0570e-01, + 3.7755e-03, 8.7853e-01, 6.5763e-01, 7.6528e-02, + 9.2357e-01, 9.3172e-01, 1.4133e-01, 9.0949e-01, + 3.7744e-01, 2.6587e-01, 8.7043e-01, 1.0112e-02, + 2.8448e-01, 7.2542e-02, 1.5147e-01, 2.2166e-01, + 9.7594e-01, 3.2101e-01, 3.2571e-01, 9.1645e-01, + 5.1688e-01, 9.8729e-02, 3.8775e-01, 7.4951e-01, + 2.4091e-01, 2.2275e-01, 8.9300e-01, 4.1567e-01, + 8.1383e-01, 7.1688e-01, 7.5982e-01, 9.9028e-02, + 1.0199e-01, 1.7657e-01, 8.1854e-01, 9.5101e-01, + 8.6789e-01, 7.9254e-01, 9.6088e-01, 8.2911e-01, + 7.9367e-01, 5.3301e-01, 8.6699e-02, 6.5008e-01, + 2.4111e-01, 4.0949e-01, 7.9876e-01, 6.0784e-01, + 8.6621e-01, 7.1156e-01, 3.6004e-01, 1.5720e-02, + 6.4658e-01, 3.4960e-01, 8.6761e-01, 8.2966e-01, + 9.8307e-01, 1.8464e-01, 5.4622e-01, 2.8174e-01, + 4.2027e-01, 6.2481e-01, 2.5893e-01, 5.8887e-01, + 8.4609e-01, 2.6754e-01, 5.9884e-01, 1.1711e-01, + 6.7826e-01, 2.8852e-01, 6.4017e-01, 1.2806e-02, + 3.1902e-03, 4.7820e-01, 8.9185e-01, 5.7234e-02, + 6.7506e-01, 8.4710e-01, 6.0623e-01, 2.2402e-01, + 4.0295e-01, 6.4904e-01, 9.2718e-01, 3.1307e-01, + 6.5796e-01, 3.5345e-01, 1.9087e-01, 2.1269e-01, + 5.7823e-01, 3.9982e-01, 4.3154e-01, 6.7568e-01, + 6.8414e-01, 2.4388e-01, 8.7462e-01, 4.2036e-02, + 3.5337e-01, 5.3395e-01, 9.2982e-01, 8.6034e-01, + 9.3195e-01, 6.8440e-01, 2.5818e-01, 7.2423e-01, + 1.2544e-01, 2.7728e-01, 6.8784e-01, 6.0665e-01, + 1.3165e-01, 8.5017e-01, 4.3265e-03, 8.0981e-01, + 7.9983e-01, 3.2596e-01, 4.9482e-01, 1.1663e-01, + 4.6665e-01, 9.3435e-01, 7.9541e-01, 7.1414e-01, + 5.3506e-02, 4.0912e-01, 6.8238e-01, 3.4773e-01, + 5.6049e-01, 7.1487e-01, 2.1138e-01, 8.1397e-01, + 5.4932e-01, 2.0457e-02, 5.6340e-02, 5.7141e-02, + 4.6515e-01, 1.4683e-01, 7.4366e-01, 4.1761e-02, + 5.1584e-02, 1.2634e-01, 4.6336e-01, 5.9261e-01, + 5.6130e-01, 7.8972e-02, 7.9983e-01, 2.2448e-01, + 1.8797e-01, 2.5057e-01, 7.7180e-01, 4.0901e-01, + 3.7017e-01, 4.0182e-01, 8.7125e-01, 2.8655e-01, + 1.4119e-01, 4.3303e-01, 6.6902e-01, 1.5943e-01, + 2.5892e-01, 5.0928e-01, 6.7761e-01, 3.2212e-02, + 3.0824e-01, 9.2674e-02, 3.6193e-02, 4.4219e-01, + 1.6390e-01, 5.9400e-01, 8.2224e-01, 6.9900e-01, + 5.2481e-01, 9.5165e-01, 4.4474e-01, 2.4445e-01, + 1.0981e-01, 9.3663e-01, 8.4897e-01, 9.5652e-01, + 4.6435e-01, 1.7098e-01, 5.9974e-01, 4.3018e-01, + 2.1721e-01, 3.8205e-01, 2.6684e-01, 2.6286e-01, + 8.1812e-01, 5.7012e-01, 6.3330e-01, 6.6896e-02, + 8.6486e-02, 5.7371e-01, 2.1333e-01, 5.1711e-01, + 3.0138e-01, 2.1686e-01, 9.4270e-01, 3.0485e-01, + 4.4156e-01, 9.5896e-01, 6.0745e-01, 1.5570e-01, + 4.1088e-01, 3.7352e-01, 3.6528e-01, 1.2019e-01, + 7.4565e-02, 5.5689e-01, 5.1790e-01, 1.3767e-01, + 1.2340e-01, 9.6204e-01, 1.6892e-01, 2.9572e-01, + 2.1066e-01, 3.3179e-01, 3.3274e-01, 8.4143e-01, + 8.3193e-01, 7.2407e-01, 7.0281e-01, 6.8041e-01, + 8.2730e-01, 1.8872e-01, 2.6244e-01, 2.1234e-01, + 7.4230e-01, 2.6976e-01, 6.3711e-01, 4.3716e-01, + 6.9298e-01, 8.1356e-01, 6.0939e-01, 7.0288e-01, + 3.5558e-01, 9.2964e-01, 1.1833e-01, 4.6906e-01, + 8.0664e-01, 4.8526e-01, 9.6169e-01, 4.1867e-01, + 8.3224e-01, 9.6285e-01, 9.5262e-01, 8.6424e-01, + 4.9817e-01, 5.4699e-01, 6.1704e-01, 3.9186e-01, + 6.8935e-01, 5.9439e-01, 7.3227e-01, 4.1190e-01, + 9.0233e-01, 3.2790e-01, 4.3206e-01, 5.5893e-01, + 5.8605e-02, 9.4473e-01, 2.4772e-01, 3.1700e-01, + 7.7245e-01, 5.5508e-01, 7.4692e-01, 1.2111e-01, + 8.0345e-01, 4.4160e-01, 6.1610e-01, 4.0302e-01, + 7.2755e-01, 5.2552e-01, 5.2678e-01, 1.3783e-01, + 6.7301e-01, 8.4666e-02, 9.7543e-01, 5.6391e-01, + 6.8981e-01, 5.0252e-01, 3.1345e-01, 8.3631e-01, + 5.1942e-01, 4.1463e-01, 3.8551e-01, 5.6612e-01, + 9.0226e-02, 4.5281e-01, 1.3323e-01, 8.3660e-01, + 3.3939e-01, 2.9707e-01, 3.8862e-01, 7.2849e-01, + 8.2419e-01, 6.6920e-01, 4.7306e-01, 8.6893e-01, + 7.5703e-01, 5.7027e-01, 5.4140e-01, 8.8231e-01, + 3.8567e-02, 3.5538e-01, 6.1680e-01, 5.9111e-01, + 4.5875e-01, 6.0458e-01, 7.5967e-02, 3.2091e-01, + 3.9756e-01, 5.3389e-01, 4.5029e-01, 1.5185e-01, + 6.9442e-01, 7.6304e-01, 4.6109e-01, 5.2312e-02, + 7.7110e-01, 4.8813e-01, 1.8485e-01, 9.4212e-01, + 2.0752e-01, 2.7050e-01, 8.0133e-01, 5.6501e-01, + 7.0480e-01, 3.7931e-01, 4.9377e-01, 7.7738e-01, + 6.5307e-01, 5.0050e-01, 1.0036e-01, 3.6651e-01, + 4.6488e-01, 6.5613e-01, 3.1970e-01, 5.0090e-01, + 2.3238e-01, 4.7361e-01, 4.2273e-01, 1.9837e-01, + 4.1443e-01, 2.8358e-01, 5.9909e-01, 4.6853e-01, + 1.5862e-01, 5.4860e-01, 9.4413e-01, 6.4800e-03, + 2.0553e-01, 6.7561e-01, 1.6860e-01, 5.9291e-01, + 2.2881e-01, 3.9992e-01, 6.9442e-01, 7.9259e-01, + 6.9638e-01, 7.6941e-01, 2.3646e-01, 7.2314e-01, + 1.4276e-01, 4.5362e-01, 5.5788e-01, 2.2118e-01, + 3.1804e-01, 6.9545e-01, 4.2483e-01, 3.3560e-01, + 3.3597e-01, 4.0398e-02, 1.9135e-01, 5.4384e-01, + 5.9982e-01, 9.7372e-01, 1.5970e-01, 6.0079e-01, + 5.9714e-01, 9.5044e-01, 5.0232e-01, 3.6790e-01, + 7.3455e-01, 8.0673e-01, 4.0026e-01, 6.3795e-02, + 8.2192e-01, 1.8676e-01, 1.9070e-01, 6.2954e-02, + 1.8591e-01, 1.6582e-01, 8.1810e-01, 1.1599e-02, + 4.7558e-01, 8.4737e-01, 7.5306e-01, 1.2992e-01, + 1.5127e-01, 2.0163e-01, 4.6257e-01, 3.4956e-01, + 9.0495e-01, 2.1175e-03, 9.4719e-01, 3.1681e-01, + 2.0418e-01, 5.3479e-02, 3.5683e-01, 5.8247e-02, + 9.3423e-01, 1.1090e-01, 4.3007e-01, 6.1117e-01, + 4.0593e-01, 1.1448e-02, 8.5302e-01, 2.5408e-01, + 9.1190e-01, 6.4738e-01, 2.7596e-01, 2.8235e-01, + 4.6522e-01, 8.7885e-01, 7.0320e-01, 4.2790e-01, + 2.9479e-02, 3.8500e-01, 3.9245e-01, 1.0004e-01, + 4.2397e-01, 7.1833e-01, 6.6614e-01, 4.6682e-02, + 5.8017e-01, 6.0782e-01, 4.8419e-01, 5.5802e-01, + 2.3916e-01, 1.4114e-01, 8.3739e-01, 1.0626e-01, + 5.1946e-01, 9.4847e-01, 4.1767e-01, 3.7856e-01, + 1.1090e-01, 1.5010e-01, 4.3945e-01, 7.5067e-02, + 9.8959e-01, 2.8002e-01, 5.0613e-01, 8.0707e-01, + 6.1595e-01, 8.2005e-01, 9.9749e-01, 1.1749e-01, + 6.5959e-01, 2.3371e-01, 8.3971e-01, 4.3270e-03, + 6.2581e-01, 8.0238e-01, 2.8393e-01, 7.0314e-01, + 2.0960e-01, 3.2954e-02, 6.5011e-01, 8.0206e-01, + 9.2215e-01, 8.1873e-01, 3.4350e-01, 2.8733e-01, + 1.9274e-01, 3.4014e-01, 3.0741e-01, 3.4144e-01, + 2.7448e-02, 7.6554e-01, 6.2323e-01, 3.0307e-01, + 4.5175e-01, 3.9421e-01, 8.5280e-01, 6.5476e-01, + 3.1057e-01, 3.6455e-01, 8.0890e-01, 2.7987e-01]), size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.4226, 0.0556, 0.1398, ..., 0.5751, 0.9814, 0.4838]) +tensor([0.7740, 0.9703, 0.1840, ..., 0.7477, 0.1526, 0.5369]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -1026,375 +1405,375 @@ Rows: 10000 Size: 100000000 NNZ: 1000 Density: 1e-05 -Time: 10.681929588317871 seconds +Time: 11.093939065933228 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), - col_indices=tensor([1138, 3141, 5372, 6298, 9895, 5592, 6656, 4614, 931, - 6509, 2541, 488, 1171, 1072, 9057, 8648, 305, 9468, - 8935, 3721, 8788, 4223, 1394, 7441, 8183, 7526, 7164, - 9501, 2074, 6095, 6430, 1576, 7765, 4984, 8210, 5345, - 6644, 4874, 9665, 9793, 4608, 6072, 7262, 5461, 8184, - 6119, 899, 3855, 5088, 3002, 502, 2723, 2838, 2671, - 245, 5685, 2372, 8774, 3148, 7424, 9384, 3212, 8505, - 9938, 1175, 4045, 4800, 98, 907, 4698, 1099, 3556, - 6117, 539, 3430, 5205, 6742, 549, 1013, 7399, 5538, - 6070, 13, 7425, 1069, 3892, 5623, 622, 3112, 6779, - 5841, 5246, 7130, 3748, 8292, 4888, 3930, 4486, 404, - 1247, 8728, 8238, 569, 8783, 9166, 5690, 2454, 272, - 8698, 4860, 6880, 3565, 3134, 6354, 865, 434, 9144, - 921, 4245, 143, 7627, 7460, 9895, 5538, 9555, 1920, - 9046, 6039, 3817, 9183, 833, 9223, 1343, 7435, 74, - 2910, 7431, 4730, 9568, 7053, 553, 6586, 3902, 2102, - 4819, 4670, 639, 3073, 9896, 2444, 4693, 9856, 1357, - 8765, 9020, 4841, 7320, 6909, 6799, 6398, 5965, 3749, - 7728, 1534, 7555, 9916, 8346, 6649, 7695, 1555, 9453, - 3570, 2292, 7726, 9222, 1870, 8326, 5496, 9558, 9331, - 1953, 8958, 9671, 4151, 4367, 6771, 6034, 9364, 5920, - 1930, 4407, 1393, 7699, 5074, 9853, 2420, 4723, 1193, - 3555, 5221, 6242, 9462, 9524, 8904, 4357, 599, 5063, - 9306, 1035, 2970, 3581, 438, 1012, 1578, 6514, 1246, - 280, 9934, 9599, 1347, 7451, 9057, 9941, 2507, 6869, - 4825, 8824, 6274, 4478, 1408, 6086, 4878, 2420, 9493, - 8982, 2379, 609, 5624, 3583, 2173, 3341, 2149, 6472, - 8232, 4799, 2443, 9805, 3726, 1960, 2222, 4203, 9706, - 6042, 2127, 9512, 2848, 5472, 464, 7833, 9395, 4397, - 1252, 536, 150, 1099, 2496, 571, 7941, 6943, 7304, - 7511, 2241, 5493, 562, 6009, 2047, 7239, 7266, 8450, - 3771, 5993, 8725, 8763, 3254, 7903, 1883, 306, 172, - 4496, 8646, 114, 4663, 5065, 5972, 5609, 5112, 7979, - 2267, 3998, 628, 3262, 4723, 5522, 333, 771, 7789, - 7411, 6161, 939, 510, 2157, 7502, 5114, 7332, 1071, - 911, 7141, 1103, 2384, 9370, 6550, 3084, 7659, 5517, - 5645, 8343, 428, 5819, 2990, 2152, 8255, 9437, 8453, - 6828, 9261, 236, 1646, 2971, 9539, 3535, 2506, 2597, - 2970, 9785, 1861, 7103, 1286, 1000, 3469, 315, 3221, - 8558, 2959, 2957, 7965, 5562, 4795, 8592, 264, 7999, - 8407, 7957, 1456, 1284, 5753, 340, 9594, 4789, 2049, - 2443, 8386, 9750, 2724, 1350, 7113, 7702, 9893, 426, - 7946, 8480, 6869, 2951, 6923, 3651, 4947, 76, 246, - 3064, 9432, 8890, 9830, 3454, 5349, 2099, 4006, 3982, - 1400, 6701, 8208, 6231, 6572, 7108, 169, 3663, 1024, - 3861, 1643, 3067, 7537, 5626, 9156, 2530, 1256, 9586, - 1939, 1349, 9610, 3932, 8683, 6507, 692, 9567, 4786, - 7294, 9227, 5955, 3765, 95, 7099, 9975, 1773, 2563, - 8275, 417, 4896, 2261, 6841, 8549, 5658, 7531, 1862, - 8554, 7945, 3708, 1599, 7281, 6945, 5282, 5274, 8382, - 9544, 6608, 5018, 9387, 8311, 4840, 5052, 5898, 3273, - 6811, 9335, 9665, 7323, 4598, 206, 8472, 1143, 5942, - 5752, 1091, 8080, 5491, 4152, 6519, 1287, 5968, 347, - 8460, 9287, 6222, 8593, 6122, 9463, 5973, 9569, 9864, - 8581, 7157, 1274, 7748, 9974, 703, 4340, 3457, 5165, - 636, 8506, 2388, 4697, 6336, 2157, 965, 2983, 4117, - 5342, 5035, 7690, 8511, 5702, 1730, 435, 2888, 3925, - 5632, 1145, 8990, 6840, 2995, 3673, 4357, 1488, 6718, - 3409, 5307, 9890, 3580, 194, 415, 75, 1173, 582, - 8512, 2152, 3651, 1736, 4406, 9709, 5688, 2037, 9202, - 616, 4398, 9978, 961, 4749, 6199, 2766, 420, 5891, - 2035, 4203, 6034, 9532, 4073, 3543, 9399, 5243, 1736, - 5205, 3639, 7636, 7945, 1076, 8052, 8786, 7516, 1783, - 592, 9245, 3631, 8018, 7142, 4227, 1771, 8550, 3919, - 40, 9025, 7922, 8752, 4829, 6233, 6992, 2147, 8671, - 1125, 9695, 1968, 1143, 899, 7218, 5368, 7349, 8299, - 4130, 2489, 1943, 8450, 8922, 2692, 6194, 2109, 3488, - 648, 128, 2619, 8466, 3510, 8010, 2563, 4452, 2449, - 3117, 3222, 8819, 6314, 2193, 4531, 9312, 6323, 8594, - 3258, 9109, 1332, 8418, 7949, 2357, 3619, 7354, 3313, - 61, 518, 2284, 2088, 1386, 2415, 3436, 7167, 5622, - 8607, 8065, 8996, 6833, 8899, 6018, 2523, 5619, 500, - 9741, 447, 3804, 906, 3011, 8029, 494, 31, 1574, - 8607, 3528, 2944, 1180, 3791, 1961, 4136, 1334, 7857, - 6620, 8883, 2382, 315, 5796, 2019, 5530, 8196, 2757, - 6981, 3617, 4634, 9758, 8925, 1556, 8556, 6115, 2436, - 456, 4547, 7030, 3590, 4197, 848, 7813, 2702, 1882, - 1803, 4494, 3216, 104, 2415, 973, 9057, 8136, 2617, - 9231, 6621, 2270, 5728, 4475, 2926, 1275, 5702, 6247, - 6804, 4756, 6356, 6362, 2856, 4487, 6258, 4333, 7608, - 5197, 8900, 2423, 8906, 4613, 4914, 7823, 7748, 1843, - 5989, 1493, 7321, 237, 2861, 4827, 700, 4808, 5985, - 9382, 3661, 2628, 1573, 4286, 4564, 6813, 6649, 2611, - 1727, 5253, 3700, 4473, 5116, 4990, 8314, 4529, 7271, - 3677, 1911, 1114, 6546, 6706, 5817, 4555, 8804, 7540, - 3808, 5203, 8535, 8025, 6109, 5300, 5651, 2490, 6109, - 6132, 3901, 8640, 7135, 8793, 5811, 9495, 4735, 1699, - 1439, 220, 2921, 4550, 4963, 9167, 1303, 244, 3665, - 7823, 7172, 8799, 8427, 6074, 1240, 3154, 9837, 5939, - 5156, 4695, 6283, 3037, 9601, 9741, 7245, 2434, 1037, - 8802, 6544, 3585, 8380, 1858, 9428, 7153, 8077, 6766, - 8197, 9547, 1973, 8258, 6508, 713, 5126, 1339, 2979, - 1166, 8047, 6847, 97, 8865, 3971, 3769, 8192, 8150, - 4789, 7871, 1531, 5674, 1575, 9808, 2800, 6837, 1264, - 6679, 5873, 3502, 1872, 8788, 1902, 7193, 7418, 5329, - 8259, 9419, 7793, 5540, 71, 6690, 4936, 794, 6462, - 2182, 6189, 1966, 9133, 7350, 871, 4346, 699, 3324, - 5869, 158, 5971, 2372, 694, 8303, 12, 2318, 1223, - 7659, 4487, 8019, 6915, 6927, 6928, 4811, 355, 3455, - 6747, 8341, 6371, 2538, 3410, 239, 3646, 5943, 6770, - 1495, 9724, 2133, 6260, 7065, 1361, 359, 4604, 3980, - 579, 6628, 3682, 1853, 6084, 9735, 8312, 1840, 4876, - 8912, 6208, 6859, 9839, 6928, 2236, 4449, 4135, 4776, - 6464, 2481, 4925, 9412, 3456, 2660, 9544, 6110, 6742, - 9061, 610, 5758, 1002, 4547, 8135, 324, 2486, 1852, - 8322, 5074, 4466, 826, 7401, 1853, 6438, 2899, 5836, - 427, 7933, 2044, 8055, 3683, 9649, 6408, 5387, 4196, - 3681, 7448, 3637, 8192, 6445, 6771, 10, 729, 9265, - 8381, 8151, 4992, 7160, 9680, 7981, 8403, 1251, 8075, - 8608, 9794, 3487, 7890, 6077, 7271, 18, 389, 9327, - 834, 2577, 4035, 1431, 7927, 9393, 643, 1226, 3816, - 5933]), - values=tensor([1.9375e-01, 3.5125e-01, 2.0768e-01, 2.6967e-01, - 6.5553e-01, 5.3217e-01, 3.3343e-01, 6.1229e-01, - 8.1898e-01, 5.0937e-01, 7.4774e-01, 5.1207e-01, - 8.0001e-01, 3.5041e-01, 6.7059e-01, 3.7672e-01, - 9.3472e-01, 9.3036e-01, 2.3990e-01, 8.7663e-01, - 4.6996e-01, 5.0217e-02, 8.4756e-01, 7.8975e-01, - 1.1314e-01, 4.4290e-01, 2.0680e-01, 9.2084e-02, - 3.5472e-01, 9.4380e-01, 7.9234e-01, 8.1876e-01, - 2.3511e-01, 7.6869e-01, 4.2133e-02, 1.0330e-01, - 1.7268e-01, 7.6007e-01, 3.8309e-03, 9.1460e-01, - 7.3496e-01, 4.9658e-01, 2.1053e-01, 4.7699e-01, - 5.0002e-01, 8.1406e-01, 5.4606e-01, 4.2159e-01, - 2.6297e-01, 2.4520e-01, 9.6103e-01, 7.7868e-01, - 7.6457e-01, 6.2481e-01, 4.5144e-01, 1.9487e-01, - 3.0538e-01, 3.2455e-02, 6.4771e-01, 8.8797e-01, - 9.3051e-01, 9.7039e-01, 9.7735e-01, 3.0647e-01, - 9.6008e-02, 6.3088e-01, 8.0975e-01, 5.3515e-01, - 8.0786e-01, 2.9740e-01, 2.4833e-01, 2.6441e-01, - 3.2550e-01, 2.1987e-01, 1.3930e-02, 1.7247e-01, - 6.8496e-01, 8.3630e-01, 7.5016e-01, 8.7730e-01, - 2.1744e-02, 6.2953e-01, 2.2457e-01, 2.0815e-01, - 1.6450e-01, 7.3002e-01, 4.9950e-01, 3.0029e-02, - 7.4701e-02, 6.2437e-01, 7.7434e-01, 3.8994e-01, - 1.0852e-01, 7.4616e-01, 4.7554e-01, 7.9127e-01, - 4.2656e-01, 7.7188e-01, 3.6412e-01, 2.5388e-01, - 9.3166e-01, 4.7512e-01, 3.1345e-01, 9.4634e-01, - 4.9501e-01, 2.5802e-01, 2.9731e-01, 4.5345e-01, - 4.5427e-01, 2.7223e-01, 3.0850e-01, 5.9089e-01, - 2.3642e-01, 7.7402e-01, 9.5831e-01, 4.5183e-01, - 4.4635e-01, 3.4103e-01, 1.9752e-01, 4.1907e-01, - 9.4180e-01, 8.3566e-01, 7.5022e-01, 3.4154e-01, - 8.8228e-01, 7.0899e-02, 1.2527e-01, 7.8104e-01, - 6.4557e-01, 3.4866e-01, 2.6732e-01, 6.2958e-01, - 1.1325e-01, 7.9593e-01, 6.9074e-01, 4.4629e-01, - 2.5885e-01, 7.2330e-01, 8.2253e-01, 9.8244e-01, - 7.9844e-01, 4.3702e-01, 9.6241e-01, 7.5657e-01, - 5.3837e-01, 1.8624e-01, 3.8968e-01, 3.4892e-01, - 7.0278e-01, 5.5261e-01, 4.0352e-01, 3.3248e-02, - 2.7925e-01, 1.5770e-01, 4.3930e-01, 1.5049e-01, - 4.8475e-01, 3.8261e-01, 5.0227e-01, 6.2634e-01, - 4.8135e-01, 9.1814e-01, 4.0382e-02, 9.3517e-01, - 5.1252e-01, 3.4347e-01, 6.1408e-01, 4.7550e-01, - 8.2509e-03, 7.1485e-01, 4.8130e-01, 1.2004e-01, - 3.3123e-01, 3.7004e-01, 4.8796e-01, 6.7218e-01, - 5.1642e-01, 2.9873e-01, 6.9024e-01, 1.8738e-01, - 6.7151e-01, 1.0462e-01, 2.4549e-01, 6.9732e-01, - 4.1806e-01, 4.7981e-02, 9.3086e-01, 4.1645e-02, - 3.4142e-01, 4.8380e-01, 4.8247e-01, 8.9969e-01, - 8.6323e-01, 9.7268e-01, 5.6983e-01, 1.3965e-02, - 5.9431e-01, 2.9727e-01, 1.6227e-02, 9.8379e-01, - 7.9038e-01, 8.8241e-01, 5.7714e-01, 3.3784e-02, - 1.0960e-01, 3.1070e-01, 5.3521e-01, 7.0199e-01, - 6.5999e-01, 2.7917e-01, 9.8173e-02, 6.2497e-01, - 9.5182e-01, 6.6789e-02, 1.5393e-02, 6.2254e-01, - 1.0971e-01, 8.8447e-01, 5.4323e-01, 2.1015e-01, - 6.6007e-01, 8.2753e-01, 3.6703e-01, 7.4051e-01, - 6.6966e-01, 9.7913e-01, 4.0712e-01, 3.4707e-01, - 3.8309e-01, 2.3070e-01, 2.2715e-01, 7.7305e-01, - 3.7610e-01, 3.4003e-01, 5.8650e-01, 5.8454e-01, - 3.8920e-01, 2.4417e-01, 2.4715e-02, 1.6482e-01, - 6.8219e-01, 4.0944e-01, 1.2251e-01, 8.3378e-01, - 2.8858e-01, 4.5315e-01, 3.7387e-01, 5.1960e-01, - 6.3346e-01, 5.5499e-02, 4.5719e-01, 8.2993e-01, - 8.1787e-01, 3.3558e-01, 2.6451e-01, 5.5224e-01, - 3.1647e-01, 7.8278e-01, 2.1696e-01, 6.5586e-01, - 2.1644e-01, 9.5937e-01, 7.6861e-01, 8.0010e-01, - 6.6128e-01, 1.2187e-01, 9.4748e-01, 9.0035e-01, - 7.1037e-01, 1.8546e-01, 7.1352e-01, 1.8524e-01, - 7.4925e-01, 2.6708e-01, 7.6244e-01, 4.1247e-01, - 1.4128e-01, 4.9211e-01, 3.7997e-01, 7.0780e-01, - 3.8386e-02, 6.6816e-01, 6.0148e-01, 9.0383e-01, - 7.2595e-01, 6.8359e-01, 2.9584e-01, 8.2414e-02, - 1.5712e-01, 4.9752e-01, 1.1561e-01, 2.6694e-01, - 7.7841e-01, 1.6152e-01, 9.8172e-01, 1.9818e-01, - 1.4269e-01, 8.9879e-02, 5.0250e-01, 5.7802e-01, - 6.6528e-01, 3.6557e-02, 1.2972e-01, 6.6852e-01, - 4.9575e-01, 8.1221e-01, 6.6098e-01, 8.1005e-02, - 3.3205e-01, 2.1959e-01, 7.2778e-01, 9.9336e-01, - 6.7973e-02, 8.8482e-01, 2.5671e-01, 8.5151e-01, - 1.4303e-01, 9.4333e-01, 1.3749e-01, 3.5676e-01, - 9.2539e-01, 3.5622e-01, 8.1502e-01, 9.8078e-01, - 3.7427e-01, 5.4771e-01, 4.4970e-01, 3.5472e-01, - 6.8737e-01, 8.9441e-01, 4.3924e-01, 9.0130e-01, - 7.3301e-01, 2.3730e-01, 1.4503e-01, 1.6294e-01, - 7.4797e-01, 3.0663e-01, 9.1635e-01, 2.2485e-01, - 8.1593e-01, 6.9641e-01, 5.8876e-01, 2.5397e-01, - 2.7194e-01, 2.3151e-01, 4.6512e-01, 3.3600e-01, - 1.2084e-01, 7.4145e-01, 8.1178e-01, 4.2986e-01, - 3.2717e-01, 8.9582e-01, 3.8058e-03, 1.1514e-01, - 2.6151e-01, 8.6861e-01, 3.9034e-01, 3.7204e-01, - 5.0550e-01, 2.5962e-01, 7.9080e-01, 7.3126e-01, - 1.9304e-01, 2.7548e-01, 4.0413e-01, 6.4024e-01, - 3.0537e-01, 6.4800e-02, 2.9508e-01, 4.4554e-01, - 7.4376e-01, 3.5356e-01, 1.2386e-01, 9.0646e-01, - 4.4257e-01, 9.9428e-01, 3.9815e-01, 1.0579e-01, - 5.3899e-01, 8.8053e-01, 4.1755e-01, 2.6286e-01, - 8.6265e-01, 3.5440e-01, 4.1767e-01, 4.3722e-01, - 2.2701e-01, 2.0119e-01, 2.0168e-01, 7.4481e-01, - 3.1458e-01, 9.1105e-01, 5.1549e-01, 4.9528e-01, - 7.2489e-01, 6.9358e-01, 9.4876e-01, 1.4933e-01, - 1.0757e-01, 7.4461e-01, 3.5457e-01, 2.9405e-01, - 3.7800e-01, 3.5033e-01, 2.4629e-01, 4.0123e-01, - 8.0207e-01, 3.0032e-01, 1.9983e-01, 3.7397e-01, - 1.0202e-01, 9.9367e-01, 7.3515e-01, 8.2278e-01, - 1.1699e-01, 7.4263e-02, 4.8947e-01, 7.3849e-01, - 1.1436e-01, 4.7523e-01, 7.7099e-01, 7.2400e-01, - 6.5547e-02, 5.7163e-01, 3.2211e-01, 6.7657e-01, - 5.1329e-02, 1.2576e-01, 8.5341e-01, 1.3857e-01, - 6.3257e-01, 4.3927e-01, 4.0713e-01, 7.1751e-01, - 8.1961e-01, 5.3252e-01, 3.3088e-01, 5.8053e-01, - 1.4918e-01, 8.0005e-01, 3.7335e-01, 9.6447e-02, - 1.7216e-01, 1.0099e-01, 1.5519e-01, 3.6774e-01, - 8.7242e-01, 4.4847e-01, 5.5891e-01, 3.0216e-01, - 8.5587e-01, 3.0503e-01, 4.5505e-01, 7.7470e-01, - 7.5445e-01, 7.0880e-01, 4.5444e-01, 9.8342e-01, - 9.9777e-01, 7.5503e-01, 9.8966e-01, 4.0026e-01, - 6.9843e-01, 1.9249e-03, 7.8839e-01, 1.3053e-01, - 1.3274e-01, 8.4923e-02, 4.2804e-01, 1.5293e-01, - 9.0170e-01, 4.9992e-01, 7.7254e-01, 7.4648e-01, - 6.2388e-01, 8.5497e-01, 8.2756e-01, 3.8686e-01, - 9.8151e-02, 5.4863e-01, 2.5265e-01, 7.3707e-01, - 2.0151e-01, 5.7024e-01, 2.8365e-01, 3.5556e-01, - 2.8799e-01, 1.3107e-02, 5.3341e-01, 3.5237e-01, - 8.8548e-01, 5.9289e-01, 5.4342e-01, 1.7633e-01, - 6.3070e-01, 5.3768e-01, 2.2342e-01, 3.3247e-01, - 6.9090e-01, 4.1567e-01, 1.1222e-01, 4.7518e-02, - 9.4288e-01, 9.5518e-01, 7.6795e-01, 5.0269e-01, - 3.6134e-01, 6.0356e-01, 8.3473e-01, 9.6104e-01, - 6.3423e-01, 1.6210e-02, 4.0034e-01, 9.7914e-01, - 3.9605e-02, 1.7596e-01, 5.7872e-01, 6.7935e-01, - 4.1868e-01, 8.3560e-01, 4.0556e-01, 4.8967e-02, - 2.2949e-01, 1.0615e-01, 5.7564e-01, 7.4653e-02, - 9.0806e-01, 6.0640e-01, 4.3840e-01, 7.2256e-01, - 2.0422e-01, 4.2972e-01, 5.8503e-01, 7.7506e-01, - 9.7508e-01, 9.4505e-01, 6.4491e-01, 2.1982e-01, - 2.7546e-01, 7.7442e-01, 5.0277e-01, 6.9720e-02, - 7.4204e-01, 6.0831e-01, 1.1658e-01, 5.0890e-01, - 1.1812e-01, 6.0273e-01, 8.2931e-01, 9.8180e-01, - 1.5799e-01, 9.8569e-01, 4.0228e-01, 4.0955e-01, - 4.7497e-02, 8.9661e-02, 4.9936e-01, 1.1148e-01, - 9.0756e-01, 4.0268e-01, 8.9360e-01, 2.2851e-01, - 2.0956e-01, 1.7882e-01, 2.9301e-01, 8.3386e-01, - 6.4286e-01, 9.9061e-01, 5.6455e-02, 7.0386e-01, - 1.2706e-01, 8.6843e-01, 1.9036e-01, 7.5009e-01, - 9.0547e-01, 3.5391e-02, 3.8624e-01, 1.1931e-01, - 9.4649e-01, 6.8202e-01, 9.5564e-01, 1.1891e-01, - 8.1752e-01, 4.3762e-01, 5.5711e-01, 2.5729e-01, - 3.5776e-01, 4.0330e-01, 2.2345e-01, 8.0837e-01, - 9.1913e-01, 5.1379e-01, 1.0360e-01, 8.8191e-01, - 6.7996e-01, 9.4555e-02, 6.2440e-01, 2.8075e-01, - 4.6693e-01, 5.4747e-01, 4.7497e-01, 8.5070e-02, - 5.6932e-02, 6.4648e-01, 1.2477e-03, 2.0721e-01, - 6.8915e-01, 8.7342e-01, 5.7258e-01, 8.6224e-01, - 5.7939e-01, 9.9515e-01, 2.0583e-01, 2.1518e-01, - 8.9509e-01, 8.0367e-01, 6.4277e-01, 5.0827e-01, - 2.5676e-02, 5.8560e-02, 4.3004e-01, 4.5788e-01, - 6.6471e-01, 3.9649e-01, 2.0012e-01, 4.3487e-01, - 9.0304e-01, 2.2243e-01, 3.0464e-01, 8.5268e-01, - 5.6222e-01, 2.4369e-01, 8.6137e-01, 7.8472e-02, - 9.1993e-02, 6.5703e-01, 2.8403e-01, 8.8040e-01, - 2.8392e-01, 7.7439e-01, 9.3284e-01, 2.0412e-01, - 4.0388e-01, 8.1648e-01, 2.1973e-01, 5.7573e-01, - 9.2892e-02, 7.5088e-01, 3.0786e-01, 1.8024e-01, - 6.5532e-01, 6.1457e-02, 2.1697e-01, 1.0836e-01, - 3.9118e-01, 4.9190e-01, 9.4466e-01, 2.1653e-01, - 2.9599e-01, 7.5911e-01, 4.5813e-03, 2.5706e-01, - 2.5307e-01, 2.9388e-01, 5.5978e-01, 8.8650e-01, - 4.8734e-01, 4.7580e-01, 9.1478e-01, 1.2022e-01, - 8.6153e-01, 4.8555e-01, 8.7075e-01, 8.6253e-01, - 1.4431e-01, 3.4625e-01, 2.9820e-01, 3.7020e-01, - 7.2331e-01, 5.3627e-01, 3.3997e-01, 4.2166e-01, - 3.2381e-01, 3.9761e-01, 7.5745e-01, 6.5813e-01, - 6.4982e-01, 2.8336e-01, 5.7049e-01, 7.2874e-01, - 4.0575e-01, 8.7412e-02, 8.6145e-01, 4.1196e-01, - 8.0483e-01, 1.8391e-01, 5.7371e-02, 8.4034e-01, - 5.2513e-01, 6.0727e-01, 1.5458e-01, 2.0643e-01, - 5.1326e-01, 6.6117e-01, 9.5947e-01, 7.8681e-01, - 6.7698e-01, 9.6081e-01, 4.5145e-01, 6.0458e-01, - 5.2329e-01, 4.8816e-01, 6.4831e-01, 5.4729e-01, - 5.0501e-01, 3.9862e-03, 4.3458e-01, 8.2356e-02, - 4.4194e-01, 4.6046e-01, 8.6119e-01, 7.2362e-01, - 3.3762e-01, 5.7168e-01, 3.7204e-01, 4.6616e-01, - 2.8453e-01, 8.4184e-01, 9.1507e-01, 7.3000e-01, - 2.3497e-01, 4.7039e-01, 3.0436e-01, 7.3392e-01, - 2.0230e-01, 7.5799e-01, 8.0132e-01, 2.6207e-01, - 4.1549e-01, 4.5825e-01, 3.5712e-04, 8.6380e-01, - 2.5643e-01, 1.4106e-01, 4.6769e-01, 1.6319e-01, - 4.2617e-01, 6.8278e-01, 9.9952e-01, 7.2726e-01, - 5.3935e-01, 7.4477e-01, 6.4322e-01, 3.4132e-01, - 9.1885e-01, 8.9713e-01, 7.1047e-01, 6.7622e-01, - 5.4440e-01, 6.6700e-01, 5.7860e-01, 2.7002e-02, - 4.8064e-01, 4.6679e-01, 3.5471e-01, 7.7442e-01, - 1.8786e-01, 7.3381e-01, 5.6379e-01, 1.0770e-01, - 3.8089e-01, 4.8584e-01, 9.5384e-01, 8.6167e-01, - 2.0388e-02, 5.9740e-01, 6.5420e-01, 9.4518e-01, - 6.0007e-01, 9.4668e-01, 2.4456e-01, 1.9964e-01, - 7.2138e-01, 2.1021e-01, 4.1505e-02, 7.3214e-01, - 5.7585e-01, 2.6983e-01, 2.1348e-01, 2.7068e-01, - 6.3100e-02, 4.9250e-01, 2.3708e-01, 6.1793e-01, - 1.5893e-01, 5.2076e-01, 6.7793e-01, 7.4495e-01, - 4.5389e-02, 3.7724e-02, 2.2370e-01, 3.9055e-01, - 1.2615e-01, 3.4002e-01, 3.5834e-01, 7.8782e-02, - 4.9173e-01, 4.1157e-01, 6.6417e-01, 6.4484e-01, - 5.0083e-01, 4.2959e-01, 9.8685e-01, 3.5260e-01, - 4.2792e-02, 1.3207e-01, 9.1311e-01, 9.6641e-01, - 8.9353e-01, 7.3994e-01, 9.4765e-01, 6.5472e-01, - 1.5391e-01, 8.8154e-01, 6.2777e-01, 1.8012e-02, - 7.1259e-01, 6.7197e-01, 7.7261e-01, 4.6110e-01, - 6.2714e-01, 9.6933e-01, 6.1243e-01, 6.0628e-01, - 7.6382e-01, 9.6854e-01, 5.1705e-01, 8.5856e-01, - 3.1705e-01, 7.2350e-01, 9.4389e-02, 2.9574e-01, - 9.1463e-01, 2.0940e-01, 1.7609e-01, 7.3978e-01, - 9.2575e-01, 6.8811e-01, 1.6098e-01, 6.4482e-02, - 2.5061e-02, 5.2998e-01, 9.8449e-01, 5.4429e-01, - 6.8862e-01, 9.4297e-01, 7.7867e-01, 1.7015e-01, - 7.0622e-01, 3.6348e-01, 3.8057e-01, 7.0215e-01, - 8.9386e-01, 7.3907e-03, 6.8824e-01, 7.3556e-01, - 2.5358e-01, 6.8417e-01, 3.7956e-01, 4.3455e-01, - 3.0873e-01, 4.7848e-01, 8.7651e-01, 5.9179e-01, - 2.4253e-01, 9.6398e-01, 4.9589e-01, 9.5203e-01, - 9.5415e-01, 8.6776e-01, 1.1685e-01, 3.3088e-01, - 7.7341e-01, 8.3175e-01, 5.7462e-01, 1.3990e-01, - 9.0461e-01, 6.0410e-01, 8.4851e-01, 9.6942e-01, - 8.4864e-01, 6.3279e-01, 9.6144e-01, 1.5080e-01, - 8.9336e-02, 9.6933e-01, 4.5647e-01, 7.3363e-01, - 3.9520e-01, 5.6769e-01, 1.2489e-01, 5.1997e-01, - 1.6970e-01, 5.2122e-02, 4.9514e-01, 5.7753e-01, - 3.1179e-01, 8.2135e-01, 3.0969e-01, 1.9110e-01, - 9.3857e-02, 5.3521e-01, 3.5248e-01, 6.2581e-01, - 9.7808e-01, 5.1285e-01, 9.7337e-01, 2.5133e-01, - 4.4027e-01, 4.3065e-01, 2.5723e-01, 1.2854e-01, - 9.8939e-02, 9.0984e-01, 8.7231e-01, 9.3467e-01, - 7.2945e-01, 3.0576e-01, 1.3236e-01, 7.1361e-02, - 3.9339e-01, 3.1714e-01, 3.2872e-01, 5.1748e-01, - 5.5217e-01, 4.1788e-01, 7.8429e-01, 6.7386e-02, - 7.7600e-01, 4.0606e-01, 6.8449e-01, 5.7668e-02, - 9.0049e-01, 8.6218e-01, 3.3053e-01, 7.6311e-01, - 5.8454e-01, 1.8191e-01, 9.8940e-01, 1.1427e-02, - 6.7147e-01, 3.5037e-01, 8.0766e-01, 9.2500e-01, - 1.0255e-01, 9.5627e-01, 4.2546e-02, 1.7540e-01, - 5.4745e-01, 5.9252e-01, 1.4245e-01, 4.0475e-01, - 9.8581e-01, 3.8861e-01, 8.0536e-01, 6.9424e-01, - 6.3616e-01, 7.9450e-01, 3.0102e-01, 4.6604e-01, - 4.0082e-01, 7.9423e-01, 6.0621e-02, 7.6039e-01, - 2.8130e-01, 7.6283e-01, 8.3019e-01, 4.7440e-01, - 9.3373e-01, 2.3127e-01, 9.8599e-01, 1.0451e-01, - 4.4318e-01, 4.3340e-01, 1.2718e-01, 6.7560e-01, - 8.0438e-01, 2.4075e-01, 5.0321e-01, 2.8248e-01, - 6.0269e-01, 1.4597e-01, 1.3511e-01, 1.7491e-01, - 8.6251e-01, 4.5483e-01, 7.5964e-01, 2.8131e-01]), + col_indices=tensor([5850, 8366, 5592, 2122, 6679, 1664, 2469, 7640, 8756, + 2915, 7211, 1515, 5525, 1719, 3439, 4040, 8857, 5364, + 6132, 895, 3852, 156, 8811, 9741, 357, 3518, 4399, + 7286, 180, 9528, 5416, 6953, 1721, 2595, 7283, 9795, + 7825, 5079, 6282, 136, 4669, 6702, 3303, 3010, 2380, + 2256, 7997, 5883, 9682, 9926, 8146, 9663, 3941, 6670, + 9041, 817, 4692, 3045, 7544, 9848, 5442, 871, 3702, + 7376, 94, 6327, 3751, 7760, 7748, 920, 3358, 4678, + 8037, 93, 1218, 9719, 1249, 634, 196, 2894, 7487, + 1159, 8188, 332, 5966, 4396, 4268, 8665, 6886, 7804, + 7445, 4388, 7265, 7541, 8403, 5348, 9890, 2631, 5205, + 8499, 4507, 2643, 7756, 857, 4020, 8538, 7850, 4986, + 7312, 3766, 1567, 2852, 7235, 6927, 653, 379, 1077, + 6334, 4614, 1987, 3571, 6355, 1814, 6184, 9414, 2153, + 8882, 3562, 6625, 5036, 2967, 1233, 9339, 4935, 5597, + 9689, 4093, 5663, 8161, 6587, 3112, 612, 6031, 2698, + 3403, 9263, 9319, 8735, 104, 2810, 3672, 5639, 8827, + 5048, 8805, 1031, 9837, 9524, 6912, 3766, 3659, 7073, + 737, 797, 5226, 7104, 3103, 6515, 4992, 1665, 5226, + 6199, 6712, 6310, 7443, 3988, 2676, 2322, 244, 3312, + 4295, 2693, 9044, 9455, 7558, 2076, 364, 3468, 4685, + 2690, 1818, 1795, 8073, 8740, 3982, 5591, 7437, 4434, + 6272, 8601, 5896, 7206, 452, 124, 6062, 3722, 2858, + 3166, 6119, 1841, 8789, 9596, 5567, 5894, 7970, 5360, + 9933, 6197, 3790, 8303, 9150, 3759, 378, 6338, 8692, + 3037, 225, 8540, 8302, 3869, 1980, 7102, 3526, 84, + 2428, 5319, 4508, 9845, 2414, 8840, 833, 2752, 1575, + 8598, 7280, 7141, 2098, 7332, 9471, 7172, 6064, 5586, + 6496, 4719, 7246, 9857, 461, 1971, 1577, 2883, 521, + 887, 7601, 1096, 7587, 8032, 9839, 9759, 3694, 4208, + 2775, 4747, 9442, 6136, 6253, 7707, 4233, 955, 7815, + 9711, 2360, 974, 4097, 9684, 7356, 2815, 7178, 3217, + 6396, 7951, 6798, 3086, 4009, 4560, 5258, 4636, 5136, + 484, 5572, 9213, 7528, 8274, 5548, 1629, 8245, 2276, + 9250, 7073, 612, 1264, 8789, 9413, 9556, 4024, 8035, + 4389, 2075, 2015, 6780, 9946, 8182, 3173, 4875, 4374, + 7146, 6566, 1212, 3788, 6737, 1525, 4118, 597, 1164, + 95, 8578, 5382, 7, 4863, 8244, 8410, 5238, 6413, + 1176, 8621, 5893, 5470, 5285, 4907, 1576, 9176, 6701, + 5861, 5303, 5175, 2021, 3075, 7189, 9086, 6729, 1443, + 4021, 3184, 1282, 194, 3967, 741, 191, 6596, 1251, + 1613, 4577, 1550, 7988, 7486, 1702, 7074, 9193, 1036, + 2186, 5023, 2564, 6337, 940, 1519, 8948, 8449, 9328, + 479, 6279, 8562, 8923, 2685, 1574, 5617, 5722, 970, + 640, 8699, 1647, 1059, 8229, 1516, 892, 441, 4405, + 4899, 5037, 6072, 8409, 3457, 6678, 8778, 5168, 4725, + 1582, 2499, 3623, 3399, 2800, 6268, 2077, 192, 5047, + 1851, 3023, 9282, 7259, 5334, 5942, 1157, 8925, 7158, + 2680, 8224, 1863, 9792, 1845, 5045, 6307, 5364, 7590, + 3501, 3167, 5703, 4100, 6744, 3117, 6631, 2272, 3513, + 1946, 3024, 5825, 1185, 1348, 6559, 74, 4615, 3419, + 4395, 7611, 6167, 8539, 9714, 7761, 9431, 2318, 6641, + 1733, 4522, 5800, 6094, 9427, 1318, 4807, 6951, 6988, + 2813, 985, 7549, 9176, 9180, 4980, 2792, 4241, 7249, + 1163, 61, 7125, 2555, 6886, 8991, 196, 9270, 35, + 1529, 3941, 7793, 7718, 7033, 4030, 6810, 850, 9329, + 5979, 6544, 751, 4582, 8368, 565, 7754, 7052, 3290, + 8677, 983, 7257, 1909, 8475, 6667, 894, 6714, 9857, + 238, 8379, 8656, 2402, 83, 4439, 4472, 7734, 2074, + 3272, 618, 1715, 8742, 745, 2543, 7748, 5408, 6663, + 8178, 2886, 7594, 1196, 5498, 3894, 893, 8965, 6034, + 6443, 2520, 5737, 483, 2405, 4283, 6209, 1176, 448, + 606, 958, 8428, 3541, 8984, 1463, 4865, 173, 2388, + 4515, 610, 3428, 834, 1897, 3416, 3506, 6850, 7650, + 1567, 2088, 4588, 3271, 6086, 2429, 5007, 1641, 3405, + 5664, 2262, 1925, 5269, 9056, 8204, 5139, 609, 3768, + 1372, 8780, 3638, 7690, 2428, 8787, 4274, 9543, 7138, + 8745, 2025, 668, 6826, 8790, 6413, 9920, 6540, 348, + 4430, 4748, 8976, 1596, 914, 2089, 5266, 7048, 2343, + 5663, 5852, 3682, 5650, 2554, 2359, 5522, 968, 4538, + 556, 900, 332, 6036, 4210, 6798, 9668, 7214, 3249, + 934, 7260, 1264, 9553, 9573, 1341, 5076, 7088, 723, + 8670, 6474, 3175, 9943, 1202, 328, 6087, 194, 8768, + 258, 7554, 9741, 2069, 3477, 9790, 8686, 2875, 4984, + 7848, 4751, 5568, 9759, 8560, 7437, 4239, 7813, 4618, + 6633, 990, 5961, 926, 7923, 4657, 2745, 2212, 9361, + 5154, 9425, 4873, 6600, 5372, 8037, 7620, 2502, 3781, + 7433, 6170, 819, 1336, 484, 3513, 4395, 19, 8130, + 7693, 6153, 6352, 4202, 7488, 1192, 4764, 7301, 6821, + 6865, 6976, 937, 1234, 1710, 549, 5075, 6580, 8729, + 4805, 1375, 3711, 1305, 4371, 3503, 8608, 3833, 3074, + 1072, 7655, 4667, 966, 192, 6852, 7586, 1491, 9585, + 8090, 3373, 1438, 2850, 8318, 8429, 9764, 8245, 7536, + 1862, 6568, 9277, 3906, 4401, 671, 9709, 9370, 6046, + 9211, 9673, 4331, 921, 674, 7979, 374, 7224, 8804, + 5223, 9172, 2758, 3516, 3647, 8604, 8106, 9070, 2337, + 3498, 3861, 2253, 9022, 3709, 4466, 2031, 9776, 7382, + 6631, 6983, 229, 9213, 4744, 5134, 2773, 3818, 2045, + 3684, 5192, 2488, 8503, 6845, 9997, 5752, 1325, 8942, + 352, 1614, 4161, 7427, 7988, 1814, 8864, 5443, 6505, + 9390, 1752, 5714, 9392, 1996, 5576, 5760, 390, 6435, + 7898, 7417, 7401, 1217, 7128, 1412, 6756, 7275, 5202, + 2409, 1660, 2736, 5263, 8336, 8044, 3978, 3020, 5519, + 7853, 8427, 824, 1792, 4254, 4572, 5695, 1587, 1988, + 4588, 728, 1627, 3761, 5276, 8300, 992, 8389, 3069, + 3780, 9133, 145, 9462, 7403, 1537, 9647, 5057, 3362, + 9039, 6376, 8446, 4900, 5977, 7345, 4098, 447, 1820, + 252, 9481, 6404, 6592, 1295, 8043, 4753, 3605, 3518, + 2606, 2287, 9068, 9762, 699, 1959, 5988, 6313, 7817, + 5094, 8321, 2706, 7762, 8810, 5984, 698, 2889, 3562, + 3511, 7298, 3188, 9974, 5668, 6020, 8731, 9606, 2958, + 8385, 4702, 6639, 3111, 8106, 914, 952, 5956, 6944, + 6389, 6930, 4511, 693, 2408, 8878, 4458, 6005, 4687, + 5262, 264, 7556, 7239, 6348, 319, 3127, 4870, 9830, + 6495, 9430, 82, 2845, 2158, 7553, 2485, 4718, 9487, + 9863, 2351, 9993, 9611, 7651, 6752, 9890, 4226, 7914, + 1090, 3994, 273, 9314, 2869, 8105, 8063, 8350, 5143, + 2771, 6914, 6289, 1069, 6603, 7055, 1101, 2035, 1775, + 4440, 1100, 9988, 6654, 8779, 3492, 65, 3068, 7601, + 6582, 5059, 9136, 6153, 4692, 6999, 662, 8797, 8102, + 5680, 9525, 2546, 5756, 4348, 7370, 557, 1546, 4320, + 5734]), + values=tensor([1.6341e-01, 5.4230e-01, 5.9412e-01, 6.2649e-01, + 6.1492e-01, 1.1463e-02, 8.8850e-01, 3.1827e-01, + 1.4850e-01, 1.7623e-01, 5.0631e-01, 8.7356e-01, + 2.6593e-01, 3.7335e-01, 6.7543e-01, 8.1424e-01, + 3.7460e-01, 6.9153e-01, 8.0907e-01, 8.3914e-01, + 9.7417e-02, 3.4410e-04, 1.3414e-01, 2.2155e-01, + 6.0112e-02, 8.4328e-01, 2.7848e-01, 1.4958e-01, + 7.9439e-01, 7.7172e-01, 2.7028e-01, 1.6852e-01, + 6.2794e-01, 3.7628e-01, 7.9275e-01, 2.0746e-01, + 6.5757e-02, 6.6970e-01, 1.3521e-02, 6.0790e-01, + 5.0451e-01, 9.2714e-01, 7.8707e-01, 4.1523e-01, + 5.5244e-01, 9.7376e-01, 6.7472e-01, 9.9321e-01, + 9.5176e-01, 6.2001e-01, 7.8968e-01, 3.0430e-01, + 8.2453e-01, 9.4042e-02, 5.1519e-01, 8.5738e-01, + 5.8535e-01, 8.7087e-01, 6.5326e-01, 1.7395e-01, + 3.0247e-01, 7.3945e-02, 4.1833e-01, 8.0312e-01, + 8.8320e-01, 5.1558e-01, 2.5666e-01, 5.6112e-01, + 5.5084e-01, 7.0649e-01, 3.5059e-01, 7.8879e-01, + 5.2108e-02, 9.8239e-01, 3.4744e-01, 5.8319e-01, + 9.1928e-02, 4.9802e-02, 8.4140e-01, 2.0825e-01, + 6.5549e-01, 3.3967e-02, 4.5861e-01, 3.1781e-01, + 7.2623e-01, 4.3890e-01, 9.1717e-01, 6.7930e-01, + 2.2711e-01, 5.3114e-01, 9.4610e-01, 1.2012e-01, + 3.8896e-01, 9.0657e-01, 8.7514e-01, 9.4601e-01, + 6.8092e-01, 4.2792e-01, 7.8983e-01, 7.0867e-01, + 6.8668e-01, 7.3584e-01, 4.8951e-01, 1.1601e-01, + 5.8369e-01, 8.1548e-02, 4.6998e-01, 8.2472e-01, + 8.1798e-01, 6.4792e-01, 7.9098e-01, 4.6883e-01, + 5.3531e-01, 9.9356e-01, 2.4036e-01, 4.8060e-01, + 2.8861e-01, 8.7768e-01, 7.6854e-01, 2.6962e-01, + 9.4503e-01, 7.5491e-01, 6.3333e-01, 3.9724e-01, + 6.1673e-01, 9.9300e-01, 8.4452e-02, 6.1927e-01, + 7.8274e-01, 9.4288e-01, 5.5703e-01, 9.9018e-01, + 8.7030e-01, 6.7458e-01, 7.1377e-01, 3.9155e-01, + 4.0923e-01, 1.9269e-01, 7.8647e-01, 1.7260e-01, + 1.9351e-01, 1.6644e-02, 6.3159e-01, 4.2569e-01, + 3.5414e-01, 1.5447e-01, 6.0382e-01, 1.1039e-01, + 7.4996e-01, 9.7809e-01, 4.9703e-01, 6.8052e-02, + 4.0995e-03, 1.5993e-01, 2.5589e-01, 6.1582e-01, + 4.1141e-01, 8.3175e-01, 9.2280e-02, 6.6768e-01, + 2.1373e-01, 7.4338e-01, 3.8856e-01, 4.0554e-01, + 2.4237e-01, 6.8970e-01, 5.1570e-01, 2.2133e-04, + 8.5322e-01, 4.7984e-01, 4.1539e-01, 8.1641e-01, + 5.1215e-01, 7.5280e-01, 4.9588e-04, 8.3219e-01, + 1.3510e-01, 5.6800e-01, 8.8518e-01, 9.6846e-01, + 2.4576e-01, 9.1717e-01, 4.6194e-01, 4.1655e-01, + 8.5447e-01, 1.2544e-01, 6.0240e-01, 5.7586e-01, + 2.2428e-01, 4.5450e-01, 2.4531e-01, 3.5914e-01, + 5.8131e-01, 4.4973e-01, 3.0343e-01, 8.7101e-01, + 5.4478e-01, 5.0386e-01, 6.8135e-01, 4.2381e-01, + 3.1555e-02, 3.0972e-01, 2.4608e-01, 1.9970e-01, + 4.6368e-01, 9.9803e-01, 8.2862e-01, 8.5141e-01, + 8.7867e-01, 4.8625e-01, 5.2020e-01, 4.1959e-01, + 1.7473e-01, 2.5225e-01, 7.2666e-01, 9.2040e-01, + 1.8559e-01, 6.3520e-01, 4.5196e-01, 9.4681e-01, + 9.5216e-01, 1.0019e-01, 9.7707e-01, 4.5094e-01, + 5.0805e-01, 5.1974e-01, 5.3486e-01, 1.8077e-01, + 8.5364e-01, 7.2740e-01, 4.8004e-01, 6.8966e-01, + 2.0804e-01, 7.7792e-01, 6.3289e-01, 1.2722e-01, + 9.0620e-01, 4.9687e-01, 5.6847e-01, 1.3671e-01, + 4.0281e-01, 1.7219e-01, 1.9050e-01, 6.2485e-01, + 1.0260e-01, 2.5271e-02, 9.4031e-01, 9.4275e-01, + 7.8410e-03, 3.3465e-02, 3.6601e-01, 2.9329e-01, + 2.0289e-01, 8.1331e-01, 9.6038e-01, 7.8543e-01, + 8.1769e-01, 9.2929e-01, 5.1055e-01, 3.5358e-01, + 4.8515e-01, 3.5044e-01, 1.9924e-01, 8.1918e-01, + 2.9889e-01, 3.7500e-02, 2.3185e-01, 6.2795e-01, + 5.8909e-01, 1.2007e-01, 7.5640e-01, 8.0080e-01, + 8.4206e-01, 2.3327e-01, 8.8223e-01, 9.9512e-01, + 2.9164e-01, 4.3867e-01, 7.8315e-01, 9.6653e-01, + 4.0617e-01, 6.9039e-01, 4.3199e-01, 8.2813e-01, + 3.5563e-01, 9.1892e-01, 5.9521e-01, 8.9108e-01, + 3.7947e-01, 2.0591e-01, 6.7351e-01, 5.7368e-01, + 2.8254e-01, 6.7739e-02, 4.4276e-01, 9.7228e-01, + 4.6186e-01, 6.9010e-01, 8.4715e-01, 1.5150e-01, + 2.0227e-01, 3.6577e-01, 9.5994e-01, 2.5249e-01, + 6.5535e-02, 5.6708e-01, 7.2591e-01, 7.0050e-01, + 4.6753e-01, 9.1326e-02, 6.7496e-01, 5.8336e-01, + 3.1459e-01, 4.7441e-01, 6.5107e-01, 2.7592e-01, + 1.4742e-01, 4.5510e-01, 7.4301e-01, 4.8033e-01, + 1.4801e-01, 7.7726e-01, 9.3909e-01, 8.1948e-01, + 2.9724e-01, 8.1459e-01, 4.7430e-01, 3.8389e-01, + 5.8885e-02, 3.1119e-01, 5.3076e-01, 1.4421e-01, + 9.6859e-01, 9.4119e-01, 8.4274e-01, 8.1548e-02, + 4.2885e-02, 1.4390e-01, 9.9599e-01, 9.8519e-01, + 5.8954e-01, 4.9409e-01, 6.5081e-01, 4.7729e-01, + 7.1507e-01, 2.3377e-01, 3.5997e-01, 9.6579e-01, + 3.9773e-01, 2.1377e-02, 3.5134e-01, 6.4577e-01, + 9.9705e-01, 4.8704e-01, 4.2052e-01, 3.9684e-01, + 9.2759e-01, 3.0995e-01, 3.1089e-01, 7.6678e-01, + 5.4422e-04, 9.2904e-01, 1.6571e-01, 9.8144e-01, + 7.6337e-01, 8.8536e-01, 1.6786e-01, 9.4677e-01, + 3.5525e-01, 3.5127e-01, 1.3314e-01, 8.7067e-01, + 2.8725e-01, 6.7870e-01, 3.3831e-01, 4.6605e-01, + 7.4196e-01, 8.8785e-01, 9.6258e-01, 7.7168e-01, + 4.8538e-01, 2.0843e-01, 6.4007e-01, 1.9033e-01, + 3.4627e-01, 1.1059e-01, 7.1554e-01, 5.5574e-01, + 7.6910e-01, 7.3835e-01, 2.8739e-01, 6.9284e-01, + 7.5175e-02, 9.9640e-01, 9.1137e-01, 2.2022e-01, + 4.9205e-01, 9.0083e-01, 5.1433e-01, 4.3040e-01, + 3.8550e-01, 4.9743e-01, 2.3713e-01, 2.5804e-01, + 8.8147e-02, 9.0523e-02, 8.5804e-01, 1.4407e-01, + 3.2087e-01, 6.9830e-01, 5.0311e-02, 5.9795e-01, + 2.3588e-01, 9.7651e-01, 1.1260e-01, 6.7643e-01, + 7.7883e-01, 4.7514e-01, 7.6449e-01, 3.5045e-01, + 7.3614e-01, 8.8137e-01, 4.6469e-01, 4.9258e-01, + 8.1075e-01, 6.2703e-01, 1.2233e-01, 2.7440e-01, + 6.9122e-01, 7.3033e-01, 3.4342e-02, 1.2576e-01, + 8.0974e-01, 4.0072e-01, 6.0245e-01, 1.5077e-02, + 4.1940e-01, 2.0633e-01, 7.1347e-01, 8.3114e-01, + 3.1728e-01, 3.9989e-01, 6.0468e-01, 2.0407e-01, + 8.7073e-01, 4.3857e-01, 8.9954e-02, 6.5643e-01, + 5.8418e-01, 3.5790e-01, 6.7886e-01, 9.5451e-01, + 3.6580e-01, 3.0585e-01, 7.6034e-01, 6.5825e-02, + 2.9720e-01, 3.1525e-01, 3.2830e-01, 7.9663e-02, + 7.4797e-01, 4.5439e-01, 4.4041e-01, 6.1706e-01, + 1.4869e-01, 3.7743e-01, 6.0526e-01, 7.4958e-01, + 1.3105e-01, 3.9610e-01, 8.5301e-01, 8.1549e-01, + 8.5854e-02, 7.4522e-01, 7.4950e-01, 3.7042e-01, + 2.4261e-01, 1.7942e-01, 8.2764e-01, 1.6097e-01, + 2.2542e-01, 5.2571e-01, 1.0887e-01, 3.8000e-02, + 8.1497e-01, 8.0201e-01, 9.4936e-01, 2.6775e-01, + 9.4312e-01, 9.3715e-01, 6.7901e-02, 4.0906e-01, + 1.5251e-01, 2.4190e-01, 2.4089e-01, 2.6151e-01, + 6.2245e-01, 4.6082e-01, 5.0570e-01, 2.5937e-01, + 3.5881e-01, 2.2385e-01, 2.8770e-02, 1.7716e-01, + 5.4713e-02, 5.1027e-01, 3.1178e-02, 6.5533e-01, + 2.2465e-01, 6.9285e-01, 2.5103e-01, 3.0570e-01, + 3.7755e-03, 8.7853e-01, 6.5763e-01, 7.6528e-02, + 9.2357e-01, 9.3172e-01, 1.4133e-01, 9.0949e-01, + 3.7744e-01, 2.6587e-01, 8.7043e-01, 1.0112e-02, + 2.8448e-01, 7.2542e-02, 1.5147e-01, 2.2166e-01, + 9.7594e-01, 3.2101e-01, 3.2571e-01, 9.1645e-01, + 5.1688e-01, 9.8729e-02, 3.8775e-01, 7.4951e-01, + 2.4091e-01, 2.2275e-01, 8.9300e-01, 4.1567e-01, + 8.1383e-01, 7.1688e-01, 7.5982e-01, 9.9028e-02, + 1.0199e-01, 1.7657e-01, 8.1854e-01, 9.5101e-01, + 8.6789e-01, 7.9254e-01, 9.6088e-01, 8.2911e-01, + 7.9367e-01, 5.3301e-01, 8.6699e-02, 6.5008e-01, + 2.4111e-01, 4.0949e-01, 7.9876e-01, 6.0784e-01, + 8.6621e-01, 7.1156e-01, 3.6004e-01, 1.5720e-02, + 6.4658e-01, 3.4960e-01, 8.6761e-01, 8.2966e-01, + 9.8307e-01, 1.8464e-01, 5.4622e-01, 2.8174e-01, + 4.2027e-01, 6.2481e-01, 2.5893e-01, 5.8887e-01, + 8.4609e-01, 2.6754e-01, 5.9884e-01, 1.1711e-01, + 6.7826e-01, 2.8852e-01, 6.4017e-01, 1.2806e-02, + 3.1902e-03, 4.7820e-01, 8.9185e-01, 5.7234e-02, + 6.7506e-01, 8.4710e-01, 6.0623e-01, 2.2402e-01, + 4.0295e-01, 6.4904e-01, 9.2718e-01, 3.1307e-01, + 6.5796e-01, 3.5345e-01, 1.9087e-01, 2.1269e-01, + 5.7823e-01, 3.9982e-01, 4.3154e-01, 6.7568e-01, + 6.8414e-01, 2.4388e-01, 8.7462e-01, 4.2036e-02, + 3.5337e-01, 5.3395e-01, 9.2982e-01, 8.6034e-01, + 9.3195e-01, 6.8440e-01, 2.5818e-01, 7.2423e-01, + 1.2544e-01, 2.7728e-01, 6.8784e-01, 6.0665e-01, + 1.3165e-01, 8.5017e-01, 4.3265e-03, 8.0981e-01, + 7.9983e-01, 3.2596e-01, 4.9482e-01, 1.1663e-01, + 4.6665e-01, 9.3435e-01, 7.9541e-01, 7.1414e-01, + 5.3506e-02, 4.0912e-01, 6.8238e-01, 3.4773e-01, + 5.6049e-01, 7.1487e-01, 2.1138e-01, 8.1397e-01, + 5.4932e-01, 2.0457e-02, 5.6340e-02, 5.7141e-02, + 4.6515e-01, 1.4683e-01, 7.4366e-01, 4.1761e-02, + 5.1584e-02, 1.2634e-01, 4.6336e-01, 5.9261e-01, + 5.6130e-01, 7.8972e-02, 7.9983e-01, 2.2448e-01, + 1.8797e-01, 2.5057e-01, 7.7180e-01, 4.0901e-01, + 3.7017e-01, 4.0182e-01, 8.7125e-01, 2.8655e-01, + 1.4119e-01, 4.3303e-01, 6.6902e-01, 1.5943e-01, + 2.5892e-01, 5.0928e-01, 6.7761e-01, 3.2212e-02, + 3.0824e-01, 9.2674e-02, 3.6193e-02, 4.4219e-01, + 1.6390e-01, 5.9400e-01, 8.2224e-01, 6.9900e-01, + 5.2481e-01, 9.5165e-01, 4.4474e-01, 2.4445e-01, + 1.0981e-01, 9.3663e-01, 8.4897e-01, 9.5652e-01, + 4.6435e-01, 1.7098e-01, 5.9974e-01, 4.3018e-01, + 2.1721e-01, 3.8205e-01, 2.6684e-01, 2.6286e-01, + 8.1812e-01, 5.7012e-01, 6.3330e-01, 6.6896e-02, + 8.6486e-02, 5.7371e-01, 2.1333e-01, 5.1711e-01, + 3.0138e-01, 2.1686e-01, 9.4270e-01, 3.0485e-01, + 4.4156e-01, 9.5896e-01, 6.0745e-01, 1.5570e-01, + 4.1088e-01, 3.7352e-01, 3.6528e-01, 1.2019e-01, + 7.4565e-02, 5.5689e-01, 5.1790e-01, 1.3767e-01, + 1.2340e-01, 9.6204e-01, 1.6892e-01, 2.9572e-01, + 2.1066e-01, 3.3179e-01, 3.3274e-01, 8.4143e-01, + 8.3193e-01, 7.2407e-01, 7.0281e-01, 6.8041e-01, + 8.2730e-01, 1.8872e-01, 2.6244e-01, 2.1234e-01, + 7.4230e-01, 2.6976e-01, 6.3711e-01, 4.3716e-01, + 6.9298e-01, 8.1356e-01, 6.0939e-01, 7.0288e-01, + 3.5558e-01, 9.2964e-01, 1.1833e-01, 4.6906e-01, + 8.0664e-01, 4.8526e-01, 9.6169e-01, 4.1867e-01, + 8.3224e-01, 9.6285e-01, 9.5262e-01, 8.6424e-01, + 4.9817e-01, 5.4699e-01, 6.1704e-01, 3.9186e-01, + 6.8935e-01, 5.9439e-01, 7.3227e-01, 4.1190e-01, + 9.0233e-01, 3.2790e-01, 4.3206e-01, 5.5893e-01, + 5.8605e-02, 9.4473e-01, 2.4772e-01, 3.1700e-01, + 7.7245e-01, 5.5508e-01, 7.4692e-01, 1.2111e-01, + 8.0345e-01, 4.4160e-01, 6.1610e-01, 4.0302e-01, + 7.2755e-01, 5.2552e-01, 5.2678e-01, 1.3783e-01, + 6.7301e-01, 8.4666e-02, 9.7543e-01, 5.6391e-01, + 6.8981e-01, 5.0252e-01, 3.1345e-01, 8.3631e-01, + 5.1942e-01, 4.1463e-01, 3.8551e-01, 5.6612e-01, + 9.0226e-02, 4.5281e-01, 1.3323e-01, 8.3660e-01, + 3.3939e-01, 2.9707e-01, 3.8862e-01, 7.2849e-01, + 8.2419e-01, 6.6920e-01, 4.7306e-01, 8.6893e-01, + 7.5703e-01, 5.7027e-01, 5.4140e-01, 8.8231e-01, + 3.8567e-02, 3.5538e-01, 6.1680e-01, 5.9111e-01, + 4.5875e-01, 6.0458e-01, 7.5967e-02, 3.2091e-01, + 3.9756e-01, 5.3389e-01, 4.5029e-01, 1.5185e-01, + 6.9442e-01, 7.6304e-01, 4.6109e-01, 5.2312e-02, + 7.7110e-01, 4.8813e-01, 1.8485e-01, 9.4212e-01, + 2.0752e-01, 2.7050e-01, 8.0133e-01, 5.6501e-01, + 7.0480e-01, 3.7931e-01, 4.9377e-01, 7.7738e-01, + 6.5307e-01, 5.0050e-01, 1.0036e-01, 3.6651e-01, + 4.6488e-01, 6.5613e-01, 3.1970e-01, 5.0090e-01, + 2.3238e-01, 4.7361e-01, 4.2273e-01, 1.9837e-01, + 4.1443e-01, 2.8358e-01, 5.9909e-01, 4.6853e-01, + 1.5862e-01, 5.4860e-01, 9.4413e-01, 6.4800e-03, + 2.0553e-01, 6.7561e-01, 1.6860e-01, 5.9291e-01, + 2.2881e-01, 3.9992e-01, 6.9442e-01, 7.9259e-01, + 6.9638e-01, 7.6941e-01, 2.3646e-01, 7.2314e-01, + 1.4276e-01, 4.5362e-01, 5.5788e-01, 2.2118e-01, + 3.1804e-01, 6.9545e-01, 4.2483e-01, 3.3560e-01, + 3.3597e-01, 4.0398e-02, 1.9135e-01, 5.4384e-01, + 5.9982e-01, 9.7372e-01, 1.5970e-01, 6.0079e-01, + 5.9714e-01, 9.5044e-01, 5.0232e-01, 3.6790e-01, + 7.3455e-01, 8.0673e-01, 4.0026e-01, 6.3795e-02, + 8.2192e-01, 1.8676e-01, 1.9070e-01, 6.2954e-02, + 1.8591e-01, 1.6582e-01, 8.1810e-01, 1.1599e-02, + 4.7558e-01, 8.4737e-01, 7.5306e-01, 1.2992e-01, + 1.5127e-01, 2.0163e-01, 4.6257e-01, 3.4956e-01, + 9.0495e-01, 2.1175e-03, 9.4719e-01, 3.1681e-01, + 2.0418e-01, 5.3479e-02, 3.5683e-01, 5.8247e-02, + 9.3423e-01, 1.1090e-01, 4.3007e-01, 6.1117e-01, + 4.0593e-01, 1.1448e-02, 8.5302e-01, 2.5408e-01, + 9.1190e-01, 6.4738e-01, 2.7596e-01, 2.8235e-01, + 4.6522e-01, 8.7885e-01, 7.0320e-01, 4.2790e-01, + 2.9479e-02, 3.8500e-01, 3.9245e-01, 1.0004e-01, + 4.2397e-01, 7.1833e-01, 6.6614e-01, 4.6682e-02, + 5.8017e-01, 6.0782e-01, 4.8419e-01, 5.5802e-01, + 2.3916e-01, 1.4114e-01, 8.3739e-01, 1.0626e-01, + 5.1946e-01, 9.4847e-01, 4.1767e-01, 3.7856e-01, + 1.1090e-01, 1.5010e-01, 4.3945e-01, 7.5067e-02, + 9.8959e-01, 2.8002e-01, 5.0613e-01, 8.0707e-01, + 6.1595e-01, 8.2005e-01, 9.9749e-01, 1.1749e-01, + 6.5959e-01, 2.3371e-01, 8.3971e-01, 4.3270e-03, + 6.2581e-01, 8.0238e-01, 2.8393e-01, 7.0314e-01, + 2.0960e-01, 3.2954e-02, 6.5011e-01, 8.0206e-01, + 9.2215e-01, 8.1873e-01, 3.4350e-01, 2.8733e-01, + 1.9274e-01, 3.4014e-01, 3.0741e-01, 3.4144e-01, + 2.7448e-02, 7.6554e-01, 6.2323e-01, 3.0307e-01, + 4.5175e-01, 3.9421e-01, 8.5280e-01, 6.5476e-01, + 3.1057e-01, 3.6455e-01, 8.0890e-01, 2.7987e-01]), size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.4226, 0.0556, 0.1398, ..., 0.5751, 0.9814, 0.4838]) +tensor([0.7740, 0.9703, 0.1840, ..., 0.7477, 0.1526, 0.5369]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -1402,13 +1781,13 @@ Rows: 10000 Size: 100000000 NNZ: 1000 Density: 1e-05 -Time: 10.681929588317871 seconds +Time: 11.093939065933228 seconds -[41.15, 38.98, 39.75, 38.85, 39.88, 39.03, 39.18, 38.82, 39.8, 38.85] -[96.13] -13.135187864303589 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 362169, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.681929588317871, 'TIME_S_1KI': 0.029494323336116207, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1262.685609395504, 'W': 96.13} -[41.15, 38.98, 39.75, 38.85, 39.88, 39.03, 39.18, 38.82, 39.8, 38.85, 40.18, 39.93, 38.85, 39.83, 38.86, 39.3, 38.99, 39.61, 39.19, 46.97] -712.425 -35.621249999999996 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 362169, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.681929588317871, 'TIME_S_1KI': 0.029494323336116207, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1262.685609395504, 'W': 96.13, 'J_1KI': 3.4864541399056903, 'W_1KI': 0.2654285706396737, 'W_D': 60.50875, 'J_D': 794.7937986841798, 'W_D_1KI': 0.1670732448111241, 'J_D_1KI': 0.0004613129362566208} +[40.33, 40.0, 39.88, 40.14, 39.62, 39.53, 39.86, 39.53, 39.55, 39.82] +[98.79] +12.79684853553772 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 366482, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 11.093939065933228, 'TIME_S_1KI': 0.0302714432521467, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1264.2006668257713, 'W': 98.79} +[40.33, 40.0, 39.88, 40.14, 39.62, 39.53, 39.86, 39.53, 39.55, 39.82, 40.52, 39.54, 40.01, 39.91, 40.14, 39.87, 40.07, 39.9, 44.97, 39.44] +722.575 +36.128750000000004 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 366482, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 11.093939065933228, 'TIME_S_1KI': 0.0302714432521467, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1264.2006668257713, 'W': 98.79, 'J_1KI': 3.4495573229402026, 'W_1KI': 0.26956303447372587, 'W_D': 62.66125, 'J_D': 801.866525297463, 'W_D_1KI': 0.17098043014390885, 'J_D_1KI': 0.0004665452331735497} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_5e-05.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_5e-05.json new file mode 100644 index 0000000..c87bd7a --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 305580, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.080953121185303, "TIME_S_1KI": 0.032989571049104334, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1230.7398206591606, "W": 98.25, "J_1KI": 4.027553572416914, "W_1KI": 0.32151973296681724, "W_D": 62.38325, "J_D": 781.450889741838, "W_D_1KI": 0.20414703187381372, "J_D_1KI": 0.0006680641137306555} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_5e-05.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_5e-05.output new file mode 100644 index 0000000..9e7563d --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_5e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.018548250198364258} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 5000, 5000, 5000]), + col_indices=tensor([1572, 8127, 3303, ..., 3635, 8012, 8701]), + values=tensor([0.7029, 0.2681, 0.5472, ..., 0.1372, 0.6564, 0.9870]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.6228, 0.5154, 0.0077, ..., 0.6369, 0.2601, 0.0192]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 0.018548250198364258 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '56609', '-ss', '10000', '-sd', '5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 1.9451327323913574} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 4999, 4999, 5000]), + col_indices=tensor([3842, 387, 3686, ..., 4115, 6419, 2917]), + values=tensor([0.9231, 0.0215, 0.0697, ..., 0.2708, 0.2879, 0.7516]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.2403, 0.0214, 0.1380, ..., 0.6094, 0.2095, 0.9923]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 1.9451327323913574 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '305580', '-ss', '10000', '-sd', '5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.080953121185303} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 2, ..., 4999, 4999, 5000]), + col_indices=tensor([1481, 9557, 9045, ..., 186, 1024, 519]), + values=tensor([0.0681, 0.8562, 0.9064, ..., 0.7770, 0.2010, 0.9088]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.5005, 0.6529, 0.0782, ..., 0.6202, 0.1736, 0.9901]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 10.080953121185303 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 2, ..., 4999, 4999, 5000]), + col_indices=tensor([1481, 9557, 9045, ..., 186, 1024, 519]), + values=tensor([0.0681, 0.8562, 0.9064, ..., 0.7770, 0.2010, 0.9088]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.5005, 0.6529, 0.0782, ..., 0.6202, 0.1736, 0.9901]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 10.080953121185303 seconds + +[40.69, 39.86, 40.65, 39.74, 39.56, 39.52, 39.78, 39.47, 39.45, 39.45] +[98.25] +12.52661395072937 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 305580, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.080953121185303, 'TIME_S_1KI': 0.032989571049104334, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1230.7398206591606, 'W': 98.25} +[40.69, 39.86, 40.65, 39.74, 39.56, 39.52, 39.78, 39.47, 39.45, 39.45, 40.13, 40.88, 39.46, 41.14, 39.99, 39.46, 39.46, 39.44, 39.59, 39.5] +717.335 +35.86675 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 305580, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.080953121185303, 'TIME_S_1KI': 0.032989571049104334, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1230.7398206591606, 'W': 98.25, 'J_1KI': 4.027553572416914, 'W_1KI': 0.32151973296681724, 'W_D': 62.38325, 'J_D': 781.450889741838, 'W_D_1KI': 0.20414703187381372, 'J_D_1KI': 0.0006680641137306555} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_0.0001.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_0.0001.json new file mode 100644 index 0000000..0a007ba --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 1273, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.290857076644897, "TIME_S_1KI": 8.083941144261507, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2248.191835269928, "W": 120.44000000000001, "J_1KI": 1766.0580009975868, "W_1KI": 94.61115475255303, "W_D": 84.17750000000001, "J_D": 1571.2983079826834, "W_D_1KI": 66.12529457973291, "J_D_1KI": 51.944457643152326} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_0.0001.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_0.0001.output new file mode 100644 index 0000000..1b9241c --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_0.0001.output @@ -0,0 +1,68 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '500000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.824350118637085} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 55, 100, ..., 24999899, + 24999953, 25000000]), + col_indices=tensor([ 1283, 31647, 40047, ..., 487577, 491974, + 492635]), + values=tensor([0.2687, 0.0076, 0.0743, ..., 0.5051, 0.4444, 0.1527]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.2422, 0.7782, 0.2817, ..., 0.4809, 0.1219, 0.8722]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 0.824350118637085 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1273', '-ss', '500000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.290857076644897} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 45, 101, ..., 24999883, + 24999939, 25000000]), + col_indices=tensor([ 9313, 23523, 43031, ..., 488537, 498363, + 498593]), + values=tensor([0.9134, 0.4019, 0.3601, ..., 0.2723, 0.3306, 0.0527]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.9993, 0.9766, 0.6194, ..., 0.0672, 0.4807, 0.1643]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 10.290857076644897 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 45, 101, ..., 24999883, + 24999939, 25000000]), + col_indices=tensor([ 9313, 23523, 43031, ..., 488537, 498363, + 498593]), + values=tensor([0.9134, 0.4019, 0.3601, ..., 0.2723, 0.3306, 0.0527]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.9993, 0.9766, 0.6194, ..., 0.0672, 0.4807, 0.1643]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 10.290857076644897 seconds + +[40.99, 40.04, 40.78, 39.98, 40.28, 39.98, 39.98, 39.94, 40.19, 39.9] +[120.44] +18.66648817062378 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 1273, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.290857076644897, 'TIME_S_1KI': 8.083941144261507, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2248.191835269928, 'W': 120.44000000000001} +[40.99, 40.04, 40.78, 39.98, 40.28, 39.98, 39.98, 39.94, 40.19, 39.9, 41.12, 40.02, 40.17, 39.62, 39.57, 39.49, 39.52, 45.4, 39.55, 39.47] +725.25 +36.2625 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 1273, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.290857076644897, 'TIME_S_1KI': 8.083941144261507, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2248.191835269928, 'W': 120.44000000000001, 'J_1KI': 1766.0580009975868, 'W_1KI': 94.61115475255303, 'W_D': 84.17750000000001, 'J_D': 1571.2983079826834, 'W_D_1KI': 66.12529457973291, 'J_D_1KI': 51.944457643152326} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_1e-05.json index c41b46b..22e8b8e 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_1e-05.json +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_1e-05.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 21272, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.296250820159912, "TIME_S_1KI": 0.4840283386686683, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2004.567332353592, "W": 151.77, "J_1KI": 94.23501938480594, "W_1KI": 7.134731101918015, "W_D": 115.36950000000002, "J_D": 1523.7921252551082, "W_D_1KI": 5.423537984204589, "J_D_1KI": 0.2549613569107084} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 21531, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.381713628768921, "TIME_S_1KI": 0.48217517202029264, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2048.753864378929, "W": 153.79, "J_1KI": 95.15367908499043, "W_1KI": 7.142724443825182, "W_D": 117.79275, "J_D": 1569.2070470012427, "W_D_1KI": 5.4708443639403646, "J_D_1KI": 0.25409151288562376} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_1e-05.output index ff821c9..da8bd5c 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_1e-05.output +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_1e-05.output @@ -1,15 +1,15 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.5370402336120605} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '500000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.08279204368591309} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 10, ..., 2499988, +tensor(crow_indices=tensor([ 0, 5, 10, ..., 2499988, 2499995, 2500000]), - col_indices=tensor([ 667, 84326, 231414, ..., 445492, 452435, - 478533]), - values=tensor([0.3723, 0.9059, 0.5582, ..., 0.5128, 0.0660, 0.1881]), + col_indices=tensor([111354, 133493, 148601, ..., 214459, 291734, + 295580]), + values=tensor([0.7692, 0.5972, 0.6345, ..., 0.2595, 0.9828, 0.2512]), size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.0315, 0.2189, 0.8055, ..., 0.9902, 0.0196, 0.5860]) +tensor([0.1544, 0.9362, 0.6152, ..., 0.8648, 0.4518, 0.0330]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -17,20 +17,20 @@ Rows: 500000 Size: 250000000000 NNZ: 2500000 Density: 1e-05 -Time: 0.5370402336120605 seconds +Time: 0.08279204368591309 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '19551', '-ss', '500000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.650388717651367} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '12682', '-ss', '500000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 6.184589385986328} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 9, ..., 2499988, - 2499994, 2500000]), - col_indices=tensor([ 11262, 76750, 152870, ..., 221537, 283064, - 452441]), - values=tensor([0.8111, 0.5495, 0.0260, ..., 0.8118, 0.4893, 0.3789]), +tensor(crow_indices=tensor([ 0, 6, 12, ..., 2499985, + 2499992, 2500000]), + col_indices=tensor([135614, 168986, 215859, ..., 402290, 443216, + 486549]), + values=tensor([0.4455, 0.2288, 0.5445, ..., 0.6029, 0.8332, 0.9959]), size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.5436, 0.8281, 0.7063, ..., 0.1699, 0.2640, 0.5110]) +tensor([0.5969, 0.6605, 0.1157, ..., 0.5750, 0.9019, 0.4949]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -38,20 +38,20 @@ Rows: 500000 Size: 250000000000 NNZ: 2500000 Density: 1e-05 -Time: 9.650388717651367 seconds +Time: 6.184589385986328 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '21272', '-ss', '500000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.296250820159912} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '21531', '-ss', '500000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.381713628768921} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 6, 8, ..., 2499993, - 2499998, 2500000]), - col_indices=tensor([ 13054, 157067, 258216, ..., 445117, 194165, - 431781]), - values=tensor([0.8472, 0.4724, 0.5562, ..., 0.8941, 0.8667, 0.3682]), +tensor(crow_indices=tensor([ 0, 4, 6, ..., 2499988, + 2499995, 2500000]), + col_indices=tensor([192037, 290494, 298239, ..., 203209, 269872, + 299833]), + values=tensor([0.2087, 0.5501, 0.3490, ..., 0.1907, 0.4204, 0.3032]), size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.2043, 0.9144, 0.3718, ..., 0.9024, 0.4544, 0.2083]) +tensor([0.3717, 0.6256, 0.6803, ..., 0.1727, 0.9290, 0.7130]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -59,17 +59,17 @@ Rows: 500000 Size: 250000000000 NNZ: 2500000 Density: 1e-05 -Time: 10.296250820159912 seconds +Time: 10.381713628768921 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 6, 8, ..., 2499993, - 2499998, 2500000]), - col_indices=tensor([ 13054, 157067, 258216, ..., 445117, 194165, - 431781]), - values=tensor([0.8472, 0.4724, 0.5562, ..., 0.8941, 0.8667, 0.3682]), +tensor(crow_indices=tensor([ 0, 4, 6, ..., 2499988, + 2499995, 2500000]), + col_indices=tensor([192037, 290494, 298239, ..., 203209, 269872, + 299833]), + values=tensor([0.2087, 0.5501, 0.3490, ..., 0.1907, 0.4204, 0.3032]), size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.2043, 0.9144, 0.3718, ..., 0.9024, 0.4544, 0.2083]) +tensor([0.3717, 0.6256, 0.6803, ..., 0.1727, 0.9290, 0.7130]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -77,13 +77,13 @@ Rows: 500000 Size: 250000000000 NNZ: 2500000 Density: 1e-05 -Time: 10.296250820159912 seconds +Time: 10.381713628768921 seconds -[40.04, 40.36, 39.54, 40.31, 47.07, 40.26, 39.56, 39.95, 39.57, 41.2] -[151.77] -13.207928657531738 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 21272, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.296250820159912, 'TIME_S_1KI': 0.4840283386686683, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2004.567332353592, 'W': 151.77} -[40.04, 40.36, 39.54, 40.31, 47.07, 40.26, 39.56, 39.95, 39.57, 41.2, 46.29, 39.48, 40.21, 39.42, 40.34, 39.68, 39.47, 39.18, 40.2, 39.29] -728.01 -36.4005 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 21272, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.296250820159912, 'TIME_S_1KI': 0.4840283386686683, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2004.567332353592, 'W': 151.77, 'J_1KI': 94.23501938480594, 'W_1KI': 7.134731101918015, 'W_D': 115.36950000000002, 'J_D': 1523.7921252551082, 'W_D_1KI': 5.423537984204589, 'J_D_1KI': 0.2549613569107084} +[40.84, 39.87, 40.71, 40.09, 39.75, 39.79, 39.67, 39.6, 39.76, 40.21] +[153.79] +13.321762561798096 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 21531, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.381713628768921, 'TIME_S_1KI': 0.48217517202029264, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2048.753864378929, 'W': 153.79} +[40.84, 39.87, 40.71, 40.09, 39.75, 39.79, 39.67, 39.6, 39.76, 40.21, 41.58, 40.07, 40.12, 40.08, 39.68, 39.76, 39.59, 39.74, 40.65, 39.4] +719.9449999999999 +35.997249999999994 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 21531, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.381713628768921, 'TIME_S_1KI': 0.48217517202029264, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2048.753864378929, 'W': 153.79, 'J_1KI': 95.15367908499043, 'W_1KI': 7.142724443825182, 'W_D': 117.79275, 'J_D': 1569.2070470012427, 'W_D_1KI': 5.4708443639403646, 'J_D_1KI': 0.25409151288562376} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_5e-05.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_5e-05.json new file mode 100644 index 0000000..2972d33 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 2288, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.664037466049194, "TIME_S_1KI": 4.660855535860661, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2026.948439025879, "W": 124.48, "J_1KI": 885.9040380357864, "W_1KI": 54.40559440559441, "W_D": 87.53675000000001, "J_D": 1425.389450272322, "W_D_1KI": 38.25906905594406, "J_D_1KI": 16.721621090884643} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_5e-05.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_5e-05.output new file mode 100644 index 0000000..16454d4 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_5e-05.output @@ -0,0 +1,68 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '500000', '-sd', '5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.45888853073120117} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 24, 46, ..., 12499954, + 12499981, 12500000]), + col_indices=tensor([ 49072, 112972, 116125, ..., 361100, 370525, + 412609]), + values=tensor([0.2354, 0.3643, 0.0075, ..., 0.8603, 0.9033, 0.4787]), + size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.8534, 0.6179, 0.0838, ..., 0.4832, 0.1451, 0.6650]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 12500000 +Density: 5e-05 +Time: 0.45888853073120117 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '2288', '-ss', '500000', '-sd', '5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.664037466049194} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 27, 48, ..., 12499952, + 12499972, 12500000]), + col_indices=tensor([ 3842, 7633, 8971, ..., 455163, 462741, + 476944]), + values=tensor([0.8075, 0.4724, 0.8976, ..., 0.5541, 0.2969, 0.9431]), + size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.0930, 0.1654, 0.5776, ..., 0.1397, 0.2168, 0.6873]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 12500000 +Density: 5e-05 +Time: 10.664037466049194 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 27, 48, ..., 12499952, + 12499972, 12500000]), + col_indices=tensor([ 3842, 7633, 8971, ..., 455163, 462741, + 476944]), + values=tensor([0.8075, 0.4724, 0.8976, ..., 0.5541, 0.2969, 0.9431]), + size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.0930, 0.1654, 0.5776, ..., 0.1397, 0.2168, 0.6873]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 12500000 +Density: 5e-05 +Time: 10.664037466049194 seconds + +[40.58, 39.64, 39.65, 39.68, 39.54, 40.08, 40.01, 55.98, 39.52, 39.5] +[124.48] +16.283326148986816 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 2288, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.664037466049194, 'TIME_S_1KI': 4.660855535860661, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2026.948439025879, 'W': 124.48} +[40.58, 39.64, 39.65, 39.68, 39.54, 40.08, 40.01, 55.98, 39.52, 39.5, 40.22, 40.13, 39.62, 39.51, 44.89, 40.37, 40.29, 40.46, 39.51, 39.67] +738.865 +36.94325 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 2288, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.664037466049194, 'TIME_S_1KI': 4.660855535860661, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2026.948439025879, 'W': 124.48, 'J_1KI': 885.9040380357864, 'W_1KI': 54.40559440559441, 'W_D': 87.53675000000001, 'J_D': 1425.389450272322, 'W_D_1KI': 38.25906905594406, 'J_D_1KI': 16.721621090884643} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.0001.json index 8fb8b3c..f1d4670 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.0001.json +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.0001.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 91738, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.729677200317383, "TIME_S_1KI": 0.1169600078518976, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1421.8676947784425, "W": 116.68, "J_1KI": 15.49922272971334, "W_1KI": 1.2718829710697859, "W_D": 81.037, "J_D": 987.5205037860871, "W_D_1KI": 0.883352591074582, "J_D_1KI": 0.009629080545407377} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 94004, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 11.384105920791626, "TIME_S_1KI": 0.12110235650388947, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1783.8070621061327, "W": 114.34, "J_1KI": 18.975863389920992, "W_1KI": 1.2163312199480873, "W_D": 78.24925, "J_D": 1220.758831157148, "W_D_1KI": 0.8324034083656016, "J_D_1KI": 0.008854978600544674} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.0001.output index e8b4fe3..0b0a270 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.0001.output +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.0001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.13608026504516602} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.04173541069030762} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 12, ..., 249989, 249998, +tensor(crow_indices=tensor([ 0, 5, 9, ..., 249994, 249996, 250000]), - col_indices=tensor([17323, 35611, 42973, ..., 47252, 2994, 12259]), - values=tensor([0.7287, 0.3464, 0.0193, ..., 0.7636, 0.2298, 0.3699]), + col_indices=tensor([ 2875, 11250, 41033, ..., 32140, 46339, 48534]), + values=tensor([0.9791, 0.8918, 0.3698, ..., 0.3708, 0.0646, 0.7857]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.4030, 0.5063, 0.1399, ..., 0.2219, 0.6631, 0.1030]) +tensor([0.2100, 0.1946, 0.2511, ..., 0.6374, 0.0985, 0.4430]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -16,19 +16,19 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 0.13608026504516602 seconds +Time: 0.04173541069030762 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '77160', '-ss', '50000', '-sd', '0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.564647197723389} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '25158', '-ss', '50000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 2.8100624084472656} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 5, 10, ..., 249992, 249997, +tensor(crow_indices=tensor([ 0, 2, 7, ..., 249990, 249993, 250000]), - col_indices=tensor([ 7731, 9587, 38710, ..., 32177, 32664, 36235]), - values=tensor([0.0671, 0.3654, 0.2011, ..., 0.4377, 0.9797, 0.5456]), + col_indices=tensor([41615, 42906, 15488, ..., 31340, 31947, 35417]), + values=tensor([0.0772, 0.0729, 0.2688, ..., 0.4463, 0.5032, 0.2162]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.4354, 0.6450, 0.5949, ..., 0.4585, 0.1162, 0.0017]) +tensor([0.5388, 0.5198, 0.1392, ..., 0.7254, 0.7688, 0.9922]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -36,19 +36,19 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 9.564647197723389 seconds +Time: 2.8100624084472656 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '84705', '-ss', '50000', '-sd', '0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.694962739944458} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '94004', '-ss', '50000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 11.384105920791626} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 11, ..., 249991, 249993, +tensor(crow_indices=tensor([ 0, 6, 13, ..., 249985, 249990, 250000]), - col_indices=tensor([19445, 22750, 27321, ..., 31731, 39710, 46259]), - values=tensor([0.4009, 0.2006, 0.6920, ..., 0.2884, 0.6470, 0.2171]), + col_indices=tensor([ 2939, 14473, 20084, ..., 45023, 47616, 49448]), + values=tensor([0.6894, 0.8051, 0.8240, ..., 0.7425, 0.1769, 0.4023]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.3109, 0.8999, 0.0558, ..., 0.1822, 0.8563, 0.0744]) +tensor([0.4931, 0.5539, 0.3107, ..., 0.8523, 0.9706, 0.6879]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -56,19 +56,16 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 9.694962739944458 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '91738', '-ss', '50000', '-sd', '0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.729677200317383} +Time: 11.384105920791626 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 7, ..., 249990, 249995, +tensor(crow_indices=tensor([ 0, 6, 13, ..., 249985, 249990, 250000]), - col_indices=tensor([20378, 29361, 44885, ..., 25194, 39048, 45113]), - values=tensor([0.6839, 0.7204, 0.3118, ..., 0.2854, 0.8671, 0.0496]), + col_indices=tensor([ 2939, 14473, 20084, ..., 45023, 47616, 49448]), + values=tensor([0.6894, 0.8051, 0.8240, ..., 0.7425, 0.1769, 0.4023]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.2159, 0.7026, 0.3184, ..., 0.1135, 0.4559, 0.6374]) +tensor([0.4931, 0.5539, 0.3107, ..., 0.8523, 0.9706, 0.6879]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -76,30 +73,13 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 10.729677200317383 seconds +Time: 11.384105920791626 seconds -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 7, ..., 249990, 249995, - 250000]), - col_indices=tensor([20378, 29361, 44885, ..., 25194, 39048, 45113]), - values=tensor([0.6839, 0.7204, 0.3118, ..., 0.2854, 0.8671, 0.0496]), - size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.2159, 0.7026, 0.3184, ..., 0.1135, 0.4559, 0.6374]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 250000 -Density: 0.0001 -Time: 10.729677200317383 seconds - -[40.36, 39.52, 40.11, 39.22, 40.19, 39.14, 40.18, 39.47, 39.42, 39.16] -[116.68] -12.186044692993164 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 91738, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.729677200317383, 'TIME_S_1KI': 0.1169600078518976, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1421.8676947784425, 'W': 116.68} -[40.36, 39.52, 40.11, 39.22, 40.19, 39.14, 40.18, 39.47, 39.42, 39.16, 39.82, 39.18, 40.07, 39.1, 40.14, 39.1, 40.11, 39.11, 39.63, 39.0] -712.86 -35.643 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 91738, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.729677200317383, 'TIME_S_1KI': 0.1169600078518976, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1421.8676947784425, 'W': 116.68, 'J_1KI': 15.49922272971334, 'W_1KI': 1.2718829710697859, 'W_D': 81.037, 'J_D': 987.5205037860871, 'W_D_1KI': 0.883352591074582, 'J_D_1KI': 0.009629080545407377} +[40.36, 39.91, 39.67, 39.83, 39.58, 39.72, 40.16, 39.72, 39.91, 39.98] +[114.34] +15.600901365280151 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 94004, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 11.384105920791626, 'TIME_S_1KI': 0.12110235650388947, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1783.8070621061327, 'W': 114.34} +[40.36, 39.91, 39.67, 39.83, 39.58, 39.72, 40.16, 39.72, 39.91, 39.98, 40.89, 39.87, 39.99, 39.51, 39.5, 39.56, 39.75, 45.01, 39.69, 39.64] +721.815 +36.09075 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 94004, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 11.384105920791626, 'TIME_S_1KI': 0.12110235650388947, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1783.8070621061327, 'W': 114.34, 'J_1KI': 18.975863389920992, 'W_1KI': 1.2163312199480873, 'W_D': 78.24925, 'J_D': 1220.758831157148, 'W_D_1KI': 0.8324034083656016, 'J_D_1KI': 0.008854978600544674} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.001.json index 18b313c..ca129d7 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.001.json +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.001.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 46932, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.4467294216156, "TIME_S_1KI": 0.22259288804260632, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1943.0940554380418, "W": 146.55, "J_1KI": 41.40232795188873, "W_1KI": 3.122602914855536, "W_D": 110.75150000000002, "J_D": 1468.4447716195587, "W_D_1KI": 2.3598291144634795, "J_D_1KI": 0.05028187834448734} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 46418, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.356630086898804, "TIME_S_1KI": 0.22311668074666732, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1954.5975055408476, "W": 147.82, "J_1KI": 42.10861100307742, "W_1KI": 3.1845404799862123, "W_D": 111.69725, "J_D": 1476.952822525859, "W_D_1KI": 2.4063348270067646, "J_D_1KI": 0.051840553815476} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.001.output index c54c9fb..0dda590 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.001.output +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.2965991497039795} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.06997370719909668} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 49, 105, ..., 2499896, - 2499948, 2500000]), - col_indices=tensor([ 1888, 3456, 5299, ..., 45108, 48153, 49689]), - values=tensor([0.2133, 0.4832, 0.5162, ..., 0.1550, 0.2104, 0.0398]), +tensor(crow_indices=tensor([ 0, 52, 102, ..., 2499883, + 2499945, 2500000]), + col_indices=tensor([ 266, 347, 3014, ..., 46062, 47055, 47354]), + values=tensor([0.8937, 0.7241, 0.1967, ..., 0.6923, 0.3348, 0.4624]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.8558, 0.3690, 0.3196, ..., 0.7609, 0.2901, 0.1393]) +tensor([0.3743, 0.1265, 0.3703, ..., 0.6234, 0.9781, 0.6963]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -16,19 +16,19 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 0.2965991497039795 seconds +Time: 0.06997370719909668 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '35401', '-ss', '50000', '-sd', '0.001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 7.9200310707092285} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '15005', '-ss', '50000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 3.3941891193389893} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 50, 98, ..., 2499887, - 2499942, 2500000]), - col_indices=tensor([ 1341, 6881, 6901, ..., 49243, 49539, 49603]), - values=tensor([0.6621, 0.7599, 0.1509, ..., 0.9636, 0.0388, 0.7851]), +tensor(crow_indices=tensor([ 0, 54, 97, ..., 2499911, + 2499955, 2500000]), + col_indices=tensor([ 2370, 4930, 5051, ..., 41423, 44524, 44646]), + values=tensor([0.0412, 0.5807, 0.8088, ..., 0.8046, 0.7553, 0.5801]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.4875, 0.8207, 0.8190, ..., 0.4243, 0.1238, 0.4257]) +tensor([0.6465, 0.4915, 0.1151, ..., 0.6682, 0.4745, 0.9594]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -36,19 +36,19 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 7.9200310707092285 seconds +Time: 3.3941891193389893 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '46932', '-ss', '50000', '-sd', '0.001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.4467294216156} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '46418', '-ss', '50000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.356630086898804} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 37, 82, ..., 2499888, - 2499942, 2500000]), - col_indices=tensor([ 2117, 2189, 2263, ..., 47568, 48115, 49415]), - values=tensor([0.8006, 0.3321, 0.7026, ..., 0.2322, 0.3552, 0.1894]), +tensor(crow_indices=tensor([ 0, 46, 86, ..., 2499896, + 2499949, 2500000]), + col_indices=tensor([ 1254, 3268, 3363, ..., 48004, 48805, 49373]), + values=tensor([0.4618, 0.8696, 0.7740, ..., 0.9354, 0.3130, 0.0156]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.9529, 0.8532, 0.0899, ..., 0.0711, 0.7399, 0.8898]) +tensor([0.3463, 0.0749, 0.0037, ..., 0.8223, 0.0446, 0.2738]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -56,16 +56,16 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 10.4467294216156 seconds +Time: 10.356630086898804 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 37, 82, ..., 2499888, - 2499942, 2500000]), - col_indices=tensor([ 2117, 2189, 2263, ..., 47568, 48115, 49415]), - values=tensor([0.8006, 0.3321, 0.7026, ..., 0.2322, 0.3552, 0.1894]), +tensor(crow_indices=tensor([ 0, 46, 86, ..., 2499896, + 2499949, 2500000]), + col_indices=tensor([ 1254, 3268, 3363, ..., 48004, 48805, 49373]), + values=tensor([0.4618, 0.8696, 0.7740, ..., 0.9354, 0.3130, 0.0156]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.9529, 0.8532, 0.0899, ..., 0.0711, 0.7399, 0.8898]) +tensor([0.3463, 0.0749, 0.0037, ..., 0.8223, 0.0446, 0.2738]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -73,13 +73,13 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 10.4467294216156 seconds +Time: 10.356630086898804 seconds -[40.61, 39.27, 40.33, 39.32, 40.41, 39.18, 40.21, 39.47, 39.59, 40.71] -[146.55] -13.258915424346924 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 46932, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.4467294216156, 'TIME_S_1KI': 0.22259288804260632, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1943.0940554380418, 'W': 146.55} -[40.61, 39.27, 40.33, 39.32, 40.41, 39.18, 40.21, 39.47, 39.59, 40.71, 40.22, 40.14, 39.29, 40.17, 39.21, 40.37, 39.38, 39.54, 39.32, 40.0] -715.9699999999999 -35.7985 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 46932, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.4467294216156, 'TIME_S_1KI': 0.22259288804260632, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1943.0940554380418, 'W': 146.55, 'J_1KI': 41.40232795188873, 'W_1KI': 3.122602914855536, 'W_D': 110.75150000000002, 'J_D': 1468.4447716195587, 'W_D_1KI': 2.3598291144634795, 'J_D_1KI': 0.05028187834448734} +[40.8, 41.43, 39.77, 40.05, 40.2, 40.01, 40.25, 39.8, 39.91, 39.83] +[147.82] +13.222821712493896 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 46418, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.356630086898804, 'TIME_S_1KI': 0.22311668074666732, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1954.5975055408476, 'W': 147.82} +[40.8, 41.43, 39.77, 40.05, 40.2, 40.01, 40.25, 39.8, 39.91, 39.83, 40.83, 39.7, 40.25, 40.38, 40.19, 39.67, 41.03, 39.72, 39.6, 39.53] +722.4549999999999 +36.122749999999996 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 46418, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.356630086898804, 'TIME_S_1KI': 0.22311668074666732, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1954.5975055408476, 'W': 147.82, 'J_1KI': 42.10861100307742, 'W_1KI': 3.1845404799862123, 'W_D': 111.69725, 'J_D': 1476.952822525859, 'W_D_1KI': 2.4063348270067646, 'J_D_1KI': 0.051840553815476} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.01.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.01.json new file mode 100644 index 0000000..ce3aa00 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 1681, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.72816252708435, "TIME_S_1KI": 6.382012211233998, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2210.374014186859, "W": 116.29999999999998, "J_1KI": 1314.9161297958708, "W_1KI": 69.18500892325996, "W_D": 80.01049999999998, "J_D": 1520.6631991581912, "W_D_1KI": 47.596966091612124, "J_D_1KI": 28.314673463183894} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.01.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.01.output new file mode 100644 index 0000000..fde54b7 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.01.output @@ -0,0 +1,65 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.6244547367095947} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 524, 1064, ..., 24999000, + 24999502, 25000000]), + col_indices=tensor([ 60, 76, 165, ..., 49872, 49944, 49977]), + values=tensor([0.3464, 0.5127, 0.2524, ..., 0.4585, 0.6152, 0.8409]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.3169, 0.2467, 0.7317, ..., 0.4966, 0.9013, 0.2021]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 0.6244547367095947 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1681', '-ss', '50000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.72816252708435} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 503, 984, ..., 24998995, + 24999487, 25000000]), + col_indices=tensor([ 80, 111, 167, ..., 49695, 49904, 49943]), + values=tensor([0.9741, 0.4832, 0.1000, ..., 0.9253, 0.4991, 0.7681]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.5734, 0.0323, 0.0030, ..., 0.5787, 0.7337, 0.7260]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 10.72816252708435 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 503, 984, ..., 24998995, + 24999487, 25000000]), + col_indices=tensor([ 80, 111, 167, ..., 49695, 49904, 49943]), + values=tensor([0.9741, 0.4832, 0.1000, ..., 0.9253, 0.4991, 0.7681]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.5734, 0.0323, 0.0030, ..., 0.5787, 0.7337, 0.7260]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 10.72816252708435 seconds + +[40.52, 40.33, 46.14, 39.67, 40.04, 40.05, 39.67, 39.99, 39.82, 39.93] +[116.3] +19.0057954788208 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 1681, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.72816252708435, 'TIME_S_1KI': 6.382012211233998, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2210.374014186859, 'W': 116.29999999999998} +[40.52, 40.33, 46.14, 39.67, 40.04, 40.05, 39.67, 39.99, 39.82, 39.93, 42.61, 39.87, 39.87, 39.75, 39.67, 39.77, 39.75, 39.54, 40.39, 39.88] +725.7900000000001 +36.289500000000004 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 1681, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.72816252708435, 'TIME_S_1KI': 6.382012211233998, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2210.374014186859, 'W': 116.29999999999998, 'J_1KI': 1314.9161297958708, 'W_1KI': 69.18500892325996, 'W_D': 80.01049999999998, 'J_D': 1520.6631991581912, 'W_D_1KI': 47.596966091612124, 'J_D_1KI': 28.314673463183894} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_1e-05.json index a53c562..73ac2d2 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_1e-05.json +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_1e-05.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 132622, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.695917844772339, "TIME_S_1KI": 0.08064964971703291, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1381.936604347229, "W": 102.52, "J_1KI": 10.420115850667528, "W_1KI": 0.7730240834853945, "W_D": 66.90350000000001, "J_D": 901.8376473755837, "W_D_1KI": 0.5044675845636472, "J_D_1KI": 0.0038038001580706607} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 128261, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.553161382675171, "TIME_S_1KI": 0.08227880168309283, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1360.8756747579575, "W": 104.26, "J_1KI": 10.610206335191194, "W_1KI": 0.8128737496199158, "W_D": 68.19500000000001, "J_D": 890.1296435844899, "W_D_1KI": 0.5316892898075019, "J_D_1KI": 0.004145369908292481} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_1e-05.output index 89e9f79..b70442e 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_1e-05.output +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_1e-05.output @@ -1,13 +1,13 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.13474559783935547} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.0555570125579834} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 24998, 24999, 25000]), - col_indices=tensor([43476, 3093, 41733, ..., 42921, 16006, 37299]), - values=tensor([0.8834, 0.6775, 0.5620, ..., 0.7889, 0.3307, 0.4663]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 25000, 25000, 25000]), + col_indices=tensor([42051, 34515, 37611, ..., 41473, 46289, 26191]), + values=tensor([0.0144, 0.4378, 0.1715, ..., 0.0832, 0.5030, 0.6687]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.1655, 0.9515, 0.3152, ..., 0.5133, 0.8067, 0.9282]) +tensor([0.1124, 0.4102, 0.7912, ..., 0.3553, 0.2259, 0.3847]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -15,37 +15,18 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 0.13474559783935547 seconds +Time: 0.0555570125579834 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '77924', '-ss', '50000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 6.767163991928101} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 25000, 25000, 25000]), - col_indices=tensor([35071, 44060, 31911, ..., 37021, 35082, 17458]), - values=tensor([0.6370, 0.7388, 0.5924, ..., 0.3636, 0.5677, 0.2522]), - size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.8033, 0.0482, 0.8958, ..., 0.4016, 0.2560, 0.2344]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 25000 -Density: 1e-05 -Time: 6.767163991928101 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '120907', '-ss', '50000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.572461605072021} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '18899', '-ss', '50000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 1.547147274017334} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 24999, 25000, 25000]), - col_indices=tensor([ 3082, 46101, 46713, ..., 40768, 36655, 17054]), - values=tensor([0.2693, 0.1416, 0.6603, ..., 0.5561, 0.2474, 0.5454]), + col_indices=tensor([ 9684, 40954, 42907, ..., 26506, 37971, 35337]), + values=tensor([0.0766, 0.5354, 0.2778, ..., 0.4912, 0.6494, 0.7856]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.5277, 0.5906, 0.6144, ..., 0.6636, 0.4334, 0.5688]) +tensor([0.2325, 0.6288, 0.8060, ..., 0.4059, 0.0257, 0.5351]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -53,18 +34,18 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 9.572461605072021 seconds +Time: 1.547147274017334 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '132622', '-ss', '50000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.695917844772339} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '128261', '-ss', '50000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.553161382675171} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 24998, 24998, 25000]), - col_indices=tensor([ 1978, 29423, 7022, ..., 46456, 14629, 46564]), - values=tensor([0.3729, 0.4306, 0.6677, ..., 0.7805, 0.6392, 0.2909]), +tensor(crow_indices=tensor([ 0, 0, 2, ..., 24999, 24999, 25000]), + col_indices=tensor([43490, 45422, 41208, ..., 48729, 34812, 29106]), + values=tensor([0.6729, 0.4582, 0.1719, ..., 0.9792, 0.1938, 0.4197]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.9195, 0.7845, 0.1112, ..., 0.9886, 0.0043, 0.8706]) +tensor([0.3715, 0.8721, 0.7070, ..., 0.0207, 0.1985, 0.3006]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -72,15 +53,15 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 10.695917844772339 seconds +Time: 10.553161382675171 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 24998, 24998, 25000]), - col_indices=tensor([ 1978, 29423, 7022, ..., 46456, 14629, 46564]), - values=tensor([0.3729, 0.4306, 0.6677, ..., 0.7805, 0.6392, 0.2909]), +tensor(crow_indices=tensor([ 0, 0, 2, ..., 24999, 24999, 25000]), + col_indices=tensor([43490, 45422, 41208, ..., 48729, 34812, 29106]), + values=tensor([0.6729, 0.4582, 0.1719, ..., 0.9792, 0.1938, 0.4197]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.9195, 0.7845, 0.1112, ..., 0.9886, 0.0043, 0.8706]) +tensor([0.3715, 0.8721, 0.7070, ..., 0.0207, 0.1985, 0.3006]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -88,13 +69,13 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 10.695917844772339 seconds +Time: 10.553161382675171 seconds -[40.91, 39.21, 40.28, 39.06, 40.18, 39.24, 39.39, 39.11, 40.12, 39.03] -[102.52] -13.4796781539917 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 132622, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.695917844772339, 'TIME_S_1KI': 0.08064964971703291, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1381.936604347229, 'W': 102.52} -[40.91, 39.21, 40.28, 39.06, 40.18, 39.24, 39.39, 39.11, 40.12, 39.03, 40.67, 39.4, 40.19, 38.91, 39.61, 38.93, 39.87, 39.08, 40.01, 38.87] -712.3299999999999 -35.616499999999995 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 132622, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.695917844772339, 'TIME_S_1KI': 0.08064964971703291, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1381.936604347229, 'W': 102.52, 'J_1KI': 10.420115850667528, 'W_1KI': 0.7730240834853945, 'W_D': 66.90350000000001, 'J_D': 901.8376473755837, 'W_D_1KI': 0.5044675845636472, 'J_D_1KI': 0.0038038001580706607} +[42.38, 39.84, 39.75, 39.86, 39.86, 40.05, 40.23, 39.88, 39.93, 39.73] +[104.26] +13.052711248397827 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 128261, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.553161382675171, 'TIME_S_1KI': 0.08227880168309283, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1360.8756747579575, 'W': 104.26} +[42.38, 39.84, 39.75, 39.86, 39.86, 40.05, 40.23, 39.88, 39.93, 39.73, 40.22, 39.71, 39.72, 39.44, 39.86, 40.03, 39.57, 39.83, 40.02, 45.11] +721.3 +36.065 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 128261, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.553161382675171, 'TIME_S_1KI': 0.08227880168309283, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1360.8756747579575, 'W': 104.26, 'J_1KI': 10.610206335191194, 'W_1KI': 0.8128737496199158, 'W_D': 68.19500000000001, 'J_D': 890.1296435844899, 'W_D_1KI': 0.5316892898075019, 'J_D_1KI': 0.004145369908292481} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_5e-05.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_5e-05.json new file mode 100644 index 0000000..b465c9c --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 110115, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 11.965436697006226, "TIME_S_1KI": 0.1086630949190049, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1446.9478559374809, "W": 111.69, "J_1KI": 13.14033379591773, "W_1KI": 1.0143032284429914, "W_D": 75.71975, "J_D": 980.9520092633368, "W_D_1KI": 0.6876424646959997, "J_D_1KI": 0.006244766514062568} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_5e-05.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_5e-05.output new file mode 100644 index 0000000..b1f3c1f --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_5e-05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.05198168754577637} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 2, ..., 124998, 124999, + 125000]), + col_indices=tensor([ 927, 8914, 5646, ..., 41839, 2622, 37662]), + values=tensor([0.2093, 0.3505, 0.4434, ..., 0.7585, 0.2953, 0.8139]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.7158, 0.3261, 0.8838, ..., 0.1644, 0.9864, 0.1779]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 0.05198168754577637 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '20199', '-ss', '50000', '-sd', '5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 1.9260566234588623} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 7, 9, ..., 124993, 124995, + 125000]), + col_indices=tensor([ 5280, 12669, 18309, ..., 32915, 33761, 44585]), + values=tensor([0.1104, 0.6442, 0.1166, ..., 0.0611, 0.5204, 0.6774]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.3981, 0.9235, 0.5295, ..., 0.9056, 0.3690, 0.2596]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 1.9260566234588623 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '110115', '-ss', '50000', '-sd', '5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 11.965436697006226} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 7, ..., 124990, 124994, + 125000]), + col_indices=tensor([ 332, 15911, 38702, ..., 27905, 36936, 47310]), + values=tensor([0.9967, 0.4995, 0.1475, ..., 0.0565, 0.7404, 0.0608]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.3103, 0.3240, 0.6987, ..., 0.1758, 0.7445, 0.7079]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 11.965436697006226 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 7, ..., 124990, 124994, + 125000]), + col_indices=tensor([ 332, 15911, 38702, ..., 27905, 36936, 47310]), + values=tensor([0.9967, 0.4995, 0.1475, ..., 0.0565, 0.7404, 0.0608]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.3103, 0.3240, 0.6987, ..., 0.1758, 0.7445, 0.7079]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 11.965436697006226 seconds + +[40.59, 40.33, 40.2, 40.19, 39.75, 39.57, 39.56, 39.52, 39.58, 39.6] +[111.69] +12.955034971237183 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 110115, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 11.965436697006226, 'TIME_S_1KI': 0.1086630949190049, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1446.9478559374809, 'W': 111.69} +[40.59, 40.33, 40.2, 40.19, 39.75, 39.57, 39.56, 39.52, 39.58, 39.6, 40.22, 41.59, 39.67, 40.02, 39.96, 39.85, 39.52, 40.16, 39.94, 39.58] +719.405 +35.97025 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 110115, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 11.965436697006226, 'TIME_S_1KI': 0.1086630949190049, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1446.9478559374809, 'W': 111.69, 'J_1KI': 13.14033379591773, 'W_1KI': 1.0143032284429914, 'W_D': 75.71975, 'J_D': 980.9520092633368, 'W_D_1KI': 0.6876424646959997, 'J_D_1KI': 0.006244766514062568} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.0001.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.0001.json index c740a6d..2c10823 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.0001.json +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.0001.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 450692, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.661210536956787, "TIME_S_1KI": 0.023655202526241394, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1274.7642656326295, "W": 94.48, "J_1KI": 2.82845993634817, "W_1KI": 0.2096331863001784, "W_D": 59.36250000000001, "J_D": 800.9440486729146, "W_D_1KI": 0.13171411962049473, "J_D_1KI": 0.00029224863015206556} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 447788, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.585598468780518, "TIME_S_1KI": 0.023639754680296294, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1210.6447257900238, "W": 96.76, "J_1KI": 2.7036113647306848, "W_1KI": 0.21608439708076144, "W_D": 60.779250000000005, "J_D": 760.4596780691744, "W_D_1KI": 0.13573219916567664, "J_D_1KI": 0.00030311709819306603} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.0001.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.0001.output index eed9694..38edffa 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.0001.output +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.0001.output @@ -1,13 +1,13 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.05054283142089844} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.01688361167907715} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 2500, 2500, 2500]), - col_indices=tensor([ 483, 2169, 757, ..., 173, 4439, 4656]), - values=tensor([0.9876, 0.6258, 0.5982, ..., 0.3562, 0.6626, 0.2988]), +tensor(crow_indices=tensor([ 0, 0, 1, ..., 2499, 2499, 2500]), + col_indices=tensor([2619, 4724, 4043, ..., 721, 4005, 3452]), + values=tensor([0.3560, 0.4737, 0.9490, ..., 0.6650, 0.5511, 0.5102]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.5486, 0.1022, 0.5660, ..., 0.0025, 0.4692, 0.8005]) +tensor([0.9035, 0.6347, 0.7264, ..., 0.8885, 0.4271, 0.9746]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -15,18 +15,18 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 0.05054283142089844 seconds +Time: 0.01688361167907715 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '207744', '-ss', '5000', '-sd', '0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 4.839913845062256} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '62190', '-ss', '5000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 1.4582650661468506} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 2499, 2500, 2500]), - col_indices=tensor([1064, 259, 704, ..., 2037, 4830, 899]), - values=tensor([0.7873, 0.2357, 0.4656, ..., 0.3402, 0.5396, 0.7236]), +tensor(crow_indices=tensor([ 0, 1, 1, ..., 2499, 2500, 2500]), + col_indices=tensor([ 785, 2078, 964, ..., 3093, 2409, 4914]), + values=tensor([0.2674, 0.7127, 0.0446, ..., 0.5887, 0.3242, 0.2984]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.3390, 0.6218, 0.4185, ..., 0.9245, 0.2892, 0.5586]) +tensor([0.2053, 0.2435, 0.6452, ..., 0.2463, 0.9693, 0.2980]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -34,18 +34,18 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 4.839913845062256 seconds +Time: 1.4582650661468506 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '450692', '-ss', '5000', '-sd', '0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.661210536956787} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '447788', '-ss', '5000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.585598468780518} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 2, ..., 2499, 2499, 2500]), - col_indices=tensor([2769, 4978, 3269, ..., 2907, 4470, 1850]), - values=tensor([0.1814, 0.5969, 0.2629, ..., 0.3883, 0.1478, 0.5451]), +tensor(crow_indices=tensor([ 0, 1, 1, ..., 2499, 2500, 2500]), + col_indices=tensor([3170, 56, 953, ..., 2101, 4088, 4138]), + values=tensor([0.7441, 0.4324, 0.6982, ..., 0.2565, 0.3946, 0.1156]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.9019, 0.2172, 0.0888, ..., 0.3698, 0.8940, 0.4050]) +tensor([0.7808, 0.5836, 0.6876, ..., 0.2450, 0.1275, 0.2911]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,15 +53,15 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 10.661210536956787 seconds +Time: 10.585598468780518 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 2, ..., 2499, 2499, 2500]), - col_indices=tensor([2769, 4978, 3269, ..., 2907, 4470, 1850]), - values=tensor([0.1814, 0.5969, 0.2629, ..., 0.3883, 0.1478, 0.5451]), +tensor(crow_indices=tensor([ 0, 1, 1, ..., 2499, 2500, 2500]), + col_indices=tensor([3170, 56, 953, ..., 2101, 4088, 4138]), + values=tensor([0.7441, 0.4324, 0.6982, ..., 0.2565, 0.3946, 0.1156]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.9019, 0.2172, 0.0888, ..., 0.3698, 0.8940, 0.4050]) +tensor([0.7808, 0.5836, 0.6876, ..., 0.2450, 0.1275, 0.2911]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -69,13 +69,13 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 10.661210536956787 seconds +Time: 10.585598468780518 seconds -[39.19, 39.19, 38.63, 39.33, 38.89, 39.39, 38.57, 39.43, 38.51, 39.19] -[94.48] -13.492424488067627 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 450692, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.661210536956787, 'TIME_S_1KI': 0.023655202526241394, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1274.7642656326295, 'W': 94.48} -[39.19, 39.19, 38.63, 39.33, 38.89, 39.39, 38.57, 39.43, 38.51, 39.19, 39.32, 38.88, 39.47, 38.52, 39.48, 38.52, 39.58, 38.58, 39.31, 38.44] -702.3499999999999 -35.11749999999999 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 450692, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.661210536956787, 'TIME_S_1KI': 0.023655202526241394, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1274.7642656326295, 'W': 94.48, 'J_1KI': 2.82845993634817, 'W_1KI': 0.2096331863001784, 'W_D': 59.36250000000001, 'J_D': 800.9440486729146, 'W_D_1KI': 0.13171411962049473, 'J_D_1KI': 0.00029224863015206556} +[40.68, 39.36, 44.27, 39.07, 39.18, 39.33, 39.3, 39.56, 39.47, 39.52] +[96.76] +12.511830568313599 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 447788, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.585598468780518, 'TIME_S_1KI': 0.023639754680296294, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1210.6447257900238, 'W': 96.76} +[40.68, 39.36, 44.27, 39.07, 39.18, 39.33, 39.3, 39.56, 39.47, 39.52, 45.98, 39.49, 39.82, 39.41, 39.22, 39.42, 41.09, 39.62, 39.26, 39.31] +719.615 +35.98075 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 447788, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.585598468780518, 'TIME_S_1KI': 0.023639754680296294, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1210.6447257900238, 'W': 96.76, 'J_1KI': 2.7036113647306848, 'W_1KI': 0.21608439708076144, 'W_D': 60.779250000000005, 'J_D': 760.4596780691744, 'W_D_1KI': 0.13573219916567664, 'J_D_1KI': 0.00030311709819306603} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.001.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.001.json index 5a45f3d..f972143 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.001.json +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.001.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 249519, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.236942052841187, "TIME_S_1KI": 0.04102670358907012, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1222.1109838342666, "W": 97.13999999999999, "J_1KI": 4.897867432276767, "W_1KI": 0.3893090305748259, "W_D": 61.76424999999999, "J_D": 777.0513520000576, "W_D_1KI": 0.24753325398065876, "J_D_1KI": 0.0009920417041614415} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 251242, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.495816707611084, "TIME_S_1KI": 0.041775725028502735, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1274.650104198456, "W": 98.84, "J_1KI": 5.073395786526361, "W_1KI": 0.393405561172097, "W_D": 63.200750000000006, "J_D": 815.0429236434699, "W_D_1KI": 0.25155328328862214, "J_D_1KI": 0.0010012389779122206} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.001.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.001.output index bf3e9ad..489fd07 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.001.output +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.001.output @@ -1,13 +1,13 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.05724024772644043} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.020148515701293945} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 8, 15, ..., 24983, 24992, 25000]), - col_indices=tensor([ 471, 1370, 1845, ..., 3191, 3518, 3659]), - values=tensor([0.0299, 0.9557, 0.6054, ..., 0.0635, 0.2604, 0.4528]), +tensor(crow_indices=tensor([ 0, 7, 10, ..., 24991, 24995, 25000]), + col_indices=tensor([ 119, 931, 3406, ..., 3461, 3840, 3846]), + values=tensor([0.6773, 0.1678, 0.7190, ..., 0.1084, 0.6735, 0.7339]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.0205, 0.7752, 0.1498, ..., 0.2089, 0.1619, 0.7193]) +tensor([0.0928, 0.4745, 0.9490, ..., 0.8279, 0.2614, 0.8062]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -15,18 +15,18 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 0.05724024772644043 seconds +Time: 0.020148515701293945 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '183437', '-ss', '5000', '-sd', '0.001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 7.719191074371338} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '52113', '-ss', '5000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 2.177922248840332} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 6, 8, ..., 24996, 24997, 25000]), - col_indices=tensor([1493, 2121, 2213, ..., 623, 2347, 4713]), - values=tensor([0.6456, 0.4495, 0.4360, ..., 0.5144, 0.5794, 0.1984]), +tensor(crow_indices=tensor([ 0, 6, 11, ..., 24987, 24992, 25000]), + col_indices=tensor([1164, 1818, 2007, ..., 3806, 4515, 4674]), + values=tensor([0.7293, 0.4677, 0.0557, ..., 0.9608, 0.8022, 0.8772]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.2703, 0.0672, 0.3072, ..., 0.2566, 0.5122, 0.5785]) +tensor([0.5594, 0.0674, 0.3236, ..., 0.9684, 0.1982, 0.3579]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -34,18 +34,18 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 7.719191074371338 seconds +Time: 2.177922248840332 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '249519', '-ss', '5000', '-sd', '0.001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.236942052841187} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '251242', '-ss', '5000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.495816707611084} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 6, 11, ..., 24991, 24997, 25000]), - col_indices=tensor([ 752, 886, 972, ..., 802, 1974, 3630]), - values=tensor([0.4437, 0.0647, 0.4607, ..., 0.1209, 0.0125, 0.5794]), +tensor(crow_indices=tensor([ 0, 4, 8, ..., 24992, 24997, 25000]), + col_indices=tensor([1486, 3242, 3522, ..., 1754, 2627, 4146]), + values=tensor([0.1836, 0.4006, 0.2197, ..., 0.0536, 0.9699, 0.8761]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.9393, 0.0560, 0.5479, ..., 0.4533, 0.0776, 0.5900]) +tensor([0.8727, 0.2072, 0.9866, ..., 0.7187, 0.7974, 0.6886]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,15 +53,15 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 10.236942052841187 seconds +Time: 10.495816707611084 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 6, 11, ..., 24991, 24997, 25000]), - col_indices=tensor([ 752, 886, 972, ..., 802, 1974, 3630]), - values=tensor([0.4437, 0.0647, 0.4607, ..., 0.1209, 0.0125, 0.5794]), +tensor(crow_indices=tensor([ 0, 4, 8, ..., 24992, 24997, 25000]), + col_indices=tensor([1486, 3242, 3522, ..., 1754, 2627, 4146]), + values=tensor([0.1836, 0.4006, 0.2197, ..., 0.0536, 0.9699, 0.8761]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.9393, 0.0560, 0.5479, ..., 0.4533, 0.0776, 0.5900]) +tensor([0.8727, 0.2072, 0.9866, ..., 0.7187, 0.7974, 0.6886]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -69,13 +69,13 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 10.236942052841187 seconds +Time: 10.495816707611084 seconds -[40.22, 39.73, 39.42, 38.78, 39.93, 38.71, 40.68, 38.8, 39.45, 38.55] -[97.14] -12.580924272537231 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 249519, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.236942052841187, 'TIME_S_1KI': 0.04102670358907012, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1222.1109838342666, 'W': 97.13999999999999} -[40.22, 39.73, 39.42, 38.78, 39.93, 38.71, 40.68, 38.8, 39.45, 38.55, 40.16, 39.21, 38.74, 39.25, 39.41, 39.27, 38.96, 39.33, 38.96, 38.84] -707.515 -35.37575 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 249519, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.236942052841187, 'TIME_S_1KI': 0.04102670358907012, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1222.1109838342666, 'W': 97.13999999999999, 'J_1KI': 4.897867432276767, 'W_1KI': 0.3893090305748259, 'W_D': 61.76424999999999, 'J_D': 777.0513520000576, 'W_D_1KI': 0.24753325398065876, 'J_D_1KI': 0.0009920417041614415} +[40.75, 39.26, 39.42, 39.22, 39.47, 40.61, 39.23, 39.53, 39.63, 39.38] +[98.84] +12.896095752716064 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 251242, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.495816707611084, 'TIME_S_1KI': 0.041775725028502735, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1274.650104198456, 'W': 98.84} +[40.75, 39.26, 39.42, 39.22, 39.47, 40.61, 39.23, 39.53, 39.63, 39.38, 40.47, 39.12, 40.14, 40.63, 39.59, 39.14, 39.11, 39.22, 39.39, 39.55] +712.785 +35.63925 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 251242, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.495816707611084, 'TIME_S_1KI': 0.041775725028502735, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1274.650104198456, 'W': 98.84, 'J_1KI': 5.073395786526361, 'W_1KI': 0.393405561172097, 'W_D': 63.200750000000006, 'J_D': 815.0429236434699, 'W_D_1KI': 0.25155328328862214, 'J_D_1KI': 0.0010012389779122206} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.01.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.01.json index e6c8fdb..7edf7f8 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.01.json +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.01.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 146173, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.55378007888794, "TIME_S_1KI": 0.07220061214374707, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1340.7953616142272, "W": 116.1, "J_1KI": 9.17266089916898, "W_1KI": 0.7942643306219342, "W_D": 80.21499999999999, "J_D": 926.372953763008, "W_D_1KI": 0.5487675562518385, "J_D_1KI": 0.0037542333827166336} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 151851, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.677409887313843, "TIME_S_1KI": 0.07031504492768466, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1443.7484180927277, "W": 117.47, "J_1KI": 9.507664869462351, "W_1KI": 0.7735872664651534, "W_D": 81.37549999999999, "J_D": 1000.1340716481208, "W_D_1KI": 0.5358904452390829, "J_D_1KI": 0.0035290544365139706} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.01.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.01.output index 021f115..f6f6dab 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.01.output +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.01.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.01'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.09166121482849121} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.027439117431640625} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 47, 94, ..., 249894, 249942, +tensor(crow_indices=tensor([ 0, 55, 107, ..., 249902, 249955, 250000]), - col_indices=tensor([ 119, 293, 345, ..., 4744, 4847, 4998]), - values=tensor([0.2600, 0.0492, 0.0782, ..., 0.6942, 0.7814, 0.7527]), + col_indices=tensor([ 26, 155, 397, ..., 4652, 4756, 4760]), + values=tensor([0.9134, 0.8993, 0.8423, ..., 0.2444, 0.0288, 0.7023]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.8315, 0.0983, 0.7447, ..., 0.4668, 0.9945, 0.1855]) +tensor([0.3636, 0.7288, 0.4529, ..., 0.6147, 0.2907, 0.3015]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,19 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 0.09166121482849121 seconds +Time: 0.027439117431640625 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '114552', '-ss', '5000', '-sd', '0.01'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 8.2285475730896} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '38266', '-ss', '5000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 2.645953893661499} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 57, 113, ..., 249897, 249950, +tensor(crow_indices=tensor([ 0, 49, 92, ..., 249897, 249949, 250000]), - col_indices=tensor([ 60, 61, 88, ..., 4754, 4809, 4933]), - values=tensor([0.8655, 0.3309, 0.5749, ..., 0.8443, 0.2705, 0.0665]), + col_indices=tensor([ 507, 568, 655, ..., 4839, 4844, 4959]), + values=tensor([0.4543, 0.3787, 0.6932, ..., 0.4487, 0.3087, 0.1431]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.6570, 0.9775, 0.7976, ..., 0.2365, 0.6987, 0.3821]) +tensor([0.4167, 0.3931, 0.0326, ..., 0.8288, 0.4472, 0.1506]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -36,19 +36,19 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 8.2285475730896 seconds +Time: 2.645953893661499 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '146173', '-ss', '5000', '-sd', '0.01'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.55378007888794} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '151851', '-ss', '5000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.677409887313843} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 53, 109, ..., 249914, 249951, +tensor(crow_indices=tensor([ 0, 62, 123, ..., 249890, 249948, 250000]), - col_indices=tensor([ 51, 99, 229, ..., 4435, 4821, 4904]), - values=tensor([0.7585, 0.4725, 0.0422, ..., 0.0029, 0.1086, 0.7072]), + col_indices=tensor([ 53, 60, 101, ..., 4781, 4787, 4941]), + values=tensor([0.8546, 0.9316, 0.6470, ..., 0.1212, 0.6179, 0.4318]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.3786, 0.1898, 0.9439, ..., 0.4562, 0.4771, 0.6918]) +tensor([0.7208, 0.6556, 0.2590, ..., 0.8294, 0.6979, 0.2347]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -56,16 +56,16 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 10.55378007888794 seconds +Time: 10.677409887313843 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 53, 109, ..., 249914, 249951, +tensor(crow_indices=tensor([ 0, 62, 123, ..., 249890, 249948, 250000]), - col_indices=tensor([ 51, 99, 229, ..., 4435, 4821, 4904]), - values=tensor([0.7585, 0.4725, 0.0422, ..., 0.0029, 0.1086, 0.7072]), + col_indices=tensor([ 53, 60, 101, ..., 4781, 4787, 4941]), + values=tensor([0.8546, 0.9316, 0.6470, ..., 0.1212, 0.6179, 0.4318]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.3786, 0.1898, 0.9439, ..., 0.4562, 0.4771, 0.6918]) +tensor([0.7208, 0.6556, 0.2590, ..., 0.8294, 0.6979, 0.2347]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -73,13 +73,13 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 10.55378007888794 seconds +Time: 10.677409887313843 seconds -[39.38, 39.69, 39.36, 39.25, 38.8, 39.79, 38.95, 39.94, 38.86, 45.03] -[116.1] -11.548624992370605 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 146173, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.55378007888794, 'TIME_S_1KI': 0.07220061214374707, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1340.7953616142272, 'W': 116.1} -[39.38, 39.69, 39.36, 39.25, 38.8, 39.79, 38.95, 39.94, 38.86, 45.03, 39.59, 39.72, 39.05, 38.89, 38.89, 39.88, 38.77, 40.8, 45.19, 39.74] -717.7 -35.885000000000005 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 146173, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.55378007888794, 'TIME_S_1KI': 0.07220061214374707, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1340.7953616142272, 'W': 116.1, 'J_1KI': 9.17266089916898, 'W_1KI': 0.7942643306219342, 'W_D': 80.21499999999999, 'J_D': 926.372953763008, 'W_D_1KI': 0.5487675562518385, 'J_D_1KI': 0.0037542333827166336} +[39.83, 39.62, 39.22, 39.2, 39.58, 39.98, 44.8, 39.52, 39.58, 39.44] +[117.47] +12.290358543395996 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 151851, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.677409887313843, 'TIME_S_1KI': 0.07031504492768466, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1443.7484180927277, 'W': 117.47} +[39.83, 39.62, 39.22, 39.2, 39.58, 39.98, 44.8, 39.52, 39.58, 39.44, 40.11, 39.32, 39.47, 44.63, 39.38, 39.24, 39.42, 39.88, 39.66, 39.4] +721.8900000000001 +36.094500000000004 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 151851, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.677409887313843, 'TIME_S_1KI': 0.07031504492768466, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1443.7484180927277, 'W': 117.47, 'J_1KI': 9.507664869462351, 'W_1KI': 0.7735872664651534, 'W_D': 81.37549999999999, 'J_D': 1000.1340716481208, 'W_D_1KI': 0.5358904452390829, 'J_D_1KI': 0.0035290544365139706} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.05.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.05.json index 4f9e011..0dcc054 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.05.json +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.05.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 92778, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.476318120956421, "TIME_S_1KI": 0.11291812844592922, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1732.4749909281732, "W": 131.59, "J_1KI": 18.6733384091937, "W_1KI": 1.4183319321390848, "W_D": 96.0545, "J_D": 1264.6251160126926, "W_D_1KI": 1.0353154842742893, "J_D_1KI": 0.011159062323765217} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 91742, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.460400104522705, "TIME_S_1KI": 0.11401975218027409, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1797.7089305996894, "W": 131.45, "J_1KI": 19.595266405786766, "W_1KI": 1.4328224804342613, "W_D": 95.54724999999999, "J_D": 1306.7032683091759, "W_D_1KI": 1.0414777310283185, "J_D_1KI": 0.011352245765607012} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.05.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.05.output index 85eae8d..ee62fae 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.05.output +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 0.1557161808013916} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 0.03591585159301758} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 231, 495, ..., 1249487, - 1249744, 1250000]), - col_indices=tensor([ 9, 30, 58, ..., 4828, 4865, 4971]), - values=tensor([0.7438, 0.5258, 0.4698, ..., 0.4344, 0.2594, 0.0033]), +tensor(crow_indices=tensor([ 0, 282, 523, ..., 1249534, + 1249768, 1250000]), + col_indices=tensor([ 14, 20, 65, ..., 4981, 4988, 4994]), + values=tensor([0.5427, 0.7626, 0.3688, ..., 0.1462, 0.4395, 0.5084]), size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.1880, 0.8169, 0.5226, ..., 0.2752, 0.9006, 0.0611]) +tensor([0.3604, 0.6234, 0.1526, ..., 0.4035, 0.4868, 0.5530]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,19 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 1250000 Density: 0.05 -Time: 0.1557161808013916 seconds +Time: 0.03591585159301758 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '67430', '-ss', '5000', '-sd', '0.05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 7.631251096725464} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '29235', '-ss', '5000', '-sd', '0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 3.345984697341919} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 248, 518, ..., 1249509, - 1249753, 1250000]), - col_indices=tensor([ 31, 45, 102, ..., 4944, 4977, 4981]), - values=tensor([0.8150, 0.4433, 0.0676, ..., 0.5361, 0.0056, 0.9882]), +tensor(crow_indices=tensor([ 0, 247, 522, ..., 1249509, + 1249766, 1250000]), + col_indices=tensor([ 11, 41, 47, ..., 4983, 4993, 4996]), + values=tensor([0.4860, 0.1371, 0.2214, ..., 0.6634, 0.1469, 0.9637]), size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.0156, 0.0219, 0.6064, ..., 0.7934, 0.6259, 0.0204]) +tensor([0.5776, 0.4725, 0.0368, ..., 0.6036, 0.3775, 0.0011]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -36,19 +36,19 @@ Rows: 5000 Size: 25000000 NNZ: 1250000 Density: 0.05 -Time: 7.631251096725464 seconds +Time: 3.345984697341919 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '92778', '-ss', '5000', '-sd', '0.05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.476318120956421} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '91742', '-ss', '5000', '-sd', '0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.460400104522705} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 269, 520, ..., 1249470, - 1249738, 1250000]), - col_indices=tensor([ 32, 37, 46, ..., 4950, 4963, 4989]), - values=tensor([0.4206, 0.9091, 0.7478, ..., 0.6711, 0.2779, 0.9141]), +tensor(crow_indices=tensor([ 0, 245, 499, ..., 1249503, + 1249746, 1250000]), + col_indices=tensor([ 11, 13, 56, ..., 4961, 4967, 4994]), + values=tensor([0.1643, 0.9353, 0.3976, ..., 0.1683, 0.6963, 0.8462]), size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.6953, 0.1111, 0.6307, ..., 0.1029, 0.6511, 0.8226]) +tensor([0.6649, 0.4073, 0.4211, ..., 0.1078, 0.2188, 0.0388]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -56,16 +56,16 @@ Rows: 5000 Size: 25000000 NNZ: 1250000 Density: 0.05 -Time: 10.476318120956421 seconds +Time: 10.460400104522705 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 269, 520, ..., 1249470, - 1249738, 1250000]), - col_indices=tensor([ 32, 37, 46, ..., 4950, 4963, 4989]), - values=tensor([0.4206, 0.9091, 0.7478, ..., 0.6711, 0.2779, 0.9141]), +tensor(crow_indices=tensor([ 0, 245, 499, ..., 1249503, + 1249746, 1250000]), + col_indices=tensor([ 11, 13, 56, ..., 4961, 4967, 4994]), + values=tensor([0.1643, 0.9353, 0.3976, ..., 0.1683, 0.6963, 0.8462]), size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.6953, 0.1111, 0.6307, ..., 0.1029, 0.6511, 0.8226]) +tensor([0.6649, 0.4073, 0.4211, ..., 0.1078, 0.2188, 0.0388]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -73,13 +73,13 @@ Rows: 5000 Size: 25000000 NNZ: 1250000 Density: 0.05 -Time: 10.476318120956421 seconds +Time: 10.460400104522705 seconds -[40.71, 39.95, 38.97, 39.83, 39.79, 39.14, 38.93, 39.78, 39.42, 39.71] -[131.59] -13.165704011917114 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 92778, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.476318120956421, 'TIME_S_1KI': 0.11291812844592922, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1732.4749909281732, 'W': 131.59} -[40.71, 39.95, 38.97, 39.83, 39.79, 39.14, 38.93, 39.78, 39.42, 39.71, 40.83, 39.04, 39.95, 38.93, 39.14, 39.24, 39.86, 38.92, 39.75, 38.89] -710.71 -35.5355 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 92778, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.476318120956421, 'TIME_S_1KI': 0.11291812844592922, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1732.4749909281732, 'W': 131.59, 'J_1KI': 18.6733384091937, 'W_1KI': 1.4183319321390848, 'W_D': 96.0545, 'J_D': 1264.6251160126926, 'W_D_1KI': 1.0353154842742893, 'J_D_1KI': 0.011159062323765217} +[40.58, 39.92, 39.93, 39.37, 39.59, 39.9, 39.71, 40.07, 40.76, 39.67] +[131.45] +13.675990343093872 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 91742, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.460400104522705, 'TIME_S_1KI': 0.11401975218027409, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1797.7089305996894, 'W': 131.45} +[40.58, 39.92, 39.93, 39.37, 39.59, 39.9, 39.71, 40.07, 40.76, 39.67, 40.34, 39.45, 39.48, 40.31, 39.86, 39.84, 39.9, 39.88, 39.9, 39.78] +718.055 +35.90275 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 91742, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.460400104522705, 'TIME_S_1KI': 0.11401975218027409, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1797.7089305996894, 'W': 131.45, 'J_1KI': 19.595266405786766, 'W_1KI': 1.4328224804342613, 'W_D': 95.54724999999999, 'J_D': 1306.7032683091759, 'W_D_1KI': 1.0414777310283185, 'J_D_1KI': 0.011352245765607012} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.1.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.1.json index d3bf1fe..44fa72d 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.1.json +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.1.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 52513, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.26560354232788, "TIME_S_1KI": 0.19548689928832635, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1794.3579230117798, "W": 136.24, "J_1KI": 34.16978506297069, "W_1KI": 2.594405194904119, "W_D": 100.32050000000001, "J_D": 1321.2777746293546, "W_D_1KI": 1.9103936168186928, "J_D_1KI": 0.036379441601483306} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 52297, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.236442565917969, "TIME_S_1KI": 0.195736706998833, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1815.1719595336915, "W": 138.62, "J_1KI": 34.70891178334688, "W_1KI": 2.650630055261296, "W_D": 102.202, "J_D": 1338.293208831787, "W_D_1KI": 1.9542612386943803, "J_D_1KI": 0.0373685151862321} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.1.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.1.output index ca278ce..4fe4648 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.1.output +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.1.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 0.2491617202758789} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 0.053244590759277344} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 513, 1030, ..., 2499018, - 2499503, 2500000]), - col_indices=tensor([ 5, 7, 9, ..., 4974, 4988, 4992]), - values=tensor([0.9314, 0.8722, 0.2786, ..., 0.3461, 0.5001, 0.4531]), +tensor(crow_indices=tensor([ 0, 487, 976, ..., 2498986, + 2499481, 2500000]), + col_indices=tensor([ 13, 19, 40, ..., 4975, 4977, 4981]), + values=tensor([0.0276, 0.4992, 0.8339, ..., 0.1235, 0.3053, 0.8819]), size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.5860, 0.7303, 0.0322, ..., 0.3067, 0.0639, 0.6907]) +tensor([0.6982, 0.6943, 0.5654, ..., 0.0343, 0.1924, 0.4615]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,19 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 2500000 Density: 0.1 -Time: 0.2491617202758789 seconds +Time: 0.053244590759277344 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '42141', '-ss', '5000', '-sd', '0.1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 8.425995349884033} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '19720', '-ss', '5000', '-sd', '0.1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 3.959235429763794} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 480, 969, ..., 2498991, - 2499495, 2500000]), - col_indices=tensor([ 1, 8, 15, ..., 4990, 4995, 4997]), - values=tensor([0.6450, 0.7913, 0.7669, ..., 0.2675, 0.7315, 0.7922]), +tensor(crow_indices=tensor([ 0, 500, 997, ..., 2499001, + 2499525, 2500000]), + col_indices=tensor([ 22, 31, 36, ..., 4976, 4979, 4990]), + values=tensor([0.9139, 0.4529, 0.5623, ..., 0.7413, 0.5022, 0.1210]), size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.8872, 0.3458, 0.7222, ..., 0.3185, 0.9459, 0.1327]) +tensor([0.1909, 0.5057, 0.7269, ..., 0.6307, 0.9165, 0.6325]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -36,19 +36,19 @@ Rows: 5000 Size: 25000000 NNZ: 2500000 Density: 0.1 -Time: 8.425995349884033 seconds +Time: 3.959235429763794 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '52513', '-ss', '5000', '-sd', '0.1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.26560354232788} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '52297', '-ss', '5000', '-sd', '0.1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.236442565917969} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 496, 1000, ..., 2499050, - 2499547, 2500000]), - col_indices=tensor([ 1, 8, 12, ..., 4944, 4951, 4977]), - values=tensor([0.2566, 0.4868, 0.9344, ..., 0.5912, 0.8684, 0.6618]), +tensor(crow_indices=tensor([ 0, 495, 967, ..., 2499009, + 2499501, 2500000]), + col_indices=tensor([ 2, 3, 29, ..., 4974, 4984, 4998]), + values=tensor([0.7947, 0.6825, 0.2906, ..., 0.1208, 0.9049, 0.2265]), size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.5960, 0.0213, 0.1088, ..., 0.8621, 0.3601, 0.4544]) +tensor([0.7067, 0.8426, 0.8818, ..., 0.1022, 0.5608, 0.1343]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -56,16 +56,16 @@ Rows: 5000 Size: 25000000 NNZ: 2500000 Density: 0.1 -Time: 10.26560354232788 seconds +Time: 10.236442565917969 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 496, 1000, ..., 2499050, - 2499547, 2500000]), - col_indices=tensor([ 1, 8, 12, ..., 4944, 4951, 4977]), - values=tensor([0.2566, 0.4868, 0.9344, ..., 0.5912, 0.8684, 0.6618]), +tensor(crow_indices=tensor([ 0, 495, 967, ..., 2499009, + 2499501, 2500000]), + col_indices=tensor([ 2, 3, 29, ..., 4974, 4984, 4998]), + values=tensor([0.7947, 0.6825, 0.2906, ..., 0.1208, 0.9049, 0.2265]), size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.5960, 0.0213, 0.1088, ..., 0.8621, 0.3601, 0.4544]) +tensor([0.7067, 0.8426, 0.8818, ..., 0.1022, 0.5608, 0.1343]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -73,13 +73,13 @@ Rows: 5000 Size: 25000000 NNZ: 2500000 Density: 0.1 -Time: 10.26560354232788 seconds +Time: 10.236442565917969 seconds -[47.36, 40.59, 40.08, 39.29, 39.8, 40.2, 40.01, 39.07, 40.08, 38.96] -[136.24] -13.170566082000732 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 52513, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.26560354232788, 'TIME_S_1KI': 0.19548689928832635, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1794.3579230117798, 'W': 136.24} -[47.36, 40.59, 40.08, 39.29, 39.8, 40.2, 40.01, 39.07, 40.08, 38.96, 40.34, 40.06, 39.51, 39.55, 39.19, 39.83, 39.16, 39.75, 38.95, 39.88] -718.3900000000001 -35.919500000000006 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 52513, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.26560354232788, 'TIME_S_1KI': 0.19548689928832635, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1794.3579230117798, 'W': 136.24, 'J_1KI': 34.16978506297069, 'W_1KI': 2.594405194904119, 'W_D': 100.32050000000001, 'J_D': 1321.2777746293546, 'W_D_1KI': 1.9103936168186928, 'J_D_1KI': 0.036379441601483306} +[40.97, 39.52, 39.62, 39.4, 39.87, 45.09, 39.68, 39.56, 39.77, 39.67] +[138.62] +13.094589233398438 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 52297, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.236442565917969, 'TIME_S_1KI': 0.195736706998833, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1815.1719595336915, 'W': 138.62} +[40.97, 39.52, 39.62, 39.4, 39.87, 45.09, 39.68, 39.56, 39.77, 39.67, 41.69, 43.46, 41.5, 39.76, 39.97, 39.88, 39.62, 39.85, 40.84, 39.61] +728.3600000000001 +36.418000000000006 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 52297, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.236442565917969, 'TIME_S_1KI': 0.195736706998833, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1815.1719595336915, 'W': 138.62, 'J_1KI': 34.70891178334688, 'W_1KI': 2.650630055261296, 'W_D': 102.202, 'J_D': 1338.293208831787, 'W_D_1KI': 1.9542612386943803, 'J_D_1KI': 0.0373685151862321} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.2.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.2.json new file mode 100644 index 0000000..c26577c --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.2.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 28289, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.465468645095825, "TIME_S_1KI": 0.36994834193841514, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1925.348158209324, "W": 138.77, "J_1KI": 68.05995822437428, "W_1KI": 4.905440277139524, "W_D": 102.84225, "J_D": 1426.8727867954374, "W_D_1KI": 3.6354148255505674, "J_D_1KI": 0.1285098386493184} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.2.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.2.output new file mode 100644 index 0000000..4cf3fef --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.2.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.2'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 0.07305312156677246} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1021, 1969, ..., 4997949, + 4999001, 5000000]), + col_indices=tensor([ 1, 7, 18, ..., 4990, 4995, 4998]), + values=tensor([0.6231, 0.9951, 0.8252, ..., 0.9756, 0.2344, 0.2983]), + size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.0355, 0.1933, 0.9788, ..., 0.6197, 0.2365, 0.0393]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 5000000 +Density: 0.2 +Time: 0.07305312156677246 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '14373', '-ss', '5000', '-sd', '0.2'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 5.334789037704468} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1024, 2040, ..., 4998012, + 4999011, 5000000]), + col_indices=tensor([ 1, 7, 11, ..., 4993, 4994, 4998]), + values=tensor([0.0452, 0.7491, 0.1728, ..., 0.4616, 0.1426, 0.7347]), + size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.8794, 0.6343, 0.4463, ..., 0.6355, 0.8597, 0.5087]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 5000000 +Density: 0.2 +Time: 5.334789037704468 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '28289', '-ss', '5000', '-sd', '0.2'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.465468645095825} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 999, 2016, ..., 4997966, + 4998976, 5000000]), + col_indices=tensor([ 2, 9, 14, ..., 4993, 4994, 4995]), + values=tensor([0.1135, 0.5000, 0.4923, ..., 0.1880, 0.5290, 0.9229]), + size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.0610, 0.8156, 0.2755, ..., 0.7165, 0.9008, 0.9624]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 5000000 +Density: 0.2 +Time: 10.465468645095825 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 999, 2016, ..., 4997966, + 4998976, 5000000]), + col_indices=tensor([ 2, 9, 14, ..., 4993, 4994, 4995]), + values=tensor([0.1135, 0.5000, 0.4923, ..., 0.1880, 0.5290, 0.9229]), + size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.0610, 0.8156, 0.2755, ..., 0.7165, 0.9008, 0.9624]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 5000000 +Density: 0.2 +Time: 10.465468645095825 seconds + +[40.8, 40.7, 39.71, 40.23, 39.76, 39.64, 39.79, 39.68, 39.73, 39.72] +[138.77] +13.874383211135864 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 28289, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.465468645095825, 'TIME_S_1KI': 0.36994834193841514, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1925.348158209324, 'W': 138.77} +[40.8, 40.7, 39.71, 40.23, 39.76, 39.64, 39.79, 39.68, 39.73, 39.72, 40.37, 39.65, 40.3, 39.61, 40.3, 40.15, 39.64, 39.78, 39.65, 39.58] +718.555 +35.927749999999996 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 28289, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.465468645095825, 'TIME_S_1KI': 0.36994834193841514, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1925.348158209324, 'W': 138.77, 'J_1KI': 68.05995822437428, 'W_1KI': 4.905440277139524, 'W_D': 102.84225, 'J_D': 1426.8727867954374, 'W_D_1KI': 3.6354148255505674, 'J_D_1KI': 0.1285098386493184} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.3.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.3.json new file mode 100644 index 0000000..edb21c0 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.3.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 19365, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.708929538726807, "TIME_S_1KI": 0.5530043655423086, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1994.3257465744018, "W": 137.56, "J_1KI": 102.98609587267761, "W_1KI": 7.103537309579138, "W_D": 101.59625, "J_D": 1472.9283013260365, "W_D_1KI": 5.246385231087013, "J_D_1KI": 0.270921003412704} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.3.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.3.output new file mode 100644 index 0000000..4cf90e5 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.3.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.3'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 0.0932457447052002} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1472, 2953, ..., 7496947, + 7498464, 7500000]), + col_indices=tensor([ 7, 9, 10, ..., 4989, 4991, 4994]), + values=tensor([0.9868, 0.9731, 0.3711, ..., 0.9277, 0.6596, 0.4560]), + size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) +tensor([0.4150, 0.1407, 0.7534, ..., 0.5098, 0.0887, 0.6433]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 7500000 +Density: 0.3 +Time: 0.0932457447052002 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '11260', '-ss', '5000', '-sd', '0.3'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 6.105090618133545} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1440, 2968, ..., 7497040, + 7498552, 7500000]), + col_indices=tensor([ 4, 15, 16, ..., 4993, 4997, 4998]), + values=tensor([0.0079, 0.6033, 0.5837, ..., 0.4070, 0.1537, 0.2862]), + size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) +tensor([0.9942, 0.8351, 0.2634, ..., 0.1203, 0.3761, 0.2393]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 7500000 +Density: 0.3 +Time: 6.105090618133545 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '19365', '-ss', '5000', '-sd', '0.3'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.708929538726807} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1483, 3029, ..., 7497007, + 7498484, 7500000]), + col_indices=tensor([ 0, 1, 2, ..., 4991, 4992, 4999]), + values=tensor([0.2037, 0.3378, 0.5245, ..., 0.5597, 0.6700, 0.6684]), + size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) +tensor([0.7739, 0.8705, 0.9400, ..., 0.4166, 0.9328, 0.4141]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 7500000 +Density: 0.3 +Time: 10.708929538726807 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1483, 3029, ..., 7497007, + 7498484, 7500000]), + col_indices=tensor([ 0, 1, 2, ..., 4991, 4992, 4999]), + values=tensor([0.2037, 0.3378, 0.5245, ..., 0.5597, 0.6700, 0.6684]), + size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) +tensor([0.7739, 0.8705, 0.9400, ..., 0.4166, 0.9328, 0.4141]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 7500000 +Density: 0.3 +Time: 10.708929538726807 seconds + +[42.29, 39.85, 39.72, 39.53, 39.58, 40.0, 40.36, 39.5, 39.8, 40.06] +[137.56] +14.4978609085083 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 19365, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.708929538726807, 'TIME_S_1KI': 0.5530043655423086, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1994.3257465744018, 'W': 137.56} +[42.29, 39.85, 39.72, 39.53, 39.58, 40.0, 40.36, 39.5, 39.8, 40.06, 40.39, 40.11, 40.04, 39.88, 41.07, 39.92, 39.57, 39.46, 39.73, 39.57] +719.275 +35.96375 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 19365, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.708929538726807, 'TIME_S_1KI': 0.5530043655423086, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1994.3257465744018, 'W': 137.56, 'J_1KI': 102.98609587267761, 'W_1KI': 7.103537309579138, 'W_D': 101.59625, 'J_D': 1472.9283013260365, 'W_D_1KI': 5.246385231087013, 'J_D_1KI': 0.270921003412704} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.4.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.4.json new file mode 100644 index 0000000..d0ddde8 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.4.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 4054, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.4, "TIME_S": 10.937983989715576, "TIME_S_1KI": 2.6980720250901764, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1733.5753089761736, "W": 118.18, "J_1KI": 427.62094449338275, "W_1KI": 29.15145535273804, "W_D": 74.48075000000001, "J_D": 1092.5536401593092, "W_D_1KI": 18.37216329551061, "J_D_1KI": 4.531860704368675} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.4.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.4.output new file mode 100644 index 0000000..fbc9c8c --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.4.output @@ -0,0 +1,65 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.4'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.4, "TIME_S": 0.25896668434143066} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1967, 3942, ..., 9996007, + 9997987, 10000000]), + col_indices=tensor([ 0, 1, 3, ..., 4989, 4995, 4996]), + values=tensor([0.9037, 0.0824, 0.8127, ..., 0.2074, 0.6033, 0.5497]), + size=(5000, 5000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.6227, 0.6614, 0.9902, ..., 0.2660, 0.9614, 0.3260]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 10000000 +Density: 0.4 +Time: 0.25896668434143066 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '4054', '-ss', '5000', '-sd', '0.4'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.4, "TIME_S": 10.937983989715576} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2032, 3978, ..., 9995983, + 9998000, 10000000]), + col_indices=tensor([ 1, 2, 3, ..., 4988, 4993, 4994]), + values=tensor([0.2457, 0.5907, 0.9941, ..., 0.3357, 0.2301, 0.2269]), + size=(5000, 5000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.2230, 0.0807, 0.5998, ..., 0.1430, 0.1498, 0.1360]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 10000000 +Density: 0.4 +Time: 10.937983989715576 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2032, 3978, ..., 9995983, + 9998000, 10000000]), + col_indices=tensor([ 1, 2, 3, ..., 4988, 4993, 4994]), + values=tensor([0.2457, 0.5907, 0.9941, ..., 0.3357, 0.2301, 0.2269]), + size=(5000, 5000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.2230, 0.0807, 0.5998, ..., 0.1430, 0.1498, 0.1360]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 10000000 +Density: 0.4 +Time: 10.937983989715576 seconds + +[40.89, 40.0, 39.72, 39.6, 39.91, 39.64, 39.68, 39.81, 39.88, 45.41] +[118.18] +14.66893982887268 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4054, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.4, 'TIME_S': 10.937983989715576, 'TIME_S_1KI': 2.6980720250901764, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1733.5753089761736, 'W': 118.18} +[40.89, 40.0, 39.72, 39.6, 39.91, 39.64, 39.68, 39.81, 39.88, 45.41, 40.78, 40.13, 44.65, 73.6, 81.22, 73.52, 67.52, 42.65, 48.49, 40.85] +873.9849999999999 +43.69924999999999 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4054, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.4, 'TIME_S': 10.937983989715576, 'TIME_S_1KI': 2.6980720250901764, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1733.5753089761736, 'W': 118.18, 'J_1KI': 427.62094449338275, 'W_1KI': 29.15145535273804, 'W_D': 74.48075000000001, 'J_D': 1092.5536401593092, 'W_D_1KI': 18.37216329551061, 'J_D_1KI': 4.531860704368675} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.5.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.5.json new file mode 100644 index 0000000..a25c6eb --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.5.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 3758, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 10.1781005859375, "TIME_S_1KI": 2.708382274065327, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1956.303444838524, "W": 122.9, "J_1KI": 520.570368504131, "W_1KI": 32.70356572645024, "W_D": 86.40525000000001, "J_D": 1375.3855836219193, "W_D_1KI": 22.992349654071315, "J_D_1KI": 6.118240993632601} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.5.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.5.output new file mode 100644 index 0000000..fd072be --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.5.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.5'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 0.29501914978027344} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2490, 5019, ..., 12495032, + 12497514, 12500000]), + col_indices=tensor([ 0, 1, 2, ..., 4992, 4993, 4994]), + values=tensor([0.4521, 0.6419, 0.1807, ..., 0.6429, 0.2936, 0.1963]), + size=(5000, 5000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.6822, 0.2314, 0.5095, ..., 0.2635, 0.2792, 0.8048]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 12500000 +Density: 0.5 +Time: 0.29501914978027344 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '3559', '-ss', '5000', '-sd', '0.5'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 9.942713260650635} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2478, 4936, ..., 12495093, + 12497610, 12500000]), + col_indices=tensor([ 1, 2, 3, ..., 4992, 4995, 4998]), + values=tensor([0.6608, 0.6509, 0.8650, ..., 0.2551, 0.6130, 0.3679]), + size=(5000, 5000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.9258, 0.3878, 0.0027, ..., 0.4707, 0.4169, 0.1792]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 12500000 +Density: 0.5 +Time: 9.942713260650635 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '3758', '-ss', '5000', '-sd', '0.5'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 10.1781005859375} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2527, 4930, ..., 12495017, + 12497540, 12500000]), + col_indices=tensor([ 1, 2, 3, ..., 4995, 4997, 4999]), + values=tensor([0.2576, 0.5438, 0.7818, ..., 0.1593, 0.4265, 0.7530]), + size=(5000, 5000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.0335, 0.1835, 0.7330, ..., 0.5684, 0.8047, 0.4810]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 12500000 +Density: 0.5 +Time: 10.1781005859375 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2527, 4930, ..., 12495017, + 12497540, 12500000]), + col_indices=tensor([ 1, 2, 3, ..., 4995, 4997, 4999]), + values=tensor([0.2576, 0.5438, 0.7818, ..., 0.1593, 0.4265, 0.7530]), + size=(5000, 5000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.0335, 0.1835, 0.7330, ..., 0.5684, 0.8047, 0.4810]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 12500000 +Density: 0.5 +Time: 10.1781005859375 seconds + +[41.47, 40.36, 39.99, 40.33, 39.95, 40.28, 39.98, 39.88, 39.78, 45.28] +[122.9] +15.917847394943237 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3758, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.5, 'TIME_S': 10.1781005859375, 'TIME_S_1KI': 2.708382274065327, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1956.303444838524, 'W': 122.9} +[41.47, 40.36, 39.99, 40.33, 39.95, 40.28, 39.98, 39.88, 39.78, 45.28, 40.38, 39.63, 39.74, 44.87, 40.1, 40.15, 40.75, 40.1, 40.4, 40.08] +729.895 +36.494749999999996 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3758, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.5, 'TIME_S': 10.1781005859375, 'TIME_S_1KI': 2.708382274065327, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1956.303444838524, 'W': 122.9, 'J_1KI': 520.570368504131, 'W_1KI': 32.70356572645024, 'W_D': 86.40525000000001, 'J_D': 1375.3855836219193, 'W_D_1KI': 22.992349654071315, 'J_D_1KI': 6.118240993632601} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_1e-05.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_1e-05.json index b172c0c..c2948bd 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_1e-05.json +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_1e-05.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 470922, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.104466915130615, "TIME_S_1KI": 0.021456773977708867, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1145.4606072449685, "W": 92.79, "J_1KI": 2.4323786258551703, "W_1KI": 0.19703900008918676, "W_D": 57.138000000000005, "J_D": 705.3489403681756, "W_D_1KI": 0.12133219514059655, "J_D_1KI": 0.0002576481777037313} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 505155, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.3298921585083, "TIME_S_1KI": 0.020448955584935914, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1240.863141503334, "W": 95.58, "J_1KI": 2.4564007908529737, "W_1KI": 0.1892092526056359, "W_D": 59.942499999999995, "J_D": 778.2008669131993, "W_D_1KI": 0.11866159891518444, "J_D_1KI": 0.0002349013647596964} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_1e-05.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_1e-05.output index 263466b..107ac32 100644 --- a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_1e-05.output +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_1e-05.output @@ -1,75 +1,75 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.06183266639709473} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.013948440551757812} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([2604, 880, 70, 3579, 4688, 1415, 4052, 2136, 2789, - 1920, 1039, 1558, 2117, 2959, 828, 201, 2786, 2764, - 2257, 277, 2288, 309, 1119, 4553, 992, 4344, 1852, - 1654, 3440, 2337, 4465, 3747, 865, 1053, 722, 4388, - 1118, 2434, 2479, 2179, 2623, 1327, 1850, 4354, 1080, - 294, 3733, 2629, 4844, 2052, 338, 3690, 2779, 4781, - 442, 500, 2501, 2111, 2134, 4050, 4965, 2490, 1539, - 1728, 3791, 2480, 429, 85, 2238, 4139, 1911, 2702, - 1667, 623, 834, 958, 2640, 639, 3527, 4275, 2167, - 2457, 991, 806, 4483, 513, 3720, 1136, 1176, 1064, - 771, 912, 1234, 1122, 4461, 4277, 1464, 345, 1997, - 2256, 2917, 38, 2975, 472, 2189, 2640, 491, 245, - 718, 3839, 2523, 240, 4832, 1434, 3727, 2402, 3795, - 977, 2914, 3289, 1194, 1229, 3616, 4441, 1900, 4483, - 4227, 4209, 4021, 4316, 794, 1149, 4287, 2054, 4565, - 4842, 69, 93, 2768, 2785, 2781, 1662, 4565, 3083, - 2932, 2437, 4078, 1005, 2493, 4749, 4500, 4776, 2110, - 3771, 1500, 4456, 4652, 2281, 3889, 3267, 2338, 1779, - 1663, 1964, 223, 2535, 4215, 2012, 431, 2610, 2606, - 1802, 4804, 2967, 365, 3887, 1133, 2945, 28, 647, - 466, 4656, 1939, 1716, 1723, 1159, 2034, 3057, 1288, - 284, 673, 4283, 506, 1331, 614, 631, 4195, 2134, - 2612, 1089, 4012, 2128, 736, 1710, 4895, 1258, 2802, - 4181, 1214, 4441, 4549, 2923, 3989, 2826, 3613, 1217, - 1556, 110, 4249, 222, 1573, 3450, 1707, 4825, 3455, - 279, 1371, 3150, 620, 486, 544, 4512, 3097, 2958, - 3135, 21, 1955, 802, 3984, 2259, 2773, 1786, 4464, - 4164, 2686, 4882, 4392, 2240, 1975, 2258]), - values=tensor([0.5027, 0.7084, 0.3487, 0.0753, 0.4164, 0.9980, 0.6580, - 0.4935, 0.3902, 0.5664, 0.2658, 0.3783, 0.8206, 0.5243, - 0.7985, 0.9823, 0.7694, 0.1060, 0.0192, 0.9550, 0.7866, - 0.3204, 0.1228, 0.4101, 0.8052, 0.9732, 0.1676, 0.7257, - 0.3426, 0.4203, 0.8249, 0.6182, 0.8414, 0.1007, 0.5404, - 0.5322, 0.6815, 0.5471, 0.5528, 0.9304, 0.5952, 0.6825, - 0.1470, 0.9592, 0.1633, 0.8148, 0.7106, 0.4684, 0.6378, - 0.2787, 0.1559, 0.9606, 0.6114, 0.8631, 0.8476, 0.0374, - 0.0974, 0.1508, 0.6160, 0.2538, 0.9193, 0.3221, 0.6792, - 0.1039, 0.5088, 0.3858, 0.8567, 0.5930, 0.1245, 0.9954, - 0.1659, 0.1382, 0.3631, 0.0415, 0.2608, 0.5523, 0.3431, - 0.5922, 0.9276, 0.2417, 0.9820, 0.0941, 0.0465, 0.6122, - 0.3473, 0.8672, 0.7451, 0.4632, 0.6761, 0.3844, 0.6143, - 0.9600, 0.7204, 0.0168, 0.7425, 0.2772, 0.4866, 0.2756, - 0.3148, 0.2142, 0.2884, 0.7150, 0.6972, 0.0578, 0.3403, - 0.6794, 0.7790, 0.6966, 0.8236, 0.6083, 0.5211, 0.6301, - 0.9543, 0.5553, 0.9115, 0.9237, 0.2270, 0.6441, 0.7009, - 0.1070, 0.9702, 0.2577, 0.6283, 0.2972, 0.6911, 0.1725, - 0.0282, 0.9157, 0.7996, 0.8026, 0.3516, 0.8308, 0.1003, - 0.0248, 0.7281, 0.0565, 0.4669, 0.2079, 0.4864, 0.2943, - 0.0681, 0.8545, 0.6221, 0.1251, 0.9854, 0.1397, 0.1128, - 0.9416, 0.0256, 0.6346, 0.9861, 0.8618, 0.7250, 0.4296, - 0.7583, 0.0529, 0.9738, 0.1783, 0.4879, 0.4079, 0.1074, - 0.5057, 0.9961, 0.1328, 0.5920, 0.7290, 0.7943, 0.2699, - 0.4245, 0.8340, 0.8310, 0.7824, 0.7435, 0.8129, 0.8814, - 0.7889, 0.8688, 0.4636, 0.6432, 0.6209, 0.5976, 0.7619, - 0.1123, 0.6496, 0.0741, 0.4224, 0.7444, 0.0204, 0.2397, - 0.8878, 0.9369, 0.8874, 0.3159, 0.4066, 0.7965, 0.9182, - 0.6430, 0.4446, 0.9224, 0.9817, 0.9823, 0.2288, 0.4574, - 0.8650, 0.3584, 0.5672, 0.6737, 0.6909, 0.8267, 0.7004, - 0.1349, 0.9181, 0.4535, 0.2086, 0.7357, 0.4116, 0.8581, - 0.4745, 0.8694, 0.4770, 0.7691, 0.7362, 0.3193, 0.0221, - 0.8677, 0.6112, 0.7624, 0.0925, 0.5125, 0.8534, 0.7050, - 0.0262, 0.5351, 0.3163, 0.2383, 0.0599, 0.2394, 0.4205, - 0.6550, 0.0849, 0.3824, 0.5505, 0.5900, 0.6050, 0.9085, - 0.2972, 0.8380, 0.5688, 0.8007, 0.1354]), + col_indices=tensor([3548, 3508, 4386, 3528, 2702, 3004, 3629, 4756, 1243, + 213, 2804, 1698, 689, 4639, 4580, 1578, 3327, 694, + 1408, 2610, 4665, 1701, 4464, 632, 2037, 2500, 1517, + 2177, 1389, 4628, 306, 1568, 3761, 3194, 3074, 2522, + 3705, 2681, 4246, 249, 1916, 3633, 4678, 1217, 107, + 2703, 1648, 2700, 2961, 4336, 1084, 4254, 396, 3740, + 3046, 2671, 2061, 1766, 3209, 4565, 1985, 2700, 4834, + 2805, 875, 2910, 2400, 2621, 4389, 955, 1399, 578, + 2242, 4964, 3239, 222, 1256, 3099, 3567, 2886, 3721, + 1671, 1246, 4445, 3748, 4434, 1765, 983, 1353, 3314, + 2249, 2525, 4314, 2896, 2171, 3775, 3320, 730, 2027, + 2731, 3976, 3825, 4171, 1978, 4468, 2371, 386, 1118, + 3263, 840, 3509, 4865, 3412, 2573, 1668, 4140, 1828, + 1203, 819, 4214, 2533, 3446, 643, 4924, 2902, 1393, + 4975, 841, 1924, 1159, 1396, 1327, 3531, 2008, 2330, + 3344, 0, 1785, 2268, 4522, 1792, 2828, 305, 4487, + 4986, 3210, 3476, 4418, 3986, 3188, 1206, 4837, 2877, + 2143, 1316, 3014, 3807, 339, 1928, 4332, 1721, 1955, + 1430, 1820, 1733, 132, 1124, 4910, 399, 4998, 3203, + 1066, 4770, 3787, 2390, 4240, 862, 2987, 1396, 4199, + 2140, 4278, 4725, 3767, 4419, 1019, 3708, 90, 2851, + 2610, 3655, 3402, 2040, 1712, 1375, 4589, 2905, 1572, + 545, 3985, 3399, 582, 4328, 3912, 2552, 83, 2255, + 1709, 772, 4299, 2146, 3329, 2442, 3295, 60, 173, + 543, 4997, 2966, 3912, 1602, 135, 2282, 3935, 2764, + 2342, 3756, 4573, 3705, 1470, 3025, 1498, 4276, 668, + 3561, 4033, 260, 3652, 775, 4020, 1031, 2617, 2294, + 2109, 2487, 3590, 1199, 2797, 1290, 3990]), + values=tensor([0.6994, 0.2438, 0.4802, 0.0829, 0.0677, 0.0178, 0.7638, + 0.1665, 0.8626, 0.8633, 0.8809, 0.3889, 0.5842, 0.4728, + 0.4918, 0.0860, 0.7324, 0.8491, 0.3798, 0.3500, 0.4975, + 0.0872, 0.8650, 0.3555, 0.4399, 0.2630, 0.0729, 0.3054, + 0.9674, 0.7941, 0.9749, 0.5236, 0.8844, 0.2916, 0.4218, + 0.0889, 0.1637, 0.0411, 0.1963, 0.8167, 0.6130, 0.2282, + 0.0754, 0.2471, 0.0778, 0.4752, 0.2737, 0.1262, 0.2451, + 0.2934, 0.3944, 0.0397, 0.3394, 0.7909, 0.5453, 0.0895, + 0.2329, 0.3870, 0.5830, 0.0888, 0.8460, 0.7742, 0.7374, + 0.8528, 0.2281, 0.9068, 0.0092, 0.0150, 0.9568, 0.4508, + 0.2063, 0.9542, 0.6049, 0.5147, 0.9346, 0.5104, 0.1196, + 0.8281, 0.2227, 0.7282, 0.2980, 0.7830, 0.6065, 0.2936, + 0.6589, 0.1956, 0.8884, 0.6244, 0.8765, 0.9279, 0.5777, + 0.8162, 0.0894, 0.3744, 0.1591, 0.3051, 0.9299, 0.1618, + 0.7383, 0.9907, 0.5121, 0.6397, 0.8338, 0.9391, 0.2607, + 0.4098, 0.6073, 0.2048, 0.8476, 0.1799, 0.1533, 0.5127, + 0.3612, 0.8614, 0.5878, 0.7167, 0.1917, 0.2581, 0.3381, + 0.5246, 0.2437, 0.9851, 0.9032, 0.6527, 0.5590, 0.5454, + 0.0253, 0.0710, 0.1587, 0.3574, 0.7354, 0.6182, 0.5365, + 0.0479, 0.8974, 0.6075, 0.5864, 0.7635, 0.4139, 0.6734, + 0.0016, 0.0763, 0.3633, 0.3792, 0.6630, 0.0919, 0.1222, + 0.5443, 0.8587, 0.0627, 0.1060, 0.4814, 0.8481, 0.2733, + 0.7553, 0.9339, 0.1865, 0.2260, 0.9547, 0.8541, 0.1158, + 0.0258, 0.5314, 0.6595, 0.5573, 0.7953, 0.3786, 0.1641, + 0.8997, 0.2507, 0.1855, 0.6951, 0.2863, 0.1627, 0.3079, + 0.5000, 0.3625, 0.8186, 0.3705, 0.2957, 0.1551, 0.0216, + 0.3714, 0.8284, 0.9522, 0.8937, 0.5141, 0.0703, 0.2182, + 0.9274, 0.7097, 0.4349, 0.6001, 0.7581, 0.1855, 0.1138, + 0.0069, 0.0143, 0.6779, 0.4223, 0.2934, 0.1234, 0.5974, + 0.7303, 0.9182, 0.4432, 0.6166, 0.0534, 0.9601, 0.1664, + 0.7453, 0.2693, 0.7496, 0.1561, 0.1695, 0.4247, 0.5083, + 0.7464, 0.9108, 0.9708, 0.4346, 0.1849, 0.3357, 0.6306, + 0.3234, 0.0643, 0.0684, 0.2529, 0.3070, 0.5381, 0.4691, + 0.3912, 0.0111, 0.6019, 0.4700, 0.8282, 0.9967, 0.0138, + 0.0331, 0.4050, 0.1544, 0.2207, 0.6016, 0.9303, 0.9139, + 0.9840, 0.7431, 0.3482, 0.1124, 0.6413]), size=(5000, 5000), nnz=250, layout=torch.sparse_csr) -tensor([0.8800, 0.9246, 0.8175, ..., 0.7580, 0.5437, 0.3847]) +tensor([0.3949, 0.9428, 0.0102, ..., 0.0310, 0.9492, 0.7070]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -77,107 +77,80 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 0.06183266639709473 seconds +Time: 0.013948440551757812 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '169813', '-ss', '5000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 3.7862648963928223} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '75277', '-ss', '5000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 1.5646839141845703} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([4929, 3000, 2082, 1973, 3068, 607, 2961, 29, 351, - 4460, 1744, 1352, 1928, 620, 2963, 2161, 3031, 1297, - 2919, 205, 4433, 3348, 1763, 856, 1768, 4451, 4553, - 4151, 4124, 2487, 3669, 4245, 3791, 4332, 4652, 2944, - 1288, 1040, 2819, 1114, 1794, 2584, 3750, 1803, 3463, - 4428, 74, 755, 2930, 4705, 1792, 4415, 3681, 827, - 4613, 2053, 1757, 3551, 4558, 4714, 3521, 1441, 4198, - 4541, 3322, 2233, 4821, 4668, 3073, 842, 2391, 3470, - 3549, 2287, 3488, 3373, 466, 1474, 153, 4112, 3825, - 4049, 3820, 3974, 3338, 3169, 805, 1709, 934, 888, - 4398, 4212, 3596, 4722, 3648, 2384, 3672, 1636, 2638, - 1043, 3299, 4127, 253, 202, 700, 2123, 4147, 1615, - 2757, 961, 2278, 1624, 3033, 3925, 2974, 659, 4026, - 4847, 3567, 1263, 2942, 649, 336, 2794, 2496, 1692, - 2922, 2720, 4718, 3696, 3170, 3469, 1190, 927, 2942, - 4571, 3583, 3648, 2986, 2168, 2398, 922, 12, 2532, - 4982, 381, 360, 3881, 4346, 1626, 2391, 1413, 4317, - 670, 2866, 246, 1603, 4269, 1839, 293, 829, 3204, - 2987, 1314, 2286, 432, 4021, 2567, 1874, 328, 649, - 3133, 542, 3317, 2128, 3678, 1459, 1800, 937, 707, - 3716, 2927, 4259, 1827, 3266, 2961, 3799, 3106, 2266, - 150, 2700, 2735, 4193, 1030, 278, 2845, 685, 2154, - 4023, 2287, 2456, 1418, 3324, 1219, 1823, 2013, 2290, - 618, 4034, 748, 3423, 2391, 1286, 2548, 2856, 3978, - 206, 3640, 4573, 4602, 2605, 3727, 1817, 3883, 289, - 1165, 667, 2695, 652, 3897, 749, 889, 941, 1767, - 2961, 4938, 4706, 2892, 918, 4326, 4938, 1016, 1946, - 3193, 4622, 2689, 1925, 1828, 3491, 4755]), - values=tensor([6.5732e-01, 5.5709e-01, 9.0255e-01, 3.7373e-01, - 9.2539e-01, 5.3507e-01, 6.8389e-01, 8.5026e-01, - 2.3478e-01, 1.5006e-01, 8.8977e-01, 6.9161e-01, - 6.1729e-01, 8.2125e-01, 3.7387e-01, 4.1891e-01, - 4.2314e-01, 6.0341e-01, 5.3184e-01, 6.7206e-01, - 7.4531e-02, 7.8553e-01, 8.1168e-01, 1.2840e-02, - 9.3074e-01, 9.6045e-01, 8.9283e-01, 3.7963e-01, - 7.0103e-01, 9.0509e-01, 2.9361e-01, 9.8464e-01, - 2.8780e-01, 4.8753e-01, 4.8920e-01, 3.3610e-01, - 9.1715e-01, 3.5090e-01, 5.7914e-02, 9.3110e-01, - 2.2612e-01, 4.1491e-01, 8.2882e-01, 5.9619e-01, - 1.4545e-01, 6.3253e-01, 6.1725e-01, 7.4001e-01, - 9.8714e-01, 7.1669e-01, 9.6945e-01, 7.1615e-01, - 5.3071e-01, 1.9208e-01, 2.5701e-01, 6.2044e-01, - 6.5394e-01, 4.5949e-01, 5.3496e-01, 8.5279e-01, - 1.6171e-01, 4.7427e-01, 3.2489e-01, 9.4031e-01, - 6.6236e-01, 3.3448e-01, 4.5980e-01, 9.8944e-01, - 3.9491e-01, 4.9759e-01, 4.9597e-01, 6.3195e-01, - 2.6203e-01, 4.4820e-01, 5.1223e-01, 3.6293e-01, - 4.5785e-01, 2.8238e-01, 7.5282e-02, 3.5572e-02, - 1.0158e-01, 6.1843e-01, 2.0727e-01, 5.8810e-01, - 3.6032e-01, 6.3934e-01, 3.9975e-01, 9.0048e-01, - 6.8382e-01, 3.3572e-01, 5.8629e-02, 4.9842e-01, - 2.8358e-01, 3.0533e-01, 5.1674e-01, 5.7869e-01, - 8.9344e-01, 1.0014e-01, 1.0304e-01, 8.1526e-01, - 7.6755e-01, 7.0754e-02, 8.7246e-01, 7.6389e-01, - 6.2998e-01, 2.4960e-01, 3.2187e-01, 7.1579e-01, - 2.7927e-01, 5.3053e-01, 3.0237e-01, 7.6440e-02, - 4.1133e-01, 1.4339e-01, 4.0853e-01, 4.2458e-01, - 5.2413e-01, 1.0859e-03, 2.4440e-01, 2.9440e-02, - 5.4994e-01, 7.3144e-01, 9.1113e-01, 3.6059e-03, - 9.4994e-01, 3.3446e-01, 5.3742e-01, 4.4632e-01, - 7.2486e-02, 6.4910e-01, 1.3537e-01, 8.5198e-01, - 1.0295e-01, 9.4804e-01, 7.3070e-01, 6.7511e-01, - 9.8159e-01, 8.2450e-01, 9.4960e-03, 8.6690e-01, - 4.2671e-02, 1.4742e-01, 8.7106e-01, 3.5370e-01, - 2.7525e-01, 5.1878e-01, 4.3630e-01, 6.5541e-01, - 2.5515e-01, 4.3745e-01, 1.7148e-01, 1.7999e-01, - 9.8168e-02, 4.2671e-01, 8.0177e-01, 6.3035e-01, - 5.4076e-01, 7.7599e-01, 6.2263e-01, 2.3030e-01, - 6.9773e-01, 8.4732e-01, 8.0053e-01, 8.6019e-01, - 2.2649e-01, 6.7521e-01, 8.5825e-01, 6.0515e-01, - 9.8639e-01, 1.4857e-01, 2.9126e-01, 6.5170e-01, - 4.0089e-01, 1.9759e-01, 4.6747e-03, 6.9883e-02, - 3.7716e-01, 6.0957e-01, 3.6578e-01, 4.8538e-04, - 4.0192e-01, 4.0856e-01, 2.3977e-01, 8.9289e-01, - 4.4473e-01, 1.9347e-01, 4.3197e-01, 4.7259e-01, - 3.6158e-01, 6.2329e-01, 7.8778e-01, 2.0247e-01, - 5.4445e-02, 9.9327e-01, 1.4720e-01, 6.7916e-01, - 8.7100e-01, 3.3540e-01, 9.5084e-01, 3.4452e-02, - 2.6256e-01, 1.8338e-01, 9.7536e-01, 3.5124e-01, - 2.8707e-01, 7.8855e-01, 6.7111e-01, 5.7173e-01, - 9.5579e-01, 6.0574e-01, 6.8834e-01, 1.3845e-01, - 6.9447e-01, 7.9333e-02, 6.1603e-01, 6.4107e-03, - 3.1443e-02, 2.2338e-01, 7.6880e-01, 4.8996e-01, - 7.2451e-01, 2.5495e-01, 1.1564e-01, 6.2903e-01, - 6.6600e-01, 9.4852e-01, 4.0126e-01, 4.9942e-01, - 3.5796e-01, 8.0719e-01, 6.5464e-01, 2.6782e-01, - 9.4003e-01, 6.5438e-01, 3.6967e-01, 1.8464e-01, - 4.7524e-01, 7.2208e-01, 1.2031e-01, 5.8708e-01, - 2.0250e-01, 6.5919e-01, 4.4919e-01, 5.7088e-01, - 6.2858e-01, 1.8170e-01, 2.2030e-01, 3.1361e-01, - 3.8840e-01, 1.4761e-01]), size=(5000, 5000), nnz=250, - layout=torch.sparse_csr) -tensor([0.8065, 0.5790, 0.9005, ..., 0.0135, 0.6788, 0.2076]) + col_indices=tensor([3746, 1654, 2453, 1836, 1687, 4126, 577, 989, 1161, + 2149, 3910, 3295, 4472, 133, 3358, 1352, 3096, 3601, + 3758, 2512, 1092, 4489, 1464, 1660, 3070, 3361, 4966, + 822, 3500, 236, 2632, 1344, 3148, 1004, 2075, 4538, + 1923, 4311, 3791, 3093, 1373, 470, 112, 1162, 2705, + 3514, 4485, 3748, 3597, 4486, 4629, 78, 32, 3433, + 1822, 3440, 1230, 93, 1755, 4162, 1309, 3789, 3501, + 2710, 1926, 2165, 381, 2357, 4887, 3442, 1756, 2858, + 2903, 4359, 3016, 2687, 1689, 4625, 1621, 3805, 3094, + 1702, 3528, 1035, 4698, 4982, 1451, 1771, 2089, 3195, + 4919, 4133, 1397, 4984, 2564, 4549, 4619, 2832, 4040, + 4237, 2079, 1796, 1577, 4625, 3108, 1608, 19, 3574, + 3985, 1287, 3355, 4562, 3138, 4018, 4235, 751, 3240, + 1452, 49, 2916, 1280, 2827, 2493, 4891, 2490, 4843, + 2541, 1858, 112, 4172, 3878, 2893, 375, 3701, 1061, + 2843, 3468, 53, 4322, 1606, 2648, 4201, 4904, 4969, + 3035, 4661, 1890, 3624, 2603, 426, 3014, 1375, 437, + 1036, 1237, 4055, 3154, 3403, 3642, 4899, 4262, 474, + 2778, 534, 2901, 1174, 2089, 4005, 2324, 163, 146, + 519, 4127, 1342, 708, 4532, 125, 4427, 212, 2077, + 4307, 3955, 3476, 203, 3487, 4805, 2720, 1985, 727, + 17, 534, 1652, 733, 3208, 1391, 4340, 3700, 1893, + 162, 3604, 4298, 2419, 2136, 802, 564, 129, 2585, + 1324, 2167, 2710, 4323, 116, 1401, 831, 2891, 2913, + 1398, 372, 4148, 3575, 2563, 4021, 40, 3400, 4783, + 824, 3068, 2795, 4664, 2245, 2717, 3120, 1588, 2273, + 2302, 3501, 1853, 4736, 2336, 2390, 3070, 2778, 2782, + 746, 4888, 427, 933, 3852, 4383, 1889]), + values=tensor([0.9927, 0.0340, 0.4488, 0.4635, 0.2230, 0.1466, 0.4603, + 0.2785, 0.5078, 0.0027, 0.7560, 0.4421, 0.3531, 0.7573, + 0.7663, 0.5287, 0.4866, 0.0160, 0.0811, 0.2667, 0.0905, + 0.2771, 0.9262, 0.8504, 0.9933, 0.1455, 0.8531, 0.9069, + 0.5790, 0.0929, 0.4671, 0.6608, 0.9664, 0.1896, 0.7953, + 0.9833, 0.4291, 0.7412, 0.1386, 0.5823, 0.9668, 0.6184, + 0.6067, 0.5096, 0.9072, 0.2000, 0.6029, 0.7709, 0.3337, + 0.1225, 0.3581, 0.4923, 0.5670, 0.5531, 0.2219, 0.3460, + 0.1648, 0.9635, 0.0634, 0.0066, 0.2847, 0.4656, 0.8836, + 0.9572, 0.7046, 0.5077, 0.6573, 0.4027, 0.0704, 0.6249, + 0.7137, 0.0161, 0.2786, 0.6964, 0.9732, 0.0101, 0.9546, + 0.7324, 0.8008, 0.6620, 0.3443, 0.9296, 0.6939, 0.5327, + 0.2792, 0.5590, 0.4343, 0.4000, 0.5836, 0.6246, 0.3293, + 0.4244, 0.5279, 0.7005, 0.2154, 0.0350, 0.9262, 0.9148, + 0.3048, 0.0077, 0.5649, 0.4772, 0.8216, 0.6110, 0.2610, + 0.1616, 0.7469, 0.5265, 0.3053, 0.8103, 0.5940, 0.9742, + 0.5862, 0.5529, 0.3872, 0.3034, 0.6804, 0.6806, 0.6660, + 0.5771, 0.6250, 0.9114, 0.6649, 0.3603, 0.1633, 0.2146, + 0.1054, 0.1040, 0.0319, 0.4499, 0.9767, 0.8617, 0.7495, + 0.1652, 0.5616, 0.5919, 0.4704, 0.2766, 0.9966, 0.7157, + 0.1989, 0.6419, 0.8518, 0.4191, 0.4983, 0.6045, 0.7545, + 0.3583, 0.1657, 0.2221, 0.8782, 0.5595, 0.9120, 0.4869, + 0.2789, 0.3396, 0.9955, 0.5682, 0.9596, 0.9327, 0.6012, + 0.2415, 0.5228, 0.5492, 0.9986, 0.8668, 0.0412, 0.8168, + 0.4480, 0.6255, 0.6348, 0.6366, 0.4660, 0.8412, 0.9469, + 0.3182, 0.0180, 0.7704, 0.3602, 0.4075, 0.8083, 0.5267, + 0.5330, 0.4008, 0.8286, 0.6612, 0.5353, 0.6215, 0.4553, + 0.1920, 0.3166, 0.3250, 0.3744, 0.5410, 0.8495, 0.8267, + 0.2666, 0.2654, 0.6447, 0.8392, 0.9176, 0.4756, 0.9542, + 0.8318, 0.5561, 0.5761, 0.1449, 0.0902, 0.9651, 0.4745, + 0.1336, 0.4136, 0.1136, 0.8153, 0.3693, 0.4404, 0.2291, + 0.9951, 0.7922, 0.8470, 0.5195, 0.9072, 0.0501, 0.5628, + 0.6200, 0.3160, 0.6988, 0.7319, 0.9009, 0.3185, 0.5934, + 0.7917, 0.9332, 0.5038, 0.7465, 0.1646, 0.8555, 0.0988, + 0.4002, 0.8098, 0.8642, 0.7419, 0.3377, 0.6378, 0.4276, + 0.2050, 0.6970, 0.0429, 0.1896, 0.1443]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.0748, 0.8455, 0.5581, ..., 0.9449, 0.9600, 0.8816]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -185,80 +158,80 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 3.7862648963928223 seconds +Time: 1.5646839141845703 seconds -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '470922', '-ss', '5000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.104466915130615} +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '505155', '-ss', '5000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.3298921585083} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 250, 250, 250]), - col_indices=tensor([ 286, 2098, 2957, 31, 4770, 3649, 4063, 3564, 3211, - 519, 372, 1653, 2583, 2464, 2987, 1744, 4556, 3480, - 4025, 965, 3221, 3480, 1237, 638, 2731, 2204, 3903, - 337, 4640, 3708, 4928, 846, 4069, 3241, 2342, 3155, - 3904, 4645, 1110, 3262, 206, 2707, 291, 1906, 3653, - 4410, 4931, 1727, 4173, 1383, 3385, 3838, 1305, 3168, - 1375, 4057, 2761, 2787, 2307, 6, 2503, 1872, 3680, - 2234, 1597, 3084, 1758, 491, 3779, 4890, 3184, 831, - 331, 2968, 3525, 1971, 454, 168, 2971, 2622, 1099, - 3321, 3822, 4888, 2660, 4331, 3839, 847, 453, 3854, - 958, 4865, 2336, 403, 4990, 684, 801, 4446, 671, - 4256, 4579, 3616, 522, 3560, 4436, 4875, 4839, 4252, - 2678, 3408, 277, 1706, 3353, 4272, 200, 4495, 1971, - 1057, 2080, 4776, 2636, 1840, 1457, 1455, 3267, 879, - 4146, 2502, 4940, 2313, 21, 1504, 535, 3781, 367, - 2250, 357, 4188, 146, 2230, 1761, 1304, 1785, 442, - 2853, 3699, 79, 4930, 2598, 3595, 2987, 205, 247, - 2873, 2237, 1134, 2086, 3420, 2896, 4246, 2080, 1618, - 978, 1465, 2116, 4506, 3634, 1205, 3062, 601, 2140, - 765, 3494, 3345, 738, 3535, 3354, 3147, 4390, 602, - 4817, 1923, 2074, 44, 1678, 4913, 1057, 4051, 3685, - 2781, 3899, 4448, 4692, 1277, 259, 2144, 2798, 4087, - 2596, 4771, 4479, 733, 3005, 1161, 3811, 3147, 4464, - 4683, 773, 3834, 3088, 1039, 3766, 2820, 3923, 3718, - 3049, 1976, 990, 3587, 2696, 4263, 2139, 3191, 1101, - 4701, 4465, 551, 3012, 2514, 2260, 1927, 3611, 4115, - 4664, 772, 3814, 2744, 2328, 560, 3629, 3666, 4110, - 1272, 515, 3230, 2775, 3191, 4516, 1702]), - values=tensor([0.4950, 0.4387, 0.7062, 0.8184, 0.9685, 0.9491, 0.6387, - 0.3930, 0.4627, 0.2264, 0.4673, 0.2803, 0.8352, 0.7116, - 0.3144, 0.9721, 0.1277, 0.9601, 0.0123, 0.3968, 0.9183, - 0.0517, 0.5676, 0.9009, 0.4901, 0.3378, 0.4750, 0.6307, - 0.7160, 0.7754, 0.8317, 0.5508, 0.6443, 0.1719, 0.1190, - 0.2292, 0.9505, 0.2302, 0.5965, 0.4343, 0.9706, 0.9472, - 0.7071, 0.4120, 0.5080, 0.6133, 0.5804, 0.7848, 0.1131, - 0.7398, 0.2113, 0.5136, 0.9362, 0.4868, 0.7307, 0.9542, - 0.1907, 0.7842, 0.0075, 0.1654, 0.1604, 0.5554, 0.9265, - 0.9594, 0.1847, 0.0412, 0.1458, 0.3185, 0.9474, 0.7262, - 0.9867, 0.9175, 0.8563, 0.0555, 0.5865, 0.1402, 0.0777, - 0.1693, 0.3284, 0.8041, 0.3119, 0.6054, 0.1208, 0.1474, - 0.6411, 0.6397, 0.9233, 0.0205, 0.1838, 0.9985, 0.4716, - 0.4977, 0.8331, 0.9916, 0.5989, 0.7640, 0.9210, 0.4278, - 0.0911, 0.8508, 0.2547, 0.5851, 0.9233, 0.2665, 0.1213, - 0.8754, 0.6206, 0.7311, 0.2194, 0.9834, 0.8122, 0.4946, - 0.7260, 0.9509, 0.7893, 0.0815, 0.9968, 0.5027, 0.3558, - 0.7001, 0.1542, 0.3964, 0.0402, 0.9298, 0.1070, 0.4902, - 0.8333, 0.6213, 0.7680, 0.5975, 0.2149, 0.9396, 0.8765, - 0.8836, 0.3422, 0.3496, 0.7499, 0.8855, 0.3598, 0.7125, - 0.1563, 0.2571, 0.2028, 0.2313, 0.3287, 0.3989, 0.4172, - 0.9776, 0.9673, 0.6099, 0.3489, 0.5171, 0.3263, 0.3550, - 0.8206, 0.1824, 0.1805, 0.0479, 0.6241, 0.3393, 0.7730, - 0.0623, 0.4418, 0.3306, 0.0692, 0.1691, 0.9139, 0.9289, - 0.1653, 0.5991, 0.0793, 0.6308, 0.8611, 0.1878, 0.5735, - 0.8923, 0.1845, 0.1387, 0.3446, 0.0333, 0.5909, 0.0051, - 0.6730, 0.2001, 0.7864, 0.3596, 0.6702, 0.7444, 0.5210, - 0.7057, 0.5369, 0.0193, 0.2647, 0.1729, 0.2634, 0.6010, - 0.4976, 0.7177, 0.7966, 0.8166, 0.9702, 0.2066, 0.9091, - 0.4739, 0.8346, 0.6718, 0.2794, 0.6249, 0.0434, 0.4190, - 0.9938, 0.9770, 0.8053, 0.5102, 0.4949, 0.5149, 0.3290, - 0.8346, 0.3511, 0.4625, 0.1176, 0.9732, 0.6568, 0.0814, - 0.1466, 0.9735, 0.9996, 0.5023, 0.0806, 0.6393, 0.9851, - 0.9968, 0.7168, 0.8555, 0.4797, 0.5400, 0.6489, 0.3087, - 0.4955, 0.2041, 0.9406, 0.8471, 0.5173, 0.1622, 0.0921, - 0.5950, 0.5479, 0.1406, 0.5404, 0.7323]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([1247, 4227, 2384, 1324, 2688, 777, 3611, 2096, 3777, + 4017, 3060, 3853, 275, 2455, 1734, 3565, 37, 2244, + 1733, 4350, 1234, 2896, 3213, 1561, 1980, 4472, 4663, + 506, 4951, 3982, 1179, 751, 4549, 4447, 2215, 404, + 243, 3834, 4527, 3698, 4091, 3198, 2812, 3614, 4523, + 1643, 1713, 1084, 2707, 4, 4057, 1938, 3151, 2591, + 736, 3345, 437, 2659, 175, 3499, 4582, 1472, 654, + 3080, 4209, 728, 2500, 4977, 4359, 4315, 4550, 1180, + 65, 1612, 4551, 4050, 2941, 4296, 4434, 1223, 1238, + 1086, 3880, 4530, 1316, 2102, 4761, 3908, 1050, 3705, + 3194, 4362, 3882, 122, 751, 3713, 3799, 1795, 2520, + 1510, 2238, 4244, 1885, 2083, 3076, 2704, 4833, 3679, + 4672, 3718, 2996, 4020, 4241, 4395, 853, 4475, 4071, + 1868, 2791, 21, 4190, 1530, 3067, 1932, 3665, 3853, + 1426, 1044, 3601, 1259, 2412, 133, 3883, 2099, 3331, + 2256, 2974, 3456, 1750, 1889, 4841, 2200, 4977, 1425, + 1536, 158, 2655, 3709, 3160, 4144, 3380, 1076, 1185, + 3818, 1983, 1852, 4777, 1300, 431, 3274, 3575, 4837, + 325, 4137, 4592, 671, 998, 3275, 4613, 992, 3846, + 2916, 2447, 2605, 2672, 2276, 4850, 4965, 1297, 694, + 259, 1199, 4640, 4880, 3240, 1438, 11, 2797, 2545, + 3917, 4254, 214, 1182, 3713, 4287, 4785, 2360, 1203, + 4398, 3290, 2436, 3411, 3739, 928, 1526, 663, 2059, + 3931, 404, 1876, 3217, 4800, 4377, 4206, 877, 1100, + 1979, 2229, 3016, 180, 945, 4382, 2217, 3064, 609, + 1772, 4045, 3022, 1213, 4864, 3162, 1697, 2645, 550, + 2485, 4784, 4550, 726, 4920, 1331, 357, 3709, 4153, + 3528, 2484, 3864, 1866, 4322, 727, 4703]), + values=tensor([0.4663, 0.4340, 0.1210, 0.0765, 0.6336, 0.1902, 0.3091, + 0.4203, 0.8220, 0.0850, 0.1025, 0.1361, 0.5908, 0.4685, + 0.3710, 0.6463, 0.1664, 0.6973, 0.9489, 0.6122, 0.1354, + 0.4027, 0.3554, 0.9045, 0.3464, 0.4691, 0.3320, 0.2792, + 0.0515, 0.5607, 0.4585, 0.0483, 0.1589, 0.9453, 0.6795, + 0.0575, 0.3527, 0.3951, 0.3470, 0.3333, 0.5355, 0.7562, + 0.1077, 0.3035, 0.4048, 0.6937, 0.2967, 0.6561, 0.1737, + 0.9035, 0.4547, 0.3603, 0.1408, 0.4830, 0.8065, 0.3582, + 0.5455, 0.5723, 0.4523, 0.5057, 0.6324, 0.9028, 0.0577, + 0.4956, 0.6657, 0.9848, 0.6391, 0.6395, 0.4769, 0.0056, + 0.1044, 0.2976, 0.6221, 0.9725, 0.0205, 0.3420, 0.9773, + 0.7515, 0.8006, 0.2336, 0.4394, 0.9756, 0.3057, 0.6186, + 0.7004, 0.6806, 0.0982, 0.4285, 0.8466, 0.0638, 0.7804, + 0.2686, 0.1423, 0.1658, 0.0440, 0.8558, 0.2543, 0.9629, + 0.0443, 0.2812, 0.7112, 0.2679, 0.0325, 0.1914, 0.4697, + 0.5212, 0.5036, 0.8278, 0.2212, 0.7637, 0.6411, 0.8324, + 0.1085, 0.7903, 0.3041, 0.7685, 0.7610, 0.1247, 0.0153, + 0.0898, 0.0347, 0.7987, 0.9119, 0.5255, 0.4670, 0.2413, + 0.8008, 0.0124, 0.0719, 0.3268, 0.5991, 0.1237, 0.5734, + 0.5860, 0.8964, 0.6851, 0.7980, 0.9940, 0.8001, 0.3866, + 0.4921, 0.3129, 0.6180, 0.1949, 0.6009, 0.4868, 0.5484, + 0.3765, 0.9472, 0.7499, 0.8386, 0.8281, 0.0445, 0.8521, + 0.1827, 0.1424, 0.9964, 0.2930, 0.6405, 0.8880, 0.8455, + 0.8730, 0.0256, 0.3303, 0.4997, 0.7068, 0.9986, 0.4515, + 0.8492, 0.9495, 0.7252, 0.1393, 0.3125, 0.0955, 0.0411, + 0.0855, 0.4594, 0.0571, 0.4760, 0.9753, 0.9680, 0.6765, + 0.6632, 0.7732, 0.2205, 0.7219, 0.1231, 0.5507, 0.9386, + 0.9853, 0.1484, 0.5471, 0.2415, 0.3412, 0.3970, 0.9721, + 0.4075, 0.7397, 0.6041, 0.4919, 0.1150, 0.1028, 0.3707, + 0.5907, 0.4305, 0.9162, 0.9956, 0.3282, 0.6112, 0.6540, + 0.0961, 0.8665, 0.2552, 0.6175, 0.4850, 0.4310, 0.1165, + 0.3274, 0.7923, 0.1515, 0.5293, 0.8418, 0.1450, 0.8268, + 0.9665, 0.7626, 0.7605, 0.9986, 0.9489, 0.8011, 0.9290, + 0.5451, 0.8590, 0.5389, 0.0080, 0.8363, 0.8570, 0.5734, + 0.7613, 0.9018, 0.0697, 0.9293, 0.2543, 0.2531, 0.2854, + 0.3722, 0.6889, 0.4487, 0.3475, 0.2897]), size=(5000, 5000), nnz=250, layout=torch.sparse_csr) -tensor([0.4539, 0.8865, 0.6514, ..., 0.0864, 0.1789, 0.3670]) +tensor([0.8985, 0.0813, 0.9894, ..., 0.1805, 0.5543, 0.3501]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -266,77 +239,77 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 10.104466915130615 seconds +Time: 10.3298921585083 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 250, 250, 250]), - col_indices=tensor([ 286, 2098, 2957, 31, 4770, 3649, 4063, 3564, 3211, - 519, 372, 1653, 2583, 2464, 2987, 1744, 4556, 3480, - 4025, 965, 3221, 3480, 1237, 638, 2731, 2204, 3903, - 337, 4640, 3708, 4928, 846, 4069, 3241, 2342, 3155, - 3904, 4645, 1110, 3262, 206, 2707, 291, 1906, 3653, - 4410, 4931, 1727, 4173, 1383, 3385, 3838, 1305, 3168, - 1375, 4057, 2761, 2787, 2307, 6, 2503, 1872, 3680, - 2234, 1597, 3084, 1758, 491, 3779, 4890, 3184, 831, - 331, 2968, 3525, 1971, 454, 168, 2971, 2622, 1099, - 3321, 3822, 4888, 2660, 4331, 3839, 847, 453, 3854, - 958, 4865, 2336, 403, 4990, 684, 801, 4446, 671, - 4256, 4579, 3616, 522, 3560, 4436, 4875, 4839, 4252, - 2678, 3408, 277, 1706, 3353, 4272, 200, 4495, 1971, - 1057, 2080, 4776, 2636, 1840, 1457, 1455, 3267, 879, - 4146, 2502, 4940, 2313, 21, 1504, 535, 3781, 367, - 2250, 357, 4188, 146, 2230, 1761, 1304, 1785, 442, - 2853, 3699, 79, 4930, 2598, 3595, 2987, 205, 247, - 2873, 2237, 1134, 2086, 3420, 2896, 4246, 2080, 1618, - 978, 1465, 2116, 4506, 3634, 1205, 3062, 601, 2140, - 765, 3494, 3345, 738, 3535, 3354, 3147, 4390, 602, - 4817, 1923, 2074, 44, 1678, 4913, 1057, 4051, 3685, - 2781, 3899, 4448, 4692, 1277, 259, 2144, 2798, 4087, - 2596, 4771, 4479, 733, 3005, 1161, 3811, 3147, 4464, - 4683, 773, 3834, 3088, 1039, 3766, 2820, 3923, 3718, - 3049, 1976, 990, 3587, 2696, 4263, 2139, 3191, 1101, - 4701, 4465, 551, 3012, 2514, 2260, 1927, 3611, 4115, - 4664, 772, 3814, 2744, 2328, 560, 3629, 3666, 4110, - 1272, 515, 3230, 2775, 3191, 4516, 1702]), - values=tensor([0.4950, 0.4387, 0.7062, 0.8184, 0.9685, 0.9491, 0.6387, - 0.3930, 0.4627, 0.2264, 0.4673, 0.2803, 0.8352, 0.7116, - 0.3144, 0.9721, 0.1277, 0.9601, 0.0123, 0.3968, 0.9183, - 0.0517, 0.5676, 0.9009, 0.4901, 0.3378, 0.4750, 0.6307, - 0.7160, 0.7754, 0.8317, 0.5508, 0.6443, 0.1719, 0.1190, - 0.2292, 0.9505, 0.2302, 0.5965, 0.4343, 0.9706, 0.9472, - 0.7071, 0.4120, 0.5080, 0.6133, 0.5804, 0.7848, 0.1131, - 0.7398, 0.2113, 0.5136, 0.9362, 0.4868, 0.7307, 0.9542, - 0.1907, 0.7842, 0.0075, 0.1654, 0.1604, 0.5554, 0.9265, - 0.9594, 0.1847, 0.0412, 0.1458, 0.3185, 0.9474, 0.7262, - 0.9867, 0.9175, 0.8563, 0.0555, 0.5865, 0.1402, 0.0777, - 0.1693, 0.3284, 0.8041, 0.3119, 0.6054, 0.1208, 0.1474, - 0.6411, 0.6397, 0.9233, 0.0205, 0.1838, 0.9985, 0.4716, - 0.4977, 0.8331, 0.9916, 0.5989, 0.7640, 0.9210, 0.4278, - 0.0911, 0.8508, 0.2547, 0.5851, 0.9233, 0.2665, 0.1213, - 0.8754, 0.6206, 0.7311, 0.2194, 0.9834, 0.8122, 0.4946, - 0.7260, 0.9509, 0.7893, 0.0815, 0.9968, 0.5027, 0.3558, - 0.7001, 0.1542, 0.3964, 0.0402, 0.9298, 0.1070, 0.4902, - 0.8333, 0.6213, 0.7680, 0.5975, 0.2149, 0.9396, 0.8765, - 0.8836, 0.3422, 0.3496, 0.7499, 0.8855, 0.3598, 0.7125, - 0.1563, 0.2571, 0.2028, 0.2313, 0.3287, 0.3989, 0.4172, - 0.9776, 0.9673, 0.6099, 0.3489, 0.5171, 0.3263, 0.3550, - 0.8206, 0.1824, 0.1805, 0.0479, 0.6241, 0.3393, 0.7730, - 0.0623, 0.4418, 0.3306, 0.0692, 0.1691, 0.9139, 0.9289, - 0.1653, 0.5991, 0.0793, 0.6308, 0.8611, 0.1878, 0.5735, - 0.8923, 0.1845, 0.1387, 0.3446, 0.0333, 0.5909, 0.0051, - 0.6730, 0.2001, 0.7864, 0.3596, 0.6702, 0.7444, 0.5210, - 0.7057, 0.5369, 0.0193, 0.2647, 0.1729, 0.2634, 0.6010, - 0.4976, 0.7177, 0.7966, 0.8166, 0.9702, 0.2066, 0.9091, - 0.4739, 0.8346, 0.6718, 0.2794, 0.6249, 0.0434, 0.4190, - 0.9938, 0.9770, 0.8053, 0.5102, 0.4949, 0.5149, 0.3290, - 0.8346, 0.3511, 0.4625, 0.1176, 0.9732, 0.6568, 0.0814, - 0.1466, 0.9735, 0.9996, 0.5023, 0.0806, 0.6393, 0.9851, - 0.9968, 0.7168, 0.8555, 0.4797, 0.5400, 0.6489, 0.3087, - 0.4955, 0.2041, 0.9406, 0.8471, 0.5173, 0.1622, 0.0921, - 0.5950, 0.5479, 0.1406, 0.5404, 0.7323]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([1247, 4227, 2384, 1324, 2688, 777, 3611, 2096, 3777, + 4017, 3060, 3853, 275, 2455, 1734, 3565, 37, 2244, + 1733, 4350, 1234, 2896, 3213, 1561, 1980, 4472, 4663, + 506, 4951, 3982, 1179, 751, 4549, 4447, 2215, 404, + 243, 3834, 4527, 3698, 4091, 3198, 2812, 3614, 4523, + 1643, 1713, 1084, 2707, 4, 4057, 1938, 3151, 2591, + 736, 3345, 437, 2659, 175, 3499, 4582, 1472, 654, + 3080, 4209, 728, 2500, 4977, 4359, 4315, 4550, 1180, + 65, 1612, 4551, 4050, 2941, 4296, 4434, 1223, 1238, + 1086, 3880, 4530, 1316, 2102, 4761, 3908, 1050, 3705, + 3194, 4362, 3882, 122, 751, 3713, 3799, 1795, 2520, + 1510, 2238, 4244, 1885, 2083, 3076, 2704, 4833, 3679, + 4672, 3718, 2996, 4020, 4241, 4395, 853, 4475, 4071, + 1868, 2791, 21, 4190, 1530, 3067, 1932, 3665, 3853, + 1426, 1044, 3601, 1259, 2412, 133, 3883, 2099, 3331, + 2256, 2974, 3456, 1750, 1889, 4841, 2200, 4977, 1425, + 1536, 158, 2655, 3709, 3160, 4144, 3380, 1076, 1185, + 3818, 1983, 1852, 4777, 1300, 431, 3274, 3575, 4837, + 325, 4137, 4592, 671, 998, 3275, 4613, 992, 3846, + 2916, 2447, 2605, 2672, 2276, 4850, 4965, 1297, 694, + 259, 1199, 4640, 4880, 3240, 1438, 11, 2797, 2545, + 3917, 4254, 214, 1182, 3713, 4287, 4785, 2360, 1203, + 4398, 3290, 2436, 3411, 3739, 928, 1526, 663, 2059, + 3931, 404, 1876, 3217, 4800, 4377, 4206, 877, 1100, + 1979, 2229, 3016, 180, 945, 4382, 2217, 3064, 609, + 1772, 4045, 3022, 1213, 4864, 3162, 1697, 2645, 550, + 2485, 4784, 4550, 726, 4920, 1331, 357, 3709, 4153, + 3528, 2484, 3864, 1866, 4322, 727, 4703]), + values=tensor([0.4663, 0.4340, 0.1210, 0.0765, 0.6336, 0.1902, 0.3091, + 0.4203, 0.8220, 0.0850, 0.1025, 0.1361, 0.5908, 0.4685, + 0.3710, 0.6463, 0.1664, 0.6973, 0.9489, 0.6122, 0.1354, + 0.4027, 0.3554, 0.9045, 0.3464, 0.4691, 0.3320, 0.2792, + 0.0515, 0.5607, 0.4585, 0.0483, 0.1589, 0.9453, 0.6795, + 0.0575, 0.3527, 0.3951, 0.3470, 0.3333, 0.5355, 0.7562, + 0.1077, 0.3035, 0.4048, 0.6937, 0.2967, 0.6561, 0.1737, + 0.9035, 0.4547, 0.3603, 0.1408, 0.4830, 0.8065, 0.3582, + 0.5455, 0.5723, 0.4523, 0.5057, 0.6324, 0.9028, 0.0577, + 0.4956, 0.6657, 0.9848, 0.6391, 0.6395, 0.4769, 0.0056, + 0.1044, 0.2976, 0.6221, 0.9725, 0.0205, 0.3420, 0.9773, + 0.7515, 0.8006, 0.2336, 0.4394, 0.9756, 0.3057, 0.6186, + 0.7004, 0.6806, 0.0982, 0.4285, 0.8466, 0.0638, 0.7804, + 0.2686, 0.1423, 0.1658, 0.0440, 0.8558, 0.2543, 0.9629, + 0.0443, 0.2812, 0.7112, 0.2679, 0.0325, 0.1914, 0.4697, + 0.5212, 0.5036, 0.8278, 0.2212, 0.7637, 0.6411, 0.8324, + 0.1085, 0.7903, 0.3041, 0.7685, 0.7610, 0.1247, 0.0153, + 0.0898, 0.0347, 0.7987, 0.9119, 0.5255, 0.4670, 0.2413, + 0.8008, 0.0124, 0.0719, 0.3268, 0.5991, 0.1237, 0.5734, + 0.5860, 0.8964, 0.6851, 0.7980, 0.9940, 0.8001, 0.3866, + 0.4921, 0.3129, 0.6180, 0.1949, 0.6009, 0.4868, 0.5484, + 0.3765, 0.9472, 0.7499, 0.8386, 0.8281, 0.0445, 0.8521, + 0.1827, 0.1424, 0.9964, 0.2930, 0.6405, 0.8880, 0.8455, + 0.8730, 0.0256, 0.3303, 0.4997, 0.7068, 0.9986, 0.4515, + 0.8492, 0.9495, 0.7252, 0.1393, 0.3125, 0.0955, 0.0411, + 0.0855, 0.4594, 0.0571, 0.4760, 0.9753, 0.9680, 0.6765, + 0.6632, 0.7732, 0.2205, 0.7219, 0.1231, 0.5507, 0.9386, + 0.9853, 0.1484, 0.5471, 0.2415, 0.3412, 0.3970, 0.9721, + 0.4075, 0.7397, 0.6041, 0.4919, 0.1150, 0.1028, 0.3707, + 0.5907, 0.4305, 0.9162, 0.9956, 0.3282, 0.6112, 0.6540, + 0.0961, 0.8665, 0.2552, 0.6175, 0.4850, 0.4310, 0.1165, + 0.3274, 0.7923, 0.1515, 0.5293, 0.8418, 0.1450, 0.8268, + 0.9665, 0.7626, 0.7605, 0.9986, 0.9489, 0.8011, 0.9290, + 0.5451, 0.8590, 0.5389, 0.0080, 0.8363, 0.8570, 0.5734, + 0.7613, 0.9018, 0.0697, 0.9293, 0.2543, 0.2531, 0.2854, + 0.3722, 0.6889, 0.4487, 0.3475, 0.2897]), size=(5000, 5000), nnz=250, layout=torch.sparse_csr) -tensor([0.4539, 0.8865, 0.6514, ..., 0.0864, 0.1789, 0.3670]) +tensor([0.8985, 0.0813, 0.9894, ..., 0.1805, 0.5543, 0.3501]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -344,13 +317,13 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 10.104466915130615 seconds +Time: 10.3298921585083 seconds -[39.77, 39.06, 39.0, 43.22, 38.95, 38.87, 39.0, 38.96, 40.09, 38.55] -[92.79] -12.344655752182007 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 470922, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.104466915130615, 'TIME_S_1KI': 0.021456773977708867, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1145.4606072449685, 'W': 92.79} -[39.77, 39.06, 39.0, 43.22, 38.95, 38.87, 39.0, 38.96, 40.09, 38.55, 44.05, 41.96, 39.49, 38.5, 38.79, 39.12, 39.88, 38.31, 39.38, 38.55] -713.04 -35.652 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 470922, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.104466915130615, 'TIME_S_1KI': 0.021456773977708867, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1145.4606072449685, 'W': 92.79, 'J_1KI': 2.4323786258551703, 'W_1KI': 0.19703900008918676, 'W_D': 57.138000000000005, 'J_D': 705.3489403681756, 'W_D_1KI': 0.12133219514059655, 'J_D_1KI': 0.0002576481777037313} +[40.32, 39.94, 39.79, 39.67, 40.95, 39.71, 39.34, 39.43, 39.56, 39.61] +[95.58] +12.982455968856812 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 505155, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.3298921585083, 'TIME_S_1KI': 0.020448955584935914, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1240.863141503334, 'W': 95.58} +[40.32, 39.94, 39.79, 39.67, 40.95, 39.71, 39.34, 39.43, 39.56, 39.61, 39.84, 39.42, 39.39, 39.45, 39.34, 39.21, 39.4, 39.18, 39.13, 39.91] +712.75 +35.6375 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 505155, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.3298921585083, 'TIME_S_1KI': 0.020448955584935914, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1240.863141503334, 'W': 95.58, 'J_1KI': 2.4564007908529737, 'W_1KI': 0.1892092526056359, 'W_D': 59.942499999999995, 'J_D': 778.2008669131993, 'W_D_1KI': 0.11866159891518444, 'J_D_1KI': 0.0002349013647596964} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_5e-05.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_5e-05.json new file mode 100644 index 0000000..1cf76cc --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 461197, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.877047538757324, "TIME_S_1KI": 0.023584384848030937, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1221.180625166893, "W": 95.74, "J_1KI": 2.6478503224585004, "W_1KI": 0.20759024885244265, "W_D": 60.15774999999999, "J_D": 767.3227360939383, "W_D_1KI": 0.13043829426470682, "J_D_1KI": 0.0002828255480081328} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_5e-05.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_5e-05.output new file mode 100644 index 0000000..09b3a13 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_5000_5e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.0320582389831543} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 1249, 1249, 1250]), + col_indices=tensor([2956, 558, 3504, ..., 1528, 4784, 1878]), + values=tensor([0.5224, 0.1438, 0.5941, ..., 0.0368, 0.6760, 0.3012]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.8976, 0.5094, 0.6995, ..., 0.0327, 0.1649, 0.7937]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 0.0320582389831543 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '32752', '-ss', '5000', '-sd', '5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.745659589767456} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1250, 1250, 1250]), + col_indices=tensor([1743, 4461, 346, ..., 1137, 3893, 4349]), + values=tensor([0.7861, 0.9854, 0.5411, ..., 0.5282, 0.2898, 0.9587]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.5708, 0.3567, 0.0850, ..., 0.6472, 0.1624, 0.7150]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 0.745659589767456 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '461197', '-ss', '5000', '-sd', '5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.877047538757324} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1250, 1250, 1250]), + col_indices=tensor([4244, 4483, 4692, ..., 3607, 4429, 290]), + values=tensor([0.6080, 0.0136, 0.3918, ..., 0.5066, 0.3391, 0.6977]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.1101, 0.0872, 0.5048, ..., 0.5059, 0.1642, 0.4124]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 10.877047538757324 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1250, 1250, 1250]), + col_indices=tensor([4244, 4483, 4692, ..., 3607, 4429, 290]), + values=tensor([0.6080, 0.0136, 0.3918, ..., 0.5066, 0.3391, 0.6977]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.1101, 0.0872, 0.5048, ..., 0.5059, 0.1642, 0.4124]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 10.877047538757324 seconds + +[42.19, 40.35, 39.27, 40.36, 39.17, 39.06, 39.17, 39.21, 39.04, 39.45] +[95.74] +12.755176782608032 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 461197, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.877047538757324, 'TIME_S_1KI': 0.023584384848030937, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1221.180625166893, 'W': 95.74} +[42.19, 40.35, 39.27, 40.36, 39.17, 39.06, 39.17, 39.21, 39.04, 39.45, 39.84, 39.7, 39.64, 39.58, 39.75, 39.24, 39.17, 39.36, 39.12, 39.43] +711.645 +35.58225 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 461197, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.877047538757324, 'TIME_S_1KI': 0.023584384848030937, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1221.180625166893, 'W': 95.74, 'J_1KI': 2.6478503224585004, 'W_1KI': 0.20759024885244265, 'W_D': 60.15774999999999, 'J_D': 767.3227360939383, 'W_D_1KI': 0.13043829426470682, 'J_D_1KI': 0.0002828255480081328} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_0.0001.json index 648e77d..b0c2a19 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_0.0001.json +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_0.0001.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 33926, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.632460117340088, "TIME_S_1KI": 0.31340152441608465, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1251.6098043680192, "W": 88.42000000000002, "J_1KI": 36.892348180393185, "W_1KI": 2.606260685020339, "W_D": 71.92675000000001, "J_D": 1018.1432424375416, "W_D_1KI": 2.120106997582975, "J_D_1KI": 0.062492100382685115} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 33525, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.643972158432007, "TIME_S_1KI": 0.3174935766870099, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1221.4049115991593, "W": 88.39, "J_1KI": 36.43265955553048, "W_1KI": 2.6365398956002983, "W_D": 72.1155, "J_D": 996.5179986698627, "W_D_1KI": 2.151096196868009, "J_D_1KI": 0.06416394323245365} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_0.0001.output index aff18b0..dc5d053 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_0.0001.output +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_0.0001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.309490442276001} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '100000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.04636812210083008} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 8, 15, ..., 999979, - 999989, 1000000]), - col_indices=tensor([ 8594, 29009, 41843, ..., 77886, 78317, 95347]), - values=tensor([0.9328, 0.5746, 0.1196, ..., 0.5058, 0.9583, 0.4434]), +tensor(crow_indices=tensor([ 0, 5, 13, ..., 999983, + 999994, 1000000]), + col_indices=tensor([ 8176, 34026, 54478, ..., 84998, 92494, 98961]), + values=tensor([0.4351, 0.9999, 0.3437, ..., 0.3684, 0.7357, 0.5729]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.8206, 0.6612, 0.6620, ..., 0.9270, 0.4872, 0.3406]) +tensor([0.8699, 0.2767, 0.3378, ..., 0.5349, 0.7243, 0.7857]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,19 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 0.309490442276001 seconds +Time: 0.04636812210083008 seconds -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '33926', '-ss', '100000', '-sd', '0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.632460117340088} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '22644', '-ss', '100000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 7.091935634613037} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 7, 18, ..., 999986, +tensor(crow_indices=tensor([ 0, 6, 23, ..., 999978, 999991, 1000000]), - col_indices=tensor([ 9555, 32072, 52846, ..., 78086, 80072, 96075]), - values=tensor([0.9751, 0.3269, 0.5720, ..., 0.0320, 0.6071, 0.6982]), + col_indices=tensor([26374, 42582, 44652, ..., 65952, 74293, 78884]), + values=tensor([0.4256, 0.1611, 0.6127, ..., 0.5242, 0.3400, 0.0348]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.5445, 0.0121, 0.5604, ..., 0.3280, 0.5430, 0.6322]) +tensor([0.0369, 0.6183, 0.8933, ..., 0.8293, 0.4628, 0.9829]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -36,16 +36,19 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 10.632460117340088 seconds +Time: 7.091935634613037 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '33525', '-ss', '100000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.643972158432007} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 7, 18, ..., 999986, - 999991, 1000000]), - col_indices=tensor([ 9555, 32072, 52846, ..., 78086, 80072, 96075]), - values=tensor([0.9751, 0.3269, 0.5720, ..., 0.0320, 0.6071, 0.6982]), +tensor(crow_indices=tensor([ 0, 7, 17, ..., 999978, + 999994, 1000000]), + col_indices=tensor([ 9594, 11946, 25379, ..., 52892, 57506, 73818]), + values=tensor([0.4978, 0.8076, 0.6002, ..., 0.2925, 0.4675, 0.5122]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.5445, 0.0121, 0.5604, ..., 0.3280, 0.5430, 0.6322]) +tensor([0.8765, 0.8954, 0.8874, ..., 0.8137, 0.3245, 0.8007]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -53,13 +56,30 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 10.632460117340088 seconds +Time: 10.643972158432007 seconds -[18.53, 17.97, 18.07, 18.07, 17.99, 18.09, 21.33, 17.98, 18.39, 17.84] -[88.42] -14.155279397964478 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 33926, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.632460117340088, 'TIME_S_1KI': 0.31340152441608465, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1251.6098043680192, 'W': 88.42000000000002} -[18.53, 17.97, 18.07, 18.07, 17.99, 18.09, 21.33, 17.98, 18.39, 17.84, 18.71, 17.91, 17.99, 18.02, 18.68, 18.08, 17.92, 18.59, 18.24, 18.01] -329.865 -16.49325 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 33926, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.632460117340088, 'TIME_S_1KI': 0.31340152441608465, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1251.6098043680192, 'W': 88.42000000000002, 'J_1KI': 36.892348180393185, 'W_1KI': 2.606260685020339, 'W_D': 71.92675000000001, 'J_D': 1018.1432424375416, 'W_D_1KI': 2.120106997582975, 'J_D_1KI': 0.062492100382685115} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 7, 17, ..., 999978, + 999994, 1000000]), + col_indices=tensor([ 9594, 11946, 25379, ..., 52892, 57506, 73818]), + values=tensor([0.4978, 0.8076, 0.6002, ..., 0.2925, 0.4675, 0.5122]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.8765, 0.8954, 0.8874, ..., 0.8137, 0.3245, 0.8007]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 10.643972158432007 seconds + +[18.37, 17.76, 17.76, 17.79, 18.13, 17.85, 18.03, 17.72, 18.33, 18.48] +[88.39] +13.818360805511475 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 33525, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.643972158432007, 'TIME_S_1KI': 0.3174935766870099, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1221.4049115991593, 'W': 88.39} +[18.37, 17.76, 17.76, 17.79, 18.13, 17.85, 18.03, 17.72, 18.33, 18.48, 18.41, 18.08, 18.64, 18.55, 18.21, 18.02, 18.07, 18.01, 17.96, 17.9] +325.49 +16.2745 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 33525, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.643972158432007, 'TIME_S_1KI': 0.3174935766870099, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1221.4049115991593, 'W': 88.39, 'J_1KI': 36.43265955553048, 'W_1KI': 2.6365398956002983, 'W_D': 72.1155, 'J_D': 996.5179986698627, 'W_D_1KI': 2.151096196868009, 'J_D_1KI': 0.06416394323245365} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_0.001.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_0.001.json index b1b6585..7fe967e 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_0.001.json +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_0.001.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 2890, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.78333592414856, "TIME_S_1KI": 3.731258105241716, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1463.5743112421035, "W": 81.86, "J_1KI": 506.4270973156068, "W_1KI": 28.325259515570934, "W_D": 65.62225000000001, "J_D": 1173.259703712523, "W_D_1KI": 22.706660899653983, "J_D_1KI": 7.856976089845669} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 2660, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.18576693534851, "TIME_S_1KI": 3.829235689980643, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1328.5220910072328, "W": 81.2, "J_1KI": 499.44439511550104, "W_1KI": 30.526315789473685, "W_D": 64.453, "J_D": 1054.5225902917387, "W_D_1KI": 24.23045112781955, "J_D_1KI": 9.10919215331562} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_0.001.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_0.001.output index 1352df1..8cde86c 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_0.001.output +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_0.001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 3.6327288150787354} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '100000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.39462947845458984} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 95, 182, ..., 9999803, - 9999900, 10000000]), - col_indices=tensor([ 1164, 1511, 2606, ..., 97059, 99366, 99637]), - values=tensor([0.1789, 0.4314, 0.0466, ..., 0.4339, 0.7049, 0.9540]), +tensor(crow_indices=tensor([ 0, 104, 208, ..., 9999814, + 9999906, 10000000]), + col_indices=tensor([ 1924, 2222, 4663, ..., 98435, 98556, 99127]), + values=tensor([0.9193, 0.2961, 0.8826, ..., 0.2999, 0.4100, 0.0457]), size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.5756, 0.3189, 0.9065, ..., 0.6359, 0.4482, 0.1651]) +tensor([0.8186, 0.3714, 0.9798, ..., 0.9009, 0.9275, 0.2252]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,19 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 10000000 Density: 0.001 -Time: 3.6327288150787354 seconds +Time: 0.39462947845458984 seconds -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '2890', '-ss', '100000', '-sd', '0.001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.78333592414856} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '2660', '-ss', '100000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.18576693534851} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 118, 207, ..., 9999808, - 9999910, 10000000]), - col_indices=tensor([ 712, 968, 1059, ..., 96997, 98856, 99104]), - values=tensor([0.5177, 0.6712, 0.5343, ..., 0.8226, 0.3425, 0.6939]), +tensor(crow_indices=tensor([ 0, 111, 209, ..., 9999785, + 9999908, 10000000]), + col_indices=tensor([ 4849, 5332, 5597, ..., 99100, 99293, 99777]), + values=tensor([0.3984, 0.3126, 0.3684, ..., 0.2469, 0.5703, 0.8605]), size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.8858, 0.8376, 0.8837, ..., 0.6861, 0.2657, 0.8920]) +tensor([0.6012, 0.7247, 0.1820, ..., 0.8515, 0.6518, 0.6577]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -36,16 +36,16 @@ Rows: 100000 Size: 10000000000 NNZ: 10000000 Density: 0.001 -Time: 10.78333592414856 seconds +Time: 10.18576693534851 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 118, 207, ..., 9999808, - 9999910, 10000000]), - col_indices=tensor([ 712, 968, 1059, ..., 96997, 98856, 99104]), - values=tensor([0.5177, 0.6712, 0.5343, ..., 0.8226, 0.3425, 0.6939]), +tensor(crow_indices=tensor([ 0, 111, 209, ..., 9999785, + 9999908, 10000000]), + col_indices=tensor([ 4849, 5332, 5597, ..., 99100, 99293, 99777]), + values=tensor([0.3984, 0.3126, 0.3684, ..., 0.2469, 0.5703, 0.8605]), size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.8858, 0.8376, 0.8837, ..., 0.6861, 0.2657, 0.8920]) +tensor([0.6012, 0.7247, 0.1820, ..., 0.8515, 0.6518, 0.6577]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -53,13 +53,13 @@ Rows: 100000 Size: 10000000000 NNZ: 10000000 Density: 0.001 -Time: 10.78333592414856 seconds +Time: 10.18576693534851 seconds -[18.4, 18.1, 18.05, 18.1, 18.29, 18.11, 18.1, 17.9, 17.96, 17.98] -[81.86] -17.878992319107056 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2890, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.78333592414856, 'TIME_S_1KI': 3.731258105241716, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1463.5743112421035, 'W': 81.86} -[18.4, 18.1, 18.05, 18.1, 18.29, 18.11, 18.1, 17.9, 17.96, 17.98, 18.26, 17.88, 17.92, 17.96, 18.1, 17.9, 17.98, 18.14, 18.06, 17.77] -324.755 -16.23775 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2890, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.78333592414856, 'TIME_S_1KI': 3.731258105241716, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1463.5743112421035, 'W': 81.86, 'J_1KI': 506.4270973156068, 'W_1KI': 28.325259515570934, 'W_D': 65.62225000000001, 'J_D': 1173.259703712523, 'W_D_1KI': 22.706660899653983, 'J_D_1KI': 7.856976089845669} +[18.33, 18.01, 18.45, 18.12, 17.88, 17.91, 18.33, 22.42, 18.21, 17.9] +[81.2] +16.361109495162964 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2660, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.18576693534851, 'TIME_S_1KI': 3.829235689980643, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1328.5220910072328, 'W': 81.2} +[18.33, 18.01, 18.45, 18.12, 17.88, 17.91, 18.33, 22.42, 18.21, 17.9, 22.63, 20.65, 18.09, 18.03, 18.02, 18.26, 18.0, 18.17, 17.93, 18.06] +334.94000000000005 +16.747000000000003 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2660, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.18576693534851, 'TIME_S_1KI': 3.829235689980643, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1328.5220910072328, 'W': 81.2, 'J_1KI': 499.44439511550104, 'W_1KI': 30.526315789473685, 'W_D': 64.453, 'J_D': 1054.5225902917387, 'W_D_1KI': 24.23045112781955, 'J_D_1KI': 9.10919215331562} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_1e-05.json index c182694..fdd737d 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_1e-05.json +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_1e-05.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 64311, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.418502807617188, "TIME_S_1KI": 0.16200187849072767, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1158.3267517518998, "W": 82.98, "J_1KI": 18.011331681234932, "W_1KI": 1.2902924849559174, "W_D": 66.6565, "J_D": 930.4652582327127, "W_D_1KI": 1.036471210212872, "J_D_1KI": 0.01611654631731542} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 64522, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.3600492477417, "TIME_S_1KI": 0.1605661518201807, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1143.5515343093873, "W": 83.36000000000001, "J_1KI": 17.723435949124134, "W_1KI": 1.291962431418741, "W_D": 66.67275000000001, "J_D": 914.6320244616867, "W_D_1KI": 1.0333335916431607, "J_D_1KI": 0.01601521328605996} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_1e-05.output index 055aab1..8218685 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_1e-05.output +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_1e-05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.17745423316955566} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '100000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.03250718116760254} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 3, ..., 99998, 100000, +tensor(crow_indices=tensor([ 0, 0, 1, ..., 99998, 99998, 100000]), - col_indices=tensor([42546, 58983, 86183, ..., 98460, 14991, 73616]), - values=tensor([0.4174, 0.2060, 0.0899, ..., 0.6212, 0.4971, 0.7481]), + col_indices=tensor([12882, 21465, 63858, ..., 96153, 4715, 69382]), + values=tensor([0.1495, 0.9028, 0.7353, ..., 0.9651, 0.0553, 0.0388]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.8074, 0.4851, 0.0283, ..., 0.2070, 0.7576, 0.4733]) +tensor([0.6296, 0.2324, 0.7696, ..., 0.0819, 0.5051, 0.6795]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,19 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 0.17745423316955566 seconds +Time: 0.03250718116760254 seconds -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '59170', '-ss', '100000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.660528182983398} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '32300', '-ss', '100000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 5.256327390670776} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 100000, 100000, +tensor(crow_indices=tensor([ 0, 1, 3, ..., 99998, 99999, 100000]), - col_indices=tensor([96712, 9860, 17593, ..., 59712, 70511, 99970]), - values=tensor([0.7958, 0.9740, 0.0109, ..., 0.7243, 0.7214, 0.8821]), + col_indices=tensor([24100, 22524, 41698, ..., 71518, 54296, 46275]), + values=tensor([0.6729, 0.0195, 0.1396, ..., 0.6516, 0.4177, 0.7883]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.4741, 0.0741, 0.4151, ..., 0.2722, 0.2577, 0.9729]) +tensor([0.6330, 0.0132, 0.4522, ..., 0.1249, 0.8426, 0.7168]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -36,19 +36,19 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 9.660528182983398 seconds +Time: 5.256327390670776 seconds -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '64311', '-ss', '100000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.418502807617188} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '64522', '-ss', '100000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.3600492477417} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 3, ..., 99999, 99999, +tensor(crow_indices=tensor([ 0, 1, 1, ..., 99996, 99999, 100000]), - col_indices=tensor([60832, 83948, 658, ..., 83631, 80017, 34658]), - values=tensor([0.5224, 0.7895, 0.2144, ..., 0.4897, 0.2214, 0.9534]), + col_indices=tensor([63372, 90175, 43637, ..., 48404, 84175, 41742]), + values=tensor([0.0143, 0.7083, 0.4138, ..., 0.7171, 0.1589, 0.0907]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.6371, 0.8407, 0.9472, ..., 0.9476, 0.5347, 0.4303]) +tensor([0.2672, 0.1313, 0.6231, ..., 0.4829, 0.5251, 0.7815]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -56,16 +56,16 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 10.418502807617188 seconds +Time: 10.3600492477417 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 3, ..., 99999, 99999, +tensor(crow_indices=tensor([ 0, 1, 1, ..., 99996, 99999, 100000]), - col_indices=tensor([60832, 83948, 658, ..., 83631, 80017, 34658]), - values=tensor([0.5224, 0.7895, 0.2144, ..., 0.4897, 0.2214, 0.9534]), + col_indices=tensor([63372, 90175, 43637, ..., 48404, 84175, 41742]), + values=tensor([0.0143, 0.7083, 0.4138, ..., 0.7171, 0.1589, 0.0907]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.6371, 0.8407, 0.9472, ..., 0.9476, 0.5347, 0.4303]) +tensor([0.2672, 0.1313, 0.6231, ..., 0.4829, 0.5251, 0.7815]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -73,13 +73,13 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 10.418502807617188 seconds +Time: 10.3600492477417 seconds -[18.9, 18.01, 18.86, 18.3, 17.96, 18.02, 18.19, 17.91, 18.92, 17.86] -[82.98] -13.959107637405396 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 64311, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.418502807617188, 'TIME_S_1KI': 0.16200187849072767, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1158.3267517518998, 'W': 82.98} -[18.9, 18.01, 18.86, 18.3, 17.96, 18.02, 18.19, 17.91, 18.92, 17.86, 18.32, 17.96, 18.01, 17.83, 18.19, 17.85, 17.88, 18.01, 18.1, 17.86] -326.47 -16.323500000000003 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 64311, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.418502807617188, 'TIME_S_1KI': 0.16200187849072767, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1158.3267517518998, 'W': 82.98, 'J_1KI': 18.011331681234932, 'W_1KI': 1.2902924849559174, 'W_D': 66.6565, 'J_D': 930.4652582327127, 'W_D_1KI': 1.036471210212872, 'J_D_1KI': 0.01611654631731542} +[18.53, 17.8, 18.06, 18.37, 18.25, 17.96, 18.14, 21.36, 18.43, 17.88] +[83.36] +13.718228578567505 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 64522, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.3600492477417, 'TIME_S_1KI': 0.1605661518201807, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1143.5515343093873, 'W': 83.36000000000001} +[18.53, 17.8, 18.06, 18.37, 18.25, 17.96, 18.14, 21.36, 18.43, 17.88, 18.55, 17.91, 18.58, 19.12, 20.8, 18.14, 18.33, 17.85, 18.25, 17.83] +333.745 +16.68725 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 64522, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.3600492477417, 'TIME_S_1KI': 0.1605661518201807, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1143.5515343093873, 'W': 83.36000000000001, 'J_1KI': 17.723435949124134, 'W_1KI': 1.291962431418741, 'W_D': 66.67275000000001, 'J_D': 914.6320244616867, 'W_D_1KI': 1.0333335916431607, 'J_D_1KI': 0.01601521328605996} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_5e-05.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_5e-05.json new file mode 100644 index 0000000..07c28cc --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 46682, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.460205316543579, "TIME_S_1KI": 0.22407363258951157, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1228.6304648017883, "W": 87.08, "J_1KI": 26.319147954281917, "W_1KI": 1.865387087099953, "W_D": 70.695, "J_D": 997.4509727740286, "W_D_1KI": 1.51439527012553, "J_D_1KI": 0.03244066814030097} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_5e-05.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_5e-05.output new file mode 100644 index 0000000..0398e28 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_5e-05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '100000', '-sd', '5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.03882646560668945} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 12, ..., 499993, 499995, + 500000]), + col_indices=tensor([20130, 29829, 49027, ..., 32515, 51857, 99803]), + values=tensor([0.4194, 0.2208, 0.8236, ..., 0.3620, 0.7637, 0.5129]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.7254, 0.4636, 0.7256, ..., 0.4819, 0.1264, 0.5273]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 0.03882646560668945 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '27043', '-ss', '100000', '-sd', '5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 6.0826029777526855} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 14, ..., 499987, 499992, + 500000]), + col_indices=tensor([19007, 19428, 24486, ..., 87536, 92504, 96559]), + values=tensor([0.8398, 0.0370, 0.5128, ..., 0.3625, 0.4907, 0.6853]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.6134, 0.6519, 0.5356, ..., 0.0589, 0.6530, 0.3358]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 6.0826029777526855 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '46682', '-ss', '100000', '-sd', '5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.460205316543579} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 11, 19, ..., 499992, 499995, + 500000]), + col_indices=tensor([ 9218, 31473, 33160, ..., 57052, 72094, 94375]), + values=tensor([0.1819, 0.5310, 0.0116, ..., 0.3541, 0.3048, 0.3110]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.6007, 0.7506, 0.6846, ..., 0.1657, 0.4869, 0.7821]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 10.460205316543579 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 11, 19, ..., 499992, 499995, + 500000]), + col_indices=tensor([ 9218, 31473, 33160, ..., 57052, 72094, 94375]), + values=tensor([0.1819, 0.5310, 0.0116, ..., 0.3541, 0.3048, 0.3110]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.6007, 0.7506, 0.6846, ..., 0.1657, 0.4869, 0.7821]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 10.460205316543579 seconds + +[18.32, 17.95, 18.46, 18.2, 18.15, 17.94, 18.28, 18.06, 18.31, 18.04] +[87.08] +14.109215259552002 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 46682, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.460205316543579, 'TIME_S_1KI': 0.22407363258951157, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1228.6304648017883, 'W': 87.08} +[18.32, 17.95, 18.46, 18.2, 18.15, 17.94, 18.28, 18.06, 18.31, 18.04, 18.26, 18.28, 17.89, 18.48, 18.48, 18.03, 17.99, 18.35, 18.44, 18.2] +327.69999999999993 +16.384999999999998 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 46682, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.460205316543579, 'TIME_S_1KI': 0.22407363258951157, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1228.6304648017883, 'W': 87.08, 'J_1KI': 26.319147954281917, 'W_1KI': 1.865387087099953, 'W_D': 70.695, 'J_D': 997.4509727740286, 'W_D_1KI': 1.51439527012553, 'J_D_1KI': 0.03244066814030097} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.0001.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.0001.json index c677488..1b64231 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.0001.json +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.0001.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 253635, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.510948419570923, "TIME_S_1KI": 0.04144123807664921, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1049.5495847654342, "W": 74.66, "J_1KI": 4.1380313630430905, "W_1KI": 0.29436000551974295, "W_D": 58.32449999999999, "J_D": 819.9096538528203, "W_D_1KI": 0.22995446212076406, "J_D_1KI": 0.0009066353702003433} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 253108, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.677898168563843, "TIME_S_1KI": 0.0421871223689644, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1070.6826658773423, "W": 74.61, "J_1KI": 4.230141543836395, "W_1KI": 0.2947753528138186, "W_D": 58.27775, "J_D": 836.3084939194918, "W_D_1KI": 0.23024855002607583, "J_D_1KI": 0.0009096849962311576} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.0001.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.0001.output index d7cd9dc..1ec4855 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.0001.output +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.0001.output @@ -1,13 +1,13 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.057019948959350586} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.02065730094909668} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 5, ..., 9999, 9999, 10000]), - col_indices=tensor([5511, 5632, 9392, ..., 1424, 5807, 9708]), - values=tensor([0.8862, 0.8794, 0.5579, ..., 0.8535, 0.8536, 0.3017]), +tensor(crow_indices=tensor([ 0, 3, 4, ..., 9998, 9998, 10000]), + col_indices=tensor([6728, 7614, 8179, ..., 1004, 2058, 8025]), + values=tensor([0.0279, 0.0803, 0.4096, ..., 0.0871, 0.5549, 0.2943]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.8843, 0.1620, 0.1106, ..., 0.3314, 0.8529, 0.5084]) +tensor([0.5482, 0.4991, 0.5547, ..., 0.6547, 0.2547, 0.5094]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -15,18 +15,18 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 0.057019948959350586 seconds +Time: 0.02065730094909668 seconds -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '184146', '-ss', '10000', '-sd', '0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 7.623284816741943} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '50829', '-ss', '10000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 2.10860276222229} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 3, ..., 10000, 10000, 10000]), - col_indices=tensor([5228, 7612, 8334, ..., 8947, 2750, 8241]), - values=tensor([0.5331, 0.8440, 0.9594, ..., 0.6439, 0.5967, 0.7449]), +tensor(crow_indices=tensor([ 0, 0, 1, ..., 10000, 10000, 10000]), + col_indices=tensor([5153, 2587, 4463, ..., 5061, 9520, 1424]), + values=tensor([0.2204, 0.6183, 0.5613, ..., 0.3086, 0.3306, 0.5938]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.9017, 0.2905, 0.1618, ..., 0.3745, 0.4560, 0.4176]) +tensor([0.9842, 0.7142, 0.2121, ..., 0.3434, 0.1561, 0.6145]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -34,18 +34,18 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 7.623284816741943 seconds +Time: 2.10860276222229 seconds -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '253635', '-ss', '10000', '-sd', '0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.510948419570923} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '253108', '-ss', '10000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.677898168563843} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 9997, 9999, 10000]), - col_indices=tensor([ 773, 7277, 5799, ..., 6666, 7394, 1954]), - values=tensor([0.1024, 0.0437, 0.8987, ..., 0.7237, 0.2930, 0.3597]), +tensor(crow_indices=tensor([ 0, 1, 4, ..., 9999, 9999, 10000]), + col_indices=tensor([7291, 527, 4481, ..., 6785, 7922, 1484]), + values=tensor([0.3434, 0.3822, 0.2401, ..., 0.8298, 0.4309, 0.4668]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.1275, 0.0118, 0.1480, ..., 0.4560, 0.1036, 0.8618]) +tensor([0.2882, 0.0253, 0.9805, ..., 0.1323, 0.6315, 0.0794]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -53,15 +53,15 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 10.510948419570923 seconds +Time: 10.677898168563843 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 9997, 9999, 10000]), - col_indices=tensor([ 773, 7277, 5799, ..., 6666, 7394, 1954]), - values=tensor([0.1024, 0.0437, 0.8987, ..., 0.7237, 0.2930, 0.3597]), +tensor(crow_indices=tensor([ 0, 1, 4, ..., 9999, 9999, 10000]), + col_indices=tensor([7291, 527, 4481, ..., 6785, 7922, 1484]), + values=tensor([0.3434, 0.3822, 0.2401, ..., 0.8298, 0.4309, 0.4668]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.1275, 0.0118, 0.1480, ..., 0.4560, 0.1036, 0.8618]) +tensor([0.2882, 0.0253, 0.9805, ..., 0.1323, 0.6315, 0.0794]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -69,13 +69,13 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 10.510948419570923 seconds +Time: 10.677898168563843 seconds -[18.3, 17.87, 18.03, 17.87, 18.05, 17.86, 19.1, 17.97, 18.04, 17.74] -[74.66] -14.057722806930542 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 253635, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.510948419570923, 'TIME_S_1KI': 0.04144123807664921, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1049.5495847654342, 'W': 74.66} -[18.3, 17.87, 18.03, 17.87, 18.05, 17.86, 19.1, 17.97, 18.04, 17.74, 18.05, 17.87, 18.1, 17.95, 17.96, 18.0, 19.85, 17.84, 18.3, 18.01] -326.71000000000004 -16.335500000000003 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 253635, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.510948419570923, 'TIME_S_1KI': 0.04144123807664921, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1049.5495847654342, 'W': 74.66, 'J_1KI': 4.1380313630430905, 'W_1KI': 0.29436000551974295, 'W_D': 58.32449999999999, 'J_D': 819.9096538528203, 'W_D_1KI': 0.22995446212076406, 'J_D_1KI': 0.0009066353702003433} +[18.38, 17.89, 18.34, 17.77, 18.06, 17.77, 18.13, 17.86, 17.98, 18.23] +[74.61] +14.350390911102295 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 253108, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.677898168563843, 'TIME_S_1KI': 0.0421871223689644, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1070.6826658773423, 'W': 74.61} +[18.38, 17.89, 18.34, 17.77, 18.06, 17.77, 18.13, 17.86, 17.98, 18.23, 18.53, 18.0, 18.04, 18.11, 18.16, 18.08, 18.2, 18.27, 19.29, 18.25] +326.645 +16.33225 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 253108, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.677898168563843, 'TIME_S_1KI': 0.0421871223689644, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1070.6826658773423, 'W': 74.61, 'J_1KI': 4.230141543836395, 'W_1KI': 0.2947753528138186, 'W_D': 58.27775, 'J_D': 836.3084939194918, 'W_D_1KI': 0.23024855002607583, 'J_D_1KI': 0.0009096849962311576} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.001.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.001.json index 8f37619..090450b 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.001.json +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.001.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 197679, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.670233726501465, "TIME_S_1KI": 0.053977578430189674, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1114.4275546693802, "W": 79.73, "J_1KI": 5.637561676603889, "W_1KI": 0.40333065221900155, "W_D": 63.12950000000001, "J_D": 882.3937578389646, "W_D_1KI": 0.31935359851071693, "J_D_1KI": 0.001615516056387967} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 194593, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.473386764526367, "TIME_S_1KI": 0.053822011914747024, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1083.1964892935753, "W": 79.61, "J_1KI": 5.566472017459905, "W_1KI": 0.40911029687604383, "W_D": 62.8515, "J_D": 855.175532556653, "W_D_1KI": 0.3229895217196919, "J_D_1KI": 0.001659820865702733} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.001.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.001.output index 4a4c171..8858416 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.001.output +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.06928658485412598} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.020806312561035156} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 8, 25, ..., 99976, 99987, +tensor(crow_indices=tensor([ 0, 7, 14, ..., 99985, 99993, 100000]), - col_indices=tensor([ 333, 360, 7030, ..., 7825, 8274, 9549]), - values=tensor([0.8393, 0.7372, 0.2908, ..., 0.1152, 0.3448, 0.5520]), + col_indices=tensor([5438, 7119, 8479, ..., 6797, 6979, 8109]), + values=tensor([0.2056, 0.5255, 0.6332, ..., 0.1682, 0.9365, 0.4633]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.6596, 0.1551, 0.2351, ..., 0.2147, 0.9669, 0.0099]) +tensor([0.0316, 0.8438, 0.1562, ..., 0.6730, 0.8332, 0.9126]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,19 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 0.06928658485412598 seconds +Time: 0.020806312561035156 seconds -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '151544', '-ss', '10000', '-sd', '0.001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 8.049443006515503} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '50465', '-ss', '10000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 2.723015785217285} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 10, 20, ..., 99982, 99989, +tensor(crow_indices=tensor([ 0, 18, 34, ..., 99978, 99989, 100000]), - col_indices=tensor([ 534, 848, 1028, ..., 7528, 7587, 7919]), - values=tensor([0.8744, 0.7231, 0.5055, ..., 0.6485, 0.2326, 0.7897]), + col_indices=tensor([ 818, 1321, 1616, ..., 5603, 7366, 9704]), + values=tensor([0.8713, 0.7316, 0.2331, ..., 0.6687, 0.3725, 0.7818]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.6730, 0.3279, 0.8164, ..., 0.2443, 0.5036, 0.1429]) +tensor([0.5742, 0.6233, 0.0987, ..., 0.1452, 0.2067, 0.1195]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -36,19 +36,19 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 8.049443006515503 seconds +Time: 2.723015785217285 seconds -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '197679', '-ss', '10000', '-sd', '0.001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.670233726501465} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '194593', '-ss', '10000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.473386764526367} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 11, 18, ..., 99979, 99990, +tensor(crow_indices=tensor([ 0, 11, 16, ..., 99982, 99989, 100000]), - col_indices=tensor([ 654, 920, 2120, ..., 5173, 5860, 7868]), - values=tensor([0.9786, 0.8942, 0.8907, ..., 0.0590, 0.7963, 0.5333]), + col_indices=tensor([1034, 3380, 4243, ..., 7428, 9116, 9600]), + values=tensor([0.4227, 0.1092, 0.7794, ..., 0.2113, 0.3090, 0.9237]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.8342, 0.1347, 0.2067, ..., 0.1241, 0.4408, 0.8118]) +tensor([0.7442, 0.3504, 0.6358, ..., 0.6138, 0.7536, 0.9226]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -56,16 +56,16 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 10.670233726501465 seconds +Time: 10.473386764526367 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 11, 18, ..., 99979, 99990, +tensor(crow_indices=tensor([ 0, 11, 16, ..., 99982, 99989, 100000]), - col_indices=tensor([ 654, 920, 2120, ..., 5173, 5860, 7868]), - values=tensor([0.9786, 0.8942, 0.8907, ..., 0.0590, 0.7963, 0.5333]), + col_indices=tensor([1034, 3380, 4243, ..., 7428, 9116, 9600]), + values=tensor([0.4227, 0.1092, 0.7794, ..., 0.2113, 0.3090, 0.9237]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.8342, 0.1347, 0.2067, ..., 0.1241, 0.4408, 0.8118]) +tensor([0.7442, 0.3504, 0.6358, ..., 0.6138, 0.7536, 0.9226]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -73,13 +73,13 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 10.670233726501465 seconds +Time: 10.473386764526367 seconds -[18.34, 17.98, 18.08, 17.94, 18.13, 18.09, 21.2, 18.15, 17.85, 18.53] -[79.73] -13.977518558502197 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 197679, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.670233726501465, 'TIME_S_1KI': 0.053977578430189674, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1114.4275546693802, 'W': 79.73} -[18.34, 17.98, 18.08, 17.94, 18.13, 18.09, 21.2, 18.15, 17.85, 18.53, 18.16, 18.1, 18.61, 18.87, 18.17, 17.77, 20.46, 17.84, 18.3, 17.91] -332.01 -16.6005 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 197679, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.670233726501465, 'TIME_S_1KI': 0.053977578430189674, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1114.4275546693802, 'W': 79.73, 'J_1KI': 5.637561676603889, 'W_1KI': 0.40333065221900155, 'W_D': 63.12950000000001, 'J_D': 882.3937578389646, 'W_D_1KI': 0.31935359851071693, 'J_D_1KI': 0.001615516056387967} +[19.08, 18.28, 17.95, 17.9, 19.17, 18.22, 19.03, 18.14, 18.71, 20.45] +[79.61] +13.606286764144897 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 194593, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.473386764526367, 'TIME_S_1KI': 0.053822011914747024, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1083.1964892935753, 'W': 79.61} +[19.08, 18.28, 17.95, 17.9, 19.17, 18.22, 19.03, 18.14, 18.71, 20.45, 18.56, 18.36, 18.2, 17.96, 18.09, 18.17, 22.32, 18.37, 18.26, 17.99] +335.17 +16.7585 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 194593, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.473386764526367, 'TIME_S_1KI': 0.053822011914747024, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1083.1964892935753, 'W': 79.61, 'J_1KI': 5.566472017459905, 'W_1KI': 0.40911029687604383, 'W_D': 62.8515, 'J_D': 855.175532556653, 'W_D_1KI': 0.3229895217196919, 'J_D_1KI': 0.001659820865702733} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.01.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.01.json index 23a3327..8c6811d 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.01.json +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.01.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 58160, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.467525959014893, "TIME_S_1KI": 0.17997809420589567, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1227.377723479271, "W": 87.15, "J_1KI": 21.10346842295858, "W_1KI": 1.4984525447042643, "W_D": 70.98275000000001, "J_D": 999.6861285289527, "W_D_1KI": 1.2204736932599725, "J_D_1KI": 0.020984760888238866} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 57740, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.343472957611084, "TIME_S_1KI": 0.17913877654331634, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1219.6624715328217, "W": 87.4, "J_1KI": 21.123354200429883, "W_1KI": 1.5136820228611017, "W_D": 71.01700000000001, "J_D": 991.0385553872587, "W_D_1KI": 1.2299445791479044, "J_D_1KI": 0.021301430189606934} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.01.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.01.output index 35e5d90..ff97c3a 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.01.output +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.01.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.01'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.19839882850646973} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.03377032279968262} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 97, 186, ..., 999796, - 999897, 1000000]), - col_indices=tensor([ 169, 359, 528, ..., 9765, 9789, 9792]), - values=tensor([0.6521, 0.9085, 0.4727, ..., 0.8814, 0.1698, 0.8627]), +tensor(crow_indices=tensor([ 0, 110, 219, ..., 999820, + 999911, 1000000]), + col_indices=tensor([ 0, 38, 265, ..., 9703, 9904, 9960]), + values=tensor([0.3683, 0.9828, 0.4174, ..., 0.4331, 0.2376, 0.7467]), size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.7127, 0.9881, 0.6892, ..., 0.7113, 0.3734, 0.9813]) +tensor([0.8519, 0.1445, 0.2230, ..., 0.9278, 0.7204, 0.3614]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,19 +16,39 @@ Rows: 10000 Size: 100000000 NNZ: 1000000 Density: 0.01 -Time: 0.19839882850646973 seconds +Time: 0.03377032279968262 seconds -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '52923', '-ss', '10000', '-sd', '0.01'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 9.554424524307251} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '31092', '-ss', '10000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 5.654046535491943} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 112, 189, ..., 999798, +tensor(crow_indices=tensor([ 0, 102, 199, ..., 999795, + 999900, 1000000]), + col_indices=tensor([ 113, 165, 189, ..., 9912, 9940, 9996]), + values=tensor([0.2048, 0.9236, 0.8269, ..., 0.2195, 0.4387, 0.6731]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.8364, 0.2950, 0.2365, ..., 0.2102, 0.7661, 0.3156]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 5.654046535491943 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '57740', '-ss', '10000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.343472957611084} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 106, 216, ..., 999804, 999899, 1000000]), - col_indices=tensor([ 113, 156, 184, ..., 9769, 9838, 9941]), - values=tensor([0.0187, 0.7839, 0.6319, ..., 0.9818, 0.7594, 0.0765]), + col_indices=tensor([ 61, 88, 117, ..., 9666, 9676, 9799]), + values=tensor([0.7050, 0.8533, 0.9508, ..., 0.3667, 0.6991, 0.8071]), size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.4252, 0.8416, 0.9146, ..., 0.0970, 0.6595, 0.8304]) +tensor([0.9939, 0.1893, 0.9694, ..., 0.0779, 0.3428, 0.9229]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -36,19 +56,16 @@ Rows: 10000 Size: 100000000 NNZ: 1000000 Density: 0.01 -Time: 9.554424524307251 seconds - -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '58160', '-ss', '10000', '-sd', '0.01'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.467525959014893} +Time: 10.343472957611084 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 93, 191, ..., 999802, +tensor(crow_indices=tensor([ 0, 106, 216, ..., 999804, 999899, 1000000]), - col_indices=tensor([ 46, 78, 103, ..., 9585, 9899, 9954]), - values=tensor([0.1947, 0.9409, 0.0413, ..., 0.0261, 0.0318, 0.5135]), + col_indices=tensor([ 61, 88, 117, ..., 9666, 9676, 9799]), + values=tensor([0.7050, 0.8533, 0.9508, ..., 0.3667, 0.6991, 0.8071]), size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.1045, 0.5937, 0.6366, ..., 0.8712, 0.6092, 0.3132]) +tensor([0.9939, 0.1893, 0.9694, ..., 0.0779, 0.3428, 0.9229]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -56,30 +73,13 @@ Rows: 10000 Size: 100000000 NNZ: 1000000 Density: 0.01 -Time: 10.467525959014893 seconds +Time: 10.343472957611084 seconds -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 93, 191, ..., 999802, - 999899, 1000000]), - col_indices=tensor([ 46, 78, 103, ..., 9585, 9899, 9954]), - values=tensor([0.1947, 0.9409, 0.0413, ..., 0.0261, 0.0318, 0.5135]), - size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.1045, 0.5937, 0.6366, ..., 0.8712, 0.6092, 0.3132]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([10000, 10000]) -Rows: 10000 -Size: 100000000 -NNZ: 1000000 -Density: 0.01 -Time: 10.467525959014893 seconds - -[18.42, 18.1, 18.09, 17.94, 17.96, 18.13, 17.89, 17.87, 18.11, 18.12] -[87.15] -14.083508014678955 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 58160, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.467525959014893, 'TIME_S_1KI': 0.17997809420589567, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1227.377723479271, 'W': 87.15} -[18.42, 18.1, 18.09, 17.94, 17.96, 18.13, 17.89, 17.87, 18.11, 18.12, 18.39, 17.75, 17.9, 17.92, 17.94, 17.89, 17.89, 17.89, 17.75, 17.72] -323.34499999999997 -16.16725 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 58160, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.467525959014893, 'TIME_S_1KI': 0.17997809420589567, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1227.377723479271, 'W': 87.15, 'J_1KI': 21.10346842295858, 'W_1KI': 1.4984525447042643, 'W_D': 70.98275000000001, 'J_D': 999.6861285289527, 'W_D_1KI': 1.2204736932599725, 'J_D_1KI': 0.020984760888238866} +[18.73, 18.07, 18.16, 18.31, 18.98, 17.81, 18.18, 18.17, 18.06, 18.83] +[87.4] +13.95494818687439 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 57740, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.343472957611084, 'TIME_S_1KI': 0.17913877654331634, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1219.6624715328217, 'W': 87.4} +[18.73, 18.07, 18.16, 18.31, 18.98, 17.81, 18.18, 18.17, 18.06, 18.83, 18.31, 18.07, 18.19, 17.94, 18.17, 18.13, 18.04, 18.09, 18.22, 18.27] +327.65999999999997 +16.383 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 57740, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.343472957611084, 'TIME_S_1KI': 0.17913877654331634, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1219.6624715328217, 'W': 87.4, 'J_1KI': 21.123354200429883, 'W_1KI': 1.5136820228611017, 'W_D': 71.01700000000001, 'J_D': 991.0385553872587, 'W_D_1KI': 1.2299445791479044, 'J_D_1KI': 0.021301430189606934} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.05.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.05.json index 4e517f7..9882866 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.05.json +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.05.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 8810, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.41358470916748, "TIME_S_1KI": 1.18201869570573, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1329.5588334417344, "W": 83.19, "J_1KI": 150.91473705354534, "W_1KI": 9.442678774120317, "W_D": 66.8505, "J_D": 1068.4177520735263, "W_D_1KI": 7.588024971623155, "J_D_1KI": 0.8612968185724353} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 8902, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.860300064086914, "TIME_S_1KI": 1.2199842803961933, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1340.0520877552033, "W": 84.52, "J_1KI": 150.53382248429602, "W_1KI": 9.49449561896203, "W_D": 68.1745, "J_D": 1080.896605024457, "W_D_1KI": 7.658335205571781, "J_D_1KI": 0.8602937773053} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.05.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.05.output index 8074157..266a604 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.05.output +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 1.1917307376861572} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 0.13720321655273438} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 493, 986, ..., 4999011, - 4999486, 5000000]), - col_indices=tensor([ 9, 19, 72, ..., 9981, 9987, 9993]), - values=tensor([0.5847, 0.5648, 0.9368, ..., 0.4963, 0.0551, 0.2254]), +tensor(crow_indices=tensor([ 0, 497, 987, ..., 4998984, + 4999490, 5000000]), + col_indices=tensor([ 31, 32, 48, ..., 9945, 9978, 9990]), + values=tensor([0.2379, 0.1839, 0.8156, ..., 0.3545, 0.1897, 0.0490]), size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.1357, 0.6996, 0.1280, ..., 0.8014, 0.9186, 0.9128]) +tensor([0.7954, 0.2457, 0.2337, ..., 0.1008, 0.2602, 0.7172]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,19 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 5000000 Density: 0.05 -Time: 1.1917307376861572 seconds +Time: 0.13720321655273438 seconds -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '8810', '-ss', '10000', '-sd', '0.05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.41358470916748} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '7652', '-ss', '10000', '-sd', '0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 9.025035858154297} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 520, 1021, ..., 4999015, - 4999518, 5000000]), - col_indices=tensor([ 2, 21, 23, ..., 9856, 9947, 9960]), - values=tensor([0.9436, 0.1483, 0.1830, ..., 0.0068, 0.4770, 0.7006]), +tensor(crow_indices=tensor([ 0, 488, 990, ..., 4999027, + 4999510, 5000000]), + col_indices=tensor([ 13, 24, 30, ..., 9939, 9983, 9997]), + values=tensor([0.8521, 0.2131, 0.0790, ..., 0.0763, 0.7991, 0.5452]), size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.0991, 0.7135, 0.2277, ..., 0.9430, 0.0011, 0.3680]) +tensor([0.7324, 0.5581, 0.6877, ..., 0.3893, 0.7172, 0.4223]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -36,16 +36,19 @@ Rows: 10000 Size: 100000000 NNZ: 5000000 Density: 0.05 -Time: 10.41358470916748 seconds +Time: 9.025035858154297 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '8902', '-ss', '10000', '-sd', '0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.860300064086914} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 520, 1021, ..., 4999015, - 4999518, 5000000]), - col_indices=tensor([ 2, 21, 23, ..., 9856, 9947, 9960]), - values=tensor([0.9436, 0.1483, 0.1830, ..., 0.0068, 0.4770, 0.7006]), +tensor(crow_indices=tensor([ 0, 512, 999, ..., 4999039, + 4999553, 5000000]), + col_indices=tensor([ 40, 52, 78, ..., 9943, 9982, 9986]), + values=tensor([0.6271, 0.3251, 0.6536, ..., 0.8006, 0.2414, 0.7322]), size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.0991, 0.7135, 0.2277, ..., 0.9430, 0.0011, 0.3680]) +tensor([0.7511, 0.5744, 0.2092, ..., 0.0810, 0.1870, 0.5605]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -53,13 +56,30 @@ Rows: 10000 Size: 100000000 NNZ: 5000000 Density: 0.05 -Time: 10.41358470916748 seconds +Time: 10.860300064086914 seconds -[18.42, 18.1, 18.34, 18.2, 17.91, 17.99, 18.73, 17.98, 18.05, 17.95] -[83.19] -15.982195377349854 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 8810, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.41358470916748, 'TIME_S_1KI': 1.18201869570573, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1329.5588334417344, 'W': 83.19} -[18.42, 18.1, 18.34, 18.2, 17.91, 17.99, 18.73, 17.98, 18.05, 17.95, 18.53, 18.25, 18.01, 18.36, 18.13, 18.03, 18.01, 18.04, 18.22, 17.98] -326.79 -16.3395 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 8810, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.41358470916748, 'TIME_S_1KI': 1.18201869570573, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1329.5588334417344, 'W': 83.19, 'J_1KI': 150.91473705354534, 'W_1KI': 9.442678774120317, 'W_D': 66.8505, 'J_D': 1068.4177520735263, 'W_D_1KI': 7.588024971623155, 'J_D_1KI': 0.8612968185724353} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 512, 999, ..., 4999039, + 4999553, 5000000]), + col_indices=tensor([ 40, 52, 78, ..., 9943, 9982, 9986]), + values=tensor([0.6271, 0.3251, 0.6536, ..., 0.8006, 0.2414, 0.7322]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.7511, 0.5744, 0.2092, ..., 0.0810, 0.1870, 0.5605]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 10.860300064086914 seconds + +[18.66, 18.42, 18.15, 17.87, 18.05, 18.01, 18.31, 17.87, 17.97, 18.0] +[84.52] +15.854851961135864 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 8902, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.860300064086914, 'TIME_S_1KI': 1.2199842803961933, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1340.0520877552033, 'W': 84.52} +[18.66, 18.42, 18.15, 17.87, 18.05, 18.01, 18.31, 17.87, 17.97, 18.0, 18.28, 17.95, 18.41, 17.97, 19.13, 18.12, 18.3, 17.86, 18.09, 17.92] +326.91 +16.3455 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 8902, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.860300064086914, 'TIME_S_1KI': 1.2199842803961933, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1340.0520877552033, 'W': 84.52, 'J_1KI': 150.53382248429602, 'W_1KI': 9.49449561896203, 'W_D': 68.1745, 'J_D': 1080.896605024457, 'W_D_1KI': 7.658335205571781, 'J_D_1KI': 0.8602937773053} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.1.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.1.json index 3f0bb83..4142b7d 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.1.json +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.1.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 2918, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.42000699043274, "TIME_S_1KI": 3.5709413949392523, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1397.7840516352655, "W": 79.43, "J_1KI": 479.0212651251767, "W_1KI": 27.220699108978753, "W_D": 63.01475000000001, "J_D": 1108.913666974485, "W_D_1KI": 21.595185058259084, "J_D_1KI": 7.400680280417781} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 2952, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.514222383499146, "TIME_S_1KI": 3.5617284496948325, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1409.0968302583694, "W": 80.82, "J_1KI": 477.3363246132688, "W_1KI": 27.378048780487802, "W_D": 64.16999999999999, "J_D": 1118.8040534234044, "W_D_1KI": 21.737804878048774, "J_D_1KI": 7.363755039989422} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.1.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.1.output index 099bdad..f33aa65 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.1.output +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.1.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 3.597771644592285} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 0.3909003734588623} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 977, 1956, ..., 9997922, - 9998976, 10000000]), - col_indices=tensor([ 2, 3, 9, ..., 9970, 9977, 9979]), - values=tensor([0.1332, 0.2138, 0.7669, ..., 0.0474, 0.1604, 0.1097]), +tensor(crow_indices=tensor([ 0, 946, 1929, ..., 9998013, + 9999030, 10000000]), + col_indices=tensor([ 1, 29, 66, ..., 9951, 9961, 9963]), + values=tensor([0.1920, 0.8019, 0.0618, ..., 0.8349, 0.9652, 0.3956]), size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.2601, 0.5133, 0.4344, ..., 0.1772, 0.3859, 0.7315]) +tensor([0.5191, 0.4835, 0.4753, ..., 0.1633, 0.4541, 0.9422]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,19 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 10000000 Density: 0.1 -Time: 3.597771644592285 seconds +Time: 0.3909003734588623 seconds -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '2918', '-ss', '10000', '-sd', '0.1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.42000699043274} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '2686', '-ss', '10000', '-sd', '0.1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 9.552263259887695} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1029, 2018, ..., 9998096, - 9999045, 10000000]), - col_indices=tensor([ 7, 14, 18, ..., 9941, 9949, 9980]), - values=tensor([0.9805, 0.4931, 0.0315, ..., 0.9071, 0.5605, 0.7269]), +tensor(crow_indices=tensor([ 0, 1009, 2066, ..., 9998034, + 9999022, 10000000]), + col_indices=tensor([ 1, 6, 11, ..., 9982, 9996, 9999]), + values=tensor([0.5825, 0.5025, 0.2695, ..., 0.8369, 0.3596, 0.5616]), size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.0123, 0.2996, 0.0215, ..., 0.5909, 0.6219, 0.0073]) +tensor([0.8229, 0.3714, 0.9138, ..., 0.5827, 0.9903, 0.1706]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -36,16 +36,19 @@ Rows: 10000 Size: 100000000 NNZ: 10000000 Density: 0.1 -Time: 10.42000699043274 seconds +Time: 9.552263259887695 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '2952', '-ss', '10000', '-sd', '0.1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.514222383499146} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1029, 2018, ..., 9998096, - 9999045, 10000000]), - col_indices=tensor([ 7, 14, 18, ..., 9941, 9949, 9980]), - values=tensor([0.9805, 0.4931, 0.0315, ..., 0.9071, 0.5605, 0.7269]), +tensor(crow_indices=tensor([ 0, 1012, 2027, ..., 9998023, + 9999029, 10000000]), + col_indices=tensor([ 20, 21, 65, ..., 9939, 9966, 9982]), + values=tensor([0.6149, 0.2165, 0.5741, ..., 0.9222, 0.5603, 0.9724]), size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.0123, 0.2996, 0.0215, ..., 0.5909, 0.6219, 0.0073]) +tensor([0.1720, 0.3458, 0.5186, ..., 0.7493, 0.6588, 0.1643]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -53,13 +56,30 @@ Rows: 10000 Size: 100000000 NNZ: 10000000 Density: 0.1 -Time: 10.42000699043274 seconds +Time: 10.514222383499146 seconds -[21.55, 18.44, 17.92, 18.49, 18.01, 17.89, 18.03, 17.94, 18.06, 18.03] -[79.43] -17.597684144973755 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2918, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.42000699043274, 'TIME_S_1KI': 3.5709413949392523, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1397.7840516352655, 'W': 79.43} -[21.55, 18.44, 17.92, 18.49, 18.01, 17.89, 18.03, 17.94, 18.06, 18.03, 19.32, 18.84, 17.98, 18.09, 18.0, 17.91, 18.09, 18.07, 18.13, 17.93] -328.30499999999995 -16.415249999999997 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2918, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.42000699043274, 'TIME_S_1KI': 3.5709413949392523, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1397.7840516352655, 'W': 79.43, 'J_1KI': 479.0212651251767, 'W_1KI': 27.220699108978753, 'W_D': 63.01475000000001, 'J_D': 1108.913666974485, 'W_D_1KI': 21.595185058259084, 'J_D_1KI': 7.400680280417781} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1012, 2027, ..., 9998023, + 9999029, 10000000]), + col_indices=tensor([ 20, 21, 65, ..., 9939, 9966, 9982]), + values=tensor([0.6149, 0.2165, 0.5741, ..., 0.9222, 0.5603, 0.9724]), + size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.1720, 0.3458, 0.5186, ..., 0.7493, 0.6588, 0.1643]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000000 +Density: 0.1 +Time: 10.514222383499146 seconds + +[18.22, 18.02, 18.22, 18.83, 18.28, 18.32, 18.36, 18.07, 18.03, 17.97] +[80.82] +17.435001611709595 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2952, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.514222383499146, 'TIME_S_1KI': 3.5617284496948325, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1409.0968302583694, 'W': 80.82} +[18.22, 18.02, 18.22, 18.83, 18.28, 18.32, 18.36, 18.07, 18.03, 17.97, 19.01, 19.01, 17.78, 18.5, 20.32, 20.23, 18.29, 18.21, 17.96, 17.94] +333.0 +16.65 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2952, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.514222383499146, 'TIME_S_1KI': 3.5617284496948325, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1409.0968302583694, 'W': 80.82, 'J_1KI': 477.3363246132688, 'W_1KI': 27.378048780487802, 'W_D': 64.16999999999999, 'J_D': 1118.8040534234044, 'W_D_1KI': 21.737804878048774, 'J_D_1KI': 7.363755039989422} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.2.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.2.json new file mode 100644 index 0000000..047807c --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.2.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 1497, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.375812530517578, "TIME_S_1KI": 6.931070494667721, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2016.6524360942842, "W": 63.56, "J_1KI": 1347.1292158278452, "W_1KI": 42.458249832999336, "W_D": 46.965500000000006, "J_D": 1490.1367210098506, "W_D_1KI": 31.373079492317977, "J_D_1KI": 20.95730093007213} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.2.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.2.output new file mode 100644 index 0000000..e1c6993 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.2.output @@ -0,0 +1,65 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.2'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 0.7011280059814453} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1997, 4011, ..., 19995978, + 19998029, 20000000]), + col_indices=tensor([ 0, 6, 10, ..., 9977, 9981, 9997]), + values=tensor([0.1409, 0.7742, 0.3684, ..., 0.6455, 0.2528, 0.1779]), + size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) +tensor([0.4126, 0.0545, 0.9867, ..., 0.1672, 0.9147, 0.2153]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 20000000 +Density: 0.2 +Time: 0.7011280059814453 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1497', '-ss', '10000', '-sd', '0.2'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.375812530517578} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2004, 3927, ..., 19995948, + 19997998, 20000000]), + col_indices=tensor([ 0, 7, 8, ..., 9981, 9983, 9993]), + values=tensor([0.6769, 0.3987, 0.0257, ..., 0.1977, 0.2040, 0.8027]), + size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) +tensor([0.3084, 0.6863, 0.1716, ..., 0.2861, 0.5214, 0.4353]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 20000000 +Density: 0.2 +Time: 10.375812530517578 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2004, 3927, ..., 19995948, + 19997998, 20000000]), + col_indices=tensor([ 0, 7, 8, ..., 9981, 9983, 9993]), + values=tensor([0.6769, 0.3987, 0.0257, ..., 0.1977, 0.2040, 0.8027]), + size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) +tensor([0.3084, 0.6863, 0.1716, ..., 0.2861, 0.5214, 0.4353]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 20000000 +Density: 0.2 +Time: 10.375812530517578 seconds + +[18.42, 17.88, 18.24, 17.8, 17.91, 17.84, 18.25, 18.2, 17.93, 17.84] +[63.56] +31.728326559066772 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1497, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.375812530517578, 'TIME_S_1KI': 6.931070494667721, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2016.6524360942842, 'W': 63.56} +[18.42, 17.88, 18.24, 17.8, 17.91, 17.84, 18.25, 18.2, 17.93, 17.84, 18.76, 17.93, 18.32, 21.74, 19.38, 18.29, 18.56, 18.06, 18.67, 18.76] +331.89 +16.5945 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1497, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.375812530517578, 'TIME_S_1KI': 6.931070494667721, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2016.6524360942842, 'W': 63.56, 'J_1KI': 1347.1292158278452, 'W_1KI': 42.458249832999336, 'W_D': 46.965500000000006, 'J_D': 1490.1367210098506, 'W_D_1KI': 31.373079492317977, 'J_D_1KI': 20.95730093007213} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.3.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.3.json new file mode 100644 index 0000000..b205393 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.3.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 949, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.941918134689331, "TIME_S_1KI": 11.529945347407093, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 3564.162018098831, "W": 52.14, "J_1KI": 3755.7028641715815, "W_1KI": 54.94204425711275, "W_D": 35.83725, "J_D": 2449.7461696032283, "W_D_1KI": 37.763171759747095, "J_D_1KI": 39.79259405663551} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.3.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.3.output new file mode 100644 index 0000000..d986f3d --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.3.output @@ -0,0 +1,105 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.3'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 1.9010562896728516} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2954, 5989, ..., 29993992, + 29996937, 30000000]), + col_indices=tensor([ 2, 3, 4, ..., 9991, 9993, 9999]), + values=tensor([0.8641, 0.5764, 0.3491, ..., 0.5822, 0.6256, 0.4859]), + size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) +tensor([0.5324, 0.9227, 0.4901, ..., 0.4747, 0.1770, 0.2536]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 30000000 +Density: 0.3 +Time: 1.9010562896728516 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '552', '-ss', '10000', '-sd', '0.3'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 6.5163209438323975} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3039, 6048, ..., 29994088, + 29997031, 30000000]), + col_indices=tensor([ 5, 17, 19, ..., 9983, 9988, 9994]), + values=tensor([0.5897, 0.1355, 0.4586, ..., 0.2138, 0.9666, 0.8141]), + size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) +tensor([0.3973, 0.5491, 0.6398, ..., 0.0595, 0.1069, 0.4910]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 30000000 +Density: 0.3 +Time: 6.5163209438323975 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '889', '-ss', '10000', '-sd', '0.3'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 9.831693172454834} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3022, 6006, ..., 29994154, + 29996992, 30000000]), + col_indices=tensor([ 2, 5, 11, ..., 9993, 9994, 9997]), + values=tensor([0.4549, 0.7646, 0.3501, ..., 0.7301, 0.5346, 0.2783]), + size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) +tensor([0.0238, 0.3406, 0.5500, ..., 0.0227, 0.0108, 0.7785]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 30000000 +Density: 0.3 +Time: 9.831693172454834 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '949', '-ss', '10000', '-sd', '0.3'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.941918134689331} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3007, 5955, ..., 29993893, + 29996918, 30000000]), + col_indices=tensor([ 0, 1, 2, ..., 9996, 9997, 9998]), + values=tensor([0.2348, 0.5341, 0.6896, ..., 0.7208, 0.8300, 0.7790]), + size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) +tensor([0.7258, 0.9160, 0.6029, ..., 0.0530, 0.7513, 0.2296]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 30000000 +Density: 0.3 +Time: 10.941918134689331 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3007, 5955, ..., 29993893, + 29996918, 30000000]), + col_indices=tensor([ 0, 1, 2, ..., 9996, 9997, 9998]), + values=tensor([0.2348, 0.5341, 0.6896, ..., 0.7208, 0.8300, 0.7790]), + size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) +tensor([0.7258, 0.9160, 0.6029, ..., 0.0530, 0.7513, 0.2296]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 30000000 +Density: 0.3 +Time: 10.941918134689331 seconds + +[18.62, 18.03, 18.0, 17.99, 18.26, 17.85, 18.27, 17.94, 18.3, 18.09] +[52.14] +68.35753774642944 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 949, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.941918134689331, 'TIME_S_1KI': 11.529945347407093, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3564.162018098831, 'W': 52.14} +[18.62, 18.03, 18.0, 17.99, 18.26, 17.85, 18.27, 17.94, 18.3, 18.09, 18.58, 17.83, 17.98, 17.87, 18.18, 18.09, 18.02, 17.83, 18.92, 18.1] +326.055 +16.30275 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 949, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.941918134689331, 'TIME_S_1KI': 11.529945347407093, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3564.162018098831, 'W': 52.14, 'J_1KI': 3755.7028641715815, 'W_1KI': 54.94204425711275, 'W_D': 35.83725, 'J_D': 2449.7461696032283, 'W_D_1KI': 37.763171759747095, 'J_D_1KI': 39.79259405663551} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_1e-05.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_1e-05.json index 114ef88..00c8b98 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_1e-05.json +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_1e-05.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 286411, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.634347915649414, "TIME_S_1KI": 0.03712967698743908, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1001.8400530457496, "W": 73.11, "J_1KI": 3.4979105308306933, "W_1KI": 0.25526254229062434, "W_D": 56.78875, "J_D": 778.186900730431, "W_D_1KI": 0.19827712622769378, "J_D_1KI": 0.0006922818125969107} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 284305, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.350545883178711, "TIME_S_1KI": 0.03640648558125503, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1004.1447986841201, "W": 73.05, "J_1KI": 3.5319280304043903, "W_1KI": 0.2569423682313009, "W_D": 56.574, "J_D": 777.6658157529831, "W_D_1KI": 0.19899052074356766, "J_D_1KI": 0.0006999191739278861} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_1e-05.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_1e-05.output index b127831..cbcf9b7 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_1e-05.output +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_1e-05.output @@ -1,373 +1,266 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.05389976501464844} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.019997835159301758} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 999, 999, 1000]), - col_indices=tensor([5877, 4250, 4686, 7890, 7967, 6049, 7086, 7350, 7600, - 9415, 8494, 9960, 8463, 9769, 3650, 5660, 4765, 7065, - 9825, 3646, 4508, 4529, 606, 6653, 6914, 7898, 5776, - 6107, 2833, 6469, 9561, 9553, 1012, 7648, 3125, 4659, - 2350, 5605, 2978, 2552, 4772, 6484, 5546, 1359, 9003, - 7295, 3487, 3251, 5797, 4927, 389, 1539, 8241, 4519, - 1811, 2945, 8623, 2872, 552, 7492, 9923, 2010, 2604, - 1552, 2774, 1416, 5396, 4510, 3786, 3444, 9329, 2259, - 6656, 438, 9323, 9111, 8972, 134, 8976, 8888, 3908, - 3185, 8018, 3369, 5475, 1596, 1990, 7816, 5574, 9542, - 3040, 2756, 2500, 9055, 3476, 5796, 5461, 8969, 5649, - 7151, 2742, 7881, 4000, 8377, 5895, 253, 8238, 9426, - 8478, 3876, 7351, 2306, 878, 6391, 2133, 6974, 4104, - 1627, 9784, 8459, 8184, 8357, 1868, 3969, 2547, 7150, - 8567, 8961, 7840, 7042, 8040, 9932, 3202, 7093, 1327, - 135, 6831, 9394, 9093, 3306, 9671, 1032, 7617, 8998, - 2163, 4741, 8281, 7308, 2355, 3050, 9803, 475, 964, - 4964, 1287, 1268, 688, 5896, 7603, 4108, 1012, 5952, - 6363, 4719, 9826, 3138, 4723, 371, 6288, 186, 2654, - 9372, 1971, 681, 4032, 5962, 3030, 4065, 7201, 4857, - 2872, 6140, 9971, 9434, 2396, 6923, 6814, 8785, 1447, - 5345, 7096, 6297, 6233, 7158, 9317, 5741, 6074, 4032, - 6814, 7944, 6913, 5564, 2775, 2220, 3379, 8011, 2520, - 7426, 3687, 6722, 5016, 9979, 6539, 5534, 3577, 2267, - 4731, 7861, 9206, 2320, 6967, 7943, 6827, 5077, 9516, - 1732, 5100, 6381, 2622, 5625, 4486, 9347, 6475, 7166, - 9480, 1934, 1912, 1322, 3081, 8877, 7710, 6129, 2927, - 4146, 7486, 1116, 7420, 7107, 4437, 8910, 4651, 246, - 2259, 7653, 1266, 8805, 4772, 8104, 9150, 1259, 1349, - 109, 204, 8540, 8676, 2304, 2566, 5439, 2010, 293, - 7147, 3963, 22, 8220, 7908, 7876, 1076, 5537, 7724, - 9756, 3549, 9854, 6751, 339, 9417, 1766, 3277, 8532, - 6806, 4159, 4654, 7359, 2826, 3218, 7312, 5563, 5084, - 720, 8203, 1204, 9773, 8158, 7049, 4816, 2638, 6704, - 487, 7745, 2464, 8290, 5518, 1983, 6972, 6806, 9672, - 8173, 709, 2961, 8609, 4687, 1057, 6278, 4688, 7327, - 9180, 8043, 7178, 7879, 7369, 6557, 722, 3977, 9608, - 1559, 4437, 8356, 3564, 6570, 8175, 2552, 4365, 2987, - 3012, 2056, 3377, 3331, 4641, 5584, 6444, 1670, 6584, - 9435, 5889, 834, 1537, 676, 171, 1502, 6374, 8475, - 5546, 3570, 3680, 1262, 1283, 107, 7572, 8294, 8087, - 8493, 4150, 264, 8088, 9558, 8105, 6985, 4679, 5131, - 1351, 5236, 1433, 2355, 7050, 4629, 7395, 4891, 8440, - 1280, 9026, 9611, 4272, 63, 7053, 9273, 2845, 319, - 3849, 5109, 5397, 1333, 5226, 3167, 498, 8358, 6471, - 8441, 2470, 2584, 8523, 3869, 9952, 7331, 1491, 6616, - 4251, 7390, 2569, 8114, 4273, 6594, 7890, 3061, 7707, - 7020, 2254, 6838, 1734, 3358, 9413, 842, 6263, 4309, - 9410, 5850, 3843, 5235, 316, 1680, 4468, 2050, 864, - 4563, 2568, 8117, 5035, 1575, 2174, 5811, 4374, 7269, - 8559, 180, 3758, 3450, 6187, 7641, 2641, 5158, 1693, - 8702, 3953, 8641, 538, 3719, 8146, 831, 9181, 8252, - 4927, 1983, 7946, 8289, 1723, 7454, 571, 2844, 7290, - 976, 3469, 3835, 4443, 9997, 6253, 1783, 4479, 5621, - 5888, 6952, 5207, 6046, 5250, 6277, 1706, 492, 994, - 5337, 2917, 299, 5416, 4823, 2281, 9216, 9811, 536, - 7167, 9365, 8010, 8105, 7428, 9708, 9521, 1759, 7316, - 8408, 6581, 6990, 8370, 4815, 2491, 4443, 2226, 6874, - 4105, 2711, 6768, 3934, 2527, 4953, 24, 5356, 5377, - 4831, 6455, 8164, 4262, 6529, 7609, 5098, 9953, 73, - 5708, 4484, 9730, 7364, 2426, 2680, 3694, 2949, 3657, - 8014, 666, 1786, 4090, 8559, 238, 2595, 2466, 5713, - 7523, 1659, 8441, 1656, 970, 4970, 3471, 7507, 6622, - 7069, 76, 7125, 5124, 6896, 4874, 6040, 3626, 4009, - 5978, 7731, 9276, 8499, 2718, 5361, 3855, 8538, 8822, - 1102, 3105, 7443, 7481, 4376, 5676, 6866, 1405, 7485, - 2438, 4046, 5882, 1928, 5673, 4439, 607, 941, 5323, - 1977, 7526, 7365, 6688, 7725, 1906, 1609, 2579, 5018, - 3043, 3267, 6183, 7049, 4814, 9534, 4551, 7887, 5645, - 1813, 6873, 7950, 4035, 2409, 731, 2725, 7868, 9752, - 5099, 9148, 317, 2640, 5453, 3337, 8401, 1653, 7044, - 8720, 8687, 6535, 6595, 2024, 131, 1182, 5621, 3774, - 8613, 3613, 6404, 992, 2240, 8624, 5340, 4231, 288, - 7954, 9182, 2507, 3131, 9924, 8976, 7751, 7186, 1578, - 5330, 4894, 3874, 643, 8176, 6210, 9564, 1270, 2828, - 996, 8621, 8484, 7493, 2542, 8837, 2084, 2455, 7130, - 6423, 8619, 4652, 8633, 8790, 8354, 4700, 625, 4544, - 8981, 139, 746, 1426, 5043, 1610, 4462, 3417, 4746, - 3507, 9724, 8590, 2898, 5308, 6895, 2788, 7758, 1283, - 5278, 2977, 6428, 3903, 4076, 3359, 2470, 3580, 4331, - 3539, 4887, 6362, 8501, 8925, 9351, 2359, 9321, 3700, - 992, 6168, 7667, 7019, 1921, 9709, 5828, 4661, 8748, - 26, 7218, 1984, 916, 3495, 6818, 2797, 2463, 8871, - 466, 8350, 3314, 2566, 461, 1216, 7103, 2340, 3165, - 3456, 5137, 3852, 7732, 1769, 3570, 4888, 9734, 4571, - 9596, 7452, 8856, 6297, 3826, 9087, 6446, 6072, 5525, - 2221, 6842, 305, 74, 9807, 9458, 3773, 8992, 2847, - 3208, 1466, 8138, 9144, 844, 3669, 85, 7362, 4692, - 4434, 9755, 4805, 46, 4973, 86, 7635, 246, 1636, - 6904, 7255, 4185, 7880, 6034, 2037, 1744, 5951, 5993, - 8444, 4624, 3513, 5997, 6578, 228, 1880, 3027, 9878, - 4245, 2766, 8825, 5139, 9687, 6959, 6779, 7051, 2652, - 7030, 8594, 6127, 8154, 5593, 9334, 579, 9049, 4689, - 8716, 7002, 141, 2019, 1596, 3958, 8926, 5, 6170, - 4726, 9481, 2780, 3951, 2390, 584, 3177, 3470, 7752, - 4306, 5823, 2199, 7046, 23, 4244, 9273, 5740, 1874, - 2178, 1616, 7818, 8922, 3439, 2734, 949, 8848, 9318, - 4711, 5469, 57, 9462, 7894, 8459, 5503, 4003, 4000, - 9534, 5843, 7380, 5907, 8262, 837, 7126, 1835, 5332, - 2239, 6377, 4546, 1768, 4542, 5454, 5561, 6701, 6592, - 8803, 7424, 9723, 9271, 4332, 5034, 3633, 5832, 3031, - 16, 9616, 5952, 7479, 2362, 7093, 1017, 3410, 9968, - 748, 782, 9505, 4394, 2734, 742, 3710, 6975, 7764, - 5523, 6523, 3205, 6400, 1262, 228, 3520, 3840, 3679, - 9469, 5171, 924, 9068, 6478, 7630, 7890, 5895, 4673, - 5479, 7003, 5573, 4585, 78, 4546, 5120, 6277, 4330, - 929, 1748, 6762, 1994, 9459, 8981, 5357, 9666, 8444, - 2582, 2833, 6641, 5097, 7217, 7587, 3909, 7119, 4177, - 17, 9610, 9198, 7546, 4238, 8701, 1566, 4618, 2935, - 956, 694, 7059, 831, 4310, 5024, 3711, 8023, 2644, - 1473, 2862, 2695, 5045, 8915, 7831, 5706, 4042, 704, - 9283]), - values=tensor([6.7911e-01, 3.6274e-01, 2.0782e-01, 5.9428e-01, - 1.9872e-01, 7.2558e-01, 5.4516e-01, 3.6725e-01, - 1.9195e-01, 8.4059e-01, 2.8934e-01, 2.2803e-01, - 6.3913e-01, 2.5392e-01, 6.0290e-01, 4.6241e-01, - 8.2181e-01, 6.7786e-01, 5.4148e-01, 3.0335e-02, - 6.2630e-01, 3.9117e-01, 3.9192e-01, 2.0010e-01, - 5.2026e-01, 9.5610e-01, 8.0735e-01, 5.1212e-01, - 8.3332e-01, 4.1739e-02, 1.6506e-01, 7.4934e-01, - 8.3844e-01, 7.1367e-01, 9.2976e-01, 7.7684e-01, - 5.8772e-01, 1.1678e-01, 8.2152e-01, 5.2555e-02, - 8.6952e-02, 5.0654e-01, 6.5363e-01, 8.1863e-01, - 1.1306e-01, 8.9073e-01, 6.2025e-01, 3.5160e-01, - 1.2207e-01, 8.0819e-01, 5.9475e-01, 1.3406e-01, - 7.5539e-01, 1.0539e-01, 1.5172e-01, 7.2636e-01, - 1.4867e-02, 9.5982e-01, 4.0048e-01, 2.1806e-01, - 1.7595e-01, 3.9873e-01, 3.0672e-01, 3.3588e-01, - 5.2421e-01, 4.4857e-01, 1.1450e-01, 2.1405e-01, - 1.0066e-01, 7.6820e-01, 3.7763e-01, 3.5571e-01, - 5.0755e-01, 2.5013e-01, 4.7386e-01, 7.9787e-01, - 2.5002e-01, 2.1550e-01, 7.3669e-01, 1.5591e-01, - 8.7468e-02, 7.6878e-01, 2.5625e-01, 6.0367e-01, - 2.9342e-01, 5.1642e-01, 3.8998e-01, 1.3190e-01, - 8.4420e-01, 7.6180e-01, 1.5484e-01, 9.5211e-01, - 5.7156e-01, 2.6308e-02, 3.9510e-01, 9.6852e-01, - 1.9691e-01, 4.6907e-01, 6.5401e-01, 3.9243e-01, - 3.7711e-01, 5.6731e-01, 7.8218e-02, 5.5440e-02, - 3.2329e-01, 5.9503e-01, 8.7587e-01, 9.4575e-03, - 8.5340e-01, 9.5231e-01, 3.2669e-01, 4.5683e-01, - 6.6546e-01, 3.7247e-01, 9.4875e-01, 3.7049e-01, - 4.7636e-01, 3.7029e-01, 8.7830e-03, 6.5832e-01, - 7.8315e-01, 9.6722e-01, 5.2348e-01, 5.8408e-01, - 1.8276e-01, 7.7372e-01, 1.7153e-01, 9.8813e-01, - 9.6003e-01, 6.8577e-01, 5.3984e-01, 5.8052e-01, - 5.2230e-02, 7.8780e-01, 7.8448e-01, 4.8815e-01, - 8.7644e-02, 3.3278e-01, 2.6300e-04, 7.3187e-02, - 5.2423e-01, 9.0912e-01, 1.8239e-01, 9.1377e-02, - 3.4063e-01, 9.5308e-01, 5.2093e-01, 9.6968e-01, - 4.7941e-01, 1.1503e-01, 1.9436e-01, 1.6191e-01, - 8.3119e-01, 4.7526e-01, 4.4201e-01, 7.8974e-01, - 7.1431e-04, 5.4472e-01, 4.4667e-01, 9.0362e-01, - 9.8209e-01, 1.3364e-01, 8.4382e-01, 8.4157e-01, - 3.5500e-01, 3.2081e-01, 5.5009e-01, 4.0409e-01, - 3.1810e-01, 4.4880e-01, 3.7142e-01, 6.0779e-01, - 5.8504e-01, 7.1750e-01, 5.7407e-01, 4.9814e-01, - 5.9204e-01, 9.5586e-02, 2.2193e-02, 7.1892e-01, - 7.8247e-01, 9.9933e-01, 5.8047e-01, 5.9317e-01, - 8.2811e-01, 6.4682e-01, 2.4161e-01, 9.3138e-01, - 2.7242e-01, 9.2512e-01, 7.2675e-01, 2.4337e-01, - 8.0080e-01, 3.2907e-01, 4.2906e-01, 6.1785e-03, - 5.0034e-01, 3.6569e-01, 9.6297e-01, 7.4588e-01, - 6.0730e-01, 2.4966e-01, 4.4608e-01, 1.1802e-01, - 5.5784e-01, 3.9164e-01, 4.1325e-01, 5.7944e-01, - 3.5110e-01, 8.6544e-01, 4.7250e-01, 3.6394e-01, - 2.3361e-01, 9.4760e-01, 4.9741e-01, 5.2552e-01, - 6.3145e-01, 4.5745e-02, 4.2101e-01, 6.1188e-01, - 7.2981e-01, 4.3973e-01, 7.0557e-01, 8.5500e-02, - 4.3159e-01, 8.3062e-01, 4.3397e-01, 3.0606e-01, - 4.7281e-01, 8.6673e-01, 3.1518e-01, 3.2265e-01, - 4.8137e-01, 7.5667e-01, 7.7887e-01, 2.9491e-01, - 2.8767e-01, 6.6225e-01, 5.1450e-01, 8.4239e-01, - 2.8493e-01, 5.7720e-01, 2.5022e-01, 9.3703e-01, - 6.8686e-01, 2.4345e-01, 3.1398e-01, 8.4064e-01, - 4.8266e-01, 2.6433e-02, 3.1981e-01, 3.9487e-01, - 3.8680e-01, 8.9470e-01, 4.0471e-01, 3.6538e-01, - 4.7602e-01, 8.8693e-01, 9.9293e-01, 1.2633e-01, - 2.1077e-01, 2.3837e-01, 6.1370e-02, 9.7263e-02, - 9.1151e-01, 7.7234e-01, 2.9750e-01, 5.6292e-01, - 2.4497e-01, 7.7687e-02, 8.8354e-03, 7.1013e-01, - 2.3644e-01, 5.4059e-01, 4.2289e-02, 5.5844e-01, - 5.7342e-01, 5.7040e-01, 6.4986e-01, 2.3291e-01, - 7.4089e-01, 3.0142e-01, 1.6086e-01, 7.1372e-01, - 9.1776e-01, 8.8358e-01, 5.7221e-01, 3.2498e-01, - 7.7286e-01, 5.6067e-01, 7.7656e-01, 8.3678e-01, - 3.2225e-01, 4.7910e-01, 1.7961e-01, 2.7098e-02, - 5.0569e-01, 7.7811e-01, 6.3024e-02, 7.5755e-01, - 8.3257e-01, 5.8538e-01, 1.1575e-01, 6.2562e-01, - 2.2088e-01, 4.5650e-01, 7.0230e-01, 4.4897e-02, - 3.0900e-01, 6.5477e-01, 5.5972e-01, 5.3347e-01, - 2.1702e-02, 4.3247e-01, 1.7055e-01, 7.9480e-01, - 1.1809e-01, 3.2070e-01, 7.8239e-01, 1.8041e-01, - 2.6373e-01, 7.6833e-01, 2.4192e-01, 4.8363e-02, - 7.5678e-01, 2.2666e-01, 6.2957e-03, 9.4640e-01, - 3.4193e-01, 4.2199e-01, 1.8168e-01, 5.2057e-02, - 7.5241e-01, 7.4061e-01, 4.1688e-01, 9.6573e-01, - 3.9466e-01, 6.7007e-01, 6.4988e-01, 2.8095e-01, - 5.7727e-02, 7.3459e-01, 4.8836e-01, 1.2981e-01, - 8.6550e-01, 7.1953e-01, 3.3155e-02, 4.9207e-01, - 3.0199e-02, 8.1620e-01, 3.4773e-01, 4.4022e-02, - 9.4242e-01, 2.3414e-01, 9.3966e-02, 3.9911e-01, - 7.7950e-01, 4.7617e-01, 6.4977e-01, 3.0953e-01, - 8.1677e-01, 5.6634e-01, 3.5953e-01, 9.3820e-01, - 5.3909e-01, 7.0969e-01, 5.2942e-01, 2.9457e-01, - 3.4143e-02, 5.3716e-01, 9.0549e-01, 2.3470e-01, - 5.1654e-01, 3.9032e-02, 8.4763e-01, 8.8936e-01, - 2.0968e-01, 6.7220e-01, 3.0246e-01, 2.9179e-01, - 5.0785e-02, 7.4234e-01, 3.3136e-01, 8.2526e-02, - 4.4915e-02, 2.6356e-01, 7.4292e-01, 4.5549e-01, - 7.8200e-01, 1.2189e-02, 6.1731e-01, 1.6328e-01, - 4.7369e-01, 4.3547e-01, 5.9286e-01, 5.9266e-01, - 5.6379e-01, 3.4797e-01, 1.6829e-01, 2.6337e-01, - 1.1027e-01, 9.9239e-01, 9.9087e-01, 5.8034e-01, - 1.4972e-02, 8.5411e-01, 7.7388e-01, 6.1481e-01, - 1.0120e-01, 8.3804e-01, 3.5737e-01, 9.5958e-02, - 5.6813e-01, 1.5384e-01, 2.1246e-01, 8.7991e-01, - 5.3183e-01, 4.2567e-01, 6.9806e-02, 1.4070e-01, - 7.0911e-01, 5.7805e-01, 9.0032e-01, 2.8967e-01, - 8.4393e-01, 7.0955e-01, 5.1167e-01, 4.4321e-01, - 8.3023e-01, 3.3272e-01, 2.4448e-01, 3.2699e-01, - 9.7977e-01, 9.9894e-01, 3.9459e-01, 7.6675e-01, - 5.7925e-02, 7.9083e-01, 3.9910e-01, 4.0556e-01, - 9.4044e-01, 3.2004e-01, 4.4436e-01, 3.2408e-01, - 5.8114e-01, 7.2815e-01, 7.3948e-01, 2.0721e-01, - 3.0147e-01, 4.5285e-01, 4.2900e-01, 6.9910e-01, - 7.1616e-01, 9.9422e-01, 2.2960e-01, 7.6827e-01, - 4.4748e-01, 7.9808e-01, 7.4186e-02, 9.1484e-01, - 9.5743e-01, 6.9329e-01, 6.7416e-01, 1.6449e-01, - 8.7058e-01, 8.0285e-01, 4.9959e-01, 1.9836e-03, - 3.4591e-01, 2.0250e-01, 6.8474e-01, 7.3271e-01, - 8.7277e-01, 2.6489e-01, 6.9725e-01, 1.8247e-01, - 1.3646e-01, 4.6208e-01, 8.6758e-01, 8.2115e-01, - 2.4326e-01, 6.5762e-01, 2.4240e-01, 3.9894e-01, - 1.7475e-01, 9.7856e-01, 8.9521e-01, 4.8900e-01, - 5.0152e-01, 9.3962e-01, 9.2817e-01, 3.5406e-01, - 1.4374e-01, 1.5610e-01, 9.2532e-01, 5.7780e-01, - 5.9667e-01, 4.3588e-01, 8.8655e-01, 8.3369e-01, - 8.8365e-01, 8.9342e-01, 6.0200e-01, 5.2936e-01, - 5.5865e-01, 1.6584e-01, 9.8088e-01, 5.6768e-01, - 7.5654e-01, 8.8072e-02, 9.4473e-01, 3.0629e-01, - 4.5530e-01, 9.9065e-01, 6.0101e-01, 9.0236e-01, - 5.6152e-01, 6.9979e-02, 8.4466e-01, 6.9695e-01, - 7.0042e-01, 3.3033e-01, 7.0122e-01, 2.8283e-01, - 9.0123e-01, 7.1980e-01, 4.0823e-01, 5.4705e-01, - 5.2391e-01, 5.3599e-01, 2.5812e-01, 1.0750e-01, - 8.8756e-02, 2.6846e-01, 8.4292e-01, 1.3892e-01, - 3.7130e-01, 2.7140e-01, 2.4106e-01, 6.3913e-01, - 6.9383e-01, 2.5859e-01, 4.7475e-01, 9.6678e-01, - 5.6154e-01, 6.0440e-01, 8.5979e-01, 6.3334e-01, - 7.9614e-01, 7.1808e-01, 5.1482e-01, 5.8039e-01, - 1.2588e-01, 3.9638e-01, 2.3187e-02, 3.5209e-01, - 4.1087e-01, 5.6449e-01, 6.5011e-01, 4.9452e-01, - 9.1064e-01, 6.1690e-01, 9.8551e-01, 9.7568e-01, - 6.2623e-01, 2.3823e-01, 6.5306e-01, 8.6989e-01, - 5.2711e-01, 1.2346e-01, 8.6267e-01, 6.8423e-01, - 5.8937e-02, 9.5463e-01, 6.3191e-01, 3.6282e-01, - 1.3229e-01, 6.1912e-01, 6.3345e-01, 2.2200e-01, - 4.0966e-01, 2.6498e-01, 9.7214e-01, 8.0645e-01, - 9.7093e-02, 9.9334e-01, 8.2010e-01, 4.2101e-01, - 4.1734e-01, 2.1756e-02, 6.4813e-02, 5.3620e-01, - 7.0438e-01, 1.4083e-01, 6.4467e-01, 9.7098e-01, - 8.3839e-01, 5.5985e-01, 2.0887e-01, 2.3036e-01, - 8.5515e-01, 1.0184e-01, 6.7921e-01, 6.6760e-01, - 1.0380e-01, 3.5481e-01, 7.7507e-01, 5.3008e-01, - 6.6887e-03, 7.4553e-01, 1.7360e-01, 8.9120e-01, - 6.7769e-01, 8.1441e-02, 1.3726e-01, 4.6109e-02, - 5.8003e-01, 4.6242e-01, 8.8956e-01, 1.6185e-02, - 9.5213e-01, 2.2370e-01, 7.2711e-01, 3.2853e-01, - 4.3371e-01, 5.3927e-01, 9.9624e-01, 9.5974e-01, - 9.2831e-01, 9.1616e-01, 5.3324e-01, 1.4999e-01, - 1.5046e-03, 7.4235e-01, 8.8799e-02, 6.2582e-01, - 4.2415e-01, 8.5871e-02, 8.5839e-02, 8.3054e-01, - 4.3792e-01, 7.4156e-01, 6.6301e-01, 8.8278e-01, - 1.0045e-01, 8.4371e-02, 9.7355e-02, 9.1549e-01, - 7.7045e-01, 7.0279e-01, 7.9142e-01, 8.6937e-01, - 2.3835e-01, 5.2709e-01, 4.6300e-01, 1.1279e-01, - 1.6738e-01, 2.4966e-01, 9.3594e-01, 1.8265e-01, - 8.2812e-01, 4.6700e-01, 1.0566e-01, 2.9449e-01, - 3.8697e-01, 2.1058e-01, 8.9128e-01, 2.8245e-01, - 6.1803e-01, 9.6943e-01, 4.9844e-01, 3.8129e-01, - 4.1366e-01, 3.3715e-01, 4.8966e-01, 1.8916e-01, - 4.1051e-01, 6.5104e-02, 6.7879e-01, 1.7219e-01, - 9.8611e-01, 7.9846e-01, 6.4956e-02, 5.2899e-01, - 7.0038e-01, 2.5009e-01, 1.0036e-01, 5.2806e-01, - 2.8219e-01, 1.1813e-01, 1.7751e-01, 3.7513e-01, - 7.2103e-01, 7.6143e-01, 1.7171e-01, 5.3865e-01, - 3.8347e-01, 5.1723e-01, 9.0538e-01, 2.8388e-01, - 3.8454e-01, 1.4894e-01, 7.4618e-01, 8.3012e-02, - 6.3207e-01, 8.0185e-01, 4.0027e-01, 4.6201e-01, - 3.9573e-03, 9.7798e-01, 3.8023e-01, 5.5993e-01, - 8.3605e-01, 3.9080e-01, 6.5441e-01, 4.0146e-01, - 3.1631e-02, 7.1804e-01, 7.0636e-01, 3.8574e-01, - 3.1058e-01, 6.7122e-01, 1.5380e-01, 9.0007e-01, - 3.7706e-01, 3.5935e-01, 4.0857e-01, 3.4286e-01, - 2.8742e-01, 4.5897e-01, 7.9498e-01, 7.9825e-01, - 7.9126e-01, 9.1831e-01, 3.7304e-01, 7.8587e-01, - 8.7177e-01, 4.8529e-01, 5.2323e-01, 4.3441e-02, - 7.5517e-01, 5.7213e-01, 3.3582e-01, 1.3401e-01, - 2.7285e-02, 1.6001e-01, 1.5595e-01, 5.5976e-01, - 7.1036e-01, 4.5240e-01, 7.6140e-01, 1.1852e-02, - 8.1250e-02, 6.9522e-01, 2.1689e-01, 5.4042e-01, - 1.5117e-01, 4.1569e-01, 9.8104e-01, 7.4230e-01, - 2.1911e-01, 3.0258e-01, 7.8659e-01, 4.1239e-01, - 4.4141e-01, 3.1882e-01, 6.3781e-01, 1.6855e-01, - 9.4322e-02, 7.2210e-01, 8.1753e-01, 5.8294e-01, - 8.0956e-01, 7.2769e-01, 5.3873e-01, 3.4590e-02, - 5.4020e-01, 5.4499e-02, 3.0721e-02, 3.8781e-01, - 5.3718e-01, 9.4856e-01, 9.4062e-01, 2.4671e-01, - 8.7092e-01, 1.1412e-01, 9.4006e-02, 9.0091e-01, - 6.5373e-01, 4.6330e-01, 7.2651e-01, 9.3630e-01, - 2.9917e-01, 6.6133e-01, 4.6541e-01, 7.4622e-01, - 3.4435e-02, 1.8522e-01, 6.6774e-01, 7.7169e-01, - 7.9885e-01, 6.3927e-01, 6.2545e-01, 7.0752e-02, - 5.9121e-01, 7.0132e-01, 5.6839e-01, 7.6939e-01, - 3.4014e-01, 3.7386e-01, 9.5161e-01, 5.6361e-01, - 6.0353e-01, 7.0503e-01, 4.2749e-03, 5.9801e-01, - 7.3419e-01, 5.9424e-01, 6.4743e-01, 3.2864e-01, - 9.1101e-01, 3.7642e-01, 7.0460e-02, 8.9601e-01, - 7.7401e-01, 1.4806e-01, 7.3290e-01, 7.4525e-01, - 9.6181e-01, 9.9589e-01, 6.9491e-01, 6.2451e-01, - 5.8659e-01, 5.0633e-01, 1.2537e-01, 2.2713e-01, - 3.2536e-01, 4.3233e-01, 2.0051e-01, 3.0690e-01, - 1.4207e-01, 3.8751e-01, 5.5312e-01, 7.0443e-01, - 4.2499e-01, 9.9202e-01, 5.5879e-01, 4.4650e-01, - 2.4128e-01, 6.2746e-01, 5.8731e-01, 3.8369e-02, - 3.8085e-02, 2.1800e-01, 8.4532e-01, 9.6580e-01, - 6.8789e-01, 8.8737e-01, 1.2413e-01, 9.2093e-01, - 3.0693e-01, 5.1800e-01, 4.2604e-01, 3.9549e-03, - 5.6568e-01, 7.5623e-01, 6.7967e-01, 2.3458e-01, - 5.4017e-01, 9.7298e-01, 6.8422e-01, 8.7135e-01, - 7.9377e-02, 4.8783e-01, 7.1176e-01, 6.4913e-01, - 8.7535e-01, 5.1563e-01, 1.8421e-01, 4.0508e-01, - 1.2530e-01, 7.2066e-02, 4.7501e-01, 8.9604e-01, - 9.8033e-01, 4.2110e-01, 4.4439e-01, 9.4984e-01, - 6.3960e-01, 3.1398e-01, 6.3584e-01, 1.1905e-01, - 9.8476e-01, 7.3838e-01, 5.9761e-01, 3.8585e-01, - 4.5369e-01, 1.2022e-01, 6.7305e-01, 7.8788e-01, - 8.7938e-01, 7.4945e-01, 6.1574e-01, 5.1676e-01, - 7.2591e-01, 7.7320e-01, 8.6354e-01, 9.7250e-01, - 2.6322e-01, 8.1801e-01, 7.5115e-01, 5.6531e-01, - 6.3913e-01, 7.2438e-02, 1.8105e-01, 2.5968e-01, - 2.2157e-01, 3.6300e-01, 8.5513e-01, 4.0037e-01, - 9.9442e-01, 3.7004e-01, 7.4999e-01, 7.7150e-01, - 8.8575e-01, 4.2972e-01, 9.8154e-01, 8.3038e-01, - 1.7583e-01, 6.3271e-01, 7.4191e-02, 7.7641e-02, - 4.6908e-01, 5.4427e-01, 5.2239e-01, 1.4617e-02, - 1.3158e-01, 4.4277e-01, 2.9545e-01, 6.9176e-01, - 8.5065e-02, 2.3232e-01, 6.5048e-01, 9.2064e-01, - 1.1105e-01, 1.5708e-01, 9.0011e-01, 1.7042e-01, - 4.7935e-01, 3.0795e-01, 2.5331e-01, 7.6145e-01, - 4.8186e-01, 3.0773e-01, 4.0047e-01, 1.8978e-01, - 4.7549e-01, 2.4018e-01, 8.6357e-02, 3.8015e-01, - 6.0164e-01, 1.0270e-01, 2.6943e-01, 2.0495e-01, - 7.4602e-01, 3.0003e-01, 9.9557e-01, 9.5550e-01, - 6.5525e-02, 4.2302e-01, 1.5246e-01, 4.1570e-01, - 7.6132e-01, 6.3810e-01, 3.4472e-01, 9.2114e-01, - 8.9617e-01, 1.1069e-01, 1.8827e-01, 3.5004e-01, - 4.2144e-01, 7.2994e-01, 2.8003e-01, 9.9526e-01, - 1.3122e-01, 7.8430e-01, 8.2154e-01, 8.5472e-01, - 9.9915e-01, 1.0175e-01, 9.5443e-01, 2.0256e-01, - 9.9243e-01, 2.9673e-01, 1.4011e-01, 6.3467e-01, - 6.9318e-01, 9.8979e-01, 3.2336e-01, 9.6873e-01]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 999, 1000, 1000]), + col_indices=tensor([7109, 2385, 2417, 5435, 3828, 4759, 3881, 3125, 6359, + 8100, 8295, 5616, 9929, 4079, 7787, 359, 8328, 6707, + 7136, 309, 5171, 1453, 2735, 9306, 3785, 4541, 8081, + 2235, 61, 4688, 6276, 2644, 5471, 837, 3908, 9598, + 9530, 9506, 8707, 10, 4532, 534, 4561, 3707, 1054, + 2351, 8898, 694, 8085, 1481, 2176, 6847, 2046, 5123, + 1350, 2400, 2135, 4037, 9549, 4749, 612, 1214, 9582, + 9826, 1033, 8057, 3787, 6733, 5484, 5013, 513, 3997, + 9224, 768, 6259, 8198, 4081, 8587, 7654, 6997, 3629, + 5266, 8440, 8098, 4353, 7259, 6119, 7369, 9095, 5623, + 7383, 8433, 7910, 8608, 4139, 6690, 2987, 5688, 7896, + 7911, 6242, 6429, 722, 2362, 2947, 7072, 2748, 1401, + 7063, 9804, 2718, 4440, 4754, 9463, 9666, 7272, 8681, + 5892, 7815, 4523, 800, 9689, 6398, 686, 9595, 7223, + 252, 5697, 861, 6369, 1019, 2052, 8774, 3827, 3582, + 5597, 1734, 6986, 7447, 6272, 3623, 3565, 4417, 277, + 3843, 3333, 5620, 6442, 4003, 7391, 9554, 8526, 2101, + 9854, 8955, 4012, 5691, 3570, 9292, 3509, 3148, 5405, + 2599, 5760, 6655, 1397, 5002, 378, 9560, 8896, 7138, + 8297, 8567, 8541, 8058, 9553, 2217, 475, 973, 6966, + 8382, 9130, 3653, 6730, 5404, 1171, 6230, 4421, 8787, + 1013, 7148, 6496, 6029, 92, 1710, 3227, 4417, 1415, + 6028, 7960, 1123, 8741, 7693, 8010, 7518, 4472, 6141, + 7642, 3828, 9726, 5089, 1835, 1514, 2431, 8797, 5042, + 676, 3698, 5937, 3628, 6068, 1887, 5909, 6973, 5973, + 477, 5895, 1885, 7449, 3691, 1472, 679, 7389, 1532, + 192, 1918, 9427, 2430, 3048, 5494, 2607, 9231, 1796, + 5499, 9054, 3543, 8995, 5396, 1535, 682, 2719, 1631, + 5250, 5969, 556, 4778, 6509, 839, 3254, 5655, 3541, + 9791, 8791, 8465, 9659, 643, 5662, 6522, 1226, 6110, + 8738, 2729, 9937, 1594, 5216, 1576, 322, 138, 1174, + 8026, 182, 2386, 8814, 3055, 5706, 1632, 3053, 1250, + 5293, 4479, 2534, 9457, 8636, 4963, 8810, 6513, 3303, + 2068, 7365, 4824, 6966, 3195, 1321, 1454, 3116, 1891, + 4602, 103, 1064, 1824, 4653, 5493, 2856, 7214, 4796, + 8079, 259, 3544, 8673, 5026, 1149, 8318, 1462, 4443, + 1549, 5100, 9230, 1260, 6291, 510, 2869, 7765, 852, + 2488, 6706, 4128, 5493, 7619, 4287, 6605, 7113, 7503, + 9635, 3819, 3422, 9417, 6701, 4678, 7292, 2009, 2745, + 5180, 902, 7517, 8196, 9257, 3699, 5950, 411, 2498, + 9110, 1182, 7464, 8023, 3683, 9203, 4592, 2000, 9730, + 3403, 953, 7193, 6806, 597, 9712, 7122, 7344, 9620, + 5762, 2940, 6890, 5706, 4675, 1376, 4625, 5803, 9790, + 8162, 563, 3992, 4806, 1869, 419, 4808, 6093, 8645, + 7788, 7684, 43, 5821, 4794, 4820, 4004, 9919, 4616, + 3804, 9946, 5014, 1305, 7851, 5946, 4091, 2485, 728, + 6971, 3549, 5585, 2412, 5888, 4457, 2799, 9818, 9618, + 2750, 2922, 131, 8551, 3306, 311, 2869, 5197, 1613, + 4841, 1155, 9841, 5868, 9266, 5281, 1337, 8753, 4768, + 9229, 9711, 9344, 3792, 7689, 9243, 3075, 8565, 7580, + 5999, 5247, 6273, 1505, 5520, 7307, 2076, 4532, 2693, + 6116, 7270, 3433, 8912, 5182, 9345, 8104, 6702, 450, + 9103, 8031, 6959, 6210, 5641, 9318, 4784, 626, 6063, + 6803, 5977, 7007, 8105, 2597, 6168, 9640, 5148, 1688, + 1007, 3856, 2440, 1610, 46, 3388, 8832, 9487, 77, + 9414, 713, 2259, 3015, 2404, 4677, 2375, 9203, 6270, + 6686, 5362, 8403, 149, 4599, 8799, 3044, 9352, 6320, + 9182, 3494, 5862, 697, 9208, 5897, 6456, 742, 9438, + 8241, 7310, 2664, 1140, 2638, 6331, 2836, 2339, 5416, + 6386, 5007, 3424, 4140, 8418, 2768, 7025, 8519, 4071, + 2786, 7259, 6812, 4479, 9408, 3790, 6230, 7656, 9695, + 7286, 975, 8931, 3543, 222, 7839, 9094, 3012, 9084, + 5657, 4120, 1509, 8871, 3510, 6988, 7621, 3914, 9254, + 7142, 2284, 5420, 893, 5854, 8200, 2689, 257, 9233, + 367, 2764, 2893, 1881, 3564, 7955, 9774, 2290, 4849, + 2776, 7436, 5689, 7041, 6283, 9905, 9032, 4403, 634, + 1762, 6101, 1433, 5426, 5594, 1114, 903, 7462, 6667, + 5106, 7360, 5373, 7882, 4664, 8370, 3731, 173, 2530, + 2913, 8577, 9326, 1993, 372, 3877, 3134, 5685, 5591, + 3164, 8523, 4532, 1524, 5876, 2337, 1910, 6825, 1701, + 3345, 9908, 1129, 356, 162, 6909, 8511, 9623, 5538, + 2227, 7108, 5801, 5376, 9922, 4394, 3505, 955, 7447, + 1821, 2264, 2665, 4362, 6017, 10, 1864, 589, 9835, + 2738, 3409, 7929, 445, 7809, 8506, 4478, 5175, 1642, + 6654, 4156, 4637, 493, 8641, 4849, 9459, 1260, 1722, + 3709, 7871, 294, 9014, 3592, 2234, 1761, 3148, 2059, + 5761, 4292, 2390, 8145, 3925, 4523, 4323, 5192, 2668, + 5700, 4434, 4088, 1368, 2304, 5701, 1648, 4535, 7667, + 1044, 9357, 9493, 3733, 2278, 133, 5541, 1244, 1991, + 6410, 8224, 9359, 3118, 3172, 8411, 5956, 6213, 2834, + 5982, 6131, 5315, 9976, 9217, 3251, 7863, 191, 6442, + 949, 3581, 6996, 1148, 1590, 3581, 8669, 6526, 7295, + 8556, 631, 6698, 4352, 244, 9874, 5590, 8576, 2401, + 1573, 3011, 2458, 9030, 4245, 4065, 2172, 6903, 7079, + 180, 6734, 6853, 2898, 2302, 7261, 5268, 6537, 9604, + 2335, 8773, 923, 6612, 3305, 4601, 6384, 7525, 2043, + 5654, 6990, 6475, 3112, 7425, 5617, 5040, 5416, 1325, + 6773, 9569, 5311, 6897, 8039, 8302, 1711, 1443, 196, + 4009, 1601, 330, 2436, 6513, 5857, 7676, 6398, 2101, + 1528, 4145, 5694, 8965, 6555, 727, 1560, 7665, 4841, + 9592, 6158, 320, 8749, 6157, 8725, 3024, 8319, 4003, + 8281, 4317, 3464, 6228, 1404, 1578, 4680, 708, 1351, + 5822, 8145, 2056, 581, 3036, 7910, 1186, 9116, 6024, + 1434, 1121, 2457, 6394, 749, 7915, 803, 8518, 7707, + 4500, 2148, 2294, 5223, 1435, 4429, 6437, 2976, 3334, + 8071, 6080, 8489, 4989, 9346, 5095, 7683, 5920, 8664, + 8772, 9150, 8104, 7035, 3166, 4753, 5176, 7494, 3694, + 9055, 8323, 5783, 9581, 6133, 7181, 4449, 117, 1431, + 1310, 266, 1137, 641, 4783, 4011, 9704, 8990, 9913, + 2411, 6941, 1035, 6630, 99, 4087, 4073, 98, 8673, + 9180, 1336, 2464, 8321, 3258, 7885, 1201, 4488, 1290, + 3441, 3470, 3653, 1653, 1475, 9906, 7698, 6670, 6752, + 2289, 4337, 3018, 852, 1912, 1673, 4537, 1138, 4596, + 7841, 7168, 8678, 7894, 9826, 4471, 2161, 7831, 2817, + 1699, 5434, 614, 6337, 9902, 5326, 7325, 5049, 225, + 8836, 5786, 4286, 4756, 4125, 2729, 2426, 1236, 6028, + 1462, 9172, 3237, 1796, 628, 5307, 403, 6318, 2926, + 4691, 4352, 6358, 7028, 7697, 1313, 5381, 6924, 8207, + 3263, 6004, 9719, 5541, 3521, 162, 72, 8395, 7836, + 2764, 8356, 2955, 3340, 3636, 5608, 97, 858, 6715, + 7963, 8977, 8904, 1286, 2929, 52, 9172, 966, 8016, + 7012]), + values=tensor([0.0046, 0.9711, 0.5783, 0.3964, 0.2053, 0.1726, 0.9437, + 0.5542, 0.1093, 0.4547, 0.1845, 0.3445, 0.8403, 0.4506, + 0.0902, 0.5378, 0.5966, 0.3221, 0.2087, 0.6069, 0.9250, + 0.3018, 0.8874, 0.5907, 0.8418, 0.6404, 0.9959, 0.3059, + 0.6226, 0.0368, 0.8190, 0.1303, 0.5256, 0.5555, 0.1522, + 0.6237, 0.0781, 0.5043, 0.0689, 0.0302, 0.2280, 0.2510, + 0.9391, 0.7562, 0.6143, 0.6495, 0.3458, 0.6716, 0.1218, + 0.4951, 0.5813, 0.4377, 0.3803, 0.5588, 0.7278, 0.7107, + 0.7077, 0.3647, 0.7869, 0.9654, 0.7183, 0.8252, 0.4085, + 0.6874, 0.5162, 0.6114, 0.2250, 0.1783, 0.2852, 0.3965, + 0.8459, 0.5182, 0.7181, 0.4470, 0.6154, 0.2685, 0.7435, + 0.8775, 0.0173, 0.8189, 0.0651, 0.4964, 0.7706, 0.1775, + 0.6594, 0.4169, 0.0757, 0.1719, 0.6911, 0.1189, 0.3832, + 0.8399, 0.3009, 0.9319, 0.3858, 0.4031, 0.3018, 0.8705, + 0.5963, 0.7087, 0.4444, 0.2108, 0.7106, 0.9488, 0.1619, + 0.3416, 0.0156, 0.2551, 0.5023, 0.9762, 0.6355, 0.9340, + 0.8159, 0.3185, 0.7462, 0.9256, 0.7851, 0.0782, 0.8295, + 0.8717, 0.6926, 0.4574, 0.6799, 0.4534, 0.6691, 0.9648, + 0.8736, 0.5727, 0.3189, 0.4649, 0.9263, 0.7281, 0.0818, + 0.5704, 0.3615, 0.0346, 0.8665, 0.5480, 0.2733, 0.6432, + 0.8981, 0.9119, 0.2568, 0.5919, 0.8320, 0.2875, 0.1674, + 0.5919, 0.1054, 0.6833, 0.1399, 0.6362, 0.3561, 0.7467, + 0.9977, 0.1907, 0.4833, 0.7635, 0.1246, 0.8287, 0.5890, + 0.3699, 0.5934, 0.4119, 0.6383, 0.0205, 0.6354, 0.0025, + 0.3055, 0.5465, 0.8335, 0.9974, 0.4798, 0.9157, 0.2277, + 0.9812, 0.4215, 0.6840, 0.5241, 0.0527, 0.5703, 0.9916, + 0.4607, 0.4300, 0.6671, 0.7892, 0.1737, 0.1225, 0.0598, + 0.8796, 0.4030, 0.2456, 0.1589, 0.8107, 0.8549, 0.7206, + 0.2242, 0.4514, 0.2530, 0.9423, 0.8787, 0.4399, 0.3810, + 0.5901, 0.7345, 0.4668, 0.3478, 0.9963, 0.2961, 0.9270, + 0.0301, 0.4210, 0.5019, 0.9625, 0.5041, 0.7790, 0.5782, + 0.6252, 0.3890, 0.3274, 0.9770, 0.8231, 0.4966, 0.5155, + 0.5583, 0.1196, 0.3282, 0.5482, 0.7136, 0.0064, 0.9655, + 0.6750, 0.3247, 0.2048, 0.1243, 0.1485, 0.7152, 0.4737, + 0.3270, 0.2946, 0.1922, 0.2685, 0.5926, 0.8430, 0.0407, + 0.4774, 0.0717, 0.6093, 0.7594, 0.9792, 0.5158, 0.2854, + 0.0632, 0.5014, 0.9048, 0.8406, 0.1082, 0.0133, 0.0800, + 0.2800, 0.2617, 0.2001, 0.9723, 0.1130, 0.9439, 0.4990, + 0.9070, 0.6093, 0.2296, 0.6950, 0.7193, 0.1734, 0.8450, + 0.0447, 0.7501, 0.4548, 0.6695, 0.9652, 0.8606, 0.7535, + 0.0773, 0.7629, 0.0103, 0.0948, 0.7605, 0.9538, 0.4662, + 0.4806, 0.8728, 0.0392, 0.7303, 0.8236, 0.3805, 0.4985, + 0.1028, 0.6346, 0.5210, 0.1024, 0.8731, 0.5873, 0.7105, + 0.2108, 0.4969, 0.9031, 0.1387, 0.8343, 0.4993, 0.5455, + 0.3538, 0.1324, 0.9783, 0.5165, 0.4133, 0.9455, 0.6371, + 0.7301, 0.2826, 0.6823, 0.7616, 0.3904, 0.8366, 0.6816, + 0.9409, 0.7877, 0.5158, 0.1541, 0.1117, 0.4563, 0.1217, + 0.9525, 0.4021, 0.7397, 0.2559, 0.7187, 0.5250, 0.4043, + 0.2738, 0.9184, 0.0736, 0.1076, 0.2850, 0.5552, 0.1645, + 0.2585, 0.5505, 0.6136, 0.2864, 0.1428, 0.3411, 0.7240, + 0.2285, 0.7929, 0.6109, 0.9222, 0.1483, 0.5863, 0.2524, + 0.4750, 0.1637, 0.5790, 0.5447, 0.3454, 0.7649, 0.1908, + 0.3288, 0.5701, 0.5499, 0.0369, 0.9922, 0.3383, 0.4741, + 0.1304, 0.9901, 0.7400, 0.9626, 0.4575, 0.2628, 0.5791, + 0.5795, 0.8287, 0.9675, 0.5851, 0.5863, 0.4631, 0.4520, + 0.6908, 0.8302, 0.4709, 0.1620, 0.2509, 0.4523, 0.9606, + 0.8422, 0.9930, 0.3544, 0.9618, 0.4633, 0.8424, 0.3012, + 0.5074, 0.7673, 0.9314, 0.0486, 0.6586, 0.7796, 0.8682, + 0.1246, 0.1399, 0.3038, 0.0213, 0.2975, 0.1825, 0.5585, + 0.5935, 0.0441, 0.6723, 0.6869, 0.1223, 0.3975, 0.4510, + 0.4005, 0.3733, 0.5220, 0.4286, 0.5743, 0.5693, 0.9693, + 0.4086, 0.3833, 0.3952, 0.3540, 0.0647, 0.9855, 0.3131, + 0.1430, 0.2211, 0.2883, 0.2379, 0.8994, 0.5349, 0.6071, + 0.0012, 0.7795, 0.9085, 0.8059, 0.8457, 0.2047, 0.3553, + 0.4264, 0.4073, 0.7708, 0.1265, 0.5393, 0.9354, 0.1862, + 0.8447, 0.1265, 0.0465, 0.9024, 0.1589, 0.4910, 0.2636, + 0.3445, 0.1545, 0.4366, 0.0582, 0.3173, 0.5045, 0.7525, + 0.2332, 0.9149, 0.7252, 0.7029, 0.1697, 0.1214, 0.8720, + 0.7803, 0.4878, 0.7906, 0.7439, 0.1899, 0.9880, 0.0016, + 0.8939, 0.2914, 0.7113, 0.9239, 0.8221, 0.8266, 0.3684, + 0.5005, 0.8793, 0.5734, 0.2862, 0.4043, 0.7599, 0.4516, + 0.4459, 0.5388, 0.8147, 0.3911, 0.4150, 0.0336, 0.3314, + 0.5237, 0.5194, 0.3540, 0.6803, 0.0259, 0.3157, 0.1146, + 0.7491, 0.8857, 0.2876, 0.6475, 0.0696, 0.1554, 0.9070, + 0.5700, 0.0259, 0.9973, 0.2760, 0.1917, 0.3491, 0.2604, + 0.2647, 0.7207, 0.8895, 0.6272, 0.5734, 0.1372, 0.5916, + 0.1230, 0.6040, 0.2042, 0.4307, 0.6738, 0.3775, 0.2795, + 0.7792, 0.4760, 0.5589, 0.1711, 0.0766, 0.4005, 0.1397, + 0.4940, 0.6769, 0.4257, 0.6752, 0.0242, 0.5821, 0.7391, + 0.1474, 0.0300, 0.9215, 0.5654, 0.7654, 0.6347, 0.1786, + 0.5402, 0.8466, 0.6369, 0.9853, 0.3023, 0.7607, 0.1105, + 0.3121, 0.2599, 0.7204, 0.9168, 0.3226, 0.5478, 0.0268, + 0.5417, 0.0114, 0.3890, 0.7421, 0.8261, 0.6148, 0.3356, + 0.9823, 0.4833, 0.8964, 0.0377, 0.3211, 0.7509, 0.8021, + 0.7647, 0.4392, 0.6333, 0.7826, 0.0068, 0.0507, 0.8981, + 0.1710, 0.5027, 0.0944, 0.1727, 0.3980, 0.1663, 0.4815, + 0.5099, 0.0482, 0.4204, 0.5662, 0.4082, 0.0087, 0.3299, + 0.7731, 0.2476, 0.4990, 0.2030, 0.3567, 0.4913, 0.1398, + 0.7595, 0.5107, 0.5222, 0.1537, 0.7700, 0.5986, 0.2341, + 0.1186, 0.9382, 0.4366, 0.4841, 0.6114, 0.1605, 0.4472, + 0.8581, 0.4342, 0.2576, 0.0087, 0.5861, 0.5826, 0.6503, + 0.7493, 0.7005, 0.0734, 0.4947, 0.2408, 0.7256, 0.1668, + 0.0344, 0.0192, 0.7524, 0.4331, 0.7951, 0.0257, 0.8771, + 0.8072, 0.0260, 0.4420, 0.0808, 0.6151, 0.0167, 0.8132, + 0.7864, 0.9344, 0.3589, 0.8588, 0.5190, 0.0941, 0.3937, + 0.8457, 0.0223, 0.2472, 0.0820, 0.6375, 0.0538, 0.4322, + 0.7601, 0.6627, 0.0062, 0.0971, 0.7569, 0.9276, 0.3232, + 0.8488, 0.9506, 0.0535, 0.2724, 0.3163, 0.3730, 0.1016, + 0.7062, 0.4016, 0.3210, 0.3024, 0.4988, 0.2671, 0.4939, + 0.4041, 0.2020, 0.5827, 0.9863, 0.2068, 0.6956, 0.4398, + 0.8649, 0.3693, 0.0382, 0.5895, 0.1246, 0.3779, 0.4021, + 0.5374, 0.0896, 0.5865, 0.0911, 0.1552, 0.7309, 0.7310, + 0.2105, 0.1533, 0.2641, 0.5318, 0.8937, 0.7014, 0.2487, + 0.1566, 0.4421, 0.8097, 0.3049, 0.0983, 0.7323, 0.3418, + 0.2636, 0.9905, 0.7297, 0.1602, 0.5620, 0.7455, 0.1122, + 0.2778, 0.8976, 0.4302, 0.8190, 0.8163, 0.5642, 0.1086, + 0.1870, 0.4408, 0.7743, 0.8301, 0.3106, 0.4607, 0.1685, + 0.0543, 0.2486, 0.7269, 0.7754, 0.8640, 0.8996, 0.1225, + 0.2326, 0.0306, 0.0742, 0.7702, 0.5675, 0.7799, 0.9378, + 0.5182, 0.8150, 0.0442, 0.1759, 0.3578, 0.2557, 0.3991, + 0.6127, 0.7081, 0.3617, 0.4428, 0.3630, 0.7568, 0.7306, + 0.3583, 0.4751, 0.1731, 0.4017, 0.8439, 0.5007, 0.7755, + 0.1364, 0.1487, 0.0013, 0.4861, 0.3305, 0.4277, 0.8493, + 0.7152, 0.9337, 0.8933, 0.3178, 0.0571, 0.4652, 0.1484, + 0.1146, 0.5186, 0.0231, 0.7337, 0.2879, 0.2599, 0.0899, + 0.0770, 0.6050, 0.7205, 0.0087, 0.4341, 0.8062, 0.5612, + 0.1963, 0.5542, 0.4445, 0.5707, 0.2487, 0.0387, 0.5727, + 0.6643, 0.9010, 0.1369, 0.6983, 0.6861, 0.3137, 0.4893, + 0.4623, 0.0331, 0.5923, 0.7494, 0.8065, 0.6913, 0.0840, + 0.0472, 0.5097, 0.9016, 0.0515, 0.3195, 0.9293, 0.7461, + 0.1002, 0.7266, 0.1789, 0.8944, 0.7784, 0.2704, 0.3854, + 0.4940, 0.9700, 0.7281, 0.8176, 0.6416, 0.3232, 0.8090, + 0.8313, 0.2872, 0.7163, 0.7261, 0.2980, 0.0117, 0.1334, + 0.9487, 0.8411, 0.1255, 0.1021, 0.4857, 0.9363, 0.6866, + 0.0451, 0.9201, 0.6535, 0.4626, 0.0913, 0.1620, 0.4656, + 0.4797, 0.5295, 0.5314, 0.4883, 0.4602, 0.8743, 0.5607, + 0.2065, 0.7862, 0.3051, 0.8028, 0.0092, 0.2581, 0.3033, + 0.5664, 0.6606, 0.8288, 0.0928, 0.1772, 0.1866, 0.3586, + 0.1155, 0.4118, 0.0623, 0.7029, 0.5408, 0.9844, 0.7491, + 0.3391, 0.6861, 0.5463, 0.9448, 0.4787, 0.4255, 0.1814, + 0.5560, 0.4709, 0.7970, 0.6626, 0.4346, 0.7159, 0.4083, + 0.2911, 0.8691, 0.8557, 0.2129, 0.4209, 0.7430, 0.6979, + 0.9694, 0.7088, 0.4947, 0.8038, 0.6058, 0.9515, 0.7892, + 0.7707, 0.4757, 0.4024, 0.6333, 0.3033, 0.1606, 0.0297, + 0.7386, 0.5267, 0.5079, 0.4638, 0.7216, 0.8308, 0.8888, + 0.3272, 0.2089, 0.9250, 0.8630, 0.4374, 0.2899, 0.1274, + 0.6033, 0.2213, 0.0608, 0.3072, 0.5266, 0.1377, 0.2166, + 0.9680, 0.0325, 0.7625, 0.3333, 0.5851, 0.2286, 0.8361, + 0.7176, 0.8044, 0.5438, 0.9445, 0.8563, 0.5310, 0.1555, + 0.9713, 0.4299, 0.7669, 0.0890, 0.3225, 0.6580, 0.0724, + 0.4834, 0.7834, 0.9243, 0.1867, 0.6811, 0.0298, 0.4897, + 0.4802, 0.4453, 0.3359, 0.1067, 0.8065, 0.3394, 0.3666, + 0.4986, 0.5179, 0.7221, 0.2831, 0.8118, 0.0090]), size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.7118, 0.5445, 0.7766, ..., 0.3375, 0.1794, 0.0442]) +tensor([0.8851, 0.6493, 0.1793, ..., 0.2200, 0.7121, 0.0570]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -375,378 +268,271 @@ Rows: 10000 Size: 100000000 NNZ: 1000 Density: 1e-05 -Time: 0.05389976501464844 seconds +Time: 0.019997835159301758 seconds -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '194806', '-ss', '10000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.141697645187378} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '52505', '-ss', '10000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 1.9391217231750488} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), - col_indices=tensor([9699, 5692, 1856, 5883, 6609, 910, 190, 8818, 6729, - 6588, 9895, 4579, 6475, 3640, 7256, 5776, 2107, 112, - 4061, 7172, 5250, 3509, 2541, 6334, 7236, 9125, 3397, - 1986, 8020, 7426, 640, 4809, 3135, 3852, 5226, 6972, - 7839, 6382, 8902, 5331, 2656, 2128, 1074, 1853, 2415, - 6472, 2510, 5655, 1427, 2596, 3458, 3907, 4524, 7308, - 7182, 5604, 363, 3020, 382, 2413, 6757, 1843, 5926, - 9800, 9243, 1216, 726, 2755, 3879, 2089, 6276, 1446, - 5747, 3255, 7160, 527, 7938, 2938, 6480, 2054, 3947, - 5160, 1424, 3755, 6322, 4755, 7220, 3748, 8641, 8485, - 4072, 5143, 4083, 6468, 5181, 8054, 5262, 8901, 1842, - 5556, 9197, 2422, 9598, 8776, 1431, 4844, 2968, 4592, - 1117, 3790, 2119, 9402, 1591, 3654, 5945, 8184, 2423, - 4084, 8724, 1704, 4602, 6181, 1446, 6069, 9025, 6809, - 4068, 6820, 4308, 8837, 7638, 9939, 7584, 715, 3080, - 5110, 1646, 270, 4750, 1889, 7344, 9493, 1362, 2806, - 2042, 9330, 8128, 1139, 8055, 3285, 5025, 3427, 4630, - 3457, 487, 5769, 1461, 1223, 6014, 676, 4177, 4788, - 808, 6218, 3273, 1857, 7645, 7883, 45, 3023, 2949, - 6931, 7238, 3245, 2607, 1940, 9243, 7118, 1761, 8715, - 6342, 6537, 2112, 8823, 435, 8620, 6948, 5293, 2230, - 860, 4367, 88, 989, 2922, 3107, 2766, 5993, 5889, - 9018, 6344, 7354, 9373, 2993, 5145, 4372, 1500, 3401, - 7249, 7339, 2560, 4049, 4794, 1097, 4845, 8722, 1758, - 8888, 497, 786, 8206, 3869, 9310, 8168, 6537, 4297, - 4957, 888, 1560, 5004, 6079, 1472, 9820, 7535, 5, - 6957, 2891, 4973, 5114, 8846, 3802, 6063, 5430, 3488, - 4815, 6740, 5508, 7371, 7426, 341, 8923, 8690, 171, - 6415, 5450, 2787, 9982, 3748, 3838, 4615, 5263, 102, - 6690, 3873, 9381, 4288, 2954, 8360, 3646, 2615, 4141, - 1050, 1125, 185, 7696, 5529, 6425, 4054, 2857, 7604, - 5735, 6919, 671, 7369, 4003, 5598, 8207, 1635, 5650, - 901, 7034, 7990, 5233, 8098, 195, 5419, 2566, 7620, - 9130, 5961, 1895, 6390, 2059, 5841, 9008, 9683, 9749, - 6124, 7032, 9157, 6822, 4774, 3289, 1834, 7396, 7421, - 7499, 2291, 6909, 7905, 4469, 6511, 7350, 2615, 4732, - 8418, 5371, 4919, 2663, 2137, 3983, 7792, 7288, 1612, - 4647, 3391, 7921, 4140, 3599, 635, 5337, 1503, 2825, - 1470, 9664, 4879, 5908, 6754, 5907, 8818, 5502, 2991, - 75, 371, 7734, 1045, 9930, 8101, 7139, 5503, 5475, - 2679, 461, 8155, 5016, 8667, 5905, 7548, 4722, 3455, - 1638, 1102, 3780, 3499, 2110, 514, 4587, 204, 9098, - 6201, 2603, 7037, 2599, 671, 2366, 9398, 7381, 7138, - 1169, 4549, 4654, 1754, 1153, 4615, 7103, 4051, 2487, - 3616, 8644, 5118, 3483, 5335, 4026, 1783, 2758, 2984, - 638, 9209, 7083, 3264, 265, 9549, 7169, 7144, 6068, - 6545, 1580, 8287, 7166, 1700, 633, 6101, 210, 3447, - 405, 8401, 2116, 3061, 120, 3758, 3224, 2049, 8242, - 4839, 9464, 693, 5141, 764, 6513, 8446, 8212, 3275, - 9682, 1420, 3408, 4145, 9904, 1057, 5587, 901, 5152, - 2841, 3558, 7842, 4197, 3309, 2335, 1192, 5405, 9916, - 2481, 1125, 8151, 7638, 6922, 2430, 912, 4770, 4712, - 6647, 5230, 6086, 4985, 7308, 9288, 1384, 7330, 8063, - 5564, 9472, 1976, 40, 4812, 6504, 4391, 3464, 2689, - 1114, 2263, 9898, 1567, 9540, 6822, 821, 1998, 7878, - 9181, 1818, 1209, 2539, 1160, 9808, 463, 263, 8208, - 8171, 129, 8433, 4617, 8359, 312, 1640, 1522, 4048, - 5980, 3300, 1945, 1110, 4379, 3980, 2115, 283, 7658, - 7769, 8159, 4283, 7740, 5868, 9747, 2476, 5456, 5897, - 9500, 9092, 4934, 2014, 2634, 9897, 912, 3436, 4361, - 2970, 722, 6724, 1342, 9452, 1039, 4991, 8561, 2030, - 3999, 5414, 5316, 712, 5681, 2518, 6790, 9860, 3506, - 5093, 7295, 6572, 6868, 2355, 5778, 9203, 4880, 2791, - 9320, 3014, 9918, 2921, 8988, 141, 1475, 9846, 4713, - 9024, 692, 5076, 7563, 6498, 8907, 1295, 1351, 4964, - 5270, 1482, 1910, 1143, 9509, 3679, 6920, 2839, 5271, - 5790, 7550, 7877, 7196, 8110, 3458, 8863, 6442, 4179, - 5065, 9844, 2060, 799, 7085, 603, 6004, 1749, 2077, - 2038, 4582, 1298, 8893, 181, 4569, 3070, 7157, 8790, - 2391, 724, 2063, 3622, 5206, 7595, 2202, 5552, 9002, - 347, 505, 5459, 2834, 7758, 2282, 1970, 9079, 6558, - 1962, 4357, 2522, 992, 5448, 7106, 6521, 6066, 8664, - 1489, 8809, 8981, 3254, 631, 6925, 9786, 4711, 2080, - 9941, 4418, 9086, 462, 1764, 3142, 8362, 7446, 6622, - 3369, 4863, 5373, 9178, 1481, 8646, 5900, 9548, 4408, - 7750, 7399, 1581, 2547, 9301, 5969, 179, 2851, 1207, - 428, 6125, 8190, 5103, 7928, 6601, 7331, 9667, 2432, - 6776, 2279, 2842, 2285, 9680, 8221, 1724, 9070, 1222, - 3603, 9120, 3653, 5672, 3399, 4625, 2429, 8889, 5981, - 1000, 5470, 2261, 5871, 8703, 4691, 1671, 5061, 2598, - 6933, 2768, 853, 7015, 5601, 5218, 381, 537, 8936, - 4791, 6282, 4998, 3247, 4654, 6455, 8944, 8290, 8745, - 2692, 6962, 2252, 2867, 5432, 4051, 4941, 5684, 7006, - 3108, 2162, 9080, 649, 4797, 4290, 9784, 6945, 4661, - 1160, 570, 6461, 4929, 266, 64, 9848, 9068, 6428, - 2769, 84, 8378, 7068, 3001, 2149, 8583, 5287, 436, - 9111, 5124, 9797, 2012, 2411, 4043, 4222, 1696, 546, - 4712, 4905, 8837, 5463, 8521, 9390, 2336, 2226, 1407, - 4822, 7155, 316, 6391, 9589, 6434, 8313, 6737, 696, - 6410, 972, 3354, 3601, 6436, 9895, 5209, 2618, 8553, - 7811, 2958, 4986, 6996, 6746, 7395, 92, 2747, 39, - 3164, 1246, 6647, 6895, 5256, 8149, 9776, 8926, 7338, - 1299, 6106, 854, 9373, 1443, 3055, 677, 459, 1881, - 3164, 1865, 8156, 3059, 1315, 8469, 7724, 3143, 7132, - 3791, 4564, 3865, 5879, 7306, 568, 9812, 1785, 5323, - 5765, 3615, 4800, 7634, 8579, 1808, 3502, 7965, 2087, - 2874, 1541, 2579, 3128, 3863, 562, 8156, 7588, 2199, - 3579, 2253, 4682, 7858, 2016, 6187, 2976, 6788, 2542, - 3791, 5389, 1314, 9919, 5823, 7598, 7913, 4913, 6239, - 5585, 4565, 8135, 4632, 5898, 7355, 196, 8411, 9673, - 9719, 3316, 7270, 9467, 5676, 72, 6041, 6756, 7259, - 7416, 3170, 8693, 2493, 2027, 6871, 1234, 5081, 4177, - 2314, 1689, 4125, 6054, 3950, 1579, 9517, 5957, 3594, - 6383, 7678, 9558, 5291, 268, 5430, 2249, 368, 2109, - 683, 1529, 3492, 84, 4074, 5390, 403, 9378, 7210, - 3148, 1655, 9598, 6011, 2729, 4928, 4344, 2719, 1872, - 6784, 2105, 8880, 6712, 1644, 4470, 800, 8040, 3214, - 8452, 1233, 5357, 3667, 4151, 6027, 6841, 7686, 1673, - 5009, 4659, 1398, 3855, 9108, 8464, 7121, 6004, 5958, - 4060, 4437, 9638, 5697, 6382, 800, 2529, 9907, 3927, - 3494, 5242, 9767, 6705, 7803, 4937, 5829, 6107, 4596, - 3160]), - values=tensor([3.4107e-01, 5.8259e-01, 9.0206e-01, 1.5231e-01, - 1.5774e-01, 5.3916e-01, 6.1194e-01, 9.5075e-01, - 4.0186e-02, 9.8706e-01, 9.4080e-01, 5.8716e-01, - 6.7869e-02, 3.7279e-01, 5.8225e-01, 5.0243e-01, - 5.6104e-01, 8.1432e-01, 5.5779e-01, 3.1556e-01, - 2.4611e-01, 5.6301e-02, 4.5138e-01, 1.3073e-01, - 2.2739e-01, 1.4106e-01, 5.6086e-01, 3.1390e-01, - 9.4666e-01, 5.6872e-01, 7.4045e-01, 4.4636e-01, - 9.3540e-01, 6.8254e-01, 8.7194e-02, 4.9288e-01, - 2.8910e-01, 1.5515e-01, 6.9777e-01, 8.1779e-01, - 3.7513e-01, 2.9492e-01, 7.3948e-01, 2.5269e-01, - 1.5901e-01, 3.4237e-01, 1.4025e-01, 2.9783e-01, - 4.2632e-01, 8.3642e-01, 7.5962e-01, 7.7581e-01, - 9.4394e-01, 4.6305e-01, 8.1264e-01, 6.5263e-01, - 6.3669e-01, 5.5673e-01, 4.0066e-01, 6.0592e-01, - 5.1269e-01, 2.7275e-01, 6.9278e-01, 3.2280e-01, - 2.2773e-01, 4.8282e-01, 9.4239e-01, 9.4261e-01, - 5.6880e-01, 1.9748e-01, 9.6239e-01, 6.2399e-01, - 1.0298e-01, 3.2784e-01, 5.0119e-01, 6.7033e-01, - 9.5959e-01, 3.2246e-01, 1.1867e-01, 1.1081e-01, - 9.7342e-01, 6.9772e-01, 8.4391e-01, 2.0712e-01, - 4.1353e-01, 6.2809e-01, 8.2107e-01, 7.0050e-02, - 2.4630e-01, 8.1426e-01, 6.4572e-01, 2.3166e-01, - 1.1184e-01, 3.9971e-02, 4.0002e-01, 9.7835e-01, - 2.0212e-01, 1.8854e-01, 1.5726e-01, 8.3404e-01, - 4.2840e-01, 9.5166e-01, 3.2665e-01, 3.2984e-01, - 4.3002e-01, 3.7293e-01, 8.9415e-01, 7.2970e-01, - 8.8637e-01, 6.2604e-01, 1.9380e-02, 2.6423e-01, - 4.4435e-01, 1.5585e-01, 7.1475e-01, 3.1465e-01, - 3.5278e-01, 3.9353e-01, 2.4005e-01, 2.3418e-01, - 1.9743e-01, 2.4430e-01, 1.6408e-01, 1.1091e-01, - 3.2187e-01, 8.6647e-01, 3.3577e-01, 7.5728e-01, - 9.5105e-02, 9.1206e-01, 6.8281e-01, 1.3476e-01, - 1.6985e-01, 3.5679e-01, 5.7880e-01, 2.6246e-01, - 8.6490e-01, 6.1564e-02, 1.3512e-03, 5.8975e-01, - 6.3041e-01, 2.8240e-01, 7.9244e-01, 9.7654e-01, - 2.4998e-03, 1.4618e-01, 9.6273e-01, 8.5326e-01, - 6.9665e-01, 4.2947e-02, 2.9434e-01, 6.4109e-01, - 3.5892e-01, 4.9565e-01, 3.7949e-01, 7.4967e-01, - 8.7995e-01, 6.6710e-01, 1.8686e-01, 3.9784e-01, - 3.8422e-01, 7.0529e-01, 9.2915e-02, 7.3076e-01, - 1.9805e-01, 6.8473e-01, 5.3952e-01, 2.9416e-01, - 4.5626e-01, 9.6675e-01, 5.9033e-01, 9.0386e-01, - 3.7952e-01, 9.9075e-01, 6.9146e-01, 5.8950e-01, - 2.2022e-01, 3.9380e-01, 7.0756e-01, 5.0251e-01, - 5.7638e-01, 7.2018e-01, 2.6283e-01, 7.7764e-03, - 4.5319e-02, 5.3242e-01, 5.7104e-01, 8.9803e-01, - 1.7680e-01, 3.6901e-01, 2.9846e-01, 3.2596e-01, - 6.1306e-01, 6.6736e-01, 4.1856e-01, 3.3300e-01, - 7.0737e-01, 9.7738e-01, 9.7458e-01, 1.1018e-01, - 1.5941e-01, 1.4525e-01, 5.1916e-01, 9.2485e-01, - 1.2389e-01, 9.6093e-01, 4.5693e-01, 3.6103e-01, - 7.2257e-01, 8.6213e-01, 7.5457e-01, 6.8732e-01, - 6.5566e-01, 3.3795e-01, 2.0535e-01, 1.4076e-01, - 3.5574e-01, 2.3672e-02, 8.9044e-01, 6.4557e-01, - 7.6495e-01, 4.9628e-01, 2.4630e-01, 1.6034e-01, - 9.5737e-01, 8.8421e-01, 2.4213e-01, 7.7080e-01, - 1.2698e-01, 9.7317e-01, 4.5912e-01, 1.8065e-01, - 6.0195e-01, 1.8788e-01, 5.6326e-01, 9.7076e-01, - 4.6756e-01, 4.5233e-01, 2.0422e-01, 6.3361e-01, - 8.5462e-02, 3.5504e-02, 4.7209e-01, 2.7244e-01, - 4.7504e-02, 4.3276e-01, 8.5968e-01, 8.8808e-01, - 6.8370e-01, 9.7504e-01, 7.9917e-01, 7.7973e-01, - 4.8502e-01, 2.2438e-01, 1.5410e-01, 4.3549e-01, - 6.2630e-01, 2.0717e-01, 7.3108e-01, 8.7995e-01, - 5.8807e-01, 1.8904e-01, 9.7540e-01, 3.5022e-01, - 6.1668e-01, 4.2630e-01, 1.6345e-01, 6.3050e-01, - 3.3571e-01, 4.6183e-01, 3.2077e-01, 5.6221e-01, - 5.6951e-01, 8.9562e-01, 7.7176e-01, 2.8270e-01, - 2.2731e-01, 8.5000e-01, 7.9221e-01, 3.0058e-01, - 2.5522e-01, 1.9619e-01, 8.9598e-01, 5.5217e-01, - 1.2127e-01, 1.1458e-02, 1.8720e-01, 2.6580e-01, - 3.6930e-01, 3.3263e-01, 2.3041e-01, 3.8251e-01, - 1.7020e-01, 5.6143e-01, 8.5724e-01, 2.4612e-01, - 4.1008e-01, 6.7912e-01, 9.0655e-01, 9.8953e-01, - 5.1157e-01, 4.0535e-01, 1.2339e-01, 4.2239e-04, - 6.3665e-01, 2.5100e-01, 4.6716e-01, 9.3143e-01, - 3.1984e-01, 2.3807e-02, 1.6142e-01, 1.1064e-01, - 3.4538e-01, 1.1648e-01, 7.6242e-01, 9.1220e-01, - 1.0508e-01, 2.2946e-01, 2.0923e-02, 2.8600e-04, - 5.7946e-01, 6.4038e-02, 6.1635e-01, 7.6588e-01, - 2.1260e-01, 3.9026e-01, 5.8087e-01, 6.1305e-01, - 7.5460e-01, 2.3937e-01, 9.1516e-01, 1.8689e-02, - 5.9670e-01, 4.7403e-01, 7.5566e-01, 2.4853e-01, - 8.7701e-02, 5.3822e-01, 6.4989e-01, 5.3743e-01, - 6.4136e-01, 3.3117e-01, 9.5819e-01, 3.9978e-01, - 7.8790e-01, 9.7921e-01, 1.4496e-01, 2.8499e-01, - 7.3365e-01, 8.2835e-01, 5.9327e-01, 7.6840e-01, - 1.7718e-01, 2.2172e-01, 5.5148e-01, 9.9897e-01, - 8.0818e-01, 6.3864e-01, 8.1272e-01, 1.6892e-01, - 4.9513e-01, 7.3640e-01, 7.4037e-01, 7.2909e-01, - 2.0953e-01, 1.2960e-01, 4.9217e-01, 4.6350e-02, - 9.1230e-01, 1.6167e-01, 7.9224e-01, 3.4126e-01, - 5.7486e-01, 6.7833e-01, 5.6509e-01, 2.4295e-01, - 9.4750e-01, 1.8697e-01, 6.7314e-01, 3.5818e-01, - 3.5532e-01, 6.9046e-01, 5.1394e-01, 2.6353e-01, - 5.5840e-03, 5.9048e-01, 1.0845e-01, 8.7156e-02, - 1.4373e-01, 2.7625e-01, 5.6213e-01, 7.3289e-01, - 8.6444e-01, 3.8270e-01, 7.8160e-01, 2.8543e-01, - 4.9744e-03, 7.0182e-01, 4.3329e-01, 3.0222e-01, - 6.5215e-03, 1.5251e-01, 2.8373e-02, 5.8213e-01, - 5.8849e-01, 8.6320e-01, 3.7353e-01, 2.8151e-01, - 8.8041e-01, 6.6590e-01, 3.8896e-01, 2.0248e-01, - 6.0602e-02, 8.3962e-01, 9.3127e-01, 9.5709e-01, - 2.7723e-01, 7.5722e-01, 5.1121e-01, 6.3922e-01, - 5.0456e-01, 3.7729e-01, 7.3885e-01, 6.6998e-01, - 5.9712e-01, 7.2155e-01, 5.2050e-01, 1.8090e-01, - 7.6263e-01, 2.8091e-01, 6.5032e-02, 9.5283e-01, - 4.9306e-01, 5.2967e-01, 5.4182e-01, 9.8136e-01, - 1.5577e-01, 6.6767e-01, 6.9720e-01, 7.8091e-01, - 6.4307e-01, 4.3554e-01, 2.8592e-01, 4.6926e-01, - 6.5065e-01, 9.1978e-01, 1.0899e-01, 7.3189e-01, - 5.0993e-01, 5.5218e-01, 7.7634e-01, 3.3534e-01, - 3.5754e-02, 9.2200e-01, 2.1710e-01, 4.5560e-01, - 1.0296e-01, 4.1832e-03, 5.3775e-01, 7.2447e-01, - 8.5718e-01, 1.1389e-01, 1.1775e-01, 2.5285e-01, - 1.0865e-01, 3.5541e-01, 6.2477e-01, 1.8628e-01, - 5.0797e-01, 5.5687e-01, 7.7752e-01, 5.0363e-01, - 4.2753e-01, 5.4263e-01, 9.3575e-01, 3.3169e-01, - 8.2404e-02, 3.4090e-01, 3.3525e-01, 7.3596e-01, - 6.0975e-02, 1.7112e-01, 4.8399e-01, 6.3775e-01, - 1.4649e-01, 2.3445e-01, 8.3492e-01, 5.2535e-01, - 7.9017e-01, 9.0307e-01, 4.8658e-01, 7.5883e-01, - 3.5785e-01, 6.0096e-01, 5.7555e-01, 1.7943e-01, - 7.3885e-02, 1.2125e-01, 3.2272e-01, 2.2891e-01, - 8.4517e-01, 6.2769e-02, 6.0906e-01, 4.9417e-01, - 3.8138e-01, 8.5100e-01, 6.5139e-02, 3.6631e-01, - 9.9685e-01, 4.3060e-01, 1.6032e-01, 4.7700e-01, - 4.0976e-01, 1.4277e-01, 1.2966e-01, 5.1290e-01, - 4.5698e-01, 9.2478e-01, 7.7864e-01, 4.4411e-01, - 7.3661e-01, 7.8892e-01, 1.5212e-01, 2.8232e-01, - 7.1727e-01, 7.6833e-01, 3.2281e-01, 7.9870e-02, - 3.6650e-01, 2.3854e-01, 8.8911e-01, 5.5056e-01, - 7.6939e-01, 2.5148e-01, 4.7798e-01, 7.6194e-01, - 2.2033e-01, 1.3396e-01, 3.3324e-01, 5.7380e-01, - 3.7708e-02, 8.4699e-01, 6.8381e-01, 6.1197e-01, - 4.9954e-01, 2.0119e-02, 4.9933e-01, 4.5701e-01, - 4.7771e-01, 2.2332e-01, 7.1689e-01, 8.5814e-01, - 4.7145e-01, 5.9539e-01, 1.2098e-01, 3.3254e-01, - 2.4795e-01, 2.5808e-01, 9.2196e-01, 1.1027e-01, - 6.9737e-01, 9.9262e-03, 3.9118e-01, 3.0348e-01, - 8.9520e-01, 5.6578e-01, 5.0959e-02, 7.6907e-01, - 4.8625e-01, 9.7317e-01, 8.3900e-01, 4.0362e-01, - 7.6045e-04, 4.9537e-01, 1.0689e-01, 5.7224e-01, - 8.2067e-01, 1.7758e-01, 1.7972e-01, 9.8133e-01, - 4.6896e-01, 2.0499e-01, 6.5187e-01, 8.8343e-01, - 5.0622e-01, 2.6635e-01, 9.3242e-01, 3.8417e-01, - 2.6588e-01, 4.5938e-02, 4.7982e-02, 8.9591e-01, - 2.3498e-01, 2.4143e-01, 1.7232e-01, 7.1027e-01, - 5.6187e-01, 6.2697e-01, 6.7454e-02, 1.5053e-01, - 9.3465e-01, 3.4974e-01, 5.3987e-01, 9.7711e-01, - 9.4404e-01, 6.2483e-02, 8.1453e-01, 5.0008e-01, - 3.2546e-01, 1.5956e-01, 7.5035e-01, 7.1251e-01, - 9.6113e-01, 7.9846e-01, 7.5855e-01, 6.3405e-01, - 6.5622e-01, 8.0636e-01, 6.1280e-01, 1.0840e-01, - 5.9194e-01, 8.3410e-02, 5.7581e-01, 3.0383e-01, - 2.8427e-01, 6.7511e-01, 3.3074e-01, 9.1898e-01, - 7.9597e-01, 9.5382e-01, 8.0795e-01, 3.8605e-01, - 8.7692e-01, 5.9298e-01, 7.0179e-01, 8.1178e-01, - 9.1999e-01, 9.7833e-02, 9.7685e-01, 1.2559e-01, - 3.7595e-01, 1.0619e-01, 4.6649e-01, 9.5235e-02, - 6.1260e-01, 1.3643e-01, 5.0897e-01, 8.7723e-01, - 5.5802e-01, 9.6592e-01, 8.1266e-01, 8.2225e-01, - 2.2504e-01, 3.6534e-02, 2.9586e-01, 5.3084e-01, - 1.9037e-01, 5.4451e-01, 5.8438e-01, 8.9833e-01, - 3.7645e-01, 3.3522e-01, 8.7779e-01, 3.3495e-01, - 2.6928e-01, 9.6575e-01, 8.1937e-02, 2.6664e-01, - 9.2253e-01, 6.7376e-01, 7.4185e-01, 8.8061e-01, - 7.9892e-01, 6.8636e-01, 8.7397e-01, 7.2702e-01, - 6.0810e-01, 1.7136e-01, 7.2996e-01, 1.8868e-01, - 3.6151e-01, 4.2774e-01, 7.8979e-01, 1.7459e-01, - 7.0642e-01, 3.1498e-01, 7.1813e-02, 6.6140e-01, - 2.5986e-01, 2.7422e-02, 4.5608e-01, 9.1117e-01, - 4.2735e-01, 9.4874e-01, 7.4648e-01, 8.4866e-01, - 6.2441e-01, 2.4072e-01, 4.4676e-01, 5.1553e-01, - 8.6749e-01, 5.8036e-01, 7.1183e-01, 6.5350e-01, - 5.5260e-01, 5.5351e-01, 6.2691e-01, 7.4629e-01, - 8.2506e-01, 4.4927e-01, 4.2554e-01, 3.1876e-01, - 1.4230e-02, 5.6366e-01, 6.2014e-01, 6.7544e-01, - 6.6287e-01, 1.5509e-01, 1.8691e-01, 8.1803e-01, - 1.8324e-01, 3.7563e-01, 8.2116e-01, 4.7677e-01, - 8.3668e-01, 3.7147e-01, 2.1279e-01, 6.7702e-01, - 5.2652e-01, 6.5494e-01, 2.3574e-01, 3.1116e-02, - 8.1466e-01, 2.1925e-01, 6.3967e-01, 9.1210e-01, - 3.5590e-01, 3.2824e-02, 7.8165e-02, 6.7910e-01, - 7.7991e-02, 6.3361e-01, 8.9714e-01, 8.1623e-02, - 4.8409e-01, 6.2221e-01, 6.6241e-01, 5.7971e-01, - 6.0738e-01, 2.5849e-02, 7.0566e-01, 1.7704e-01, - 3.6729e-01, 1.3839e-01, 9.9366e-01, 4.4142e-01, - 1.9823e-01, 8.1609e-01, 5.8385e-01, 4.8917e-01, - 2.2523e-01, 8.3428e-01, 5.9977e-01, 6.3523e-01, - 1.6607e-01, 9.4440e-01, 1.9587e-01, 6.1683e-01, - 3.5810e-01, 4.7400e-01, 4.3512e-01, 6.0426e-01, - 2.8234e-01, 2.5576e-01, 7.5082e-01, 8.4535e-01, - 1.3393e-01, 1.8660e-01, 7.0341e-01, 1.1964e-02, - 4.0743e-01, 6.8186e-01, 5.1220e-01, 6.6603e-01, - 1.6310e-01, 6.8026e-01, 8.4955e-01, 3.6216e-01, - 4.1255e-01, 1.3285e-01, 8.7437e-01, 5.8389e-01, - 9.5977e-01, 6.3271e-01, 6.2448e-01, 7.7622e-01, - 4.0343e-01, 1.3948e-01, 1.5996e-01, 4.1658e-01, - 1.5073e-02, 9.1613e-01, 6.4840e-01, 4.0343e-01, - 8.8647e-01, 1.1074e-01, 7.7289e-01, 5.6628e-01, - 8.4421e-02, 1.1948e-01, 3.1581e-01, 1.9177e-01, - 4.8860e-01, 1.5470e-01, 6.2486e-01, 4.4421e-01, - 3.9513e-01, 1.4266e-01, 2.1619e-01, 2.0583e-01, - 7.4146e-01, 1.8079e-01, 3.9100e-01, 4.3376e-01, - 4.5332e-01, 4.6722e-01, 4.8936e-01, 7.7059e-01, - 3.2068e-01, 6.0436e-01, 7.5036e-01, 4.4729e-01, - 5.1029e-01, 2.4280e-01, 8.3554e-01, 4.1030e-01, - 6.4449e-01, 2.1449e-01, 8.9230e-01, 7.7362e-01, - 9.0345e-01, 2.9250e-01, 7.2883e-01, 2.6007e-01, - 4.3249e-02, 3.2905e-01, 7.8983e-01, 3.3206e-01, - 6.1799e-01, 5.1913e-01, 2.4351e-01, 9.6034e-01, - 4.3264e-01, 5.1049e-01, 1.7936e-01, 6.6325e-01, - 9.0829e-01, 5.2970e-01, 8.9989e-01, 1.3213e-01, - 4.3889e-01, 8.5246e-01, 6.0845e-01, 5.0519e-01, - 9.1563e-01, 5.5071e-01, 4.8853e-01, 6.4062e-01, - 7.4041e-02, 2.8417e-01, 4.8817e-01, 7.7442e-01, - 8.6382e-01, 2.5864e-01, 4.9162e-01, 9.7010e-01, - 7.8372e-02, 5.3483e-01, 4.5161e-01, 8.0667e-01, - 9.2389e-01, 6.6574e-01, 3.0939e-01, 2.5476e-01, - 6.3040e-01, 2.6954e-01, 5.2755e-01, 4.1507e-01, - 6.6436e-01, 4.2837e-01, 6.9834e-01, 4.2882e-01, - 6.5943e-01, 2.0974e-01, 1.9505e-01, 5.3006e-01, - 8.1315e-01, 7.9665e-01, 3.0262e-01, 6.5602e-01, - 8.3583e-01, 9.6204e-01, 3.0115e-01, 3.5509e-02, - 5.9246e-01, 4.1207e-01, 5.4602e-02, 2.0125e-01, - 8.2332e-01, 5.7405e-02, 8.1456e-01, 8.0780e-01, - 5.7221e-01, 5.6654e-01, 7.9385e-01, 2.5343e-01, - 8.6088e-01, 4.4022e-01, 7.5807e-01, 7.0350e-01, - 6.7430e-01, 2.6578e-01, 4.6147e-01, 4.5759e-01, - 9.2754e-01, 1.4889e-01, 7.6663e-01, 2.1741e-01, - 2.2244e-01, 8.5749e-01, 1.3077e-02, 7.9269e-01, - 1.6559e-01, 2.2460e-01, 7.5782e-01, 4.7896e-01, - 5.1457e-01, 6.9584e-01, 1.8496e-01, 9.1267e-01, - 1.1589e-01, 5.4519e-01, 7.0833e-01, 9.4859e-01, - 8.1018e-01, 7.1465e-01, 8.8549e-01, 3.7149e-01, - 5.1221e-01, 7.0856e-01, 3.6562e-01, 6.5691e-01, - 9.8664e-01, 5.0664e-01, 8.1957e-01, 2.6047e-01, - 2.4718e-01, 1.8765e-01, 2.7938e-01, 4.4195e-01, - 8.2697e-01, 2.6656e-01, 6.3635e-01, 3.3041e-01, - 8.6448e-01, 2.9462e-01, 3.1636e-01, 2.0534e-01, - 9.6163e-01, 8.7485e-01, 2.0748e-01, 4.9018e-01, - 9.6966e-01, 5.8261e-01, 3.1234e-01, 7.5691e-02, - 9.3811e-01, 2.6135e-01, 9.6636e-01, 3.1124e-01, - 3.7538e-01, 5.2802e-01, 9.7340e-01, 5.0175e-01, - 9.0082e-02, 2.2941e-01, 6.5343e-01, 2.4368e-01, - 8.2203e-01, 4.5287e-01, 5.9015e-01, 6.0898e-01, - 7.0289e-01, 6.1400e-02, 3.4722e-01, 1.2295e-01, - 6.7460e-01, 3.0153e-01, 5.3121e-01, 2.6773e-01]), + col_indices=tensor([5864, 6409, 3268, 9372, 8851, 1349, 7924, 3157, 113, + 9640, 7379, 4185, 6988, 7306, 9094, 3198, 1145, 6328, + 5627, 8866, 1416, 350, 9287, 2849, 3030, 612, 443, + 8128, 5292, 2326, 3640, 1427, 2108, 7969, 9609, 7236, + 449, 1646, 9388, 8979, 3518, 778, 6273, 9500, 148, + 8296, 6022, 1119, 7603, 6748, 5170, 7685, 82, 4394, + 1107, 6222, 8327, 9701, 1319, 6392, 2965, 9029, 77, + 7995, 2221, 994, 2914, 8588, 327, 853, 3415, 919, + 9810, 4408, 2821, 7082, 5424, 5361, 480, 245, 7586, + 5204, 9870, 329, 4522, 6404, 2012, 935, 9448, 4082, + 3761, 8854, 4617, 2954, 1700, 2460, 8360, 6564, 5100, + 3903, 5238, 470, 9756, 8808, 586, 4317, 2554, 4487, + 2746, 991, 8986, 854, 1896, 4114, 4630, 2853, 8275, + 2623, 6046, 9508, 843, 3243, 5691, 444, 3056, 2850, + 3932, 3623, 259, 8407, 4684, 5172, 642, 1359, 2285, + 474, 5560, 5107, 8311, 8207, 4317, 4153, 5714, 4003, + 4520, 3174, 6645, 1349, 9932, 49, 4730, 4119, 9928, + 924, 9713, 1216, 50, 1671, 1300, 8418, 6864, 8358, + 4746, 4247, 7492, 9246, 7928, 4332, 8375, 9814, 9129, + 6833, 517, 824, 8642, 884, 7236, 7434, 7005, 4885, + 1510, 7918, 3471, 5546, 6237, 6012, 5086, 1592, 1134, + 9459, 4579, 5292, 366, 2218, 1740, 6379, 1799, 5994, + 759, 9988, 1345, 1070, 3745, 943, 8461, 5082, 1933, + 443, 7004, 3136, 7242, 6373, 1139, 5779, 3999, 5632, + 9482, 7292, 5796, 4340, 662, 2787, 1120, 4116, 3039, + 1174, 4242, 5490, 1535, 6250, 1065, 51, 3412, 460, + 9840, 5194, 4843, 7403, 7445, 4382, 8727, 8774, 6609, + 3247, 8201, 755, 8291, 3275, 8064, 4388, 6768, 2576, + 7034, 7091, 7595, 8900, 6407, 6040, 2696, 6321, 4834, + 1840, 3927, 864, 6511, 7817, 7242, 3035, 6998, 4134, + 9868, 182, 4140, 6908, 717, 2392, 8434, 3505, 8667, + 4427, 1108, 8007, 8132, 9145, 9203, 8310, 7166, 6141, + 9370, 4104, 9680, 212, 8669, 6370, 4838, 4629, 457, + 90, 2059, 4579, 7993, 5081, 3590, 42, 8026, 1256, + 9078, 2167, 2789, 4777, 2980, 8000, 7728, 4259, 788, + 9381, 4203, 4616, 6598, 6785, 9230, 3073, 7215, 4492, + 5558, 6560, 4239, 6465, 3254, 9443, 396, 9087, 9830, + 2837, 8876, 5671, 8685, 1134, 9981, 4038, 2521, 8217, + 3054, 3580, 3011, 2548, 4358, 9379, 9530, 6078, 4586, + 2961, 7702, 9843, 1093, 5655, 4332, 7551, 7559, 7229, + 9775, 8733, 7492, 4725, 2683, 5859, 6974, 5769, 413, + 7759, 3920, 4343, 8482, 2185, 3683, 5666, 5694, 9484, + 6805, 8125, 6011, 7452, 4625, 1996, 5674, 8346, 9829, + 5348, 6153, 4294, 7632, 675, 4714, 7735, 690, 8377, + 8366, 8956, 6093, 9462, 520, 8335, 6971, 9049, 3198, + 2406, 1525, 3742, 9835, 2100, 6818, 61, 7216, 7574, + 6125, 8245, 226, 3951, 8198, 6726, 1159, 3284, 4090, + 6559, 2427, 2922, 1917, 2184, 8419, 8320, 6172, 7937, + 3032, 5477, 1970, 2511, 9106, 3545, 5702, 8387, 6240, + 4527, 5936, 2989, 4798, 44, 5593, 8588, 9801, 6339, + 270, 4836, 4663, 7863, 5753, 5138, 1468, 2135, 8533, + 8874, 7550, 9948, 511, 8382, 5075, 5125, 621, 8037, + 2970, 7317, 955, 5187, 9266, 8012, 9116, 8287, 5819, + 6798, 6108, 9485, 7294, 6292, 3050, 9766, 3371, 6775, + 8624, 323, 9518, 993, 713, 4232, 4555, 9512, 4219, + 172, 7436, 1908, 9551, 5355, 2034, 7444, 6222, 5358, + 415, 4523, 8497, 1159, 6546, 2982, 9657, 7284, 2823, + 9948, 1307, 293, 9936, 9908, 9836, 9326, 6563, 2566, + 6336, 7704, 5608, 6306, 9283, 5085, 1829, 8868, 5796, + 2330, 5352, 2073, 2907, 4221, 2317, 4045, 1974, 6528, + 4428, 9165, 9570, 1902, 7934, 3584, 5642, 5226, 6064, + 2401, 627, 4348, 5433, 7193, 9010, 3873, 1074, 3547, + 2036, 1502, 8524, 1516, 8038, 6483, 5421, 9090, 1282, + 6461, 3107, 4786, 5722, 2040, 3948, 1805, 1340, 2167, + 8524, 873, 7912, 9277, 615, 2598, 3584, 5232, 6528, + 4041, 1307, 4984, 7493, 7893, 2441, 8985, 9241, 545, + 8462, 5218, 1131, 1603, 1467, 916, 391, 1880, 6303, + 236, 88, 6641, 9343, 1938, 644, 6243, 6324, 3102, + 4046, 4842, 9256, 877, 1050, 7198, 6510, 675, 7712, + 3992, 5524, 5461, 8463, 2767, 8024, 9124, 3831, 3301, + 5238, 839, 822, 8427, 8192, 7249, 6075, 7734, 8472, + 8865, 4636, 8397, 393, 3339, 9477, 1559, 9233, 1895, + 3219, 9244, 2768, 1620, 5867, 3834, 6459, 6900, 8402, + 4353, 4101, 1060, 3930, 3593, 9426, 100, 2578, 4861, + 5687, 6175, 9073, 9873, 7765, 4191, 8697, 5284, 4715, + 9219, 7611, 5627, 3329, 9064, 6928, 3037, 7722, 7680, + 8059, 8098, 5508, 1795, 6236, 2332, 9755, 2995, 556, + 7522, 7740, 4501, 6741, 6961, 3755, 958, 7285, 897, + 2682, 3633, 9522, 6519, 7381, 4140, 6325, 9071, 7470, + 6696, 5233, 3651, 7869, 774, 543, 8750, 4426, 5429, + 485, 730, 3337, 2506, 4162, 4944, 9298, 3907, 2447, + 8819, 8506, 6050, 3923, 8654, 5401, 6376, 181, 7284, + 5906, 8062, 5293, 5482, 1078, 6794, 7475, 2224, 7260, + 3627, 9570, 135, 9578, 8302, 8006, 6725, 2538, 6437, + 594, 9238, 4645, 7390, 6678, 2155, 7680, 9552, 1670, + 2472, 2676, 5726, 3946, 527, 7726, 2240, 9083, 9592, + 3444, 3546, 376, 9469, 8897, 9577, 5076, 4801, 9727, + 566, 4934, 7459, 7690, 5216, 4131, 7019, 8688, 2923, + 2438, 4950, 4206, 1087, 5226, 3034, 6574, 6662, 9559, + 5466, 9185, 1863, 2990, 6618, 392, 2496, 9534, 5645, + 2208, 4474, 5079, 8377, 5730, 1470, 1051, 9292, 67, + 8958, 5488, 3313, 2560, 3838, 7969, 4761, 7727, 4225, + 3905, 3354, 8114, 5546, 4451, 1620, 530, 3536, 5417, + 292, 5393, 7449, 3344, 2366, 832, 2586, 1114, 1164, + 7745, 1601, 5885, 6819, 9950, 7296, 956, 7785, 751, + 9927, 4784, 6024, 1885, 597, 3327, 6636, 4759, 2636, + 1681, 5642, 9192, 251, 2937, 9361, 5124, 5779, 3731, + 998, 1458, 3334, 3423, 3618, 2367, 2989, 6484, 6596, + 3275, 3629, 1246, 5835, 3014, 480, 3197, 9504, 4739, + 7848, 5807, 5889, 6941, 5807, 5884, 9995, 7302, 9589, + 3118, 8179, 1634, 7475, 493, 2924, 4475, 3955, 9825, + 4774, 5869, 8402, 5728, 9453, 2751, 6979, 8042, 1938, + 255, 5871, 8287, 8146, 4117, 6879, 8378, 1539, 4897, + 6347, 5086, 8422, 8986, 4509, 9294, 2883, 9942, 8480, + 6013, 8174, 977, 1721, 2494, 5501, 2010, 8785, 4090, + 3984, 7019, 8716, 3571, 3228, 7733, 6351, 2624, 2714, + 8580, 9476, 747, 7962, 8294, 3951, 2439, 8475, 4886, + 941, 8870, 8639, 4412, 7879, 4719, 1308, 6188, 3204, + 5487, 2922, 9803, 6526, 1340, 8108, 1809, 5276, 4996, + 2606, 5863, 2844, 128, 5891, 2949, 2522, 2371, 374, + 9131, 1337, 2279, 3177, 3776, 5283, 9934, 312, 8545, + 8088]), + values=tensor([0.8990, 0.9202, 0.0544, 0.3278, 0.1036, 0.9834, 0.5405, + 0.8387, 0.1303, 0.8299, 0.9099, 0.8006, 0.3383, 0.3639, + 0.2173, 0.0563, 0.7372, 0.1968, 0.4499, 0.6369, 0.1211, + 0.5305, 0.7026, 0.0869, 0.4015, 0.0938, 0.8149, 0.6744, + 0.4215, 0.0815, 0.4822, 0.0786, 0.4204, 0.6460, 0.6276, + 0.2883, 0.4330, 0.3983, 0.2719, 0.4502, 0.7063, 0.0086, + 0.6751, 0.5856, 0.5977, 0.3533, 0.7195, 0.3114, 0.7411, + 0.5056, 0.2852, 0.3437, 0.7335, 0.9652, 0.3676, 0.1371, + 0.6895, 0.6801, 0.1441, 0.6072, 0.2913, 0.9589, 0.4646, + 0.7267, 0.3881, 0.6695, 0.4149, 0.4926, 0.6183, 0.3275, + 0.6292, 0.3672, 0.7396, 0.0629, 0.7870, 0.8240, 0.0651, + 0.7638, 0.1125, 0.7864, 0.0952, 0.8313, 0.9512, 0.1631, + 0.0751, 0.7252, 0.2013, 0.8188, 0.2883, 0.7422, 0.6655, + 0.8235, 0.3703, 0.8712, 0.1832, 0.1385, 0.5564, 0.7498, + 0.7736, 0.6575, 0.7905, 0.1372, 0.1047, 0.2516, 0.5275, + 0.0779, 0.8681, 0.3296, 0.6114, 0.4478, 0.1522, 0.3051, + 0.0405, 0.3528, 0.7471, 0.2608, 0.1704, 0.9466, 0.6985, + 0.0406, 0.9413, 0.2522, 0.5107, 0.2012, 0.1769, 0.8491, + 0.1199, 0.4970, 0.5967, 0.3353, 0.0061, 0.9854, 0.8058, + 0.2915, 0.5621, 0.6851, 0.9985, 0.0085, 0.7012, 0.0603, + 0.8973, 0.4404, 0.2983, 0.8140, 0.0895, 0.2012, 0.7432, + 0.9272, 0.9516, 0.8375, 0.3237, 0.4042, 0.2740, 0.8401, + 0.1138, 0.0969, 0.5800, 0.4304, 0.8447, 0.6543, 0.9229, + 0.0170, 0.9115, 0.8422, 0.3169, 0.2633, 0.5759, 0.5969, + 0.1088, 0.3461, 0.7896, 0.4253, 0.4344, 0.4992, 0.6827, + 0.6879, 0.8758, 0.6928, 0.8708, 0.9897, 0.8788, 0.0817, + 0.7722, 0.0931, 0.3481, 0.9886, 0.8853, 0.2278, 0.8570, + 0.9045, 0.1065, 0.2685, 0.6322, 0.7042, 0.6308, 0.2807, + 0.6931, 0.2248, 0.5412, 0.1164, 0.3317, 0.6726, 0.8543, + 0.5206, 0.9983, 0.7612, 0.9817, 0.2254, 0.2596, 0.3813, + 0.6946, 0.1231, 0.1329, 0.8727, 0.5792, 0.5145, 0.9953, + 0.8468, 0.6893, 0.7309, 0.5070, 0.6686, 0.8055, 0.1055, + 0.9254, 0.4455, 0.4767, 0.6225, 0.0209, 0.2930, 0.1811, + 0.8374, 0.8892, 0.9045, 0.1674, 0.8744, 0.7283, 0.0811, + 0.5372, 0.2055, 0.4944, 0.7620, 0.6061, 0.2733, 0.4358, + 0.1363, 0.3064, 0.0238, 0.7458, 0.8337, 0.8253, 0.5030, + 0.0973, 0.5618, 0.2875, 0.7789, 0.8665, 0.9501, 0.5176, + 0.4426, 0.1897, 0.1486, 0.1669, 0.2509, 0.1659, 0.8053, + 0.4105, 0.5846, 0.9191, 0.5151, 0.0551, 0.8020, 0.3620, + 0.9344, 0.3530, 0.0386, 0.0335, 0.8446, 0.1984, 0.7097, + 0.7277, 0.6649, 0.9046, 0.0203, 0.5170, 0.0550, 0.6834, + 0.5615, 0.5645, 0.5249, 0.9453, 0.7207, 0.2810, 0.7493, + 0.2947, 0.9369, 0.6771, 0.7460, 0.1467, 0.5385, 0.9790, + 0.7366, 0.3428, 0.7251, 0.2418, 0.1147, 0.6978, 0.6208, + 0.9677, 0.2034, 0.6015, 0.7335, 0.4291, 0.0051, 0.0440, + 0.2729, 0.3203, 0.0797, 0.2242, 0.1081, 0.2293, 0.8883, + 0.6170, 0.7219, 0.1224, 0.4373, 0.3181, 0.8085, 0.7996, + 0.6508, 0.7263, 0.9121, 0.5064, 0.0502, 0.9917, 0.9834, + 0.3031, 0.8748, 0.6856, 0.5292, 0.6315, 0.8787, 0.4765, + 0.8102, 0.6878, 0.1287, 0.8970, 0.7946, 0.8583, 0.9049, + 0.0389, 0.0623, 0.5568, 0.6879, 0.2721, 0.1463, 0.8727, + 0.9772, 0.1081, 0.1611, 0.2843, 0.0447, 0.6310, 0.1932, + 0.2621, 0.8047, 0.8238, 0.9649, 0.2488, 0.4610, 0.2602, + 0.8419, 0.7266, 0.3002, 0.7494, 0.6113, 0.1487, 0.3589, + 0.4282, 0.7405, 0.9373, 0.2091, 0.9161, 0.1005, 0.8514, + 0.7238, 0.1078, 0.6520, 0.6311, 0.1891, 0.8272, 0.1963, + 0.8590, 0.8189, 0.0257, 0.2833, 0.3513, 0.3634, 0.3576, + 0.8904, 0.2484, 0.4918, 0.2908, 0.1508, 0.5806, 0.9406, + 0.7294, 0.0950, 0.5064, 0.0349, 0.6437, 0.4083, 0.5026, + 0.6560, 0.0148, 0.4276, 0.3401, 0.2383, 0.0904, 0.7044, + 0.9844, 0.8310, 0.9388, 0.3867, 0.2827, 0.1664, 0.3305, + 0.1891, 0.7274, 0.3593, 0.5517, 0.2275, 0.0974, 0.5619, + 0.4200, 0.3096, 0.0034, 0.0516, 0.4134, 0.2690, 0.2115, + 0.6454, 0.2865, 0.6179, 0.9913, 0.0141, 0.5942, 0.3621, + 0.2100, 0.3445, 0.3904, 0.9909, 0.6731, 0.4570, 0.4820, + 0.5848, 0.2093, 0.4957, 0.8327, 0.2632, 0.6657, 0.2324, + 0.0994, 0.6140, 0.4480, 0.9800, 0.2896, 0.1520, 0.2608, + 0.3853, 0.2094, 0.0521, 0.1625, 0.2360, 0.0706, 0.0520, + 0.9422, 0.5291, 0.5359, 0.8697, 0.5739, 0.8183, 0.5758, + 0.4869, 0.9594, 0.7777, 0.8218, 0.1785, 0.0020, 0.3345, + 0.9444, 0.5328, 0.4805, 0.9232, 0.6862, 0.9030, 0.9146, + 0.6421, 0.5457, 0.0643, 0.6817, 0.9655, 0.1845, 0.7938, + 0.4551, 0.4198, 0.9446, 0.9759, 0.6259, 0.5381, 0.3308, + 0.3232, 0.5498, 0.8269, 0.1628, 0.3341, 0.1440, 0.8802, + 0.7811, 0.5460, 0.9304, 0.6129, 0.5889, 0.0395, 0.1012, + 0.5055, 0.2108, 0.0596, 0.8797, 0.0924, 0.0840, 0.9035, + 0.4740, 0.3740, 0.2634, 0.4030, 0.2026, 0.3835, 0.9804, + 0.3664, 0.2344, 0.2632, 0.9989, 0.1712, 0.0177, 0.7018, + 0.1117, 0.0373, 0.6412, 0.6706, 0.9767, 0.2936, 0.5259, + 0.5797, 0.5149, 0.1616, 0.5650, 0.5356, 0.0065, 0.9212, + 0.1415, 0.5431, 0.0097, 0.9858, 0.4122, 0.1358, 0.1911, + 0.7329, 0.8335, 0.4353, 0.3789, 0.9018, 0.6853, 0.2444, + 0.9519, 0.7522, 0.6207, 0.8681, 0.9259, 0.8747, 0.9193, + 0.4093, 0.6975, 0.2182, 0.9647, 0.1252, 0.2843, 0.9046, + 0.3990, 0.1488, 0.1784, 0.6775, 0.5082, 0.9612, 0.5896, + 0.0701, 0.8792, 0.5361, 0.2316, 0.0926, 0.9316, 0.9904, + 0.4062, 0.1734, 0.2068, 0.7329, 0.0588, 0.2116, 0.2498, + 0.2860, 0.6263, 0.2277, 0.3363, 0.0558, 0.6334, 0.9261, + 0.3782, 0.1726, 0.3657, 0.2001, 0.2643, 0.5676, 0.4875, + 0.2652, 0.7263, 0.4490, 0.1802, 0.8678, 0.5205, 0.9599, + 0.7949, 0.8153, 0.1755, 0.6089, 0.8090, 0.1965, 0.7501, + 0.8519, 0.9054, 0.1044, 0.7000, 0.2903, 0.5652, 0.3256, + 0.2532, 0.3074, 0.2884, 0.7156, 0.1406, 0.5555, 0.2160, + 0.4498, 0.0747, 0.9689, 0.5720, 0.9390, 0.9625, 0.3014, + 0.2693, 0.5947, 0.5986, 0.9539, 0.5617, 0.3646, 0.1056, + 0.6700, 0.6793, 0.1324, 0.7287, 0.1481, 0.3299, 0.7685, + 0.3760, 0.6705, 0.5083, 0.8665, 0.5329, 0.5057, 0.7230, + 0.2213, 0.3819, 0.8994, 0.9305, 0.0147, 0.6384, 0.9557, + 0.4297, 0.3363, 0.5610, 0.1485, 0.7226, 0.7840, 0.2842, + 0.6194, 0.3137, 0.3575, 0.5156, 0.8823, 0.6332, 0.6090, + 0.2125, 0.2540, 0.8502, 0.5188, 0.0320, 0.4363, 0.2213, + 0.1104, 0.5745, 0.3976, 0.8852, 0.6841, 0.1436, 0.8128, + 0.0664, 0.8122, 0.0275, 0.5139, 0.0401, 0.8774, 0.4004, + 0.6001, 0.5350, 0.9205, 0.6614, 0.3780, 0.2849, 0.3091, + 0.9873, 0.8828, 0.8702, 0.8818, 0.6909, 0.9257, 0.8168, + 0.3636, 0.3185, 0.8926, 0.4749, 0.0620, 0.4189, 0.6713, + 0.8811, 0.0223, 0.4110, 0.0053, 0.9365, 0.2006, 0.8273, + 0.4083, 0.1751, 0.9186, 0.3824, 0.9992, 0.8941, 0.4645, + 0.1171, 0.3220, 0.6118, 0.7887, 0.2217, 0.1825, 0.7475, + 0.9667, 0.5530, 0.3419, 0.9475, 0.0701, 0.5839, 0.3842, + 0.1233, 0.6971, 0.4857, 0.1287, 0.5722, 0.0250, 0.8936, + 0.8207, 0.3129, 0.2199, 0.6123, 0.1672, 0.5414, 0.7945, + 0.0311, 0.1705, 0.9516, 0.1397, 0.2348, 0.9404, 0.3368, + 0.1816, 0.7521, 0.1326, 0.1366, 0.8702, 0.3360, 0.7067, + 0.1910, 0.8902, 0.9378, 0.2610, 0.2939, 0.3489, 0.7916, + 0.4565, 0.4221, 0.7669, 0.2915, 0.7403, 0.1889, 0.8303, + 0.4423, 0.9543, 0.7012, 0.6502, 0.1369, 0.0177, 0.6082, + 0.2162, 0.2686, 0.0179, 0.4480, 0.6701, 0.3740, 0.8426, + 0.1687, 0.0416, 0.5328, 0.3704, 0.6536, 0.4452, 0.6981, + 0.5511, 0.1110, 0.1241, 0.1011, 0.5345, 0.6973, 0.0525, + 0.1417, 0.8094, 0.0874, 0.8494, 0.7134, 0.8426, 0.7518, + 0.9024, 0.4875, 0.9175, 0.0907, 0.4753, 0.1481, 0.7654, + 0.7412, 0.2930, 0.8077, 0.0519, 0.4826, 0.4705, 0.4910, + 0.0307, 0.1733, 0.7764, 0.7803, 0.3800, 0.6955, 0.7178, + 0.6864, 0.9434, 0.4690, 0.9390, 0.5393, 0.6128, 0.4020, + 0.0722, 0.0742, 0.1685, 0.1343, 0.7205, 0.3661, 0.0503, + 0.2629, 0.7318, 0.6532, 0.6350, 0.4666, 0.8599, 0.1969, + 0.7470, 0.5813, 0.2403, 0.3313, 0.8673, 0.0911, 0.1399, + 0.7504, 0.8548, 0.7052, 0.4678, 0.6190, 0.1905, 0.2523, + 0.4053, 0.0730, 0.1745, 0.6615, 0.1279, 0.0102, 0.5054, + 0.2090, 0.7368, 0.7129, 0.6557, 0.6802, 0.2242, 0.6301, + 0.7717, 0.4921, 0.4267, 0.4852, 0.1080, 0.7094, 0.6823, + 0.5678, 0.2979, 0.7735, 0.4171, 0.3043, 0.4562, 0.9694, + 0.7066, 0.4892, 0.2640, 0.1546, 0.4359, 0.3991, 0.4200, + 0.9092, 0.0011, 0.6541, 0.1216, 0.2866, 0.3196, 0.1896, + 0.5043, 0.0425, 0.9999, 0.4499, 0.5582, 0.8404, 0.9463, + 0.7216, 0.6425, 0.3931, 0.8890, 0.7122, 0.3751, 0.8529, + 0.0063, 0.4366, 0.9377, 0.1575, 0.5576, 0.6903, 0.3497, + 0.5692, 0.9612, 0.7095, 0.9042, 0.6678, 0.8446, 0.3919, + 0.7942, 0.4563, 0.7095, 0.7390, 0.5213, 0.8669, 0.1933, + 0.8827, 0.3576, 0.3715, 0.3966, 0.7670, 0.8625, 0.0249, + 0.4165, 0.2028, 0.9277, 0.8840, 0.7235, 0.4226, 0.0014, + 0.6919, 0.7665, 0.1665, 0.5380, 0.1084, 0.7142]), size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.1721, 0.8059, 0.1299, ..., 0.7732, 0.0077, 0.2449]) +tensor([0.5397, 0.8345, 0.2583, ..., 0.2923, 0.3741, 0.4815]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -754,378 +540,378 @@ Rows: 10000 Size: 100000000 NNZ: 1000 Density: 1e-05 -Time: 7.141697645187378 seconds +Time: 1.9391217231750488 seconds -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '286411', '-ss', '10000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.634347915649414} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '284305', '-ss', '10000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.350545883178711} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), - col_indices=tensor([5653, 663, 2356, 6335, 1601, 9179, 5758, 4032, 1184, - 1367, 4244, 4842, 4720, 9582, 4215, 5795, 5613, 5508, - 3150, 2956, 6349, 4941, 1636, 8225, 9972, 2582, 3679, - 1135, 9620, 6084, 6291, 4048, 7001, 5472, 7361, 7937, - 5298, 6533, 2776, 1036, 1344, 6057, 6180, 9014, 5073, - 6811, 5946, 5681, 492, 615, 6472, 4769, 5564, 541, - 800, 5736, 579, 8317, 7029, 3695, 499, 9654, 3281, - 205, 9052, 6707, 6645, 6832, 4626, 4664, 2914, 7622, - 9393, 3855, 9403, 5918, 5868, 9444, 851, 6317, 57, - 1210, 2172, 6037, 9204, 3658, 7620, 6983, 3781, 1735, - 686, 9439, 6244, 8175, 2372, 965, 2150, 8571, 4157, - 2512, 9938, 4043, 8875, 882, 623, 1012, 3731, 7589, - 9758, 4803, 9290, 1234, 774, 2176, 4572, 2018, 3222, - 7583, 187, 3819, 9911, 5564, 8603, 9156, 1382, 5716, - 6346, 5522, 2563, 4347, 9272, 9447, 4471, 4638, 4983, - 9892, 6310, 7516, 7140, 6156, 6553, 5760, 3519, 546, - 4365, 2039, 9350, 4877, 5823, 286, 7838, 4403, 5744, - 777, 1260, 2101, 8748, 5207, 3240, 7189, 894, 9416, - 9973, 7357, 198, 3268, 3546, 227, 3220, 2795, 5781, - 5660, 9451, 8013, 3655, 5219, 9893, 2124, 1825, 7217, - 2907, 3224, 62, 5333, 4441, 9222, 7187, 7656, 8345, - 6235, 4925, 4392, 9403, 7654, 8355, 5586, 6058, 1290, - 4866, 5435, 1268, 4572, 9153, 7079, 1500, 588, 4650, - 8759, 9375, 1661, 8828, 6616, 8199, 6392, 6520, 9958, - 2116, 3225, 5132, 9375, 4924, 4325, 419, 1259, 5490, - 8365, 3133, 1934, 496, 7648, 3510, 5952, 6594, 9025, - 8913, 3315, 3979, 9410, 9159, 3471, 5346, 7471, 2113, - 6014, 6280, 8075, 582, 6331, 2784, 6053, 556, 989, - 6164, 8084, 411, 640, 8216, 8772, 5075, 9022, 5692, - 7825, 9613, 5866, 5376, 3288, 3147, 9301, 386, 8701, - 9166, 418, 2003, 9005, 8592, 4188, 3735, 4232, 5238, - 8853, 7246, 2646, 1343, 9472, 371, 1177, 8422, 8202, - 5353, 9648, 2908, 8320, 6076, 6771, 8304, 1075, 2469, - 1568, 9483, 3555, 5266, 3405, 9971, 7501, 9677, 5813, - 5924, 7587, 1603, 937, 3813, 1988, 637, 2885, 5831, - 8209, 1869, 5873, 3244, 9083, 4316, 1649, 3716, 7799, - 3429, 9162, 139, 9399, 4042, 4832, 2298, 2896, 1054, - 6210, 4421, 1743, 2336, 4261, 861, 3352, 4781, 2982, - 219, 1594, 6937, 1157, 7791, 8670, 8548, 3732, 1054, - 1298, 3515, 1443, 4515, 5404, 1104, 8525, 7928, 1938, - 9321, 4093, 9617, 5069, 7691, 6537, 1777, 1177, 4792, - 3990, 8613, 2141, 639, 6090, 3243, 3817, 2379, 597, - 2806, 6242, 129, 4735, 1063, 7452, 9642, 1260, 4687, - 6658, 1205, 1033, 2603, 6809, 9426, 6394, 7227, 8386, - 557, 2634, 1874, 8349, 1415, 4690, 6198, 8318, 8284, - 9176, 6704, 6584, 6885, 9606, 1543, 7428, 2559, 2822, - 1315, 6792, 6148, 819, 6087, 4634, 2762, 1934, 3174, - 6495, 6068, 138, 6548, 3452, 8896, 8290, 5349, 4350, - 9259, 6574, 8978, 6459, 1935, 8370, 6950, 8071, 2398, - 2191, 2389, 8876, 4727, 5597, 1126, 3589, 4971, 4846, - 7348, 4101, 516, 7156, 3095, 2299, 76, 5189, 1287, - 7838, 754, 6520, 6985, 2666, 2752, 173, 2069, 2831, - 5027, 1950, 6590, 8614, 8084, 463, 9089, 1779, 3430, - 7584, 6410, 8803, 4256, 5381, 1369, 2241, 8259, 582, - 686, 2251, 1507, 161, 211, 57, 8365, 5950, 8733, - 1228, 3943, 7405, 6953, 7761, 3781, 1755, 2225, 1783, - 4413, 7802, 9456, 2432, 8496, 3459, 8182, 666, 5081, - 9711, 4750, 8408, 873, 1701, 3598, 2226, 4834, 8977, - 119, 1439, 6621, 8888, 6718, 4964, 6775, 8285, 756, - 683, 7518, 7638, 5345, 9636, 8272, 8196, 4295, 5469, - 9453, 7671, 9819, 4008, 1695, 8702, 5830, 9258, 6438, - 993, 8991, 6137, 5725, 8489, 6299, 3472, 1535, 8632, - 272, 8780, 428, 5376, 6220, 1971, 1957, 4900, 8226, - 2265, 5227, 4555, 7142, 7595, 5252, 4188, 1870, 3747, - 6218, 6943, 3294, 5178, 3131, 9628, 2154, 8397, 1648, - 9870, 9081, 2344, 6566, 3675, 241, 9683, 5548, 2030, - 2234, 794, 9927, 3501, 4995, 2027, 4834, 6504, 479, - 6498, 8648, 2353, 2297, 8318, 4623, 9046, 6743, 6207, - 8130, 1077, 656, 4641, 2263, 3756, 9177, 3120, 1083, - 8650, 1248, 6568, 6625, 7483, 1893, 6194, 8846, 7443, - 2988, 5728, 9652, 4567, 9731, 6950, 8352, 8733, 938, - 9915, 5254, 7482, 724, 5457, 2774, 5506, 2482, 1189, - 551, 4600, 2755, 6757, 1057, 9353, 4932, 8508, 5036, - 6380, 4795, 7526, 4341, 907, 8663, 6669, 4592, 373, - 6374, 4856, 4138, 2881, 1151, 2689, 4911, 1512, 2587, - 794, 786, 7277, 8732, 6720, 810, 9573, 2632, 8645, - 89, 2002, 9562, 5004, 8476, 9057, 6183, 1456, 8245, - 1499, 3084, 7040, 3182, 7421, 2467, 18, 1654, 8066, - 3892, 645, 1826, 817, 5601, 6826, 1555, 8599, 8669, - 4406, 2057, 9546, 4111, 3145, 7482, 8521, 8104, 237, - 1875, 7275, 1479, 6187, 44, 3298, 5094, 4170, 2205, - 4442, 3536, 2699, 1153, 3332, 7163, 1256, 2533, 733, - 9820, 3400, 1795, 1338, 589, 3332, 1481, 8779, 8377, - 2005, 3701, 6750, 2118, 9260, 2101, 7768, 3538, 2479, - 5907, 2574, 4797, 4045, 5900, 5465, 8521, 8466, 1697, - 6282, 1744, 352, 397, 1611, 969, 8666, 9409, 3614, - 8478, 8247, 8885, 3286, 5250, 7001, 3291, 6758, 8084, - 1510, 7677, 9604, 8489, 8033, 3291, 1326, 5168, 9323, - 8370, 8206, 1664, 6593, 8357, 8619, 1887, 4419, 5990, - 5278, 9128, 5485, 8058, 6566, 5979, 5259, 6492, 5081, - 936, 5810, 9231, 9063, 9410, 4079, 9581, 4526, 2618, - 2468, 2724, 6060, 1881, 3175, 4090, 6363, 9964, 4758, - 3486, 3202, 540, 9157, 4166, 1974, 5549, 3666, 6137, - 9665, 498, 6014, 2287, 6885, 214, 9852, 8570, 7221, - 3853, 5536, 8282, 2123, 5809, 8936, 7986, 6716, 392, - 7672, 9526, 804, 2336, 8391, 2208, 9067, 7291, 4449, - 8158, 6745, 6107, 8769, 3393, 1713, 4310, 2615, 7559, - 4259, 3361, 9493, 9346, 98, 563, 4262, 6949, 9119, - 7647, 5199, 7674, 6087, 4360, 6308, 3631, 1778, 7472, - 8582, 6581, 3300, 4228, 2667, 6631, 7759, 6925, 8155, - 5702, 2695, 9383, 27, 9479, 9275, 1062, 9608, 9103, - 7513, 9349, 1805, 2186, 8934, 7211, 8306, 3787, 426, - 7793, 8765, 7635, 8057, 8447, 3456, 7831, 5006, 7449, - 5886, 5800, 19, 5725, 37, 4869, 8698, 7941, 6598, - 1906, 369, 6708, 9109, 1374, 2105, 1459, 743, 1027, - 7047, 4135, 1279, 479, 3744, 992, 6277, 4043, 1901, - 9461, 1701, 183, 5585, 7539, 7017, 158, 3044, 4339, - 2736, 3950, 2868, 1786, 3760, 3722, 687, 8148, 3388, - 6, 185, 8988, 5275, 757, 2881, 8187, 3221, 1592, - 9830, 3889, 4101, 6097, 9491, 8094, 3893, 5702, 2525, - 4242, 6698, 2410, 2070, 2272, 8560, 3241, 7303, 1110, - 121]), - values=tensor([4.5491e-02, 3.2468e-01, 2.9501e-01, 6.3274e-01, - 1.0864e-02, 7.2561e-01, 2.7833e-01, 8.9921e-01, - 9.5712e-01, 7.8304e-01, 7.9990e-01, 5.7548e-02, - 2.6717e-01, 8.6061e-01, 8.3671e-01, 6.9606e-01, - 5.5892e-01, 5.1427e-01, 2.7201e-01, 7.5072e-01, - 7.9922e-01, 1.5437e-01, 8.2474e-01, 9.8408e-01, - 9.0110e-01, 9.1307e-01, 7.3003e-01, 2.2108e-01, - 5.0958e-01, 3.3159e-01, 9.0686e-01, 3.0235e-01, - 2.2882e-01, 1.5485e-01, 4.1432e-01, 7.3323e-01, - 5.5252e-01, 9.6080e-01, 7.7897e-01, 4.5968e-01, - 7.1762e-02, 9.5266e-01, 2.5126e-01, 3.6906e-01, - 7.1595e-01, 4.5846e-01, 2.7393e-01, 1.8774e-01, - 2.4921e-01, 3.1854e-01, 4.8334e-01, 1.4183e-02, - 3.9405e-01, 7.8745e-01, 1.2611e-01, 4.9633e-01, - 1.5275e-01, 9.4294e-03, 7.0521e-01, 8.7227e-01, - 5.8672e-01, 9.8469e-01, 7.4888e-01, 4.3210e-01, - 6.9548e-01, 4.5036e-01, 2.1180e-01, 6.2584e-01, - 6.8274e-01, 4.4221e-02, 3.7077e-01, 2.7813e-01, - 8.0969e-01, 4.9060e-01, 3.7621e-01, 9.4320e-02, - 6.5185e-03, 3.2050e-02, 9.6548e-01, 7.9314e-01, - 5.2607e-01, 8.4014e-01, 5.1244e-01, 4.5536e-01, - 2.9243e-01, 3.4722e-01, 2.6706e-01, 2.3069e-01, - 4.0751e-01, 6.0825e-01, 7.8459e-01, 8.8005e-01, - 5.0828e-01, 1.3147e-01, 2.6742e-01, 9.5215e-01, - 6.5675e-01, 5.9280e-01, 9.7954e-01, 6.0187e-01, - 3.3183e-01, 1.0600e-02, 7.6686e-01, 4.6235e-01, - 7.2398e-01, 1.2355e-01, 8.7187e-01, 1.5465e-01, - 5.5476e-02, 4.5871e-01, 6.3394e-01, 5.6422e-01, - 1.3625e-01, 7.8116e-01, 2.6024e-01, 6.0334e-01, - 2.2029e-01, 2.8339e-01, 2.5566e-01, 7.3421e-01, - 2.2859e-01, 6.0130e-01, 3.1568e-01, 6.6567e-01, - 5.6914e-02, 2.5935e-01, 5.8822e-02, 5.2249e-01, - 8.9886e-01, 9.2019e-01, 5.6993e-02, 7.7705e-01, - 2.3500e-01, 3.8917e-01, 7.0200e-01, 2.6454e-01, - 1.4123e-01, 5.5982e-01, 6.0613e-01, 8.7605e-01, - 4.7423e-01, 2.7690e-01, 5.0264e-02, 9.8423e-01, - 8.7080e-01, 8.7532e-01, 1.5537e-03, 5.7053e-01, - 3.2342e-01, 7.0720e-01, 7.0123e-01, 6.9576e-01, - 8.8003e-01, 1.1500e-01, 5.4614e-01, 2.4413e-01, - 8.5389e-01, 5.6087e-01, 9.5104e-01, 9.3133e-01, - 2.8049e-02, 5.6062e-01, 4.8771e-01, 3.9350e-01, - 5.7535e-01, 2.0051e-01, 9.2461e-02, 3.4240e-01, - 8.6489e-01, 1.7069e-01, 1.4503e-01, 8.2908e-01, - 8.4715e-01, 6.2055e-01, 6.0250e-01, 6.9669e-03, - 6.7451e-01, 9.1211e-01, 7.7998e-01, 9.1172e-01, - 6.4672e-01, 8.2260e-01, 2.9749e-01, 3.4357e-01, - 8.8965e-01, 1.6998e-01, 4.6817e-01, 5.6114e-01, - 2.9832e-03, 3.5782e-01, 2.3354e-01, 7.0389e-01, - 8.6494e-01, 2.9523e-01, 7.1093e-01, 8.5747e-01, - 3.9862e-01, 9.9242e-02, 6.3404e-01, 1.8341e-01, - 3.8813e-01, 4.5591e-01, 9.0054e-01, 9.5016e-01, - 4.2228e-01, 1.2941e-01, 3.8481e-01, 7.4146e-01, - 5.8461e-01, 5.7050e-01, 9.4103e-01, 9.6133e-01, - 2.7176e-01, 8.4268e-01, 9.5349e-01, 9.8518e-01, - 7.0966e-01, 1.9918e-01, 8.0055e-01, 4.7484e-01, - 7.3362e-01, 6.1497e-01, 6.4193e-02, 6.3662e-01, - 2.5121e-01, 8.4678e-01, 1.6158e-01, 1.1583e-01, - 7.4799e-01, 5.4370e-02, 2.4911e-01, 4.5653e-01, - 9.0328e-01, 2.0017e-01, 1.0692e-02, 8.5215e-01, - 3.1864e-01, 5.7972e-01, 9.9903e-01, 1.1865e-01, - 6.9590e-01, 9.8482e-01, 4.6454e-01, 6.6789e-02, - 2.3784e-01, 3.8803e-01, 9.5572e-01, 6.9527e-01, - 7.7733e-01, 3.0422e-01, 6.2625e-01, 2.4065e-01, - 2.9101e-01, 4.5591e-01, 7.5354e-01, 6.1629e-02, - 4.8890e-01, 6.2485e-01, 4.0109e-03, 5.2769e-01, - 5.1763e-01, 1.8385e-01, 1.3278e-01, 8.0457e-01, - 8.4173e-01, 9.2545e-01, 1.3840e-01, 7.6490e-01, - 1.4038e-01, 5.3636e-01, 6.8826e-01, 5.8422e-01, - 5.2788e-01, 9.1865e-01, 9.1687e-02, 9.4108e-01, - 7.7907e-01, 8.5824e-01, 6.6717e-01, 6.0324e-01, - 9.6810e-01, 8.6025e-01, 4.3579e-01, 5.0796e-01, - 7.7129e-01, 3.4580e-01, 6.2934e-01, 7.1330e-01, - 5.4797e-02, 2.5678e-01, 7.7649e-01, 1.6495e-02, - 6.2250e-01, 6.7574e-01, 1.4771e-01, 6.5970e-01, - 8.5384e-01, 1.0370e-01, 4.4441e-01, 8.2723e-01, - 6.6853e-01, 7.7504e-02, 3.9059e-01, 9.2182e-01, - 6.0726e-01, 9.3213e-01, 4.2342e-01, 1.5624e-01, - 6.0098e-02, 6.1591e-02, 5.0596e-01, 2.6916e-01, - 4.4467e-01, 1.9151e-01, 5.7240e-01, 4.4660e-02, - 2.8517e-01, 3.5291e-01, 6.3467e-01, 3.2806e-01, - 5.5092e-01, 8.7141e-01, 5.9479e-01, 1.1783e-01, - 6.7772e-01, 3.7557e-01, 2.1769e-01, 5.1208e-01, - 1.1902e-01, 1.9006e-01, 7.0631e-03, 6.8733e-01, - 6.8166e-01, 2.2002e-01, 7.1981e-01, 8.9421e-01, - 4.6344e-01, 9.9377e-01, 4.8175e-01, 6.3229e-01, - 3.8380e-01, 6.8316e-01, 5.8573e-01, 7.7837e-01, - 6.6946e-02, 2.3475e-01, 7.0140e-01, 1.2344e-01, - 2.8019e-01, 5.9542e-01, 7.5818e-01, 8.5928e-01, - 6.5466e-01, 2.9697e-01, 3.0249e-01, 5.1461e-01, - 3.0574e-02, 4.4546e-02, 5.1599e-02, 7.1790e-01, - 7.6362e-01, 2.5265e-01, 3.6333e-01, 5.7543e-01, - 4.4933e-01, 5.2750e-01, 1.8405e-01, 3.7109e-01, - 7.9021e-01, 6.3106e-01, 6.5594e-02, 5.0774e-01, - 7.9707e-01, 7.4175e-01, 3.6721e-01, 3.0570e-01, - 9.9687e-01, 3.7871e-01, 4.1780e-01, 9.4569e-01, - 7.8552e-01, 2.4122e-01, 6.0346e-01, 5.2993e-02, - 9.2558e-01, 1.4753e-01, 7.8873e-01, 3.8921e-02, - 9.4993e-01, 1.7318e-01, 1.0655e-01, 8.9241e-01, - 6.7408e-01, 3.1152e-01, 6.8847e-01, 4.4325e-01, - 4.8165e-01, 2.8106e-01, 3.5513e-01, 6.8342e-01, - 9.4058e-01, 1.0810e-01, 7.4330e-01, 9.5478e-01, - 1.4664e-01, 9.7611e-01, 4.7803e-01, 6.2009e-01, - 6.7093e-01, 4.0554e-01, 7.0217e-01, 5.0924e-01, - 4.5965e-01, 3.8968e-01, 9.5584e-01, 2.4917e-02, - 3.1405e-02, 3.1252e-01, 7.7549e-02, 9.5983e-01, - 1.6207e-01, 8.7600e-01, 5.6135e-01, 6.6565e-01, - 2.7677e-01, 9.8016e-01, 3.9823e-01, 7.3076e-01, - 6.4197e-01, 9.0002e-01, 4.2386e-01, 4.2004e-01, - 3.9384e-01, 2.3617e-01, 8.5746e-02, 4.3909e-01, - 3.1866e-01, 8.4048e-01, 3.8010e-01, 6.8652e-01, - 3.8902e-01, 7.5018e-01, 9.1396e-01, 1.6753e-01, - 8.1305e-01, 5.6153e-01, 7.6107e-01, 8.7271e-02, - 3.6435e-01, 1.5824e-01, 7.5343e-01, 1.3463e-02, - 4.7761e-01, 5.9639e-01, 4.4348e-01, 6.7500e-02, - 3.3355e-01, 8.6420e-01, 3.0451e-01, 4.0484e-01, - 6.4028e-01, 8.2717e-01, 4.6771e-01, 5.9629e-01, - 8.2755e-01, 5.9855e-01, 9.1490e-01, 3.9521e-01, - 4.4891e-02, 7.3522e-01, 8.1976e-01, 8.1029e-01, - 8.2031e-01, 2.7847e-01, 7.2509e-01, 4.1215e-01, - 9.0617e-01, 4.7701e-02, 4.0429e-01, 5.2302e-01, - 3.1622e-01, 6.8745e-01, 3.6865e-01, 7.9997e-01, - 6.0227e-01, 9.8518e-01, 3.9481e-01, 6.8483e-01, - 7.5143e-01, 6.1870e-01, 9.4705e-01, 1.8463e-01, - 7.7813e-01, 7.9055e-01, 3.9150e-01, 6.0592e-02, - 1.8376e-01, 3.3696e-01, 6.6841e-01, 1.6702e-01, - 2.8734e-01, 7.5517e-01, 3.7677e-01, 9.7449e-01, - 4.5025e-01, 2.0193e-01, 2.3506e-01, 1.5941e-02, - 9.6738e-01, 1.7205e-01, 6.2912e-01, 3.3533e-02, - 9.6599e-01, 5.5655e-01, 2.2836e-01, 3.1634e-01, - 9.4812e-03, 9.6607e-01, 4.7036e-01, 3.9668e-01, - 8.7698e-01, 8.9147e-02, 1.2127e-01, 5.5813e-01, - 1.7205e-01, 8.2425e-01, 8.7990e-01, 3.3131e-01, - 3.1468e-01, 5.9720e-01, 7.9343e-01, 3.9190e-01, - 4.2435e-01, 1.9421e-01, 4.9058e-01, 7.2547e-01, - 5.8086e-01, 7.0869e-01, 7.5320e-01, 3.4621e-01, - 5.0496e-01, 5.5857e-01, 6.6373e-01, 6.5189e-01, - 2.8694e-01, 1.2657e-01, 9.0532e-01, 9.5797e-01, - 4.0699e-01, 5.3664e-01, 2.8145e-01, 3.3471e-02, - 3.3984e-01, 7.2274e-02, 3.8278e-01, 6.3313e-02, - 1.2888e-01, 4.5359e-01, 8.4959e-01, 7.1804e-01, - 7.5488e-01, 9.4004e-01, 5.2125e-01, 2.7131e-01, - 6.1402e-01, 3.8144e-01, 8.7560e-01, 3.2266e-01, - 5.5649e-01, 7.3627e-01, 8.5755e-01, 7.2072e-03, - 2.8846e-01, 7.2430e-01, 5.3878e-01, 8.4452e-01, - 1.3342e-01, 3.8786e-01, 6.5924e-01, 2.7442e-01, - 8.6804e-02, 7.3956e-02, 1.0735e-02, 1.9793e-01, - 4.7212e-01, 1.6133e-01, 4.7390e-01, 2.2255e-01, - 7.5177e-01, 4.2505e-01, 3.0972e-01, 3.7468e-01, - 7.6238e-01, 9.4803e-01, 2.5885e-01, 2.9590e-01, - 5.0495e-01, 8.5311e-01, 8.1344e-01, 2.3873e-02, - 3.3971e-01, 4.1176e-01, 3.5343e-01, 6.8713e-01, - 2.5518e-01, 5.5269e-01, 1.9510e-01, 8.5124e-01, - 2.5981e-01, 2.1895e-01, 4.7009e-01, 1.9285e-01, - 4.7878e-01, 3.9918e-01, 8.3453e-01, 3.3741e-01, - 6.4600e-01, 6.7534e-01, 5.9816e-01, 4.3317e-01, - 1.6662e-01, 6.1035e-01, 5.5817e-01, 6.0579e-01, - 1.3883e-02, 1.7728e-01, 8.1614e-01, 8.4365e-01, - 9.6240e-01, 7.8831e-01, 1.7662e-01, 7.5505e-01, - 3.1979e-02, 7.5072e-01, 2.0440e-01, 3.6909e-01, - 2.5393e-01, 3.8386e-01, 2.0864e-01, 1.2775e-01, - 1.9641e-02, 7.4518e-01, 4.0993e-01, 4.4977e-01, - 8.1556e-01, 1.6905e-01, 5.3044e-02, 1.8450e-01, - 8.8919e-01, 6.9877e-01, 5.3492e-01, 9.8340e-01, - 3.0043e-01, 8.6934e-01, 5.0952e-01, 3.3501e-01, - 8.6829e-01, 9.5828e-01, 2.6305e-01, 6.8996e-01, - 9.7548e-01, 5.6316e-01, 8.0327e-01, 4.6951e-01, - 8.8042e-01, 9.6984e-01, 4.4366e-01, 1.3588e-01, - 6.2216e-01, 2.6858e-02, 1.8300e-01, 1.1829e-01, - 6.6395e-01, 8.3757e-01, 3.2313e-03, 5.4541e-01, - 2.8596e-01, 9.7916e-01, 9.8076e-02, 4.9537e-01, - 7.6776e-01, 1.2633e-01, 2.9367e-01, 8.2086e-01, - 8.4752e-01, 4.9738e-01, 1.2453e-01, 8.8421e-01, - 9.3727e-01, 5.0640e-01, 5.3707e-01, 1.8069e-01, - 9.2864e-01, 8.8341e-01, 3.8319e-01, 7.4187e-01, - 3.9035e-01, 4.2286e-01, 1.2256e-01, 9.7913e-01, - 2.7306e-02, 4.3080e-01, 2.8349e-01, 8.0193e-01, - 4.5756e-01, 7.5877e-01, 6.0580e-01, 3.6874e-01, - 1.3218e-01, 8.0418e-02, 2.7395e-01, 5.6953e-01, - 9.6882e-02, 9.2899e-01, 4.1200e-01, 6.4434e-01, - 6.0126e-01, 7.2073e-01, 1.2206e-02, 6.5301e-01, - 7.5807e-01, 4.5420e-01, 9.4519e-01, 1.2548e-01, - 4.0270e-01, 7.5287e-01, 2.7328e-01, 6.7114e-01, - 4.6869e-04, 6.0847e-02, 3.8973e-01, 1.6576e-01, - 6.9844e-01, 2.5031e-01, 2.6646e-01, 7.4219e-01, - 1.9507e-01, 5.4664e-01, 4.6153e-02, 9.0518e-01, - 9.0946e-01, 8.4267e-01, 8.0420e-01, 7.2293e-01, - 3.5989e-01, 4.2914e-01, 9.9099e-01, 6.2425e-01, - 1.3521e-01, 5.7729e-01, 5.8151e-01, 2.2300e-01, - 7.6972e-01, 4.8647e-01, 9.6036e-01, 3.5618e-01, - 1.0842e-01, 6.3586e-01, 1.0170e-01, 6.7330e-01, - 8.1168e-01, 6.2387e-01, 5.7831e-01, 4.7809e-01, - 1.1553e-01, 8.0639e-01, 2.6396e-02, 9.3913e-01, - 1.0144e-01, 7.0822e-03, 9.5812e-01, 6.1419e-01, - 5.5769e-01, 9.4462e-01, 2.4523e-01, 7.7377e-01, - 1.6828e-01, 9.6151e-01, 9.8418e-01, 4.1049e-01, - 8.0509e-01, 8.5756e-01, 4.0852e-01, 1.7004e-01, - 4.2725e-01, 2.6924e-01, 2.7568e-02, 6.4782e-01, - 2.3400e-01, 6.4486e-01, 7.4743e-01, 2.3534e-01, - 7.7784e-01, 2.9787e-01, 7.0881e-01, 3.6903e-01, - 9.8723e-01, 9.5179e-01, 6.6481e-01, 7.9932e-01, - 3.4256e-01, 6.3989e-01, 9.4136e-01, 6.3103e-01, - 9.7416e-01, 7.1185e-01, 4.3842e-01, 7.0811e-01, - 6.2721e-01, 2.3714e-01, 2.9081e-01, 8.3555e-01, - 9.0083e-01, 7.3734e-01, 3.2326e-02, 8.2624e-01, - 9.9258e-01, 9.0930e-01, 6.7614e-01, 5.4796e-02, - 8.5340e-01, 9.2531e-01, 7.6230e-01, 6.7267e-01, - 7.9031e-01, 4.7174e-01, 4.1194e-01, 1.8776e-01, - 6.0910e-01, 5.2252e-01, 2.1673e-01, 1.8473e-01, - 3.5143e-01, 7.0776e-01, 1.2603e-01, 5.0802e-01, - 4.5209e-01, 4.3706e-01, 7.6797e-02, 6.1164e-01, - 7.8143e-01, 1.3925e-01, 5.7531e-02, 8.7507e-01, - 5.7001e-01, 4.3906e-01, 9.2820e-01, 7.6700e-01, - 2.9968e-01, 5.9688e-01, 3.1468e-01, 4.2212e-01, - 7.9895e-02, 2.9011e-01, 1.8494e-01, 9.2888e-01, - 8.9319e-01, 8.2784e-01, 1.7488e-02, 8.1506e-01, - 5.8942e-01, 2.6648e-01, 7.2461e-01, 4.3524e-01, - 3.3783e-02, 3.0604e-01, 5.7524e-01, 1.2624e-01, - 1.8255e-01, 3.5454e-01, 3.6503e-01, 4.9452e-01, - 4.3380e-01, 1.0044e-01, 1.5676e-01, 7.4210e-01, - 7.7909e-01, 1.5953e-01, 9.7173e-01, 9.8386e-01, - 6.0732e-01, 4.4764e-01, 9.7740e-02, 2.5615e-01, - 4.6915e-01, 2.7954e-01, 5.9480e-01, 5.5372e-01, - 4.4142e-01, 7.4870e-01, 7.8726e-01, 5.3797e-01, - 7.5394e-01, 3.8676e-01, 9.0069e-01, 7.9215e-02, - 2.6986e-01, 7.4047e-01, 6.0732e-01, 3.5085e-01, - 9.1826e-01, 9.4896e-01, 6.8926e-03, 1.0309e-01, - 2.7614e-01, 5.7639e-01, 6.1056e-01, 6.5885e-01, - 7.8603e-01, 4.6450e-01, 7.5119e-01, 7.6419e-01, - 5.8530e-02, 5.5102e-01, 4.6821e-01, 4.6438e-01, - 3.5602e-01, 8.8841e-01, 5.1596e-01, 9.1532e-01, - 6.0969e-01, 4.8093e-01, 4.6162e-01, 9.1442e-03, - 8.7271e-01, 3.3897e-01, 1.0331e-01, 7.9221e-01, - 5.8692e-01, 6.9774e-01, 3.0172e-01, 1.0667e-01, - 1.0951e-02, 1.3612e-01, 7.8502e-02, 4.6719e-01, - 8.6153e-01, 2.2920e-01, 8.7337e-01, 2.1362e-02, - 8.6720e-01, 9.6225e-01, 3.2705e-01, 7.9640e-01, - 3.6238e-01, 3.5585e-01, 1.3643e-01, 3.7646e-01, - 5.3997e-01, 7.8911e-02, 9.4754e-01, 5.9488e-01, - 4.3521e-02, 6.4602e-01, 3.7163e-02, 1.4246e-01, - 9.2557e-01, 3.9489e-01, 9.4390e-01, 1.2061e-01, - 7.9882e-01, 5.0438e-01, 5.2005e-01, 9.3905e-01, - 4.3100e-01, 8.5312e-01, 7.6276e-01, 8.8805e-01, - 6.9230e-02, 7.5638e-01, 2.7686e-02, 6.4170e-01, - 6.8542e-01, 9.3072e-01, 9.1971e-02, 9.7074e-01, - 4.9244e-01, 9.7479e-01, 3.9805e-01, 6.5312e-01, - 2.7671e-01, 7.9289e-01, 4.7310e-01, 7.6491e-01, - 2.0056e-01, 9.8477e-01, 3.5288e-01, 1.5954e-01, - 9.1449e-01, 9.5312e-01, 6.0952e-01, 7.7001e-01, - 6.5414e-01, 3.7977e-01, 5.5246e-01, 8.1022e-01, - 4.6688e-01, 8.6118e-01, 7.9898e-01, 6.4956e-01]), + col_indices=tensor([5455, 5592, 4109, 222, 9693, 3577, 9334, 9406, 2137, + 1799, 7682, 5442, 9556, 3008, 6623, 6748, 1968, 1806, + 8890, 8613, 4077, 4885, 7962, 302, 1013, 8955, 2558, + 3711, 9681, 9593, 3121, 9869, 3177, 5155, 4286, 6364, + 2440, 3983, 2281, 3730, 740, 3324, 1186, 4197, 4183, + 3787, 1237, 618, 3728, 4305, 7249, 7969, 8150, 5074, + 336, 432, 1883, 5788, 1998, 9882, 8337, 8410, 6941, + 4025, 3080, 9432, 7607, 2625, 8188, 4417, 71, 2070, + 1396, 3989, 9431, 872, 4755, 1177, 5104, 5, 1671, + 5203, 8385, 3215, 9836, 5654, 6123, 9005, 9573, 3860, + 3248, 2894, 9896, 9991, 4949, 9, 1784, 5266, 2022, + 6095, 1517, 7556, 4941, 521, 2910, 5575, 7555, 1842, + 2590, 9377, 4113, 4907, 8259, 6209, 7070, 152, 6147, + 6757, 41, 774, 7469, 8152, 8924, 5911, 4839, 3386, + 4880, 5093, 7504, 578, 6341, 2413, 9223, 2943, 8245, + 3762, 1885, 3988, 7760, 6659, 2327, 8319, 4889, 2086, + 6582, 2999, 7225, 5620, 5397, 6166, 1192, 9054, 1944, + 8586, 7428, 4653, 1578, 8066, 4063, 6909, 8387, 9373, + 1779, 2964, 5753, 4702, 6011, 649, 4878, 6031, 3620, + 4368, 8038, 9222, 6809, 4045, 7946, 9720, 2447, 8709, + 5211, 3070, 483, 7264, 6025, 5336, 6583, 193, 3061, + 7753, 6937, 7842, 2405, 5951, 5344, 4719, 6714, 6154, + 7382, 3202, 1630, 3013, 8617, 6912, 3313, 4097, 2564, + 7916, 1190, 6815, 3429, 4803, 8583, 6446, 9482, 7512, + 5802, 3394, 6637, 5002, 8800, 9545, 1806, 7825, 5873, + 6547, 42, 3341, 4336, 2945, 8309, 6317, 8694, 7310, + 861, 6529, 9657, 2013, 7583, 4059, 8819, 8573, 3062, + 4530, 3219, 6965, 7043, 4000, 1751, 3453, 7507, 9158, + 8456, 5641, 2323, 894, 6849, 2354, 8414, 9263, 340, + 7205, 5325, 7515, 2661, 4262, 8481, 6503, 8559, 631, + 4284, 892, 3568, 2478, 5313, 8074, 1189, 3638, 1570, + 2900, 1226, 7729, 8931, 3902, 2531, 9721, 4451, 7093, + 6369, 3584, 8858, 4594, 9711, 2895, 8279, 6635, 5468, + 1625, 2878, 183, 9364, 8049, 8688, 3754, 9500, 5156, + 8141, 1233, 6270, 9152, 9609, 8833, 9689, 6804, 6879, + 8482, 5351, 2008, 5339, 174, 2631, 2752, 9101, 4250, + 1959, 1601, 8705, 8321, 4156, 2212, 1758, 6719, 390, + 8271, 8873, 6936, 6913, 6183, 6416, 6740, 9148, 7993, + 6077, 7025, 1434, 5450, 4696, 8201, 4111, 5108, 3263, + 4376, 992, 3001, 3573, 2771, 1330, 3404, 1985, 1213, + 7105, 2969, 1853, 4254, 2574, 8578, 3726, 9824, 8756, + 9790, 4725, 6571, 1525, 4226, 397, 3148, 8143, 1081, + 9319, 954, 8043, 2951, 6714, 1546, 7498, 5572, 6847, + 373, 6338, 6704, 6136, 6912, 8385, 6773, 2897, 1857, + 7837, 5293, 883, 3465, 2333, 2706, 2793, 8339, 9030, + 170, 6025, 238, 5536, 326, 7382, 5214, 9691, 1226, + 6312, 9099, 7743, 9256, 7826, 3961, 7289, 2810, 2889, + 5530, 8793, 1729, 9330, 6285, 259, 2418, 2723, 7786, + 9499, 1444, 3444, 9403, 4786, 2961, 3253, 210, 3033, + 4287, 1941, 2567, 5596, 8952, 1045, 8409, 1209, 2289, + 4009, 2954, 8195, 2521, 9908, 6497, 2176, 8245, 1878, + 2833, 2015, 1191, 8989, 9949, 1659, 7998, 6449, 3287, + 4617, 3730, 4250, 2845, 7685, 2587, 570, 2759, 5601, + 1122, 4194, 6085, 3538, 2068, 3553, 7147, 4353, 8619, + 741, 5644, 3102, 8593, 5741, 717, 5287, 9540, 3750, + 9476, 1080, 2354, 3239, 9391, 2983, 3615, 7545, 9316, + 3217, 546, 2878, 3385, 4369, 7750, 7048, 7638, 5003, + 1954, 2932, 9977, 2825, 6294, 7412, 4947, 5551, 4606, + 6527, 8202, 9874, 3630, 9332, 3043, 9614, 4366, 4415, + 5789, 5831, 6056, 8765, 7112, 3900, 5169, 8287, 5622, + 6492, 3446, 6222, 3934, 6761, 6496, 7921, 3767, 4657, + 6468, 9740, 3922, 1388, 791, 996, 5882, 8931, 4041, + 1804, 3408, 873, 8854, 8857, 5197, 3222, 7923, 1837, + 6637, 5267, 8748, 7386, 9946, 9090, 7284, 9796, 1916, + 1676, 6417, 478, 4042, 9158, 4562, 6428, 4901, 9841, + 4156, 3811, 6129, 8100, 2410, 9667, 1059, 6471, 9086, + 7783, 436, 8399, 2026, 7724, 9135, 6834, 2224, 8238, + 4091, 7721, 9973, 6278, 3251, 4004, 2804, 6760, 1348, + 3105, 8920, 3080, 8489, 6412, 1945, 5275, 9361, 5992, + 4252, 5985, 14, 8664, 6186, 8914, 4367, 8021, 3430, + 7586, 569, 9236, 221, 6330, 387, 7069, 4231, 8633, + 1760, 5743, 1734, 3474, 4921, 5437, 5342, 1188, 3716, + 7244, 3921, 3117, 1899, 6123, 1541, 2426, 3487, 1543, + 8966, 4322, 9621, 5499, 9634, 197, 2016, 1179, 1742, + 603, 4446, 2127, 5502, 5419, 1800, 8843, 3410, 9280, + 6183, 5336, 3557, 1301, 2924, 2685, 4789, 2681, 8075, + 9074, 779, 9722, 2242, 1422, 9799, 190, 8813, 4955, + 9269, 8432, 360, 3105, 1117, 2106, 6923, 340, 3913, + 6338, 2743, 3141, 5508, 8419, 4462, 3804, 4854, 8563, + 27, 56, 4099, 9429, 7128, 3170, 1423, 1480, 4108, + 9263, 248, 6315, 5394, 2111, 8815, 9468, 1653, 6525, + 7824, 7918, 7021, 7163, 2918, 4892, 3181, 2452, 2941, + 8090, 124, 6939, 1996, 9469, 8469, 3564, 8562, 416, + 7462, 4270, 2521, 6664, 1132, 2808, 1882, 6008, 4243, + 8264, 72, 188, 8612, 5177, 8716, 575, 8437, 8572, + 272, 3041, 762, 93, 8887, 453, 2740, 5642, 1483, + 387, 8650, 4556, 7071, 2833, 2163, 2519, 8518, 2921, + 1296, 6818, 2707, 3507, 8598, 8802, 112, 2742, 5974, + 6565, 5489, 7784, 469, 1046, 8118, 2916, 1384, 4596, + 8660, 1524, 2862, 8341, 9259, 3914, 7327, 3943, 1127, + 6398, 6612, 8113, 2461, 8714, 9729, 8226, 6354, 9494, + 9498, 6160, 330, 9056, 6769, 4637, 540, 5583, 6515, + 9235, 1832, 1756, 9622, 3128, 5815, 6161, 5166, 2180, + 2553, 9617, 5271, 540, 669, 8109, 2118, 7870, 9305, + 5197, 8512, 8704, 2565, 8570, 3358, 8597, 6817, 1442, + 7822, 9580, 2286, 877, 5934, 4989, 9155, 9087, 5891, + 4023, 8446, 2014, 2362, 990, 1376, 5099, 6917, 1513, + 4755, 9921, 9633, 586, 9793, 2424, 7385, 2711, 6971, + 8476, 3945, 2785, 4359, 7402, 6094, 3054, 5997, 6264, + 4973, 9403, 224, 8540, 1749, 1440, 9039, 4450, 6560, + 7985, 2950, 8212, 6558, 2305, 2992, 3067, 7181, 688, + 557, 3139, 1085, 2535, 8708, 4783, 1637, 2401, 5400, + 8152, 9595, 2332, 5036, 9866, 6137, 9544, 4606, 3463, + 5129, 4600, 2840, 4681, 5620, 3070, 9929, 3817, 6586, + 1810, 9677, 8838, 5997, 8061, 2182, 2092, 5426, 2012, + 4695, 4335, 5207, 18, 6447, 8196, 4896, 1724, 8190, + 6513, 7255, 7873, 632, 350, 9671, 2671, 6415, 9769, + 5192, 2244, 5805, 3331, 1110, 1188, 9979, 5220, 7760, + 7927, 860, 6526, 7297, 2539, 220, 4541, 1369, 5557, + 6832, 3456, 2993, 2123, 4095, 2625, 8888, 4611, 5854, + 494, 6448, 3694, 6940, 6717, 6857, 7774, 2832, 3690, + 2621]), + values=tensor([3.0392e-01, 3.2415e-01, 6.4353e-02, 7.3274e-01, + 3.2946e-01, 1.5879e-01, 9.2352e-02, 2.3222e-01, + 2.7476e-01, 5.5662e-01, 2.0841e-01, 4.3983e-01, + 4.6932e-01, 4.7844e-01, 6.0685e-01, 9.7693e-01, + 3.5238e-01, 4.6964e-01, 7.5140e-01, 3.1413e-01, + 6.6449e-02, 8.3856e-01, 5.5909e-01, 2.9668e-01, + 6.8550e-01, 8.4874e-01, 2.7284e-01, 6.4469e-01, + 5.5500e-01, 5.1334e-01, 1.1239e-01, 3.2908e-02, + 6.3958e-01, 9.5935e-01, 2.7353e-01, 6.6292e-01, + 3.1922e-01, 6.9750e-01, 5.5048e-01, 6.8061e-01, + 4.3532e-01, 7.7149e-01, 7.8764e-01, 6.0497e-01, + 9.6987e-02, 3.7830e-01, 8.7905e-01, 7.0427e-02, + 1.6845e-01, 8.8919e-01, 8.9750e-01, 1.9794e-01, + 5.5784e-01, 5.4874e-01, 9.3778e-02, 6.5393e-01, + 3.7119e-01, 2.3349e-01, 6.0309e-01, 4.8361e-01, + 5.1730e-01, 5.3303e-01, 8.8849e-01, 7.5067e-03, + 6.5848e-01, 7.7182e-01, 2.5538e-01, 9.6187e-01, + 3.6024e-01, 5.1765e-01, 2.1626e-02, 5.8628e-01, + 6.4821e-01, 2.7907e-01, 5.4479e-01, 9.4676e-01, + 2.6434e-01, 4.1497e-01, 1.2576e-01, 7.4574e-01, + 6.0185e-01, 6.4194e-01, 2.8693e-01, 3.0484e-01, + 6.4746e-01, 8.6023e-01, 7.7437e-01, 8.2817e-01, + 8.2911e-01, 6.5601e-01, 3.6870e-01, 3.0474e-01, + 9.7824e-01, 7.0873e-01, 7.5584e-01, 4.7182e-01, + 3.3010e-01, 1.0185e-02, 8.5565e-01, 6.5803e-01, + 2.1163e-01, 9.6445e-01, 3.5526e-01, 9.0210e-01, + 6.1257e-01, 3.5304e-01, 3.5164e-01, 8.1901e-01, + 9.3322e-01, 2.9058e-01, 5.5850e-01, 4.1175e-01, + 7.5611e-01, 5.2276e-01, 8.1503e-01, 9.5294e-01, + 5.9539e-01, 9.9769e-01, 2.3382e-01, 5.8700e-01, + 3.9790e-01, 1.0685e-01, 1.3325e-01, 1.5247e-02, + 4.9237e-01, 5.8495e-01, 6.7974e-01, 6.5205e-01, + 2.4978e-01, 1.5540e-01, 6.9466e-01, 9.8909e-01, + 6.7400e-01, 4.4045e-01, 8.0887e-01, 8.7366e-01, + 6.1470e-01, 6.6878e-01, 2.0722e-01, 5.6730e-01, + 9.6699e-01, 2.1420e-01, 5.0036e-01, 4.3882e-02, + 2.4509e-01, 9.6699e-01, 6.2712e-02, 8.0118e-01, + 7.0259e-01, 4.9349e-01, 2.3668e-01, 6.4690e-01, + 3.3297e-01, 8.1392e-01, 3.3370e-01, 3.6099e-01, + 6.9785e-01, 5.8653e-01, 2.3494e-01, 4.2606e-01, + 5.3776e-02, 2.9098e-01, 3.5190e-01, 8.5533e-01, + 3.9164e-01, 4.5423e-01, 3.2810e-02, 7.6592e-01, + 5.1452e-01, 5.8263e-01, 3.0590e-01, 4.6225e-01, + 8.9127e-01, 3.8718e-04, 3.6956e-01, 1.0716e-01, + 8.9555e-01, 5.1526e-01, 2.6090e-01, 5.4827e-01, + 7.6613e-01, 9.6451e-02, 1.6855e-01, 2.7123e-01, + 7.9078e-01, 7.0227e-01, 9.2769e-01, 3.2768e-01, + 7.4133e-02, 8.0175e-01, 8.9212e-01, 1.4596e-01, + 5.2250e-02, 7.1920e-01, 2.8915e-01, 7.1399e-01, + 3.9989e-01, 8.4612e-01, 7.6692e-01, 7.6603e-01, + 9.7955e-01, 8.5926e-01, 4.7268e-01, 3.0567e-01, + 3.5521e-01, 4.5346e-01, 7.0907e-01, 1.0000e-01, + 3.8556e-01, 7.4063e-01, 1.2875e-01, 5.0308e-01, + 6.8759e-01, 5.4430e-01, 9.2335e-01, 5.9479e-01, + 3.5215e-01, 2.5979e-01, 3.6195e-01, 1.1209e-01, + 6.7558e-01, 3.6084e-01, 2.9372e-01, 7.9418e-02, + 8.0128e-01, 5.5807e-01, 6.3595e-01, 3.1372e-01, + 2.3848e-01, 1.4012e-02, 2.1033e-01, 5.1052e-01, + 6.6708e-01, 3.8104e-01, 6.2857e-01, 2.5671e-01, + 6.7301e-01, 6.4080e-01, 7.3818e-01, 6.5250e-01, + 7.2748e-01, 2.8088e-01, 4.3795e-01, 7.6139e-01, + 3.2002e-01, 1.0962e-01, 1.1736e-01, 1.1390e-01, + 8.8693e-01, 5.6804e-01, 5.4451e-01, 4.7759e-01, + 9.7875e-02, 8.1348e-02, 1.2472e-01, 6.8343e-01, + 7.6072e-01, 4.3782e-01, 9.4758e-01, 9.8629e-01, + 1.3619e-01, 8.9717e-01, 8.0717e-01, 5.1829e-01, + 6.6901e-01, 7.6695e-01, 3.5278e-01, 7.6203e-02, + 8.1739e-01, 2.6432e-02, 7.8358e-02, 7.6105e-01, + 6.0698e-01, 9.7534e-01, 1.0290e-01, 6.2350e-03, + 3.6916e-02, 9.6921e-01, 9.2309e-01, 3.6705e-01, + 4.1131e-01, 7.1992e-01, 4.8131e-01, 3.8551e-02, + 8.7653e-01, 4.2984e-01, 7.4999e-01, 5.9486e-01, + 2.0777e-01, 2.4797e-02, 7.2719e-01, 8.6476e-01, + 9.2557e-02, 6.6099e-01, 8.8421e-01, 9.9344e-01, + 5.9213e-01, 8.8296e-01, 4.4506e-01, 6.1979e-01, + 2.4620e-01, 6.4475e-01, 9.4222e-01, 4.3135e-01, + 6.9601e-01, 7.7456e-01, 9.3620e-01, 4.9096e-01, + 7.2207e-01, 6.4022e-01, 5.2574e-01, 8.2484e-01, + 5.7041e-01, 6.9043e-01, 2.4631e-02, 9.5777e-02, + 5.9238e-01, 3.0126e-01, 9.4882e-01, 3.7736e-01, + 4.4950e-01, 2.8003e-01, 1.1028e-01, 4.2071e-01, + 9.9009e-01, 5.0994e-01, 4.9474e-01, 7.2898e-01, + 4.3563e-01, 2.0331e-01, 6.0930e-01, 3.4882e-01, + 2.9900e-01, 6.1199e-01, 2.0308e-01, 1.3459e-01, + 5.6701e-01, 4.8437e-01, 6.0606e-01, 4.1922e-01, + 4.5665e-01, 4.1795e-02, 2.1442e-01, 8.5784e-03, + 1.2383e-01, 6.8451e-01, 8.2903e-01, 9.3818e-01, + 8.6183e-01, 9.2220e-01, 1.2146e-02, 9.4702e-01, + 7.2689e-01, 7.0124e-01, 5.2058e-01, 7.6183e-01, + 2.7320e-01, 6.4457e-01, 1.3569e-01, 3.2953e-01, + 1.9373e-01, 1.1614e-01, 6.8419e-01, 1.1889e-01, + 1.5054e-01, 6.8449e-01, 2.2163e-02, 3.3239e-01, + 5.3542e-01, 4.6539e-01, 5.7549e-01, 6.0063e-01, + 7.3725e-01, 7.7272e-01, 7.1549e-01, 8.3333e-02, + 2.5724e-01, 4.8954e-01, 5.4990e-01, 5.5515e-01, + 6.6187e-01, 1.4302e-01, 2.6241e-01, 1.3082e-01, + 1.0201e-01, 4.7238e-01, 8.0345e-01, 3.5296e-01, + 4.3307e-02, 5.1890e-01, 8.2623e-01, 7.8766e-01, + 9.6443e-01, 5.7328e-01, 9.6623e-01, 5.1756e-01, + 8.4229e-01, 8.6955e-01, 5.2500e-01, 2.4364e-01, + 4.6531e-04, 7.7566e-01, 2.3278e-01, 5.0290e-01, + 1.2741e-01, 7.4793e-01, 6.6397e-01, 8.4389e-01, + 7.1603e-01, 1.3434e-01, 9.1897e-01, 1.6605e-01, + 3.1924e-01, 8.7903e-01, 1.4216e-02, 1.4696e-01, + 7.2418e-01, 1.2448e-01, 1.1574e-01, 8.0022e-01, + 3.2231e-01, 5.5328e-01, 2.4152e-01, 4.0399e-01, + 1.2053e-01, 1.5238e-01, 5.0061e-01, 8.8357e-01, + 2.6656e-01, 3.4203e-01, 5.0313e-01, 9.2105e-01, + 5.4412e-01, 7.6757e-01, 1.4392e-01, 9.2549e-01, + 4.4630e-02, 1.0189e-01, 2.1381e-01, 6.3179e-01, + 1.4210e-01, 6.4822e-01, 4.4733e-02, 7.0778e-02, + 5.3670e-01, 6.7468e-01, 9.6249e-02, 1.4701e-01, + 6.7904e-01, 6.2977e-01, 4.8222e-01, 5.6410e-01, + 6.6069e-01, 8.2291e-01, 2.7086e-01, 1.3385e-02, + 3.8370e-02, 7.6000e-01, 1.2836e-01, 4.2271e-01, + 3.7971e-01, 4.0221e-01, 1.9058e-01, 1.3246e-02, + 9.7472e-01, 8.1468e-01, 9.5465e-01, 5.0494e-01, + 4.8024e-01, 8.6375e-01, 2.1211e-01, 7.4747e-01, + 8.8496e-01, 2.3040e-01, 2.1539e-01, 6.6296e-01, + 4.6006e-01, 7.6222e-01, 6.9519e-01, 2.5685e-01, + 1.2762e-01, 4.8623e-01, 8.5541e-01, 1.9816e-01, + 6.4360e-01, 5.6243e-01, 6.0436e-01, 9.6360e-01, + 7.3027e-01, 8.0053e-01, 9.3960e-02, 8.9196e-01, + 6.5344e-01, 5.7618e-01, 3.8071e-02, 9.8561e-01, + 3.9902e-01, 2.0152e-02, 8.4945e-01, 1.0773e-01, + 5.1144e-01, 7.1844e-01, 8.5285e-02, 4.5100e-01, + 1.5098e-01, 2.6810e-01, 5.1885e-02, 6.6289e-01, + 5.9605e-01, 5.1952e-01, 3.2494e-01, 4.2823e-01, + 8.5842e-01, 6.0189e-01, 2.0347e-01, 9.8130e-01, + 1.8163e-01, 2.5564e-02, 1.8724e-02, 5.1201e-01, + 4.5720e-01, 7.9371e-01, 4.8374e-01, 4.3205e-01, + 7.7302e-01, 7.5530e-01, 9.7319e-01, 2.8166e-01, + 6.8553e-01, 9.0165e-01, 1.3726e-01, 6.1107e-01, + 9.6470e-01, 9.3457e-01, 1.6750e-01, 5.7026e-02, + 9.7853e-01, 4.8808e-01, 5.2986e-01, 4.4763e-01, + 2.1220e-01, 1.8968e-01, 6.6682e-01, 2.7978e-01, + 6.2518e-02, 1.7188e-01, 6.6203e-01, 9.5117e-01, + 2.6765e-01, 7.5161e-01, 4.2205e-01, 8.3213e-01, + 3.4401e-02, 5.5833e-01, 2.2728e-01, 8.6978e-01, + 5.0487e-01, 6.8315e-01, 8.8845e-01, 3.7450e-01, + 4.7156e-01, 2.0297e-01, 5.9919e-01, 8.7437e-01, + 1.8376e-01, 3.8162e-01, 3.8759e-01, 2.8332e-01, + 7.3703e-01, 8.2598e-01, 5.7822e-01, 8.1318e-01, + 6.0403e-01, 3.0036e-01, 8.6647e-01, 6.3278e-01, + 3.3144e-02, 8.3655e-02, 2.0403e-01, 6.3295e-01, + 5.5983e-01, 1.7687e-01, 7.9099e-01, 6.5995e-01, + 1.6364e-01, 8.0576e-01, 5.9218e-01, 3.7825e-01, + 7.3625e-01, 6.8133e-01, 1.5251e-01, 3.4541e-01, + 4.3200e-01, 4.7561e-01, 6.5115e-01, 4.9609e-01, + 4.9830e-01, 1.7116e-01, 8.1782e-01, 5.6982e-02, + 7.8582e-01, 4.1358e-01, 6.8337e-01, 8.8174e-01, + 2.7893e-02, 6.1252e-01, 6.8428e-01, 4.7886e-04, + 4.5579e-01, 2.6597e-01, 8.9291e-01, 4.7913e-01, + 5.1187e-02, 9.1252e-01, 5.2623e-01, 9.2323e-01, + 2.5712e-02, 7.4165e-01, 8.7147e-01, 1.1067e-01, + 3.3337e-01, 6.6053e-01, 8.1395e-02, 3.0634e-01, + 5.9633e-01, 6.1441e-01, 5.2337e-01, 9.4467e-01, + 1.6455e-01, 6.0027e-01, 9.9735e-01, 5.4964e-01, + 4.2544e-01, 5.2938e-01, 2.7487e-01, 5.2740e-01, + 7.2458e-01, 2.1872e-01, 2.3165e-02, 8.5565e-01, + 3.4327e-02, 8.8372e-01, 3.6038e-01, 5.2099e-01, + 7.8544e-01, 8.5584e-01, 2.0450e-01, 7.0439e-01, + 1.8946e-01, 5.2352e-01, 1.3840e-01, 7.9757e-01, + 6.4771e-01, 4.2226e-01, 3.3701e-01, 5.7625e-01, + 7.5119e-01, 6.0090e-01, 5.5169e-01, 2.6335e-01, + 2.5175e-01, 1.3511e-01, 7.5301e-01, 3.6857e-01, + 2.4815e-01, 9.7900e-01, 5.3734e-01, 2.5181e-01, + 9.6212e-01, 3.0052e-01, 2.3817e-01, 5.4727e-01, + 7.4985e-01, 4.0814e-01, 2.3324e-01, 9.0258e-01, + 9.2453e-01, 5.1688e-01, 6.8008e-01, 8.4417e-01, + 2.9048e-01, 3.5275e-01, 9.1446e-01, 3.1166e-01, + 9.3812e-02, 3.2061e-01, 3.8420e-01, 8.3599e-01, + 2.2761e-01, 7.4261e-01, 2.4781e-01, 8.3249e-01, + 6.2992e-01, 3.7271e-01, 6.4205e-01, 8.0600e-01, + 5.2952e-01, 8.6497e-03, 2.0012e-01, 6.7808e-01, + 7.6509e-01, 3.6618e-01, 3.6418e-01, 7.0343e-01, + 6.0658e-01, 1.8231e-01, 4.0747e-02, 7.2457e-01, + 7.5662e-01, 3.1029e-02, 1.9408e-01, 5.8483e-03, + 2.5497e-01, 2.7861e-01, 6.7215e-01, 9.8377e-01, + 3.9461e-01, 5.7729e-01, 7.4282e-01, 7.8487e-01, + 6.6966e-01, 8.0111e-01, 2.7436e-01, 9.1071e-01, + 7.5479e-01, 9.6961e-02, 5.9253e-01, 4.3539e-01, + 8.1993e-02, 1.4436e-01, 5.4192e-02, 4.5414e-01, + 2.2083e-01, 6.8883e-01, 3.0813e-03, 5.7122e-01, + 6.4824e-01, 6.1088e-01, 9.9103e-01, 3.0128e-01, + 2.5519e-01, 5.5098e-01, 7.7501e-01, 8.2747e-01, + 2.7382e-01, 1.6131e-01, 3.8473e-01, 1.8858e-01, + 7.6480e-01, 5.7925e-01, 3.7285e-01, 4.1565e-01, + 6.6174e-01, 7.9534e-01, 3.9512e-01, 3.1463e-02, + 2.2917e-01, 3.0596e-01, 2.7861e-03, 2.0807e-01, + 3.7628e-01, 6.8980e-01, 2.7128e-02, 6.5713e-01, + 4.9102e-01, 7.0889e-01, 4.5564e-02, 9.8297e-01, + 6.8338e-01, 2.7678e-03, 5.2548e-01, 9.3723e-01, + 6.9210e-01, 8.4505e-01, 5.3302e-01, 5.5013e-01, + 2.2889e-02, 8.7608e-02, 1.4028e-01, 4.6686e-01, + 6.4919e-01, 9.9436e-01, 7.3888e-01, 4.1538e-01, + 9.4718e-01, 9.8412e-01, 4.2306e-01, 1.3232e-01, + 6.8812e-01, 2.0943e-01, 7.5932e-01, 1.2380e-01, + 6.2774e-01, 4.9894e-01, 3.0889e-01, 1.1004e-01, + 7.4553e-01, 8.5544e-01, 2.0482e-01, 7.2767e-01, + 2.0936e-02, 5.0479e-01, 5.7524e-01, 5.4774e-01, + 8.4315e-01, 5.2362e-01, 2.8163e-01, 5.1186e-01, + 8.0800e-01, 7.9337e-01, 3.6713e-01, 6.2638e-01, + 6.5095e-01, 4.0210e-01, 6.3034e-01, 5.3272e-01, + 3.4358e-01, 5.9924e-01, 1.9674e-01, 6.4351e-01, + 8.5855e-02, 2.3977e-01, 1.2607e-01, 7.8134e-01, + 9.6526e-02, 6.0975e-01, 4.6583e-01, 1.7783e-01, + 7.3707e-02, 8.4537e-01, 7.9093e-01, 4.1040e-02, + 2.5473e-01, 3.9781e-01, 1.3302e-01, 4.8382e-01, + 6.0215e-02, 7.9066e-01, 9.9902e-01, 9.0029e-01, + 5.6279e-01, 9.9788e-01, 7.8531e-01, 2.8619e-01, + 6.3489e-01, 1.5229e-01, 6.9891e-01, 7.3891e-01, + 9.9196e-01, 1.2942e-02, 1.0882e-01, 1.6395e-01, + 9.7799e-01, 9.8840e-01, 9.3287e-01, 9.7669e-01, + 9.3534e-01, 3.8769e-01, 5.8205e-01, 7.1933e-01, + 8.1893e-01, 2.3647e-02, 7.8599e-01, 3.5138e-01, + 8.8097e-01, 5.9339e-01, 8.1908e-01, 2.1259e-01, + 1.7916e-01, 8.3775e-01, 4.2342e-02, 1.7547e-01, + 4.9728e-01, 7.5815e-01, 6.1732e-01, 7.7818e-01, + 3.0544e-01, 7.8172e-01, 1.0312e-01, 9.2880e-01, + 4.3926e-01, 8.6426e-02, 2.2251e-01, 4.2217e-01, + 8.8595e-01, 8.2722e-02, 7.3624e-01, 5.9382e-02, + 4.9932e-01, 1.4760e-01, 4.7458e-02, 6.0080e-01, + 1.4431e-01, 2.9584e-01, 7.1655e-01, 8.9494e-01, + 7.0292e-01, 6.4015e-01, 3.6954e-01, 4.8047e-01, + 2.1881e-01, 1.9305e-01, 5.3317e-01, 1.5076e-01, + 4.3873e-01, 9.4135e-01, 1.0942e-01, 8.7236e-01, + 5.3086e-01, 1.7910e-01, 2.4322e-01, 2.2052e-02, + 4.1013e-01, 1.4191e-01, 3.4491e-01, 5.5417e-01, + 3.3288e-01, 3.1302e-01, 2.3566e-01, 1.8459e-01, + 3.6159e-01, 4.8536e-01, 9.0908e-01, 6.3893e-02, + 7.7289e-02, 8.0569e-01, 8.2725e-01, 8.5490e-01, + 4.1791e-02, 4.0255e-01, 2.0672e-01, 9.7864e-01, + 3.6149e-01, 8.5159e-01, 9.6188e-01, 4.1123e-01, + 2.3421e-01, 6.1193e-01, 2.1097e-01, 2.7882e-01, + 5.5135e-01, 8.0230e-01, 3.1907e-01, 1.8198e-01, + 3.6314e-02, 6.2212e-01, 5.1175e-01, 6.7357e-01, + 3.7007e-02, 1.2024e-01, 9.1569e-01, 8.0422e-01, + 4.8728e-01, 3.3584e-01, 5.0960e-01, 3.6273e-01, + 6.1914e-01, 3.8996e-01, 5.9564e-01, 4.2090e-01, + 8.0087e-01, 6.1589e-01, 5.8173e-01, 6.2723e-01, + 6.9793e-01, 1.5997e-01, 1.5756e-01, 9.2695e-02, + 7.7600e-01, 5.7205e-01, 5.7808e-01, 5.9198e-02, + 8.2480e-01, 2.8009e-01, 8.4499e-02, 3.5912e-01, + 7.7211e-01, 1.0716e-01, 7.1486e-01, 5.0595e-01, + 6.5373e-02, 7.7498e-01, 9.1086e-03, 4.0288e-01, + 6.5420e-01, 2.4228e-01, 8.2790e-01, 1.6179e-02, + 4.5517e-01, 2.3154e-01, 4.0528e-01, 9.9680e-01, + 1.9648e-01, 8.9156e-01, 4.9073e-01, 6.1991e-01, + 5.2047e-01, 2.0881e-01, 9.4192e-01, 4.9260e-01]), size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.7123, 0.9016, 0.3604, ..., 0.7264, 0.3786, 0.3585]) +tensor([0.4825, 0.6787, 0.3927, ..., 0.9418, 0.0965, 0.0788]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -1133,375 +919,375 @@ Rows: 10000 Size: 100000000 NNZ: 1000 Density: 1e-05 -Time: 10.634347915649414 seconds +Time: 10.350545883178711 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), - col_indices=tensor([5653, 663, 2356, 6335, 1601, 9179, 5758, 4032, 1184, - 1367, 4244, 4842, 4720, 9582, 4215, 5795, 5613, 5508, - 3150, 2956, 6349, 4941, 1636, 8225, 9972, 2582, 3679, - 1135, 9620, 6084, 6291, 4048, 7001, 5472, 7361, 7937, - 5298, 6533, 2776, 1036, 1344, 6057, 6180, 9014, 5073, - 6811, 5946, 5681, 492, 615, 6472, 4769, 5564, 541, - 800, 5736, 579, 8317, 7029, 3695, 499, 9654, 3281, - 205, 9052, 6707, 6645, 6832, 4626, 4664, 2914, 7622, - 9393, 3855, 9403, 5918, 5868, 9444, 851, 6317, 57, - 1210, 2172, 6037, 9204, 3658, 7620, 6983, 3781, 1735, - 686, 9439, 6244, 8175, 2372, 965, 2150, 8571, 4157, - 2512, 9938, 4043, 8875, 882, 623, 1012, 3731, 7589, - 9758, 4803, 9290, 1234, 774, 2176, 4572, 2018, 3222, - 7583, 187, 3819, 9911, 5564, 8603, 9156, 1382, 5716, - 6346, 5522, 2563, 4347, 9272, 9447, 4471, 4638, 4983, - 9892, 6310, 7516, 7140, 6156, 6553, 5760, 3519, 546, - 4365, 2039, 9350, 4877, 5823, 286, 7838, 4403, 5744, - 777, 1260, 2101, 8748, 5207, 3240, 7189, 894, 9416, - 9973, 7357, 198, 3268, 3546, 227, 3220, 2795, 5781, - 5660, 9451, 8013, 3655, 5219, 9893, 2124, 1825, 7217, - 2907, 3224, 62, 5333, 4441, 9222, 7187, 7656, 8345, - 6235, 4925, 4392, 9403, 7654, 8355, 5586, 6058, 1290, - 4866, 5435, 1268, 4572, 9153, 7079, 1500, 588, 4650, - 8759, 9375, 1661, 8828, 6616, 8199, 6392, 6520, 9958, - 2116, 3225, 5132, 9375, 4924, 4325, 419, 1259, 5490, - 8365, 3133, 1934, 496, 7648, 3510, 5952, 6594, 9025, - 8913, 3315, 3979, 9410, 9159, 3471, 5346, 7471, 2113, - 6014, 6280, 8075, 582, 6331, 2784, 6053, 556, 989, - 6164, 8084, 411, 640, 8216, 8772, 5075, 9022, 5692, - 7825, 9613, 5866, 5376, 3288, 3147, 9301, 386, 8701, - 9166, 418, 2003, 9005, 8592, 4188, 3735, 4232, 5238, - 8853, 7246, 2646, 1343, 9472, 371, 1177, 8422, 8202, - 5353, 9648, 2908, 8320, 6076, 6771, 8304, 1075, 2469, - 1568, 9483, 3555, 5266, 3405, 9971, 7501, 9677, 5813, - 5924, 7587, 1603, 937, 3813, 1988, 637, 2885, 5831, - 8209, 1869, 5873, 3244, 9083, 4316, 1649, 3716, 7799, - 3429, 9162, 139, 9399, 4042, 4832, 2298, 2896, 1054, - 6210, 4421, 1743, 2336, 4261, 861, 3352, 4781, 2982, - 219, 1594, 6937, 1157, 7791, 8670, 8548, 3732, 1054, - 1298, 3515, 1443, 4515, 5404, 1104, 8525, 7928, 1938, - 9321, 4093, 9617, 5069, 7691, 6537, 1777, 1177, 4792, - 3990, 8613, 2141, 639, 6090, 3243, 3817, 2379, 597, - 2806, 6242, 129, 4735, 1063, 7452, 9642, 1260, 4687, - 6658, 1205, 1033, 2603, 6809, 9426, 6394, 7227, 8386, - 557, 2634, 1874, 8349, 1415, 4690, 6198, 8318, 8284, - 9176, 6704, 6584, 6885, 9606, 1543, 7428, 2559, 2822, - 1315, 6792, 6148, 819, 6087, 4634, 2762, 1934, 3174, - 6495, 6068, 138, 6548, 3452, 8896, 8290, 5349, 4350, - 9259, 6574, 8978, 6459, 1935, 8370, 6950, 8071, 2398, - 2191, 2389, 8876, 4727, 5597, 1126, 3589, 4971, 4846, - 7348, 4101, 516, 7156, 3095, 2299, 76, 5189, 1287, - 7838, 754, 6520, 6985, 2666, 2752, 173, 2069, 2831, - 5027, 1950, 6590, 8614, 8084, 463, 9089, 1779, 3430, - 7584, 6410, 8803, 4256, 5381, 1369, 2241, 8259, 582, - 686, 2251, 1507, 161, 211, 57, 8365, 5950, 8733, - 1228, 3943, 7405, 6953, 7761, 3781, 1755, 2225, 1783, - 4413, 7802, 9456, 2432, 8496, 3459, 8182, 666, 5081, - 9711, 4750, 8408, 873, 1701, 3598, 2226, 4834, 8977, - 119, 1439, 6621, 8888, 6718, 4964, 6775, 8285, 756, - 683, 7518, 7638, 5345, 9636, 8272, 8196, 4295, 5469, - 9453, 7671, 9819, 4008, 1695, 8702, 5830, 9258, 6438, - 993, 8991, 6137, 5725, 8489, 6299, 3472, 1535, 8632, - 272, 8780, 428, 5376, 6220, 1971, 1957, 4900, 8226, - 2265, 5227, 4555, 7142, 7595, 5252, 4188, 1870, 3747, - 6218, 6943, 3294, 5178, 3131, 9628, 2154, 8397, 1648, - 9870, 9081, 2344, 6566, 3675, 241, 9683, 5548, 2030, - 2234, 794, 9927, 3501, 4995, 2027, 4834, 6504, 479, - 6498, 8648, 2353, 2297, 8318, 4623, 9046, 6743, 6207, - 8130, 1077, 656, 4641, 2263, 3756, 9177, 3120, 1083, - 8650, 1248, 6568, 6625, 7483, 1893, 6194, 8846, 7443, - 2988, 5728, 9652, 4567, 9731, 6950, 8352, 8733, 938, - 9915, 5254, 7482, 724, 5457, 2774, 5506, 2482, 1189, - 551, 4600, 2755, 6757, 1057, 9353, 4932, 8508, 5036, - 6380, 4795, 7526, 4341, 907, 8663, 6669, 4592, 373, - 6374, 4856, 4138, 2881, 1151, 2689, 4911, 1512, 2587, - 794, 786, 7277, 8732, 6720, 810, 9573, 2632, 8645, - 89, 2002, 9562, 5004, 8476, 9057, 6183, 1456, 8245, - 1499, 3084, 7040, 3182, 7421, 2467, 18, 1654, 8066, - 3892, 645, 1826, 817, 5601, 6826, 1555, 8599, 8669, - 4406, 2057, 9546, 4111, 3145, 7482, 8521, 8104, 237, - 1875, 7275, 1479, 6187, 44, 3298, 5094, 4170, 2205, - 4442, 3536, 2699, 1153, 3332, 7163, 1256, 2533, 733, - 9820, 3400, 1795, 1338, 589, 3332, 1481, 8779, 8377, - 2005, 3701, 6750, 2118, 9260, 2101, 7768, 3538, 2479, - 5907, 2574, 4797, 4045, 5900, 5465, 8521, 8466, 1697, - 6282, 1744, 352, 397, 1611, 969, 8666, 9409, 3614, - 8478, 8247, 8885, 3286, 5250, 7001, 3291, 6758, 8084, - 1510, 7677, 9604, 8489, 8033, 3291, 1326, 5168, 9323, - 8370, 8206, 1664, 6593, 8357, 8619, 1887, 4419, 5990, - 5278, 9128, 5485, 8058, 6566, 5979, 5259, 6492, 5081, - 936, 5810, 9231, 9063, 9410, 4079, 9581, 4526, 2618, - 2468, 2724, 6060, 1881, 3175, 4090, 6363, 9964, 4758, - 3486, 3202, 540, 9157, 4166, 1974, 5549, 3666, 6137, - 9665, 498, 6014, 2287, 6885, 214, 9852, 8570, 7221, - 3853, 5536, 8282, 2123, 5809, 8936, 7986, 6716, 392, - 7672, 9526, 804, 2336, 8391, 2208, 9067, 7291, 4449, - 8158, 6745, 6107, 8769, 3393, 1713, 4310, 2615, 7559, - 4259, 3361, 9493, 9346, 98, 563, 4262, 6949, 9119, - 7647, 5199, 7674, 6087, 4360, 6308, 3631, 1778, 7472, - 8582, 6581, 3300, 4228, 2667, 6631, 7759, 6925, 8155, - 5702, 2695, 9383, 27, 9479, 9275, 1062, 9608, 9103, - 7513, 9349, 1805, 2186, 8934, 7211, 8306, 3787, 426, - 7793, 8765, 7635, 8057, 8447, 3456, 7831, 5006, 7449, - 5886, 5800, 19, 5725, 37, 4869, 8698, 7941, 6598, - 1906, 369, 6708, 9109, 1374, 2105, 1459, 743, 1027, - 7047, 4135, 1279, 479, 3744, 992, 6277, 4043, 1901, - 9461, 1701, 183, 5585, 7539, 7017, 158, 3044, 4339, - 2736, 3950, 2868, 1786, 3760, 3722, 687, 8148, 3388, - 6, 185, 8988, 5275, 757, 2881, 8187, 3221, 1592, - 9830, 3889, 4101, 6097, 9491, 8094, 3893, 5702, 2525, - 4242, 6698, 2410, 2070, 2272, 8560, 3241, 7303, 1110, - 121]), - values=tensor([4.5491e-02, 3.2468e-01, 2.9501e-01, 6.3274e-01, - 1.0864e-02, 7.2561e-01, 2.7833e-01, 8.9921e-01, - 9.5712e-01, 7.8304e-01, 7.9990e-01, 5.7548e-02, - 2.6717e-01, 8.6061e-01, 8.3671e-01, 6.9606e-01, - 5.5892e-01, 5.1427e-01, 2.7201e-01, 7.5072e-01, - 7.9922e-01, 1.5437e-01, 8.2474e-01, 9.8408e-01, - 9.0110e-01, 9.1307e-01, 7.3003e-01, 2.2108e-01, - 5.0958e-01, 3.3159e-01, 9.0686e-01, 3.0235e-01, - 2.2882e-01, 1.5485e-01, 4.1432e-01, 7.3323e-01, - 5.5252e-01, 9.6080e-01, 7.7897e-01, 4.5968e-01, - 7.1762e-02, 9.5266e-01, 2.5126e-01, 3.6906e-01, - 7.1595e-01, 4.5846e-01, 2.7393e-01, 1.8774e-01, - 2.4921e-01, 3.1854e-01, 4.8334e-01, 1.4183e-02, - 3.9405e-01, 7.8745e-01, 1.2611e-01, 4.9633e-01, - 1.5275e-01, 9.4294e-03, 7.0521e-01, 8.7227e-01, - 5.8672e-01, 9.8469e-01, 7.4888e-01, 4.3210e-01, - 6.9548e-01, 4.5036e-01, 2.1180e-01, 6.2584e-01, - 6.8274e-01, 4.4221e-02, 3.7077e-01, 2.7813e-01, - 8.0969e-01, 4.9060e-01, 3.7621e-01, 9.4320e-02, - 6.5185e-03, 3.2050e-02, 9.6548e-01, 7.9314e-01, - 5.2607e-01, 8.4014e-01, 5.1244e-01, 4.5536e-01, - 2.9243e-01, 3.4722e-01, 2.6706e-01, 2.3069e-01, - 4.0751e-01, 6.0825e-01, 7.8459e-01, 8.8005e-01, - 5.0828e-01, 1.3147e-01, 2.6742e-01, 9.5215e-01, - 6.5675e-01, 5.9280e-01, 9.7954e-01, 6.0187e-01, - 3.3183e-01, 1.0600e-02, 7.6686e-01, 4.6235e-01, - 7.2398e-01, 1.2355e-01, 8.7187e-01, 1.5465e-01, - 5.5476e-02, 4.5871e-01, 6.3394e-01, 5.6422e-01, - 1.3625e-01, 7.8116e-01, 2.6024e-01, 6.0334e-01, - 2.2029e-01, 2.8339e-01, 2.5566e-01, 7.3421e-01, - 2.2859e-01, 6.0130e-01, 3.1568e-01, 6.6567e-01, - 5.6914e-02, 2.5935e-01, 5.8822e-02, 5.2249e-01, - 8.9886e-01, 9.2019e-01, 5.6993e-02, 7.7705e-01, - 2.3500e-01, 3.8917e-01, 7.0200e-01, 2.6454e-01, - 1.4123e-01, 5.5982e-01, 6.0613e-01, 8.7605e-01, - 4.7423e-01, 2.7690e-01, 5.0264e-02, 9.8423e-01, - 8.7080e-01, 8.7532e-01, 1.5537e-03, 5.7053e-01, - 3.2342e-01, 7.0720e-01, 7.0123e-01, 6.9576e-01, - 8.8003e-01, 1.1500e-01, 5.4614e-01, 2.4413e-01, - 8.5389e-01, 5.6087e-01, 9.5104e-01, 9.3133e-01, - 2.8049e-02, 5.6062e-01, 4.8771e-01, 3.9350e-01, - 5.7535e-01, 2.0051e-01, 9.2461e-02, 3.4240e-01, - 8.6489e-01, 1.7069e-01, 1.4503e-01, 8.2908e-01, - 8.4715e-01, 6.2055e-01, 6.0250e-01, 6.9669e-03, - 6.7451e-01, 9.1211e-01, 7.7998e-01, 9.1172e-01, - 6.4672e-01, 8.2260e-01, 2.9749e-01, 3.4357e-01, - 8.8965e-01, 1.6998e-01, 4.6817e-01, 5.6114e-01, - 2.9832e-03, 3.5782e-01, 2.3354e-01, 7.0389e-01, - 8.6494e-01, 2.9523e-01, 7.1093e-01, 8.5747e-01, - 3.9862e-01, 9.9242e-02, 6.3404e-01, 1.8341e-01, - 3.8813e-01, 4.5591e-01, 9.0054e-01, 9.5016e-01, - 4.2228e-01, 1.2941e-01, 3.8481e-01, 7.4146e-01, - 5.8461e-01, 5.7050e-01, 9.4103e-01, 9.6133e-01, - 2.7176e-01, 8.4268e-01, 9.5349e-01, 9.8518e-01, - 7.0966e-01, 1.9918e-01, 8.0055e-01, 4.7484e-01, - 7.3362e-01, 6.1497e-01, 6.4193e-02, 6.3662e-01, - 2.5121e-01, 8.4678e-01, 1.6158e-01, 1.1583e-01, - 7.4799e-01, 5.4370e-02, 2.4911e-01, 4.5653e-01, - 9.0328e-01, 2.0017e-01, 1.0692e-02, 8.5215e-01, - 3.1864e-01, 5.7972e-01, 9.9903e-01, 1.1865e-01, - 6.9590e-01, 9.8482e-01, 4.6454e-01, 6.6789e-02, - 2.3784e-01, 3.8803e-01, 9.5572e-01, 6.9527e-01, - 7.7733e-01, 3.0422e-01, 6.2625e-01, 2.4065e-01, - 2.9101e-01, 4.5591e-01, 7.5354e-01, 6.1629e-02, - 4.8890e-01, 6.2485e-01, 4.0109e-03, 5.2769e-01, - 5.1763e-01, 1.8385e-01, 1.3278e-01, 8.0457e-01, - 8.4173e-01, 9.2545e-01, 1.3840e-01, 7.6490e-01, - 1.4038e-01, 5.3636e-01, 6.8826e-01, 5.8422e-01, - 5.2788e-01, 9.1865e-01, 9.1687e-02, 9.4108e-01, - 7.7907e-01, 8.5824e-01, 6.6717e-01, 6.0324e-01, - 9.6810e-01, 8.6025e-01, 4.3579e-01, 5.0796e-01, - 7.7129e-01, 3.4580e-01, 6.2934e-01, 7.1330e-01, - 5.4797e-02, 2.5678e-01, 7.7649e-01, 1.6495e-02, - 6.2250e-01, 6.7574e-01, 1.4771e-01, 6.5970e-01, - 8.5384e-01, 1.0370e-01, 4.4441e-01, 8.2723e-01, - 6.6853e-01, 7.7504e-02, 3.9059e-01, 9.2182e-01, - 6.0726e-01, 9.3213e-01, 4.2342e-01, 1.5624e-01, - 6.0098e-02, 6.1591e-02, 5.0596e-01, 2.6916e-01, - 4.4467e-01, 1.9151e-01, 5.7240e-01, 4.4660e-02, - 2.8517e-01, 3.5291e-01, 6.3467e-01, 3.2806e-01, - 5.5092e-01, 8.7141e-01, 5.9479e-01, 1.1783e-01, - 6.7772e-01, 3.7557e-01, 2.1769e-01, 5.1208e-01, - 1.1902e-01, 1.9006e-01, 7.0631e-03, 6.8733e-01, - 6.8166e-01, 2.2002e-01, 7.1981e-01, 8.9421e-01, - 4.6344e-01, 9.9377e-01, 4.8175e-01, 6.3229e-01, - 3.8380e-01, 6.8316e-01, 5.8573e-01, 7.7837e-01, - 6.6946e-02, 2.3475e-01, 7.0140e-01, 1.2344e-01, - 2.8019e-01, 5.9542e-01, 7.5818e-01, 8.5928e-01, - 6.5466e-01, 2.9697e-01, 3.0249e-01, 5.1461e-01, - 3.0574e-02, 4.4546e-02, 5.1599e-02, 7.1790e-01, - 7.6362e-01, 2.5265e-01, 3.6333e-01, 5.7543e-01, - 4.4933e-01, 5.2750e-01, 1.8405e-01, 3.7109e-01, - 7.9021e-01, 6.3106e-01, 6.5594e-02, 5.0774e-01, - 7.9707e-01, 7.4175e-01, 3.6721e-01, 3.0570e-01, - 9.9687e-01, 3.7871e-01, 4.1780e-01, 9.4569e-01, - 7.8552e-01, 2.4122e-01, 6.0346e-01, 5.2993e-02, - 9.2558e-01, 1.4753e-01, 7.8873e-01, 3.8921e-02, - 9.4993e-01, 1.7318e-01, 1.0655e-01, 8.9241e-01, - 6.7408e-01, 3.1152e-01, 6.8847e-01, 4.4325e-01, - 4.8165e-01, 2.8106e-01, 3.5513e-01, 6.8342e-01, - 9.4058e-01, 1.0810e-01, 7.4330e-01, 9.5478e-01, - 1.4664e-01, 9.7611e-01, 4.7803e-01, 6.2009e-01, - 6.7093e-01, 4.0554e-01, 7.0217e-01, 5.0924e-01, - 4.5965e-01, 3.8968e-01, 9.5584e-01, 2.4917e-02, - 3.1405e-02, 3.1252e-01, 7.7549e-02, 9.5983e-01, - 1.6207e-01, 8.7600e-01, 5.6135e-01, 6.6565e-01, - 2.7677e-01, 9.8016e-01, 3.9823e-01, 7.3076e-01, - 6.4197e-01, 9.0002e-01, 4.2386e-01, 4.2004e-01, - 3.9384e-01, 2.3617e-01, 8.5746e-02, 4.3909e-01, - 3.1866e-01, 8.4048e-01, 3.8010e-01, 6.8652e-01, - 3.8902e-01, 7.5018e-01, 9.1396e-01, 1.6753e-01, - 8.1305e-01, 5.6153e-01, 7.6107e-01, 8.7271e-02, - 3.6435e-01, 1.5824e-01, 7.5343e-01, 1.3463e-02, - 4.7761e-01, 5.9639e-01, 4.4348e-01, 6.7500e-02, - 3.3355e-01, 8.6420e-01, 3.0451e-01, 4.0484e-01, - 6.4028e-01, 8.2717e-01, 4.6771e-01, 5.9629e-01, - 8.2755e-01, 5.9855e-01, 9.1490e-01, 3.9521e-01, - 4.4891e-02, 7.3522e-01, 8.1976e-01, 8.1029e-01, - 8.2031e-01, 2.7847e-01, 7.2509e-01, 4.1215e-01, - 9.0617e-01, 4.7701e-02, 4.0429e-01, 5.2302e-01, - 3.1622e-01, 6.8745e-01, 3.6865e-01, 7.9997e-01, - 6.0227e-01, 9.8518e-01, 3.9481e-01, 6.8483e-01, - 7.5143e-01, 6.1870e-01, 9.4705e-01, 1.8463e-01, - 7.7813e-01, 7.9055e-01, 3.9150e-01, 6.0592e-02, - 1.8376e-01, 3.3696e-01, 6.6841e-01, 1.6702e-01, - 2.8734e-01, 7.5517e-01, 3.7677e-01, 9.7449e-01, - 4.5025e-01, 2.0193e-01, 2.3506e-01, 1.5941e-02, - 9.6738e-01, 1.7205e-01, 6.2912e-01, 3.3533e-02, - 9.6599e-01, 5.5655e-01, 2.2836e-01, 3.1634e-01, - 9.4812e-03, 9.6607e-01, 4.7036e-01, 3.9668e-01, - 8.7698e-01, 8.9147e-02, 1.2127e-01, 5.5813e-01, - 1.7205e-01, 8.2425e-01, 8.7990e-01, 3.3131e-01, - 3.1468e-01, 5.9720e-01, 7.9343e-01, 3.9190e-01, - 4.2435e-01, 1.9421e-01, 4.9058e-01, 7.2547e-01, - 5.8086e-01, 7.0869e-01, 7.5320e-01, 3.4621e-01, - 5.0496e-01, 5.5857e-01, 6.6373e-01, 6.5189e-01, - 2.8694e-01, 1.2657e-01, 9.0532e-01, 9.5797e-01, - 4.0699e-01, 5.3664e-01, 2.8145e-01, 3.3471e-02, - 3.3984e-01, 7.2274e-02, 3.8278e-01, 6.3313e-02, - 1.2888e-01, 4.5359e-01, 8.4959e-01, 7.1804e-01, - 7.5488e-01, 9.4004e-01, 5.2125e-01, 2.7131e-01, - 6.1402e-01, 3.8144e-01, 8.7560e-01, 3.2266e-01, - 5.5649e-01, 7.3627e-01, 8.5755e-01, 7.2072e-03, - 2.8846e-01, 7.2430e-01, 5.3878e-01, 8.4452e-01, - 1.3342e-01, 3.8786e-01, 6.5924e-01, 2.7442e-01, - 8.6804e-02, 7.3956e-02, 1.0735e-02, 1.9793e-01, - 4.7212e-01, 1.6133e-01, 4.7390e-01, 2.2255e-01, - 7.5177e-01, 4.2505e-01, 3.0972e-01, 3.7468e-01, - 7.6238e-01, 9.4803e-01, 2.5885e-01, 2.9590e-01, - 5.0495e-01, 8.5311e-01, 8.1344e-01, 2.3873e-02, - 3.3971e-01, 4.1176e-01, 3.5343e-01, 6.8713e-01, - 2.5518e-01, 5.5269e-01, 1.9510e-01, 8.5124e-01, - 2.5981e-01, 2.1895e-01, 4.7009e-01, 1.9285e-01, - 4.7878e-01, 3.9918e-01, 8.3453e-01, 3.3741e-01, - 6.4600e-01, 6.7534e-01, 5.9816e-01, 4.3317e-01, - 1.6662e-01, 6.1035e-01, 5.5817e-01, 6.0579e-01, - 1.3883e-02, 1.7728e-01, 8.1614e-01, 8.4365e-01, - 9.6240e-01, 7.8831e-01, 1.7662e-01, 7.5505e-01, - 3.1979e-02, 7.5072e-01, 2.0440e-01, 3.6909e-01, - 2.5393e-01, 3.8386e-01, 2.0864e-01, 1.2775e-01, - 1.9641e-02, 7.4518e-01, 4.0993e-01, 4.4977e-01, - 8.1556e-01, 1.6905e-01, 5.3044e-02, 1.8450e-01, - 8.8919e-01, 6.9877e-01, 5.3492e-01, 9.8340e-01, - 3.0043e-01, 8.6934e-01, 5.0952e-01, 3.3501e-01, - 8.6829e-01, 9.5828e-01, 2.6305e-01, 6.8996e-01, - 9.7548e-01, 5.6316e-01, 8.0327e-01, 4.6951e-01, - 8.8042e-01, 9.6984e-01, 4.4366e-01, 1.3588e-01, - 6.2216e-01, 2.6858e-02, 1.8300e-01, 1.1829e-01, - 6.6395e-01, 8.3757e-01, 3.2313e-03, 5.4541e-01, - 2.8596e-01, 9.7916e-01, 9.8076e-02, 4.9537e-01, - 7.6776e-01, 1.2633e-01, 2.9367e-01, 8.2086e-01, - 8.4752e-01, 4.9738e-01, 1.2453e-01, 8.8421e-01, - 9.3727e-01, 5.0640e-01, 5.3707e-01, 1.8069e-01, - 9.2864e-01, 8.8341e-01, 3.8319e-01, 7.4187e-01, - 3.9035e-01, 4.2286e-01, 1.2256e-01, 9.7913e-01, - 2.7306e-02, 4.3080e-01, 2.8349e-01, 8.0193e-01, - 4.5756e-01, 7.5877e-01, 6.0580e-01, 3.6874e-01, - 1.3218e-01, 8.0418e-02, 2.7395e-01, 5.6953e-01, - 9.6882e-02, 9.2899e-01, 4.1200e-01, 6.4434e-01, - 6.0126e-01, 7.2073e-01, 1.2206e-02, 6.5301e-01, - 7.5807e-01, 4.5420e-01, 9.4519e-01, 1.2548e-01, - 4.0270e-01, 7.5287e-01, 2.7328e-01, 6.7114e-01, - 4.6869e-04, 6.0847e-02, 3.8973e-01, 1.6576e-01, - 6.9844e-01, 2.5031e-01, 2.6646e-01, 7.4219e-01, - 1.9507e-01, 5.4664e-01, 4.6153e-02, 9.0518e-01, - 9.0946e-01, 8.4267e-01, 8.0420e-01, 7.2293e-01, - 3.5989e-01, 4.2914e-01, 9.9099e-01, 6.2425e-01, - 1.3521e-01, 5.7729e-01, 5.8151e-01, 2.2300e-01, - 7.6972e-01, 4.8647e-01, 9.6036e-01, 3.5618e-01, - 1.0842e-01, 6.3586e-01, 1.0170e-01, 6.7330e-01, - 8.1168e-01, 6.2387e-01, 5.7831e-01, 4.7809e-01, - 1.1553e-01, 8.0639e-01, 2.6396e-02, 9.3913e-01, - 1.0144e-01, 7.0822e-03, 9.5812e-01, 6.1419e-01, - 5.5769e-01, 9.4462e-01, 2.4523e-01, 7.7377e-01, - 1.6828e-01, 9.6151e-01, 9.8418e-01, 4.1049e-01, - 8.0509e-01, 8.5756e-01, 4.0852e-01, 1.7004e-01, - 4.2725e-01, 2.6924e-01, 2.7568e-02, 6.4782e-01, - 2.3400e-01, 6.4486e-01, 7.4743e-01, 2.3534e-01, - 7.7784e-01, 2.9787e-01, 7.0881e-01, 3.6903e-01, - 9.8723e-01, 9.5179e-01, 6.6481e-01, 7.9932e-01, - 3.4256e-01, 6.3989e-01, 9.4136e-01, 6.3103e-01, - 9.7416e-01, 7.1185e-01, 4.3842e-01, 7.0811e-01, - 6.2721e-01, 2.3714e-01, 2.9081e-01, 8.3555e-01, - 9.0083e-01, 7.3734e-01, 3.2326e-02, 8.2624e-01, - 9.9258e-01, 9.0930e-01, 6.7614e-01, 5.4796e-02, - 8.5340e-01, 9.2531e-01, 7.6230e-01, 6.7267e-01, - 7.9031e-01, 4.7174e-01, 4.1194e-01, 1.8776e-01, - 6.0910e-01, 5.2252e-01, 2.1673e-01, 1.8473e-01, - 3.5143e-01, 7.0776e-01, 1.2603e-01, 5.0802e-01, - 4.5209e-01, 4.3706e-01, 7.6797e-02, 6.1164e-01, - 7.8143e-01, 1.3925e-01, 5.7531e-02, 8.7507e-01, - 5.7001e-01, 4.3906e-01, 9.2820e-01, 7.6700e-01, - 2.9968e-01, 5.9688e-01, 3.1468e-01, 4.2212e-01, - 7.9895e-02, 2.9011e-01, 1.8494e-01, 9.2888e-01, - 8.9319e-01, 8.2784e-01, 1.7488e-02, 8.1506e-01, - 5.8942e-01, 2.6648e-01, 7.2461e-01, 4.3524e-01, - 3.3783e-02, 3.0604e-01, 5.7524e-01, 1.2624e-01, - 1.8255e-01, 3.5454e-01, 3.6503e-01, 4.9452e-01, - 4.3380e-01, 1.0044e-01, 1.5676e-01, 7.4210e-01, - 7.7909e-01, 1.5953e-01, 9.7173e-01, 9.8386e-01, - 6.0732e-01, 4.4764e-01, 9.7740e-02, 2.5615e-01, - 4.6915e-01, 2.7954e-01, 5.9480e-01, 5.5372e-01, - 4.4142e-01, 7.4870e-01, 7.8726e-01, 5.3797e-01, - 7.5394e-01, 3.8676e-01, 9.0069e-01, 7.9215e-02, - 2.6986e-01, 7.4047e-01, 6.0732e-01, 3.5085e-01, - 9.1826e-01, 9.4896e-01, 6.8926e-03, 1.0309e-01, - 2.7614e-01, 5.7639e-01, 6.1056e-01, 6.5885e-01, - 7.8603e-01, 4.6450e-01, 7.5119e-01, 7.6419e-01, - 5.8530e-02, 5.5102e-01, 4.6821e-01, 4.6438e-01, - 3.5602e-01, 8.8841e-01, 5.1596e-01, 9.1532e-01, - 6.0969e-01, 4.8093e-01, 4.6162e-01, 9.1442e-03, - 8.7271e-01, 3.3897e-01, 1.0331e-01, 7.9221e-01, - 5.8692e-01, 6.9774e-01, 3.0172e-01, 1.0667e-01, - 1.0951e-02, 1.3612e-01, 7.8502e-02, 4.6719e-01, - 8.6153e-01, 2.2920e-01, 8.7337e-01, 2.1362e-02, - 8.6720e-01, 9.6225e-01, 3.2705e-01, 7.9640e-01, - 3.6238e-01, 3.5585e-01, 1.3643e-01, 3.7646e-01, - 5.3997e-01, 7.8911e-02, 9.4754e-01, 5.9488e-01, - 4.3521e-02, 6.4602e-01, 3.7163e-02, 1.4246e-01, - 9.2557e-01, 3.9489e-01, 9.4390e-01, 1.2061e-01, - 7.9882e-01, 5.0438e-01, 5.2005e-01, 9.3905e-01, - 4.3100e-01, 8.5312e-01, 7.6276e-01, 8.8805e-01, - 6.9230e-02, 7.5638e-01, 2.7686e-02, 6.4170e-01, - 6.8542e-01, 9.3072e-01, 9.1971e-02, 9.7074e-01, - 4.9244e-01, 9.7479e-01, 3.9805e-01, 6.5312e-01, - 2.7671e-01, 7.9289e-01, 4.7310e-01, 7.6491e-01, - 2.0056e-01, 9.8477e-01, 3.5288e-01, 1.5954e-01, - 9.1449e-01, 9.5312e-01, 6.0952e-01, 7.7001e-01, - 6.5414e-01, 3.7977e-01, 5.5246e-01, 8.1022e-01, - 4.6688e-01, 8.6118e-01, 7.9898e-01, 6.4956e-01]), + col_indices=tensor([5455, 5592, 4109, 222, 9693, 3577, 9334, 9406, 2137, + 1799, 7682, 5442, 9556, 3008, 6623, 6748, 1968, 1806, + 8890, 8613, 4077, 4885, 7962, 302, 1013, 8955, 2558, + 3711, 9681, 9593, 3121, 9869, 3177, 5155, 4286, 6364, + 2440, 3983, 2281, 3730, 740, 3324, 1186, 4197, 4183, + 3787, 1237, 618, 3728, 4305, 7249, 7969, 8150, 5074, + 336, 432, 1883, 5788, 1998, 9882, 8337, 8410, 6941, + 4025, 3080, 9432, 7607, 2625, 8188, 4417, 71, 2070, + 1396, 3989, 9431, 872, 4755, 1177, 5104, 5, 1671, + 5203, 8385, 3215, 9836, 5654, 6123, 9005, 9573, 3860, + 3248, 2894, 9896, 9991, 4949, 9, 1784, 5266, 2022, + 6095, 1517, 7556, 4941, 521, 2910, 5575, 7555, 1842, + 2590, 9377, 4113, 4907, 8259, 6209, 7070, 152, 6147, + 6757, 41, 774, 7469, 8152, 8924, 5911, 4839, 3386, + 4880, 5093, 7504, 578, 6341, 2413, 9223, 2943, 8245, + 3762, 1885, 3988, 7760, 6659, 2327, 8319, 4889, 2086, + 6582, 2999, 7225, 5620, 5397, 6166, 1192, 9054, 1944, + 8586, 7428, 4653, 1578, 8066, 4063, 6909, 8387, 9373, + 1779, 2964, 5753, 4702, 6011, 649, 4878, 6031, 3620, + 4368, 8038, 9222, 6809, 4045, 7946, 9720, 2447, 8709, + 5211, 3070, 483, 7264, 6025, 5336, 6583, 193, 3061, + 7753, 6937, 7842, 2405, 5951, 5344, 4719, 6714, 6154, + 7382, 3202, 1630, 3013, 8617, 6912, 3313, 4097, 2564, + 7916, 1190, 6815, 3429, 4803, 8583, 6446, 9482, 7512, + 5802, 3394, 6637, 5002, 8800, 9545, 1806, 7825, 5873, + 6547, 42, 3341, 4336, 2945, 8309, 6317, 8694, 7310, + 861, 6529, 9657, 2013, 7583, 4059, 8819, 8573, 3062, + 4530, 3219, 6965, 7043, 4000, 1751, 3453, 7507, 9158, + 8456, 5641, 2323, 894, 6849, 2354, 8414, 9263, 340, + 7205, 5325, 7515, 2661, 4262, 8481, 6503, 8559, 631, + 4284, 892, 3568, 2478, 5313, 8074, 1189, 3638, 1570, + 2900, 1226, 7729, 8931, 3902, 2531, 9721, 4451, 7093, + 6369, 3584, 8858, 4594, 9711, 2895, 8279, 6635, 5468, + 1625, 2878, 183, 9364, 8049, 8688, 3754, 9500, 5156, + 8141, 1233, 6270, 9152, 9609, 8833, 9689, 6804, 6879, + 8482, 5351, 2008, 5339, 174, 2631, 2752, 9101, 4250, + 1959, 1601, 8705, 8321, 4156, 2212, 1758, 6719, 390, + 8271, 8873, 6936, 6913, 6183, 6416, 6740, 9148, 7993, + 6077, 7025, 1434, 5450, 4696, 8201, 4111, 5108, 3263, + 4376, 992, 3001, 3573, 2771, 1330, 3404, 1985, 1213, + 7105, 2969, 1853, 4254, 2574, 8578, 3726, 9824, 8756, + 9790, 4725, 6571, 1525, 4226, 397, 3148, 8143, 1081, + 9319, 954, 8043, 2951, 6714, 1546, 7498, 5572, 6847, + 373, 6338, 6704, 6136, 6912, 8385, 6773, 2897, 1857, + 7837, 5293, 883, 3465, 2333, 2706, 2793, 8339, 9030, + 170, 6025, 238, 5536, 326, 7382, 5214, 9691, 1226, + 6312, 9099, 7743, 9256, 7826, 3961, 7289, 2810, 2889, + 5530, 8793, 1729, 9330, 6285, 259, 2418, 2723, 7786, + 9499, 1444, 3444, 9403, 4786, 2961, 3253, 210, 3033, + 4287, 1941, 2567, 5596, 8952, 1045, 8409, 1209, 2289, + 4009, 2954, 8195, 2521, 9908, 6497, 2176, 8245, 1878, + 2833, 2015, 1191, 8989, 9949, 1659, 7998, 6449, 3287, + 4617, 3730, 4250, 2845, 7685, 2587, 570, 2759, 5601, + 1122, 4194, 6085, 3538, 2068, 3553, 7147, 4353, 8619, + 741, 5644, 3102, 8593, 5741, 717, 5287, 9540, 3750, + 9476, 1080, 2354, 3239, 9391, 2983, 3615, 7545, 9316, + 3217, 546, 2878, 3385, 4369, 7750, 7048, 7638, 5003, + 1954, 2932, 9977, 2825, 6294, 7412, 4947, 5551, 4606, + 6527, 8202, 9874, 3630, 9332, 3043, 9614, 4366, 4415, + 5789, 5831, 6056, 8765, 7112, 3900, 5169, 8287, 5622, + 6492, 3446, 6222, 3934, 6761, 6496, 7921, 3767, 4657, + 6468, 9740, 3922, 1388, 791, 996, 5882, 8931, 4041, + 1804, 3408, 873, 8854, 8857, 5197, 3222, 7923, 1837, + 6637, 5267, 8748, 7386, 9946, 9090, 7284, 9796, 1916, + 1676, 6417, 478, 4042, 9158, 4562, 6428, 4901, 9841, + 4156, 3811, 6129, 8100, 2410, 9667, 1059, 6471, 9086, + 7783, 436, 8399, 2026, 7724, 9135, 6834, 2224, 8238, + 4091, 7721, 9973, 6278, 3251, 4004, 2804, 6760, 1348, + 3105, 8920, 3080, 8489, 6412, 1945, 5275, 9361, 5992, + 4252, 5985, 14, 8664, 6186, 8914, 4367, 8021, 3430, + 7586, 569, 9236, 221, 6330, 387, 7069, 4231, 8633, + 1760, 5743, 1734, 3474, 4921, 5437, 5342, 1188, 3716, + 7244, 3921, 3117, 1899, 6123, 1541, 2426, 3487, 1543, + 8966, 4322, 9621, 5499, 9634, 197, 2016, 1179, 1742, + 603, 4446, 2127, 5502, 5419, 1800, 8843, 3410, 9280, + 6183, 5336, 3557, 1301, 2924, 2685, 4789, 2681, 8075, + 9074, 779, 9722, 2242, 1422, 9799, 190, 8813, 4955, + 9269, 8432, 360, 3105, 1117, 2106, 6923, 340, 3913, + 6338, 2743, 3141, 5508, 8419, 4462, 3804, 4854, 8563, + 27, 56, 4099, 9429, 7128, 3170, 1423, 1480, 4108, + 9263, 248, 6315, 5394, 2111, 8815, 9468, 1653, 6525, + 7824, 7918, 7021, 7163, 2918, 4892, 3181, 2452, 2941, + 8090, 124, 6939, 1996, 9469, 8469, 3564, 8562, 416, + 7462, 4270, 2521, 6664, 1132, 2808, 1882, 6008, 4243, + 8264, 72, 188, 8612, 5177, 8716, 575, 8437, 8572, + 272, 3041, 762, 93, 8887, 453, 2740, 5642, 1483, + 387, 8650, 4556, 7071, 2833, 2163, 2519, 8518, 2921, + 1296, 6818, 2707, 3507, 8598, 8802, 112, 2742, 5974, + 6565, 5489, 7784, 469, 1046, 8118, 2916, 1384, 4596, + 8660, 1524, 2862, 8341, 9259, 3914, 7327, 3943, 1127, + 6398, 6612, 8113, 2461, 8714, 9729, 8226, 6354, 9494, + 9498, 6160, 330, 9056, 6769, 4637, 540, 5583, 6515, + 9235, 1832, 1756, 9622, 3128, 5815, 6161, 5166, 2180, + 2553, 9617, 5271, 540, 669, 8109, 2118, 7870, 9305, + 5197, 8512, 8704, 2565, 8570, 3358, 8597, 6817, 1442, + 7822, 9580, 2286, 877, 5934, 4989, 9155, 9087, 5891, + 4023, 8446, 2014, 2362, 990, 1376, 5099, 6917, 1513, + 4755, 9921, 9633, 586, 9793, 2424, 7385, 2711, 6971, + 8476, 3945, 2785, 4359, 7402, 6094, 3054, 5997, 6264, + 4973, 9403, 224, 8540, 1749, 1440, 9039, 4450, 6560, + 7985, 2950, 8212, 6558, 2305, 2992, 3067, 7181, 688, + 557, 3139, 1085, 2535, 8708, 4783, 1637, 2401, 5400, + 8152, 9595, 2332, 5036, 9866, 6137, 9544, 4606, 3463, + 5129, 4600, 2840, 4681, 5620, 3070, 9929, 3817, 6586, + 1810, 9677, 8838, 5997, 8061, 2182, 2092, 5426, 2012, + 4695, 4335, 5207, 18, 6447, 8196, 4896, 1724, 8190, + 6513, 7255, 7873, 632, 350, 9671, 2671, 6415, 9769, + 5192, 2244, 5805, 3331, 1110, 1188, 9979, 5220, 7760, + 7927, 860, 6526, 7297, 2539, 220, 4541, 1369, 5557, + 6832, 3456, 2993, 2123, 4095, 2625, 8888, 4611, 5854, + 494, 6448, 3694, 6940, 6717, 6857, 7774, 2832, 3690, + 2621]), + values=tensor([3.0392e-01, 3.2415e-01, 6.4353e-02, 7.3274e-01, + 3.2946e-01, 1.5879e-01, 9.2352e-02, 2.3222e-01, + 2.7476e-01, 5.5662e-01, 2.0841e-01, 4.3983e-01, + 4.6932e-01, 4.7844e-01, 6.0685e-01, 9.7693e-01, + 3.5238e-01, 4.6964e-01, 7.5140e-01, 3.1413e-01, + 6.6449e-02, 8.3856e-01, 5.5909e-01, 2.9668e-01, + 6.8550e-01, 8.4874e-01, 2.7284e-01, 6.4469e-01, + 5.5500e-01, 5.1334e-01, 1.1239e-01, 3.2908e-02, + 6.3958e-01, 9.5935e-01, 2.7353e-01, 6.6292e-01, + 3.1922e-01, 6.9750e-01, 5.5048e-01, 6.8061e-01, + 4.3532e-01, 7.7149e-01, 7.8764e-01, 6.0497e-01, + 9.6987e-02, 3.7830e-01, 8.7905e-01, 7.0427e-02, + 1.6845e-01, 8.8919e-01, 8.9750e-01, 1.9794e-01, + 5.5784e-01, 5.4874e-01, 9.3778e-02, 6.5393e-01, + 3.7119e-01, 2.3349e-01, 6.0309e-01, 4.8361e-01, + 5.1730e-01, 5.3303e-01, 8.8849e-01, 7.5067e-03, + 6.5848e-01, 7.7182e-01, 2.5538e-01, 9.6187e-01, + 3.6024e-01, 5.1765e-01, 2.1626e-02, 5.8628e-01, + 6.4821e-01, 2.7907e-01, 5.4479e-01, 9.4676e-01, + 2.6434e-01, 4.1497e-01, 1.2576e-01, 7.4574e-01, + 6.0185e-01, 6.4194e-01, 2.8693e-01, 3.0484e-01, + 6.4746e-01, 8.6023e-01, 7.7437e-01, 8.2817e-01, + 8.2911e-01, 6.5601e-01, 3.6870e-01, 3.0474e-01, + 9.7824e-01, 7.0873e-01, 7.5584e-01, 4.7182e-01, + 3.3010e-01, 1.0185e-02, 8.5565e-01, 6.5803e-01, + 2.1163e-01, 9.6445e-01, 3.5526e-01, 9.0210e-01, + 6.1257e-01, 3.5304e-01, 3.5164e-01, 8.1901e-01, + 9.3322e-01, 2.9058e-01, 5.5850e-01, 4.1175e-01, + 7.5611e-01, 5.2276e-01, 8.1503e-01, 9.5294e-01, + 5.9539e-01, 9.9769e-01, 2.3382e-01, 5.8700e-01, + 3.9790e-01, 1.0685e-01, 1.3325e-01, 1.5247e-02, + 4.9237e-01, 5.8495e-01, 6.7974e-01, 6.5205e-01, + 2.4978e-01, 1.5540e-01, 6.9466e-01, 9.8909e-01, + 6.7400e-01, 4.4045e-01, 8.0887e-01, 8.7366e-01, + 6.1470e-01, 6.6878e-01, 2.0722e-01, 5.6730e-01, + 9.6699e-01, 2.1420e-01, 5.0036e-01, 4.3882e-02, + 2.4509e-01, 9.6699e-01, 6.2712e-02, 8.0118e-01, + 7.0259e-01, 4.9349e-01, 2.3668e-01, 6.4690e-01, + 3.3297e-01, 8.1392e-01, 3.3370e-01, 3.6099e-01, + 6.9785e-01, 5.8653e-01, 2.3494e-01, 4.2606e-01, + 5.3776e-02, 2.9098e-01, 3.5190e-01, 8.5533e-01, + 3.9164e-01, 4.5423e-01, 3.2810e-02, 7.6592e-01, + 5.1452e-01, 5.8263e-01, 3.0590e-01, 4.6225e-01, + 8.9127e-01, 3.8718e-04, 3.6956e-01, 1.0716e-01, + 8.9555e-01, 5.1526e-01, 2.6090e-01, 5.4827e-01, + 7.6613e-01, 9.6451e-02, 1.6855e-01, 2.7123e-01, + 7.9078e-01, 7.0227e-01, 9.2769e-01, 3.2768e-01, + 7.4133e-02, 8.0175e-01, 8.9212e-01, 1.4596e-01, + 5.2250e-02, 7.1920e-01, 2.8915e-01, 7.1399e-01, + 3.9989e-01, 8.4612e-01, 7.6692e-01, 7.6603e-01, + 9.7955e-01, 8.5926e-01, 4.7268e-01, 3.0567e-01, + 3.5521e-01, 4.5346e-01, 7.0907e-01, 1.0000e-01, + 3.8556e-01, 7.4063e-01, 1.2875e-01, 5.0308e-01, + 6.8759e-01, 5.4430e-01, 9.2335e-01, 5.9479e-01, + 3.5215e-01, 2.5979e-01, 3.6195e-01, 1.1209e-01, + 6.7558e-01, 3.6084e-01, 2.9372e-01, 7.9418e-02, + 8.0128e-01, 5.5807e-01, 6.3595e-01, 3.1372e-01, + 2.3848e-01, 1.4012e-02, 2.1033e-01, 5.1052e-01, + 6.6708e-01, 3.8104e-01, 6.2857e-01, 2.5671e-01, + 6.7301e-01, 6.4080e-01, 7.3818e-01, 6.5250e-01, + 7.2748e-01, 2.8088e-01, 4.3795e-01, 7.6139e-01, + 3.2002e-01, 1.0962e-01, 1.1736e-01, 1.1390e-01, + 8.8693e-01, 5.6804e-01, 5.4451e-01, 4.7759e-01, + 9.7875e-02, 8.1348e-02, 1.2472e-01, 6.8343e-01, + 7.6072e-01, 4.3782e-01, 9.4758e-01, 9.8629e-01, + 1.3619e-01, 8.9717e-01, 8.0717e-01, 5.1829e-01, + 6.6901e-01, 7.6695e-01, 3.5278e-01, 7.6203e-02, + 8.1739e-01, 2.6432e-02, 7.8358e-02, 7.6105e-01, + 6.0698e-01, 9.7534e-01, 1.0290e-01, 6.2350e-03, + 3.6916e-02, 9.6921e-01, 9.2309e-01, 3.6705e-01, + 4.1131e-01, 7.1992e-01, 4.8131e-01, 3.8551e-02, + 8.7653e-01, 4.2984e-01, 7.4999e-01, 5.9486e-01, + 2.0777e-01, 2.4797e-02, 7.2719e-01, 8.6476e-01, + 9.2557e-02, 6.6099e-01, 8.8421e-01, 9.9344e-01, + 5.9213e-01, 8.8296e-01, 4.4506e-01, 6.1979e-01, + 2.4620e-01, 6.4475e-01, 9.4222e-01, 4.3135e-01, + 6.9601e-01, 7.7456e-01, 9.3620e-01, 4.9096e-01, + 7.2207e-01, 6.4022e-01, 5.2574e-01, 8.2484e-01, + 5.7041e-01, 6.9043e-01, 2.4631e-02, 9.5777e-02, + 5.9238e-01, 3.0126e-01, 9.4882e-01, 3.7736e-01, + 4.4950e-01, 2.8003e-01, 1.1028e-01, 4.2071e-01, + 9.9009e-01, 5.0994e-01, 4.9474e-01, 7.2898e-01, + 4.3563e-01, 2.0331e-01, 6.0930e-01, 3.4882e-01, + 2.9900e-01, 6.1199e-01, 2.0308e-01, 1.3459e-01, + 5.6701e-01, 4.8437e-01, 6.0606e-01, 4.1922e-01, + 4.5665e-01, 4.1795e-02, 2.1442e-01, 8.5784e-03, + 1.2383e-01, 6.8451e-01, 8.2903e-01, 9.3818e-01, + 8.6183e-01, 9.2220e-01, 1.2146e-02, 9.4702e-01, + 7.2689e-01, 7.0124e-01, 5.2058e-01, 7.6183e-01, + 2.7320e-01, 6.4457e-01, 1.3569e-01, 3.2953e-01, + 1.9373e-01, 1.1614e-01, 6.8419e-01, 1.1889e-01, + 1.5054e-01, 6.8449e-01, 2.2163e-02, 3.3239e-01, + 5.3542e-01, 4.6539e-01, 5.7549e-01, 6.0063e-01, + 7.3725e-01, 7.7272e-01, 7.1549e-01, 8.3333e-02, + 2.5724e-01, 4.8954e-01, 5.4990e-01, 5.5515e-01, + 6.6187e-01, 1.4302e-01, 2.6241e-01, 1.3082e-01, + 1.0201e-01, 4.7238e-01, 8.0345e-01, 3.5296e-01, + 4.3307e-02, 5.1890e-01, 8.2623e-01, 7.8766e-01, + 9.6443e-01, 5.7328e-01, 9.6623e-01, 5.1756e-01, + 8.4229e-01, 8.6955e-01, 5.2500e-01, 2.4364e-01, + 4.6531e-04, 7.7566e-01, 2.3278e-01, 5.0290e-01, + 1.2741e-01, 7.4793e-01, 6.6397e-01, 8.4389e-01, + 7.1603e-01, 1.3434e-01, 9.1897e-01, 1.6605e-01, + 3.1924e-01, 8.7903e-01, 1.4216e-02, 1.4696e-01, + 7.2418e-01, 1.2448e-01, 1.1574e-01, 8.0022e-01, + 3.2231e-01, 5.5328e-01, 2.4152e-01, 4.0399e-01, + 1.2053e-01, 1.5238e-01, 5.0061e-01, 8.8357e-01, + 2.6656e-01, 3.4203e-01, 5.0313e-01, 9.2105e-01, + 5.4412e-01, 7.6757e-01, 1.4392e-01, 9.2549e-01, + 4.4630e-02, 1.0189e-01, 2.1381e-01, 6.3179e-01, + 1.4210e-01, 6.4822e-01, 4.4733e-02, 7.0778e-02, + 5.3670e-01, 6.7468e-01, 9.6249e-02, 1.4701e-01, + 6.7904e-01, 6.2977e-01, 4.8222e-01, 5.6410e-01, + 6.6069e-01, 8.2291e-01, 2.7086e-01, 1.3385e-02, + 3.8370e-02, 7.6000e-01, 1.2836e-01, 4.2271e-01, + 3.7971e-01, 4.0221e-01, 1.9058e-01, 1.3246e-02, + 9.7472e-01, 8.1468e-01, 9.5465e-01, 5.0494e-01, + 4.8024e-01, 8.6375e-01, 2.1211e-01, 7.4747e-01, + 8.8496e-01, 2.3040e-01, 2.1539e-01, 6.6296e-01, + 4.6006e-01, 7.6222e-01, 6.9519e-01, 2.5685e-01, + 1.2762e-01, 4.8623e-01, 8.5541e-01, 1.9816e-01, + 6.4360e-01, 5.6243e-01, 6.0436e-01, 9.6360e-01, + 7.3027e-01, 8.0053e-01, 9.3960e-02, 8.9196e-01, + 6.5344e-01, 5.7618e-01, 3.8071e-02, 9.8561e-01, + 3.9902e-01, 2.0152e-02, 8.4945e-01, 1.0773e-01, + 5.1144e-01, 7.1844e-01, 8.5285e-02, 4.5100e-01, + 1.5098e-01, 2.6810e-01, 5.1885e-02, 6.6289e-01, + 5.9605e-01, 5.1952e-01, 3.2494e-01, 4.2823e-01, + 8.5842e-01, 6.0189e-01, 2.0347e-01, 9.8130e-01, + 1.8163e-01, 2.5564e-02, 1.8724e-02, 5.1201e-01, + 4.5720e-01, 7.9371e-01, 4.8374e-01, 4.3205e-01, + 7.7302e-01, 7.5530e-01, 9.7319e-01, 2.8166e-01, + 6.8553e-01, 9.0165e-01, 1.3726e-01, 6.1107e-01, + 9.6470e-01, 9.3457e-01, 1.6750e-01, 5.7026e-02, + 9.7853e-01, 4.8808e-01, 5.2986e-01, 4.4763e-01, + 2.1220e-01, 1.8968e-01, 6.6682e-01, 2.7978e-01, + 6.2518e-02, 1.7188e-01, 6.6203e-01, 9.5117e-01, + 2.6765e-01, 7.5161e-01, 4.2205e-01, 8.3213e-01, + 3.4401e-02, 5.5833e-01, 2.2728e-01, 8.6978e-01, + 5.0487e-01, 6.8315e-01, 8.8845e-01, 3.7450e-01, + 4.7156e-01, 2.0297e-01, 5.9919e-01, 8.7437e-01, + 1.8376e-01, 3.8162e-01, 3.8759e-01, 2.8332e-01, + 7.3703e-01, 8.2598e-01, 5.7822e-01, 8.1318e-01, + 6.0403e-01, 3.0036e-01, 8.6647e-01, 6.3278e-01, + 3.3144e-02, 8.3655e-02, 2.0403e-01, 6.3295e-01, + 5.5983e-01, 1.7687e-01, 7.9099e-01, 6.5995e-01, + 1.6364e-01, 8.0576e-01, 5.9218e-01, 3.7825e-01, + 7.3625e-01, 6.8133e-01, 1.5251e-01, 3.4541e-01, + 4.3200e-01, 4.7561e-01, 6.5115e-01, 4.9609e-01, + 4.9830e-01, 1.7116e-01, 8.1782e-01, 5.6982e-02, + 7.8582e-01, 4.1358e-01, 6.8337e-01, 8.8174e-01, + 2.7893e-02, 6.1252e-01, 6.8428e-01, 4.7886e-04, + 4.5579e-01, 2.6597e-01, 8.9291e-01, 4.7913e-01, + 5.1187e-02, 9.1252e-01, 5.2623e-01, 9.2323e-01, + 2.5712e-02, 7.4165e-01, 8.7147e-01, 1.1067e-01, + 3.3337e-01, 6.6053e-01, 8.1395e-02, 3.0634e-01, + 5.9633e-01, 6.1441e-01, 5.2337e-01, 9.4467e-01, + 1.6455e-01, 6.0027e-01, 9.9735e-01, 5.4964e-01, + 4.2544e-01, 5.2938e-01, 2.7487e-01, 5.2740e-01, + 7.2458e-01, 2.1872e-01, 2.3165e-02, 8.5565e-01, + 3.4327e-02, 8.8372e-01, 3.6038e-01, 5.2099e-01, + 7.8544e-01, 8.5584e-01, 2.0450e-01, 7.0439e-01, + 1.8946e-01, 5.2352e-01, 1.3840e-01, 7.9757e-01, + 6.4771e-01, 4.2226e-01, 3.3701e-01, 5.7625e-01, + 7.5119e-01, 6.0090e-01, 5.5169e-01, 2.6335e-01, + 2.5175e-01, 1.3511e-01, 7.5301e-01, 3.6857e-01, + 2.4815e-01, 9.7900e-01, 5.3734e-01, 2.5181e-01, + 9.6212e-01, 3.0052e-01, 2.3817e-01, 5.4727e-01, + 7.4985e-01, 4.0814e-01, 2.3324e-01, 9.0258e-01, + 9.2453e-01, 5.1688e-01, 6.8008e-01, 8.4417e-01, + 2.9048e-01, 3.5275e-01, 9.1446e-01, 3.1166e-01, + 9.3812e-02, 3.2061e-01, 3.8420e-01, 8.3599e-01, + 2.2761e-01, 7.4261e-01, 2.4781e-01, 8.3249e-01, + 6.2992e-01, 3.7271e-01, 6.4205e-01, 8.0600e-01, + 5.2952e-01, 8.6497e-03, 2.0012e-01, 6.7808e-01, + 7.6509e-01, 3.6618e-01, 3.6418e-01, 7.0343e-01, + 6.0658e-01, 1.8231e-01, 4.0747e-02, 7.2457e-01, + 7.5662e-01, 3.1029e-02, 1.9408e-01, 5.8483e-03, + 2.5497e-01, 2.7861e-01, 6.7215e-01, 9.8377e-01, + 3.9461e-01, 5.7729e-01, 7.4282e-01, 7.8487e-01, + 6.6966e-01, 8.0111e-01, 2.7436e-01, 9.1071e-01, + 7.5479e-01, 9.6961e-02, 5.9253e-01, 4.3539e-01, + 8.1993e-02, 1.4436e-01, 5.4192e-02, 4.5414e-01, + 2.2083e-01, 6.8883e-01, 3.0813e-03, 5.7122e-01, + 6.4824e-01, 6.1088e-01, 9.9103e-01, 3.0128e-01, + 2.5519e-01, 5.5098e-01, 7.7501e-01, 8.2747e-01, + 2.7382e-01, 1.6131e-01, 3.8473e-01, 1.8858e-01, + 7.6480e-01, 5.7925e-01, 3.7285e-01, 4.1565e-01, + 6.6174e-01, 7.9534e-01, 3.9512e-01, 3.1463e-02, + 2.2917e-01, 3.0596e-01, 2.7861e-03, 2.0807e-01, + 3.7628e-01, 6.8980e-01, 2.7128e-02, 6.5713e-01, + 4.9102e-01, 7.0889e-01, 4.5564e-02, 9.8297e-01, + 6.8338e-01, 2.7678e-03, 5.2548e-01, 9.3723e-01, + 6.9210e-01, 8.4505e-01, 5.3302e-01, 5.5013e-01, + 2.2889e-02, 8.7608e-02, 1.4028e-01, 4.6686e-01, + 6.4919e-01, 9.9436e-01, 7.3888e-01, 4.1538e-01, + 9.4718e-01, 9.8412e-01, 4.2306e-01, 1.3232e-01, + 6.8812e-01, 2.0943e-01, 7.5932e-01, 1.2380e-01, + 6.2774e-01, 4.9894e-01, 3.0889e-01, 1.1004e-01, + 7.4553e-01, 8.5544e-01, 2.0482e-01, 7.2767e-01, + 2.0936e-02, 5.0479e-01, 5.7524e-01, 5.4774e-01, + 8.4315e-01, 5.2362e-01, 2.8163e-01, 5.1186e-01, + 8.0800e-01, 7.9337e-01, 3.6713e-01, 6.2638e-01, + 6.5095e-01, 4.0210e-01, 6.3034e-01, 5.3272e-01, + 3.4358e-01, 5.9924e-01, 1.9674e-01, 6.4351e-01, + 8.5855e-02, 2.3977e-01, 1.2607e-01, 7.8134e-01, + 9.6526e-02, 6.0975e-01, 4.6583e-01, 1.7783e-01, + 7.3707e-02, 8.4537e-01, 7.9093e-01, 4.1040e-02, + 2.5473e-01, 3.9781e-01, 1.3302e-01, 4.8382e-01, + 6.0215e-02, 7.9066e-01, 9.9902e-01, 9.0029e-01, + 5.6279e-01, 9.9788e-01, 7.8531e-01, 2.8619e-01, + 6.3489e-01, 1.5229e-01, 6.9891e-01, 7.3891e-01, + 9.9196e-01, 1.2942e-02, 1.0882e-01, 1.6395e-01, + 9.7799e-01, 9.8840e-01, 9.3287e-01, 9.7669e-01, + 9.3534e-01, 3.8769e-01, 5.8205e-01, 7.1933e-01, + 8.1893e-01, 2.3647e-02, 7.8599e-01, 3.5138e-01, + 8.8097e-01, 5.9339e-01, 8.1908e-01, 2.1259e-01, + 1.7916e-01, 8.3775e-01, 4.2342e-02, 1.7547e-01, + 4.9728e-01, 7.5815e-01, 6.1732e-01, 7.7818e-01, + 3.0544e-01, 7.8172e-01, 1.0312e-01, 9.2880e-01, + 4.3926e-01, 8.6426e-02, 2.2251e-01, 4.2217e-01, + 8.8595e-01, 8.2722e-02, 7.3624e-01, 5.9382e-02, + 4.9932e-01, 1.4760e-01, 4.7458e-02, 6.0080e-01, + 1.4431e-01, 2.9584e-01, 7.1655e-01, 8.9494e-01, + 7.0292e-01, 6.4015e-01, 3.6954e-01, 4.8047e-01, + 2.1881e-01, 1.9305e-01, 5.3317e-01, 1.5076e-01, + 4.3873e-01, 9.4135e-01, 1.0942e-01, 8.7236e-01, + 5.3086e-01, 1.7910e-01, 2.4322e-01, 2.2052e-02, + 4.1013e-01, 1.4191e-01, 3.4491e-01, 5.5417e-01, + 3.3288e-01, 3.1302e-01, 2.3566e-01, 1.8459e-01, + 3.6159e-01, 4.8536e-01, 9.0908e-01, 6.3893e-02, + 7.7289e-02, 8.0569e-01, 8.2725e-01, 8.5490e-01, + 4.1791e-02, 4.0255e-01, 2.0672e-01, 9.7864e-01, + 3.6149e-01, 8.5159e-01, 9.6188e-01, 4.1123e-01, + 2.3421e-01, 6.1193e-01, 2.1097e-01, 2.7882e-01, + 5.5135e-01, 8.0230e-01, 3.1907e-01, 1.8198e-01, + 3.6314e-02, 6.2212e-01, 5.1175e-01, 6.7357e-01, + 3.7007e-02, 1.2024e-01, 9.1569e-01, 8.0422e-01, + 4.8728e-01, 3.3584e-01, 5.0960e-01, 3.6273e-01, + 6.1914e-01, 3.8996e-01, 5.9564e-01, 4.2090e-01, + 8.0087e-01, 6.1589e-01, 5.8173e-01, 6.2723e-01, + 6.9793e-01, 1.5997e-01, 1.5756e-01, 9.2695e-02, + 7.7600e-01, 5.7205e-01, 5.7808e-01, 5.9198e-02, + 8.2480e-01, 2.8009e-01, 8.4499e-02, 3.5912e-01, + 7.7211e-01, 1.0716e-01, 7.1486e-01, 5.0595e-01, + 6.5373e-02, 7.7498e-01, 9.1086e-03, 4.0288e-01, + 6.5420e-01, 2.4228e-01, 8.2790e-01, 1.6179e-02, + 4.5517e-01, 2.3154e-01, 4.0528e-01, 9.9680e-01, + 1.9648e-01, 8.9156e-01, 4.9073e-01, 6.1991e-01, + 5.2047e-01, 2.0881e-01, 9.4192e-01, 4.9260e-01]), size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.7123, 0.9016, 0.3604, ..., 0.7264, 0.3786, 0.3585]) +tensor([0.4825, 0.6787, 0.3927, ..., 0.9418, 0.0965, 0.0788]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -1509,13 +1295,13 @@ Rows: 10000 Size: 100000000 NNZ: 1000 Density: 1e-05 -Time: 10.634347915649414 seconds +Time: 10.350545883178711 seconds -[18.41, 17.8, 19.45, 17.82, 18.17, 17.94, 18.34, 18.13, 18.06, 17.93] -[73.11] -13.703187704086304 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 286411, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.634347915649414, 'TIME_S_1KI': 0.03712967698743908, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1001.8400530457496, 'W': 73.11} -[18.41, 17.8, 19.45, 17.82, 18.17, 17.94, 18.34, 18.13, 18.06, 17.93, 18.35, 18.13, 18.05, 17.73, 17.88, 18.02, 18.72, 17.91, 17.93, 18.0] -326.42499999999995 -16.32125 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 286411, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.634347915649414, 'TIME_S_1KI': 0.03712967698743908, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1001.8400530457496, 'W': 73.11, 'J_1KI': 3.4979105308306933, 'W_1KI': 0.25526254229062434, 'W_D': 56.78875, 'J_D': 778.186900730431, 'W_D_1KI': 0.19827712622769378, 'J_D_1KI': 0.0006922818125969107} +[18.41, 22.21, 18.1, 18.25, 17.88, 18.06, 18.18, 18.5, 18.02, 17.84] +[73.05] +13.74599313735962 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 284305, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.350545883178711, 'TIME_S_1KI': 0.03640648558125503, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1004.1447986841201, 'W': 73.05} +[18.41, 22.21, 18.1, 18.25, 17.88, 18.06, 18.18, 18.5, 18.02, 17.84, 18.25, 17.97, 18.0, 17.86, 18.03, 17.9, 18.06, 17.99, 17.95, 18.62] +329.52 +16.476 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 284305, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.350545883178711, 'TIME_S_1KI': 0.03640648558125503, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1004.1447986841201, 'W': 73.05, 'J_1KI': 3.5319280304043903, 'W_1KI': 0.2569423682313009, 'W_D': 56.574, 'J_D': 777.6658157529831, 'W_D_1KI': 0.19899052074356766, 'J_D_1KI': 0.0006999191739278861} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_5e-05.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_5e-05.json new file mode 100644 index 0000000..3fe7967 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 264429, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.455932378768921, "TIME_S_1KI": 0.03954154944718212, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1008.905144047737, "W": 73.49, "J_1KI": 3.8154103522977323, "W_1KI": 0.2779195927829398, "W_D": 57.09475, "J_D": 783.8234722155332, "W_D_1KI": 0.21591712709271677, "J_D_1KI": 0.0008165410264861901} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_5e-05.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_5e-05.output new file mode 100644 index 0000000..39a6146 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_5e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.01993107795715332} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 4997, 4998, 5000]), + col_indices=tensor([9328, 8573, 6400, ..., 9443, 3853, 6322]), + values=tensor([0.9995, 0.8210, 0.4187, ..., 0.1342, 0.0596, 0.9033]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.6106, 0.0696, 0.9188, ..., 0.7595, 0.3313, 0.0671]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 0.01993107795715332 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '52681', '-ss', '10000', '-sd', '5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 2.0918641090393066} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 4998, 4998, 5000]), + col_indices=tensor([2599, 3812, 3885, ..., 206, 4492, 5501]), + values=tensor([0.4008, 0.6783, 0.6051, ..., 0.8606, 0.8114, 0.5557]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.4634, 0.0164, 0.5073, ..., 0.3776, 0.2676, 0.0715]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 2.0918641090393066 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '264429', '-ss', '10000', '-sd', '5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.455932378768921} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 5000, 5000, 5000]), + col_indices=tensor([3612, 1318, 1874, ..., 9308, 8111, 3978]), + values=tensor([0.0263, 0.8701, 0.1587, ..., 0.1521, 0.0294, 0.0367]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.4791, 0.9785, 0.1725, ..., 0.5898, 0.0968, 0.4149]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 10.455932378768921 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 5000, 5000, 5000]), + col_indices=tensor([3612, 1318, 1874, ..., 9308, 8111, 3978]), + values=tensor([0.0263, 0.8701, 0.1587, ..., 0.1521, 0.0294, 0.0367]), + size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) +tensor([0.4791, 0.9785, 0.1725, ..., 0.5898, 0.0968, 0.4149]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000 +Density: 5e-05 +Time: 10.455932378768921 seconds + +[19.02, 17.97, 18.1, 18.25, 17.93, 18.7, 18.16, 18.15, 18.22, 17.98] +[73.49] +13.728468418121338 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 264429, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.455932378768921, 'TIME_S_1KI': 0.03954154944718212, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1008.905144047737, 'W': 73.49} +[19.02, 17.97, 18.1, 18.25, 17.93, 18.7, 18.16, 18.15, 18.22, 17.98, 18.41, 18.7, 18.23, 17.8, 17.94, 18.94, 18.01, 18.04, 18.02, 18.08] +327.905 +16.395249999999997 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 264429, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.455932378768921, 'TIME_S_1KI': 0.03954154944718212, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1008.905144047737, 'W': 73.49, 'J_1KI': 3.8154103522977323, 'W_1KI': 0.2779195927829398, 'W_D': 57.09475, 'J_D': 783.8234722155332, 'W_D_1KI': 0.21591712709271677, 'J_D_1KI': 0.0008165410264861901} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_0.0001.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_0.0001.json new file mode 100644 index 0000000..35c6334 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 693, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.433570146560669, "TIME_S_1KI": 15.055656777143822, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2886.4447816610336, "W": 54.5, "J_1KI": 4165.1439850808565, "W_1KI": 78.64357864357864, "W_D": 38.16675, "J_D": 2021.3984655130505, "W_D_1KI": 55.074675324675326, "J_D_1KI": 79.47283596634246} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_0.0001.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_0.0001.output new file mode 100644 index 0000000..f2efbf0 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_0.0001.output @@ -0,0 +1,89 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '500000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 1.8274271488189697} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 57, 98, ..., 24999897, + 24999949, 25000000]), + col_indices=tensor([ 2496, 8518, 12544, ..., 449306, 467869, + 486714]), + values=tensor([0.2667, 0.8213, 0.8309, ..., 0.8074, 0.6926, 0.7796]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.0179, 0.7693, 0.5874, ..., 0.4128, 0.7472, 0.6195]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 1.8274271488189697 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '574', '-ss', '500000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 8.696394205093384} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 45, 88, ..., 24999889, + 24999948, 25000000]), + col_indices=tensor([ 21942, 37292, 56785, ..., 479111, 486535, + 489318]), + values=tensor([0.4753, 0.7614, 0.3285, ..., 0.3162, 0.0061, 0.9591]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.2582, 0.0329, 0.5597, ..., 0.0495, 0.5298, 0.4237]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 8.696394205093384 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '693', '-ss', '500000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.433570146560669} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 38, 84, ..., 24999899, + 24999948, 25000000]), + col_indices=tensor([ 30660, 43953, 94811, ..., 484319, 487924, + 499108]), + values=tensor([0.4696, 0.5982, 0.2681, ..., 0.1240, 0.7008, 0.8579]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.3176, 0.2592, 0.6200, ..., 0.0886, 0.2852, 0.1534]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 10.433570146560669 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 38, 84, ..., 24999899, + 24999948, 25000000]), + col_indices=tensor([ 30660, 43953, 94811, ..., 484319, 487924, + 499108]), + values=tensor([0.4696, 0.5982, 0.2681, ..., 0.1240, 0.7008, 0.8579]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.3176, 0.2592, 0.6200, ..., 0.0886, 0.2852, 0.1534]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 10.433570146560669 seconds + +[18.16, 18.09, 17.95, 18.13, 17.83, 18.01, 18.2, 17.99, 18.23, 17.93] +[54.5] +52.962289571762085 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 693, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.433570146560669, 'TIME_S_1KI': 15.055656777143822, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2886.4447816610336, 'W': 54.5} +[18.16, 18.09, 17.95, 18.13, 17.83, 18.01, 18.2, 17.99, 18.23, 17.93, 18.48, 17.91, 18.03, 18.08, 18.03, 18.09, 18.34, 19.26, 18.16, 18.1] +326.66499999999996 +16.33325 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 693, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.433570146560669, 'TIME_S_1KI': 15.055656777143822, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2886.4447816610336, 'W': 54.5, 'J_1KI': 4165.1439850808565, 'W_1KI': 78.64357864357864, 'W_D': 38.16675, 'J_D': 2021.3984655130505, 'W_D_1KI': 55.074675324675326, 'J_D_1KI': 79.47283596634246} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_1e-05.json index df20cd2..c977413 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_1e-05.json +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_1e-05.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 8417, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.80616807937622, "TIME_S_1KI": 1.2838503123887632, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1304.2690537071228, "W": 87.74, "J_1KI": 154.95652295439263, "W_1KI": 10.424141618153737, "W_D": 71.23675, "J_D": 1058.9456178672315, "W_D_1KI": 8.463437091600332, "J_D_1KI": 1.005517059712526} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 8054, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.420526504516602, "TIME_S_1KI": 1.293832444067122, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1257.315396785736, "W": 87.34, "J_1KI": 156.11067752492377, "W_1KI": 10.844300968462875, "W_D": 70.58375000000001, "J_D": 1016.0984158217908, "W_D_1KI": 8.763813012167867, "J_D_1KI": 1.0881317372942474} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_1e-05.output index 2e9f271..2324509 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_1e-05.output +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_1e-05.output @@ -1,15 +1,15 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 1.2474722862243652} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '500000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.1425309181213379} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 6, 15, ..., 2499985, - 2499994, 2500000]), - col_indices=tensor([131168, 178693, 230148, ..., 341937, 350836, - 404119]), - values=tensor([0.5017, 0.1065, 0.8260, ..., 0.9970, 0.9497, 0.3007]), +tensor(crow_indices=tensor([ 0, 5, 8, ..., 2499994, + 2499996, 2500000]), + col_indices=tensor([ 55676, 267462, 335220, ..., 59414, 387658, + 467981]), + values=tensor([0.3669, 0.3244, 0.1572, ..., 0.0615, 0.1330, 0.1317]), size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.0502, 0.1581, 0.5974, ..., 0.5502, 0.6695, 0.7013]) +tensor([0.2232, 0.7011, 0.4607, ..., 0.0263, 0.5751, 0.5574]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -17,20 +17,20 @@ Rows: 500000 Size: 250000000000 NNZ: 2500000 Density: 1e-05 -Time: 1.2474722862243652 seconds +Time: 0.1425309181213379 seconds -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '8417', '-ss', '500000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.80616807937622} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '7366', '-ss', '500000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.601978540420532} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 8, 12, ..., 2499995, - 2499999, 2500000]), - col_indices=tensor([108465, 113027, 118372, ..., 354925, 391668, - 96483]), - values=tensor([0.8038, 0.4194, 0.3623, ..., 0.9532, 0.5964, 0.0297]), +tensor(crow_indices=tensor([ 0, 5, 17, ..., 2499992, + 2499998, 2500000]), + col_indices=tensor([ 78904, 197792, 264056, ..., 387862, 102468, + 277870]), + values=tensor([0.6219, 0.1671, 0.9871, ..., 0.4185, 0.9305, 0.2778]), size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.4181, 0.0420, 0.6704, ..., 0.4969, 0.1289, 0.9173]) +tensor([0.0210, 0.3595, 0.6743, ..., 0.0036, 0.8741, 0.0347]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -38,17 +38,20 @@ Rows: 500000 Size: 250000000000 NNZ: 2500000 Density: 1e-05 -Time: 10.80616807937622 seconds +Time: 9.601978540420532 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '8054', '-ss', '500000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.420526504516602} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 8, 12, ..., 2499995, - 2499999, 2500000]), - col_indices=tensor([108465, 113027, 118372, ..., 354925, 391668, - 96483]), - values=tensor([0.8038, 0.4194, 0.3623, ..., 0.9532, 0.5964, 0.0297]), +tensor(crow_indices=tensor([ 0, 5, 7, ..., 2499986, + 2499993, 2500000]), + col_indices=tensor([136514, 185390, 204506, ..., 365577, 371722, + 449843]), + values=tensor([0.2143, 0.0864, 0.9943, ..., 0.6371, 0.6570, 0.8441]), size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.4181, 0.0420, 0.6704, ..., 0.4969, 0.1289, 0.9173]) +tensor([0.0733, 0.2994, 0.4999, ..., 0.8006, 0.1699, 0.8850]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -56,13 +59,31 @@ Rows: 500000 Size: 250000000000 NNZ: 2500000 Density: 1e-05 -Time: 10.80616807937622 seconds +Time: 10.420526504516602 seconds -[18.27, 18.7, 18.19, 18.06, 20.48, 17.92, 18.42, 18.1, 18.5, 17.88] -[87.74] -14.865159034729004 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 8417, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.80616807937622, 'TIME_S_1KI': 1.2838503123887632, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1304.2690537071228, 'W': 87.74} -[18.27, 18.7, 18.19, 18.06, 20.48, 17.92, 18.42, 18.1, 18.5, 17.88, 18.52, 18.21, 18.12, 18.29, 18.48, 18.28, 17.96, 17.98, 18.11, 17.86] -330.06500000000005 -16.50325 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 8417, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.80616807937622, 'TIME_S_1KI': 1.2838503123887632, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1304.2690537071228, 'W': 87.74, 'J_1KI': 154.95652295439263, 'W_1KI': 10.424141618153737, 'W_D': 71.23675, 'J_D': 1058.9456178672315, 'W_D_1KI': 8.463437091600332, 'J_D_1KI': 1.005517059712526} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 7, ..., 2499986, + 2499993, 2500000]), + col_indices=tensor([136514, 185390, 204506, ..., 365577, 371722, + 449843]), + values=tensor([0.2143, 0.0864, 0.9943, ..., 0.6371, 0.6570, 0.8441]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.0733, 0.2994, 0.4999, ..., 0.8006, 0.1699, 0.8850]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 10.420526504516602 seconds + +[18.47, 17.91, 18.18, 18.64, 18.09, 18.11, 18.17, 18.18, 22.06, 17.96] +[87.34] +14.395642280578613 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 8054, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.420526504516602, 'TIME_S_1KI': 1.293832444067122, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1257.315396785736, 'W': 87.34} +[18.47, 17.91, 18.18, 18.64, 18.09, 18.11, 18.17, 18.18, 22.06, 17.96, 18.46, 18.6, 18.06, 19.85, 20.28, 18.18, 18.02, 17.82, 18.61, 17.84] +335.125 +16.75625 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 8054, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.420526504516602, 'TIME_S_1KI': 1.293832444067122, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1257.315396785736, 'W': 87.34, 'J_1KI': 156.11067752492377, 'W_1KI': 10.844300968462875, 'W_D': 70.58375000000001, 'J_D': 1016.0984158217908, 'W_D_1KI': 8.763813012167867, 'J_D_1KI': 1.0881317372942474} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_5e-05.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_5e-05.json new file mode 100644 index 0000000..72c367a --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 1363, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.215147256851196, "TIME_S_1KI": 7.494605470910636, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1461.7694299888612, "W": 77.68, "J_1KI": 1072.4647322001917, "W_1KI": 56.99192956713133, "W_D": 61.057, "J_D": 1148.960557245493, "W_D_1KI": 44.796038151137196, "J_D_1KI": 32.865765334656786} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_5e-05.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_5e-05.output new file mode 100644 index 0000000..097beff --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_5e-05.output @@ -0,0 +1,68 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '500000', '-sd', '5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.7700090408325195} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 24, 55, ..., 12499948, + 12499975, 12500000]), + col_indices=tensor([ 4417, 27723, 55822, ..., 442008, 448310, + 496598]), + values=tensor([0.6543, 0.3065, 0.8363, ..., 0.0104, 0.9892, 0.0257]), + size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.5546, 0.9568, 0.6697, ..., 0.4050, 0.9738, 0.6596]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 12500000 +Density: 5e-05 +Time: 0.7700090408325195 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1363', '-ss', '500000', '-sd', '5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.215147256851196} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 32, 58, ..., 12499956, + 12499981, 12500000]), + col_indices=tensor([ 7736, 12237, 33305, ..., 443222, 470958, + 475326]), + values=tensor([0.9583, 0.2636, 0.0225, ..., 0.4084, 0.8296, 0.8114]), + size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.4848, 0.9833, 0.6868, ..., 0.4430, 0.1817, 0.0586]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 12500000 +Density: 5e-05 +Time: 10.215147256851196 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 32, 58, ..., 12499956, + 12499981, 12500000]), + col_indices=tensor([ 7736, 12237, 33305, ..., 443222, 470958, + 475326]), + values=tensor([0.9583, 0.2636, 0.0225, ..., 0.4084, 0.8296, 0.8114]), + size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.4848, 0.9833, 0.6868, ..., 0.4430, 0.1817, 0.0586]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 12500000 +Density: 5e-05 +Time: 10.215147256851196 seconds + +[18.64, 18.68, 18.32, 18.11, 18.55, 17.92, 17.92, 19.0, 18.5, 17.99] +[77.68] +18.817835092544556 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1363, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.215147256851196, 'TIME_S_1KI': 7.494605470910636, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1461.7694299888612, 'W': 77.68} +[18.64, 18.68, 18.32, 18.11, 18.55, 17.92, 17.92, 19.0, 18.5, 17.99, 18.42, 18.14, 18.35, 18.41, 18.1, 18.07, 18.11, 21.75, 17.97, 18.07] +332.46000000000004 +16.623 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1363, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.215147256851196, 'TIME_S_1KI': 7.494605470910636, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1461.7694299888612, 'W': 77.68, 'J_1KI': 1072.4647322001917, 'W_1KI': 56.99192956713133, 'W_D': 61.057, 'J_D': 1148.960557245493, 'W_D_1KI': 44.796038151137196, 'J_D_1KI': 32.865765334656786} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.0001.json index 3576579..393ceed 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.0001.json +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.0001.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 79200, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.557747602462769, "TIME_S_1KI": 0.1333048939704895, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1194.9571797966958, "W": 76.09, "J_1KI": 15.087843179251209, "W_1KI": 0.9607323232323233, "W_D": 59.703, "J_D": 937.6071560704709, "W_D_1KI": 0.7538257575757576, "J_D_1KI": 0.009518001989592899} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 80365, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.785846710205078, "TIME_S_1KI": 0.1342107473428119, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1142.0150223541261, "W": 83.68, "J_1KI": 14.210353043664854, "W_1KI": 1.041249300068438, "W_D": 67.33675000000001, "J_D": 918.9720370041133, "W_D_1KI": 0.8378865177627077, "J_D_1KI": 0.01042601278868547} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.0001.output index 9da61ce..ace565c 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.0001.output +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.0001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.14916634559631348} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.031140804290771484} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 5, 7, ..., 249992, 249995, +tensor(crow_indices=tensor([ 0, 6, 10, ..., 249988, 249996, 250000]), - col_indices=tensor([14210, 18192, 24309, ..., 18863, 37423, 45495]), - values=tensor([0.9647, 0.6185, 0.9345, ..., 0.6478, 0.4104, 0.2751]), + col_indices=tensor([ 3938, 11827, 18410, ..., 25331, 39292, 43613]), + values=tensor([0.0696, 0.4480, 0.5528, ..., 0.5051, 0.2445, 0.3952]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.7636, 0.2305, 0.9236, ..., 0.5850, 0.9097, 0.3088]) +tensor([0.1610, 0.2872, 0.6159, ..., 0.3941, 0.7048, 0.2210]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -16,19 +16,19 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 0.14916634559631348 seconds +Time: 0.031140804290771484 seconds -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '70391', '-ss', '50000', '-sd', '0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.332123041152954} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '33717', '-ss', '50000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 4.405243873596191} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 9, 13, ..., 249990, 249995, +tensor(crow_indices=tensor([ 0, 8, 16, ..., 249992, 249993, 250000]), - col_indices=tensor([ 8823, 10157, 22008, ..., 15217, 25723, 27383]), - values=tensor([0.1165, 0.9082, 0.4420, ..., 0.1019, 0.9218, 0.7818]), + col_indices=tensor([ 4798, 5191, 8748, ..., 31389, 41207, 45142]), + values=tensor([0.4595, 0.5274, 0.3770, ..., 0.1787, 0.1620, 0.3761]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.6996, 0.2341, 0.0689, ..., 0.7606, 0.0770, 0.0289]) +tensor([0.7848, 0.4939, 0.9259, ..., 0.5597, 0.9743, 0.2454]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -36,19 +36,19 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 9.332123041152954 seconds +Time: 4.405243873596191 seconds -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '79200', '-ss', '50000', '-sd', '0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.557747602462769} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '80365', '-ss', '50000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.785846710205078} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 6, 9, ..., 249995, 249997, +tensor(crow_indices=tensor([ 0, 5, 6, ..., 249987, 249993, 250000]), - col_indices=tensor([ 4540, 7121, 8304, ..., 4489, 19051, 41158]), - values=tensor([0.2192, 0.6581, 0.9045, ..., 0.0804, 0.2632, 0.1591]), + col_indices=tensor([ 3036, 18920, 36950, ..., 33008, 35825, 42083]), + values=tensor([0.1216, 0.1218, 0.6996, ..., 0.2614, 0.2596, 0.0475]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.8844, 0.7148, 0.4526, ..., 0.9882, 0.2475, 0.5582]) +tensor([0.0022, 0.5368, 0.2941, ..., 0.2951, 0.8515, 0.2587]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -56,16 +56,16 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 10.557747602462769 seconds +Time: 10.785846710205078 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 6, 9, ..., 249995, 249997, +tensor(crow_indices=tensor([ 0, 5, 6, ..., 249987, 249993, 250000]), - col_indices=tensor([ 4540, 7121, 8304, ..., 4489, 19051, 41158]), - values=tensor([0.2192, 0.6581, 0.9045, ..., 0.0804, 0.2632, 0.1591]), + col_indices=tensor([ 3036, 18920, 36950, ..., 33008, 35825, 42083]), + values=tensor([0.1216, 0.1218, 0.6996, ..., 0.2614, 0.2596, 0.0475]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.8844, 0.7148, 0.4526, ..., 0.9882, 0.2475, 0.5582]) +tensor([0.0022, 0.5368, 0.2941, ..., 0.2951, 0.8515, 0.2587]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -73,13 +73,13 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 10.557747602462769 seconds +Time: 10.785846710205078 seconds -[18.33, 17.85, 17.91, 18.15, 17.99, 17.93, 17.79, 17.99, 18.26, 17.87] -[76.09] -15.70452332496643 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 79200, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.557747602462769, 'TIME_S_1KI': 0.1333048939704895, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1194.9571797966958, 'W': 76.09} -[18.33, 17.85, 17.91, 18.15, 17.99, 17.93, 17.79, 17.99, 18.26, 17.87, 18.24, 18.68, 17.78, 17.91, 20.54, 18.31, 17.97, 18.31, 18.26, 17.78] -327.74 -16.387 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 79200, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.557747602462769, 'TIME_S_1KI': 0.1333048939704895, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1194.9571797966958, 'W': 76.09, 'J_1KI': 15.087843179251209, 'W_1KI': 0.9607323232323233, 'W_D': 59.703, 'J_D': 937.6071560704709, 'W_D_1KI': 0.7538257575757576, 'J_D_1KI': 0.009518001989592899} +[18.57, 17.87, 18.3, 17.99, 18.1, 18.03, 18.33, 18.16, 18.09, 17.89] +[83.68] +13.647407054901123 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 80365, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.785846710205078, 'TIME_S_1KI': 0.1342107473428119, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1142.0150223541261, 'W': 83.68} +[18.57, 17.87, 18.3, 17.99, 18.1, 18.03, 18.33, 18.16, 18.09, 17.89, 18.23, 17.91, 18.25, 19.1, 18.2, 17.88, 18.14, 18.11, 18.11, 17.9] +326.865 +16.34325 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 80365, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.785846710205078, 'TIME_S_1KI': 0.1342107473428119, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1142.0150223541261, 'W': 83.68, 'J_1KI': 14.210353043664854, 'W_1KI': 1.041249300068438, 'W_D': 67.33675000000001, 'J_D': 918.9720370041133, 'W_D_1KI': 0.8378865177627077, 'J_D_1KI': 0.01042601278868547} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.001.json index fcc4d9e..3d88fb8 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.001.json +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.001.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 17543, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.699259996414185, "TIME_S_1KI": 0.6098877042931189, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1300.7915307188034, "W": 87.71, "J_1KI": 74.14875053974825, "W_1KI": 4.9997149860343155, "W_D": 71.40625, "J_D": 1058.997209444642, "W_D_1KI": 4.070355697429174, "J_D_1KI": 0.2320216438140098} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 17258, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.52219271659851, "TIME_S_1KI": 0.6096994273147822, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1290.1128985500336, "W": 87.73, "J_1KI": 74.75448479256191, "W_1KI": 5.083439564260054, "W_D": 71.3875, "J_D": 1049.7883796334268, "W_D_1KI": 4.136487426121219, "J_D_1KI": 0.23968521416857222} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.001.output index 4d40449..c067392 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.001.output +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.001.output @@ -1,14 +1,34 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.5985264778137207} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.07522106170654297} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 56, 105, ..., 2499904, +tensor(crow_indices=tensor([ 0, 54, 95, ..., 2499899, + 2499951, 2500000]), + col_indices=tensor([ 245, 316, 650, ..., 46425, 47933, 49262]), + values=tensor([0.3598, 0.8732, 0.2112, ..., 0.2076, 0.2855, 0.8514]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.6227, 0.9680, 0.6855, ..., 0.8971, 0.9917, 0.2060]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 0.07522106170654297 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '13958', '-ss', '50000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 8.492224931716919} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 52, 97, ..., 2499905, 2499950, 2500000]), - col_indices=tensor([ 106, 3863, 5117, ..., 48831, 49457, 49843]), - values=tensor([0.6065, 0.7453, 0.1054, ..., 0.0788, 0.7875, 0.5947]), + col_indices=tensor([ 3061, 5035, 6476, ..., 48999, 49661, 49813]), + values=tensor([0.5243, 0.0379, 0.3507, ..., 0.2954, 0.9764, 0.8519]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.1569, 0.4932, 0.6676, ..., 0.2477, 0.5860, 0.5432]) +tensor([0.8088, 0.8530, 0.3688, ..., 0.5327, 0.1148, 0.7333]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -16,19 +36,19 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 0.5985264778137207 seconds +Time: 8.492224931716919 seconds -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '17543', '-ss', '50000', '-sd', '0.001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.699259996414185} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '17258', '-ss', '50000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.52219271659851} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 54, 99, ..., 2499881, - 2499945, 2500000]), - col_indices=tensor([ 1025, 3202, 3517, ..., 49482, 49487, 49789]), - values=tensor([0.3859, 0.1414, 0.1100, ..., 0.9363, 0.6699, 0.1002]), +tensor(crow_indices=tensor([ 0, 60, 98, ..., 2499898, + 2499955, 2500000]), + col_indices=tensor([ 336, 813, 2467, ..., 44805, 45101, 46338]), + values=tensor([0.1989, 0.3364, 0.1097, ..., 0.3897, 0.4637, 0.0665]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.4003, 0.0598, 0.2302, ..., 0.6994, 0.7206, 0.2744]) +tensor([0.6060, 0.7426, 0.0681, ..., 0.1484, 0.6293, 0.7345]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -36,16 +56,16 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 10.699259996414185 seconds +Time: 10.52219271659851 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 54, 99, ..., 2499881, - 2499945, 2500000]), - col_indices=tensor([ 1025, 3202, 3517, ..., 49482, 49487, 49789]), - values=tensor([0.3859, 0.1414, 0.1100, ..., 0.9363, 0.6699, 0.1002]), +tensor(crow_indices=tensor([ 0, 60, 98, ..., 2499898, + 2499955, 2500000]), + col_indices=tensor([ 336, 813, 2467, ..., 44805, 45101, 46338]), + values=tensor([0.1989, 0.3364, 0.1097, ..., 0.3897, 0.4637, 0.0665]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.4003, 0.0598, 0.2302, ..., 0.6994, 0.7206, 0.2744]) +tensor([0.6060, 0.7426, 0.0681, ..., 0.1484, 0.6293, 0.7345]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -53,13 +73,13 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 10.699259996414185 seconds +Time: 10.52219271659851 seconds -[18.49, 17.83, 18.02, 18.17, 18.01, 17.87, 18.35, 18.02, 18.01, 17.87] -[87.71] -14.83059549331665 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 17543, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.699259996414185, 'TIME_S_1KI': 0.6098877042931189, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1300.7915307188034, 'W': 87.71} -[18.49, 17.83, 18.02, 18.17, 18.01, 17.87, 18.35, 18.02, 18.01, 17.87, 18.45, 18.41, 18.09, 17.88, 18.15, 18.34, 17.89, 18.68, 17.87, 18.16] -326.075 -16.30375 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 17543, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.699259996414185, 'TIME_S_1KI': 0.6098877042931189, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1300.7915307188034, 'W': 87.71, 'J_1KI': 74.14875053974825, 'W_1KI': 4.9997149860343155, 'W_D': 71.40625, 'J_D': 1058.997209444642, 'W_D_1KI': 4.070355697429174, 'J_D_1KI': 0.2320216438140098} +[18.24, 17.95, 18.03, 17.9, 18.31, 18.2, 18.96, 17.99, 17.74, 18.24] +[87.73] +14.705492973327637 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 17258, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.52219271659851, 'TIME_S_1KI': 0.6096994273147822, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1290.1128985500336, 'W': 87.73} +[18.24, 17.95, 18.03, 17.9, 18.31, 18.2, 18.96, 17.99, 17.74, 18.24, 18.79, 18.06, 18.38, 18.13, 18.12, 18.05, 18.08, 18.09, 18.27, 17.91] +326.85 +16.3425 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 17258, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.52219271659851, 'TIME_S_1KI': 0.6096994273147822, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1290.1128985500336, 'W': 87.73, 'J_1KI': 74.75448479256191, 'W_1KI': 5.083439564260054, 'W_D': 71.3875, 'J_D': 1049.7883796334268, 'W_D_1KI': 4.136487426121219, 'J_D_1KI': 0.23968521416857222} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.01.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.01.json new file mode 100644 index 0000000..00dd221 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 1116, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.347081184387207, "TIME_S_1KI": 9.27157812221076, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2825.247347984314, "W": 53.89, "J_1KI": 2531.5836451472346, "W_1KI": 48.288530465949826, "W_D": 37.37625, "J_D": 1959.4943624067305, "W_D_1KI": 33.491263440860216, "J_D_1KI": 30.010092688942844} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.01.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.01.output new file mode 100644 index 0000000..1b20dcd --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.01.output @@ -0,0 +1,86 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 1.2946875095367432} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 488, 979, ..., 24999008, + 24999504, 25000000]), + col_indices=tensor([ 111, 301, 401, ..., 49766, 49891, 49958]), + values=tensor([2.3418e-01, 9.8131e-01, 8.1298e-03, ..., + 6.0106e-01, 4.2789e-04, 8.6966e-01]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.1063, 0.9255, 0.6653, ..., 0.3278, 0.7920, 0.4701]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 1.2946875095367432 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '811', '-ss', '50000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 7.6258299350738525} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 521, 1028, ..., 24999005, + 24999496, 25000000]), + col_indices=tensor([ 169, 333, 382, ..., 49620, 49646, 49746]), + values=tensor([0.1336, 0.2367, 0.6093, ..., 0.7411, 0.2218, 0.9154]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.7321, 0.9416, 0.5259, ..., 0.9099, 0.7583, 0.2580]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 7.6258299350738525 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1116', '-ss', '50000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.347081184387207} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 467, 956, ..., 24998994, + 24999500, 25000000]), + col_indices=tensor([ 21, 163, 165, ..., 49855, 49860, 49938]), + values=tensor([0.3050, 0.9077, 0.0930, ..., 0.0680, 0.0415, 0.3010]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.5141, 0.6637, 0.6626, ..., 0.2332, 0.8993, 0.6899]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 10.347081184387207 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 467, 956, ..., 24998994, + 24999500, 25000000]), + col_indices=tensor([ 21, 163, 165, ..., 49855, 49860, 49938]), + values=tensor([0.3050, 0.9077, 0.0930, ..., 0.0680, 0.0415, 0.3010]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.5141, 0.6637, 0.6626, ..., 0.2332, 0.8993, 0.6899]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 10.347081184387207 seconds + +[18.41, 17.99, 18.33, 18.02, 17.96, 17.91, 21.56, 18.23, 18.08, 17.76] +[53.89] +52.42618942260742 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1116, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.347081184387207, 'TIME_S_1KI': 9.27157812221076, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2825.247347984314, 'W': 53.89} +[18.41, 17.99, 18.33, 18.02, 17.96, 17.91, 21.56, 18.23, 18.08, 17.76, 18.54, 18.29, 18.11, 17.98, 18.09, 18.71, 18.38, 18.01, 18.26, 18.02] +330.27500000000003 +16.51375 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1116, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.347081184387207, 'TIME_S_1KI': 9.27157812221076, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2825.247347984314, 'W': 53.89, 'J_1KI': 2531.5836451472346, 'W_1KI': 48.288530465949826, 'W_D': 37.37625, 'J_D': 1959.4943624067305, 'W_D_1KI': 33.491263440860216, 'J_D_1KI': 30.010092688942844} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_1e-05.json index 8166250..3827350 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_1e-05.json +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_1e-05.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 109532, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.03889274597168, "TIME_S_1KI": 0.09165260148606508, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1026.1644780921936, "W": 75.74, "J_1KI": 9.368627233066078, "W_1KI": 0.6914874192016944, "W_D": 59.13049999999999, "J_D": 801.1304287276266, "W_D_1KI": 0.539846802760837, "J_D_1KI": 0.004928667446598592} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 114513, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.690773725509644, "TIME_S_1KI": 0.09335860317614283, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1104.0986349916457, "W": 76.13, "J_1KI": 9.641688148870832, "W_1KI": 0.6648153484757189, "W_D": 59.82149999999999, "J_D": 867.5796202962398, "W_D_1KI": 0.5223992035838725, "J_D_1KI": 0.004561920511940762} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_1e-05.output index 709a214..1524e8c 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_1e-05.output +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_1e-05.output @@ -1,13 +1,13 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.12936139106750488} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.025936126708984375} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 24998, 24998, 25000]), - col_indices=tensor([44477, 18295, 41758, ..., 46506, 28720, 46164]), - values=tensor([0.4132, 0.4608, 0.2599, ..., 0.0448, 0.1303, 0.6544]), +tensor(crow_indices=tensor([ 0, 1, 1, ..., 25000, 25000, 25000]), + col_indices=tensor([20193, 9953, 42880, ..., 12429, 7497, 42914]), + values=tensor([0.2197, 0.8269, 0.1857, ..., 0.3505, 0.1509, 0.9771]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.0039, 0.4422, 0.0639, ..., 0.1130, 0.9521, 0.1334]) +tensor([0.1918, 0.1249, 0.1152, ..., 0.8034, 0.5794, 0.7689]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -15,18 +15,37 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 0.12936139106750488 seconds +Time: 0.025936126708984375 seconds -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '81167', '-ss', '50000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.780844211578369} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '40484', '-ss', '50000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 3.938389301300049} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 24997, 24998, 25000]), + col_indices=tensor([10460, 10153, 3528, ..., 24271, 7757, 10191]), + values=tensor([0.9506, 0.4415, 0.5851, ..., 0.4538, 0.6997, 0.3353]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.8879, 0.8298, 0.7702, ..., 0.5204, 0.0041, 0.9281]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 3.938389301300049 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '107932', '-ss', '50000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.896521091461182} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 1, 1, ..., 24999, 24999, 25000]), - col_indices=tensor([38361, 15493, 29627, ..., 27733, 22368, 35508]), - values=tensor([0.9149, 0.3524, 0.3637, ..., 0.0393, 0.5821, 0.3741]), + col_indices=tensor([28383, 18616, 44948, ..., 18982, 36427, 31817]), + values=tensor([0.7119, 0.6692, 0.1695, ..., 0.9276, 0.2360, 0.8672]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.5874, 0.0444, 0.7896, ..., 0.3503, 0.3177, 0.2388]) +tensor([0.3408, 0.5698, 0.4224, ..., 0.7704, 0.6104, 0.7559]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -34,18 +53,18 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 7.780844211578369 seconds +Time: 9.896521091461182 seconds -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '109532', '-ss', '50000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.03889274597168} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '114513', '-ss', '50000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.690773725509644} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 24997, 24997, 25000]), - col_indices=tensor([17005, 6306, 21289, ..., 8288, 8622, 19411]), - values=tensor([0.2779, 0.9469, 0.2610, ..., 0.9922, 0.2668, 0.6005]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 25000, 25000, 25000]), + col_indices=tensor([ 6936, 24119, 42629, ..., 33437, 2193, 4338]), + values=tensor([0.2031, 0.4334, 0.3517, ..., 0.1037, 0.1982, 0.4022]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.1194, 0.4917, 0.3228, ..., 0.2258, 0.0044, 0.3600]) +tensor([0.0121, 0.3083, 0.6972, ..., 0.1499, 0.8195, 0.8871]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -53,15 +72,15 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 10.03889274597168 seconds +Time: 10.690773725509644 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 24997, 24997, 25000]), - col_indices=tensor([17005, 6306, 21289, ..., 8288, 8622, 19411]), - values=tensor([0.2779, 0.9469, 0.2610, ..., 0.9922, 0.2668, 0.6005]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 25000, 25000, 25000]), + col_indices=tensor([ 6936, 24119, 42629, ..., 33437, 2193, 4338]), + values=tensor([0.2031, 0.4334, 0.3517, ..., 0.1037, 0.1982, 0.4022]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.1194, 0.4917, 0.3228, ..., 0.2258, 0.0044, 0.3600]) +tensor([0.0121, 0.3083, 0.6972, ..., 0.1499, 0.8195, 0.8871]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -69,13 +88,13 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 10.03889274597168 seconds +Time: 10.690773725509644 seconds -[19.15, 18.96, 18.11, 18.03, 19.81, 17.96, 18.06, 18.12, 18.35, 17.94] -[75.74] -13.548514366149902 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 109532, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.03889274597168, 'TIME_S_1KI': 0.09165260148606508, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1026.1644780921936, 'W': 75.74} -[19.15, 18.96, 18.11, 18.03, 19.81, 17.96, 18.06, 18.12, 18.35, 17.94, 18.12, 21.35, 17.92, 18.62, 18.1, 18.19, 17.98, 17.91, 18.07, 18.09] -332.19000000000005 -16.609500000000004 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 109532, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.03889274597168, 'TIME_S_1KI': 0.09165260148606508, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1026.1644780921936, 'W': 75.74, 'J_1KI': 9.368627233066078, 'W_1KI': 0.6914874192016944, 'W_D': 59.13049999999999, 'J_D': 801.1304287276266, 'W_D_1KI': 0.539846802760837, 'J_D_1KI': 0.004928667446598592} +[18.43, 18.05, 18.18, 17.94, 17.98, 18.17, 18.18, 17.96, 18.08, 18.28] +[76.13] +14.502806186676025 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 114513, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.690773725509644, 'TIME_S_1KI': 0.09335860317614283, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1104.0986349916457, 'W': 76.13} +[18.43, 18.05, 18.18, 17.94, 17.98, 18.17, 18.18, 17.96, 18.08, 18.28, 18.27, 17.98, 18.37, 18.47, 18.2, 17.9, 18.1, 18.12, 18.02, 17.96] +326.17 +16.308500000000002 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 114513, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.690773725509644, 'TIME_S_1KI': 0.09335860317614283, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1104.0986349916457, 'W': 76.13, 'J_1KI': 9.641688148870832, 'W_1KI': 0.6648153484757189, 'W_D': 59.82149999999999, 'J_D': 867.5796202962398, 'W_D_1KI': 0.5223992035838725, 'J_D_1KI': 0.004561920511940762} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_5e-05.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_5e-05.json new file mode 100644 index 0000000..7635079 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 87123, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.505861759185791, "TIME_S_1KI": 0.12058654728585783, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1083.1826461410521, "W": 80.24, "J_1KI": 12.43279783915903, "W_1KI": 0.9209967517188342, "W_D": 63.674249999999994, "J_D": 859.5568619896172, "W_D_1KI": 0.7308546537653662, "J_D_1KI": 0.00838876822154157} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_5e-05.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_5e-05.output new file mode 100644 index 0000000..089ad96 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_5e-05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.029273509979248047} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 7, ..., 124995, 124998, + 125000]), + col_indices=tensor([ 551, 18742, 22548, ..., 32794, 16422, 37041]), + values=tensor([0.7421, 0.1633, 0.4685, ..., 0.4955, 0.1690, 0.9373]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.5671, 0.1718, 0.7006, ..., 0.0603, 0.4651, 0.4190]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 0.029273509979248047 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '35868', '-ss', '50000', '-sd', '5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 4.322763681411743} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 7, ..., 124993, 124996, + 125000]), + col_indices=tensor([10292, 17103, 19384, ..., 21480, 22459, 30474]), + values=tensor([0.3992, 0.1013, 0.2691, ..., 0.1460, 0.2288, 0.5075]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.9479, 0.9531, 0.4260, ..., 0.3198, 0.2541, 0.8697]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 4.322763681411743 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '87123', '-ss', '50000', '-sd', '5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.505861759185791} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 2, ..., 124993, 124998, + 125000]), + col_indices=tensor([ 2935, 11122, 10966, ..., 49613, 4331, 15007]), + values=tensor([0.3574, 0.4392, 0.6710, ..., 0.1033, 0.1015, 0.5102]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.0826, 0.0461, 0.6873, ..., 0.1063, 0.7746, 0.5118]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 10.505861759185791 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 2, ..., 124993, 124998, + 125000]), + col_indices=tensor([ 2935, 11122, 10966, ..., 49613, 4331, 15007]), + values=tensor([0.3574, 0.4392, 0.6710, ..., 0.1033, 0.1015, 0.5102]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.0826, 0.0461, 0.6873, ..., 0.1063, 0.7746, 0.5118]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 10.505861759185791 seconds + +[18.58, 18.04, 18.0, 17.91, 17.9, 20.59, 18.05, 18.07, 17.88, 18.18] +[80.24] +13.499285221099854 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 87123, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.505861759185791, 'TIME_S_1KI': 0.12058654728585783, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1083.1826461410521, 'W': 80.24} +[18.58, 18.04, 18.0, 17.91, 17.9, 20.59, 18.05, 18.07, 17.88, 18.18, 18.74, 21.37, 18.26, 18.13, 18.12, 17.84, 18.06, 17.91, 18.35, 18.17] +331.315 +16.56575 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 87123, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.505861759185791, 'TIME_S_1KI': 0.12058654728585783, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1083.1826461410521, 'W': 80.24, 'J_1KI': 12.43279783915903, 'W_1KI': 0.9209967517188342, 'W_D': 63.674249999999994, 'J_D': 859.5568619896172, 'W_D_1KI': 0.7308546537653662, 'J_D_1KI': 0.00838876822154157} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.0001.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.0001.json index 3b1a4d8..c76a143 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.0001.json +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.0001.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 334616, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.390317678451538, "TIME_S_1KI": 0.03105146699037565, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1009.4583482408524, "W": 73.59, "J_1KI": 3.0167665271261757, "W_1KI": 0.21992373347359362, "W_D": 57.37650000000001, "J_D": 787.052410896063, "W_D_1KI": 0.17146968465345352, "J_D_1KI": 0.0005124371956315703} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 334626, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.109118700027466, "TIME_S_1KI": 0.030210200940833844, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1025.1804789018631, "W": 73.29, "J_1KI": 3.063660561049838, "W_1KI": 0.219020637965968, "W_D": 56.847750000000005, "J_D": 795.1862951220274, "W_D_1KI": 0.16988443814885876, "J_D_1KI": 0.0005076845139016656} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.0001.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.0001.output index ab60bf4..81b5928 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.0001.output +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.0001.output @@ -1,13 +1,13 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.0494227409362793} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.020055532455444336} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 2499, 2500, 2500]), - col_indices=tensor([2191, 1647, 4069, ..., 3482, 688, 2162]), - values=tensor([0.7127, 0.2553, 0.3133, ..., 0.9149, 0.5638, 0.5628]), + col_indices=tensor([2122, 3396, 4900, ..., 3006, 1251, 2017]), + values=tensor([0.1868, 0.0259, 0.3673, ..., 0.0909, 0.5358, 0.3608]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.0865, 0.0532, 0.7203, ..., 0.4777, 0.7863, 0.0162]) +tensor([0.5194, 0.1996, 0.4802, ..., 0.7962, 0.4168, 0.5561]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -15,18 +15,37 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 0.0494227409362793 seconds +Time: 0.020055532455444336 seconds -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '212452', '-ss', '5000', '-sd', '0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 6.666574239730835} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '52354', '-ss', '5000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 1.6427783966064453} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 2498, 2499, 2500]), + col_indices=tensor([2755, 4785, 642, ..., 761, 1671, 4009]), + values=tensor([0.6216, 0.3711, 0.5927, ..., 0.4412, 0.8122, 0.2675]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.4766, 0.5997, 0.2696, ..., 0.3490, 0.2681, 0.0383]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 1.6427783966064453 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '334626', '-ss', '5000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.109118700027466} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 2500, 2500, 2500]), - col_indices=tensor([2208, 2123, 4174, ..., 2091, 42, 2382]), - values=tensor([0.8755, 0.2371, 0.7047, ..., 0.2373, 0.9261, 0.2864]), + col_indices=tensor([3166, 2984, 4242, ..., 1801, 191, 2968]), + values=tensor([0.8061, 0.6429, 0.9344, ..., 0.0259, 0.3545, 0.7535]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.3651, 0.6415, 0.7426, ..., 0.3371, 0.9910, 0.6174]) +tensor([0.9083, 0.2521, 0.7196, ..., 0.0784, 0.7825, 0.2390]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -34,18 +53,15 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 6.666574239730835 seconds - -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '334616', '-ss', '5000', '-sd', '0.0001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.390317678451538} +Time: 10.109118700027466 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 2498, 2498, 2500]), - col_indices=tensor([1385, 3626, 3706, ..., 891, 2896, 4403]), - values=tensor([0.8264, 0.4439, 0.4297, ..., 0.4171, 0.8922, 0.6160]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 2500, 2500, 2500]), + col_indices=tensor([3166, 2984, 4242, ..., 1801, 191, 2968]), + values=tensor([0.8061, 0.6429, 0.9344, ..., 0.0259, 0.3545, 0.7535]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.2966, 0.7201, 0.1357, ..., 0.1499, 0.6981, 0.8153]) +tensor([0.9083, 0.2521, 0.7196, ..., 0.0784, 0.7825, 0.2390]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,29 +69,13 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 10.390317678451538 seconds +Time: 10.109118700027466 seconds -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 2498, 2498, 2500]), - col_indices=tensor([1385, 3626, 3706, ..., 891, 2896, 4403]), - values=tensor([0.8264, 0.4439, 0.4297, ..., 0.4171, 0.8922, 0.6160]), - size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.2966, 0.7201, 0.1357, ..., 0.1499, 0.6981, 0.8153]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([5000, 5000]) -Rows: 5000 -Size: 25000000 -NNZ: 2500 -Density: 0.0001 -Time: 10.390317678451538 seconds - -[18.39, 18.14, 17.96, 18.23, 18.13, 17.78, 18.17, 18.05, 18.11, 18.01] -[73.59] -13.71733045578003 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 334616, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.390317678451538, 'TIME_S_1KI': 0.03105146699037565, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1009.4583482408524, 'W': 73.59} -[18.39, 18.14, 17.96, 18.23, 18.13, 17.78, 18.17, 18.05, 18.11, 18.01, 18.29, 17.99, 18.0, 17.86, 17.97, 18.01, 17.96, 17.81, 17.79, 17.93] -324.27 -16.2135 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 334616, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.390317678451538, 'TIME_S_1KI': 0.03105146699037565, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1009.4583482408524, 'W': 73.59, 'J_1KI': 3.0167665271261757, 'W_1KI': 0.21992373347359362, 'W_D': 57.37650000000001, 'J_D': 787.052410896063, 'W_D_1KI': 0.17146968465345352, 'J_D_1KI': 0.0005124371956315703} +[20.29, 18.13, 18.23, 18.27, 18.36, 17.99, 18.37, 18.01, 18.07, 17.87] +[73.29] +13.987999439239502 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 334626, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.109118700027466, 'TIME_S_1KI': 0.030210200940833844, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1025.1804789018631, 'W': 73.29} +[20.29, 18.13, 18.23, 18.27, 18.36, 17.99, 18.37, 18.01, 18.07, 17.87, 18.97, 18.06, 18.34, 18.0, 18.27, 18.07, 18.01, 18.54, 18.55, 18.02] +328.845 +16.44225 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 334626, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.109118700027466, 'TIME_S_1KI': 0.030210200940833844, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1025.1804789018631, 'W': 73.29, 'J_1KI': 3.063660561049838, 'W_1KI': 0.219020637965968, 'W_D': 56.847750000000005, 'J_D': 795.1862951220274, 'W_D_1KI': 0.16988443814885876, 'J_D_1KI': 0.0005076845139016656} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.001.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.001.json index e6fec4b..417052f 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.001.json +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.001.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 248893, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.503267288208008, "TIME_S_1KI": 0.04219993044484179, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1056.0920481681824, "W": 74.8, "J_1KI": 4.243156891387795, "W_1KI": 0.3005307501617161, "W_D": 58.488749999999996, "J_D": 825.7955051109194, "W_D_1KI": 0.2349955603411908, "J_D_1KI": 0.0009441629951070973} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 248882, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.432960033416748, "TIME_S_1KI": 0.041919303257836035, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1049.6097160863876, "W": 75.02, "J_1KI": 4.2172986237911445, "W_1KI": 0.3014279859531826, "W_D": 58.4725, "J_D": 818.0925636345148, "W_D_1KI": 0.2349406546074043, "J_D_1KI": 0.0009439841153936576} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.001.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.001.output index d474848..121e30b 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.001.output +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.001.output @@ -1,13 +1,13 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.0580594539642334} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.018964052200317383} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 7, ..., 24994, 24998, 25000]), - col_indices=tensor([ 985, 1057, 218, ..., 4882, 1671, 4380]), - values=tensor([0.5160, 0.3498, 0.0303, ..., 0.2263, 0.8538, 0.6441]), +tensor(crow_indices=tensor([ 0, 4, 14, ..., 24990, 24995, 25000]), + col_indices=tensor([ 484, 2538, 3016, ..., 2694, 4380, 4909]), + values=tensor([0.3483, 0.1743, 0.1939, ..., 0.2265, 0.8602, 0.7977]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.8672, 0.0025, 0.6942, ..., 0.2074, 0.2932, 0.8728]) +tensor([0.6164, 0.4905, 0.7241, ..., 0.3672, 0.4239, 0.9077]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -15,18 +15,18 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 0.0580594539642334 seconds +Time: 0.018964052200317383 seconds -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '180849', '-ss', '5000', '-sd', '0.001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 7.629418849945068} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '55367', '-ss', '5000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 2.335857391357422} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 7, 12, ..., 24984, 24994, 25000]), - col_indices=tensor([ 206, 438, 1117, ..., 3589, 4561, 4654]), - values=tensor([0.7806, 0.0093, 0.9775, ..., 0.2394, 0.5986, 0.1036]), +tensor(crow_indices=tensor([ 0, 4, 9, ..., 24986, 24994, 25000]), + col_indices=tensor([1163, 1240, 1422, ..., 4522, 4571, 4830]), + values=tensor([0.2729, 0.7937, 0.6768, ..., 0.2019, 0.8649, 0.0759]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.9079, 0.6440, 0.7990, ..., 0.4243, 0.2944, 0.4838]) +tensor([0.9266, 0.1779, 0.1408, ..., 0.8566, 0.7762, 0.0695]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -34,18 +34,18 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 7.629418849945068 seconds +Time: 2.335857391357422 seconds -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '248893', '-ss', '5000', '-sd', '0.001'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.503267288208008} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '248882', '-ss', '5000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.432960033416748} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 8, 11, ..., 24987, 24992, 25000]), - col_indices=tensor([ 263, 1234, 1436, ..., 3199, 3400, 4091]), - values=tensor([0.7110, 0.3838, 0.4652, ..., 0.0537, 0.9297, 0.5811]), +tensor(crow_indices=tensor([ 0, 10, 15, ..., 24986, 24991, 25000]), + col_indices=tensor([ 131, 267, 600, ..., 3068, 3643, 3839]), + values=tensor([0.7605, 0.7816, 0.2401, ..., 0.7557, 0.2099, 0.5290]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.4941, 0.0109, 0.4935, ..., 0.1517, 0.7151, 0.3544]) +tensor([0.8976, 0.4401, 0.6879, ..., 0.0741, 0.3573, 0.5052]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,15 +53,15 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 10.503267288208008 seconds +Time: 10.432960033416748 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 8, 11, ..., 24987, 24992, 25000]), - col_indices=tensor([ 263, 1234, 1436, ..., 3199, 3400, 4091]), - values=tensor([0.7110, 0.3838, 0.4652, ..., 0.0537, 0.9297, 0.5811]), +tensor(crow_indices=tensor([ 0, 10, 15, ..., 24986, 24991, 25000]), + col_indices=tensor([ 131, 267, 600, ..., 3068, 3643, 3839]), + values=tensor([0.7605, 0.7816, 0.2401, ..., 0.7557, 0.2099, 0.5290]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.4941, 0.0109, 0.4935, ..., 0.1517, 0.7151, 0.3544]) +tensor([0.8976, 0.4401, 0.6879, ..., 0.0741, 0.3573, 0.5052]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -69,13 +69,13 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 10.503267288208008 seconds +Time: 10.432960033416748 seconds -[18.2, 18.48, 18.33, 18.03, 18.1, 18.08, 18.14, 18.78, 18.15, 17.99] -[74.8] -14.118877649307251 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 248893, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.503267288208008, 'TIME_S_1KI': 0.04219993044484179, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1056.0920481681824, 'W': 74.8} -[18.2, 18.48, 18.33, 18.03, 18.1, 18.08, 18.14, 18.78, 18.15, 17.99, 18.23, 17.98, 17.97, 18.01, 17.96, 18.02, 17.91, 18.17, 17.92, 17.97] -326.225 -16.31125 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 248893, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.503267288208008, 'TIME_S_1KI': 0.04219993044484179, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1056.0920481681824, 'W': 74.8, 'J_1KI': 4.243156891387795, 'W_1KI': 0.3005307501617161, 'W_D': 58.488749999999996, 'J_D': 825.7955051109194, 'W_D_1KI': 0.2349955603411908, 'J_D_1KI': 0.0009441629951070973} +[18.55, 18.1, 18.04, 18.77, 18.18, 18.14, 18.08, 18.33, 18.19, 18.07] +[75.02] +13.991065263748169 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 248882, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.432960033416748, 'TIME_S_1KI': 0.041919303257836035, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1049.6097160863876, 'W': 75.02} +[18.55, 18.1, 18.04, 18.77, 18.18, 18.14, 18.08, 18.33, 18.19, 18.07, 18.74, 17.95, 18.05, 18.34, 18.14, 19.14, 18.15, 18.14, 20.44, 18.18] +330.95 +16.5475 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 248882, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.432960033416748, 'TIME_S_1KI': 0.041919303257836035, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1049.6097160863876, 'W': 75.02, 'J_1KI': 4.2172986237911445, 'W_1KI': 0.3014279859531826, 'W_D': 58.4725, 'J_D': 818.0925636345148, 'W_D_1KI': 0.2349406546074043, 'J_D_1KI': 0.0009439841153936576} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.01.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.01.json index 6c317ff..e80d2db 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.01.json +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.01.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 167260, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.636158227920532, "TIME_S_1KI": 0.0635905669491841, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1183.6357300853729, "W": 83.74, "J_1KI": 7.076621607589219, "W_1KI": 0.5006576587349038, "W_D": 67.26599999999999, "J_D": 950.7814786233901, "W_D_1KI": 0.40216429510941043, "J_D_1KI": 0.002404426014046457} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 163647, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.69955587387085, "TIME_S_1KI": 0.06538192495964393, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1158.7786533069611, "W": 84.04, "J_1KI": 7.080964840827887, "W_1KI": 0.5135443973919473, "W_D": 67.71475000000001, "J_D": 933.6792814614178, "W_D_1KI": 0.41378546505588254, "J_D_1KI": 0.002528524599020346} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.01.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.01.output index 72ef990..483c400 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.01.output +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.01.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.01'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.0799260139465332} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.021794557571411133} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 35, 85, ..., 249913, 249959, +tensor(crow_indices=tensor([ 0, 52, 109, ..., 249903, 249954, 250000]), - col_indices=tensor([ 50, 52, 142, ..., 3906, 4174, 4757]), - values=tensor([0.0913, 0.8215, 0.1970, ..., 0.8521, 0.9478, 0.8405]), + col_indices=tensor([ 37, 94, 126, ..., 4726, 4735, 4938]), + values=tensor([0.6014, 0.9404, 0.8499, ..., 0.7854, 0.8553, 0.6608]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.5132, 0.5547, 0.3014, ..., 0.6656, 0.4241, 0.0798]) +tensor([0.8748, 0.2409, 0.9137, ..., 0.2396, 0.5569, 0.4924]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,19 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 0.0799260139465332 seconds +Time: 0.021794557571411133 seconds -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '131371', '-ss', '5000', '-sd', '0.01'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 8.24699854850769} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '48177', '-ss', '5000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 3.0911431312561035} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 34, 94, ..., 249884, 249936, +tensor(crow_indices=tensor([ 0, 42, 103, ..., 249895, 249947, 250000]), - col_indices=tensor([ 2, 398, 450, ..., 4930, 4969, 4985]), - values=tensor([0.5923, 0.5022, 0.7915, ..., 0.6018, 0.8801, 0.8622]), + col_indices=tensor([ 128, 146, 225, ..., 4883, 4900, 4933]), + values=tensor([0.9316, 0.8049, 0.8923, ..., 0.5892, 0.9266, 0.8295]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.1968, 0.0295, 0.9143, ..., 0.4064, 0.2286, 0.1114]) +tensor([0.8118, 0.4201, 0.8184, ..., 0.0833, 0.7283, 0.6165]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -36,19 +36,19 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 8.24699854850769 seconds +Time: 3.0911431312561035 seconds -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '167260', '-ss', '5000', '-sd', '0.01'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.636158227920532} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '163647', '-ss', '5000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.69955587387085} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 41, 97, ..., 249903, 249957, +tensor(crow_indices=tensor([ 0, 65, 110, ..., 249906, 249948, 250000]), - col_indices=tensor([ 6, 32, 62, ..., 4630, 4959, 4982]), - values=tensor([0.7649, 0.1722, 0.7795, ..., 0.2616, 0.2192, 0.2761]), + col_indices=tensor([ 32, 165, 212, ..., 4365, 4391, 4539]), + values=tensor([0.5399, 0.4522, 0.1183, ..., 0.3103, 0.6929, 0.7632]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.3363, 0.3219, 0.7361, ..., 0.7182, 0.1290, 0.5403]) +tensor([0.3241, 0.6966, 0.4101, ..., 0.4425, 0.6108, 0.0322]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -56,16 +56,16 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 10.636158227920532 seconds +Time: 10.69955587387085 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 41, 97, ..., 249903, 249957, +tensor(crow_indices=tensor([ 0, 65, 110, ..., 249906, 249948, 250000]), - col_indices=tensor([ 6, 32, 62, ..., 4630, 4959, 4982]), - values=tensor([0.7649, 0.1722, 0.7795, ..., 0.2616, 0.2192, 0.2761]), + col_indices=tensor([ 32, 165, 212, ..., 4365, 4391, 4539]), + values=tensor([0.5399, 0.4522, 0.1183, ..., 0.3103, 0.6929, 0.7632]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.3363, 0.3219, 0.7361, ..., 0.7182, 0.1290, 0.5403]) +tensor([0.3241, 0.6966, 0.4101, ..., 0.4425, 0.6108, 0.0322]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -73,13 +73,13 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 10.636158227920532 seconds +Time: 10.69955587387085 seconds -[18.39, 18.16, 18.03, 17.97, 18.05, 19.85, 18.01, 18.29, 18.12, 18.31] -[83.74] -14.13465166091919 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 167260, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.636158227920532, 'TIME_S_1KI': 0.0635905669491841, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1183.6357300853729, 'W': 83.74} -[18.39, 18.16, 18.03, 17.97, 18.05, 19.85, 18.01, 18.29, 18.12, 18.31, 17.95, 19.62, 17.88, 18.37, 18.2, 18.02, 18.09, 18.08, 18.42, 17.99] -329.48 -16.474 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 167260, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.636158227920532, 'TIME_S_1KI': 0.0635905669491841, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1183.6357300853729, 'W': 83.74, 'J_1KI': 7.076621607589219, 'W_1KI': 0.5006576587349038, 'W_D': 67.26599999999999, 'J_D': 950.7814786233901, 'W_D_1KI': 0.40216429510941043, 'J_D_1KI': 0.002404426014046457} +[18.19, 18.02, 18.18, 18.28, 17.94, 18.08, 18.33, 18.44, 17.82, 18.2] +[84.04] +13.788418054580688 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 163647, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.69955587387085, 'TIME_S_1KI': 0.06538192495964393, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1158.7786533069611, 'W': 84.04} +[18.19, 18.02, 18.18, 18.28, 17.94, 18.08, 18.33, 18.44, 17.82, 18.2, 18.17, 18.08, 18.2, 17.87, 17.92, 18.23, 18.75, 17.8, 18.09, 18.39] +326.505 +16.32525 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 163647, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.69955587387085, 'TIME_S_1KI': 0.06538192495964393, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1158.7786533069611, 'W': 84.04, 'J_1KI': 7.080964840827887, 'W_1KI': 0.5135443973919473, 'W_D': 67.71475000000001, 'J_D': 933.6792814614178, 'W_D_1KI': 0.41378546505588254, 'J_D_1KI': 0.002528524599020346} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.05.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.05.json index cee5ebd..868cce2 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.05.json +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.05.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 46485, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.648370742797852, "TIME_S_1KI": 0.2290711141830236, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1255.2527691650391, "W": 87.87, "J_1KI": 27.003393980101947, "W_1KI": 1.8902871894159408, "W_D": 71.29950000000001, "J_D": 1018.5375533752442, "W_D_1KI": 1.5338173604388514, "J_D_1KI": 0.03299596343850385} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 46354, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.460933923721313, "TIME_S_1KI": 0.22567489156753062, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1249.411584854126, "W": 87.62, "J_1KI": 26.95369514721763, "W_1KI": 1.8902360098373387, "W_D": 71.2095, "J_D": 1015.4071473598481, "W_D_1KI": 1.5362104672735903, "J_D_1KI": 0.03314083935094254} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.05.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.05.output index cd79c3c..056b89d 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.05.output +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 0.24121379852294922} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 0.03854489326477051} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 267, 541, ..., 1249516, - 1249748, 1250000]), - col_indices=tensor([ 43, 75, 121, ..., 4958, 4960, 4986]), - values=tensor([0.9222, 0.1508, 0.6151, ..., 0.6191, 0.5090, 0.9494]), +tensor(crow_indices=tensor([ 0, 268, 547, ..., 1249522, + 1249752, 1250000]), + col_indices=tensor([ 55, 88, 92, ..., 4943, 4993, 4995]), + values=tensor([0.0205, 0.9162, 0.9855, ..., 0.3784, 0.4892, 0.4396]), size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.9528, 0.4494, 0.6520, ..., 0.1607, 0.1619, 0.1321]) +tensor([0.2348, 0.0514, 0.2847, ..., 0.2791, 0.0660, 0.1214]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,19 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 1250000 Density: 0.05 -Time: 0.24121379852294922 seconds +Time: 0.03854489326477051 seconds -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '43529', '-ss', '5000', '-sd', '0.05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 9.83215594291687} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '27240', '-ss', '5000', '-sd', '0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 6.170231342315674} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 232, 495, ..., 1249518, - 1249779, 1250000]), - col_indices=tensor([ 48, 77, 155, ..., 4840, 4912, 4927]), - values=tensor([0.7412, 0.4704, 0.5361, ..., 0.0050, 0.3320, 0.0792]), +tensor(crow_indices=tensor([ 0, 248, 482, ..., 1249549, + 1249769, 1250000]), + col_indices=tensor([ 15, 21, 37, ..., 4863, 4919, 4974]), + values=tensor([0.5137, 0.1549, 0.4159, ..., 0.2935, 0.1856, 0.8128]), size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.0891, 0.9943, 0.3145, ..., 0.1784, 0.0363, 0.2532]) +tensor([0.7661, 0.7592, 0.8422, ..., 0.1260, 0.8520, 0.6179]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -36,19 +36,19 @@ Rows: 5000 Size: 25000000 NNZ: 1250000 Density: 0.05 -Time: 9.83215594291687 seconds +Time: 6.170231342315674 seconds -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '46485', '-ss', '5000', '-sd', '0.05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.648370742797852} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '46354', '-ss', '5000', '-sd', '0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.460933923721313} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 231, 510, ..., 1249526, - 1249780, 1250000]), - col_indices=tensor([ 32, 71, 112, ..., 4895, 4929, 4940]), - values=tensor([0.5396, 0.2475, 0.0729, ..., 0.2451, 0.2187, 0.9449]), +tensor(crow_indices=tensor([ 0, 262, 517, ..., 1249525, + 1249760, 1250000]), + col_indices=tensor([ 1, 93, 112, ..., 4957, 4968, 4975]), + values=tensor([0.1837, 0.8744, 0.5620, ..., 0.5820, 0.1645, 0.1343]), size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.6746, 0.7318, 0.7509, ..., 0.9415, 0.3905, 0.0197]) +tensor([0.3700, 0.8319, 0.5287, ..., 0.8208, 0.8249, 0.9051]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -56,16 +56,16 @@ Rows: 5000 Size: 25000000 NNZ: 1250000 Density: 0.05 -Time: 10.648370742797852 seconds +Time: 10.460933923721313 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 231, 510, ..., 1249526, - 1249780, 1250000]), - col_indices=tensor([ 32, 71, 112, ..., 4895, 4929, 4940]), - values=tensor([0.5396, 0.2475, 0.0729, ..., 0.2451, 0.2187, 0.9449]), +tensor(crow_indices=tensor([ 0, 262, 517, ..., 1249525, + 1249760, 1250000]), + col_indices=tensor([ 1, 93, 112, ..., 4957, 4968, 4975]), + values=tensor([0.1837, 0.8744, 0.5620, ..., 0.5820, 0.1645, 0.1343]), size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.6746, 0.7318, 0.7509, ..., 0.9415, 0.3905, 0.0197]) +tensor([0.3700, 0.8319, 0.5287, ..., 0.8208, 0.8249, 0.9051]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -73,13 +73,13 @@ Rows: 5000 Size: 25000000 NNZ: 1250000 Density: 0.05 -Time: 10.648370742797852 seconds +Time: 10.460933923721313 seconds -[18.37, 17.89, 18.14, 18.27, 18.28, 18.81, 17.93, 18.0, 17.89, 19.89] -[87.87] -14.28533935546875 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 46485, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.648370742797852, 'TIME_S_1KI': 0.2290711141830236, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1255.2527691650391, 'W': 87.87} -[18.37, 17.89, 18.14, 18.27, 18.28, 18.81, 17.93, 18.0, 17.89, 19.89, 18.31, 18.14, 18.17, 17.98, 21.39, 18.55, 17.96, 18.39, 18.34, 17.99] -331.40999999999997 -16.5705 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 46485, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.648370742797852, 'TIME_S_1KI': 0.2290711141830236, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1255.2527691650391, 'W': 87.87, 'J_1KI': 27.003393980101947, 'W_1KI': 1.8902871894159408, 'W_D': 71.29950000000001, 'J_D': 1018.5375533752442, 'W_D_1KI': 1.5338173604388514, 'J_D_1KI': 0.03299596343850385} +[18.2, 17.97, 18.75, 20.89, 18.05, 18.04, 17.92, 18.15, 18.09, 18.27] +[87.62] +14.25943374633789 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 46354, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.460933923721313, 'TIME_S_1KI': 0.22567489156753062, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1249.411584854126, 'W': 87.62} +[18.2, 17.97, 18.75, 20.89, 18.05, 18.04, 17.92, 18.15, 18.09, 18.27, 18.35, 17.98, 17.96, 18.31, 17.83, 17.89, 18.02, 18.18, 17.85, 17.84] +328.21000000000004 +16.410500000000003 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 46354, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.460933923721313, 'TIME_S_1KI': 0.22567489156753062, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1249.411584854126, 'W': 87.62, 'J_1KI': 26.95369514721763, 'W_1KI': 1.8902360098373387, 'W_D': 71.2095, 'J_D': 1015.4071473598481, 'W_D_1KI': 1.5362104672735903, 'J_D_1KI': 0.03314083935094254} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.1.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.1.json index 0fd50b0..30ee0bd 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.1.json +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.1.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 19767, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.566095352172852, "TIME_S_1KI": 0.5345320661796353, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1281.5856591796876, "W": 87.51, "J_1KI": 64.8346061202857, "W_1KI": 4.427075428744878, "W_D": 71.21225000000001, "J_D": 1042.904792114258, "W_D_1KI": 3.6025825871401835, "J_D_1KI": 0.18225236946123255} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 19580, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.499455213546753, "TIME_S_1KI": 0.5362336676990169, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1272.879629366398, "W": 87.53, "J_1KI": 65.00917412494371, "W_1KI": 4.470377936670071, "W_D": 70.8715, "J_D": 1030.6282263525725, "W_D_1KI": 3.6195863125638406, "J_D_1KI": 0.18486140513604907} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.1.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.1.output index df7022e..e7e4d14 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.1.output +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.1.output @@ -1,14 +1,14 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 0.5311744213104248} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 0.06696105003356934} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 483, 993, ..., 2498991, - 2499491, 2500000]), - col_indices=tensor([ 15, 20, 28, ..., 4987, 4988, 4995]), - values=tensor([0.8912, 0.6515, 0.2376, ..., 0.2173, 0.7300, 0.9523]), +tensor(crow_indices=tensor([ 0, 497, 967, ..., 2499018, + 2499482, 2500000]), + col_indices=tensor([ 1, 5, 13, ..., 4954, 4967, 4978]), + values=tensor([0.9405, 0.9423, 0.1495, ..., 0.5665, 0.9976, 0.7425]), size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.3817, 0.2295, 0.0793, ..., 0.5917, 0.1851, 0.3088]) +tensor([0.7464, 0.9379, 0.0503, ..., 0.7608, 0.2384, 0.8928]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,19 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 2500000 Density: 0.1 -Time: 0.5311744213104248 seconds +Time: 0.06696105003356934 seconds -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '19767', '-ss', '5000', '-sd', '0.1'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.566095352172852} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '15680', '-ss', '5000', '-sd', '0.1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 8.408252954483032} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 521, 1020, ..., 2499029, - 2499506, 2500000]), - col_indices=tensor([ 2, 18, 32, ..., 4991, 4992, 4995]), - values=tensor([0.1206, 0.3118, 0.4014, ..., 0.4488, 0.4763, 0.9896]), +tensor(crow_indices=tensor([ 0, 497, 993, ..., 2499009, + 2499527, 2500000]), + col_indices=tensor([ 20, 30, 45, ..., 4969, 4978, 4985]), + values=tensor([0.7997, 0.6173, 0.7759, ..., 0.4558, 0.1544, 0.5880]), size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.0140, 0.3283, 0.7098, ..., 0.4613, 0.1962, 0.1627]) +tensor([0.0537, 0.7107, 0.3297, ..., 0.5168, 0.3739, 0.3386]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -36,16 +36,19 @@ Rows: 5000 Size: 25000000 NNZ: 2500000 Density: 0.1 -Time: 10.566095352172852 seconds +Time: 8.408252954483032 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '19580', '-ss', '5000', '-sd', '0.1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.499455213546753} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 521, 1020, ..., 2499029, - 2499506, 2500000]), - col_indices=tensor([ 2, 18, 32, ..., 4991, 4992, 4995]), - values=tensor([0.1206, 0.3118, 0.4014, ..., 0.4488, 0.4763, 0.9896]), +tensor(crow_indices=tensor([ 0, 479, 1002, ..., 2498942, + 2499462, 2500000]), + col_indices=tensor([ 2, 9, 12, ..., 4986, 4993, 4996]), + values=tensor([0.9703, 0.1385, 0.8259, ..., 0.8503, 0.3399, 0.6161]), size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.0140, 0.3283, 0.7098, ..., 0.4613, 0.1962, 0.1627]) +tensor([0.4198, 0.0425, 0.0591, ..., 0.3064, 0.5860, 0.9864]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,13 +56,30 @@ Rows: 5000 Size: 25000000 NNZ: 2500000 Density: 0.1 -Time: 10.566095352172852 seconds +Time: 10.499455213546753 seconds -[18.51, 17.88, 18.11, 18.97, 18.57, 17.75, 18.11, 17.81, 18.02, 17.72] -[87.51] -14.64501953125 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 19767, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.566095352172852, 'TIME_S_1KI': 0.5345320661796353, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1281.5856591796876, 'W': 87.51} -[18.51, 17.88, 18.11, 18.97, 18.57, 17.75, 18.11, 17.81, 18.02, 17.72, 18.1, 18.14, 18.04, 18.33, 18.06, 17.95, 18.01, 18.09, 18.02, 17.86] -325.95500000000004 -16.29775 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 19767, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.566095352172852, 'TIME_S_1KI': 0.5345320661796353, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1281.5856591796876, 'W': 87.51, 'J_1KI': 64.8346061202857, 'W_1KI': 4.427075428744878, 'W_D': 71.21225000000001, 'J_D': 1042.904792114258, 'W_D_1KI': 3.6025825871401835, 'J_D_1KI': 0.18225236946123255} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 479, 1002, ..., 2498942, + 2499462, 2500000]), + col_indices=tensor([ 2, 9, 12, ..., 4986, 4993, 4996]), + values=tensor([0.9703, 0.1385, 0.8259, ..., 0.8503, 0.3399, 0.6161]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.4198, 0.0425, 0.0591, ..., 0.3064, 0.5860, 0.9864]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 10.499455213546753 seconds + +[18.41, 17.85, 18.5, 18.03, 18.16, 17.87, 17.95, 21.49, 18.34, 18.02] +[87.53] +14.54220986366272 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 19580, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.499455213546753, 'TIME_S_1KI': 0.5362336676990169, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1272.879629366398, 'W': 87.53} +[18.41, 17.85, 18.5, 18.03, 18.16, 17.87, 17.95, 21.49, 18.34, 18.02, 18.22, 18.11, 19.31, 20.46, 18.5, 18.28, 17.98, 18.24, 17.73, 18.09] +333.17 +16.6585 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 19580, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.499455213546753, 'TIME_S_1KI': 0.5362336676990169, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1272.879629366398, 'W': 87.53, 'J_1KI': 65.00917412494371, 'W_1KI': 4.470377936670071, 'W_D': 70.8715, 'J_D': 1030.6282263525725, 'W_D_1KI': 3.6195863125638406, 'J_D_1KI': 0.18486140513604907} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.2.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.2.json new file mode 100644 index 0000000..e35fdc8 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.2.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 9170, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.682870388031006, "TIME_S_1KI": 1.1649804130895316, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1294.0732465410233, "W": 85.83, "J_1KI": 141.1203104188684, "W_1KI": 9.359869138495092, "W_D": 69.25649999999999, "J_D": 1044.1918187005517, "W_D_1KI": 7.552508178844056, "J_D_1KI": 0.8236104884235611} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.2.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.2.output new file mode 100644 index 0000000..5537faf --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.2.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.2'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 0.13022398948669434} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1019, 1995, ..., 4997994, + 4998986, 5000000]), + col_indices=tensor([ 3, 6, 16, ..., 4985, 4988, 4992]), + values=tensor([0.7011, 0.4191, 0.0262, ..., 0.8760, 0.6600, 0.8030]), + size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.6407, 0.2177, 0.8923, ..., 0.2240, 0.7772, 0.6410]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 5000000 +Density: 0.2 +Time: 0.13022398948669434 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '8063', '-ss', '5000', '-sd', '0.2'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 9.23195219039917} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 967, 1963, ..., 4997972, + 4999023, 5000000]), + col_indices=tensor([ 1, 8, 12, ..., 4992, 4997, 4998]), + values=tensor([0.9256, 0.0587, 0.0398, ..., 0.7563, 0.3156, 0.8023]), + size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.2454, 0.6913, 0.0165, ..., 0.7228, 0.0396, 0.9796]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 5000000 +Density: 0.2 +Time: 9.23195219039917 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '9170', '-ss', '5000', '-sd', '0.2'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.682870388031006} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1039, 2045, ..., 4997951, + 4999001, 5000000]), + col_indices=tensor([ 1, 3, 21, ..., 4981, 4993, 4997]), + values=tensor([0.7269, 0.5102, 0.5857, ..., 0.9126, 0.4820, 0.1281]), + size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.7504, 0.3556, 0.6036, ..., 0.9776, 0.8116, 0.9002]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 5000000 +Density: 0.2 +Time: 10.682870388031006 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1039, 2045, ..., 4997951, + 4999001, 5000000]), + col_indices=tensor([ 1, 3, 21, ..., 4981, 4993, 4997]), + values=tensor([0.7269, 0.5102, 0.5857, ..., 0.9126, 0.4820, 0.1281]), + size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.7504, 0.3556, 0.6036, ..., 0.9776, 0.8116, 0.9002]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 5000000 +Density: 0.2 +Time: 10.682870388031006 seconds + +[18.71, 17.74, 17.83, 18.37, 18.26, 18.61, 17.98, 17.99, 18.09, 22.02] +[85.83] +15.07716703414917 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 9170, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.682870388031006, 'TIME_S_1KI': 1.1649804130895316, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1294.0732465410233, 'W': 85.83} +[18.71, 17.74, 17.83, 18.37, 18.26, 18.61, 17.98, 17.99, 18.09, 22.02, 18.37, 17.98, 18.13, 19.94, 19.96, 18.01, 18.17, 17.86, 18.08, 17.84] +331.47 +16.573500000000003 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 9170, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.682870388031006, 'TIME_S_1KI': 1.1649804130895316, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1294.0732465410233, 'W': 85.83, 'J_1KI': 141.1203104188684, 'W_1KI': 9.359869138495092, 'W_D': 69.25649999999999, 'J_D': 1044.1918187005517, 'W_D_1KI': 7.552508178844056, 'J_D_1KI': 0.8236104884235611} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.3.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.3.json new file mode 100644 index 0000000..b09a9ac --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.3.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 5638, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.486673831939697, "TIME_S_1KI": 1.859998905984338, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1324.2176235437394, "W": 84.45, "J_1KI": 234.87364731176646, "W_1KI": 14.978715856686769, "W_D": 67.81275, "J_D": 1063.3373434098958, "W_D_1KI": 12.027802412202908, "J_D_1KI": 2.1333455857046664} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.3.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.3.output new file mode 100644 index 0000000..933e0af --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.3.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.3'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 0.19828367233276367} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1476, 3005, ..., 7497107, + 7498540, 7500000]), + col_indices=tensor([ 1, 2, 5, ..., 4997, 4998, 4999]), + values=tensor([0.6696, 0.7406, 0.6295, ..., 0.1006, 0.8443, 0.3530]), + size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) +tensor([0.2303, 0.2102, 0.7986, ..., 0.7152, 0.6703, 0.2250]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 7500000 +Density: 0.3 +Time: 0.19828367233276367 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '5295', '-ss', '5000', '-sd', '0.3'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 9.860368490219116} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1522, 3011, ..., 7496960, + 7498495, 7500000]), + col_indices=tensor([ 0, 6, 7, ..., 4993, 4995, 4996]), + values=tensor([0.9810, 0.8874, 0.6033, ..., 0.0373, 0.4053, 0.1135]), + size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) +tensor([0.3541, 0.8542, 0.0162, ..., 0.1880, 0.1632, 0.2816]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 7500000 +Density: 0.3 +Time: 9.860368490219116 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '5638', '-ss', '5000', '-sd', '0.3'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.486673831939697} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1590, 3134, ..., 7496893, + 7498424, 7500000]), + col_indices=tensor([ 1, 9, 13, ..., 4990, 4995, 4996]), + values=tensor([0.2379, 0.8284, 0.2265, ..., 0.1431, 0.4495, 0.9988]), + size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) +tensor([0.8528, 0.9292, 0.5816, ..., 0.4785, 0.5785, 0.0165]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 7500000 +Density: 0.3 +Time: 10.486673831939697 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1590, 3134, ..., 7496893, + 7498424, 7500000]), + col_indices=tensor([ 1, 9, 13, ..., 4990, 4995, 4996]), + values=tensor([0.2379, 0.8284, 0.2265, ..., 0.1431, 0.4495, 0.9988]), + size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) +tensor([0.8528, 0.9292, 0.5816, ..., 0.4785, 0.5785, 0.0165]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 7500000 +Density: 0.3 +Time: 10.486673831939697 seconds + +[18.49, 17.91, 18.44, 17.9, 18.58, 17.81, 17.92, 21.43, 18.39, 17.95] +[84.45] +15.680492877960205 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 5638, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.486673831939697, 'TIME_S_1KI': 1.859998905984338, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1324.2176235437394, 'W': 84.45} +[18.49, 17.91, 18.44, 17.9, 18.58, 17.81, 17.92, 21.43, 18.39, 17.95, 18.43, 20.84, 19.1, 18.06, 18.27, 17.75, 18.15, 17.72, 18.16, 17.76] +332.745 +16.63725 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 5638, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.486673831939697, 'TIME_S_1KI': 1.859998905984338, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1324.2176235437394, 'W': 84.45, 'J_1KI': 234.87364731176646, 'W_1KI': 14.978715856686769, 'W_D': 67.81275, 'J_D': 1063.3373434098958, 'W_D_1KI': 12.027802412202908, 'J_D_1KI': 2.1333455857046664} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.4.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.4.json new file mode 100644 index 0000000..6bb4210 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.4.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 2997, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.4, "TIME_S": 10.852682113647461, "TIME_S_1KI": 3.6211818864355894, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1423.3116033363342, "W": 83.38, "J_1KI": 474.9121132253367, "W_1KI": 27.82115448782115, "W_D": 66.859, "J_D": 1141.295160559654, "W_D_1KI": 22.30864197530864, "J_D_1KI": 7.443657649418965} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.4.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.4.output new file mode 100644 index 0000000..7229c6c --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.4.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.4'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.4, "TIME_S": 0.37653517723083496} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2029, 4093, ..., 9995991, + 9998004, 10000000]), + col_indices=tensor([ 2, 3, 6, ..., 4991, 4993, 4995]), + values=tensor([0.7344, 0.2463, 0.3008, ..., 0.7679, 0.9534, 0.0176]), + size=(5000, 5000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.9829, 0.9205, 0.8754, ..., 0.7887, 0.3539, 0.3362]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 10000000 +Density: 0.4 +Time: 0.37653517723083496 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '2788', '-ss', '5000', '-sd', '0.4'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.4, "TIME_S": 9.764836072921753} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2035, 4051, ..., 9995975, + 9998000, 10000000]), + col_indices=tensor([ 1, 7, 13, ..., 4993, 4995, 4999]), + values=tensor([0.5646, 0.0016, 0.0540, ..., 0.1360, 0.4218, 0.1397]), + size=(5000, 5000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.2261, 0.1429, 0.2182, ..., 0.9969, 0.6483, 0.4023]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 10000000 +Density: 0.4 +Time: 9.764836072921753 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '2997', '-ss', '5000', '-sd', '0.4'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.4, "TIME_S": 10.852682113647461} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2037, 4021, ..., 9995904, + 9997943, 10000000]), + col_indices=tensor([ 4, 9, 10, ..., 4993, 4994, 4995]), + values=tensor([0.7234, 0.7434, 0.9107, ..., 0.4914, 0.1939, 0.0446]), + size=(5000, 5000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.2935, 0.8834, 0.9590, ..., 0.1952, 0.7236, 0.3428]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 10000000 +Density: 0.4 +Time: 10.852682113647461 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2037, 4021, ..., 9995904, + 9997943, 10000000]), + col_indices=tensor([ 4, 9, 10, ..., 4993, 4994, 4995]), + values=tensor([0.7234, 0.7434, 0.9107, ..., 0.4914, 0.1939, 0.0446]), + size=(5000, 5000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.2935, 0.8834, 0.9590, ..., 0.1952, 0.7236, 0.3428]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 10000000 +Density: 0.4 +Time: 10.852682113647461 seconds + +[18.3, 18.02, 18.13, 22.02, 18.21, 18.26, 17.95, 17.94, 17.94, 18.03] +[83.38] +17.07017993927002 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2997, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.4, 'TIME_S': 10.852682113647461, 'TIME_S_1KI': 3.6211818864355894, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1423.3116033363342, 'W': 83.38} +[18.3, 18.02, 18.13, 22.02, 18.21, 18.26, 17.95, 17.94, 17.94, 18.03, 18.77, 18.01, 18.52, 18.59, 18.17, 17.81, 18.04, 18.12, 18.22, 17.84] +330.41999999999996 +16.520999999999997 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2997, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.4, 'TIME_S': 10.852682113647461, 'TIME_S_1KI': 3.6211818864355894, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1423.3116033363342, 'W': 83.38, 'J_1KI': 474.9121132253367, 'W_1KI': 27.82115448782115, 'W_D': 66.859, 'J_D': 1141.295160559654, 'W_D_1KI': 22.30864197530864, 'J_D_1KI': 7.443657649418965} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.5.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.5.json new file mode 100644 index 0000000..65b89f9 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.5.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 2368, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 10.176312685012817, "TIME_S_1KI": 4.297429343333116, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1437.3391367673873, "W": 78.7, "J_1KI": 606.984432756498, "W_1KI": 33.2347972972973, "W_D": 62.306000000000004, "J_D": 1137.9269663968087, "W_D_1KI": 26.311655405405407, "J_D_1KI": 11.111340965120526} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.5.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.5.output new file mode 100644 index 0000000..4c78e30 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_0.5.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.5'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 0.48082637786865234} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2493, 4988, ..., 12494973, + 12497489, 12500000]), + col_indices=tensor([ 0, 3, 4, ..., 4995, 4996, 4997]), + values=tensor([0.7019, 0.9323, 0.5533, ..., 0.8475, 0.3948, 0.0670]), + size=(5000, 5000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.2037, 0.7210, 0.2412, ..., 0.0549, 0.3207, 0.0757]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 12500000 +Density: 0.5 +Time: 0.48082637786865234 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '2183', '-ss', '5000', '-sd', '0.5'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 9.679495573043823} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2494, 4974, ..., 12494974, + 12497479, 12500000]), + col_indices=tensor([ 2, 3, 5, ..., 4990, 4992, 4993]), + values=tensor([0.3550, 0.2209, 0.9878, ..., 0.1100, 0.7010, 0.8735]), + size=(5000, 5000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.0897, 0.5505, 0.7451, ..., 0.8823, 0.0649, 0.5912]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 12500000 +Density: 0.5 +Time: 9.679495573043823 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '2368', '-ss', '5000', '-sd', '0.5'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 10.176312685012817} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2500, 5025, ..., 12495060, + 12497549, 12500000]), + col_indices=tensor([ 3, 7, 9, ..., 4994, 4997, 4998]), + values=tensor([0.3762, 0.0915, 0.3071, ..., 0.1948, 0.2052, 0.2572]), + size=(5000, 5000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.2717, 0.6125, 0.0994, ..., 0.4315, 0.1911, 0.5863]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 12500000 +Density: 0.5 +Time: 10.176312685012817 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2500, 5025, ..., 12495060, + 12497549, 12500000]), + col_indices=tensor([ 3, 7, 9, ..., 4994, 4997, 4998]), + values=tensor([0.3762, 0.0915, 0.3071, ..., 0.1948, 0.2052, 0.2572]), + size=(5000, 5000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.2717, 0.6125, 0.0994, ..., 0.4315, 0.1911, 0.5863]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 12500000 +Density: 0.5 +Time: 10.176312685012817 seconds + +[18.38, 18.14, 18.13, 18.09, 18.53, 18.05, 18.22, 17.96, 18.23, 17.96] +[78.7] +18.263521432876587 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2368, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.5, 'TIME_S': 10.176312685012817, 'TIME_S_1KI': 4.297429343333116, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1437.3391367673873, 'W': 78.7} +[18.38, 18.14, 18.13, 18.09, 18.53, 18.05, 18.22, 17.96, 18.23, 17.96, 18.81, 17.96, 18.41, 17.98, 18.95, 18.19, 18.23, 17.96, 18.21, 18.13] +327.88 +16.394 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2368, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.5, 'TIME_S': 10.176312685012817, 'TIME_S_1KI': 4.297429343333116, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1437.3391367673873, 'W': 78.7, 'J_1KI': 606.984432756498, 'W_1KI': 33.2347972972973, 'W_D': 62.306000000000004, 'J_D': 1137.9269663968087, 'W_D_1KI': 26.311655405405407, 'J_D_1KI': 11.111340965120526} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_1e-05.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_1e-05.json index 4be18ec..2ac6398 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_1e-05.json +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_1e-05.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 355144, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.430037498474121, "TIME_S_1KI": 0.02936847447366173, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 997.3673194527627, "W": 73.03, "J_1KI": 2.808346246741498, "W_1KI": 0.20563489739373325, "W_D": 56.462250000000004, "J_D": 771.1023268899322, "W_D_1KI": 0.15898410222332351, "J_D_1KI": 0.0004476609550585777} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 357325, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.499107599258423, "TIME_S_1KI": 0.029382516194664303, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1011.0901748657226, "W": 72.8, "J_1KI": 2.829609388835717, "W_1KI": 0.20373609459175818, "W_D": 46.4985, "J_D": 645.7991276922226, "W_D_1KI": 0.1301294339886658, "J_D_1KI": 0.0003641766850588842} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_1e-05.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_1e-05.output index 1e00532..109e8d2 100644 --- a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_1e-05.output +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_1e-05.output @@ -1,75 +1,75 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.07530069351196289} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.020415544509887695} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 249, 249, 250]), - col_indices=tensor([1366, 2183, 387, 4785, 591, 3875, 1782, 3853, 3491, - 1111, 4311, 1391, 2949, 4195, 1174, 98, 1356, 809, - 1785, 447, 2538, 4572, 2460, 1800, 303, 1931, 4013, - 4968, 4004, 1588, 1643, 1967, 3906, 4748, 1447, 2599, - 629, 3538, 4520, 4776, 4758, 2464, 1751, 3806, 96, - 198, 731, 3443, 3712, 4600, 4270, 2744, 4125, 400, - 468, 107, 2682, 4704, 252, 1804, 2511, 1911, 162, - 2509, 972, 3478, 980, 1895, 2935, 3965, 2890, 3988, - 2804, 3654, 1037, 4790, 2965, 394, 3461, 2942, 2671, - 4602, 851, 2319, 1925, 2531, 2262, 2466, 138, 3192, - 4165, 2776, 2205, 2786, 1112, 4160, 4088, 4917, 1466, - 32, 4695, 2757, 3360, 3218, 455, 480, 4012, 3928, - 3689, 1276, 1963, 1058, 3861, 2863, 4421, 4459, 4424, - 4964, 4366, 2158, 3511, 768, 3822, 1025, 3276, 1349, - 1095, 2928, 2660, 1067, 2626, 893, 4611, 4619, 1553, - 2755, 3328, 4431, 1950, 4722, 1972, 4066, 2996, 4851, - 2711, 2693, 4611, 1116, 4304, 1246, 2511, 2934, 4826, - 2926, 3416, 3468, 2846, 4286, 3701, 3015, 2373, 3319, - 2586, 1704, 3671, 1535, 4335, 3487, 2710, 3432, 1408, - 2336, 4517, 3976, 4761, 1747, 150, 3884, 4390, 3319, - 3373, 3574, 3662, 1429, 4058, 1144, 1909, 4439, 1862, - 343, 1833, 2363, 3001, 1926, 4696, 409, 4669, 2313, - 1538, 3220, 3305, 493, 2975, 4619, 1565, 4245, 1991, - 380, 1379, 2494, 2025, 851, 1740, 171, 2270, 2261, - 2794, 4072, 4453, 4823, 695, 669, 3117, 1730, 3920, - 4849, 3714, 1313, 3918, 1033, 1224, 3117, 2450, 3021, - 3892, 3817, 1313, 2580, 4367, 3947, 3099, 4651, 3006, - 4264, 712, 4793, 3855, 4618, 272, 4548]), - values=tensor([0.5356, 0.5172, 0.5088, 0.7213, 0.3478, 0.1053, 0.9439, - 0.9314, 0.4347, 0.5009, 0.9214, 0.0299, 0.2703, 0.5553, - 0.3016, 0.4455, 0.2361, 0.8920, 0.7432, 0.6139, 0.7733, - 0.3556, 0.1748, 0.8314, 0.8776, 0.8348, 0.1485, 0.4702, - 0.4810, 0.8748, 0.6149, 0.8907, 0.9641, 0.0939, 0.1055, - 0.6954, 0.2399, 0.1624, 0.3696, 0.9614, 0.3594, 0.5972, - 0.9819, 0.0645, 0.3543, 0.1275, 0.6800, 0.3878, 0.7605, - 0.6525, 0.7013, 0.5154, 0.4064, 0.1554, 0.5527, 0.2023, - 0.3691, 0.5797, 0.9886, 0.9941, 0.9352, 0.7550, 0.0819, - 0.3616, 0.7623, 0.6193, 0.3361, 0.9681, 0.4246, 0.6029, - 0.5772, 0.0561, 0.2661, 0.5456, 0.2304, 0.3887, 0.2381, - 0.3730, 0.7517, 0.6162, 0.2738, 0.4697, 0.7504, 0.9515, - 0.7210, 0.4160, 0.4959, 0.5300, 0.2485, 0.7381, 0.3695, - 0.4257, 0.1829, 0.0551, 0.7619, 0.8081, 0.4964, 0.4779, - 0.0357, 0.2681, 0.0521, 0.0389, 0.0434, 0.3566, 0.7098, - 0.1066, 0.0800, 0.4058, 0.5388, 0.9446, 0.2771, 0.5488, - 0.8493, 0.4334, 0.8666, 0.8039, 0.2616, 0.8733, 0.8412, - 0.6075, 0.0051, 0.7165, 0.9628, 0.7661, 0.4765, 0.6812, - 0.1095, 0.7697, 0.6192, 0.6769, 0.9349, 0.0052, 0.1322, - 0.1324, 0.9038, 0.2020, 0.6337, 0.8080, 0.2834, 0.0511, - 0.6009, 0.2042, 0.5100, 0.6688, 0.2408, 0.9657, 0.8116, - 0.8985, 0.0972, 0.8199, 0.3158, 0.7270, 0.0200, 0.2146, - 0.9137, 0.0484, 0.2512, 0.2305, 0.1410, 0.9701, 0.3767, - 0.1641, 0.2509, 0.4147, 0.6141, 0.4403, 0.2333, 0.3371, - 0.6103, 0.2630, 0.2671, 0.0768, 0.8063, 0.8867, 0.9092, - 0.7796, 0.9853, 0.4951, 0.2086, 0.4307, 0.0119, 0.1662, - 0.8220, 0.7333, 0.1521, 0.6924, 0.6584, 0.6936, 0.1717, - 0.0561, 0.9517, 0.6184, 0.4753, 0.7656, 0.9019, 0.5502, - 0.9529, 0.5922, 0.4037, 0.0988, 0.7843, 0.0649, 0.2485, - 0.3469, 0.9377, 0.6160, 0.3297, 0.1479, 0.3514, 0.4560, - 0.6809, 0.0681, 0.5510, 0.6925, 0.2032, 0.7181, 0.5101, - 0.1339, 0.8347, 0.2363, 0.9076, 0.1946, 0.5622, 0.8947, - 0.8049, 0.7599, 0.8724, 0.5959, 0.8922, 0.7182, 0.4477, - 0.5685, 0.4980, 0.5565, 0.2995, 0.7747, 0.8395, 0.0020, - 0.6022, 0.0279, 0.4498, 0.0752, 0.1893, 0.3529, 0.6947, - 0.9277, 0.8241, 0.1856, 0.0213, 0.6132]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([1333, 4323, 980, 4513, 212, 4800, 425, 2650, 4181, + 969, 725, 4708, 2978, 4829, 2835, 2475, 4298, 490, + 871, 3121, 4762, 4479, 218, 2461, 4825, 2919, 512, + 1363, 1944, 2772, 493, 2448, 4663, 4533, 3227, 2251, + 3206, 1036, 4160, 3108, 4112, 520, 4884, 1695, 3846, + 3433, 4341, 314, 4963, 4557, 1460, 2013, 3131, 1087, + 1051, 4820, 1214, 2275, 33, 4231, 755, 1677, 4993, + 6, 698, 1317, 4059, 4178, 3988, 3341, 1529, 1327, + 4807, 1459, 3985, 2360, 1563, 1141, 2987, 4820, 3117, + 3988, 665, 4532, 3163, 3252, 4621, 4938, 2411, 4883, + 2036, 4582, 143, 3182, 722, 2609, 1076, 3554, 197, + 34, 2097, 1008, 2860, 1655, 2265, 3241, 2350, 1493, + 3432, 135, 3780, 2490, 3232, 1376, 4188, 3874, 3039, + 211, 1650, 4645, 4026, 3400, 1898, 591, 1094, 2347, + 3740, 1237, 925, 2787, 2157, 2054, 2757, 4014, 2493, + 4673, 4093, 396, 3012, 1306, 4796, 91, 1743, 543, + 4293, 1561, 1048, 3859, 1955, 3884, 1858, 722, 4225, + 3, 2890, 2664, 3170, 385, 1272, 188, 920, 1323, + 3875, 304, 4410, 2754, 3377, 4890, 4523, 4463, 2061, + 4108, 1554, 1408, 436, 1757, 483, 3973, 1483, 4992, + 3373, 401, 3150, 4902, 982, 3824, 3035, 683, 1843, + 1258, 996, 3656, 3918, 3943, 3598, 214, 724, 3021, + 312, 2986, 2034, 3929, 4868, 4093, 391, 1333, 1344, + 94, 1127, 616, 21, 1697, 646, 658, 1404, 4972, + 1106, 2493, 822, 2442, 3750, 3893, 297, 3607, 4990, + 1137, 2122, 3346, 36, 515, 2447, 1921, 2437, 4525, + 918, 1225, 2348, 1665, 3413, 132, 2821, 111, 225, + 4735, 1677, 1746, 1399, 3492, 1994, 2191]), + values=tensor([0.3602, 0.2302, 0.1896, 0.7717, 0.8956, 0.2078, 0.9487, + 0.0390, 0.3051, 0.4281, 0.9325, 0.8375, 0.6844, 0.7644, + 0.9804, 0.7332, 0.5227, 0.6093, 0.2260, 0.2957, 0.5954, + 0.5378, 0.5320, 0.4643, 0.3270, 0.8112, 0.8555, 0.5438, + 0.7934, 0.2222, 0.8906, 0.2729, 0.9780, 0.8597, 0.4400, + 0.4858, 0.2262, 0.4282, 0.8462, 0.2562, 0.8815, 0.7446, + 0.8391, 0.9365, 0.8781, 0.6986, 0.6943, 0.7579, 0.7636, + 0.9590, 0.7739, 0.5121, 0.8335, 0.2962, 0.5344, 0.4995, + 0.3316, 0.3046, 0.9720, 0.3429, 0.6108, 0.9040, 0.4735, + 0.4252, 0.9794, 0.6492, 0.0484, 0.2038, 0.5032, 0.1575, + 0.2125, 0.6202, 0.9042, 0.6689, 0.5066, 0.9113, 0.9195, + 0.2614, 0.9604, 0.9164, 0.9297, 0.6647, 0.8507, 0.2096, + 0.8186, 0.7548, 0.5297, 0.5479, 0.9328, 0.6830, 0.1651, + 0.9770, 0.1478, 0.1631, 0.6486, 0.7340, 0.9314, 0.8298, + 0.0625, 0.5779, 0.9267, 0.8341, 0.6247, 0.5959, 0.2706, + 0.5015, 0.0222, 0.8356, 0.2739, 0.1607, 0.6428, 0.2275, + 0.4531, 0.9656, 0.4285, 0.6913, 0.6388, 0.2488, 0.5417, + 0.6641, 0.6693, 0.7008, 0.2798, 0.3263, 0.3780, 0.6106, + 0.1001, 0.9342, 0.1338, 0.9089, 0.1127, 0.8287, 0.1281, + 0.0152, 0.2533, 0.8228, 0.6184, 0.5915, 0.5316, 0.8294, + 0.0163, 0.4275, 0.8868, 0.8268, 0.7667, 0.0040, 0.2374, + 0.5011, 0.5032, 0.5731, 0.6046, 0.1518, 0.5693, 0.3308, + 0.3440, 0.5026, 0.8207, 0.2844, 0.6651, 0.1261, 0.7301, + 0.3788, 0.3102, 0.2854, 0.7833, 0.8403, 0.4733, 0.1726, + 0.2895, 0.2693, 0.2450, 0.4577, 0.3046, 0.8813, 0.0902, + 0.8416, 0.8712, 0.6652, 0.0828, 0.2244, 0.6326, 0.9806, + 0.2561, 0.7608, 0.6760, 0.2091, 0.8004, 0.6240, 0.1978, + 0.2246, 0.8102, 0.6207, 0.2204, 0.2354, 0.0013, 0.2440, + 0.6407, 0.4005, 0.5265, 0.2470, 0.8146, 0.4334, 0.7311, + 0.4576, 0.4028, 0.8969, 0.8062, 0.4521, 0.2212, 0.0569, + 0.5145, 0.3716, 0.8367, 0.2637, 0.4458, 0.4981, 0.9509, + 0.3003, 0.2789, 0.8010, 0.0297, 0.6055, 0.0149, 0.5383, + 0.2695, 0.1287, 0.0767, 0.7664, 0.3198, 0.2386, 0.2384, + 0.1616, 0.1390, 0.9600, 0.6032, 0.7446, 0.5942, 0.1408, + 0.5912, 0.3909, 0.1909, 0.4245, 0.3596, 0.3316, 0.0552, + 0.1715, 0.2483, 0.6015, 0.5276, 0.6350]), size=(5000, 5000), nnz=250, layout=torch.sparse_csr) -tensor([0.4529, 0.0478, 0.6057, ..., 0.4541, 0.9032, 0.3518]) +tensor([0.0146, 0.8199, 0.1846, ..., 0.5715, 0.8048, 0.4041]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -77,80 +77,80 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 0.07530069351196289 seconds +Time: 0.020415544509887695 seconds -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '139440', '-ss', '5000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 4.12260627746582} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '51431', '-ss', '5000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 1.5112977027893066} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([4955, 3285, 1092, 4534, 4976, 442, 2522, 4514, 4006, - 1710, 2609, 275, 2553, 192, 68, 4509, 517, 1487, - 4557, 2975, 2588, 4021, 2076, 3240, 3988, 435, 2254, - 2223, 4880, 3865, 3818, 4642, 3945, 4353, 601, 3917, - 1880, 3877, 3791, 4777, 2081, 3917, 4502, 1438, 2426, - 3349, 29, 2250, 3660, 1858, 600, 2889, 2272, 1956, - 751, 3677, 3364, 2676, 4496, 2911, 2638, 552, 4753, - 3313, 3375, 308, 4658, 3893, 1495, 4737, 3323, 2703, - 2397, 4058, 1153, 4577, 3965, 4609, 1999, 4032, 95, - 1807, 3734, 3107, 2958, 2169, 4822, 1527, 3639, 620, - 4908, 4406, 564, 2813, 4923, 3870, 2382, 1337, 4050, - 4071, 2788, 1336, 4894, 4067, 1978, 1895, 498, 3798, - 1258, 549, 714, 3988, 3759, 3303, 1452, 1683, 4641, - 1837, 2644, 1353, 3988, 2550, 2364, 1794, 4541, 4681, - 337, 2800, 2585, 3617, 3880, 1843, 1947, 4694, 2266, - 1169, 161, 1385, 2852, 400, 463, 723, 4116, 753, - 2537, 98, 4403, 28, 338, 2803, 1599, 1013, 1557, - 4407, 177, 1191, 1815, 3966, 3511, 451, 3265, 291, - 1243, 392, 4068, 163, 3991, 4311, 3328, 960, 4017, - 4646, 1831, 817, 2890, 3530, 2708, 719, 2605, 1261, - 4102, 4791, 1478, 1213, 90, 923, 4372, 3587, 2492, - 1793, 3735, 793, 3175, 4362, 3857, 3311, 3724, 615, - 3226, 2202, 4290, 2384, 657, 2313, 1172, 518, 1645, - 899, 4853, 1109, 2856, 2859, 137, 3910, 650, 1455, - 3154, 3652, 1672, 4613, 1991, 246, 2555, 4, 2614, - 2633, 1294, 2903, 1660, 4703, 2866, 3053, 1012, 3045, - 4172, 3476, 296, 4197, 2675, 2071, 2677, 1326, 2255, - 468, 4989, 2355, 4824, 996, 43, 2583]), - values=tensor([0.3090, 0.2901, 0.9593, 0.2041, 0.3894, 0.4919, 0.4096, - 0.8215, 0.1866, 0.7740, 0.2336, 0.6944, 0.1434, 0.9450, - 0.5954, 0.3044, 0.5006, 0.3429, 0.4467, 0.0518, 0.6871, - 0.3725, 0.7034, 0.7486, 0.8746, 0.3907, 0.1517, 0.4997, - 0.1845, 0.7706, 0.6244, 0.6342, 0.6033, 0.6938, 0.2438, - 0.1144, 0.3513, 0.6893, 0.7703, 0.3523, 0.2076, 0.7465, - 0.4913, 0.9688, 0.0028, 0.1578, 0.0568, 0.7822, 0.7028, - 0.3600, 0.2439, 0.4360, 0.7037, 0.4050, 0.8531, 0.5414, - 0.4773, 0.3671, 0.4547, 0.2754, 0.4488, 0.0085, 0.3071, - 0.4601, 0.4770, 0.5158, 0.4421, 0.5651, 0.5805, 0.4433, - 0.3995, 0.5205, 0.7157, 0.7315, 0.6363, 0.9589, 0.7223, - 0.9785, 0.4132, 0.5851, 0.7482, 0.0942, 0.2741, 0.5798, - 0.8967, 0.4132, 0.5974, 0.3338, 0.4602, 0.6811, 0.5641, - 0.0144, 0.5238, 0.0767, 0.8325, 0.0088, 0.0767, 0.2907, - 0.8996, 0.8420, 0.5348, 0.2313, 0.0781, 0.9045, 0.3083, - 0.9636, 0.2543, 0.6828, 0.1620, 0.2858, 0.1124, 0.3208, - 0.6389, 0.9267, 0.6353, 0.0688, 0.9267, 0.9566, 0.7499, - 0.7412, 0.4162, 0.5378, 0.6296, 0.9489, 0.6620, 0.4205, - 0.9920, 0.8509, 0.1746, 0.9154, 0.0320, 0.1367, 0.7287, - 0.4725, 0.2424, 0.3738, 0.1897, 0.9348, 0.6165, 0.7516, - 0.3874, 0.0970, 0.8851, 0.3148, 0.3850, 0.4337, 0.7076, - 0.4992, 0.1955, 0.2344, 0.3528, 0.9558, 0.2944, 0.6120, - 0.9024, 0.3017, 0.3837, 0.0724, 0.3520, 0.1259, 0.2545, - 0.1286, 0.8847, 0.1428, 0.4622, 0.0540, 0.3001, 0.6109, - 0.7042, 0.7070, 0.7848, 0.3801, 0.3847, 0.7723, 0.6446, - 0.9716, 0.3773, 0.8839, 0.4889, 0.3169, 0.6431, 0.7083, - 0.1827, 0.5140, 0.9487, 0.5911, 0.8204, 0.6180, 0.4421, - 0.3128, 0.9545, 0.2240, 0.5569, 0.0329, 0.3919, 0.3248, - 0.2245, 0.3333, 0.9672, 0.9062, 0.0547, 0.3239, 0.2321, - 0.0070, 0.4820, 0.4051, 0.2674, 0.7057, 0.7544, 0.3960, - 0.7548, 0.0492, 0.5769, 0.2071, 0.4627, 0.2573, 0.4606, - 0.6077, 0.9484, 0.5943, 0.5295, 0.3192, 0.6949, 0.6336, - 0.2976, 0.4421, 0.9484, 0.4080, 0.0752, 0.8220, 0.3509, - 0.7514, 0.8530, 0.4354, 0.9063, 0.8031, 0.3178, 0.2957, - 0.6220, 0.2051, 0.4848, 0.8340, 0.8353, 0.5340, 0.0238, - 0.3897, 0.4510, 0.4716, 0.8420, 0.2532]), + col_indices=tensor([4110, 4882, 2528, 560, 2850, 1135, 2189, 267, 591, + 4248, 392, 4389, 952, 4426, 675, 791, 4134, 2003, + 330, 4266, 1795, 3038, 2537, 1414, 4513, 1875, 1420, + 3040, 4172, 4236, 4029, 37, 2565, 1038, 1280, 832, + 4901, 4729, 13, 26, 702, 4420, 4734, 1556, 899, + 2280, 4293, 3965, 1974, 4811, 4611, 1009, 692, 1950, + 707, 1172, 1767, 2120, 1996, 634, 3311, 4113, 1903, + 2733, 3685, 3363, 3449, 2814, 1438, 4520, 218, 740, + 498, 655, 1313, 1745, 4116, 95, 357, 4580, 2628, + 4483, 1655, 4732, 165, 2596, 205, 1356, 2811, 2330, + 4604, 2547, 3455, 1624, 3457, 1604, 4751, 1859, 1095, + 4469, 2397, 2809, 2539, 2371, 2342, 4452, 4342, 4591, + 2097, 1276, 1250, 2060, 1578, 4677, 4803, 4831, 2724, + 2018, 2284, 2775, 4691, 199, 4210, 2309, 943, 2881, + 1649, 3410, 3567, 3333, 2952, 4866, 2146, 2388, 3555, + 3049, 2189, 2470, 1262, 1368, 686, 4746, 2521, 3366, + 3586, 4367, 3371, 2520, 3654, 86, 810, 3504, 2051, + 4871, 4860, 841, 544, 3974, 2005, 981, 3244, 488, + 3372, 1091, 2635, 1589, 2299, 733, 4674, 2817, 2103, + 1209, 3577, 3623, 4300, 2443, 1295, 4756, 2336, 3550, + 2095, 4292, 2842, 1971, 4691, 4042, 3354, 592, 2063, + 1832, 1378, 3596, 4385, 745, 2532, 1883, 1739, 1247, + 2943, 1826, 3219, 4178, 3486, 2469, 1068, 4370, 1539, + 326, 2628, 3947, 4717, 3828, 4255, 4155, 4188, 3551, + 3390, 3231, 2307, 2529, 2288, 367, 4198, 4896, 743, + 1579, 1013, 645, 2200, 4435, 4882, 1640, 288, 3098, + 3761, 2384, 847, 509, 4067, 1126, 4356, 2690, 2684, + 3064, 181, 819, 409, 3928, 4195, 3862]), + values=tensor([0.6256, 0.4971, 0.1060, 0.7139, 0.1823, 0.2509, 0.2673, + 0.8663, 0.0835, 0.0808, 0.2049, 0.4420, 0.4395, 0.8635, + 0.0169, 0.4133, 0.6820, 0.9890, 0.7762, 0.6220, 0.1534, + 0.5506, 0.6723, 0.8443, 0.3974, 0.8265, 0.0110, 0.1617, + 0.9872, 0.3380, 0.0737, 0.5011, 0.8812, 0.5991, 0.0522, + 0.5730, 0.8120, 0.7506, 0.2397, 0.8742, 0.8477, 0.3557, + 0.0116, 0.0076, 0.2125, 0.8492, 0.7414, 0.8939, 0.9161, + 0.6369, 0.7960, 0.8359, 0.4748, 0.7205, 0.4515, 0.6595, + 0.2492, 0.2025, 0.4674, 0.4437, 0.5543, 0.2380, 0.4617, + 0.5720, 0.4895, 0.6114, 0.1214, 0.9049, 0.4914, 0.2397, + 0.6242, 0.3103, 0.8200, 0.7931, 0.9387, 0.1219, 0.7863, + 0.3172, 0.8665, 0.4111, 0.3328, 0.3737, 0.2933, 0.4526, + 0.3424, 0.8586, 0.4153, 0.8629, 0.3744, 0.5686, 0.0746, + 0.0221, 0.4632, 0.2182, 0.7406, 0.2698, 0.1778, 0.5649, + 0.4080, 0.6883, 0.2942, 0.9953, 0.6518, 0.2163, 0.7535, + 0.6975, 0.2221, 0.2275, 0.5405, 0.0798, 0.5573, 0.6302, + 0.4985, 0.1104, 0.5174, 0.9401, 0.1389, 0.1581, 0.0424, + 0.6895, 0.3613, 0.0928, 0.0065, 0.9081, 0.0044, 0.4960, + 0.9823, 0.5854, 0.2610, 0.0038, 0.7425, 0.4802, 0.1516, + 0.8368, 0.1838, 0.8782, 0.0715, 0.4223, 0.7005, 0.4430, + 0.9462, 0.7502, 0.6645, 0.2891, 0.9383, 0.3987, 0.8215, + 0.5606, 0.2261, 0.8011, 0.4375, 0.3961, 0.7279, 0.2806, + 0.0713, 0.4871, 0.3038, 0.5371, 0.2216, 0.6841, 0.2878, + 0.3646, 0.4532, 0.8491, 0.7578, 0.6510, 0.7523, 0.4340, + 0.7007, 0.4708, 0.9965, 0.8203, 0.2246, 0.8996, 0.3303, + 0.0148, 0.3760, 0.7093, 0.5329, 0.2574, 0.3450, 0.1580, + 0.7186, 0.2033, 0.7798, 0.4593, 0.7075, 0.5720, 0.1499, + 0.1156, 0.4260, 0.0288, 0.5145, 0.3668, 0.5589, 0.8589, + 0.3216, 0.4607, 0.7258, 0.8841, 0.3750, 0.0423, 0.5771, + 0.4191, 0.6488, 0.7104, 0.5144, 0.6011, 0.7757, 0.0524, + 0.4180, 0.1533, 0.5397, 0.3671, 0.1765, 0.9044, 0.7096, + 0.5951, 0.8654, 0.2226, 0.3541, 0.2302, 0.8815, 0.7479, + 0.9847, 0.5335, 0.2697, 0.6788, 0.5998, 0.9345, 0.5600, + 0.8733, 0.1996, 0.0591, 0.2713, 0.9857, 0.2291, 0.3974, + 0.8274, 0.9419, 0.8414, 0.0360, 0.8374, 0.9999, 0.3537, + 0.3299, 0.5865, 0.7469, 0.2686, 0.3364]), size=(5000, 5000), nnz=250, layout=torch.sparse_csr) -tensor([0.2666, 0.0606, 0.0325, ..., 0.3347, 0.5904, 0.3218]) +tensor([0.4917, 0.3630, 0.9281, ..., 0.8752, 0.5291, 0.1405]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -158,107 +158,80 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 4.12260627746582 seconds +Time: 1.5112977027893066 seconds -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '355144', '-ss', '5000', '-sd', '1e-05'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.430037498474121} +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '357325', '-ss', '5000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.499107599258423} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([ 576, 858, 411, 4414, 2665, 376, 3054, 3322, 4372, - 4279, 4109, 1090, 4955, 1792, 2761, 3831, 3980, 529, - 2775, 617, 4117, 1022, 2357, 2558, 3577, 3578, 3958, - 4584, 2525, 1559, 1731, 3457, 3297, 1685, 2202, 1452, - 491, 1458, 4726, 3575, 1883, 2403, 3952, 4222, 1553, - 2911, 2279, 1175, 2336, 4753, 2819, 4436, 482, 3199, - 4976, 1797, 1610, 3205, 1638, 3687, 4164, 2284, 2312, - 3201, 1175, 2223, 2205, 1659, 1685, 3876, 4867, 4503, - 2508, 1070, 2370, 1257, 578, 3738, 3473, 1417, 2544, - 2056, 4843, 1000, 3228, 4837, 4943, 1171, 1607, 3883, - 537, 4674, 2976, 4953, 4244, 3122, 4003, 2726, 2176, - 3401, 3187, 4115, 3515, 94, 3353, 4307, 545, 4985, - 4583, 3489, 3066, 4121, 3459, 1522, 677, 4486, 147, - 3866, 1597, 3765, 2455, 4064, 1457, 3132, 4642, 3434, - 4882, 2125, 3414, 394, 3741, 3553, 2336, 1556, 4256, - 1078, 4010, 148, 4755, 1924, 2289, 4358, 4904, 1449, - 2494, 2907, 2566, 4673, 214, 1941, 3465, 4474, 2630, - 2169, 4563, 4405, 2613, 3633, 1231, 2935, 3998, 3861, - 1642, 586, 3529, 1226, 3435, 3242, 4352, 3913, 4066, - 3077, 2516, 4422, 1989, 692, 2984, 4096, 402, 4733, - 2105, 3134, 4775, 589, 4044, 4752, 4541, 3171, 2469, - 3653, 4657, 4456, 2233, 2803, 4834, 4936, 3017, 295, - 4978, 3056, 4089, 3884, 2193, 857, 3649, 854, 903, - 28, 3897, 555, 2344, 28, 2417, 2346, 4647, 1068, - 320, 3342, 2217, 2395, 4836, 4346, 3869, 1532, 3168, - 2904, 3224, 1957, 350, 1919, 1414, 1439, 2678, 3944, - 694, 4893, 4079, 3781, 2587, 2843, 2494, 2488, 824, - 1995, 2151, 656, 824, 1220, 2366, 1835]), - values=tensor([3.0955e-01, 7.8676e-01, 4.1266e-01, 3.7203e-01, - 7.1730e-01, 3.7179e-01, 6.0963e-01, 1.0902e-02, - 1.1230e-01, 2.1823e-01, 1.9100e-01, 8.5284e-01, - 3.9664e-01, 7.2699e-01, 1.5904e-01, 3.5501e-01, - 7.5722e-01, 5.6198e-01, 5.1816e-01, 6.4843e-01, - 9.7108e-01, 5.2337e-01, 4.5987e-01, 1.8356e-01, - 3.1359e-01, 2.0336e-01, 9.3922e-01, 6.3176e-01, - 5.5921e-01, 9.2083e-01, 3.8441e-01, 4.1891e-01, - 4.9039e-02, 2.5835e-01, 1.4251e-01, 8.7986e-02, - 1.9179e-01, 4.9636e-02, 9.9221e-01, 8.8195e-01, - 3.6211e-01, 7.7986e-01, 8.8005e-01, 5.3709e-01, - 6.1723e-01, 2.3666e-01, 6.4046e-01, 7.4852e-01, - 8.6162e-01, 6.4736e-02, 6.4638e-01, 6.8790e-01, - 7.7258e-02, 9.2613e-01, 4.5329e-01, 3.8429e-01, - 4.4778e-01, 5.4974e-01, 7.1635e-02, 9.9247e-01, - 6.0152e-01, 9.9716e-01, 7.7326e-02, 6.0941e-01, - 4.9490e-01, 7.1856e-01, 9.5478e-01, 7.3740e-01, - 7.1156e-01, 7.7724e-01, 6.8908e-01, 8.4478e-01, - 5.3169e-01, 3.1838e-01, 6.4893e-01, 3.6731e-01, - 9.6217e-01, 9.5642e-01, 3.3310e-01, 8.0468e-01, - 4.4419e-01, 9.9457e-01, 9.4870e-01, 5.1652e-01, - 2.2471e-01, 4.9478e-02, 7.7952e-01, 3.1317e-01, - 4.6028e-01, 9.9118e-01, 2.1805e-01, 7.6144e-01, - 5.8009e-01, 5.8921e-01, 9.6946e-01, 3.7819e-02, - 8.9083e-01, 3.9045e-01, 4.6997e-01, 7.7548e-01, - 7.6016e-01, 9.9749e-01, 2.2222e-01, 8.7022e-01, - 1.7241e-01, 5.1297e-01, 5.3356e-01, 7.6400e-01, - 4.5765e-01, 9.3983e-01, 7.4746e-01, 2.2337e-02, - 4.6779e-01, 4.1228e-02, 4.0470e-01, 5.8279e-01, - 3.9830e-01, 7.9952e-01, 2.1413e-01, 6.9695e-01, - 8.4451e-01, 7.5133e-01, 6.1979e-01, 1.0235e-01, - 2.3922e-01, 9.7618e-01, 2.7859e-01, 9.1245e-01, - 1.8747e-01, 1.3708e-01, 4.3286e-01, 4.5125e-01, - 7.7463e-01, 6.6460e-01, 4.6171e-01, 5.2632e-01, - 1.3309e-01, 4.8984e-01, 6.6220e-01, 3.7532e-01, - 2.3458e-01, 9.8677e-01, 1.8606e-01, 5.8578e-01, - 2.0218e-01, 8.1884e-01, 1.6790e-01, 8.2955e-01, - 8.0990e-01, 7.9230e-01, 5.7415e-04, 1.5263e-01, - 3.0153e-02, 4.3910e-01, 1.1145e-01, 8.2933e-01, - 4.2403e-01, 9.4143e-01, 1.1893e-01, 2.2950e-01, - 4.0652e-01, 5.3859e-02, 3.4042e-01, 3.0550e-01, - 7.4631e-01, 2.0289e-01, 2.7832e-01, 9.2428e-02, - 8.1994e-01, 6.1876e-01, 8.1655e-01, 3.3884e-01, - 8.1926e-01, 3.0647e-01, 2.5277e-02, 6.7292e-01, - 6.3249e-01, 3.0699e-01, 8.3683e-02, 1.1258e-01, - 5.7451e-01, 9.9511e-01, 3.5203e-01, 6.1419e-01, - 7.8849e-01, 2.6274e-01, 6.6338e-01, 2.1944e-01, - 5.0745e-01, 9.4340e-02, 4.8396e-02, 5.6132e-01, - 9.5395e-01, 7.8119e-01, 2.9298e-01, 9.8647e-01, - 4.1870e-03, 7.2546e-01, 1.3543e-01, 1.4547e-01, - 9.5808e-01, 3.2689e-01, 3.3868e-01, 4.7652e-01, - 8.8370e-01, 6.0302e-01, 7.9645e-01, 6.6784e-01, - 5.1333e-01, 1.1003e-01, 1.8848e-01, 9.5891e-01, - 5.8130e-01, 8.9461e-01, 5.9679e-01, 7.2510e-01, - 6.8221e-01, 6.6161e-01, 2.4940e-01, 6.6307e-01, - 2.4001e-02, 4.4766e-02, 2.4703e-01, 5.2095e-02, - 8.5216e-01, 3.2978e-01, 6.8601e-01, 2.3333e-01, - 6.2542e-01, 6.6716e-01, 6.3532e-01, 9.7031e-01, - 2.6179e-01, 5.9241e-01, 6.1379e-01, 8.7532e-01, - 5.8130e-01, 3.7637e-01, 4.6468e-01, 2.0496e-01, - 7.4431e-01, 7.1477e-02, 8.7938e-01, 4.5946e-01, - 4.6023e-01, 7.9786e-01, 2.4383e-01, 3.7799e-01, - 1.9335e-01, 7.4334e-01]), size=(5000, 5000), nnz=250, - layout=torch.sparse_csr) -tensor([0.5879, 0.8514, 0.6272, ..., 0.2435, 0.3582, 0.3734]) + col_indices=tensor([2104, 1861, 7, 1520, 3728, 1941, 2107, 138, 2161, + 3365, 332, 4735, 2493, 4284, 393, 1314, 1302, 4705, + 1583, 2354, 365, 1361, 3891, 149, 1170, 2523, 1316, + 504, 3112, 2441, 3025, 3794, 4286, 3194, 1606, 1584, + 3408, 2741, 1246, 4491, 4352, 753, 1486, 3301, 2391, + 2673, 3251, 2341, 1657, 2899, 1405, 28, 3720, 4641, + 155, 2571, 1960, 1838, 3742, 1460, 3050, 1966, 3313, + 1854, 4564, 1529, 1889, 4664, 3289, 4098, 3070, 1858, + 1104, 4802, 1430, 2787, 4743, 1421, 1813, 2073, 2691, + 3256, 821, 4666, 4791, 494, 2847, 2089, 295, 92, + 3053, 2874, 4675, 1142, 2097, 3430, 3192, 3228, 4790, + 4424, 4658, 1164, 1384, 2389, 731, 3926, 526, 3782, + 4373, 3966, 3264, 2145, 1214, 2000, 245, 4102, 2011, + 66, 3256, 4976, 3641, 1843, 2314, 3228, 1928, 847, + 3368, 1129, 1702, 2867, 4161, 4680, 2563, 195, 417, + 4789, 399, 2588, 3130, 324, 4572, 3283, 4937, 216, + 3937, 29, 3425, 1846, 776, 2604, 3452, 1647, 2368, + 423, 57, 1474, 4006, 1987, 4359, 1194, 867, 4968, + 2616, 1438, 4125, 4484, 4543, 3714, 1301, 2231, 4571, + 1275, 4305, 3280, 4945, 2663, 1185, 1842, 622, 3361, + 2569, 1402, 2348, 1829, 182, 3336, 570, 3323, 562, + 1935, 4764, 3304, 2399, 1649, 1406, 4405, 2794, 3186, + 4464, 4180, 1762, 4406, 310, 3727, 661, 2438, 4818, + 1167, 2299, 3410, 2102, 990, 2923, 1131, 3164, 4442, + 2744, 348, 2673, 3077, 2766, 827, 2340, 2888, 4315, + 1191, 4533, 1425, 1473, 1269, 2758, 4677, 1018, 4467, + 4891, 1237, 820, 1622, 44, 4185, 1279, 3969, 4975, + 4333, 1750, 1936, 243, 4652, 1623, 3975]), + values=tensor([0.9387, 0.4700, 0.2447, 0.6228, 0.4503, 0.1997, 0.0053, + 0.5157, 0.4796, 0.4250, 0.8220, 0.3582, 0.4251, 0.4646, + 0.9478, 0.0325, 0.0848, 0.5917, 0.2071, 0.4572, 0.9167, + 0.3871, 0.6967, 0.0513, 0.7695, 0.7027, 0.3866, 0.0150, + 0.1037, 0.9121, 0.5340, 0.5642, 0.8146, 0.9553, 0.8607, + 0.1413, 0.3229, 0.0119, 0.0552, 0.9205, 0.4848, 0.8673, + 0.6922, 0.3249, 0.7973, 0.5503, 0.3256, 0.5167, 0.2558, + 0.6122, 0.0546, 0.7903, 0.3759, 0.7968, 0.2510, 0.1679, + 0.4338, 0.6740, 0.2626, 0.4105, 0.4029, 0.3869, 0.1119, + 0.9939, 0.6154, 0.1891, 0.7886, 0.8106, 0.2588, 0.8530, + 0.1960, 0.5522, 0.9502, 0.2036, 0.8479, 0.5893, 0.2336, + 0.5492, 0.4318, 0.6485, 0.5562, 0.9481, 0.9451, 0.8583, + 0.7556, 0.1458, 0.7503, 0.1231, 0.2746, 0.0172, 0.6993, + 0.4164, 0.7854, 0.6995, 0.8084, 0.5901, 0.9482, 0.9912, + 0.8222, 0.8265, 0.6019, 0.5462, 0.6062, 0.4916, 0.3704, + 0.9894, 0.1946, 0.9052, 0.1356, 0.8292, 0.4460, 0.3066, + 0.5424, 0.9972, 0.4829, 0.2518, 0.5680, 0.4922, 0.3950, + 0.5510, 0.1881, 0.6119, 0.3857, 0.5521, 0.8319, 0.6787, + 0.8327, 0.0041, 0.6533, 0.9035, 0.3529, 0.2045, 0.8781, + 0.7715, 0.7148, 0.2012, 0.4429, 0.6908, 0.0217, 0.9409, + 0.2398, 0.9282, 0.8675, 0.2060, 0.8887, 0.5702, 0.9940, + 0.9652, 0.4202, 0.5062, 0.1515, 0.6839, 0.1289, 0.7773, + 0.8039, 0.1706, 0.5382, 0.6842, 0.4665, 0.8705, 0.9740, + 0.3731, 0.3796, 0.0945, 0.8938, 0.9546, 0.7375, 0.4347, + 0.0317, 0.0560, 0.1482, 0.2781, 0.1532, 0.0170, 0.3948, + 0.1619, 0.3596, 0.1826, 0.6650, 0.4684, 0.2191, 0.9123, + 0.0088, 0.2608, 0.7519, 0.3594, 0.8499, 0.1793, 0.6810, + 0.4007, 0.7171, 0.6382, 0.5741, 0.6774, 0.9314, 0.4111, + 0.3073, 0.3304, 0.1048, 0.8381, 0.8387, 0.6626, 0.9350, + 0.3559, 0.0898, 0.9007, 0.8371, 0.0933, 0.7505, 0.1760, + 0.8200, 0.6000, 0.8535, 0.8461, 0.8576, 0.1788, 0.4860, + 0.8224, 0.8204, 0.6502, 0.3745, 0.9926, 0.3104, 0.0651, + 0.2962, 0.9752, 0.3565, 0.2747, 0.0907, 0.8216, 0.2197, + 0.9709, 0.0139, 0.1557, 0.9115, 0.1512, 0.0977, 0.5834, + 0.2007, 0.9483, 0.8228, 0.2172, 0.6709, 0.2237, 0.7140, + 0.3427, 0.4328, 0.7857, 0.0871, 0.8851]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.5944, 0.7034, 0.9760, ..., 0.8304, 0.5842, 0.4500]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -266,104 +239,77 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 10.430037498474121 seconds +Time: 10.499107599258423 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([ 576, 858, 411, 4414, 2665, 376, 3054, 3322, 4372, - 4279, 4109, 1090, 4955, 1792, 2761, 3831, 3980, 529, - 2775, 617, 4117, 1022, 2357, 2558, 3577, 3578, 3958, - 4584, 2525, 1559, 1731, 3457, 3297, 1685, 2202, 1452, - 491, 1458, 4726, 3575, 1883, 2403, 3952, 4222, 1553, - 2911, 2279, 1175, 2336, 4753, 2819, 4436, 482, 3199, - 4976, 1797, 1610, 3205, 1638, 3687, 4164, 2284, 2312, - 3201, 1175, 2223, 2205, 1659, 1685, 3876, 4867, 4503, - 2508, 1070, 2370, 1257, 578, 3738, 3473, 1417, 2544, - 2056, 4843, 1000, 3228, 4837, 4943, 1171, 1607, 3883, - 537, 4674, 2976, 4953, 4244, 3122, 4003, 2726, 2176, - 3401, 3187, 4115, 3515, 94, 3353, 4307, 545, 4985, - 4583, 3489, 3066, 4121, 3459, 1522, 677, 4486, 147, - 3866, 1597, 3765, 2455, 4064, 1457, 3132, 4642, 3434, - 4882, 2125, 3414, 394, 3741, 3553, 2336, 1556, 4256, - 1078, 4010, 148, 4755, 1924, 2289, 4358, 4904, 1449, - 2494, 2907, 2566, 4673, 214, 1941, 3465, 4474, 2630, - 2169, 4563, 4405, 2613, 3633, 1231, 2935, 3998, 3861, - 1642, 586, 3529, 1226, 3435, 3242, 4352, 3913, 4066, - 3077, 2516, 4422, 1989, 692, 2984, 4096, 402, 4733, - 2105, 3134, 4775, 589, 4044, 4752, 4541, 3171, 2469, - 3653, 4657, 4456, 2233, 2803, 4834, 4936, 3017, 295, - 4978, 3056, 4089, 3884, 2193, 857, 3649, 854, 903, - 28, 3897, 555, 2344, 28, 2417, 2346, 4647, 1068, - 320, 3342, 2217, 2395, 4836, 4346, 3869, 1532, 3168, - 2904, 3224, 1957, 350, 1919, 1414, 1439, 2678, 3944, - 694, 4893, 4079, 3781, 2587, 2843, 2494, 2488, 824, - 1995, 2151, 656, 824, 1220, 2366, 1835]), - values=tensor([3.0955e-01, 7.8676e-01, 4.1266e-01, 3.7203e-01, - 7.1730e-01, 3.7179e-01, 6.0963e-01, 1.0902e-02, - 1.1230e-01, 2.1823e-01, 1.9100e-01, 8.5284e-01, - 3.9664e-01, 7.2699e-01, 1.5904e-01, 3.5501e-01, - 7.5722e-01, 5.6198e-01, 5.1816e-01, 6.4843e-01, - 9.7108e-01, 5.2337e-01, 4.5987e-01, 1.8356e-01, - 3.1359e-01, 2.0336e-01, 9.3922e-01, 6.3176e-01, - 5.5921e-01, 9.2083e-01, 3.8441e-01, 4.1891e-01, - 4.9039e-02, 2.5835e-01, 1.4251e-01, 8.7986e-02, - 1.9179e-01, 4.9636e-02, 9.9221e-01, 8.8195e-01, - 3.6211e-01, 7.7986e-01, 8.8005e-01, 5.3709e-01, - 6.1723e-01, 2.3666e-01, 6.4046e-01, 7.4852e-01, - 8.6162e-01, 6.4736e-02, 6.4638e-01, 6.8790e-01, - 7.7258e-02, 9.2613e-01, 4.5329e-01, 3.8429e-01, - 4.4778e-01, 5.4974e-01, 7.1635e-02, 9.9247e-01, - 6.0152e-01, 9.9716e-01, 7.7326e-02, 6.0941e-01, - 4.9490e-01, 7.1856e-01, 9.5478e-01, 7.3740e-01, - 7.1156e-01, 7.7724e-01, 6.8908e-01, 8.4478e-01, - 5.3169e-01, 3.1838e-01, 6.4893e-01, 3.6731e-01, - 9.6217e-01, 9.5642e-01, 3.3310e-01, 8.0468e-01, - 4.4419e-01, 9.9457e-01, 9.4870e-01, 5.1652e-01, - 2.2471e-01, 4.9478e-02, 7.7952e-01, 3.1317e-01, - 4.6028e-01, 9.9118e-01, 2.1805e-01, 7.6144e-01, - 5.8009e-01, 5.8921e-01, 9.6946e-01, 3.7819e-02, - 8.9083e-01, 3.9045e-01, 4.6997e-01, 7.7548e-01, - 7.6016e-01, 9.9749e-01, 2.2222e-01, 8.7022e-01, - 1.7241e-01, 5.1297e-01, 5.3356e-01, 7.6400e-01, - 4.5765e-01, 9.3983e-01, 7.4746e-01, 2.2337e-02, - 4.6779e-01, 4.1228e-02, 4.0470e-01, 5.8279e-01, - 3.9830e-01, 7.9952e-01, 2.1413e-01, 6.9695e-01, - 8.4451e-01, 7.5133e-01, 6.1979e-01, 1.0235e-01, - 2.3922e-01, 9.7618e-01, 2.7859e-01, 9.1245e-01, - 1.8747e-01, 1.3708e-01, 4.3286e-01, 4.5125e-01, - 7.7463e-01, 6.6460e-01, 4.6171e-01, 5.2632e-01, - 1.3309e-01, 4.8984e-01, 6.6220e-01, 3.7532e-01, - 2.3458e-01, 9.8677e-01, 1.8606e-01, 5.8578e-01, - 2.0218e-01, 8.1884e-01, 1.6790e-01, 8.2955e-01, - 8.0990e-01, 7.9230e-01, 5.7415e-04, 1.5263e-01, - 3.0153e-02, 4.3910e-01, 1.1145e-01, 8.2933e-01, - 4.2403e-01, 9.4143e-01, 1.1893e-01, 2.2950e-01, - 4.0652e-01, 5.3859e-02, 3.4042e-01, 3.0550e-01, - 7.4631e-01, 2.0289e-01, 2.7832e-01, 9.2428e-02, - 8.1994e-01, 6.1876e-01, 8.1655e-01, 3.3884e-01, - 8.1926e-01, 3.0647e-01, 2.5277e-02, 6.7292e-01, - 6.3249e-01, 3.0699e-01, 8.3683e-02, 1.1258e-01, - 5.7451e-01, 9.9511e-01, 3.5203e-01, 6.1419e-01, - 7.8849e-01, 2.6274e-01, 6.6338e-01, 2.1944e-01, - 5.0745e-01, 9.4340e-02, 4.8396e-02, 5.6132e-01, - 9.5395e-01, 7.8119e-01, 2.9298e-01, 9.8647e-01, - 4.1870e-03, 7.2546e-01, 1.3543e-01, 1.4547e-01, - 9.5808e-01, 3.2689e-01, 3.3868e-01, 4.7652e-01, - 8.8370e-01, 6.0302e-01, 7.9645e-01, 6.6784e-01, - 5.1333e-01, 1.1003e-01, 1.8848e-01, 9.5891e-01, - 5.8130e-01, 8.9461e-01, 5.9679e-01, 7.2510e-01, - 6.8221e-01, 6.6161e-01, 2.4940e-01, 6.6307e-01, - 2.4001e-02, 4.4766e-02, 2.4703e-01, 5.2095e-02, - 8.5216e-01, 3.2978e-01, 6.8601e-01, 2.3333e-01, - 6.2542e-01, 6.6716e-01, 6.3532e-01, 9.7031e-01, - 2.6179e-01, 5.9241e-01, 6.1379e-01, 8.7532e-01, - 5.8130e-01, 3.7637e-01, 4.6468e-01, 2.0496e-01, - 7.4431e-01, 7.1477e-02, 8.7938e-01, 4.5946e-01, - 4.6023e-01, 7.9786e-01, 2.4383e-01, 3.7799e-01, - 1.9335e-01, 7.4334e-01]), size=(5000, 5000), nnz=250, - layout=torch.sparse_csr) -tensor([0.5879, 0.8514, 0.6272, ..., 0.2435, 0.3582, 0.3734]) + col_indices=tensor([2104, 1861, 7, 1520, 3728, 1941, 2107, 138, 2161, + 3365, 332, 4735, 2493, 4284, 393, 1314, 1302, 4705, + 1583, 2354, 365, 1361, 3891, 149, 1170, 2523, 1316, + 504, 3112, 2441, 3025, 3794, 4286, 3194, 1606, 1584, + 3408, 2741, 1246, 4491, 4352, 753, 1486, 3301, 2391, + 2673, 3251, 2341, 1657, 2899, 1405, 28, 3720, 4641, + 155, 2571, 1960, 1838, 3742, 1460, 3050, 1966, 3313, + 1854, 4564, 1529, 1889, 4664, 3289, 4098, 3070, 1858, + 1104, 4802, 1430, 2787, 4743, 1421, 1813, 2073, 2691, + 3256, 821, 4666, 4791, 494, 2847, 2089, 295, 92, + 3053, 2874, 4675, 1142, 2097, 3430, 3192, 3228, 4790, + 4424, 4658, 1164, 1384, 2389, 731, 3926, 526, 3782, + 4373, 3966, 3264, 2145, 1214, 2000, 245, 4102, 2011, + 66, 3256, 4976, 3641, 1843, 2314, 3228, 1928, 847, + 3368, 1129, 1702, 2867, 4161, 4680, 2563, 195, 417, + 4789, 399, 2588, 3130, 324, 4572, 3283, 4937, 216, + 3937, 29, 3425, 1846, 776, 2604, 3452, 1647, 2368, + 423, 57, 1474, 4006, 1987, 4359, 1194, 867, 4968, + 2616, 1438, 4125, 4484, 4543, 3714, 1301, 2231, 4571, + 1275, 4305, 3280, 4945, 2663, 1185, 1842, 622, 3361, + 2569, 1402, 2348, 1829, 182, 3336, 570, 3323, 562, + 1935, 4764, 3304, 2399, 1649, 1406, 4405, 2794, 3186, + 4464, 4180, 1762, 4406, 310, 3727, 661, 2438, 4818, + 1167, 2299, 3410, 2102, 990, 2923, 1131, 3164, 4442, + 2744, 348, 2673, 3077, 2766, 827, 2340, 2888, 4315, + 1191, 4533, 1425, 1473, 1269, 2758, 4677, 1018, 4467, + 4891, 1237, 820, 1622, 44, 4185, 1279, 3969, 4975, + 4333, 1750, 1936, 243, 4652, 1623, 3975]), + values=tensor([0.9387, 0.4700, 0.2447, 0.6228, 0.4503, 0.1997, 0.0053, + 0.5157, 0.4796, 0.4250, 0.8220, 0.3582, 0.4251, 0.4646, + 0.9478, 0.0325, 0.0848, 0.5917, 0.2071, 0.4572, 0.9167, + 0.3871, 0.6967, 0.0513, 0.7695, 0.7027, 0.3866, 0.0150, + 0.1037, 0.9121, 0.5340, 0.5642, 0.8146, 0.9553, 0.8607, + 0.1413, 0.3229, 0.0119, 0.0552, 0.9205, 0.4848, 0.8673, + 0.6922, 0.3249, 0.7973, 0.5503, 0.3256, 0.5167, 0.2558, + 0.6122, 0.0546, 0.7903, 0.3759, 0.7968, 0.2510, 0.1679, + 0.4338, 0.6740, 0.2626, 0.4105, 0.4029, 0.3869, 0.1119, + 0.9939, 0.6154, 0.1891, 0.7886, 0.8106, 0.2588, 0.8530, + 0.1960, 0.5522, 0.9502, 0.2036, 0.8479, 0.5893, 0.2336, + 0.5492, 0.4318, 0.6485, 0.5562, 0.9481, 0.9451, 0.8583, + 0.7556, 0.1458, 0.7503, 0.1231, 0.2746, 0.0172, 0.6993, + 0.4164, 0.7854, 0.6995, 0.8084, 0.5901, 0.9482, 0.9912, + 0.8222, 0.8265, 0.6019, 0.5462, 0.6062, 0.4916, 0.3704, + 0.9894, 0.1946, 0.9052, 0.1356, 0.8292, 0.4460, 0.3066, + 0.5424, 0.9972, 0.4829, 0.2518, 0.5680, 0.4922, 0.3950, + 0.5510, 0.1881, 0.6119, 0.3857, 0.5521, 0.8319, 0.6787, + 0.8327, 0.0041, 0.6533, 0.9035, 0.3529, 0.2045, 0.8781, + 0.7715, 0.7148, 0.2012, 0.4429, 0.6908, 0.0217, 0.9409, + 0.2398, 0.9282, 0.8675, 0.2060, 0.8887, 0.5702, 0.9940, + 0.9652, 0.4202, 0.5062, 0.1515, 0.6839, 0.1289, 0.7773, + 0.8039, 0.1706, 0.5382, 0.6842, 0.4665, 0.8705, 0.9740, + 0.3731, 0.3796, 0.0945, 0.8938, 0.9546, 0.7375, 0.4347, + 0.0317, 0.0560, 0.1482, 0.2781, 0.1532, 0.0170, 0.3948, + 0.1619, 0.3596, 0.1826, 0.6650, 0.4684, 0.2191, 0.9123, + 0.0088, 0.2608, 0.7519, 0.3594, 0.8499, 0.1793, 0.6810, + 0.4007, 0.7171, 0.6382, 0.5741, 0.6774, 0.9314, 0.4111, + 0.3073, 0.3304, 0.1048, 0.8381, 0.8387, 0.6626, 0.9350, + 0.3559, 0.0898, 0.9007, 0.8371, 0.0933, 0.7505, 0.1760, + 0.8200, 0.6000, 0.8535, 0.8461, 0.8576, 0.1788, 0.4860, + 0.8224, 0.8204, 0.6502, 0.3745, 0.9926, 0.3104, 0.0651, + 0.2962, 0.9752, 0.3565, 0.2747, 0.0907, 0.8216, 0.2197, + 0.9709, 0.0139, 0.1557, 0.9115, 0.1512, 0.0977, 0.5834, + 0.2007, 0.9483, 0.8228, 0.2172, 0.6709, 0.2237, 0.7140, + 0.3427, 0.4328, 0.7857, 0.0871, 0.8851]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.5944, 0.7034, 0.9760, ..., 0.8304, 0.5842, 0.4500]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -371,13 +317,13 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 10.430037498474121 seconds +Time: 10.499107599258423 seconds -[18.28, 21.02, 18.58, 17.81, 18.18, 17.91, 18.02, 17.91, 18.05, 17.86] -[73.03] -13.656953573226929 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 355144, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.430037498474121, 'TIME_S_1KI': 0.02936847447366173, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 997.3673194527627, 'W': 73.03} -[18.28, 21.02, 18.58, 17.81, 18.18, 17.91, 18.02, 17.91, 18.05, 17.86, 18.18, 17.95, 18.17, 18.08, 18.7, 17.95, 18.01, 17.92, 21.06, 17.75] -331.35499999999996 -16.567749999999997 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 355144, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.430037498474121, 'TIME_S_1KI': 0.02936847447366173, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 997.3673194527627, 'W': 73.03, 'J_1KI': 2.808346246741498, 'W_1KI': 0.20563489739373325, 'W_D': 56.462250000000004, 'J_D': 771.1023268899322, 'W_D_1KI': 0.15898410222332351, 'J_D_1KI': 0.0004476609550585777} +[18.49, 21.77, 18.79, 18.12, 18.06, 18.03, 18.09, 17.74, 18.25, 17.89] +[72.8] +13.888601303100586 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 357325, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.499107599258423, 'TIME_S_1KI': 0.029382516194664303, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1011.0901748657226, 'W': 72.8} +[18.49, 21.77, 18.79, 18.12, 18.06, 18.03, 18.09, 17.74, 18.25, 17.89, 37.95, 41.51, 40.96, 43.46, 47.23, 47.25, 47.57, 33.36, 24.72, 27.91] +526.03 +26.301499999999997 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 357325, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.499107599258423, 'TIME_S_1KI': 0.029382516194664303, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1011.0901748657226, 'W': 72.8, 'J_1KI': 2.829609388835717, 'W_1KI': 0.20373609459175818, 'W_D': 46.4985, 'J_D': 645.7991276922226, 'W_D_1KI': 0.1301294339886658, 'J_D_1KI': 0.0003641766850588842} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_5e-05.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_5e-05.json new file mode 100644 index 0000000..e1d6586 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_5e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 344337, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.209988117218018, "TIME_S_1KI": 0.029651150231366417, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 996.8449161434174, "W": 73.42, "J_1KI": 2.894968929111357, "W_1KI": 0.21322135001466586, "W_D": 47.158, "J_D": 640.2780244550705, "W_D_1KI": 0.13695304309441042, "J_D_1KI": 0.0003977296749823877} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_5e-05.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_5e-05.output new file mode 100644 index 0000000..395a17f --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_5000_5e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.019530296325683594} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 1249, 1250, 1250]), + col_indices=tensor([2184, 3902, 2442, ..., 1965, 3430, 1316]), + values=tensor([0.1298, 0.8618, 0.5661, ..., 0.6807, 0.5041, 0.2985]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.7563, 0.3154, 0.3739, ..., 0.6493, 0.1597, 0.7226]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 0.019530296325683594 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '53762', '-ss', '5000', '-sd', '5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 1.6393845081329346} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1248, 1249, 1250]), + col_indices=tensor([ 543, 3603, 176, ..., 1860, 3976, 394]), + values=tensor([0.3999, 0.3952, 0.5467, ..., 0.7650, 0.4806, 0.1331]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.3582, 0.6649, 0.9739, ..., 0.1792, 0.8232, 0.7194]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 1.6393845081329346 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '344337', '-ss', '5000', '-sd', '5e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.209988117218018} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1249, 1250, 1250]), + col_indices=tensor([2469, 1957, 4805, ..., 986, 4084, 3397]), + values=tensor([0.1203, 0.9340, 0.5005, ..., 0.1600, 0.9840, 0.6585]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.7772, 0.5114, 0.7654, ..., 0.7246, 0.7942, 0.6121]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 10.209988117218018 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1249, 1250, 1250]), + col_indices=tensor([2469, 1957, 4805, ..., 986, 4084, 3397]), + values=tensor([0.1203, 0.9340, 0.5005, ..., 0.1600, 0.9840, 0.6585]), + size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) +tensor([0.7772, 0.5114, 0.7654, ..., 0.7246, 0.7942, 0.6121]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250 +Density: 5e-05 +Time: 10.209988117218018 seconds + +[40.04, 39.64, 39.87, 39.84, 41.87, 42.36, 39.49, 37.87, 39.91, 39.97] +[73.42] +13.577293872833252 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 344337, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.209988117218018, 'TIME_S_1KI': 0.029651150231366417, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 996.8449161434174, 'W': 73.42} +[40.04, 39.64, 39.87, 39.84, 41.87, 42.36, 39.49, 37.87, 39.91, 39.97, 18.46, 17.91, 18.96, 18.18, 18.6, 18.04, 18.09, 18.2, 18.22, 17.91] +525.24 +26.262 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 344337, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.209988117218018, 'TIME_S_1KI': 0.029651150231366417, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 996.8449161434174, 'W': 73.42, 'J_1KI': 2.894968929111357, 'W_1KI': 0.21322135001466586, 'W_D': 47.158, 'J_D': 640.2780244550705, 'W_D_1KI': 0.13695304309441042, 'J_D_1KI': 0.0003977296749823877} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_100000_0.0001.json new file mode 100644 index 0000000..41d6bb0 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_100000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 17.146100997924805, "TIME_S_1KI": 17.146100997924805, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1342.6130161285403, "W": 65.43610945887401, "J_1KI": 1342.6130161285403, "W_1KI": 65.43610945887401, "W_D": 46.466109458874016, "J_D": 953.388028173447, "W_D_1KI": 46.466109458874016, "J_D_1KI": 46.466109458874016} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_100000_0.0001.output new file mode 100644 index 0000000..451f542 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_100000_0.0001.output @@ -0,0 +1,45 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 17.146100997924805} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 9, 17, ..., 999972, + 999990, 1000000]), + col_indices=tensor([13952, 31113, 48803, ..., 72766, 82982, 86351]), + values=tensor([0.4430, 0.0507, 0.5237, ..., 0.5341, 0.7602, 0.3481]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.1669, 0.1860, 0.1675, ..., 0.5137, 0.0308, 0.0638]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 17.146100997924805 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 9, 17, ..., 999972, + 999990, 1000000]), + col_indices=tensor([13952, 31113, 48803, ..., 72766, 82982, 86351]), + values=tensor([0.4430, 0.0507, 0.5237, ..., 0.5341, 0.7602, 0.3481]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.1669, 0.1860, 0.1675, ..., 0.5137, 0.0308, 0.0638]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 17.146100997924805 seconds + +[21.44, 21.28, 21.16, 21.16, 20.96, 20.96, 20.96, 21.0, 21.24, 21.4] +[21.44, 21.28, 21.92, 23.96, 24.84, 38.64, 55.84, 70.04, 84.52, 91.04, 91.04, 91.56, 90.84, 89.12, 88.88, 89.24, 89.64, 88.8, 89.08, 90.0] +20.517922401428223 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 17.146100997924805, 'TIME_S_1KI': 17.146100997924805, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1342.6130161285403, 'W': 65.43610945887401} +[21.44, 21.28, 21.16, 21.16, 20.96, 20.96, 20.96, 21.0, 21.24, 21.4, 21.16, 21.04, 21.08, 20.92, 20.88, 20.88, 21.04, 20.96, 21.2, 21.36] +379.4 +18.97 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 17.146100997924805, 'TIME_S_1KI': 17.146100997924805, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1342.6130161285403, 'W': 65.43610945887401, 'J_1KI': 1342.6130161285403, 'W_1KI': 65.43610945887401, 'W_D': 46.466109458874016, 'J_D': 953.388028173447, 'W_D_1KI': 46.466109458874016, 'J_D_1KI': 46.466109458874016} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_100000_0.001.json b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_100000_0.001.json new file mode 100644 index 0000000..c78bc8a --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_100000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 159.18061113357544, "TIME_S_1KI": 159.18061113357544, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 13305.551260681154, "W": 81.94491850885544, "J_1KI": 13305.551260681154, "W_1KI": 81.94491850885544, "W_D": 61.991918508855434, "J_D": 10065.7449476676, "W_D_1KI": 61.991918508855434, "J_D_1KI": 61.991918508855434} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_100000_0.001.output b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_100000_0.001.output new file mode 100644 index 0000000..a21bcbb --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_100000_0.001.output @@ -0,0 +1,47 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 159.18061113357544} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 95, 182, ..., 9999785, + 9999891, 10000000]), + col_indices=tensor([ 2375, 2397, 2562, ..., 95994, 97725, 99229]), + values=tensor([3.2988e-01, 7.8520e-04, 8.6482e-01, ..., + 9.5198e-01, 4.5600e-01, 9.5863e-01]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.4135, 0.2091, 0.0976, ..., 0.1293, 0.9759, 0.9614]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 159.18061113357544 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 95, 182, ..., 9999785, + 9999891, 10000000]), + col_indices=tensor([ 2375, 2397, 2562, ..., 95994, 97725, 99229]), + values=tensor([3.2988e-01, 7.8520e-04, 8.6482e-01, ..., + 9.5198e-01, 4.5600e-01, 9.5863e-01]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.4135, 0.2091, 0.0976, ..., 0.1293, 0.9759, 0.9614]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 159.18061113357544 seconds + +[22.04, 21.88, 21.96, 22.12, 21.96, 21.92, 22.08, 22.08, 22.24, 22.08] +[22.12, 22.0, 22.4, 24.16, 25.0, 26.76, 35.48, 36.76, 45.64, 60.64, 68.76, 79.68, 90.72, 91.28, 91.28, 90.96, 89.36, 89.36, 87.68, 88.24, 87.52, 88.44, 91.68, 90.56, 91.8, 92.44, 92.04, 93.12, 92.52, 92.52, 92.88, 91.88, 91.24, 91.12, 90.44, 89.64, 89.48, 89.16, 87.68, 85.84, 85.0, 86.96, 88.04, 88.04, 88.0, 89.08, 87.48, 87.52, 86.2, 84.8, 84.64, 85.48, 85.76, 86.32, 87.44, 87.44, 88.64, 89.72, 89.72, 89.4, 87.64, 88.72, 89.0, 89.12, 89.76, 91.04, 88.36, 87.88, 86.68, 87.88, 86.48, 86.8, 86.68, 87.68, 87.68, 86.8, 87.56, 86.76, 84.72, 85.2, 85.08, 85.44, 86.48, 85.92, 86.4, 86.84, 84.56, 83.28, 84.6, 84.6, 85.76, 88.64, 88.68, 89.48, 90.88, 87.96, 88.04, 89.64, 89.6, 88.16, 88.6, 87.04, 86.96, 86.24, 86.24, 87.56, 87.32, 88.48, 89.36, 88.68, 89.56, 88.2, 85.8, 85.8, 86.36, 86.36, 88.2, 88.52, 91.48, 91.48, 91.08, 90.04, 89.24, 88.08, 88.36, 89.92, 89.76, 90.6, 89.4, 87.04, 84.72, 85.04, 83.32, 84.92, 84.92, 84.2, 85.16, 84.0, 84.2, 83.92, 84.84, 84.84, 87.04, 88.68, 91.04, 91.52, 89.88, 89.96, 89.44, 89.44, 88.36, 88.12, 90.24, 89.76, 88.8, 88.0, 86.72, 86.4] +162.37188959121704 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 159.18061113357544, 'TIME_S_1KI': 159.18061113357544, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 13305.551260681154, 'W': 81.94491850885544} +[22.04, 21.88, 21.96, 22.12, 21.96, 21.92, 22.08, 22.08, 22.24, 22.08, 21.88, 22.04, 22.48, 22.64, 22.36, 22.6, 22.6, 22.44, 21.76, 21.8] +399.06000000000006 +19.953000000000003 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 159.18061113357544, 'TIME_S_1KI': 159.18061113357544, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 13305.551260681154, 'W': 81.94491850885544, 'J_1KI': 13305.551260681154, 'W_1KI': 81.94491850885544, 'W_D': 61.991918508855434, 'J_D': 10065.7449476676, 'W_D_1KI': 61.991918508855434, 'J_D_1KI': 61.991918508855434} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_100000_1e-05.json new file mode 100644 index 0000000..dc43877 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_100000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 3301, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 12.605360507965088, "TIME_S_1KI": 3.8186490481566455, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 881.8972729587555, "W": 57.01281240597429, "J_1KI": 267.1606400965633, "W_1KI": 17.27137606966807, "W_D": 37.77781240597429, "J_D": 584.3625026237966, "W_D_1KI": 11.444353955157311, "J_D_1KI": 3.466935460514181} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_100000_1e-05.output new file mode 100644 index 0000000..842e972 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_100000_1e-05.output @@ -0,0 +1,65 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 3.180464267730713} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 2, ..., 99997, 99997, + 100000]), + col_indices=tensor([ 3926, 50379, 15277, ..., 29136, 40772, 68436]), + values=tensor([0.5699, 0.5366, 0.1661, ..., 0.2141, 0.3018, 0.3946]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.8865, 0.6102, 0.2945, ..., 0.5701, 0.8700, 0.6634]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 3.180464267730713 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 3301 -ss 100000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 12.605360507965088} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 99997, 99998, + 100000]), + col_indices=tensor([33916, 32242, 16140, ..., 45457, 58350, 84955]), + values=tensor([0.9718, 0.7827, 0.4187, ..., 0.1750, 0.8602, 0.7313]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.7754, 0.6786, 0.3605, ..., 0.9739, 0.1301, 0.4075]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 12.605360507965088 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 99997, 99998, + 100000]), + col_indices=tensor([33916, 32242, 16140, ..., 45457, 58350, 84955]), + values=tensor([0.9718, 0.7827, 0.4187, ..., 0.1750, 0.8602, 0.7313]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.7754, 0.6786, 0.3605, ..., 0.9739, 0.1301, 0.4075]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 12.605360507965088 seconds + +[21.24, 21.24, 21.36, 21.4, 21.52, 21.72, 21.56, 21.64, 21.48, 21.48] +[21.4, 21.4, 21.8, 22.88, 23.96, 35.92, 52.84, 66.08, 81.2, 91.72, 90.6, 91.36, 91.84, 91.24, 91.24] +15.46840500831604 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 3301, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 12.605360507965088, 'TIME_S_1KI': 3.8186490481566455, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 881.8972729587555, 'W': 57.01281240597429} +[21.24, 21.24, 21.36, 21.4, 21.52, 21.72, 21.56, 21.64, 21.48, 21.48, 21.28, 21.28, 21.32, 21.48, 21.6, 21.48, 21.28, 21.12, 20.84, 20.76] +384.69999999999993 +19.234999999999996 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 3301, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 12.605360507965088, 'TIME_S_1KI': 3.8186490481566455, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 881.8972729587555, 'W': 57.01281240597429, 'J_1KI': 267.1606400965633, 'W_1KI': 17.27137606966807, 'W_D': 37.77781240597429, 'J_D': 584.3625026237966, 'W_D_1KI': 11.444353955157311, 'J_D_1KI': 3.466935460514181} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.0001.json b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.0001.json new file mode 100644 index 0000000..b901590 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 32089, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.109246492385864, "TIME_S_1KI": 0.3150377541333748, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 318.60778367996215, "W": 22.396548812340328, "J_1KI": 9.92887854654125, "W_1KI": 0.6979509742385342, "W_D": 4.033548812340328, "J_D": 57.38027131915093, "W_D_1KI": 0.1256988005964763, "J_D_1KI": 0.003917192826092315} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.0001.output b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.0001.output new file mode 100644 index 0000000..8b8a1a7 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.0001.output @@ -0,0 +1,62 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.3272056579589844} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 3, ..., 10000, 10000, 10000]), + col_indices=tensor([ 654, 4587, 9013, ..., 1787, 1854, 8773]), + values=tensor([0.1124, 0.2109, 0.1818, ..., 0.9520, 0.5472, 0.0091]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.1189, 0.4488, 0.9345, ..., 0.0324, 0.3464, 0.4030]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 0.3272056579589844 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 32089 -ss 10000 -sd 0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.109246492385864} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 9996, 9998, 10000]), + col_indices=tensor([6261, 1350, 3983, ..., 9586, 2579, 6781]), + values=tensor([0.3771, 0.7405, 0.3284, ..., 0.1626, 0.7239, 0.9996]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.1818, 0.1444, 0.2139, ..., 0.0964, 0.7255, 0.0411]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.109246492385864 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 9996, 9998, 10000]), + col_indices=tensor([6261, 1350, 3983, ..., 9586, 2579, 6781]), + values=tensor([0.3771, 0.7405, 0.3284, ..., 0.1626, 0.7239, 0.9996]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.1818, 0.1444, 0.2139, ..., 0.0964, 0.7255, 0.0411]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.109246492385864 seconds + +[20.52, 20.4, 20.52, 20.52, 20.52, 20.32, 20.32, 20.2, 20.36, 20.24] +[20.32, 20.48, 20.88, 25.52, 26.52, 27.24, 27.6, 24.68, 23.88, 23.88, 23.36, 23.6, 23.68, 23.6] +14.225753545761108 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 32089, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.109246492385864, 'TIME_S_1KI': 0.3150377541333748, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 318.60778367996215, 'W': 22.396548812340328} +[20.52, 20.4, 20.52, 20.52, 20.52, 20.32, 20.32, 20.2, 20.36, 20.24, 20.72, 20.52, 20.6, 20.4, 20.32, 20.52, 20.44, 20.32, 20.16, 20.16] +367.26 +18.363 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 32089, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.109246492385864, 'TIME_S_1KI': 0.3150377541333748, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 318.60778367996215, 'W': 22.396548812340328, 'J_1KI': 9.92887854654125, 'W_1KI': 0.6979509742385342, 'W_D': 4.033548812340328, 'J_D': 57.38027131915093, 'W_D_1KI': 0.1256988005964763, 'J_D_1KI': 0.003917192826092315} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.001.json b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.001.json new file mode 100644 index 0000000..28a5b99 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 4566, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.211250305175781, "TIME_S_1KI": 2.236366689701222, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 296.4135251998902, "W": 22.432139051903395, "J_1KI": 64.91754822599435, "W_1KI": 4.912864444131274, "W_D": 4.068139051903394, "J_D": 53.75552614879615, "W_D_1KI": 0.8909634366849307, "J_D_1KI": 0.19512996861255602} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.001.output b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.001.output new file mode 100644 index 0000000..f081110 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 2.2992472648620605} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 7, 16, ..., 99980, 99989, + 100000]), + col_indices=tensor([ 655, 1592, 1705, ..., 9238, 9783, 9811]), + values=tensor([0.0624, 0.8226, 0.1738, ..., 0.6448, 0.8074, 0.7220]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.5841, 0.1855, 0.2176, ..., 0.5967, 0.9561, 0.0240]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 2.2992472648620605 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 4566 -ss 10000 -sd 0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.211250305175781} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 14, 28, ..., 99989, 99992, + 100000]), + col_indices=tensor([ 778, 1147, 3454, ..., 4854, 5919, 8867]), + values=tensor([0.6002, 0.4939, 0.0259, ..., 0.9282, 0.0584, 0.5342]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.8806, 0.9663, 0.5124, ..., 0.2617, 0.2277, 0.6355]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.211250305175781 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 14, 28, ..., 99989, 99992, + 100000]), + col_indices=tensor([ 778, 1147, 3454, ..., 4854, 5919, 8867]), + values=tensor([0.6002, 0.4939, 0.0259, ..., 0.9282, 0.0584, 0.5342]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.8806, 0.9663, 0.5124, ..., 0.2617, 0.2277, 0.6355]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.211250305175781 seconds + +[20.52, 20.28, 20.28, 20.24, 20.2, 20.2, 20.16, 20.44, 20.56, 20.64] +[20.68, 20.52, 20.84, 21.8, 22.68, 26.2, 26.72, 26.88, 26.88, 26.92, 24.56, 24.6, 24.48] +13.21378779411316 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4566, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.211250305175781, 'TIME_S_1KI': 2.236366689701222, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 296.4135251998902, 'W': 22.432139051903395} +[20.52, 20.28, 20.28, 20.24, 20.2, 20.2, 20.16, 20.44, 20.56, 20.64, 20.56, 20.52, 20.32, 20.28, 20.24, 20.4, 20.6, 20.68, 20.68, 20.68] +367.28000000000003 +18.364 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4566, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.211250305175781, 'TIME_S_1KI': 2.236366689701222, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 296.4135251998902, 'W': 22.432139051903395, 'J_1KI': 64.91754822599435, 'W_1KI': 4.912864444131274, 'W_D': 4.068139051903394, 'J_D': 53.75552614879615, 'W_D_1KI': 0.8909634366849307, 'J_D_1KI': 0.19512996861255602} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.01.json b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.01.json new file mode 100644 index 0000000..123a4ab --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 21.205244779586792, "TIME_S_1KI": 21.205244779586792, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 620.3200452423096, "W": 24.48389957916532, "J_1KI": 620.3200452423096, "W_1KI": 24.48389957916532, "W_D": 6.114899579165321, "J_D": 154.92608811497686, "W_D_1KI": 6.114899579165321, "J_D_1KI": 6.114899579165321} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.01.output b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.01.output new file mode 100644 index 0000000..9e8858d --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.01.output @@ -0,0 +1,45 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 21.205244779586792} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 87, 190, ..., 999787, + 999893, 1000000]), + col_indices=tensor([ 40, 232, 261, ..., 9741, 9779, 9904]), + values=tensor([0.6083, 0.3635, 0.2569, ..., 0.1971, 0.1171, 0.3174]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.7546, 0.0325, 0.8716, ..., 0.3834, 0.9539, 0.7452]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 21.205244779586792 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 87, 190, ..., 999787, + 999893, 1000000]), + col_indices=tensor([ 40, 232, 261, ..., 9741, 9779, 9904]), + values=tensor([0.6083, 0.3635, 0.2569, ..., 0.1971, 0.1171, 0.3174]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.7546, 0.0325, 0.8716, ..., 0.3834, 0.9539, 0.7452]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 21.205244779586792 seconds + +[20.12, 20.4, 20.4, 20.36, 20.16, 20.24, 20.32, 20.32, 20.32, 20.52] +[20.52, 20.76, 21.12, 22.84, 24.76, 33.76, 34.6, 34.52, 33.84, 26.88, 24.24, 24.24, 24.12, 24.12, 24.04, 24.0, 24.0, 24.04, 24.12, 23.96, 24.0, 24.12, 23.96, 23.96, 24.0] +25.335835218429565 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 21.205244779586792, 'TIME_S_1KI': 21.205244779586792, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 620.3200452423096, 'W': 24.48389957916532} +[20.12, 20.4, 20.4, 20.36, 20.16, 20.24, 20.32, 20.32, 20.32, 20.52, 20.52, 20.56, 20.6, 20.44, 20.44, 20.32, 20.28, 20.64, 20.68, 20.64] +367.38 +18.369 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 21.205244779586792, 'TIME_S_1KI': 21.205244779586792, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 620.3200452423096, 'W': 24.48389957916532, 'J_1KI': 620.3200452423096, 'W_1KI': 24.48389957916532, 'W_D': 6.114899579165321, 'J_D': 154.92608811497686, 'W_D_1KI': 6.114899579165321, 'J_D_1KI': 6.114899579165321} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.05.json b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.05.json new file mode 100644 index 0000000..054792b --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 106.56615614891052, "TIME_S_1KI": 106.56615614891052, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2781.6071025085453, "W": 24.542113905929394, "J_1KI": 2781.6071025085453, "W_1KI": 24.542113905929394, "W_D": 6.099113905929396, "J_D": 691.2745423955923, "W_D_1KI": 6.099113905929396, "J_D_1KI": 6.099113905929396} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.05.output b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.05.output new file mode 100644 index 0000000..1064fac --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.05.output @@ -0,0 +1,45 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 106.56615614891052} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 509, 1020, ..., 4998992, + 4999488, 5000000]), + col_indices=tensor([ 3, 11, 31, ..., 9971, 9976, 9990]), + values=tensor([0.8435, 0.0304, 0.5451, ..., 0.3255, 0.3710, 0.6386]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.1386, 0.0671, 0.1165, ..., 0.0400, 0.5375, 0.5366]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 106.56615614891052 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 509, 1020, ..., 4998992, + 4999488, 5000000]), + col_indices=tensor([ 3, 11, 31, ..., 9971, 9976, 9990]), + values=tensor([0.8435, 0.0304, 0.5451, ..., 0.3255, 0.3710, 0.6386]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.1386, 0.0671, 0.1165, ..., 0.0400, 0.5375, 0.5366]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 106.56615614891052 seconds + +[20.4, 20.64, 20.52, 20.56, 20.6, 20.52, 20.56, 20.52, 20.2, 20.56] +[20.56, 20.68, 20.68, 24.36, 26.16, 32.64, 39.96, 40.52, 36.88, 36.0, 27.96, 24.36, 24.12, 24.28, 24.28, 24.44, 24.64, 24.72, 24.6, 24.36, 24.2, 23.96, 24.12, 24.08, 24.12, 24.24, 24.24, 24.28, 24.68, 24.56, 24.72, 24.84, 24.88, 24.56, 24.48, 24.32, 24.44, 24.52, 24.52, 24.72, 24.68, 24.68, 24.28, 24.0, 23.92, 23.84, 24.0, 24.24, 24.44, 24.48, 24.44, 24.44, 24.64, 24.68, 24.76, 24.72, 24.68, 24.52, 24.56, 24.64, 24.52, 24.68, 24.44, 24.44, 24.4, 24.64, 24.8, 24.68, 24.76, 24.64, 24.4, 24.12, 24.48, 24.56, 24.72, 24.72, 24.8, 24.96, 24.52, 24.32, 24.36, 24.24, 24.08, 24.04, 23.96, 24.08, 24.4, 24.48, 24.48, 24.64, 24.76, 24.4, 24.36, 24.4, 24.56, 24.68, 24.68, 24.48, 24.36, 24.2, 24.2, 24.56, 24.48, 24.4, 24.36, 24.44, 24.36, 24.44, 24.36, 24.64, 24.52, 24.48] +113.34015941619873 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 106.56615614891052, 'TIME_S_1KI': 106.56615614891052, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2781.6071025085453, 'W': 24.542113905929394} +[20.4, 20.64, 20.52, 20.56, 20.6, 20.52, 20.56, 20.52, 20.2, 20.56, 20.52, 20.48, 20.48, 20.56, 20.48, 20.36, 20.48, 20.52, 20.44, 20.4] +368.85999999999996 +18.442999999999998 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 106.56615614891052, 'TIME_S_1KI': 106.56615614891052, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2781.6071025085453, 'W': 24.542113905929394, 'J_1KI': 2781.6071025085453, 'W_1KI': 24.542113905929394, 'W_D': 6.099113905929396, 'J_D': 691.2745423955923, 'W_D_1KI': 6.099113905929396, 'J_D_1KI': 6.099113905929396} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.1.json b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.1.json new file mode 100644 index 0000000..175168f --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.1.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 210.99842429161072, "TIME_S_1KI": 210.99842429161072, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 5320.685762977602, "W": 24.45864835325204, "J_1KI": 5320.685762977602, "W_1KI": 24.45864835325204, "W_D": 6.0876483532520425, "J_D": 1324.2949264960312, "W_D_1KI": 6.0876483532520425, "J_D_1KI": 6.0876483532520425} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.1.output b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.1.output new file mode 100644 index 0000000..1928ba2 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_0.1.output @@ -0,0 +1,45 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 210.99842429161072} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1065, 2071, ..., 9998045, + 9999047, 10000000]), + col_indices=tensor([ 6, 19, 22, ..., 9974, 9992, 9993]), + values=tensor([0.1921, 0.6014, 0.9806, ..., 0.7679, 0.7737, 0.6028]), + size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.1676, 0.2617, 0.2303, ..., 0.3636, 0.4445, 0.4181]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000000 +Density: 0.1 +Time: 210.99842429161072 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1065, 2071, ..., 9998045, + 9999047, 10000000]), + col_indices=tensor([ 6, 19, 22, ..., 9974, 9992, 9993]), + values=tensor([0.1921, 0.6014, 0.9806, ..., 0.7679, 0.7737, 0.6028]), + size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.1676, 0.2617, 0.2303, ..., 0.3636, 0.4445, 0.4181]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000000 +Density: 0.1 +Time: 210.99842429161072 seconds + +[20.48, 20.52, 20.52, 20.68, 20.64, 20.64, 20.6, 20.56, 20.36, 20.48] +[20.52, 20.6, 21.44, 23.16, 24.32, 34.12, 34.12, 35.68, 38.2, 37.44, 37.12, 27.84, 27.04, 24.4, 24.44, 24.4, 24.32, 24.48, 24.48, 24.36, 24.44, 24.72, 25.0, 24.92, 24.96, 24.96, 24.52, 24.4, 24.32, 24.24, 24.36, 24.36, 24.64, 24.56, 24.44, 24.52, 24.4, 24.6, 24.68, 24.84, 24.88, 24.64, 24.52, 24.52, 24.6, 24.48, 24.4, 24.28, 24.28, 24.32, 24.44, 24.44, 24.56, 24.52, 24.2, 24.16, 24.16, 24.12, 24.32, 24.36, 24.28, 24.28, 24.0, 24.12, 24.24, 24.4, 24.56, 25.04, 25.04, 24.84, 24.8, 24.76, 24.48, 24.44, 24.56, 24.48, 24.48, 24.4, 24.48, 24.36, 24.48, 24.48, 24.6, 24.68, 25.0, 25.0, 24.84, 24.76, 24.68, 24.44, 24.52, 24.52, 24.6, 24.6, 24.76, 24.48, 24.52, 24.4, 24.16, 24.24, 24.0, 24.24, 24.12, 24.24, 24.44, 24.44, 24.8, 24.8, 24.72, 24.64, 24.52, 24.28, 24.24, 24.16, 24.2, 24.32, 24.48, 24.32, 24.32, 24.28, 24.28, 24.32, 24.52, 24.56, 24.56, 24.6, 24.48, 24.4, 24.28, 24.24, 24.24, 24.24, 24.32, 24.48, 24.4, 24.4, 24.2, 24.08, 24.24, 24.4, 24.64, 24.68, 24.64, 24.64, 24.8, 24.6, 24.72, 24.8, 24.76, 24.76, 24.92, 25.08, 24.92, 24.88, 24.68, 24.68, 24.48, 24.32, 24.64, 24.68, 24.92, 24.92, 24.8, 24.68, 24.64, 24.44, 24.6, 24.6, 24.68, 24.52, 24.4, 24.44, 24.36, 24.12, 24.32, 24.24, 24.16, 24.24, 24.0, 24.24, 24.24, 24.44, 24.44, 24.6, 24.64, 24.44, 24.36, 24.48, 24.4, 24.64, 24.44, 24.64, 24.64, 24.6, 24.44, 24.64, 24.64, 24.32, 24.36, 24.24, 24.08, 24.36, 24.4, 24.48, 24.56, 24.56, 24.44, 24.32, 24.2, 24.36, 24.56, 24.68, 24.76, 24.92, 24.88] +217.5380129814148 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 210.99842429161072, 'TIME_S_1KI': 210.99842429161072, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 5320.685762977602, 'W': 24.45864835325204} +[20.48, 20.52, 20.52, 20.68, 20.64, 20.64, 20.6, 20.56, 20.36, 20.48, 20.4, 20.36, 20.32, 20.32, 20.2, 20.2, 20.28, 20.16, 20.24, 20.28] +367.41999999999996 +18.371 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 210.99842429161072, 'TIME_S_1KI': 210.99842429161072, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 5320.685762977602, 'W': 24.45864835325204, 'J_1KI': 5320.685762977602, 'W_1KI': 24.45864835325204, 'W_D': 6.0876483532520425, 'J_D': 1324.2949264960312, 'W_D_1KI': 6.0876483532520425, 'J_D_1KI': 6.0876483532520425} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_1e-05.json b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_1e-05.json new file mode 100644 index 0000000..40d44d2 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 142926, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.514646053314209, "TIME_S_1KI": 0.07356706304880994, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 341.9344939994813, "W": 24.04792007204229, "J_1KI": 2.3923883268228403, "W_1KI": 0.1682543419114947, "W_D": 4.089920072042293, "J_D": 58.15408343601235, "W_D_1KI": 0.02861564776207473, "J_D_1KI": 0.00020021303165326625} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_1e-05.output b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_1e-05.output new file mode 100644 index 0000000..e3d4653 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_10000_1e-05.output @@ -0,0 +1,1414 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.08297038078308105} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 999, 999, 1000]), + col_indices=tensor([9541, 4744, 3707, 3759, 5602, 648, 5760, 9547, 5348, + 1622, 5522, 1425, 7886, 8949, 1399, 4987, 2045, 2195, + 1877, 8225, 7439, 3742, 1704, 9009, 2824, 6038, 7459, + 2392, 4934, 1115, 7057, 1326, 9427, 1487, 6052, 271, + 2404, 6442, 2401, 5281, 847, 9237, 5881, 2117, 9030, + 4040, 5058, 3876, 5704, 2576, 376, 9599, 6293, 631, + 3850, 2531, 5459, 4807, 1976, 4129, 6044, 7528, 128, + 620, 4258, 707, 3186, 4767, 6203, 7053, 3266, 3634, + 6287, 7059, 8930, 8238, 249, 9263, 6668, 2968, 8693, + 1448, 3963, 9472, 8236, 7658, 21, 522, 5082, 5332, + 4645, 2332, 6408, 7231, 8736, 9779, 4215, 3799, 2187, + 9640, 706, 3366, 478, 6738, 3826, 4896, 4399, 9716, + 617, 1830, 9549, 4294, 2027, 1533, 9629, 7815, 4667, + 4504, 5733, 7722, 3123, 8029, 3228, 5140, 2985, 4485, + 906, 8472, 993, 7143, 5174, 5432, 8332, 4083, 2173, + 2104, 5924, 4632, 1377, 420, 8402, 112, 8458, 5830, + 9221, 5106, 3118, 6351, 6259, 8778, 5907, 9815, 391, + 7254, 9485, 4166, 1814, 2095, 177, 6065, 4798, 3294, + 9118, 4002, 6468, 4676, 4594, 1033, 5568, 2567, 2946, + 7002, 6944, 4198, 2354, 5428, 7206, 480, 6548, 8449, + 121, 5762, 8140, 9120, 3426, 1673, 7470, 1305, 2311, + 979, 2867, 3482, 4187, 1379, 5373, 5104, 9058, 7249, + 5269, 8473, 4187, 4514, 9226, 1893, 4287, 720, 3491, + 9637, 605, 6889, 21, 1152, 4929, 3127, 8079, 678, + 4219, 9741, 975, 5212, 6243, 1307, 5836, 8196, 5327, + 8749, 6752, 6677, 4788, 6827, 8125, 2049, 1591, 7592, + 449, 4957, 6437, 2880, 1837, 2987, 3733, 5822, 2888, + 2962, 4631, 3914, 466, 7123, 9568, 7077, 239, 8789, + 8002, 7541, 1395, 9017, 1554, 8609, 1114, 359, 1644, + 9296, 2622, 6861, 1946, 6878, 3199, 6756, 6576, 8441, + 6782, 9208, 3800, 6755, 9307, 2546, 2751, 9936, 3072, + 5887, 1740, 5436, 8353, 856, 3061, 4683, 282, 2344, + 2737, 8185, 6739, 1483, 9825, 4566, 2572, 5286, 3306, + 6854, 1701, 8164, 6844, 5021, 3885, 1016, 8535, 7619, + 101, 9406, 391, 7997, 5109, 9604, 6641, 4700, 8743, + 1701, 220, 1307, 2989, 4960, 7899, 4634, 4188, 3055, + 6943, 153, 1825, 1183, 7470, 7761, 3324, 6926, 5802, + 3938, 9690, 4429, 4674, 8612, 5692, 7360, 969, 4901, + 9007, 2615, 7523, 6755, 185, 2934, 1782, 331, 1633, + 3371, 7658, 1018, 3353, 1634, 820, 3145, 941, 5177, + 2302, 2110, 1609, 719, 4268, 1250, 9968, 7113, 8855, + 3206, 8475, 311, 8174, 4801, 1395, 6530, 9861, 2603, + 6826, 85, 7072, 714, 1333, 6273, 6592, 6272, 6781, + 7226, 9564, 844, 2453, 3858, 1470, 282, 2103, 8485, + 5275, 7636, 8340, 1822, 1514, 8469, 2978, 3108, 133, + 6732, 4349, 1378, 4402, 8475, 2621, 7780, 7910, 7351, + 454, 5154, 5529, 239, 9795, 2440, 372, 7445, 5618, + 6124, 7886, 9761, 4160, 4373, 8833, 4133, 7330, 6076, + 8022, 6116, 6026, 2241, 568, 8188, 7934, 3070, 687, + 6581, 2801, 8072, 9446, 7672, 7543, 2735, 8790, 6750, + 2435, 364, 2240, 8373, 4384, 6069, 763, 1226, 5310, + 4872, 229, 6569, 7105, 3232, 7585, 1692, 1949, 6461, + 3474, 9239, 5258, 3042, 3559, 3298, 2221, 889, 3662, + 4913, 8642, 9462, 7196, 5711, 4175, 8477, 909, 5344, + 471, 1089, 1178, 9304, 462, 5816, 9392, 8552, 8175, + 4186, 1379, 132, 2058, 1333, 3506, 5750, 5286, 6785, + 2512, 1490, 3067, 5556, 8616, 8391, 5802, 7892, 2802, + 9850, 4207, 3567, 9679, 6481, 8657, 4164, 9760, 863, + 4307, 1945, 8026, 9148, 1985, 8852, 8820, 9340, 1797, + 5164, 4959, 4437, 4761, 4864, 7285, 7565, 196, 3013, + 6185, 7044, 4674, 3370, 4764, 350, 5347, 7665, 8484, + 7882, 7045, 4719, 9202, 8269, 765, 5695, 517, 2931, + 2386, 5592, 6863, 5538, 4404, 2308, 140, 8498, 6481, + 2265, 5235, 2164, 5730, 3545, 7134, 5747, 2128, 7195, + 7411, 666, 9008, 6534, 5424, 5680, 9864, 5882, 2993, + 123, 686, 3088, 5442, 7924, 8422, 78, 1660, 7484, + 4893, 3377, 1762, 2672, 4381, 1747, 4470, 9134, 3417, + 7518, 9749, 6445, 7612, 2235, 7530, 4349, 4645, 9668, + 7802, 5907, 8700, 3950, 7901, 9114, 7278, 8890, 5296, + 4639, 4921, 100, 8333, 2024, 8807, 8382, 8961, 3676, + 2295, 2336, 2200, 3037, 3243, 5295, 6730, 4483, 5652, + 662, 617, 8803, 5537, 638, 1053, 1772, 5947, 1838, + 3087, 9574, 1480, 8561, 8008, 4768, 8041, 7377, 8623, + 9299, 762, 4570, 491, 7087, 8236, 7559, 9409, 9162, + 524, 7031, 471, 6861, 9065, 3463, 2863, 291, 855, + 7520, 779, 5540, 546, 7857, 2216, 6601, 8433, 3148, + 3193, 5437, 5398, 8297, 4601, 2085, 446, 1186, 7874, + 49, 2902, 4494, 4795, 9053, 5402, 2927, 1586, 2565, + 3662, 7583, 3948, 9561, 4265, 1480, 6933, 3561, 9357, + 6654, 9272, 16, 5294, 4582, 434, 9323, 4257, 6550, + 439, 4475, 1292, 7441, 2779, 3364, 303, 1742, 8608, + 4940, 283, 1474, 5120, 6422, 7514, 8440, 98, 5308, + 6398, 8201, 2915, 9890, 80, 1028, 4946, 7280, 4830, + 5039, 531, 9983, 6776, 3446, 1751, 7222, 3393, 3069, + 6417, 6795, 7190, 5, 7815, 7449, 9933, 448, 5005, + 3829, 3087, 5073, 7828, 5094, 8389, 6515, 6607, 694, + 4895, 9154, 3645, 7477, 5173, 7516, 3264, 395, 7092, + 0, 2973, 5818, 7270, 3567, 4322, 9395, 3622, 9001, + 5300, 9919, 8509, 5820, 8624, 3338, 5648, 7551, 2911, + 8001, 6269, 2252, 5808, 6497, 1687, 100, 4383, 6655, + 6964, 378, 3127, 7892, 1232, 3286, 761, 4445, 6154, + 8590, 8402, 3197, 6599, 6950, 3285, 6632, 2219, 1903, + 1826, 7632, 4217, 5122, 8776, 2643, 6045, 3552, 2331, + 3115, 6795, 2145, 8980, 5758, 4362, 2066, 2549, 375, + 3104, 1826, 892, 4202, 5456, 3650, 3778, 9617, 654, + 4447, 3824, 8476, 8365, 3371, 9281, 1588, 6978, 5331, + 4140, 6941, 2280, 1280, 6139, 3922, 8516, 7621, 4047, + 7929, 3546, 9284, 4482, 292, 4047, 8471, 4714, 3211, + 1190, 3085, 6119, 5172, 4634, 7577, 7971, 8378, 4996, + 8046, 3791, 1349, 5753, 7442, 9559, 4997, 9437, 2243, + 3590, 695, 6145, 4980, 1687, 3024, 1752, 1880, 5394, + 7171, 5473, 5654, 108, 1736, 1313, 9637, 2835, 5680, + 1109, 5141, 2910, 4505, 9202, 7567, 2403, 6573, 6279, + 3929, 4270, 7176, 7680, 2471, 8, 2651, 502, 6640, + 5575, 9260, 684, 8227, 8967, 6539, 4250, 5738, 1807, + 6590, 5958, 2048, 5979, 5237, 871, 7398, 4074, 7923, + 9737, 9408, 5924, 8041, 490, 617, 2006, 8839, 6330, + 6648, 948, 1030, 6508, 4791, 181, 1638, 4576, 7413, + 2243, 4743, 7952, 5078, 5305, 8747, 3414, 8140, 4079, + 4138, 6251, 453, 3816, 2039, 2570, 2032, 6570, 2327, + 6142, 2428, 8486, 6130, 1400, 6957, 3996, 5971, 9089, + 4617]), + values=tensor([0.0817, 0.3324, 0.2756, 0.6529, 0.0896, 0.5656, 0.0562, + 0.4958, 0.4951, 0.3804, 0.3913, 0.4986, 0.1152, 0.1822, + 0.5453, 0.4131, 0.4576, 0.1197, 0.2604, 0.1916, 0.8289, + 0.6367, 0.0901, 0.5957, 0.0365, 0.0416, 0.8103, 0.1183, + 0.0534, 0.1256, 0.7461, 0.7831, 0.6998, 0.1898, 0.8061, + 0.6526, 0.2984, 0.8242, 0.5560, 0.1775, 0.6071, 0.6878, + 0.3123, 0.5956, 0.9749, 0.6123, 0.4526, 0.9383, 0.2173, + 0.4194, 0.3042, 0.2147, 0.3605, 0.3101, 0.4656, 0.6783, + 0.8804, 0.5205, 0.2973, 0.3305, 0.1315, 0.3205, 0.6762, + 0.7007, 0.6919, 0.1581, 0.4172, 0.2771, 0.4730, 0.9555, + 0.1116, 0.2319, 0.9065, 0.7883, 0.2534, 0.5646, 0.0194, + 0.9142, 0.2745, 0.3458, 0.3269, 0.0011, 0.3403, 0.7824, + 0.7760, 0.6047, 0.7120, 0.2145, 0.3576, 0.3861, 0.9892, + 0.0628, 0.3553, 0.7317, 0.2389, 0.8487, 0.7424, 0.5264, + 0.0977, 0.3521, 0.5096, 0.4635, 0.3465, 0.4397, 0.6133, + 0.4956, 0.5784, 0.0080, 0.2648, 0.3588, 0.5910, 0.9636, + 0.2005, 0.4097, 0.7264, 0.2984, 0.7441, 0.6180, 0.2407, + 0.3332, 0.2608, 0.2432, 0.7611, 0.9934, 0.4942, 0.8188, + 0.7399, 0.1434, 0.0613, 0.0393, 0.3178, 0.5208, 0.4807, + 0.9491, 0.1732, 0.3057, 0.6323, 0.2840, 0.0857, 0.3659, + 0.6422, 0.3427, 0.7232, 0.7929, 0.7683, 0.7166, 0.7357, + 0.4486, 0.4382, 0.6550, 0.8314, 0.6931, 0.9646, 0.1363, + 0.3561, 0.7267, 0.3216, 0.7646, 0.3590, 0.4617, 0.6470, + 0.2146, 0.9869, 0.9043, 0.4331, 0.1225, 0.8001, 0.8156, + 0.4221, 0.2266, 0.0278, 0.3100, 0.5343, 0.5996, 0.0218, + 0.2255, 0.8666, 0.0921, 0.5170, 0.5002, 0.8058, 0.9057, + 0.7074, 0.4990, 0.2247, 0.0751, 0.7773, 0.4371, 0.1745, + 0.8389, 0.7204, 0.8341, 0.7818, 0.1989, 0.1221, 0.1256, + 0.0509, 0.2962, 0.3159, 0.7937, 0.4473, 0.9974, 0.7679, + 0.8988, 0.8844, 0.3530, 0.1562, 0.1444, 0.5256, 0.9271, + 0.1544, 0.8028, 0.8695, 0.9904, 0.5524, 0.4400, 0.3464, + 0.5814, 0.1913, 0.3013, 0.3557, 0.5804, 0.2758, 0.6828, + 0.7603, 0.3179, 0.2023, 0.7568, 0.7129, 0.6977, 0.7234, + 0.5232, 0.1407, 0.1867, 0.6312, 0.3493, 0.2358, 0.2023, + 0.0344, 0.4407, 0.5310, 0.0044, 0.2378, 0.6973, 0.0137, + 0.5245, 0.7504, 0.6317, 0.7374, 0.0195, 0.6845, 0.0597, + 0.6321, 0.4952, 0.0872, 0.8851, 0.2804, 0.4050, 0.0050, + 0.1130, 0.6505, 0.7950, 0.2115, 0.2993, 0.1143, 0.4572, + 0.8875, 0.8814, 0.8625, 0.5617, 0.2849, 0.3643, 0.8161, + 0.6732, 0.6625, 0.4192, 0.6920, 0.8966, 0.1811, 0.8719, + 0.4458, 0.4760, 0.1150, 0.9313, 0.4163, 0.1915, 0.2079, + 0.0153, 0.4544, 0.0330, 0.2888, 0.1259, 0.9069, 0.5548, + 0.1893, 0.3501, 0.4221, 0.9917, 0.0121, 0.3270, 0.7156, + 0.2522, 0.6695, 0.7573, 0.2663, 0.5688, 0.2007, 0.7497, + 0.7560, 0.7047, 0.2696, 0.0660, 0.0453, 0.4273, 0.1997, + 0.5561, 0.7041, 0.1107, 0.1287, 0.5815, 0.8808, 0.2873, + 0.5226, 0.7030, 0.4660, 0.0939, 0.3134, 0.9852, 0.6741, + 0.8244, 0.4734, 0.7806, 0.6942, 0.2882, 0.9682, 0.2573, + 0.7582, 0.4071, 0.6318, 0.4490, 0.5707, 0.5003, 0.1227, + 0.8669, 0.8759, 0.8600, 0.6640, 0.7634, 0.8157, 0.5906, + 0.4248, 0.0924, 0.7679, 0.2320, 0.0924, 0.3941, 0.2849, + 0.3425, 0.0017, 0.7135, 0.3043, 0.2758, 0.9349, 0.5956, + 0.8303, 0.0031, 0.6584, 0.3357, 0.8757, 0.0305, 0.6211, + 0.2884, 0.0857, 0.6294, 0.3816, 0.7433, 0.3867, 0.8719, + 0.5933, 0.0204, 0.3468, 0.5173, 0.0113, 0.6487, 0.2899, + 0.5825, 0.3059, 0.2157, 0.0161, 0.3893, 0.9304, 0.9388, + 0.5243, 0.0960, 0.4812, 0.4725, 0.9715, 0.1631, 0.7809, + 0.6492, 0.1889, 0.1408, 0.9297, 0.0583, 0.6888, 0.7196, + 0.4419, 0.4790, 0.9863, 0.1516, 0.3857, 0.7772, 0.5479, + 0.1246, 0.1139, 0.8454, 0.9043, 0.4449, 0.0395, 0.3981, + 0.6749, 0.9915, 0.0804, 0.9193, 0.4484, 0.5317, 0.4042, + 0.1191, 0.2550, 0.5178, 0.8187, 0.1465, 0.9720, 0.9634, + 0.1792, 0.6615, 0.5088, 0.5711, 0.2939, 0.0127, 0.9277, + 0.1686, 0.1396, 0.2487, 0.3406, 0.4117, 0.2784, 0.6035, + 0.0437, 0.5559, 0.9654, 0.8026, 0.4075, 0.3219, 0.7411, + 0.4938, 0.1727, 0.0259, 0.4851, 0.4359, 0.8209, 0.4590, + 0.5953, 0.4870, 0.7732, 0.0140, 0.5012, 0.3847, 0.3942, + 0.7438, 0.2238, 0.2840, 0.7133, 0.4377, 0.5948, 0.0613, + 0.9004, 0.2558, 0.2815, 0.7586, 0.1277, 0.1779, 0.7971, + 0.8889, 0.6839, 0.9304, 0.1337, 0.0863, 0.5723, 0.7632, + 0.8215, 0.4734, 0.0235, 0.4371, 0.2377, 0.2194, 0.9009, + 0.1041, 0.1399, 0.5555, 0.2350, 0.9756, 0.8238, 0.9442, + 0.2386, 0.7770, 0.6882, 0.8382, 0.9836, 0.4286, 0.0273, + 0.1999, 0.4582, 0.6792, 0.0648, 0.2691, 0.5502, 0.4637, + 0.7617, 0.0493, 0.7476, 0.9823, 0.6312, 0.2691, 0.2460, + 0.3885, 0.6715, 0.1922, 0.9393, 0.3584, 0.8462, 0.5889, + 0.4623, 0.7005, 0.5433, 0.8171, 0.3575, 0.3988, 0.6973, + 0.3605, 0.5650, 0.3760, 0.3743, 0.8906, 0.6556, 0.7020, + 0.5717, 0.5752, 0.3086, 0.4426, 0.8997, 0.2466, 0.9552, + 0.6396, 0.3873, 0.9308, 0.0452, 0.3753, 0.1970, 0.1210, + 0.0206, 0.2376, 0.4144, 0.8517, 0.8711, 0.1329, 0.6279, + 0.2544, 0.4642, 0.3918, 0.9007, 0.8631, 0.0275, 0.1831, + 0.6674, 0.8479, 0.6164, 0.6963, 0.1093, 0.9533, 0.4838, + 0.2932, 0.4954, 0.1620, 0.9153, 0.7978, 0.3760, 0.8694, + 0.6228, 0.4794, 0.2675, 0.3026, 0.1733, 0.8510, 0.9908, + 0.1169, 0.4773, 0.6671, 0.4542, 0.6433, 0.0132, 0.6663, + 0.3987, 0.6998, 0.2512, 0.4261, 0.8144, 0.0960, 0.7782, + 0.9103, 0.4597, 0.3097, 0.1387, 0.0805, 0.8676, 0.5323, + 0.3246, 0.3286, 0.4306, 0.9227, 0.1738, 0.2852, 0.8836, + 0.0592, 0.1647, 0.2312, 0.2516, 0.5752, 0.2805, 0.3541, + 0.7951, 0.0344, 0.4524, 0.1500, 0.0111, 0.3956, 0.6602, + 0.5921, 0.1514, 0.7099, 0.6694, 0.4804, 0.6940, 0.8492, + 0.1261, 0.3396, 0.5449, 0.2074, 0.6074, 0.3429, 0.2216, + 0.6768, 0.1514, 0.7176, 0.0448, 0.9166, 0.7625, 0.5947, + 0.1545, 0.5043, 0.0812, 0.5959, 0.6349, 0.5955, 0.1004, + 0.3380, 0.0700, 0.0342, 0.0885, 0.3430, 0.2529, 0.0027, + 0.7070, 0.1130, 0.2282, 0.2090, 0.0431, 0.9000, 0.6519, + 0.2230, 0.0220, 0.9269, 0.3636, 0.6531, 0.1093, 0.7667, + 0.2473, 0.7301, 0.0039, 0.0397, 0.7610, 0.3959, 0.5400, + 0.2628, 0.0274, 0.9532, 0.9422, 0.7334, 0.9018, 0.8690, + 0.8687, 0.3716, 0.6446, 0.8175, 0.1866, 0.3804, 0.9523, + 0.4158, 0.7545, 0.9008, 0.2091, 0.7603, 0.5331, 0.1940, + 0.1623, 0.1586, 0.1761, 0.3807, 0.0418, 0.4181, 0.0160, + 0.9350, 0.6667, 0.6291, 0.5327, 0.5502, 0.5467, 0.9540, + 0.0470, 0.6373, 0.7509, 0.3675, 0.1645, 0.1072, 0.0673, + 0.8707, 0.0270, 0.9565, 0.5479, 0.2174, 0.4603, 0.9839, + 0.4645, 0.2758, 0.4296, 0.3252, 0.1194, 0.1371, 0.9899, + 0.1554, 0.7690, 0.5689, 0.2289, 0.9166, 0.9043, 0.3346, + 0.8792, 0.6861, 0.5513, 0.2430, 0.1260, 0.0470, 0.9050, + 0.4004, 0.0033, 0.0611, 0.1735, 0.1599, 0.4032, 0.4661, + 0.0732, 0.2595, 0.2423, 0.9369, 0.7653, 0.8036, 0.9951, + 0.0034, 0.4292, 0.1415, 0.9688, 0.9983, 0.6291, 0.5436, + 0.0863, 0.6037, 0.5761, 0.4015, 0.7436, 0.9753, 0.2716, + 0.8796, 0.0534, 0.4733, 0.8091, 0.9332, 0.2263, 0.3176, + 0.3512, 0.2493, 0.5729, 0.0704, 0.8962, 0.1707, 0.1135, + 0.8467, 0.6882, 0.9935, 0.3400, 0.2498, 0.2447, 0.8298, + 0.8150, 0.8426, 0.1330, 0.3878, 0.9726, 0.9707, 0.7150, + 0.4710, 0.0623, 0.6977, 0.7884, 0.4121, 0.3697, 0.3835, + 0.4860, 0.0844, 0.4479, 0.3716, 0.2737, 0.9644, 0.4482, + 0.9930, 0.8318, 0.2931, 0.8408, 0.2954, 0.0520, 0.5236, + 0.4472, 0.9887, 0.5716, 0.7562, 0.6651, 0.3047, 0.3675, + 0.8282, 0.9803, 0.2975, 0.5105, 0.4052, 0.0133, 0.9321, + 0.4885, 0.0556, 0.6918, 0.2006, 0.1741, 0.5760, 0.8190, + 0.0021, 0.7613, 0.0689, 0.7771, 0.5264, 0.8286, 0.2391, + 0.6763, 0.5535, 0.1525, 0.2182, 0.4348, 0.3820, 0.9335, + 0.5563, 0.9960, 0.3871, 0.0877, 0.0141, 0.6386, 0.5328, + 0.1731, 0.1060, 0.9121, 0.8926, 0.1029, 0.0562, 0.0653, + 0.6791, 0.8703, 0.7902, 0.7955, 0.5877, 0.6016, 0.4912, + 0.6143, 0.5149, 0.0770, 0.7110, 0.5924, 0.8024, 0.9858, + 0.9002, 0.2315, 0.6982, 0.8543, 0.1439, 0.4223, 0.7190, + 0.8957, 0.6891, 0.7359, 0.3991, 0.2488, 0.2533, 0.5914, + 0.3081, 0.0652, 0.8204, 0.9876, 0.3309, 0.3805, 0.1439, + 0.6788, 0.0601, 0.5734, 0.5869, 0.0099, 0.8126, 0.8660, + 0.9370, 0.5609, 0.3940, 0.9325, 0.4409, 0.8003, 0.0643, + 0.4975, 0.5948, 0.3429, 0.7397, 0.1599, 0.8032, 0.6662, + 0.1716, 0.3067, 0.0747, 0.6650, 0.1468, 0.8085, 0.0751, + 0.1078, 0.9092, 0.2473, 0.7171, 0.8866, 0.9998, 0.0188, + 0.9325, 0.8602, 0.9123, 0.0834, 0.7823, 0.5623, 0.8899, + 0.0826, 0.3431, 0.6992, 0.8431, 0.0184, 0.7131, 0.6557, + 0.5015, 0.1589, 0.7364, 0.6955, 0.5067, 0.8526, 0.8096, + 0.3737, 0.9192, 0.4640, 0.3804, 0.1650, 0.8279, 0.3043, + 0.6932, 0.1415, 0.2659, 0.9686, 0.1255, 0.9335, 0.5951, + 0.1200, 0.6279, 0.3021, 0.5054, 0.7498, 0.9300]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.3956, 0.7164, 0.0973, ..., 0.3827, 0.2591, 0.9120]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 0.08297038078308105 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 126551 -ss 10000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.296976089477539} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([2203, 8070, 6104, 2428, 4613, 3691, 9216, 6131, 986, + 1730, 6958, 2260, 4558, 2092, 2006, 9924, 3804, 2564, + 5756, 576, 814, 3989, 9107, 9017, 2713, 9863, 8001, + 9467, 7238, 1363, 9398, 4896, 8714, 9465, 4527, 6808, + 4270, 8132, 5071, 5387, 3531, 2819, 3588, 8860, 7711, + 4509, 4060, 8225, 9781, 1914, 9703, 2545, 3005, 3104, + 4703, 8485, 6067, 7353, 1027, 5410, 1587, 9191, 8130, + 8157, 1425, 6163, 9593, 3371, 7685, 6829, 4626, 8915, + 1311, 7290, 440, 3282, 7867, 22, 3899, 6800, 1514, + 595, 3471, 8537, 4459, 3417, 3245, 2994, 2279, 3612, + 5485, 4122, 7064, 2573, 859, 2863, 2677, 882, 3375, + 6097, 560, 5991, 5047, 8895, 9241, 4674, 9649, 6858, + 3246, 9585, 8205, 7288, 4121, 4129, 6302, 1407, 2683, + 4197, 6829, 2730, 4635, 6651, 3516, 2085, 6454, 3953, + 3127, 1809, 5559, 9738, 8898, 9261, 9515, 3314, 7768, + 794, 6834, 3227, 9446, 1230, 827, 1252, 220, 8489, + 855, 7889, 5405, 7748, 9778, 5951, 5522, 7387, 4027, + 3243, 2512, 3211, 5658, 9449, 7125, 3650, 4431, 1409, + 5023, 3664, 6578, 4422, 81, 2134, 2573, 2082, 4265, + 1, 1299, 2520, 9560, 369, 834, 6073, 607, 9635, + 3220, 8991, 3844, 3111, 79, 5873, 1469, 1414, 1669, + 2402, 7083, 8005, 8131, 3849, 8975, 1406, 1709, 9509, + 9322, 5478, 6392, 8167, 4964, 8012, 1247, 6947, 492, + 5502, 9258, 8435, 4381, 4384, 4616, 5035, 5332, 9216, + 4758, 223, 5905, 5295, 6281, 6325, 874, 4275, 1196, + 907, 8753, 7533, 2899, 3573, 8331, 4144, 6932, 4514, + 5706, 2018, 1635, 5997, 6880, 9687, 5733, 968, 3215, + 4789, 3046, 2766, 1354, 6560, 250, 4919, 3881, 4599, + 9929, 49, 5524, 3820, 6379, 6125, 7324, 7190, 1053, + 8572, 4649, 4497, 6964, 4702, 3371, 3519, 4705, 5770, + 7207, 3247, 8382, 5606, 5189, 7084, 2091, 851, 2970, + 4260, 7264, 3037, 7294, 2799, 2435, 994, 7786, 50, + 137, 3024, 4329, 8246, 3487, 9160, 4357, 6374, 4578, + 3084, 8512, 3805, 8783, 4545, 3075, 8998, 6150, 8002, + 9235, 8013, 1410, 6201, 7896, 1803, 1659, 2365, 7524, + 2540, 860, 2113, 3665, 220, 6885, 2996, 3121, 6717, + 3124, 3123, 2327, 5986, 7952, 6749, 8836, 1431, 1233, + 8546, 1284, 3995, 6295, 7141, 933, 5680, 698, 7824, + 3798, 2416, 833, 2206, 390, 4971, 3542, 1017, 4917, + 1705, 3232, 6117, 2366, 8495, 987, 9155, 7947, 4804, + 2278, 9809, 2782, 3734, 8724, 7913, 6403, 133, 2239, + 3641, 3889, 9871, 1811, 3463, 3717, 1593, 8115, 2235, + 8102, 5120, 4120, 3687, 2270, 4118, 9945, 2153, 8052, + 4067, 1046, 7678, 1145, 7144, 9857, 8603, 8656, 1825, + 6561, 3115, 4772, 4801, 1445, 6506, 7814, 2334, 669, + 7071, 8094, 8732, 9343, 2995, 4089, 3929, 4195, 3364, + 4826, 1046, 1965, 9119, 2221, 5697, 4306, 8392, 4000, + 1314, 7733, 222, 4923, 8727, 377, 7813, 2942, 6781, + 2779, 6680, 275, 1927, 578, 901, 4815, 7847, 4500, + 5895, 7430, 9148, 8737, 7766, 4137, 1921, 3545, 3372, + 6961, 5424, 1908, 7475, 978, 5922, 7184, 5876, 1595, + 1870, 4510, 1358, 7136, 6410, 4251, 6841, 8561, 8172, + 1896, 9607, 9709, 8921, 1183, 656, 8788, 942, 9442, + 7234, 4436, 1048, 9534, 4815, 2582, 3070, 9281, 203, + 5641, 6727, 2072, 9560, 39, 6723, 4687, 2794, 9220, + 177, 9385, 4212, 4876, 3680, 6089, 3597, 863, 1316, + 5476, 2167, 3459, 5624, 189, 3976, 8052, 2759, 3827, + 8852, 4077, 1047, 5939, 4584, 8043, 124, 6754, 8135, + 5064, 4280, 7450, 2649, 5581, 9046, 9374, 9717, 2516, + 7802, 7519, 6921, 1554, 6572, 1784, 9115, 2535, 4537, + 1672, 3052, 889, 8741, 6704, 7355, 4983, 8502, 8868, + 9650, 885, 4823, 436, 9214, 2460, 8284, 6491, 676, + 4008, 7147, 3384, 4842, 9737, 9603, 3241, 4443, 1705, + 9234, 443, 3961, 7764, 4999, 8724, 5854, 7791, 2685, + 6856, 7159, 7750, 3061, 3138, 153, 9827, 5145, 1256, + 2986, 2702, 2566, 7183, 1523, 9458, 4652, 9100, 467, + 7615, 1579, 8406, 9693, 6591, 7334, 5403, 5974, 5067, + 9785, 8874, 199, 8449, 2400, 6888, 3685, 9886, 7200, + 1332, 5963, 110, 4201, 2711, 4898, 740, 2675, 7214, + 7643, 9912, 5306, 9704, 7070, 5421, 1246, 848, 2476, + 2436, 1632, 2063, 9359, 7466, 5474, 7388, 670, 3441, + 7099, 2564, 7117, 3094, 8348, 5006, 5310, 8977, 9764, + 7476, 4698, 5674, 9514, 8801, 2326, 4772, 6895, 9024, + 7485, 59, 3242, 4738, 9347, 9411, 51, 128, 7669, + 2153, 9786, 7877, 6652, 500, 2831, 5627, 9814, 7421, + 3662, 7258, 6824, 2732, 779, 782, 1347, 1128, 3384, + 9653, 2064, 6895, 3777, 2192, 2350, 6464, 4053, 8115, + 715, 8676, 697, 9651, 8044, 6194, 8860, 2577, 5601, + 8500, 1536, 6432, 2853, 8362, 2559, 7948, 1547, 4483, + 124, 1248, 4441, 7765, 9200, 7275, 5824, 6575, 5666, + 7475, 8698, 524, 6309, 5746, 9469, 7136, 7881, 5591, + 4343, 4183, 6021, 8006, 8580, 2479, 8443, 5007, 9798, + 6901, 4183, 1862, 7458, 6952, 8784, 5289, 9179, 505, + 7718, 254, 4280, 6727, 899, 8563, 2051, 2526, 5757, + 4380, 9893, 5125, 7484, 7297, 9995, 8131, 215, 7074, + 7162, 2006, 4499, 4869, 3518, 2378, 4153, 6968, 1442, + 8757, 3057, 6701, 8852, 4010, 4108, 9282, 2784, 874, + 9790, 2747, 5860, 7947, 6373, 6086, 4578, 8630, 4151, + 6801, 6433, 7435, 2601, 5810, 5068, 9640, 2033, 3837, + 6373, 7479, 6685, 9978, 8435, 6793, 1755, 4535, 158, + 4180, 1458, 6643, 4030, 7015, 6456, 6425, 5795, 66, + 4025, 1892, 4234, 1818, 5326, 2573, 2047, 2380, 8013, + 6938, 6487, 1993, 4660, 1169, 7130, 4275, 6198, 8838, + 2966, 2990, 8290, 3481, 124, 5066, 725, 7696, 4989, + 606, 9009, 2894, 9478, 2578, 9312, 9050, 8788, 1973, + 3445, 6134, 7656, 4090, 7761, 5634, 762, 1647, 5677, + 593, 3370, 5429, 533, 1628, 9370, 9263, 8062, 4918, + 344, 3503, 9937, 4395, 9484, 2793, 388, 5323, 4811, + 6635, 2130, 5954, 8462, 6924, 7812, 5275, 7164, 8533, + 9766, 3406, 1290, 4866, 8350, 3852, 1536, 6847, 2750, + 5182, 414, 4463, 7754, 7042, 7946, 1638, 1936, 5714, + 8230, 7178, 1457, 2906, 3679, 3332, 9755, 3508, 9815, + 3722, 3280, 3392, 3, 4826, 8383, 2706, 1081, 9374, + 2696, 4302, 6134, 7001, 9622, 4154, 5304, 8119, 8707, + 6705, 6702, 9552, 218, 832, 5899, 6057, 4190, 9314, + 7211, 2465, 7158, 795, 6968, 2907, 6533, 9384, 4871, + 7063, 9105, 1997, 4143, 6738, 8938, 3326, 7281, 1919, + 6127, 4657, 717, 8817, 2622, 7951, 9908, 6193, 7461, + 464, 8858, 4626, 1061, 7945, 8814, 4776, 6101, 583, + 6964, 956, 3562, 8191, 266, 9137, 1584, 6212, 6132, + 879, 3947, 2479, 3185, 6697, 2396, 6654, 1304, 5344, + 5776]), + values=tensor([2.5644e-01, 4.1340e-01, 8.8889e-01, 1.9996e-01, + 4.1859e-02, 4.5272e-01, 7.2267e-01, 9.2313e-01, + 9.7517e-01, 7.7641e-01, 6.5399e-01, 8.9647e-01, + 1.7929e-01, 2.1581e-01, 5.3999e-01, 2.7286e-01, + 3.3424e-01, 6.1854e-01, 7.0136e-01, 9.5008e-01, + 4.9345e-02, 3.2535e-01, 1.8620e-01, 9.8061e-01, + 1.8253e-01, 2.0059e-01, 5.9405e-01, 3.2028e-01, + 2.1950e-01, 9.9764e-02, 2.7925e-01, 1.2994e-01, + 6.0075e-01, 3.7837e-01, 4.7839e-02, 8.9279e-01, + 8.9909e-01, 1.8536e-02, 3.2654e-01, 9.2951e-01, + 5.0888e-01, 6.3988e-01, 3.9143e-01, 6.6039e-01, + 3.8083e-01, 8.8251e-01, 2.6190e-01, 9.5779e-01, + 4.0488e-01, 3.0840e-01, 7.4333e-01, 4.2414e-01, + 1.3552e-01, 6.3083e-01, 4.7621e-01, 8.6985e-01, + 1.4839e-01, 1.0087e-01, 3.0747e-01, 3.6247e-01, + 6.8986e-01, 2.7555e-03, 2.8920e-01, 8.2021e-01, + 4.1169e-01, 3.4318e-01, 2.5672e-01, 8.2270e-01, + 1.1811e-01, 3.1785e-01, 7.1889e-01, 4.2142e-01, + 3.0678e-01, 7.3338e-01, 5.9492e-01, 7.2248e-01, + 5.5072e-01, 3.5848e-01, 1.9054e-01, 9.7639e-01, + 7.4231e-01, 7.7266e-01, 2.5707e-01, 5.9393e-01, + 2.6795e-01, 7.7478e-01, 6.9466e-01, 4.8878e-01, + 6.4934e-01, 7.5196e-01, 6.9616e-01, 2.4523e-01, + 6.2998e-01, 8.6084e-01, 4.4823e-01, 5.1248e-01, + 6.0152e-01, 9.6506e-01, 1.5632e-01, 5.6839e-01, + 5.8601e-01, 3.5900e-01, 4.6999e-01, 2.0880e-01, + 6.6149e-01, 3.9173e-01, 7.6911e-01, 4.0235e-01, + 3.9630e-01, 9.2252e-01, 4.9607e-01, 2.4618e-02, + 9.5154e-01, 8.1269e-01, 1.9962e-01, 8.8695e-01, + 1.6389e-02, 9.9990e-01, 5.5126e-01, 5.8829e-01, + 3.1227e-01, 9.1196e-01, 7.8596e-01, 7.8259e-01, + 4.5294e-02, 4.8300e-02, 1.2913e-01, 8.2020e-01, + 3.9272e-01, 2.1128e-01, 8.6470e-01, 5.2628e-01, + 3.2533e-01, 1.7183e-01, 9.7494e-01, 5.3183e-01, + 1.9788e-01, 3.0667e-01, 1.2459e-01, 9.5696e-01, + 7.1166e-02, 9.8344e-01, 9.4402e-01, 5.9193e-01, + 3.8362e-02, 5.8093e-01, 2.7557e-01, 3.8264e-01, + 4.8925e-01, 2.6829e-01, 2.9458e-01, 7.6507e-01, + 8.6870e-01, 1.0706e-01, 8.2619e-01, 5.1984e-01, + 9.0042e-01, 2.2765e-01, 1.4051e-01, 9.3497e-01, + 6.1117e-01, 4.5945e-01, 4.1776e-01, 6.4888e-02, + 1.7439e-01, 7.3618e-01, 7.2456e-01, 7.2943e-01, + 6.3655e-01, 1.4152e-01, 9.1240e-01, 4.9941e-01, + 8.3074e-02, 6.2482e-01, 3.1784e-01, 9.5719e-01, + 6.2235e-01, 5.8051e-01, 9.7046e-01, 3.8059e-01, + 7.2437e-02, 3.0079e-01, 5.6747e-01, 1.2020e-01, + 9.7281e-01, 3.0302e-01, 6.5420e-01, 9.3100e-01, + 2.9623e-01, 9.7796e-01, 6.4885e-01, 2.5046e-01, + 2.2500e-01, 5.1568e-01, 7.4939e-01, 6.9754e-01, + 2.4394e-02, 9.2791e-01, 6.2239e-01, 5.8880e-01, + 7.9577e-02, 6.7327e-01, 3.3226e-01, 7.1189e-01, + 5.6001e-01, 9.0082e-01, 7.1409e-01, 5.3241e-01, + 9.4765e-02, 4.5222e-01, 8.1863e-01, 2.6081e-01, + 6.5638e-01, 8.6753e-01, 9.3524e-01, 2.5574e-01, + 8.2265e-01, 9.2571e-01, 4.3655e-01, 1.6080e-01, + 6.6905e-01, 5.8232e-01, 2.7328e-01, 3.9513e-01, + 1.7389e-01, 3.4148e-01, 7.5659e-01, 8.8088e-01, + 8.3409e-01, 7.5722e-02, 2.0101e-01, 9.8377e-01, + 8.3191e-01, 9.4678e-01, 2.2290e-01, 4.9474e-01, + 2.4686e-01, 4.7861e-01, 5.3301e-02, 5.0420e-01, + 9.7119e-01, 9.6644e-01, 3.6103e-01, 8.9844e-01, + 1.4760e-01, 5.5127e-01, 4.1634e-01, 4.5118e-01, + 5.3946e-01, 9.3326e-03, 9.8142e-02, 6.4986e-01, + 4.0779e-01, 3.3042e-01, 9.3167e-01, 8.0811e-01, + 1.0668e-01, 7.3926e-01, 3.5195e-01, 1.8629e-01, + 9.7074e-01, 7.5546e-01, 5.5758e-01, 9.6364e-01, + 5.4358e-01, 1.6670e-01, 7.5163e-01, 8.1226e-01, + 6.1329e-01, 5.3328e-01, 9.6244e-01, 3.1540e-01, + 7.4758e-01, 3.0115e-01, 8.5486e-01, 7.3290e-02, + 9.8182e-01, 6.7740e-02, 9.5535e-01, 4.4933e-01, + 7.5007e-01, 3.6242e-01, 7.1763e-01, 2.6345e-01, + 4.6614e-01, 5.1043e-01, 9.3626e-01, 6.3715e-01, + 6.5932e-01, 2.7592e-01, 7.6444e-01, 6.0384e-01, + 7.8070e-01, 6.4287e-01, 4.5029e-01, 6.7633e-02, + 2.6546e-01, 6.0429e-01, 8.7571e-01, 1.9989e-01, + 8.8128e-01, 7.5303e-01, 9.9882e-01, 9.3341e-01, + 2.7616e-01, 4.8772e-01, 4.2568e-01, 7.3833e-01, + 7.7753e-01, 7.5636e-01, 8.3979e-01, 4.9876e-01, + 5.4339e-01, 6.1354e-02, 6.5538e-01, 8.6207e-01, + 2.8227e-02, 9.6964e-01, 9.2079e-01, 1.9484e-01, + 3.1203e-01, 1.6012e-01, 7.6943e-01, 6.5909e-01, + 6.5009e-01, 7.3086e-01, 6.2292e-01, 2.0275e-01, + 8.5049e-01, 4.8021e-01, 6.8391e-01, 8.2231e-01, + 6.5688e-01, 1.7624e-01, 2.9741e-01, 9.7814e-01, + 9.1427e-02, 7.6719e-01, 8.6114e-01, 2.3766e-03, + 4.8613e-01, 3.3859e-01, 7.3026e-01, 5.4892e-01, + 6.0711e-01, 3.1343e-02, 3.5572e-01, 2.7095e-01, + 4.5192e-01, 2.3350e-02, 2.0788e-01, 7.3319e-01, + 3.5718e-01, 8.3615e-01, 6.7478e-01, 2.1315e-01, + 5.8013e-01, 4.3802e-01, 7.8964e-01, 9.2608e-01, + 7.6007e-01, 8.7289e-01, 8.7554e-02, 7.4286e-01, + 8.6107e-01, 8.4040e-01, 6.1997e-01, 1.6524e-02, + 5.4761e-01, 1.9732e-01, 1.1518e-02, 1.7061e-01, + 8.1962e-01, 4.6316e-01, 1.8305e-02, 9.2708e-01, + 6.5729e-01, 4.8195e-01, 3.6484e-01, 6.7632e-01, + 6.5134e-01, 9.5068e-01, 1.0191e-01, 5.3523e-02, + 1.7437e-01, 9.4209e-01, 9.2081e-01, 6.7183e-02, + 4.5612e-01, 1.5881e-01, 2.6373e-01, 8.2337e-01, + 1.4498e-01, 4.5870e-01, 6.1453e-01, 5.0354e-01, + 7.5720e-01, 3.8739e-01, 7.3122e-01, 4.6802e-01, + 8.0048e-01, 4.9856e-01, 5.5596e-01, 7.2690e-01, + 3.5513e-01, 6.6211e-01, 9.6917e-01, 6.1725e-01, + 5.2916e-01, 8.4048e-01, 1.5088e-01, 7.7128e-01, + 1.9156e-01, 5.4016e-01, 5.7565e-01, 2.1934e-01, + 9.9619e-01, 8.1849e-04, 1.5205e-01, 5.7917e-01, + 8.4933e-01, 4.1169e-02, 7.4237e-01, 7.6301e-01, + 5.0152e-01, 8.0053e-01, 3.0855e-01, 1.0288e-01, + 2.5025e-01, 4.0389e-01, 7.0350e-01, 3.0858e-02, + 6.7947e-01, 8.4275e-01, 8.8528e-01, 3.6206e-01, + 5.9201e-02, 3.5994e-01, 2.0028e-01, 8.5520e-01, + 9.1181e-01, 3.9883e-01, 8.3835e-01, 4.3379e-01, + 2.6269e-01, 2.2338e-01, 3.8007e-01, 4.8995e-02, + 4.3151e-01, 5.4724e-01, 6.2329e-01, 7.1941e-01, + 3.5283e-01, 4.0846e-01, 4.0751e-02, 2.5253e-01, + 6.0487e-01, 3.9308e-01, 7.1244e-01, 1.3455e-01, + 6.4672e-01, 6.2530e-01, 5.3092e-01, 2.7846e-01, + 6.9308e-01, 1.4305e-01, 8.8981e-02, 7.4971e-01, + 7.6341e-01, 7.2273e-02, 1.8169e-01, 4.3213e-01, + 9.9740e-01, 3.9864e-02, 6.4685e-01, 2.8629e-01, + 7.2650e-02, 6.4796e-01, 2.3873e-01, 3.8527e-01, + 8.9744e-01, 3.7869e-01, 7.5353e-01, 2.6838e-01, + 2.9179e-01, 4.0297e-01, 2.2256e-01, 5.4265e-01, + 5.3049e-01, 8.5609e-01, 8.1699e-01, 6.7556e-01, + 4.5882e-03, 5.5027e-01, 3.6230e-01, 6.4707e-01, + 4.1756e-01, 9.2974e-01, 9.8266e-01, 7.8941e-01, + 4.2315e-03, 2.7125e-01, 6.0007e-01, 4.5247e-01, + 1.3985e-01, 4.4653e-01, 2.4965e-01, 7.8715e-01, + 4.5617e-02, 4.9657e-01, 9.0861e-01, 1.6663e-01, + 3.1933e-01, 2.2962e-01, 5.5708e-01, 1.0271e-02, + 8.4316e-01, 5.4472e-01, 7.3045e-01, 7.1526e-01, + 4.4407e-01, 6.9262e-01, 1.7777e-01, 4.1474e-01, + 4.1441e-01, 2.8247e-01, 8.2215e-01, 5.4061e-01, + 5.8557e-01, 1.2954e-01, 8.6512e-01, 3.7346e-01, + 9.7639e-01, 6.2218e-01, 6.4892e-01, 4.7474e-01, + 2.9746e-01, 7.8039e-02, 7.7508e-02, 3.9386e-02, + 8.9450e-02, 4.1531e-02, 3.3179e-01, 2.5929e-01, + 8.8076e-01, 4.5451e-01, 6.5253e-01, 6.2584e-01, + 2.1029e-01, 5.9882e-01, 6.7269e-01, 6.1554e-01, + 2.1835e-01, 1.3371e-01, 2.1393e-01, 3.2298e-01, + 6.2778e-01, 5.3887e-01, 8.5574e-01, 8.9290e-01, + 4.7363e-01, 5.0497e-01, 8.9594e-01, 8.7902e-01, + 3.8137e-01, 8.1184e-01, 8.8479e-01, 1.5249e-01, + 6.7019e-01, 6.9002e-01, 1.2700e-01, 6.0877e-01, + 1.0355e-01, 4.8291e-01, 6.0360e-01, 8.7069e-01, + 1.5130e-01, 1.8137e-01, 5.4702e-01, 4.7769e-01, + 2.4143e-01, 9.2093e-01, 4.0588e-01, 7.2948e-01, + 1.4843e-02, 2.6549e-01, 5.1936e-01, 6.5236e-02, + 4.8623e-01, 8.5154e-01, 9.1855e-01, 1.5040e-01, + 4.8009e-01, 6.0119e-01, 4.3431e-01, 5.5707e-01, + 4.0824e-02, 3.3741e-01, 8.5017e-01, 7.1405e-01, + 1.0416e-01, 7.9003e-02, 1.7283e-01, 3.4951e-01, + 4.9567e-01, 8.6852e-01, 8.4830e-01, 6.2344e-01, + 3.1355e-01, 9.9906e-01, 8.1478e-01, 9.5230e-01, + 1.6444e-01, 9.8398e-01, 6.6864e-01, 3.2892e-01, + 9.3508e-01, 6.5058e-01, 6.8678e-01, 5.5765e-01, + 7.3767e-01, 6.6605e-01, 2.1626e-01, 1.7300e-01, + 1.0184e-01, 2.7474e-01, 7.6279e-02, 3.4215e-01, + 5.9838e-01, 3.9154e-01, 7.0390e-01, 9.7144e-01, + 9.7173e-01, 2.4035e-02, 7.6844e-01, 5.2377e-01, + 8.2957e-01, 2.1413e-01, 5.4171e-01, 3.9619e-01, + 2.8764e-02, 4.1875e-02, 1.4137e-01, 5.0321e-01, + 1.8595e-01, 5.1899e-01, 8.3020e-01, 4.2297e-01, + 2.6879e-01, 6.9489e-01, 8.5420e-01, 5.4989e-01, + 2.3704e-02, 9.4223e-01, 3.4710e-01, 6.2781e-01, + 1.7831e-01, 6.3560e-01, 9.5015e-01, 4.8756e-01, + 4.9172e-01, 4.4354e-02, 8.0058e-01, 1.9326e-01, + 8.8187e-01, 4.5301e-01, 4.7846e-01, 4.6055e-01, + 6.9147e-01, 6.3841e-01, 5.5214e-02, 9.2087e-01, + 6.9432e-01, 7.5196e-01, 4.1958e-01, 6.8695e-01, + 2.6582e-01, 3.0347e-01, 9.1425e-01, 8.9327e-02, + 7.6973e-01, 7.6899e-02, 9.2230e-01, 3.1543e-01, + 4.4251e-01, 9.0630e-01, 6.7820e-01, 8.3933e-01, + 9.4875e-01, 1.8882e-01, 9.9541e-01, 7.1216e-01, + 8.7728e-01, 4.3430e-01, 5.3255e-01, 2.2379e-01, + 7.1012e-01, 7.4961e-01, 5.3055e-02, 4.8019e-01, + 4.3443e-01, 6.9804e-01, 2.4958e-01, 7.7851e-01, + 6.8751e-01, 8.9559e-01, 9.8910e-01, 5.4960e-01, + 6.7338e-01, 7.5675e-01, 3.9315e-01, 7.4544e-02, + 7.8019e-01, 1.6178e-01, 8.4115e-02, 1.0903e-01, + 7.6844e-01, 4.5180e-03, 5.9662e-01, 1.2902e-01, + 5.1261e-01, 1.4645e-01, 6.8718e-01, 7.0734e-01, + 2.4311e-01, 7.0618e-01, 8.5873e-01, 8.2221e-01, + 2.5583e-01, 4.2945e-01, 5.8827e-01, 8.1189e-01, + 4.3496e-01, 6.7312e-01, 3.8112e-01, 1.4863e-01, + 3.4030e-01, 3.5958e-01, 9.2091e-01, 9.9895e-01, + 5.1970e-01, 1.0638e-01, 5.3834e-01, 3.0344e-01, + 6.5353e-02, 6.3903e-02, 6.8394e-01, 7.1237e-01, + 7.2614e-01, 2.8107e-01, 9.4215e-01, 1.9339e-01, + 3.2766e-01, 6.6328e-01, 4.6436e-01, 7.2002e-01, + 3.7498e-01, 9.1908e-02, 2.8070e-02, 3.6489e-01, + 8.7565e-01, 8.9904e-01, 1.4724e-01, 1.8502e-01, + 6.2364e-01, 2.5974e-01, 9.4038e-01, 7.0849e-01, + 5.6427e-01, 4.7039e-01, 3.1376e-03, 2.8992e-01, + 8.4344e-01, 8.2341e-01, 3.0603e-01, 3.0914e-01, + 6.9608e-02, 4.2120e-01, 7.8318e-02, 6.2189e-01, + 1.1195e-01, 8.9439e-01, 9.9288e-01, 5.7460e-01, + 3.6105e-01, 9.9265e-01, 9.1951e-02, 2.6031e-01, + 9.2668e-01, 2.1713e-01, 7.0902e-01, 8.1788e-01, + 7.4976e-01, 4.7434e-01, 1.1619e-01, 1.2965e-01, + 6.0275e-01, 1.7535e-01, 3.6080e-01, 8.9028e-01, + 3.9348e-01, 1.5106e-01, 3.7276e-01, 5.8945e-01, + 2.9236e-01, 2.4562e-01, 3.0066e-01, 7.6287e-01, + 9.9890e-01, 5.1364e-01, 9.7297e-02, 2.6798e-01, + 5.1337e-02, 7.7922e-01, 9.0723e-01, 4.5419e-01, + 4.9457e-01, 1.6032e-01, 7.3101e-01, 5.3987e-01, + 7.2490e-01, 6.1795e-01, 7.4445e-01, 6.6125e-01, + 7.6080e-01, 4.2675e-01, 4.2235e-01, 1.7015e-01, + 7.2438e-01, 9.4198e-01, 4.6468e-01, 9.0142e-02, + 4.7565e-01, 2.3678e-01, 8.3100e-02, 9.5983e-01, + 8.9786e-01, 6.5702e-01, 6.2276e-01, 5.7525e-01, + 6.5825e-01, 9.4434e-01, 9.8952e-01, 2.5318e-01, + 4.7310e-01, 1.2816e-02, 7.7734e-01, 4.2004e-01, + 4.3964e-01, 1.3846e-02, 6.6626e-01, 3.4767e-01, + 6.3387e-01, 5.3276e-01, 7.5902e-01, 2.3507e-01, + 2.0220e-01, 5.1960e-01, 7.1115e-01, 3.4339e-01, + 7.4781e-01, 8.1715e-01, 8.2597e-01, 6.3771e-01, + 5.5599e-01, 2.8860e-01, 9.7519e-01, 1.7405e-01, + 2.4765e-01, 3.9022e-01, 7.0591e-01, 3.5410e-01, + 5.0492e-01, 7.7335e-01, 6.5399e-01, 2.5890e-01, + 1.7992e-01, 2.8937e-02, 3.9978e-01, 6.4485e-01, + 9.8804e-01, 2.6525e-01, 8.2352e-02, 4.5200e-01, + 3.7706e-01, 3.6888e-01, 4.6742e-01, 2.2734e-01, + 8.0517e-01, 5.3933e-01, 9.4715e-01, 9.0092e-01, + 1.7050e-01, 5.7693e-01, 8.3203e-01, 1.3006e-01, + 1.0404e-03, 1.5028e-01, 4.2248e-01, 2.9590e-01, + 1.7078e-01, 7.3796e-01, 7.4155e-01, 8.7998e-01, + 4.7809e-01, 7.3390e-02, 9.7648e-01, 5.1828e-01, + 1.7042e-01, 3.3970e-01, 9.5290e-01, 4.0381e-01, + 7.7718e-01, 3.9948e-01, 6.7108e-01, 4.2412e-01, + 3.3090e-01, 7.4833e-01, 7.3278e-01, 7.2853e-01, + 6.9950e-01, 8.1746e-01, 3.1753e-01, 1.0600e-01, + 4.4370e-01, 6.9105e-01, 8.7701e-01, 7.3030e-02, + 5.1421e-01, 2.8882e-01, 6.5366e-01, 2.3271e-01, + 7.2580e-01, 7.4486e-02, 8.4800e-02, 5.6108e-01, + 4.2216e-01, 7.9148e-01, 6.7937e-01, 3.8844e-01, + 5.1370e-01, 8.9399e-01, 7.3522e-01, 9.0791e-01, + 2.4611e-01, 4.7796e-01, 1.5963e-01, 9.2416e-01, + 1.1957e-01, 2.7998e-01, 5.6346e-01, 2.9692e-01, + 6.8561e-01, 4.5870e-03, 9.7147e-01, 7.5045e-01, + 3.6538e-01, 4.5510e-01, 5.6387e-01, 3.5971e-01, + 3.3289e-01, 6.0219e-01, 6.2316e-01, 4.1027e-01, + 8.5536e-01, 2.2988e-01, 2.9483e-01, 5.2633e-01, + 3.4637e-01, 8.8604e-01, 8.9721e-01, 8.2901e-02, + 9.3086e-01, 8.5600e-01, 7.4177e-01, 6.5607e-01, + 8.4765e-01, 8.9582e-01, 3.7468e-01, 5.4245e-01, + 6.8428e-01, 4.0500e-01, 5.1662e-01, 1.8751e-01, + 5.3619e-01, 2.3998e-01, 3.6662e-01, 3.1969e-01, + 4.1226e-01, 7.0012e-01, 3.1767e-01, 2.0586e-01, + 8.8678e-01, 4.7686e-01, 9.4057e-01, 6.6187e-01, + 6.3070e-01, 8.9669e-01, 3.3070e-01, 5.7151e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.6841, 0.8830, 0.8336, ..., 0.0293, 0.2899, 0.6914]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 9.296976089477539 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 142926 -ss 10000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.514646053314209} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([4116, 7192, 1414, 602, 9261, 9755, 3418, 3677, 1346, + 4915, 1923, 5999, 8929, 3632, 514, 7579, 9728, 993, + 4226, 2729, 2969, 7063, 8946, 3199, 2641, 3551, 3369, + 5419, 1831, 1652, 6779, 7428, 3773, 5376, 162, 579, + 7703, 6315, 199, 8043, 3670, 9337, 2098, 2118, 8554, + 2706, 4081, 7007, 1627, 5281, 2169, 7536, 2244, 9570, + 3079, 5784, 1151, 8783, 1389, 8630, 6457, 6608, 4618, + 9063, 5053, 6181, 9948, 5748, 552, 4335, 6638, 3245, + 5740, 6165, 6638, 3389, 4075, 7308, 3538, 1808, 7667, + 6538, 3469, 3661, 4798, 9461, 4545, 9042, 8936, 6823, + 3214, 2364, 8082, 6264, 8924, 2858, 8926, 6581, 6873, + 4238, 1490, 2662, 5578, 4356, 3367, 3328, 2236, 5544, + 9846, 3138, 7106, 9710, 3457, 1720, 9664, 7549, 5930, + 186, 2220, 5945, 7396, 6063, 9045, 7005, 4888, 8764, + 4115, 6721, 9214, 1263, 9026, 6945, 128, 3992, 9195, + 1474, 898, 6799, 6691, 3804, 4100, 3045, 4269, 7083, + 7634, 6955, 7626, 3398, 9853, 5960, 6034, 6094, 1156, + 179, 4425, 7472, 1643, 3634, 5583, 4054, 7495, 8640, + 7830, 4823, 8512, 2700, 1579, 955, 2712, 5607, 4060, + 5276, 5257, 5785, 8404, 113, 7405, 3608, 3433, 3557, + 6849, 1586, 7863, 4221, 9310, 989, 7433, 3566, 8151, + 6016, 311, 1505, 3718, 1327, 7984, 3830, 167, 458, + 1529, 4687, 5720, 3066, 2390, 9640, 22, 1812, 4977, + 5871, 208, 5078, 2553, 6038, 7129, 4310, 282, 7188, + 2629, 1264, 6276, 1900, 4410, 2767, 3442, 8825, 8207, + 9184, 696, 4991, 9290, 793, 7381, 5472, 9417, 843, + 7337, 5992, 4392, 6955, 6527, 4732, 1836, 2887, 3302, + 1246, 4380, 7016, 2283, 2360, 339, 4662, 7184, 8502, + 5643, 5095, 1512, 8433, 2939, 1784, 9937, 1906, 9377, + 4250, 5487, 5234, 4792, 8152, 7183, 2215, 7833, 3347, + 5213, 732, 5590, 2763, 4277, 7806, 3532, 1529, 9333, + 4668, 9843, 4597, 3627, 8649, 8703, 873, 4071, 3905, + 7625, 2889, 4631, 9159, 8732, 933, 5436, 4772, 8351, + 1495, 1952, 2186, 1108, 4949, 2677, 1933, 3185, 4340, + 5683, 5723, 8381, 9022, 2370, 9966, 5403, 9733, 2198, + 1637, 6841, 4735, 9117, 8560, 917, 3319, 1371, 5395, + 9003, 4729, 166, 4382, 5364, 8859, 5190, 7650, 5699, + 8419, 9352, 522, 3927, 2679, 4262, 9505, 590, 7467, + 8458, 9407, 3144, 2243, 9605, 8976, 1644, 2029, 7253, + 258, 2996, 9166, 6182, 3685, 448, 388, 9009, 1003, + 8225, 5809, 5225, 5068, 7864, 1148, 1681, 8631, 9776, + 2434, 9005, 570, 3704, 421, 1541, 2997, 1138, 443, + 8928, 4642, 2073, 2012, 8211, 4813, 5727, 2486, 2677, + 2787, 9420, 1109, 597, 365, 1642, 876, 5405, 9802, + 7033, 1434, 7253, 4790, 1231, 1111, 5807, 2216, 8736, + 4015, 4599, 8996, 3935, 942, 449, 9751, 9186, 7778, + 1387, 8588, 7679, 2605, 4391, 4798, 2000, 5117, 3414, + 1861, 49, 3127, 3681, 1232, 3277, 4285, 4110, 2170, + 1131, 3609, 305, 4308, 1078, 3550, 8680, 9527, 3657, + 5580, 3942, 7339, 4571, 6030, 3953, 2251, 4453, 7552, + 1958, 1501, 1056, 6071, 8794, 5497, 2466, 5840, 5755, + 4350, 6652, 9676, 7696, 5668, 5716, 6802, 2756, 2844, + 2076, 9916, 4254, 4247, 1549, 6255, 136, 9745, 4708, + 8246, 5741, 3283, 9856, 3884, 7212, 2451, 4506, 3332, + 2802, 546, 1107, 6908, 7485, 6240, 3041, 3085, 3258, + 8550, 9847, 4893, 2038, 9539, 625, 7440, 4196, 5182, + 3039, 1354, 4896, 920, 8631, 5555, 3241, 4037, 7927, + 7978, 2714, 4090, 1155, 2312, 8957, 8647, 1625, 2284, + 5120, 2713, 6756, 1447, 5297, 9292, 191, 9719, 512, + 3285, 1008, 1631, 2282, 1, 8384, 4959, 4082, 6943, + 5026, 1284, 2559, 7835, 8876, 7406, 9259, 6431, 2124, + 5249, 886, 3877, 9616, 7440, 7935, 2953, 4353, 8630, + 6873, 6450, 7974, 2907, 6853, 1731, 1734, 7915, 627, + 1848, 9651, 8072, 325, 9090, 3952, 2190, 6969, 5724, + 4737, 4971, 5930, 9065, 795, 2734, 7142, 1334, 1101, + 6976, 2804, 9022, 4770, 8850, 2321, 2915, 4870, 317, + 200, 1907, 4202, 8058, 468, 2452, 3052, 4111, 8780, + 2827, 6426, 5414, 9074, 2589, 6068, 209, 6819, 6948, + 7804, 7353, 5400, 8311, 624, 4794, 4250, 9150, 7304, + 7383, 244, 3241, 8673, 824, 8833, 5120, 347, 3945, + 9530, 4501, 8187, 5682, 9083, 4685, 9255, 3954, 6003, + 1181, 7405, 4909, 2035, 5243, 7589, 7209, 2811, 8638, + 6620, 998, 4062, 4859, 2372, 2608, 3632, 9769, 7028, + 4263, 7696, 6057, 9107, 4050, 223, 2225, 9966, 6759, + 8412, 3222, 9059, 9449, 3803, 5159, 6770, 4309, 803, + 3956, 6109, 2635, 8651, 9493, 6196, 8647, 3760, 7476, + 2703, 4996, 7071, 454, 6200, 1008, 6621, 5370, 4441, + 9279, 2513, 9418, 7493, 7526, 4237, 4698, 7251, 6897, + 2020, 7731, 9984, 3559, 4926, 9283, 2622, 1954, 1488, + 3911, 7884, 2789, 6162, 5229, 4168, 282, 389, 5316, + 1498, 4458, 3561, 8943, 9282, 8236, 2217, 2559, 1819, + 1350, 706, 7116, 9065, 8837, 4066, 7679, 6388, 3799, + 9827, 4686, 9282, 6788, 6841, 1373, 7434, 8130, 3964, + 8166, 3594, 3817, 6355, 3458, 2124, 3724, 9463, 6106, + 9252, 7691, 2416, 3575, 1616, 9144, 6977, 3531, 6725, + 6763, 1340, 5794, 8225, 5653, 9046, 9095, 7748, 6148, + 7023, 3605, 4097, 7017, 1954, 2458, 616, 3576, 4392, + 1508, 4668, 9858, 6665, 8198, 7943, 9561, 6812, 4402, + 7065, 911, 6654, 5206, 2290, 2647, 2858, 4004, 7033, + 1456, 4004, 5009, 7018, 441, 1434, 616, 9192, 4014, + 4224, 3305, 5685, 5038, 1879, 2513, 2975, 7217, 6734, + 4346, 2451, 4252, 1359, 1897, 1558, 1518, 8946, 1045, + 2687, 5779, 3825, 7875, 7903, 3483, 3272, 5342, 4112, + 6056, 4149, 9046, 6331, 5493, 5740, 4356, 9840, 2344, + 8131, 1983, 3832, 1085, 6587, 7944, 5354, 9757, 9494, + 6772, 4253, 3448, 1844, 3828, 8186, 561, 2149, 277, + 7639, 7736, 9923, 874, 4782, 7514, 9258, 25, 3290, + 9135, 821, 7578, 3691, 6954, 4378, 106, 3717, 4341, + 7878, 4081, 3382, 2833, 5381, 1369, 1198, 8238, 509, + 8127, 7888, 3507, 99, 1906, 6992, 375, 2939, 9900, + 3554, 9933, 4200, 9872, 7049, 4972, 7060, 9575, 558, + 4822, 5894, 5066, 5665, 2353, 8349, 8831, 6355, 6847, + 4671, 7517, 5761, 7668, 862, 525, 7306, 1582, 5763, + 7813, 8159, 6461, 9837, 487, 5618, 551, 6758, 6315, + 7722, 5312, 2191, 6095, 5151, 3304, 6873, 8430, 6063, + 9471, 4395, 9467, 7290, 1009, 2539, 6217, 7375, 2928, + 8340, 8978, 9118, 6252, 7166, 2776, 341, 5357, 7950, + 2900, 8133, 6787, 2966, 2483, 5175, 1262, 2317, 2466, + 7698, 6866, 558, 1985, 7535, 6044, 3673, 7654, 8927, + 6144, 8580, 3529, 9842, 2172, 4769, 2277, 2207, 1695, + 234, 4499, 3795, 4016, 695, 3395, 6723, 2800, 2814, + 7062]), + values=tensor([1.3767e-01, 7.1628e-01, 8.6135e-01, 7.1511e-01, + 9.5089e-01, 2.4757e-01, 9.3760e-03, 7.7773e-01, + 4.0669e-01, 9.1069e-01, 1.2601e-01, 5.4040e-01, + 3.7319e-02, 3.2172e-01, 9.1567e-01, 8.9101e-01, + 2.2712e-02, 6.3215e-01, 1.8351e-01, 5.7793e-01, + 6.9901e-01, 5.3678e-01, 4.7677e-01, 5.0165e-02, + 5.6649e-01, 6.3104e-01, 3.0293e-01, 7.4977e-01, + 7.3472e-02, 2.8601e-01, 5.5054e-01, 3.5579e-01, + 3.6622e-01, 6.5500e-01, 6.2994e-01, 3.6452e-01, + 2.0704e-01, 1.0247e-01, 2.5826e-01, 5.2540e-02, + 7.3130e-02, 6.3376e-01, 5.9810e-01, 4.9090e-01, + 6.8296e-02, 5.3917e-01, 1.1966e-01, 1.8500e-01, + 3.0815e-01, 5.8388e-01, 4.2982e-01, 5.6405e-02, + 4.8100e-01, 2.6901e-01, 3.0648e-03, 7.4291e-01, + 1.2739e-01, 3.2902e-01, 7.3718e-01, 7.4258e-01, + 9.6792e-01, 2.1717e-01, 2.0890e-01, 5.2258e-01, + 6.8834e-01, 3.6326e-01, 6.9665e-01, 6.8825e-01, + 6.2143e-01, 6.2623e-01, 6.1424e-01, 7.0805e-01, + 4.0377e-01, 5.0286e-01, 3.1606e-01, 1.0216e-01, + 8.7212e-01, 2.5393e-01, 4.3722e-01, 4.5099e-01, + 6.2296e-01, 6.7718e-01, 1.1725e-01, 7.5117e-01, + 6.1649e-01, 2.0645e-01, 1.5527e-01, 5.8584e-01, + 6.5559e-01, 9.7418e-01, 5.7488e-01, 4.5016e-01, + 1.0108e-02, 7.8700e-01, 8.5952e-01, 3.6767e-01, + 6.6708e-01, 3.9792e-01, 2.1940e-01, 4.4322e-01, + 7.0303e-01, 3.4139e-01, 3.9259e-01, 8.8211e-01, + 8.8687e-01, 7.0191e-01, 4.6733e-01, 4.5169e-01, + 1.3884e-01, 7.2389e-01, 1.0696e-01, 1.9507e-01, + 5.4738e-01, 6.7276e-01, 9.7900e-02, 5.0607e-01, + 6.0787e-01, 3.7552e-01, 6.9448e-01, 9.9517e-01, + 6.9703e-01, 4.5115e-01, 2.7976e-01, 3.3528e-01, + 6.2057e-01, 8.6211e-01, 7.0540e-01, 7.0073e-01, + 7.5910e-01, 7.0805e-01, 6.8043e-01, 9.2129e-01, + 3.8606e-02, 8.1173e-01, 6.8589e-01, 8.8272e-01, + 8.5540e-01, 8.5966e-01, 2.5725e-01, 6.2432e-02, + 2.0565e-01, 7.6464e-01, 6.2149e-01, 7.0689e-01, + 9.6943e-01, 9.1375e-01, 6.9609e-01, 1.0540e-01, + 9.0816e-01, 1.5889e-01, 5.7258e-01, 5.5242e-01, + 4.2908e-01, 4.4953e-01, 6.5806e-01, 8.4537e-01, + 8.1500e-02, 5.0051e-01, 6.5699e-01, 1.6438e-01, + 1.5049e-02, 4.9899e-01, 3.9120e-01, 3.2732e-01, + 3.8565e-01, 8.2901e-01, 4.0085e-01, 6.0713e-01, + 7.0000e-01, 3.0412e-01, 6.0281e-01, 2.5542e-02, + 4.3786e-02, 1.8718e-01, 8.7005e-01, 9.4782e-01, + 5.9295e-01, 7.8689e-03, 8.5626e-01, 6.4375e-01, + 3.2275e-01, 4.2197e-01, 3.6112e-01, 6.2448e-02, + 9.7853e-01, 8.6224e-01, 7.4828e-01, 5.8071e-01, + 8.7233e-01, 5.0843e-01, 2.8581e-01, 6.4133e-01, + 7.0918e-01, 9.5194e-01, 6.1273e-01, 8.5849e-01, + 4.9317e-01, 5.7639e-02, 9.9630e-01, 3.7211e-01, + 3.4682e-01, 1.1154e-01, 2.5831e-03, 6.3374e-01, + 6.6874e-01, 3.9360e-01, 3.5838e-01, 8.5471e-01, + 7.0322e-01, 8.2311e-01, 5.4150e-01, 5.7026e-01, + 6.5821e-01, 1.3975e-01, 7.7260e-02, 1.1189e-01, + 5.2080e-01, 1.2715e-02, 6.9032e-01, 7.5638e-01, + 2.0518e-01, 5.5927e-01, 8.3030e-02, 5.5062e-01, + 3.2127e-01, 1.0789e-01, 9.1260e-01, 6.4350e-01, + 9.9466e-01, 5.5812e-01, 2.5897e-01, 1.4537e-01, + 8.8427e-01, 2.4431e-01, 5.3467e-01, 1.1437e-01, + 2.2271e-01, 3.6377e-01, 5.0688e-01, 4.0210e-01, + 9.6214e-02, 7.4145e-01, 4.1409e-01, 2.7186e-01, + 6.8016e-01, 3.4039e-01, 5.5569e-01, 9.7247e-02, + 6.0054e-01, 9.7719e-01, 1.3649e-01, 9.9753e-01, + 8.3259e-01, 6.4755e-01, 3.9749e-01, 9.0807e-01, + 2.1147e-01, 5.0004e-01, 5.3220e-02, 3.1762e-01, + 3.3833e-01, 7.7938e-01, 6.2849e-01, 4.7457e-01, + 1.7438e-02, 8.1308e-01, 2.8307e-01, 6.7284e-01, + 5.1861e-01, 3.3344e-01, 9.1361e-01, 6.0753e-01, + 7.0133e-01, 3.6039e-01, 5.5368e-02, 9.3108e-01, + 3.5189e-01, 9.7164e-01, 3.9002e-01, 5.2678e-01, + 2.8953e-03, 9.8500e-01, 7.3340e-01, 9.2830e-01, + 4.0230e-01, 7.7052e-01, 9.5800e-02, 3.1615e-01, + 5.9244e-01, 9.0208e-01, 1.2767e-01, 1.5811e-01, + 8.0315e-01, 6.2049e-01, 3.9867e-01, 5.8587e-01, + 5.4263e-01, 5.8712e-01, 6.4417e-01, 2.5094e-01, + 5.7318e-03, 4.2910e-01, 4.9714e-01, 1.2439e-01, + 6.8645e-01, 2.7117e-01, 9.4144e-01, 1.0741e-01, + 6.0964e-01, 4.9124e-01, 1.2215e-01, 6.2184e-01, + 9.5970e-01, 1.4042e-01, 3.8926e-01, 2.5587e-01, + 2.3181e-01, 1.5447e-01, 2.6754e-01, 2.8396e-01, + 4.9732e-01, 7.7233e-01, 7.2055e-01, 2.6804e-01, + 5.2721e-01, 2.8004e-02, 4.0875e-01, 1.0355e-01, + 3.8021e-01, 1.6312e-01, 9.3351e-01, 4.0357e-01, + 9.6564e-01, 9.5352e-01, 2.3033e-01, 1.8023e-01, + 8.9340e-01, 3.6181e-01, 5.5393e-01, 3.3373e-01, + 6.1869e-01, 1.4247e-01, 3.8655e-02, 1.5970e-01, + 1.5518e-01, 8.9244e-01, 2.1298e-01, 7.1235e-01, + 5.5568e-01, 5.8432e-01, 1.9164e-01, 2.3690e-01, + 9.5455e-01, 7.2857e-01, 3.7214e-01, 5.5532e-01, + 8.8376e-01, 5.9028e-01, 2.0300e-01, 6.3695e-01, + 3.3213e-01, 9.5342e-02, 7.7225e-01, 6.6953e-02, + 1.6999e-01, 9.4302e-01, 2.6314e-01, 3.3727e-01, + 2.7787e-01, 8.0225e-01, 6.5075e-01, 7.4035e-01, + 5.3106e-01, 5.4790e-01, 3.1026e-01, 2.2004e-02, + 9.0580e-01, 7.6487e-01, 5.6201e-01, 1.1201e-01, + 1.5233e-02, 3.8437e-01, 6.1598e-02, 3.1117e-01, + 3.2700e-01, 8.9412e-01, 3.9616e-01, 5.3201e-01, + 6.4656e-01, 2.1046e-01, 3.6325e-01, 9.2194e-01, + 6.3959e-01, 3.9911e-01, 4.4881e-01, 1.0553e-01, + 2.5978e-01, 1.8512e-01, 3.9395e-01, 5.4669e-02, + 6.8945e-01, 8.0965e-01, 3.2951e-01, 5.4811e-01, + 3.0211e-02, 6.8181e-01, 3.2372e-01, 9.3662e-01, + 6.8499e-01, 6.4111e-01, 5.8163e-01, 3.5869e-01, + 2.8411e-01, 4.3117e-01, 1.3450e-01, 4.8766e-01, + 7.0478e-01, 5.3516e-01, 6.7174e-01, 8.0094e-01, + 8.1062e-01, 2.7839e-02, 8.6884e-01, 7.9628e-01, + 1.2090e-01, 9.4127e-02, 2.6206e-01, 7.1621e-02, + 9.6549e-01, 9.9012e-02, 8.1580e-01, 6.2717e-01, + 3.7858e-02, 6.6910e-01, 1.1367e-01, 4.4587e-01, + 2.1667e-01, 6.2027e-01, 6.0694e-01, 4.8314e-01, + 8.9715e-01, 1.2495e-01, 4.0892e-01, 5.4664e-01, + 2.0868e-01, 3.7281e-01, 7.2776e-01, 3.9380e-01, + 7.7841e-01, 7.2770e-01, 5.5081e-01, 4.5550e-01, + 1.1337e-01, 6.0070e-01, 1.7006e-01, 8.9155e-01, + 3.4892e-04, 8.9357e-01, 9.6087e-01, 3.6593e-02, + 5.8737e-01, 3.6900e-02, 7.9887e-01, 6.1905e-01, + 9.3419e-01, 1.0042e-01, 7.9304e-01, 5.8615e-01, + 7.2710e-01, 5.8139e-01, 2.5740e-02, 1.1614e-01, + 8.0492e-01, 1.9472e-01, 6.4306e-01, 7.9291e-01, + 8.8424e-01, 2.4042e-01, 6.6614e-01, 9.9409e-01, + 3.9403e-01, 4.6506e-01, 4.8211e-01, 5.6363e-01, + 6.0078e-01, 8.3139e-02, 7.8203e-01, 4.7756e-01, + 8.5709e-01, 5.7873e-01, 7.6714e-02, 3.9206e-01, + 6.8500e-01, 9.6940e-01, 2.5652e-01, 8.8082e-01, + 3.7856e-01, 9.2438e-01, 4.7830e-01, 1.4020e-01, + 5.2884e-01, 3.1246e-01, 6.5357e-01, 3.5125e-01, + 8.1007e-01, 7.6288e-01, 4.0573e-01, 2.6397e-01, + 7.7222e-01, 4.6844e-01, 6.6931e-01, 3.7442e-02, + 7.3587e-01, 1.7894e-01, 1.9269e-01, 5.3208e-02, + 1.7345e-01, 3.2373e-01, 8.6054e-01, 9.6058e-01, + 3.3684e-01, 1.2915e-01, 3.7259e-01, 8.5330e-02, + 8.7195e-01, 4.1642e-01, 1.4156e-02, 5.6366e-01, + 2.0687e-02, 4.5670e-01, 9.4825e-01, 4.6193e-01, + 9.6608e-01, 7.2678e-01, 1.0354e-01, 4.0029e-01, + 8.7647e-01, 7.6570e-01, 2.0229e-01, 2.0324e-01, + 5.5069e-01, 9.8105e-01, 3.4961e-01, 9.6117e-01, + 1.2299e-01, 8.9272e-01, 8.4714e-01, 8.7303e-01, + 8.8032e-01, 6.5685e-01, 5.8322e-01, 5.8733e-01, + 2.6798e-01, 6.5585e-01, 4.5400e-01, 5.2309e-03, + 9.9176e-01, 9.0773e-01, 9.4229e-01, 8.4914e-01, + 1.9365e-01, 5.8394e-01, 9.0261e-01, 5.1355e-01, + 4.1587e-01, 2.4801e-01, 2.7669e-01, 5.5044e-01, + 2.4672e-01, 4.0436e-01, 2.4099e-01, 5.0330e-01, + 9.5869e-01, 7.6414e-01, 1.2318e-01, 8.6587e-01, + 7.4214e-01, 6.6104e-03, 1.1094e-01, 4.0845e-01, + 1.1767e-01, 9.0883e-01, 7.2050e-01, 9.7280e-01, + 9.8324e-01, 1.3704e-01, 4.0185e-01, 3.4497e-01, + 7.4353e-01, 9.0031e-01, 2.0494e-01, 2.5380e-01, + 5.2888e-01, 2.1441e-02, 4.0249e-01, 5.3610e-01, + 5.2276e-01, 3.3112e-01, 2.3875e-02, 9.2410e-01, + 5.6142e-02, 8.6019e-01, 3.4566e-01, 5.7521e-01, + 3.8381e-01, 2.0229e-01, 5.4861e-01, 2.1478e-01, + 3.3400e-01, 2.2956e-01, 3.0797e-01, 5.1339e-01, + 4.1802e-01, 1.9688e-01, 6.2325e-01, 3.2738e-01, + 4.8917e-01, 3.2538e-01, 5.1070e-01, 7.4161e-01, + 7.0588e-01, 3.9899e-01, 5.2221e-01, 1.5384e-01, + 3.5179e-01, 4.8115e-01, 2.7363e-01, 2.8002e-01, + 4.2415e-01, 2.1545e-01, 7.6635e-01, 4.4319e-01, + 1.0434e-01, 5.3882e-01, 1.7751e-01, 9.7206e-01, + 5.0674e-01, 3.4560e-01, 3.2579e-01, 5.4960e-01, + 3.2111e-01, 9.7020e-01, 8.9102e-01, 3.3955e-01, + 7.4355e-01, 1.1853e-01, 7.3761e-01, 5.9870e-01, + 6.3084e-01, 5.2364e-01, 6.9109e-01, 9.7319e-01, + 4.4327e-01, 6.7270e-01, 5.0866e-01, 5.8518e-02, + 8.6936e-01, 2.0647e-01, 7.9599e-01, 8.3871e-01, + 8.4882e-01, 4.8923e-01, 9.0385e-01, 5.4210e-01, + 8.2097e-02, 4.4715e-01, 3.9892e-02, 9.7745e-01, + 2.1047e-02, 7.0280e-01, 1.6161e-01, 5.8636e-01, + 5.1251e-02, 3.7167e-01, 6.3274e-01, 6.2298e-02, + 7.4293e-01, 7.9914e-01, 8.7203e-01, 9.6482e-01, + 5.6499e-01, 3.8671e-01, 7.0059e-01, 7.3199e-01, + 9.2567e-01, 7.3812e-01, 1.6861e-01, 7.4046e-01, + 8.1607e-01, 4.6992e-01, 7.2711e-01, 9.1487e-01, + 4.1156e-01, 5.1202e-01, 3.5986e-01, 3.3062e-01, + 2.9725e-01, 1.6921e-01, 5.4909e-01, 1.2069e-01, + 3.5195e-01, 7.6383e-01, 7.4288e-01, 2.4758e-01, + 3.8444e-01, 5.8266e-02, 2.4042e-01, 3.0919e-01, + 1.7204e-01, 6.1885e-01, 2.9065e-01, 1.3719e-02, + 4.0827e-01, 1.3647e-01, 1.4959e-02, 9.9494e-01, + 5.1923e-01, 5.6432e-01, 9.4876e-01, 5.7473e-01, + 9.7697e-01, 1.8048e-02, 5.6856e-01, 1.5324e-01, + 1.0664e-01, 5.3795e-01, 7.1911e-01, 1.5088e-01, + 6.3302e-01, 1.3568e-02, 5.4872e-01, 9.1526e-01, + 9.6402e-01, 6.2534e-01, 7.4570e-01, 5.7812e-01, + 3.7302e-01, 2.3742e-01, 4.2409e-02, 4.5568e-01, + 5.1109e-01, 4.5050e-01, 6.3292e-01, 8.9476e-01, + 7.5507e-01, 6.3026e-01, 4.1196e-01, 4.5580e-01, + 5.6006e-01, 6.5274e-01, 9.8682e-01, 3.8258e-01, + 9.0774e-01, 5.1524e-01, 3.1276e-01, 8.3507e-01, + 3.6866e-01, 8.7038e-01, 1.8687e-01, 8.7445e-01, + 3.4415e-01, 2.8866e-01, 2.8929e-01, 1.2231e-01, + 9.4505e-01, 4.2536e-01, 6.2981e-01, 4.8049e-01, + 2.0686e-01, 1.7140e-01, 8.2123e-01, 5.0642e-01, + 9.1534e-01, 5.8595e-01, 7.0950e-01, 3.9363e-01, + 1.4897e-01, 8.5593e-01, 3.9573e-01, 4.2217e-01, + 1.3321e-01, 8.2831e-01, 3.5401e-01, 8.5123e-01, + 9.7129e-01, 3.5101e-01, 2.9517e-01, 7.8648e-01, + 1.9865e-01, 7.6650e-01, 8.6624e-01, 6.6334e-01, + 5.3911e-02, 2.1179e-01, 7.9277e-01, 3.3075e-01, + 9.7451e-02, 2.2374e-01, 6.0424e-01, 3.4120e-01, + 1.6678e-01, 7.3058e-01, 1.4131e-01, 3.2380e-01, + 8.0025e-02, 8.7760e-02, 2.1083e-01, 2.1844e-01, + 6.6954e-02, 4.9328e-01, 7.2243e-01, 8.3534e-01, + 9.9053e-01, 2.3837e-01, 1.9357e-01, 5.5049e-01, + 6.7173e-01, 6.2973e-03, 2.5163e-01, 4.1258e-01, + 6.6680e-01, 5.0225e-01, 6.5658e-01, 7.9015e-01, + 4.6985e-01, 9.5341e-01, 1.8942e-01, 9.6505e-01, + 5.9884e-01, 7.6761e-01, 9.9066e-01, 1.7115e-01, + 1.5569e-01, 6.6473e-01, 4.0053e-01, 1.1972e-01, + 1.4245e-01, 7.4121e-01, 4.5033e-01, 7.0448e-01, + 8.4109e-01, 9.6275e-01, 5.6967e-01, 4.6629e-01, + 4.6346e-01, 8.8916e-01, 5.7855e-01, 5.9218e-01, + 9.7444e-01, 5.1624e-01, 5.3685e-01, 3.2910e-01, + 4.5445e-03, 3.8540e-01, 9.5888e-01, 5.3370e-01, + 5.2745e-01, 7.0115e-01, 1.7582e-02, 7.0961e-01, + 4.8579e-01, 4.4872e-01, 1.8650e-01, 9.1635e-01, + 7.1700e-01, 7.1226e-01, 3.2373e-01, 9.7173e-01, + 9.5299e-01, 8.4083e-01, 2.5068e-01, 3.3961e-01, + 2.8141e-01, 1.6843e-01, 7.2851e-01, 3.5589e-01, + 4.7044e-01, 3.3914e-01, 9.9225e-01, 8.3744e-01, + 6.3322e-01, 2.6791e-01, 1.4790e-01, 8.5573e-01, + 8.6051e-03, 6.8401e-01, 8.5940e-01, 3.1405e-01, + 8.0239e-01, 5.3587e-01, 7.6761e-02, 1.9059e-01, + 5.5597e-01, 2.2680e-01, 5.0511e-01, 7.4720e-01, + 5.6044e-01, 1.2904e-01, 2.6998e-02, 2.6815e-02, + 1.4811e-01, 5.7710e-01, 3.8720e-01, 3.1164e-01, + 5.0377e-01, 6.6323e-01, 3.0251e-01, 7.6729e-01, + 4.0920e-01, 2.6721e-01, 4.7283e-01, 7.9623e-01, + 3.3513e-01, 9.2036e-01, 3.7500e-01, 1.7646e-01, + 4.9155e-01, 6.1185e-01, 7.4077e-01, 7.1092e-01, + 5.2796e-02, 7.3738e-01, 3.3700e-02, 5.8595e-01, + 7.1338e-01, 1.9473e-01, 7.7258e-01, 8.6642e-01, + 3.1804e-01, 9.2864e-01, 3.4002e-01, 5.8527e-01, + 3.2231e-01, 2.5907e-01, 2.4104e-02, 9.6474e-01, + 7.6358e-01, 2.8793e-01, 2.4963e-01, 3.2547e-03, + 3.7889e-01, 7.2848e-01, 7.8352e-01, 6.5869e-01, + 6.7556e-01, 9.9946e-01, 7.1099e-01, 7.8559e-01, + 2.4594e-01, 7.5866e-01, 2.1889e-01, 8.6192e-01, + 1.0492e-01, 6.6974e-01, 1.9110e-01, 4.2178e-01, + 5.2211e-01, 5.7968e-01, 4.3791e-01, 1.6162e-01, + 1.8223e-01, 4.0645e-01, 8.0597e-01, 1.8599e-01, + 8.5659e-01, 8.8819e-01, 4.3915e-01, 2.0250e-01, + 7.8476e-02, 6.6803e-01, 7.7438e-01, 2.0798e-02, + 6.5758e-01, 3.2100e-01, 3.5731e-04, 2.1289e-01, + 2.5481e-01, 6.2077e-01, 2.4535e-01, 8.8808e-01, + 3.0564e-01, 8.8046e-01, 1.5537e-01, 2.9485e-01, + 4.3426e-01, 1.5200e-01, 2.3927e-01, 4.1251e-02, + 2.6271e-01, 5.8274e-01, 5.6945e-02, 1.4017e-01, + 3.0720e-01, 3.6401e-01, 1.6795e-01, 6.9631e-02, + 6.9758e-01, 5.9161e-01, 8.3040e-01, 9.4507e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.7781, 0.3926, 0.9305, ..., 0.7246, 0.2621, 0.2068]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.514646053314209 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([4116, 7192, 1414, 602, 9261, 9755, 3418, 3677, 1346, + 4915, 1923, 5999, 8929, 3632, 514, 7579, 9728, 993, + 4226, 2729, 2969, 7063, 8946, 3199, 2641, 3551, 3369, + 5419, 1831, 1652, 6779, 7428, 3773, 5376, 162, 579, + 7703, 6315, 199, 8043, 3670, 9337, 2098, 2118, 8554, + 2706, 4081, 7007, 1627, 5281, 2169, 7536, 2244, 9570, + 3079, 5784, 1151, 8783, 1389, 8630, 6457, 6608, 4618, + 9063, 5053, 6181, 9948, 5748, 552, 4335, 6638, 3245, + 5740, 6165, 6638, 3389, 4075, 7308, 3538, 1808, 7667, + 6538, 3469, 3661, 4798, 9461, 4545, 9042, 8936, 6823, + 3214, 2364, 8082, 6264, 8924, 2858, 8926, 6581, 6873, + 4238, 1490, 2662, 5578, 4356, 3367, 3328, 2236, 5544, + 9846, 3138, 7106, 9710, 3457, 1720, 9664, 7549, 5930, + 186, 2220, 5945, 7396, 6063, 9045, 7005, 4888, 8764, + 4115, 6721, 9214, 1263, 9026, 6945, 128, 3992, 9195, + 1474, 898, 6799, 6691, 3804, 4100, 3045, 4269, 7083, + 7634, 6955, 7626, 3398, 9853, 5960, 6034, 6094, 1156, + 179, 4425, 7472, 1643, 3634, 5583, 4054, 7495, 8640, + 7830, 4823, 8512, 2700, 1579, 955, 2712, 5607, 4060, + 5276, 5257, 5785, 8404, 113, 7405, 3608, 3433, 3557, + 6849, 1586, 7863, 4221, 9310, 989, 7433, 3566, 8151, + 6016, 311, 1505, 3718, 1327, 7984, 3830, 167, 458, + 1529, 4687, 5720, 3066, 2390, 9640, 22, 1812, 4977, + 5871, 208, 5078, 2553, 6038, 7129, 4310, 282, 7188, + 2629, 1264, 6276, 1900, 4410, 2767, 3442, 8825, 8207, + 9184, 696, 4991, 9290, 793, 7381, 5472, 9417, 843, + 7337, 5992, 4392, 6955, 6527, 4732, 1836, 2887, 3302, + 1246, 4380, 7016, 2283, 2360, 339, 4662, 7184, 8502, + 5643, 5095, 1512, 8433, 2939, 1784, 9937, 1906, 9377, + 4250, 5487, 5234, 4792, 8152, 7183, 2215, 7833, 3347, + 5213, 732, 5590, 2763, 4277, 7806, 3532, 1529, 9333, + 4668, 9843, 4597, 3627, 8649, 8703, 873, 4071, 3905, + 7625, 2889, 4631, 9159, 8732, 933, 5436, 4772, 8351, + 1495, 1952, 2186, 1108, 4949, 2677, 1933, 3185, 4340, + 5683, 5723, 8381, 9022, 2370, 9966, 5403, 9733, 2198, + 1637, 6841, 4735, 9117, 8560, 917, 3319, 1371, 5395, + 9003, 4729, 166, 4382, 5364, 8859, 5190, 7650, 5699, + 8419, 9352, 522, 3927, 2679, 4262, 9505, 590, 7467, + 8458, 9407, 3144, 2243, 9605, 8976, 1644, 2029, 7253, + 258, 2996, 9166, 6182, 3685, 448, 388, 9009, 1003, + 8225, 5809, 5225, 5068, 7864, 1148, 1681, 8631, 9776, + 2434, 9005, 570, 3704, 421, 1541, 2997, 1138, 443, + 8928, 4642, 2073, 2012, 8211, 4813, 5727, 2486, 2677, + 2787, 9420, 1109, 597, 365, 1642, 876, 5405, 9802, + 7033, 1434, 7253, 4790, 1231, 1111, 5807, 2216, 8736, + 4015, 4599, 8996, 3935, 942, 449, 9751, 9186, 7778, + 1387, 8588, 7679, 2605, 4391, 4798, 2000, 5117, 3414, + 1861, 49, 3127, 3681, 1232, 3277, 4285, 4110, 2170, + 1131, 3609, 305, 4308, 1078, 3550, 8680, 9527, 3657, + 5580, 3942, 7339, 4571, 6030, 3953, 2251, 4453, 7552, + 1958, 1501, 1056, 6071, 8794, 5497, 2466, 5840, 5755, + 4350, 6652, 9676, 7696, 5668, 5716, 6802, 2756, 2844, + 2076, 9916, 4254, 4247, 1549, 6255, 136, 9745, 4708, + 8246, 5741, 3283, 9856, 3884, 7212, 2451, 4506, 3332, + 2802, 546, 1107, 6908, 7485, 6240, 3041, 3085, 3258, + 8550, 9847, 4893, 2038, 9539, 625, 7440, 4196, 5182, + 3039, 1354, 4896, 920, 8631, 5555, 3241, 4037, 7927, + 7978, 2714, 4090, 1155, 2312, 8957, 8647, 1625, 2284, + 5120, 2713, 6756, 1447, 5297, 9292, 191, 9719, 512, + 3285, 1008, 1631, 2282, 1, 8384, 4959, 4082, 6943, + 5026, 1284, 2559, 7835, 8876, 7406, 9259, 6431, 2124, + 5249, 886, 3877, 9616, 7440, 7935, 2953, 4353, 8630, + 6873, 6450, 7974, 2907, 6853, 1731, 1734, 7915, 627, + 1848, 9651, 8072, 325, 9090, 3952, 2190, 6969, 5724, + 4737, 4971, 5930, 9065, 795, 2734, 7142, 1334, 1101, + 6976, 2804, 9022, 4770, 8850, 2321, 2915, 4870, 317, + 200, 1907, 4202, 8058, 468, 2452, 3052, 4111, 8780, + 2827, 6426, 5414, 9074, 2589, 6068, 209, 6819, 6948, + 7804, 7353, 5400, 8311, 624, 4794, 4250, 9150, 7304, + 7383, 244, 3241, 8673, 824, 8833, 5120, 347, 3945, + 9530, 4501, 8187, 5682, 9083, 4685, 9255, 3954, 6003, + 1181, 7405, 4909, 2035, 5243, 7589, 7209, 2811, 8638, + 6620, 998, 4062, 4859, 2372, 2608, 3632, 9769, 7028, + 4263, 7696, 6057, 9107, 4050, 223, 2225, 9966, 6759, + 8412, 3222, 9059, 9449, 3803, 5159, 6770, 4309, 803, + 3956, 6109, 2635, 8651, 9493, 6196, 8647, 3760, 7476, + 2703, 4996, 7071, 454, 6200, 1008, 6621, 5370, 4441, + 9279, 2513, 9418, 7493, 7526, 4237, 4698, 7251, 6897, + 2020, 7731, 9984, 3559, 4926, 9283, 2622, 1954, 1488, + 3911, 7884, 2789, 6162, 5229, 4168, 282, 389, 5316, + 1498, 4458, 3561, 8943, 9282, 8236, 2217, 2559, 1819, + 1350, 706, 7116, 9065, 8837, 4066, 7679, 6388, 3799, + 9827, 4686, 9282, 6788, 6841, 1373, 7434, 8130, 3964, + 8166, 3594, 3817, 6355, 3458, 2124, 3724, 9463, 6106, + 9252, 7691, 2416, 3575, 1616, 9144, 6977, 3531, 6725, + 6763, 1340, 5794, 8225, 5653, 9046, 9095, 7748, 6148, + 7023, 3605, 4097, 7017, 1954, 2458, 616, 3576, 4392, + 1508, 4668, 9858, 6665, 8198, 7943, 9561, 6812, 4402, + 7065, 911, 6654, 5206, 2290, 2647, 2858, 4004, 7033, + 1456, 4004, 5009, 7018, 441, 1434, 616, 9192, 4014, + 4224, 3305, 5685, 5038, 1879, 2513, 2975, 7217, 6734, + 4346, 2451, 4252, 1359, 1897, 1558, 1518, 8946, 1045, + 2687, 5779, 3825, 7875, 7903, 3483, 3272, 5342, 4112, + 6056, 4149, 9046, 6331, 5493, 5740, 4356, 9840, 2344, + 8131, 1983, 3832, 1085, 6587, 7944, 5354, 9757, 9494, + 6772, 4253, 3448, 1844, 3828, 8186, 561, 2149, 277, + 7639, 7736, 9923, 874, 4782, 7514, 9258, 25, 3290, + 9135, 821, 7578, 3691, 6954, 4378, 106, 3717, 4341, + 7878, 4081, 3382, 2833, 5381, 1369, 1198, 8238, 509, + 8127, 7888, 3507, 99, 1906, 6992, 375, 2939, 9900, + 3554, 9933, 4200, 9872, 7049, 4972, 7060, 9575, 558, + 4822, 5894, 5066, 5665, 2353, 8349, 8831, 6355, 6847, + 4671, 7517, 5761, 7668, 862, 525, 7306, 1582, 5763, + 7813, 8159, 6461, 9837, 487, 5618, 551, 6758, 6315, + 7722, 5312, 2191, 6095, 5151, 3304, 6873, 8430, 6063, + 9471, 4395, 9467, 7290, 1009, 2539, 6217, 7375, 2928, + 8340, 8978, 9118, 6252, 7166, 2776, 341, 5357, 7950, + 2900, 8133, 6787, 2966, 2483, 5175, 1262, 2317, 2466, + 7698, 6866, 558, 1985, 7535, 6044, 3673, 7654, 8927, + 6144, 8580, 3529, 9842, 2172, 4769, 2277, 2207, 1695, + 234, 4499, 3795, 4016, 695, 3395, 6723, 2800, 2814, + 7062]), + values=tensor([1.3767e-01, 7.1628e-01, 8.6135e-01, 7.1511e-01, + 9.5089e-01, 2.4757e-01, 9.3760e-03, 7.7773e-01, + 4.0669e-01, 9.1069e-01, 1.2601e-01, 5.4040e-01, + 3.7319e-02, 3.2172e-01, 9.1567e-01, 8.9101e-01, + 2.2712e-02, 6.3215e-01, 1.8351e-01, 5.7793e-01, + 6.9901e-01, 5.3678e-01, 4.7677e-01, 5.0165e-02, + 5.6649e-01, 6.3104e-01, 3.0293e-01, 7.4977e-01, + 7.3472e-02, 2.8601e-01, 5.5054e-01, 3.5579e-01, + 3.6622e-01, 6.5500e-01, 6.2994e-01, 3.6452e-01, + 2.0704e-01, 1.0247e-01, 2.5826e-01, 5.2540e-02, + 7.3130e-02, 6.3376e-01, 5.9810e-01, 4.9090e-01, + 6.8296e-02, 5.3917e-01, 1.1966e-01, 1.8500e-01, + 3.0815e-01, 5.8388e-01, 4.2982e-01, 5.6405e-02, + 4.8100e-01, 2.6901e-01, 3.0648e-03, 7.4291e-01, + 1.2739e-01, 3.2902e-01, 7.3718e-01, 7.4258e-01, + 9.6792e-01, 2.1717e-01, 2.0890e-01, 5.2258e-01, + 6.8834e-01, 3.6326e-01, 6.9665e-01, 6.8825e-01, + 6.2143e-01, 6.2623e-01, 6.1424e-01, 7.0805e-01, + 4.0377e-01, 5.0286e-01, 3.1606e-01, 1.0216e-01, + 8.7212e-01, 2.5393e-01, 4.3722e-01, 4.5099e-01, + 6.2296e-01, 6.7718e-01, 1.1725e-01, 7.5117e-01, + 6.1649e-01, 2.0645e-01, 1.5527e-01, 5.8584e-01, + 6.5559e-01, 9.7418e-01, 5.7488e-01, 4.5016e-01, + 1.0108e-02, 7.8700e-01, 8.5952e-01, 3.6767e-01, + 6.6708e-01, 3.9792e-01, 2.1940e-01, 4.4322e-01, + 7.0303e-01, 3.4139e-01, 3.9259e-01, 8.8211e-01, + 8.8687e-01, 7.0191e-01, 4.6733e-01, 4.5169e-01, + 1.3884e-01, 7.2389e-01, 1.0696e-01, 1.9507e-01, + 5.4738e-01, 6.7276e-01, 9.7900e-02, 5.0607e-01, + 6.0787e-01, 3.7552e-01, 6.9448e-01, 9.9517e-01, + 6.9703e-01, 4.5115e-01, 2.7976e-01, 3.3528e-01, + 6.2057e-01, 8.6211e-01, 7.0540e-01, 7.0073e-01, + 7.5910e-01, 7.0805e-01, 6.8043e-01, 9.2129e-01, + 3.8606e-02, 8.1173e-01, 6.8589e-01, 8.8272e-01, + 8.5540e-01, 8.5966e-01, 2.5725e-01, 6.2432e-02, + 2.0565e-01, 7.6464e-01, 6.2149e-01, 7.0689e-01, + 9.6943e-01, 9.1375e-01, 6.9609e-01, 1.0540e-01, + 9.0816e-01, 1.5889e-01, 5.7258e-01, 5.5242e-01, + 4.2908e-01, 4.4953e-01, 6.5806e-01, 8.4537e-01, + 8.1500e-02, 5.0051e-01, 6.5699e-01, 1.6438e-01, + 1.5049e-02, 4.9899e-01, 3.9120e-01, 3.2732e-01, + 3.8565e-01, 8.2901e-01, 4.0085e-01, 6.0713e-01, + 7.0000e-01, 3.0412e-01, 6.0281e-01, 2.5542e-02, + 4.3786e-02, 1.8718e-01, 8.7005e-01, 9.4782e-01, + 5.9295e-01, 7.8689e-03, 8.5626e-01, 6.4375e-01, + 3.2275e-01, 4.2197e-01, 3.6112e-01, 6.2448e-02, + 9.7853e-01, 8.6224e-01, 7.4828e-01, 5.8071e-01, + 8.7233e-01, 5.0843e-01, 2.8581e-01, 6.4133e-01, + 7.0918e-01, 9.5194e-01, 6.1273e-01, 8.5849e-01, + 4.9317e-01, 5.7639e-02, 9.9630e-01, 3.7211e-01, + 3.4682e-01, 1.1154e-01, 2.5831e-03, 6.3374e-01, + 6.6874e-01, 3.9360e-01, 3.5838e-01, 8.5471e-01, + 7.0322e-01, 8.2311e-01, 5.4150e-01, 5.7026e-01, + 6.5821e-01, 1.3975e-01, 7.7260e-02, 1.1189e-01, + 5.2080e-01, 1.2715e-02, 6.9032e-01, 7.5638e-01, + 2.0518e-01, 5.5927e-01, 8.3030e-02, 5.5062e-01, + 3.2127e-01, 1.0789e-01, 9.1260e-01, 6.4350e-01, + 9.9466e-01, 5.5812e-01, 2.5897e-01, 1.4537e-01, + 8.8427e-01, 2.4431e-01, 5.3467e-01, 1.1437e-01, + 2.2271e-01, 3.6377e-01, 5.0688e-01, 4.0210e-01, + 9.6214e-02, 7.4145e-01, 4.1409e-01, 2.7186e-01, + 6.8016e-01, 3.4039e-01, 5.5569e-01, 9.7247e-02, + 6.0054e-01, 9.7719e-01, 1.3649e-01, 9.9753e-01, + 8.3259e-01, 6.4755e-01, 3.9749e-01, 9.0807e-01, + 2.1147e-01, 5.0004e-01, 5.3220e-02, 3.1762e-01, + 3.3833e-01, 7.7938e-01, 6.2849e-01, 4.7457e-01, + 1.7438e-02, 8.1308e-01, 2.8307e-01, 6.7284e-01, + 5.1861e-01, 3.3344e-01, 9.1361e-01, 6.0753e-01, + 7.0133e-01, 3.6039e-01, 5.5368e-02, 9.3108e-01, + 3.5189e-01, 9.7164e-01, 3.9002e-01, 5.2678e-01, + 2.8953e-03, 9.8500e-01, 7.3340e-01, 9.2830e-01, + 4.0230e-01, 7.7052e-01, 9.5800e-02, 3.1615e-01, + 5.9244e-01, 9.0208e-01, 1.2767e-01, 1.5811e-01, + 8.0315e-01, 6.2049e-01, 3.9867e-01, 5.8587e-01, + 5.4263e-01, 5.8712e-01, 6.4417e-01, 2.5094e-01, + 5.7318e-03, 4.2910e-01, 4.9714e-01, 1.2439e-01, + 6.8645e-01, 2.7117e-01, 9.4144e-01, 1.0741e-01, + 6.0964e-01, 4.9124e-01, 1.2215e-01, 6.2184e-01, + 9.5970e-01, 1.4042e-01, 3.8926e-01, 2.5587e-01, + 2.3181e-01, 1.5447e-01, 2.6754e-01, 2.8396e-01, + 4.9732e-01, 7.7233e-01, 7.2055e-01, 2.6804e-01, + 5.2721e-01, 2.8004e-02, 4.0875e-01, 1.0355e-01, + 3.8021e-01, 1.6312e-01, 9.3351e-01, 4.0357e-01, + 9.6564e-01, 9.5352e-01, 2.3033e-01, 1.8023e-01, + 8.9340e-01, 3.6181e-01, 5.5393e-01, 3.3373e-01, + 6.1869e-01, 1.4247e-01, 3.8655e-02, 1.5970e-01, + 1.5518e-01, 8.9244e-01, 2.1298e-01, 7.1235e-01, + 5.5568e-01, 5.8432e-01, 1.9164e-01, 2.3690e-01, + 9.5455e-01, 7.2857e-01, 3.7214e-01, 5.5532e-01, + 8.8376e-01, 5.9028e-01, 2.0300e-01, 6.3695e-01, + 3.3213e-01, 9.5342e-02, 7.7225e-01, 6.6953e-02, + 1.6999e-01, 9.4302e-01, 2.6314e-01, 3.3727e-01, + 2.7787e-01, 8.0225e-01, 6.5075e-01, 7.4035e-01, + 5.3106e-01, 5.4790e-01, 3.1026e-01, 2.2004e-02, + 9.0580e-01, 7.6487e-01, 5.6201e-01, 1.1201e-01, + 1.5233e-02, 3.8437e-01, 6.1598e-02, 3.1117e-01, + 3.2700e-01, 8.9412e-01, 3.9616e-01, 5.3201e-01, + 6.4656e-01, 2.1046e-01, 3.6325e-01, 9.2194e-01, + 6.3959e-01, 3.9911e-01, 4.4881e-01, 1.0553e-01, + 2.5978e-01, 1.8512e-01, 3.9395e-01, 5.4669e-02, + 6.8945e-01, 8.0965e-01, 3.2951e-01, 5.4811e-01, + 3.0211e-02, 6.8181e-01, 3.2372e-01, 9.3662e-01, + 6.8499e-01, 6.4111e-01, 5.8163e-01, 3.5869e-01, + 2.8411e-01, 4.3117e-01, 1.3450e-01, 4.8766e-01, + 7.0478e-01, 5.3516e-01, 6.7174e-01, 8.0094e-01, + 8.1062e-01, 2.7839e-02, 8.6884e-01, 7.9628e-01, + 1.2090e-01, 9.4127e-02, 2.6206e-01, 7.1621e-02, + 9.6549e-01, 9.9012e-02, 8.1580e-01, 6.2717e-01, + 3.7858e-02, 6.6910e-01, 1.1367e-01, 4.4587e-01, + 2.1667e-01, 6.2027e-01, 6.0694e-01, 4.8314e-01, + 8.9715e-01, 1.2495e-01, 4.0892e-01, 5.4664e-01, + 2.0868e-01, 3.7281e-01, 7.2776e-01, 3.9380e-01, + 7.7841e-01, 7.2770e-01, 5.5081e-01, 4.5550e-01, + 1.1337e-01, 6.0070e-01, 1.7006e-01, 8.9155e-01, + 3.4892e-04, 8.9357e-01, 9.6087e-01, 3.6593e-02, + 5.8737e-01, 3.6900e-02, 7.9887e-01, 6.1905e-01, + 9.3419e-01, 1.0042e-01, 7.9304e-01, 5.8615e-01, + 7.2710e-01, 5.8139e-01, 2.5740e-02, 1.1614e-01, + 8.0492e-01, 1.9472e-01, 6.4306e-01, 7.9291e-01, + 8.8424e-01, 2.4042e-01, 6.6614e-01, 9.9409e-01, + 3.9403e-01, 4.6506e-01, 4.8211e-01, 5.6363e-01, + 6.0078e-01, 8.3139e-02, 7.8203e-01, 4.7756e-01, + 8.5709e-01, 5.7873e-01, 7.6714e-02, 3.9206e-01, + 6.8500e-01, 9.6940e-01, 2.5652e-01, 8.8082e-01, + 3.7856e-01, 9.2438e-01, 4.7830e-01, 1.4020e-01, + 5.2884e-01, 3.1246e-01, 6.5357e-01, 3.5125e-01, + 8.1007e-01, 7.6288e-01, 4.0573e-01, 2.6397e-01, + 7.7222e-01, 4.6844e-01, 6.6931e-01, 3.7442e-02, + 7.3587e-01, 1.7894e-01, 1.9269e-01, 5.3208e-02, + 1.7345e-01, 3.2373e-01, 8.6054e-01, 9.6058e-01, + 3.3684e-01, 1.2915e-01, 3.7259e-01, 8.5330e-02, + 8.7195e-01, 4.1642e-01, 1.4156e-02, 5.6366e-01, + 2.0687e-02, 4.5670e-01, 9.4825e-01, 4.6193e-01, + 9.6608e-01, 7.2678e-01, 1.0354e-01, 4.0029e-01, + 8.7647e-01, 7.6570e-01, 2.0229e-01, 2.0324e-01, + 5.5069e-01, 9.8105e-01, 3.4961e-01, 9.6117e-01, + 1.2299e-01, 8.9272e-01, 8.4714e-01, 8.7303e-01, + 8.8032e-01, 6.5685e-01, 5.8322e-01, 5.8733e-01, + 2.6798e-01, 6.5585e-01, 4.5400e-01, 5.2309e-03, + 9.9176e-01, 9.0773e-01, 9.4229e-01, 8.4914e-01, + 1.9365e-01, 5.8394e-01, 9.0261e-01, 5.1355e-01, + 4.1587e-01, 2.4801e-01, 2.7669e-01, 5.5044e-01, + 2.4672e-01, 4.0436e-01, 2.4099e-01, 5.0330e-01, + 9.5869e-01, 7.6414e-01, 1.2318e-01, 8.6587e-01, + 7.4214e-01, 6.6104e-03, 1.1094e-01, 4.0845e-01, + 1.1767e-01, 9.0883e-01, 7.2050e-01, 9.7280e-01, + 9.8324e-01, 1.3704e-01, 4.0185e-01, 3.4497e-01, + 7.4353e-01, 9.0031e-01, 2.0494e-01, 2.5380e-01, + 5.2888e-01, 2.1441e-02, 4.0249e-01, 5.3610e-01, + 5.2276e-01, 3.3112e-01, 2.3875e-02, 9.2410e-01, + 5.6142e-02, 8.6019e-01, 3.4566e-01, 5.7521e-01, + 3.8381e-01, 2.0229e-01, 5.4861e-01, 2.1478e-01, + 3.3400e-01, 2.2956e-01, 3.0797e-01, 5.1339e-01, + 4.1802e-01, 1.9688e-01, 6.2325e-01, 3.2738e-01, + 4.8917e-01, 3.2538e-01, 5.1070e-01, 7.4161e-01, + 7.0588e-01, 3.9899e-01, 5.2221e-01, 1.5384e-01, + 3.5179e-01, 4.8115e-01, 2.7363e-01, 2.8002e-01, + 4.2415e-01, 2.1545e-01, 7.6635e-01, 4.4319e-01, + 1.0434e-01, 5.3882e-01, 1.7751e-01, 9.7206e-01, + 5.0674e-01, 3.4560e-01, 3.2579e-01, 5.4960e-01, + 3.2111e-01, 9.7020e-01, 8.9102e-01, 3.3955e-01, + 7.4355e-01, 1.1853e-01, 7.3761e-01, 5.9870e-01, + 6.3084e-01, 5.2364e-01, 6.9109e-01, 9.7319e-01, + 4.4327e-01, 6.7270e-01, 5.0866e-01, 5.8518e-02, + 8.6936e-01, 2.0647e-01, 7.9599e-01, 8.3871e-01, + 8.4882e-01, 4.8923e-01, 9.0385e-01, 5.4210e-01, + 8.2097e-02, 4.4715e-01, 3.9892e-02, 9.7745e-01, + 2.1047e-02, 7.0280e-01, 1.6161e-01, 5.8636e-01, + 5.1251e-02, 3.7167e-01, 6.3274e-01, 6.2298e-02, + 7.4293e-01, 7.9914e-01, 8.7203e-01, 9.6482e-01, + 5.6499e-01, 3.8671e-01, 7.0059e-01, 7.3199e-01, + 9.2567e-01, 7.3812e-01, 1.6861e-01, 7.4046e-01, + 8.1607e-01, 4.6992e-01, 7.2711e-01, 9.1487e-01, + 4.1156e-01, 5.1202e-01, 3.5986e-01, 3.3062e-01, + 2.9725e-01, 1.6921e-01, 5.4909e-01, 1.2069e-01, + 3.5195e-01, 7.6383e-01, 7.4288e-01, 2.4758e-01, + 3.8444e-01, 5.8266e-02, 2.4042e-01, 3.0919e-01, + 1.7204e-01, 6.1885e-01, 2.9065e-01, 1.3719e-02, + 4.0827e-01, 1.3647e-01, 1.4959e-02, 9.9494e-01, + 5.1923e-01, 5.6432e-01, 9.4876e-01, 5.7473e-01, + 9.7697e-01, 1.8048e-02, 5.6856e-01, 1.5324e-01, + 1.0664e-01, 5.3795e-01, 7.1911e-01, 1.5088e-01, + 6.3302e-01, 1.3568e-02, 5.4872e-01, 9.1526e-01, + 9.6402e-01, 6.2534e-01, 7.4570e-01, 5.7812e-01, + 3.7302e-01, 2.3742e-01, 4.2409e-02, 4.5568e-01, + 5.1109e-01, 4.5050e-01, 6.3292e-01, 8.9476e-01, + 7.5507e-01, 6.3026e-01, 4.1196e-01, 4.5580e-01, + 5.6006e-01, 6.5274e-01, 9.8682e-01, 3.8258e-01, + 9.0774e-01, 5.1524e-01, 3.1276e-01, 8.3507e-01, + 3.6866e-01, 8.7038e-01, 1.8687e-01, 8.7445e-01, + 3.4415e-01, 2.8866e-01, 2.8929e-01, 1.2231e-01, + 9.4505e-01, 4.2536e-01, 6.2981e-01, 4.8049e-01, + 2.0686e-01, 1.7140e-01, 8.2123e-01, 5.0642e-01, + 9.1534e-01, 5.8595e-01, 7.0950e-01, 3.9363e-01, + 1.4897e-01, 8.5593e-01, 3.9573e-01, 4.2217e-01, + 1.3321e-01, 8.2831e-01, 3.5401e-01, 8.5123e-01, + 9.7129e-01, 3.5101e-01, 2.9517e-01, 7.8648e-01, + 1.9865e-01, 7.6650e-01, 8.6624e-01, 6.6334e-01, + 5.3911e-02, 2.1179e-01, 7.9277e-01, 3.3075e-01, + 9.7451e-02, 2.2374e-01, 6.0424e-01, 3.4120e-01, + 1.6678e-01, 7.3058e-01, 1.4131e-01, 3.2380e-01, + 8.0025e-02, 8.7760e-02, 2.1083e-01, 2.1844e-01, + 6.6954e-02, 4.9328e-01, 7.2243e-01, 8.3534e-01, + 9.9053e-01, 2.3837e-01, 1.9357e-01, 5.5049e-01, + 6.7173e-01, 6.2973e-03, 2.5163e-01, 4.1258e-01, + 6.6680e-01, 5.0225e-01, 6.5658e-01, 7.9015e-01, + 4.6985e-01, 9.5341e-01, 1.8942e-01, 9.6505e-01, + 5.9884e-01, 7.6761e-01, 9.9066e-01, 1.7115e-01, + 1.5569e-01, 6.6473e-01, 4.0053e-01, 1.1972e-01, + 1.4245e-01, 7.4121e-01, 4.5033e-01, 7.0448e-01, + 8.4109e-01, 9.6275e-01, 5.6967e-01, 4.6629e-01, + 4.6346e-01, 8.8916e-01, 5.7855e-01, 5.9218e-01, + 9.7444e-01, 5.1624e-01, 5.3685e-01, 3.2910e-01, + 4.5445e-03, 3.8540e-01, 9.5888e-01, 5.3370e-01, + 5.2745e-01, 7.0115e-01, 1.7582e-02, 7.0961e-01, + 4.8579e-01, 4.4872e-01, 1.8650e-01, 9.1635e-01, + 7.1700e-01, 7.1226e-01, 3.2373e-01, 9.7173e-01, + 9.5299e-01, 8.4083e-01, 2.5068e-01, 3.3961e-01, + 2.8141e-01, 1.6843e-01, 7.2851e-01, 3.5589e-01, + 4.7044e-01, 3.3914e-01, 9.9225e-01, 8.3744e-01, + 6.3322e-01, 2.6791e-01, 1.4790e-01, 8.5573e-01, + 8.6051e-03, 6.8401e-01, 8.5940e-01, 3.1405e-01, + 8.0239e-01, 5.3587e-01, 7.6761e-02, 1.9059e-01, + 5.5597e-01, 2.2680e-01, 5.0511e-01, 7.4720e-01, + 5.6044e-01, 1.2904e-01, 2.6998e-02, 2.6815e-02, + 1.4811e-01, 5.7710e-01, 3.8720e-01, 3.1164e-01, + 5.0377e-01, 6.6323e-01, 3.0251e-01, 7.6729e-01, + 4.0920e-01, 2.6721e-01, 4.7283e-01, 7.9623e-01, + 3.3513e-01, 9.2036e-01, 3.7500e-01, 1.7646e-01, + 4.9155e-01, 6.1185e-01, 7.4077e-01, 7.1092e-01, + 5.2796e-02, 7.3738e-01, 3.3700e-02, 5.8595e-01, + 7.1338e-01, 1.9473e-01, 7.7258e-01, 8.6642e-01, + 3.1804e-01, 9.2864e-01, 3.4002e-01, 5.8527e-01, + 3.2231e-01, 2.5907e-01, 2.4104e-02, 9.6474e-01, + 7.6358e-01, 2.8793e-01, 2.4963e-01, 3.2547e-03, + 3.7889e-01, 7.2848e-01, 7.8352e-01, 6.5869e-01, + 6.7556e-01, 9.9946e-01, 7.1099e-01, 7.8559e-01, + 2.4594e-01, 7.5866e-01, 2.1889e-01, 8.6192e-01, + 1.0492e-01, 6.6974e-01, 1.9110e-01, 4.2178e-01, + 5.2211e-01, 5.7968e-01, 4.3791e-01, 1.6162e-01, + 1.8223e-01, 4.0645e-01, 8.0597e-01, 1.8599e-01, + 8.5659e-01, 8.8819e-01, 4.3915e-01, 2.0250e-01, + 7.8476e-02, 6.6803e-01, 7.7438e-01, 2.0798e-02, + 6.5758e-01, 3.2100e-01, 3.5731e-04, 2.1289e-01, + 2.5481e-01, 6.2077e-01, 2.4535e-01, 8.8808e-01, + 3.0564e-01, 8.8046e-01, 1.5537e-01, 2.9485e-01, + 4.3426e-01, 1.5200e-01, 2.3927e-01, 4.1251e-02, + 2.6271e-01, 5.8274e-01, 5.6945e-02, 1.4017e-01, + 3.0720e-01, 3.6401e-01, 1.6795e-01, 6.9631e-02, + 6.9758e-01, 5.9161e-01, 8.3040e-01, 9.4507e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.7781, 0.3926, 0.9305, ..., 0.7246, 0.2621, 0.2068]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.514646053314209 seconds + +[21.04, 21.72, 22.28, 22.76, 23.44, 23.84, 24.4, 25.56, 26.08, 25.56] +[25.56, 25.8, 25.36, 25.76, 26.12, 26.96, 27.2, 26.52, 26.28, 25.72, 25.56, 25.04, 24.92, 24.92] +14.21888017654419 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 142926, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.514646053314209, 'TIME_S_1KI': 0.07356706304880994, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 341.9344939994813, 'W': 24.04792007204229} +[21.04, 21.72, 22.28, 22.76, 23.44, 23.84, 24.4, 25.56, 26.08, 25.56, 20.64, 20.76, 20.84, 20.68, 20.84, 20.92, 20.48, 20.28, 20.36, 20.6] +399.15999999999997 +19.958 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 142926, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.514646053314209, 'TIME_S_1KI': 0.07356706304880994, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 341.9344939994813, 'W': 24.04792007204229, 'J_1KI': 2.3923883268228403, 'W_1KI': 0.1682543419114947, 'W_D': 4.089920072042293, 'J_D': 58.15408343601235, 'W_D_1KI': 0.02861564776207473, 'J_D_1KI': 0.00020021303165326625} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_500000_1e-05.json new file mode 100644 index 0000000..510a9ba --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_500000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 37.050822496414185, "TIME_S_1KI": 37.050822496414185, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 3160.1361892318723, "W": 76.88509213042873, "J_1KI": 3160.1361892318723, "W_1KI": 76.88509213042873, "W_D": 56.91509213042873, "J_D": 2339.3279161286355, "W_D_1KI": 56.91509213042873, "J_D_1KI": 56.91509213042873} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_500000_1e-05.output new file mode 100644 index 0000000..259a25f --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_500000_1e-05.output @@ -0,0 +1,47 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 500000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 37.050822496414185} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 7, ..., 2499993, + 2499998, 2500000]), + col_indices=tensor([159663, 166958, 205263, ..., 483859, 36662, + 138241]), + values=tensor([0.8479, 0.2779, 0.6227, ..., 0.0012, 0.5209, 0.2466]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.9479, 0.6643, 0.5077, ..., 0.6908, 0.0479, 0.6658]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 37.050822496414185 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 7, ..., 2499993, + 2499998, 2500000]), + col_indices=tensor([159663, 166958, 205263, ..., 483859, 36662, + 138241]), + values=tensor([0.8479, 0.2779, 0.6227, ..., 0.0012, 0.5209, 0.2466]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.9479, 0.6643, 0.5077, ..., 0.6908, 0.0479, 0.6658]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 37.050822496414185 seconds + +[22.44, 22.28, 22.0, 22.08, 22.44, 22.44, 22.24, 22.28, 22.28, 21.92] +[21.84, 21.84, 22.08, 23.32, 24.04, 37.0, 51.0, 68.72, 84.04, 93.2, 93.2, 96.84, 97.16, 96.0, 93.56, 93.56, 93.4, 92.48, 94.2, 94.4, 93.76, 94.28, 92.52, 92.4, 93.48, 93.48, 95.4, 93.6, 93.04, 91.68, 87.68, 87.08, 87.96, 88.4, 87.72, 87.2, 88.56, 88.0, 89.28, 89.12] +41.1020667552948 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 37.050822496414185, 'TIME_S_1KI': 37.050822496414185, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3160.1361892318723, 'W': 76.88509213042873} +[22.44, 22.28, 22.0, 22.08, 22.44, 22.44, 22.24, 22.28, 22.28, 21.92, 21.72, 21.72, 21.8, 22.04, 22.2, 22.32, 22.48, 22.44, 22.24, 22.16] +399.4 +19.97 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 37.050822496414185, 'TIME_S_1KI': 37.050822496414185, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3160.1361892318723, 'W': 76.88509213042873, 'J_1KI': 3160.1361892318723, 'W_1KI': 76.88509213042873, 'W_D': 56.91509213042873, 'J_D': 2339.3279161286355, 'W_D_1KI': 56.91509213042873, 'J_D_1KI': 56.91509213042873} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_50000_0.0001.json new file mode 100644 index 0000000..372bd49 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_50000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.036840677261353, "TIME_S_1KI": 10.036840677261353, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 692.6639336013795, "W": 51.991207713568286, "J_1KI": 692.6639336013795, "W_1KI": 51.991207713568286, "W_D": 33.03220771356828, "J_D": 440.0786197633745, "W_D_1KI": 33.03220771356828, "J_D_1KI": 33.03220771356828} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_50000_0.0001.output new file mode 100644 index 0000000..338ad01 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_50000_0.0001.output @@ -0,0 +1,45 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.036840677261353} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 11, 16, ..., 249987, 249992, + 250000]), + col_indices=tensor([ 4880, 10510, 11344, ..., 23863, 34979, 45750]), + values=tensor([0.1743, 0.6413, 0.1893, ..., 0.8376, 0.7119, 0.1905]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.5173, 0.4884, 0.4084, ..., 0.9473, 0.2501, 0.4146]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.036840677261353 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 11, 16, ..., 249987, 249992, + 250000]), + col_indices=tensor([ 4880, 10510, 11344, ..., 23863, 34979, 45750]), + values=tensor([0.1743, 0.6413, 0.1893, ..., 0.8376, 0.7119, 0.1905]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.5173, 0.4884, 0.4084, ..., 0.9473, 0.2501, 0.4146]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.036840677261353 seconds + +[21.04, 21.04, 21.36, 21.48, 21.32, 21.52, 21.4, 21.16, 21.08, 21.12] +[21.08, 21.08, 21.08, 22.4, 23.64, 33.72, 51.68, 65.48, 81.88, 95.88, 94.44, 94.2, 93.16] +13.322712898254395 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.036840677261353, 'TIME_S_1KI': 10.036840677261353, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 692.6639336013795, 'W': 51.991207713568286} +[21.04, 21.04, 21.36, 21.48, 21.32, 21.52, 21.4, 21.16, 21.08, 21.12, 21.08, 21.04, 20.96, 20.96, 20.76, 20.68, 20.64, 20.84, 20.92, 20.8] +379.18 +18.959 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.036840677261353, 'TIME_S_1KI': 10.036840677261353, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 692.6639336013795, 'W': 51.991207713568286, 'J_1KI': 692.6639336013795, 'W_1KI': 51.991207713568286, 'W_D': 33.03220771356828, 'J_D': 440.0786197633745, 'W_D_1KI': 33.03220771356828, 'J_D_1KI': 33.03220771356828} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_50000_0.001.json new file mode 100644 index 0000000..aeffedd --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_50000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 64.77457070350647, "TIME_S_1KI": 64.77457070350647, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 4994.562112493517, "W": 73.50821663676467, "J_1KI": 4994.562112493517, "W_1KI": 73.50821663676467, "W_D": 54.114216636764674, "J_D": 3676.8245582232494, "W_D_1KI": 54.114216636764674, "J_D_1KI": 54.114216636764674} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_50000_0.001.output new file mode 100644 index 0000000..56ca1f5 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_50000_0.001.output @@ -0,0 +1,45 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 64.77457070350647} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 48, 96, ..., 2499908, + 2499960, 2500000]), + col_indices=tensor([ 291, 1039, 1041, ..., 49096, 49434, 49928]), + values=tensor([0.5586, 0.2987, 0.2608, ..., 0.4587, 0.5222, 0.8471]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.1693, 0.3191, 0.9556, ..., 0.1736, 0.4599, 0.2505]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 64.77457070350647 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 48, 96, ..., 2499908, + 2499960, 2500000]), + col_indices=tensor([ 291, 1039, 1041, ..., 49096, 49434, 49928]), + values=tensor([0.5586, 0.2987, 0.2608, ..., 0.4587, 0.5222, 0.8471]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.1693, 0.3191, 0.9556, ..., 0.1736, 0.4599, 0.2505]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 64.77457070350647 seconds + +[21.48, 21.56, 21.32, 21.36, 21.52, 21.32, 21.32, 21.4, 21.44, 21.56] +[21.64, 21.6, 22.08, 23.76, 24.8, 35.36, 47.08, 60.56, 71.04, 80.24, 82.48, 82.48, 82.88, 83.68, 82.36, 82.16, 82.04, 80.88, 80.72, 80.88, 80.44, 80.6, 80.44, 80.8, 80.56, 79.4, 78.92, 78.92, 78.4, 78.64, 80.36, 81.28, 82.52, 82.68, 81.64, 81.52, 81.32, 81.2, 80.48, 80.32, 82.04, 81.64, 81.64, 82.44, 82.48, 81.2, 81.08, 81.04, 81.44, 81.2, 81.68, 81.32, 81.0, 81.28, 81.36, 81.24, 81.36, 81.36, 81.88, 82.48, 83.6, 83.4, 83.64, 82.8, 82.56, 82.36] +67.94563031196594 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 64.77457070350647, 'TIME_S_1KI': 64.77457070350647, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 4994.562112493517, 'W': 73.50821663676467} +[21.48, 21.56, 21.32, 21.36, 21.52, 21.32, 21.32, 21.4, 21.44, 21.56, 21.88, 21.92, 21.8, 21.52, 21.68, 21.52, 21.68, 21.68, 21.6, 21.56] +387.88 +19.394 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 64.77457070350647, 'TIME_S_1KI': 64.77457070350647, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 4994.562112493517, 'W': 73.50821663676467, 'J_1KI': 4994.562112493517, 'W_1KI': 73.50821663676467, 'W_D': 54.114216636764674, 'J_D': 3676.8245582232494, 'W_D_1KI': 54.114216636764674, 'J_D_1KI': 54.114216636764674} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_50000_1e-05.json new file mode 100644 index 0000000..2428814 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_50000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 6367, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 14.819957971572876, "TIME_S_1KI": 2.3276202248426068, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 977.0843494701387, "W": 58.720628093786544, "J_1KI": 153.46071139785437, "W_1KI": 9.222652441304625, "W_D": 39.857628093786545, "J_D": 663.2126712820532, "W_D_1KI": 6.260032683176778, "J_D_1KI": 0.9831997303560197} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_50000_1e-05.output new file mode 100644 index 0000000..c94062e --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_50000_1e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 2.0054540634155273} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 2, ..., 25000, 25000, 25000]), + col_indices=tensor([29300, 37118, 28917, ..., 16725, 28059, 47397]), + values=tensor([0.1773, 0.7310, 0.0095, ..., 0.4568, 0.7722, 0.2574]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.0745, 0.0507, 0.1628, ..., 0.0663, 0.8219, 0.2626]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 2.0054540634155273 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 5235 -ss 50000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 8.632020473480225} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 25000, 25000, 25000]), + col_indices=tensor([ 6005, 4214, 13465, ..., 35902, 7875, 2053]), + values=tensor([0.3591, 0.3792, 0.0771, ..., 0.2893, 0.2529, 0.4673]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.1098, 0.6338, 0.4539, ..., 0.7586, 0.0998, 0.7821]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 8.632020473480225 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 6367 -ss 50000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 14.819957971572876} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 25000, 25000, 25000]), + col_indices=tensor([30839, 39998, 2326, ..., 30652, 20576, 5061]), + values=tensor([0.3250, 0.6882, 0.6966, ..., 0.0105, 0.7219, 0.0367]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.0417, 0.5559, 0.6322, ..., 0.5652, 0.2111, 0.1243]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 14.819957971572876 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 25000, 25000, 25000]), + col_indices=tensor([30839, 39998, 2326, ..., 30652, 20576, 5061]), + values=tensor([0.3250, 0.6882, 0.6966, ..., 0.0105, 0.7219, 0.0367]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.0417, 0.5559, 0.6322, ..., 0.5652, 0.2111, 0.1243]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 14.819957971572876 seconds + +[20.72, 20.6, 20.92, 21.12, 21.0, 21.04, 21.08, 20.8, 20.88, 21.08] +[20.96, 21.0, 21.0, 24.32, 26.04, 35.64, 50.52, 67.6, 77.24, 93.48, 91.28, 89.6, 88.96, 88.4, 88.92, 90.04] +16.63954186439514 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 6367, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 14.819957971572876, 'TIME_S_1KI': 2.3276202248426068, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 977.0843494701387, 'W': 58.720628093786544} +[20.72, 20.6, 20.92, 21.12, 21.0, 21.04, 21.08, 20.8, 20.88, 21.08, 20.88, 20.92, 20.68, 20.84, 21.0, 21.0, 20.92, 21.32, 21.28, 21.04] +377.26 +18.863 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 6367, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 14.819957971572876, 'TIME_S_1KI': 2.3276202248426068, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 977.0843494701387, 'W': 58.720628093786544, 'J_1KI': 153.46071139785437, 'W_1KI': 9.222652441304625, 'W_D': 39.857628093786545, 'J_D': 663.2126712820532, 'W_D_1KI': 6.260032683176778, 'J_D_1KI': 0.9831997303560197} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.0001.json b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.0001.json new file mode 100644 index 0000000..fef2205 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 97519, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.570974826812744, "TIME_S_1KI": 0.10839913070081465, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 315.3015551567077, "W": 22.190891521159134, "J_1KI": 3.233232038440793, "W_1KI": 0.22755454343419368, "W_D": 3.682891521159135, "J_D": 52.32874141120907, "W_D_1KI": 0.037765886864704674, "J_D_1KI": 0.00038726696197361203} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.0001.output b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.0001.output new file mode 100644 index 0000000..c6cbfe2 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.0001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.11602067947387695} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 2500, 2500, 2500]), + col_indices=tensor([ 613, 2610, 3896, ..., 2268, 1349, 1721]), + values=tensor([0.3594, 0.2050, 0.8766, ..., 0.2511, 0.4340, 0.6606]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.7862, 0.0116, 0.6512, ..., 0.0192, 0.3599, 0.4463]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 0.11602067947387695 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 90501 -ss 5000 -sd 0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.744299173355103} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 2497, 2498, 2500]), + col_indices=tensor([3869, 881, 2923, ..., 3064, 1070, 3092]), + values=tensor([0.3867, 0.1123, 0.7736, ..., 0.1665, 0.3688, 0.6121]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.7562, 0.4892, 0.9144, ..., 0.6968, 0.8474, 0.7157]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 9.744299173355103 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 97519 -ss 5000 -sd 0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.570974826812744} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 2497, 2499, 2500]), + col_indices=tensor([4211, 3231, 4340, ..., 2446, 2540, 154]), + values=tensor([0.2167, 0.9555, 0.6550, ..., 0.2361, 0.5850, 0.4084]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.3692, 0.1411, 0.4138, ..., 0.1913, 0.1315, 0.0581]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 10.570974826812744 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 2497, 2499, 2500]), + col_indices=tensor([4211, 3231, 4340, ..., 2446, 2540, 154]), + values=tensor([0.2167, 0.9555, 0.6550, ..., 0.2361, 0.5850, 0.4084]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.3692, 0.1411, 0.4138, ..., 0.1913, 0.1315, 0.0581]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 10.570974826812744 seconds + +[20.44, 20.44, 20.48, 20.4, 20.48, 20.68, 20.76, 20.76, 20.72, 20.88] +[20.64, 20.56, 21.92, 23.68, 23.68, 25.04, 25.48, 26.12, 24.52, 24.44, 23.92, 24.04, 24.32, 24.36] +14.20860242843628 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 97519, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.570974826812744, 'TIME_S_1KI': 0.10839913070081465, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 315.3015551567077, 'W': 22.190891521159134} +[20.44, 20.44, 20.48, 20.4, 20.48, 20.68, 20.76, 20.76, 20.72, 20.88, 20.4, 20.52, 20.56, 20.56, 20.56, 20.6, 20.52, 20.4, 20.6, 20.52] +370.15999999999997 +18.508 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 97519, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.570974826812744, 'TIME_S_1KI': 0.10839913070081465, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 315.3015551567077, 'W': 22.190891521159134, 'J_1KI': 3.233232038440793, 'W_1KI': 0.22755454343419368, 'W_D': 3.682891521159135, 'J_D': 52.32874141120907, 'W_D_1KI': 0.037765886864704674, 'J_D_1KI': 0.00038726696197361203} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.001.json b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.001.json new file mode 100644 index 0000000..6041c9a --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 17764, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.691047191619873, "TIME_S_1KI": 0.6018378288459735, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 329.0331690597534, "W": 23.15708952749249, "J_1KI": 18.522470674383776, "W_1KI": 1.3035965732657337, "W_D": 4.568089527492493, "J_D": 64.90681706762312, "W_D_1KI": 0.2571543305276116, "J_D_1KI": 0.01447615010851225} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.001.output b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.001.output new file mode 100644 index 0000000..626c252 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.6273210048675537} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 7, ..., 24988, 24996, 25000]), + col_indices=tensor([1892, 2918, 4655, ..., 2029, 2603, 3010]), + values=tensor([0.8283, 0.5273, 0.2909, ..., 0.5828, 0.6477, 0.7502]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.8412, 0.7891, 0.2404, ..., 0.8503, 0.9914, 0.6212]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 0.6273210048675537 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 16737 -ss 5000 -sd 0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 9.892534494400024} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 10, ..., 24991, 24996, 25000]), + col_indices=tensor([4752, 479, 2068, ..., 1338, 4478, 4539]), + values=tensor([0.3996, 0.8763, 0.4834, ..., 0.3300, 0.4860, 0.9993]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.9991, 0.1904, 0.1090, ..., 0.8295, 0.4248, 0.2043]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 9.892534494400024 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 17764 -ss 5000 -sd 0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.691047191619873} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 15, ..., 24992, 24996, 25000]), + col_indices=tensor([1098, 1490, 1639, ..., 3549, 3645, 4602]), + values=tensor([0.2763, 0.7775, 0.9451, ..., 0.5590, 0.3508, 0.3085]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.1047, 0.7118, 0.3308, ..., 0.3344, 0.9893, 0.0200]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 10.691047191619873 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 15, ..., 24992, 24996, 25000]), + col_indices=tensor([1098, 1490, 1639, ..., 3549, 3645, 4602]), + values=tensor([0.2763, 0.7775, 0.9451, ..., 0.5590, 0.3508, 0.3085]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.1047, 0.7118, 0.3308, ..., 0.3344, 0.9893, 0.0200]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 10.691047191619873 seconds + +[20.44, 20.2, 20.44, 20.64, 20.6, 20.72, 21.04, 21.04, 21.04, 20.88] +[20.72, 20.68, 20.52, 21.28, 23.28, 29.52, 30.36, 30.6, 30.4, 23.8, 23.72, 23.72, 23.84, 23.92] +14.208744525909424 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 17764, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.691047191619873, 'TIME_S_1KI': 0.6018378288459735, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 329.0331690597534, 'W': 23.15708952749249} +[20.44, 20.2, 20.44, 20.64, 20.6, 20.72, 21.04, 21.04, 21.04, 20.88, 20.68, 20.8, 20.72, 20.4, 20.32, 20.52, 20.64, 20.6, 20.72, 20.68] +371.78 +18.589 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 17764, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.691047191619873, 'TIME_S_1KI': 0.6018378288459735, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 329.0331690597534, 'W': 23.15708952749249, 'J_1KI': 18.522470674383776, 'W_1KI': 1.3035965732657337, 'W_D': 4.568089527492493, 'J_D': 64.90681706762312, 'W_D_1KI': 0.2571543305276116, 'J_D_1KI': 0.01447615010851225} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.01.json b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.01.json new file mode 100644 index 0000000..5558ea5 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1959, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 11.120546340942383, "TIME_S_1KI": 5.676644380266659, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 339.91848049163815, "W": 23.94849862540507, "J_1KI": 173.51632490640029, "W_1KI": 12.224858920574308, "W_D": 5.3214986254050665, "J_D": 75.53190515112868, "W_D_1KI": 2.716436255949498, "J_D_1KI": 1.3866443368808055} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.01.output b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.01.output new file mode 100644 index 0000000..c4f4108 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.01.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 5.658592224121094} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 40, 84, ..., 249908, 249949, + 250000]), + col_indices=tensor([ 330, 398, 412, ..., 4758, 4825, 4990]), + values=tensor([0.1241, 0.3411, 0.2552, ..., 0.9324, 0.8443, 0.4144]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.9270, 0.0262, 0.1807, ..., 0.7250, 0.9803, 0.9114]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 5.658592224121094 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1855 -ss 5000 -sd 0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 9.939346075057983} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 42, 99, ..., 249900, 249944, + 250000]), + col_indices=tensor([ 71, 83, 134, ..., 4502, 4510, 4544]), + values=tensor([0.1222, 0.9313, 0.0593, ..., 0.6337, 0.4012, 0.6808]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.6318, 0.1040, 0.0347, ..., 0.9714, 0.1743, 0.3337]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 9.939346075057983 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1959 -ss 5000 -sd 0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 11.120546340942383} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 52, 94, ..., 249896, 249940, + 250000]), + col_indices=tensor([ 62, 114, 171, ..., 4675, 4821, 4860]), + values=tensor([0.5686, 0.1100, 0.2304, ..., 0.6863, 0.4817, 0.3965]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.8036, 0.6564, 0.9943, ..., 0.3026, 0.0525, 0.3398]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 11.120546340942383 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 52, 94, ..., 249896, 249940, + 250000]), + col_indices=tensor([ 62, 114, 171, ..., 4675, 4821, 4860]), + values=tensor([0.5686, 0.1100, 0.2304, ..., 0.6863, 0.4817, 0.3965]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.8036, 0.6564, 0.9943, ..., 0.3026, 0.0525, 0.3398]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 11.120546340942383 seconds + +[20.4, 20.56, 20.84, 20.88, 21.08, 21.16, 21.16, 20.92, 20.72, 20.76] +[20.2, 20.2, 20.96, 22.4, 23.64, 30.44, 31.56, 31.08, 30.2, 30.2, 24.44, 24.12, 24.04, 23.84] +14.19372820854187 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1959, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 11.120546340942383, 'TIME_S_1KI': 5.676644380266659, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 339.91848049163815, 'W': 23.94849862540507} +[20.4, 20.56, 20.84, 20.88, 21.08, 21.16, 21.16, 20.92, 20.72, 20.76, 20.32, 20.52, 20.64, 20.6, 20.44, 20.28, 20.44, 20.6, 20.64, 20.64] +372.54 +18.627000000000002 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1959, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 11.120546340942383, 'TIME_S_1KI': 5.676644380266659, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 339.91848049163815, 'W': 23.94849862540507, 'J_1KI': 173.51632490640029, 'W_1KI': 12.224858920574308, 'W_D': 5.3214986254050665, 'J_D': 75.53190515112868, 'W_D_1KI': 2.716436255949498, 'J_D_1KI': 1.3866443368808055} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.05.json b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.05.json new file mode 100644 index 0000000..88b3edd --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 26.64292335510254, "TIME_S_1KI": 26.64292335510254, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 738.6764411926268, "W": 24.280702381341985, "J_1KI": 738.6764411926268, "W_1KI": 24.280702381341985, "W_D": 5.882702381341982, "J_D": 178.96573136138895, "W_D_1KI": 5.882702381341982, "J_D_1KI": 5.882702381341982} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.05.output b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.05.output new file mode 100644 index 0000000..d050d33 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.05.output @@ -0,0 +1,45 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 26.64292335510254} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 258, 500, ..., 1249494, + 1249753, 1250000]), + col_indices=tensor([ 51, 83, 92, ..., 4940, 4981, 4997]), + values=tensor([0.9970, 0.1345, 0.9294, ..., 0.5035, 0.6973, 0.4629]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.6657, 0.7944, 0.8404, ..., 0.5502, 0.2324, 0.9138]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 26.64292335510254 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 258, 500, ..., 1249494, + 1249753, 1250000]), + col_indices=tensor([ 51, 83, 92, ..., 4940, 4981, 4997]), + values=tensor([0.9970, 0.1345, 0.9294, ..., 0.5035, 0.6973, 0.4629]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.6657, 0.7944, 0.8404, ..., 0.5502, 0.2324, 0.9138]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 26.64292335510254 seconds + +[20.76, 20.56, 20.76, 20.24, 20.0, 20.0, 19.96, 19.88, 20.0, 20.0] +[20.2, 20.56, 20.84, 23.48, 25.48, 31.96, 32.48, 32.96, 29.96, 29.16, 23.84, 23.8, 23.88, 23.88, 24.28, 24.2, 24.36, 24.32, 23.8, 24.12, 24.2, 24.36, 24.28, 24.24, 24.24, 24.24, 24.32, 24.24, 24.48, 24.52] +30.422367095947266 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 26.64292335510254, 'TIME_S_1KI': 26.64292335510254, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 738.6764411926268, 'W': 24.280702381341985} +[20.76, 20.56, 20.76, 20.24, 20.0, 20.0, 19.96, 19.88, 20.0, 20.0, 20.52, 20.44, 20.56, 20.64, 20.52, 20.76, 20.64, 20.92, 20.96, 20.96] +367.96000000000004 +18.398000000000003 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 26.64292335510254, 'TIME_S_1KI': 26.64292335510254, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 738.6764411926268, 'W': 24.280702381341985, 'J_1KI': 738.6764411926268, 'W_1KI': 24.280702381341985, 'W_D': 5.882702381341982, 'J_D': 178.96573136138895, 'W_D_1KI': 5.882702381341982, 'J_D_1KI': 5.882702381341982} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.1.json b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.1.json new file mode 100644 index 0000000..70fec2c --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.1.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 53.09800863265991, "TIME_S_1KI": 53.09800863265991, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1383.3292028236385, "W": 24.387974690726086, "J_1KI": 1383.3292028236385, "W_1KI": 24.387974690726086, "W_D": 5.857974690726085, "J_D": 332.2747198915477, "W_D_1KI": 5.857974690726085, "J_D_1KI": 5.857974690726085} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.1.output b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.1.output new file mode 100644 index 0000000..20994df --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_0.1.output @@ -0,0 +1,45 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 53.09800863265991} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 484, 997, ..., 2498998, + 2499500, 2500000]), + col_indices=tensor([ 3, 13, 35, ..., 4966, 4993, 4997]), + values=tensor([0.0178, 0.5574, 0.8921, ..., 0.2131, 0.1882, 0.3495]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.5571, 0.9138, 0.4400, ..., 0.1682, 0.6225, 0.2202]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 53.09800863265991 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 484, 997, ..., 2498998, + 2499500, 2500000]), + col_indices=tensor([ 3, 13, 35, ..., 4966, 4993, 4997]), + values=tensor([0.0178, 0.5574, 0.8921, ..., 0.2131, 0.1882, 0.3495]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.5571, 0.9138, 0.4400, ..., 0.1682, 0.6225, 0.2202]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 53.09800863265991 seconds + +[20.6, 20.6, 20.72, 20.68, 20.72, 20.8, 20.84, 20.8, 20.92, 20.52] +[20.6, 20.4, 23.56, 24.32, 24.32, 28.84, 34.48, 35.48, 33.04, 32.72, 26.72, 24.2, 24.24, 24.24, 24.0, 24.0, 23.96, 23.96, 23.88, 23.96, 23.96, 23.92, 23.92, 23.68, 23.64, 23.76, 24.08, 24.12, 24.08, 24.08, 24.32, 24.08, 23.92, 24.04, 24.0, 23.96, 24.12, 24.24, 24.28, 24.24, 24.2, 23.92, 23.92, 24.0, 24.2, 24.24, 24.4, 24.2, 24.16, 24.0, 24.16, 24.32, 24.36, 24.36, 24.36, 24.12] +56.72177457809448 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 53.09800863265991, 'TIME_S_1KI': 53.09800863265991, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1383.3292028236385, 'W': 24.387974690726086} +[20.6, 20.6, 20.72, 20.68, 20.72, 20.8, 20.84, 20.8, 20.92, 20.52, 20.32, 20.36, 20.4, 20.48, 20.44, 20.64, 20.48, 20.36, 20.48, 20.32] +370.6 +18.53 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 53.09800863265991, 'TIME_S_1KI': 53.09800863265991, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1383.3292028236385, 'W': 24.387974690726086, 'J_1KI': 1383.3292028236385, 'W_1KI': 24.387974690726086, 'W_D': 5.857974690726085, 'J_D': 332.2747198915477, 'W_D_1KI': 5.857974690726085, 'J_D_1KI': 5.857974690726085} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_1e-05.json b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_1e-05.json new file mode 100644 index 0000000..7d0783d --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 275920, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.428882360458374, "TIME_S_1KI": 0.037796761236801875, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 315.0905113220215, "W": 22.127187461407587, "J_1KI": 1.141963291251165, "W_1KI": 0.08019421376271234, "W_D": 3.664187461407586, "J_D": 52.177923778533895, "W_D_1KI": 0.013279890770540686, "J_D_1KI": 4.812949684887172e-05} diff --git a/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_1e-05.output b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_1e-05.output new file mode 100644 index 0000000..a254447 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/altra_max_csr_10_10_10_synthetic_5000_1e-05.output @@ -0,0 +1,383 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.04542350769042969} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([1381, 3398, 2478, 1052, 529, 491, 2775, 3229, 1279, + 3454, 296, 3084, 4650, 2467, 784, 568, 918, 741, + 4819, 1730, 837, 408, 1523, 948, 4825, 1342, 952, + 2524, 3378, 2774, 370, 2319, 3980, 4108, 276, 4067, + 3823, 3153, 3158, 540, 2360, 1999, 1044, 1298, 4540, + 533, 3507, 1489, 2361, 1008, 555, 3416, 305, 3290, + 1136, 3809, 4448, 2408, 3611, 2892, 2540, 3779, 2041, + 4793, 4839, 534, 3664, 2180, 4711, 4601, 1136, 3681, + 165, 2858, 2937, 1364, 4737, 4916, 4412, 4772, 4253, + 200, 1254, 2702, 3949, 1138, 3253, 4523, 3563, 4932, + 724, 1152, 3157, 1713, 4323, 2340, 951, 3022, 1343, + 2260, 3881, 2605, 161, 4434, 3331, 1742, 2563, 4238, + 127, 3937, 396, 2283, 1557, 1554, 3292, 4855, 4197, + 4720, 716, 85, 4379, 3823, 2263, 2186, 2869, 1787, + 1168, 2429, 3045, 2919, 2350, 3479, 2094, 1065, 340, + 1288, 1877, 3764, 3457, 509, 1055, 3089, 605, 1110, + 3765, 3334, 3358, 602, 1278, 2312, 2279, 3749, 3299, + 4530, 804, 4261, 418, 4624, 585, 3050, 3236, 596, + 2133, 933, 4209, 3895, 174, 765, 3980, 381, 2181, + 2969, 46, 3997, 2920, 1083, 1216, 4056, 126, 248, + 1696, 352, 2821, 625, 3058, 4954, 4557, 865, 2010, + 2268, 2460, 1542, 329, 4649, 4740, 2546, 1491, 1783, + 2436, 2269, 2383, 734, 4372, 4876, 3373, 210, 4004, + 4560, 1501, 3320, 2378, 1630, 757, 3013, 4961, 4950, + 3415, 2145, 1401, 3711, 4355, 611, 1420, 3710, 4405, + 2508, 3816, 3, 3115, 4093, 2712, 1642, 4784, 2945, + 3902, 1255, 2147, 1010, 3088, 1205, 4589, 714, 2492, + 1954, 4006, 3877, 588, 962, 61, 4470]), + values=tensor([6.2379e-01, 5.1445e-01, 5.2888e-01, 6.4643e-01, + 3.6807e-01, 4.6260e-01, 2.5238e-01, 5.8157e-01, + 8.8267e-01, 2.6474e-01, 2.8446e-01, 9.5475e-01, + 4.8999e-01, 6.6621e-01, 3.2615e-02, 2.5044e-01, + 4.5496e-01, 3.7415e-01, 2.9199e-01, 2.8386e-01, + 7.1383e-01, 3.1109e-01, 1.1332e-01, 2.2089e-01, + 2.1912e-01, 5.6452e-01, 4.7190e-01, 5.8604e-01, + 7.8763e-01, 9.5122e-01, 1.1018e-01, 1.3969e-01, + 7.2800e-01, 6.6977e-01, 2.9413e-01, 6.1351e-01, + 4.9889e-01, 3.4691e-01, 3.9756e-01, 7.5031e-01, + 1.4612e-01, 6.6037e-01, 2.5630e-01, 9.1057e-02, + 8.2140e-01, 9.9620e-01, 5.5939e-01, 1.0762e-01, + 7.8811e-01, 5.4825e-01, 1.0084e-01, 8.9423e-01, + 7.7729e-01, 2.7164e-01, 7.0220e-01, 1.6836e-01, + 5.3765e-01, 2.0228e-01, 1.5568e-02, 8.3985e-01, + 2.3206e-01, 6.7022e-01, 4.7791e-01, 6.4798e-01, + 6.7036e-01, 1.6005e-01, 7.3101e-01, 9.4913e-01, + 2.2292e-01, 4.6540e-01, 7.6590e-01, 2.9344e-01, + 5.6223e-01, 8.4355e-01, 8.4945e-01, 1.4869e-01, + 2.8265e-01, 3.2754e-01, 5.8549e-01, 9.8812e-01, + 5.4427e-01, 9.3814e-01, 8.4516e-01, 1.7512e-01, + 1.2307e-02, 2.2939e-01, 7.7071e-01, 1.9977e-01, + 6.3831e-01, 1.4402e-01, 3.9596e-02, 8.3780e-01, + 6.9744e-01, 5.2304e-02, 1.7853e-01, 2.9282e-01, + 5.7428e-01, 3.6008e-01, 1.5117e-01, 8.0683e-01, + 6.9041e-02, 5.8242e-01, 9.0514e-01, 7.4588e-01, + 7.5412e-01, 9.1699e-01, 3.8286e-01, 9.6918e-01, + 7.4727e-01, 1.2312e-01, 4.8375e-01, 3.6856e-01, + 5.6299e-01, 5.3561e-01, 1.4061e-01, 8.9669e-01, + 2.2440e-02, 2.9850e-01, 1.9549e-01, 5.4525e-01, + 3.6535e-01, 4.3468e-01, 5.3884e-01, 4.1129e-01, + 3.4185e-02, 4.7048e-01, 7.9007e-01, 7.4755e-01, + 6.5822e-01, 7.8901e-01, 5.2911e-01, 9.3945e-02, + 3.8728e-01, 2.4384e-01, 9.0271e-01, 7.7139e-01, + 4.5138e-01, 3.9539e-01, 2.1438e-01, 3.5791e-01, + 1.8080e-01, 7.7421e-01, 4.8385e-01, 4.9788e-02, + 2.4055e-01, 7.0484e-01, 7.2661e-02, 1.7125e-01, + 5.6265e-01, 4.2036e-01, 3.2309e-01, 4.4267e-01, + 4.4235e-01, 6.4529e-02, 6.4435e-01, 3.7245e-02, + 9.3981e-02, 9.3849e-01, 7.6635e-01, 9.8748e-01, + 9.3709e-01, 4.7264e-01, 7.2366e-01, 2.8555e-01, + 6.0730e-01, 1.6315e-01, 1.9633e-01, 8.5030e-01, + 7.9308e-01, 8.9903e-01, 3.8550e-01, 1.0205e-01, + 7.1600e-01, 9.5343e-01, 5.6221e-01, 2.4332e-01, + 6.6738e-01, 6.3110e-01, 3.8857e-01, 3.1838e-01, + 9.9205e-01, 1.5720e-01, 5.2410e-01, 9.2976e-01, + 8.2543e-01, 3.3559e-01, 1.9409e-01, 5.6249e-01, + 6.4364e-01, 8.7136e-01, 7.9123e-01, 7.6006e-01, + 9.7435e-01, 1.3732e-04, 3.9675e-01, 1.5987e-01, + 8.7277e-01, 3.2665e-01, 2.4849e-01, 2.3783e-01, + 3.9434e-01, 2.1570e-01, 3.9410e-01, 1.8711e-01, + 8.7186e-01, 1.4542e-01, 2.5107e-01, 4.2214e-01, + 7.4868e-01, 9.8246e-01, 2.5484e-01, 6.8204e-01, + 1.5039e-01, 8.1100e-01, 5.5721e-01, 9.9490e-01, + 3.7944e-01, 6.0125e-01, 9.3454e-01, 4.8494e-01, + 6.9766e-01, 2.8071e-01, 2.0905e-01, 4.3587e-01, + 6.3412e-01, 5.5937e-01, 8.4498e-01, 7.4208e-01, + 3.0776e-01, 2.2212e-01, 1.0559e-01, 9.4254e-02, + 5.3053e-01, 9.3270e-01, 9.7013e-01, 2.7741e-01, + 1.3997e-01, 8.6033e-01, 4.2915e-01, 3.5325e-01, + 4.6135e-02, 7.5784e-01, 9.8773e-01, 1.4273e-01, + 6.0358e-01, 8.2895e-01, 4.6077e-01, 8.1063e-01, + 7.6600e-01, 4.0656e-01]), size=(5000, 5000), nnz=250, + layout=torch.sparse_csr) +tensor([0.9879, 0.6356, 0.7019, ..., 0.7112, 0.3671, 0.2365]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 0.04542350769042969 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 231157 -ss 5000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 8.796557664871216} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([3111, 1505, 3032, 732, 1363, 1458, 3691, 3479, 1828, + 3597, 4499, 2546, 4494, 4076, 1227, 315, 2912, 2533, + 3803, 3134, 640, 3070, 2300, 518, 2692, 231, 1494, + 3318, 4971, 422, 3082, 2927, 1622, 1132, 2842, 2550, + 858, 3774, 4214, 4966, 4389, 2049, 2398, 2999, 1799, + 2832, 2153, 27, 34, 4389, 312, 3190, 379, 1601, + 1697, 913, 4636, 815, 4061, 1986, 3680, 3169, 4367, + 3393, 3057, 2291, 4827, 23, 1618, 1053, 4545, 3302, + 3422, 4006, 1426, 4955, 4591, 3417, 1313, 3429, 107, + 4218, 3106, 1189, 3912, 4842, 4429, 3575, 3485, 3490, + 882, 360, 4104, 4077, 3992, 276, 3250, 2773, 1205, + 2877, 11, 3594, 1465, 1515, 1908, 3956, 3184, 720, + 1889, 1976, 1938, 4120, 4297, 973, 1625, 917, 1536, + 2392, 3682, 3004, 1179, 4481, 3988, 2811, 4539, 2610, + 1976, 4913, 2042, 484, 1934, 490, 618, 789, 166, + 350, 2451, 3722, 1235, 3537, 525, 2266, 4975, 4220, + 4123, 3129, 2765, 1943, 1088, 691, 3776, 4218, 1634, + 1744, 4688, 1575, 542, 1973, 3945, 1064, 4591, 2998, + 3960, 1404, 946, 565, 2717, 36, 3767, 131, 100, + 2765, 4203, 3784, 4608, 1970, 2801, 2408, 747, 3408, + 4944, 1175, 4949, 618, 3984, 4254, 2862, 67, 4254, + 4339, 3511, 3739, 1527, 1863, 4544, 3760, 3855, 3369, + 2589, 951, 3624, 662, 1187, 539, 768, 3623, 925, + 2247, 4155, 2098, 4222, 3094, 317, 3926, 4819, 4144, + 1170, 4442, 3477, 1185, 1554, 3509, 4061, 4484, 3086, + 3305, 1690, 502, 3177, 194, 4284, 4380, 4057, 3450, + 3635, 259, 715, 4710, 2651, 3054, 874, 3683, 2173, + 4229, 1021, 1554, 2109, 4700, 2191, 703]), + values=tensor([2.0669e-01, 3.0419e-01, 7.9177e-01, 9.1054e-01, + 3.8881e-01, 2.6543e-02, 3.2408e-01, 6.6356e-01, + 8.8613e-01, 5.9837e-02, 3.7951e-02, 3.4136e-01, + 1.1472e-01, 7.0817e-01, 3.4534e-01, 8.1697e-01, + 7.8754e-01, 7.8023e-01, 9.8801e-01, 9.9044e-01, + 1.5503e-01, 7.4190e-01, 2.0235e-02, 6.9844e-01, + 5.3330e-01, 1.2781e-01, 4.3680e-01, 3.2064e-01, + 5.9791e-01, 2.7496e-01, 7.0680e-01, 8.9543e-01, + 4.9085e-01, 6.2210e-02, 9.5831e-01, 7.1969e-01, + 4.5026e-01, 7.6189e-01, 6.9882e-01, 6.1830e-01, + 5.8254e-01, 7.1547e-01, 4.9443e-02, 2.3599e-01, + 3.0458e-01, 4.0447e-02, 3.1721e-01, 5.4475e-01, + 3.5915e-01, 3.9749e-01, 9.9941e-01, 1.6159e-01, + 4.4237e-01, 1.9078e-02, 2.7571e-01, 2.7359e-01, + 9.9205e-01, 8.2766e-01, 8.6948e-01, 5.9782e-01, + 9.2542e-02, 7.7287e-01, 2.5357e-01, 1.8439e-01, + 7.9355e-01, 4.9629e-01, 5.9496e-01, 8.0447e-01, + 7.1515e-01, 5.4041e-02, 2.8823e-01, 9.8319e-01, + 4.7970e-01, 7.2357e-01, 7.7834e-01, 3.4206e-01, + 2.4327e-01, 1.9641e-01, 4.3483e-01, 8.9675e-01, + 4.0813e-01, 7.5780e-01, 6.0567e-01, 9.2070e-01, + 9.5528e-01, 1.0617e-01, 7.5111e-01, 7.6998e-01, + 6.0210e-01, 1.4799e-01, 4.0369e-01, 5.5275e-01, + 5.6840e-01, 3.7878e-02, 3.9622e-01, 1.8217e-01, + 3.4162e-01, 6.7866e-01, 7.1868e-01, 6.7883e-01, + 1.2529e-01, 4.3035e-01, 9.3351e-01, 8.2335e-02, + 5.3977e-01, 1.7512e-01, 6.0881e-01, 8.6248e-01, + 7.3078e-02, 1.8153e-01, 3.9403e-01, 4.1817e-01, + 3.3126e-01, 3.6032e-01, 8.9726e-01, 2.7930e-01, + 4.8792e-01, 1.3891e-01, 2.4751e-01, 2.7167e-01, + 5.0927e-01, 4.1055e-01, 5.6724e-01, 2.4879e-01, + 2.5197e-02, 1.5971e-01, 3.7132e-01, 4.2815e-01, + 4.7405e-01, 7.3214e-03, 9.0357e-01, 8.8350e-01, + 4.2344e-01, 8.0222e-01, 7.7010e-01, 2.6446e-02, + 5.6419e-01, 5.7975e-01, 5.3498e-01, 9.6349e-01, + 3.2383e-01, 4.7991e-02, 4.7514e-01, 2.0036e-01, + 8.6415e-04, 9.9960e-01, 5.2178e-01, 6.4406e-01, + 9.3008e-01, 5.5881e-01, 5.6610e-01, 7.9121e-01, + 9.2545e-02, 1.7558e-01, 4.5158e-01, 3.8172e-01, + 6.0582e-02, 5.0875e-01, 2.3341e-01, 8.0988e-01, + 8.7313e-02, 4.8022e-01, 2.4678e-01, 8.3788e-01, + 7.9942e-01, 9.3012e-01, 5.4482e-01, 5.7269e-01, + 2.2313e-01, 5.1440e-01, 8.5668e-01, 2.1900e-01, + 1.4248e-01, 6.0751e-01, 5.3076e-01, 8.7603e-01, + 4.7428e-01, 2.8933e-01, 1.1634e-01, 8.0641e-01, + 3.4647e-01, 2.6982e-01, 7.9889e-01, 7.3652e-01, + 8.6185e-02, 6.1090e-01, 1.8993e-01, 2.4439e-01, + 7.7528e-01, 5.1831e-01, 9.1209e-01, 4.2962e-02, + 9.5979e-01, 7.4704e-01, 3.4324e-02, 9.3159e-01, + 6.9336e-01, 2.2471e-02, 9.5922e-01, 8.1222e-02, + 8.0286e-01, 4.4178e-01, 5.1294e-01, 9.6079e-02, + 2.4623e-01, 2.3545e-01, 5.7434e-01, 4.0688e-01, + 6.4868e-01, 4.6111e-01, 2.1279e-01, 9.6345e-01, + 6.5069e-01, 5.7718e-01, 3.1769e-01, 1.3943e-01, + 2.0508e-01, 8.1624e-01, 7.2834e-01, 6.5481e-01, + 8.5438e-01, 5.3953e-01, 9.2988e-01, 1.0805e-01, + 2.8558e-01, 3.1275e-01, 1.8994e-01, 9.4125e-01, + 5.2808e-01, 8.8916e-01, 2.7744e-01, 1.4636e-01, + 6.6310e-01, 3.0763e-01, 3.7309e-01, 1.1286e-01, + 4.0607e-01, 5.7583e-01, 9.4268e-01, 7.0912e-01, + 7.5993e-01, 4.2294e-01, 2.2556e-01, 6.7211e-01, + 7.0234e-01, 5.8525e-02, 2.9419e-01, 7.4268e-01, + 2.3487e-01, 5.2578e-01]), size=(5000, 5000), nnz=250, + layout=torch.sparse_csr) +tensor([0.6897, 0.5913, 0.2174, ..., 0.0385, 0.9360, 0.0281]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 8.796557664871216 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 275920 -ss 5000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.428882360458374} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([1877, 1947, 3773, 1993, 3968, 2885, 3290, 1001, 3173, + 4910, 3638, 1123, 363, 1623, 2284, 1294, 3337, 1282, + 4527, 2181, 2496, 1486, 3269, 4914, 4411, 4627, 359, + 3937, 665, 2560, 4669, 1367, 4279, 2817, 2471, 714, + 3730, 1285, 2127, 1225, 3561, 1263, 4928, 962, 4246, + 2702, 4253, 1515, 1836, 1347, 3425, 3010, 841, 367, + 1474, 2557, 196, 3492, 4052, 1834, 372, 3142, 1541, + 3239, 1385, 3426, 430, 2192, 532, 4474, 1430, 267, + 833, 2225, 483, 2285, 3698, 4524, 1621, 1341, 4764, + 3118, 3570, 1901, 1111, 4654, 3844, 3263, 2577, 3400, + 4581, 4373, 3789, 4354, 2343, 2834, 3928, 1783, 4873, + 2054, 1997, 2249, 2170, 946, 1584, 4950, 1563, 3039, + 584, 2993, 3861, 3063, 1816, 784, 2505, 3309, 3091, + 3813, 1955, 2014, 1513, 2785, 1124, 4921, 2653, 215, + 1720, 4008, 467, 2665, 934, 4083, 732, 447, 3024, + 3508, 4583, 1928, 3999, 2112, 430, 3549, 2224, 4453, + 292, 788, 4633, 434, 1519, 2797, 4314, 3456, 1463, + 1133, 1520, 2779, 195, 566, 4705, 4339, 87, 3759, + 1171, 632, 4702, 4443, 3675, 4063, 3423, 1515, 3264, + 3975, 3586, 907, 4416, 890, 2296, 2089, 4867, 4932, + 4241, 1398, 950, 4682, 2581, 4604, 1861, 1492, 4359, + 3001, 171, 3190, 4056, 2779, 2102, 2341, 2228, 666, + 4124, 3282, 4080, 1125, 1782, 4068, 4582, 1989, 1861, + 2397, 1906, 3592, 4009, 2809, 3893, 4602, 4885, 4329, + 1546, 3221, 1533, 1812, 711, 832, 3637, 2430, 702, + 1951, 2527, 1663, 4378, 3187, 1848, 1976, 4944, 1611, + 3986, 4768, 1832, 171, 533, 127, 3370, 4616, 3556, + 3675, 2756, 3820, 3848, 2775, 4085, 1946]), + values=tensor([0.3630, 0.4957, 0.7258, 0.9637, 0.5431, 0.7370, 0.5194, + 0.1412, 0.9194, 0.8806, 0.2809, 0.4495, 0.3054, 0.7229, + 0.6894, 0.5378, 0.4829, 0.7917, 0.1077, 0.9396, 0.0834, + 0.8145, 0.2291, 0.0220, 0.8667, 0.8206, 0.7176, 0.1748, + 0.5433, 0.5398, 0.6732, 0.5495, 0.1751, 0.1751, 0.5534, + 0.4533, 0.5127, 0.9043, 0.7276, 0.3139, 0.4018, 0.6593, + 0.5712, 0.8906, 0.5321, 0.0490, 0.8603, 0.3211, 0.9292, + 0.2516, 0.5976, 0.6960, 0.6822, 0.0183, 0.1419, 0.0510, + 0.5915, 0.9381, 0.7663, 0.9175, 0.1026, 0.1428, 0.3603, + 0.1690, 0.2574, 0.9703, 0.3816, 0.3120, 0.6138, 0.6402, + 0.0171, 0.1702, 0.0571, 0.1251, 0.4789, 0.2100, 0.4597, + 0.8236, 0.2093, 0.3392, 0.8809, 0.8206, 0.6653, 0.7105, + 0.9427, 0.4744, 0.2605, 0.1657, 0.1195, 0.1792, 0.5307, + 0.1174, 0.6758, 0.8184, 0.0607, 0.0558, 0.3782, 0.8926, + 0.6897, 0.9924, 0.7956, 0.0060, 0.2666, 0.9269, 0.6602, + 0.5276, 0.2277, 0.4849, 0.8321, 0.2135, 0.2296, 0.7282, + 0.5446, 0.1493, 0.5845, 0.2697, 0.2635, 0.0055, 0.3342, + 0.6531, 0.8835, 0.6970, 0.3925, 0.6332, 0.2833, 0.7464, + 0.9403, 0.9564, 0.8529, 0.8534, 0.4902, 0.3672, 0.4884, + 0.3826, 0.8277, 0.2524, 0.5006, 0.8262, 0.8556, 0.5518, + 0.9345, 0.1818, 0.7419, 0.5510, 0.7359, 0.2338, 0.5242, + 0.8847, 0.7894, 0.5148, 0.5220, 0.3152, 0.5588, 0.6758, + 0.0222, 0.8094, 0.8800, 0.5482, 0.7029, 0.4511, 0.5521, + 0.1426, 0.5819, 0.4684, 0.3203, 0.4558, 0.0605, 0.4645, + 0.6967, 0.5420, 0.5383, 0.3399, 0.6017, 0.2217, 0.2779, + 0.6034, 0.6186, 0.5877, 0.7226, 0.4771, 0.2736, 0.9442, + 0.4016, 0.5813, 0.3926, 0.6636, 0.2000, 0.5234, 0.8594, + 0.4283, 0.8253, 0.1300, 0.3810, 0.0496, 0.8722, 0.5976, + 0.0028, 0.5374, 0.0379, 0.0610, 0.9205, 0.9022, 0.6780, + 0.7337, 0.3928, 0.7007, 0.0730, 0.0899, 0.4352, 0.2480, + 0.7721, 0.6286, 0.0462, 0.5434, 0.2214, 0.2005, 0.5352, + 0.2866, 0.1634, 0.3716, 0.1574, 0.2559, 0.6104, 0.9417, + 0.5436, 0.9351, 0.6446, 0.8506, 0.6360, 0.5124, 0.9341, + 0.9751, 0.4728, 0.6908, 0.5778, 0.2603, 0.9571, 0.5985, + 0.0453, 0.2921, 0.4748, 0.9573, 0.6189, 0.2369, 0.4918, + 0.2829, 0.0867, 0.8730, 0.1781, 0.6966]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.7582, 0.3275, 0.7400, ..., 0.8955, 0.3174, 0.3280]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 10.428882360458374 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([1877, 1947, 3773, 1993, 3968, 2885, 3290, 1001, 3173, + 4910, 3638, 1123, 363, 1623, 2284, 1294, 3337, 1282, + 4527, 2181, 2496, 1486, 3269, 4914, 4411, 4627, 359, + 3937, 665, 2560, 4669, 1367, 4279, 2817, 2471, 714, + 3730, 1285, 2127, 1225, 3561, 1263, 4928, 962, 4246, + 2702, 4253, 1515, 1836, 1347, 3425, 3010, 841, 367, + 1474, 2557, 196, 3492, 4052, 1834, 372, 3142, 1541, + 3239, 1385, 3426, 430, 2192, 532, 4474, 1430, 267, + 833, 2225, 483, 2285, 3698, 4524, 1621, 1341, 4764, + 3118, 3570, 1901, 1111, 4654, 3844, 3263, 2577, 3400, + 4581, 4373, 3789, 4354, 2343, 2834, 3928, 1783, 4873, + 2054, 1997, 2249, 2170, 946, 1584, 4950, 1563, 3039, + 584, 2993, 3861, 3063, 1816, 784, 2505, 3309, 3091, + 3813, 1955, 2014, 1513, 2785, 1124, 4921, 2653, 215, + 1720, 4008, 467, 2665, 934, 4083, 732, 447, 3024, + 3508, 4583, 1928, 3999, 2112, 430, 3549, 2224, 4453, + 292, 788, 4633, 434, 1519, 2797, 4314, 3456, 1463, + 1133, 1520, 2779, 195, 566, 4705, 4339, 87, 3759, + 1171, 632, 4702, 4443, 3675, 4063, 3423, 1515, 3264, + 3975, 3586, 907, 4416, 890, 2296, 2089, 4867, 4932, + 4241, 1398, 950, 4682, 2581, 4604, 1861, 1492, 4359, + 3001, 171, 3190, 4056, 2779, 2102, 2341, 2228, 666, + 4124, 3282, 4080, 1125, 1782, 4068, 4582, 1989, 1861, + 2397, 1906, 3592, 4009, 2809, 3893, 4602, 4885, 4329, + 1546, 3221, 1533, 1812, 711, 832, 3637, 2430, 702, + 1951, 2527, 1663, 4378, 3187, 1848, 1976, 4944, 1611, + 3986, 4768, 1832, 171, 533, 127, 3370, 4616, 3556, + 3675, 2756, 3820, 3848, 2775, 4085, 1946]), + values=tensor([0.3630, 0.4957, 0.7258, 0.9637, 0.5431, 0.7370, 0.5194, + 0.1412, 0.9194, 0.8806, 0.2809, 0.4495, 0.3054, 0.7229, + 0.6894, 0.5378, 0.4829, 0.7917, 0.1077, 0.9396, 0.0834, + 0.8145, 0.2291, 0.0220, 0.8667, 0.8206, 0.7176, 0.1748, + 0.5433, 0.5398, 0.6732, 0.5495, 0.1751, 0.1751, 0.5534, + 0.4533, 0.5127, 0.9043, 0.7276, 0.3139, 0.4018, 0.6593, + 0.5712, 0.8906, 0.5321, 0.0490, 0.8603, 0.3211, 0.9292, + 0.2516, 0.5976, 0.6960, 0.6822, 0.0183, 0.1419, 0.0510, + 0.5915, 0.9381, 0.7663, 0.9175, 0.1026, 0.1428, 0.3603, + 0.1690, 0.2574, 0.9703, 0.3816, 0.3120, 0.6138, 0.6402, + 0.0171, 0.1702, 0.0571, 0.1251, 0.4789, 0.2100, 0.4597, + 0.8236, 0.2093, 0.3392, 0.8809, 0.8206, 0.6653, 0.7105, + 0.9427, 0.4744, 0.2605, 0.1657, 0.1195, 0.1792, 0.5307, + 0.1174, 0.6758, 0.8184, 0.0607, 0.0558, 0.3782, 0.8926, + 0.6897, 0.9924, 0.7956, 0.0060, 0.2666, 0.9269, 0.6602, + 0.5276, 0.2277, 0.4849, 0.8321, 0.2135, 0.2296, 0.7282, + 0.5446, 0.1493, 0.5845, 0.2697, 0.2635, 0.0055, 0.3342, + 0.6531, 0.8835, 0.6970, 0.3925, 0.6332, 0.2833, 0.7464, + 0.9403, 0.9564, 0.8529, 0.8534, 0.4902, 0.3672, 0.4884, + 0.3826, 0.8277, 0.2524, 0.5006, 0.8262, 0.8556, 0.5518, + 0.9345, 0.1818, 0.7419, 0.5510, 0.7359, 0.2338, 0.5242, + 0.8847, 0.7894, 0.5148, 0.5220, 0.3152, 0.5588, 0.6758, + 0.0222, 0.8094, 0.8800, 0.5482, 0.7029, 0.4511, 0.5521, + 0.1426, 0.5819, 0.4684, 0.3203, 0.4558, 0.0605, 0.4645, + 0.6967, 0.5420, 0.5383, 0.3399, 0.6017, 0.2217, 0.2779, + 0.6034, 0.6186, 0.5877, 0.7226, 0.4771, 0.2736, 0.9442, + 0.4016, 0.5813, 0.3926, 0.6636, 0.2000, 0.5234, 0.8594, + 0.4283, 0.8253, 0.1300, 0.3810, 0.0496, 0.8722, 0.5976, + 0.0028, 0.5374, 0.0379, 0.0610, 0.9205, 0.9022, 0.6780, + 0.7337, 0.3928, 0.7007, 0.0730, 0.0899, 0.4352, 0.2480, + 0.7721, 0.6286, 0.0462, 0.5434, 0.2214, 0.2005, 0.5352, + 0.2866, 0.1634, 0.3716, 0.1574, 0.2559, 0.6104, 0.9417, + 0.5436, 0.9351, 0.6446, 0.8506, 0.6360, 0.5124, 0.9341, + 0.9751, 0.4728, 0.6908, 0.5778, 0.2603, 0.9571, 0.5985, + 0.0453, 0.2921, 0.4748, 0.9573, 0.6189, 0.2369, 0.4918, + 0.2829, 0.0867, 0.8730, 0.1781, 0.6966]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.7582, 0.3275, 0.7400, ..., 0.8955, 0.3174, 0.3280]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 10.428882360458374 seconds + +[20.56, 20.68, 20.64, 20.44, 20.64, 20.48, 20.48, 20.64, 20.68, 20.72] +[20.84, 20.84, 21.12, 24.24, 25.12, 25.84, 26.16, 24.96, 23.68, 23.68, 23.56, 23.8, 24.0, 23.88] +14.239971160888672 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 275920, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.428882360458374, 'TIME_S_1KI': 0.037796761236801875, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 315.0905113220215, 'W': 22.127187461407587} +[20.56, 20.68, 20.64, 20.44, 20.64, 20.48, 20.48, 20.64, 20.68, 20.72, 20.56, 20.72, 20.56, 20.64, 20.56, 20.24, 20.2, 20.44, 20.2, 20.2] +369.26 +18.463 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 275920, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.428882360458374, 'TIME_S_1KI': 0.037796761236801875, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 315.0905113220215, 'W': 22.127187461407587, 'J_1KI': 1.141963291251165, 'W_1KI': 0.08019421376271234, 'W_D': 3.664187461407586, 'J_D': 52.177923778533895, 'W_D_1KI': 0.013279890770540686, 'J_D_1KI': 4.812949684887172e-05} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.0001.json new file mode 100644 index 0000000..4a28d6c --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 70787, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 11.243863582611084, "TIME_S_1KI": 0.15884079820604183, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2065.8814449405672, "W": 142.52, "J_1KI": 29.184475185282146, "W_1KI": 2.01336403576928, "W_D": 106.74100000000001, "J_D": 1547.2512722032072, "W_D_1KI": 1.5079181205588599, "J_D_1KI": 0.02130218995802704} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.0001.output new file mode 100644 index 0000000..320d8b0 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.0001.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.22568225860595703} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 9, 21, ..., 999976, + 999987, 1000000]), + col_indices=tensor([66167, 77335, 80388, ..., 91843, 96961, 99110]), + values=tensor([0.4269, 0.3181, 0.3880, ..., 0.8858, 0.0510, 0.2541]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.0143, 0.7097, 0.7299, ..., 0.1191, 0.1743, 0.7741]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 0.22568225860595703 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '46525', '-ss', '100000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 6.901124477386475} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 9, 22, ..., 999980, + 999991, 1000000]), + col_indices=tensor([ 6899, 15825, 20330, ..., 53773, 69034, 81991]), + values=tensor([0.2590, 0.4256, 0.8626, ..., 0.0809, 0.7182, 0.1540]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.5717, 0.8218, 0.0250, ..., 0.8733, 0.0737, 0.0088]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 6.901124477386475 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '70787', '-ss', '100000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 11.243863582611084} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 11, 22, ..., 999983, + 999990, 1000000]), + col_indices=tensor([ 361, 1115, 8788, ..., 71181, 76543, 91304]), + values=tensor([0.4904, 0.2440, 0.4094, ..., 0.6184, 0.1804, 0.3924]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.2770, 0.4028, 0.6616, ..., 0.6682, 0.3245, 0.3679]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 11.243863582611084 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 11, 22, ..., 999983, + 999990, 1000000]), + col_indices=tensor([ 361, 1115, 8788, ..., 71181, 76543, 91304]), + values=tensor([0.4904, 0.2440, 0.4094, ..., 0.6184, 0.1804, 0.3924]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.2770, 0.4028, 0.6616, ..., 0.6682, 0.3245, 0.3679]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 11.243863582611084 seconds + +[40.71, 39.67, 39.62, 40.0, 39.39, 40.7, 39.22, 40.0, 39.3, 39.88] +[142.52] +14.495379209518433 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 70787, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 11.243863582611084, 'TIME_S_1KI': 0.15884079820604183, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2065.8814449405672, 'W': 142.52} +[40.71, 39.67, 39.62, 40.0, 39.39, 40.7, 39.22, 40.0, 39.3, 39.88, 39.86, 40.15, 39.35, 40.1, 39.35, 40.22, 39.27, 39.7, 39.16, 40.31] +715.5799999999999 +35.778999999999996 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 70787, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 11.243863582611084, 'TIME_S_1KI': 0.15884079820604183, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2065.8814449405672, 'W': 142.52, 'J_1KI': 29.184475185282146, 'W_1KI': 2.01336403576928, 'W_D': 106.74100000000001, 'J_D': 1547.2512722032072, 'W_D_1KI': 1.5079181205588599, 'J_D_1KI': 0.02130218995802704} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.001.json b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.001.json new file mode 100644 index 0000000..0f55c41 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 4257, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 11.433454513549805, "TIME_S_1KI": 2.685800919321072, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1901.6043726658822, "W": 126.17, "J_1KI": 446.7005808470477, "W_1KI": 29.638242894056848, "W_D": 90.424, "J_D": 1362.8491225643158, "W_D_1KI": 21.241249706365988, "J_D_1KI": 4.989722740513504} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.001.output b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.001.output new file mode 100644 index 0000000..dc2dadc --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 2.4663901329040527} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 118, 225, ..., 9999805, + 9999897, 10000000]), + col_indices=tensor([ 1682, 1744, 2076, ..., 96929, 97254, 99780]), + values=tensor([0.4019, 0.5057, 0.8739, ..., 0.0479, 0.2913, 0.6813]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.2475, 0.7795, 0.3565, ..., 0.8481, 0.6371, 0.4321]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 2.4663901329040527 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '4257', '-ss', '100000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 11.433454513549805} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 96, 213, ..., 9999811, + 9999904, 10000000]), + col_indices=tensor([ 561, 663, 1931, ..., 97741, 99513, 99851]), + values=tensor([0.7974, 0.7905, 0.8203, ..., 0.5966, 0.6231, 0.2009]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.4967, 0.7208, 0.9275, ..., 0.8267, 0.3582, 0.8531]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 11.433454513549805 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 96, 213, ..., 9999811, + 9999904, 10000000]), + col_indices=tensor([ 561, 663, 1931, ..., 97741, 99513, 99851]), + values=tensor([0.7974, 0.7905, 0.8203, ..., 0.5966, 0.6231, 0.2009]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.4967, 0.7208, 0.9275, ..., 0.8267, 0.3582, 0.8531]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 11.433454513549805 seconds + +[41.19, 39.18, 40.43, 39.7, 39.84, 39.19, 40.16, 39.17, 40.24, 39.08] +[126.17] +15.071763277053833 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4257, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 11.433454513549805, 'TIME_S_1KI': 2.685800919321072, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1901.6043726658822, 'W': 126.17} +[41.19, 39.18, 40.43, 39.7, 39.84, 39.19, 40.16, 39.17, 40.24, 39.08, 41.18, 39.54, 39.33, 39.89, 39.75, 39.57, 39.78, 39.56, 39.24, 39.25] +714.9200000000001 +35.746 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4257, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 11.433454513549805, 'TIME_S_1KI': 2.685800919321072, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1901.6043726658822, 'W': 126.17, 'J_1KI': 446.7005808470477, 'W_1KI': 29.638242894056848, 'W_D': 90.424, 'J_D': 1362.8491225643158, 'W_D_1KI': 21.241249706365988, 'J_D_1KI': 4.989722740513504} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_100000_1e-05.json new file mode 100644 index 0000000..382c4a4 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_100000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 103292, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.412234544754028, "TIME_S_1KI": 0.10080388166318813, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1494.9555576324462, "W": 114.72, "J_1KI": 14.473101088491328, "W_1KI": 1.1106378035085003, "W_D": 77.68374999999999, "J_D": 1012.3235163897275, "W_D_1KI": 0.7520790574294233, "J_D_1KI": 0.0072810968654825475} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_100000_1e-05.output new file mode 100644 index 0000000..a8441fc --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_100000_1e-05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.13699960708618164} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 3, ..., 99999, 99999, + 100000]), + col_indices=tensor([ 8916, 68486, 49297, ..., 83214, 51117, 46502]), + values=tensor([0.0565, 0.4187, 0.1663, ..., 0.8089, 0.3832, 0.9501]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.6605, 0.5566, 0.3055, ..., 0.1791, 0.1309, 0.6380]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 0.13699960708618164 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '76642', '-ss', '100000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.790924310684204} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 99997, 99998, + 100000]), + col_indices=tensor([17249, 94297, 21433, ..., 88389, 79911, 81112]), + values=tensor([0.0934, 0.2541, 0.4263, ..., 0.3405, 0.2702, 0.1947]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.1521, 0.7703, 0.8999, ..., 0.0235, 0.4756, 0.0049]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 7.790924310684204 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '103292', '-ss', '100000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.412234544754028} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 3, ..., 99998, 99999, + 100000]), + col_indices=tensor([40816, 84426, 84611, ..., 44515, 10095, 58427]), + values=tensor([0.3036, 0.7331, 0.5691, ..., 0.0050, 0.0920, 0.5982]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.8398, 0.7355, 0.2034, ..., 0.0172, 0.0859, 0.7739]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 10.412234544754028 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 3, ..., 99998, 99999, + 100000]), + col_indices=tensor([40816, 84426, 84611, ..., 44515, 10095, 58427]), + values=tensor([0.3036, 0.7331, 0.5691, ..., 0.0050, 0.0920, 0.5982]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.8398, 0.7355, 0.2034, ..., 0.0172, 0.0859, 0.7739]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 10.412234544754028 seconds + +[39.92, 39.29, 39.24, 40.21, 39.35, 45.54, 40.38, 40.14, 39.43, 39.27] +[114.72] +13.031342029571533 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 103292, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.412234544754028, 'TIME_S_1KI': 0.10080388166318813, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1494.9555576324462, 'W': 114.72} +[39.92, 39.29, 39.24, 40.21, 39.35, 45.54, 40.38, 40.14, 39.43, 39.27, 39.96, 39.14, 45.44, 43.38, 51.52, 39.13, 40.45, 39.57, 39.41, 39.06] +740.7250000000001 +37.03625000000001 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 103292, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.412234544754028, 'TIME_S_1KI': 0.10080388166318813, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1494.9555576324462, 'W': 114.72, 'J_1KI': 14.473101088491328, 'W_1KI': 1.1106378035085003, 'W_D': 77.68374999999999, 'J_D': 1012.3235163897275, 'W_D_1KI': 0.7520790574294233, 'J_D_1KI': 0.0072810968654825475} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.0001.json b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.0001.json new file mode 100644 index 0000000..2ba417a --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 289765, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.56649661064148, "TIME_S_1KI": 0.03646574503698334, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1246.5325114130974, "W": 97.77, "J_1KI": 4.3018739717118955, "W_1KI": 0.33741135057719185, "W_D": 62.23799999999999, "J_D": 793.5122271180152, "W_D_1KI": 0.21478784532293407, "J_D_1KI": 0.0007412484093073148} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.0001.output b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.0001.output new file mode 100644 index 0000000..4b8f527 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.0001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.053604841232299805} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 10000, 10000, 10000]), + col_indices=tensor([4181, 1858, 2276, ..., 2485, 7240, 8510]), + values=tensor([0.9106, 0.2407, 0.2677, ..., 0.1883, 0.5204, 0.9919]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.4673, 0.8867, 0.2183, ..., 0.9392, 0.5032, 0.8250]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 0.053604841232299805 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '195877', '-ss', '10000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 7.097846031188965} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 9997, 9998, 10000]), + col_indices=tensor([6113, 1564, 232, ..., 3255, 2043, 9640]), + values=tensor([0.7859, 0.4083, 0.3727, ..., 0.9664, 0.2618, 0.1646]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.1848, 0.2081, 0.2382, ..., 0.7788, 0.6054, 0.6678]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 7.097846031188965 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '289765', '-ss', '10000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.56649661064148} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 10000, 10000, 10000]), + col_indices=tensor([4848, 1770, 22, ..., 2903, 374, 1123]), + values=tensor([0.4832, 0.4922, 0.1673, ..., 0.2881, 0.3225, 0.2417]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.7933, 0.2380, 0.0639, ..., 0.5554, 0.1913, 0.9685]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.56649661064148 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 10000, 10000, 10000]), + col_indices=tensor([4848, 1770, 22, ..., 2903, 374, 1123]), + values=tensor([0.4832, 0.4922, 0.1673, ..., 0.2881, 0.3225, 0.2417]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.7933, 0.2380, 0.0639, ..., 0.5554, 0.1913, 0.9685]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.56649661064148 seconds + +[39.58, 39.81, 39.03, 39.86, 38.88, 39.9, 39.07, 38.97, 41.59, 39.84] +[97.77] +12.749642133712769 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 289765, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.56649661064148, 'TIME_S_1KI': 0.03646574503698334, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1246.5325114130974, 'W': 97.77} +[39.58, 39.81, 39.03, 39.86, 38.88, 39.9, 39.07, 38.97, 41.59, 39.84, 40.25, 39.66, 38.91, 39.84, 38.8, 39.81, 38.94, 39.0, 38.89, 39.69] +710.6400000000001 +35.532000000000004 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 289765, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.56649661064148, 'TIME_S_1KI': 0.03646574503698334, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1246.5325114130974, 'W': 97.77, 'J_1KI': 4.3018739717118955, 'W_1KI': 0.33741135057719185, 'W_D': 62.23799999999999, 'J_D': 793.5122271180152, 'W_D_1KI': 0.21478784532293407, 'J_D_1KI': 0.0007412484093073148} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.001.json b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.001.json new file mode 100644 index 0000000..463b3c7 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 132694, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.224570512771606, "TIME_S_1KI": 0.07705375158463537, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1067.35663690567, "W": 103.59999999999998, "J_1KI": 8.043744531822615, "W_1KI": 0.7807436658778842, "W_D": 68.22474999999997, "J_D": 702.8971014838812, "W_D_1KI": 0.5141509789440364, "J_D_1KI": 0.003874711584126158} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.001.output b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.001.output new file mode 100644 index 0000000..f18d35d --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.07912898063659668} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 9, 15, ..., 99979, 99988, + 100000]), + col_indices=tensor([ 430, 646, 878, ..., 7983, 8028, 8773]), + values=tensor([0.1249, 0.1009, 0.6404, ..., 0.8347, 0.6604, 0.7086]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.6668, 0.6238, 0.5068, ..., 0.0173, 0.0134, 0.2844]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 0.07912898063659668 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '132694', '-ss', '10000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.224570512771606} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 11, 19, ..., 99972, 99988, + 100000]), + col_indices=tensor([ 681, 2736, 3433, ..., 9108, 9366, 9692]), + values=tensor([0.5511, 0.6516, 0.1231, ..., 0.0939, 0.8699, 0.6381]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.2594, 0.0089, 0.5427, ..., 0.9106, 0.5838, 0.6290]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.224570512771606 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 11, 19, ..., 99972, 99988, + 100000]), + col_indices=tensor([ 681, 2736, 3433, ..., 9108, 9366, 9692]), + values=tensor([0.5511, 0.6516, 0.1231, ..., 0.0939, 0.8699, 0.6381]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.2594, 0.0089, 0.5427, ..., 0.9106, 0.5838, 0.6290]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.224570512771606 seconds + +[39.52, 39.72, 39.2, 38.94, 38.87, 40.37, 39.0, 39.66, 38.95, 39.86] +[103.6] +10.302670240402222 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 132694, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.224570512771606, 'TIME_S_1KI': 0.07705375158463537, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1067.35663690567, 'W': 103.59999999999998} +[39.52, 39.72, 39.2, 38.94, 38.87, 40.37, 39.0, 39.66, 38.95, 39.86, 39.41, 39.62, 39.01, 39.67, 38.86, 38.84, 38.84, 39.8, 38.92, 39.68] +707.505 +35.37525 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 132694, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.224570512771606, 'TIME_S_1KI': 0.07705375158463537, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1067.35663690567, 'W': 103.59999999999998, 'J_1KI': 8.043744531822615, 'W_1KI': 0.7807436658778842, 'W_D': 68.22474999999997, 'J_D': 702.8971014838812, 'W_D_1KI': 0.5141509789440364, 'J_D_1KI': 0.003874711584126158} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.01.json b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.01.json new file mode 100644 index 0000000..995b9fb --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 107069, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 11.18355131149292, "TIME_S_1KI": 0.10445181435796468, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1763.49504935503, "W": 132.69, "J_1KI": 16.470640889099833, "W_1KI": 1.2392942868617434, "W_D": 96.9815, "J_D": 1288.9169879344702, "W_D_1KI": 0.905785054497567, "J_D_1KI": 0.008459825481675993} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.01.output b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.01.output new file mode 100644 index 0000000..afaa491 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.01.output @@ -0,0 +1,105 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.1338520050048828} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 91, 190, ..., 999794, + 999887, 1000000]), + col_indices=tensor([ 40, 344, 548, ..., 9830, 9841, 9960]), + values=tensor([0.4008, 0.1162, 0.8586, ..., 0.0804, 0.9517, 0.8982]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.6204, 0.8036, 0.5749, ..., 0.0150, 0.4782, 0.5342]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 0.1338520050048828 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '78444', '-ss', '10000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 8.085982084274292} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 93, 187, ..., 999812, + 999901, 1000000]), + col_indices=tensor([ 276, 302, 470, ..., 9539, 9540, 9930]), + values=tensor([0.4664, 0.1616, 0.7456, ..., 0.5929, 0.0487, 0.3579]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.7338, 0.4039, 0.6812, ..., 0.4093, 0.7174, 0.1386]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 8.085982084274292 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '101862', '-ss', '10000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 9.98931097984314} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 97, 208, ..., 999782, + 999887, 1000000]), + col_indices=tensor([ 113, 292, 413, ..., 9756, 9814, 9863]), + values=tensor([0.7037, 0.4902, 0.2249, ..., 0.1343, 0.1681, 0.3653]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.0898, 0.3365, 0.9954, ..., 0.9623, 0.9055, 0.9870]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 9.98931097984314 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '107069', '-ss', '10000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 11.18355131149292} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 101, 199, ..., 999771, + 999895, 1000000]), + col_indices=tensor([ 30, 45, 94, ..., 9508, 9668, 9839]), + values=tensor([0.9351, 0.0667, 0.7279, ..., 0.8651, 0.3266, 0.8240]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.5009, 0.1141, 0.1222, ..., 0.6365, 0.9492, 0.1421]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 11.18355131149292 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 101, 199, ..., 999771, + 999895, 1000000]), + col_indices=tensor([ 30, 45, 94, ..., 9508, 9668, 9839]), + values=tensor([0.9351, 0.0667, 0.7279, ..., 0.8651, 0.3266, 0.8240]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.5009, 0.1141, 0.1222, ..., 0.6365, 0.9492, 0.1421]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 11.18355131149292 seconds + +[39.9, 40.21, 39.53, 40.02, 39.22, 40.03, 39.19, 40.06, 39.89, 39.6] +[132.69] +13.29033875465393 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 107069, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 11.18355131149292, 'TIME_S_1KI': 0.10445181435796468, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1763.49504935503, 'W': 132.69} +[39.9, 40.21, 39.53, 40.02, 39.22, 40.03, 39.19, 40.06, 39.89, 39.6, 40.49, 39.14, 39.91, 39.61, 39.91, 39.69, 39.58, 39.1, 39.07, 40.03] +714.1700000000001 +35.7085 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 107069, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 11.18355131149292, 'TIME_S_1KI': 0.10445181435796468, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1763.49504935503, 'W': 132.69, 'J_1KI': 16.470640889099833, 'W_1KI': 1.2392942868617434, 'W_D': 96.9815, 'J_D': 1288.9169879344702, 'W_D_1KI': 0.905785054497567, 'J_D_1KI': 0.008459825481675993} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.05.json b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.05.json new file mode 100644 index 0000000..05bc7cf --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 28163, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.459697484970093, "TIME_S_1KI": 0.371398554307783, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2122.055966448784, "W": 150.9, "J_1KI": 75.34907383619587, "W_1KI": 5.358093953058979, "W_D": 115.1085, "J_D": 1618.7321352814438, "W_D_1KI": 4.087224372403509, "J_D_1KI": 0.1451274499308848} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.05.output b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.05.output new file mode 100644 index 0000000..e823d57 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 0.4528634548187256} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 492, 984, ..., 4999007, + 4999498, 5000000]), + col_indices=tensor([ 17, 26, 49, ..., 9943, 9965, 9968]), + values=tensor([0.3785, 0.7951, 0.2972, ..., 0.3720, 0.7853, 0.1204]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.5665, 0.1637, 0.5801, ..., 0.5211, 0.8646, 0.6970]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 0.4528634548187256 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '23185', '-ss', '10000', '-sd', '0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 8.643981695175171} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 462, 943, ..., 4999021, + 4999500, 5000000]), + col_indices=tensor([ 4, 33, 72, ..., 9956, 9968, 9998]), + values=tensor([0.9717, 0.2077, 0.4481, ..., 0.1268, 0.5535, 0.1753]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.9761, 0.2557, 0.3900, ..., 0.3250, 0.2223, 0.7021]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 8.643981695175171 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '28163', '-ss', '10000', '-sd', '0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.459697484970093} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 510, 1022, ..., 4999000, + 4999485, 5000000]), + col_indices=tensor([ 31, 34, 40, ..., 9926, 9941, 9984]), + values=tensor([0.9067, 0.8635, 0.5661, ..., 0.0254, 0.7052, 0.7869]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.2490, 0.1590, 0.1294, ..., 0.2235, 0.7822, 0.7952]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 10.459697484970093 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 510, 1022, ..., 4999000, + 4999485, 5000000]), + col_indices=tensor([ 31, 34, 40, ..., 9926, 9941, 9984]), + values=tensor([0.9067, 0.8635, 0.5661, ..., 0.0254, 0.7052, 0.7869]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.2490, 0.1590, 0.1294, ..., 0.2235, 0.7822, 0.7952]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 10.459697484970093 seconds + +[40.87, 39.6, 40.38, 39.19, 40.47, 39.26, 39.48, 39.2, 40.2, 39.44] +[150.9] +14.062663793563843 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 28163, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.459697484970093, 'TIME_S_1KI': 0.371398554307783, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2122.055966448784, 'W': 150.9} +[40.87, 39.6, 40.38, 39.19, 40.47, 39.26, 39.48, 39.2, 40.2, 39.44, 41.45, 39.66, 39.99, 39.31, 39.56, 39.24, 40.15, 39.52, 39.84, 39.8] +715.8299999999999 +35.7915 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 28163, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.459697484970093, 'TIME_S_1KI': 0.371398554307783, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2122.055966448784, 'W': 150.9, 'J_1KI': 75.34907383619587, 'W_1KI': 5.358093953058979, 'W_D': 115.1085, 'J_D': 1618.7321352814438, 'W_D_1KI': 4.087224372403509, 'J_D_1KI': 0.1451274499308848} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.1.json b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.1.json new file mode 100644 index 0000000..8638631 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.1.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 5238, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 11.192334175109863, "TIME_S_1KI": 2.1367571926517495, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2038.619791316986, "W": 124.02, "J_1KI": 389.1981273991955, "W_1KI": 23.676975945017183, "W_D": 88.21424999999999, "J_D": 1450.0509266746044, "W_D_1KI": 16.841208476517753, "J_D_1KI": 3.2151982582126295} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.1.output b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.1.output new file mode 100644 index 0000000..6292d32 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.1.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 2.209188461303711} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 961, 2007, ..., 9997952, + 9998968, 10000000]), + col_indices=tensor([ 14, 18, 26, ..., 9968, 9972, 9997]), + values=tensor([0.9669, 0.3653, 0.3089, ..., 0.5289, 0.5202, 0.9028]), + size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.8016, 0.0222, 0.4456, ..., 0.4115, 0.6943, 0.5313]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000000 +Density: 0.1 +Time: 2.209188461303711 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '4752', '-ss', '10000', '-sd', '0.1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 9.52530813217163} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 954, 1940, ..., 9998038, + 9998994, 10000000]), + col_indices=tensor([ 0, 3, 4, ..., 9964, 9979, 9998]), + values=tensor([0.5875, 0.0019, 0.5119, ..., 0.4152, 0.5002, 0.2921]), + size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.8144, 0.0248, 0.0526, ..., 0.0067, 0.4287, 0.2758]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000000 +Density: 0.1 +Time: 9.52530813217163 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '5238', '-ss', '10000', '-sd', '0.1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 11.192334175109863} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1001, 2002, ..., 9997918, + 9998966, 10000000]), + col_indices=tensor([ 9, 21, 97, ..., 9973, 9981, 9990]), + values=tensor([0.6111, 0.6801, 0.6895, ..., 0.1092, 0.3002, 0.2815]), + size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.0277, 0.0823, 0.3111, ..., 0.6513, 0.2238, 0.0558]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000000 +Density: 0.1 +Time: 11.192334175109863 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1001, 2002, ..., 9997918, + 9998966, 10000000]), + col_indices=tensor([ 9, 21, 97, ..., 9973, 9981, 9990]), + values=tensor([0.6111, 0.6801, 0.6895, ..., 0.1092, 0.3002, 0.2815]), + size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.0277, 0.0823, 0.3111, ..., 0.6513, 0.2238, 0.0558]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000000 +Density: 0.1 +Time: 11.192334175109863 seconds + +[41.1, 40.26, 39.38, 39.47, 39.45, 40.18, 39.58, 40.31, 39.46, 40.14] +[124.02] +16.437830924987793 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 5238, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 11.192334175109863, 'TIME_S_1KI': 2.1367571926517495, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2038.619791316986, 'W': 124.02} +[41.1, 40.26, 39.38, 39.47, 39.45, 40.18, 39.58, 40.31, 39.46, 40.14, 40.09, 40.24, 39.54, 40.08, 39.32, 40.12, 39.35, 39.35, 39.19, 40.34] +716.115 +35.80575 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 5238, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 11.192334175109863, 'TIME_S_1KI': 2.1367571926517495, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2038.619791316986, 'W': 124.02, 'J_1KI': 389.1981273991955, 'W_1KI': 23.676975945017183, 'W_D': 88.21424999999999, 'J_D': 1450.0509266746044, 'W_D_1KI': 16.841208476517753, 'J_D_1KI': 3.2151982582126295} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_1e-05.json b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_1e-05.json new file mode 100644 index 0000000..4449f80 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 362169, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.681929588317871, "TIME_S_1KI": 0.029494323336116207, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1262.685609395504, "W": 96.13, "J_1KI": 3.4864541399056903, "W_1KI": 0.2654285706396737, "W_D": 60.50875, "J_D": 794.7937986841798, "W_D_1KI": 0.1670732448111241, "J_D_1KI": 0.0004613129362566208} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_1e-05.output b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_1e-05.output new file mode 100644 index 0000000..f681b74 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_10000_1e-05.output @@ -0,0 +1,1414 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.044791460037231445} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 1000, 1000, 1000]), + col_indices=tensor([9942, 6806, 8769, 3673, 2619, 2553, 2772, 6991, 9638, + 9629, 9158, 6212, 5182, 5529, 2344, 2346, 122, 7028, + 7511, 9451, 4244, 8815, 1200, 2761, 1166, 6428, 9856, + 2930, 9598, 6209, 16, 6638, 3115, 8422, 341, 3611, + 4039, 5496, 6552, 2918, 7299, 3837, 4809, 8784, 5749, + 9600, 4871, 9986, 6240, 7865, 4521, 404, 5612, 1687, + 5902, 3802, 2584, 2467, 9251, 3413, 7567, 6873, 3539, + 8911, 7564, 7425, 2467, 625, 4370, 372, 8146, 8364, + 5870, 4156, 5185, 5695, 8355, 2444, 2534, 1085, 2679, + 4192, 212, 5765, 9043, 9562, 368, 6724, 3302, 4229, + 1540, 4914, 9319, 7555, 3461, 9031, 1147, 9150, 6690, + 6357, 2415, 7319, 8280, 2601, 5406, 9377, 8412, 2908, + 2289, 9994, 4235, 8030, 4945, 152, 5704, 9454, 8885, + 7225, 8831, 9647, 762, 4585, 7294, 145, 5869, 493, + 6535, 84, 8418, 9444, 2282, 5835, 1126, 9329, 748, + 8059, 2437, 570, 5259, 2869, 6288, 7792, 2863, 6751, + 9752, 5574, 334, 7333, 4012, 5158, 8497, 5025, 6045, + 1734, 2277, 239, 1951, 5145, 6040, 4852, 1447, 7301, + 317, 7241, 5360, 9458, 9704, 7421, 686, 2876, 1216, + 8271, 4137, 6301, 6977, 8699, 9602, 3545, 2095, 5436, + 4475, 3858, 5601, 7872, 1697, 548, 846, 3712, 9584, + 6665, 6252, 4905, 2560, 8014, 4900, 4619, 1257, 3531, + 7648, 9919, 1852, 3326, 4487, 8506, 3919, 4981, 2513, + 7034, 6039, 9368, 7985, 4762, 5739, 2376, 986, 7556, + 1499, 1795, 8163, 3423, 2347, 6873, 6384, 1650, 8313, + 1196, 3938, 4396, 4553, 256, 9625, 9715, 2295, 5530, + 2128, 2920, 6394, 606, 8650, 4056, 9691, 8190, 8835, + 2767, 5109, 2152, 4962, 8309, 5313, 6703, 2055, 9418, + 9662, 829, 6489, 7349, 3629, 1976, 8133, 6494, 5734, + 3252, 9708, 2337, 7894, 9875, 1792, 1256, 340, 3043, + 7104, 8638, 2625, 1402, 3119, 7724, 7377, 4854, 1943, + 3768, 5032, 1038, 6327, 9140, 1764, 4701, 3680, 2758, + 2546, 8118, 1804, 8727, 7673, 8782, 7074, 310, 3245, + 391, 6460, 3188, 8731, 3986, 6485, 8364, 9727, 7173, + 7564, 6534, 1936, 864, 8838, 2305, 9565, 3858, 5712, + 1491, 4027, 3486, 7521, 1061, 9919, 6389, 8021, 6560, + 761, 4944, 9904, 7319, 1344, 4628, 8534, 6548, 8512, + 385, 5328, 1168, 4717, 5409, 9729, 7942, 6217, 1140, + 6456, 9909, 4138, 5953, 2961, 3523, 366, 7674, 7623, + 5122, 6041, 7023, 8946, 9960, 7313, 1781, 9275, 8786, + 2793, 9858, 4453, 4477, 9647, 1864, 7307, 688, 8021, + 1271, 6194, 1642, 2595, 6785, 3354, 1878, 5043, 398, + 6171, 6178, 8258, 9103, 5415, 9993, 7921, 2009, 5112, + 9130, 5024, 2285, 7569, 928, 3252, 5928, 5366, 3721, + 906, 2764, 261, 6097, 8713, 8271, 9037, 6526, 6608, + 3246, 6379, 2233, 734, 3569, 1130, 4701, 7544, 4759, + 5149, 7792, 8774, 166, 2005, 4199, 4556, 405, 1574, + 4504, 6872, 2121, 9764, 7754, 1920, 849, 8901, 7940, + 2276, 1164, 4120, 3418, 8433, 8534, 2124, 1407, 9941, + 8774, 3610, 6962, 7686, 9032, 2501, 4402, 5592, 7149, + 1724, 2964, 1881, 4166, 5565, 1691, 7145, 7629, 8845, + 5778, 206, 3304, 5476, 570, 233, 913, 8795, 1676, + 6523, 671, 6568, 8802, 6787, 3359, 8229, 5832, 4670, + 477, 3563, 6128, 2958, 8344, 2798, 5123, 7555, 1622, + 9944, 6188, 6831, 7880, 6553, 1015, 6573, 5109, 1750, + 455, 3272, 8257, 9704, 4102, 5542, 791, 2798, 442, + 6524, 2897, 5385, 5704, 4657, 1049, 2358, 3633, 4630, + 5093, 6143, 4158, 3721, 8602, 3915, 5080, 6602, 9642, + 3328, 3344, 5460, 9320, 8841, 3042, 7058, 3244, 8323, + 8239, 1899, 1584, 4159, 2074, 4693, 5541, 1069, 755, + 9961, 9720, 495, 7177, 2223, 5138, 6093, 65, 7686, + 4825, 6890, 9342, 2012, 1306, 5055, 8966, 6745, 742, + 2888, 353, 3930, 6018, 6027, 7409, 9284, 9749, 7080, + 4273, 1569, 4695, 4151, 2688, 6916, 3566, 7902, 3827, + 8197, 4739, 6589, 323, 7630, 5907, 4514, 6979, 3763, + 1884, 8832, 7994, 2246, 3533, 9618, 1720, 7610, 7239, + 638, 9292, 4783, 493, 349, 6931, 9183, 7694, 7367, + 1455, 8291, 5297, 6531, 9027, 3125, 5165, 1747, 2395, + 9976, 8105, 7540, 1664, 1747, 7632, 4682, 3958, 4031, + 9459, 7772, 6428, 3341, 592, 8185, 3222, 7813, 4883, + 1644, 7288, 3169, 5960, 5478, 1407, 4342, 1302, 6549, + 1358, 2842, 1329, 1540, 5662, 713, 3921, 8485, 4113, + 6858, 8797, 8861, 6915, 3146, 4236, 2551, 2825, 849, + 2700, 211, 8951, 6730, 4377, 6981, 9070, 2290, 1419, + 7032, 5090, 514, 785, 7157, 6042, 5604, 826, 1805, + 2110, 9775, 7352, 2136, 6043, 1903, 471, 6462, 3922, + 4650, 2275, 1415, 6685, 619, 1933, 8766, 3982, 3889, + 6078, 9649, 3244, 543, 4606, 5534, 6411, 8037, 3869, + 5767, 2501, 7323, 6010, 9987, 2988, 3771, 2195, 3286, + 4114, 4746, 5123, 9347, 59, 3399, 1134, 9616, 2805, + 6005, 2217, 6562, 4260, 4451, 4510, 6796, 3816, 8731, + 7099, 6120, 8783, 5843, 1286, 6064, 2505, 8992, 1831, + 1649, 2921, 725, 1022, 4968, 1923, 2310, 8148, 7666, + 7235, 3908, 5293, 59, 2659, 3454, 8439, 4164, 5105, + 930, 3399, 9150, 7660, 4670, 8057, 6043, 7343, 200, + 6766, 1610, 5601, 4418, 5607, 7065, 2665, 1090, 2907, + 6313, 259, 3791, 4708, 4342, 8329, 2983, 3117, 4878, + 4741, 5590, 5320, 4437, 4003, 6000, 8321, 6759, 1334, + 2279, 7391, 4187, 1434, 4008, 2700, 6956, 4315, 3611, + 3430, 9868, 5792, 4357, 9903, 8075, 5220, 1738, 163, + 3665, 4478, 702, 5727, 7653, 563, 6002, 2891, 8761, + 7287, 2250, 9470, 9219, 7870, 9501, 6831, 5057, 4220, + 7687, 2932, 5610, 3763, 3667, 3671, 3384, 2786, 4287, + 269, 9210, 2349, 3391, 12, 5994, 653, 2936, 9025, + 9494, 3399, 9419, 4942, 9380, 4459, 7473, 5954, 1447, + 1094, 7179, 3014, 2886, 6512, 7645, 9938, 3613, 9440, + 6699, 7451, 2452, 4865, 9654, 2308, 6980, 6767, 7495, + 1334, 9014, 782, 6309, 7997, 5366, 1284, 7925, 6962, + 3877, 1913, 1050, 9127, 2886, 1116, 6198, 6893, 1633, + 1350, 4166, 753, 3204, 1614, 5868, 245, 204, 1115, + 1068, 2494, 2135, 610, 9686, 9370, 6836, 5359, 4868, + 7140, 5229, 2658, 9723, 5848, 6639, 5836, 9766, 4393, + 5965, 1792, 8813, 7097, 4138, 3337, 895, 1120, 1285, + 4137, 8921, 4411, 3735, 1316, 3715, 7962, 401, 6803, + 3966, 9926, 7525, 847, 9443, 9072, 3130, 2543, 9739, + 4094, 6274, 2243, 7488, 626, 4122, 9743, 8348, 3980, + 4481, 111, 5455, 8904, 2079, 3488, 2101, 5755, 4829, + 7759, 8914, 9977, 7145, 6318, 581, 5259, 3348, 8544, + 4370, 4181, 1392, 3682, 710, 3677, 8541, 8499, 2889, + 5891, 4997, 7492, 1001, 3000, 8360, 5825, 6503, 7921, + 561, 3570, 9317, 9337, 9296, 4665, 296, 1083, 2303, + 1499]), + values=tensor([2.4924e-01, 5.5138e-01, 7.8146e-01, 8.2664e-01, + 2.7727e-01, 5.3856e-01, 5.5038e-01, 4.7936e-01, + 2.2536e-01, 6.0665e-01, 1.5763e-01, 6.9703e-01, + 9.2250e-03, 4.2884e-01, 9.9821e-01, 7.4158e-01, + 4.9950e-01, 4.8715e-01, 3.3051e-01, 6.3825e-01, + 1.8452e-01, 3.5967e-01, 7.5729e-01, 6.6116e-01, + 8.4341e-01, 3.7098e-01, 1.0038e-01, 5.9421e-01, + 9.3194e-01, 7.9934e-02, 3.0214e-01, 4.7105e-01, + 8.8123e-01, 2.0326e-01, 1.1678e-01, 7.3860e-02, + 3.7616e-01, 8.1842e-01, 1.2910e-01, 6.7836e-01, + 9.8021e-01, 9.8681e-01, 5.8566e-01, 5.5548e-01, + 9.2199e-01, 1.9900e-01, 4.2619e-01, 4.4780e-01, + 8.1135e-02, 9.5799e-01, 6.8159e-01, 4.9863e-01, + 9.0361e-01, 1.3871e-02, 2.6091e-01, 7.0264e-01, + 1.6233e-01, 5.7701e-01, 8.7766e-01, 9.9341e-01, + 7.9165e-03, 2.3394e-01, 3.4769e-01, 4.0280e-01, + 1.9959e-01, 8.9790e-01, 1.6539e-01, 4.2376e-01, + 5.1947e-01, 7.9921e-01, 6.2961e-01, 1.4656e-01, + 7.1967e-01, 5.1173e-01, 5.0499e-02, 5.8913e-02, + 7.2658e-01, 5.5097e-01, 6.6169e-01, 5.3772e-01, + 5.7568e-01, 2.5232e-01, 7.7131e-01, 8.5382e-01, + 1.9579e-01, 1.9993e-01, 7.2402e-02, 9.0475e-01, + 4.3615e-01, 7.8768e-01, 1.5065e-01, 5.6517e-01, + 6.0863e-01, 9.5781e-01, 3.3373e-01, 9.9653e-01, + 6.7533e-02, 1.2064e-01, 2.3851e-01, 9.1146e-01, + 8.8718e-01, 8.3923e-01, 1.6753e-01, 8.6985e-02, + 6.1194e-01, 4.6784e-01, 1.0674e-01, 1.8346e-01, + 9.5304e-01, 8.9043e-01, 7.9426e-01, 2.7578e-01, + 1.9633e-01, 7.5511e-01, 1.0642e-01, 9.0760e-01, + 6.4200e-01, 9.6876e-01, 8.4995e-01, 3.9660e-01, + 4.8973e-01, 2.5945e-01, 6.1922e-01, 8.1803e-01, + 2.0832e-01, 4.4811e-01, 4.7957e-01, 1.2390e-01, + 5.2610e-01, 4.4958e-01, 3.5176e-01, 2.4695e-01, + 7.4385e-01, 3.0128e-01, 7.0146e-01, 2.2427e-01, + 6.6222e-01, 4.9559e-02, 8.9363e-01, 4.6390e-01, + 8.1540e-01, 3.7867e-01, 5.7745e-01, 7.3291e-01, + 8.8115e-01, 9.7559e-01, 7.0693e-01, 6.0469e-01, + 6.3235e-01, 5.7336e-01, 8.5036e-01, 4.6214e-01, + 9.9242e-01, 5.1481e-01, 8.2094e-01, 4.9814e-01, + 1.6092e-01, 5.8114e-01, 6.0381e-01, 4.0373e-01, + 4.7548e-01, 5.1946e-01, 2.6720e-01, 3.7324e-01, + 4.7349e-01, 4.1972e-01, 1.7257e-01, 8.5210e-01, + 9.6499e-01, 2.3452e-01, 5.3354e-01, 5.7176e-01, + 9.5613e-01, 4.3309e-01, 7.1907e-01, 2.2168e-01, + 9.0472e-01, 8.5620e-02, 8.3562e-01, 6.9347e-01, + 6.9805e-01, 9.4473e-01, 2.9112e-01, 7.4302e-01, + 1.6621e-01, 6.8722e-01, 3.5179e-01, 4.1800e-01, + 3.4271e-01, 1.6154e-01, 9.2278e-01, 1.7938e-01, + 1.8291e-01, 8.4643e-01, 4.1537e-01, 7.2976e-02, + 7.0126e-01, 1.6574e-01, 8.8985e-01, 5.6868e-01, + 2.2932e-01, 6.2724e-01, 8.0478e-01, 4.3911e-02, + 1.1564e-01, 3.2750e-01, 6.3111e-01, 3.2014e-01, + 6.9135e-01, 9.5862e-02, 7.5360e-01, 8.3627e-01, + 4.6759e-01, 6.4025e-01, 7.0735e-01, 9.8115e-01, + 6.3451e-01, 1.0593e-01, 3.2573e-01, 8.4476e-01, + 4.8491e-01, 6.4618e-01, 2.5010e-03, 9.0118e-01, + 6.4617e-01, 1.5072e-01, 1.3331e-01, 9.2066e-02, + 1.1781e-01, 4.3006e-01, 1.5840e-01, 7.2118e-02, + 1.1382e-01, 8.0212e-01, 9.5499e-01, 3.6425e-01, + 8.1942e-01, 6.5808e-01, 9.5776e-01, 5.7078e-01, + 9.4575e-01, 3.9544e-01, 5.7117e-02, 1.0347e-03, + 5.8737e-01, 8.9480e-01, 9.5353e-02, 7.7283e-01, + 2.2356e-01, 3.6268e-01, 9.3671e-01, 6.2627e-01, + 9.9028e-01, 9.1172e-01, 1.1874e-01, 2.6596e-01, + 9.6236e-01, 7.2565e-01, 8.1658e-01, 7.7070e-01, + 2.2315e-01, 4.7096e-01, 4.7573e-01, 3.3760e-01, + 8.0342e-01, 4.7336e-02, 5.6825e-01, 9.4337e-01, + 3.4038e-01, 7.7040e-01, 5.0426e-01, 4.1706e-01, + 9.9961e-01, 2.1652e-01, 1.8457e-01, 3.3187e-01, + 5.8180e-01, 4.4096e-01, 2.1837e-01, 7.9119e-01, + 8.0254e-02, 7.4263e-02, 9.8646e-02, 9.4248e-01, + 2.3779e-01, 4.2431e-01, 1.9629e-01, 3.3304e-01, + 2.4919e-01, 1.0402e-01, 9.8188e-01, 5.4736e-01, + 1.4913e-01, 5.7587e-03, 5.6445e-01, 5.2484e-01, + 4.6956e-01, 9.3184e-01, 6.3000e-01, 1.4646e-01, + 2.1142e-01, 3.0428e-01, 1.5525e-01, 8.3433e-01, + 1.7066e-01, 7.8048e-01, 8.2016e-01, 7.0435e-01, + 4.4059e-01, 5.8760e-01, 4.5425e-01, 8.0602e-01, + 8.9803e-01, 9.3025e-01, 6.3674e-01, 1.5054e-01, + 7.9866e-01, 6.4346e-01, 7.8825e-01, 4.1129e-01, + 3.0173e-01, 4.0360e-01, 5.0553e-01, 5.9107e-01, + 6.1689e-01, 4.9456e-02, 3.4377e-03, 4.8057e-01, + 5.6853e-01, 1.8120e-01, 6.7514e-01, 2.6397e-01, + 4.2324e-01, 2.1411e-01, 5.0331e-01, 3.6631e-01, + 8.4193e-01, 7.6145e-01, 1.8110e-01, 9.6180e-01, + 7.2500e-01, 5.4517e-01, 7.1281e-01, 6.9551e-01, + 4.5515e-01, 6.2912e-01, 3.2411e-01, 8.1114e-01, + 4.2773e-01, 4.0519e-01, 7.6529e-01, 5.2978e-01, + 5.9559e-01, 8.3615e-01, 3.0327e-01, 1.9611e-02, + 1.6059e-01, 1.0841e-01, 9.3860e-01, 8.2645e-02, + 3.3380e-01, 5.7353e-01, 1.9475e-01, 5.8015e-01, + 3.0263e-01, 4.7505e-01, 2.4008e-01, 4.1915e-01, + 9.6386e-01, 4.6302e-01, 3.7857e-01, 5.2904e-01, + 3.9195e-01, 4.2521e-01, 5.9112e-01, 3.9671e-02, + 6.6317e-01, 3.5780e-01, 4.1139e-01, 2.1541e-01, + 2.8728e-01, 2.3802e-01, 6.2230e-01, 5.2438e-01, + 1.6292e-01, 9.8509e-01, 3.8738e-01, 1.7958e-01, + 7.4241e-01, 3.9140e-01, 9.1800e-01, 3.9747e-01, + 8.1517e-01, 4.7486e-01, 8.3183e-01, 8.7475e-01, + 9.3295e-01, 2.1605e-01, 9.9052e-01, 4.1845e-01, + 1.3601e-01, 2.7985e-01, 4.7862e-01, 2.9639e-02, + 8.0394e-01, 9.1266e-01, 4.0342e-01, 5.3304e-01, + 4.2243e-01, 6.2229e-01, 8.8835e-01, 7.7187e-01, + 9.6127e-01, 7.1745e-02, 4.1095e-01, 2.3731e-01, + 1.2356e-01, 1.4723e-01, 1.9539e-01, 1.8195e-01, + 1.5048e-01, 8.5689e-01, 2.0479e-01, 2.5676e-01, + 9.5713e-02, 3.2840e-01, 4.7391e-01, 9.6484e-01, + 4.8540e-01, 6.4549e-01, 5.0639e-01, 8.5705e-01, + 3.9350e-01, 2.9806e-01, 7.9391e-01, 4.8825e-01, + 1.8922e-02, 8.1563e-01, 6.7073e-01, 2.0636e-02, + 2.8434e-01, 7.2627e-01, 5.6622e-01, 4.9554e-03, + 9.2989e-01, 3.0267e-01, 9.6246e-01, 1.6650e-01, + 7.9689e-01, 3.8212e-01, 1.2655e-01, 2.6349e-01, + 2.9628e-01, 9.9809e-01, 9.6335e-02, 8.2620e-01, + 4.6294e-01, 5.3004e-01, 2.3693e-02, 9.0363e-01, + 7.1222e-01, 9.1051e-01, 3.3602e-01, 4.9970e-01, + 8.9474e-01, 2.8768e-02, 9.7860e-01, 3.1968e-01, + 5.6426e-01, 2.5855e-01, 2.4516e-01, 9.1417e-01, + 9.5623e-01, 9.8092e-01, 2.8219e-01, 1.0553e-01, + 3.6981e-01, 9.7224e-01, 6.4610e-02, 5.7271e-01, + 5.9765e-01, 4.0143e-01, 1.5411e-01, 7.8939e-04, + 5.0172e-01, 7.5011e-01, 9.9409e-01, 6.8790e-01, + 9.1909e-02, 2.8329e-01, 3.8006e-01, 4.1212e-01, + 4.4012e-01, 3.8773e-02, 5.7842e-01, 9.2291e-01, + 3.9389e-01, 3.9145e-01, 1.2421e-01, 8.3754e-01, + 2.7956e-01, 6.7254e-01, 5.2784e-01, 9.9964e-01, + 3.6905e-01, 4.3423e-01, 3.4668e-01, 8.4768e-01, + 1.5393e-01, 9.4602e-01, 4.5881e-01, 7.5602e-01, + 6.3106e-01, 1.3235e-01, 7.9169e-01, 6.0500e-01, + 9.9974e-01, 4.7588e-01, 7.8411e-01, 8.5292e-01, + 7.0966e-01, 3.2951e-01, 1.8374e-01, 4.8875e-02, + 6.2695e-01, 9.1931e-02, 3.4192e-01, 8.1190e-01, + 3.3725e-01, 7.3935e-01, 1.5630e-01, 5.1945e-01, + 1.9381e-03, 6.9304e-01, 1.8504e-01, 2.9373e-02, + 4.8455e-01, 2.6428e-01, 5.0484e-01, 1.5646e-01, + 1.2197e-01, 3.9943e-02, 3.2333e-01, 1.0585e-01, + 7.4663e-01, 6.6620e-01, 1.1201e-01, 1.2826e-01, + 5.2111e-01, 6.9997e-01, 5.4975e-02, 2.0518e-01, + 1.2700e-01, 6.2330e-01, 8.2410e-01, 2.4900e-02, + 7.5291e-01, 8.0129e-01, 1.7765e-01, 9.2550e-01, + 2.5432e-01, 2.0637e-01, 6.5874e-01, 7.2007e-01, + 8.6407e-01, 7.8405e-01, 3.1032e-01, 7.8214e-01, + 3.5389e-01, 2.7424e-01, 5.9024e-01, 4.8824e-01, + 4.7086e-02, 3.8939e-01, 4.8563e-01, 9.5702e-01, + 6.7629e-01, 7.0684e-01, 3.6810e-01, 2.3133e-01, + 4.9902e-01, 8.7202e-01, 6.7479e-02, 6.1566e-01, + 7.8290e-02, 8.3791e-02, 9.2649e-01, 8.2998e-01, + 4.0801e-01, 4.7014e-01, 5.2634e-01, 5.3655e-02, + 9.7252e-01, 2.8148e-01, 8.5595e-01, 4.6484e-01, + 7.1190e-01, 7.0612e-01, 4.2393e-01, 5.2695e-01, + 5.5544e-01, 8.8769e-01, 1.5139e-01, 8.5190e-01, + 3.1040e-01, 6.9579e-01, 8.6276e-01, 6.1546e-01, + 5.2896e-01, 8.0480e-01, 8.2431e-01, 5.0802e-01, + 6.0537e-01, 1.3267e-01, 3.3537e-01, 4.0026e-01, + 1.6728e-01, 8.3436e-01, 1.1422e-01, 3.5781e-01, + 6.9035e-01, 6.6937e-01, 7.5611e-01, 5.5854e-01, + 8.5495e-01, 7.5287e-01, 7.5036e-01, 4.6923e-01, + 5.2440e-01, 7.9414e-01, 7.6271e-01, 7.5863e-01, + 2.9887e-01, 7.8542e-01, 5.6485e-01, 8.6153e-01, + 7.6895e-01, 4.8096e-01, 5.7635e-01, 2.8813e-01, + 6.7009e-01, 9.0793e-01, 1.0755e-01, 9.1873e-01, + 5.5044e-03, 2.9826e-01, 5.9487e-01, 1.0568e-01, + 6.7877e-01, 2.8805e-01, 4.7307e-02, 6.5816e-01, + 5.1192e-01, 9.3067e-01, 5.4036e-01, 5.0440e-03, + 8.1461e-02, 7.3561e-01, 1.3695e-01, 4.4846e-01, + 2.4019e-01, 9.6165e-01, 8.1744e-01, 8.2709e-01, + 9.0129e-01, 7.3287e-01, 1.3276e-01, 8.3131e-01, + 9.3111e-01, 4.6789e-03, 3.3066e-01, 8.6225e-01, + 2.6819e-01, 4.8301e-01, 7.6794e-01, 8.3168e-01, + 9.0917e-01, 9.3363e-01, 4.8256e-01, 2.5947e-01, + 7.1854e-01, 1.3071e-01, 2.9768e-01, 6.0585e-02, + 4.9797e-01, 2.2186e-02, 4.1198e-02, 9.5089e-01, + 2.7744e-01, 2.8217e-01, 3.7438e-01, 7.9073e-01, + 6.5584e-01, 8.1943e-01, 7.8162e-01, 6.2981e-01, + 3.1742e-01, 6.8479e-01, 5.9751e-01, 4.8636e-01, + 8.1575e-01, 7.6156e-01, 1.3590e-01, 3.9901e-01, + 2.9372e-02, 6.9592e-01, 2.5219e-02, 9.0885e-01, + 9.3676e-01, 2.4186e-01, 5.4210e-01, 7.0052e-01, + 3.1218e-01, 2.4049e-02, 9.4194e-01, 3.1506e-01, + 7.5257e-01, 8.3315e-01, 2.1755e-01, 9.4989e-01, + 2.3775e-01, 6.9686e-01, 5.6024e-01, 1.4900e-01, + 2.6360e-01, 9.2505e-01, 5.2813e-01, 6.8236e-03, + 8.1968e-01, 1.5283e-01, 7.0831e-01, 5.0894e-01, + 1.7449e-01, 2.2853e-01, 9.1910e-01, 4.5896e-01, + 2.3797e-01, 4.9876e-01, 8.3151e-01, 8.0057e-01, + 1.5198e-01, 4.0839e-01, 5.3457e-01, 8.2773e-01, + 8.9742e-01, 3.6585e-01, 1.1885e-01, 7.5058e-02, + 5.1360e-01, 1.2993e-01, 6.4074e-01, 2.8187e-01, + 1.5563e-01, 4.7918e-01, 9.4829e-01, 9.6510e-01, + 1.2993e-01, 2.1684e-01, 3.9242e-02, 2.6542e-01, + 5.4851e-01, 5.3385e-01, 5.4087e-01, 8.5787e-01, + 9.7202e-01, 9.3432e-01, 1.8668e-01, 7.5762e-01, + 5.1326e-01, 8.0687e-01, 2.8309e-01, 9.0047e-01, + 7.3313e-01, 3.7340e-01, 1.3043e-01, 2.4492e-01, + 8.1951e-01, 4.0491e-01, 7.4743e-01, 7.6936e-01, + 6.8520e-01, 1.5566e-01, 5.9978e-02, 9.6069e-01, + 6.9248e-01, 3.0915e-01, 6.2034e-01, 6.1596e-01, + 3.6484e-01, 1.7480e-01, 8.4653e-01, 9.2050e-01, + 8.2065e-01, 2.9857e-01, 9.9175e-01, 1.3310e-01, + 6.5255e-01, 6.7877e-01, 2.6678e-01, 1.8992e-01, + 8.7519e-01, 2.4946e-01, 9.0498e-01, 3.5220e-01, + 3.5595e-01, 3.0962e-01, 5.8717e-01, 8.5492e-01, + 1.7066e-01, 1.2676e-01, 4.3909e-01, 9.9948e-01, + 2.9805e-01, 8.4656e-01, 3.4993e-01, 3.4980e-01, + 5.0013e-01, 6.5333e-01, 3.5691e-01, 8.4393e-01, + 8.5806e-01, 8.3126e-01, 8.3977e-01, 8.9279e-01, + 1.6967e-01, 5.3311e-01, 7.5568e-01, 4.9048e-01, + 3.9135e-01, 9.3910e-01, 6.5958e-01, 2.2055e-01, + 4.7845e-02, 9.4879e-01, 3.0447e-02, 5.7881e-01, + 4.8934e-01, 5.3255e-01, 5.2117e-01, 9.8542e-01, + 7.8901e-01, 9.8935e-01, 8.4588e-01, 5.8553e-01, + 7.0732e-01, 5.2210e-01, 4.2421e-01, 1.3138e-01, + 3.7579e-03, 2.3797e-02, 6.2773e-01, 7.8251e-01, + 1.5153e-01, 5.3533e-01, 3.0818e-01, 1.8187e-01, + 2.9566e-01, 9.3623e-01, 2.6786e-01, 3.7307e-01, + 3.6606e-02, 5.0726e-01, 8.7810e-01, 7.6366e-01, + 5.9947e-02, 5.6156e-01, 8.0858e-01, 4.2154e-01, + 8.7809e-01, 9.5811e-01, 1.1582e-01, 9.2928e-01, + 2.9681e-01, 7.2658e-03, 1.5538e-01, 6.5074e-01, + 3.9636e-02, 8.9436e-01, 7.8744e-01, 8.9518e-01, + 9.8470e-01, 5.6734e-01, 7.0415e-01, 9.3305e-01, + 5.0412e-01, 6.9225e-01, 3.7680e-01, 6.1826e-02, + 9.2996e-01, 8.0182e-01, 5.8778e-01, 7.6905e-01, + 7.1401e-01, 2.8426e-01, 5.8863e-01, 7.7111e-01, + 3.4084e-01, 8.9029e-01, 5.9812e-01, 9.9864e-01, + 9.5608e-01, 6.0548e-01, 6.6852e-01, 8.4302e-01, + 3.6006e-01, 3.3586e-02, 3.8115e-01, 9.1830e-03, + 3.8398e-01, 4.1210e-02, 6.9895e-01, 7.1032e-01, + 3.0120e-01, 9.6801e-01, 1.0851e-01, 8.0637e-01, + 3.8750e-01, 9.1804e-01, 1.1349e-01, 1.4880e-01, + 5.5597e-01, 5.7805e-01, 4.9664e-01, 8.5710e-01, + 2.7043e-01, 1.8423e-01, 3.7186e-01, 2.7686e-01, + 8.2085e-01, 9.0786e-01, 7.9438e-01, 8.5465e-01, + 3.3007e-01, 5.5600e-01, 8.5585e-01, 7.9228e-01, + 6.0820e-01, 8.9734e-01, 3.4185e-01, 2.6683e-01, + 4.6811e-01, 8.9853e-01, 8.4435e-02, 8.5459e-01, + 4.8374e-01, 8.1887e-01, 2.0131e-01, 9.6681e-01, + 1.9732e-01, 4.5077e-01, 1.5893e-01, 5.5802e-02, + 9.5327e-01, 9.9846e-01, 9.0623e-01, 5.7046e-01, + 5.4920e-01, 1.9134e-01, 8.3989e-01, 8.6713e-01, + 9.7239e-01, 2.8320e-01, 9.3550e-01, 6.0737e-01, + 3.9692e-01, 8.8510e-01, 4.8390e-01, 1.8367e-01, + 8.8882e-01, 1.8523e-01, 9.4789e-01, 5.0970e-01, + 6.8785e-01, 3.3279e-01, 9.8456e-01, 7.4517e-02, + 7.4611e-01, 6.3282e-01, 3.2770e-02, 4.9303e-01, + 1.2047e-01, 2.8452e-01, 6.4498e-01, 3.3432e-01, + 5.6706e-01, 4.1401e-01, 8.8033e-01, 6.5752e-01, + 7.1826e-01, 2.3947e-01, 8.1152e-02, 9.2556e-01, + 5.9988e-01, 8.5251e-01, 3.7673e-01, 3.4441e-01, + 9.2290e-01, 3.5271e-01, 4.6772e-01, 3.3679e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.4545, 0.4841, 0.5462, ..., 0.7193, 0.8873, 0.8657]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 0.044791460037231445 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '234419', '-ss', '10000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 6.79626727104187} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 999, 999, 1000]), + col_indices=tensor([9785, 166, 4732, 1054, 2677, 737, 2692, 6702, 6696, + 4987, 1461, 2792, 4644, 6824, 7514, 9831, 4632, 9574, + 5878, 8004, 2663, 8554, 6382, 4503, 7552, 2495, 4359, + 3665, 8415, 1378, 7600, 5186, 955, 5619, 8737, 8271, + 4450, 9961, 761, 5226, 9765, 6949, 7600, 499, 6338, + 2186, 620, 8240, 8992, 3003, 4300, 6850, 7631, 6276, + 6344, 3045, 5424, 4843, 6655, 214, 8437, 1153, 3048, + 3945, 6705, 6578, 503, 4280, 3660, 2187, 4388, 1729, + 3826, 9897, 4722, 8899, 9116, 9862, 250, 3435, 9656, + 2133, 229, 8648, 3790, 2892, 3215, 8841, 9321, 9370, + 7919, 5258, 2328, 1718, 8273, 9787, 6605, 3738, 1986, + 5382, 5473, 3182, 6931, 2297, 7008, 4903, 4955, 9265, + 754, 4714, 8976, 5504, 5461, 5298, 6045, 8621, 5402, + 6079, 8510, 4644, 6547, 2179, 8728, 6010, 134, 4499, + 1213, 8522, 835, 4809, 3944, 8041, 9806, 7565, 7536, + 4656, 4837, 2879, 6946, 3464, 619, 62, 5432, 9820, + 4952, 996, 8581, 5377, 7694, 9712, 7485, 8052, 3987, + 792, 320, 7566, 9599, 1370, 2235, 8718, 1363, 2332, + 5027, 3430, 1039, 1637, 55, 6337, 6636, 2980, 6048, + 6985, 3464, 5945, 8651, 8573, 3606, 1490, 865, 905, + 1490, 3435, 6844, 9031, 3965, 6482, 2873, 1087, 9063, + 2290, 2149, 1390, 7730, 2893, 8310, 7722, 8741, 6862, + 5350, 1281, 3410, 4660, 4916, 1233, 3316, 6898, 6188, + 5449, 741, 3875, 9700, 9872, 3389, 7597, 8144, 8722, + 9746, 1550, 1244, 7613, 4719, 4426, 9724, 1811, 8910, + 8345, 957, 9931, 7286, 1642, 1, 4022, 8010, 1904, + 1644, 4817, 7131, 4114, 3549, 4195, 2668, 4121, 4405, + 2741, 2430, 2265, 1112, 7943, 3629, 7844, 7608, 8287, + 9308, 5998, 9737, 8595, 1962, 8938, 343, 6874, 9789, + 9356, 8225, 1546, 3553, 2148, 3996, 9245, 6048, 8823, + 3398, 6498, 7428, 9499, 2417, 812, 7761, 7774, 8309, + 9098, 6784, 5574, 3988, 2354, 3852, 2415, 6591, 8240, + 4397, 6666, 9763, 2093, 3435, 2169, 9681, 9101, 9169, + 7306, 3087, 7043, 543, 3648, 5184, 1467, 4507, 844, + 4286, 2769, 7533, 3344, 2717, 6573, 2325, 2539, 2728, + 7418, 3180, 681, 8690, 9379, 9577, 6255, 572, 2901, + 6468, 4233, 8000, 3259, 916, 6238, 442, 3591, 4793, + 3309, 9434, 9985, 363, 3303, 1400, 4359, 7518, 3644, + 5004, 6752, 6531, 4932, 1594, 4176, 8596, 7996, 9452, + 4255, 2970, 2679, 9053, 9602, 7809, 5895, 9805, 3931, + 4450, 2689, 8816, 4218, 8262, 3650, 6736, 2445, 3979, + 3263, 3314, 7848, 6269, 9437, 2493, 1316, 3709, 5881, + 2851, 4568, 7456, 1023, 6351, 8957, 9431, 9809, 7905, + 5620, 9526, 6013, 5365, 6397, 6944, 7671, 5462, 4356, + 941, 2415, 1563, 7405, 8273, 1303, 7168, 7136, 689, + 7807, 9742, 99, 8146, 7835, 9875, 2644, 7093, 8194, + 4600, 4882, 5801, 1693, 4045, 2037, 8709, 6551, 7297, + 7733, 8443, 3612, 1144, 1583, 4915, 632, 5411, 9764, + 8966, 6912, 2517, 8723, 5338, 6627, 4780, 5074, 252, + 2764, 4409, 9443, 5542, 3491, 7522, 6229, 6706, 2379, + 4994, 3715, 4338, 8970, 3455, 2391, 3173, 2189, 189, + 3152, 8308, 2747, 8707, 9978, 2579, 3596, 3717, 7074, + 8374, 9463, 9789, 3344, 8397, 1857, 7053, 8019, 9174, + 7289, 7973, 1302, 5745, 2471, 8049, 4561, 1609, 5496, + 5420, 6442, 9170, 3047, 7465, 7581, 2958, 6201, 6776, + 9868, 628, 9925, 8329, 2691, 3342, 8858, 7611, 5869, + 4294, 6350, 8022, 6784, 8177, 180, 2444, 827, 1240, + 2070, 9651, 5806, 3667, 5899, 9120, 4564, 7566, 8581, + 2122, 4232, 8576, 1265, 6962, 2886, 6630, 13, 977, + 4882, 3358, 9434, 7172, 312, 1663, 2578, 5247, 3309, + 6660, 1669, 2730, 6017, 5873, 3715, 6468, 4145, 2235, + 1635, 9287, 6498, 1723, 1950, 5564, 1206, 5112, 1902, + 9985, 2005, 4744, 140, 2793, 319, 6150, 378, 5699, + 9535, 1978, 7927, 9858, 9618, 5584, 6047, 5793, 9146, + 871, 5971, 2761, 6573, 1303, 8144, 7546, 7583, 8871, + 5806, 1270, 1551, 8880, 4357, 2001, 1191, 4948, 1497, + 5338, 6389, 4432, 9166, 6271, 599, 2576, 2105, 5266, + 6760, 940, 2516, 7029, 150, 1814, 6143, 119, 5761, + 6997, 1805, 9581, 3150, 1685, 2677, 5907, 3244, 6569, + 636, 5239, 328, 2606, 9873, 5694, 312, 8146, 4066, + 2356, 3554, 3284, 5042, 4281, 5763, 9098, 2638, 8485, + 6772, 5511, 6169, 5242, 6099, 4348, 7529, 4802, 8127, + 5016, 3710, 6553, 7372, 8670, 6112, 7508, 4879, 8626, + 5415, 173, 2999, 7878, 2740, 5648, 6256, 4717, 680, + 285, 2248, 6576, 6946, 8315, 6648, 6232, 3819, 207, + 2750, 1785, 9384, 4909, 4623, 6412, 4459, 7968, 1566, + 1457, 4773, 5497, 3497, 561, 561, 9827, 5162, 1927, + 5564, 5333, 2833, 2273, 2965, 3538, 9578, 4834, 9669, + 7936, 3482, 1294, 964, 2949, 1061, 6428, 4856, 8359, + 823, 835, 7553, 4805, 9310, 4440, 3742, 8345, 2534, + 2048, 2597, 1463, 3578, 8817, 698, 3041, 2184, 2470, + 6677, 6761, 6266, 8828, 403, 1862, 1860, 190, 6193, + 938, 4044, 6995, 9429, 9407, 237, 9495, 7714, 4774, + 6105, 3412, 1344, 1515, 4894, 9334, 4967, 7979, 8072, + 3534, 9065, 5060, 5244, 3805, 9427, 9942, 1579, 8946, + 6693, 6377, 5190, 6721, 8176, 1310, 9299, 3278, 7860, + 2977, 6676, 6683, 7050, 7867, 7581, 7620, 7222, 4756, + 6631, 6324, 5272, 9699, 4919, 8937, 1647, 8728, 3792, + 6721, 9851, 1772, 4894, 9362, 610, 8497, 6604, 2645, + 3943, 1830, 4247, 8187, 570, 3436, 2219, 4749, 7757, + 3374, 6190, 5390, 2365, 4451, 7704, 1737, 1474, 4069, + 4728, 1831, 420, 6368, 8431, 6243, 8033, 4258, 3893, + 27, 4401, 7951, 8739, 3130, 228, 7784, 7785, 1501, + 6951, 7338, 1793, 3222, 3729, 4330, 1726, 1335, 5426, + 4562, 4180, 8211, 2920, 5185, 9818, 731, 4604, 4720, + 7330, 9485, 961, 8821, 4694, 6303, 151, 3936, 5654, + 5697, 1356, 5185, 1362, 1778, 2202, 507, 5473, 8330, + 3989, 7967, 7406, 5227, 8280, 7073, 6810, 5099, 1669, + 1698, 7489, 8524, 9942, 7528, 1663, 4243, 2507, 1395, + 2964, 8529, 3047, 8014, 8347, 9122, 4984, 165, 397, + 5886, 7762, 6635, 8641, 9864, 5736, 8655, 5186, 6739, + 5510, 573, 352, 8688, 3386, 9209, 9968, 6024, 4140, + 5923, 473, 8204, 486, 5334, 1333, 7972, 8566, 475, + 5771, 9094, 1294, 1428, 7487, 6295, 8728, 6230, 592, + 7838, 8672, 1400, 7420, 2487, 7365, 9344, 2707, 4067, + 7923, 6146, 3694, 3458, 1082, 3163, 220, 6283, 4440, + 4207, 9808, 1906, 7825, 6343, 6969, 3880, 8804, 3924, + 4573, 6298, 8864, 3426, 8181, 3978, 3247, 565, 1550, + 402, 5683, 3735, 538, 4968, 3623, 6448, 4374, 4484, + 4981, 9965, 3979, 6037, 7993, 3906, 6774, 4197, 4077, + 6141, 5665, 216, 4728, 3404, 3490, 5845, 5442, 5936, + 2392]), + values=tensor([0.6789, 0.7902, 0.6880, 0.1459, 0.9506, 0.7545, 0.6244, + 0.9289, 0.9189, 0.9462, 0.9513, 0.6797, 0.9583, 0.6521, + 0.3572, 0.8716, 0.5241, 0.6472, 0.3203, 0.1422, 0.9924, + 0.9883, 0.3178, 0.6373, 0.7734, 0.0675, 0.9563, 0.6053, + 0.5349, 0.5673, 0.0327, 0.1179, 0.7077, 0.4694, 0.1771, + 0.1262, 0.5569, 0.0846, 0.1154, 0.8467, 0.3122, 0.2151, + 0.7148, 0.7408, 0.8150, 0.4660, 0.4917, 0.7673, 0.7452, + 0.0313, 0.3956, 0.8268, 0.3175, 0.4706, 0.4333, 0.5467, + 0.1812, 0.4264, 0.6242, 0.2334, 0.7860, 0.1513, 0.2008, + 0.5709, 0.5899, 0.1116, 0.6313, 0.6602, 0.1966, 0.5433, + 0.7515, 0.3064, 0.3549, 0.5620, 0.0543, 0.9463, 0.5389, + 0.6761, 0.7393, 0.6158, 0.0063, 0.2471, 0.4723, 0.9199, + 0.3569, 0.4061, 0.7383, 0.7275, 0.0079, 0.6368, 0.9169, + 0.6344, 0.7352, 0.2038, 0.6882, 0.0692, 0.7620, 0.4514, + 0.2523, 0.8680, 0.1348, 0.7845, 0.5002, 0.5098, 0.3488, + 0.4607, 0.0221, 0.4555, 0.4226, 0.6131, 0.7187, 0.3428, + 0.3065, 0.6724, 0.0711, 0.0179, 0.7366, 0.6267, 0.9128, + 0.1224, 0.7126, 0.0754, 0.8619, 0.7825, 0.0545, 0.2356, + 0.9584, 0.3541, 0.2836, 0.6314, 0.8234, 0.7482, 0.4493, + 0.8483, 0.4729, 0.3589, 0.4188, 0.1103, 0.2255, 0.9961, + 0.6787, 0.3921, 0.6680, 0.8683, 0.7021, 0.3865, 0.3920, + 0.1658, 0.1678, 0.4939, 0.4618, 0.4732, 0.1460, 0.5450, + 0.9787, 0.9696, 0.4490, 0.7981, 0.3843, 0.2315, 0.8056, + 0.3525, 0.1190, 0.4883, 0.6625, 0.0183, 0.5766, 0.1702, + 0.8525, 0.4266, 0.9885, 0.3533, 0.6524, 0.3520, 0.6675, + 0.3686, 0.0718, 0.4867, 0.4731, 0.5922, 0.1762, 0.0984, + 0.8628, 0.4134, 0.8916, 0.3533, 0.5971, 0.5074, 0.7582, + 0.8871, 0.2236, 0.9584, 0.0325, 0.3111, 0.7335, 0.9248, + 0.3610, 0.5237, 0.4724, 0.6363, 0.3785, 0.9824, 0.9725, + 0.9776, 0.6421, 0.3971, 0.9485, 0.6001, 0.7926, 0.8669, + 0.3153, 0.5971, 0.1508, 0.4626, 0.0885, 0.4864, 0.3318, + 0.5636, 0.0911, 0.0185, 0.5989, 0.9966, 0.4528, 0.8918, + 0.5935, 0.5481, 0.7258, 0.2687, 0.0530, 0.6100, 0.7098, + 0.6023, 0.2883, 0.5201, 0.3796, 0.5485, 0.0840, 0.2270, + 0.1228, 0.3948, 0.5803, 0.8700, 0.9491, 0.8250, 0.0603, + 0.9919, 0.7306, 0.4249, 0.6130, 0.9492, 0.3756, 0.7245, + 0.3148, 0.4093, 0.9728, 0.5261, 0.7680, 0.2256, 0.5492, + 0.4073, 0.1262, 0.9579, 0.7958, 0.6185, 0.5787, 0.0032, + 0.9180, 0.4937, 0.1203, 0.4035, 0.9433, 0.1036, 0.5838, + 0.8351, 0.6111, 0.8175, 0.9802, 0.7183, 0.1991, 0.1161, + 0.6332, 0.0124, 0.5364, 0.6217, 0.8091, 0.1122, 0.8740, + 0.1163, 0.2222, 0.2785, 0.6702, 0.0683, 0.2947, 0.0833, + 0.2798, 0.6418, 0.4443, 0.5947, 0.1590, 0.9468, 0.9361, + 0.8112, 0.8660, 0.6981, 0.5697, 0.3167, 0.0366, 0.6335, + 0.3897, 0.4571, 0.1447, 0.5764, 0.9037, 0.2483, 0.1549, + 0.1009, 0.0249, 0.7044, 0.2023, 0.8346, 0.6547, 0.8912, + 0.2294, 0.5760, 0.6906, 0.9669, 0.7653, 0.8821, 0.3934, + 0.3027, 0.6247, 0.6525, 0.0866, 0.7292, 0.9329, 0.7996, + 0.4288, 0.8616, 0.1508, 0.0988, 0.9403, 0.2822, 0.5955, + 0.6875, 0.8665, 0.1816, 0.1480, 0.4114, 0.1188, 0.7739, + 0.8942, 0.9570, 0.7041, 0.1444, 0.6212, 0.3491, 0.5667, + 0.0588, 0.7926, 0.9206, 0.1582, 0.5243, 0.4413, 0.5215, + 0.1245, 0.7716, 0.8320, 0.5173, 0.9502, 0.7001, 0.2561, + 0.0911, 0.9197, 0.7119, 0.6127, 0.0767, 0.0934, 0.5759, + 0.1581, 0.2199, 0.0678, 0.8478, 0.9549, 0.6215, 0.0890, + 0.3431, 0.8983, 0.2304, 0.5093, 0.4202, 0.5025, 0.0728, + 0.6820, 0.4595, 0.8151, 0.9650, 0.1367, 0.0489, 0.6894, + 0.8815, 0.1798, 0.4118, 0.0768, 0.3094, 0.1640, 0.8421, + 0.4927, 0.7588, 0.0142, 0.6189, 0.5015, 0.3806, 0.0976, + 0.9793, 0.6681, 0.7480, 0.0182, 0.1909, 0.2189, 0.9142, + 0.2607, 0.9170, 0.6085, 0.3877, 0.5892, 0.9975, 0.3059, + 0.7882, 0.2019, 0.1535, 0.0071, 0.8506, 0.3449, 0.0641, + 0.1592, 0.1108, 0.5805, 0.7587, 0.2160, 0.6041, 0.3713, + 0.6770, 0.7587, 0.2265, 0.8945, 0.1762, 0.0243, 0.4669, + 0.3152, 0.4374, 0.1957, 0.7650, 0.5132, 0.2117, 0.2264, + 0.0215, 0.5030, 0.8658, 0.2647, 0.3502, 0.1551, 0.6560, + 0.0067, 0.9332, 0.9856, 0.5894, 0.1238, 0.2676, 0.8649, + 0.9565, 0.9902, 0.1696, 0.6772, 0.6676, 0.3453, 0.5280, + 0.8229, 0.0610, 0.7282, 0.8611, 0.5029, 0.4703, 0.3124, + 0.1888, 0.4355, 0.4695, 0.3041, 0.5282, 0.9095, 0.8104, + 0.8367, 0.7223, 0.9052, 0.4773, 0.1809, 0.7066, 0.3981, + 0.4859, 0.7926, 0.8979, 0.4406, 0.1512, 0.0689, 0.2600, + 0.9449, 0.2340, 0.8871, 0.5326, 0.6894, 0.3020, 0.6115, + 0.7125, 0.5080, 0.9386, 0.7392, 0.9728, 0.3697, 0.5130, + 0.6615, 0.2833, 0.2191, 0.0319, 0.5162, 0.1457, 0.6820, + 0.2960, 0.7626, 0.5209, 0.8942, 0.7534, 0.1675, 0.9981, + 0.2741, 0.5042, 0.5185, 0.8251, 0.1458, 0.4001, 0.7294, + 0.2939, 0.6680, 0.2563, 0.2107, 0.3729, 0.0109, 0.9675, + 0.0578, 0.6678, 0.4549, 0.7095, 0.2695, 0.1911, 0.4045, + 0.5293, 0.9947, 0.5724, 0.2173, 0.6766, 0.8022, 0.6141, + 0.6448, 0.5921, 0.5903, 0.6152, 0.3252, 0.8434, 0.9784, + 0.8383, 0.0725, 0.0125, 0.5696, 0.7371, 0.3359, 0.5988, + 0.4416, 0.1805, 0.0079, 0.6909, 0.1542, 0.8025, 0.6226, + 0.6922, 0.6664, 0.0150, 0.7185, 0.7912, 0.0152, 0.7974, + 0.2282, 0.4197, 0.1100, 0.6712, 0.2565, 0.3027, 0.8066, + 0.0145, 0.7787, 0.9272, 0.7222, 0.8899, 0.5677, 0.3948, + 0.8801, 0.6723, 0.2421, 0.7796, 0.9543, 0.4170, 0.8510, + 0.5686, 0.0369, 0.5583, 0.2476, 0.4567, 0.0569, 0.0422, + 0.7673, 0.1146, 0.1025, 0.3896, 0.6882, 0.0079, 0.0575, + 0.2938, 0.3742, 0.1241, 0.9931, 0.6975, 0.8840, 0.9317, + 0.9806, 0.1991, 0.8507, 0.4474, 0.7682, 0.9940, 0.5509, + 0.4476, 0.7719, 0.9465, 0.2149, 0.3612, 0.6837, 0.4167, + 0.4345, 0.1294, 0.1271, 0.2882, 0.5067, 0.0450, 0.8480, + 0.1928, 0.6057, 0.1393, 0.3987, 0.3605, 0.7978, 0.8175, + 0.8621, 0.1783, 0.9752, 0.8469, 0.7340, 0.7713, 0.8094, + 0.4586, 0.2030, 0.5868, 0.6787, 0.2227, 0.5771, 0.9455, + 0.5256, 0.7684, 0.1435, 0.8857, 0.6764, 0.8431, 0.5715, + 0.5742, 0.3102, 0.7053, 0.0466, 0.5354, 0.9759, 0.9769, + 0.6314, 0.6683, 0.5229, 0.9126, 0.1509, 0.6751, 0.3712, + 0.8980, 0.2049, 0.9006, 0.7145, 0.7721, 0.4147, 0.2585, + 0.1378, 0.4957, 0.6236, 0.9588, 0.0152, 0.6439, 0.0593, + 0.4480, 0.3219, 0.0447, 0.6693, 0.7359, 0.9794, 0.7913, + 0.2646, 0.3215, 0.4910, 0.9212, 0.3717, 0.5255, 0.8015, + 0.8731, 0.1589, 0.7259, 0.8090, 0.2892, 0.6692, 0.7370, + 0.0452, 0.5279, 0.1164, 0.0026, 0.7695, 0.9104, 0.0238, + 0.5287, 0.7956, 0.9774, 0.6709, 0.3624, 0.8096, 0.3404, + 0.9704, 0.4556, 0.6822, 0.4708, 0.0329, 0.1830, 0.1833, + 0.7752, 0.6472, 0.4138, 0.0312, 0.2551, 0.4062, 0.8502, + 0.2761, 0.8020, 0.0066, 0.8883, 0.6981, 0.4518, 0.8034, + 0.4933, 0.5625, 0.9452, 0.5704, 0.9596, 0.2546, 0.2030, + 0.5089, 0.0746, 0.2748, 0.9859, 0.8348, 0.9564, 0.0150, + 0.3617, 0.1413, 0.1737, 0.4018, 0.9606, 0.1423, 0.0622, + 0.5796, 0.0817, 0.4728, 0.0171, 0.3767, 0.2690, 0.4534, + 0.7834, 0.8071, 0.5450, 0.3163, 0.7240, 0.4062, 0.1469, + 0.5680, 0.7525, 0.6942, 0.2851, 0.2253, 0.9506, 0.6311, + 0.4609, 0.7752, 0.0674, 0.4022, 0.3995, 0.4727, 0.0350, + 0.3858, 0.8519, 0.1195, 0.7131, 0.5292, 0.5361, 0.8114, + 0.6976, 0.3862, 0.7850, 0.4965, 0.7133, 0.8944, 0.3454, + 0.5340, 0.0656, 0.3090, 0.8753, 0.3874, 0.7150, 0.1140, + 0.4992, 0.0324, 0.6353, 0.3283, 0.2429, 0.4620, 0.9287, + 0.8808, 0.8444, 0.4240, 0.1702, 0.9976, 0.9382, 0.1850, + 0.8858, 0.1261, 0.9756, 0.4941, 0.2977, 0.5118, 0.2978, + 0.5911, 0.0582, 0.3975, 0.7762, 0.1481, 0.7249, 0.2508, + 0.7751, 0.1051, 0.1815, 0.1046, 0.6943, 0.9499, 0.0430, + 0.6363, 0.0555, 0.2334, 0.6807, 0.9349, 0.9559, 0.0426, + 0.3891, 0.5208, 0.6682, 0.3815, 0.1620, 0.7040, 0.2277, + 0.6885, 0.9317, 0.1255, 0.2406, 0.1268, 0.4589, 0.2181, + 0.5125, 0.4312, 0.9217, 0.8160, 0.2655, 0.7553, 0.9031, + 0.6256, 0.9847, 0.7372, 0.6988, 0.0718, 0.8149, 0.4826, + 0.1186, 0.6546, 0.7683, 0.3108, 0.4796, 0.4682, 0.7402, + 0.1076, 0.7661, 0.7417, 0.6991, 0.6571, 0.0263, 0.5552, + 0.2429, 0.8947, 0.1852, 0.1789, 0.8343, 0.7982, 0.5512, + 0.8384, 0.1415, 0.4222, 0.9175, 0.0831, 0.6484, 0.5993, + 0.0336, 0.4340, 0.6749, 0.5075, 0.0886, 0.8148, 0.0117, + 0.5726, 0.4007, 0.9413, 0.7008, 0.0370, 0.4034, 0.4933, + 0.3499, 0.2260, 0.2600, 0.0656, 0.7231, 0.6211, 0.1323, + 0.0193, 0.4824, 0.8021, 0.7255, 0.4971, 0.8956, 0.2693, + 0.9646, 0.5171, 0.5343, 0.0358, 0.4159, 0.6660, 0.7518, + 0.0503, 0.0125, 0.4369, 0.9636, 0.6190, 0.9032, 0.3743, + 0.4704, 0.6239, 0.5965, 0.7163, 0.7018, 0.9679, 0.4373, + 0.2329, 0.4447, 0.1422, 0.5236, 0.5473, 0.3643, 0.1588, + 0.7733, 0.3704, 0.5703, 0.6240, 0.5476, 0.3470, 0.5155, + 0.8772, 0.0399, 0.9311, 0.7430, 0.6122, 0.6405]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.8987, 0.7248, 0.0383, ..., 0.6918, 0.0447, 0.2254]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 6.79626727104187 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '362169', '-ss', '10000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.681929588317871} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([1138, 3141, 5372, 6298, 9895, 5592, 6656, 4614, 931, + 6509, 2541, 488, 1171, 1072, 9057, 8648, 305, 9468, + 8935, 3721, 8788, 4223, 1394, 7441, 8183, 7526, 7164, + 9501, 2074, 6095, 6430, 1576, 7765, 4984, 8210, 5345, + 6644, 4874, 9665, 9793, 4608, 6072, 7262, 5461, 8184, + 6119, 899, 3855, 5088, 3002, 502, 2723, 2838, 2671, + 245, 5685, 2372, 8774, 3148, 7424, 9384, 3212, 8505, + 9938, 1175, 4045, 4800, 98, 907, 4698, 1099, 3556, + 6117, 539, 3430, 5205, 6742, 549, 1013, 7399, 5538, + 6070, 13, 7425, 1069, 3892, 5623, 622, 3112, 6779, + 5841, 5246, 7130, 3748, 8292, 4888, 3930, 4486, 404, + 1247, 8728, 8238, 569, 8783, 9166, 5690, 2454, 272, + 8698, 4860, 6880, 3565, 3134, 6354, 865, 434, 9144, + 921, 4245, 143, 7627, 7460, 9895, 5538, 9555, 1920, + 9046, 6039, 3817, 9183, 833, 9223, 1343, 7435, 74, + 2910, 7431, 4730, 9568, 7053, 553, 6586, 3902, 2102, + 4819, 4670, 639, 3073, 9896, 2444, 4693, 9856, 1357, + 8765, 9020, 4841, 7320, 6909, 6799, 6398, 5965, 3749, + 7728, 1534, 7555, 9916, 8346, 6649, 7695, 1555, 9453, + 3570, 2292, 7726, 9222, 1870, 8326, 5496, 9558, 9331, + 1953, 8958, 9671, 4151, 4367, 6771, 6034, 9364, 5920, + 1930, 4407, 1393, 7699, 5074, 9853, 2420, 4723, 1193, + 3555, 5221, 6242, 9462, 9524, 8904, 4357, 599, 5063, + 9306, 1035, 2970, 3581, 438, 1012, 1578, 6514, 1246, + 280, 9934, 9599, 1347, 7451, 9057, 9941, 2507, 6869, + 4825, 8824, 6274, 4478, 1408, 6086, 4878, 2420, 9493, + 8982, 2379, 609, 5624, 3583, 2173, 3341, 2149, 6472, + 8232, 4799, 2443, 9805, 3726, 1960, 2222, 4203, 9706, + 6042, 2127, 9512, 2848, 5472, 464, 7833, 9395, 4397, + 1252, 536, 150, 1099, 2496, 571, 7941, 6943, 7304, + 7511, 2241, 5493, 562, 6009, 2047, 7239, 7266, 8450, + 3771, 5993, 8725, 8763, 3254, 7903, 1883, 306, 172, + 4496, 8646, 114, 4663, 5065, 5972, 5609, 5112, 7979, + 2267, 3998, 628, 3262, 4723, 5522, 333, 771, 7789, + 7411, 6161, 939, 510, 2157, 7502, 5114, 7332, 1071, + 911, 7141, 1103, 2384, 9370, 6550, 3084, 7659, 5517, + 5645, 8343, 428, 5819, 2990, 2152, 8255, 9437, 8453, + 6828, 9261, 236, 1646, 2971, 9539, 3535, 2506, 2597, + 2970, 9785, 1861, 7103, 1286, 1000, 3469, 315, 3221, + 8558, 2959, 2957, 7965, 5562, 4795, 8592, 264, 7999, + 8407, 7957, 1456, 1284, 5753, 340, 9594, 4789, 2049, + 2443, 8386, 9750, 2724, 1350, 7113, 7702, 9893, 426, + 7946, 8480, 6869, 2951, 6923, 3651, 4947, 76, 246, + 3064, 9432, 8890, 9830, 3454, 5349, 2099, 4006, 3982, + 1400, 6701, 8208, 6231, 6572, 7108, 169, 3663, 1024, + 3861, 1643, 3067, 7537, 5626, 9156, 2530, 1256, 9586, + 1939, 1349, 9610, 3932, 8683, 6507, 692, 9567, 4786, + 7294, 9227, 5955, 3765, 95, 7099, 9975, 1773, 2563, + 8275, 417, 4896, 2261, 6841, 8549, 5658, 7531, 1862, + 8554, 7945, 3708, 1599, 7281, 6945, 5282, 5274, 8382, + 9544, 6608, 5018, 9387, 8311, 4840, 5052, 5898, 3273, + 6811, 9335, 9665, 7323, 4598, 206, 8472, 1143, 5942, + 5752, 1091, 8080, 5491, 4152, 6519, 1287, 5968, 347, + 8460, 9287, 6222, 8593, 6122, 9463, 5973, 9569, 9864, + 8581, 7157, 1274, 7748, 9974, 703, 4340, 3457, 5165, + 636, 8506, 2388, 4697, 6336, 2157, 965, 2983, 4117, + 5342, 5035, 7690, 8511, 5702, 1730, 435, 2888, 3925, + 5632, 1145, 8990, 6840, 2995, 3673, 4357, 1488, 6718, + 3409, 5307, 9890, 3580, 194, 415, 75, 1173, 582, + 8512, 2152, 3651, 1736, 4406, 9709, 5688, 2037, 9202, + 616, 4398, 9978, 961, 4749, 6199, 2766, 420, 5891, + 2035, 4203, 6034, 9532, 4073, 3543, 9399, 5243, 1736, + 5205, 3639, 7636, 7945, 1076, 8052, 8786, 7516, 1783, + 592, 9245, 3631, 8018, 7142, 4227, 1771, 8550, 3919, + 40, 9025, 7922, 8752, 4829, 6233, 6992, 2147, 8671, + 1125, 9695, 1968, 1143, 899, 7218, 5368, 7349, 8299, + 4130, 2489, 1943, 8450, 8922, 2692, 6194, 2109, 3488, + 648, 128, 2619, 8466, 3510, 8010, 2563, 4452, 2449, + 3117, 3222, 8819, 6314, 2193, 4531, 9312, 6323, 8594, + 3258, 9109, 1332, 8418, 7949, 2357, 3619, 7354, 3313, + 61, 518, 2284, 2088, 1386, 2415, 3436, 7167, 5622, + 8607, 8065, 8996, 6833, 8899, 6018, 2523, 5619, 500, + 9741, 447, 3804, 906, 3011, 8029, 494, 31, 1574, + 8607, 3528, 2944, 1180, 3791, 1961, 4136, 1334, 7857, + 6620, 8883, 2382, 315, 5796, 2019, 5530, 8196, 2757, + 6981, 3617, 4634, 9758, 8925, 1556, 8556, 6115, 2436, + 456, 4547, 7030, 3590, 4197, 848, 7813, 2702, 1882, + 1803, 4494, 3216, 104, 2415, 973, 9057, 8136, 2617, + 9231, 6621, 2270, 5728, 4475, 2926, 1275, 5702, 6247, + 6804, 4756, 6356, 6362, 2856, 4487, 6258, 4333, 7608, + 5197, 8900, 2423, 8906, 4613, 4914, 7823, 7748, 1843, + 5989, 1493, 7321, 237, 2861, 4827, 700, 4808, 5985, + 9382, 3661, 2628, 1573, 4286, 4564, 6813, 6649, 2611, + 1727, 5253, 3700, 4473, 5116, 4990, 8314, 4529, 7271, + 3677, 1911, 1114, 6546, 6706, 5817, 4555, 8804, 7540, + 3808, 5203, 8535, 8025, 6109, 5300, 5651, 2490, 6109, + 6132, 3901, 8640, 7135, 8793, 5811, 9495, 4735, 1699, + 1439, 220, 2921, 4550, 4963, 9167, 1303, 244, 3665, + 7823, 7172, 8799, 8427, 6074, 1240, 3154, 9837, 5939, + 5156, 4695, 6283, 3037, 9601, 9741, 7245, 2434, 1037, + 8802, 6544, 3585, 8380, 1858, 9428, 7153, 8077, 6766, + 8197, 9547, 1973, 8258, 6508, 713, 5126, 1339, 2979, + 1166, 8047, 6847, 97, 8865, 3971, 3769, 8192, 8150, + 4789, 7871, 1531, 5674, 1575, 9808, 2800, 6837, 1264, + 6679, 5873, 3502, 1872, 8788, 1902, 7193, 7418, 5329, + 8259, 9419, 7793, 5540, 71, 6690, 4936, 794, 6462, + 2182, 6189, 1966, 9133, 7350, 871, 4346, 699, 3324, + 5869, 158, 5971, 2372, 694, 8303, 12, 2318, 1223, + 7659, 4487, 8019, 6915, 6927, 6928, 4811, 355, 3455, + 6747, 8341, 6371, 2538, 3410, 239, 3646, 5943, 6770, + 1495, 9724, 2133, 6260, 7065, 1361, 359, 4604, 3980, + 579, 6628, 3682, 1853, 6084, 9735, 8312, 1840, 4876, + 8912, 6208, 6859, 9839, 6928, 2236, 4449, 4135, 4776, + 6464, 2481, 4925, 9412, 3456, 2660, 9544, 6110, 6742, + 9061, 610, 5758, 1002, 4547, 8135, 324, 2486, 1852, + 8322, 5074, 4466, 826, 7401, 1853, 6438, 2899, 5836, + 427, 7933, 2044, 8055, 3683, 9649, 6408, 5387, 4196, + 3681, 7448, 3637, 8192, 6445, 6771, 10, 729, 9265, + 8381, 8151, 4992, 7160, 9680, 7981, 8403, 1251, 8075, + 8608, 9794, 3487, 7890, 6077, 7271, 18, 389, 9327, + 834, 2577, 4035, 1431, 7927, 9393, 643, 1226, 3816, + 5933]), + values=tensor([1.9375e-01, 3.5125e-01, 2.0768e-01, 2.6967e-01, + 6.5553e-01, 5.3217e-01, 3.3343e-01, 6.1229e-01, + 8.1898e-01, 5.0937e-01, 7.4774e-01, 5.1207e-01, + 8.0001e-01, 3.5041e-01, 6.7059e-01, 3.7672e-01, + 9.3472e-01, 9.3036e-01, 2.3990e-01, 8.7663e-01, + 4.6996e-01, 5.0217e-02, 8.4756e-01, 7.8975e-01, + 1.1314e-01, 4.4290e-01, 2.0680e-01, 9.2084e-02, + 3.5472e-01, 9.4380e-01, 7.9234e-01, 8.1876e-01, + 2.3511e-01, 7.6869e-01, 4.2133e-02, 1.0330e-01, + 1.7268e-01, 7.6007e-01, 3.8309e-03, 9.1460e-01, + 7.3496e-01, 4.9658e-01, 2.1053e-01, 4.7699e-01, + 5.0002e-01, 8.1406e-01, 5.4606e-01, 4.2159e-01, + 2.6297e-01, 2.4520e-01, 9.6103e-01, 7.7868e-01, + 7.6457e-01, 6.2481e-01, 4.5144e-01, 1.9487e-01, + 3.0538e-01, 3.2455e-02, 6.4771e-01, 8.8797e-01, + 9.3051e-01, 9.7039e-01, 9.7735e-01, 3.0647e-01, + 9.6008e-02, 6.3088e-01, 8.0975e-01, 5.3515e-01, + 8.0786e-01, 2.9740e-01, 2.4833e-01, 2.6441e-01, + 3.2550e-01, 2.1987e-01, 1.3930e-02, 1.7247e-01, + 6.8496e-01, 8.3630e-01, 7.5016e-01, 8.7730e-01, + 2.1744e-02, 6.2953e-01, 2.2457e-01, 2.0815e-01, + 1.6450e-01, 7.3002e-01, 4.9950e-01, 3.0029e-02, + 7.4701e-02, 6.2437e-01, 7.7434e-01, 3.8994e-01, + 1.0852e-01, 7.4616e-01, 4.7554e-01, 7.9127e-01, + 4.2656e-01, 7.7188e-01, 3.6412e-01, 2.5388e-01, + 9.3166e-01, 4.7512e-01, 3.1345e-01, 9.4634e-01, + 4.9501e-01, 2.5802e-01, 2.9731e-01, 4.5345e-01, + 4.5427e-01, 2.7223e-01, 3.0850e-01, 5.9089e-01, + 2.3642e-01, 7.7402e-01, 9.5831e-01, 4.5183e-01, + 4.4635e-01, 3.4103e-01, 1.9752e-01, 4.1907e-01, + 9.4180e-01, 8.3566e-01, 7.5022e-01, 3.4154e-01, + 8.8228e-01, 7.0899e-02, 1.2527e-01, 7.8104e-01, + 6.4557e-01, 3.4866e-01, 2.6732e-01, 6.2958e-01, + 1.1325e-01, 7.9593e-01, 6.9074e-01, 4.4629e-01, + 2.5885e-01, 7.2330e-01, 8.2253e-01, 9.8244e-01, + 7.9844e-01, 4.3702e-01, 9.6241e-01, 7.5657e-01, + 5.3837e-01, 1.8624e-01, 3.8968e-01, 3.4892e-01, + 7.0278e-01, 5.5261e-01, 4.0352e-01, 3.3248e-02, + 2.7925e-01, 1.5770e-01, 4.3930e-01, 1.5049e-01, + 4.8475e-01, 3.8261e-01, 5.0227e-01, 6.2634e-01, + 4.8135e-01, 9.1814e-01, 4.0382e-02, 9.3517e-01, + 5.1252e-01, 3.4347e-01, 6.1408e-01, 4.7550e-01, + 8.2509e-03, 7.1485e-01, 4.8130e-01, 1.2004e-01, + 3.3123e-01, 3.7004e-01, 4.8796e-01, 6.7218e-01, + 5.1642e-01, 2.9873e-01, 6.9024e-01, 1.8738e-01, + 6.7151e-01, 1.0462e-01, 2.4549e-01, 6.9732e-01, + 4.1806e-01, 4.7981e-02, 9.3086e-01, 4.1645e-02, + 3.4142e-01, 4.8380e-01, 4.8247e-01, 8.9969e-01, + 8.6323e-01, 9.7268e-01, 5.6983e-01, 1.3965e-02, + 5.9431e-01, 2.9727e-01, 1.6227e-02, 9.8379e-01, + 7.9038e-01, 8.8241e-01, 5.7714e-01, 3.3784e-02, + 1.0960e-01, 3.1070e-01, 5.3521e-01, 7.0199e-01, + 6.5999e-01, 2.7917e-01, 9.8173e-02, 6.2497e-01, + 9.5182e-01, 6.6789e-02, 1.5393e-02, 6.2254e-01, + 1.0971e-01, 8.8447e-01, 5.4323e-01, 2.1015e-01, + 6.6007e-01, 8.2753e-01, 3.6703e-01, 7.4051e-01, + 6.6966e-01, 9.7913e-01, 4.0712e-01, 3.4707e-01, + 3.8309e-01, 2.3070e-01, 2.2715e-01, 7.7305e-01, + 3.7610e-01, 3.4003e-01, 5.8650e-01, 5.8454e-01, + 3.8920e-01, 2.4417e-01, 2.4715e-02, 1.6482e-01, + 6.8219e-01, 4.0944e-01, 1.2251e-01, 8.3378e-01, + 2.8858e-01, 4.5315e-01, 3.7387e-01, 5.1960e-01, + 6.3346e-01, 5.5499e-02, 4.5719e-01, 8.2993e-01, + 8.1787e-01, 3.3558e-01, 2.6451e-01, 5.5224e-01, + 3.1647e-01, 7.8278e-01, 2.1696e-01, 6.5586e-01, + 2.1644e-01, 9.5937e-01, 7.6861e-01, 8.0010e-01, + 6.6128e-01, 1.2187e-01, 9.4748e-01, 9.0035e-01, + 7.1037e-01, 1.8546e-01, 7.1352e-01, 1.8524e-01, + 7.4925e-01, 2.6708e-01, 7.6244e-01, 4.1247e-01, + 1.4128e-01, 4.9211e-01, 3.7997e-01, 7.0780e-01, + 3.8386e-02, 6.6816e-01, 6.0148e-01, 9.0383e-01, + 7.2595e-01, 6.8359e-01, 2.9584e-01, 8.2414e-02, + 1.5712e-01, 4.9752e-01, 1.1561e-01, 2.6694e-01, + 7.7841e-01, 1.6152e-01, 9.8172e-01, 1.9818e-01, + 1.4269e-01, 8.9879e-02, 5.0250e-01, 5.7802e-01, + 6.6528e-01, 3.6557e-02, 1.2972e-01, 6.6852e-01, + 4.9575e-01, 8.1221e-01, 6.6098e-01, 8.1005e-02, + 3.3205e-01, 2.1959e-01, 7.2778e-01, 9.9336e-01, + 6.7973e-02, 8.8482e-01, 2.5671e-01, 8.5151e-01, + 1.4303e-01, 9.4333e-01, 1.3749e-01, 3.5676e-01, + 9.2539e-01, 3.5622e-01, 8.1502e-01, 9.8078e-01, + 3.7427e-01, 5.4771e-01, 4.4970e-01, 3.5472e-01, + 6.8737e-01, 8.9441e-01, 4.3924e-01, 9.0130e-01, + 7.3301e-01, 2.3730e-01, 1.4503e-01, 1.6294e-01, + 7.4797e-01, 3.0663e-01, 9.1635e-01, 2.2485e-01, + 8.1593e-01, 6.9641e-01, 5.8876e-01, 2.5397e-01, + 2.7194e-01, 2.3151e-01, 4.6512e-01, 3.3600e-01, + 1.2084e-01, 7.4145e-01, 8.1178e-01, 4.2986e-01, + 3.2717e-01, 8.9582e-01, 3.8058e-03, 1.1514e-01, + 2.6151e-01, 8.6861e-01, 3.9034e-01, 3.7204e-01, + 5.0550e-01, 2.5962e-01, 7.9080e-01, 7.3126e-01, + 1.9304e-01, 2.7548e-01, 4.0413e-01, 6.4024e-01, + 3.0537e-01, 6.4800e-02, 2.9508e-01, 4.4554e-01, + 7.4376e-01, 3.5356e-01, 1.2386e-01, 9.0646e-01, + 4.4257e-01, 9.9428e-01, 3.9815e-01, 1.0579e-01, + 5.3899e-01, 8.8053e-01, 4.1755e-01, 2.6286e-01, + 8.6265e-01, 3.5440e-01, 4.1767e-01, 4.3722e-01, + 2.2701e-01, 2.0119e-01, 2.0168e-01, 7.4481e-01, + 3.1458e-01, 9.1105e-01, 5.1549e-01, 4.9528e-01, + 7.2489e-01, 6.9358e-01, 9.4876e-01, 1.4933e-01, + 1.0757e-01, 7.4461e-01, 3.5457e-01, 2.9405e-01, + 3.7800e-01, 3.5033e-01, 2.4629e-01, 4.0123e-01, + 8.0207e-01, 3.0032e-01, 1.9983e-01, 3.7397e-01, + 1.0202e-01, 9.9367e-01, 7.3515e-01, 8.2278e-01, + 1.1699e-01, 7.4263e-02, 4.8947e-01, 7.3849e-01, + 1.1436e-01, 4.7523e-01, 7.7099e-01, 7.2400e-01, + 6.5547e-02, 5.7163e-01, 3.2211e-01, 6.7657e-01, + 5.1329e-02, 1.2576e-01, 8.5341e-01, 1.3857e-01, + 6.3257e-01, 4.3927e-01, 4.0713e-01, 7.1751e-01, + 8.1961e-01, 5.3252e-01, 3.3088e-01, 5.8053e-01, + 1.4918e-01, 8.0005e-01, 3.7335e-01, 9.6447e-02, + 1.7216e-01, 1.0099e-01, 1.5519e-01, 3.6774e-01, + 8.7242e-01, 4.4847e-01, 5.5891e-01, 3.0216e-01, + 8.5587e-01, 3.0503e-01, 4.5505e-01, 7.7470e-01, + 7.5445e-01, 7.0880e-01, 4.5444e-01, 9.8342e-01, + 9.9777e-01, 7.5503e-01, 9.8966e-01, 4.0026e-01, + 6.9843e-01, 1.9249e-03, 7.8839e-01, 1.3053e-01, + 1.3274e-01, 8.4923e-02, 4.2804e-01, 1.5293e-01, + 9.0170e-01, 4.9992e-01, 7.7254e-01, 7.4648e-01, + 6.2388e-01, 8.5497e-01, 8.2756e-01, 3.8686e-01, + 9.8151e-02, 5.4863e-01, 2.5265e-01, 7.3707e-01, + 2.0151e-01, 5.7024e-01, 2.8365e-01, 3.5556e-01, + 2.8799e-01, 1.3107e-02, 5.3341e-01, 3.5237e-01, + 8.8548e-01, 5.9289e-01, 5.4342e-01, 1.7633e-01, + 6.3070e-01, 5.3768e-01, 2.2342e-01, 3.3247e-01, + 6.9090e-01, 4.1567e-01, 1.1222e-01, 4.7518e-02, + 9.4288e-01, 9.5518e-01, 7.6795e-01, 5.0269e-01, + 3.6134e-01, 6.0356e-01, 8.3473e-01, 9.6104e-01, + 6.3423e-01, 1.6210e-02, 4.0034e-01, 9.7914e-01, + 3.9605e-02, 1.7596e-01, 5.7872e-01, 6.7935e-01, + 4.1868e-01, 8.3560e-01, 4.0556e-01, 4.8967e-02, + 2.2949e-01, 1.0615e-01, 5.7564e-01, 7.4653e-02, + 9.0806e-01, 6.0640e-01, 4.3840e-01, 7.2256e-01, + 2.0422e-01, 4.2972e-01, 5.8503e-01, 7.7506e-01, + 9.7508e-01, 9.4505e-01, 6.4491e-01, 2.1982e-01, + 2.7546e-01, 7.7442e-01, 5.0277e-01, 6.9720e-02, + 7.4204e-01, 6.0831e-01, 1.1658e-01, 5.0890e-01, + 1.1812e-01, 6.0273e-01, 8.2931e-01, 9.8180e-01, + 1.5799e-01, 9.8569e-01, 4.0228e-01, 4.0955e-01, + 4.7497e-02, 8.9661e-02, 4.9936e-01, 1.1148e-01, + 9.0756e-01, 4.0268e-01, 8.9360e-01, 2.2851e-01, + 2.0956e-01, 1.7882e-01, 2.9301e-01, 8.3386e-01, + 6.4286e-01, 9.9061e-01, 5.6455e-02, 7.0386e-01, + 1.2706e-01, 8.6843e-01, 1.9036e-01, 7.5009e-01, + 9.0547e-01, 3.5391e-02, 3.8624e-01, 1.1931e-01, + 9.4649e-01, 6.8202e-01, 9.5564e-01, 1.1891e-01, + 8.1752e-01, 4.3762e-01, 5.5711e-01, 2.5729e-01, + 3.5776e-01, 4.0330e-01, 2.2345e-01, 8.0837e-01, + 9.1913e-01, 5.1379e-01, 1.0360e-01, 8.8191e-01, + 6.7996e-01, 9.4555e-02, 6.2440e-01, 2.8075e-01, + 4.6693e-01, 5.4747e-01, 4.7497e-01, 8.5070e-02, + 5.6932e-02, 6.4648e-01, 1.2477e-03, 2.0721e-01, + 6.8915e-01, 8.7342e-01, 5.7258e-01, 8.6224e-01, + 5.7939e-01, 9.9515e-01, 2.0583e-01, 2.1518e-01, + 8.9509e-01, 8.0367e-01, 6.4277e-01, 5.0827e-01, + 2.5676e-02, 5.8560e-02, 4.3004e-01, 4.5788e-01, + 6.6471e-01, 3.9649e-01, 2.0012e-01, 4.3487e-01, + 9.0304e-01, 2.2243e-01, 3.0464e-01, 8.5268e-01, + 5.6222e-01, 2.4369e-01, 8.6137e-01, 7.8472e-02, + 9.1993e-02, 6.5703e-01, 2.8403e-01, 8.8040e-01, + 2.8392e-01, 7.7439e-01, 9.3284e-01, 2.0412e-01, + 4.0388e-01, 8.1648e-01, 2.1973e-01, 5.7573e-01, + 9.2892e-02, 7.5088e-01, 3.0786e-01, 1.8024e-01, + 6.5532e-01, 6.1457e-02, 2.1697e-01, 1.0836e-01, + 3.9118e-01, 4.9190e-01, 9.4466e-01, 2.1653e-01, + 2.9599e-01, 7.5911e-01, 4.5813e-03, 2.5706e-01, + 2.5307e-01, 2.9388e-01, 5.5978e-01, 8.8650e-01, + 4.8734e-01, 4.7580e-01, 9.1478e-01, 1.2022e-01, + 8.6153e-01, 4.8555e-01, 8.7075e-01, 8.6253e-01, + 1.4431e-01, 3.4625e-01, 2.9820e-01, 3.7020e-01, + 7.2331e-01, 5.3627e-01, 3.3997e-01, 4.2166e-01, + 3.2381e-01, 3.9761e-01, 7.5745e-01, 6.5813e-01, + 6.4982e-01, 2.8336e-01, 5.7049e-01, 7.2874e-01, + 4.0575e-01, 8.7412e-02, 8.6145e-01, 4.1196e-01, + 8.0483e-01, 1.8391e-01, 5.7371e-02, 8.4034e-01, + 5.2513e-01, 6.0727e-01, 1.5458e-01, 2.0643e-01, + 5.1326e-01, 6.6117e-01, 9.5947e-01, 7.8681e-01, + 6.7698e-01, 9.6081e-01, 4.5145e-01, 6.0458e-01, + 5.2329e-01, 4.8816e-01, 6.4831e-01, 5.4729e-01, + 5.0501e-01, 3.9862e-03, 4.3458e-01, 8.2356e-02, + 4.4194e-01, 4.6046e-01, 8.6119e-01, 7.2362e-01, + 3.3762e-01, 5.7168e-01, 3.7204e-01, 4.6616e-01, + 2.8453e-01, 8.4184e-01, 9.1507e-01, 7.3000e-01, + 2.3497e-01, 4.7039e-01, 3.0436e-01, 7.3392e-01, + 2.0230e-01, 7.5799e-01, 8.0132e-01, 2.6207e-01, + 4.1549e-01, 4.5825e-01, 3.5712e-04, 8.6380e-01, + 2.5643e-01, 1.4106e-01, 4.6769e-01, 1.6319e-01, + 4.2617e-01, 6.8278e-01, 9.9952e-01, 7.2726e-01, + 5.3935e-01, 7.4477e-01, 6.4322e-01, 3.4132e-01, + 9.1885e-01, 8.9713e-01, 7.1047e-01, 6.7622e-01, + 5.4440e-01, 6.6700e-01, 5.7860e-01, 2.7002e-02, + 4.8064e-01, 4.6679e-01, 3.5471e-01, 7.7442e-01, + 1.8786e-01, 7.3381e-01, 5.6379e-01, 1.0770e-01, + 3.8089e-01, 4.8584e-01, 9.5384e-01, 8.6167e-01, + 2.0388e-02, 5.9740e-01, 6.5420e-01, 9.4518e-01, + 6.0007e-01, 9.4668e-01, 2.4456e-01, 1.9964e-01, + 7.2138e-01, 2.1021e-01, 4.1505e-02, 7.3214e-01, + 5.7585e-01, 2.6983e-01, 2.1348e-01, 2.7068e-01, + 6.3100e-02, 4.9250e-01, 2.3708e-01, 6.1793e-01, + 1.5893e-01, 5.2076e-01, 6.7793e-01, 7.4495e-01, + 4.5389e-02, 3.7724e-02, 2.2370e-01, 3.9055e-01, + 1.2615e-01, 3.4002e-01, 3.5834e-01, 7.8782e-02, + 4.9173e-01, 4.1157e-01, 6.6417e-01, 6.4484e-01, + 5.0083e-01, 4.2959e-01, 9.8685e-01, 3.5260e-01, + 4.2792e-02, 1.3207e-01, 9.1311e-01, 9.6641e-01, + 8.9353e-01, 7.3994e-01, 9.4765e-01, 6.5472e-01, + 1.5391e-01, 8.8154e-01, 6.2777e-01, 1.8012e-02, + 7.1259e-01, 6.7197e-01, 7.7261e-01, 4.6110e-01, + 6.2714e-01, 9.6933e-01, 6.1243e-01, 6.0628e-01, + 7.6382e-01, 9.6854e-01, 5.1705e-01, 8.5856e-01, + 3.1705e-01, 7.2350e-01, 9.4389e-02, 2.9574e-01, + 9.1463e-01, 2.0940e-01, 1.7609e-01, 7.3978e-01, + 9.2575e-01, 6.8811e-01, 1.6098e-01, 6.4482e-02, + 2.5061e-02, 5.2998e-01, 9.8449e-01, 5.4429e-01, + 6.8862e-01, 9.4297e-01, 7.7867e-01, 1.7015e-01, + 7.0622e-01, 3.6348e-01, 3.8057e-01, 7.0215e-01, + 8.9386e-01, 7.3907e-03, 6.8824e-01, 7.3556e-01, + 2.5358e-01, 6.8417e-01, 3.7956e-01, 4.3455e-01, + 3.0873e-01, 4.7848e-01, 8.7651e-01, 5.9179e-01, + 2.4253e-01, 9.6398e-01, 4.9589e-01, 9.5203e-01, + 9.5415e-01, 8.6776e-01, 1.1685e-01, 3.3088e-01, + 7.7341e-01, 8.3175e-01, 5.7462e-01, 1.3990e-01, + 9.0461e-01, 6.0410e-01, 8.4851e-01, 9.6942e-01, + 8.4864e-01, 6.3279e-01, 9.6144e-01, 1.5080e-01, + 8.9336e-02, 9.6933e-01, 4.5647e-01, 7.3363e-01, + 3.9520e-01, 5.6769e-01, 1.2489e-01, 5.1997e-01, + 1.6970e-01, 5.2122e-02, 4.9514e-01, 5.7753e-01, + 3.1179e-01, 8.2135e-01, 3.0969e-01, 1.9110e-01, + 9.3857e-02, 5.3521e-01, 3.5248e-01, 6.2581e-01, + 9.7808e-01, 5.1285e-01, 9.7337e-01, 2.5133e-01, + 4.4027e-01, 4.3065e-01, 2.5723e-01, 1.2854e-01, + 9.8939e-02, 9.0984e-01, 8.7231e-01, 9.3467e-01, + 7.2945e-01, 3.0576e-01, 1.3236e-01, 7.1361e-02, + 3.9339e-01, 3.1714e-01, 3.2872e-01, 5.1748e-01, + 5.5217e-01, 4.1788e-01, 7.8429e-01, 6.7386e-02, + 7.7600e-01, 4.0606e-01, 6.8449e-01, 5.7668e-02, + 9.0049e-01, 8.6218e-01, 3.3053e-01, 7.6311e-01, + 5.8454e-01, 1.8191e-01, 9.8940e-01, 1.1427e-02, + 6.7147e-01, 3.5037e-01, 8.0766e-01, 9.2500e-01, + 1.0255e-01, 9.5627e-01, 4.2546e-02, 1.7540e-01, + 5.4745e-01, 5.9252e-01, 1.4245e-01, 4.0475e-01, + 9.8581e-01, 3.8861e-01, 8.0536e-01, 6.9424e-01, + 6.3616e-01, 7.9450e-01, 3.0102e-01, 4.6604e-01, + 4.0082e-01, 7.9423e-01, 6.0621e-02, 7.6039e-01, + 2.8130e-01, 7.6283e-01, 8.3019e-01, 4.7440e-01, + 9.3373e-01, 2.3127e-01, 9.8599e-01, 1.0451e-01, + 4.4318e-01, 4.3340e-01, 1.2718e-01, 6.7560e-01, + 8.0438e-01, 2.4075e-01, 5.0321e-01, 2.8248e-01, + 6.0269e-01, 1.4597e-01, 1.3511e-01, 1.7491e-01, + 8.6251e-01, 4.5483e-01, 7.5964e-01, 2.8131e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.4226, 0.0556, 0.1398, ..., 0.5751, 0.9814, 0.4838]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.681929588317871 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([1138, 3141, 5372, 6298, 9895, 5592, 6656, 4614, 931, + 6509, 2541, 488, 1171, 1072, 9057, 8648, 305, 9468, + 8935, 3721, 8788, 4223, 1394, 7441, 8183, 7526, 7164, + 9501, 2074, 6095, 6430, 1576, 7765, 4984, 8210, 5345, + 6644, 4874, 9665, 9793, 4608, 6072, 7262, 5461, 8184, + 6119, 899, 3855, 5088, 3002, 502, 2723, 2838, 2671, + 245, 5685, 2372, 8774, 3148, 7424, 9384, 3212, 8505, + 9938, 1175, 4045, 4800, 98, 907, 4698, 1099, 3556, + 6117, 539, 3430, 5205, 6742, 549, 1013, 7399, 5538, + 6070, 13, 7425, 1069, 3892, 5623, 622, 3112, 6779, + 5841, 5246, 7130, 3748, 8292, 4888, 3930, 4486, 404, + 1247, 8728, 8238, 569, 8783, 9166, 5690, 2454, 272, + 8698, 4860, 6880, 3565, 3134, 6354, 865, 434, 9144, + 921, 4245, 143, 7627, 7460, 9895, 5538, 9555, 1920, + 9046, 6039, 3817, 9183, 833, 9223, 1343, 7435, 74, + 2910, 7431, 4730, 9568, 7053, 553, 6586, 3902, 2102, + 4819, 4670, 639, 3073, 9896, 2444, 4693, 9856, 1357, + 8765, 9020, 4841, 7320, 6909, 6799, 6398, 5965, 3749, + 7728, 1534, 7555, 9916, 8346, 6649, 7695, 1555, 9453, + 3570, 2292, 7726, 9222, 1870, 8326, 5496, 9558, 9331, + 1953, 8958, 9671, 4151, 4367, 6771, 6034, 9364, 5920, + 1930, 4407, 1393, 7699, 5074, 9853, 2420, 4723, 1193, + 3555, 5221, 6242, 9462, 9524, 8904, 4357, 599, 5063, + 9306, 1035, 2970, 3581, 438, 1012, 1578, 6514, 1246, + 280, 9934, 9599, 1347, 7451, 9057, 9941, 2507, 6869, + 4825, 8824, 6274, 4478, 1408, 6086, 4878, 2420, 9493, + 8982, 2379, 609, 5624, 3583, 2173, 3341, 2149, 6472, + 8232, 4799, 2443, 9805, 3726, 1960, 2222, 4203, 9706, + 6042, 2127, 9512, 2848, 5472, 464, 7833, 9395, 4397, + 1252, 536, 150, 1099, 2496, 571, 7941, 6943, 7304, + 7511, 2241, 5493, 562, 6009, 2047, 7239, 7266, 8450, + 3771, 5993, 8725, 8763, 3254, 7903, 1883, 306, 172, + 4496, 8646, 114, 4663, 5065, 5972, 5609, 5112, 7979, + 2267, 3998, 628, 3262, 4723, 5522, 333, 771, 7789, + 7411, 6161, 939, 510, 2157, 7502, 5114, 7332, 1071, + 911, 7141, 1103, 2384, 9370, 6550, 3084, 7659, 5517, + 5645, 8343, 428, 5819, 2990, 2152, 8255, 9437, 8453, + 6828, 9261, 236, 1646, 2971, 9539, 3535, 2506, 2597, + 2970, 9785, 1861, 7103, 1286, 1000, 3469, 315, 3221, + 8558, 2959, 2957, 7965, 5562, 4795, 8592, 264, 7999, + 8407, 7957, 1456, 1284, 5753, 340, 9594, 4789, 2049, + 2443, 8386, 9750, 2724, 1350, 7113, 7702, 9893, 426, + 7946, 8480, 6869, 2951, 6923, 3651, 4947, 76, 246, + 3064, 9432, 8890, 9830, 3454, 5349, 2099, 4006, 3982, + 1400, 6701, 8208, 6231, 6572, 7108, 169, 3663, 1024, + 3861, 1643, 3067, 7537, 5626, 9156, 2530, 1256, 9586, + 1939, 1349, 9610, 3932, 8683, 6507, 692, 9567, 4786, + 7294, 9227, 5955, 3765, 95, 7099, 9975, 1773, 2563, + 8275, 417, 4896, 2261, 6841, 8549, 5658, 7531, 1862, + 8554, 7945, 3708, 1599, 7281, 6945, 5282, 5274, 8382, + 9544, 6608, 5018, 9387, 8311, 4840, 5052, 5898, 3273, + 6811, 9335, 9665, 7323, 4598, 206, 8472, 1143, 5942, + 5752, 1091, 8080, 5491, 4152, 6519, 1287, 5968, 347, + 8460, 9287, 6222, 8593, 6122, 9463, 5973, 9569, 9864, + 8581, 7157, 1274, 7748, 9974, 703, 4340, 3457, 5165, + 636, 8506, 2388, 4697, 6336, 2157, 965, 2983, 4117, + 5342, 5035, 7690, 8511, 5702, 1730, 435, 2888, 3925, + 5632, 1145, 8990, 6840, 2995, 3673, 4357, 1488, 6718, + 3409, 5307, 9890, 3580, 194, 415, 75, 1173, 582, + 8512, 2152, 3651, 1736, 4406, 9709, 5688, 2037, 9202, + 616, 4398, 9978, 961, 4749, 6199, 2766, 420, 5891, + 2035, 4203, 6034, 9532, 4073, 3543, 9399, 5243, 1736, + 5205, 3639, 7636, 7945, 1076, 8052, 8786, 7516, 1783, + 592, 9245, 3631, 8018, 7142, 4227, 1771, 8550, 3919, + 40, 9025, 7922, 8752, 4829, 6233, 6992, 2147, 8671, + 1125, 9695, 1968, 1143, 899, 7218, 5368, 7349, 8299, + 4130, 2489, 1943, 8450, 8922, 2692, 6194, 2109, 3488, + 648, 128, 2619, 8466, 3510, 8010, 2563, 4452, 2449, + 3117, 3222, 8819, 6314, 2193, 4531, 9312, 6323, 8594, + 3258, 9109, 1332, 8418, 7949, 2357, 3619, 7354, 3313, + 61, 518, 2284, 2088, 1386, 2415, 3436, 7167, 5622, + 8607, 8065, 8996, 6833, 8899, 6018, 2523, 5619, 500, + 9741, 447, 3804, 906, 3011, 8029, 494, 31, 1574, + 8607, 3528, 2944, 1180, 3791, 1961, 4136, 1334, 7857, + 6620, 8883, 2382, 315, 5796, 2019, 5530, 8196, 2757, + 6981, 3617, 4634, 9758, 8925, 1556, 8556, 6115, 2436, + 456, 4547, 7030, 3590, 4197, 848, 7813, 2702, 1882, + 1803, 4494, 3216, 104, 2415, 973, 9057, 8136, 2617, + 9231, 6621, 2270, 5728, 4475, 2926, 1275, 5702, 6247, + 6804, 4756, 6356, 6362, 2856, 4487, 6258, 4333, 7608, + 5197, 8900, 2423, 8906, 4613, 4914, 7823, 7748, 1843, + 5989, 1493, 7321, 237, 2861, 4827, 700, 4808, 5985, + 9382, 3661, 2628, 1573, 4286, 4564, 6813, 6649, 2611, + 1727, 5253, 3700, 4473, 5116, 4990, 8314, 4529, 7271, + 3677, 1911, 1114, 6546, 6706, 5817, 4555, 8804, 7540, + 3808, 5203, 8535, 8025, 6109, 5300, 5651, 2490, 6109, + 6132, 3901, 8640, 7135, 8793, 5811, 9495, 4735, 1699, + 1439, 220, 2921, 4550, 4963, 9167, 1303, 244, 3665, + 7823, 7172, 8799, 8427, 6074, 1240, 3154, 9837, 5939, + 5156, 4695, 6283, 3037, 9601, 9741, 7245, 2434, 1037, + 8802, 6544, 3585, 8380, 1858, 9428, 7153, 8077, 6766, + 8197, 9547, 1973, 8258, 6508, 713, 5126, 1339, 2979, + 1166, 8047, 6847, 97, 8865, 3971, 3769, 8192, 8150, + 4789, 7871, 1531, 5674, 1575, 9808, 2800, 6837, 1264, + 6679, 5873, 3502, 1872, 8788, 1902, 7193, 7418, 5329, + 8259, 9419, 7793, 5540, 71, 6690, 4936, 794, 6462, + 2182, 6189, 1966, 9133, 7350, 871, 4346, 699, 3324, + 5869, 158, 5971, 2372, 694, 8303, 12, 2318, 1223, + 7659, 4487, 8019, 6915, 6927, 6928, 4811, 355, 3455, + 6747, 8341, 6371, 2538, 3410, 239, 3646, 5943, 6770, + 1495, 9724, 2133, 6260, 7065, 1361, 359, 4604, 3980, + 579, 6628, 3682, 1853, 6084, 9735, 8312, 1840, 4876, + 8912, 6208, 6859, 9839, 6928, 2236, 4449, 4135, 4776, + 6464, 2481, 4925, 9412, 3456, 2660, 9544, 6110, 6742, + 9061, 610, 5758, 1002, 4547, 8135, 324, 2486, 1852, + 8322, 5074, 4466, 826, 7401, 1853, 6438, 2899, 5836, + 427, 7933, 2044, 8055, 3683, 9649, 6408, 5387, 4196, + 3681, 7448, 3637, 8192, 6445, 6771, 10, 729, 9265, + 8381, 8151, 4992, 7160, 9680, 7981, 8403, 1251, 8075, + 8608, 9794, 3487, 7890, 6077, 7271, 18, 389, 9327, + 834, 2577, 4035, 1431, 7927, 9393, 643, 1226, 3816, + 5933]), + values=tensor([1.9375e-01, 3.5125e-01, 2.0768e-01, 2.6967e-01, + 6.5553e-01, 5.3217e-01, 3.3343e-01, 6.1229e-01, + 8.1898e-01, 5.0937e-01, 7.4774e-01, 5.1207e-01, + 8.0001e-01, 3.5041e-01, 6.7059e-01, 3.7672e-01, + 9.3472e-01, 9.3036e-01, 2.3990e-01, 8.7663e-01, + 4.6996e-01, 5.0217e-02, 8.4756e-01, 7.8975e-01, + 1.1314e-01, 4.4290e-01, 2.0680e-01, 9.2084e-02, + 3.5472e-01, 9.4380e-01, 7.9234e-01, 8.1876e-01, + 2.3511e-01, 7.6869e-01, 4.2133e-02, 1.0330e-01, + 1.7268e-01, 7.6007e-01, 3.8309e-03, 9.1460e-01, + 7.3496e-01, 4.9658e-01, 2.1053e-01, 4.7699e-01, + 5.0002e-01, 8.1406e-01, 5.4606e-01, 4.2159e-01, + 2.6297e-01, 2.4520e-01, 9.6103e-01, 7.7868e-01, + 7.6457e-01, 6.2481e-01, 4.5144e-01, 1.9487e-01, + 3.0538e-01, 3.2455e-02, 6.4771e-01, 8.8797e-01, + 9.3051e-01, 9.7039e-01, 9.7735e-01, 3.0647e-01, + 9.6008e-02, 6.3088e-01, 8.0975e-01, 5.3515e-01, + 8.0786e-01, 2.9740e-01, 2.4833e-01, 2.6441e-01, + 3.2550e-01, 2.1987e-01, 1.3930e-02, 1.7247e-01, + 6.8496e-01, 8.3630e-01, 7.5016e-01, 8.7730e-01, + 2.1744e-02, 6.2953e-01, 2.2457e-01, 2.0815e-01, + 1.6450e-01, 7.3002e-01, 4.9950e-01, 3.0029e-02, + 7.4701e-02, 6.2437e-01, 7.7434e-01, 3.8994e-01, + 1.0852e-01, 7.4616e-01, 4.7554e-01, 7.9127e-01, + 4.2656e-01, 7.7188e-01, 3.6412e-01, 2.5388e-01, + 9.3166e-01, 4.7512e-01, 3.1345e-01, 9.4634e-01, + 4.9501e-01, 2.5802e-01, 2.9731e-01, 4.5345e-01, + 4.5427e-01, 2.7223e-01, 3.0850e-01, 5.9089e-01, + 2.3642e-01, 7.7402e-01, 9.5831e-01, 4.5183e-01, + 4.4635e-01, 3.4103e-01, 1.9752e-01, 4.1907e-01, + 9.4180e-01, 8.3566e-01, 7.5022e-01, 3.4154e-01, + 8.8228e-01, 7.0899e-02, 1.2527e-01, 7.8104e-01, + 6.4557e-01, 3.4866e-01, 2.6732e-01, 6.2958e-01, + 1.1325e-01, 7.9593e-01, 6.9074e-01, 4.4629e-01, + 2.5885e-01, 7.2330e-01, 8.2253e-01, 9.8244e-01, + 7.9844e-01, 4.3702e-01, 9.6241e-01, 7.5657e-01, + 5.3837e-01, 1.8624e-01, 3.8968e-01, 3.4892e-01, + 7.0278e-01, 5.5261e-01, 4.0352e-01, 3.3248e-02, + 2.7925e-01, 1.5770e-01, 4.3930e-01, 1.5049e-01, + 4.8475e-01, 3.8261e-01, 5.0227e-01, 6.2634e-01, + 4.8135e-01, 9.1814e-01, 4.0382e-02, 9.3517e-01, + 5.1252e-01, 3.4347e-01, 6.1408e-01, 4.7550e-01, + 8.2509e-03, 7.1485e-01, 4.8130e-01, 1.2004e-01, + 3.3123e-01, 3.7004e-01, 4.8796e-01, 6.7218e-01, + 5.1642e-01, 2.9873e-01, 6.9024e-01, 1.8738e-01, + 6.7151e-01, 1.0462e-01, 2.4549e-01, 6.9732e-01, + 4.1806e-01, 4.7981e-02, 9.3086e-01, 4.1645e-02, + 3.4142e-01, 4.8380e-01, 4.8247e-01, 8.9969e-01, + 8.6323e-01, 9.7268e-01, 5.6983e-01, 1.3965e-02, + 5.9431e-01, 2.9727e-01, 1.6227e-02, 9.8379e-01, + 7.9038e-01, 8.8241e-01, 5.7714e-01, 3.3784e-02, + 1.0960e-01, 3.1070e-01, 5.3521e-01, 7.0199e-01, + 6.5999e-01, 2.7917e-01, 9.8173e-02, 6.2497e-01, + 9.5182e-01, 6.6789e-02, 1.5393e-02, 6.2254e-01, + 1.0971e-01, 8.8447e-01, 5.4323e-01, 2.1015e-01, + 6.6007e-01, 8.2753e-01, 3.6703e-01, 7.4051e-01, + 6.6966e-01, 9.7913e-01, 4.0712e-01, 3.4707e-01, + 3.8309e-01, 2.3070e-01, 2.2715e-01, 7.7305e-01, + 3.7610e-01, 3.4003e-01, 5.8650e-01, 5.8454e-01, + 3.8920e-01, 2.4417e-01, 2.4715e-02, 1.6482e-01, + 6.8219e-01, 4.0944e-01, 1.2251e-01, 8.3378e-01, + 2.8858e-01, 4.5315e-01, 3.7387e-01, 5.1960e-01, + 6.3346e-01, 5.5499e-02, 4.5719e-01, 8.2993e-01, + 8.1787e-01, 3.3558e-01, 2.6451e-01, 5.5224e-01, + 3.1647e-01, 7.8278e-01, 2.1696e-01, 6.5586e-01, + 2.1644e-01, 9.5937e-01, 7.6861e-01, 8.0010e-01, + 6.6128e-01, 1.2187e-01, 9.4748e-01, 9.0035e-01, + 7.1037e-01, 1.8546e-01, 7.1352e-01, 1.8524e-01, + 7.4925e-01, 2.6708e-01, 7.6244e-01, 4.1247e-01, + 1.4128e-01, 4.9211e-01, 3.7997e-01, 7.0780e-01, + 3.8386e-02, 6.6816e-01, 6.0148e-01, 9.0383e-01, + 7.2595e-01, 6.8359e-01, 2.9584e-01, 8.2414e-02, + 1.5712e-01, 4.9752e-01, 1.1561e-01, 2.6694e-01, + 7.7841e-01, 1.6152e-01, 9.8172e-01, 1.9818e-01, + 1.4269e-01, 8.9879e-02, 5.0250e-01, 5.7802e-01, + 6.6528e-01, 3.6557e-02, 1.2972e-01, 6.6852e-01, + 4.9575e-01, 8.1221e-01, 6.6098e-01, 8.1005e-02, + 3.3205e-01, 2.1959e-01, 7.2778e-01, 9.9336e-01, + 6.7973e-02, 8.8482e-01, 2.5671e-01, 8.5151e-01, + 1.4303e-01, 9.4333e-01, 1.3749e-01, 3.5676e-01, + 9.2539e-01, 3.5622e-01, 8.1502e-01, 9.8078e-01, + 3.7427e-01, 5.4771e-01, 4.4970e-01, 3.5472e-01, + 6.8737e-01, 8.9441e-01, 4.3924e-01, 9.0130e-01, + 7.3301e-01, 2.3730e-01, 1.4503e-01, 1.6294e-01, + 7.4797e-01, 3.0663e-01, 9.1635e-01, 2.2485e-01, + 8.1593e-01, 6.9641e-01, 5.8876e-01, 2.5397e-01, + 2.7194e-01, 2.3151e-01, 4.6512e-01, 3.3600e-01, + 1.2084e-01, 7.4145e-01, 8.1178e-01, 4.2986e-01, + 3.2717e-01, 8.9582e-01, 3.8058e-03, 1.1514e-01, + 2.6151e-01, 8.6861e-01, 3.9034e-01, 3.7204e-01, + 5.0550e-01, 2.5962e-01, 7.9080e-01, 7.3126e-01, + 1.9304e-01, 2.7548e-01, 4.0413e-01, 6.4024e-01, + 3.0537e-01, 6.4800e-02, 2.9508e-01, 4.4554e-01, + 7.4376e-01, 3.5356e-01, 1.2386e-01, 9.0646e-01, + 4.4257e-01, 9.9428e-01, 3.9815e-01, 1.0579e-01, + 5.3899e-01, 8.8053e-01, 4.1755e-01, 2.6286e-01, + 8.6265e-01, 3.5440e-01, 4.1767e-01, 4.3722e-01, + 2.2701e-01, 2.0119e-01, 2.0168e-01, 7.4481e-01, + 3.1458e-01, 9.1105e-01, 5.1549e-01, 4.9528e-01, + 7.2489e-01, 6.9358e-01, 9.4876e-01, 1.4933e-01, + 1.0757e-01, 7.4461e-01, 3.5457e-01, 2.9405e-01, + 3.7800e-01, 3.5033e-01, 2.4629e-01, 4.0123e-01, + 8.0207e-01, 3.0032e-01, 1.9983e-01, 3.7397e-01, + 1.0202e-01, 9.9367e-01, 7.3515e-01, 8.2278e-01, + 1.1699e-01, 7.4263e-02, 4.8947e-01, 7.3849e-01, + 1.1436e-01, 4.7523e-01, 7.7099e-01, 7.2400e-01, + 6.5547e-02, 5.7163e-01, 3.2211e-01, 6.7657e-01, + 5.1329e-02, 1.2576e-01, 8.5341e-01, 1.3857e-01, + 6.3257e-01, 4.3927e-01, 4.0713e-01, 7.1751e-01, + 8.1961e-01, 5.3252e-01, 3.3088e-01, 5.8053e-01, + 1.4918e-01, 8.0005e-01, 3.7335e-01, 9.6447e-02, + 1.7216e-01, 1.0099e-01, 1.5519e-01, 3.6774e-01, + 8.7242e-01, 4.4847e-01, 5.5891e-01, 3.0216e-01, + 8.5587e-01, 3.0503e-01, 4.5505e-01, 7.7470e-01, + 7.5445e-01, 7.0880e-01, 4.5444e-01, 9.8342e-01, + 9.9777e-01, 7.5503e-01, 9.8966e-01, 4.0026e-01, + 6.9843e-01, 1.9249e-03, 7.8839e-01, 1.3053e-01, + 1.3274e-01, 8.4923e-02, 4.2804e-01, 1.5293e-01, + 9.0170e-01, 4.9992e-01, 7.7254e-01, 7.4648e-01, + 6.2388e-01, 8.5497e-01, 8.2756e-01, 3.8686e-01, + 9.8151e-02, 5.4863e-01, 2.5265e-01, 7.3707e-01, + 2.0151e-01, 5.7024e-01, 2.8365e-01, 3.5556e-01, + 2.8799e-01, 1.3107e-02, 5.3341e-01, 3.5237e-01, + 8.8548e-01, 5.9289e-01, 5.4342e-01, 1.7633e-01, + 6.3070e-01, 5.3768e-01, 2.2342e-01, 3.3247e-01, + 6.9090e-01, 4.1567e-01, 1.1222e-01, 4.7518e-02, + 9.4288e-01, 9.5518e-01, 7.6795e-01, 5.0269e-01, + 3.6134e-01, 6.0356e-01, 8.3473e-01, 9.6104e-01, + 6.3423e-01, 1.6210e-02, 4.0034e-01, 9.7914e-01, + 3.9605e-02, 1.7596e-01, 5.7872e-01, 6.7935e-01, + 4.1868e-01, 8.3560e-01, 4.0556e-01, 4.8967e-02, + 2.2949e-01, 1.0615e-01, 5.7564e-01, 7.4653e-02, + 9.0806e-01, 6.0640e-01, 4.3840e-01, 7.2256e-01, + 2.0422e-01, 4.2972e-01, 5.8503e-01, 7.7506e-01, + 9.7508e-01, 9.4505e-01, 6.4491e-01, 2.1982e-01, + 2.7546e-01, 7.7442e-01, 5.0277e-01, 6.9720e-02, + 7.4204e-01, 6.0831e-01, 1.1658e-01, 5.0890e-01, + 1.1812e-01, 6.0273e-01, 8.2931e-01, 9.8180e-01, + 1.5799e-01, 9.8569e-01, 4.0228e-01, 4.0955e-01, + 4.7497e-02, 8.9661e-02, 4.9936e-01, 1.1148e-01, + 9.0756e-01, 4.0268e-01, 8.9360e-01, 2.2851e-01, + 2.0956e-01, 1.7882e-01, 2.9301e-01, 8.3386e-01, + 6.4286e-01, 9.9061e-01, 5.6455e-02, 7.0386e-01, + 1.2706e-01, 8.6843e-01, 1.9036e-01, 7.5009e-01, + 9.0547e-01, 3.5391e-02, 3.8624e-01, 1.1931e-01, + 9.4649e-01, 6.8202e-01, 9.5564e-01, 1.1891e-01, + 8.1752e-01, 4.3762e-01, 5.5711e-01, 2.5729e-01, + 3.5776e-01, 4.0330e-01, 2.2345e-01, 8.0837e-01, + 9.1913e-01, 5.1379e-01, 1.0360e-01, 8.8191e-01, + 6.7996e-01, 9.4555e-02, 6.2440e-01, 2.8075e-01, + 4.6693e-01, 5.4747e-01, 4.7497e-01, 8.5070e-02, + 5.6932e-02, 6.4648e-01, 1.2477e-03, 2.0721e-01, + 6.8915e-01, 8.7342e-01, 5.7258e-01, 8.6224e-01, + 5.7939e-01, 9.9515e-01, 2.0583e-01, 2.1518e-01, + 8.9509e-01, 8.0367e-01, 6.4277e-01, 5.0827e-01, + 2.5676e-02, 5.8560e-02, 4.3004e-01, 4.5788e-01, + 6.6471e-01, 3.9649e-01, 2.0012e-01, 4.3487e-01, + 9.0304e-01, 2.2243e-01, 3.0464e-01, 8.5268e-01, + 5.6222e-01, 2.4369e-01, 8.6137e-01, 7.8472e-02, + 9.1993e-02, 6.5703e-01, 2.8403e-01, 8.8040e-01, + 2.8392e-01, 7.7439e-01, 9.3284e-01, 2.0412e-01, + 4.0388e-01, 8.1648e-01, 2.1973e-01, 5.7573e-01, + 9.2892e-02, 7.5088e-01, 3.0786e-01, 1.8024e-01, + 6.5532e-01, 6.1457e-02, 2.1697e-01, 1.0836e-01, + 3.9118e-01, 4.9190e-01, 9.4466e-01, 2.1653e-01, + 2.9599e-01, 7.5911e-01, 4.5813e-03, 2.5706e-01, + 2.5307e-01, 2.9388e-01, 5.5978e-01, 8.8650e-01, + 4.8734e-01, 4.7580e-01, 9.1478e-01, 1.2022e-01, + 8.6153e-01, 4.8555e-01, 8.7075e-01, 8.6253e-01, + 1.4431e-01, 3.4625e-01, 2.9820e-01, 3.7020e-01, + 7.2331e-01, 5.3627e-01, 3.3997e-01, 4.2166e-01, + 3.2381e-01, 3.9761e-01, 7.5745e-01, 6.5813e-01, + 6.4982e-01, 2.8336e-01, 5.7049e-01, 7.2874e-01, + 4.0575e-01, 8.7412e-02, 8.6145e-01, 4.1196e-01, + 8.0483e-01, 1.8391e-01, 5.7371e-02, 8.4034e-01, + 5.2513e-01, 6.0727e-01, 1.5458e-01, 2.0643e-01, + 5.1326e-01, 6.6117e-01, 9.5947e-01, 7.8681e-01, + 6.7698e-01, 9.6081e-01, 4.5145e-01, 6.0458e-01, + 5.2329e-01, 4.8816e-01, 6.4831e-01, 5.4729e-01, + 5.0501e-01, 3.9862e-03, 4.3458e-01, 8.2356e-02, + 4.4194e-01, 4.6046e-01, 8.6119e-01, 7.2362e-01, + 3.3762e-01, 5.7168e-01, 3.7204e-01, 4.6616e-01, + 2.8453e-01, 8.4184e-01, 9.1507e-01, 7.3000e-01, + 2.3497e-01, 4.7039e-01, 3.0436e-01, 7.3392e-01, + 2.0230e-01, 7.5799e-01, 8.0132e-01, 2.6207e-01, + 4.1549e-01, 4.5825e-01, 3.5712e-04, 8.6380e-01, + 2.5643e-01, 1.4106e-01, 4.6769e-01, 1.6319e-01, + 4.2617e-01, 6.8278e-01, 9.9952e-01, 7.2726e-01, + 5.3935e-01, 7.4477e-01, 6.4322e-01, 3.4132e-01, + 9.1885e-01, 8.9713e-01, 7.1047e-01, 6.7622e-01, + 5.4440e-01, 6.6700e-01, 5.7860e-01, 2.7002e-02, + 4.8064e-01, 4.6679e-01, 3.5471e-01, 7.7442e-01, + 1.8786e-01, 7.3381e-01, 5.6379e-01, 1.0770e-01, + 3.8089e-01, 4.8584e-01, 9.5384e-01, 8.6167e-01, + 2.0388e-02, 5.9740e-01, 6.5420e-01, 9.4518e-01, + 6.0007e-01, 9.4668e-01, 2.4456e-01, 1.9964e-01, + 7.2138e-01, 2.1021e-01, 4.1505e-02, 7.3214e-01, + 5.7585e-01, 2.6983e-01, 2.1348e-01, 2.7068e-01, + 6.3100e-02, 4.9250e-01, 2.3708e-01, 6.1793e-01, + 1.5893e-01, 5.2076e-01, 6.7793e-01, 7.4495e-01, + 4.5389e-02, 3.7724e-02, 2.2370e-01, 3.9055e-01, + 1.2615e-01, 3.4002e-01, 3.5834e-01, 7.8782e-02, + 4.9173e-01, 4.1157e-01, 6.6417e-01, 6.4484e-01, + 5.0083e-01, 4.2959e-01, 9.8685e-01, 3.5260e-01, + 4.2792e-02, 1.3207e-01, 9.1311e-01, 9.6641e-01, + 8.9353e-01, 7.3994e-01, 9.4765e-01, 6.5472e-01, + 1.5391e-01, 8.8154e-01, 6.2777e-01, 1.8012e-02, + 7.1259e-01, 6.7197e-01, 7.7261e-01, 4.6110e-01, + 6.2714e-01, 9.6933e-01, 6.1243e-01, 6.0628e-01, + 7.6382e-01, 9.6854e-01, 5.1705e-01, 8.5856e-01, + 3.1705e-01, 7.2350e-01, 9.4389e-02, 2.9574e-01, + 9.1463e-01, 2.0940e-01, 1.7609e-01, 7.3978e-01, + 9.2575e-01, 6.8811e-01, 1.6098e-01, 6.4482e-02, + 2.5061e-02, 5.2998e-01, 9.8449e-01, 5.4429e-01, + 6.8862e-01, 9.4297e-01, 7.7867e-01, 1.7015e-01, + 7.0622e-01, 3.6348e-01, 3.8057e-01, 7.0215e-01, + 8.9386e-01, 7.3907e-03, 6.8824e-01, 7.3556e-01, + 2.5358e-01, 6.8417e-01, 3.7956e-01, 4.3455e-01, + 3.0873e-01, 4.7848e-01, 8.7651e-01, 5.9179e-01, + 2.4253e-01, 9.6398e-01, 4.9589e-01, 9.5203e-01, + 9.5415e-01, 8.6776e-01, 1.1685e-01, 3.3088e-01, + 7.7341e-01, 8.3175e-01, 5.7462e-01, 1.3990e-01, + 9.0461e-01, 6.0410e-01, 8.4851e-01, 9.6942e-01, + 8.4864e-01, 6.3279e-01, 9.6144e-01, 1.5080e-01, + 8.9336e-02, 9.6933e-01, 4.5647e-01, 7.3363e-01, + 3.9520e-01, 5.6769e-01, 1.2489e-01, 5.1997e-01, + 1.6970e-01, 5.2122e-02, 4.9514e-01, 5.7753e-01, + 3.1179e-01, 8.2135e-01, 3.0969e-01, 1.9110e-01, + 9.3857e-02, 5.3521e-01, 3.5248e-01, 6.2581e-01, + 9.7808e-01, 5.1285e-01, 9.7337e-01, 2.5133e-01, + 4.4027e-01, 4.3065e-01, 2.5723e-01, 1.2854e-01, + 9.8939e-02, 9.0984e-01, 8.7231e-01, 9.3467e-01, + 7.2945e-01, 3.0576e-01, 1.3236e-01, 7.1361e-02, + 3.9339e-01, 3.1714e-01, 3.2872e-01, 5.1748e-01, + 5.5217e-01, 4.1788e-01, 7.8429e-01, 6.7386e-02, + 7.7600e-01, 4.0606e-01, 6.8449e-01, 5.7668e-02, + 9.0049e-01, 8.6218e-01, 3.3053e-01, 7.6311e-01, + 5.8454e-01, 1.8191e-01, 9.8940e-01, 1.1427e-02, + 6.7147e-01, 3.5037e-01, 8.0766e-01, 9.2500e-01, + 1.0255e-01, 9.5627e-01, 4.2546e-02, 1.7540e-01, + 5.4745e-01, 5.9252e-01, 1.4245e-01, 4.0475e-01, + 9.8581e-01, 3.8861e-01, 8.0536e-01, 6.9424e-01, + 6.3616e-01, 7.9450e-01, 3.0102e-01, 4.6604e-01, + 4.0082e-01, 7.9423e-01, 6.0621e-02, 7.6039e-01, + 2.8130e-01, 7.6283e-01, 8.3019e-01, 4.7440e-01, + 9.3373e-01, 2.3127e-01, 9.8599e-01, 1.0451e-01, + 4.4318e-01, 4.3340e-01, 1.2718e-01, 6.7560e-01, + 8.0438e-01, 2.4075e-01, 5.0321e-01, 2.8248e-01, + 6.0269e-01, 1.4597e-01, 1.3511e-01, 1.7491e-01, + 8.6251e-01, 4.5483e-01, 7.5964e-01, 2.8131e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.4226, 0.0556, 0.1398, ..., 0.5751, 0.9814, 0.4838]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.681929588317871 seconds + +[41.15, 38.98, 39.75, 38.85, 39.88, 39.03, 39.18, 38.82, 39.8, 38.85] +[96.13] +13.135187864303589 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 362169, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.681929588317871, 'TIME_S_1KI': 0.029494323336116207, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1262.685609395504, 'W': 96.13} +[41.15, 38.98, 39.75, 38.85, 39.88, 39.03, 39.18, 38.82, 39.8, 38.85, 40.18, 39.93, 38.85, 39.83, 38.86, 39.3, 38.99, 39.61, 39.19, 46.97] +712.425 +35.621249999999996 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 362169, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.681929588317871, 'TIME_S_1KI': 0.029494323336116207, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1262.685609395504, 'W': 96.13, 'J_1KI': 3.4864541399056903, 'W_1KI': 0.2654285706396737, 'W_D': 60.50875, 'J_D': 794.7937986841798, 'W_D_1KI': 0.1670732448111241, 'J_D_1KI': 0.0004613129362566208} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_500000_1e-05.json new file mode 100644 index 0000000..c41b46b --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_500000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 21272, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.296250820159912, "TIME_S_1KI": 0.4840283386686683, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2004.567332353592, "W": 151.77, "J_1KI": 94.23501938480594, "W_1KI": 7.134731101918015, "W_D": 115.36950000000002, "J_D": 1523.7921252551082, "W_D_1KI": 5.423537984204589, "J_D_1KI": 0.2549613569107084} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_500000_1e-05.output new file mode 100644 index 0000000..ff821c9 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_500000_1e-05.output @@ -0,0 +1,89 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.5370402336120605} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 10, ..., 2499988, + 2499995, 2500000]), + col_indices=tensor([ 667, 84326, 231414, ..., 445492, 452435, + 478533]), + values=tensor([0.3723, 0.9059, 0.5582, ..., 0.5128, 0.0660, 0.1881]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.0315, 0.2189, 0.8055, ..., 0.9902, 0.0196, 0.5860]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 0.5370402336120605 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '19551', '-ss', '500000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.650388717651367} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 9, ..., 2499988, + 2499994, 2500000]), + col_indices=tensor([ 11262, 76750, 152870, ..., 221537, 283064, + 452441]), + values=tensor([0.8111, 0.5495, 0.0260, ..., 0.8118, 0.4893, 0.3789]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.5436, 0.8281, 0.7063, ..., 0.1699, 0.2640, 0.5110]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 9.650388717651367 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '21272', '-ss', '500000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.296250820159912} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 8, ..., 2499993, + 2499998, 2500000]), + col_indices=tensor([ 13054, 157067, 258216, ..., 445117, 194165, + 431781]), + values=tensor([0.8472, 0.4724, 0.5562, ..., 0.8941, 0.8667, 0.3682]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.2043, 0.9144, 0.3718, ..., 0.9024, 0.4544, 0.2083]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 10.296250820159912 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 8, ..., 2499993, + 2499998, 2500000]), + col_indices=tensor([ 13054, 157067, 258216, ..., 445117, 194165, + 431781]), + values=tensor([0.8472, 0.4724, 0.5562, ..., 0.8941, 0.8667, 0.3682]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.2043, 0.9144, 0.3718, ..., 0.9024, 0.4544, 0.2083]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 10.296250820159912 seconds + +[40.04, 40.36, 39.54, 40.31, 47.07, 40.26, 39.56, 39.95, 39.57, 41.2] +[151.77] +13.207928657531738 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 21272, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.296250820159912, 'TIME_S_1KI': 0.4840283386686683, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2004.567332353592, 'W': 151.77} +[40.04, 40.36, 39.54, 40.31, 47.07, 40.26, 39.56, 39.95, 39.57, 41.2, 46.29, 39.48, 40.21, 39.42, 40.34, 39.68, 39.47, 39.18, 40.2, 39.29] +728.01 +36.4005 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 21272, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.296250820159912, 'TIME_S_1KI': 0.4840283386686683, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2004.567332353592, 'W': 151.77, 'J_1KI': 94.23501938480594, 'W_1KI': 7.134731101918015, 'W_D': 115.36950000000002, 'J_D': 1523.7921252551082, 'W_D_1KI': 5.423537984204589, 'J_D_1KI': 0.2549613569107084} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.0001.json new file mode 100644 index 0000000..8fb8b3c --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 91738, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.729677200317383, "TIME_S_1KI": 0.1169600078518976, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1421.8676947784425, "W": 116.68, "J_1KI": 15.49922272971334, "W_1KI": 1.2718829710697859, "W_D": 81.037, "J_D": 987.5205037860871, "W_D_1KI": 0.883352591074582, "J_D_1KI": 0.009629080545407377} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.0001.output new file mode 100644 index 0000000..e8b4fe3 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.0001.output @@ -0,0 +1,105 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.13608026504516602} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 12, ..., 249989, 249998, + 250000]), + col_indices=tensor([17323, 35611, 42973, ..., 47252, 2994, 12259]), + values=tensor([0.7287, 0.3464, 0.0193, ..., 0.7636, 0.2298, 0.3699]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.4030, 0.5063, 0.1399, ..., 0.2219, 0.6631, 0.1030]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 0.13608026504516602 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '77160', '-ss', '50000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.564647197723389} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 10, ..., 249992, 249997, + 250000]), + col_indices=tensor([ 7731, 9587, 38710, ..., 32177, 32664, 36235]), + values=tensor([0.0671, 0.3654, 0.2011, ..., 0.4377, 0.9797, 0.5456]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.4354, 0.6450, 0.5949, ..., 0.4585, 0.1162, 0.0017]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 9.564647197723389 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '84705', '-ss', '50000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.694962739944458} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 11, ..., 249991, 249993, + 250000]), + col_indices=tensor([19445, 22750, 27321, ..., 31731, 39710, 46259]), + values=tensor([0.4009, 0.2006, 0.6920, ..., 0.2884, 0.6470, 0.2171]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.3109, 0.8999, 0.0558, ..., 0.1822, 0.8563, 0.0744]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 9.694962739944458 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '91738', '-ss', '50000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.729677200317383} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 7, ..., 249990, 249995, + 250000]), + col_indices=tensor([20378, 29361, 44885, ..., 25194, 39048, 45113]), + values=tensor([0.6839, 0.7204, 0.3118, ..., 0.2854, 0.8671, 0.0496]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.2159, 0.7026, 0.3184, ..., 0.1135, 0.4559, 0.6374]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.729677200317383 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 7, ..., 249990, 249995, + 250000]), + col_indices=tensor([20378, 29361, 44885, ..., 25194, 39048, 45113]), + values=tensor([0.6839, 0.7204, 0.3118, ..., 0.2854, 0.8671, 0.0496]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.2159, 0.7026, 0.3184, ..., 0.1135, 0.4559, 0.6374]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.729677200317383 seconds + +[40.36, 39.52, 40.11, 39.22, 40.19, 39.14, 40.18, 39.47, 39.42, 39.16] +[116.68] +12.186044692993164 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 91738, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.729677200317383, 'TIME_S_1KI': 0.1169600078518976, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1421.8676947784425, 'W': 116.68} +[40.36, 39.52, 40.11, 39.22, 40.19, 39.14, 40.18, 39.47, 39.42, 39.16, 39.82, 39.18, 40.07, 39.1, 40.14, 39.1, 40.11, 39.11, 39.63, 39.0] +712.86 +35.643 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 91738, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.729677200317383, 'TIME_S_1KI': 0.1169600078518976, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1421.8676947784425, 'W': 116.68, 'J_1KI': 15.49922272971334, 'W_1KI': 1.2718829710697859, 'W_D': 81.037, 'J_D': 987.5205037860871, 'W_D_1KI': 0.883352591074582, 'J_D_1KI': 0.009629080545407377} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.001.json new file mode 100644 index 0000000..18b313c --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 46932, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.4467294216156, "TIME_S_1KI": 0.22259288804260632, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1943.0940554380418, "W": 146.55, "J_1KI": 41.40232795188873, "W_1KI": 3.122602914855536, "W_D": 110.75150000000002, "J_D": 1468.4447716195587, "W_D_1KI": 2.3598291144634795, "J_D_1KI": 0.05028187834448734} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.001.output new file mode 100644 index 0000000..c54c9fb --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.001.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.2965991497039795} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 49, 105, ..., 2499896, + 2499948, 2500000]), + col_indices=tensor([ 1888, 3456, 5299, ..., 45108, 48153, 49689]), + values=tensor([0.2133, 0.4832, 0.5162, ..., 0.1550, 0.2104, 0.0398]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.8558, 0.3690, 0.3196, ..., 0.7609, 0.2901, 0.1393]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 0.2965991497039795 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '35401', '-ss', '50000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 7.9200310707092285} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 50, 98, ..., 2499887, + 2499942, 2500000]), + col_indices=tensor([ 1341, 6881, 6901, ..., 49243, 49539, 49603]), + values=tensor([0.6621, 0.7599, 0.1509, ..., 0.9636, 0.0388, 0.7851]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.4875, 0.8207, 0.8190, ..., 0.4243, 0.1238, 0.4257]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 7.9200310707092285 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '46932', '-ss', '50000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.4467294216156} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 37, 82, ..., 2499888, + 2499942, 2500000]), + col_indices=tensor([ 2117, 2189, 2263, ..., 47568, 48115, 49415]), + values=tensor([0.8006, 0.3321, 0.7026, ..., 0.2322, 0.3552, 0.1894]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.9529, 0.8532, 0.0899, ..., 0.0711, 0.7399, 0.8898]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 10.4467294216156 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 37, 82, ..., 2499888, + 2499942, 2500000]), + col_indices=tensor([ 2117, 2189, 2263, ..., 47568, 48115, 49415]), + values=tensor([0.8006, 0.3321, 0.7026, ..., 0.2322, 0.3552, 0.1894]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.9529, 0.8532, 0.0899, ..., 0.0711, 0.7399, 0.8898]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 10.4467294216156 seconds + +[40.61, 39.27, 40.33, 39.32, 40.41, 39.18, 40.21, 39.47, 39.59, 40.71] +[146.55] +13.258915424346924 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 46932, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.4467294216156, 'TIME_S_1KI': 0.22259288804260632, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1943.0940554380418, 'W': 146.55} +[40.61, 39.27, 40.33, 39.32, 40.41, 39.18, 40.21, 39.47, 39.59, 40.71, 40.22, 40.14, 39.29, 40.17, 39.21, 40.37, 39.38, 39.54, 39.32, 40.0] +715.9699999999999 +35.7985 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 46932, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.4467294216156, 'TIME_S_1KI': 0.22259288804260632, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1943.0940554380418, 'W': 146.55, 'J_1KI': 41.40232795188873, 'W_1KI': 3.122602914855536, 'W_D': 110.75150000000002, 'J_D': 1468.4447716195587, 'W_D_1KI': 2.3598291144634795, 'J_D_1KI': 0.05028187834448734} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_50000_1e-05.json new file mode 100644 index 0000000..a53c562 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_50000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 132622, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.695917844772339, "TIME_S_1KI": 0.08064964971703291, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1381.936604347229, "W": 102.52, "J_1KI": 10.420115850667528, "W_1KI": 0.7730240834853945, "W_D": 66.90350000000001, "J_D": 901.8376473755837, "W_D_1KI": 0.5044675845636472, "J_D_1KI": 0.0038038001580706607} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_50000_1e-05.output new file mode 100644 index 0000000..89e9f79 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_50000_1e-05.output @@ -0,0 +1,100 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.13474559783935547} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 24998, 24999, 25000]), + col_indices=tensor([43476, 3093, 41733, ..., 42921, 16006, 37299]), + values=tensor([0.8834, 0.6775, 0.5620, ..., 0.7889, 0.3307, 0.4663]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.1655, 0.9515, 0.3152, ..., 0.5133, 0.8067, 0.9282]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 0.13474559783935547 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '77924', '-ss', '50000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 6.767163991928101} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 25000, 25000, 25000]), + col_indices=tensor([35071, 44060, 31911, ..., 37021, 35082, 17458]), + values=tensor([0.6370, 0.7388, 0.5924, ..., 0.3636, 0.5677, 0.2522]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.8033, 0.0482, 0.8958, ..., 0.4016, 0.2560, 0.2344]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 6.767163991928101 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '120907', '-ss', '50000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.572461605072021} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 24999, 25000, 25000]), + col_indices=tensor([ 3082, 46101, 46713, ..., 40768, 36655, 17054]), + values=tensor([0.2693, 0.1416, 0.6603, ..., 0.5561, 0.2474, 0.5454]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.5277, 0.5906, 0.6144, ..., 0.6636, 0.4334, 0.5688]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 9.572461605072021 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '132622', '-ss', '50000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.695917844772339} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 24998, 24998, 25000]), + col_indices=tensor([ 1978, 29423, 7022, ..., 46456, 14629, 46564]), + values=tensor([0.3729, 0.4306, 0.6677, ..., 0.7805, 0.6392, 0.2909]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.9195, 0.7845, 0.1112, ..., 0.9886, 0.0043, 0.8706]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.695917844772339 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 24998, 24998, 25000]), + col_indices=tensor([ 1978, 29423, 7022, ..., 46456, 14629, 46564]), + values=tensor([0.3729, 0.4306, 0.6677, ..., 0.7805, 0.6392, 0.2909]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.9195, 0.7845, 0.1112, ..., 0.9886, 0.0043, 0.8706]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.695917844772339 seconds + +[40.91, 39.21, 40.28, 39.06, 40.18, 39.24, 39.39, 39.11, 40.12, 39.03] +[102.52] +13.4796781539917 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 132622, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.695917844772339, 'TIME_S_1KI': 0.08064964971703291, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1381.936604347229, 'W': 102.52} +[40.91, 39.21, 40.28, 39.06, 40.18, 39.24, 39.39, 39.11, 40.12, 39.03, 40.67, 39.4, 40.19, 38.91, 39.61, 38.93, 39.87, 39.08, 40.01, 38.87] +712.3299999999999 +35.616499999999995 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 132622, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.695917844772339, 'TIME_S_1KI': 0.08064964971703291, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1381.936604347229, 'W': 102.52, 'J_1KI': 10.420115850667528, 'W_1KI': 0.7730240834853945, 'W_D': 66.90350000000001, 'J_D': 901.8376473755837, 'W_D_1KI': 0.5044675845636472, 'J_D_1KI': 0.0038038001580706607} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.0001.json b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.0001.json new file mode 100644 index 0000000..c740a6d --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 450692, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.661210536956787, "TIME_S_1KI": 0.023655202526241394, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1274.7642656326295, "W": 94.48, "J_1KI": 2.82845993634817, "W_1KI": 0.2096331863001784, "W_D": 59.36250000000001, "J_D": 800.9440486729146, "W_D_1KI": 0.13171411962049473, "J_D_1KI": 0.00029224863015206556} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.0001.output b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.0001.output new file mode 100644 index 0000000..eed9694 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.0001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.05054283142089844} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 2, ..., 2500, 2500, 2500]), + col_indices=tensor([ 483, 2169, 757, ..., 173, 4439, 4656]), + values=tensor([0.9876, 0.6258, 0.5982, ..., 0.3562, 0.6626, 0.2988]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.5486, 0.1022, 0.5660, ..., 0.0025, 0.4692, 0.8005]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 0.05054283142089844 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '207744', '-ss', '5000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 4.839913845062256} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 2499, 2500, 2500]), + col_indices=tensor([1064, 259, 704, ..., 2037, 4830, 899]), + values=tensor([0.7873, 0.2357, 0.4656, ..., 0.3402, 0.5396, 0.7236]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.3390, 0.6218, 0.4185, ..., 0.9245, 0.2892, 0.5586]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 4.839913845062256 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '450692', '-ss', '5000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.661210536956787} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 2, ..., 2499, 2499, 2500]), + col_indices=tensor([2769, 4978, 3269, ..., 2907, 4470, 1850]), + values=tensor([0.1814, 0.5969, 0.2629, ..., 0.3883, 0.1478, 0.5451]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.9019, 0.2172, 0.0888, ..., 0.3698, 0.8940, 0.4050]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 10.661210536956787 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 2, ..., 2499, 2499, 2500]), + col_indices=tensor([2769, 4978, 3269, ..., 2907, 4470, 1850]), + values=tensor([0.1814, 0.5969, 0.2629, ..., 0.3883, 0.1478, 0.5451]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.9019, 0.2172, 0.0888, ..., 0.3698, 0.8940, 0.4050]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 10.661210536956787 seconds + +[39.19, 39.19, 38.63, 39.33, 38.89, 39.39, 38.57, 39.43, 38.51, 39.19] +[94.48] +13.492424488067627 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 450692, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.661210536956787, 'TIME_S_1KI': 0.023655202526241394, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1274.7642656326295, 'W': 94.48} +[39.19, 39.19, 38.63, 39.33, 38.89, 39.39, 38.57, 39.43, 38.51, 39.19, 39.32, 38.88, 39.47, 38.52, 39.48, 38.52, 39.58, 38.58, 39.31, 38.44] +702.3499999999999 +35.11749999999999 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 450692, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.661210536956787, 'TIME_S_1KI': 0.023655202526241394, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1274.7642656326295, 'W': 94.48, 'J_1KI': 2.82845993634817, 'W_1KI': 0.2096331863001784, 'W_D': 59.36250000000001, 'J_D': 800.9440486729146, 'W_D_1KI': 0.13171411962049473, 'J_D_1KI': 0.00029224863015206556} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.001.json b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.001.json new file mode 100644 index 0000000..5a45f3d --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 249519, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.236942052841187, "TIME_S_1KI": 0.04102670358907012, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1222.1109838342666, "W": 97.13999999999999, "J_1KI": 4.897867432276767, "W_1KI": 0.3893090305748259, "W_D": 61.76424999999999, "J_D": 777.0513520000576, "W_D_1KI": 0.24753325398065876, "J_D_1KI": 0.0009920417041614415} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.001.output b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.001.output new file mode 100644 index 0000000..bf3e9ad --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.05724024772644043} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 15, ..., 24983, 24992, 25000]), + col_indices=tensor([ 471, 1370, 1845, ..., 3191, 3518, 3659]), + values=tensor([0.0299, 0.9557, 0.6054, ..., 0.0635, 0.2604, 0.4528]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.0205, 0.7752, 0.1498, ..., 0.2089, 0.1619, 0.7193]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 0.05724024772644043 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '183437', '-ss', '5000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 7.719191074371338} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 8, ..., 24996, 24997, 25000]), + col_indices=tensor([1493, 2121, 2213, ..., 623, 2347, 4713]), + values=tensor([0.6456, 0.4495, 0.4360, ..., 0.5144, 0.5794, 0.1984]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.2703, 0.0672, 0.3072, ..., 0.2566, 0.5122, 0.5785]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 7.719191074371338 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '249519', '-ss', '5000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.236942052841187} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 11, ..., 24991, 24997, 25000]), + col_indices=tensor([ 752, 886, 972, ..., 802, 1974, 3630]), + values=tensor([0.4437, 0.0647, 0.4607, ..., 0.1209, 0.0125, 0.5794]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.9393, 0.0560, 0.5479, ..., 0.4533, 0.0776, 0.5900]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 10.236942052841187 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 11, ..., 24991, 24997, 25000]), + col_indices=tensor([ 752, 886, 972, ..., 802, 1974, 3630]), + values=tensor([0.4437, 0.0647, 0.4607, ..., 0.1209, 0.0125, 0.5794]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.9393, 0.0560, 0.5479, ..., 0.4533, 0.0776, 0.5900]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 10.236942052841187 seconds + +[40.22, 39.73, 39.42, 38.78, 39.93, 38.71, 40.68, 38.8, 39.45, 38.55] +[97.14] +12.580924272537231 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 249519, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.236942052841187, 'TIME_S_1KI': 0.04102670358907012, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1222.1109838342666, 'W': 97.13999999999999} +[40.22, 39.73, 39.42, 38.78, 39.93, 38.71, 40.68, 38.8, 39.45, 38.55, 40.16, 39.21, 38.74, 39.25, 39.41, 39.27, 38.96, 39.33, 38.96, 38.84] +707.515 +35.37575 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 249519, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.236942052841187, 'TIME_S_1KI': 0.04102670358907012, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1222.1109838342666, 'W': 97.13999999999999, 'J_1KI': 4.897867432276767, 'W_1KI': 0.3893090305748259, 'W_D': 61.76424999999999, 'J_D': 777.0513520000576, 'W_D_1KI': 0.24753325398065876, 'J_D_1KI': 0.0009920417041614415} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.01.json b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.01.json new file mode 100644 index 0000000..e6c8fdb --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 146173, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.55378007888794, "TIME_S_1KI": 0.07220061214374707, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1340.7953616142272, "W": 116.1, "J_1KI": 9.17266089916898, "W_1KI": 0.7942643306219342, "W_D": 80.21499999999999, "J_D": 926.372953763008, "W_D_1KI": 0.5487675562518385, "J_D_1KI": 0.0037542333827166336} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.01.output b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.01.output new file mode 100644 index 0000000..021f115 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.01.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.09166121482849121} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 47, 94, ..., 249894, 249942, + 250000]), + col_indices=tensor([ 119, 293, 345, ..., 4744, 4847, 4998]), + values=tensor([0.2600, 0.0492, 0.0782, ..., 0.6942, 0.7814, 0.7527]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.8315, 0.0983, 0.7447, ..., 0.4668, 0.9945, 0.1855]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 0.09166121482849121 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '114552', '-ss', '5000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 8.2285475730896} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 57, 113, ..., 249897, 249950, + 250000]), + col_indices=tensor([ 60, 61, 88, ..., 4754, 4809, 4933]), + values=tensor([0.8655, 0.3309, 0.5749, ..., 0.8443, 0.2705, 0.0665]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.6570, 0.9775, 0.7976, ..., 0.2365, 0.6987, 0.3821]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 8.2285475730896 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '146173', '-ss', '5000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.55378007888794} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 53, 109, ..., 249914, 249951, + 250000]), + col_indices=tensor([ 51, 99, 229, ..., 4435, 4821, 4904]), + values=tensor([0.7585, 0.4725, 0.0422, ..., 0.0029, 0.1086, 0.7072]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.3786, 0.1898, 0.9439, ..., 0.4562, 0.4771, 0.6918]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 10.55378007888794 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 53, 109, ..., 249914, 249951, + 250000]), + col_indices=tensor([ 51, 99, 229, ..., 4435, 4821, 4904]), + values=tensor([0.7585, 0.4725, 0.0422, ..., 0.0029, 0.1086, 0.7072]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.3786, 0.1898, 0.9439, ..., 0.4562, 0.4771, 0.6918]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 10.55378007888794 seconds + +[39.38, 39.69, 39.36, 39.25, 38.8, 39.79, 38.95, 39.94, 38.86, 45.03] +[116.1] +11.548624992370605 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 146173, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.55378007888794, 'TIME_S_1KI': 0.07220061214374707, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1340.7953616142272, 'W': 116.1} +[39.38, 39.69, 39.36, 39.25, 38.8, 39.79, 38.95, 39.94, 38.86, 45.03, 39.59, 39.72, 39.05, 38.89, 38.89, 39.88, 38.77, 40.8, 45.19, 39.74] +717.7 +35.885000000000005 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 146173, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.55378007888794, 'TIME_S_1KI': 0.07220061214374707, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1340.7953616142272, 'W': 116.1, 'J_1KI': 9.17266089916898, 'W_1KI': 0.7942643306219342, 'W_D': 80.21499999999999, 'J_D': 926.372953763008, 'W_D_1KI': 0.5487675562518385, 'J_D_1KI': 0.0037542333827166336} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.05.json b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.05.json new file mode 100644 index 0000000..4f9e011 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 92778, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.476318120956421, "TIME_S_1KI": 0.11291812844592922, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1732.4749909281732, "W": 131.59, "J_1KI": 18.6733384091937, "W_1KI": 1.4183319321390848, "W_D": 96.0545, "J_D": 1264.6251160126926, "W_D_1KI": 1.0353154842742893, "J_D_1KI": 0.011159062323765217} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.05.output b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.05.output new file mode 100644 index 0000000..85eae8d --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 0.1557161808013916} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 231, 495, ..., 1249487, + 1249744, 1250000]), + col_indices=tensor([ 9, 30, 58, ..., 4828, 4865, 4971]), + values=tensor([0.7438, 0.5258, 0.4698, ..., 0.4344, 0.2594, 0.0033]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.1880, 0.8169, 0.5226, ..., 0.2752, 0.9006, 0.0611]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 0.1557161808013916 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '67430', '-ss', '5000', '-sd', '0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 7.631251096725464} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 248, 518, ..., 1249509, + 1249753, 1250000]), + col_indices=tensor([ 31, 45, 102, ..., 4944, 4977, 4981]), + values=tensor([0.8150, 0.4433, 0.0676, ..., 0.5361, 0.0056, 0.9882]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.0156, 0.0219, 0.6064, ..., 0.7934, 0.6259, 0.0204]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 7.631251096725464 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '92778', '-ss', '5000', '-sd', '0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.476318120956421} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 269, 520, ..., 1249470, + 1249738, 1250000]), + col_indices=tensor([ 32, 37, 46, ..., 4950, 4963, 4989]), + values=tensor([0.4206, 0.9091, 0.7478, ..., 0.6711, 0.2779, 0.9141]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.6953, 0.1111, 0.6307, ..., 0.1029, 0.6511, 0.8226]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 10.476318120956421 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 269, 520, ..., 1249470, + 1249738, 1250000]), + col_indices=tensor([ 32, 37, 46, ..., 4950, 4963, 4989]), + values=tensor([0.4206, 0.9091, 0.7478, ..., 0.6711, 0.2779, 0.9141]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.6953, 0.1111, 0.6307, ..., 0.1029, 0.6511, 0.8226]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 10.476318120956421 seconds + +[40.71, 39.95, 38.97, 39.83, 39.79, 39.14, 38.93, 39.78, 39.42, 39.71] +[131.59] +13.165704011917114 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 92778, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.476318120956421, 'TIME_S_1KI': 0.11291812844592922, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1732.4749909281732, 'W': 131.59} +[40.71, 39.95, 38.97, 39.83, 39.79, 39.14, 38.93, 39.78, 39.42, 39.71, 40.83, 39.04, 39.95, 38.93, 39.14, 39.24, 39.86, 38.92, 39.75, 38.89] +710.71 +35.5355 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 92778, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.476318120956421, 'TIME_S_1KI': 0.11291812844592922, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1732.4749909281732, 'W': 131.59, 'J_1KI': 18.6733384091937, 'W_1KI': 1.4183319321390848, 'W_D': 96.0545, 'J_D': 1264.6251160126926, 'W_D_1KI': 1.0353154842742893, 'J_D_1KI': 0.011159062323765217} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.1.json b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.1.json new file mode 100644 index 0000000..d3bf1fe --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.1.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 52513, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.26560354232788, "TIME_S_1KI": 0.19548689928832635, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1794.3579230117798, "W": 136.24, "J_1KI": 34.16978506297069, "W_1KI": 2.594405194904119, "W_D": 100.32050000000001, "J_D": 1321.2777746293546, "W_D_1KI": 1.9103936168186928, "J_D_1KI": 0.036379441601483306} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.1.output b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.1.output new file mode 100644 index 0000000..ca278ce --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_0.1.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 0.2491617202758789} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 513, 1030, ..., 2499018, + 2499503, 2500000]), + col_indices=tensor([ 5, 7, 9, ..., 4974, 4988, 4992]), + values=tensor([0.9314, 0.8722, 0.2786, ..., 0.3461, 0.5001, 0.4531]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.5860, 0.7303, 0.0322, ..., 0.3067, 0.0639, 0.6907]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 0.2491617202758789 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '42141', '-ss', '5000', '-sd', '0.1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 8.425995349884033} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 480, 969, ..., 2498991, + 2499495, 2500000]), + col_indices=tensor([ 1, 8, 15, ..., 4990, 4995, 4997]), + values=tensor([0.6450, 0.7913, 0.7669, ..., 0.2675, 0.7315, 0.7922]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.8872, 0.3458, 0.7222, ..., 0.3185, 0.9459, 0.1327]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 8.425995349884033 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '52513', '-ss', '5000', '-sd', '0.1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.26560354232788} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 496, 1000, ..., 2499050, + 2499547, 2500000]), + col_indices=tensor([ 1, 8, 12, ..., 4944, 4951, 4977]), + values=tensor([0.2566, 0.4868, 0.9344, ..., 0.5912, 0.8684, 0.6618]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.5960, 0.0213, 0.1088, ..., 0.8621, 0.3601, 0.4544]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 10.26560354232788 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 496, 1000, ..., 2499050, + 2499547, 2500000]), + col_indices=tensor([ 1, 8, 12, ..., 4944, 4951, 4977]), + values=tensor([0.2566, 0.4868, 0.9344, ..., 0.5912, 0.8684, 0.6618]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.5960, 0.0213, 0.1088, ..., 0.8621, 0.3601, 0.4544]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 10.26560354232788 seconds + +[47.36, 40.59, 40.08, 39.29, 39.8, 40.2, 40.01, 39.07, 40.08, 38.96] +[136.24] +13.170566082000732 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 52513, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.26560354232788, 'TIME_S_1KI': 0.19548689928832635, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1794.3579230117798, 'W': 136.24} +[47.36, 40.59, 40.08, 39.29, 39.8, 40.2, 40.01, 39.07, 40.08, 38.96, 40.34, 40.06, 39.51, 39.55, 39.19, 39.83, 39.16, 39.75, 38.95, 39.88] +718.3900000000001 +35.919500000000006 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 52513, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.26560354232788, 'TIME_S_1KI': 0.19548689928832635, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1794.3579230117798, 'W': 136.24, 'J_1KI': 34.16978506297069, 'W_1KI': 2.594405194904119, 'W_D': 100.32050000000001, 'J_D': 1321.2777746293546, 'W_D_1KI': 1.9103936168186928, 'J_D_1KI': 0.036379441601483306} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_1e-05.json b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_1e-05.json new file mode 100644 index 0000000..b172c0c --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 470922, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.104466915130615, "TIME_S_1KI": 0.021456773977708867, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1145.4606072449685, "W": 92.79, "J_1KI": 2.4323786258551703, "W_1KI": 0.19703900008918676, "W_D": 57.138000000000005, "J_D": 705.3489403681756, "W_D_1KI": 0.12133219514059655, "J_D_1KI": 0.0002576481777037313} diff --git a/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_1e-05.output b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_1e-05.output new file mode 100644 index 0000000..263466b --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/epyc_7313p_max_csr_10_10_10_synthetic_5000_1e-05.output @@ -0,0 +1,356 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.06183266639709473} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([2604, 880, 70, 3579, 4688, 1415, 4052, 2136, 2789, + 1920, 1039, 1558, 2117, 2959, 828, 201, 2786, 2764, + 2257, 277, 2288, 309, 1119, 4553, 992, 4344, 1852, + 1654, 3440, 2337, 4465, 3747, 865, 1053, 722, 4388, + 1118, 2434, 2479, 2179, 2623, 1327, 1850, 4354, 1080, + 294, 3733, 2629, 4844, 2052, 338, 3690, 2779, 4781, + 442, 500, 2501, 2111, 2134, 4050, 4965, 2490, 1539, + 1728, 3791, 2480, 429, 85, 2238, 4139, 1911, 2702, + 1667, 623, 834, 958, 2640, 639, 3527, 4275, 2167, + 2457, 991, 806, 4483, 513, 3720, 1136, 1176, 1064, + 771, 912, 1234, 1122, 4461, 4277, 1464, 345, 1997, + 2256, 2917, 38, 2975, 472, 2189, 2640, 491, 245, + 718, 3839, 2523, 240, 4832, 1434, 3727, 2402, 3795, + 977, 2914, 3289, 1194, 1229, 3616, 4441, 1900, 4483, + 4227, 4209, 4021, 4316, 794, 1149, 4287, 2054, 4565, + 4842, 69, 93, 2768, 2785, 2781, 1662, 4565, 3083, + 2932, 2437, 4078, 1005, 2493, 4749, 4500, 4776, 2110, + 3771, 1500, 4456, 4652, 2281, 3889, 3267, 2338, 1779, + 1663, 1964, 223, 2535, 4215, 2012, 431, 2610, 2606, + 1802, 4804, 2967, 365, 3887, 1133, 2945, 28, 647, + 466, 4656, 1939, 1716, 1723, 1159, 2034, 3057, 1288, + 284, 673, 4283, 506, 1331, 614, 631, 4195, 2134, + 2612, 1089, 4012, 2128, 736, 1710, 4895, 1258, 2802, + 4181, 1214, 4441, 4549, 2923, 3989, 2826, 3613, 1217, + 1556, 110, 4249, 222, 1573, 3450, 1707, 4825, 3455, + 279, 1371, 3150, 620, 486, 544, 4512, 3097, 2958, + 3135, 21, 1955, 802, 3984, 2259, 2773, 1786, 4464, + 4164, 2686, 4882, 4392, 2240, 1975, 2258]), + values=tensor([0.5027, 0.7084, 0.3487, 0.0753, 0.4164, 0.9980, 0.6580, + 0.4935, 0.3902, 0.5664, 0.2658, 0.3783, 0.8206, 0.5243, + 0.7985, 0.9823, 0.7694, 0.1060, 0.0192, 0.9550, 0.7866, + 0.3204, 0.1228, 0.4101, 0.8052, 0.9732, 0.1676, 0.7257, + 0.3426, 0.4203, 0.8249, 0.6182, 0.8414, 0.1007, 0.5404, + 0.5322, 0.6815, 0.5471, 0.5528, 0.9304, 0.5952, 0.6825, + 0.1470, 0.9592, 0.1633, 0.8148, 0.7106, 0.4684, 0.6378, + 0.2787, 0.1559, 0.9606, 0.6114, 0.8631, 0.8476, 0.0374, + 0.0974, 0.1508, 0.6160, 0.2538, 0.9193, 0.3221, 0.6792, + 0.1039, 0.5088, 0.3858, 0.8567, 0.5930, 0.1245, 0.9954, + 0.1659, 0.1382, 0.3631, 0.0415, 0.2608, 0.5523, 0.3431, + 0.5922, 0.9276, 0.2417, 0.9820, 0.0941, 0.0465, 0.6122, + 0.3473, 0.8672, 0.7451, 0.4632, 0.6761, 0.3844, 0.6143, + 0.9600, 0.7204, 0.0168, 0.7425, 0.2772, 0.4866, 0.2756, + 0.3148, 0.2142, 0.2884, 0.7150, 0.6972, 0.0578, 0.3403, + 0.6794, 0.7790, 0.6966, 0.8236, 0.6083, 0.5211, 0.6301, + 0.9543, 0.5553, 0.9115, 0.9237, 0.2270, 0.6441, 0.7009, + 0.1070, 0.9702, 0.2577, 0.6283, 0.2972, 0.6911, 0.1725, + 0.0282, 0.9157, 0.7996, 0.8026, 0.3516, 0.8308, 0.1003, + 0.0248, 0.7281, 0.0565, 0.4669, 0.2079, 0.4864, 0.2943, + 0.0681, 0.8545, 0.6221, 0.1251, 0.9854, 0.1397, 0.1128, + 0.9416, 0.0256, 0.6346, 0.9861, 0.8618, 0.7250, 0.4296, + 0.7583, 0.0529, 0.9738, 0.1783, 0.4879, 0.4079, 0.1074, + 0.5057, 0.9961, 0.1328, 0.5920, 0.7290, 0.7943, 0.2699, + 0.4245, 0.8340, 0.8310, 0.7824, 0.7435, 0.8129, 0.8814, + 0.7889, 0.8688, 0.4636, 0.6432, 0.6209, 0.5976, 0.7619, + 0.1123, 0.6496, 0.0741, 0.4224, 0.7444, 0.0204, 0.2397, + 0.8878, 0.9369, 0.8874, 0.3159, 0.4066, 0.7965, 0.9182, + 0.6430, 0.4446, 0.9224, 0.9817, 0.9823, 0.2288, 0.4574, + 0.8650, 0.3584, 0.5672, 0.6737, 0.6909, 0.8267, 0.7004, + 0.1349, 0.9181, 0.4535, 0.2086, 0.7357, 0.4116, 0.8581, + 0.4745, 0.8694, 0.4770, 0.7691, 0.7362, 0.3193, 0.0221, + 0.8677, 0.6112, 0.7624, 0.0925, 0.5125, 0.8534, 0.7050, + 0.0262, 0.5351, 0.3163, 0.2383, 0.0599, 0.2394, 0.4205, + 0.6550, 0.0849, 0.3824, 0.5505, 0.5900, 0.6050, 0.9085, + 0.2972, 0.8380, 0.5688, 0.8007, 0.1354]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.8800, 0.9246, 0.8175, ..., 0.7580, 0.5437, 0.3847]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 0.06183266639709473 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '169813', '-ss', '5000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 3.7862648963928223} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([4929, 3000, 2082, 1973, 3068, 607, 2961, 29, 351, + 4460, 1744, 1352, 1928, 620, 2963, 2161, 3031, 1297, + 2919, 205, 4433, 3348, 1763, 856, 1768, 4451, 4553, + 4151, 4124, 2487, 3669, 4245, 3791, 4332, 4652, 2944, + 1288, 1040, 2819, 1114, 1794, 2584, 3750, 1803, 3463, + 4428, 74, 755, 2930, 4705, 1792, 4415, 3681, 827, + 4613, 2053, 1757, 3551, 4558, 4714, 3521, 1441, 4198, + 4541, 3322, 2233, 4821, 4668, 3073, 842, 2391, 3470, + 3549, 2287, 3488, 3373, 466, 1474, 153, 4112, 3825, + 4049, 3820, 3974, 3338, 3169, 805, 1709, 934, 888, + 4398, 4212, 3596, 4722, 3648, 2384, 3672, 1636, 2638, + 1043, 3299, 4127, 253, 202, 700, 2123, 4147, 1615, + 2757, 961, 2278, 1624, 3033, 3925, 2974, 659, 4026, + 4847, 3567, 1263, 2942, 649, 336, 2794, 2496, 1692, + 2922, 2720, 4718, 3696, 3170, 3469, 1190, 927, 2942, + 4571, 3583, 3648, 2986, 2168, 2398, 922, 12, 2532, + 4982, 381, 360, 3881, 4346, 1626, 2391, 1413, 4317, + 670, 2866, 246, 1603, 4269, 1839, 293, 829, 3204, + 2987, 1314, 2286, 432, 4021, 2567, 1874, 328, 649, + 3133, 542, 3317, 2128, 3678, 1459, 1800, 937, 707, + 3716, 2927, 4259, 1827, 3266, 2961, 3799, 3106, 2266, + 150, 2700, 2735, 4193, 1030, 278, 2845, 685, 2154, + 4023, 2287, 2456, 1418, 3324, 1219, 1823, 2013, 2290, + 618, 4034, 748, 3423, 2391, 1286, 2548, 2856, 3978, + 206, 3640, 4573, 4602, 2605, 3727, 1817, 3883, 289, + 1165, 667, 2695, 652, 3897, 749, 889, 941, 1767, + 2961, 4938, 4706, 2892, 918, 4326, 4938, 1016, 1946, + 3193, 4622, 2689, 1925, 1828, 3491, 4755]), + values=tensor([6.5732e-01, 5.5709e-01, 9.0255e-01, 3.7373e-01, + 9.2539e-01, 5.3507e-01, 6.8389e-01, 8.5026e-01, + 2.3478e-01, 1.5006e-01, 8.8977e-01, 6.9161e-01, + 6.1729e-01, 8.2125e-01, 3.7387e-01, 4.1891e-01, + 4.2314e-01, 6.0341e-01, 5.3184e-01, 6.7206e-01, + 7.4531e-02, 7.8553e-01, 8.1168e-01, 1.2840e-02, + 9.3074e-01, 9.6045e-01, 8.9283e-01, 3.7963e-01, + 7.0103e-01, 9.0509e-01, 2.9361e-01, 9.8464e-01, + 2.8780e-01, 4.8753e-01, 4.8920e-01, 3.3610e-01, + 9.1715e-01, 3.5090e-01, 5.7914e-02, 9.3110e-01, + 2.2612e-01, 4.1491e-01, 8.2882e-01, 5.9619e-01, + 1.4545e-01, 6.3253e-01, 6.1725e-01, 7.4001e-01, + 9.8714e-01, 7.1669e-01, 9.6945e-01, 7.1615e-01, + 5.3071e-01, 1.9208e-01, 2.5701e-01, 6.2044e-01, + 6.5394e-01, 4.5949e-01, 5.3496e-01, 8.5279e-01, + 1.6171e-01, 4.7427e-01, 3.2489e-01, 9.4031e-01, + 6.6236e-01, 3.3448e-01, 4.5980e-01, 9.8944e-01, + 3.9491e-01, 4.9759e-01, 4.9597e-01, 6.3195e-01, + 2.6203e-01, 4.4820e-01, 5.1223e-01, 3.6293e-01, + 4.5785e-01, 2.8238e-01, 7.5282e-02, 3.5572e-02, + 1.0158e-01, 6.1843e-01, 2.0727e-01, 5.8810e-01, + 3.6032e-01, 6.3934e-01, 3.9975e-01, 9.0048e-01, + 6.8382e-01, 3.3572e-01, 5.8629e-02, 4.9842e-01, + 2.8358e-01, 3.0533e-01, 5.1674e-01, 5.7869e-01, + 8.9344e-01, 1.0014e-01, 1.0304e-01, 8.1526e-01, + 7.6755e-01, 7.0754e-02, 8.7246e-01, 7.6389e-01, + 6.2998e-01, 2.4960e-01, 3.2187e-01, 7.1579e-01, + 2.7927e-01, 5.3053e-01, 3.0237e-01, 7.6440e-02, + 4.1133e-01, 1.4339e-01, 4.0853e-01, 4.2458e-01, + 5.2413e-01, 1.0859e-03, 2.4440e-01, 2.9440e-02, + 5.4994e-01, 7.3144e-01, 9.1113e-01, 3.6059e-03, + 9.4994e-01, 3.3446e-01, 5.3742e-01, 4.4632e-01, + 7.2486e-02, 6.4910e-01, 1.3537e-01, 8.5198e-01, + 1.0295e-01, 9.4804e-01, 7.3070e-01, 6.7511e-01, + 9.8159e-01, 8.2450e-01, 9.4960e-03, 8.6690e-01, + 4.2671e-02, 1.4742e-01, 8.7106e-01, 3.5370e-01, + 2.7525e-01, 5.1878e-01, 4.3630e-01, 6.5541e-01, + 2.5515e-01, 4.3745e-01, 1.7148e-01, 1.7999e-01, + 9.8168e-02, 4.2671e-01, 8.0177e-01, 6.3035e-01, + 5.4076e-01, 7.7599e-01, 6.2263e-01, 2.3030e-01, + 6.9773e-01, 8.4732e-01, 8.0053e-01, 8.6019e-01, + 2.2649e-01, 6.7521e-01, 8.5825e-01, 6.0515e-01, + 9.8639e-01, 1.4857e-01, 2.9126e-01, 6.5170e-01, + 4.0089e-01, 1.9759e-01, 4.6747e-03, 6.9883e-02, + 3.7716e-01, 6.0957e-01, 3.6578e-01, 4.8538e-04, + 4.0192e-01, 4.0856e-01, 2.3977e-01, 8.9289e-01, + 4.4473e-01, 1.9347e-01, 4.3197e-01, 4.7259e-01, + 3.6158e-01, 6.2329e-01, 7.8778e-01, 2.0247e-01, + 5.4445e-02, 9.9327e-01, 1.4720e-01, 6.7916e-01, + 8.7100e-01, 3.3540e-01, 9.5084e-01, 3.4452e-02, + 2.6256e-01, 1.8338e-01, 9.7536e-01, 3.5124e-01, + 2.8707e-01, 7.8855e-01, 6.7111e-01, 5.7173e-01, + 9.5579e-01, 6.0574e-01, 6.8834e-01, 1.3845e-01, + 6.9447e-01, 7.9333e-02, 6.1603e-01, 6.4107e-03, + 3.1443e-02, 2.2338e-01, 7.6880e-01, 4.8996e-01, + 7.2451e-01, 2.5495e-01, 1.1564e-01, 6.2903e-01, + 6.6600e-01, 9.4852e-01, 4.0126e-01, 4.9942e-01, + 3.5796e-01, 8.0719e-01, 6.5464e-01, 2.6782e-01, + 9.4003e-01, 6.5438e-01, 3.6967e-01, 1.8464e-01, + 4.7524e-01, 7.2208e-01, 1.2031e-01, 5.8708e-01, + 2.0250e-01, 6.5919e-01, 4.4919e-01, 5.7088e-01, + 6.2858e-01, 1.8170e-01, 2.2030e-01, 3.1361e-01, + 3.8840e-01, 1.4761e-01]), size=(5000, 5000), nnz=250, + layout=torch.sparse_csr) +tensor([0.8065, 0.5790, 0.9005, ..., 0.0135, 0.6788, 0.2076]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 3.7862648963928223 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '470922', '-ss', '5000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.104466915130615} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 250, 250, 250]), + col_indices=tensor([ 286, 2098, 2957, 31, 4770, 3649, 4063, 3564, 3211, + 519, 372, 1653, 2583, 2464, 2987, 1744, 4556, 3480, + 4025, 965, 3221, 3480, 1237, 638, 2731, 2204, 3903, + 337, 4640, 3708, 4928, 846, 4069, 3241, 2342, 3155, + 3904, 4645, 1110, 3262, 206, 2707, 291, 1906, 3653, + 4410, 4931, 1727, 4173, 1383, 3385, 3838, 1305, 3168, + 1375, 4057, 2761, 2787, 2307, 6, 2503, 1872, 3680, + 2234, 1597, 3084, 1758, 491, 3779, 4890, 3184, 831, + 331, 2968, 3525, 1971, 454, 168, 2971, 2622, 1099, + 3321, 3822, 4888, 2660, 4331, 3839, 847, 453, 3854, + 958, 4865, 2336, 403, 4990, 684, 801, 4446, 671, + 4256, 4579, 3616, 522, 3560, 4436, 4875, 4839, 4252, + 2678, 3408, 277, 1706, 3353, 4272, 200, 4495, 1971, + 1057, 2080, 4776, 2636, 1840, 1457, 1455, 3267, 879, + 4146, 2502, 4940, 2313, 21, 1504, 535, 3781, 367, + 2250, 357, 4188, 146, 2230, 1761, 1304, 1785, 442, + 2853, 3699, 79, 4930, 2598, 3595, 2987, 205, 247, + 2873, 2237, 1134, 2086, 3420, 2896, 4246, 2080, 1618, + 978, 1465, 2116, 4506, 3634, 1205, 3062, 601, 2140, + 765, 3494, 3345, 738, 3535, 3354, 3147, 4390, 602, + 4817, 1923, 2074, 44, 1678, 4913, 1057, 4051, 3685, + 2781, 3899, 4448, 4692, 1277, 259, 2144, 2798, 4087, + 2596, 4771, 4479, 733, 3005, 1161, 3811, 3147, 4464, + 4683, 773, 3834, 3088, 1039, 3766, 2820, 3923, 3718, + 3049, 1976, 990, 3587, 2696, 4263, 2139, 3191, 1101, + 4701, 4465, 551, 3012, 2514, 2260, 1927, 3611, 4115, + 4664, 772, 3814, 2744, 2328, 560, 3629, 3666, 4110, + 1272, 515, 3230, 2775, 3191, 4516, 1702]), + values=tensor([0.4950, 0.4387, 0.7062, 0.8184, 0.9685, 0.9491, 0.6387, + 0.3930, 0.4627, 0.2264, 0.4673, 0.2803, 0.8352, 0.7116, + 0.3144, 0.9721, 0.1277, 0.9601, 0.0123, 0.3968, 0.9183, + 0.0517, 0.5676, 0.9009, 0.4901, 0.3378, 0.4750, 0.6307, + 0.7160, 0.7754, 0.8317, 0.5508, 0.6443, 0.1719, 0.1190, + 0.2292, 0.9505, 0.2302, 0.5965, 0.4343, 0.9706, 0.9472, + 0.7071, 0.4120, 0.5080, 0.6133, 0.5804, 0.7848, 0.1131, + 0.7398, 0.2113, 0.5136, 0.9362, 0.4868, 0.7307, 0.9542, + 0.1907, 0.7842, 0.0075, 0.1654, 0.1604, 0.5554, 0.9265, + 0.9594, 0.1847, 0.0412, 0.1458, 0.3185, 0.9474, 0.7262, + 0.9867, 0.9175, 0.8563, 0.0555, 0.5865, 0.1402, 0.0777, + 0.1693, 0.3284, 0.8041, 0.3119, 0.6054, 0.1208, 0.1474, + 0.6411, 0.6397, 0.9233, 0.0205, 0.1838, 0.9985, 0.4716, + 0.4977, 0.8331, 0.9916, 0.5989, 0.7640, 0.9210, 0.4278, + 0.0911, 0.8508, 0.2547, 0.5851, 0.9233, 0.2665, 0.1213, + 0.8754, 0.6206, 0.7311, 0.2194, 0.9834, 0.8122, 0.4946, + 0.7260, 0.9509, 0.7893, 0.0815, 0.9968, 0.5027, 0.3558, + 0.7001, 0.1542, 0.3964, 0.0402, 0.9298, 0.1070, 0.4902, + 0.8333, 0.6213, 0.7680, 0.5975, 0.2149, 0.9396, 0.8765, + 0.8836, 0.3422, 0.3496, 0.7499, 0.8855, 0.3598, 0.7125, + 0.1563, 0.2571, 0.2028, 0.2313, 0.3287, 0.3989, 0.4172, + 0.9776, 0.9673, 0.6099, 0.3489, 0.5171, 0.3263, 0.3550, + 0.8206, 0.1824, 0.1805, 0.0479, 0.6241, 0.3393, 0.7730, + 0.0623, 0.4418, 0.3306, 0.0692, 0.1691, 0.9139, 0.9289, + 0.1653, 0.5991, 0.0793, 0.6308, 0.8611, 0.1878, 0.5735, + 0.8923, 0.1845, 0.1387, 0.3446, 0.0333, 0.5909, 0.0051, + 0.6730, 0.2001, 0.7864, 0.3596, 0.6702, 0.7444, 0.5210, + 0.7057, 0.5369, 0.0193, 0.2647, 0.1729, 0.2634, 0.6010, + 0.4976, 0.7177, 0.7966, 0.8166, 0.9702, 0.2066, 0.9091, + 0.4739, 0.8346, 0.6718, 0.2794, 0.6249, 0.0434, 0.4190, + 0.9938, 0.9770, 0.8053, 0.5102, 0.4949, 0.5149, 0.3290, + 0.8346, 0.3511, 0.4625, 0.1176, 0.9732, 0.6568, 0.0814, + 0.1466, 0.9735, 0.9996, 0.5023, 0.0806, 0.6393, 0.9851, + 0.9968, 0.7168, 0.8555, 0.4797, 0.5400, 0.6489, 0.3087, + 0.4955, 0.2041, 0.9406, 0.8471, 0.5173, 0.1622, 0.0921, + 0.5950, 0.5479, 0.1406, 0.5404, 0.7323]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.4539, 0.8865, 0.6514, ..., 0.0864, 0.1789, 0.3670]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 10.104466915130615 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 250, 250, 250]), + col_indices=tensor([ 286, 2098, 2957, 31, 4770, 3649, 4063, 3564, 3211, + 519, 372, 1653, 2583, 2464, 2987, 1744, 4556, 3480, + 4025, 965, 3221, 3480, 1237, 638, 2731, 2204, 3903, + 337, 4640, 3708, 4928, 846, 4069, 3241, 2342, 3155, + 3904, 4645, 1110, 3262, 206, 2707, 291, 1906, 3653, + 4410, 4931, 1727, 4173, 1383, 3385, 3838, 1305, 3168, + 1375, 4057, 2761, 2787, 2307, 6, 2503, 1872, 3680, + 2234, 1597, 3084, 1758, 491, 3779, 4890, 3184, 831, + 331, 2968, 3525, 1971, 454, 168, 2971, 2622, 1099, + 3321, 3822, 4888, 2660, 4331, 3839, 847, 453, 3854, + 958, 4865, 2336, 403, 4990, 684, 801, 4446, 671, + 4256, 4579, 3616, 522, 3560, 4436, 4875, 4839, 4252, + 2678, 3408, 277, 1706, 3353, 4272, 200, 4495, 1971, + 1057, 2080, 4776, 2636, 1840, 1457, 1455, 3267, 879, + 4146, 2502, 4940, 2313, 21, 1504, 535, 3781, 367, + 2250, 357, 4188, 146, 2230, 1761, 1304, 1785, 442, + 2853, 3699, 79, 4930, 2598, 3595, 2987, 205, 247, + 2873, 2237, 1134, 2086, 3420, 2896, 4246, 2080, 1618, + 978, 1465, 2116, 4506, 3634, 1205, 3062, 601, 2140, + 765, 3494, 3345, 738, 3535, 3354, 3147, 4390, 602, + 4817, 1923, 2074, 44, 1678, 4913, 1057, 4051, 3685, + 2781, 3899, 4448, 4692, 1277, 259, 2144, 2798, 4087, + 2596, 4771, 4479, 733, 3005, 1161, 3811, 3147, 4464, + 4683, 773, 3834, 3088, 1039, 3766, 2820, 3923, 3718, + 3049, 1976, 990, 3587, 2696, 4263, 2139, 3191, 1101, + 4701, 4465, 551, 3012, 2514, 2260, 1927, 3611, 4115, + 4664, 772, 3814, 2744, 2328, 560, 3629, 3666, 4110, + 1272, 515, 3230, 2775, 3191, 4516, 1702]), + values=tensor([0.4950, 0.4387, 0.7062, 0.8184, 0.9685, 0.9491, 0.6387, + 0.3930, 0.4627, 0.2264, 0.4673, 0.2803, 0.8352, 0.7116, + 0.3144, 0.9721, 0.1277, 0.9601, 0.0123, 0.3968, 0.9183, + 0.0517, 0.5676, 0.9009, 0.4901, 0.3378, 0.4750, 0.6307, + 0.7160, 0.7754, 0.8317, 0.5508, 0.6443, 0.1719, 0.1190, + 0.2292, 0.9505, 0.2302, 0.5965, 0.4343, 0.9706, 0.9472, + 0.7071, 0.4120, 0.5080, 0.6133, 0.5804, 0.7848, 0.1131, + 0.7398, 0.2113, 0.5136, 0.9362, 0.4868, 0.7307, 0.9542, + 0.1907, 0.7842, 0.0075, 0.1654, 0.1604, 0.5554, 0.9265, + 0.9594, 0.1847, 0.0412, 0.1458, 0.3185, 0.9474, 0.7262, + 0.9867, 0.9175, 0.8563, 0.0555, 0.5865, 0.1402, 0.0777, + 0.1693, 0.3284, 0.8041, 0.3119, 0.6054, 0.1208, 0.1474, + 0.6411, 0.6397, 0.9233, 0.0205, 0.1838, 0.9985, 0.4716, + 0.4977, 0.8331, 0.9916, 0.5989, 0.7640, 0.9210, 0.4278, + 0.0911, 0.8508, 0.2547, 0.5851, 0.9233, 0.2665, 0.1213, + 0.8754, 0.6206, 0.7311, 0.2194, 0.9834, 0.8122, 0.4946, + 0.7260, 0.9509, 0.7893, 0.0815, 0.9968, 0.5027, 0.3558, + 0.7001, 0.1542, 0.3964, 0.0402, 0.9298, 0.1070, 0.4902, + 0.8333, 0.6213, 0.7680, 0.5975, 0.2149, 0.9396, 0.8765, + 0.8836, 0.3422, 0.3496, 0.7499, 0.8855, 0.3598, 0.7125, + 0.1563, 0.2571, 0.2028, 0.2313, 0.3287, 0.3989, 0.4172, + 0.9776, 0.9673, 0.6099, 0.3489, 0.5171, 0.3263, 0.3550, + 0.8206, 0.1824, 0.1805, 0.0479, 0.6241, 0.3393, 0.7730, + 0.0623, 0.4418, 0.3306, 0.0692, 0.1691, 0.9139, 0.9289, + 0.1653, 0.5991, 0.0793, 0.6308, 0.8611, 0.1878, 0.5735, + 0.8923, 0.1845, 0.1387, 0.3446, 0.0333, 0.5909, 0.0051, + 0.6730, 0.2001, 0.7864, 0.3596, 0.6702, 0.7444, 0.5210, + 0.7057, 0.5369, 0.0193, 0.2647, 0.1729, 0.2634, 0.6010, + 0.4976, 0.7177, 0.7966, 0.8166, 0.9702, 0.2066, 0.9091, + 0.4739, 0.8346, 0.6718, 0.2794, 0.6249, 0.0434, 0.4190, + 0.9938, 0.9770, 0.8053, 0.5102, 0.4949, 0.5149, 0.3290, + 0.8346, 0.3511, 0.4625, 0.1176, 0.9732, 0.6568, 0.0814, + 0.1466, 0.9735, 0.9996, 0.5023, 0.0806, 0.6393, 0.9851, + 0.9968, 0.7168, 0.8555, 0.4797, 0.5400, 0.6489, 0.3087, + 0.4955, 0.2041, 0.9406, 0.8471, 0.5173, 0.1622, 0.0921, + 0.5950, 0.5479, 0.1406, 0.5404, 0.7323]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.4539, 0.8865, 0.6514, ..., 0.0864, 0.1789, 0.3670]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 10.104466915130615 seconds + +[39.77, 39.06, 39.0, 43.22, 38.95, 38.87, 39.0, 38.96, 40.09, 38.55] +[92.79] +12.344655752182007 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 470922, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.104466915130615, 'TIME_S_1KI': 0.021456773977708867, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1145.4606072449685, 'W': 92.79} +[39.77, 39.06, 39.0, 43.22, 38.95, 38.87, 39.0, 38.96, 40.09, 38.55, 44.05, 41.96, 39.49, 38.5, 38.79, 39.12, 39.88, 38.31, 39.38, 38.55] +713.04 +35.652 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 470922, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.104466915130615, 'TIME_S_1KI': 0.021456773977708867, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1145.4606072449685, 'W': 92.79, 'J_1KI': 2.4323786258551703, 'W_1KI': 0.19703900008918676, 'W_D': 57.138000000000005, 'J_D': 705.3489403681756, 'W_D_1KI': 0.12133219514059655, 'J_D_1KI': 0.0002576481777037313} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_100000_0.0001.json new file mode 100644 index 0000000..648e77d --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_100000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 33926, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.632460117340088, "TIME_S_1KI": 0.31340152441608465, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1251.6098043680192, "W": 88.42000000000002, "J_1KI": 36.892348180393185, "W_1KI": 2.606260685020339, "W_D": 71.92675000000001, "J_D": 1018.1432424375416, "W_D_1KI": 2.120106997582975, "J_D_1KI": 0.062492100382685115} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_100000_0.0001.output new file mode 100644 index 0000000..aff18b0 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_100000_0.0001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.309490442276001} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 15, ..., 999979, + 999989, 1000000]), + col_indices=tensor([ 8594, 29009, 41843, ..., 77886, 78317, 95347]), + values=tensor([0.9328, 0.5746, 0.1196, ..., 0.5058, 0.9583, 0.4434]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.8206, 0.6612, 0.6620, ..., 0.9270, 0.4872, 0.3406]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 0.309490442276001 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '33926', '-ss', '100000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.632460117340088} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 7, 18, ..., 999986, + 999991, 1000000]), + col_indices=tensor([ 9555, 32072, 52846, ..., 78086, 80072, 96075]), + values=tensor([0.9751, 0.3269, 0.5720, ..., 0.0320, 0.6071, 0.6982]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.5445, 0.0121, 0.5604, ..., 0.3280, 0.5430, 0.6322]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 10.632460117340088 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 7, 18, ..., 999986, + 999991, 1000000]), + col_indices=tensor([ 9555, 32072, 52846, ..., 78086, 80072, 96075]), + values=tensor([0.9751, 0.3269, 0.5720, ..., 0.0320, 0.6071, 0.6982]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.5445, 0.0121, 0.5604, ..., 0.3280, 0.5430, 0.6322]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 10.632460117340088 seconds + +[18.53, 17.97, 18.07, 18.07, 17.99, 18.09, 21.33, 17.98, 18.39, 17.84] +[88.42] +14.155279397964478 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 33926, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.632460117340088, 'TIME_S_1KI': 0.31340152441608465, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1251.6098043680192, 'W': 88.42000000000002} +[18.53, 17.97, 18.07, 18.07, 17.99, 18.09, 21.33, 17.98, 18.39, 17.84, 18.71, 17.91, 17.99, 18.02, 18.68, 18.08, 17.92, 18.59, 18.24, 18.01] +329.865 +16.49325 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 33926, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.632460117340088, 'TIME_S_1KI': 0.31340152441608465, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1251.6098043680192, 'W': 88.42000000000002, 'J_1KI': 36.892348180393185, 'W_1KI': 2.606260685020339, 'W_D': 71.92675000000001, 'J_D': 1018.1432424375416, 'W_D_1KI': 2.120106997582975, 'J_D_1KI': 0.062492100382685115} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_100000_0.001.json b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_100000_0.001.json new file mode 100644 index 0000000..b1b6585 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_100000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 2890, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.78333592414856, "TIME_S_1KI": 3.731258105241716, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1463.5743112421035, "W": 81.86, "J_1KI": 506.4270973156068, "W_1KI": 28.325259515570934, "W_D": 65.62225000000001, "J_D": 1173.259703712523, "W_D_1KI": 22.706660899653983, "J_D_1KI": 7.856976089845669} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_100000_0.001.output b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_100000_0.001.output new file mode 100644 index 0000000..1352df1 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_100000_0.001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 3.6327288150787354} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 95, 182, ..., 9999803, + 9999900, 10000000]), + col_indices=tensor([ 1164, 1511, 2606, ..., 97059, 99366, 99637]), + values=tensor([0.1789, 0.4314, 0.0466, ..., 0.4339, 0.7049, 0.9540]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.5756, 0.3189, 0.9065, ..., 0.6359, 0.4482, 0.1651]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 3.6327288150787354 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '2890', '-ss', '100000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.78333592414856} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 118, 207, ..., 9999808, + 9999910, 10000000]), + col_indices=tensor([ 712, 968, 1059, ..., 96997, 98856, 99104]), + values=tensor([0.5177, 0.6712, 0.5343, ..., 0.8226, 0.3425, 0.6939]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.8858, 0.8376, 0.8837, ..., 0.6861, 0.2657, 0.8920]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 10.78333592414856 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 118, 207, ..., 9999808, + 9999910, 10000000]), + col_indices=tensor([ 712, 968, 1059, ..., 96997, 98856, 99104]), + values=tensor([0.5177, 0.6712, 0.5343, ..., 0.8226, 0.3425, 0.6939]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.8858, 0.8376, 0.8837, ..., 0.6861, 0.2657, 0.8920]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 10.78333592414856 seconds + +[18.4, 18.1, 18.05, 18.1, 18.29, 18.11, 18.1, 17.9, 17.96, 17.98] +[81.86] +17.878992319107056 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2890, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.78333592414856, 'TIME_S_1KI': 3.731258105241716, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1463.5743112421035, 'W': 81.86} +[18.4, 18.1, 18.05, 18.1, 18.29, 18.11, 18.1, 17.9, 17.96, 17.98, 18.26, 17.88, 17.92, 17.96, 18.1, 17.9, 17.98, 18.14, 18.06, 17.77] +324.755 +16.23775 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2890, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.78333592414856, 'TIME_S_1KI': 3.731258105241716, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1463.5743112421035, 'W': 81.86, 'J_1KI': 506.4270973156068, 'W_1KI': 28.325259515570934, 'W_D': 65.62225000000001, 'J_D': 1173.259703712523, 'W_D_1KI': 22.706660899653983, 'J_D_1KI': 7.856976089845669} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_100000_1e-05.json new file mode 100644 index 0000000..c182694 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_100000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 64311, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.418502807617188, "TIME_S_1KI": 0.16200187849072767, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1158.3267517518998, "W": 82.98, "J_1KI": 18.011331681234932, "W_1KI": 1.2902924849559174, "W_D": 66.6565, "J_D": 930.4652582327127, "W_D_1KI": 1.036471210212872, "J_D_1KI": 0.01611654631731542} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_100000_1e-05.output new file mode 100644 index 0000000..055aab1 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_100000_1e-05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.17745423316955566} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 3, ..., 99998, 100000, + 100000]), + col_indices=tensor([42546, 58983, 86183, ..., 98460, 14991, 73616]), + values=tensor([0.4174, 0.2060, 0.0899, ..., 0.6212, 0.4971, 0.7481]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.8074, 0.4851, 0.0283, ..., 0.2070, 0.7576, 0.4733]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 0.17745423316955566 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '59170', '-ss', '100000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.660528182983398} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 100000, 100000, + 100000]), + col_indices=tensor([96712, 9860, 17593, ..., 59712, 70511, 99970]), + values=tensor([0.7958, 0.9740, 0.0109, ..., 0.7243, 0.7214, 0.8821]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.4741, 0.0741, 0.4151, ..., 0.2722, 0.2577, 0.9729]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 9.660528182983398 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '64311', '-ss', '100000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.418502807617188} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 3, ..., 99999, 99999, + 100000]), + col_indices=tensor([60832, 83948, 658, ..., 83631, 80017, 34658]), + values=tensor([0.5224, 0.7895, 0.2144, ..., 0.4897, 0.2214, 0.9534]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.6371, 0.8407, 0.9472, ..., 0.9476, 0.5347, 0.4303]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 10.418502807617188 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 3, ..., 99999, 99999, + 100000]), + col_indices=tensor([60832, 83948, 658, ..., 83631, 80017, 34658]), + values=tensor([0.5224, 0.7895, 0.2144, ..., 0.4897, 0.2214, 0.9534]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.6371, 0.8407, 0.9472, ..., 0.9476, 0.5347, 0.4303]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 10.418502807617188 seconds + +[18.9, 18.01, 18.86, 18.3, 17.96, 18.02, 18.19, 17.91, 18.92, 17.86] +[82.98] +13.959107637405396 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 64311, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.418502807617188, 'TIME_S_1KI': 0.16200187849072767, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1158.3267517518998, 'W': 82.98} +[18.9, 18.01, 18.86, 18.3, 17.96, 18.02, 18.19, 17.91, 18.92, 17.86, 18.32, 17.96, 18.01, 17.83, 18.19, 17.85, 17.88, 18.01, 18.1, 17.86] +326.47 +16.323500000000003 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 64311, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.418502807617188, 'TIME_S_1KI': 0.16200187849072767, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1158.3267517518998, 'W': 82.98, 'J_1KI': 18.011331681234932, 'W_1KI': 1.2902924849559174, 'W_D': 66.6565, 'J_D': 930.4652582327127, 'W_D_1KI': 1.036471210212872, 'J_D_1KI': 0.01611654631731542} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.0001.json b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.0001.json new file mode 100644 index 0000000..c677488 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 253635, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.510948419570923, "TIME_S_1KI": 0.04144123807664921, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1049.5495847654342, "W": 74.66, "J_1KI": 4.1380313630430905, "W_1KI": 0.29436000551974295, "W_D": 58.32449999999999, "J_D": 819.9096538528203, "W_D_1KI": 0.22995446212076406, "J_D_1KI": 0.0009066353702003433} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.0001.output b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.0001.output new file mode 100644 index 0000000..d7cd9dc --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.0001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.057019948959350586} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 5, ..., 9999, 9999, 10000]), + col_indices=tensor([5511, 5632, 9392, ..., 1424, 5807, 9708]), + values=tensor([0.8862, 0.8794, 0.5579, ..., 0.8535, 0.8536, 0.3017]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.8843, 0.1620, 0.1106, ..., 0.3314, 0.8529, 0.5084]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 0.057019948959350586 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '184146', '-ss', '10000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 7.623284816741943} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 3, ..., 10000, 10000, 10000]), + col_indices=tensor([5228, 7612, 8334, ..., 8947, 2750, 8241]), + values=tensor([0.5331, 0.8440, 0.9594, ..., 0.6439, 0.5967, 0.7449]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.9017, 0.2905, 0.1618, ..., 0.3745, 0.4560, 0.4176]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 7.623284816741943 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '253635', '-ss', '10000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.510948419570923} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 2, ..., 9997, 9999, 10000]), + col_indices=tensor([ 773, 7277, 5799, ..., 6666, 7394, 1954]), + values=tensor([0.1024, 0.0437, 0.8987, ..., 0.7237, 0.2930, 0.3597]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.1275, 0.0118, 0.1480, ..., 0.4560, 0.1036, 0.8618]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.510948419570923 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 2, ..., 9997, 9999, 10000]), + col_indices=tensor([ 773, 7277, 5799, ..., 6666, 7394, 1954]), + values=tensor([0.1024, 0.0437, 0.8987, ..., 0.7237, 0.2930, 0.3597]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.1275, 0.0118, 0.1480, ..., 0.4560, 0.1036, 0.8618]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.510948419570923 seconds + +[18.3, 17.87, 18.03, 17.87, 18.05, 17.86, 19.1, 17.97, 18.04, 17.74] +[74.66] +14.057722806930542 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 253635, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.510948419570923, 'TIME_S_1KI': 0.04144123807664921, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1049.5495847654342, 'W': 74.66} +[18.3, 17.87, 18.03, 17.87, 18.05, 17.86, 19.1, 17.97, 18.04, 17.74, 18.05, 17.87, 18.1, 17.95, 17.96, 18.0, 19.85, 17.84, 18.3, 18.01] +326.71000000000004 +16.335500000000003 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 253635, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.510948419570923, 'TIME_S_1KI': 0.04144123807664921, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1049.5495847654342, 'W': 74.66, 'J_1KI': 4.1380313630430905, 'W_1KI': 0.29436000551974295, 'W_D': 58.32449999999999, 'J_D': 819.9096538528203, 'W_D_1KI': 0.22995446212076406, 'J_D_1KI': 0.0009066353702003433} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.001.json b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.001.json new file mode 100644 index 0000000..8f37619 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 197679, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.670233726501465, "TIME_S_1KI": 0.053977578430189674, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1114.4275546693802, "W": 79.73, "J_1KI": 5.637561676603889, "W_1KI": 0.40333065221900155, "W_D": 63.12950000000001, "J_D": 882.3937578389646, "W_D_1KI": 0.31935359851071693, "J_D_1KI": 0.001615516056387967} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.001.output b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.001.output new file mode 100644 index 0000000..4a4c171 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.001.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.06928658485412598} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 25, ..., 99976, 99987, + 100000]), + col_indices=tensor([ 333, 360, 7030, ..., 7825, 8274, 9549]), + values=tensor([0.8393, 0.7372, 0.2908, ..., 0.1152, 0.3448, 0.5520]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.6596, 0.1551, 0.2351, ..., 0.2147, 0.9669, 0.0099]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 0.06928658485412598 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '151544', '-ss', '10000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 8.049443006515503} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 10, 20, ..., 99982, 99989, + 100000]), + col_indices=tensor([ 534, 848, 1028, ..., 7528, 7587, 7919]), + values=tensor([0.8744, 0.7231, 0.5055, ..., 0.6485, 0.2326, 0.7897]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.6730, 0.3279, 0.8164, ..., 0.2443, 0.5036, 0.1429]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 8.049443006515503 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '197679', '-ss', '10000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.670233726501465} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 11, 18, ..., 99979, 99990, + 100000]), + col_indices=tensor([ 654, 920, 2120, ..., 5173, 5860, 7868]), + values=tensor([0.9786, 0.8942, 0.8907, ..., 0.0590, 0.7963, 0.5333]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.8342, 0.1347, 0.2067, ..., 0.1241, 0.4408, 0.8118]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.670233726501465 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 11, 18, ..., 99979, 99990, + 100000]), + col_indices=tensor([ 654, 920, 2120, ..., 5173, 5860, 7868]), + values=tensor([0.9786, 0.8942, 0.8907, ..., 0.0590, 0.7963, 0.5333]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.8342, 0.1347, 0.2067, ..., 0.1241, 0.4408, 0.8118]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.670233726501465 seconds + +[18.34, 17.98, 18.08, 17.94, 18.13, 18.09, 21.2, 18.15, 17.85, 18.53] +[79.73] +13.977518558502197 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 197679, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.670233726501465, 'TIME_S_1KI': 0.053977578430189674, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1114.4275546693802, 'W': 79.73} +[18.34, 17.98, 18.08, 17.94, 18.13, 18.09, 21.2, 18.15, 17.85, 18.53, 18.16, 18.1, 18.61, 18.87, 18.17, 17.77, 20.46, 17.84, 18.3, 17.91] +332.01 +16.6005 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 197679, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.670233726501465, 'TIME_S_1KI': 0.053977578430189674, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1114.4275546693802, 'W': 79.73, 'J_1KI': 5.637561676603889, 'W_1KI': 0.40333065221900155, 'W_D': 63.12950000000001, 'J_D': 882.3937578389646, 'W_D_1KI': 0.31935359851071693, 'J_D_1KI': 0.001615516056387967} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.01.json b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.01.json new file mode 100644 index 0000000..23a3327 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 58160, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.467525959014893, "TIME_S_1KI": 0.17997809420589567, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1227.377723479271, "W": 87.15, "J_1KI": 21.10346842295858, "W_1KI": 1.4984525447042643, "W_D": 70.98275000000001, "J_D": 999.6861285289527, "W_D_1KI": 1.2204736932599725, "J_D_1KI": 0.020984760888238866} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.01.output b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.01.output new file mode 100644 index 0000000..35e5d90 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.01.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.19839882850646973} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 97, 186, ..., 999796, + 999897, 1000000]), + col_indices=tensor([ 169, 359, 528, ..., 9765, 9789, 9792]), + values=tensor([0.6521, 0.9085, 0.4727, ..., 0.8814, 0.1698, 0.8627]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.7127, 0.9881, 0.6892, ..., 0.7113, 0.3734, 0.9813]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 0.19839882850646973 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '52923', '-ss', '10000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 9.554424524307251} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 112, 189, ..., 999798, + 999899, 1000000]), + col_indices=tensor([ 113, 156, 184, ..., 9769, 9838, 9941]), + values=tensor([0.0187, 0.7839, 0.6319, ..., 0.9818, 0.7594, 0.0765]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.4252, 0.8416, 0.9146, ..., 0.0970, 0.6595, 0.8304]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 9.554424524307251 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '58160', '-ss', '10000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.467525959014893} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 93, 191, ..., 999802, + 999899, 1000000]), + col_indices=tensor([ 46, 78, 103, ..., 9585, 9899, 9954]), + values=tensor([0.1947, 0.9409, 0.0413, ..., 0.0261, 0.0318, 0.5135]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.1045, 0.5937, 0.6366, ..., 0.8712, 0.6092, 0.3132]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.467525959014893 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 93, 191, ..., 999802, + 999899, 1000000]), + col_indices=tensor([ 46, 78, 103, ..., 9585, 9899, 9954]), + values=tensor([0.1947, 0.9409, 0.0413, ..., 0.0261, 0.0318, 0.5135]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.1045, 0.5937, 0.6366, ..., 0.8712, 0.6092, 0.3132]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.467525959014893 seconds + +[18.42, 18.1, 18.09, 17.94, 17.96, 18.13, 17.89, 17.87, 18.11, 18.12] +[87.15] +14.083508014678955 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 58160, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.467525959014893, 'TIME_S_1KI': 0.17997809420589567, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1227.377723479271, 'W': 87.15} +[18.42, 18.1, 18.09, 17.94, 17.96, 18.13, 17.89, 17.87, 18.11, 18.12, 18.39, 17.75, 17.9, 17.92, 17.94, 17.89, 17.89, 17.89, 17.75, 17.72] +323.34499999999997 +16.16725 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 58160, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.467525959014893, 'TIME_S_1KI': 0.17997809420589567, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1227.377723479271, 'W': 87.15, 'J_1KI': 21.10346842295858, 'W_1KI': 1.4984525447042643, 'W_D': 70.98275000000001, 'J_D': 999.6861285289527, 'W_D_1KI': 1.2204736932599725, 'J_D_1KI': 0.020984760888238866} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.05.json b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.05.json new file mode 100644 index 0000000..4e517f7 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 8810, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.41358470916748, "TIME_S_1KI": 1.18201869570573, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1329.5588334417344, "W": 83.19, "J_1KI": 150.91473705354534, "W_1KI": 9.442678774120317, "W_D": 66.8505, "J_D": 1068.4177520735263, "W_D_1KI": 7.588024971623155, "J_D_1KI": 0.8612968185724353} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.05.output b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.05.output new file mode 100644 index 0000000..8074157 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.05.output @@ -0,0 +1,65 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 1.1917307376861572} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 493, 986, ..., 4999011, + 4999486, 5000000]), + col_indices=tensor([ 9, 19, 72, ..., 9981, 9987, 9993]), + values=tensor([0.5847, 0.5648, 0.9368, ..., 0.4963, 0.0551, 0.2254]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.1357, 0.6996, 0.1280, ..., 0.8014, 0.9186, 0.9128]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 1.1917307376861572 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '8810', '-ss', '10000', '-sd', '0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.41358470916748} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 520, 1021, ..., 4999015, + 4999518, 5000000]), + col_indices=tensor([ 2, 21, 23, ..., 9856, 9947, 9960]), + values=tensor([0.9436, 0.1483, 0.1830, ..., 0.0068, 0.4770, 0.7006]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.0991, 0.7135, 0.2277, ..., 0.9430, 0.0011, 0.3680]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 10.41358470916748 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 520, 1021, ..., 4999015, + 4999518, 5000000]), + col_indices=tensor([ 2, 21, 23, ..., 9856, 9947, 9960]), + values=tensor([0.9436, 0.1483, 0.1830, ..., 0.0068, 0.4770, 0.7006]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.0991, 0.7135, 0.2277, ..., 0.9430, 0.0011, 0.3680]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 10.41358470916748 seconds + +[18.42, 18.1, 18.34, 18.2, 17.91, 17.99, 18.73, 17.98, 18.05, 17.95] +[83.19] +15.982195377349854 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 8810, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.41358470916748, 'TIME_S_1KI': 1.18201869570573, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1329.5588334417344, 'W': 83.19} +[18.42, 18.1, 18.34, 18.2, 17.91, 17.99, 18.73, 17.98, 18.05, 17.95, 18.53, 18.25, 18.01, 18.36, 18.13, 18.03, 18.01, 18.04, 18.22, 17.98] +326.79 +16.3395 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 8810, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.41358470916748, 'TIME_S_1KI': 1.18201869570573, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1329.5588334417344, 'W': 83.19, 'J_1KI': 150.91473705354534, 'W_1KI': 9.442678774120317, 'W_D': 66.8505, 'J_D': 1068.4177520735263, 'W_D_1KI': 7.588024971623155, 'J_D_1KI': 0.8612968185724353} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.1.json b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.1.json new file mode 100644 index 0000000..3f0bb83 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.1.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 2918, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.42000699043274, "TIME_S_1KI": 3.5709413949392523, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1397.7840516352655, "W": 79.43, "J_1KI": 479.0212651251767, "W_1KI": 27.220699108978753, "W_D": 63.01475000000001, "J_D": 1108.913666974485, "W_D_1KI": 21.595185058259084, "J_D_1KI": 7.400680280417781} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.1.output b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.1.output new file mode 100644 index 0000000..099bdad --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_0.1.output @@ -0,0 +1,65 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 3.597771644592285} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 977, 1956, ..., 9997922, + 9998976, 10000000]), + col_indices=tensor([ 2, 3, 9, ..., 9970, 9977, 9979]), + values=tensor([0.1332, 0.2138, 0.7669, ..., 0.0474, 0.1604, 0.1097]), + size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.2601, 0.5133, 0.4344, ..., 0.1772, 0.3859, 0.7315]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000000 +Density: 0.1 +Time: 3.597771644592285 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '2918', '-ss', '10000', '-sd', '0.1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.42000699043274} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1029, 2018, ..., 9998096, + 9999045, 10000000]), + col_indices=tensor([ 7, 14, 18, ..., 9941, 9949, 9980]), + values=tensor([0.9805, 0.4931, 0.0315, ..., 0.9071, 0.5605, 0.7269]), + size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.0123, 0.2996, 0.0215, ..., 0.5909, 0.6219, 0.0073]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000000 +Density: 0.1 +Time: 10.42000699043274 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1029, 2018, ..., 9998096, + 9999045, 10000000]), + col_indices=tensor([ 7, 14, 18, ..., 9941, 9949, 9980]), + values=tensor([0.9805, 0.4931, 0.0315, ..., 0.9071, 0.5605, 0.7269]), + size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.0123, 0.2996, 0.0215, ..., 0.5909, 0.6219, 0.0073]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000000 +Density: 0.1 +Time: 10.42000699043274 seconds + +[21.55, 18.44, 17.92, 18.49, 18.01, 17.89, 18.03, 17.94, 18.06, 18.03] +[79.43] +17.597684144973755 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2918, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.42000699043274, 'TIME_S_1KI': 3.5709413949392523, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1397.7840516352655, 'W': 79.43} +[21.55, 18.44, 17.92, 18.49, 18.01, 17.89, 18.03, 17.94, 18.06, 18.03, 19.32, 18.84, 17.98, 18.09, 18.0, 17.91, 18.09, 18.07, 18.13, 17.93] +328.30499999999995 +16.415249999999997 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2918, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.42000699043274, 'TIME_S_1KI': 3.5709413949392523, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1397.7840516352655, 'W': 79.43, 'J_1KI': 479.0212651251767, 'W_1KI': 27.220699108978753, 'W_D': 63.01475000000001, 'J_D': 1108.913666974485, 'W_D_1KI': 21.595185058259084, 'J_D_1KI': 7.400680280417781} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_1e-05.json b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_1e-05.json new file mode 100644 index 0000000..114ef88 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 286411, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.634347915649414, "TIME_S_1KI": 0.03712967698743908, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1001.8400530457496, "W": 73.11, "J_1KI": 3.4979105308306933, "W_1KI": 0.25526254229062434, "W_D": 56.78875, "J_D": 778.186900730431, "W_D_1KI": 0.19827712622769378, "J_D_1KI": 0.0006922818125969107} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_1e-05.output b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_1e-05.output new file mode 100644 index 0000000..b127831 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_10000_1e-05.output @@ -0,0 +1,1521 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.05389976501464844} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 999, 999, 1000]), + col_indices=tensor([5877, 4250, 4686, 7890, 7967, 6049, 7086, 7350, 7600, + 9415, 8494, 9960, 8463, 9769, 3650, 5660, 4765, 7065, + 9825, 3646, 4508, 4529, 606, 6653, 6914, 7898, 5776, + 6107, 2833, 6469, 9561, 9553, 1012, 7648, 3125, 4659, + 2350, 5605, 2978, 2552, 4772, 6484, 5546, 1359, 9003, + 7295, 3487, 3251, 5797, 4927, 389, 1539, 8241, 4519, + 1811, 2945, 8623, 2872, 552, 7492, 9923, 2010, 2604, + 1552, 2774, 1416, 5396, 4510, 3786, 3444, 9329, 2259, + 6656, 438, 9323, 9111, 8972, 134, 8976, 8888, 3908, + 3185, 8018, 3369, 5475, 1596, 1990, 7816, 5574, 9542, + 3040, 2756, 2500, 9055, 3476, 5796, 5461, 8969, 5649, + 7151, 2742, 7881, 4000, 8377, 5895, 253, 8238, 9426, + 8478, 3876, 7351, 2306, 878, 6391, 2133, 6974, 4104, + 1627, 9784, 8459, 8184, 8357, 1868, 3969, 2547, 7150, + 8567, 8961, 7840, 7042, 8040, 9932, 3202, 7093, 1327, + 135, 6831, 9394, 9093, 3306, 9671, 1032, 7617, 8998, + 2163, 4741, 8281, 7308, 2355, 3050, 9803, 475, 964, + 4964, 1287, 1268, 688, 5896, 7603, 4108, 1012, 5952, + 6363, 4719, 9826, 3138, 4723, 371, 6288, 186, 2654, + 9372, 1971, 681, 4032, 5962, 3030, 4065, 7201, 4857, + 2872, 6140, 9971, 9434, 2396, 6923, 6814, 8785, 1447, + 5345, 7096, 6297, 6233, 7158, 9317, 5741, 6074, 4032, + 6814, 7944, 6913, 5564, 2775, 2220, 3379, 8011, 2520, + 7426, 3687, 6722, 5016, 9979, 6539, 5534, 3577, 2267, + 4731, 7861, 9206, 2320, 6967, 7943, 6827, 5077, 9516, + 1732, 5100, 6381, 2622, 5625, 4486, 9347, 6475, 7166, + 9480, 1934, 1912, 1322, 3081, 8877, 7710, 6129, 2927, + 4146, 7486, 1116, 7420, 7107, 4437, 8910, 4651, 246, + 2259, 7653, 1266, 8805, 4772, 8104, 9150, 1259, 1349, + 109, 204, 8540, 8676, 2304, 2566, 5439, 2010, 293, + 7147, 3963, 22, 8220, 7908, 7876, 1076, 5537, 7724, + 9756, 3549, 9854, 6751, 339, 9417, 1766, 3277, 8532, + 6806, 4159, 4654, 7359, 2826, 3218, 7312, 5563, 5084, + 720, 8203, 1204, 9773, 8158, 7049, 4816, 2638, 6704, + 487, 7745, 2464, 8290, 5518, 1983, 6972, 6806, 9672, + 8173, 709, 2961, 8609, 4687, 1057, 6278, 4688, 7327, + 9180, 8043, 7178, 7879, 7369, 6557, 722, 3977, 9608, + 1559, 4437, 8356, 3564, 6570, 8175, 2552, 4365, 2987, + 3012, 2056, 3377, 3331, 4641, 5584, 6444, 1670, 6584, + 9435, 5889, 834, 1537, 676, 171, 1502, 6374, 8475, + 5546, 3570, 3680, 1262, 1283, 107, 7572, 8294, 8087, + 8493, 4150, 264, 8088, 9558, 8105, 6985, 4679, 5131, + 1351, 5236, 1433, 2355, 7050, 4629, 7395, 4891, 8440, + 1280, 9026, 9611, 4272, 63, 7053, 9273, 2845, 319, + 3849, 5109, 5397, 1333, 5226, 3167, 498, 8358, 6471, + 8441, 2470, 2584, 8523, 3869, 9952, 7331, 1491, 6616, + 4251, 7390, 2569, 8114, 4273, 6594, 7890, 3061, 7707, + 7020, 2254, 6838, 1734, 3358, 9413, 842, 6263, 4309, + 9410, 5850, 3843, 5235, 316, 1680, 4468, 2050, 864, + 4563, 2568, 8117, 5035, 1575, 2174, 5811, 4374, 7269, + 8559, 180, 3758, 3450, 6187, 7641, 2641, 5158, 1693, + 8702, 3953, 8641, 538, 3719, 8146, 831, 9181, 8252, + 4927, 1983, 7946, 8289, 1723, 7454, 571, 2844, 7290, + 976, 3469, 3835, 4443, 9997, 6253, 1783, 4479, 5621, + 5888, 6952, 5207, 6046, 5250, 6277, 1706, 492, 994, + 5337, 2917, 299, 5416, 4823, 2281, 9216, 9811, 536, + 7167, 9365, 8010, 8105, 7428, 9708, 9521, 1759, 7316, + 8408, 6581, 6990, 8370, 4815, 2491, 4443, 2226, 6874, + 4105, 2711, 6768, 3934, 2527, 4953, 24, 5356, 5377, + 4831, 6455, 8164, 4262, 6529, 7609, 5098, 9953, 73, + 5708, 4484, 9730, 7364, 2426, 2680, 3694, 2949, 3657, + 8014, 666, 1786, 4090, 8559, 238, 2595, 2466, 5713, + 7523, 1659, 8441, 1656, 970, 4970, 3471, 7507, 6622, + 7069, 76, 7125, 5124, 6896, 4874, 6040, 3626, 4009, + 5978, 7731, 9276, 8499, 2718, 5361, 3855, 8538, 8822, + 1102, 3105, 7443, 7481, 4376, 5676, 6866, 1405, 7485, + 2438, 4046, 5882, 1928, 5673, 4439, 607, 941, 5323, + 1977, 7526, 7365, 6688, 7725, 1906, 1609, 2579, 5018, + 3043, 3267, 6183, 7049, 4814, 9534, 4551, 7887, 5645, + 1813, 6873, 7950, 4035, 2409, 731, 2725, 7868, 9752, + 5099, 9148, 317, 2640, 5453, 3337, 8401, 1653, 7044, + 8720, 8687, 6535, 6595, 2024, 131, 1182, 5621, 3774, + 8613, 3613, 6404, 992, 2240, 8624, 5340, 4231, 288, + 7954, 9182, 2507, 3131, 9924, 8976, 7751, 7186, 1578, + 5330, 4894, 3874, 643, 8176, 6210, 9564, 1270, 2828, + 996, 8621, 8484, 7493, 2542, 8837, 2084, 2455, 7130, + 6423, 8619, 4652, 8633, 8790, 8354, 4700, 625, 4544, + 8981, 139, 746, 1426, 5043, 1610, 4462, 3417, 4746, + 3507, 9724, 8590, 2898, 5308, 6895, 2788, 7758, 1283, + 5278, 2977, 6428, 3903, 4076, 3359, 2470, 3580, 4331, + 3539, 4887, 6362, 8501, 8925, 9351, 2359, 9321, 3700, + 992, 6168, 7667, 7019, 1921, 9709, 5828, 4661, 8748, + 26, 7218, 1984, 916, 3495, 6818, 2797, 2463, 8871, + 466, 8350, 3314, 2566, 461, 1216, 7103, 2340, 3165, + 3456, 5137, 3852, 7732, 1769, 3570, 4888, 9734, 4571, + 9596, 7452, 8856, 6297, 3826, 9087, 6446, 6072, 5525, + 2221, 6842, 305, 74, 9807, 9458, 3773, 8992, 2847, + 3208, 1466, 8138, 9144, 844, 3669, 85, 7362, 4692, + 4434, 9755, 4805, 46, 4973, 86, 7635, 246, 1636, + 6904, 7255, 4185, 7880, 6034, 2037, 1744, 5951, 5993, + 8444, 4624, 3513, 5997, 6578, 228, 1880, 3027, 9878, + 4245, 2766, 8825, 5139, 9687, 6959, 6779, 7051, 2652, + 7030, 8594, 6127, 8154, 5593, 9334, 579, 9049, 4689, + 8716, 7002, 141, 2019, 1596, 3958, 8926, 5, 6170, + 4726, 9481, 2780, 3951, 2390, 584, 3177, 3470, 7752, + 4306, 5823, 2199, 7046, 23, 4244, 9273, 5740, 1874, + 2178, 1616, 7818, 8922, 3439, 2734, 949, 8848, 9318, + 4711, 5469, 57, 9462, 7894, 8459, 5503, 4003, 4000, + 9534, 5843, 7380, 5907, 8262, 837, 7126, 1835, 5332, + 2239, 6377, 4546, 1768, 4542, 5454, 5561, 6701, 6592, + 8803, 7424, 9723, 9271, 4332, 5034, 3633, 5832, 3031, + 16, 9616, 5952, 7479, 2362, 7093, 1017, 3410, 9968, + 748, 782, 9505, 4394, 2734, 742, 3710, 6975, 7764, + 5523, 6523, 3205, 6400, 1262, 228, 3520, 3840, 3679, + 9469, 5171, 924, 9068, 6478, 7630, 7890, 5895, 4673, + 5479, 7003, 5573, 4585, 78, 4546, 5120, 6277, 4330, + 929, 1748, 6762, 1994, 9459, 8981, 5357, 9666, 8444, + 2582, 2833, 6641, 5097, 7217, 7587, 3909, 7119, 4177, + 17, 9610, 9198, 7546, 4238, 8701, 1566, 4618, 2935, + 956, 694, 7059, 831, 4310, 5024, 3711, 8023, 2644, + 1473, 2862, 2695, 5045, 8915, 7831, 5706, 4042, 704, + 9283]), + values=tensor([6.7911e-01, 3.6274e-01, 2.0782e-01, 5.9428e-01, + 1.9872e-01, 7.2558e-01, 5.4516e-01, 3.6725e-01, + 1.9195e-01, 8.4059e-01, 2.8934e-01, 2.2803e-01, + 6.3913e-01, 2.5392e-01, 6.0290e-01, 4.6241e-01, + 8.2181e-01, 6.7786e-01, 5.4148e-01, 3.0335e-02, + 6.2630e-01, 3.9117e-01, 3.9192e-01, 2.0010e-01, + 5.2026e-01, 9.5610e-01, 8.0735e-01, 5.1212e-01, + 8.3332e-01, 4.1739e-02, 1.6506e-01, 7.4934e-01, + 8.3844e-01, 7.1367e-01, 9.2976e-01, 7.7684e-01, + 5.8772e-01, 1.1678e-01, 8.2152e-01, 5.2555e-02, + 8.6952e-02, 5.0654e-01, 6.5363e-01, 8.1863e-01, + 1.1306e-01, 8.9073e-01, 6.2025e-01, 3.5160e-01, + 1.2207e-01, 8.0819e-01, 5.9475e-01, 1.3406e-01, + 7.5539e-01, 1.0539e-01, 1.5172e-01, 7.2636e-01, + 1.4867e-02, 9.5982e-01, 4.0048e-01, 2.1806e-01, + 1.7595e-01, 3.9873e-01, 3.0672e-01, 3.3588e-01, + 5.2421e-01, 4.4857e-01, 1.1450e-01, 2.1405e-01, + 1.0066e-01, 7.6820e-01, 3.7763e-01, 3.5571e-01, + 5.0755e-01, 2.5013e-01, 4.7386e-01, 7.9787e-01, + 2.5002e-01, 2.1550e-01, 7.3669e-01, 1.5591e-01, + 8.7468e-02, 7.6878e-01, 2.5625e-01, 6.0367e-01, + 2.9342e-01, 5.1642e-01, 3.8998e-01, 1.3190e-01, + 8.4420e-01, 7.6180e-01, 1.5484e-01, 9.5211e-01, + 5.7156e-01, 2.6308e-02, 3.9510e-01, 9.6852e-01, + 1.9691e-01, 4.6907e-01, 6.5401e-01, 3.9243e-01, + 3.7711e-01, 5.6731e-01, 7.8218e-02, 5.5440e-02, + 3.2329e-01, 5.9503e-01, 8.7587e-01, 9.4575e-03, + 8.5340e-01, 9.5231e-01, 3.2669e-01, 4.5683e-01, + 6.6546e-01, 3.7247e-01, 9.4875e-01, 3.7049e-01, + 4.7636e-01, 3.7029e-01, 8.7830e-03, 6.5832e-01, + 7.8315e-01, 9.6722e-01, 5.2348e-01, 5.8408e-01, + 1.8276e-01, 7.7372e-01, 1.7153e-01, 9.8813e-01, + 9.6003e-01, 6.8577e-01, 5.3984e-01, 5.8052e-01, + 5.2230e-02, 7.8780e-01, 7.8448e-01, 4.8815e-01, + 8.7644e-02, 3.3278e-01, 2.6300e-04, 7.3187e-02, + 5.2423e-01, 9.0912e-01, 1.8239e-01, 9.1377e-02, + 3.4063e-01, 9.5308e-01, 5.2093e-01, 9.6968e-01, + 4.7941e-01, 1.1503e-01, 1.9436e-01, 1.6191e-01, + 8.3119e-01, 4.7526e-01, 4.4201e-01, 7.8974e-01, + 7.1431e-04, 5.4472e-01, 4.4667e-01, 9.0362e-01, + 9.8209e-01, 1.3364e-01, 8.4382e-01, 8.4157e-01, + 3.5500e-01, 3.2081e-01, 5.5009e-01, 4.0409e-01, + 3.1810e-01, 4.4880e-01, 3.7142e-01, 6.0779e-01, + 5.8504e-01, 7.1750e-01, 5.7407e-01, 4.9814e-01, + 5.9204e-01, 9.5586e-02, 2.2193e-02, 7.1892e-01, + 7.8247e-01, 9.9933e-01, 5.8047e-01, 5.9317e-01, + 8.2811e-01, 6.4682e-01, 2.4161e-01, 9.3138e-01, + 2.7242e-01, 9.2512e-01, 7.2675e-01, 2.4337e-01, + 8.0080e-01, 3.2907e-01, 4.2906e-01, 6.1785e-03, + 5.0034e-01, 3.6569e-01, 9.6297e-01, 7.4588e-01, + 6.0730e-01, 2.4966e-01, 4.4608e-01, 1.1802e-01, + 5.5784e-01, 3.9164e-01, 4.1325e-01, 5.7944e-01, + 3.5110e-01, 8.6544e-01, 4.7250e-01, 3.6394e-01, + 2.3361e-01, 9.4760e-01, 4.9741e-01, 5.2552e-01, + 6.3145e-01, 4.5745e-02, 4.2101e-01, 6.1188e-01, + 7.2981e-01, 4.3973e-01, 7.0557e-01, 8.5500e-02, + 4.3159e-01, 8.3062e-01, 4.3397e-01, 3.0606e-01, + 4.7281e-01, 8.6673e-01, 3.1518e-01, 3.2265e-01, + 4.8137e-01, 7.5667e-01, 7.7887e-01, 2.9491e-01, + 2.8767e-01, 6.6225e-01, 5.1450e-01, 8.4239e-01, + 2.8493e-01, 5.7720e-01, 2.5022e-01, 9.3703e-01, + 6.8686e-01, 2.4345e-01, 3.1398e-01, 8.4064e-01, + 4.8266e-01, 2.6433e-02, 3.1981e-01, 3.9487e-01, + 3.8680e-01, 8.9470e-01, 4.0471e-01, 3.6538e-01, + 4.7602e-01, 8.8693e-01, 9.9293e-01, 1.2633e-01, + 2.1077e-01, 2.3837e-01, 6.1370e-02, 9.7263e-02, + 9.1151e-01, 7.7234e-01, 2.9750e-01, 5.6292e-01, + 2.4497e-01, 7.7687e-02, 8.8354e-03, 7.1013e-01, + 2.3644e-01, 5.4059e-01, 4.2289e-02, 5.5844e-01, + 5.7342e-01, 5.7040e-01, 6.4986e-01, 2.3291e-01, + 7.4089e-01, 3.0142e-01, 1.6086e-01, 7.1372e-01, + 9.1776e-01, 8.8358e-01, 5.7221e-01, 3.2498e-01, + 7.7286e-01, 5.6067e-01, 7.7656e-01, 8.3678e-01, + 3.2225e-01, 4.7910e-01, 1.7961e-01, 2.7098e-02, + 5.0569e-01, 7.7811e-01, 6.3024e-02, 7.5755e-01, + 8.3257e-01, 5.8538e-01, 1.1575e-01, 6.2562e-01, + 2.2088e-01, 4.5650e-01, 7.0230e-01, 4.4897e-02, + 3.0900e-01, 6.5477e-01, 5.5972e-01, 5.3347e-01, + 2.1702e-02, 4.3247e-01, 1.7055e-01, 7.9480e-01, + 1.1809e-01, 3.2070e-01, 7.8239e-01, 1.8041e-01, + 2.6373e-01, 7.6833e-01, 2.4192e-01, 4.8363e-02, + 7.5678e-01, 2.2666e-01, 6.2957e-03, 9.4640e-01, + 3.4193e-01, 4.2199e-01, 1.8168e-01, 5.2057e-02, + 7.5241e-01, 7.4061e-01, 4.1688e-01, 9.6573e-01, + 3.9466e-01, 6.7007e-01, 6.4988e-01, 2.8095e-01, + 5.7727e-02, 7.3459e-01, 4.8836e-01, 1.2981e-01, + 8.6550e-01, 7.1953e-01, 3.3155e-02, 4.9207e-01, + 3.0199e-02, 8.1620e-01, 3.4773e-01, 4.4022e-02, + 9.4242e-01, 2.3414e-01, 9.3966e-02, 3.9911e-01, + 7.7950e-01, 4.7617e-01, 6.4977e-01, 3.0953e-01, + 8.1677e-01, 5.6634e-01, 3.5953e-01, 9.3820e-01, + 5.3909e-01, 7.0969e-01, 5.2942e-01, 2.9457e-01, + 3.4143e-02, 5.3716e-01, 9.0549e-01, 2.3470e-01, + 5.1654e-01, 3.9032e-02, 8.4763e-01, 8.8936e-01, + 2.0968e-01, 6.7220e-01, 3.0246e-01, 2.9179e-01, + 5.0785e-02, 7.4234e-01, 3.3136e-01, 8.2526e-02, + 4.4915e-02, 2.6356e-01, 7.4292e-01, 4.5549e-01, + 7.8200e-01, 1.2189e-02, 6.1731e-01, 1.6328e-01, + 4.7369e-01, 4.3547e-01, 5.9286e-01, 5.9266e-01, + 5.6379e-01, 3.4797e-01, 1.6829e-01, 2.6337e-01, + 1.1027e-01, 9.9239e-01, 9.9087e-01, 5.8034e-01, + 1.4972e-02, 8.5411e-01, 7.7388e-01, 6.1481e-01, + 1.0120e-01, 8.3804e-01, 3.5737e-01, 9.5958e-02, + 5.6813e-01, 1.5384e-01, 2.1246e-01, 8.7991e-01, + 5.3183e-01, 4.2567e-01, 6.9806e-02, 1.4070e-01, + 7.0911e-01, 5.7805e-01, 9.0032e-01, 2.8967e-01, + 8.4393e-01, 7.0955e-01, 5.1167e-01, 4.4321e-01, + 8.3023e-01, 3.3272e-01, 2.4448e-01, 3.2699e-01, + 9.7977e-01, 9.9894e-01, 3.9459e-01, 7.6675e-01, + 5.7925e-02, 7.9083e-01, 3.9910e-01, 4.0556e-01, + 9.4044e-01, 3.2004e-01, 4.4436e-01, 3.2408e-01, + 5.8114e-01, 7.2815e-01, 7.3948e-01, 2.0721e-01, + 3.0147e-01, 4.5285e-01, 4.2900e-01, 6.9910e-01, + 7.1616e-01, 9.9422e-01, 2.2960e-01, 7.6827e-01, + 4.4748e-01, 7.9808e-01, 7.4186e-02, 9.1484e-01, + 9.5743e-01, 6.9329e-01, 6.7416e-01, 1.6449e-01, + 8.7058e-01, 8.0285e-01, 4.9959e-01, 1.9836e-03, + 3.4591e-01, 2.0250e-01, 6.8474e-01, 7.3271e-01, + 8.7277e-01, 2.6489e-01, 6.9725e-01, 1.8247e-01, + 1.3646e-01, 4.6208e-01, 8.6758e-01, 8.2115e-01, + 2.4326e-01, 6.5762e-01, 2.4240e-01, 3.9894e-01, + 1.7475e-01, 9.7856e-01, 8.9521e-01, 4.8900e-01, + 5.0152e-01, 9.3962e-01, 9.2817e-01, 3.5406e-01, + 1.4374e-01, 1.5610e-01, 9.2532e-01, 5.7780e-01, + 5.9667e-01, 4.3588e-01, 8.8655e-01, 8.3369e-01, + 8.8365e-01, 8.9342e-01, 6.0200e-01, 5.2936e-01, + 5.5865e-01, 1.6584e-01, 9.8088e-01, 5.6768e-01, + 7.5654e-01, 8.8072e-02, 9.4473e-01, 3.0629e-01, + 4.5530e-01, 9.9065e-01, 6.0101e-01, 9.0236e-01, + 5.6152e-01, 6.9979e-02, 8.4466e-01, 6.9695e-01, + 7.0042e-01, 3.3033e-01, 7.0122e-01, 2.8283e-01, + 9.0123e-01, 7.1980e-01, 4.0823e-01, 5.4705e-01, + 5.2391e-01, 5.3599e-01, 2.5812e-01, 1.0750e-01, + 8.8756e-02, 2.6846e-01, 8.4292e-01, 1.3892e-01, + 3.7130e-01, 2.7140e-01, 2.4106e-01, 6.3913e-01, + 6.9383e-01, 2.5859e-01, 4.7475e-01, 9.6678e-01, + 5.6154e-01, 6.0440e-01, 8.5979e-01, 6.3334e-01, + 7.9614e-01, 7.1808e-01, 5.1482e-01, 5.8039e-01, + 1.2588e-01, 3.9638e-01, 2.3187e-02, 3.5209e-01, + 4.1087e-01, 5.6449e-01, 6.5011e-01, 4.9452e-01, + 9.1064e-01, 6.1690e-01, 9.8551e-01, 9.7568e-01, + 6.2623e-01, 2.3823e-01, 6.5306e-01, 8.6989e-01, + 5.2711e-01, 1.2346e-01, 8.6267e-01, 6.8423e-01, + 5.8937e-02, 9.5463e-01, 6.3191e-01, 3.6282e-01, + 1.3229e-01, 6.1912e-01, 6.3345e-01, 2.2200e-01, + 4.0966e-01, 2.6498e-01, 9.7214e-01, 8.0645e-01, + 9.7093e-02, 9.9334e-01, 8.2010e-01, 4.2101e-01, + 4.1734e-01, 2.1756e-02, 6.4813e-02, 5.3620e-01, + 7.0438e-01, 1.4083e-01, 6.4467e-01, 9.7098e-01, + 8.3839e-01, 5.5985e-01, 2.0887e-01, 2.3036e-01, + 8.5515e-01, 1.0184e-01, 6.7921e-01, 6.6760e-01, + 1.0380e-01, 3.5481e-01, 7.7507e-01, 5.3008e-01, + 6.6887e-03, 7.4553e-01, 1.7360e-01, 8.9120e-01, + 6.7769e-01, 8.1441e-02, 1.3726e-01, 4.6109e-02, + 5.8003e-01, 4.6242e-01, 8.8956e-01, 1.6185e-02, + 9.5213e-01, 2.2370e-01, 7.2711e-01, 3.2853e-01, + 4.3371e-01, 5.3927e-01, 9.9624e-01, 9.5974e-01, + 9.2831e-01, 9.1616e-01, 5.3324e-01, 1.4999e-01, + 1.5046e-03, 7.4235e-01, 8.8799e-02, 6.2582e-01, + 4.2415e-01, 8.5871e-02, 8.5839e-02, 8.3054e-01, + 4.3792e-01, 7.4156e-01, 6.6301e-01, 8.8278e-01, + 1.0045e-01, 8.4371e-02, 9.7355e-02, 9.1549e-01, + 7.7045e-01, 7.0279e-01, 7.9142e-01, 8.6937e-01, + 2.3835e-01, 5.2709e-01, 4.6300e-01, 1.1279e-01, + 1.6738e-01, 2.4966e-01, 9.3594e-01, 1.8265e-01, + 8.2812e-01, 4.6700e-01, 1.0566e-01, 2.9449e-01, + 3.8697e-01, 2.1058e-01, 8.9128e-01, 2.8245e-01, + 6.1803e-01, 9.6943e-01, 4.9844e-01, 3.8129e-01, + 4.1366e-01, 3.3715e-01, 4.8966e-01, 1.8916e-01, + 4.1051e-01, 6.5104e-02, 6.7879e-01, 1.7219e-01, + 9.8611e-01, 7.9846e-01, 6.4956e-02, 5.2899e-01, + 7.0038e-01, 2.5009e-01, 1.0036e-01, 5.2806e-01, + 2.8219e-01, 1.1813e-01, 1.7751e-01, 3.7513e-01, + 7.2103e-01, 7.6143e-01, 1.7171e-01, 5.3865e-01, + 3.8347e-01, 5.1723e-01, 9.0538e-01, 2.8388e-01, + 3.8454e-01, 1.4894e-01, 7.4618e-01, 8.3012e-02, + 6.3207e-01, 8.0185e-01, 4.0027e-01, 4.6201e-01, + 3.9573e-03, 9.7798e-01, 3.8023e-01, 5.5993e-01, + 8.3605e-01, 3.9080e-01, 6.5441e-01, 4.0146e-01, + 3.1631e-02, 7.1804e-01, 7.0636e-01, 3.8574e-01, + 3.1058e-01, 6.7122e-01, 1.5380e-01, 9.0007e-01, + 3.7706e-01, 3.5935e-01, 4.0857e-01, 3.4286e-01, + 2.8742e-01, 4.5897e-01, 7.9498e-01, 7.9825e-01, + 7.9126e-01, 9.1831e-01, 3.7304e-01, 7.8587e-01, + 8.7177e-01, 4.8529e-01, 5.2323e-01, 4.3441e-02, + 7.5517e-01, 5.7213e-01, 3.3582e-01, 1.3401e-01, + 2.7285e-02, 1.6001e-01, 1.5595e-01, 5.5976e-01, + 7.1036e-01, 4.5240e-01, 7.6140e-01, 1.1852e-02, + 8.1250e-02, 6.9522e-01, 2.1689e-01, 5.4042e-01, + 1.5117e-01, 4.1569e-01, 9.8104e-01, 7.4230e-01, + 2.1911e-01, 3.0258e-01, 7.8659e-01, 4.1239e-01, + 4.4141e-01, 3.1882e-01, 6.3781e-01, 1.6855e-01, + 9.4322e-02, 7.2210e-01, 8.1753e-01, 5.8294e-01, + 8.0956e-01, 7.2769e-01, 5.3873e-01, 3.4590e-02, + 5.4020e-01, 5.4499e-02, 3.0721e-02, 3.8781e-01, + 5.3718e-01, 9.4856e-01, 9.4062e-01, 2.4671e-01, + 8.7092e-01, 1.1412e-01, 9.4006e-02, 9.0091e-01, + 6.5373e-01, 4.6330e-01, 7.2651e-01, 9.3630e-01, + 2.9917e-01, 6.6133e-01, 4.6541e-01, 7.4622e-01, + 3.4435e-02, 1.8522e-01, 6.6774e-01, 7.7169e-01, + 7.9885e-01, 6.3927e-01, 6.2545e-01, 7.0752e-02, + 5.9121e-01, 7.0132e-01, 5.6839e-01, 7.6939e-01, + 3.4014e-01, 3.7386e-01, 9.5161e-01, 5.6361e-01, + 6.0353e-01, 7.0503e-01, 4.2749e-03, 5.9801e-01, + 7.3419e-01, 5.9424e-01, 6.4743e-01, 3.2864e-01, + 9.1101e-01, 3.7642e-01, 7.0460e-02, 8.9601e-01, + 7.7401e-01, 1.4806e-01, 7.3290e-01, 7.4525e-01, + 9.6181e-01, 9.9589e-01, 6.9491e-01, 6.2451e-01, + 5.8659e-01, 5.0633e-01, 1.2537e-01, 2.2713e-01, + 3.2536e-01, 4.3233e-01, 2.0051e-01, 3.0690e-01, + 1.4207e-01, 3.8751e-01, 5.5312e-01, 7.0443e-01, + 4.2499e-01, 9.9202e-01, 5.5879e-01, 4.4650e-01, + 2.4128e-01, 6.2746e-01, 5.8731e-01, 3.8369e-02, + 3.8085e-02, 2.1800e-01, 8.4532e-01, 9.6580e-01, + 6.8789e-01, 8.8737e-01, 1.2413e-01, 9.2093e-01, + 3.0693e-01, 5.1800e-01, 4.2604e-01, 3.9549e-03, + 5.6568e-01, 7.5623e-01, 6.7967e-01, 2.3458e-01, + 5.4017e-01, 9.7298e-01, 6.8422e-01, 8.7135e-01, + 7.9377e-02, 4.8783e-01, 7.1176e-01, 6.4913e-01, + 8.7535e-01, 5.1563e-01, 1.8421e-01, 4.0508e-01, + 1.2530e-01, 7.2066e-02, 4.7501e-01, 8.9604e-01, + 9.8033e-01, 4.2110e-01, 4.4439e-01, 9.4984e-01, + 6.3960e-01, 3.1398e-01, 6.3584e-01, 1.1905e-01, + 9.8476e-01, 7.3838e-01, 5.9761e-01, 3.8585e-01, + 4.5369e-01, 1.2022e-01, 6.7305e-01, 7.8788e-01, + 8.7938e-01, 7.4945e-01, 6.1574e-01, 5.1676e-01, + 7.2591e-01, 7.7320e-01, 8.6354e-01, 9.7250e-01, + 2.6322e-01, 8.1801e-01, 7.5115e-01, 5.6531e-01, + 6.3913e-01, 7.2438e-02, 1.8105e-01, 2.5968e-01, + 2.2157e-01, 3.6300e-01, 8.5513e-01, 4.0037e-01, + 9.9442e-01, 3.7004e-01, 7.4999e-01, 7.7150e-01, + 8.8575e-01, 4.2972e-01, 9.8154e-01, 8.3038e-01, + 1.7583e-01, 6.3271e-01, 7.4191e-02, 7.7641e-02, + 4.6908e-01, 5.4427e-01, 5.2239e-01, 1.4617e-02, + 1.3158e-01, 4.4277e-01, 2.9545e-01, 6.9176e-01, + 8.5065e-02, 2.3232e-01, 6.5048e-01, 9.2064e-01, + 1.1105e-01, 1.5708e-01, 9.0011e-01, 1.7042e-01, + 4.7935e-01, 3.0795e-01, 2.5331e-01, 7.6145e-01, + 4.8186e-01, 3.0773e-01, 4.0047e-01, 1.8978e-01, + 4.7549e-01, 2.4018e-01, 8.6357e-02, 3.8015e-01, + 6.0164e-01, 1.0270e-01, 2.6943e-01, 2.0495e-01, + 7.4602e-01, 3.0003e-01, 9.9557e-01, 9.5550e-01, + 6.5525e-02, 4.2302e-01, 1.5246e-01, 4.1570e-01, + 7.6132e-01, 6.3810e-01, 3.4472e-01, 9.2114e-01, + 8.9617e-01, 1.1069e-01, 1.8827e-01, 3.5004e-01, + 4.2144e-01, 7.2994e-01, 2.8003e-01, 9.9526e-01, + 1.3122e-01, 7.8430e-01, 8.2154e-01, 8.5472e-01, + 9.9915e-01, 1.0175e-01, 9.5443e-01, 2.0256e-01, + 9.9243e-01, 2.9673e-01, 1.4011e-01, 6.3467e-01, + 6.9318e-01, 9.8979e-01, 3.2336e-01, 9.6873e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.7118, 0.5445, 0.7766, ..., 0.3375, 0.1794, 0.0442]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 0.05389976501464844 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '194806', '-ss', '10000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.141697645187378} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([9699, 5692, 1856, 5883, 6609, 910, 190, 8818, 6729, + 6588, 9895, 4579, 6475, 3640, 7256, 5776, 2107, 112, + 4061, 7172, 5250, 3509, 2541, 6334, 7236, 9125, 3397, + 1986, 8020, 7426, 640, 4809, 3135, 3852, 5226, 6972, + 7839, 6382, 8902, 5331, 2656, 2128, 1074, 1853, 2415, + 6472, 2510, 5655, 1427, 2596, 3458, 3907, 4524, 7308, + 7182, 5604, 363, 3020, 382, 2413, 6757, 1843, 5926, + 9800, 9243, 1216, 726, 2755, 3879, 2089, 6276, 1446, + 5747, 3255, 7160, 527, 7938, 2938, 6480, 2054, 3947, + 5160, 1424, 3755, 6322, 4755, 7220, 3748, 8641, 8485, + 4072, 5143, 4083, 6468, 5181, 8054, 5262, 8901, 1842, + 5556, 9197, 2422, 9598, 8776, 1431, 4844, 2968, 4592, + 1117, 3790, 2119, 9402, 1591, 3654, 5945, 8184, 2423, + 4084, 8724, 1704, 4602, 6181, 1446, 6069, 9025, 6809, + 4068, 6820, 4308, 8837, 7638, 9939, 7584, 715, 3080, + 5110, 1646, 270, 4750, 1889, 7344, 9493, 1362, 2806, + 2042, 9330, 8128, 1139, 8055, 3285, 5025, 3427, 4630, + 3457, 487, 5769, 1461, 1223, 6014, 676, 4177, 4788, + 808, 6218, 3273, 1857, 7645, 7883, 45, 3023, 2949, + 6931, 7238, 3245, 2607, 1940, 9243, 7118, 1761, 8715, + 6342, 6537, 2112, 8823, 435, 8620, 6948, 5293, 2230, + 860, 4367, 88, 989, 2922, 3107, 2766, 5993, 5889, + 9018, 6344, 7354, 9373, 2993, 5145, 4372, 1500, 3401, + 7249, 7339, 2560, 4049, 4794, 1097, 4845, 8722, 1758, + 8888, 497, 786, 8206, 3869, 9310, 8168, 6537, 4297, + 4957, 888, 1560, 5004, 6079, 1472, 9820, 7535, 5, + 6957, 2891, 4973, 5114, 8846, 3802, 6063, 5430, 3488, + 4815, 6740, 5508, 7371, 7426, 341, 8923, 8690, 171, + 6415, 5450, 2787, 9982, 3748, 3838, 4615, 5263, 102, + 6690, 3873, 9381, 4288, 2954, 8360, 3646, 2615, 4141, + 1050, 1125, 185, 7696, 5529, 6425, 4054, 2857, 7604, + 5735, 6919, 671, 7369, 4003, 5598, 8207, 1635, 5650, + 901, 7034, 7990, 5233, 8098, 195, 5419, 2566, 7620, + 9130, 5961, 1895, 6390, 2059, 5841, 9008, 9683, 9749, + 6124, 7032, 9157, 6822, 4774, 3289, 1834, 7396, 7421, + 7499, 2291, 6909, 7905, 4469, 6511, 7350, 2615, 4732, + 8418, 5371, 4919, 2663, 2137, 3983, 7792, 7288, 1612, + 4647, 3391, 7921, 4140, 3599, 635, 5337, 1503, 2825, + 1470, 9664, 4879, 5908, 6754, 5907, 8818, 5502, 2991, + 75, 371, 7734, 1045, 9930, 8101, 7139, 5503, 5475, + 2679, 461, 8155, 5016, 8667, 5905, 7548, 4722, 3455, + 1638, 1102, 3780, 3499, 2110, 514, 4587, 204, 9098, + 6201, 2603, 7037, 2599, 671, 2366, 9398, 7381, 7138, + 1169, 4549, 4654, 1754, 1153, 4615, 7103, 4051, 2487, + 3616, 8644, 5118, 3483, 5335, 4026, 1783, 2758, 2984, + 638, 9209, 7083, 3264, 265, 9549, 7169, 7144, 6068, + 6545, 1580, 8287, 7166, 1700, 633, 6101, 210, 3447, + 405, 8401, 2116, 3061, 120, 3758, 3224, 2049, 8242, + 4839, 9464, 693, 5141, 764, 6513, 8446, 8212, 3275, + 9682, 1420, 3408, 4145, 9904, 1057, 5587, 901, 5152, + 2841, 3558, 7842, 4197, 3309, 2335, 1192, 5405, 9916, + 2481, 1125, 8151, 7638, 6922, 2430, 912, 4770, 4712, + 6647, 5230, 6086, 4985, 7308, 9288, 1384, 7330, 8063, + 5564, 9472, 1976, 40, 4812, 6504, 4391, 3464, 2689, + 1114, 2263, 9898, 1567, 9540, 6822, 821, 1998, 7878, + 9181, 1818, 1209, 2539, 1160, 9808, 463, 263, 8208, + 8171, 129, 8433, 4617, 8359, 312, 1640, 1522, 4048, + 5980, 3300, 1945, 1110, 4379, 3980, 2115, 283, 7658, + 7769, 8159, 4283, 7740, 5868, 9747, 2476, 5456, 5897, + 9500, 9092, 4934, 2014, 2634, 9897, 912, 3436, 4361, + 2970, 722, 6724, 1342, 9452, 1039, 4991, 8561, 2030, + 3999, 5414, 5316, 712, 5681, 2518, 6790, 9860, 3506, + 5093, 7295, 6572, 6868, 2355, 5778, 9203, 4880, 2791, + 9320, 3014, 9918, 2921, 8988, 141, 1475, 9846, 4713, + 9024, 692, 5076, 7563, 6498, 8907, 1295, 1351, 4964, + 5270, 1482, 1910, 1143, 9509, 3679, 6920, 2839, 5271, + 5790, 7550, 7877, 7196, 8110, 3458, 8863, 6442, 4179, + 5065, 9844, 2060, 799, 7085, 603, 6004, 1749, 2077, + 2038, 4582, 1298, 8893, 181, 4569, 3070, 7157, 8790, + 2391, 724, 2063, 3622, 5206, 7595, 2202, 5552, 9002, + 347, 505, 5459, 2834, 7758, 2282, 1970, 9079, 6558, + 1962, 4357, 2522, 992, 5448, 7106, 6521, 6066, 8664, + 1489, 8809, 8981, 3254, 631, 6925, 9786, 4711, 2080, + 9941, 4418, 9086, 462, 1764, 3142, 8362, 7446, 6622, + 3369, 4863, 5373, 9178, 1481, 8646, 5900, 9548, 4408, + 7750, 7399, 1581, 2547, 9301, 5969, 179, 2851, 1207, + 428, 6125, 8190, 5103, 7928, 6601, 7331, 9667, 2432, + 6776, 2279, 2842, 2285, 9680, 8221, 1724, 9070, 1222, + 3603, 9120, 3653, 5672, 3399, 4625, 2429, 8889, 5981, + 1000, 5470, 2261, 5871, 8703, 4691, 1671, 5061, 2598, + 6933, 2768, 853, 7015, 5601, 5218, 381, 537, 8936, + 4791, 6282, 4998, 3247, 4654, 6455, 8944, 8290, 8745, + 2692, 6962, 2252, 2867, 5432, 4051, 4941, 5684, 7006, + 3108, 2162, 9080, 649, 4797, 4290, 9784, 6945, 4661, + 1160, 570, 6461, 4929, 266, 64, 9848, 9068, 6428, + 2769, 84, 8378, 7068, 3001, 2149, 8583, 5287, 436, + 9111, 5124, 9797, 2012, 2411, 4043, 4222, 1696, 546, + 4712, 4905, 8837, 5463, 8521, 9390, 2336, 2226, 1407, + 4822, 7155, 316, 6391, 9589, 6434, 8313, 6737, 696, + 6410, 972, 3354, 3601, 6436, 9895, 5209, 2618, 8553, + 7811, 2958, 4986, 6996, 6746, 7395, 92, 2747, 39, + 3164, 1246, 6647, 6895, 5256, 8149, 9776, 8926, 7338, + 1299, 6106, 854, 9373, 1443, 3055, 677, 459, 1881, + 3164, 1865, 8156, 3059, 1315, 8469, 7724, 3143, 7132, + 3791, 4564, 3865, 5879, 7306, 568, 9812, 1785, 5323, + 5765, 3615, 4800, 7634, 8579, 1808, 3502, 7965, 2087, + 2874, 1541, 2579, 3128, 3863, 562, 8156, 7588, 2199, + 3579, 2253, 4682, 7858, 2016, 6187, 2976, 6788, 2542, + 3791, 5389, 1314, 9919, 5823, 7598, 7913, 4913, 6239, + 5585, 4565, 8135, 4632, 5898, 7355, 196, 8411, 9673, + 9719, 3316, 7270, 9467, 5676, 72, 6041, 6756, 7259, + 7416, 3170, 8693, 2493, 2027, 6871, 1234, 5081, 4177, + 2314, 1689, 4125, 6054, 3950, 1579, 9517, 5957, 3594, + 6383, 7678, 9558, 5291, 268, 5430, 2249, 368, 2109, + 683, 1529, 3492, 84, 4074, 5390, 403, 9378, 7210, + 3148, 1655, 9598, 6011, 2729, 4928, 4344, 2719, 1872, + 6784, 2105, 8880, 6712, 1644, 4470, 800, 8040, 3214, + 8452, 1233, 5357, 3667, 4151, 6027, 6841, 7686, 1673, + 5009, 4659, 1398, 3855, 9108, 8464, 7121, 6004, 5958, + 4060, 4437, 9638, 5697, 6382, 800, 2529, 9907, 3927, + 3494, 5242, 9767, 6705, 7803, 4937, 5829, 6107, 4596, + 3160]), + values=tensor([3.4107e-01, 5.8259e-01, 9.0206e-01, 1.5231e-01, + 1.5774e-01, 5.3916e-01, 6.1194e-01, 9.5075e-01, + 4.0186e-02, 9.8706e-01, 9.4080e-01, 5.8716e-01, + 6.7869e-02, 3.7279e-01, 5.8225e-01, 5.0243e-01, + 5.6104e-01, 8.1432e-01, 5.5779e-01, 3.1556e-01, + 2.4611e-01, 5.6301e-02, 4.5138e-01, 1.3073e-01, + 2.2739e-01, 1.4106e-01, 5.6086e-01, 3.1390e-01, + 9.4666e-01, 5.6872e-01, 7.4045e-01, 4.4636e-01, + 9.3540e-01, 6.8254e-01, 8.7194e-02, 4.9288e-01, + 2.8910e-01, 1.5515e-01, 6.9777e-01, 8.1779e-01, + 3.7513e-01, 2.9492e-01, 7.3948e-01, 2.5269e-01, + 1.5901e-01, 3.4237e-01, 1.4025e-01, 2.9783e-01, + 4.2632e-01, 8.3642e-01, 7.5962e-01, 7.7581e-01, + 9.4394e-01, 4.6305e-01, 8.1264e-01, 6.5263e-01, + 6.3669e-01, 5.5673e-01, 4.0066e-01, 6.0592e-01, + 5.1269e-01, 2.7275e-01, 6.9278e-01, 3.2280e-01, + 2.2773e-01, 4.8282e-01, 9.4239e-01, 9.4261e-01, + 5.6880e-01, 1.9748e-01, 9.6239e-01, 6.2399e-01, + 1.0298e-01, 3.2784e-01, 5.0119e-01, 6.7033e-01, + 9.5959e-01, 3.2246e-01, 1.1867e-01, 1.1081e-01, + 9.7342e-01, 6.9772e-01, 8.4391e-01, 2.0712e-01, + 4.1353e-01, 6.2809e-01, 8.2107e-01, 7.0050e-02, + 2.4630e-01, 8.1426e-01, 6.4572e-01, 2.3166e-01, + 1.1184e-01, 3.9971e-02, 4.0002e-01, 9.7835e-01, + 2.0212e-01, 1.8854e-01, 1.5726e-01, 8.3404e-01, + 4.2840e-01, 9.5166e-01, 3.2665e-01, 3.2984e-01, + 4.3002e-01, 3.7293e-01, 8.9415e-01, 7.2970e-01, + 8.8637e-01, 6.2604e-01, 1.9380e-02, 2.6423e-01, + 4.4435e-01, 1.5585e-01, 7.1475e-01, 3.1465e-01, + 3.5278e-01, 3.9353e-01, 2.4005e-01, 2.3418e-01, + 1.9743e-01, 2.4430e-01, 1.6408e-01, 1.1091e-01, + 3.2187e-01, 8.6647e-01, 3.3577e-01, 7.5728e-01, + 9.5105e-02, 9.1206e-01, 6.8281e-01, 1.3476e-01, + 1.6985e-01, 3.5679e-01, 5.7880e-01, 2.6246e-01, + 8.6490e-01, 6.1564e-02, 1.3512e-03, 5.8975e-01, + 6.3041e-01, 2.8240e-01, 7.9244e-01, 9.7654e-01, + 2.4998e-03, 1.4618e-01, 9.6273e-01, 8.5326e-01, + 6.9665e-01, 4.2947e-02, 2.9434e-01, 6.4109e-01, + 3.5892e-01, 4.9565e-01, 3.7949e-01, 7.4967e-01, + 8.7995e-01, 6.6710e-01, 1.8686e-01, 3.9784e-01, + 3.8422e-01, 7.0529e-01, 9.2915e-02, 7.3076e-01, + 1.9805e-01, 6.8473e-01, 5.3952e-01, 2.9416e-01, + 4.5626e-01, 9.6675e-01, 5.9033e-01, 9.0386e-01, + 3.7952e-01, 9.9075e-01, 6.9146e-01, 5.8950e-01, + 2.2022e-01, 3.9380e-01, 7.0756e-01, 5.0251e-01, + 5.7638e-01, 7.2018e-01, 2.6283e-01, 7.7764e-03, + 4.5319e-02, 5.3242e-01, 5.7104e-01, 8.9803e-01, + 1.7680e-01, 3.6901e-01, 2.9846e-01, 3.2596e-01, + 6.1306e-01, 6.6736e-01, 4.1856e-01, 3.3300e-01, + 7.0737e-01, 9.7738e-01, 9.7458e-01, 1.1018e-01, + 1.5941e-01, 1.4525e-01, 5.1916e-01, 9.2485e-01, + 1.2389e-01, 9.6093e-01, 4.5693e-01, 3.6103e-01, + 7.2257e-01, 8.6213e-01, 7.5457e-01, 6.8732e-01, + 6.5566e-01, 3.3795e-01, 2.0535e-01, 1.4076e-01, + 3.5574e-01, 2.3672e-02, 8.9044e-01, 6.4557e-01, + 7.6495e-01, 4.9628e-01, 2.4630e-01, 1.6034e-01, + 9.5737e-01, 8.8421e-01, 2.4213e-01, 7.7080e-01, + 1.2698e-01, 9.7317e-01, 4.5912e-01, 1.8065e-01, + 6.0195e-01, 1.8788e-01, 5.6326e-01, 9.7076e-01, + 4.6756e-01, 4.5233e-01, 2.0422e-01, 6.3361e-01, + 8.5462e-02, 3.5504e-02, 4.7209e-01, 2.7244e-01, + 4.7504e-02, 4.3276e-01, 8.5968e-01, 8.8808e-01, + 6.8370e-01, 9.7504e-01, 7.9917e-01, 7.7973e-01, + 4.8502e-01, 2.2438e-01, 1.5410e-01, 4.3549e-01, + 6.2630e-01, 2.0717e-01, 7.3108e-01, 8.7995e-01, + 5.8807e-01, 1.8904e-01, 9.7540e-01, 3.5022e-01, + 6.1668e-01, 4.2630e-01, 1.6345e-01, 6.3050e-01, + 3.3571e-01, 4.6183e-01, 3.2077e-01, 5.6221e-01, + 5.6951e-01, 8.9562e-01, 7.7176e-01, 2.8270e-01, + 2.2731e-01, 8.5000e-01, 7.9221e-01, 3.0058e-01, + 2.5522e-01, 1.9619e-01, 8.9598e-01, 5.5217e-01, + 1.2127e-01, 1.1458e-02, 1.8720e-01, 2.6580e-01, + 3.6930e-01, 3.3263e-01, 2.3041e-01, 3.8251e-01, + 1.7020e-01, 5.6143e-01, 8.5724e-01, 2.4612e-01, + 4.1008e-01, 6.7912e-01, 9.0655e-01, 9.8953e-01, + 5.1157e-01, 4.0535e-01, 1.2339e-01, 4.2239e-04, + 6.3665e-01, 2.5100e-01, 4.6716e-01, 9.3143e-01, + 3.1984e-01, 2.3807e-02, 1.6142e-01, 1.1064e-01, + 3.4538e-01, 1.1648e-01, 7.6242e-01, 9.1220e-01, + 1.0508e-01, 2.2946e-01, 2.0923e-02, 2.8600e-04, + 5.7946e-01, 6.4038e-02, 6.1635e-01, 7.6588e-01, + 2.1260e-01, 3.9026e-01, 5.8087e-01, 6.1305e-01, + 7.5460e-01, 2.3937e-01, 9.1516e-01, 1.8689e-02, + 5.9670e-01, 4.7403e-01, 7.5566e-01, 2.4853e-01, + 8.7701e-02, 5.3822e-01, 6.4989e-01, 5.3743e-01, + 6.4136e-01, 3.3117e-01, 9.5819e-01, 3.9978e-01, + 7.8790e-01, 9.7921e-01, 1.4496e-01, 2.8499e-01, + 7.3365e-01, 8.2835e-01, 5.9327e-01, 7.6840e-01, + 1.7718e-01, 2.2172e-01, 5.5148e-01, 9.9897e-01, + 8.0818e-01, 6.3864e-01, 8.1272e-01, 1.6892e-01, + 4.9513e-01, 7.3640e-01, 7.4037e-01, 7.2909e-01, + 2.0953e-01, 1.2960e-01, 4.9217e-01, 4.6350e-02, + 9.1230e-01, 1.6167e-01, 7.9224e-01, 3.4126e-01, + 5.7486e-01, 6.7833e-01, 5.6509e-01, 2.4295e-01, + 9.4750e-01, 1.8697e-01, 6.7314e-01, 3.5818e-01, + 3.5532e-01, 6.9046e-01, 5.1394e-01, 2.6353e-01, + 5.5840e-03, 5.9048e-01, 1.0845e-01, 8.7156e-02, + 1.4373e-01, 2.7625e-01, 5.6213e-01, 7.3289e-01, + 8.6444e-01, 3.8270e-01, 7.8160e-01, 2.8543e-01, + 4.9744e-03, 7.0182e-01, 4.3329e-01, 3.0222e-01, + 6.5215e-03, 1.5251e-01, 2.8373e-02, 5.8213e-01, + 5.8849e-01, 8.6320e-01, 3.7353e-01, 2.8151e-01, + 8.8041e-01, 6.6590e-01, 3.8896e-01, 2.0248e-01, + 6.0602e-02, 8.3962e-01, 9.3127e-01, 9.5709e-01, + 2.7723e-01, 7.5722e-01, 5.1121e-01, 6.3922e-01, + 5.0456e-01, 3.7729e-01, 7.3885e-01, 6.6998e-01, + 5.9712e-01, 7.2155e-01, 5.2050e-01, 1.8090e-01, + 7.6263e-01, 2.8091e-01, 6.5032e-02, 9.5283e-01, + 4.9306e-01, 5.2967e-01, 5.4182e-01, 9.8136e-01, + 1.5577e-01, 6.6767e-01, 6.9720e-01, 7.8091e-01, + 6.4307e-01, 4.3554e-01, 2.8592e-01, 4.6926e-01, + 6.5065e-01, 9.1978e-01, 1.0899e-01, 7.3189e-01, + 5.0993e-01, 5.5218e-01, 7.7634e-01, 3.3534e-01, + 3.5754e-02, 9.2200e-01, 2.1710e-01, 4.5560e-01, + 1.0296e-01, 4.1832e-03, 5.3775e-01, 7.2447e-01, + 8.5718e-01, 1.1389e-01, 1.1775e-01, 2.5285e-01, + 1.0865e-01, 3.5541e-01, 6.2477e-01, 1.8628e-01, + 5.0797e-01, 5.5687e-01, 7.7752e-01, 5.0363e-01, + 4.2753e-01, 5.4263e-01, 9.3575e-01, 3.3169e-01, + 8.2404e-02, 3.4090e-01, 3.3525e-01, 7.3596e-01, + 6.0975e-02, 1.7112e-01, 4.8399e-01, 6.3775e-01, + 1.4649e-01, 2.3445e-01, 8.3492e-01, 5.2535e-01, + 7.9017e-01, 9.0307e-01, 4.8658e-01, 7.5883e-01, + 3.5785e-01, 6.0096e-01, 5.7555e-01, 1.7943e-01, + 7.3885e-02, 1.2125e-01, 3.2272e-01, 2.2891e-01, + 8.4517e-01, 6.2769e-02, 6.0906e-01, 4.9417e-01, + 3.8138e-01, 8.5100e-01, 6.5139e-02, 3.6631e-01, + 9.9685e-01, 4.3060e-01, 1.6032e-01, 4.7700e-01, + 4.0976e-01, 1.4277e-01, 1.2966e-01, 5.1290e-01, + 4.5698e-01, 9.2478e-01, 7.7864e-01, 4.4411e-01, + 7.3661e-01, 7.8892e-01, 1.5212e-01, 2.8232e-01, + 7.1727e-01, 7.6833e-01, 3.2281e-01, 7.9870e-02, + 3.6650e-01, 2.3854e-01, 8.8911e-01, 5.5056e-01, + 7.6939e-01, 2.5148e-01, 4.7798e-01, 7.6194e-01, + 2.2033e-01, 1.3396e-01, 3.3324e-01, 5.7380e-01, + 3.7708e-02, 8.4699e-01, 6.8381e-01, 6.1197e-01, + 4.9954e-01, 2.0119e-02, 4.9933e-01, 4.5701e-01, + 4.7771e-01, 2.2332e-01, 7.1689e-01, 8.5814e-01, + 4.7145e-01, 5.9539e-01, 1.2098e-01, 3.3254e-01, + 2.4795e-01, 2.5808e-01, 9.2196e-01, 1.1027e-01, + 6.9737e-01, 9.9262e-03, 3.9118e-01, 3.0348e-01, + 8.9520e-01, 5.6578e-01, 5.0959e-02, 7.6907e-01, + 4.8625e-01, 9.7317e-01, 8.3900e-01, 4.0362e-01, + 7.6045e-04, 4.9537e-01, 1.0689e-01, 5.7224e-01, + 8.2067e-01, 1.7758e-01, 1.7972e-01, 9.8133e-01, + 4.6896e-01, 2.0499e-01, 6.5187e-01, 8.8343e-01, + 5.0622e-01, 2.6635e-01, 9.3242e-01, 3.8417e-01, + 2.6588e-01, 4.5938e-02, 4.7982e-02, 8.9591e-01, + 2.3498e-01, 2.4143e-01, 1.7232e-01, 7.1027e-01, + 5.6187e-01, 6.2697e-01, 6.7454e-02, 1.5053e-01, + 9.3465e-01, 3.4974e-01, 5.3987e-01, 9.7711e-01, + 9.4404e-01, 6.2483e-02, 8.1453e-01, 5.0008e-01, + 3.2546e-01, 1.5956e-01, 7.5035e-01, 7.1251e-01, + 9.6113e-01, 7.9846e-01, 7.5855e-01, 6.3405e-01, + 6.5622e-01, 8.0636e-01, 6.1280e-01, 1.0840e-01, + 5.9194e-01, 8.3410e-02, 5.7581e-01, 3.0383e-01, + 2.8427e-01, 6.7511e-01, 3.3074e-01, 9.1898e-01, + 7.9597e-01, 9.5382e-01, 8.0795e-01, 3.8605e-01, + 8.7692e-01, 5.9298e-01, 7.0179e-01, 8.1178e-01, + 9.1999e-01, 9.7833e-02, 9.7685e-01, 1.2559e-01, + 3.7595e-01, 1.0619e-01, 4.6649e-01, 9.5235e-02, + 6.1260e-01, 1.3643e-01, 5.0897e-01, 8.7723e-01, + 5.5802e-01, 9.6592e-01, 8.1266e-01, 8.2225e-01, + 2.2504e-01, 3.6534e-02, 2.9586e-01, 5.3084e-01, + 1.9037e-01, 5.4451e-01, 5.8438e-01, 8.9833e-01, + 3.7645e-01, 3.3522e-01, 8.7779e-01, 3.3495e-01, + 2.6928e-01, 9.6575e-01, 8.1937e-02, 2.6664e-01, + 9.2253e-01, 6.7376e-01, 7.4185e-01, 8.8061e-01, + 7.9892e-01, 6.8636e-01, 8.7397e-01, 7.2702e-01, + 6.0810e-01, 1.7136e-01, 7.2996e-01, 1.8868e-01, + 3.6151e-01, 4.2774e-01, 7.8979e-01, 1.7459e-01, + 7.0642e-01, 3.1498e-01, 7.1813e-02, 6.6140e-01, + 2.5986e-01, 2.7422e-02, 4.5608e-01, 9.1117e-01, + 4.2735e-01, 9.4874e-01, 7.4648e-01, 8.4866e-01, + 6.2441e-01, 2.4072e-01, 4.4676e-01, 5.1553e-01, + 8.6749e-01, 5.8036e-01, 7.1183e-01, 6.5350e-01, + 5.5260e-01, 5.5351e-01, 6.2691e-01, 7.4629e-01, + 8.2506e-01, 4.4927e-01, 4.2554e-01, 3.1876e-01, + 1.4230e-02, 5.6366e-01, 6.2014e-01, 6.7544e-01, + 6.6287e-01, 1.5509e-01, 1.8691e-01, 8.1803e-01, + 1.8324e-01, 3.7563e-01, 8.2116e-01, 4.7677e-01, + 8.3668e-01, 3.7147e-01, 2.1279e-01, 6.7702e-01, + 5.2652e-01, 6.5494e-01, 2.3574e-01, 3.1116e-02, + 8.1466e-01, 2.1925e-01, 6.3967e-01, 9.1210e-01, + 3.5590e-01, 3.2824e-02, 7.8165e-02, 6.7910e-01, + 7.7991e-02, 6.3361e-01, 8.9714e-01, 8.1623e-02, + 4.8409e-01, 6.2221e-01, 6.6241e-01, 5.7971e-01, + 6.0738e-01, 2.5849e-02, 7.0566e-01, 1.7704e-01, + 3.6729e-01, 1.3839e-01, 9.9366e-01, 4.4142e-01, + 1.9823e-01, 8.1609e-01, 5.8385e-01, 4.8917e-01, + 2.2523e-01, 8.3428e-01, 5.9977e-01, 6.3523e-01, + 1.6607e-01, 9.4440e-01, 1.9587e-01, 6.1683e-01, + 3.5810e-01, 4.7400e-01, 4.3512e-01, 6.0426e-01, + 2.8234e-01, 2.5576e-01, 7.5082e-01, 8.4535e-01, + 1.3393e-01, 1.8660e-01, 7.0341e-01, 1.1964e-02, + 4.0743e-01, 6.8186e-01, 5.1220e-01, 6.6603e-01, + 1.6310e-01, 6.8026e-01, 8.4955e-01, 3.6216e-01, + 4.1255e-01, 1.3285e-01, 8.7437e-01, 5.8389e-01, + 9.5977e-01, 6.3271e-01, 6.2448e-01, 7.7622e-01, + 4.0343e-01, 1.3948e-01, 1.5996e-01, 4.1658e-01, + 1.5073e-02, 9.1613e-01, 6.4840e-01, 4.0343e-01, + 8.8647e-01, 1.1074e-01, 7.7289e-01, 5.6628e-01, + 8.4421e-02, 1.1948e-01, 3.1581e-01, 1.9177e-01, + 4.8860e-01, 1.5470e-01, 6.2486e-01, 4.4421e-01, + 3.9513e-01, 1.4266e-01, 2.1619e-01, 2.0583e-01, + 7.4146e-01, 1.8079e-01, 3.9100e-01, 4.3376e-01, + 4.5332e-01, 4.6722e-01, 4.8936e-01, 7.7059e-01, + 3.2068e-01, 6.0436e-01, 7.5036e-01, 4.4729e-01, + 5.1029e-01, 2.4280e-01, 8.3554e-01, 4.1030e-01, + 6.4449e-01, 2.1449e-01, 8.9230e-01, 7.7362e-01, + 9.0345e-01, 2.9250e-01, 7.2883e-01, 2.6007e-01, + 4.3249e-02, 3.2905e-01, 7.8983e-01, 3.3206e-01, + 6.1799e-01, 5.1913e-01, 2.4351e-01, 9.6034e-01, + 4.3264e-01, 5.1049e-01, 1.7936e-01, 6.6325e-01, + 9.0829e-01, 5.2970e-01, 8.9989e-01, 1.3213e-01, + 4.3889e-01, 8.5246e-01, 6.0845e-01, 5.0519e-01, + 9.1563e-01, 5.5071e-01, 4.8853e-01, 6.4062e-01, + 7.4041e-02, 2.8417e-01, 4.8817e-01, 7.7442e-01, + 8.6382e-01, 2.5864e-01, 4.9162e-01, 9.7010e-01, + 7.8372e-02, 5.3483e-01, 4.5161e-01, 8.0667e-01, + 9.2389e-01, 6.6574e-01, 3.0939e-01, 2.5476e-01, + 6.3040e-01, 2.6954e-01, 5.2755e-01, 4.1507e-01, + 6.6436e-01, 4.2837e-01, 6.9834e-01, 4.2882e-01, + 6.5943e-01, 2.0974e-01, 1.9505e-01, 5.3006e-01, + 8.1315e-01, 7.9665e-01, 3.0262e-01, 6.5602e-01, + 8.3583e-01, 9.6204e-01, 3.0115e-01, 3.5509e-02, + 5.9246e-01, 4.1207e-01, 5.4602e-02, 2.0125e-01, + 8.2332e-01, 5.7405e-02, 8.1456e-01, 8.0780e-01, + 5.7221e-01, 5.6654e-01, 7.9385e-01, 2.5343e-01, + 8.6088e-01, 4.4022e-01, 7.5807e-01, 7.0350e-01, + 6.7430e-01, 2.6578e-01, 4.6147e-01, 4.5759e-01, + 9.2754e-01, 1.4889e-01, 7.6663e-01, 2.1741e-01, + 2.2244e-01, 8.5749e-01, 1.3077e-02, 7.9269e-01, + 1.6559e-01, 2.2460e-01, 7.5782e-01, 4.7896e-01, + 5.1457e-01, 6.9584e-01, 1.8496e-01, 9.1267e-01, + 1.1589e-01, 5.4519e-01, 7.0833e-01, 9.4859e-01, + 8.1018e-01, 7.1465e-01, 8.8549e-01, 3.7149e-01, + 5.1221e-01, 7.0856e-01, 3.6562e-01, 6.5691e-01, + 9.8664e-01, 5.0664e-01, 8.1957e-01, 2.6047e-01, + 2.4718e-01, 1.8765e-01, 2.7938e-01, 4.4195e-01, + 8.2697e-01, 2.6656e-01, 6.3635e-01, 3.3041e-01, + 8.6448e-01, 2.9462e-01, 3.1636e-01, 2.0534e-01, + 9.6163e-01, 8.7485e-01, 2.0748e-01, 4.9018e-01, + 9.6966e-01, 5.8261e-01, 3.1234e-01, 7.5691e-02, + 9.3811e-01, 2.6135e-01, 9.6636e-01, 3.1124e-01, + 3.7538e-01, 5.2802e-01, 9.7340e-01, 5.0175e-01, + 9.0082e-02, 2.2941e-01, 6.5343e-01, 2.4368e-01, + 8.2203e-01, 4.5287e-01, 5.9015e-01, 6.0898e-01, + 7.0289e-01, 6.1400e-02, 3.4722e-01, 1.2295e-01, + 6.7460e-01, 3.0153e-01, 5.3121e-01, 2.6773e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.1721, 0.8059, 0.1299, ..., 0.7732, 0.0077, 0.2449]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 7.141697645187378 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '286411', '-ss', '10000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.634347915649414} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([5653, 663, 2356, 6335, 1601, 9179, 5758, 4032, 1184, + 1367, 4244, 4842, 4720, 9582, 4215, 5795, 5613, 5508, + 3150, 2956, 6349, 4941, 1636, 8225, 9972, 2582, 3679, + 1135, 9620, 6084, 6291, 4048, 7001, 5472, 7361, 7937, + 5298, 6533, 2776, 1036, 1344, 6057, 6180, 9014, 5073, + 6811, 5946, 5681, 492, 615, 6472, 4769, 5564, 541, + 800, 5736, 579, 8317, 7029, 3695, 499, 9654, 3281, + 205, 9052, 6707, 6645, 6832, 4626, 4664, 2914, 7622, + 9393, 3855, 9403, 5918, 5868, 9444, 851, 6317, 57, + 1210, 2172, 6037, 9204, 3658, 7620, 6983, 3781, 1735, + 686, 9439, 6244, 8175, 2372, 965, 2150, 8571, 4157, + 2512, 9938, 4043, 8875, 882, 623, 1012, 3731, 7589, + 9758, 4803, 9290, 1234, 774, 2176, 4572, 2018, 3222, + 7583, 187, 3819, 9911, 5564, 8603, 9156, 1382, 5716, + 6346, 5522, 2563, 4347, 9272, 9447, 4471, 4638, 4983, + 9892, 6310, 7516, 7140, 6156, 6553, 5760, 3519, 546, + 4365, 2039, 9350, 4877, 5823, 286, 7838, 4403, 5744, + 777, 1260, 2101, 8748, 5207, 3240, 7189, 894, 9416, + 9973, 7357, 198, 3268, 3546, 227, 3220, 2795, 5781, + 5660, 9451, 8013, 3655, 5219, 9893, 2124, 1825, 7217, + 2907, 3224, 62, 5333, 4441, 9222, 7187, 7656, 8345, + 6235, 4925, 4392, 9403, 7654, 8355, 5586, 6058, 1290, + 4866, 5435, 1268, 4572, 9153, 7079, 1500, 588, 4650, + 8759, 9375, 1661, 8828, 6616, 8199, 6392, 6520, 9958, + 2116, 3225, 5132, 9375, 4924, 4325, 419, 1259, 5490, + 8365, 3133, 1934, 496, 7648, 3510, 5952, 6594, 9025, + 8913, 3315, 3979, 9410, 9159, 3471, 5346, 7471, 2113, + 6014, 6280, 8075, 582, 6331, 2784, 6053, 556, 989, + 6164, 8084, 411, 640, 8216, 8772, 5075, 9022, 5692, + 7825, 9613, 5866, 5376, 3288, 3147, 9301, 386, 8701, + 9166, 418, 2003, 9005, 8592, 4188, 3735, 4232, 5238, + 8853, 7246, 2646, 1343, 9472, 371, 1177, 8422, 8202, + 5353, 9648, 2908, 8320, 6076, 6771, 8304, 1075, 2469, + 1568, 9483, 3555, 5266, 3405, 9971, 7501, 9677, 5813, + 5924, 7587, 1603, 937, 3813, 1988, 637, 2885, 5831, + 8209, 1869, 5873, 3244, 9083, 4316, 1649, 3716, 7799, + 3429, 9162, 139, 9399, 4042, 4832, 2298, 2896, 1054, + 6210, 4421, 1743, 2336, 4261, 861, 3352, 4781, 2982, + 219, 1594, 6937, 1157, 7791, 8670, 8548, 3732, 1054, + 1298, 3515, 1443, 4515, 5404, 1104, 8525, 7928, 1938, + 9321, 4093, 9617, 5069, 7691, 6537, 1777, 1177, 4792, + 3990, 8613, 2141, 639, 6090, 3243, 3817, 2379, 597, + 2806, 6242, 129, 4735, 1063, 7452, 9642, 1260, 4687, + 6658, 1205, 1033, 2603, 6809, 9426, 6394, 7227, 8386, + 557, 2634, 1874, 8349, 1415, 4690, 6198, 8318, 8284, + 9176, 6704, 6584, 6885, 9606, 1543, 7428, 2559, 2822, + 1315, 6792, 6148, 819, 6087, 4634, 2762, 1934, 3174, + 6495, 6068, 138, 6548, 3452, 8896, 8290, 5349, 4350, + 9259, 6574, 8978, 6459, 1935, 8370, 6950, 8071, 2398, + 2191, 2389, 8876, 4727, 5597, 1126, 3589, 4971, 4846, + 7348, 4101, 516, 7156, 3095, 2299, 76, 5189, 1287, + 7838, 754, 6520, 6985, 2666, 2752, 173, 2069, 2831, + 5027, 1950, 6590, 8614, 8084, 463, 9089, 1779, 3430, + 7584, 6410, 8803, 4256, 5381, 1369, 2241, 8259, 582, + 686, 2251, 1507, 161, 211, 57, 8365, 5950, 8733, + 1228, 3943, 7405, 6953, 7761, 3781, 1755, 2225, 1783, + 4413, 7802, 9456, 2432, 8496, 3459, 8182, 666, 5081, + 9711, 4750, 8408, 873, 1701, 3598, 2226, 4834, 8977, + 119, 1439, 6621, 8888, 6718, 4964, 6775, 8285, 756, + 683, 7518, 7638, 5345, 9636, 8272, 8196, 4295, 5469, + 9453, 7671, 9819, 4008, 1695, 8702, 5830, 9258, 6438, + 993, 8991, 6137, 5725, 8489, 6299, 3472, 1535, 8632, + 272, 8780, 428, 5376, 6220, 1971, 1957, 4900, 8226, + 2265, 5227, 4555, 7142, 7595, 5252, 4188, 1870, 3747, + 6218, 6943, 3294, 5178, 3131, 9628, 2154, 8397, 1648, + 9870, 9081, 2344, 6566, 3675, 241, 9683, 5548, 2030, + 2234, 794, 9927, 3501, 4995, 2027, 4834, 6504, 479, + 6498, 8648, 2353, 2297, 8318, 4623, 9046, 6743, 6207, + 8130, 1077, 656, 4641, 2263, 3756, 9177, 3120, 1083, + 8650, 1248, 6568, 6625, 7483, 1893, 6194, 8846, 7443, + 2988, 5728, 9652, 4567, 9731, 6950, 8352, 8733, 938, + 9915, 5254, 7482, 724, 5457, 2774, 5506, 2482, 1189, + 551, 4600, 2755, 6757, 1057, 9353, 4932, 8508, 5036, + 6380, 4795, 7526, 4341, 907, 8663, 6669, 4592, 373, + 6374, 4856, 4138, 2881, 1151, 2689, 4911, 1512, 2587, + 794, 786, 7277, 8732, 6720, 810, 9573, 2632, 8645, + 89, 2002, 9562, 5004, 8476, 9057, 6183, 1456, 8245, + 1499, 3084, 7040, 3182, 7421, 2467, 18, 1654, 8066, + 3892, 645, 1826, 817, 5601, 6826, 1555, 8599, 8669, + 4406, 2057, 9546, 4111, 3145, 7482, 8521, 8104, 237, + 1875, 7275, 1479, 6187, 44, 3298, 5094, 4170, 2205, + 4442, 3536, 2699, 1153, 3332, 7163, 1256, 2533, 733, + 9820, 3400, 1795, 1338, 589, 3332, 1481, 8779, 8377, + 2005, 3701, 6750, 2118, 9260, 2101, 7768, 3538, 2479, + 5907, 2574, 4797, 4045, 5900, 5465, 8521, 8466, 1697, + 6282, 1744, 352, 397, 1611, 969, 8666, 9409, 3614, + 8478, 8247, 8885, 3286, 5250, 7001, 3291, 6758, 8084, + 1510, 7677, 9604, 8489, 8033, 3291, 1326, 5168, 9323, + 8370, 8206, 1664, 6593, 8357, 8619, 1887, 4419, 5990, + 5278, 9128, 5485, 8058, 6566, 5979, 5259, 6492, 5081, + 936, 5810, 9231, 9063, 9410, 4079, 9581, 4526, 2618, + 2468, 2724, 6060, 1881, 3175, 4090, 6363, 9964, 4758, + 3486, 3202, 540, 9157, 4166, 1974, 5549, 3666, 6137, + 9665, 498, 6014, 2287, 6885, 214, 9852, 8570, 7221, + 3853, 5536, 8282, 2123, 5809, 8936, 7986, 6716, 392, + 7672, 9526, 804, 2336, 8391, 2208, 9067, 7291, 4449, + 8158, 6745, 6107, 8769, 3393, 1713, 4310, 2615, 7559, + 4259, 3361, 9493, 9346, 98, 563, 4262, 6949, 9119, + 7647, 5199, 7674, 6087, 4360, 6308, 3631, 1778, 7472, + 8582, 6581, 3300, 4228, 2667, 6631, 7759, 6925, 8155, + 5702, 2695, 9383, 27, 9479, 9275, 1062, 9608, 9103, + 7513, 9349, 1805, 2186, 8934, 7211, 8306, 3787, 426, + 7793, 8765, 7635, 8057, 8447, 3456, 7831, 5006, 7449, + 5886, 5800, 19, 5725, 37, 4869, 8698, 7941, 6598, + 1906, 369, 6708, 9109, 1374, 2105, 1459, 743, 1027, + 7047, 4135, 1279, 479, 3744, 992, 6277, 4043, 1901, + 9461, 1701, 183, 5585, 7539, 7017, 158, 3044, 4339, + 2736, 3950, 2868, 1786, 3760, 3722, 687, 8148, 3388, + 6, 185, 8988, 5275, 757, 2881, 8187, 3221, 1592, + 9830, 3889, 4101, 6097, 9491, 8094, 3893, 5702, 2525, + 4242, 6698, 2410, 2070, 2272, 8560, 3241, 7303, 1110, + 121]), + values=tensor([4.5491e-02, 3.2468e-01, 2.9501e-01, 6.3274e-01, + 1.0864e-02, 7.2561e-01, 2.7833e-01, 8.9921e-01, + 9.5712e-01, 7.8304e-01, 7.9990e-01, 5.7548e-02, + 2.6717e-01, 8.6061e-01, 8.3671e-01, 6.9606e-01, + 5.5892e-01, 5.1427e-01, 2.7201e-01, 7.5072e-01, + 7.9922e-01, 1.5437e-01, 8.2474e-01, 9.8408e-01, + 9.0110e-01, 9.1307e-01, 7.3003e-01, 2.2108e-01, + 5.0958e-01, 3.3159e-01, 9.0686e-01, 3.0235e-01, + 2.2882e-01, 1.5485e-01, 4.1432e-01, 7.3323e-01, + 5.5252e-01, 9.6080e-01, 7.7897e-01, 4.5968e-01, + 7.1762e-02, 9.5266e-01, 2.5126e-01, 3.6906e-01, + 7.1595e-01, 4.5846e-01, 2.7393e-01, 1.8774e-01, + 2.4921e-01, 3.1854e-01, 4.8334e-01, 1.4183e-02, + 3.9405e-01, 7.8745e-01, 1.2611e-01, 4.9633e-01, + 1.5275e-01, 9.4294e-03, 7.0521e-01, 8.7227e-01, + 5.8672e-01, 9.8469e-01, 7.4888e-01, 4.3210e-01, + 6.9548e-01, 4.5036e-01, 2.1180e-01, 6.2584e-01, + 6.8274e-01, 4.4221e-02, 3.7077e-01, 2.7813e-01, + 8.0969e-01, 4.9060e-01, 3.7621e-01, 9.4320e-02, + 6.5185e-03, 3.2050e-02, 9.6548e-01, 7.9314e-01, + 5.2607e-01, 8.4014e-01, 5.1244e-01, 4.5536e-01, + 2.9243e-01, 3.4722e-01, 2.6706e-01, 2.3069e-01, + 4.0751e-01, 6.0825e-01, 7.8459e-01, 8.8005e-01, + 5.0828e-01, 1.3147e-01, 2.6742e-01, 9.5215e-01, + 6.5675e-01, 5.9280e-01, 9.7954e-01, 6.0187e-01, + 3.3183e-01, 1.0600e-02, 7.6686e-01, 4.6235e-01, + 7.2398e-01, 1.2355e-01, 8.7187e-01, 1.5465e-01, + 5.5476e-02, 4.5871e-01, 6.3394e-01, 5.6422e-01, + 1.3625e-01, 7.8116e-01, 2.6024e-01, 6.0334e-01, + 2.2029e-01, 2.8339e-01, 2.5566e-01, 7.3421e-01, + 2.2859e-01, 6.0130e-01, 3.1568e-01, 6.6567e-01, + 5.6914e-02, 2.5935e-01, 5.8822e-02, 5.2249e-01, + 8.9886e-01, 9.2019e-01, 5.6993e-02, 7.7705e-01, + 2.3500e-01, 3.8917e-01, 7.0200e-01, 2.6454e-01, + 1.4123e-01, 5.5982e-01, 6.0613e-01, 8.7605e-01, + 4.7423e-01, 2.7690e-01, 5.0264e-02, 9.8423e-01, + 8.7080e-01, 8.7532e-01, 1.5537e-03, 5.7053e-01, + 3.2342e-01, 7.0720e-01, 7.0123e-01, 6.9576e-01, + 8.8003e-01, 1.1500e-01, 5.4614e-01, 2.4413e-01, + 8.5389e-01, 5.6087e-01, 9.5104e-01, 9.3133e-01, + 2.8049e-02, 5.6062e-01, 4.8771e-01, 3.9350e-01, + 5.7535e-01, 2.0051e-01, 9.2461e-02, 3.4240e-01, + 8.6489e-01, 1.7069e-01, 1.4503e-01, 8.2908e-01, + 8.4715e-01, 6.2055e-01, 6.0250e-01, 6.9669e-03, + 6.7451e-01, 9.1211e-01, 7.7998e-01, 9.1172e-01, + 6.4672e-01, 8.2260e-01, 2.9749e-01, 3.4357e-01, + 8.8965e-01, 1.6998e-01, 4.6817e-01, 5.6114e-01, + 2.9832e-03, 3.5782e-01, 2.3354e-01, 7.0389e-01, + 8.6494e-01, 2.9523e-01, 7.1093e-01, 8.5747e-01, + 3.9862e-01, 9.9242e-02, 6.3404e-01, 1.8341e-01, + 3.8813e-01, 4.5591e-01, 9.0054e-01, 9.5016e-01, + 4.2228e-01, 1.2941e-01, 3.8481e-01, 7.4146e-01, + 5.8461e-01, 5.7050e-01, 9.4103e-01, 9.6133e-01, + 2.7176e-01, 8.4268e-01, 9.5349e-01, 9.8518e-01, + 7.0966e-01, 1.9918e-01, 8.0055e-01, 4.7484e-01, + 7.3362e-01, 6.1497e-01, 6.4193e-02, 6.3662e-01, + 2.5121e-01, 8.4678e-01, 1.6158e-01, 1.1583e-01, + 7.4799e-01, 5.4370e-02, 2.4911e-01, 4.5653e-01, + 9.0328e-01, 2.0017e-01, 1.0692e-02, 8.5215e-01, + 3.1864e-01, 5.7972e-01, 9.9903e-01, 1.1865e-01, + 6.9590e-01, 9.8482e-01, 4.6454e-01, 6.6789e-02, + 2.3784e-01, 3.8803e-01, 9.5572e-01, 6.9527e-01, + 7.7733e-01, 3.0422e-01, 6.2625e-01, 2.4065e-01, + 2.9101e-01, 4.5591e-01, 7.5354e-01, 6.1629e-02, + 4.8890e-01, 6.2485e-01, 4.0109e-03, 5.2769e-01, + 5.1763e-01, 1.8385e-01, 1.3278e-01, 8.0457e-01, + 8.4173e-01, 9.2545e-01, 1.3840e-01, 7.6490e-01, + 1.4038e-01, 5.3636e-01, 6.8826e-01, 5.8422e-01, + 5.2788e-01, 9.1865e-01, 9.1687e-02, 9.4108e-01, + 7.7907e-01, 8.5824e-01, 6.6717e-01, 6.0324e-01, + 9.6810e-01, 8.6025e-01, 4.3579e-01, 5.0796e-01, + 7.7129e-01, 3.4580e-01, 6.2934e-01, 7.1330e-01, + 5.4797e-02, 2.5678e-01, 7.7649e-01, 1.6495e-02, + 6.2250e-01, 6.7574e-01, 1.4771e-01, 6.5970e-01, + 8.5384e-01, 1.0370e-01, 4.4441e-01, 8.2723e-01, + 6.6853e-01, 7.7504e-02, 3.9059e-01, 9.2182e-01, + 6.0726e-01, 9.3213e-01, 4.2342e-01, 1.5624e-01, + 6.0098e-02, 6.1591e-02, 5.0596e-01, 2.6916e-01, + 4.4467e-01, 1.9151e-01, 5.7240e-01, 4.4660e-02, + 2.8517e-01, 3.5291e-01, 6.3467e-01, 3.2806e-01, + 5.5092e-01, 8.7141e-01, 5.9479e-01, 1.1783e-01, + 6.7772e-01, 3.7557e-01, 2.1769e-01, 5.1208e-01, + 1.1902e-01, 1.9006e-01, 7.0631e-03, 6.8733e-01, + 6.8166e-01, 2.2002e-01, 7.1981e-01, 8.9421e-01, + 4.6344e-01, 9.9377e-01, 4.8175e-01, 6.3229e-01, + 3.8380e-01, 6.8316e-01, 5.8573e-01, 7.7837e-01, + 6.6946e-02, 2.3475e-01, 7.0140e-01, 1.2344e-01, + 2.8019e-01, 5.9542e-01, 7.5818e-01, 8.5928e-01, + 6.5466e-01, 2.9697e-01, 3.0249e-01, 5.1461e-01, + 3.0574e-02, 4.4546e-02, 5.1599e-02, 7.1790e-01, + 7.6362e-01, 2.5265e-01, 3.6333e-01, 5.7543e-01, + 4.4933e-01, 5.2750e-01, 1.8405e-01, 3.7109e-01, + 7.9021e-01, 6.3106e-01, 6.5594e-02, 5.0774e-01, + 7.9707e-01, 7.4175e-01, 3.6721e-01, 3.0570e-01, + 9.9687e-01, 3.7871e-01, 4.1780e-01, 9.4569e-01, + 7.8552e-01, 2.4122e-01, 6.0346e-01, 5.2993e-02, + 9.2558e-01, 1.4753e-01, 7.8873e-01, 3.8921e-02, + 9.4993e-01, 1.7318e-01, 1.0655e-01, 8.9241e-01, + 6.7408e-01, 3.1152e-01, 6.8847e-01, 4.4325e-01, + 4.8165e-01, 2.8106e-01, 3.5513e-01, 6.8342e-01, + 9.4058e-01, 1.0810e-01, 7.4330e-01, 9.5478e-01, + 1.4664e-01, 9.7611e-01, 4.7803e-01, 6.2009e-01, + 6.7093e-01, 4.0554e-01, 7.0217e-01, 5.0924e-01, + 4.5965e-01, 3.8968e-01, 9.5584e-01, 2.4917e-02, + 3.1405e-02, 3.1252e-01, 7.7549e-02, 9.5983e-01, + 1.6207e-01, 8.7600e-01, 5.6135e-01, 6.6565e-01, + 2.7677e-01, 9.8016e-01, 3.9823e-01, 7.3076e-01, + 6.4197e-01, 9.0002e-01, 4.2386e-01, 4.2004e-01, + 3.9384e-01, 2.3617e-01, 8.5746e-02, 4.3909e-01, + 3.1866e-01, 8.4048e-01, 3.8010e-01, 6.8652e-01, + 3.8902e-01, 7.5018e-01, 9.1396e-01, 1.6753e-01, + 8.1305e-01, 5.6153e-01, 7.6107e-01, 8.7271e-02, + 3.6435e-01, 1.5824e-01, 7.5343e-01, 1.3463e-02, + 4.7761e-01, 5.9639e-01, 4.4348e-01, 6.7500e-02, + 3.3355e-01, 8.6420e-01, 3.0451e-01, 4.0484e-01, + 6.4028e-01, 8.2717e-01, 4.6771e-01, 5.9629e-01, + 8.2755e-01, 5.9855e-01, 9.1490e-01, 3.9521e-01, + 4.4891e-02, 7.3522e-01, 8.1976e-01, 8.1029e-01, + 8.2031e-01, 2.7847e-01, 7.2509e-01, 4.1215e-01, + 9.0617e-01, 4.7701e-02, 4.0429e-01, 5.2302e-01, + 3.1622e-01, 6.8745e-01, 3.6865e-01, 7.9997e-01, + 6.0227e-01, 9.8518e-01, 3.9481e-01, 6.8483e-01, + 7.5143e-01, 6.1870e-01, 9.4705e-01, 1.8463e-01, + 7.7813e-01, 7.9055e-01, 3.9150e-01, 6.0592e-02, + 1.8376e-01, 3.3696e-01, 6.6841e-01, 1.6702e-01, + 2.8734e-01, 7.5517e-01, 3.7677e-01, 9.7449e-01, + 4.5025e-01, 2.0193e-01, 2.3506e-01, 1.5941e-02, + 9.6738e-01, 1.7205e-01, 6.2912e-01, 3.3533e-02, + 9.6599e-01, 5.5655e-01, 2.2836e-01, 3.1634e-01, + 9.4812e-03, 9.6607e-01, 4.7036e-01, 3.9668e-01, + 8.7698e-01, 8.9147e-02, 1.2127e-01, 5.5813e-01, + 1.7205e-01, 8.2425e-01, 8.7990e-01, 3.3131e-01, + 3.1468e-01, 5.9720e-01, 7.9343e-01, 3.9190e-01, + 4.2435e-01, 1.9421e-01, 4.9058e-01, 7.2547e-01, + 5.8086e-01, 7.0869e-01, 7.5320e-01, 3.4621e-01, + 5.0496e-01, 5.5857e-01, 6.6373e-01, 6.5189e-01, + 2.8694e-01, 1.2657e-01, 9.0532e-01, 9.5797e-01, + 4.0699e-01, 5.3664e-01, 2.8145e-01, 3.3471e-02, + 3.3984e-01, 7.2274e-02, 3.8278e-01, 6.3313e-02, + 1.2888e-01, 4.5359e-01, 8.4959e-01, 7.1804e-01, + 7.5488e-01, 9.4004e-01, 5.2125e-01, 2.7131e-01, + 6.1402e-01, 3.8144e-01, 8.7560e-01, 3.2266e-01, + 5.5649e-01, 7.3627e-01, 8.5755e-01, 7.2072e-03, + 2.8846e-01, 7.2430e-01, 5.3878e-01, 8.4452e-01, + 1.3342e-01, 3.8786e-01, 6.5924e-01, 2.7442e-01, + 8.6804e-02, 7.3956e-02, 1.0735e-02, 1.9793e-01, + 4.7212e-01, 1.6133e-01, 4.7390e-01, 2.2255e-01, + 7.5177e-01, 4.2505e-01, 3.0972e-01, 3.7468e-01, + 7.6238e-01, 9.4803e-01, 2.5885e-01, 2.9590e-01, + 5.0495e-01, 8.5311e-01, 8.1344e-01, 2.3873e-02, + 3.3971e-01, 4.1176e-01, 3.5343e-01, 6.8713e-01, + 2.5518e-01, 5.5269e-01, 1.9510e-01, 8.5124e-01, + 2.5981e-01, 2.1895e-01, 4.7009e-01, 1.9285e-01, + 4.7878e-01, 3.9918e-01, 8.3453e-01, 3.3741e-01, + 6.4600e-01, 6.7534e-01, 5.9816e-01, 4.3317e-01, + 1.6662e-01, 6.1035e-01, 5.5817e-01, 6.0579e-01, + 1.3883e-02, 1.7728e-01, 8.1614e-01, 8.4365e-01, + 9.6240e-01, 7.8831e-01, 1.7662e-01, 7.5505e-01, + 3.1979e-02, 7.5072e-01, 2.0440e-01, 3.6909e-01, + 2.5393e-01, 3.8386e-01, 2.0864e-01, 1.2775e-01, + 1.9641e-02, 7.4518e-01, 4.0993e-01, 4.4977e-01, + 8.1556e-01, 1.6905e-01, 5.3044e-02, 1.8450e-01, + 8.8919e-01, 6.9877e-01, 5.3492e-01, 9.8340e-01, + 3.0043e-01, 8.6934e-01, 5.0952e-01, 3.3501e-01, + 8.6829e-01, 9.5828e-01, 2.6305e-01, 6.8996e-01, + 9.7548e-01, 5.6316e-01, 8.0327e-01, 4.6951e-01, + 8.8042e-01, 9.6984e-01, 4.4366e-01, 1.3588e-01, + 6.2216e-01, 2.6858e-02, 1.8300e-01, 1.1829e-01, + 6.6395e-01, 8.3757e-01, 3.2313e-03, 5.4541e-01, + 2.8596e-01, 9.7916e-01, 9.8076e-02, 4.9537e-01, + 7.6776e-01, 1.2633e-01, 2.9367e-01, 8.2086e-01, + 8.4752e-01, 4.9738e-01, 1.2453e-01, 8.8421e-01, + 9.3727e-01, 5.0640e-01, 5.3707e-01, 1.8069e-01, + 9.2864e-01, 8.8341e-01, 3.8319e-01, 7.4187e-01, + 3.9035e-01, 4.2286e-01, 1.2256e-01, 9.7913e-01, + 2.7306e-02, 4.3080e-01, 2.8349e-01, 8.0193e-01, + 4.5756e-01, 7.5877e-01, 6.0580e-01, 3.6874e-01, + 1.3218e-01, 8.0418e-02, 2.7395e-01, 5.6953e-01, + 9.6882e-02, 9.2899e-01, 4.1200e-01, 6.4434e-01, + 6.0126e-01, 7.2073e-01, 1.2206e-02, 6.5301e-01, + 7.5807e-01, 4.5420e-01, 9.4519e-01, 1.2548e-01, + 4.0270e-01, 7.5287e-01, 2.7328e-01, 6.7114e-01, + 4.6869e-04, 6.0847e-02, 3.8973e-01, 1.6576e-01, + 6.9844e-01, 2.5031e-01, 2.6646e-01, 7.4219e-01, + 1.9507e-01, 5.4664e-01, 4.6153e-02, 9.0518e-01, + 9.0946e-01, 8.4267e-01, 8.0420e-01, 7.2293e-01, + 3.5989e-01, 4.2914e-01, 9.9099e-01, 6.2425e-01, + 1.3521e-01, 5.7729e-01, 5.8151e-01, 2.2300e-01, + 7.6972e-01, 4.8647e-01, 9.6036e-01, 3.5618e-01, + 1.0842e-01, 6.3586e-01, 1.0170e-01, 6.7330e-01, + 8.1168e-01, 6.2387e-01, 5.7831e-01, 4.7809e-01, + 1.1553e-01, 8.0639e-01, 2.6396e-02, 9.3913e-01, + 1.0144e-01, 7.0822e-03, 9.5812e-01, 6.1419e-01, + 5.5769e-01, 9.4462e-01, 2.4523e-01, 7.7377e-01, + 1.6828e-01, 9.6151e-01, 9.8418e-01, 4.1049e-01, + 8.0509e-01, 8.5756e-01, 4.0852e-01, 1.7004e-01, + 4.2725e-01, 2.6924e-01, 2.7568e-02, 6.4782e-01, + 2.3400e-01, 6.4486e-01, 7.4743e-01, 2.3534e-01, + 7.7784e-01, 2.9787e-01, 7.0881e-01, 3.6903e-01, + 9.8723e-01, 9.5179e-01, 6.6481e-01, 7.9932e-01, + 3.4256e-01, 6.3989e-01, 9.4136e-01, 6.3103e-01, + 9.7416e-01, 7.1185e-01, 4.3842e-01, 7.0811e-01, + 6.2721e-01, 2.3714e-01, 2.9081e-01, 8.3555e-01, + 9.0083e-01, 7.3734e-01, 3.2326e-02, 8.2624e-01, + 9.9258e-01, 9.0930e-01, 6.7614e-01, 5.4796e-02, + 8.5340e-01, 9.2531e-01, 7.6230e-01, 6.7267e-01, + 7.9031e-01, 4.7174e-01, 4.1194e-01, 1.8776e-01, + 6.0910e-01, 5.2252e-01, 2.1673e-01, 1.8473e-01, + 3.5143e-01, 7.0776e-01, 1.2603e-01, 5.0802e-01, + 4.5209e-01, 4.3706e-01, 7.6797e-02, 6.1164e-01, + 7.8143e-01, 1.3925e-01, 5.7531e-02, 8.7507e-01, + 5.7001e-01, 4.3906e-01, 9.2820e-01, 7.6700e-01, + 2.9968e-01, 5.9688e-01, 3.1468e-01, 4.2212e-01, + 7.9895e-02, 2.9011e-01, 1.8494e-01, 9.2888e-01, + 8.9319e-01, 8.2784e-01, 1.7488e-02, 8.1506e-01, + 5.8942e-01, 2.6648e-01, 7.2461e-01, 4.3524e-01, + 3.3783e-02, 3.0604e-01, 5.7524e-01, 1.2624e-01, + 1.8255e-01, 3.5454e-01, 3.6503e-01, 4.9452e-01, + 4.3380e-01, 1.0044e-01, 1.5676e-01, 7.4210e-01, + 7.7909e-01, 1.5953e-01, 9.7173e-01, 9.8386e-01, + 6.0732e-01, 4.4764e-01, 9.7740e-02, 2.5615e-01, + 4.6915e-01, 2.7954e-01, 5.9480e-01, 5.5372e-01, + 4.4142e-01, 7.4870e-01, 7.8726e-01, 5.3797e-01, + 7.5394e-01, 3.8676e-01, 9.0069e-01, 7.9215e-02, + 2.6986e-01, 7.4047e-01, 6.0732e-01, 3.5085e-01, + 9.1826e-01, 9.4896e-01, 6.8926e-03, 1.0309e-01, + 2.7614e-01, 5.7639e-01, 6.1056e-01, 6.5885e-01, + 7.8603e-01, 4.6450e-01, 7.5119e-01, 7.6419e-01, + 5.8530e-02, 5.5102e-01, 4.6821e-01, 4.6438e-01, + 3.5602e-01, 8.8841e-01, 5.1596e-01, 9.1532e-01, + 6.0969e-01, 4.8093e-01, 4.6162e-01, 9.1442e-03, + 8.7271e-01, 3.3897e-01, 1.0331e-01, 7.9221e-01, + 5.8692e-01, 6.9774e-01, 3.0172e-01, 1.0667e-01, + 1.0951e-02, 1.3612e-01, 7.8502e-02, 4.6719e-01, + 8.6153e-01, 2.2920e-01, 8.7337e-01, 2.1362e-02, + 8.6720e-01, 9.6225e-01, 3.2705e-01, 7.9640e-01, + 3.6238e-01, 3.5585e-01, 1.3643e-01, 3.7646e-01, + 5.3997e-01, 7.8911e-02, 9.4754e-01, 5.9488e-01, + 4.3521e-02, 6.4602e-01, 3.7163e-02, 1.4246e-01, + 9.2557e-01, 3.9489e-01, 9.4390e-01, 1.2061e-01, + 7.9882e-01, 5.0438e-01, 5.2005e-01, 9.3905e-01, + 4.3100e-01, 8.5312e-01, 7.6276e-01, 8.8805e-01, + 6.9230e-02, 7.5638e-01, 2.7686e-02, 6.4170e-01, + 6.8542e-01, 9.3072e-01, 9.1971e-02, 9.7074e-01, + 4.9244e-01, 9.7479e-01, 3.9805e-01, 6.5312e-01, + 2.7671e-01, 7.9289e-01, 4.7310e-01, 7.6491e-01, + 2.0056e-01, 9.8477e-01, 3.5288e-01, 1.5954e-01, + 9.1449e-01, 9.5312e-01, 6.0952e-01, 7.7001e-01, + 6.5414e-01, 3.7977e-01, 5.5246e-01, 8.1022e-01, + 4.6688e-01, 8.6118e-01, 7.9898e-01, 6.4956e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.7123, 0.9016, 0.3604, ..., 0.7264, 0.3786, 0.3585]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.634347915649414 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([5653, 663, 2356, 6335, 1601, 9179, 5758, 4032, 1184, + 1367, 4244, 4842, 4720, 9582, 4215, 5795, 5613, 5508, + 3150, 2956, 6349, 4941, 1636, 8225, 9972, 2582, 3679, + 1135, 9620, 6084, 6291, 4048, 7001, 5472, 7361, 7937, + 5298, 6533, 2776, 1036, 1344, 6057, 6180, 9014, 5073, + 6811, 5946, 5681, 492, 615, 6472, 4769, 5564, 541, + 800, 5736, 579, 8317, 7029, 3695, 499, 9654, 3281, + 205, 9052, 6707, 6645, 6832, 4626, 4664, 2914, 7622, + 9393, 3855, 9403, 5918, 5868, 9444, 851, 6317, 57, + 1210, 2172, 6037, 9204, 3658, 7620, 6983, 3781, 1735, + 686, 9439, 6244, 8175, 2372, 965, 2150, 8571, 4157, + 2512, 9938, 4043, 8875, 882, 623, 1012, 3731, 7589, + 9758, 4803, 9290, 1234, 774, 2176, 4572, 2018, 3222, + 7583, 187, 3819, 9911, 5564, 8603, 9156, 1382, 5716, + 6346, 5522, 2563, 4347, 9272, 9447, 4471, 4638, 4983, + 9892, 6310, 7516, 7140, 6156, 6553, 5760, 3519, 546, + 4365, 2039, 9350, 4877, 5823, 286, 7838, 4403, 5744, + 777, 1260, 2101, 8748, 5207, 3240, 7189, 894, 9416, + 9973, 7357, 198, 3268, 3546, 227, 3220, 2795, 5781, + 5660, 9451, 8013, 3655, 5219, 9893, 2124, 1825, 7217, + 2907, 3224, 62, 5333, 4441, 9222, 7187, 7656, 8345, + 6235, 4925, 4392, 9403, 7654, 8355, 5586, 6058, 1290, + 4866, 5435, 1268, 4572, 9153, 7079, 1500, 588, 4650, + 8759, 9375, 1661, 8828, 6616, 8199, 6392, 6520, 9958, + 2116, 3225, 5132, 9375, 4924, 4325, 419, 1259, 5490, + 8365, 3133, 1934, 496, 7648, 3510, 5952, 6594, 9025, + 8913, 3315, 3979, 9410, 9159, 3471, 5346, 7471, 2113, + 6014, 6280, 8075, 582, 6331, 2784, 6053, 556, 989, + 6164, 8084, 411, 640, 8216, 8772, 5075, 9022, 5692, + 7825, 9613, 5866, 5376, 3288, 3147, 9301, 386, 8701, + 9166, 418, 2003, 9005, 8592, 4188, 3735, 4232, 5238, + 8853, 7246, 2646, 1343, 9472, 371, 1177, 8422, 8202, + 5353, 9648, 2908, 8320, 6076, 6771, 8304, 1075, 2469, + 1568, 9483, 3555, 5266, 3405, 9971, 7501, 9677, 5813, + 5924, 7587, 1603, 937, 3813, 1988, 637, 2885, 5831, + 8209, 1869, 5873, 3244, 9083, 4316, 1649, 3716, 7799, + 3429, 9162, 139, 9399, 4042, 4832, 2298, 2896, 1054, + 6210, 4421, 1743, 2336, 4261, 861, 3352, 4781, 2982, + 219, 1594, 6937, 1157, 7791, 8670, 8548, 3732, 1054, + 1298, 3515, 1443, 4515, 5404, 1104, 8525, 7928, 1938, + 9321, 4093, 9617, 5069, 7691, 6537, 1777, 1177, 4792, + 3990, 8613, 2141, 639, 6090, 3243, 3817, 2379, 597, + 2806, 6242, 129, 4735, 1063, 7452, 9642, 1260, 4687, + 6658, 1205, 1033, 2603, 6809, 9426, 6394, 7227, 8386, + 557, 2634, 1874, 8349, 1415, 4690, 6198, 8318, 8284, + 9176, 6704, 6584, 6885, 9606, 1543, 7428, 2559, 2822, + 1315, 6792, 6148, 819, 6087, 4634, 2762, 1934, 3174, + 6495, 6068, 138, 6548, 3452, 8896, 8290, 5349, 4350, + 9259, 6574, 8978, 6459, 1935, 8370, 6950, 8071, 2398, + 2191, 2389, 8876, 4727, 5597, 1126, 3589, 4971, 4846, + 7348, 4101, 516, 7156, 3095, 2299, 76, 5189, 1287, + 7838, 754, 6520, 6985, 2666, 2752, 173, 2069, 2831, + 5027, 1950, 6590, 8614, 8084, 463, 9089, 1779, 3430, + 7584, 6410, 8803, 4256, 5381, 1369, 2241, 8259, 582, + 686, 2251, 1507, 161, 211, 57, 8365, 5950, 8733, + 1228, 3943, 7405, 6953, 7761, 3781, 1755, 2225, 1783, + 4413, 7802, 9456, 2432, 8496, 3459, 8182, 666, 5081, + 9711, 4750, 8408, 873, 1701, 3598, 2226, 4834, 8977, + 119, 1439, 6621, 8888, 6718, 4964, 6775, 8285, 756, + 683, 7518, 7638, 5345, 9636, 8272, 8196, 4295, 5469, + 9453, 7671, 9819, 4008, 1695, 8702, 5830, 9258, 6438, + 993, 8991, 6137, 5725, 8489, 6299, 3472, 1535, 8632, + 272, 8780, 428, 5376, 6220, 1971, 1957, 4900, 8226, + 2265, 5227, 4555, 7142, 7595, 5252, 4188, 1870, 3747, + 6218, 6943, 3294, 5178, 3131, 9628, 2154, 8397, 1648, + 9870, 9081, 2344, 6566, 3675, 241, 9683, 5548, 2030, + 2234, 794, 9927, 3501, 4995, 2027, 4834, 6504, 479, + 6498, 8648, 2353, 2297, 8318, 4623, 9046, 6743, 6207, + 8130, 1077, 656, 4641, 2263, 3756, 9177, 3120, 1083, + 8650, 1248, 6568, 6625, 7483, 1893, 6194, 8846, 7443, + 2988, 5728, 9652, 4567, 9731, 6950, 8352, 8733, 938, + 9915, 5254, 7482, 724, 5457, 2774, 5506, 2482, 1189, + 551, 4600, 2755, 6757, 1057, 9353, 4932, 8508, 5036, + 6380, 4795, 7526, 4341, 907, 8663, 6669, 4592, 373, + 6374, 4856, 4138, 2881, 1151, 2689, 4911, 1512, 2587, + 794, 786, 7277, 8732, 6720, 810, 9573, 2632, 8645, + 89, 2002, 9562, 5004, 8476, 9057, 6183, 1456, 8245, + 1499, 3084, 7040, 3182, 7421, 2467, 18, 1654, 8066, + 3892, 645, 1826, 817, 5601, 6826, 1555, 8599, 8669, + 4406, 2057, 9546, 4111, 3145, 7482, 8521, 8104, 237, + 1875, 7275, 1479, 6187, 44, 3298, 5094, 4170, 2205, + 4442, 3536, 2699, 1153, 3332, 7163, 1256, 2533, 733, + 9820, 3400, 1795, 1338, 589, 3332, 1481, 8779, 8377, + 2005, 3701, 6750, 2118, 9260, 2101, 7768, 3538, 2479, + 5907, 2574, 4797, 4045, 5900, 5465, 8521, 8466, 1697, + 6282, 1744, 352, 397, 1611, 969, 8666, 9409, 3614, + 8478, 8247, 8885, 3286, 5250, 7001, 3291, 6758, 8084, + 1510, 7677, 9604, 8489, 8033, 3291, 1326, 5168, 9323, + 8370, 8206, 1664, 6593, 8357, 8619, 1887, 4419, 5990, + 5278, 9128, 5485, 8058, 6566, 5979, 5259, 6492, 5081, + 936, 5810, 9231, 9063, 9410, 4079, 9581, 4526, 2618, + 2468, 2724, 6060, 1881, 3175, 4090, 6363, 9964, 4758, + 3486, 3202, 540, 9157, 4166, 1974, 5549, 3666, 6137, + 9665, 498, 6014, 2287, 6885, 214, 9852, 8570, 7221, + 3853, 5536, 8282, 2123, 5809, 8936, 7986, 6716, 392, + 7672, 9526, 804, 2336, 8391, 2208, 9067, 7291, 4449, + 8158, 6745, 6107, 8769, 3393, 1713, 4310, 2615, 7559, + 4259, 3361, 9493, 9346, 98, 563, 4262, 6949, 9119, + 7647, 5199, 7674, 6087, 4360, 6308, 3631, 1778, 7472, + 8582, 6581, 3300, 4228, 2667, 6631, 7759, 6925, 8155, + 5702, 2695, 9383, 27, 9479, 9275, 1062, 9608, 9103, + 7513, 9349, 1805, 2186, 8934, 7211, 8306, 3787, 426, + 7793, 8765, 7635, 8057, 8447, 3456, 7831, 5006, 7449, + 5886, 5800, 19, 5725, 37, 4869, 8698, 7941, 6598, + 1906, 369, 6708, 9109, 1374, 2105, 1459, 743, 1027, + 7047, 4135, 1279, 479, 3744, 992, 6277, 4043, 1901, + 9461, 1701, 183, 5585, 7539, 7017, 158, 3044, 4339, + 2736, 3950, 2868, 1786, 3760, 3722, 687, 8148, 3388, + 6, 185, 8988, 5275, 757, 2881, 8187, 3221, 1592, + 9830, 3889, 4101, 6097, 9491, 8094, 3893, 5702, 2525, + 4242, 6698, 2410, 2070, 2272, 8560, 3241, 7303, 1110, + 121]), + values=tensor([4.5491e-02, 3.2468e-01, 2.9501e-01, 6.3274e-01, + 1.0864e-02, 7.2561e-01, 2.7833e-01, 8.9921e-01, + 9.5712e-01, 7.8304e-01, 7.9990e-01, 5.7548e-02, + 2.6717e-01, 8.6061e-01, 8.3671e-01, 6.9606e-01, + 5.5892e-01, 5.1427e-01, 2.7201e-01, 7.5072e-01, + 7.9922e-01, 1.5437e-01, 8.2474e-01, 9.8408e-01, + 9.0110e-01, 9.1307e-01, 7.3003e-01, 2.2108e-01, + 5.0958e-01, 3.3159e-01, 9.0686e-01, 3.0235e-01, + 2.2882e-01, 1.5485e-01, 4.1432e-01, 7.3323e-01, + 5.5252e-01, 9.6080e-01, 7.7897e-01, 4.5968e-01, + 7.1762e-02, 9.5266e-01, 2.5126e-01, 3.6906e-01, + 7.1595e-01, 4.5846e-01, 2.7393e-01, 1.8774e-01, + 2.4921e-01, 3.1854e-01, 4.8334e-01, 1.4183e-02, + 3.9405e-01, 7.8745e-01, 1.2611e-01, 4.9633e-01, + 1.5275e-01, 9.4294e-03, 7.0521e-01, 8.7227e-01, + 5.8672e-01, 9.8469e-01, 7.4888e-01, 4.3210e-01, + 6.9548e-01, 4.5036e-01, 2.1180e-01, 6.2584e-01, + 6.8274e-01, 4.4221e-02, 3.7077e-01, 2.7813e-01, + 8.0969e-01, 4.9060e-01, 3.7621e-01, 9.4320e-02, + 6.5185e-03, 3.2050e-02, 9.6548e-01, 7.9314e-01, + 5.2607e-01, 8.4014e-01, 5.1244e-01, 4.5536e-01, + 2.9243e-01, 3.4722e-01, 2.6706e-01, 2.3069e-01, + 4.0751e-01, 6.0825e-01, 7.8459e-01, 8.8005e-01, + 5.0828e-01, 1.3147e-01, 2.6742e-01, 9.5215e-01, + 6.5675e-01, 5.9280e-01, 9.7954e-01, 6.0187e-01, + 3.3183e-01, 1.0600e-02, 7.6686e-01, 4.6235e-01, + 7.2398e-01, 1.2355e-01, 8.7187e-01, 1.5465e-01, + 5.5476e-02, 4.5871e-01, 6.3394e-01, 5.6422e-01, + 1.3625e-01, 7.8116e-01, 2.6024e-01, 6.0334e-01, + 2.2029e-01, 2.8339e-01, 2.5566e-01, 7.3421e-01, + 2.2859e-01, 6.0130e-01, 3.1568e-01, 6.6567e-01, + 5.6914e-02, 2.5935e-01, 5.8822e-02, 5.2249e-01, + 8.9886e-01, 9.2019e-01, 5.6993e-02, 7.7705e-01, + 2.3500e-01, 3.8917e-01, 7.0200e-01, 2.6454e-01, + 1.4123e-01, 5.5982e-01, 6.0613e-01, 8.7605e-01, + 4.7423e-01, 2.7690e-01, 5.0264e-02, 9.8423e-01, + 8.7080e-01, 8.7532e-01, 1.5537e-03, 5.7053e-01, + 3.2342e-01, 7.0720e-01, 7.0123e-01, 6.9576e-01, + 8.8003e-01, 1.1500e-01, 5.4614e-01, 2.4413e-01, + 8.5389e-01, 5.6087e-01, 9.5104e-01, 9.3133e-01, + 2.8049e-02, 5.6062e-01, 4.8771e-01, 3.9350e-01, + 5.7535e-01, 2.0051e-01, 9.2461e-02, 3.4240e-01, + 8.6489e-01, 1.7069e-01, 1.4503e-01, 8.2908e-01, + 8.4715e-01, 6.2055e-01, 6.0250e-01, 6.9669e-03, + 6.7451e-01, 9.1211e-01, 7.7998e-01, 9.1172e-01, + 6.4672e-01, 8.2260e-01, 2.9749e-01, 3.4357e-01, + 8.8965e-01, 1.6998e-01, 4.6817e-01, 5.6114e-01, + 2.9832e-03, 3.5782e-01, 2.3354e-01, 7.0389e-01, + 8.6494e-01, 2.9523e-01, 7.1093e-01, 8.5747e-01, + 3.9862e-01, 9.9242e-02, 6.3404e-01, 1.8341e-01, + 3.8813e-01, 4.5591e-01, 9.0054e-01, 9.5016e-01, + 4.2228e-01, 1.2941e-01, 3.8481e-01, 7.4146e-01, + 5.8461e-01, 5.7050e-01, 9.4103e-01, 9.6133e-01, + 2.7176e-01, 8.4268e-01, 9.5349e-01, 9.8518e-01, + 7.0966e-01, 1.9918e-01, 8.0055e-01, 4.7484e-01, + 7.3362e-01, 6.1497e-01, 6.4193e-02, 6.3662e-01, + 2.5121e-01, 8.4678e-01, 1.6158e-01, 1.1583e-01, + 7.4799e-01, 5.4370e-02, 2.4911e-01, 4.5653e-01, + 9.0328e-01, 2.0017e-01, 1.0692e-02, 8.5215e-01, + 3.1864e-01, 5.7972e-01, 9.9903e-01, 1.1865e-01, + 6.9590e-01, 9.8482e-01, 4.6454e-01, 6.6789e-02, + 2.3784e-01, 3.8803e-01, 9.5572e-01, 6.9527e-01, + 7.7733e-01, 3.0422e-01, 6.2625e-01, 2.4065e-01, + 2.9101e-01, 4.5591e-01, 7.5354e-01, 6.1629e-02, + 4.8890e-01, 6.2485e-01, 4.0109e-03, 5.2769e-01, + 5.1763e-01, 1.8385e-01, 1.3278e-01, 8.0457e-01, + 8.4173e-01, 9.2545e-01, 1.3840e-01, 7.6490e-01, + 1.4038e-01, 5.3636e-01, 6.8826e-01, 5.8422e-01, + 5.2788e-01, 9.1865e-01, 9.1687e-02, 9.4108e-01, + 7.7907e-01, 8.5824e-01, 6.6717e-01, 6.0324e-01, + 9.6810e-01, 8.6025e-01, 4.3579e-01, 5.0796e-01, + 7.7129e-01, 3.4580e-01, 6.2934e-01, 7.1330e-01, + 5.4797e-02, 2.5678e-01, 7.7649e-01, 1.6495e-02, + 6.2250e-01, 6.7574e-01, 1.4771e-01, 6.5970e-01, + 8.5384e-01, 1.0370e-01, 4.4441e-01, 8.2723e-01, + 6.6853e-01, 7.7504e-02, 3.9059e-01, 9.2182e-01, + 6.0726e-01, 9.3213e-01, 4.2342e-01, 1.5624e-01, + 6.0098e-02, 6.1591e-02, 5.0596e-01, 2.6916e-01, + 4.4467e-01, 1.9151e-01, 5.7240e-01, 4.4660e-02, + 2.8517e-01, 3.5291e-01, 6.3467e-01, 3.2806e-01, + 5.5092e-01, 8.7141e-01, 5.9479e-01, 1.1783e-01, + 6.7772e-01, 3.7557e-01, 2.1769e-01, 5.1208e-01, + 1.1902e-01, 1.9006e-01, 7.0631e-03, 6.8733e-01, + 6.8166e-01, 2.2002e-01, 7.1981e-01, 8.9421e-01, + 4.6344e-01, 9.9377e-01, 4.8175e-01, 6.3229e-01, + 3.8380e-01, 6.8316e-01, 5.8573e-01, 7.7837e-01, + 6.6946e-02, 2.3475e-01, 7.0140e-01, 1.2344e-01, + 2.8019e-01, 5.9542e-01, 7.5818e-01, 8.5928e-01, + 6.5466e-01, 2.9697e-01, 3.0249e-01, 5.1461e-01, + 3.0574e-02, 4.4546e-02, 5.1599e-02, 7.1790e-01, + 7.6362e-01, 2.5265e-01, 3.6333e-01, 5.7543e-01, + 4.4933e-01, 5.2750e-01, 1.8405e-01, 3.7109e-01, + 7.9021e-01, 6.3106e-01, 6.5594e-02, 5.0774e-01, + 7.9707e-01, 7.4175e-01, 3.6721e-01, 3.0570e-01, + 9.9687e-01, 3.7871e-01, 4.1780e-01, 9.4569e-01, + 7.8552e-01, 2.4122e-01, 6.0346e-01, 5.2993e-02, + 9.2558e-01, 1.4753e-01, 7.8873e-01, 3.8921e-02, + 9.4993e-01, 1.7318e-01, 1.0655e-01, 8.9241e-01, + 6.7408e-01, 3.1152e-01, 6.8847e-01, 4.4325e-01, + 4.8165e-01, 2.8106e-01, 3.5513e-01, 6.8342e-01, + 9.4058e-01, 1.0810e-01, 7.4330e-01, 9.5478e-01, + 1.4664e-01, 9.7611e-01, 4.7803e-01, 6.2009e-01, + 6.7093e-01, 4.0554e-01, 7.0217e-01, 5.0924e-01, + 4.5965e-01, 3.8968e-01, 9.5584e-01, 2.4917e-02, + 3.1405e-02, 3.1252e-01, 7.7549e-02, 9.5983e-01, + 1.6207e-01, 8.7600e-01, 5.6135e-01, 6.6565e-01, + 2.7677e-01, 9.8016e-01, 3.9823e-01, 7.3076e-01, + 6.4197e-01, 9.0002e-01, 4.2386e-01, 4.2004e-01, + 3.9384e-01, 2.3617e-01, 8.5746e-02, 4.3909e-01, + 3.1866e-01, 8.4048e-01, 3.8010e-01, 6.8652e-01, + 3.8902e-01, 7.5018e-01, 9.1396e-01, 1.6753e-01, + 8.1305e-01, 5.6153e-01, 7.6107e-01, 8.7271e-02, + 3.6435e-01, 1.5824e-01, 7.5343e-01, 1.3463e-02, + 4.7761e-01, 5.9639e-01, 4.4348e-01, 6.7500e-02, + 3.3355e-01, 8.6420e-01, 3.0451e-01, 4.0484e-01, + 6.4028e-01, 8.2717e-01, 4.6771e-01, 5.9629e-01, + 8.2755e-01, 5.9855e-01, 9.1490e-01, 3.9521e-01, + 4.4891e-02, 7.3522e-01, 8.1976e-01, 8.1029e-01, + 8.2031e-01, 2.7847e-01, 7.2509e-01, 4.1215e-01, + 9.0617e-01, 4.7701e-02, 4.0429e-01, 5.2302e-01, + 3.1622e-01, 6.8745e-01, 3.6865e-01, 7.9997e-01, + 6.0227e-01, 9.8518e-01, 3.9481e-01, 6.8483e-01, + 7.5143e-01, 6.1870e-01, 9.4705e-01, 1.8463e-01, + 7.7813e-01, 7.9055e-01, 3.9150e-01, 6.0592e-02, + 1.8376e-01, 3.3696e-01, 6.6841e-01, 1.6702e-01, + 2.8734e-01, 7.5517e-01, 3.7677e-01, 9.7449e-01, + 4.5025e-01, 2.0193e-01, 2.3506e-01, 1.5941e-02, + 9.6738e-01, 1.7205e-01, 6.2912e-01, 3.3533e-02, + 9.6599e-01, 5.5655e-01, 2.2836e-01, 3.1634e-01, + 9.4812e-03, 9.6607e-01, 4.7036e-01, 3.9668e-01, + 8.7698e-01, 8.9147e-02, 1.2127e-01, 5.5813e-01, + 1.7205e-01, 8.2425e-01, 8.7990e-01, 3.3131e-01, + 3.1468e-01, 5.9720e-01, 7.9343e-01, 3.9190e-01, + 4.2435e-01, 1.9421e-01, 4.9058e-01, 7.2547e-01, + 5.8086e-01, 7.0869e-01, 7.5320e-01, 3.4621e-01, + 5.0496e-01, 5.5857e-01, 6.6373e-01, 6.5189e-01, + 2.8694e-01, 1.2657e-01, 9.0532e-01, 9.5797e-01, + 4.0699e-01, 5.3664e-01, 2.8145e-01, 3.3471e-02, + 3.3984e-01, 7.2274e-02, 3.8278e-01, 6.3313e-02, + 1.2888e-01, 4.5359e-01, 8.4959e-01, 7.1804e-01, + 7.5488e-01, 9.4004e-01, 5.2125e-01, 2.7131e-01, + 6.1402e-01, 3.8144e-01, 8.7560e-01, 3.2266e-01, + 5.5649e-01, 7.3627e-01, 8.5755e-01, 7.2072e-03, + 2.8846e-01, 7.2430e-01, 5.3878e-01, 8.4452e-01, + 1.3342e-01, 3.8786e-01, 6.5924e-01, 2.7442e-01, + 8.6804e-02, 7.3956e-02, 1.0735e-02, 1.9793e-01, + 4.7212e-01, 1.6133e-01, 4.7390e-01, 2.2255e-01, + 7.5177e-01, 4.2505e-01, 3.0972e-01, 3.7468e-01, + 7.6238e-01, 9.4803e-01, 2.5885e-01, 2.9590e-01, + 5.0495e-01, 8.5311e-01, 8.1344e-01, 2.3873e-02, + 3.3971e-01, 4.1176e-01, 3.5343e-01, 6.8713e-01, + 2.5518e-01, 5.5269e-01, 1.9510e-01, 8.5124e-01, + 2.5981e-01, 2.1895e-01, 4.7009e-01, 1.9285e-01, + 4.7878e-01, 3.9918e-01, 8.3453e-01, 3.3741e-01, + 6.4600e-01, 6.7534e-01, 5.9816e-01, 4.3317e-01, + 1.6662e-01, 6.1035e-01, 5.5817e-01, 6.0579e-01, + 1.3883e-02, 1.7728e-01, 8.1614e-01, 8.4365e-01, + 9.6240e-01, 7.8831e-01, 1.7662e-01, 7.5505e-01, + 3.1979e-02, 7.5072e-01, 2.0440e-01, 3.6909e-01, + 2.5393e-01, 3.8386e-01, 2.0864e-01, 1.2775e-01, + 1.9641e-02, 7.4518e-01, 4.0993e-01, 4.4977e-01, + 8.1556e-01, 1.6905e-01, 5.3044e-02, 1.8450e-01, + 8.8919e-01, 6.9877e-01, 5.3492e-01, 9.8340e-01, + 3.0043e-01, 8.6934e-01, 5.0952e-01, 3.3501e-01, + 8.6829e-01, 9.5828e-01, 2.6305e-01, 6.8996e-01, + 9.7548e-01, 5.6316e-01, 8.0327e-01, 4.6951e-01, + 8.8042e-01, 9.6984e-01, 4.4366e-01, 1.3588e-01, + 6.2216e-01, 2.6858e-02, 1.8300e-01, 1.1829e-01, + 6.6395e-01, 8.3757e-01, 3.2313e-03, 5.4541e-01, + 2.8596e-01, 9.7916e-01, 9.8076e-02, 4.9537e-01, + 7.6776e-01, 1.2633e-01, 2.9367e-01, 8.2086e-01, + 8.4752e-01, 4.9738e-01, 1.2453e-01, 8.8421e-01, + 9.3727e-01, 5.0640e-01, 5.3707e-01, 1.8069e-01, + 9.2864e-01, 8.8341e-01, 3.8319e-01, 7.4187e-01, + 3.9035e-01, 4.2286e-01, 1.2256e-01, 9.7913e-01, + 2.7306e-02, 4.3080e-01, 2.8349e-01, 8.0193e-01, + 4.5756e-01, 7.5877e-01, 6.0580e-01, 3.6874e-01, + 1.3218e-01, 8.0418e-02, 2.7395e-01, 5.6953e-01, + 9.6882e-02, 9.2899e-01, 4.1200e-01, 6.4434e-01, + 6.0126e-01, 7.2073e-01, 1.2206e-02, 6.5301e-01, + 7.5807e-01, 4.5420e-01, 9.4519e-01, 1.2548e-01, + 4.0270e-01, 7.5287e-01, 2.7328e-01, 6.7114e-01, + 4.6869e-04, 6.0847e-02, 3.8973e-01, 1.6576e-01, + 6.9844e-01, 2.5031e-01, 2.6646e-01, 7.4219e-01, + 1.9507e-01, 5.4664e-01, 4.6153e-02, 9.0518e-01, + 9.0946e-01, 8.4267e-01, 8.0420e-01, 7.2293e-01, + 3.5989e-01, 4.2914e-01, 9.9099e-01, 6.2425e-01, + 1.3521e-01, 5.7729e-01, 5.8151e-01, 2.2300e-01, + 7.6972e-01, 4.8647e-01, 9.6036e-01, 3.5618e-01, + 1.0842e-01, 6.3586e-01, 1.0170e-01, 6.7330e-01, + 8.1168e-01, 6.2387e-01, 5.7831e-01, 4.7809e-01, + 1.1553e-01, 8.0639e-01, 2.6396e-02, 9.3913e-01, + 1.0144e-01, 7.0822e-03, 9.5812e-01, 6.1419e-01, + 5.5769e-01, 9.4462e-01, 2.4523e-01, 7.7377e-01, + 1.6828e-01, 9.6151e-01, 9.8418e-01, 4.1049e-01, + 8.0509e-01, 8.5756e-01, 4.0852e-01, 1.7004e-01, + 4.2725e-01, 2.6924e-01, 2.7568e-02, 6.4782e-01, + 2.3400e-01, 6.4486e-01, 7.4743e-01, 2.3534e-01, + 7.7784e-01, 2.9787e-01, 7.0881e-01, 3.6903e-01, + 9.8723e-01, 9.5179e-01, 6.6481e-01, 7.9932e-01, + 3.4256e-01, 6.3989e-01, 9.4136e-01, 6.3103e-01, + 9.7416e-01, 7.1185e-01, 4.3842e-01, 7.0811e-01, + 6.2721e-01, 2.3714e-01, 2.9081e-01, 8.3555e-01, + 9.0083e-01, 7.3734e-01, 3.2326e-02, 8.2624e-01, + 9.9258e-01, 9.0930e-01, 6.7614e-01, 5.4796e-02, + 8.5340e-01, 9.2531e-01, 7.6230e-01, 6.7267e-01, + 7.9031e-01, 4.7174e-01, 4.1194e-01, 1.8776e-01, + 6.0910e-01, 5.2252e-01, 2.1673e-01, 1.8473e-01, + 3.5143e-01, 7.0776e-01, 1.2603e-01, 5.0802e-01, + 4.5209e-01, 4.3706e-01, 7.6797e-02, 6.1164e-01, + 7.8143e-01, 1.3925e-01, 5.7531e-02, 8.7507e-01, + 5.7001e-01, 4.3906e-01, 9.2820e-01, 7.6700e-01, + 2.9968e-01, 5.9688e-01, 3.1468e-01, 4.2212e-01, + 7.9895e-02, 2.9011e-01, 1.8494e-01, 9.2888e-01, + 8.9319e-01, 8.2784e-01, 1.7488e-02, 8.1506e-01, + 5.8942e-01, 2.6648e-01, 7.2461e-01, 4.3524e-01, + 3.3783e-02, 3.0604e-01, 5.7524e-01, 1.2624e-01, + 1.8255e-01, 3.5454e-01, 3.6503e-01, 4.9452e-01, + 4.3380e-01, 1.0044e-01, 1.5676e-01, 7.4210e-01, + 7.7909e-01, 1.5953e-01, 9.7173e-01, 9.8386e-01, + 6.0732e-01, 4.4764e-01, 9.7740e-02, 2.5615e-01, + 4.6915e-01, 2.7954e-01, 5.9480e-01, 5.5372e-01, + 4.4142e-01, 7.4870e-01, 7.8726e-01, 5.3797e-01, + 7.5394e-01, 3.8676e-01, 9.0069e-01, 7.9215e-02, + 2.6986e-01, 7.4047e-01, 6.0732e-01, 3.5085e-01, + 9.1826e-01, 9.4896e-01, 6.8926e-03, 1.0309e-01, + 2.7614e-01, 5.7639e-01, 6.1056e-01, 6.5885e-01, + 7.8603e-01, 4.6450e-01, 7.5119e-01, 7.6419e-01, + 5.8530e-02, 5.5102e-01, 4.6821e-01, 4.6438e-01, + 3.5602e-01, 8.8841e-01, 5.1596e-01, 9.1532e-01, + 6.0969e-01, 4.8093e-01, 4.6162e-01, 9.1442e-03, + 8.7271e-01, 3.3897e-01, 1.0331e-01, 7.9221e-01, + 5.8692e-01, 6.9774e-01, 3.0172e-01, 1.0667e-01, + 1.0951e-02, 1.3612e-01, 7.8502e-02, 4.6719e-01, + 8.6153e-01, 2.2920e-01, 8.7337e-01, 2.1362e-02, + 8.6720e-01, 9.6225e-01, 3.2705e-01, 7.9640e-01, + 3.6238e-01, 3.5585e-01, 1.3643e-01, 3.7646e-01, + 5.3997e-01, 7.8911e-02, 9.4754e-01, 5.9488e-01, + 4.3521e-02, 6.4602e-01, 3.7163e-02, 1.4246e-01, + 9.2557e-01, 3.9489e-01, 9.4390e-01, 1.2061e-01, + 7.9882e-01, 5.0438e-01, 5.2005e-01, 9.3905e-01, + 4.3100e-01, 8.5312e-01, 7.6276e-01, 8.8805e-01, + 6.9230e-02, 7.5638e-01, 2.7686e-02, 6.4170e-01, + 6.8542e-01, 9.3072e-01, 9.1971e-02, 9.7074e-01, + 4.9244e-01, 9.7479e-01, 3.9805e-01, 6.5312e-01, + 2.7671e-01, 7.9289e-01, 4.7310e-01, 7.6491e-01, + 2.0056e-01, 9.8477e-01, 3.5288e-01, 1.5954e-01, + 9.1449e-01, 9.5312e-01, 6.0952e-01, 7.7001e-01, + 6.5414e-01, 3.7977e-01, 5.5246e-01, 8.1022e-01, + 4.6688e-01, 8.6118e-01, 7.9898e-01, 6.4956e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.7123, 0.9016, 0.3604, ..., 0.7264, 0.3786, 0.3585]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.634347915649414 seconds + +[18.41, 17.8, 19.45, 17.82, 18.17, 17.94, 18.34, 18.13, 18.06, 17.93] +[73.11] +13.703187704086304 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 286411, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.634347915649414, 'TIME_S_1KI': 0.03712967698743908, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1001.8400530457496, 'W': 73.11} +[18.41, 17.8, 19.45, 17.82, 18.17, 17.94, 18.34, 18.13, 18.06, 17.93, 18.35, 18.13, 18.05, 17.73, 17.88, 18.02, 18.72, 17.91, 17.93, 18.0] +326.42499999999995 +16.32125 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 286411, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.634347915649414, 'TIME_S_1KI': 0.03712967698743908, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1001.8400530457496, 'W': 73.11, 'J_1KI': 3.4979105308306933, 'W_1KI': 0.25526254229062434, 'W_D': 56.78875, 'J_D': 778.186900730431, 'W_D_1KI': 0.19827712622769378, 'J_D_1KI': 0.0006922818125969107} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_500000_1e-05.json new file mode 100644 index 0000000..df20cd2 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_500000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 8417, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.80616807937622, "TIME_S_1KI": 1.2838503123887632, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1304.2690537071228, "W": 87.74, "J_1KI": 154.95652295439263, "W_1KI": 10.424141618153737, "W_D": 71.23675, "J_D": 1058.9456178672315, "W_D_1KI": 8.463437091600332, "J_D_1KI": 1.005517059712526} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_500000_1e-05.output new file mode 100644 index 0000000..2e9f271 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_500000_1e-05.output @@ -0,0 +1,68 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 1.2474722862243652} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 15, ..., 2499985, + 2499994, 2500000]), + col_indices=tensor([131168, 178693, 230148, ..., 341937, 350836, + 404119]), + values=tensor([0.5017, 0.1065, 0.8260, ..., 0.9970, 0.9497, 0.3007]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.0502, 0.1581, 0.5974, ..., 0.5502, 0.6695, 0.7013]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 1.2474722862243652 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '8417', '-ss', '500000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.80616807937622} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 12, ..., 2499995, + 2499999, 2500000]), + col_indices=tensor([108465, 113027, 118372, ..., 354925, 391668, + 96483]), + values=tensor([0.8038, 0.4194, 0.3623, ..., 0.9532, 0.5964, 0.0297]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.4181, 0.0420, 0.6704, ..., 0.4969, 0.1289, 0.9173]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 10.80616807937622 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 12, ..., 2499995, + 2499999, 2500000]), + col_indices=tensor([108465, 113027, 118372, ..., 354925, 391668, + 96483]), + values=tensor([0.8038, 0.4194, 0.3623, ..., 0.9532, 0.5964, 0.0297]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.4181, 0.0420, 0.6704, ..., 0.4969, 0.1289, 0.9173]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 10.80616807937622 seconds + +[18.27, 18.7, 18.19, 18.06, 20.48, 17.92, 18.42, 18.1, 18.5, 17.88] +[87.74] +14.865159034729004 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 8417, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.80616807937622, 'TIME_S_1KI': 1.2838503123887632, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1304.2690537071228, 'W': 87.74} +[18.27, 18.7, 18.19, 18.06, 20.48, 17.92, 18.42, 18.1, 18.5, 17.88, 18.52, 18.21, 18.12, 18.29, 18.48, 18.28, 17.96, 17.98, 18.11, 17.86] +330.06500000000005 +16.50325 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 8417, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.80616807937622, 'TIME_S_1KI': 1.2838503123887632, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1304.2690537071228, 'W': 87.74, 'J_1KI': 154.95652295439263, 'W_1KI': 10.424141618153737, 'W_D': 71.23675, 'J_D': 1058.9456178672315, 'W_D_1KI': 8.463437091600332, 'J_D_1KI': 1.005517059712526} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_50000_0.0001.json new file mode 100644 index 0000000..3576579 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_50000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 79200, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.557747602462769, "TIME_S_1KI": 0.1333048939704895, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1194.9571797966958, "W": 76.09, "J_1KI": 15.087843179251209, "W_1KI": 0.9607323232323233, "W_D": 59.703, "J_D": 937.6071560704709, "W_D_1KI": 0.7538257575757576, "J_D_1KI": 0.009518001989592899} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_50000_0.0001.output new file mode 100644 index 0000000..9da61ce --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_50000_0.0001.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.14916634559631348} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 7, ..., 249992, 249995, + 250000]), + col_indices=tensor([14210, 18192, 24309, ..., 18863, 37423, 45495]), + values=tensor([0.9647, 0.6185, 0.9345, ..., 0.6478, 0.4104, 0.2751]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.7636, 0.2305, 0.9236, ..., 0.5850, 0.9097, 0.3088]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 0.14916634559631348 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '70391', '-ss', '50000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.332123041152954} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 9, 13, ..., 249990, 249995, + 250000]), + col_indices=tensor([ 8823, 10157, 22008, ..., 15217, 25723, 27383]), + values=tensor([0.1165, 0.9082, 0.4420, ..., 0.1019, 0.9218, 0.7818]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.6996, 0.2341, 0.0689, ..., 0.7606, 0.0770, 0.0289]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 9.332123041152954 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '79200', '-ss', '50000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.557747602462769} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 9, ..., 249995, 249997, + 250000]), + col_indices=tensor([ 4540, 7121, 8304, ..., 4489, 19051, 41158]), + values=tensor([0.2192, 0.6581, 0.9045, ..., 0.0804, 0.2632, 0.1591]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.8844, 0.7148, 0.4526, ..., 0.9882, 0.2475, 0.5582]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.557747602462769 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 9, ..., 249995, 249997, + 250000]), + col_indices=tensor([ 4540, 7121, 8304, ..., 4489, 19051, 41158]), + values=tensor([0.2192, 0.6581, 0.9045, ..., 0.0804, 0.2632, 0.1591]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.8844, 0.7148, 0.4526, ..., 0.9882, 0.2475, 0.5582]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.557747602462769 seconds + +[18.33, 17.85, 17.91, 18.15, 17.99, 17.93, 17.79, 17.99, 18.26, 17.87] +[76.09] +15.70452332496643 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 79200, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.557747602462769, 'TIME_S_1KI': 0.1333048939704895, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1194.9571797966958, 'W': 76.09} +[18.33, 17.85, 17.91, 18.15, 17.99, 17.93, 17.79, 17.99, 18.26, 17.87, 18.24, 18.68, 17.78, 17.91, 20.54, 18.31, 17.97, 18.31, 18.26, 17.78] +327.74 +16.387 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 79200, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.557747602462769, 'TIME_S_1KI': 0.1333048939704895, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1194.9571797966958, 'W': 76.09, 'J_1KI': 15.087843179251209, 'W_1KI': 0.9607323232323233, 'W_D': 59.703, 'J_D': 937.6071560704709, 'W_D_1KI': 0.7538257575757576, 'J_D_1KI': 0.009518001989592899} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_50000_0.001.json new file mode 100644 index 0000000..fcc4d9e --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_50000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 17543, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.699259996414185, "TIME_S_1KI": 0.6098877042931189, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1300.7915307188034, "W": 87.71, "J_1KI": 74.14875053974825, "W_1KI": 4.9997149860343155, "W_D": 71.40625, "J_D": 1058.997209444642, "W_D_1KI": 4.070355697429174, "J_D_1KI": 0.2320216438140098} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_50000_0.001.output new file mode 100644 index 0000000..4d40449 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_50000_0.001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.5985264778137207} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 56, 105, ..., 2499904, + 2499950, 2500000]), + col_indices=tensor([ 106, 3863, 5117, ..., 48831, 49457, 49843]), + values=tensor([0.6065, 0.7453, 0.1054, ..., 0.0788, 0.7875, 0.5947]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.1569, 0.4932, 0.6676, ..., 0.2477, 0.5860, 0.5432]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 0.5985264778137207 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '17543', '-ss', '50000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.699259996414185} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 54, 99, ..., 2499881, + 2499945, 2500000]), + col_indices=tensor([ 1025, 3202, 3517, ..., 49482, 49487, 49789]), + values=tensor([0.3859, 0.1414, 0.1100, ..., 0.9363, 0.6699, 0.1002]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.4003, 0.0598, 0.2302, ..., 0.6994, 0.7206, 0.2744]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 10.699259996414185 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 54, 99, ..., 2499881, + 2499945, 2500000]), + col_indices=tensor([ 1025, 3202, 3517, ..., 49482, 49487, 49789]), + values=tensor([0.3859, 0.1414, 0.1100, ..., 0.9363, 0.6699, 0.1002]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.4003, 0.0598, 0.2302, ..., 0.6994, 0.7206, 0.2744]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 10.699259996414185 seconds + +[18.49, 17.83, 18.02, 18.17, 18.01, 17.87, 18.35, 18.02, 18.01, 17.87] +[87.71] +14.83059549331665 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 17543, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.699259996414185, 'TIME_S_1KI': 0.6098877042931189, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1300.7915307188034, 'W': 87.71} +[18.49, 17.83, 18.02, 18.17, 18.01, 17.87, 18.35, 18.02, 18.01, 17.87, 18.45, 18.41, 18.09, 17.88, 18.15, 18.34, 17.89, 18.68, 17.87, 18.16] +326.075 +16.30375 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 17543, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.699259996414185, 'TIME_S_1KI': 0.6098877042931189, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1300.7915307188034, 'W': 87.71, 'J_1KI': 74.14875053974825, 'W_1KI': 4.9997149860343155, 'W_D': 71.40625, 'J_D': 1058.997209444642, 'W_D_1KI': 4.070355697429174, 'J_D_1KI': 0.2320216438140098} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_50000_1e-05.json new file mode 100644 index 0000000..8166250 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_50000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 109532, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.03889274597168, "TIME_S_1KI": 0.09165260148606508, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1026.1644780921936, "W": 75.74, "J_1KI": 9.368627233066078, "W_1KI": 0.6914874192016944, "W_D": 59.13049999999999, "J_D": 801.1304287276266, "W_D_1KI": 0.539846802760837, "J_D_1KI": 0.004928667446598592} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_50000_1e-05.output new file mode 100644 index 0000000..709a214 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_50000_1e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.12936139106750488} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 24998, 24998, 25000]), + col_indices=tensor([44477, 18295, 41758, ..., 46506, 28720, 46164]), + values=tensor([0.4132, 0.4608, 0.2599, ..., 0.0448, 0.1303, 0.6544]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.0039, 0.4422, 0.0639, ..., 0.1130, 0.9521, 0.1334]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 0.12936139106750488 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '81167', '-ss', '50000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.780844211578369} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 24999, 24999, 25000]), + col_indices=tensor([38361, 15493, 29627, ..., 27733, 22368, 35508]), + values=tensor([0.9149, 0.3524, 0.3637, ..., 0.0393, 0.5821, 0.3741]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.5874, 0.0444, 0.7896, ..., 0.3503, 0.3177, 0.2388]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 7.780844211578369 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '109532', '-ss', '50000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.03889274597168} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 24997, 24997, 25000]), + col_indices=tensor([17005, 6306, 21289, ..., 8288, 8622, 19411]), + values=tensor([0.2779, 0.9469, 0.2610, ..., 0.9922, 0.2668, 0.6005]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.1194, 0.4917, 0.3228, ..., 0.2258, 0.0044, 0.3600]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.03889274597168 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 24997, 24997, 25000]), + col_indices=tensor([17005, 6306, 21289, ..., 8288, 8622, 19411]), + values=tensor([0.2779, 0.9469, 0.2610, ..., 0.9922, 0.2668, 0.6005]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.1194, 0.4917, 0.3228, ..., 0.2258, 0.0044, 0.3600]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.03889274597168 seconds + +[19.15, 18.96, 18.11, 18.03, 19.81, 17.96, 18.06, 18.12, 18.35, 17.94] +[75.74] +13.548514366149902 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 109532, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.03889274597168, 'TIME_S_1KI': 0.09165260148606508, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1026.1644780921936, 'W': 75.74} +[19.15, 18.96, 18.11, 18.03, 19.81, 17.96, 18.06, 18.12, 18.35, 17.94, 18.12, 21.35, 17.92, 18.62, 18.1, 18.19, 17.98, 17.91, 18.07, 18.09] +332.19000000000005 +16.609500000000004 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 109532, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.03889274597168, 'TIME_S_1KI': 0.09165260148606508, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1026.1644780921936, 'W': 75.74, 'J_1KI': 9.368627233066078, 'W_1KI': 0.6914874192016944, 'W_D': 59.13049999999999, 'J_D': 801.1304287276266, 'W_D_1KI': 0.539846802760837, 'J_D_1KI': 0.004928667446598592} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.0001.json b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.0001.json new file mode 100644 index 0000000..3b1a4d8 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 334616, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.390317678451538, "TIME_S_1KI": 0.03105146699037565, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1009.4583482408524, "W": 73.59, "J_1KI": 3.0167665271261757, "W_1KI": 0.21992373347359362, "W_D": 57.37650000000001, "J_D": 787.052410896063, "W_D_1KI": 0.17146968465345352, "J_D_1KI": 0.0005124371956315703} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.0001.output b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.0001.output new file mode 100644 index 0000000..ab60bf4 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.0001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.0494227409362793} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 2499, 2500, 2500]), + col_indices=tensor([2191, 1647, 4069, ..., 3482, 688, 2162]), + values=tensor([0.7127, 0.2553, 0.3133, ..., 0.9149, 0.5638, 0.5628]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.0865, 0.0532, 0.7203, ..., 0.4777, 0.7863, 0.0162]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 0.0494227409362793 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '212452', '-ss', '5000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 6.666574239730835} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 2500, 2500, 2500]), + col_indices=tensor([2208, 2123, 4174, ..., 2091, 42, 2382]), + values=tensor([0.8755, 0.2371, 0.7047, ..., 0.2373, 0.9261, 0.2864]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.3651, 0.6415, 0.7426, ..., 0.3371, 0.9910, 0.6174]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 6.666574239730835 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '334616', '-ss', '5000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.390317678451538} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 2498, 2498, 2500]), + col_indices=tensor([1385, 3626, 3706, ..., 891, 2896, 4403]), + values=tensor([0.8264, 0.4439, 0.4297, ..., 0.4171, 0.8922, 0.6160]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.2966, 0.7201, 0.1357, ..., 0.1499, 0.6981, 0.8153]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 10.390317678451538 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 2498, 2498, 2500]), + col_indices=tensor([1385, 3626, 3706, ..., 891, 2896, 4403]), + values=tensor([0.8264, 0.4439, 0.4297, ..., 0.4171, 0.8922, 0.6160]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.2966, 0.7201, 0.1357, ..., 0.1499, 0.6981, 0.8153]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 10.390317678451538 seconds + +[18.39, 18.14, 17.96, 18.23, 18.13, 17.78, 18.17, 18.05, 18.11, 18.01] +[73.59] +13.71733045578003 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 334616, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.390317678451538, 'TIME_S_1KI': 0.03105146699037565, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1009.4583482408524, 'W': 73.59} +[18.39, 18.14, 17.96, 18.23, 18.13, 17.78, 18.17, 18.05, 18.11, 18.01, 18.29, 17.99, 18.0, 17.86, 17.97, 18.01, 17.96, 17.81, 17.79, 17.93] +324.27 +16.2135 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 334616, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.390317678451538, 'TIME_S_1KI': 0.03105146699037565, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1009.4583482408524, 'W': 73.59, 'J_1KI': 3.0167665271261757, 'W_1KI': 0.21992373347359362, 'W_D': 57.37650000000001, 'J_D': 787.052410896063, 'W_D_1KI': 0.17146968465345352, 'J_D_1KI': 0.0005124371956315703} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.001.json b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.001.json new file mode 100644 index 0000000..e6fec4b --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 248893, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.503267288208008, "TIME_S_1KI": 0.04219993044484179, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1056.0920481681824, "W": 74.8, "J_1KI": 4.243156891387795, "W_1KI": 0.3005307501617161, "W_D": 58.488749999999996, "J_D": 825.7955051109194, "W_D_1KI": 0.2349955603411908, "J_D_1KI": 0.0009441629951070973} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.001.output b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.001.output new file mode 100644 index 0000000..d474848 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.0580594539642334} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 7, ..., 24994, 24998, 25000]), + col_indices=tensor([ 985, 1057, 218, ..., 4882, 1671, 4380]), + values=tensor([0.5160, 0.3498, 0.0303, ..., 0.2263, 0.8538, 0.6441]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.8672, 0.0025, 0.6942, ..., 0.2074, 0.2932, 0.8728]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 0.0580594539642334 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '180849', '-ss', '5000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 7.629418849945068} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 7, 12, ..., 24984, 24994, 25000]), + col_indices=tensor([ 206, 438, 1117, ..., 3589, 4561, 4654]), + values=tensor([0.7806, 0.0093, 0.9775, ..., 0.2394, 0.5986, 0.1036]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.9079, 0.6440, 0.7990, ..., 0.4243, 0.2944, 0.4838]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 7.629418849945068 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '248893', '-ss', '5000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.503267288208008} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 11, ..., 24987, 24992, 25000]), + col_indices=tensor([ 263, 1234, 1436, ..., 3199, 3400, 4091]), + values=tensor([0.7110, 0.3838, 0.4652, ..., 0.0537, 0.9297, 0.5811]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.4941, 0.0109, 0.4935, ..., 0.1517, 0.7151, 0.3544]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 10.503267288208008 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 11, ..., 24987, 24992, 25000]), + col_indices=tensor([ 263, 1234, 1436, ..., 3199, 3400, 4091]), + values=tensor([0.7110, 0.3838, 0.4652, ..., 0.0537, 0.9297, 0.5811]), + size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) +tensor([0.4941, 0.0109, 0.4935, ..., 0.1517, 0.7151, 0.3544]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 25000 +Density: 0.001 +Time: 10.503267288208008 seconds + +[18.2, 18.48, 18.33, 18.03, 18.1, 18.08, 18.14, 18.78, 18.15, 17.99] +[74.8] +14.118877649307251 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 248893, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.503267288208008, 'TIME_S_1KI': 0.04219993044484179, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1056.0920481681824, 'W': 74.8} +[18.2, 18.48, 18.33, 18.03, 18.1, 18.08, 18.14, 18.78, 18.15, 17.99, 18.23, 17.98, 17.97, 18.01, 17.96, 18.02, 17.91, 18.17, 17.92, 17.97] +326.225 +16.31125 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 248893, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.503267288208008, 'TIME_S_1KI': 0.04219993044484179, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1056.0920481681824, 'W': 74.8, 'J_1KI': 4.243156891387795, 'W_1KI': 0.3005307501617161, 'W_D': 58.488749999999996, 'J_D': 825.7955051109194, 'W_D_1KI': 0.2349955603411908, 'J_D_1KI': 0.0009441629951070973} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.01.json b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.01.json new file mode 100644 index 0000000..6c317ff --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 167260, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.636158227920532, "TIME_S_1KI": 0.0635905669491841, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1183.6357300853729, "W": 83.74, "J_1KI": 7.076621607589219, "W_1KI": 0.5006576587349038, "W_D": 67.26599999999999, "J_D": 950.7814786233901, "W_D_1KI": 0.40216429510941043, "J_D_1KI": 0.002404426014046457} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.01.output b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.01.output new file mode 100644 index 0000000..72ef990 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.01.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.0799260139465332} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 35, 85, ..., 249913, 249959, + 250000]), + col_indices=tensor([ 50, 52, 142, ..., 3906, 4174, 4757]), + values=tensor([0.0913, 0.8215, 0.1970, ..., 0.8521, 0.9478, 0.8405]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.5132, 0.5547, 0.3014, ..., 0.6656, 0.4241, 0.0798]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 0.0799260139465332 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '131371', '-ss', '5000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 8.24699854850769} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 34, 94, ..., 249884, 249936, + 250000]), + col_indices=tensor([ 2, 398, 450, ..., 4930, 4969, 4985]), + values=tensor([0.5923, 0.5022, 0.7915, ..., 0.6018, 0.8801, 0.8622]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.1968, 0.0295, 0.9143, ..., 0.4064, 0.2286, 0.1114]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 8.24699854850769 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '167260', '-ss', '5000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.636158227920532} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 41, 97, ..., 249903, 249957, + 250000]), + col_indices=tensor([ 6, 32, 62, ..., 4630, 4959, 4982]), + values=tensor([0.7649, 0.1722, 0.7795, ..., 0.2616, 0.2192, 0.2761]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.3363, 0.3219, 0.7361, ..., 0.7182, 0.1290, 0.5403]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 10.636158227920532 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 41, 97, ..., 249903, 249957, + 250000]), + col_indices=tensor([ 6, 32, 62, ..., 4630, 4959, 4982]), + values=tensor([0.7649, 0.1722, 0.7795, ..., 0.2616, 0.2192, 0.2761]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.3363, 0.3219, 0.7361, ..., 0.7182, 0.1290, 0.5403]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 10.636158227920532 seconds + +[18.39, 18.16, 18.03, 17.97, 18.05, 19.85, 18.01, 18.29, 18.12, 18.31] +[83.74] +14.13465166091919 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 167260, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.636158227920532, 'TIME_S_1KI': 0.0635905669491841, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1183.6357300853729, 'W': 83.74} +[18.39, 18.16, 18.03, 17.97, 18.05, 19.85, 18.01, 18.29, 18.12, 18.31, 17.95, 19.62, 17.88, 18.37, 18.2, 18.02, 18.09, 18.08, 18.42, 17.99] +329.48 +16.474 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 167260, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.636158227920532, 'TIME_S_1KI': 0.0635905669491841, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1183.6357300853729, 'W': 83.74, 'J_1KI': 7.076621607589219, 'W_1KI': 0.5006576587349038, 'W_D': 67.26599999999999, 'J_D': 950.7814786233901, 'W_D_1KI': 0.40216429510941043, 'J_D_1KI': 0.002404426014046457} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.05.json b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.05.json new file mode 100644 index 0000000..cee5ebd --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 46485, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.648370742797852, "TIME_S_1KI": 0.2290711141830236, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1255.2527691650391, "W": 87.87, "J_1KI": 27.003393980101947, "W_1KI": 1.8902871894159408, "W_D": 71.29950000000001, "J_D": 1018.5375533752442, "W_D_1KI": 1.5338173604388514, "J_D_1KI": 0.03299596343850385} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.05.output b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.05.output new file mode 100644 index 0000000..cd79c3c --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 0.24121379852294922} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 267, 541, ..., 1249516, + 1249748, 1250000]), + col_indices=tensor([ 43, 75, 121, ..., 4958, 4960, 4986]), + values=tensor([0.9222, 0.1508, 0.6151, ..., 0.6191, 0.5090, 0.9494]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.9528, 0.4494, 0.6520, ..., 0.1607, 0.1619, 0.1321]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 0.24121379852294922 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '43529', '-ss', '5000', '-sd', '0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 9.83215594291687} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 232, 495, ..., 1249518, + 1249779, 1250000]), + col_indices=tensor([ 48, 77, 155, ..., 4840, 4912, 4927]), + values=tensor([0.7412, 0.4704, 0.5361, ..., 0.0050, 0.3320, 0.0792]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.0891, 0.9943, 0.3145, ..., 0.1784, 0.0363, 0.2532]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 9.83215594291687 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '46485', '-ss', '5000', '-sd', '0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.648370742797852} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 231, 510, ..., 1249526, + 1249780, 1250000]), + col_indices=tensor([ 32, 71, 112, ..., 4895, 4929, 4940]), + values=tensor([0.5396, 0.2475, 0.0729, ..., 0.2451, 0.2187, 0.9449]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.6746, 0.7318, 0.7509, ..., 0.9415, 0.3905, 0.0197]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 10.648370742797852 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 231, 510, ..., 1249526, + 1249780, 1250000]), + col_indices=tensor([ 32, 71, 112, ..., 4895, 4929, 4940]), + values=tensor([0.5396, 0.2475, 0.0729, ..., 0.2451, 0.2187, 0.9449]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.6746, 0.7318, 0.7509, ..., 0.9415, 0.3905, 0.0197]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 10.648370742797852 seconds + +[18.37, 17.89, 18.14, 18.27, 18.28, 18.81, 17.93, 18.0, 17.89, 19.89] +[87.87] +14.28533935546875 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 46485, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.648370742797852, 'TIME_S_1KI': 0.2290711141830236, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1255.2527691650391, 'W': 87.87} +[18.37, 17.89, 18.14, 18.27, 18.28, 18.81, 17.93, 18.0, 17.89, 19.89, 18.31, 18.14, 18.17, 17.98, 21.39, 18.55, 17.96, 18.39, 18.34, 17.99] +331.40999999999997 +16.5705 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 46485, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.648370742797852, 'TIME_S_1KI': 0.2290711141830236, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1255.2527691650391, 'W': 87.87, 'J_1KI': 27.003393980101947, 'W_1KI': 1.8902871894159408, 'W_D': 71.29950000000001, 'J_D': 1018.5375533752442, 'W_D_1KI': 1.5338173604388514, 'J_D_1KI': 0.03299596343850385} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.1.json b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.1.json new file mode 100644 index 0000000..0fd50b0 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.1.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 19767, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.566095352172852, "TIME_S_1KI": 0.5345320661796353, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1281.5856591796876, "W": 87.51, "J_1KI": 64.8346061202857, "W_1KI": 4.427075428744878, "W_D": 71.21225000000001, "J_D": 1042.904792114258, "W_D_1KI": 3.6025825871401835, "J_D_1KI": 0.18225236946123255} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.1.output b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.1.output new file mode 100644 index 0000000..df7022e --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_0.1.output @@ -0,0 +1,65 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 0.5311744213104248} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 483, 993, ..., 2498991, + 2499491, 2500000]), + col_indices=tensor([ 15, 20, 28, ..., 4987, 4988, 4995]), + values=tensor([0.8912, 0.6515, 0.2376, ..., 0.2173, 0.7300, 0.9523]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.3817, 0.2295, 0.0793, ..., 0.5917, 0.1851, 0.3088]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 0.5311744213104248 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '19767', '-ss', '5000', '-sd', '0.1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.566095352172852} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 521, 1020, ..., 2499029, + 2499506, 2500000]), + col_indices=tensor([ 2, 18, 32, ..., 4991, 4992, 4995]), + values=tensor([0.1206, 0.3118, 0.4014, ..., 0.4488, 0.4763, 0.9896]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.0140, 0.3283, 0.7098, ..., 0.4613, 0.1962, 0.1627]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 10.566095352172852 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 521, 1020, ..., 2499029, + 2499506, 2500000]), + col_indices=tensor([ 2, 18, 32, ..., 4991, 4992, 4995]), + values=tensor([0.1206, 0.3118, 0.4014, ..., 0.4488, 0.4763, 0.9896]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.0140, 0.3283, 0.7098, ..., 0.4613, 0.1962, 0.1627]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 10.566095352172852 seconds + +[18.51, 17.88, 18.11, 18.97, 18.57, 17.75, 18.11, 17.81, 18.02, 17.72] +[87.51] +14.64501953125 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 19767, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.566095352172852, 'TIME_S_1KI': 0.5345320661796353, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1281.5856591796876, 'W': 87.51} +[18.51, 17.88, 18.11, 18.97, 18.57, 17.75, 18.11, 17.81, 18.02, 17.72, 18.1, 18.14, 18.04, 18.33, 18.06, 17.95, 18.01, 18.09, 18.02, 17.86] +325.95500000000004 +16.29775 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 19767, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.566095352172852, 'TIME_S_1KI': 0.5345320661796353, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1281.5856591796876, 'W': 87.51, 'J_1KI': 64.8346061202857, 'W_1KI': 4.427075428744878, 'W_D': 71.21225000000001, 'J_D': 1042.904792114258, 'W_D_1KI': 3.6025825871401835, 'J_D_1KI': 0.18225236946123255} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_1e-05.json b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_1e-05.json new file mode 100644 index 0000000..4be18ec --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 355144, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.430037498474121, "TIME_S_1KI": 0.02936847447366173, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 997.3673194527627, "W": 73.03, "J_1KI": 2.808346246741498, "W_1KI": 0.20563489739373325, "W_D": 56.462250000000004, "J_D": 771.1023268899322, "W_D_1KI": 0.15898410222332351, "J_D_1KI": 0.0004476609550585777} diff --git a/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_1e-05.output b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_1e-05.output new file mode 100644 index 0000000..1e00532 --- /dev/null +++ b/pytorch/output_synthetic_maxcore_old/xeon_4216_max_csr_10_10_10_synthetic_5000_1e-05.output @@ -0,0 +1,383 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.07530069351196289} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 249, 249, 250]), + col_indices=tensor([1366, 2183, 387, 4785, 591, 3875, 1782, 3853, 3491, + 1111, 4311, 1391, 2949, 4195, 1174, 98, 1356, 809, + 1785, 447, 2538, 4572, 2460, 1800, 303, 1931, 4013, + 4968, 4004, 1588, 1643, 1967, 3906, 4748, 1447, 2599, + 629, 3538, 4520, 4776, 4758, 2464, 1751, 3806, 96, + 198, 731, 3443, 3712, 4600, 4270, 2744, 4125, 400, + 468, 107, 2682, 4704, 252, 1804, 2511, 1911, 162, + 2509, 972, 3478, 980, 1895, 2935, 3965, 2890, 3988, + 2804, 3654, 1037, 4790, 2965, 394, 3461, 2942, 2671, + 4602, 851, 2319, 1925, 2531, 2262, 2466, 138, 3192, + 4165, 2776, 2205, 2786, 1112, 4160, 4088, 4917, 1466, + 32, 4695, 2757, 3360, 3218, 455, 480, 4012, 3928, + 3689, 1276, 1963, 1058, 3861, 2863, 4421, 4459, 4424, + 4964, 4366, 2158, 3511, 768, 3822, 1025, 3276, 1349, + 1095, 2928, 2660, 1067, 2626, 893, 4611, 4619, 1553, + 2755, 3328, 4431, 1950, 4722, 1972, 4066, 2996, 4851, + 2711, 2693, 4611, 1116, 4304, 1246, 2511, 2934, 4826, + 2926, 3416, 3468, 2846, 4286, 3701, 3015, 2373, 3319, + 2586, 1704, 3671, 1535, 4335, 3487, 2710, 3432, 1408, + 2336, 4517, 3976, 4761, 1747, 150, 3884, 4390, 3319, + 3373, 3574, 3662, 1429, 4058, 1144, 1909, 4439, 1862, + 343, 1833, 2363, 3001, 1926, 4696, 409, 4669, 2313, + 1538, 3220, 3305, 493, 2975, 4619, 1565, 4245, 1991, + 380, 1379, 2494, 2025, 851, 1740, 171, 2270, 2261, + 2794, 4072, 4453, 4823, 695, 669, 3117, 1730, 3920, + 4849, 3714, 1313, 3918, 1033, 1224, 3117, 2450, 3021, + 3892, 3817, 1313, 2580, 4367, 3947, 3099, 4651, 3006, + 4264, 712, 4793, 3855, 4618, 272, 4548]), + values=tensor([0.5356, 0.5172, 0.5088, 0.7213, 0.3478, 0.1053, 0.9439, + 0.9314, 0.4347, 0.5009, 0.9214, 0.0299, 0.2703, 0.5553, + 0.3016, 0.4455, 0.2361, 0.8920, 0.7432, 0.6139, 0.7733, + 0.3556, 0.1748, 0.8314, 0.8776, 0.8348, 0.1485, 0.4702, + 0.4810, 0.8748, 0.6149, 0.8907, 0.9641, 0.0939, 0.1055, + 0.6954, 0.2399, 0.1624, 0.3696, 0.9614, 0.3594, 0.5972, + 0.9819, 0.0645, 0.3543, 0.1275, 0.6800, 0.3878, 0.7605, + 0.6525, 0.7013, 0.5154, 0.4064, 0.1554, 0.5527, 0.2023, + 0.3691, 0.5797, 0.9886, 0.9941, 0.9352, 0.7550, 0.0819, + 0.3616, 0.7623, 0.6193, 0.3361, 0.9681, 0.4246, 0.6029, + 0.5772, 0.0561, 0.2661, 0.5456, 0.2304, 0.3887, 0.2381, + 0.3730, 0.7517, 0.6162, 0.2738, 0.4697, 0.7504, 0.9515, + 0.7210, 0.4160, 0.4959, 0.5300, 0.2485, 0.7381, 0.3695, + 0.4257, 0.1829, 0.0551, 0.7619, 0.8081, 0.4964, 0.4779, + 0.0357, 0.2681, 0.0521, 0.0389, 0.0434, 0.3566, 0.7098, + 0.1066, 0.0800, 0.4058, 0.5388, 0.9446, 0.2771, 0.5488, + 0.8493, 0.4334, 0.8666, 0.8039, 0.2616, 0.8733, 0.8412, + 0.6075, 0.0051, 0.7165, 0.9628, 0.7661, 0.4765, 0.6812, + 0.1095, 0.7697, 0.6192, 0.6769, 0.9349, 0.0052, 0.1322, + 0.1324, 0.9038, 0.2020, 0.6337, 0.8080, 0.2834, 0.0511, + 0.6009, 0.2042, 0.5100, 0.6688, 0.2408, 0.9657, 0.8116, + 0.8985, 0.0972, 0.8199, 0.3158, 0.7270, 0.0200, 0.2146, + 0.9137, 0.0484, 0.2512, 0.2305, 0.1410, 0.9701, 0.3767, + 0.1641, 0.2509, 0.4147, 0.6141, 0.4403, 0.2333, 0.3371, + 0.6103, 0.2630, 0.2671, 0.0768, 0.8063, 0.8867, 0.9092, + 0.7796, 0.9853, 0.4951, 0.2086, 0.4307, 0.0119, 0.1662, + 0.8220, 0.7333, 0.1521, 0.6924, 0.6584, 0.6936, 0.1717, + 0.0561, 0.9517, 0.6184, 0.4753, 0.7656, 0.9019, 0.5502, + 0.9529, 0.5922, 0.4037, 0.0988, 0.7843, 0.0649, 0.2485, + 0.3469, 0.9377, 0.6160, 0.3297, 0.1479, 0.3514, 0.4560, + 0.6809, 0.0681, 0.5510, 0.6925, 0.2032, 0.7181, 0.5101, + 0.1339, 0.8347, 0.2363, 0.9076, 0.1946, 0.5622, 0.8947, + 0.8049, 0.7599, 0.8724, 0.5959, 0.8922, 0.7182, 0.4477, + 0.5685, 0.4980, 0.5565, 0.2995, 0.7747, 0.8395, 0.0020, + 0.6022, 0.0279, 0.4498, 0.0752, 0.1893, 0.3529, 0.6947, + 0.9277, 0.8241, 0.1856, 0.0213, 0.6132]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.4529, 0.0478, 0.6057, ..., 0.4541, 0.9032, 0.3518]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 0.07530069351196289 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '139440', '-ss', '5000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 4.12260627746582} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([4955, 3285, 1092, 4534, 4976, 442, 2522, 4514, 4006, + 1710, 2609, 275, 2553, 192, 68, 4509, 517, 1487, + 4557, 2975, 2588, 4021, 2076, 3240, 3988, 435, 2254, + 2223, 4880, 3865, 3818, 4642, 3945, 4353, 601, 3917, + 1880, 3877, 3791, 4777, 2081, 3917, 4502, 1438, 2426, + 3349, 29, 2250, 3660, 1858, 600, 2889, 2272, 1956, + 751, 3677, 3364, 2676, 4496, 2911, 2638, 552, 4753, + 3313, 3375, 308, 4658, 3893, 1495, 4737, 3323, 2703, + 2397, 4058, 1153, 4577, 3965, 4609, 1999, 4032, 95, + 1807, 3734, 3107, 2958, 2169, 4822, 1527, 3639, 620, + 4908, 4406, 564, 2813, 4923, 3870, 2382, 1337, 4050, + 4071, 2788, 1336, 4894, 4067, 1978, 1895, 498, 3798, + 1258, 549, 714, 3988, 3759, 3303, 1452, 1683, 4641, + 1837, 2644, 1353, 3988, 2550, 2364, 1794, 4541, 4681, + 337, 2800, 2585, 3617, 3880, 1843, 1947, 4694, 2266, + 1169, 161, 1385, 2852, 400, 463, 723, 4116, 753, + 2537, 98, 4403, 28, 338, 2803, 1599, 1013, 1557, + 4407, 177, 1191, 1815, 3966, 3511, 451, 3265, 291, + 1243, 392, 4068, 163, 3991, 4311, 3328, 960, 4017, + 4646, 1831, 817, 2890, 3530, 2708, 719, 2605, 1261, + 4102, 4791, 1478, 1213, 90, 923, 4372, 3587, 2492, + 1793, 3735, 793, 3175, 4362, 3857, 3311, 3724, 615, + 3226, 2202, 4290, 2384, 657, 2313, 1172, 518, 1645, + 899, 4853, 1109, 2856, 2859, 137, 3910, 650, 1455, + 3154, 3652, 1672, 4613, 1991, 246, 2555, 4, 2614, + 2633, 1294, 2903, 1660, 4703, 2866, 3053, 1012, 3045, + 4172, 3476, 296, 4197, 2675, 2071, 2677, 1326, 2255, + 468, 4989, 2355, 4824, 996, 43, 2583]), + values=tensor([0.3090, 0.2901, 0.9593, 0.2041, 0.3894, 0.4919, 0.4096, + 0.8215, 0.1866, 0.7740, 0.2336, 0.6944, 0.1434, 0.9450, + 0.5954, 0.3044, 0.5006, 0.3429, 0.4467, 0.0518, 0.6871, + 0.3725, 0.7034, 0.7486, 0.8746, 0.3907, 0.1517, 0.4997, + 0.1845, 0.7706, 0.6244, 0.6342, 0.6033, 0.6938, 0.2438, + 0.1144, 0.3513, 0.6893, 0.7703, 0.3523, 0.2076, 0.7465, + 0.4913, 0.9688, 0.0028, 0.1578, 0.0568, 0.7822, 0.7028, + 0.3600, 0.2439, 0.4360, 0.7037, 0.4050, 0.8531, 0.5414, + 0.4773, 0.3671, 0.4547, 0.2754, 0.4488, 0.0085, 0.3071, + 0.4601, 0.4770, 0.5158, 0.4421, 0.5651, 0.5805, 0.4433, + 0.3995, 0.5205, 0.7157, 0.7315, 0.6363, 0.9589, 0.7223, + 0.9785, 0.4132, 0.5851, 0.7482, 0.0942, 0.2741, 0.5798, + 0.8967, 0.4132, 0.5974, 0.3338, 0.4602, 0.6811, 0.5641, + 0.0144, 0.5238, 0.0767, 0.8325, 0.0088, 0.0767, 0.2907, + 0.8996, 0.8420, 0.5348, 0.2313, 0.0781, 0.9045, 0.3083, + 0.9636, 0.2543, 0.6828, 0.1620, 0.2858, 0.1124, 0.3208, + 0.6389, 0.9267, 0.6353, 0.0688, 0.9267, 0.9566, 0.7499, + 0.7412, 0.4162, 0.5378, 0.6296, 0.9489, 0.6620, 0.4205, + 0.9920, 0.8509, 0.1746, 0.9154, 0.0320, 0.1367, 0.7287, + 0.4725, 0.2424, 0.3738, 0.1897, 0.9348, 0.6165, 0.7516, + 0.3874, 0.0970, 0.8851, 0.3148, 0.3850, 0.4337, 0.7076, + 0.4992, 0.1955, 0.2344, 0.3528, 0.9558, 0.2944, 0.6120, + 0.9024, 0.3017, 0.3837, 0.0724, 0.3520, 0.1259, 0.2545, + 0.1286, 0.8847, 0.1428, 0.4622, 0.0540, 0.3001, 0.6109, + 0.7042, 0.7070, 0.7848, 0.3801, 0.3847, 0.7723, 0.6446, + 0.9716, 0.3773, 0.8839, 0.4889, 0.3169, 0.6431, 0.7083, + 0.1827, 0.5140, 0.9487, 0.5911, 0.8204, 0.6180, 0.4421, + 0.3128, 0.9545, 0.2240, 0.5569, 0.0329, 0.3919, 0.3248, + 0.2245, 0.3333, 0.9672, 0.9062, 0.0547, 0.3239, 0.2321, + 0.0070, 0.4820, 0.4051, 0.2674, 0.7057, 0.7544, 0.3960, + 0.7548, 0.0492, 0.5769, 0.2071, 0.4627, 0.2573, 0.4606, + 0.6077, 0.9484, 0.5943, 0.5295, 0.3192, 0.6949, 0.6336, + 0.2976, 0.4421, 0.9484, 0.4080, 0.0752, 0.8220, 0.3509, + 0.7514, 0.8530, 0.4354, 0.9063, 0.8031, 0.3178, 0.2957, + 0.6220, 0.2051, 0.4848, 0.8340, 0.8353, 0.5340, 0.0238, + 0.3897, 0.4510, 0.4716, 0.8420, 0.2532]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.2666, 0.0606, 0.0325, ..., 0.3347, 0.5904, 0.3218]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 4.12260627746582 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '355144', '-ss', '5000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.430037498474121} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([ 576, 858, 411, 4414, 2665, 376, 3054, 3322, 4372, + 4279, 4109, 1090, 4955, 1792, 2761, 3831, 3980, 529, + 2775, 617, 4117, 1022, 2357, 2558, 3577, 3578, 3958, + 4584, 2525, 1559, 1731, 3457, 3297, 1685, 2202, 1452, + 491, 1458, 4726, 3575, 1883, 2403, 3952, 4222, 1553, + 2911, 2279, 1175, 2336, 4753, 2819, 4436, 482, 3199, + 4976, 1797, 1610, 3205, 1638, 3687, 4164, 2284, 2312, + 3201, 1175, 2223, 2205, 1659, 1685, 3876, 4867, 4503, + 2508, 1070, 2370, 1257, 578, 3738, 3473, 1417, 2544, + 2056, 4843, 1000, 3228, 4837, 4943, 1171, 1607, 3883, + 537, 4674, 2976, 4953, 4244, 3122, 4003, 2726, 2176, + 3401, 3187, 4115, 3515, 94, 3353, 4307, 545, 4985, + 4583, 3489, 3066, 4121, 3459, 1522, 677, 4486, 147, + 3866, 1597, 3765, 2455, 4064, 1457, 3132, 4642, 3434, + 4882, 2125, 3414, 394, 3741, 3553, 2336, 1556, 4256, + 1078, 4010, 148, 4755, 1924, 2289, 4358, 4904, 1449, + 2494, 2907, 2566, 4673, 214, 1941, 3465, 4474, 2630, + 2169, 4563, 4405, 2613, 3633, 1231, 2935, 3998, 3861, + 1642, 586, 3529, 1226, 3435, 3242, 4352, 3913, 4066, + 3077, 2516, 4422, 1989, 692, 2984, 4096, 402, 4733, + 2105, 3134, 4775, 589, 4044, 4752, 4541, 3171, 2469, + 3653, 4657, 4456, 2233, 2803, 4834, 4936, 3017, 295, + 4978, 3056, 4089, 3884, 2193, 857, 3649, 854, 903, + 28, 3897, 555, 2344, 28, 2417, 2346, 4647, 1068, + 320, 3342, 2217, 2395, 4836, 4346, 3869, 1532, 3168, + 2904, 3224, 1957, 350, 1919, 1414, 1439, 2678, 3944, + 694, 4893, 4079, 3781, 2587, 2843, 2494, 2488, 824, + 1995, 2151, 656, 824, 1220, 2366, 1835]), + values=tensor([3.0955e-01, 7.8676e-01, 4.1266e-01, 3.7203e-01, + 7.1730e-01, 3.7179e-01, 6.0963e-01, 1.0902e-02, + 1.1230e-01, 2.1823e-01, 1.9100e-01, 8.5284e-01, + 3.9664e-01, 7.2699e-01, 1.5904e-01, 3.5501e-01, + 7.5722e-01, 5.6198e-01, 5.1816e-01, 6.4843e-01, + 9.7108e-01, 5.2337e-01, 4.5987e-01, 1.8356e-01, + 3.1359e-01, 2.0336e-01, 9.3922e-01, 6.3176e-01, + 5.5921e-01, 9.2083e-01, 3.8441e-01, 4.1891e-01, + 4.9039e-02, 2.5835e-01, 1.4251e-01, 8.7986e-02, + 1.9179e-01, 4.9636e-02, 9.9221e-01, 8.8195e-01, + 3.6211e-01, 7.7986e-01, 8.8005e-01, 5.3709e-01, + 6.1723e-01, 2.3666e-01, 6.4046e-01, 7.4852e-01, + 8.6162e-01, 6.4736e-02, 6.4638e-01, 6.8790e-01, + 7.7258e-02, 9.2613e-01, 4.5329e-01, 3.8429e-01, + 4.4778e-01, 5.4974e-01, 7.1635e-02, 9.9247e-01, + 6.0152e-01, 9.9716e-01, 7.7326e-02, 6.0941e-01, + 4.9490e-01, 7.1856e-01, 9.5478e-01, 7.3740e-01, + 7.1156e-01, 7.7724e-01, 6.8908e-01, 8.4478e-01, + 5.3169e-01, 3.1838e-01, 6.4893e-01, 3.6731e-01, + 9.6217e-01, 9.5642e-01, 3.3310e-01, 8.0468e-01, + 4.4419e-01, 9.9457e-01, 9.4870e-01, 5.1652e-01, + 2.2471e-01, 4.9478e-02, 7.7952e-01, 3.1317e-01, + 4.6028e-01, 9.9118e-01, 2.1805e-01, 7.6144e-01, + 5.8009e-01, 5.8921e-01, 9.6946e-01, 3.7819e-02, + 8.9083e-01, 3.9045e-01, 4.6997e-01, 7.7548e-01, + 7.6016e-01, 9.9749e-01, 2.2222e-01, 8.7022e-01, + 1.7241e-01, 5.1297e-01, 5.3356e-01, 7.6400e-01, + 4.5765e-01, 9.3983e-01, 7.4746e-01, 2.2337e-02, + 4.6779e-01, 4.1228e-02, 4.0470e-01, 5.8279e-01, + 3.9830e-01, 7.9952e-01, 2.1413e-01, 6.9695e-01, + 8.4451e-01, 7.5133e-01, 6.1979e-01, 1.0235e-01, + 2.3922e-01, 9.7618e-01, 2.7859e-01, 9.1245e-01, + 1.8747e-01, 1.3708e-01, 4.3286e-01, 4.5125e-01, + 7.7463e-01, 6.6460e-01, 4.6171e-01, 5.2632e-01, + 1.3309e-01, 4.8984e-01, 6.6220e-01, 3.7532e-01, + 2.3458e-01, 9.8677e-01, 1.8606e-01, 5.8578e-01, + 2.0218e-01, 8.1884e-01, 1.6790e-01, 8.2955e-01, + 8.0990e-01, 7.9230e-01, 5.7415e-04, 1.5263e-01, + 3.0153e-02, 4.3910e-01, 1.1145e-01, 8.2933e-01, + 4.2403e-01, 9.4143e-01, 1.1893e-01, 2.2950e-01, + 4.0652e-01, 5.3859e-02, 3.4042e-01, 3.0550e-01, + 7.4631e-01, 2.0289e-01, 2.7832e-01, 9.2428e-02, + 8.1994e-01, 6.1876e-01, 8.1655e-01, 3.3884e-01, + 8.1926e-01, 3.0647e-01, 2.5277e-02, 6.7292e-01, + 6.3249e-01, 3.0699e-01, 8.3683e-02, 1.1258e-01, + 5.7451e-01, 9.9511e-01, 3.5203e-01, 6.1419e-01, + 7.8849e-01, 2.6274e-01, 6.6338e-01, 2.1944e-01, + 5.0745e-01, 9.4340e-02, 4.8396e-02, 5.6132e-01, + 9.5395e-01, 7.8119e-01, 2.9298e-01, 9.8647e-01, + 4.1870e-03, 7.2546e-01, 1.3543e-01, 1.4547e-01, + 9.5808e-01, 3.2689e-01, 3.3868e-01, 4.7652e-01, + 8.8370e-01, 6.0302e-01, 7.9645e-01, 6.6784e-01, + 5.1333e-01, 1.1003e-01, 1.8848e-01, 9.5891e-01, + 5.8130e-01, 8.9461e-01, 5.9679e-01, 7.2510e-01, + 6.8221e-01, 6.6161e-01, 2.4940e-01, 6.6307e-01, + 2.4001e-02, 4.4766e-02, 2.4703e-01, 5.2095e-02, + 8.5216e-01, 3.2978e-01, 6.8601e-01, 2.3333e-01, + 6.2542e-01, 6.6716e-01, 6.3532e-01, 9.7031e-01, + 2.6179e-01, 5.9241e-01, 6.1379e-01, 8.7532e-01, + 5.8130e-01, 3.7637e-01, 4.6468e-01, 2.0496e-01, + 7.4431e-01, 7.1477e-02, 8.7938e-01, 4.5946e-01, + 4.6023e-01, 7.9786e-01, 2.4383e-01, 3.7799e-01, + 1.9335e-01, 7.4334e-01]), size=(5000, 5000), nnz=250, + layout=torch.sparse_csr) +tensor([0.5879, 0.8514, 0.6272, ..., 0.2435, 0.3582, 0.3734]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 10.430037498474121 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([ 576, 858, 411, 4414, 2665, 376, 3054, 3322, 4372, + 4279, 4109, 1090, 4955, 1792, 2761, 3831, 3980, 529, + 2775, 617, 4117, 1022, 2357, 2558, 3577, 3578, 3958, + 4584, 2525, 1559, 1731, 3457, 3297, 1685, 2202, 1452, + 491, 1458, 4726, 3575, 1883, 2403, 3952, 4222, 1553, + 2911, 2279, 1175, 2336, 4753, 2819, 4436, 482, 3199, + 4976, 1797, 1610, 3205, 1638, 3687, 4164, 2284, 2312, + 3201, 1175, 2223, 2205, 1659, 1685, 3876, 4867, 4503, + 2508, 1070, 2370, 1257, 578, 3738, 3473, 1417, 2544, + 2056, 4843, 1000, 3228, 4837, 4943, 1171, 1607, 3883, + 537, 4674, 2976, 4953, 4244, 3122, 4003, 2726, 2176, + 3401, 3187, 4115, 3515, 94, 3353, 4307, 545, 4985, + 4583, 3489, 3066, 4121, 3459, 1522, 677, 4486, 147, + 3866, 1597, 3765, 2455, 4064, 1457, 3132, 4642, 3434, + 4882, 2125, 3414, 394, 3741, 3553, 2336, 1556, 4256, + 1078, 4010, 148, 4755, 1924, 2289, 4358, 4904, 1449, + 2494, 2907, 2566, 4673, 214, 1941, 3465, 4474, 2630, + 2169, 4563, 4405, 2613, 3633, 1231, 2935, 3998, 3861, + 1642, 586, 3529, 1226, 3435, 3242, 4352, 3913, 4066, + 3077, 2516, 4422, 1989, 692, 2984, 4096, 402, 4733, + 2105, 3134, 4775, 589, 4044, 4752, 4541, 3171, 2469, + 3653, 4657, 4456, 2233, 2803, 4834, 4936, 3017, 295, + 4978, 3056, 4089, 3884, 2193, 857, 3649, 854, 903, + 28, 3897, 555, 2344, 28, 2417, 2346, 4647, 1068, + 320, 3342, 2217, 2395, 4836, 4346, 3869, 1532, 3168, + 2904, 3224, 1957, 350, 1919, 1414, 1439, 2678, 3944, + 694, 4893, 4079, 3781, 2587, 2843, 2494, 2488, 824, + 1995, 2151, 656, 824, 1220, 2366, 1835]), + values=tensor([3.0955e-01, 7.8676e-01, 4.1266e-01, 3.7203e-01, + 7.1730e-01, 3.7179e-01, 6.0963e-01, 1.0902e-02, + 1.1230e-01, 2.1823e-01, 1.9100e-01, 8.5284e-01, + 3.9664e-01, 7.2699e-01, 1.5904e-01, 3.5501e-01, + 7.5722e-01, 5.6198e-01, 5.1816e-01, 6.4843e-01, + 9.7108e-01, 5.2337e-01, 4.5987e-01, 1.8356e-01, + 3.1359e-01, 2.0336e-01, 9.3922e-01, 6.3176e-01, + 5.5921e-01, 9.2083e-01, 3.8441e-01, 4.1891e-01, + 4.9039e-02, 2.5835e-01, 1.4251e-01, 8.7986e-02, + 1.9179e-01, 4.9636e-02, 9.9221e-01, 8.8195e-01, + 3.6211e-01, 7.7986e-01, 8.8005e-01, 5.3709e-01, + 6.1723e-01, 2.3666e-01, 6.4046e-01, 7.4852e-01, + 8.6162e-01, 6.4736e-02, 6.4638e-01, 6.8790e-01, + 7.7258e-02, 9.2613e-01, 4.5329e-01, 3.8429e-01, + 4.4778e-01, 5.4974e-01, 7.1635e-02, 9.9247e-01, + 6.0152e-01, 9.9716e-01, 7.7326e-02, 6.0941e-01, + 4.9490e-01, 7.1856e-01, 9.5478e-01, 7.3740e-01, + 7.1156e-01, 7.7724e-01, 6.8908e-01, 8.4478e-01, + 5.3169e-01, 3.1838e-01, 6.4893e-01, 3.6731e-01, + 9.6217e-01, 9.5642e-01, 3.3310e-01, 8.0468e-01, + 4.4419e-01, 9.9457e-01, 9.4870e-01, 5.1652e-01, + 2.2471e-01, 4.9478e-02, 7.7952e-01, 3.1317e-01, + 4.6028e-01, 9.9118e-01, 2.1805e-01, 7.6144e-01, + 5.8009e-01, 5.8921e-01, 9.6946e-01, 3.7819e-02, + 8.9083e-01, 3.9045e-01, 4.6997e-01, 7.7548e-01, + 7.6016e-01, 9.9749e-01, 2.2222e-01, 8.7022e-01, + 1.7241e-01, 5.1297e-01, 5.3356e-01, 7.6400e-01, + 4.5765e-01, 9.3983e-01, 7.4746e-01, 2.2337e-02, + 4.6779e-01, 4.1228e-02, 4.0470e-01, 5.8279e-01, + 3.9830e-01, 7.9952e-01, 2.1413e-01, 6.9695e-01, + 8.4451e-01, 7.5133e-01, 6.1979e-01, 1.0235e-01, + 2.3922e-01, 9.7618e-01, 2.7859e-01, 9.1245e-01, + 1.8747e-01, 1.3708e-01, 4.3286e-01, 4.5125e-01, + 7.7463e-01, 6.6460e-01, 4.6171e-01, 5.2632e-01, + 1.3309e-01, 4.8984e-01, 6.6220e-01, 3.7532e-01, + 2.3458e-01, 9.8677e-01, 1.8606e-01, 5.8578e-01, + 2.0218e-01, 8.1884e-01, 1.6790e-01, 8.2955e-01, + 8.0990e-01, 7.9230e-01, 5.7415e-04, 1.5263e-01, + 3.0153e-02, 4.3910e-01, 1.1145e-01, 8.2933e-01, + 4.2403e-01, 9.4143e-01, 1.1893e-01, 2.2950e-01, + 4.0652e-01, 5.3859e-02, 3.4042e-01, 3.0550e-01, + 7.4631e-01, 2.0289e-01, 2.7832e-01, 9.2428e-02, + 8.1994e-01, 6.1876e-01, 8.1655e-01, 3.3884e-01, + 8.1926e-01, 3.0647e-01, 2.5277e-02, 6.7292e-01, + 6.3249e-01, 3.0699e-01, 8.3683e-02, 1.1258e-01, + 5.7451e-01, 9.9511e-01, 3.5203e-01, 6.1419e-01, + 7.8849e-01, 2.6274e-01, 6.6338e-01, 2.1944e-01, + 5.0745e-01, 9.4340e-02, 4.8396e-02, 5.6132e-01, + 9.5395e-01, 7.8119e-01, 2.9298e-01, 9.8647e-01, + 4.1870e-03, 7.2546e-01, 1.3543e-01, 1.4547e-01, + 9.5808e-01, 3.2689e-01, 3.3868e-01, 4.7652e-01, + 8.8370e-01, 6.0302e-01, 7.9645e-01, 6.6784e-01, + 5.1333e-01, 1.1003e-01, 1.8848e-01, 9.5891e-01, + 5.8130e-01, 8.9461e-01, 5.9679e-01, 7.2510e-01, + 6.8221e-01, 6.6161e-01, 2.4940e-01, 6.6307e-01, + 2.4001e-02, 4.4766e-02, 2.4703e-01, 5.2095e-02, + 8.5216e-01, 3.2978e-01, 6.8601e-01, 2.3333e-01, + 6.2542e-01, 6.6716e-01, 6.3532e-01, 9.7031e-01, + 2.6179e-01, 5.9241e-01, 6.1379e-01, 8.7532e-01, + 5.8130e-01, 3.7637e-01, 4.6468e-01, 2.0496e-01, + 7.4431e-01, 7.1477e-02, 8.7938e-01, 4.5946e-01, + 4.6023e-01, 7.9786e-01, 2.4383e-01, 3.7799e-01, + 1.9335e-01, 7.4334e-01]), size=(5000, 5000), nnz=250, + layout=torch.sparse_csr) +tensor([0.5879, 0.8514, 0.6272, ..., 0.2435, 0.3582, 0.3734]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 10.430037498474121 seconds + +[18.28, 21.02, 18.58, 17.81, 18.18, 17.91, 18.02, 17.91, 18.05, 17.86] +[73.03] +13.656953573226929 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 355144, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.430037498474121, 'TIME_S_1KI': 0.02936847447366173, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 997.3673194527627, 'W': 73.03} +[18.28, 21.02, 18.58, 17.81, 18.18, 17.91, 18.02, 17.91, 18.05, 17.86, 18.18, 17.95, 18.17, 18.08, 18.7, 17.95, 18.01, 17.92, 21.06, 17.75] +331.35499999999996 +16.567749999999997 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 355144, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.430037498474121, 'TIME_S_1KI': 0.02936847447366173, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 997.3673194527627, 'W': 73.03, 'J_1KI': 2.808346246741498, 'W_1KI': 0.20563489739373325, 'W_D': 56.462250000000004, 'J_D': 771.1023268899322, 'W_D_1KI': 0.15898410222332351, 'J_D_1KI': 0.0004476609550585777}