This commit is contained in:
cephi 2024-12-12 22:10:49 -05:00
parent 0cbb446bb5
commit 46eadfabff
72 changed files with 1702 additions and 0 deletions

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 33323, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 999952, "MATRIX_DENSITY": 9.99952e-05, "TIME_S": 10.71526312828064, "TIME_S_1KI": 0.3215575766971953, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 412.07791979789727, "W": 38.7935930425703, "J_1KI": 12.366171106980081, "W_1KI": 1.1641686835690153, "W_D": 29.0535930425703, "J_D": 308.6165329027175, "W_D_1KI": 0.8718780734798878, "J_D_1KI": 0.026164453184883946}

View File

@ -0,0 +1,17 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 9, 17, ..., 999937, 999941,
999952]),
col_indices=tensor([19687, 28948, 45848, ..., 46436, 60409, 68965]),
values=tensor([-0.4272, 0.9264, 0.9856, ..., -0.1190, 0.6751,
0.0598]), size=(100000, 100000), nnz=999952,
layout=torch.sparse_csr)
tensor([0.2980, 0.3512, 0.0619, ..., 0.2729, 0.3128, 0.6493])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([100000, 100000])
Size: 10000000000
NNZ: 999952
Density: 9.99952e-05
Time: 10.71526312828064 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 101767, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 99998, "MATRIX_DENSITY": 9.9998e-06, "TIME_S": 10.474453926086426, "TIME_S_1KI": 0.10292583967382772, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 291.813862285614, "W": 26.46627795822632, "J_1KI": 2.8674704205254553, "W_1KI": 0.2600673888217823, "W_D": 16.77127795822632, "J_D": 184.91800789594646, "W_D_1KI": 0.16480075032403746, "J_D_1KI": 0.0016193928319006893}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 2, 2, ..., 99996, 99996, 99998]),
col_indices=tensor([ 109, 74194, 61918, ..., 25487, 43401, 98161]),
values=tensor([ 0.2524, -0.1849, -2.0293, ..., 0.7242, 1.0483,
0.0862]), size=(100000, 100000), nnz=99998,
layout=torch.sparse_csr)
tensor([0.5112, 0.5546, 0.5214, ..., 0.6604, 0.9362, 0.9569])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([100000, 100000])
Size: 10000000000
NNZ: 99998
Density: 9.9998e-06
Time: 10.474453926086426 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 50359, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 499980, "MATRIX_DENSITY": 4.9998e-05, "TIME_S": 10.462877750396729, "TIME_S_1KI": 0.20776579658842964, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 399.8736016845703, "W": 38.582577789425095, "J_1KI": 7.940459534235593, "W_1KI": 0.7661505945198495, "W_D": 29.062577789425095, "J_D": 301.20739257812494, "W_D_1KI": 0.5771079209163227, "J_D_1KI": 0.011459876505020408}

View File

@ -0,0 +1,17 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 9, 12, ..., 499970, 499978,
499980]),
col_indices=tensor([19403, 23038, 25846, ..., 91095, 29503, 92227]),
values=tensor([-0.0894, 0.5989, 0.0398, ..., 0.1235, -0.7698,
1.7527]), size=(100000, 100000), nnz=499980,
layout=torch.sparse_csr)
tensor([0.3186, 0.0161, 0.2456, ..., 0.9108, 0.3200, 0.6989])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([100000, 100000])
Size: 10000000000
NNZ: 499980
Density: 4.9998e-05
Time: 10.462877750396729 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 674430, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.27655839920044, "TIME_S_1KI": 0.015237398097950031, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 269.338226776123, "W": 26.38869527856713, "J_1KI": 0.39935682988022925, "W_1KI": 0.03912740429483731, "W_D": 16.88369527856713, "J_D": 172.32472086071965, "W_D_1KI": 0.02503402173474954, "J_D_1KI": 3.711878435827223e-05}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 0, 1, ..., 9998, 9999, 10000]),
col_indices=tensor([3164, 9580, 1349, ..., 981, 2279, 6382]),
values=tensor([-1.1170, -1.0404, -2.0258, ..., -0.0529, -1.2276,
0.7453]), size=(10000, 10000), nnz=10000,
layout=torch.sparse_csr)
tensor([0.2669, 0.8530, 0.1049, ..., 0.3093, 0.0150, 0.6871])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([10000, 10000])
Size: 100000000
NNZ: 10000
Density: 0.0001
Time: 10.27655839920044 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 781565, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.538879156112671, "TIME_S_1KI": 0.013484328438597775, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 283.76676887512207, "W": 26.443221115401535, "J_1KI": 0.3630750722910085, "W_1KI": 0.03383368128741888, "W_D": 17.003221115401534, "J_D": 182.46449989318847, "W_D_1KI": 0.021755351270081866, "J_D_1KI": 2.783562630118015e-05}

View File

@ -0,0 +1,375 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 0, 0, ..., 999, 999, 1000]),
col_indices=tensor([5545, 1315, 3993, 9352, 3848, 2061, 82, 3514, 475,
4205, 1219, 482, 34, 149, 4964, 6052, 5401, 7055,
4164, 5424, 9148, 2696, 5571, 771, 9131, 1809, 2160,
2138, 3351, 4302, 4393, 6576, 1426, 4795, 5773, 8241,
6447, 5668, 1110, 1765, 9336, 9319, 7336, 6079, 1802,
5284, 5784, 9827, 1945, 1382, 3612, 4002, 5006, 3158,
2033, 5737, 7867, 6821, 4767, 3635, 5838, 6094, 8150,
2054, 8193, 4931, 7881, 3335, 2977, 3739, 9479, 1191,
4315, 6191, 624, 9436, 1314, 5501, 8787, 3700, 5632,
7601, 7532, 205, 135, 2168, 3731, 6674, 4497, 7819,
5696, 7291, 3931, 5987, 1424, 3357, 6163, 5313, 8850,
7333, 8720, 5235, 4022, 6656, 7285, 1051, 6661, 7634,
1751, 9686, 7852, 1013, 137, 4353, 6246, 2307, 6747,
3819, 5999, 3290, 720, 227, 7880, 9162, 2712, 1192,
5930, 6358, 5747, 8175, 874, 425, 2324, 3919, 8047,
5373, 9175, 1645, 6285, 597, 3605, 5542, 199, 4436,
3242, 2294, 4549, 1955, 209, 6678, 766, 5778, 3419,
6169, 322, 6002, 5332, 4186, 5222, 3853, 5768, 1181,
7370, 7102, 4455, 9568, 8459, 4788, 5890, 3819, 7765,
6536, 2075, 447, 8685, 5868, 7330, 3890, 7359, 5554,
2408, 6897, 8852, 4083, 2141, 3778, 4374, 1518, 373,
5845, 426, 7260, 4043, 2591, 5967, 5684, 7653, 7901,
9070, 6696, 6721, 9050, 6628, 2012, 6280, 9180, 2349,
7662, 423, 8172, 2993, 995, 2304, 5151, 2731, 6771,
7836, 3892, 7658, 9233, 782, 4623, 7517, 8821, 5483,
414, 8044, 5183, 6839, 5836, 7316, 7248, 8054, 5546,
3974, 6557, 4883, 5649, 6879, 1166, 3886, 5512, 7427,
4879, 4046, 2423, 5214, 8034, 1656, 5071, 4, 7914,
1254, 5090, 8575, 9627, 7059, 2129, 5633, 7396, 7857,
6347, 6757, 3399, 8073, 9093, 1646, 9573, 3080, 2995,
591, 9044, 1421, 1581, 6277, 1875, 264, 3759, 7744,
163, 2284, 1572, 1936, 7744, 6249, 2365, 2266, 1105,
9703, 9084, 1512, 5528, 9936, 5017, 4168, 4640, 4826,
5351, 7578, 272, 4083, 5398, 6347, 9686, 1380, 706,
866, 430, 2813, 575, 2765, 3058, 1165, 3497, 9354,
7100, 2190, 6262, 8278, 4813, 9005, 3597, 1217, 2182,
598, 3238, 4676, 23, 4355, 5092, 4084, 9245, 2327,
3299, 8456, 6607, 8639, 7862, 5135, 1193, 1771, 6610,
5219, 6562, 1013, 8077, 1016, 4758, 9337, 5149, 1385,
4664, 5800, 9240, 9867, 6455, 5744, 8214, 392, 5856,
9553, 3449, 3195, 9889, 5026, 8528, 6347, 1507, 4352,
1457, 1389, 3473, 5016, 6831, 6297, 1373, 3730, 8321,
4854, 495, 9916, 2787, 280, 8766, 2269, 7790, 4342,
8613, 7399, 7867, 5499, 1650, 3868, 9241, 2745, 8833,
8146, 2763, 3940, 1883, 2961, 6760, 4136, 8173, 5988,
3086, 4015, 4753, 7752, 3883, 359, 5875, 5078, 1646,
5319, 7756, 9072, 8594, 1773, 3567, 8826, 396, 7761,
8732, 7233, 4516, 5564, 2192, 6011, 8418, 7139, 523,
7182, 6624, 1415, 6516, 6206, 1514, 6746, 7309, 787,
3024, 6710, 7709, 114, 3878, 1643, 6392, 8778, 4583,
811, 8546, 7900, 6628, 4582, 4954, 2686, 6999, 9599,
7793, 3196, 3676, 1991, 4037, 3575, 6019, 6117, 866,
9103, 8194, 1327, 3443, 2063, 9823, 8326, 965, 5459,
7664, 9584, 7122, 9083, 284, 8593, 2434, 5109, 7735,
5780, 8071, 9703, 112, 4558, 9013, 9978, 6201, 9176,
3247, 5935, 8602, 1915, 2829, 3753, 8748, 1071, 5437,
3658, 9668, 8670, 4905, 6817, 31, 3581, 5642, 3610,
8171, 7653, 157, 4552, 9954, 3012, 3970, 7115, 7970,
7373, 3177, 9458, 3395, 4888, 2073, 2601, 7674, 8931,
4401, 8278, 2684, 9421, 8555, 8928, 4131, 4369, 9272,
441, 9939, 7763, 6448, 4968, 4502, 2471, 7225, 3322,
3275, 6792, 8608, 7886, 2386, 4283, 472, 6588, 5100,
701, 3822, 8026, 1358, 4882, 5232, 3725, 7946, 731,
4865, 955, 978, 3849, 6658, 6062, 9977, 8104, 9451,
9708, 4328, 5885, 183, 7675, 2946, 8666, 464, 990,
6791, 1084, 7161, 4955, 502, 9370, 4561, 2145, 7696,
9348, 2870, 8515, 2556, 6506, 4138, 8644, 9547, 8351,
89, 301, 4738, 7039, 3925, 3405, 5558, 4291, 6039,
1158, 2571, 8105, 6853, 1693, 2204, 5947, 6481, 540,
8170, 2397, 9376, 2725, 5578, 1960, 3980, 7786, 1232,
7649, 7426, 9205, 2445, 977, 1412, 1783, 6677, 3781,
8570, 5154, 7584, 4386, 2351, 9050, 8406, 1774, 6825,
8637, 1566, 4304, 2470, 6149, 2073, 1092, 4918, 1053,
671, 9114, 7990, 2836, 1277, 7092, 2458, 3010, 3644,
7393, 1893, 3916, 9301, 329, 7308, 4840, 3167, 1198,
7161, 1176, 7525, 4577, 5622, 8503, 800, 7478, 5061,
1064, 7153, 6997, 7533, 5419, 237, 552, 530, 3374,
6213, 8080, 6515, 3727, 647, 4276, 795, 2002, 2118,
5941, 1448, 4151, 4380, 4769, 8970, 7434, 7792, 6175,
9503, 7236, 1423, 8640, 1804, 7830, 3535, 4714, 5077,
3483, 3289, 4630, 8552, 5752, 5620, 7089, 6660, 1221,
5596, 269, 8902, 5335, 9449, 6033, 201, 84, 6985,
9902, 6098, 3752, 898, 4663, 6774, 5178, 1564, 9602,
492, 348, 5532, 6762, 758, 7692, 9608, 7716, 2577,
6284, 9165, 3877, 1259, 7126, 836, 799, 8613, 1201,
3016, 8714, 6061, 4229, 5487, 610, 928, 2504, 4696,
5780, 4310, 9111, 9729, 4844, 8777, 2934, 2260, 3383,
677, 5955, 1775, 8615, 2678, 7207, 4983, 2208, 7566,
3794, 6586, 9089, 4607, 4431, 1898, 8558, 3425, 7455,
151, 8657, 3874, 4473, 7503, 4518, 7826, 3249, 1214,
566, 3704, 5997, 7890, 3278, 7661, 9142, 8230, 2816,
6068, 4291, 2278, 548, 1747, 2757, 8856, 7604, 9958,
9579, 9812, 1985, 9182, 2251, 2481, 5487, 4023, 9015,
6676, 4229, 3823, 5389, 8889, 6789, 7623, 2475, 8824,
4527, 3278, 5014, 7035, 7781, 8659, 4170, 84, 933,
725, 713, 984, 4522, 165, 8541, 3550, 9856, 6449,
954, 7408, 7956, 6254, 745, 4437, 8580, 6995, 8932,
8843, 8309, 2831, 5432, 9899, 5214, 5929, 6853, 232,
3960, 9894, 7631, 5593, 7234, 7902, 5674, 7511, 8746,
8797, 1125, 1819, 7178, 6822, 9470, 9700, 2686, 6016,
9874, 4246, 1975, 2529, 8665, 8895, 4855, 3525, 290,
4969, 5787, 9679, 2794, 9326, 6768, 5504, 6327, 8486,
2227, 1863, 8464, 2847, 3122, 8481, 6329, 8164, 2835,
914, 1643, 9325, 390, 9518, 5261, 2560, 6968, 814,
3439, 2010, 5831, 6819, 4373, 226, 807, 8985, 400,
4859, 9576, 1824, 5304, 2166, 5295, 9839, 8977, 3296,
2089, 2388, 684, 5148, 9429, 2179, 4508, 8095, 3393,
1590, 7307, 7650, 7315, 7704, 4071, 8824, 1894, 4942,
8082, 4009, 1017, 4706, 465, 3347, 6716, 3825, 9465,
9844, 5454, 8496, 7200, 7518, 1496, 2480, 1539, 5178,
3334, 6756, 8484, 1291, 8453, 1648, 229, 5130, 7110,
7312]),
values=tensor([-5.0801e-01, -1.0633e+00, -9.8619e-01, 9.8545e-01,
6.2060e-01, -5.2473e-01, -2.2130e-01, 6.3220e-01,
-1.0516e+00, 1.0742e+00, 8.5829e-01, 7.6617e-01,
7.8189e-02, 8.2482e-01, -4.8240e-01, -3.8947e-01,
2.9964e-02, -4.6604e-01, -4.3864e-01, 1.0483e+00,
-1.0521e+00, 1.8828e+00, 2.3649e-01, 6.9384e-01,
-3.0522e-01, 1.0478e+00, 2.6251e+00, 2.8264e-01,
-5.7952e-01, -7.6281e-01, -2.7561e-01, -5.3587e-01,
-2.8313e-01, 3.3687e-01, -1.2024e+00, -4.3304e-01,
7.4955e-01, -1.2985e+00, 1.0682e+00, -1.3671e+00,
1.0990e+00, -3.6398e+00, 9.9181e-01, 5.6867e-01,
-8.4312e-01, -8.1322e-01, 3.5997e-01, -7.2222e-01,
1.4083e+00, 1.6015e+00, -2.0029e+00, 3.7135e-01,
4.4423e-01, 2.2076e-01, -8.7275e-01, -1.9080e-02,
7.0841e-01, 2.0229e+00, 4.7707e-01, -9.2695e-01,
-5.2486e-01, 1.1071e+00, -1.6144e+00, 2.0416e-01,
1.0989e+00, -1.8099e-01, -4.9454e-01, -4.2812e-01,
-1.3247e+00, -1.8984e-01, -1.1466e+00, 8.0471e-01,
4.4276e-01, 5.2737e-02, 1.0199e+00, 1.5074e-01,
-1.1041e+00, 1.1710e+00, -1.9526e-01, -5.0587e-01,
-1.5945e+00, -3.1246e-02, 8.7179e-01, -1.0607e-01,
-1.7977e+00, 1.1836e+00, -1.1643e+00, 1.0493e+00,
2.3568e+00, -2.2533e-01, -1.0549e+00, -1.9142e-01,
-1.3242e+00, -1.3884e+00, -1.8356e-01, -1.3780e+00,
1.0838e+00, 7.8387e-01, 5.5633e-02, -1.5502e-01,
9.3255e-02, -2.1115e-01, 3.7935e-01, 6.9792e-01,
1.6195e+00, -1.5164e+00, 8.0674e-02, -2.4054e+00,
9.0385e-01, 6.9152e-01, 1.2919e-01, 1.2072e+00,
-9.9730e-01, -1.8347e-01, 7.6086e-01, -5.6024e-01,
-1.4814e+00, -5.2353e-01, 1.0451e+00, 2.8099e-01,
8.6642e-01, 1.8775e+00, 1.2530e+00, -6.5568e-01,
7.4289e-01, 2.4145e-01, 1.1508e-02, 9.3561e-01,
2.7574e-01, 1.4104e-01, 9.5123e-01, 3.2983e-02,
2.6008e-01, 1.9472e+00, 1.6734e+00, 5.9078e-01,
-1.9579e-01, -8.8823e-02, 2.0708e+00, -5.2194e-01,
-7.9024e-01, -1.1605e+00, 1.9821e+00, -1.0750e+00,
-1.2250e+00, -6.1356e-01, 1.4124e+00, -5.0831e-01,
-3.5090e-01, 5.7617e-01, 6.1299e-01, -1.8419e+00,
-9.2811e-01, 2.3505e-01, 1.2646e+00, 3.2103e-01,
-1.2659e-01, 1.3941e+00, -6.5030e-01, -1.6787e+00,
8.4051e-01, -4.0937e-02, 1.4089e+00, -7.9983e-01,
3.4720e-01, -2.3330e-01, -7.8140e-01, 1.9566e+00,
-1.5696e+00, -1.3481e+00, 8.7004e-01, 4.8525e-01,
7.5020e-01, -1.2642e+00, 3.7110e-01, 6.1598e-01,
1.5325e+00, 1.4312e+00, 1.1982e+00, -1.2181e+00,
4.0136e-01, -1.5433e+00, -1.7149e+00, 1.2426e+00,
1.2887e+00, -2.2083e+00, 4.9309e-01, -1.6406e+00,
-1.8152e+00, 1.3112e+00, 1.3917e+00, -2.1807e-01,
-1.8311e-01, 1.7990e-01, 5.3740e-01, -9.6218e-01,
-9.6874e-01, -1.7149e-01, 7.9897e-01, -1.6642e+00,
6.5781e-02, 1.2771e+00, -9.4014e-01, 1.9136e+00,
-1.7538e+00, 2.2712e-01, -8.2863e-01, 2.9218e-01,
7.5843e-01, -1.5545e+00, 1.2207e+00, -8.9096e-01,
9.8385e-01, -4.5785e-03, 8.7335e-01, 1.5771e-01,
1.3415e+00, 1.1326e+00, -1.6468e+00, -8.1289e-01,
1.9740e-01, 2.1936e+00, -2.3700e-01, -1.4652e+00,
2.0807e+00, -1.9683e+00, 7.7732e-03, 8.0974e-01,
2.1420e+00, 8.8298e-01, 6.6630e-01, -8.1524e-01,
9.2563e-01, -4.1779e-01, 3.4015e-01, 8.7908e-02,
8.3751e-01, -1.0480e+00, 8.1256e-01, -1.4108e+00,
1.5220e+00, -8.7485e-01, -2.3564e-01, 6.5271e-01,
1.5923e-01, 9.1737e-01, 1.6501e+00, -4.0371e-01,
8.1114e-01, 2.9470e-01, 3.9277e-01, 2.8234e-01,
9.0077e-02, 4.5916e-01, 4.2919e-01, -6.2353e-01,
3.2834e-01, 4.1968e-01, 1.2450e+00, -1.7530e-01,
-1.5577e+00, 1.0060e+00, -1.2310e-01, -1.0935e+00,
4.3832e-01, 1.0520e-01, -8.4657e-01, -6.0288e-01,
-2.1652e+00, 8.3440e-01, 7.7350e-01, 7.5925e-01,
-1.2374e+00, -1.1573e-01, -3.7727e-01, 1.5182e+00,
6.4242e-01, -7.5962e-01, 1.3202e+00, 4.3657e-01,
1.4373e+00, -1.6553e+00, 2.2427e-01, 1.2842e+00,
1.3906e+00, 7.4446e-01, -9.9256e-01, 2.0616e+00,
1.8389e-01, 5.4683e-01, -1.1952e+00, -4.0905e-01,
8.7204e-01, -8.4437e-01, 6.3085e-01, 1.4472e-01,
-7.4485e-01, -1.9692e+00, -1.2149e+00, 5.3321e-02,
2.5208e-01, 1.1459e-01, -2.2261e+00, 1.3220e+00,
1.5686e+00, 1.2738e-01, 6.6126e-01, 7.7446e-01,
-6.5467e-01, -2.3429e+00, 6.0874e-01, -3.4264e-01,
-1.1484e-01, 1.1306e+00, -1.2634e+00, -1.4477e+00,
-1.0638e+00, -1.6086e-01, 3.3255e-01, 4.5627e-01,
4.1676e-02, -8.8375e-01, 4.5966e-01, 8.9336e-01,
-3.2357e+00, -1.5676e-01, -7.2934e-01, -4.0081e-01,
-4.3265e-01, -1.4646e+00, 3.4145e-01, -1.7735e+00,
-1.0139e+00, -5.9546e-01, -1.2999e+00, -3.8402e-01,
-2.4160e-01, -6.3571e-02, 2.0342e-03, 5.0204e-01,
1.2851e+00, 9.2888e-01, 7.6758e-01, -4.7356e-01,
-1.1442e+00, 7.8704e-01, 1.7242e+00, 1.2900e-01,
-2.0942e+00, -8.9276e-01, -2.9147e-01, -1.4335e+00,
-1.3659e+00, -1.7812e-01, -7.6389e-01, -3.5312e-01,
6.8776e-01, 1.6624e+00, -1.3199e+00, -1.8586e-01,
-9.9660e-01, 2.5120e-01, 1.9244e-01, 1.7058e+00,
1.3177e+00, -4.0989e-01, 6.4177e-01, -2.6971e-01,
-6.1405e-01, 1.9557e+00, 1.5102e+00, 2.0275e+00,
-8.4412e-02, -9.5780e-02, -1.1402e+00, 5.9810e-01,
2.4014e-01, -7.5324e-01, -9.5159e-01, -7.4779e-01,
8.4760e-01, 6.0099e-01, -1.8046e+00, -9.6741e-01,
-6.7384e-01, -2.6058e-01, -1.2863e+00, 1.1690e+00,
-1.4898e-01, 7.5920e-01, -3.4445e-01, 2.8178e+00,
2.3141e-02, 1.4289e+00, 8.2978e-02, 3.0970e-01,
-1.0486e-01, 2.5820e-01, 2.2906e-01, -9.8224e-01,
8.3491e-01, -8.1955e-01, 6.1763e-01, -1.0885e+00,
3.1925e-01, 8.0779e-01, 9.9588e-01, 9.3117e-01,
-1.0256e+00, 3.4294e-01, -7.1720e-01, -8.4131e-02,
9.5080e-01, -7.8120e-01, 8.9249e-01, 4.7470e-01,
-3.8786e-01, -9.5835e-01, -6.4783e-01, 7.2624e-01,
-1.2998e+00, 2.0640e+00, -7.7426e-01, -1.3031e+00,
-5.7320e-01, 4.3710e-01, 3.4358e-01, -5.3855e-01,
1.5271e+00, -8.5876e-01, -3.2930e-01, 5.5758e-01,
-7.9425e-01, -1.5409e+00, 2.8970e-01, 1.8501e+00,
-3.1241e-01, 1.0126e+00, 8.5581e-02, 7.8279e-01,
8.1074e-01, -2.7841e-01, -1.8765e-01, -2.4383e+00,
-7.6620e-01, -1.4431e+00, -1.0157e-01, -1.4068e+00,
-3.6488e-01, 3.2772e-01, 2.5779e+00, -1.2388e+00,
-7.9127e-01, 2.4027e+00, 3.9936e-01, 5.0049e-01,
1.0923e+00, 6.9617e-01, -8.6182e-02, 9.5636e-01,
-3.0834e-01, -1.6176e+00, 3.2773e-02, 1.0314e+00,
-7.8525e-02, 6.4456e-01, 5.5539e-01, 1.2204e+00,
-2.2914e-01, -3.9143e-01, 1.3269e-01, -9.3414e-01,
1.5827e+00, 6.3547e-02, 7.2580e-01, -5.3568e-01,
1.6044e+00, -3.2099e-01, -5.1216e-01, 2.1657e-01,
2.0475e-01, 3.9904e-01, -3.8760e-01, 1.1963e+00,
-2.2280e-01, 2.4507e-01, -1.1145e+00, 7.6321e-01,
7.3567e-01, -2.2130e-01, 1.7796e+00, -2.3613e-01,
8.6781e-01, 1.2884e+00, -5.6163e-01, 2.1498e-01,
1.2591e-01, 1.4855e+00, 4.4995e-01, -5.4515e-01,
3.1117e-01, -6.9669e-03, 1.1221e+00, 1.4089e-01,
-2.2739e-01, 3.2868e-01, 1.2470e+00, -6.1440e-01,
2.1100e+00, 1.9306e-01, -1.3709e+00, 9.8961e-01,
-9.7144e-01, -3.6064e-01, 2.1907e-01, 2.2325e+00,
-2.9597e-01, 1.0648e+00, -3.9992e-01, -1.2454e-01,
5.3628e-01, -1.2357e+00, 1.2321e-01, -1.3774e+00,
1.5687e+00, 1.1952e+00, 1.3081e+00, -5.4886e-01,
-1.8948e-02, 1.9393e+00, -8.6934e-01, -8.6132e-01,
1.4837e+00, -1.9969e-01, 3.7858e-01, 1.5913e+00,
3.5877e-01, -5.7126e-01, 1.0713e+00, -7.1546e-01,
-1.7060e+00, 3.5219e-01, 3.7916e-01, -1.4197e-01,
3.2156e-01, -6.0771e-01, -2.0388e+00, -5.0764e-01,
-1.3899e+00, 2.0469e-01, 1.5707e+00, -3.8887e-01,
-1.3716e+00, 1.4704e+00, 2.6740e-01, 1.4196e-01,
6.2781e-01, 8.2357e-01, -2.3988e+00, -5.5867e-01,
8.5000e-01, 3.9446e-01, -1.4459e-01, -1.6932e+00,
5.5621e-01, 1.5048e+00, -3.3829e-01, -1.9754e+00,
-6.9893e-01, 1.3414e+00, -4.9492e-01, -4.3709e-01,
-4.2565e-01, -4.3121e-01, 5.6996e-02, 3.9456e-01,
2.1797e-01, 8.6135e-01, -4.2897e-01, -1.1078e+00,
-6.2895e-01, 7.3556e-01, -1.6274e+00, -2.7537e-01,
-1.8954e+00, 3.1679e-01, 9.2723e-01, -1.6684e-02,
-5.2663e-01, 3.9312e-02, -7.3527e-01, 1.2078e+00,
4.7022e-01, 2.1300e+00, -1.8223e+00, -1.5393e+00,
1.1589e+00, -1.2071e+00, -7.2669e-03, -9.4773e-01,
1.4297e+00, 6.1758e-01, 2.9351e-01, -2.1100e+00,
1.6557e+00, 3.0590e-01, 2.1106e-01, -6.9896e-01,
-9.1273e-01, 3.5310e-01, -1.2546e+00, -9.9848e-01,
7.2006e-01, -8.8792e-01, -3.7241e-01, 2.4515e-01,
1.1111e+00, 1.4100e+00, -4.7601e-01, 7.0494e-01,
5.7777e-01, -1.5811e-01, 3.3883e-01, -3.7916e-01,
5.7209e-01, 5.9145e-01, -6.1663e-01, 3.1495e-01,
9.9032e-01, -1.2459e-01, -1.3094e+00, 3.2935e-01,
1.1053e+00, 1.4055e-01, -8.6339e-01, 5.3357e-01,
6.6996e-01, -5.3683e-01, -2.4426e-01, -3.1492e-01,
-1.4675e-01, 8.1932e-02, 2.8044e-01, -7.4941e-01,
1.6582e+00, -1.0254e+00, 3.2100e-01, 6.4837e-01,
-2.3948e+00, 3.4057e+00, 2.2290e+00, 6.9964e-01,
1.4514e+00, -8.2711e-01, -2.0317e-01, 5.8374e-01,
7.1101e-02, 7.3696e-01, -6.1129e-01, 1.4757e-02,
4.7295e-02, 3.8396e-01, -1.5107e+00, 9.5734e-01,
-8.7407e-01, 1.6751e+00, -1.0450e+00, -2.8075e+00,
-7.7421e-01, 8.1449e-01, 9.6870e-01, 7.5291e-02,
-1.7732e-01, 1.1338e+00, 1.8098e-01, -1.8273e+00,
-1.3703e-01, -7.8303e-01, 3.3072e-01, 7.5278e-01,
1.3177e+00, 6.3791e-01, -1.0853e+00, -4.2293e-01,
1.4005e+00, 1.3731e-01, -4.6543e-01, 1.1225e+00,
-2.0513e-01, -4.4354e-01, -1.5264e+00, -3.0246e-01,
-9.8811e-01, 5.8672e-01, -2.6560e-01, -2.1545e+00,
-5.3888e-01, 1.1637e+00, 1.9886e+00, -1.8773e+00,
-1.3474e+00, -7.1840e-01, 4.3236e-01, -2.0698e-01,
7.1018e-01, -1.7957e-01, -7.0982e-01, -1.0608e+00,
-2.5537e-01, -3.0802e-01, -6.8751e-01, -1.3230e-01,
-1.3366e+00, 4.1343e-01, -1.3362e+00, -1.0970e+00,
5.0494e-01, -1.1806e+00, -7.3696e-01, -1.9726e+00,
-6.7786e-02, 8.8267e-01, -1.3580e+00, -5.7428e-01,
5.1365e-01, -6.5457e-01, 1.3514e+00, 1.0535e-01,
-1.9839e-01, 9.9201e-01, 1.0133e+00, 1.4085e+00,
-5.5021e-01, 2.7237e-01, 4.8800e-02, -8.5782e-01,
2.6831e-01, 1.5155e+00, 6.4263e-01, -1.4147e+00,
3.8762e-01, -1.3174e+00, -3.1248e-01, 3.3525e-01,
-8.4042e-02, 1.1902e+00, 1.0055e+00, 5.7157e-01,
-3.2199e-01, -1.8975e+00, 5.7265e-01, 1.1325e-01,
7.1695e-01, 1.2813e+00, -2.3049e-01, 1.0454e-01,
6.2688e-01, -2.3520e+00, -3.0567e-03, -2.1421e-01,
-1.7983e-01, 5.3533e-01, 5.4946e-02, -3.8007e-01,
5.1099e-01, 8.3775e-01, 3.0889e-01, 4.9329e-02,
1.2978e-01, -7.6469e-01, 2.0510e+00, 7.9590e-01,
-7.2507e-01, -6.6273e-01, -1.2360e-01, 1.5654e+00,
2.2321e-01, 4.9652e-02, -3.5329e-01, 2.2682e+00,
-3.6232e-01, 9.7287e-01, -1.3324e+00, 8.0087e-01,
6.5441e-01, -1.1291e-01, -6.1473e-02, -4.8811e-01,
-1.2079e+00, -1.3499e+00, 2.1103e-02, -2.9565e+00,
6.8170e-01, -1.0468e+00, 1.4030e+00, 2.6925e-01,
-9.0788e-01, -3.0350e-01, -3.6761e-01, -1.5654e+00,
1.8814e+00, 8.5221e-01, 9.1918e-01, -1.7840e-01,
-6.6032e-01, -2.9593e-01, -1.4219e+00, 1.7643e+00,
-2.4411e-01, 4.5137e-01, 8.4074e-02, 3.5794e-02,
-8.0223e-01, -2.0505e+00, 1.0071e+00, 4.6249e-01,
-1.0512e+00, 1.5307e+00, -1.0765e+00, 1.3725e+00,
2.7150e-01, -1.3178e+00, 3.9922e-01, 4.8091e-01,
-1.0339e-01, 5.1636e-01, 1.9750e+00, -6.3769e-01,
7.5921e-01, -1.5235e+00, 1.2695e+00, 7.4019e-01,
6.0979e-01, -1.2870e+00, 1.8324e+00, -9.8850e-01,
9.8463e-01, -1.4891e+00, 5.9235e-01, 6.6393e-01,
7.9338e-03, 1.3433e+00, 5.8447e-01, 1.8649e+00,
-7.3678e-01, 5.4890e-01, -3.9051e-01, 1.0157e+00,
7.1514e-01, 3.4515e-01, -9.9840e-01, 2.0326e-01,
2.4850e+00, 1.2018e+00, 2.7636e-01, -1.7144e-01,
-1.0708e+00, -3.1508e-01, -3.9906e-01, 5.0346e-01,
-1.3302e+00, -1.9660e+00, 9.2464e-01, -8.4355e-01,
-3.1059e-01, -5.9776e-01, 1.2319e+00, 3.7854e-01,
7.8907e-01, -1.3873e+00, 2.2552e-01, 2.7179e+00,
2.2710e-01, 9.3653e-01, -1.7115e+00, -2.4273e+00,
-8.3434e-01, 3.4544e-01, -1.5752e+00, -6.3237e-01,
-1.6017e-02, -7.5628e-01, -6.9329e-01, -6.9009e-02,
6.4556e-01, 1.1490e+00, -1.1199e+00, -7.6860e-01,
-1.7535e+00, 2.7418e-01, -3.1523e-01, -3.5911e-01,
-3.1561e-01, -3.4363e-03, 1.9697e-01, -3.0148e-01,
-5.8726e-01, -1.0463e+00, -6.4585e-01, -1.3774e+00,
-5.8369e-01, 1.7349e-01, -2.1763e+00, 1.3632e+00,
-7.7927e-02, 8.0055e-03, 7.9048e-02, -2.2530e-01,
1.4166e+00, 2.7405e-01, -8.8141e-01, -9.9512e-01,
-1.4940e+00, -5.2716e-01, -1.1782e+00, -5.9529e-01,
-3.8784e-01, 8.3227e-01, -7.7575e-01, 1.1831e+00,
6.6421e-01, 9.0164e-01, -1.6564e-01, 1.1151e-01,
7.7731e-01, -8.2916e-01, -2.1123e+00, 4.4510e-02,
2.7821e-01, 7.1635e-01, -2.7111e-01, -1.1191e+00,
-2.8333e-01, 9.6444e-02, 7.1832e-01, -1.3543e+00,
-4.6190e-01, 7.9146e-01, -1.7401e+00, 4.4379e-01,
-1.5138e+00, -2.0513e+00, -5.0934e-02, 8.2612e-01,
2.0566e-01, 1.7997e-01, 4.0236e-01, -1.8707e+00,
-6.7409e-01, 4.7545e-01, 9.7804e-01, 3.1755e-01,
1.3746e+00, 8.0198e-02, -1.5484e-01, -9.2889e-01,
7.9460e-01, 7.0240e-01, 6.5606e-01, 1.1456e+00,
-3.8998e-01, 1.3453e+00, -2.1094e+00, -7.0577e-01,
-1.4005e+00, -8.1774e-01, -3.0010e-01, 2.5023e-01,
-3.8948e-01, -2.8476e-01, 4.5495e-01, 1.3132e+00,
2.4090e+00, 2.7259e-01, -3.1603e-01, 4.2597e-01,
2.4357e-02, -1.4799e+00, -1.6291e+00, 1.7676e-01,
1.8099e-01, -1.1525e+00, 1.0847e-01, -5.1160e-01,
5.9593e-01, 9.5084e-01, -4.6924e-01, -2.1838e-01,
1.0303e+00, -5.8626e-01, 9.8054e-01, -5.9758e-02,
1.2185e+00, 3.0819e-01, 1.2146e+00, 1.7010e-02,
4.8546e-01, 1.3124e+00, 5.2765e-01, 3.7501e-01]),
size=(10000, 10000), nnz=1000, layout=torch.sparse_csr)
tensor([0.7863, 0.2047, 0.8532, ..., 0.8457, 0.0751, 0.8874])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([10000, 10000])
Size: 100000000
NNZ: 1000
Density: 1e-05
Time: 10.538879156112671 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 722194, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.27481746673584, "TIME_S_1KI": 0.014227226294784836, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 275.34924281120294, "W": 26.588815836963942, "J_1KI": 0.3812676965070368, "W_1KI": 0.036816722150784895, "W_D": 16.973815836963944, "J_D": 175.7779423868656, "W_D_1KI": 0.023503124973295188, "J_D_1KI": 3.2544060146297514e-05}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 0, 0, ..., 5000, 5000, 5000]),
col_indices=tensor([ 730, 1184, 6226, ..., 4450, 393, 9426]),
values=tensor([-0.6520, -0.7895, -0.9804, ..., -1.4162, 0.4906,
0.1947]), size=(10000, 10000), nnz=5000,
layout=torch.sparse_csr)
tensor([0.0482, 0.3073, 0.6996, ..., 0.3017, 0.8775, 0.4557])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([10000, 10000])
Size: 100000000
NNZ: 5000
Density: 5e-05
Time: 10.27481746673584 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 383298, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [20000, 20000], "MATRIX_SIZE": 400000000, "MATRIX_NNZ": 39998, "MATRIX_DENSITY": 9.9995e-05, "TIME_S": 10.178744077682495, "TIME_S_1KI": 0.026555693162193635, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 286.18491299629216, "W": 27.046677974472292, "J_1KI": 0.7466381588119222, "W_1KI": 0.0705630553106781, "W_D": 17.451677974472293, "J_D": 184.65879423260694, "W_D_1KI": 0.04553031316227137, "J_D_1KI": 0.00011878567892937447}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 2, 5, ..., 39996, 39998, 39998]),
col_indices=tensor([ 4867, 15484, 7914, ..., 19697, 6735, 16833]),
values=tensor([-0.3077, -0.3059, 0.7735, ..., -2.0428, -1.4562,
-1.2098]), size=(20000, 20000), nnz=39998,
layout=torch.sparse_csr)
tensor([0.4051, 0.2592, 0.6408, ..., 0.6275, 0.0899, 0.2928])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([20000, 20000])
Size: 400000000
NNZ: 39998
Density: 9.9995e-05
Time: 10.178744077682495 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 636816, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [20000, 20000], "MATRIX_SIZE": 400000000, "MATRIX_NNZ": 4000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.367442607879639, "TIME_S_1KI": 0.01628012268517066, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 282.81412154197693, "W": 26.878661134925416, "J_1KI": 0.4441064947205738, "W_1KI": 0.04220789228745103, "W_D": 17.233661134925416, "J_D": 181.3305622017384, "W_D_1KI": 0.027062230118158805, "J_D_1KI": 4.249615292040213e-05}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 0, 0, ..., 3999, 3999, 4000]),
col_indices=tensor([10060, 11713, 8237, ..., 6932, 14069, 757]),
values=tensor([ 0.8321, 0.1946, -0.2913, ..., -0.3362, -0.6210,
1.2498]), size=(20000, 20000), nnz=4000,
layout=torch.sparse_csr)
tensor([0.6647, 0.8949, 0.3166, ..., 0.4160, 0.2645, 0.7939])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([20000, 20000])
Size: 400000000
NNZ: 4000
Density: 1e-05
Time: 10.367442607879639 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 487532, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [20000, 20000], "MATRIX_SIZE": 400000000, "MATRIX_NNZ": 20000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.782274961471558, "TIME_S_1KI": 0.022116035381208942, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 299.7260921096802, "W": 27.648575396143613, "J_1KI": 0.6147823980983407, "W_1KI": 0.05671130386547675, "W_D": 17.963575396143614, "J_D": 194.7352504301072, "W_D_1KI": 0.036845941181591395, "J_D_1KI": 7.557645689224788e-05}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 0, 1, ..., 19998, 19998, 20000]),
col_indices=tensor([ 2697, 3286, 9997, ..., 10197, 6648, 8484]),
values=tensor([ 1.6901, -0.6402, -0.1805, ..., 0.2027, -0.1868,
-0.5533]), size=(20000, 20000), nnz=20000,
layout=torch.sparse_csr)
tensor([0.7474, 0.1459, 0.7655, ..., 0.6283, 0.2273, 0.4477])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([20000, 20000])
Size: 400000000
NNZ: 20000
Density: 5e-05
Time: 10.782274961471558 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 112982, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 249989, "MATRIX_DENSITY": 9.99956e-05, "TIME_S": 10.606346607208252, "TIME_S_1KI": 0.09387642816739172, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 295.4847658538818, "W": 28.4523730731245, "J_1KI": 2.6153260329422547, "W_1KI": 0.2518310268283842, "W_D": 18.9023730731245, "J_D": 196.3057094478607, "W_D_1KI": 0.16730428805583633, "J_D_1KI": 0.001480804801258929}

View File

@ -0,0 +1,17 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 2, 7, ..., 249977, 249984,
249989]),
col_indices=tensor([19392, 19516, 3969, ..., 9397, 13799, 18598]),
values=tensor([ 0.7235, -0.3416, 0.2990, ..., -1.3366, -2.0730,
1.1817]), size=(50000, 50000), nnz=249989,
layout=torch.sparse_csr)
tensor([0.4876, 0.3319, 0.9142, ..., 0.7843, 0.0179, 0.5206])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([50000, 50000])
Size: 2500000000
NNZ: 249989
Density: 9.99956e-05
Time: 10.606346607208252 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 284902, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.685346841812134, "TIME_S_1KI": 0.03750534163260396, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 285.9664697265625, "W": 26.488718415254077, "J_1KI": 1.0037362662479115, "W_1KI": 0.0929748419289934, "W_D": 16.893718415254078, "J_D": 182.38092685461044, "W_D_1KI": 0.05929659467204189, "J_D_1KI": 0.000208129794357505}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 1, 1, ..., 25000, 25000, 25000]),
col_indices=tensor([12058, 39801, 6345, ..., 49764, 27098, 10943]),
values=tensor([ 1.6480, 0.4412, 1.3099, ..., 1.0150, 0.4807,
-0.5419]), size=(50000, 50000), nnz=25000,
layout=torch.sparse_csr)
tensor([0.9117, 0.0733, 0.3474, ..., 0.2793, 0.5305, 0.3928])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([50000, 50000])
Size: 2500000000
NNZ: 25000
Density: 1e-05
Time: 10.685346841812134 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 144418, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 124998, "MATRIX_DENSITY": 4.99992e-05, "TIME_S": 10.171265840530396, "TIME_S_1KI": 0.07042934980771369, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 274.5023854827881, "W": 26.936643314017235, "J_1KI": 1.9007491135647085, "W_1KI": 0.18651860096398812, "W_D": 17.421643314017235, "J_D": 177.5381807219982, "W_D_1KI": 0.12063346199239176, "J_D_1KI": 0.0008353076624270641}

View File

@ -0,0 +1,17 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 2, 5, ..., 124993, 124996,
124998]),
col_indices=tensor([ 3460, 36222, 32292, ..., 37574, 12800, 47090]),
values=tensor([-0.2525, 0.9634, -1.4586, ..., -0.7907, 0.4392,
0.8238]), size=(50000, 50000), nnz=124998,
layout=torch.sparse_csr)
tensor([0.4631, 0.6797, 0.0082, ..., 0.6902, 0.2330, 0.3617])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([50000, 50000])
Size: 2500000000
NNZ: 124998
Density: 4.99992e-05
Time: 10.171265840530396 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 56154, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 999940, "MATRIX_DENSITY": 9.9994e-05, "TIME_S": 10.565309524536133, "TIME_S_1KI": 0.18814883222096615, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 1172.9214494276046, "W": 110.49, "J_1KI": 20.88758502382029, "W_1KI": 1.9676247462335716, "W_D": 90.96375, "J_D": 965.6379174166918, "W_D_1KI": 1.6198979591836735, "J_D_1KI": 0.0288474188692466}

View File

@ -0,0 +1,17 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 12, 27, ..., 999918, 999926,
999940]),
col_indices=tensor([10635, 12710, 47896, ..., 84196, 86725, 88253]),
values=tensor([-0.7477, 0.4189, -1.0168, ..., 0.1393, -1.2249,
-1.4894]), size=(100000, 100000), nnz=999940,
layout=torch.sparse_csr)
tensor([0.0132, 0.2560, 0.3006, ..., 0.6334, 0.2940, 0.6020])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([100000, 100000])
Size: 10000000000
NNZ: 999940
Density: 9.9994e-05
Time: 10.565309524536133 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 140304, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 99999, "MATRIX_DENSITY": 9.9999e-06, "TIME_S": 10.418423652648926, "TIME_S_1KI": 0.07425607005252113, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 1049.3959311294554, "W": 102.85999999999999, "J_1KI": 7.479444143641346, "W_1KI": 0.7331223628691982, "W_D": 83.23624999999998, "J_D": 849.1909592890738, "W_D_1KI": 0.5932564288972516, "J_D_1KI": 0.004228364329578997}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 0, 0, ..., 99996, 99996, 99999]),
col_indices=tensor([ 5909, 46249, 49873, ..., 51099, 64641, 73499]),
values=tensor([-1.0005, 1.1647, -0.5534, ..., -0.2931, 2.1579,
-0.4823]), size=(100000, 100000), nnz=99999,
layout=torch.sparse_csr)
tensor([0.9840, 0.9205, 0.1724, ..., 0.6954, 0.2921, 0.6740])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([100000, 100000])
Size: 10000000000
NNZ: 99999
Density: 9.9999e-06
Time: 10.418423652648926 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 82055, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 499987, "MATRIX_DENSITY": 4.99987e-05, "TIME_S": 10.827465534210205, "TIME_S_1KI": 0.13195375704357085, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 1135.1707736134529, "W": 104.89, "J_1KI": 13.83426693819332, "W_1KI": 1.2782889525318384, "W_D": 85.5125, "J_D": 925.458011046052, "W_D_1KI": 1.0421363719456462, "J_D_1KI": 0.012700461543423877}

View File

@ -0,0 +1,17 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 4, 10, ..., 499977, 499983,
499987]),
col_indices=tensor([30997, 34024, 68742, ..., 39238, 86756, 88625]),
values=tensor([-0.3461, 1.0096, 1.0312, ..., -0.4452, -1.3530,
-0.7355]), size=(100000, 100000), nnz=499987,
layout=torch.sparse_csr)
tensor([0.7998, 0.1424, 0.0356, ..., 0.9066, 0.1670, 0.4921])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([100000, 100000])
Size: 10000000000
NNZ: 499987
Density: 4.99987e-05
Time: 10.827465534210205 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 478747, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 9998, "MATRIX_DENSITY": 9.998e-05, "TIME_S": 11.3640615940094, "TIME_S_1KI": 0.023737092021483996, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 1010.4165006351471, "W": 88.62, "J_1KI": 2.1105437749691323, "W_1KI": 0.18510820955536014, "W_D": 68.94625, "J_D": 786.1027833098174, "W_D_1KI": 0.14401395726761734, "J_D_1KI": 0.00030081432837723756}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 2, 4, ..., 9994, 9995, 9998]),
col_indices=tensor([3352, 5347, 7872, ..., 1075, 3060, 3215]),
values=tensor([-0.4642, -0.0165, 0.4848, ..., 0.2407, -0.0620,
1.1649]), size=(10000, 10000), nnz=9998,
layout=torch.sparse_csr)
tensor([0.2161, 0.2804, 0.3926, ..., 0.6876, 0.5385, 0.4336])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([10000, 10000])
Size: 100000000
NNZ: 9998
Density: 9.998e-05
Time: 11.3640615940094 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 543763, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 11.077085971832275, "TIME_S_1KI": 0.020371165327233143, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 933.9396756601333, "W": 85.66, "J_1KI": 1.7175491448666667, "W_1KI": 0.15753186590481513, "W_D": 65.82374999999999, "J_D": 717.6676596513389, "W_D_1KI": 0.1210522782903581, "J_D_1KI": 0.00022261955721584236}

View File

@ -0,0 +1,375 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]),
col_indices=tensor([7626, 2134, 9416, 9203, 5456, 4834, 803, 6099, 6932,
9169, 927, 2347, 1278, 2443, 9640, 4967, 1705, 1281,
9799, 1042, 187, 5752, 5501, 5243, 341, 8257, 941,
6224, 82, 147, 5077, 3094, 6873, 8650, 6987, 4778,
9176, 1213, 4199, 1608, 4374, 9706, 1259, 6550, 4729,
7726, 4281, 8374, 6724, 1647, 2824, 9288, 895, 1038,
6321, 2393, 1356, 3008, 3097, 7335, 8446, 9476, 9412,
8362, 9523, 9923, 6335, 9341, 6599, 8070, 6500, 4795,
5213, 7282, 8360, 4550, 9786, 8318, 381, 3890, 4060,
1591, 431, 6283, 7110, 1389, 6495, 2364, 9469, 5901,
1341, 270, 9147, 6352, 3444, 1588, 1741, 230, 1601,
372, 5108, 7042, 9846, 1758, 7480, 6619, 5923, 2194,
8302, 3582, 1726, 73, 3859, 8215, 3011, 668, 3821,
339, 6264, 4015, 7653, 414, 7152, 1358, 3054, 7701,
1253, 9367, 8506, 3666, 570, 3051, 1041, 646, 8521,
9756, 5618, 6155, 3919, 6048, 1550, 6425, 6191, 7192,
1451, 7262, 6911, 6552, 2778, 9754, 7655, 5926, 4150,
1025, 3315, 6450, 942, 6127, 5005, 1122, 3346, 9622,
1433, 1468, 5448, 6149, 8659, 9988, 3673, 5939, 5177,
3341, 1138, 4718, 8176, 5412, 5921, 3708, 6954, 6495,
1976, 9463, 7453, 5238, 6297, 9141, 8937, 5747, 3998,
6155, 9868, 3425, 6530, 8967, 5325, 574, 8255, 3108,
2433, 764, 8017, 7776, 5814, 3025, 7117, 3544, 2857,
8488, 4432, 849, 2726, 982, 5497, 6278, 6487, 4992,
2512, 8110, 1293, 3096, 6875, 3274, 5127, 9524, 3540,
7495, 2243, 1132, 5606, 840, 8883, 8081, 5119, 4300,
9214, 4075, 3515, 788, 6363, 8248, 6269, 7347, 39,
6778, 1800, 2960, 8037, 592, 3017, 7122, 1941, 3627,
6105, 1255, 4633, 4494, 5165, 4223, 5024, 1023, 3489,
2876, 9802, 3040, 4749, 7898, 6298, 2712, 5388, 4449,
5100, 6493, 9183, 8535, 8896, 5497, 5320, 7993, 5608,
481, 9188, 5799, 3225, 992, 4426, 1486, 1775, 8052,
8224, 4989, 3631, 5123, 2552, 4660, 9, 5336, 7681,
6220, 6255, 9802, 5831, 222, 5288, 1874, 6192, 2899,
6311, 4242, 9650, 8246, 8334, 4493, 4734, 9093, 2840,
2945, 3606, 1859, 5189, 108, 6476, 940, 8142, 4257,
8748, 5186, 3977, 6170, 3722, 3479, 2806, 8804, 2737,
4720, 7591, 5230, 7364, 4252, 6041, 6879, 9613, 4519,
2091, 8845, 2546, 6529, 9417, 9191, 6394, 8206, 4691,
5774, 7555, 476, 937, 1386, 7461, 3718, 5134, 3025,
1464, 6365, 1199, 531, 1509, 3394, 4223, 7222, 6158,
2412, 2987, 8336, 8514, 5760, 9409, 1061, 2274, 9783,
4287, 8863, 4039, 9696, 4991, 7386, 401, 597, 8676,
515, 7539, 5893, 4012, 6237, 2923, 1608, 1616, 1551,
9574, 6885, 2994, 3134, 3786, 6259, 7321, 1251, 2524,
8957, 4056, 8740, 5227, 2007, 5691, 2375, 3884, 856,
7460, 5076, 286, 6906, 3631, 2110, 6955, 3157, 1749,
3423, 8999, 5765, 5209, 9769, 4334, 4807, 7624, 5895,
2808, 5687, 6725, 5874, 5245, 2907, 4418, 2328, 8518,
903, 5860, 317, 8990, 2166, 5789, 7712, 2564, 2855,
1227, 4140, 4547, 9238, 3012, 4000, 6692, 3156, 7224,
7720, 8802, 2080, 3063, 1045, 1264, 6046, 3984, 1112,
61, 9697, 3408, 557, 759, 355, 776, 6884, 2131,
4314, 6992, 6703, 532, 5847, 1422, 6905, 8177, 5024,
7211, 1867, 1353, 9041, 51, 3670, 4651, 8300, 743,
6007, 3819, 8273, 9421, 1422, 4701, 4713, 9252, 5320,
4185, 9111, 5831, 8338, 9355, 8838, 5211, 6447, 3766,
473, 9846, 2286, 5794, 1256, 4870, 6897, 9867, 3774,
4255, 5466, 7757, 1977, 9823, 2674, 6843, 4338, 7919,
9827, 6848, 1833, 9996, 3230, 1106, 6280, 5822, 4081,
3278, 8927, 3608, 9126, 6831, 5312, 7368, 1831, 276,
572, 2789, 2818, 6928, 2402, 8275, 2643, 7171, 2014,
3989, 5728, 9251, 3049, 9828, 7641, 5404, 6831, 47,
480, 4626, 8850, 3721, 2447, 5001, 943, 8334, 4212,
8910, 982, 9626, 8502, 4955, 1298, 6518, 360, 21,
1467, 2347, 1452, 4465, 4951, 7505, 8077, 4743, 4487,
1342, 5032, 7592, 3492, 5412, 8086, 8095, 2410, 8979,
1937, 4080, 1338, 4168, 6012, 3290, 5897, 4777, 254,
8417, 9898, 4795, 7147, 7405, 1563, 9538, 9963, 6594,
9131, 7619, 6115, 1399, 3488, 1364, 3617, 839, 7179,
2166, 5447, 7504, 7159, 7779, 9400, 1468, 4121, 8990,
3667, 1679, 4925, 4871, 7401, 8419, 7811, 1839, 4473,
154, 262, 2504, 6276, 8832, 3324, 314, 4506, 6913,
1331, 6997, 5696, 1391, 3983, 2705, 7130, 5700, 6274,
1329, 7166, 1647, 3103, 1348, 2102, 5291, 415, 2923,
2889, 7683, 3211, 7751, 7993, 1868, 7737, 7077, 815,
7600, 8435, 5295, 1511, 3065, 9021, 4224, 5005, 380,
8507, 9054, 4359, 214, 8622, 4558, 8745, 3766, 5483,
2655, 4901, 7684, 7098, 4170, 4704, 3822, 9045, 2734,
5323, 4521, 2759, 8246, 1373, 4806, 7935, 4316, 9921,
5133, 5313, 837, 1751, 9308, 9460, 690, 5466, 4317,
1878, 1106, 1476, 7561, 3240, 6950, 8380, 4323, 9809,
8438, 2368, 9003, 3743, 5585, 7406, 6746, 8243, 2135,
2060, 4151, 8250, 7037, 1335, 9139, 8376, 8938, 1878,
3174, 5476, 4412, 8717, 442, 6756, 9508, 6450, 591,
4406, 7643, 2387, 3765, 7480, 7752, 5067, 7406, 615,
1305, 2479, 221, 7998, 7271, 2495, 1246, 7214, 3441,
8794, 8377, 6740, 3964, 3241, 4534, 1996, 994, 5842,
9392, 5713, 4054, 3270, 2581, 5849, 184, 6762, 8289,
1409, 9285, 4240, 2479, 8669, 2120, 9397, 4004, 3949,
2038, 2745, 4717, 5741, 1892, 7308, 6676, 8126, 6078,
8251, 147, 6831, 2169, 5052, 1725, 4077, 6155, 7152,
922, 9055, 853, 5983, 3709, 1495, 2195, 7812, 6057,
7788, 223, 3361, 8221, 577, 7341, 5734, 4982, 1689,
529, 9951, 835, 7225, 9890, 6369, 9692, 5209, 8314,
4050, 2886, 7454, 509, 2808, 7488, 9325, 3535, 9638,
5546, 9962, 3488, 5738, 9667, 3164, 9429, 5065, 9604,
7215, 9013, 9306, 2051, 6037, 7824, 9483, 5376, 9571,
5528, 7967, 5784, 3528, 6608, 7637, 7083, 8477, 4145,
7983, 2888, 9106, 1989, 1355, 2131, 9858, 6762, 6247,
6623, 9666, 7309, 8418, 8043, 2067, 829, 3420, 9979,
9285, 9641, 170, 6544, 2046, 7879, 6887, 1476, 4373,
2462, 3190, 4593, 1507, 378, 8370, 3272, 9903, 6734,
7530, 383, 4293, 9568, 152, 3034, 4654, 4112, 112,
3161, 6212, 699, 5941, 1448, 4596, 533, 1588, 8787,
8347, 5190, 2602, 8644, 4989, 5408, 7045, 3189, 3920,
9121, 4234, 8745, 4713, 8455, 392, 8268, 9681, 4716,
9325, 7747, 8471, 6833, 1005, 2956, 5444, 9981, 4646,
2750, 1121, 3270, 3083, 8309, 2875, 4882, 963, 8346,
3780, 6799, 4938, 477, 4882, 4406, 152, 4258, 116,
7446, 192, 1151, 1533, 6989, 3318, 1299, 2189, 3257,
9229]),
values=tensor([-2.3522e-01, 1.2979e-01, 2.9240e-02, 4.8026e-01,
1.5519e+00, 3.7628e-01, -1.4852e-01, 6.2545e-01,
9.5494e-02, -1.1399e-01, -1.0819e+00, -1.0225e+00,
-1.2030e+00, -1.3311e+00, 1.0505e+00, 1.5789e+00,
5.8352e-01, -1.4390e+00, -8.5914e-02, 9.2504e-01,
1.1900e+00, 1.6351e+00, -1.5735e+00, 1.3200e-01,
-4.8514e-01, 1.1412e+00, 9.4585e-01, 5.8691e-01,
5.3482e-01, -2.0799e+00, -3.7997e-01, 2.5251e-01,
1.4717e+00, -1.1284e+00, -1.7934e-01, 2.2032e+00,
-6.6113e-01, -2.5990e+00, -4.5249e-01, -1.7148e-01,
-3.8631e-01, -6.6646e-01, 3.8101e-01, 5.0806e-01,
-5.0677e-01, 4.9025e-01, 7.6072e-01, -2.5431e-01,
-1.0626e-01, 3.2849e-01, -6.3354e-01, -5.1186e-01,
-2.0593e-01, 3.2604e-01, -4.7808e-01, 4.4647e-03,
-4.1542e-01, 3.2586e-01, 1.1064e+00, -1.4304e+00,
3.8981e-01, 1.6459e+00, 5.1032e-01, 6.3749e-02,
1.5171e+00, 3.2150e-01, -6.8843e-01, -1.5704e+00,
-3.6514e-01, 3.7201e-01, -4.1926e-02, -1.0366e+00,
2.2281e+00, -6.8664e-01, 5.6742e-01, -1.1882e+00,
8.3376e-01, -1.0198e+00, -2.2795e-01, 1.5261e+00,
1.6007e+00, 6.9175e-01, 6.9272e-01, -1.6943e+00,
-8.3690e-01, 3.7212e-01, 7.2596e-01, 2.2218e-01,
1.3722e-01, 3.2215e-01, -3.1293e-01, -1.5193e+00,
2.8913e-01, 1.2906e+00, -1.0348e+00, 9.8322e-01,
-1.0576e+00, -9.0997e-01, -9.0779e-01, -9.9988e-01,
1.1461e+00, 1.3127e+00, -3.6786e-01, -7.5462e-01,
4.9731e-01, -3.8845e-01, -7.8998e-01, -1.0202e+00,
-3.0734e-01, 2.1311e-01, -9.7862e-01, 1.8856e-01,
-6.9982e-01, 8.2460e-01, -7.8666e-01, -4.1253e-01,
-7.8076e-02, -4.1332e-01, -5.7544e-03, -3.7334e-01,
-8.6931e-01, -8.3554e-01, -8.0517e-01, 3.5883e-01,
-3.6494e-01, -3.6172e+00, 7.4363e-01, 4.8463e-02,
4.0291e-01, -1.6112e+00, 1.8605e-01, -3.7974e-01,
1.4115e+00, -1.0398e+00, -2.8463e-01, 1.2376e+00,
1.2013e+00, -3.2844e-01, 6.9804e-01, -1.4286e+00,
-9.1439e-01, 1.4700e+00, -1.1610e-01, 7.6704e-01,
-1.0486e+00, 1.3959e+00, 3.3147e-01, -6.0791e-01,
1.9022e+00, 1.2588e+00, 5.6381e-01, 3.8377e-01,
1.3567e+00, -2.0946e+00, 2.2115e-01, -6.6616e-01,
6.6960e-01, -2.3678e-03, 1.4123e+00, 1.3278e-01,
1.7834e-01, 3.4210e-02, -1.2655e+00, -1.3855e+00,
-1.4143e+00, 9.7405e-01, -9.4850e-01, -8.9569e-01,
-1.0822e+00, -6.8550e-01, -3.9674e-01, 3.4333e-01,
9.8130e-01, -6.5288e-01, -1.1699e+00, 1.9861e+00,
-5.7087e-01, -1.1289e+00, -3.1748e-01, -2.4740e+00,
2.3461e+00, -1.7498e+00, -1.0773e+00, 6.9016e-01,
7.8237e-01, -6.8336e-01, -1.8712e-01, 5.2076e-01,
8.7956e-01, 7.2365e-01, 2.7064e-03, -2.7710e-01,
1.5632e+00, 5.3816e-01, 3.2524e-01, -3.0324e+00,
-7.1892e-01, -1.1866e+00, -1.6651e+00, 9.6639e-01,
-3.8055e-01, 6.9680e-01, -1.3125e+00, -8.1809e-01,
-1.2265e+00, 7.0401e-01, 1.2181e+00, 5.6475e-01,
-3.2349e+00, -9.9939e-01, -4.7763e-01, 1.4441e+00,
1.3445e-01, 1.4763e+00, -1.7287e-01, -1.1611e+00,
-1.3500e+00, -7.7456e-01, 4.2122e-01, 1.1128e+00,
2.4929e-01, 3.7511e-02, -1.7225e-01, -3.1990e-01,
-3.2301e-01, -6.2556e-01, -1.1295e+00, -1.8815e-01,
1.3572e+00, -3.3089e-01, 7.1656e-02, -1.2409e+00,
-4.7999e-02, 1.3521e+00, -2.0149e+00, 1.6293e-01,
-9.8391e-01, 6.7066e-01, -3.9226e-01, -5.9075e-02,
1.9578e+00, -9.2303e-01, -8.8551e-01, 5.9663e-01,
3.7964e-01, 1.1203e-01, 1.2885e+00, -4.9550e-01,
-2.0914e+00, 6.4360e-01, -1.5227e+00, 5.6765e-01,
-8.8409e-01, -6.9238e-01, -3.1170e-01, 9.8474e-01,
-3.6765e-01, 3.6247e-01, 1.6325e+00, -8.8814e-01,
-1.5785e+00, -8.8371e-01, 5.2951e-01, 9.8334e-01,
2.7091e-01, -1.5423e+00, -6.1841e-01, 2.0842e+00,
3.7839e-01, 2.9711e+00, 7.2200e-01, 1.6945e+00,
-6.6962e-01, -3.9545e-01, -8.7015e-01, -1.0042e+00,
-2.4779e-02, -5.6590e-01, -1.8481e+00, -1.1339e+00,
-8.1807e-01, -1.3489e-01, 8.3492e-02, 6.6408e-01,
8.1132e-01, 5.1766e-01, 3.9895e-01, -2.9011e-02,
-3.1152e+00, -5.6395e-01, 3.0740e-01, -1.1308e-01,
6.0828e-01, 5.3796e-01, 6.9169e-01, 7.5685e-01,
-2.6736e-01, -8.8074e-01, 1.9220e+00, -7.4642e-01,
-8.6932e-01, -1.5789e+00, -7.0665e-02, 1.4942e+00,
-1.5796e-01, -3.0117e-01, 9.5877e-01, 1.6477e+00,
-3.1346e-01, -2.7395e-01, 4.3333e-01, -7.6843e-01,
-2.0140e-01, -4.5389e-02, -5.0143e-01, -9.3091e-02,
7.7298e-01, 8.5693e-01, -1.2905e-01, -1.3434e+00,
-4.8246e-01, 8.4460e-01, 7.4677e-01, 5.1184e-01,
-1.7986e-01, -5.0712e-01, 1.8679e-01, 6.0519e-01,
2.6346e-01, -1.4640e-01, -8.8524e-01, 1.3604e+00,
1.8574e+00, 1.7145e-01, 4.0714e-01, 1.3600e+00,
5.9333e-02, -6.3759e-01, 4.3740e-02, 7.8392e-03,
-4.5298e-01, 5.7739e-01, 3.4284e-01, 1.3143e-02,
3.6260e-01, 1.3081e+00, -1.9547e+00, -7.2830e-01,
6.6485e-01, -6.5878e-01, -1.3397e+00, 1.3253e+00,
-6.6370e-01, 8.0953e-01, -8.2004e-01, 1.1651e-01,
7.1067e-01, -2.6208e-01, -8.4269e-02, 3.6380e-01,
1.2412e+00, -1.0319e+00, 1.9989e+00, -1.5007e+00,
-5.2765e-01, 8.4074e-01, -1.8908e+00, -1.4246e-01,
1.0595e+00, -5.5501e-02, -3.4923e-01, 4.3996e-01,
-2.7090e-01, 1.0740e-01, -3.2494e-01, -2.2522e-02,
-1.6072e-01, 6.5833e-01, 1.2315e-01, -9.0384e-01,
-3.0794e-01, 6.1901e-01, 2.8365e-01, 1.5895e+00,
3.3817e-01, -3.1041e-01, 1.5936e-01, -1.1909e+00,
1.5926e+00, -1.3397e+00, -3.4407e-03, -7.7454e-02,
-3.6916e-01, 1.1076e-01, -2.4143e-01, -2.6586e-01,
-9.4028e-01, -7.2749e-01, -3.4565e-01, 1.4034e+00,
-2.3527e-01, -2.2065e+00, -5.2895e-01, 8.8837e-02,
9.8816e-01, -1.2003e+00, 9.2395e-01, -3.2259e-02,
1.4501e+00, -2.8261e-01, -1.3336e-01, 1.0032e+00,
-1.2146e-01, 2.7609e-01, 5.8905e-01, 4.3062e-01,
2.4131e-02, 1.6593e+00, -1.3784e+00, -5.6529e-01,
5.7239e-02, 8.1128e-01, 6.2010e-01, -3.0283e-02,
-3.0724e-01, -2.6863e-01, 1.4558e+00, -9.3387e-02,
-9.1264e-01, 1.3278e+00, 2.0755e-01, -1.4661e+00,
7.6815e-02, -9.1206e-01, 1.3447e+00, -3.0710e-01,
-8.4037e-01, 6.6125e-02, -1.8168e+00, -1.1824e-01,
-8.3491e-01, 1.2953e+00, 9.8816e-01, -7.1309e-01,
-2.1268e-01, -1.5409e+00, -5.0272e-01, 4.0544e-01,
-8.3539e-01, -6.7111e-01, 5.1238e-01, 1.9338e+00,
-1.1558e+00, -2.1755e-01, 1.0588e+00, 2.2754e-01,
-3.1853e-01, -3.4389e-01, -1.3201e+00, -1.5502e+00,
-2.6197e-01, -4.3706e-01, 2.0345e-01, -1.3127e+00,
1.7146e+00, -1.8414e+00, 7.2632e-01, -1.2348e+00,
4.7364e-01, -6.7335e-01, 2.4759e-01, -2.8121e-01,
1.0176e+00, 6.1623e-01, 6.3369e-02, 3.2934e-01,
-6.0517e-02, 4.1062e-01, -1.5693e+00, 8.5370e-01,
4.3641e-01, 5.2161e-01, -1.1596e+00, 2.3817e-01,
-1.0893e+00, -6.3622e-01, -5.1865e-01, -9.7025e-01,
7.0754e-01, -5.0621e-01, -2.1089e+00, -4.6757e-01,
2.2874e-01, -4.5898e-01, -2.7058e-01, -8.7834e-02,
1.4721e+00, 2.6977e-01, -8.1260e-01, -5.5783e-01,
7.3153e-01, -2.2594e+00, -6.8451e-01, -1.4365e+00,
-9.1680e-01, 1.0501e+00, 8.4837e-01, -8.1944e-01,
3.6895e-01, -1.0844e+00, 9.7863e-01, 2.2304e-01,
-1.6397e+00, 1.9159e+00, 7.4577e-02, 1.1141e+00,
1.4342e-01, 1.1246e+00, -9.0693e-01, -1.3159e+00,
-3.7580e-01, -9.8489e-01, 6.0662e-02, 7.9664e-01,
-1.0441e+00, -2.7058e-02, 6.7573e-01, 4.9417e-01,
8.4082e-01, -1.0491e+00, 2.3262e+00, 4.5197e-03,
6.7806e-01, -6.7078e-02, 1.2485e+00, -3.1802e-01,
1.2126e+00, -3.2150e-01, -7.3816e-01, -1.3683e+00,
5.6732e-01, -2.3782e-01, 1.9589e+00, 6.6181e-01,
5.1665e-01, 5.5944e-01, 7.2949e-01, 2.0542e-01,
5.5018e-01, 1.0909e+00, -3.9634e-01, 1.1621e+00,
1.5480e+00, -7.4482e-01, -1.2775e+00, -5.5488e-01,
-2.0006e+00, 5.7623e-01, 6.1462e-01, 2.4499e-01,
8.5252e-01, 5.4012e-01, -6.1942e-01, -5.5457e-01,
-1.1711e+00, -7.0421e-01, -2.3813e+00, 1.1503e+00,
-1.6215e+00, 1.0234e+00, -4.8008e-01, -7.4158e-01,
-4.0513e-01, -1.5162e+00, 1.7589e-01, 1.7459e+00,
3.4799e-02, 1.6256e+00, -1.6122e+00, 8.6016e-01,
1.5525e+00, 3.3248e-01, -8.1643e-02, 4.0017e-01,
-4.0559e-01, -4.9895e-01, -5.3955e-01, -1.1288e+00,
-8.3503e-01, 2.2552e-01, -1.2017e+00, 6.9374e-02,
9.9124e-01, -3.4188e-02, -2.9156e-01, -1.0160e+00,
-5.8245e-01, -7.4361e-01, 9.3644e-01, -3.4742e-02,
-2.5003e-01, -3.0065e-01, -1.3632e+00, -1.1923e+00,
1.2436e+00, 6.0152e-01, 2.4206e-01, -1.6921e+00,
-5.1135e-01, -6.7225e-01, 1.2513e-01, -6.2236e-01,
1.7771e-02, 8.7578e-01, 6.9455e-01, 3.7742e-01,
-4.8889e-01, 7.1661e-01, 2.2709e+00, 5.6336e-01,
1.8920e-01, -3.1669e-01, -3.1688e-01, 1.3809e+00,
-1.6932e+00, 7.5713e-01, -6.9602e-01, 1.1304e+00,
1.3462e+00, -4.3085e-01, 1.2866e-01, -2.4593e-01,
-2.1734e+00, -4.5167e-01, 2.9235e+00, 9.2882e-01,
-9.8604e-01, -7.6172e-01, 1.4158e+00, -8.4029e-01,
1.2599e-01, -8.2247e-02, 7.2107e-01, 8.6343e-01,
-4.7212e-01, 7.2836e-01, 1.9411e+00, -1.1954e+00,
-1.3750e+00, -1.9233e+00, -5.5936e-01, 2.1722e-01,
-7.5809e-01, -8.9960e-01, 1.5722e+00, 5.8850e-01,
2.4899e+00, 6.4918e-01, 4.7186e-01, -7.7755e-01,
7.5223e-01, 5.1721e-01, 3.0916e-01, -4.8248e-01,
1.8758e+00, -1.4463e+00, 5.8074e-01, 1.6453e+00,
-1.7016e+00, -5.9131e-01, 6.0404e-02, -1.5960e+00,
-1.7291e+00, -1.1698e+00, 4.4135e-01, 2.2297e-02,
-4.5078e-01, -8.2844e-01, -1.4837e+00, 4.0963e-01,
9.6297e-01, -7.9003e-02, 4.3438e-01, -3.6251e-01,
4.2440e-01, -8.8633e-01, -6.5808e-01, 6.8518e-01,
1.1302e+00, 1.3597e+00, 2.2961e+00, 4.5250e-01,
6.9028e-01, 4.2042e-02, -1.3262e+00, -2.1075e+00,
1.1213e+00, -7.2600e-02, -8.5989e-01, 2.4861e-01,
5.1589e-01, -8.1485e-01, -9.6673e-01, 1.1002e+00,
7.6876e-01, 4.2450e-01, -7.7963e-01, -4.8198e-01,
2.4439e+00, 2.2997e-01, 4.7401e-01, 1.1522e-01,
7.4257e-04, -1.0759e+00, -7.6259e-01, -4.4588e-02,
-1.1474e-01, 8.2666e-01, -5.6099e-01, 1.1053e+00,
-3.8772e-01, 3.5201e-03, -2.9695e-01, -8.6976e-01,
-4.8878e-01, 5.9120e-01, -1.1410e+00, 1.4588e+00,
1.2889e+00, -1.8102e+00, -6.3596e-01, -4.4529e-02,
1.5529e-01, 3.3786e-01, 1.6719e-01, -5.6633e-01,
-8.7710e-01, 3.0077e-01, 2.2002e-01, -7.8031e-01,
-2.6120e+00, -2.5188e-01, -4.7813e-01, -6.0379e-01,
1.9885e-01, -3.1583e-01, 2.4363e-01, 8.4903e-02,
-1.3249e+00, 6.4190e-01, 1.3265e+00, 1.9522e+00,
6.1356e-01, -7.7493e-01, -1.6023e+00, -1.5424e+00,
1.8222e+00, -2.1723e+00, 3.4782e-01, 4.0237e-01,
-2.3207e-01, -1.2218e-01, -1.1142e-01, 9.5691e-01,
1.8195e-01, 1.6899e+00, 6.8148e-02, -1.6541e+00,
1.3564e+00, 1.2495e-01, -1.4956e+00, 1.2513e+00,
9.8832e-01, 8.2729e-01, -1.0921e+00, 4.3876e-03,
-3.3893e-01, -2.7465e-01, 8.9427e-01, -1.0573e+00,
9.6453e-02, 3.4266e-01, -2.0019e+00, 1.8195e+00,
2.7333e-01, 1.3324e+00, -5.4290e-02, -1.3698e+00,
9.5311e-01, -4.3910e-01, 2.0344e-01, -7.3761e-01,
-1.1678e+00, -2.0332e+00, 1.0239e+00, 7.5722e-02,
7.6866e-01, 5.6965e-01, -1.5650e+00, -1.1440e+00,
-2.4155e-02, -1.5151e+00, -8.1793e-01, 6.4767e-01,
4.1291e-02, 6.0081e-01, 6.4285e-01, 6.9929e-01,
-4.5749e-01, 3.0697e-02, 1.0060e+00, 5.0329e-02,
3.3344e-01, 6.2703e-01, 2.6438e-01, -9.7033e-01,
1.2922e+00, 3.7432e-01, -5.6326e-01, -3.8891e-01,
-1.0459e+00, 6.9532e-01, -3.5309e-01, 1.6010e+00,
-3.2879e-01, 8.3815e-01, -4.2462e-01, -9.8110e-01,
2.2401e-01, -1.1680e+00, 1.5298e-01, -6.3544e-01,
4.1121e-01, 4.7754e-02, -5.0785e-01, -2.9546e-01,
6.5773e-01, 1.4218e+00, -4.6231e-01, 1.7232e+00,
2.0439e+00, -6.0849e-02, -1.2079e+00, -1.8305e-01,
9.0633e-01, -6.9484e-01, 1.2380e+00, -7.9471e-01,
6.2632e-01, -1.2801e+00, -6.8124e-01, -1.7995e-01,
6.8147e-01, -7.1095e-01, 1.3721e+00, 1.6161e+00,
-1.2060e+00, -7.1751e-01, -2.2106e+00, -7.4133e-01,
2.2745e+00, -1.6476e+00, 9.5907e-01, 2.1090e+00,
3.4309e+00, 6.3245e-01, 9.6479e-01, -2.4134e-01,
-2.6730e-02, 1.3853e+00, -1.4303e-01, -1.3648e-01,
-8.8966e-01, 1.0894e+00, -4.9627e-01, 1.0197e+00,
-1.6258e+00, -3.8410e-01, 2.5806e-01, -5.2082e-01,
-1.6735e+00, -5.5843e-02, -6.0412e-01, 3.0203e-01,
-6.0563e-01, -6.6447e-02, -2.9912e+00, -2.1080e-01,
-4.8040e-01, -1.0070e+00, 3.0287e-01, -2.7865e-01,
2.9265e-01, -1.4614e-01, 1.8851e-01, 2.2377e-01,
-6.4016e-01, 5.4543e-01, 4.9026e-02, 3.4252e-01,
-2.2420e-01, 2.8590e-01, -7.7872e-01, 1.1451e+00,
-1.5986e-01, -6.5533e-01, 1.6961e-01, -6.8357e-01,
4.5123e-02, -1.1499e+00, -1.2463e+00, -3.0759e-01,
-2.1434e+00, 9.9566e-01, -6.7639e-01, 2.3312e-01,
2.3665e-01, -1.3137e+00, 1.2545e+00, 2.2547e+00,
1.9559e+00, -2.4156e-01, 2.2488e-01, 3.9761e-01,
1.1230e+00, 6.0150e-01, 5.4250e-01, 1.0063e+00,
4.9976e-02, 8.0446e-01, -1.0943e-01, -4.3481e-02,
-5.0809e-01, 6.2063e-01, -2.4638e-01, 5.2368e-01,
-1.1874e+00, 4.5254e-01, -6.4981e-01, -3.6878e-01,
-3.8933e-01, -6.8699e-01, 2.8780e-02, -1.3137e+00,
2.7437e-01, 6.7196e-01, -4.8832e-01, -1.6051e-01,
-3.0988e-01, 4.9861e-01, 9.8785e-01, 5.1502e-01,
2.2066e+00, 4.2574e-01, -6.6471e-01, 1.2394e+00,
1.6681e+00, 1.2711e-01, -9.5271e-01, -7.6975e-01,
-1.0738e+00, 5.1729e-01, -6.2013e-01, 6.8737e-01,
-8.5628e-01, -1.8651e+00, 6.4778e-01, 1.9434e+00,
-1.1244e+00, -3.3779e-01, 1.2421e+00, 1.6723e+00,
1.0644e+00, 1.2500e+00, -3.4697e-01, 4.5841e-01,
9.2903e-01, 3.2338e-01, 2.0876e-01, -1.8260e-02,
-3.6000e-01, -3.9463e-01, -3.6599e-01, -7.1736e-02,
4.1810e-01, -5.3703e-02, -5.0832e-01, 7.1270e-01,
5.7693e-01, -4.9274e-01, -8.1427e-02, -7.4327e-02,
-2.2954e-01, -8.2406e-01, -1.2913e-01, 1.1186e+00,
-3.5360e-01, -2.0735e-01, 6.9101e-01, -1.4183e-01]),
size=(10000, 10000), nnz=1000, layout=torch.sparse_csr)
tensor([0.9412, 0.2377, 0.9263, ..., 0.7791, 0.9612, 0.7836])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([10000, 10000])
Size: 100000000
NNZ: 1000
Density: 1e-05
Time: 11.077085971832275 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 557815, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 11.01402235031128, "TIME_S_1KI": 0.019744937569465288, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 990.0257138228417, "W": 87.87, "J_1KI": 1.774828059164493, "W_1KI": 0.1575253444242267, "W_D": 68.075, "J_D": 766.9967050015927, "W_D_1KI": 0.12203866873425777, "J_D_1KI": 0.00021877982616863613}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 0, 0, ..., 4998, 4999, 5000]),
col_indices=tensor([ 962, 6463, 1315, ..., 3384, 7308, 7375]),
values=tensor([-1.3704, 0.8257, 0.1787, ..., -0.8045, 0.3437,
-0.5795]), size=(10000, 10000), nnz=5000,
layout=torch.sparse_csr)
tensor([0.6135, 0.2745, 0.2257, ..., 0.0222, 0.8530, 0.9395])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([10000, 10000])
Size: 100000000
NNZ: 5000
Density: 5e-05
Time: 11.01402235031128 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 271123, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [20000, 20000], "MATRIX_SIZE": 400000000, "MATRIX_NNZ": 39996, "MATRIX_DENSITY": 9.999e-05, "TIME_S": 10.34571099281311, "TIME_S_1KI": 0.03815873604531194, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 970.767766571045, "W": 93.06, "J_1KI": 3.5805437626872116, "W_1KI": 0.343239046484437, "W_D": 73.38625, "J_D": 765.5384269237519, "W_D_1KI": 0.270675117935402, "J_D_1KI": 0.0009983480484333754}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 3, 6, ..., 39990, 39994, 39996]),
col_indices=tensor([14238, 15850, 19198, ..., 14995, 9694, 19303]),
values=tensor([ 0.8573, -0.9595, -0.2158, ..., -1.3697, -0.3251,
-1.1161]), size=(20000, 20000), nnz=39996,
layout=torch.sparse_csr)
tensor([0.8621, 0.0100, 0.5156, ..., 0.4557, 0.2844, 0.5730])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([20000, 20000])
Size: 400000000
NNZ: 39996
Density: 9.999e-05
Time: 10.34571099281311 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 421253, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [20000, 20000], "MATRIX_SIZE": 400000000, "MATRIX_NNZ": 4000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.67978286743164, "TIME_S_1KI": 0.025352419727412364, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 931.7455441474915, "W": 88.4, "J_1KI": 2.211843106511981, "W_1KI": 0.20985013756578588, "W_D": 68.82125, "J_D": 725.3834053185583, "W_D_1KI": 0.16337272375508305, "J_D_1KI": 0.00038782566238123657}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 0, 0, ..., 4000, 4000, 4000]),
col_indices=tensor([10299, 8742, 17691, ..., 732, 6544, 3957]),
values=tensor([ 1.1417, 0.5466, 0.4330, ..., -0.6116, -0.3136,
-0.8636]), size=(20000, 20000), nnz=4000,
layout=torch.sparse_csr)
tensor([0.4727, 0.7162, 0.3857, ..., 0.9756, 0.0358, 0.6437])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([20000, 20000])
Size: 400000000
NNZ: 4000
Density: 1e-05
Time: 10.67978286743164 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 296049, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [20000, 20000], "MATRIX_SIZE": 400000000, "MATRIX_NNZ": 20000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.487282514572144, "TIME_S_1KI": 0.035424144363170096, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 910.7233948850632, "W": 90.38, "J_1KI": 3.076258980388595, "W_1KI": 0.30528730041310725, "W_D": 70.03375, "J_D": 705.7023075518011, "W_D_1KI": 0.23656134626362527, "J_D_1KI": 0.0007990614603110474}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 1, 3, ..., 19996, 19996, 20000]),
col_indices=tensor([ 9594, 17407, 19927, ..., 12343, 19403, 19542]),
values=tensor([-1.2753, 1.5696, -0.3609, ..., -0.9557, 0.3541,
1.4035]), size=(20000, 20000), nnz=20000,
layout=torch.sparse_csr)
tensor([0.4746, 0.1303, 0.6771, ..., 0.0166, 0.2071, 0.5823])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([20000, 20000])
Size: 400000000
NNZ: 20000
Density: 5e-05
Time: 10.487282514572144 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 164977, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 249983, "MATRIX_DENSITY": 9.99932e-05, "TIME_S": 10.256412982940674, "TIME_S_1KI": 0.06216874463071018, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 1082.1654234600067, "W": 102.49, "J_1KI": 6.559492677524786, "W_1KI": 0.6212381119792455, "W_D": 82.77374999999999, "J_D": 873.9866349899768, "W_D_1KI": 0.5017290288949368, "J_D_1KI": 0.003041205918976201}

View File

@ -0,0 +1,17 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 6, 9, ..., 249973, 249980,
249983]),
col_indices=tensor([31108, 35040, 37902, ..., 16206, 40410, 49581]),
values=tensor([ 0.2289, -0.6532, 0.4374, ..., -0.3465, -0.2721,
-1.2308]), size=(50000, 50000), nnz=249983,
layout=torch.sparse_csr)
tensor([0.5939, 0.2881, 0.4014, ..., 0.1135, 0.5678, 0.4858])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([50000, 50000])
Size: 2500000000
NNZ: 249983
Density: 9.99932e-05
Time: 10.256412982940674 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 219932, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.079042673110962, "TIME_S_1KI": 0.045827995349066813, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 1025.4395825886727, "W": 97.19000000000001, "J_1KI": 4.662530157451724, "W_1KI": 0.4419093174253861, "W_D": 69.5575, "J_D": 733.8925173979998, "W_D_1KI": 0.3162682101740538, "J_D_1KI": 0.00143802725466987}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 1, 1, ..., 24999, 24999, 25000]),
col_indices=tensor([37623, 15843, 14123, ..., 30324, 41135, 7403]),
values=tensor([ 0.7582, -0.5492, -3.0150, ..., -0.6906, 0.6477,
-0.0377]), size=(50000, 50000), nnz=25000,
layout=torch.sparse_csr)
tensor([0.6487, 0.2049, 0.1238, ..., 0.0813, 0.3528, 0.4600])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([50000, 50000])
Size: 2500000000
NNZ: 25000
Density: 1e-05
Time: 10.079042673110962 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 159209, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 124995, "MATRIX_DENSITY": 4.9998e-05, "TIME_S": 10.519323825836182, "TIME_S_1KI": 0.0660724194350582, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 1054.267113995552, "W": 101.45, "J_1KI": 6.621906512794831, "W_1KI": 0.6372127203864103, "W_D": 81.7225, "J_D": 849.2591840660572, "W_D_1KI": 0.5133032680313299, "J_D_1KI": 0.0032240844929076235}

View File

@ -0,0 +1,17 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 2, 5, ..., 124993, 124993,
124995]),
col_indices=tensor([ 2905, 27517, 17092, ..., 5202, 31385, 39133]),
values=tensor([ 0.3277, 1.7264, -0.7414, ..., -1.2741, 1.4153,
-1.1079]), size=(50000, 50000), nnz=124995,
layout=torch.sparse_csr)
tensor([0.7367, 0.2293, 0.5341, ..., 0.2055, 0.1490, 0.3781])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([50000, 50000])
Size: 2500000000
NNZ: 124995
Density: 4.9998e-05
Time: 10.519323825836182 seconds

View File

@ -0,0 +1 @@
{"CPU": "Xeon 4216", "ITERATIONS": 23675, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 999960, "MATRIX_DENSITY": 9.9996e-05, "TIME_S": 10.017890453338623, "TIME_S_1KI": 0.42314215220015305, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 782.8562486886979, "W": 78.54, "J_1KI": 33.06678980733677, "W_1KI": 3.317423442449842, "W_D": 68.92125000000001, "J_D": 686.9802804932, "W_D_1KI": 2.9111404435058086, "J_D_1KI": 0.12296263752928442}

View File

@ -0,0 +1,17 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 9, 23, ..., 999933, 999947,
999960]),
col_indices=tensor([ 424, 4792, 5050, ..., 79901, 81580, 95361]),
values=tensor([ 0.4958, -0.1718, -2.5022, ..., 0.1973, 0.9139,
0.2644]), size=(100000, 100000), nnz=999960,
layout=torch.sparse_csr)
tensor([0.5419, 0.1775, 0.7763, ..., 0.2696, 0.9298, 0.5219])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([100000, 100000])
Size: 10000000000
NNZ: 999960
Density: 9.9996e-05
Time: 10.017890453338623 seconds

View File

@ -0,0 +1 @@
{"CPU": "Xeon 4216", "ITERATIONS": 70568, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.367664813995361, "TIME_S_1KI": 0.14691736784371615, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 789.4405226111413, "W": 75.93, "J_1KI": 11.186947661987604, "W_1KI": 1.0759834485885955, "W_D": 66.35125000000001, "J_D": 689.8507240340115, "W_D_1KI": 0.9402455787325702, "J_D_1KI": 0.01332396523541223}

View File

@ -0,0 +1,17 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 2, 3, ..., 99999, 100000,
100000]),
col_indices=tensor([91400, 94838, 77872, ..., 72812, 5846, 19852]),
values=tensor([ 0.2160, -0.4558, 1.5341, ..., 1.0751, -0.7979,
0.0744]), size=(100000, 100000), nnz=100000,
layout=torch.sparse_csr)
tensor([0.4788, 0.1878, 0.5643, ..., 0.6576, 0.4190, 0.4714])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([100000, 100000])
Size: 10000000000
NNZ: 100000
Density: 1e-05
Time: 10.367664813995361 seconds

View File

@ -0,0 +1 @@
{"CPU": "Xeon 4216", "ITERATIONS": 39760, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 499991, "MATRIX_DENSITY": 4.99991e-05, "TIME_S": 10.557223320007324, "TIME_S_1KI": 0.2655237253522969, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 874.8044866871833, "W": 83.21, "J_1KI": 22.002124916679662, "W_1KI": 2.0928068410462775, "W_D": 73.28125, "J_D": 770.4214191809297, "W_D_1KI": 1.8430897887323943, "J_D_1KI": 0.046355376980191}

View File

@ -0,0 +1,17 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 3, 7, ..., 499977, 499981,
499991]),
col_indices=tensor([ 6493, 51721, 52310, ..., 87324, 94948, 96733]),
values=tensor([ 0.2000, 0.1551, 1.4811, ..., -1.0655, 0.9511,
-2.2930]), size=(100000, 100000), nnz=499991,
layout=torch.sparse_csr)
tensor([0.2649, 0.2615, 0.0417, ..., 0.6463, 0.6188, 0.8502])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([100000, 100000])
Size: 10000000000
NNZ: 499991
Density: 4.99991e-05
Time: 10.557223320007324 seconds

View File

@ -0,0 +1 @@
{"CPU": "Xeon 4216", "ITERATIONS": 443098, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.363812923431396, "TIME_S_1KI": 0.023389437378258073, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 728.5208771610261, "W": 69.26, "J_1KI": 1.6441529349286752, "W_1KI": 0.15630853671196893, "W_D": 59.79750000000001, "J_D": 628.9882638180256, "W_D_1KI": 0.13495321576716662, "J_D_1KI": 0.00030456742248253577}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 1, 3, ..., 10000, 10000, 10000]),
col_indices=tensor([9325, 7184, 9788, ..., 8868, 9325, 5370]),
values=tensor([-0.8970, 0.5991, 0.0641, ..., -0.0698, 0.9688,
-3.4153]), size=(10000, 10000), nnz=10000,
layout=torch.sparse_csr)
tensor([0.8166, 0.2262, 0.2530, ..., 0.9896, 0.2502, 0.0838])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([10000, 10000])
Size: 100000000
NNZ: 10000
Density: 0.0001
Time: 10.363812923431396 seconds

View File

@ -0,0 +1 @@
{"CPU": "Xeon 4216", "ITERATIONS": 542659, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.456323862075806, "TIME_S_1KI": 0.019268682288648684, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 688.9364667081833, "W": 67.82, "J_1KI": 1.2695568795655896, "W_1KI": 0.12497719562377108, "W_D": 58.177499999999995, "J_D": 590.984979237914, "W_D_1KI": 0.10720820994399798, "J_D_1KI": 0.00019756091752647236}

View File

@ -0,0 +1,375 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]),
col_indices=tensor([1852, 2505, 1291, 995, 9669, 4473, 2992, 9344, 8383,
864, 7983, 182, 5268, 3157, 5444, 8712, 4385, 3347,
778, 7211, 997, 8909, 3068, 826, 821, 2634, 5151,
3496, 9001, 9320, 574, 5221, 3959, 6835, 8903, 1663,
5156, 2815, 6303, 425, 3092, 2500, 2719, 9652, 6853,
1755, 9469, 73, 5445, 7799, 1073, 9472, 2069, 7814,
427, 3504, 7109, 397, 4822, 5004, 6024, 5460, 3641,
8326, 348, 6295, 7531, 7956, 2150, 2015, 4787, 4135,
2399, 2358, 714, 1921, 9066, 6583, 796, 4400, 6322,
8405, 4334, 7116, 8623, 211, 8731, 2330, 271, 4084,
2219, 8701, 3521, 9668, 3347, 741, 4694, 6438, 20,
6763, 8726, 830, 4097, 2940, 6042, 8619, 2953, 9434,
5177, 6386, 5374, 7621, 6318, 9818, 2871, 2496, 2762,
5977, 5439, 3433, 332, 7038, 3970, 2475, 4522, 1624,
416, 9612, 6897, 8226, 3380, 9309, 5635, 7746, 3456,
7829, 2910, 8899, 3134, 4254, 3359, 2687, 3054, 7952,
3076, 5207, 3160, 3940, 1226, 2110, 8568, 2261, 6064,
2828, 9150, 879, 9841, 9230, 4970, 8058, 5015, 3796,
4203, 8773, 2493, 3097, 4035, 9128, 854, 8814, 3134,
1510, 7849, 4251, 3945, 874, 159, 4904, 7205, 5286,
2057, 2928, 2071, 3888, 4266, 8966, 2307, 3192, 7150,
8175, 7640, 8648, 3382, 3898, 7841, 5355, 7312, 2730,
3585, 170, 6033, 3789, 1585, 2320, 5899, 3914, 1568,
1975, 2445, 4346, 426, 2296, 8653, 6033, 3254, 8363,
9330, 353, 3641, 1495, 1786, 3038, 6278, 8700, 6290,
4384, 9110, 3493, 4206, 9441, 9875, 5364, 2522, 1926,
8103, 3067, 7636, 3214, 3909, 7844, 6384, 56, 4281,
4808, 9516, 2578, 4663, 6411, 4390, 2330, 1198, 1654,
2911, 4296, 9206, 4618, 1099, 1004, 1456, 4753, 5856,
889, 9978, 3451, 630, 4398, 5631, 5330, 596, 1581,
2639, 3245, 7809, 7666, 7609, 5335, 9972, 5832, 14,
1062, 4716, 7322, 5232, 9750, 2999, 3268, 4470, 7823,
2538, 9905, 5971, 7542, 4182, 718, 1985, 364, 8703,
6234, 115, 1244, 944, 8292, 3777, 9859, 2380, 2562,
6005, 4064, 5949, 8529, 1592, 1407, 3874, 9017, 2559,
4279, 4812, 6576, 3576, 3791, 8221, 6866, 1944, 9579,
1544, 9063, 6810, 5254, 4820, 4208, 5234, 8668, 7650,
370, 9880, 9036, 4194, 4154, 4703, 5836, 4239, 4448,
9805, 512, 4576, 8513, 3085, 2860, 9724, 7300, 4299,
1688, 3705, 6935, 391, 2814, 4250, 5324, 1432, 4777,
8879, 3817, 1686, 3423, 753, 7730, 1065, 5586, 7225,
892, 129, 6747, 7481, 894, 3978, 8634, 5147, 9692,
9541, 3734, 8209, 8473, 1745, 6300, 1009, 6002, 9725,
757, 1029, 8552, 4859, 7978, 2005, 3520, 2877, 2062,
7052, 2804, 6276, 7066, 7810, 1659, 1061, 541, 2087,
9137, 2781, 5432, 9506, 5032, 9640, 4288, 5251, 3546,
48, 3456, 9532, 7444, 7288, 9687, 5306, 3238, 7282,
7643, 511, 9890, 3003, 3307, 1190, 7539, 5490, 8360,
5416, 8180, 8301, 7647, 4603, 7349, 6870, 2199, 313,
5033, 7838, 9975, 5441, 7806, 435, 7635, 4871, 8080,
4915, 9854, 4699, 9997, 3165, 766, 774, 4122, 9645,
1955, 3929, 2802, 4191, 2591, 7818, 4775, 9901, 5393,
6841, 8948, 7752, 2018, 852, 4720, 4711, 2731, 9847,
8528, 4399, 7676, 7971, 803, 765, 1157, 3917, 9570,
1723, 1799, 2298, 9707, 6600, 6296, 3244, 2143, 2125,
307, 7011, 1987, 2306, 8971, 409, 6980, 1227, 4350,
8005, 9176, 7044, 5249, 323, 1867, 2992, 3463, 421,
9902, 6022, 6400, 655, 9861, 1056, 1206, 3730, 4268,
7045, 8707, 3421, 7304, 9665, 6371, 6764, 8648, 5321,
1045, 3777, 6317, 7792, 2123, 585, 4396, 3942, 9256,
9166, 692, 5325, 8956, 7441, 6195, 3246, 3961, 5456,
2819, 9305, 3362, 987, 7668, 4194, 433, 838, 1557,
3779, 9109, 9494, 2592, 8897, 6024, 2916, 4079, 7662,
936, 2730, 5881, 3553, 2417, 7170, 272, 4965, 2403,
9048, 1477, 4390, 9402, 2828, 4153, 1273, 5089, 3528,
3206, 5223, 1302, 28, 1646, 3042, 5116, 9393, 8676,
2591, 8534, 2925, 4262, 2603, 3163, 8771, 394, 6540,
2073, 7909, 2203, 4623, 5258, 8928, 1991, 4663, 3412,
2757, 7368, 371, 314, 4378, 6555, 8870, 4202, 4194,
6936, 7723, 4337, 524, 4159, 7152, 367, 1033, 9669,
5014, 1547, 8618, 4352, 573, 5200, 2516, 3255, 5973,
7864, 3665, 6554, 4556, 7613, 8329, 8603, 2106, 984,
2543, 6814, 5335, 7296, 3921, 5752, 4553, 3342, 4473,
6559, 4666, 1479, 2175, 198, 3710, 6432, 9123, 9434,
8238, 3224, 1510, 5622, 8968, 3552, 8009, 9065, 6312,
2402, 9285, 6230, 8621, 968, 9063, 4950, 2983, 4970,
3421, 5130, 2894, 869, 8248, 6287, 1046, 862, 6548,
8962, 1259, 4741, 7814, 8101, 5981, 2861, 2393, 9599,
8717, 1849, 3690, 2307, 1021, 3550, 4378, 9266, 3272,
8856, 390, 463, 5555, 9160, 1547, 7388, 7844, 1184,
7653, 451, 3734, 1322, 9488, 343, 477, 3266, 9124,
8024, 5816, 1598, 6323, 9037, 3336, 9755, 8821, 7363,
1416, 5781, 3718, 2113, 1194, 7116, 1054, 2172, 2479,
4850, 7452, 7204, 9805, 1076, 4955, 5771, 1978, 3877,
4909, 1979, 8506, 6525, 4785, 7510, 3822, 6940, 9023,
5798, 2208, 4289, 4950, 6028, 2183, 3993, 1802, 2769,
2754, 5607, 2640, 6137, 5125, 588, 1735, 1539, 6181,
4819, 3823, 8806, 7456, 2420, 4382, 9749, 8079, 1097,
5903, 9693, 1769, 3055, 6602, 9335, 9561, 2391, 3340,
3130, 9816, 9699, 4289, 8814, 8186, 301, 389, 7915,
8298, 9335, 7675, 1451, 9732, 7636, 3490, 6248, 8838,
8027, 5729, 3422, 6900, 8624, 1855, 9093, 4153, 474,
6524, 8897, 7417, 2155, 4134, 2669, 8366, 3275, 9657,
317, 4507, 8095, 8209, 5857, 332, 7201, 7938, 6519,
1634, 7222, 6639, 4164, 3329, 5501, 7790, 800, 247,
5718, 9715, 6984, 1895, 7681, 2555, 8908, 3392, 9042,
2222, 8912, 1536, 7204, 5920, 1527, 2747, 7480, 5047,
5331, 6051, 2741, 8776, 7357, 7975, 8975, 1448, 7248,
5390, 3442, 2478, 6269, 2400, 2592, 5027, 3976, 4720,
7696, 2386, 5955, 1843, 4336, 5357, 560, 2581, 1964,
1498, 8204, 393, 9160, 9550, 5750, 4064, 2571, 5009,
4253, 5673, 2795, 951, 2158, 2389, 8436, 9940, 3142,
5165, 698, 3801, 7639, 750, 3920, 4686, 8772, 7407,
1647, 6630, 7336, 2539, 2526, 4074, 1673, 714, 8778,
5636, 5593, 8016, 7707, 2144, 838, 3128, 9208, 213,
3793, 9385, 5278, 3767, 2995, 1210, 1460, 4741, 9316,
3473, 1676, 884, 1030, 3627, 9899, 6065, 6269, 2138,
4028, 6484, 5081, 9548, 7307, 4167, 2348, 5945, 5861,
1461, 9366, 8282, 847, 8162, 5207, 6641, 9842, 2507,
9869, 5823, 293, 805, 2495, 884, 8332, 6514, 1157,
5882, 4610, 4566, 8085, 7261, 1222, 1599, 9934, 4166,
1195]),
values=tensor([ 4.1187e-01, 1.2994e+00, 2.0560e-01, 8.1063e-01,
8.4059e-02, 1.1517e+00, 1.1060e+00, 6.9198e-01,
1.3819e+00, 2.0090e+00, -1.2643e+00, -2.0479e+00,
1.4454e+00, -1.0818e+00, -7.7508e-02, -1.0855e+00,
9.5714e-01, 5.7688e-01, 9.3971e-02, 1.0122e+00,
4.2022e-01, -2.5389e-01, -6.0260e-02, 8.5111e-01,
-1.6129e-01, -1.2402e+00, -2.7641e-01, -2.4187e-01,
3.0579e-02, 3.1520e-01, 1.1199e+00, 3.1795e-01,
1.2221e+00, 6.4782e-01, 5.3129e-01, -3.8213e-01,
2.0774e-01, 1.3392e+00, 3.0090e-01, -1.9384e-01,
-1.9622e+00, -3.0412e-01, 4.7456e-01, 1.3592e+00,
-7.3847e-01, 7.3483e-01, -1.2100e+00, 1.1940e+00,
2.3418e-01, -1.9949e+00, -1.3420e+00, -4.6359e-01,
-4.4599e-01, 1.1672e+00, 4.0780e-01, -3.9118e-01,
7.6607e-02, -5.7283e-01, -2.3452e+00, -7.3285e-01,
-6.8367e-01, 2.8931e-01, -8.1923e-01, -4.8177e-01,
1.0741e+00, -5.2418e-01, 9.7772e-01, 1.7350e+00,
-6.0108e-01, -5.3796e-02, 1.6011e+00, 1.2219e-01,
-2.1116e-01, -8.2578e-01, -4.2993e-01, 6.5402e-01,
1.5711e-02, 1.1127e+00, -4.1559e-01, -1.3729e+00,
1.1424e+00, -7.6375e-01, 1.2907e+00, 4.3057e-01,
6.7745e-01, 1.2105e+00, 2.0428e-01, 9.9817e-01,
2.9585e+00, -1.2981e-02, 2.1215e+00, 1.5902e+00,
-1.4593e+00, -1.5502e+00, -1.7385e+00, -6.6058e-01,
-3.6072e-01, 1.1463e-02, 9.5755e-01, -1.4471e+00,
-7.5418e-01, 4.3596e-01, 2.5417e-01, 1.0694e+00,
9.3198e-01, -3.6109e-01, 8.3692e-01, 2.5518e-01,
-8.3799e-04, -1.2349e-01, -5.4318e-01, 4.8229e-01,
4.8883e-01, -1.3150e+00, 1.2515e+00, -3.7250e-01,
5.6971e-01, -8.0117e-02, 2.1560e+00, 1.2211e+00,
-6.3798e-02, -4.9959e-01, 3.6003e-01, 2.7722e-02,
-1.2116e+00, -1.4997e+00, -4.7018e-01, -1.3831e+00,
-1.3272e+00, -1.7221e+00, -1.3743e+00, -1.5764e+00,
7.2209e-01, 2.4404e-01, 7.3276e-01, -6.4650e-01,
8.9781e-01, 2.7820e-01, -1.8049e-01, 8.0014e-01,
2.0361e+00, -4.2703e-01, 1.8947e+00, -8.4118e-02,
1.4863e+00, -3.1786e-01, 5.0728e-02, 5.0124e-02,
3.6426e-01, -1.2465e-01, 5.9705e-02, 3.8600e-01,
-4.8493e-01, -1.2679e-02, 7.6771e-01, -5.5385e-01,
1.1501e-01, 1.8205e+00, -1.2399e-01, -6.6679e-01,
9.0281e-02, 3.9682e-01, 8.0526e-01, -7.3421e-01,
1.7446e+00, 1.6509e+00, 3.3553e-01, 1.2187e+00,
-1.8701e-01, 5.0266e-01, -1.0522e+00, -1.0307e+00,
-1.0885e+00, 1.2417e+00, -6.1253e-01, -8.2438e-01,
-1.7828e+00, 3.9951e-02, -1.4229e+00, 3.5262e-01,
3.5361e-01, -1.5386e-01, 4.6582e-01, -2.2913e-01,
-4.2875e-01, -9.0504e-02, -8.0701e-01, 8.8999e-01,
-4.0337e-01, -6.0533e-01, 1.9681e-01, 5.3750e-01,
-1.2739e+00, -1.9057e+00, -4.9936e-01, -1.3077e+00,
-1.2630e+00, 1.1410e+00, -2.6833e+00, 1.5044e+00,
-4.3706e-01, -9.6269e-01, 2.3240e-02, -6.3118e-01,
-4.4542e-01, -3.7460e-01, 1.0305e+00, -1.4994e-02,
1.4442e+00, 2.4140e-01, -4.1186e-01, 1.3412e+00,
8.6542e-01, -8.9362e-01, 7.4643e-01, -7.0937e-01,
-4.0676e-01, 7.0962e-01, -7.2558e-01, -2.9866e-01,
1.2749e+00, 3.0740e-01, 1.1048e+00, -1.2013e+00,
-9.5291e-02, 7.7928e-01, 4.5022e-01, 4.5223e-01,
3.6495e-01, 1.6945e+00, 5.8379e-01, 1.1052e+00,
-2.2382e+00, -1.5300e-02, -3.1556e-01, -5.4653e-01,
3.6438e-02, -5.9646e-01, 3.4344e-01, -5.2882e-02,
8.7075e-01, 6.5339e-01, -1.1886e-01, -1.7465e+00,
-9.0005e-01, 4.5730e-01, 4.6947e-01, 1.0187e+00,
-9.4288e-01, -2.8686e+00, 3.0077e-01, 1.6695e+00,
5.0030e-01, 5.8862e-01, -2.7369e-01, -4.7874e-01,
2.6974e-01, -1.4391e+00, 1.4449e+00, 1.7392e+00,
-7.0896e-01, -2.0852e-01, -6.7520e-01, -4.7155e-02,
1.0461e+00, -3.7672e-01, 9.8594e-01, 2.0890e-01,
-2.9533e-01, -7.7817e-01, 1.2557e+00, -5.9765e-01,
-3.9932e-01, -3.5671e-02, -9.3314e-02, 5.5463e-01,
2.5085e-01, 4.7910e-01, 1.1896e+00, 6.0019e-01,
-1.1926e+00, -7.3072e-03, -3.1331e-01, -4.6450e-01,
-6.1621e-01, -8.0657e-02, -2.6188e-01, 1.5741e+00,
1.1154e+00, -1.5377e+00, -7.0828e-01, 1.3199e+00,
-2.6541e-01, 6.8207e-02, -7.8665e-01, -8.1915e-01,
-4.3599e-01, -1.0342e+00, 4.5179e-01, 2.6710e+00,
1.1521e-01, -7.5459e-01, -9.7379e-01, 5.9094e-01,
1.0393e+00, 7.1633e-01, 3.9869e-01, -5.0569e-02,
2.3386e-01, 2.4650e+00, 3.0870e-01, 6.6750e-01,
-2.1549e-01, -9.8122e-02, 1.2672e+00, 1.0347e+00,
1.6437e+00, -1.1548e+00, -1.7636e+00, 7.5194e-02,
-1.0116e+00, 6.6634e-01, -1.7244e-01, -1.3920e-02,
1.6943e-01, -1.0586e+00, 1.1323e+00, 5.5981e-01,
1.0469e+00, -3.7673e-01, -7.4631e-02, -1.5341e+00,
1.3766e+00, -3.7825e-01, -1.4753e-01, -2.0575e+00,
-8.4343e-01, 1.2002e+00, 7.0089e-01, 1.2354e+00,
7.5529e-01, 1.7741e+00, 8.7521e-01, -1.3225e+00,
-7.8332e-01, 1.8005e+00, -6.4739e-02, -9.5539e-01,
2.8774e-01, -8.9981e-01, -1.5710e-02, -1.1353e-01,
-2.4613e-01, 2.8987e-01, 5.2333e-01, 4.8590e-01,
4.7075e-02, 1.8101e+00, -1.7155e+00, 6.4264e-01,
4.0885e-01, 1.6485e-01, 7.5289e-01, 1.1638e+00,
-8.0445e-02, -7.7830e-01, -7.8834e-01, 1.0046e+00,
-6.0189e-01, 1.1689e-01, -1.3859e+00, 8.1962e-01,
1.1662e+00, -1.2325e+00, -4.1518e-01, -8.0852e-01,
-7.7590e-02, -5.9851e-01, 2.7268e-01, -6.5352e-01,
3.7628e-03, 4.2056e-01, -5.8612e-02, -6.2362e-01,
-9.1386e-01, -2.5524e+00, -3.5144e-01, 1.1402e+00,
1.0998e+00, -7.9737e-01, -6.3363e-01, -3.7273e-01,
4.8214e-01, -2.4275e-01, -5.8639e-01, 7.5549e-01,
8.6347e-01, -1.2094e+00, 6.9971e-01, 4.1962e-01,
-2.0087e-01, -4.1923e-01, -3.0204e-01, 1.9817e+00,
-5.9371e-01, 4.3786e-01, -6.8327e-01, -4.4514e-01,
1.6434e-01, -3.7955e-01, 1.3956e-01, -6.1468e-01,
-5.4392e-01, 7.8647e-01, -1.4400e+00, -4.8341e-01,
-2.2185e+00, -5.5377e-01, -2.2922e-01, 1.1078e+00,
-7.6173e-02, -6.0310e-02, 1.1004e+00, 8.3832e-01,
1.2770e+00, -5.6139e-01, -4.2467e-02, 2.1818e-02,
7.3721e-01, 6.6023e-02, -2.3970e-01, 1.6012e+00,
2.0058e+00, -1.7217e+00, 3.4851e-02, 3.2706e-01,
5.6191e-01, -3.2594e-01, 1.4629e+00, -2.0317e+00,
-6.4496e-01, -8.5647e-01, 1.9890e-01, -2.0638e+00,
-6.8086e-01, 1.6485e+00, -7.8823e-01, 5.7907e-01,
-3.8933e-01, -1.4817e+00, 8.7156e-01, 8.2876e-01,
-9.9722e-01, 2.2959e+00, -1.2075e+00, -8.9273e-02,
3.3585e-01, 9.6427e-02, -1.3495e-01, -5.9578e-01,
3.0671e-02, 1.2274e+00, -3.2211e-01, 4.4006e-01,
-4.6750e-01, -4.8580e-01, -3.4991e-03, 1.2442e+00,
-2.0746e+00, 1.5147e+00, 2.8820e-01, 1.4190e+00,
3.7471e-01, 8.5511e-01, -5.4092e-01, -5.5045e-02,
3.0499e-01, -1.4949e+00, 4.9548e-01, 3.6225e-01,
-5.5847e-01, 3.1279e-01, 1.5680e+00, 1.1575e+00,
-5.8297e-01, 9.4159e-01, 5.7704e-01, 7.9263e-01,
1.4548e+00, -5.2253e-01, -1.8053e+00, -8.5846e-01,
-1.1706e+00, -1.6978e+00, 1.4485e+00, -1.1887e+00,
-5.7290e-01, 1.4125e+00, -2.8715e-01, 2.4672e-01,
-1.8773e+00, -6.7606e-01, 1.4196e-01, -2.1013e+00,
1.2581e+00, -4.3584e-01, -2.7718e-01, 1.1315e-01,
1.9895e+00, 9.9646e-01, 6.4904e-01, 1.4008e+00,
5.8683e-01, -2.1360e-01, 8.5943e-01, 2.0210e-01,
2.0402e-01, -6.9603e-01, -1.1677e+00, 6.1042e-01,
3.0146e-01, 3.4980e-01, 1.0172e+00, 1.9620e-01,
-1.8742e-01, -4.7397e-01, 1.0882e+00, 1.2944e+00,
-4.7909e-01, 1.0755e-01, 8.3957e-01, 2.3345e-01,
-6.3260e-01, -3.2265e-02, 1.0961e-01, -3.3744e-01,
5.3635e-01, 9.8874e-01, -6.1308e-01, -1.2504e+00,
2.6056e-01, 2.1968e-01, -7.5192e-01, -1.1818e+00,
-3.7819e-01, 9.5290e-01, -8.8237e-01, -4.4380e-01,
-8.0036e-01, -6.7367e-01, 2.4276e-01, -8.9590e-01,
4.4160e-01, -1.7559e-01, 1.5694e+00, -2.8713e-01,
3.5343e-01, 3.6454e-01, -5.2813e-01, -2.0456e-01,
-1.0842e-01, -1.3314e-01, 6.8941e-01, 2.0903e-01,
-4.2598e-01, -1.0495e+00, -8.7131e-03, 4.1466e-01,
-1.1910e+00, -7.3852e-01, 1.0155e+00, -5.3448e-01,
-1.8312e+00, 5.5463e-01, -1.0269e+00, -9.2251e-01,
-2.1852e-01, -2.6925e-01, 1.2410e-01, 2.1984e+00,
1.2405e+00, 9.5431e-01, 3.1554e-01, 8.2885e-01,
4.9970e-01, 1.8201e+00, -6.8750e-01, -7.9673e-01,
1.4468e+00, 5.1725e-01, -4.9390e-01, -8.5032e-01,
3.1442e-01, 4.9405e-01, -2.1110e+00, 1.6819e-01,
1.0756e+00, -1.6792e+00, -3.0895e-01, 1.1980e+00,
-1.6297e+00, 4.8684e-02, -3.3878e-01, -1.1109e+00,
8.0238e-01, -8.0898e-01, 2.1343e-01, 3.1337e-02,
6.7252e-01, -1.2608e+00, 7.0611e-01, 1.0922e+00,
7.3956e-01, 7.4352e-01, 1.2513e+00, -1.2184e+00,
3.2889e-01, -1.0227e+00, -8.6520e-01, 8.6537e-02,
-4.8384e-01, 2.3618e-01, 1.2570e+00, 2.9588e-01,
-1.0186e+00, 2.0145e-01, 2.1553e-01, -1.8387e-01,
1.6445e+00, -1.2941e+00, -1.0912e+00, -2.9838e-01,
-1.1192e+00, 1.3813e+00, 1.0751e+00, -1.0784e-01,
9.9106e-03, -6.7205e-01, -4.8967e-02, -1.1289e+00,
8.8231e-01, -3.6068e-03, 4.6608e-01, -3.9388e-01,
1.8407e+00, 9.2510e-01, 1.5581e+00, 7.6308e-01,
-6.2367e-01, 7.0262e-02, 6.0089e-02, 1.0403e+00,
1.8609e-01, -1.0879e+00, 3.6580e-01, -5.5520e-01,
-2.3028e-01, 1.2336e+00, 7.9489e-01, -8.5529e-02,
1.3587e+00, -1.8262e-01, -1.1914e+00, 5.3507e-01,
-1.4666e+00, 1.4001e+00, -4.9308e-01, -9.8714e-01,
4.4790e-01, 7.3215e-02, 9.5441e-01, -1.0397e+00,
-1.0064e+00, 1.5553e+00, -1.0255e+00, 3.7701e-01,
4.3104e-01, 5.3609e-01, 1.1830e+00, 2.1509e-01,
2.1030e-01, -4.2069e-01, 3.0203e-01, -1.8765e+00,
-8.1561e-01, 8.3255e-01, 7.8849e-01, -6.9170e-01,
1.5009e+00, 9.0700e-01, 1.2023e+00, -9.4296e-01,
-3.3602e-01, -1.8830e+00, 1.3707e+00, 6.8679e-01,
3.8565e-01, 3.6758e-01, -2.1661e+00, -1.1734e+00,
6.7707e-01, -1.8853e-02, -4.3730e-01, 1.3644e+00,
-1.4178e+00, -1.6452e+00, -2.0252e+00, 6.5010e-01,
-7.9057e-02, -1.0898e+00, -3.6551e-01, 2.0172e-01,
2.0941e+00, -6.3160e-01, 4.8688e-01, 2.1011e-03,
-2.4875e-01, -8.6894e-01, 4.7785e-01, 4.2413e-01,
-1.5268e+00, -5.4234e-01, 1.6776e-01, 1.9076e+00,
-1.9542e-01, 9.5019e-01, -5.3177e-01, -1.0079e+00,
-2.8184e-01, -2.1701e+00, 4.5232e-02, 9.8002e-01,
-1.2098e+00, -4.3009e-01, 1.3398e+00, 7.9105e-02,
5.4414e-01, 5.0697e-01, 7.6229e-01, 8.5429e-01,
-2.3986e-01, -4.9931e-02, 7.4319e-01, -2.0215e+00,
-5.8814e-02, -9.3675e-01, 2.9881e-01, -7.3473e-01,
-3.2218e-01, -3.1497e+00, 1.8642e+00, 1.4590e-01,
5.3399e-01, -6.6757e-02, -3.4444e-01, 8.0314e-01,
1.6678e+00, 8.3455e-01, 1.2518e+00, 3.4050e-01,
-4.8432e-01, -4.7613e-01, 5.2459e-01, 2.1480e+00,
-2.7206e-02, 1.9138e+00, 3.8100e-01, -1.5979e+00,
8.2707e-01, 7.6550e-01, 5.5363e-02, 8.3108e-01,
-2.7762e-01, -3.2554e-01, 6.5698e-01, -2.1538e+00,
3.4538e-01, -1.1373e+00, -9.7499e-01, -9.5161e-01,
-5.5689e-01, -1.1217e+00, 3.0757e-01, -6.1209e-01,
1.2092e-01, -2.8348e-01, 5.0922e-01, -2.0924e-01,
7.4280e-01, 2.1649e+00, 1.0243e+00, -1.9716e+00,
3.7353e-01, -2.8308e-01, -4.4541e-01, -1.0076e+00,
-3.3480e-01, 5.4670e-01, 8.1652e-01, 1.7721e-01,
-1.5091e+00, -7.5269e-01, -5.3720e-02, 5.4190e-01,
-1.7714e+00, 1.1056e+00, -1.1193e+00, -9.5720e-01,
4.8055e-01, 6.8660e-01, -6.2486e-01, 1.9596e-01,
7.5003e-01, 4.6661e-01, 2.1450e+00, -5.5884e-01,
-4.0288e-01, 4.8382e-01, 2.5845e-01, 3.4729e-01,
6.3424e-01, -1.4900e+00, -7.0619e-01, -1.5127e+00,
-3.1534e-01, 3.1912e-01, 1.5774e-01, -7.6741e-02,
2.2244e-01, 4.2538e-01, 2.3492e-01, 5.5843e-01,
-8.8631e-01, -1.6419e+00, -7.9146e-02, 5.4911e-02,
-5.2820e-01, -5.7222e-01, -2.0944e+00, 1.8040e-01,
-4.3262e-01, 1.8085e-01, 2.9265e-01, 5.7188e-03,
6.2695e-01, -7.1576e-01, -4.0025e-01, -1.8274e-01,
-2.9305e-01, -8.3456e-01, 1.5234e+00, -3.5059e-01,
1.4172e-01, -1.2834e+00, -6.1415e-01, -1.2129e+00,
-1.4757e+00, -6.7773e-01, -5.4659e-01, -5.6727e-01,
-1.3863e-01, 3.3611e-01, 7.6986e-01, -1.0987e+00,
9.4606e-01, 7.0332e-01, 6.0680e-01, 6.5458e-01,
1.1205e+00, -8.1358e-01, -1.0672e+00, -5.3119e-02,
4.2291e-01, -1.2522e-01, 2.6255e-01, 2.0709e+00,
-5.9456e-01, -1.4563e+00, 7.2312e-02, 6.0302e-01,
1.1182e+00, 2.1465e-01, 1.2237e+00, -1.9149e+00,
-4.1693e-01, 5.3784e-01, 1.6919e-01, 9.8024e-01,
1.8376e+00, 1.7544e-01, -1.1843e+00, 1.2060e+00,
1.0271e+00, -2.0323e+00, 1.0022e+00, -5.4507e-01,
1.6178e+00, 2.7004e-01, -1.0204e+00, -7.9488e-01,
8.4051e-01, 7.5993e-01, 4.0229e-02, -1.8497e+00,
3.1985e-01, -1.1768e+00, 1.5956e+00, -1.5284e+00,
-5.3943e-01, -2.3191e+00, -3.8139e-01, -5.2928e-01,
5.5105e-01, -1.4207e+00, 7.5826e-03, 6.3674e-01,
-1.3236e+00, 2.8325e+00, -7.1597e-01, -1.1694e+00,
3.6843e-01, 1.1910e+00, -7.3592e-02, 1.8632e+00,
6.7302e-01, -6.2935e-01, -8.6818e-01, 9.5146e-01,
-6.4181e-01, 9.1642e-01, -9.8669e-02, 3.6616e-01,
7.3530e-01, 4.5761e-01, -1.5428e-01, -5.1549e-01,
-9.2158e-01, 1.3323e+00, 1.3151e+00, -1.2432e+00,
3.1964e-01, 1.6022e+00, -1.2758e+00, -1.1954e+00,
2.9739e-01, 4.8127e-01, 9.0137e-01, 8.7201e-01,
1.9086e+00, -1.7651e+00, 1.2002e+00, -7.8147e-01,
-1.9767e-01, 6.9906e-03, 8.8539e-01, 6.8087e-01,
-1.8365e+00, -4.1273e-01, -7.2632e-01, 6.4975e-01,
2.0020e+00, 6.4317e-01, 1.1725e+00, -2.5764e+00,
7.4176e-01, -8.5839e-01, 5.8067e-01, -5.3107e-01,
6.3750e-01, 9.6725e-01, 6.4630e-01, 1.3121e+00,
2.7741e-01, 2.8453e-01, 7.7231e-01, 7.7152e-01,
-9.2248e-02, -4.8814e-01, -5.9692e-01, 6.4085e-01,
7.4396e-01, 1.8791e-01, 5.2013e-01, 1.1617e+00,
7.5987e-01, -1.0077e+00, -2.1012e+00, 1.7359e-01,
2.9332e-01, -8.0365e-01, -3.8712e-01, 2.6136e+00,
-2.9833e-01, -1.4024e+00, -4.3362e-01, -1.6925e-01,
-6.6657e-01, 6.7348e-01, 3.7334e-02, 1.2098e-01]),
size=(10000, 10000), nnz=1000, layout=torch.sparse_csr)
tensor([0.8051, 0.7193, 0.7310, ..., 0.3503, 0.5164, 0.5572])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([10000, 10000])
Size: 100000000
NNZ: 1000
Density: 1e-05
Time: 10.456323862075806 seconds

View File

@ -0,0 +1 @@
{"CPU": "Xeon 4216", "ITERATIONS": 487645, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.432088851928711, "TIME_S_1KI": 0.021392793634567586, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 707.2562955856323, "W": 68.32, "J_1KI": 1.4503507584116155, "W_1KI": 0.1401019184037568, "W_D": 58.7225, "J_D": 607.901900139451, "W_D_1KI": 0.12042059284930635, "J_D_1KI": 0.00024694315095880477}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 0, 0, ..., 5000, 5000, 5000]),
col_indices=tensor([3725, 7553, 8222, ..., 6344, 7639, 6260]),
values=tensor([ 0.8432, -1.0427, -0.2190, ..., 0.4959, -0.1674,
-0.0937]), size=(10000, 10000), nnz=5000,
layout=torch.sparse_csr)
tensor([0.7163, 0.8365, 0.1620, ..., 0.0528, 0.7355, 0.5159])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([10000, 10000])
Size: 100000000
NNZ: 5000
Density: 5e-05
Time: 10.432088851928711 seconds

View File

@ -0,0 +1 @@
{"CPU": "Xeon 4216", "ITERATIONS": 271193, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [20000, 20000], "MATRIX_SIZE": 400000000, "MATRIX_NNZ": 39996, "MATRIX_DENSITY": 9.999e-05, "TIME_S": 10.380186557769775, "TIME_S_1KI": 0.03827601213073263, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 734.2139717435838, "W": 70.93, "J_1KI": 2.707348536811731, "W_1KI": 0.2615480488065695, "W_D": 60.87500000000001, "J_D": 630.1321800351144, "W_D_1KI": 0.22447113310446806, "J_D_1KI": 0.0008277172829109456}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 0, 2, ..., 39992, 39996, 39996]),
col_indices=tensor([ 7037, 18637, 10167, ..., 8957, 15554, 19711]),
values=tensor([ 0.7638, 0.4331, 0.5708, ..., 0.9268, -0.8672,
-0.7994]), size=(20000, 20000), nnz=39996,
layout=torch.sparse_csr)
tensor([0.7033, 0.4906, 0.3942, ..., 0.3649, 0.3820, 0.3964])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([20000, 20000])
Size: 400000000
NNZ: 39996
Density: 9.999e-05
Time: 10.380186557769775 seconds

View File

@ -0,0 +1 @@
{"CPU": "Xeon 4216", "ITERATIONS": 425538, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [20000, 20000], "MATRIX_SIZE": 400000000, "MATRIX_NNZ": 4000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.612646102905273, "TIME_S_1KI": 0.024939361708954957, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 733.1615182805061, "W": 69.61, "J_1KI": 1.7229049304186845, "W_1KI": 0.16358116078940071, "W_D": 60.0125, "J_D": 632.076650133729, "W_D_1KI": 0.1410273583087762, "J_D_1KI": 0.000331409552869018}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 0, 0, ..., 4000, 4000, 4000]),
col_indices=tensor([ 4428, 1606, 8949, ..., 7037, 7619, 15417]),
values=tensor([ 0.1462, 0.3661, 0.8472, ..., 0.9410, 1.1193,
-1.0240]), size=(20000, 20000), nnz=4000,
layout=torch.sparse_csr)
tensor([0.1186, 0.0648, 0.1914, ..., 0.9609, 0.8460, 0.4234])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([20000, 20000])
Size: 400000000
NNZ: 4000
Density: 1e-05
Time: 10.612646102905273 seconds

View File

@ -0,0 +1 @@
{"CPU": "Xeon 4216", "ITERATIONS": 327790, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [20000, 20000], "MATRIX_SIZE": 400000000, "MATRIX_NNZ": 19999, "MATRIX_DENSITY": 4.99975e-05, "TIME_S": 10.633241653442383, "TIME_S_1KI": 0.03243918866787389, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 758.1797456002236, "W": 71.09, "J_1KI": 2.313004501663332, "W_1KI": 0.2168766588364502, "W_D": 61.556250000000006, "J_D": 656.5016453102231, "W_D_1KI": 0.18779172641020167, "J_D_1KI": 0.0005729025486140568}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 0, 1, ..., 19998, 19998, 19999]),
col_indices=tensor([17332, 19069, 8431, ..., 11082, 18916, 417]),
values=tensor([-2.0256, -0.3508, -0.5357, ..., 1.0581, 0.1092,
1.0328]), size=(20000, 20000), nnz=19999,
layout=torch.sparse_csr)
tensor([0.6263, 0.4138, 0.5906, ..., 0.1013, 0.0614, 0.9531])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([20000, 20000])
Size: 400000000
NNZ: 19999
Density: 4.99975e-05
Time: 10.633241653442383 seconds

View File

@ -0,0 +1 @@
{"CPU": "Xeon 4216", "ITERATIONS": 86156, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 249983, "MATRIX_DENSITY": 9.99932e-05, "TIME_S": 10.060947179794312, "TIME_S_1KI": 0.11677593179574623, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 789.3654530024528, "W": 78.13, "J_1KI": 9.162048528279549, "W_1KI": 0.9068434003435628, "W_D": 68.57124999999999, "J_D": 692.7911918494104, "W_D_1KI": 0.7958963972329263, "J_D_1KI": 0.009237852235861998}

View File

@ -0,0 +1,17 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 5, 15, ..., 249974, 249977,
249983]),
col_indices=tensor([ 9971, 12071, 16397, ..., 21429, 22054, 49364]),
values=tensor([-0.1463, 0.4247, 0.1497, ..., -0.0494, -0.8218,
-0.6361]), size=(50000, 50000), nnz=249983,
layout=torch.sparse_csr)
tensor([0.8616, 0.6800, 0.3985, ..., 0.2192, 0.2669, 0.8530])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([50000, 50000])
Size: 2500000000
NNZ: 249983
Density: 9.99932e-05
Time: 10.060947179794312 seconds

View File

@ -0,0 +1 @@
{"CPU": "Xeon 4216", "ITERATIONS": 159448, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.552724838256836, "TIME_S_1KI": 0.0661828611099345, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 729.3027632951736, "W": 71.05, "J_1KI": 4.573922302538594, "W_1KI": 0.4455998193768501, "W_D": 61.05499999999999, "J_D": 626.707673652172, "W_D_1KI": 0.38291480608097933, "J_D_1KI": 0.0024015027223983952}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 0, 0, ..., 24996, 24997, 25000]),
col_indices=tensor([11148, 16126, 18025, ..., 26243, 35537, 45208]),
values=tensor([ 1.2117, 2.1451, 1.4317, ..., -1.1109, 2.1282,
-0.5315]), size=(50000, 50000), nnz=25000,
layout=torch.sparse_csr)
tensor([0.0712, 0.6707, 0.1386, ..., 0.8073, 0.6140, 0.3720])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([50000, 50000])
Size: 2500000000
NNZ: 25000
Density: 1e-05
Time: 10.552724838256836 seconds

View File

@ -0,0 +1 @@
{"CPU": "Xeon 4216", "ITERATIONS": 106035, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 124996, "MATRIX_DENSITY": 4.99984e-05, "TIME_S": 10.573558330535889, "TIME_S_1KI": 0.09971762465729135, "BASELINE_TIME_S": 2, "BASELINE_DELAY_S": 10, "J": 803.3346718859673, "W": 75.61, "J_1KI": 7.57612742854687, "W_1KI": 0.7130664403263074, "W_D": 65.60875, "J_D": 697.0742448630929, "W_D_1KI": 0.6187461687178761, "J_D_1KI": 0.005835301256357581}

View File

@ -0,0 +1,17 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 2, 9, ..., 124991, 124993,
124996]),
col_indices=tensor([10594, 40246, 1820, ..., 31632, 33399, 36136]),
values=tensor([-0.5712, 0.9018, -1.2338, ..., 0.9174, 0.3466,
-0.5163]), size=(50000, 50000), nnz=124996,
layout=torch.sparse_csr)
tensor([0.0416, 0.6695, 0.0944, ..., 0.0814, 0.2859, 0.7324])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([50000, 50000])
Size: 2500000000
NNZ: 124996
Density: 4.99984e-05
Time: 10.573558330535889 seconds