This commit is contained in:
cephi 2024-12-18 21:26:39 -05:00
parent a8eff4c683
commit 7569920be0
1863 changed files with 91816 additions and 24138 deletions

View File

@ -117,7 +117,7 @@ elif args.matrix_type == MatrixType.SYNTHETIC:
parameter_list = enumerate([(size, density)
for size in args.synthetic_size
for density in args.synthetic_density
if size ** 2 * density <= 50000000])
if size ** 2 * density <= 100000000])
#for i, matrix in enumerate(glob.glob(f'{args.matrix_dir.rstrip("/")}/*.mtx')):
for i, parameter in parameter_list:

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 4950, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 10.512001991271973, "TIME_S_1KI": 2.12363676591353, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 850.9319224691392, "W": 64.26, "J_1KI": 171.90543888265438, "W_1KI": 12.981818181818182, "W_D": 29.119500000000002, "J_D": 385.600873270154, "W_D_1KI": 5.882727272727273, "J_D_1KI": 1.1884297520661158}

View File

@ -1,11 +1,11 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_010.mtx', '-c', '1']
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 0.2207937240600586}
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 0.23576855659484863}
tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170],
[ 0, 0, 0, ..., 31353, 31360, 31378]]),
values=tensor([3., 1., 1., ..., 3., 3., 3.]),
size=(31379, 31379), nnz=74994, layout=torch.sparse_coo)
tensor([0.7193, 0.7070, 0.1341, ..., 0.0458, 0.8165, 0.6087])
tensor([0.0720, 0.8900, 0.2156, ..., 0.8187, 0.1034, 0.8459])
Matrix Type: SuiteSparse
Matrix: as-caida_G_010
Matrix Format: coo
@ -14,16 +14,16 @@ Rows: 31379
Size: 984641641
NNZ: 74994
Density: 7.616375021864427e-05
Time: 0.2207937240600586 seconds
Time: 0.23576855659484863 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '4755', '-m', 'matrices/as-caida_pruned/as-caida_G_010.mtx', '-c', '1']
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 10.089951038360596}
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '4453', '-m', 'matrices/as-caida_pruned/as-caida_G_010.mtx', '-c', '1']
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 9.444213628768921}
tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170],
[ 0, 0, 0, ..., 31353, 31360, 31378]]),
values=tensor([3., 1., 1., ..., 3., 3., 3.]),
size=(31379, 31379), nnz=74994, layout=torch.sparse_coo)
tensor([0.1581, 0.9236, 0.8715, ..., 0.0128, 0.7061, 0.4474])
tensor([0.5426, 0.3622, 0.1360, ..., 0.9710, 0.4622, 0.4763])
Matrix Type: SuiteSparse
Matrix: as-caida_G_010
Matrix Format: coo
@ -32,13 +32,16 @@ Rows: 31379
Size: 984641641
NNZ: 74994
Density: 7.616375021864427e-05
Time: 10.089951038360596 seconds
Time: 9.444213628768921 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '4950', '-m', 'matrices/as-caida_pruned/as-caida_G_010.mtx', '-c', '1']
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 10.512001991271973}
tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170],
[ 0, 0, 0, ..., 31353, 31360, 31378]]),
values=tensor([3., 1., 1., ..., 3., 3., 3.]),
size=(31379, 31379), nnz=74994, layout=torch.sparse_coo)
tensor([0.1581, 0.9236, 0.8715, ..., 0.0128, 0.7061, 0.4474])
tensor([0.9719, 0.1948, 0.3482, ..., 0.1448, 0.3015, 0.3034])
Matrix Type: SuiteSparse
Matrix: as-caida_G_010
Matrix Format: coo
@ -47,9 +50,28 @@ Rows: 31379
Size: 984641641
NNZ: 74994
Density: 7.616375021864427e-05
Time: 10.089951038360596 seconds
Time: 10.512001991271973 seconds
[44.57, 39.27, 38.78, 39.37, 39.08, 39.0, 39.29, 40.29, 38.94, 38.6]
[64.64]
12.744337558746338
{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 4755, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_010', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 74994, 'MATRIX_DENSITY': 7.616375021864427e-05, 'TIME_S': 10.089951038360596, 'TIME_S_1KI': 2.1219665695816183, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 823.7939797973632, 'W': 64.64}
tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170],
[ 0, 0, 0, ..., 31353, 31360, 31378]]),
values=tensor([3., 1., 1., ..., 3., 3., 3.]),
size=(31379, 31379), nnz=74994, layout=torch.sparse_coo)
tensor([0.9719, 0.1948, 0.3482, ..., 0.1448, 0.3015, 0.3034])
Matrix Type: SuiteSparse
Matrix: as-caida_G_010
Matrix Format: coo
Shape: torch.Size([31379, 31379])
Rows: 31379
Size: 984641641
NNZ: 74994
Density: 7.616375021864427e-05
Time: 10.512001991271973 seconds
[39.44, 39.17, 38.57, 39.04, 39.83, 39.07, 38.63, 38.66, 40.52, 38.52]
[64.26]
13.242015600204468
{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 4950, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_010', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 74994, 'MATRIX_DENSITY': 7.616375021864427e-05, 'TIME_S': 10.512001991271973, 'TIME_S_1KI': 2.12363676591353, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 850.9319224691392, 'W': 64.26}
[39.44, 39.17, 38.57, 39.04, 39.83, 39.07, 38.63, 38.66, 40.52, 38.52, 39.2, 38.77, 38.71, 38.46, 38.74, 39.68, 39.05, 39.32, 38.59, 38.84]
702.8100000000001
35.1405
{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 4950, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_010', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 74994, 'MATRIX_DENSITY': 7.616375021864427e-05, 'TIME_S': 10.512001991271973, 'TIME_S_1KI': 2.12363676591353, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 850.9319224691392, 'W': 64.26, 'J_1KI': 171.90543888265438, 'W_1KI': 12.981818181818182, 'W_D': 29.119500000000002, 'J_D': 385.600873270154, 'W_D_1KI': 5.882727272727273, 'J_D_1KI': 1.1884297520661158}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 367, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.419839143753052, "TIME_S_1KI": 28.39193227180668, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 397.99056369781505, "W": 27.315883432832518, "J_1KI": 1084.4429528550818, "W_1KI": 74.43020008946189, "W_D": 12.377883432832519, "J_D": 180.34491972160353, "W_D_1KI": 33.727202814257545, "J_D_1KI": 91.89973518871265}

View File

@ -0,0 +1,73 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 100000 -sd 0.0001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.3841264247894287}
tensor(indices=tensor([[12468, 7286, 42070, ..., 41435, 93609, 87646],
[40435, 70110, 80235, ..., 72237, 42645, 8439]]),
values=tensor([0.4478, 0.9727, 0.1236, ..., 0.3635, 0.6500, 0.0042]),
size=(100000, 100000), nnz=1000000, layout=torch.sparse_coo)
tensor([0.3810, 0.0198, 0.2872, ..., 0.7346, 0.9919, 0.8495])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([100000, 100000])
Rows: 100000
Size: 10000000000
NNZ: 1000000
Density: 0.0001
Time: 0.3841264247894287 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 273 -ss 100000 -sd 0.0001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 7.802507400512695}
tensor(indices=tensor([[66870, 12119, 38015, ..., 43745, 48193, 42393],
[24231, 38254, 74788, ..., 95676, 54345, 18633]]),
values=tensor([0.5489, 0.7321, 0.1915, ..., 0.2369, 0.8050, 0.8821]),
size=(100000, 100000), nnz=1000000, layout=torch.sparse_coo)
tensor([0.9003, 0.7844, 0.6361, ..., 0.6011, 0.0782, 0.7656])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([100000, 100000])
Rows: 100000
Size: 10000000000
NNZ: 1000000
Density: 0.0001
Time: 7.802507400512695 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 367 -ss 100000 -sd 0.0001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.419839143753052}
tensor(indices=tensor([[49924, 69461, 63269, ..., 50062, 11998, 67211],
[44612, 71174, 43698, ..., 38509, 65750, 86040]]),
values=tensor([0.0322, 0.9610, 0.0897, ..., 0.9817, 0.7794, 0.1450]),
size=(100000, 100000), nnz=1000000, layout=torch.sparse_coo)
tensor([0.2779, 0.4359, 0.1613, ..., 0.8529, 0.4594, 0.0392])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([100000, 100000])
Rows: 100000
Size: 10000000000
NNZ: 1000000
Density: 0.0001
Time: 10.419839143753052 seconds
tensor(indices=tensor([[49924, 69461, 63269, ..., 50062, 11998, 67211],
[44612, 71174, 43698, ..., 38509, 65750, 86040]]),
values=tensor([0.0322, 0.9610, 0.0897, ..., 0.9817, 0.7794, 0.1450]),
size=(100000, 100000), nnz=1000000, layout=torch.sparse_coo)
tensor([0.2779, 0.4359, 0.1613, ..., 0.8529, 0.4594, 0.0392])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([100000, 100000])
Rows: 100000
Size: 10000000000
NNZ: 1000000
Density: 0.0001
Time: 10.419839143753052 seconds
[16.36, 16.36, 16.48, 16.6, 16.68, 16.72, 16.76, 16.64, 16.56, 16.68]
[16.88, 16.8, 17.76, 17.76, 19.72, 23.36, 28.64, 32.92, 36.04, 38.68, 38.72, 38.96, 38.72, 38.76]
14.569931983947754
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 367, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.419839143753052, 'TIME_S_1KI': 28.39193227180668, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 397.99056369781505, 'W': 27.315883432832518}
[16.36, 16.36, 16.48, 16.6, 16.68, 16.72, 16.76, 16.64, 16.56, 16.68, 16.4, 16.64, 16.6, 16.88, 16.76, 16.64, 16.64, 16.56, 16.28, 16.48]
298.76
14.937999999999999
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 367, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.419839143753052, 'TIME_S_1KI': 28.39193227180668, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 397.99056369781505, 'W': 27.315883432832518, 'J_1KI': 1084.4429528550818, 'W_1KI': 74.43020008946189, 'W_D': 12.377883432832519, 'J_D': 180.34491972160353, 'W_D_1KI': 33.727202814257545, 'J_D_1KI': 91.89973518871265}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 34, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.180678606033325, "TIME_S_1KI": 299.4317237068625, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 422.515793838501, "W": 25.557128131432332, "J_1KI": 12426.935112897088, "W_1KI": 751.6802391597745, "W_D": 10.417128131432332, "J_D": 172.2181435775757, "W_D_1KI": 306.38612151271565, "J_D_1KI": 9011.356515079871}

View File

@ -0,0 +1,56 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 100000 -sd 0.001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 3.0579380989074707}
tensor(indices=tensor([[40619, 25503, 5323, ..., 95949, 31390, 82914],
[17388, 8501, 29360, ..., 49103, 79345, 61915]]),
values=tensor([0.5711, 0.4325, 0.6219, ..., 0.4496, 0.6456, 0.2954]),
size=(100000, 100000), nnz=10000000, layout=torch.sparse_coo)
tensor([0.6293, 0.9496, 0.1593, ..., 0.6227, 0.5166, 0.2304])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([100000, 100000])
Rows: 100000
Size: 10000000000
NNZ: 10000000
Density: 0.001
Time: 3.0579380989074707 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 34 -ss 100000 -sd 0.001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.180678606033325}
tensor(indices=tensor([[22566, 11034, 23228, ..., 20288, 68913, 82958],
[93883, 53094, 89525, ..., 81254, 92542, 63317]]),
values=tensor([0.3468, 0.2008, 0.6088, ..., 0.6549, 0.5439, 0.6485]),
size=(100000, 100000), nnz=10000000, layout=torch.sparse_coo)
tensor([0.5288, 0.1483, 0.5754, ..., 0.9623, 0.5752, 0.3388])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([100000, 100000])
Rows: 100000
Size: 10000000000
NNZ: 10000000
Density: 0.001
Time: 10.180678606033325 seconds
tensor(indices=tensor([[22566, 11034, 23228, ..., 20288, 68913, 82958],
[93883, 53094, 89525, ..., 81254, 92542, 63317]]),
values=tensor([0.3468, 0.2008, 0.6088, ..., 0.6549, 0.5439, 0.6485]),
size=(100000, 100000), nnz=10000000, layout=torch.sparse_coo)
tensor([0.5288, 0.1483, 0.5754, ..., 0.9623, 0.5752, 0.3388])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([100000, 100000])
Rows: 100000
Size: 10000000000
NNZ: 10000000
Density: 0.001
Time: 10.180678606033325 seconds
[16.36, 16.68, 16.68, 16.96, 17.08, 17.24, 17.04, 16.76, 16.64, 16.48]
[16.32, 16.4, 19.4, 20.52, 22.24, 24.72, 24.72, 28.72, 29.0, 31.24, 33.04, 32.12, 32.0, 32.72, 33.04, 33.4]
16.532209396362305
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 34, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.180678606033325, 'TIME_S_1KI': 299.4317237068625, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 422.515793838501, 'W': 25.557128131432332}
[16.36, 16.68, 16.68, 16.96, 17.08, 17.24, 17.04, 16.76, 16.64, 16.48, 16.36, 16.44, 16.6, 16.4, 16.84, 17.16, 17.12, 17.12, 17.0, 16.88]
302.8
15.14
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 34, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.180678606033325, 'TIME_S_1KI': 299.4317237068625, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 422.515793838501, 'W': 25.557128131432332, 'J_1KI': 12426.935112897088, 'W_1KI': 751.6802391597745, 'W_D': 10.417128131432332, 'J_D': 172.2181435775757, 'W_D_1KI': 306.38612151271565, 'J_D_1KI': 9011.356515079871}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 10, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000000, "MATRIX_DENSITY": 0.01, "TIME_S": 30.31324076652527, "TIME_S_1KI": 3031.324076652527, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1621.7109812927251, "W": 22.805805675157114, "J_1KI": 162171.09812927252, "W_1KI": 2280.580567515711, "W_D": 7.854805675157115, "J_D": 558.5518354740149, "W_D_1KI": 785.4805675157115, "J_D_1KI": 78548.05675157116}

View File

@ -0,0 +1,39 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 100000 -sd 0.01 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000000, "MATRIX_DENSITY": 0.01, "TIME_S": 30.31324076652527}
tensor(indices=tensor([[13635, 80432, 8009, ..., 1124, 10473, 6580],
[94305, 46771, 25673, ..., 59297, 21852, 23926]]),
values=tensor([0.3778, 0.8729, 0.5621, ..., 0.9145, 0.2094, 0.6532]),
size=(100000, 100000), nnz=100000000, layout=torch.sparse_coo)
tensor([0.3910, 0.8851, 0.6086, ..., 0.3028, 0.8290, 0.5528])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([100000, 100000])
Rows: 100000
Size: 10000000000
NNZ: 100000000
Density: 0.01
Time: 30.31324076652527 seconds
tensor(indices=tensor([[13635, 80432, 8009, ..., 1124, 10473, 6580],
[94305, 46771, 25673, ..., 59297, 21852, 23926]]),
values=tensor([0.3778, 0.8729, 0.5621, ..., 0.9145, 0.2094, 0.6532]),
size=(100000, 100000), nnz=100000000, layout=torch.sparse_coo)
tensor([0.3910, 0.8851, 0.6086, ..., 0.3028, 0.8290, 0.5528])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([100000, 100000])
Rows: 100000
Size: 10000000000
NNZ: 100000000
Density: 0.01
Time: 30.31324076652527 seconds
[16.72, 16.52, 16.56, 16.64, 16.96, 17.0, 17.08, 16.88, 16.72, 16.88]
[16.76, 17.08, 19.12, 19.12, 20.84, 22.12, 23.08, 23.8, 21.6, 20.96, 21.92, 23.96, 25.6, 26.32, 26.2, 26.2, 24.68, 22.8, 21.2, 22.24, 23.0, 24.88, 27.76, 27.72, 26.96, 26.2, 22.76, 23.16, 23.0, 23.0, 22.36, 22.92, 22.68, 22.08, 22.68, 22.6, 21.8, 22.76, 23.08, 23.12, 23.24, 22.6, 22.6, 23.04, 22.84, 22.24, 22.84, 22.92, 22.36, 22.92, 22.08, 23.0, 26.8, 26.72, 27.2, 27.8, 27.8, 24.12, 23.28, 22.8, 23.08, 23.16, 23.48, 23.84, 24.0, 24.48, 24.48, 24.64, 24.64, 24.56]
71.10956764221191
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 10, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 30.31324076652527, 'TIME_S_1KI': 3031.324076652527, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1621.7109812927251, 'W': 22.805805675157114}
[16.72, 16.52, 16.56, 16.64, 16.96, 17.0, 17.08, 16.88, 16.72, 16.88, 16.0, 16.04, 16.24, 16.4, 16.56, 16.44, 16.6, 16.52, 16.68, 16.76]
299.02
14.950999999999999
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 10, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 30.31324076652527, 'TIME_S_1KI': 3031.324076652527, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1621.7109812927251, 'W': 22.805805675157114, 'J_1KI': 162171.09812927252, 'W_1KI': 2280.580567515711, 'W_D': 7.854805675157115, 'J_D': 558.5518354740149, 'W_D_1KI': 785.4805675157115, 'J_D_1KI': 78548.05675157116}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 3314, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.203248262405396, "TIME_S_1KI": 3.0788317025966796, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 375.60593753814703, "W": 27.842859053307212, "J_1KI": 113.33914832171003, "W_1KI": 8.401586920128912, "W_D": 12.732859053307209, "J_D": 171.76890681743623, "W_D_1KI": 3.8421421404065206, "J_D_1KI": 1.159366970551153}

View File

@ -0,0 +1,73 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 100000 -sd 1e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.03758573532104492}
tensor(indices=tensor([[76328, 20886, 32175, ..., 88815, 99390, 42238],
[62124, 81704, 42303, ..., 62938, 12925, 65352]]),
values=tensor([0.1394, 0.0752, 0.4473, ..., 0.7415, 0.9621, 0.2206]),
size=(100000, 100000), nnz=100000, layout=torch.sparse_coo)
tensor([0.0051, 0.8634, 0.8851, ..., 0.0171, 0.3637, 0.0740])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([100000, 100000])
Rows: 100000
Size: 10000000000
NNZ: 100000
Density: 1e-05
Time: 0.03758573532104492 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 2793 -ss 100000 -sd 1e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 8.847030401229858}
tensor(indices=tensor([[83955, 53828, 67250, ..., 26654, 58989, 94008],
[17882, 59451, 98038, ..., 31386, 2798, 66043]]),
values=tensor([0.7446, 0.4242, 0.1433, ..., 0.4259, 0.7075, 0.0137]),
size=(100000, 100000), nnz=100000, layout=torch.sparse_coo)
tensor([0.7343, 0.5780, 0.7130, ..., 0.7518, 0.6791, 0.3911])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([100000, 100000])
Rows: 100000
Size: 10000000000
NNZ: 100000
Density: 1e-05
Time: 8.847030401229858 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 3314 -ss 100000 -sd 1e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.203248262405396}
tensor(indices=tensor([[60945, 91856, 78422, ..., 21207, 13896, 37102],
[ 3510, 19927, 52458, ..., 24413, 55529, 42984]]),
values=tensor([0.7731, 0.2319, 0.9132, ..., 0.7538, 0.6562, 0.8763]),
size=(100000, 100000), nnz=100000, layout=torch.sparse_coo)
tensor([0.9001, 0.5184, 0.9677, ..., 0.4892, 0.1066, 0.2961])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([100000, 100000])
Rows: 100000
Size: 10000000000
NNZ: 100000
Density: 1e-05
Time: 10.203248262405396 seconds
tensor(indices=tensor([[60945, 91856, 78422, ..., 21207, 13896, 37102],
[ 3510, 19927, 52458, ..., 24413, 55529, 42984]]),
values=tensor([0.7731, 0.2319, 0.9132, ..., 0.7538, 0.6562, 0.8763]),
size=(100000, 100000), nnz=100000, layout=torch.sparse_coo)
tensor([0.9001, 0.5184, 0.9677, ..., 0.4892, 0.1066, 0.2961])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([100000, 100000])
Rows: 100000
Size: 10000000000
NNZ: 100000
Density: 1e-05
Time: 10.203248262405396 seconds
[16.32, 16.52, 16.72, 16.8, 16.84, 17.12, 17.2, 17.12, 17.08, 16.84]
[16.96, 16.96, 16.68, 20.32, 21.64, 26.48, 30.96, 36.4, 37.12, 40.04, 40.28, 40.4, 40.24]
13.490207195281982
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 3314, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.203248262405396, 'TIME_S_1KI': 3.0788317025966796, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 375.60593753814703, 'W': 27.842859053307212}
[16.32, 16.52, 16.72, 16.8, 16.84, 17.12, 17.2, 17.12, 17.08, 16.84, 16.88, 16.64, 16.56, 16.52, 16.76, 16.64, 16.64, 16.64, 16.92, 16.92]
302.20000000000005
15.110000000000003
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 3314, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.203248262405396, 'TIME_S_1KI': 3.0788317025966796, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 375.60593753814703, 'W': 27.842859053307212, 'J_1KI': 113.33914832171003, 'W_1KI': 8.401586920128912, 'W_D': 12.732859053307209, 'J_D': 171.76890681743623, 'W_D_1KI': 3.8421421404065206, 'J_D_1KI': 1.159366970551153}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 715, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.320415019989014, "TIME_S_1KI": 14.434146881103516, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 408.59843476295475, "W": 28.07372939695753, "J_1KI": 571.4663423258108, "W_1KI": 39.263957198541995, "W_D": 13.211729396957528, "J_D": 192.28980502653127, "W_D_1KI": 18.47794321252801, "J_D_1KI": 25.843277220318896}

View File

@ -0,0 +1,73 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 100000 -sd 5e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.19103288650512695}
tensor(indices=tensor([[61371, 25679, 8054, ..., 88134, 1804, 13470],
[99010, 38769, 82799, ..., 8249, 8039, 50418]]),
values=tensor([0.7126, 0.6439, 0.5445, ..., 0.7563, 0.4214, 0.5013]),
size=(100000, 100000), nnz=500000, layout=torch.sparse_coo)
tensor([0.0261, 0.4519, 0.6566, ..., 0.0991, 0.5006, 0.4804])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([100000, 100000])
Rows: 100000
Size: 10000000000
NNZ: 500000
Density: 5e-05
Time: 0.19103288650512695 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 549 -ss 100000 -sd 5e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 8.052725315093994}
tensor(indices=tensor([[77539, 36814, 54376, ..., 37932, 50567, 94324],
[45152, 76258, 29226, ..., 85716, 88491, 37352]]),
values=tensor([0.9768, 0.4066, 0.7209, ..., 0.5181, 0.9076, 0.8507]),
size=(100000, 100000), nnz=500000, layout=torch.sparse_coo)
tensor([0.2804, 0.1817, 0.9427, ..., 0.7550, 0.4651, 0.6315])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([100000, 100000])
Rows: 100000
Size: 10000000000
NNZ: 500000
Density: 5e-05
Time: 8.052725315093994 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 715 -ss 100000 -sd 5e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.320415019989014}
tensor(indices=tensor([[ 4536, 78747, 27018, ..., 68410, 35059, 67322],
[38765, 55046, 93716, ..., 27462, 49408, 99832]]),
values=tensor([0.5387, 0.6165, 0.9464, ..., 0.2810, 0.4426, 0.6382]),
size=(100000, 100000), nnz=500000, layout=torch.sparse_coo)
tensor([0.8650, 0.2994, 0.8365, ..., 0.8583, 0.9823, 0.7996])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([100000, 100000])
Rows: 100000
Size: 10000000000
NNZ: 500000
Density: 5e-05
Time: 10.320415019989014 seconds
tensor(indices=tensor([[ 4536, 78747, 27018, ..., 68410, 35059, 67322],
[38765, 55046, 93716, ..., 27462, 49408, 99832]]),
values=tensor([0.5387, 0.6165, 0.9464, ..., 0.2810, 0.4426, 0.6382]),
size=(100000, 100000), nnz=500000, layout=torch.sparse_coo)
tensor([0.8650, 0.2994, 0.8365, ..., 0.8583, 0.9823, 0.7996])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([100000, 100000])
Rows: 100000
Size: 10000000000
NNZ: 500000
Density: 5e-05
Time: 10.320415019989014 seconds
[16.52, 16.32, 16.44, 16.72, 16.4, 16.56, 16.76, 16.76, 16.72, 16.72]
[16.92, 16.88, 16.84, 20.68, 21.88, 27.04, 31.28, 33.48, 36.68, 38.64, 38.8, 38.64, 38.68, 38.52]
14.554476499557495
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 715, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.320415019989014, 'TIME_S_1KI': 14.434146881103516, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 408.59843476295475, 'W': 28.07372939695753}
[16.52, 16.32, 16.44, 16.72, 16.4, 16.56, 16.76, 16.76, 16.72, 16.72, 16.12, 16.28, 16.16, 16.44, 16.44, 16.68, 16.72, 16.64, 16.4, 16.24]
297.24
14.862
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 715, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.320415019989014, 'TIME_S_1KI': 14.434146881103516, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 408.59843476295475, 'W': 28.07372939695753, 'J_1KI': 571.4663423258108, 'W_1KI': 39.263957198541995, 'W_D': 13.211729396957528, 'J_D': 192.28980502653127, 'W_D_1KI': 18.47794321252801, 'J_D_1KI': 25.843277220318896}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 47475, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.944029331207275, "TIME_S_1KI": 0.2305219448384892, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 260.57559970855715, "W": 18.35299474105064, "J_1KI": 5.488690883803205, "W_1KI": 0.386582301022657, "W_D": 2.1109947410506393, "J_D": 29.971878071784975, "W_D_1KI": 0.04446539738916565, "J_D_1KI": 0.0009366065800772122}

View File

@ -0,0 +1,73 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 10000 -sd 0.0001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.008498430252075195}
tensor(indices=tensor([[6168, 2783, 304, ..., 7181, 3674, 7845],
[2081, 3093, 7875, ..., 7763, 2281, 9973]]),
values=tensor([0.3303, 0.9628, 0.1035, ..., 0.9481, 0.9467, 0.4079]),
size=(10000, 10000), nnz=10000, layout=torch.sparse_coo)
tensor([0.8870, 0.6017, 0.4765, ..., 0.0324, 0.5601, 0.5440])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 10000
Density: 0.0001
Time: 0.008498430252075195 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 12355 -ss 10000 -sd 0.0001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 2.732515335083008}
tensor(indices=tensor([[ 234, 3244, 2663, ..., 1564, 8779, 2237],
[6482, 5485, 8803, ..., 9220, 7760, 3534]]),
values=tensor([0.8332, 0.7642, 0.3774, ..., 0.6914, 0.1324, 0.7233]),
size=(10000, 10000), nnz=10000, layout=torch.sparse_coo)
tensor([0.6346, 0.8402, 0.2794, ..., 0.9708, 0.9602, 0.1286])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 10000
Density: 0.0001
Time: 2.732515335083008 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 47475 -ss 10000 -sd 0.0001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.944029331207275}
tensor(indices=tensor([[9618, 2312, 3184, ..., 9849, 7099, 5767],
[8363, 6117, 6209, ..., 3323, 4797, 4014]]),
values=tensor([0.3820, 0.2164, 0.4818, ..., 0.1828, 0.9004, 0.2452]),
size=(10000, 10000), nnz=10000, layout=torch.sparse_coo)
tensor([0.7549, 0.9757, 0.2583, ..., 0.4859, 0.3771, 0.8348])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 10000
Density: 0.0001
Time: 10.944029331207275 seconds
tensor(indices=tensor([[9618, 2312, 3184, ..., 9849, 7099, 5767],
[8363, 6117, 6209, ..., 3323, 4797, 4014]]),
values=tensor([0.3820, 0.2164, 0.4818, ..., 0.1828, 0.9004, 0.2452]),
size=(10000, 10000), nnz=10000, layout=torch.sparse_coo)
tensor([0.7549, 0.9757, 0.2583, ..., 0.4859, 0.3771, 0.8348])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 10000
Density: 0.0001
Time: 10.944029331207275 seconds
[20.44, 20.48, 20.24, 20.32, 20.08, 20.08, 19.6, 18.44, 17.68, 16.88]
[16.4, 16.44, 17.0, 18.04, 20.36, 21.0, 21.76, 21.76, 21.44, 21.28, 19.68, 19.68, 19.92, 20.08]
14.197988033294678
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 47475, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.944029331207275, 'TIME_S_1KI': 0.2305219448384892, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 260.57559970855715, 'W': 18.35299474105064}
[20.44, 20.48, 20.24, 20.32, 20.08, 20.08, 19.6, 18.44, 17.68, 16.88, 16.16, 16.16, 16.28, 16.44, 16.72, 16.84, 16.76, 16.76, 16.88, 16.68]
324.84000000000003
16.242
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 47475, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.944029331207275, 'TIME_S_1KI': 0.2305219448384892, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 260.57559970855715, 'W': 18.35299474105064, 'J_1KI': 5.488690883803205, 'W_1KI': 0.386582301022657, 'W_D': 2.1109947410506393, 'J_D': 29.971878071784975, 'W_D_1KI': 0.04446539738916565, 'J_D_1KI': 0.0009366065800772122}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 4810, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.547842979431152, "TIME_S_1KI": 2.192898748322485, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 276.70302688598633, "W": 19.38616370089356, "J_1KI": 57.52661681621338, "W_1KI": 4.030387463803235, "W_D": 4.429163700893563, "J_D": 63.21843875455857, "W_D_1KI": 0.9208240542398259, "J_D_1KI": 0.19143951231597212}

View File

@ -0,0 +1,73 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 10000 -sd 0.001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.02799510955810547}
tensor(indices=tensor([[ 266, 5742, 6915, ..., 1668, 4137, 6263],
[5390, 3213, 7167, ..., 9658, 3658, 5142]]),
values=tensor([0.3984, 0.0693, 0.4181, ..., 0.1044, 0.5212, 0.3869]),
size=(10000, 10000), nnz=100000, layout=torch.sparse_coo)
tensor([0.7188, 0.6598, 0.8343, ..., 0.0225, 0.4378, 0.3796])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 100000
Density: 0.001
Time: 0.02799510955810547 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 3750 -ss 10000 -sd 0.001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 8.18604826927185}
tensor(indices=tensor([[7560, 7798, 937, ..., 3206, 7915, 3876],
[6246, 9875, 3448, ..., 1615, 3380, 5979]]),
values=tensor([0.6216, 0.7110, 0.4328, ..., 0.6404, 0.8377, 0.3045]),
size=(10000, 10000), nnz=100000, layout=torch.sparse_coo)
tensor([0.1658, 0.2435, 0.8360, ..., 0.5002, 0.6405, 0.4177])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 100000
Density: 0.001
Time: 8.18604826927185 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 4810 -ss 10000 -sd 0.001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.547842979431152}
tensor(indices=tensor([[9492, 943, 366, ..., 7541, 3419, 8520],
[3163, 6992, 6675, ..., 104, 3723, 9842]]),
values=tensor([0.3216, 0.9704, 0.2426, ..., 0.1027, 0.1369, 0.4280]),
size=(10000, 10000), nnz=100000, layout=torch.sparse_coo)
tensor([0.9840, 0.1417, 0.0398, ..., 0.7890, 0.7444, 0.3956])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 100000
Density: 0.001
Time: 10.547842979431152 seconds
tensor(indices=tensor([[9492, 943, 366, ..., 7541, 3419, 8520],
[3163, 6992, 6675, ..., 104, 3723, 9842]]),
values=tensor([0.3216, 0.9704, 0.2426, ..., 0.1027, 0.1369, 0.4280]),
size=(10000, 10000), nnz=100000, layout=torch.sparse_coo)
tensor([0.9840, 0.1417, 0.0398, ..., 0.7890, 0.7444, 0.3956])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 100000
Density: 0.001
Time: 10.547842979431152 seconds
[16.24, 16.48, 16.6, 16.52, 16.8, 16.64, 16.6, 16.6, 16.6, 16.6]
[16.44, 16.32, 16.4, 20.52, 22.56, 24.04, 25.44, 23.28, 22.24, 20.4, 20.4, 20.4, 20.4, 20.8]
14.27322244644165
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4810, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.547842979431152, 'TIME_S_1KI': 2.192898748322485, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 276.70302688598633, 'W': 19.38616370089356}
[16.24, 16.48, 16.6, 16.52, 16.8, 16.64, 16.6, 16.6, 16.6, 16.6, 16.28, 16.44, 16.48, 16.56, 16.6, 16.68, 16.76, 16.84, 16.88, 17.0]
299.14
14.956999999999999
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4810, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.547842979431152, 'TIME_S_1KI': 2.192898748322485, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 276.70302688598633, 'W': 19.38616370089356, 'J_1KI': 57.52661681621338, 'W_1KI': 4.030387463803235, 'W_D': 4.429163700893563, 'J_D': 63.21843875455857, 'W_D_1KI': 0.9208240542398259, 'J_D_1KI': 0.19143951231597212}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 483, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.741916418075562, "TIME_S_1KI": 22.239992584007375, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 276.1104020309449, "W": 19.461832909928876, "J_1KI": 571.6571470619976, "W_1KI": 40.29364991703701, "W_D": 4.5208329099288775, "J_D": 64.13830588579185, "W_D_1KI": 9.359902505028732, "J_D_1KI": 19.378680134635054}

View File

@ -0,0 +1,73 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 10000 -sd 0.01 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.2565734386444092}
tensor(indices=tensor([[3040, 1975, 8185, ..., 4197, 2982, 9717],
[2548, 7576, 6395, ..., 4840, 4908, 516]]),
values=tensor([0.8984, 0.8219, 0.3232, ..., 0.0275, 0.0542, 0.2107]),
size=(10000, 10000), nnz=1000000, layout=torch.sparse_coo)
tensor([0.4740, 0.4212, 0.7772, ..., 0.6354, 0.9914, 0.8150])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 1000000
Density: 0.01
Time: 0.2565734386444092 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 409 -ss 10000 -sd 0.01 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 8.887248516082764}
tensor(indices=tensor([[ 909, 4395, 9375, ..., 4784, 538, 5967],
[9525, 7935, 62, ..., 8942, 8068, 5683]]),
values=tensor([0.2394, 0.6993, 0.1720, ..., 0.6730, 0.4942, 0.9458]),
size=(10000, 10000), nnz=1000000, layout=torch.sparse_coo)
tensor([0.0813, 0.6209, 0.8868, ..., 0.0609, 0.7307, 0.2857])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 1000000
Density: 0.01
Time: 8.887248516082764 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 483 -ss 10000 -sd 0.01 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.741916418075562}
tensor(indices=tensor([[3476, 8500, 6569, ..., 1163, 7732, 5509],
[ 139, 5237, 3565, ..., 4894, 7373, 9358]]),
values=tensor([0.0056, 0.8699, 0.9380, ..., 0.1444, 0.5055, 0.8646]),
size=(10000, 10000), nnz=1000000, layout=torch.sparse_coo)
tensor([0.6523, 0.3723, 0.1460, ..., 0.5424, 0.6615, 0.0631])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 1000000
Density: 0.01
Time: 10.741916418075562 seconds
tensor(indices=tensor([[3476, 8500, 6569, ..., 1163, 7732, 5509],
[ 139, 5237, 3565, ..., 4894, 7373, 9358]]),
values=tensor([0.0056, 0.8699, 0.9380, ..., 0.1444, 0.5055, 0.8646]),
size=(10000, 10000), nnz=1000000, layout=torch.sparse_coo)
tensor([0.6523, 0.3723, 0.1460, ..., 0.5424, 0.6615, 0.0631])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 1000000
Density: 0.01
Time: 10.741916418075562 seconds
[17.12, 16.84, 16.88, 16.92, 16.72, 16.44, 16.6, 16.64, 16.64, 16.72]
[16.92, 16.92, 16.6, 20.12, 21.16, 23.2, 24.28, 25.04, 22.44, 21.72, 20.76, 20.72, 20.56, 20.56]
14.187276363372803
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 483, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.741916418075562, 'TIME_S_1KI': 22.239992584007375, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 276.1104020309449, 'W': 19.461832909928876}
[17.12, 16.84, 16.88, 16.92, 16.72, 16.44, 16.6, 16.64, 16.64, 16.72, 16.2, 16.12, 16.16, 16.52, 16.52, 16.6, 16.6, 16.64, 16.64, 16.64]
298.82
14.940999999999999
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 483, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.741916418075562, 'TIME_S_1KI': 22.239992584007375, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 276.1104020309449, 'W': 19.461832909928876, 'J_1KI': 571.6571470619976, 'W_1KI': 40.29364991703701, 'W_D': 4.5208329099288775, 'J_D': 64.13830588579185, 'W_D_1KI': 9.359902505028732, 'J_D_1KI': 19.378680134635054}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 95, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.398029565811157, "TIME_S_1KI": 109.45294279801219, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 302.1709572029114, "W": 19.739419615702108, "J_1KI": 3180.746917925383, "W_1KI": 207.78336437581166, "W_D": 5.013419615702105, "J_D": 76.74540759706494, "W_D_1KI": 52.77283806002216, "J_D_1KI": 555.5035585265491}

View File

@ -0,0 +1,56 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 10000 -sd 0.05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 1.1015262603759766}
tensor(indices=tensor([[5975, 1448, 909, ..., 2303, 64, 4395],
[3014, 2842, 4837, ..., 5281, 7605, 6977]]),
values=tensor([0.1469, 0.9843, 0.0934, ..., 0.3480, 0.5731, 0.6993]),
size=(10000, 10000), nnz=5000000, layout=torch.sparse_coo)
tensor([0.4636, 0.4700, 0.7576, ..., 0.5837, 0.3639, 0.2563])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 5000000
Density: 0.05
Time: 1.1015262603759766 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 95 -ss 10000 -sd 0.05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.398029565811157}
tensor(indices=tensor([[5766, 7593, 1135, ..., 8989, 4526, 639],
[2637, 6322, 1951, ..., 9020, 3345, 4258]]),
values=tensor([0.3933, 0.8952, 0.2235, ..., 0.1950, 0.5530, 0.4784]),
size=(10000, 10000), nnz=5000000, layout=torch.sparse_coo)
tensor([0.5471, 0.2753, 0.9099, ..., 0.8421, 0.2533, 0.6665])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 5000000
Density: 0.05
Time: 10.398029565811157 seconds
tensor(indices=tensor([[5766, 7593, 1135, ..., 8989, 4526, 639],
[2637, 6322, 1951, ..., 9020, 3345, 4258]]),
values=tensor([0.3933, 0.8952, 0.2235, ..., 0.1950, 0.5530, 0.4784]),
size=(10000, 10000), nnz=5000000, layout=torch.sparse_coo)
tensor([0.5471, 0.2753, 0.9099, ..., 0.8421, 0.2533, 0.6665])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 5000000
Density: 0.05
Time: 10.398029565811157 seconds
[16.52, 16.28, 16.48, 16.72, 16.84, 16.6, 16.56, 16.4, 16.4, 16.52]
[16.36, 16.52, 16.52, 19.76, 20.96, 24.16, 24.84, 25.6, 22.84, 21.8, 20.96, 21.08, 21.04, 21.04, 20.88]
15.307996034622192
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 95, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.398029565811157, 'TIME_S_1KI': 109.45294279801219, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 302.1709572029114, 'W': 19.739419615702108}
[16.52, 16.28, 16.48, 16.72, 16.84, 16.6, 16.56, 16.4, 16.4, 16.52, 15.96, 15.96, 16.44, 16.6, 16.4, 16.28, 16.28, 15.84, 15.84, 16.2]
294.52000000000004
14.726000000000003
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 95, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.398029565811157, 'TIME_S_1KI': 109.45294279801219, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 302.1709572029114, 'W': 19.739419615702108, 'J_1KI': 3180.746917925383, 'W_1KI': 207.78336437581166, 'W_D': 5.013419615702105, 'J_D': 76.74540759706494, 'W_D_1KI': 52.77283806002216, 'J_D_1KI': 555.5035585265491}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 48, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.384194135665894, "TIME_S_1KI": 216.33737782637277, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 329.3590560531616, "W": 20.245232558826288, "J_1KI": 6861.647001107534, "W_1KI": 421.775678308881, "W_D": 4.979232558826286, "J_D": 81.00451949262619, "W_D_1KI": 103.7340116422143, "J_D_1KI": 2161.125242546131}

View File

@ -0,0 +1,56 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 10000 -sd 0.1 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 2.1636908054351807}
tensor(indices=tensor([[9377, 3039, 357, ..., 252, 8928, 7869],
[5085, 6961, 3696, ..., 1339, 3476, 6424]]),
values=tensor([0.9709, 0.1419, 0.4987, ..., 0.9197, 0.7910, 0.9313]),
size=(10000, 10000), nnz=10000000, layout=torch.sparse_coo)
tensor([0.8336, 0.3321, 0.0806, ..., 0.9733, 0.5686, 0.4957])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 10000000
Density: 0.1
Time: 2.1636908054351807 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 48 -ss 10000 -sd 0.1 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.384194135665894}
tensor(indices=tensor([[9257, 192, 6875, ..., 5776, 6405, 6896],
[3742, 49, 4010, ..., 1461, 8112, 474]]),
values=tensor([0.4683, 0.1972, 0.1221, ..., 0.3478, 0.8050, 0.6367]),
size=(10000, 10000), nnz=10000000, layout=torch.sparse_coo)
tensor([0.4396, 0.1326, 0.6146, ..., 0.3496, 0.5544, 0.0468])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 10000000
Density: 0.1
Time: 10.384194135665894 seconds
tensor(indices=tensor([[9257, 192, 6875, ..., 5776, 6405, 6896],
[3742, 49, 4010, ..., 1461, 8112, 474]]),
values=tensor([0.4683, 0.1972, 0.1221, ..., 0.3478, 0.8050, 0.6367]),
size=(10000, 10000), nnz=10000000, layout=torch.sparse_coo)
tensor([0.4396, 0.1326, 0.6146, ..., 0.3496, 0.5544, 0.0468])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 10000000
Density: 0.1
Time: 10.384194135665894 seconds
[16.52, 16.52, 16.68, 16.8, 16.8, 17.12, 17.2, 17.36, 17.36, 17.12]
[17.04, 16.8, 16.88, 20.24, 22.12, 24.52, 26.52, 24.36, 24.36, 22.88, 21.24, 21.04, 21.04, 21.0, 21.24, 21.6]
16.268474817276
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 48, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.384194135665894, 'TIME_S_1KI': 216.33737782637277, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 329.3590560531616, 'W': 20.245232558826288}
[16.52, 16.52, 16.68, 16.8, 16.8, 17.12, 17.2, 17.36, 17.36, 17.12, 16.96, 16.92, 16.88, 17.08, 16.48, 16.76, 16.88, 17.16, 17.36, 17.32]
305.32000000000005
15.266000000000002
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 48, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.384194135665894, 'TIME_S_1KI': 216.33737782637277, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 329.3590560531616, 'W': 20.245232558826288, 'J_1KI': 6861.647001107534, 'W_1KI': 421.775678308881, 'W_D': 4.979232558826286, 'J_D': 81.00451949262619, 'W_D_1KI': 103.7340116422143, 'J_D_1KI': 2161.125242546131}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 24, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.480116844177246, "TIME_S_1KI": 436.67153517405194, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 396.95239097595214, "W": 20.533611291083126, "J_1KI": 16539.68295733134, "W_1KI": 855.5671371284635, "W_D": 5.676611291083127, "J_D": 109.73931437063219, "W_D_1KI": 236.52547046179694, "J_D_1KI": 9855.227935908206}

View File

@ -0,0 +1,56 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 10000 -sd 0.2 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 4.354996681213379}
tensor(indices=tensor([[8500, 1795, 5814, ..., 695, 3146, 664],
[5432, 8646, 1435, ..., 1579, 7665, 2705]]),
values=tensor([0.0930, 0.5357, 0.7932, ..., 0.0365, 0.5764, 0.7419]),
size=(10000, 10000), nnz=20000000, layout=torch.sparse_coo)
tensor([0.3474, 0.9695, 0.8806, ..., 0.9277, 0.9905, 0.4679])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 20000000
Density: 0.2
Time: 4.354996681213379 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 24 -ss 10000 -sd 0.2 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.480116844177246}
tensor(indices=tensor([[8041, 8888, 2406, ..., 7710, 9509, 6677],
[5770, 4000, 6589, ..., 8858, 4258, 4777]]),
values=tensor([0.7909, 0.1567, 0.4983, ..., 0.2753, 0.5091, 0.1220]),
size=(10000, 10000), nnz=20000000, layout=torch.sparse_coo)
tensor([0.8824, 0.5060, 0.3659, ..., 0.3367, 0.8636, 0.1147])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 20000000
Density: 0.2
Time: 10.480116844177246 seconds
tensor(indices=tensor([[8041, 8888, 2406, ..., 7710, 9509, 6677],
[5770, 4000, 6589, ..., 8858, 4258, 4777]]),
values=tensor([0.7909, 0.1567, 0.4983, ..., 0.2753, 0.5091, 0.1220]),
size=(10000, 10000), nnz=20000000, layout=torch.sparse_coo)
tensor([0.8824, 0.5060, 0.3659, ..., 0.3367, 0.8636, 0.1147])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 20000000
Density: 0.2
Time: 10.480116844177246 seconds
[15.92, 15.76, 15.96, 16.08, 16.24, 16.52, 16.92, 17.0, 17.0, 16.92]
[16.64, 16.28, 16.24, 20.96, 22.64, 23.72, 26.8, 24.48, 23.28, 22.52, 22.24, 22.24, 20.92, 21.04, 21.12, 21.24, 21.2, 22.68, 22.88]
19.33183526992798
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 24, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.480116844177246, 'TIME_S_1KI': 436.67153517405194, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 396.95239097595214, 'W': 20.533611291083126}
[15.92, 15.76, 15.96, 16.08, 16.24, 16.52, 16.92, 17.0, 17.0, 16.92, 16.12, 16.28, 16.64, 16.76, 16.76, 16.6, 16.6, 16.64, 16.64, 16.52]
297.14
14.857
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 24, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.480116844177246, 'TIME_S_1KI': 436.67153517405194, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 396.95239097595214, 'W': 20.533611291083126, 'J_1KI': 16539.68295733134, 'W_1KI': 855.5671371284635, 'W_D': 5.676611291083127, 'J_D': 109.73931437063219, 'W_D_1KI': 236.52547046179694, 'J_D_1KI': 9855.227935908206}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 16, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.457778215408325, "TIME_S_1KI": 653.6111384630203, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 462.69632364273076, "W": 20.647427058166027, "J_1KI": 28918.520227670673, "W_1KI": 1290.4641911353767, "W_D": 5.6004270581660265, "J_D": 125.50217532396319, "W_D_1KI": 350.02669113537667, "J_D_1KI": 21876.668195961043}

View File

@ -0,0 +1,56 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 10000 -sd 0.3 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 6.5346596240997314}
tensor(indices=tensor([[5669, 6778, 47, ..., 9404, 1949, 3404],
[3626, 9686, 5386, ..., 3395, 5291, 3142]]),
values=tensor([0.3625, 0.1114, 0.3966, ..., 0.2089, 0.4672, 0.6258]),
size=(10000, 10000), nnz=30000000, layout=torch.sparse_coo)
tensor([0.4665, 0.2779, 0.7138, ..., 0.8048, 0.7923, 0.8202])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 30000000
Density: 0.3
Time: 6.5346596240997314 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 16 -ss 10000 -sd 0.3 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.457778215408325}
tensor(indices=tensor([[5629, 1798, 9970, ..., 2553, 1781, 4827],
[9429, 534, 1490, ..., 3534, 9871, 9955]]),
values=tensor([0.8994, 0.0069, 0.6906, ..., 0.8855, 0.9801, 0.0930]),
size=(10000, 10000), nnz=30000000, layout=torch.sparse_coo)
tensor([0.1561, 0.3409, 0.9105, ..., 0.7284, 0.1370, 0.4812])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 30000000
Density: 0.3
Time: 10.457778215408325 seconds
tensor(indices=tensor([[5629, 1798, 9970, ..., 2553, 1781, 4827],
[9429, 534, 1490, ..., 3534, 9871, 9955]]),
values=tensor([0.8994, 0.0069, 0.6906, ..., 0.8855, 0.9801, 0.0930]),
size=(10000, 10000), nnz=30000000, layout=torch.sparse_coo)
tensor([0.1561, 0.3409, 0.9105, ..., 0.7284, 0.1370, 0.4812])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 30000000
Density: 0.3
Time: 10.457778215408325 seconds
[16.4, 16.24, 16.24, 16.56, 16.6, 16.76, 16.72, 16.72, 16.64, 16.68]
[16.6, 16.52, 16.92, 17.8, 19.88, 20.8, 22.88, 24.76, 24.76, 23.96, 23.88, 23.88, 21.56, 20.84, 21.04, 20.92, 21.36, 21.56, 23.28, 23.08, 23.0, 23.88]
22.409393787384033
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 16, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.457778215408325, 'TIME_S_1KI': 653.6111384630203, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 462.69632364273076, 'W': 20.647427058166027}
[16.4, 16.24, 16.24, 16.56, 16.6, 16.76, 16.72, 16.72, 16.64, 16.68, 16.72, 16.84, 17.04, 17.04, 17.0, 16.88, 16.76, 16.84, 16.76, 16.8]
300.94
15.047
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 16, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.457778215408325, 'TIME_S_1KI': 653.6111384630203, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 462.69632364273076, 'W': 20.647427058166027, 'J_1KI': 28918.520227670673, 'W_1KI': 1290.4641911353767, 'W_D': 5.6004270581660265, 'J_D': 125.50217532396319, 'W_D_1KI': 350.02669113537667, 'J_D_1KI': 21876.668195961043}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 12, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 40000000, "MATRIX_DENSITY": 0.4, "TIME_S": 10.456308841705322, "TIME_S_1KI": 871.3590701421102, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 534.4857844734192, "W": 21.000350357084837, "J_1KI": 44540.48203945161, "W_1KI": 1750.0291964237365, "W_D": 6.247350357084837, "J_D": 159.00305945897108, "W_D_1KI": 520.6125297570698, "J_D_1KI": 43384.377479755814}

View File

@ -0,0 +1,56 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 10000 -sd 0.4 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 40000000, "MATRIX_DENSITY": 0.4, "TIME_S": 8.726817607879639}
tensor(indices=tensor([[ 704, 506, 9718, ..., 6139, 4735, 9511],
[5997, 6274, 6063, ..., 6327, 874, 3023]]),
values=tensor([0.9143, 0.7056, 0.2664, ..., 0.4979, 0.2124, 0.5956]),
size=(10000, 10000), nnz=40000000, layout=torch.sparse_coo)
tensor([0.4532, 0.5300, 0.4786, ..., 0.4756, 0.7807, 0.1145])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 40000000
Density: 0.4
Time: 8.726817607879639 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 12 -ss 10000 -sd 0.4 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 40000000, "MATRIX_DENSITY": 0.4, "TIME_S": 10.456308841705322}
tensor(indices=tensor([[5636, 16, 8363, ..., 6222, 947, 1070],
[1231, 9841, 6646, ..., 2435, 9856, 5444]]),
values=tensor([0.9340, 0.6884, 0.3604, ..., 0.1109, 0.1674, 0.1581]),
size=(10000, 10000), nnz=40000000, layout=torch.sparse_coo)
tensor([0.9860, 0.0884, 0.3478, ..., 0.7535, 0.7854, 0.7338])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 40000000
Density: 0.4
Time: 10.456308841705322 seconds
tensor(indices=tensor([[5636, 16, 8363, ..., 6222, 947, 1070],
[1231, 9841, 6646, ..., 2435, 9856, 5444]]),
values=tensor([0.9340, 0.6884, 0.3604, ..., 0.1109, 0.1674, 0.1581]),
size=(10000, 10000), nnz=40000000, layout=torch.sparse_coo)
tensor([0.9860, 0.0884, 0.3478, ..., 0.7535, 0.7854, 0.7338])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 40000000
Density: 0.4
Time: 10.456308841705322 seconds
[16.16, 16.28, 16.24, 16.16, 16.4, 16.4, 16.36, 16.36, 16.36, 16.32]
[16.36, 16.52, 16.48, 18.56, 19.2, 21.04, 21.88, 24.12, 25.24, 24.72, 24.64, 23.96, 23.96, 21.72, 21.0, 20.96, 20.72, 20.68, 20.56, 22.76, 23.44, 24.16, 24.56, 23.28, 23.28]
25.451279401779175
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 12, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 40000000, 'MATRIX_DENSITY': 0.4, 'TIME_S': 10.456308841705322, 'TIME_S_1KI': 871.3590701421102, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 534.4857844734192, 'W': 21.000350357084837}
[16.16, 16.28, 16.24, 16.16, 16.4, 16.4, 16.36, 16.36, 16.36, 16.32, 16.36, 16.36, 16.48, 16.48, 16.44, 16.48, 16.52, 16.44, 16.64, 16.48]
295.06
14.753
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 12, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 40000000, 'MATRIX_DENSITY': 0.4, 'TIME_S': 10.456308841705322, 'TIME_S_1KI': 871.3590701421102, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 534.4857844734192, 'W': 21.000350357084837, 'J_1KI': 44540.48203945161, 'W_1KI': 1750.0291964237365, 'W_D': 6.247350357084837, 'J_D': 159.00305945897108, 'W_D_1KI': 520.6125297570698, 'J_D_1KI': 43384.377479755814}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 10, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 50000000, "MATRIX_DENSITY": 0.5, "TIME_S": 10.909107446670532, "TIME_S_1KI": 1090.9107446670532, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 612.7037763309478, "W": 21.449824734352383, "J_1KI": 61270.37763309478, "W_1KI": 2144.9824734352383, "W_D": 6.421824734352382, "J_D": 183.43628977870932, "W_D_1KI": 642.1824734352383, "J_D_1KI": 64218.24734352383}

View File

@ -0,0 +1,39 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 10000 -sd 0.5 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 50000000, "MATRIX_DENSITY": 0.5, "TIME_S": 10.909107446670532}
tensor(indices=tensor([[4804, 7773, 4408, ..., 1833, 4291, 2965],
[8671, 9730, 4445, ..., 1398, 3205, 9692]]),
values=tensor([0.1559, 0.5245, 0.4425, ..., 0.4269, 0.1155, 0.3969]),
size=(10000, 10000), nnz=50000000, layout=torch.sparse_coo)
tensor([0.3163, 0.5754, 0.1899, ..., 0.5042, 0.8957, 0.5433])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 50000000
Density: 0.5
Time: 10.909107446670532 seconds
tensor(indices=tensor([[4804, 7773, 4408, ..., 1833, 4291, 2965],
[8671, 9730, 4445, ..., 1398, 3205, 9692]]),
values=tensor([0.1559, 0.5245, 0.4425, ..., 0.4269, 0.1155, 0.3969]),
size=(10000, 10000), nnz=50000000, layout=torch.sparse_coo)
tensor([0.3163, 0.5754, 0.1899, ..., 0.5042, 0.8957, 0.5433])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 50000000
Density: 0.5
Time: 10.909107446670532 seconds
[16.6, 16.72, 16.68, 16.68, 16.68, 16.68, 16.88, 16.84, 16.84, 16.96]
[17.0, 16.72, 17.76, 18.56, 20.4, 21.08, 22.24, 22.64, 22.64, 24.88, 24.8, 24.96, 24.84, 23.04, 21.04, 20.8, 20.88, 20.92, 21.16, 21.12, 23.88, 24.24, 24.24, 25.2, 25.16, 23.8, 22.72, 23.0]
28.564512014389038
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 10, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 50000000, 'MATRIX_DENSITY': 0.5, 'TIME_S': 10.909107446670532, 'TIME_S_1KI': 1090.9107446670532, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 612.7037763309478, 'W': 21.449824734352383}
[16.6, 16.72, 16.68, 16.68, 16.68, 16.68, 16.88, 16.84, 16.84, 16.96, 16.4, 16.44, 16.64, 16.76, 16.84, 16.68, 16.56, 16.6, 16.6, 16.92]
300.56
15.028
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 10, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 50000000, 'MATRIX_DENSITY': 0.5, 'TIME_S': 10.909107446670532, 'TIME_S_1KI': 1090.9107446670532, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 612.7037763309478, 'W': 21.449824734352383, 'J_1KI': 61270.37763309478, 'W_1KI': 2144.9824734352383, 'W_D': 6.421824734352382, 'J_D': 183.43628977870932, 'W_D_1KI': 642.1824734352383, 'J_D_1KI': 64218.24734352383}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 329192, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.653273582458496, "TIME_S_1KI": 0.03236188480418265, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 261.9017709636688, "W": 18.418336412038514, "J_1KI": 0.7955897195669057, "W_1KI": 0.05595013369716917, "W_D": 3.6753364120385132, "J_D": 52.261892369985574, "W_D_1KI": 0.01116471971384029, "J_D_1KI": 3.39155256319725e-05}

View File

@ -0,0 +1,907 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 10000 -sd 1e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.006676435470581055}
tensor(indices=tensor([[6770, 3309, 8056, ..., 269, 5308, 6845],
[6596, 3896, 4483, ..., 3312, 7741, 330]]),
values=tensor([0.1023, 0.1531, 0.6001, 0.2569, 0.8879, 0.3178, 0.0588,
0.7220, 0.5004, 0.0771, 0.8327, 0.2209, 0.7456, 0.4977,
0.9388, 0.7409, 0.8505, 0.5803, 0.7063, 0.2449, 0.6893,
0.6549, 0.4784, 0.8221, 0.6025, 0.6859, 0.3434, 0.3615,
0.1899, 0.6549, 0.1927, 0.3058, 0.8434, 0.2387, 0.3273,
0.1260, 0.6557, 0.7775, 0.6353, 0.9011, 0.4828, 0.8487,
0.9500, 0.0105, 0.2585, 0.6139, 0.0980, 0.9828, 0.4176,
0.2034, 0.4170, 0.7998, 0.5720, 0.5705, 0.1784, 0.2098,
0.5546, 0.4464, 0.1374, 0.4944, 0.5975, 0.8994, 0.0677,
0.2679, 0.4587, 0.2233, 0.4248, 0.7000, 0.3029, 0.3320,
0.7888, 0.3333, 0.2295, 0.8504, 0.1785, 0.9459, 0.5524,
0.2551, 0.8953, 0.8049, 0.6596, 0.5606, 0.2965, 0.2479,
0.2781, 0.1142, 0.4258, 0.4613, 0.9717, 0.5015, 0.2721,
0.6300, 0.9621, 0.6811, 0.9932, 0.1516, 0.3428, 0.3082,
0.0303, 0.0020, 0.8342, 0.3221, 0.3840, 0.7772, 0.3399,
0.5576, 0.3917, 0.8455, 0.5888, 0.1935, 0.0197, 0.4475,
0.1537, 0.7377, 0.4036, 0.3015, 0.6625, 0.0417, 0.7806,
0.3857, 0.5506, 0.8312, 0.8762, 0.8452, 0.0474, 0.2292,
0.8717, 0.2710, 0.9590, 0.0681, 0.2979, 0.7234, 0.6270,
0.1104, 0.3087, 0.0430, 0.5470, 0.1557, 0.4961, 0.9061,
0.6235, 0.4211, 0.9135, 0.4972, 0.8555, 0.7099, 0.6221,
0.9813, 0.2940, 0.4521, 0.6207, 0.0727, 0.0949, 0.3432,
0.1887, 0.4108, 0.2864, 0.7749, 0.0713, 0.1034, 0.5038,
0.9156, 0.0769, 0.9562, 0.4637, 0.3135, 0.6304, 0.7515,
0.9656, 0.1567, 0.8623, 0.9941, 0.3021, 0.7095, 0.3538,
0.1253, 0.8088, 0.2189, 0.9596, 0.5312, 0.0912, 0.4733,
0.7859, 0.4946, 0.5464, 0.6159, 0.7845, 0.2800, 0.8822,
0.5266, 0.1573, 0.5551, 0.2534, 0.4929, 0.5086, 0.1526,
0.6064, 0.9270, 0.2373, 0.9056, 0.3371, 0.6907, 0.7879,
0.3012, 0.7749, 0.1708, 0.5713, 0.2177, 0.4326, 0.7511,
0.3103, 0.8643, 0.8960, 0.5887, 0.4691, 0.6828, 0.8028,
0.5708, 0.9180, 0.1604, 0.4563, 0.3732, 0.3762, 0.4692,
0.2871, 0.7436, 0.5209, 0.9136, 0.0372, 0.7880, 0.7813,
0.3825, 0.3799, 0.3659, 0.2722, 0.6256, 0.4604, 0.8030,
0.1340, 0.2432, 0.1959, 0.0078, 0.7646, 0.7935, 0.1100,
0.1739, 0.1750, 0.5373, 0.6310, 0.8905, 0.9681, 0.1020,
0.6648, 0.0226, 0.5700, 0.9770, 0.0769, 0.5235, 0.6901,
0.4191, 0.9363, 0.5673, 0.8175, 0.0357, 0.7512, 0.5221,
0.5730, 0.7436, 0.8484, 0.9581, 0.0187, 0.0343, 0.7737,
0.2606, 0.8287, 0.8887, 0.9505, 0.6400, 0.8450, 0.8621,
0.1190, 0.6660, 0.2121, 0.8631, 0.5767, 0.7835, 0.7158,
0.2229, 0.4717, 0.6910, 0.3706, 0.9403, 0.8863, 0.9304,
0.0366, 0.0870, 0.0157, 0.9863, 0.7674, 0.6857, 0.3477,
0.5374, 0.0938, 0.1143, 0.5268, 0.7218, 0.5709, 0.2182,
0.7617, 0.1398, 0.2077, 0.5668, 0.1962, 0.8572, 0.8711,
0.3395, 0.4739, 0.7478, 0.1105, 0.9099, 0.9201, 0.8443,
0.5469, 0.0894, 0.9226, 0.2893, 0.5709, 0.9044, 0.6669,
0.9141, 0.9257, 0.4084, 0.5283, 0.8227, 0.7906, 0.8554,
0.9499, 0.0669, 0.7159, 0.1996, 0.9696, 0.4190, 0.2562,
0.9704, 0.4652, 0.8458, 0.9194, 0.5097, 0.0655, 0.5671,
0.5785, 0.4778, 0.4898, 0.8257, 0.6192, 0.8732, 0.7207,
0.7511, 0.9590, 0.7906, 0.7548, 0.1667, 0.2615, 0.4314,
0.2573, 0.2685, 0.6847, 0.0869, 0.5622, 0.1166, 0.9602,
0.3127, 0.1640, 0.2691, 0.3227, 0.3403, 0.3489, 0.9388,
0.3359, 0.0104, 0.1872, 0.7207, 0.1433, 0.1697, 0.6258,
0.5318, 0.6168, 0.0333, 0.5280, 0.1766, 0.0232, 0.8446,
0.7174, 0.8676, 0.2986, 0.0254, 0.4912, 0.1416, 0.1864,
0.8933, 0.2387, 0.2060, 0.3968, 0.5610, 0.8316, 0.4771,
0.1737, 0.0233, 0.2262, 0.0360, 0.1716, 0.0743, 0.3818,
0.0949, 0.8673, 0.3754, 0.0249, 0.5028, 0.4749, 0.3543,
0.9859, 0.9278, 0.5978, 0.8953, 0.4979, 0.6560, 0.5495,
0.7096, 0.3474, 0.0889, 0.0510, 0.3640, 0.7458, 0.3563,
0.3826, 0.6718, 0.6610, 0.6192, 0.6977, 0.5845, 0.2152,
0.2554, 0.6164, 0.8918, 0.1642, 0.6237, 0.3843, 0.0132,
0.4741, 0.5792, 0.9091, 0.6428, 0.1858, 0.3573, 0.3463,
0.1552, 0.5504, 0.1943, 0.2234, 0.2346, 0.8493, 0.6135,
0.5592, 0.6828, 0.3203, 0.3439, 0.3889, 0.5951, 0.7530,
0.1606, 0.7771, 0.0552, 0.3138, 0.5919, 0.3985, 0.1135,
0.0145, 0.2608, 0.5378, 0.7628, 0.2140, 0.6344, 0.1008,
0.2826, 0.2001, 0.5116, 0.3959, 0.0813, 0.3690, 0.5839,
0.3965, 0.4057, 0.8129, 0.7995, 0.1943, 0.0421, 0.5110,
0.2449, 0.2264, 0.7449, 0.6906, 0.8488, 0.9227, 0.6656,
0.6030, 0.8953, 0.6528, 0.0208, 0.6823, 0.5650, 0.8841,
0.5718, 0.8234, 0.0964, 0.4219, 0.0789, 0.9155, 0.5740,
0.6886, 0.9639, 0.5681, 0.1347, 0.5580, 0.4367, 0.3059,
0.6761, 0.1251, 0.4489, 0.3920, 0.3020, 0.9654, 0.4819,
0.8240, 0.8373, 0.2342, 0.4830, 0.8246, 0.2214, 0.3556,
0.7149, 0.7024, 0.8671, 0.1276, 0.1141, 0.3165, 0.7614,
0.5889, 0.6224, 0.3031, 0.3783, 0.2226, 0.5218, 0.0838,
0.9392, 0.1966, 0.2896, 0.7253, 0.0139, 0.2465, 0.3701,
0.6313, 0.8124, 0.5468, 0.7505, 0.7624, 0.0648, 0.8551,
0.6897, 0.1781, 0.2765, 0.3457, 0.8610, 0.7567, 0.6316,
0.2397, 0.0571, 0.3295, 0.9508, 0.8703, 0.1627, 0.3613,
0.7606, 0.9244, 0.4570, 0.7809, 0.5614, 0.5541, 0.9587,
0.2271, 0.9562, 0.6510, 0.4824, 0.3961, 0.5145, 0.8223,
0.4562, 0.4107, 0.4659, 0.5773, 0.9154, 0.1674, 0.4458,
0.0248, 0.6587, 0.4359, 0.3442, 0.6329, 0.7569, 0.9324,
0.4947, 0.1260, 0.6087, 0.0494, 0.7224, 0.2718, 0.1531,
0.4055, 0.8103, 0.0478, 0.1783, 0.6969, 0.2297, 0.2169,
0.2122, 0.4943, 0.9244, 0.1928, 0.5317, 0.8160, 0.8999,
0.3914, 0.0630, 0.3465, 0.7683, 0.9804, 0.0030, 0.4673,
0.9302, 0.5249, 0.9988, 0.3048, 0.3348, 0.3355, 0.5781,
0.1978, 0.8385, 0.4533, 0.7234, 0.4016, 0.8804, 0.3614,
0.1809, 0.4865, 0.6793, 0.0872, 0.6248, 0.7749, 0.4694,
0.1958, 0.0521, 0.9280, 0.0707, 0.6716, 0.2640, 0.1670,
0.6301, 0.8944, 0.5261, 0.6254, 0.1766, 0.4565, 0.7198,
0.1736, 0.6620, 0.0783, 0.9167, 0.7657, 0.1338, 0.6012,
0.1281, 0.9651, 0.3900, 0.4378, 0.8072, 0.2697, 0.5110,
0.1771, 0.0932, 0.3540, 0.9945, 0.7623, 0.4936, 0.9329,
0.2020, 0.3024, 0.3539, 0.0427, 0.8725, 0.2306, 0.2966,
0.6240, 0.2871, 0.2186, 0.3803, 0.9852, 0.1091, 0.7926,
0.2193, 0.1113, 0.5193, 0.4920, 0.3036, 0.2979, 0.6556,
0.7902, 0.7311, 0.0180, 0.5820, 0.5368, 0.6908, 0.5439,
0.3314, 0.8313, 0.5965, 0.4499, 0.7466, 0.3992, 0.1825,
0.4001, 0.1999, 0.2782, 0.5872, 0.5586, 0.3500, 0.0050,
0.8385, 0.5606, 0.4875, 0.0503, 0.3778, 0.3731, 0.9350,
0.8898, 0.0026, 0.4690, 0.4004, 0.7593, 0.2474, 0.2148,
0.3787, 0.4063, 0.6691, 0.7552, 0.8265, 0.5458, 0.4045,
0.2220, 0.2784, 0.2028, 0.0741, 0.9922, 0.5143, 0.4777,
0.6227, 0.0477, 0.0359, 0.6085, 0.7970, 0.6946, 0.5808,
0.8463, 0.8883, 0.5179, 0.9814, 0.9726, 0.1882, 0.9600,
0.3405, 0.7404, 0.7173, 0.4994, 0.8012, 0.2596, 0.6001,
0.6249, 0.4505, 0.0717, 0.3653, 0.3722, 0.7356, 0.7757,
0.1010, 0.6916, 0.0587, 0.5943, 0.2406, 0.2035, 0.9767,
0.0245, 0.3666, 0.3241, 0.5108, 0.7887, 0.8135, 0.8593,
0.2908, 0.7582, 0.8540, 0.0369, 0.3636, 0.0663, 0.7726,
0.8034, 0.2493, 0.8409, 0.3698, 0.2521, 0.2834, 0.1384,
0.9298, 0.2136, 0.3549, 0.2335, 0.9603, 0.1264, 0.8569,
0.6410, 0.0946, 0.4658, 0.0414, 0.7013, 0.9159, 0.8287,
0.1496, 0.5704, 0.4617, 0.8996, 0.7122, 0.3732, 0.2144,
0.6662, 0.5916, 0.3690, 0.9740, 0.2777, 0.9072, 0.7046,
0.4843, 0.9980, 0.2662, 0.2796, 0.5916, 0.9107, 0.6790,
0.3320, 0.5968, 0.3695, 0.4508, 0.3383, 0.4398, 0.6214,
0.0746, 0.1184, 0.5978, 0.3906, 0.7729, 0.1297, 0.5391,
0.6557, 0.9282, 0.8182, 0.4721, 0.2111, 0.0576, 0.9989,
0.3069, 0.6847, 0.7666, 0.0948, 0.6698, 0.9817, 0.9605,
0.0202, 0.3853, 0.2590, 0.4869, 0.1853, 0.8502, 0.1858,
0.2325, 0.7441, 0.7522, 0.0034, 0.8486, 0.0311, 0.6441,
0.4989, 0.8010, 0.1386, 0.3781, 0.0569, 0.0390, 0.4517,
0.2811, 0.2498, 0.9078, 0.0281, 0.3113, 0.2553, 0.4893,
0.9806, 0.3949, 0.9066, 0.4365, 0.3996, 0.4551, 0.4604,
0.4558, 0.0431, 0.5314, 0.7681, 0.7826, 0.8589, 0.0182,
0.8651, 0.2373, 0.6694, 0.6111, 0.9888, 0.9290, 0.2136,
0.1452, 0.1554, 0.8183, 0.0487, 0.0098, 0.7941, 0.6208,
0.8470, 0.7516, 0.9154, 0.9329, 0.1755, 0.4850, 0.6580,
0.6590, 0.6896, 0.3066, 0.0936, 0.9599, 0.0037, 0.8438,
0.6809, 0.0368, 0.6345, 0.9572, 0.3672, 0.9294, 0.7582,
0.7453, 0.0548, 0.5323, 0.9008, 0.0849, 0.7057, 0.9715,
0.8649, 0.8472, 0.3184, 0.2070, 0.2540, 0.8347, 0.1823,
0.6558, 0.5421, 0.5100, 0.2470, 0.1989, 0.2160, 0.6218,
0.5054, 0.6662, 0.0814, 0.2003, 0.6354, 0.9565, 0.6935,
0.9381, 0.3487, 0.0722, 0.0644, 0.9236, 0.6484, 0.8955,
0.8630, 0.8973, 0.1106, 0.1243, 0.9820, 0.5929]),
size=(10000, 10000), nnz=1000, layout=torch.sparse_coo)
tensor([0.2430, 0.4800, 0.1603, ..., 0.2671, 0.3314, 0.3631])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 1000
Density: 1e-05
Time: 0.006676435470581055 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 15726 -ss 10000 -sd 1e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.5300266742706299}
tensor(indices=tensor([[5997, 1278, 1062, ..., 9685, 5347, 4668],
[3395, 3427, 4627, ..., 7441, 3913, 814]]),
values=tensor([6.2407e-01, 1.2538e-01, 4.1784e-01, 9.8965e-01,
7.2891e-01, 3.5778e-01, 1.7063e-01, 4.5992e-01,
8.6162e-01, 6.4424e-01, 7.9538e-01, 4.7107e-01,
5.7685e-01, 8.2889e-01, 3.4635e-01, 8.9488e-01,
8.5300e-01, 6.3658e-01, 8.3929e-01, 4.4403e-01,
5.4296e-01, 4.8266e-01, 8.9874e-01, 9.8882e-01,
2.1280e-01, 8.7531e-03, 3.7347e-01, 6.5496e-01,
4.5754e-01, 6.2680e-01, 9.0112e-01, 3.8784e-01,
3.1732e-03, 9.9271e-01, 6.8891e-01, 3.6098e-01,
7.2754e-01, 6.0428e-01, 4.8622e-01, 7.4485e-01,
9.0766e-01, 3.3373e-02, 5.1747e-01, 6.2127e-01,
2.5330e-01, 6.7114e-01, 6.9123e-01, 6.8898e-01,
9.6021e-01, 7.5899e-01, 7.8065e-01, 4.4694e-01,
3.8022e-01, 3.3948e-01, 4.7395e-01, 6.1292e-01,
6.8791e-01, 8.1816e-01, 7.5088e-01, 7.7661e-01,
5.6991e-01, 9.5073e-03, 2.0611e-01, 2.7890e-02,
5.5340e-01, 8.7299e-01, 3.4812e-01, 1.6708e-02,
9.4747e-01, 1.8317e-01, 5.0613e-01, 6.2610e-01,
2.2833e-01, 1.2633e-01, 1.8158e-01, 9.1466e-01,
3.3389e-01, 5.0335e-01, 8.4599e-01, 1.8027e-01,
6.2290e-01, 8.2216e-01, 8.3133e-01, 2.6503e-03,
2.2292e-01, 2.8347e-01, 9.2290e-01, 6.6479e-01,
3.1394e-01, 9.1359e-01, 6.9253e-01, 4.2741e-01,
3.2298e-01, 2.6820e-01, 3.3018e-01, 2.3057e-02,
2.2186e-01, 6.4942e-01, 3.2413e-01, 3.1178e-01,
8.1188e-01, 5.2483e-02, 9.0385e-01, 4.9963e-01,
3.7885e-01, 9.4741e-01, 2.9983e-01, 5.1702e-01,
8.0334e-01, 8.9488e-01, 8.8164e-02, 6.8859e-01,
7.3678e-01, 1.6806e-01, 5.7900e-01, 6.3113e-01,
4.0424e-01, 2.4239e-02, 5.0892e-01, 5.3805e-01,
2.9064e-01, 9.1268e-01, 1.2101e-01, 4.1877e-01,
2.0852e-01, 1.3413e-01, 7.8301e-01, 4.4682e-01,
2.9015e-01, 3.8678e-01, 6.6147e-01, 4.9515e-01,
1.4574e-01, 1.4710e-01, 7.0317e-01, 6.4034e-03,
8.5960e-01, 2.7000e-01, 7.5114e-01, 3.8215e-01,
4.1886e-01, 4.1581e-01, 2.0558e-01, 6.0559e-01,
8.2907e-01, 1.2591e-01, 9.0277e-01, 5.2279e-01,
6.5799e-01, 7.4533e-01, 4.2842e-01, 6.3123e-01,
5.3794e-01, 3.1537e-01, 4.1977e-01, 4.9710e-01,
8.4075e-01, 6.7790e-01, 2.2796e-01, 8.7767e-01,
6.1881e-01, 1.1055e-01, 9.1309e-01, 7.5453e-01,
8.0830e-01, 9.9232e-01, 3.3055e-01, 5.1687e-01,
9.2719e-01, 5.0786e-01, 9.5483e-03, 3.7840e-01,
3.6661e-01, 1.4995e-01, 2.9554e-01, 3.1821e-01,
4.9824e-01, 9.9963e-01, 1.5045e-01, 1.9130e-01,
6.6253e-01, 1.7195e-01, 3.4380e-01, 7.0945e-01,
4.9941e-03, 2.6078e-01, 7.9163e-01, 1.9209e-03,
5.9859e-01, 7.7841e-01, 9.3660e-01, 2.4402e-01,
6.1518e-01, 3.7168e-01, 8.8917e-01, 2.6245e-01,
1.7135e-01, 3.5749e-01, 4.0070e-01, 1.6442e-01,
7.3401e-01, 2.6389e-01, 7.0527e-02, 5.3142e-01,
5.0891e-01, 5.3022e-01, 3.4815e-01, 2.2142e-01,
6.6437e-01, 5.2212e-01, 5.3383e-01, 9.7662e-01,
1.1557e-01, 2.1160e-01, 6.6142e-01, 8.7895e-01,
2.7760e-01, 4.1657e-01, 6.2405e-01, 1.5318e-01,
7.4504e-02, 3.3979e-01, 2.8786e-01, 8.8736e-01,
1.5587e-01, 6.7580e-01, 1.4225e-01, 9.5988e-01,
2.5704e-01, 6.5241e-01, 1.5267e-01, 9.4210e-01,
3.4100e-01, 3.8842e-01, 4.0411e-01, 1.8129e-01,
5.6850e-01, 6.3043e-01, 2.1361e-01, 2.0506e-01,
4.8263e-01, 5.3470e-02, 4.0666e-01, 6.5519e-01,
5.8061e-01, 1.6086e-01, 1.7339e-01, 5.5943e-01,
3.5272e-01, 7.5839e-01, 2.2056e-01, 4.3755e-01,
9.8077e-01, 4.7334e-01, 6.8665e-02, 2.0600e-01,
8.0901e-01, 7.2677e-01, 6.0555e-01, 2.6328e-02,
8.3332e-01, 4.3899e-01, 3.8217e-01, 4.6991e-01,
3.7185e-01, 1.4837e-01, 2.7407e-01, 8.9076e-01,
1.7846e-01, 1.8808e-01, 7.2514e-03, 4.0515e-01,
7.6511e-01, 1.7467e-01, 3.6400e-01, 2.7694e-03,
9.6128e-02, 1.3602e-01, 2.1718e-01, 5.7225e-01,
6.1917e-02, 1.4092e-01, 5.6339e-01, 6.3842e-01,
4.2242e-01, 2.6277e-01, 3.1191e-01, 5.6174e-01,
2.9405e-01, 1.2122e-01, 5.3808e-01, 9.7700e-01,
8.7333e-01, 2.3189e-01, 2.9897e-01, 7.4085e-01,
7.8363e-01, 8.2872e-01, 2.6890e-01, 8.8718e-01,
1.3638e-01, 3.9265e-01, 4.5839e-01, 5.7029e-01,
5.9501e-01, 3.4062e-02, 8.7577e-01, 6.0436e-02,
7.1961e-04, 9.3104e-03, 3.5666e-01, 6.4799e-01,
1.7543e-01, 1.9171e-01, 2.6842e-01, 3.2403e-01,
3.0434e-01, 7.1624e-01, 1.4627e-01, 3.0650e-01,
6.0198e-01, 3.0517e-01, 1.9671e-01, 3.2044e-01,
4.0399e-01, 1.0826e-01, 4.9949e-01, 5.3610e-01,
3.0624e-01, 3.4837e-01, 7.9623e-01, 5.6877e-01,
7.4306e-01, 5.1520e-01, 8.6672e-01, 9.6822e-01,
4.9352e-01, 8.6554e-01, 3.6502e-01, 7.8620e-01,
8.1046e-01, 8.2074e-01, 7.3968e-01, 1.6987e-01,
7.3079e-01, 5.3901e-01, 3.6955e-01, 3.9876e-01,
4.5200e-01, 3.5431e-01, 5.8412e-01, 6.1950e-01,
1.6328e-01, 3.2130e-01, 7.8682e-01, 1.0915e-01,
6.4928e-01, 3.6801e-01, 2.8330e-01, 2.6997e-01,
2.8309e-01, 5.1312e-01, 6.8854e-01, 1.8489e-03,
6.4053e-01, 1.2789e-01, 1.3003e-01, 5.0110e-01,
3.4187e-01, 4.8386e-01, 3.8331e-01, 8.4190e-01,
1.2117e-02, 6.0937e-01, 6.6705e-02, 9.1317e-01,
7.9748e-01, 3.5053e-01, 9.2929e-01, 6.8545e-01,
3.9395e-01, 2.3692e-01, 7.8114e-01, 6.3460e-01,
5.1220e-01, 5.2642e-01, 4.0452e-01, 6.5564e-02,
6.3324e-01, 4.5916e-01, 7.4220e-01, 1.6661e-01,
4.9083e-01, 1.2483e-01, 8.9627e-01, 1.3694e-01,
3.8703e-01, 7.7753e-01, 4.7431e-01, 6.3878e-01,
4.7429e-01, 9.2205e-01, 6.0183e-01, 8.1714e-01,
2.6882e-01, 8.4049e-01, 8.0980e-01, 1.9838e-01,
3.8976e-01, 4.1516e-01, 3.0307e-01, 1.8767e-01,
9.9624e-01, 9.0763e-01, 7.3573e-01, 3.4575e-01,
1.4533e-01, 9.7815e-01, 9.6509e-01, 4.9655e-01,
9.4037e-01, 9.2345e-01, 6.8192e-01, 7.7264e-01,
1.4952e-01, 8.7138e-01, 9.5731e-01, 2.3986e-01,
9.0293e-01, 4.4668e-01, 9.6129e-01, 3.1186e-01,
2.1951e-02, 5.3612e-01, 6.8536e-01, 6.7360e-01,
9.6969e-01, 8.3986e-01, 1.1752e-01, 8.8199e-01,
2.7328e-01, 4.1212e-01, 6.7085e-01, 2.6782e-02,
4.9269e-01, 9.3860e-01, 9.8616e-01, 6.3886e-01,
1.2650e-01, 9.6115e-01, 6.3708e-01, 6.5410e-01,
9.0410e-01, 2.5286e-01, 5.9933e-02, 2.6397e-01,
7.0771e-01, 9.2008e-01, 4.1411e-01, 3.8053e-01,
8.9365e-01, 5.5154e-02, 8.4580e-01, 1.7546e-01,
5.3564e-02, 1.9970e-01, 5.4910e-01, 5.8737e-01,
8.1043e-01, 1.1794e-01, 1.4575e-01, 2.6790e-01,
9.4283e-01, 5.8374e-01, 2.2216e-01, 4.6900e-02,
9.7030e-01, 6.4936e-01, 7.2421e-01, 1.4546e-01,
9.3333e-01, 6.2608e-01, 7.4945e-02, 8.0587e-01,
1.0057e-01, 7.8694e-01, 5.6397e-01, 3.2940e-01,
1.7018e-01, 2.1334e-01, 2.9558e-02, 7.4709e-01,
1.5956e-01, 2.1743e-01, 1.6044e-01, 1.0934e-01,
4.1767e-01, 7.8993e-01, 9.5229e-01, 6.1846e-01,
2.0035e-01, 1.6408e-01, 3.6232e-01, 7.8733e-01,
1.7485e-01, 7.5996e-01, 7.9968e-01, 7.4437e-01,
3.8109e-01, 3.2473e-01, 6.4219e-01, 5.2608e-01,
3.3553e-01, 9.5822e-01, 7.2834e-01, 3.9680e-01,
2.2607e-01, 1.5112e-01, 1.2638e-01, 4.0057e-01,
3.5572e-01, 2.3048e-01, 3.1399e-01, 3.2664e-01,
4.2918e-01, 9.2793e-01, 5.6687e-01, 4.2255e-01,
1.8980e-01, 7.2494e-01, 3.8036e-01, 8.7577e-01,
7.1411e-01, 3.7312e-01, 1.2070e-01, 1.2025e-01,
4.6491e-01, 6.7677e-01, 9.7232e-01, 4.8362e-02,
3.7182e-01, 7.8297e-01, 3.8148e-01, 2.8425e-01,
7.5418e-01, 4.9069e-01, 4.5503e-01, 9.2657e-01,
5.2803e-01, 3.1407e-01, 3.7168e-01, 7.1866e-01,
1.4714e-01, 7.3509e-01, 2.8026e-01, 9.9717e-01,
5.3740e-01, 1.3734e-01, 1.6903e-01, 3.0765e-01,
6.8975e-01, 2.9802e-01, 6.6934e-01, 8.4892e-01,
7.7295e-01, 7.1347e-01, 6.2621e-01, 8.8409e-01,
7.0916e-01, 8.2947e-01, 1.8425e-01, 8.8261e-01,
9.1764e-01, 6.3230e-01, 4.6121e-01, 6.2179e-01,
6.8532e-01, 3.5350e-01, 7.5911e-01, 1.0239e-01,
6.7434e-01, 5.4930e-01, 7.9796e-01, 4.2234e-02,
8.3696e-01, 9.2378e-01, 5.6462e-02, 6.3795e-01,
1.5837e-01, 7.1053e-01, 8.4872e-01, 9.0589e-01,
9.2907e-01, 5.5405e-01, 3.5422e-01, 6.8767e-01,
4.8460e-01, 2.3444e-01, 1.4530e-01, 6.1238e-01,
4.8763e-01, 6.4096e-01, 4.3887e-02, 8.4372e-01,
1.5050e-01, 8.7181e-01, 5.4819e-01, 5.1835e-01,
3.0208e-01, 6.8904e-01, 7.8332e-03, 7.8221e-01,
5.1838e-01, 3.2329e-02, 5.3868e-01, 3.1053e-01,
9.0127e-01, 1.6066e-01, 5.3207e-01, 8.6322e-01,
9.4785e-01, 6.6579e-01, 1.0125e-01, 7.3424e-01,
3.1315e-01, 2.8608e-02, 7.5876e-01, 5.9681e-01,
9.3647e-01, 3.6785e-01, 2.2612e-01, 9.9714e-01,
1.2672e-01, 6.5794e-01, 1.1796e-01, 1.4216e-01,
2.4559e-01, 9.5884e-01, 9.0221e-01, 8.0889e-01,
8.5165e-01, 8.4272e-01, 8.2956e-01, 6.4154e-01,
5.7936e-01, 7.3605e-01, 4.8948e-01, 4.8941e-01,
3.2076e-01, 1.8599e-01, 5.2359e-01, 5.1704e-01,
7.8842e-01, 9.0260e-01, 1.1817e-01, 6.1870e-02,
1.8319e-01, 5.9255e-01, 3.6822e-01, 6.7181e-01,
2.7303e-01, 6.0760e-01, 4.2469e-01, 9.9876e-01,
5.6797e-01, 8.3794e-01, 6.1265e-01, 9.7684e-02,
5.3432e-01, 5.6442e-01, 7.4580e-01, 1.7397e-01,
6.6385e-01, 3.5452e-01, 1.0516e-01, 2.7100e-01,
8.5023e-01, 2.4203e-01, 9.3199e-01, 4.4348e-01,
5.8310e-01, 8.1298e-01, 8.6035e-01, 6.8515e-01,
6.2755e-01, 3.0992e-01, 9.9940e-01, 6.6833e-01,
6.1562e-01, 1.9145e-01, 5.4221e-01, 8.8453e-01,
7.4263e-01, 6.5658e-01, 2.4534e-01, 9.6310e-01,
3.9416e-01, 2.3583e-01, 5.6141e-01, 4.5871e-01,
6.8509e-01, 7.8195e-01, 3.3198e-01, 1.9099e-01,
5.0332e-01, 5.7085e-01, 2.9725e-01, 3.6297e-01,
4.1326e-01, 1.8705e-01, 1.4135e-01, 1.7254e-01,
1.2905e-01, 4.3934e-01, 5.0844e-01, 1.2112e-01,
3.8574e-01, 7.0878e-01, 5.0355e-01, 2.1318e-01,
3.8091e-01, 4.3161e-01, 1.6707e-01, 4.4372e-02,
7.3388e-01, 3.6989e-01, 1.5159e-01, 3.4609e-01,
3.7557e-01, 2.6034e-01, 6.7888e-01, 5.4854e-01,
2.4233e-01, 2.0606e-01, 6.0941e-01, 1.7158e-01,
9.6916e-01, 3.7251e-01, 8.1107e-02, 1.9139e-01,
2.8768e-02, 7.1590e-01, 3.1600e-01, 2.5095e-01,
2.5028e-01, 6.9803e-01, 4.6188e-01, 5.2031e-01,
9.9823e-01, 9.7865e-01, 7.9610e-01, 2.8568e-01,
7.3358e-01, 9.5757e-01, 5.2937e-01, 3.6140e-01,
4.8958e-01, 1.1323e-01, 1.3246e-01, 3.5362e-01,
6.2577e-01, 7.6715e-01, 5.6947e-01, 4.9386e-01,
6.1593e-01, 7.3663e-01, 2.0667e-01, 4.1311e-02,
3.7104e-01, 1.2796e-01, 2.8536e-02, 5.1991e-01,
4.0647e-01, 7.5064e-01, 7.7934e-01, 7.7913e-02,
5.8566e-01, 6.5901e-01, 3.3381e-01, 9.0677e-01,
8.0619e-01, 8.3290e-01, 9.2258e-01, 4.1665e-01,
4.5517e-01, 8.7791e-01, 2.3793e-01, 8.5328e-01,
5.3735e-01, 6.9742e-01, 4.8220e-01, 1.8653e-01,
7.6875e-01, 7.4601e-01, 8.5552e-03, 9.4398e-01,
4.9527e-02, 6.7147e-01, 7.9374e-01, 5.5156e-01,
6.9347e-01, 9.2732e-01, 2.9101e-01, 6.1512e-01,
6.7840e-01, 6.8199e-01, 3.7666e-01, 5.0376e-01,
7.3021e-01, 5.8192e-01, 6.0438e-01, 9.8176e-01,
6.0000e-01, 4.1374e-02, 9.6159e-01, 9.6217e-01,
3.1469e-01, 1.4579e-01, 8.1938e-01, 1.9643e-01,
4.0646e-02, 4.0573e-01, 1.4437e-01, 3.4342e-01,
1.6384e-01, 1.4267e-01, 8.5850e-01, 4.1913e-01,
7.7964e-01, 5.0587e-02, 5.4522e-01, 9.1170e-02,
4.7335e-01, 1.5569e-02, 7.1191e-01, 9.4130e-01,
9.5234e-02, 7.5346e-01, 5.9941e-01, 4.9381e-01,
8.2175e-01, 5.4603e-01, 5.0709e-01, 3.1483e-01,
1.8385e-01, 5.3932e-01, 3.8007e-01, 2.3323e-01,
1.3159e-01, 2.2909e-01, 6.0914e-01, 2.1429e-01,
3.4677e-01, 3.6510e-01, 4.6788e-01, 7.5851e-02,
6.2342e-01, 3.9178e-01, 8.0332e-01, 2.8579e-02,
2.2596e-01, 3.9186e-01, 9.5848e-01, 6.6292e-01,
3.9079e-01, 6.4023e-01, 5.1926e-01, 5.3093e-01,
3.9483e-01, 6.2126e-01, 7.8066e-01, 7.1039e-01,
8.0931e-01, 1.5888e-01, 1.1579e-01, 8.2985e-02,
7.6645e-01, 5.3384e-01, 3.8176e-01, 7.2784e-01,
6.3820e-02, 8.9909e-01, 2.8961e-01, 4.3128e-01,
8.4458e-01, 8.0799e-01, 9.6677e-01, 4.3147e-01,
8.5521e-01, 4.2834e-01, 4.1613e-01, 9.0932e-01,
8.9002e-01, 2.7915e-01, 8.7947e-02, 3.0907e-01,
7.4248e-01, 4.7374e-01, 3.8687e-01, 5.7613e-01,
4.4292e-02, 4.6982e-01, 2.8335e-01, 5.7595e-01,
1.3222e-01, 8.0014e-01, 4.9960e-01, 3.6663e-01,
8.3945e-01, 6.4090e-01, 4.8181e-01, 4.7471e-01,
5.9235e-01, 8.6579e-02, 7.1166e-01, 7.0863e-01,
4.3654e-01, 1.2795e-01, 6.7865e-01, 5.2378e-01,
9.9089e-02, 3.8994e-01, 6.8144e-01, 1.6013e-01,
6.8525e-02, 6.2662e-01, 9.8279e-01, 6.2973e-02,
8.5620e-01, 5.1255e-01, 4.1039e-01, 8.2570e-01,
9.1847e-01, 6.1354e-02, 6.5377e-01, 7.7310e-01,
8.3012e-01, 8.6661e-01, 3.0115e-01, 6.7939e-01,
9.0035e-01, 3.7404e-01, 7.2569e-01, 2.8425e-01,
6.9314e-01, 3.2587e-01, 8.9884e-01, 2.9391e-01,
2.3869e-01, 8.9970e-01, 9.0712e-01, 2.4140e-01,
1.0854e-01, 2.8831e-01, 2.9758e-01, 4.7286e-01,
1.5410e-01, 6.2718e-01, 8.3891e-01, 4.9411e-01,
7.2681e-01, 5.1884e-01, 3.4066e-01, 3.4069e-01,
6.7893e-01, 6.2099e-01, 1.6795e-01, 3.5633e-01,
5.4807e-01, 3.0646e-01, 3.9730e-01, 9.8662e-01,
5.0149e-02, 4.8717e-01, 9.9230e-01, 5.6152e-01,
1.4681e-01, 9.7890e-01, 1.2282e-01, 4.0130e-01,
3.5790e-01, 6.9318e-01, 7.7732e-01, 5.1771e-01,
8.0221e-01, 1.7685e-01, 3.7493e-01, 3.0565e-01,
8.9442e-01, 8.6437e-01, 5.0614e-01, 3.2743e-01,
4.1584e-02, 1.5142e-01, 8.1169e-01, 1.0022e-01,
1.8970e-01, 7.7451e-01, 8.9922e-01, 1.8975e-01]),
size=(10000, 10000), nnz=1000, layout=torch.sparse_coo)
tensor([0.0173, 0.9884, 0.5080, ..., 0.4806, 0.4208, 0.0837])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 1000
Density: 1e-05
Time: 0.5300266742706299 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 311537 -ss 10000 -sd 1e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.936841487884521}
tensor(indices=tensor([[9449, 1983, 8604, ..., 9079, 441, 9488],
[ 379, 3653, 8275, ..., 76, 2740, 1704]]),
values=tensor([0.4852, 0.7456, 0.6746, 0.1995, 0.1009, 0.4793, 0.6989,
0.8157, 0.3591, 0.3036, 0.7392, 0.5362, 0.2173, 0.9942,
0.5412, 0.2497, 0.7900, 0.8030, 0.6591, 0.9085, 0.5926,
0.1392, 0.5048, 0.6661, 0.5178, 0.4216, 0.7460, 0.5899,
0.5811, 0.7930, 0.0027, 0.6542, 0.3589, 0.3222, 0.0919,
0.4255, 0.9995, 0.7327, 0.4068, 0.8307, 0.2022, 0.8956,
0.8676, 0.7948, 0.1826, 0.7101, 0.1341, 0.1712, 0.4737,
0.2177, 0.4263, 0.9124, 0.6689, 0.0389, 0.7267, 0.7015,
0.8665, 0.1742, 0.3336, 0.9406, 0.9724, 0.3904, 0.7599,
0.0814, 0.8305, 0.1901, 0.0554, 0.6683, 0.3472, 0.6595,
0.8622, 0.9735, 0.2275, 0.3053, 0.1272, 0.7269, 0.9531,
0.6465, 0.6439, 0.9211, 0.7760, 0.0794, 0.3314, 0.9024,
0.8993, 0.1186, 0.9071, 0.2108, 0.0485, 0.2647, 0.8400,
0.7023, 0.8418, 0.2426, 0.6013, 0.8496, 0.7980, 0.9617,
0.6286, 0.4515, 0.6201, 0.0544, 0.1048, 0.8330, 0.0134,
0.7385, 0.1222, 0.2903, 0.9429, 0.2839, 0.2682, 0.3453,
0.0243, 0.9923, 0.0231, 0.5482, 0.5942, 0.3786, 0.1047,
0.5445, 0.7316, 0.1798, 0.9223, 0.5525, 0.2892, 0.9262,
0.2671, 0.1566, 0.5654, 0.1653, 0.7942, 0.5858, 0.4767,
0.1123, 0.9356, 0.9940, 0.5222, 0.9677, 0.5735, 0.4695,
0.3704, 0.5280, 0.2999, 0.5746, 0.7917, 0.4402, 0.3754,
0.4109, 0.9118, 0.5183, 0.7820, 0.9995, 0.0593, 0.4479,
0.2289, 0.8858, 0.7250, 0.4418, 0.1500, 0.1326, 0.6218,
0.3959, 0.7546, 0.4617, 0.8757, 0.5567, 0.5667, 0.8284,
0.7029, 0.4684, 0.6413, 0.6062, 0.0304, 0.5222, 0.9231,
0.6230, 0.9575, 0.5842, 0.3697, 0.3495, 0.7724, 0.0770,
0.4702, 0.7248, 0.6694, 0.0962, 0.6605, 0.3335, 0.4235,
0.0213, 0.8290, 0.9880, 0.9364, 0.0258, 0.6612, 0.9191,
0.7033, 0.9526, 0.4977, 0.4658, 0.9569, 0.4742, 0.3591,
0.3812, 0.6862, 0.5362, 0.7735, 0.5023, 0.9105, 0.2276,
0.7709, 0.0463, 0.8514, 0.4990, 0.1399, 0.8960, 0.0896,
0.5102, 0.2557, 0.8461, 0.2458, 0.0427, 0.0867, 0.5415,
0.5708, 0.9042, 0.4496, 0.6420, 0.8783, 0.8222, 0.5298,
0.6747, 0.8973, 0.4873, 0.9680, 0.8983, 0.1539, 0.6048,
0.4821, 0.0213, 0.5180, 0.4017, 0.8770, 0.3389, 0.7046,
0.1742, 0.2085, 0.4764, 0.4352, 0.7132, 0.7906, 0.3089,
0.7015, 0.4204, 0.3337, 0.3147, 0.1107, 0.6784, 0.5015,
0.0549, 0.2294, 0.9551, 0.3621, 0.3400, 0.9947, 0.5778,
0.3669, 0.9387, 0.6661, 0.3792, 0.7299, 0.7109, 0.3595,
0.7741, 0.5866, 0.1149, 0.8338, 0.5018, 0.6483, 0.7764,
0.7751, 0.0053, 0.6496, 0.9392, 0.3239, 0.0708, 0.1991,
0.9338, 0.7504, 0.7297, 0.6946, 0.1742, 0.8873, 0.9167,
0.2884, 0.6010, 0.0437, 0.0767, 0.9217, 0.0656, 0.5786,
0.0441, 0.2633, 0.0835, 0.1193, 0.1738, 0.5494, 0.1836,
0.0332, 0.6421, 0.8720, 0.0437, 0.5397, 0.8110, 0.2584,
0.9588, 0.0320, 0.3449, 0.0691, 0.6464, 0.3356, 0.4672,
0.0635, 0.1050, 0.3464, 0.6712, 0.0015, 0.1853, 0.5642,
0.0408, 0.9961, 0.7748, 0.0685, 0.2047, 0.6197, 0.3278,
0.7583, 0.2733, 0.8271, 0.2729, 0.8148, 0.0368, 0.1332,
0.5337, 0.5162, 0.6468, 0.9458, 0.6451, 0.7904, 0.3550,
0.3149, 0.0622, 0.9385, 0.6218, 0.1723, 0.9213, 0.1713,
0.8356, 0.1100, 0.1981, 0.1793, 0.4669, 0.1647, 0.9325,
0.4413, 0.7915, 0.3851, 0.4090, 0.3309, 0.0755, 0.8133,
0.7755, 0.7487, 0.8718, 0.6282, 0.2601, 0.2132, 0.7562,
0.2011, 0.0172, 0.7932, 0.8234, 0.8568, 0.3250, 0.4598,
0.6212, 0.9336, 0.7698, 0.2202, 0.3754, 0.5239, 0.8287,
0.3539, 0.1326, 0.9379, 0.0536, 0.6327, 0.7754, 0.8015,
0.8595, 0.3997, 0.9275, 0.3337, 0.8963, 0.0946, 0.4996,
0.7186, 0.0069, 0.0724, 0.2769, 0.3360, 0.5500, 0.2495,
0.8925, 0.1549, 0.7257, 0.7732, 0.9815, 0.4727, 0.3748,
0.3093, 0.7225, 0.1997, 0.5055, 0.1363, 0.7904, 0.1816,
0.3599, 0.0027, 0.6202, 0.9946, 0.0782, 0.4728, 0.9528,
0.1654, 0.9199, 0.5981, 0.1050, 0.0695, 0.9475, 0.6707,
0.5208, 0.2893, 0.6563, 0.0969, 0.6972, 0.8404, 0.8738,
0.4173, 0.0037, 0.8329, 0.2460, 0.7749, 0.0633, 0.5881,
0.7518, 0.7542, 0.8105, 0.1156, 0.6835, 0.2620, 0.0244,
0.2257, 0.2749, 0.6711, 0.9895, 0.1034, 0.4706, 0.4458,
0.4360, 0.5373, 0.8291, 0.5069, 0.8022, 0.3949, 0.9910,
0.7216, 0.9302, 0.1221, 0.7635, 0.2340, 0.5895, 0.2299,
0.7934, 0.9815, 0.7163, 0.6735, 0.4088, 0.6104, 0.5671,
0.3594, 0.2926, 0.8253, 0.6302, 0.3483, 0.5853, 0.8522,
0.0274, 0.4013, 0.4136, 0.7071, 0.8192, 0.7581, 0.8372,
0.2805, 0.0304, 0.2594, 0.8125, 0.2690, 0.8014, 0.2972,
0.9536, 0.8553, 0.0263, 0.9506, 0.8009, 0.2123, 0.4994,
0.0967, 0.4292, 0.8558, 0.9874, 0.2902, 0.2838, 0.4256,
0.7640, 0.5011, 0.7127, 0.0227, 0.8603, 0.5746, 0.6935,
0.8273, 0.8493, 0.2221, 0.7469, 0.8481, 0.1433, 0.2126,
0.0609, 0.2633, 0.1045, 0.0344, 0.9965, 0.1423, 0.8976,
0.0645, 0.6131, 0.8452, 0.8508, 0.8462, 0.1697, 0.1348,
0.2804, 0.0906, 0.6075, 0.1640, 0.5120, 0.4907, 0.6374,
0.4293, 0.9539, 0.4440, 0.2977, 0.5979, 0.2534, 0.2416,
0.0863, 0.1093, 0.0024, 0.6833, 0.4643, 0.6603, 0.5636,
0.7695, 0.5315, 0.0298, 0.3169, 0.0039, 0.2062, 0.6618,
0.6958, 0.6166, 0.1840, 0.1331, 0.6205, 0.2864, 0.4641,
0.2037, 0.5126, 0.5366, 0.1584, 0.8256, 0.6681, 0.3504,
0.4197, 0.1706, 0.9348, 0.3533, 0.0191, 0.3668, 0.4875,
0.9158, 0.3382, 0.8800, 0.4014, 0.9078, 0.3361, 0.2503,
0.5280, 0.6507, 0.2868, 0.2080, 0.5840, 0.2180, 0.9088,
0.9062, 0.5048, 0.2187, 0.9797, 0.8531, 0.7473, 0.3583,
0.7500, 0.8813, 0.7021, 0.1034, 0.5837, 0.7993, 0.0321,
0.8041, 0.9711, 0.3426, 0.0569, 0.2130, 0.7519, 0.7420,
0.6780, 0.0354, 0.6662, 0.1161, 0.5677, 0.8211, 0.2188,
0.1319, 0.0503, 0.3529, 0.2317, 0.6917, 0.7119, 0.0328,
0.4702, 0.8651, 0.0378, 0.9488, 0.1620, 0.7004, 0.1993,
0.6881, 0.6031, 0.9878, 0.6244, 0.8395, 0.2876, 0.4623,
0.5688, 0.9568, 0.3583, 0.3332, 0.2481, 0.3490, 0.1522,
0.4169, 0.9565, 0.4692, 0.9341, 0.1455, 0.6058, 0.3256,
0.7732, 0.4596, 0.4758, 0.3239, 0.6178, 0.2159, 0.9497,
0.4460, 0.2619, 0.5366, 0.2807, 0.3747, 0.5316, 0.6398,
0.5014, 0.9129, 0.6511, 0.9745, 0.3450, 0.4354, 0.7145,
0.3963, 0.1018, 0.2370, 0.0579, 0.6296, 0.5376, 0.4212,
0.7341, 0.4723, 0.5945, 0.4571, 0.9799, 0.3736, 0.2755,
0.5768, 0.2102, 0.0193, 0.0556, 0.3506, 0.8902, 0.7765,
0.5524, 0.2526, 0.5750, 0.7180, 0.0332, 0.4840, 0.5667,
0.3916, 0.7413, 0.7587, 0.3881, 0.9480, 0.2334, 0.3730,
0.4054, 0.1993, 0.9826, 0.0595, 0.9834, 0.3868, 0.7498,
0.7383, 0.1696, 0.3770, 0.4540, 0.6246, 0.0988, 0.1197,
0.2522, 0.3898, 0.3747, 0.5319, 0.9028, 0.2064, 0.9789,
0.2022, 0.1043, 0.1360, 0.0178, 0.4510, 0.2510, 0.5015,
0.3519, 0.4152, 0.8545, 0.4783, 0.6235, 1.0000, 0.3091,
0.2701, 0.8880, 0.8861, 0.3516, 0.1603, 0.3569, 0.0521,
0.5316, 0.2367, 0.9484, 0.4276, 0.8079, 0.1098, 0.0901,
0.8197, 0.3460, 0.4770, 0.1628, 0.4097, 0.4827, 0.4121,
0.4955, 0.7300, 0.1991, 0.8566, 0.7018, 0.8926, 0.4044,
0.9527, 0.1783, 0.8023, 0.0037, 0.2145, 0.3690, 0.6856,
0.1160, 0.7008, 0.8968, 0.8291, 0.2190, 0.5082, 0.7170,
0.5545, 0.6468, 0.4032, 0.8766, 0.9935, 0.6206, 0.9196,
0.2708, 0.6010, 0.3566, 0.5655, 0.1334, 0.0317, 0.9089,
0.4883, 0.3129, 0.2375, 0.0245, 0.9931, 0.8682, 0.2100,
0.8278, 0.2357, 0.8186, 0.0746, 0.9512, 0.5988, 0.4698,
0.7326, 0.2072, 0.9661, 0.2194, 0.0909, 0.3693, 0.2241,
0.3486, 0.9000, 0.7653, 0.3210, 0.1106, 0.7392, 0.9930,
0.5615, 0.3160, 0.6996, 0.7221, 0.4820, 0.2912, 0.4774,
0.5757, 0.4963, 0.0242, 0.3244, 0.5335, 0.2241, 0.8257,
0.5038, 0.5392, 0.0582, 0.5343, 0.1811, 0.6934, 0.8311,
0.1849, 0.1453, 0.4364, 0.6098, 0.2830, 0.6671, 0.7649,
0.9963, 0.2240, 0.9808, 0.1730, 0.9039, 0.1287, 0.6533,
0.4767, 0.4074, 0.4945, 0.9337, 0.3231, 0.5145, 0.6775,
0.2409, 0.7241, 0.5970, 0.3235, 0.3946, 0.9823, 0.1307,
0.5413, 0.2118, 0.5875, 0.2021, 0.2299, 0.2350, 0.7436,
0.6276, 0.1237, 0.4474, 0.3800, 0.0240, 0.6668, 0.7029,
0.2403, 0.8558, 0.2573, 0.5023, 0.7296, 0.9904, 0.0610,
0.4926, 0.0911, 0.8133, 0.9773, 0.6748, 0.1779, 0.3645,
0.3936, 0.6101, 0.2505, 0.3746, 0.8904, 0.9525, 0.2954,
0.6249, 0.6218, 0.6388, 0.0360, 0.5495, 0.3338, 0.7487,
0.6226, 0.0604, 0.0264, 0.4848, 0.4942, 0.4977, 0.3416,
0.3983, 0.2565, 0.3809, 0.0121, 0.7773, 0.7943, 0.6463,
0.0336, 0.0322, 0.0067, 0.6148, 0.7752, 0.2595, 0.7560,
0.9935, 0.3053, 0.7422, 0.2791, 0.8499, 0.9851, 0.8966,
0.9209, 0.4825, 0.6859, 0.1353, 0.4816, 0.2144, 0.0737,
0.2418, 0.5632, 0.1795, 0.4575, 0.0939, 0.5427, 0.8005,
0.1748, 0.3050, 0.9237, 0.4077, 0.6380, 0.6156, 0.9027,
0.8978, 0.5298, 0.0987, 0.4984, 0.3592, 0.4138]),
size=(10000, 10000), nnz=1000, layout=torch.sparse_coo)
tensor([0.9181, 0.5008, 0.3382, ..., 0.4200, 0.0196, 0.8754])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 1000
Density: 1e-05
Time: 9.936841487884521 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 329192 -ss 10000 -sd 1e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.653273582458496}
tensor(indices=tensor([[4854, 1972, 1654, ..., 649, 6272, 4588],
[9719, 4284, 6068, ..., 2523, 230, 5289]]),
values=tensor([0.0546, 0.9618, 0.5019, 0.3688, 0.2823, 0.2385, 0.3981,
0.3311, 0.3196, 0.0360, 0.2973, 0.2967, 0.8582, 0.3259,
0.3539, 0.6753, 0.6200, 0.0686, 0.7919, 0.5337, 0.7565,
0.3645, 0.2896, 0.2953, 0.1535, 0.6412, 0.0942, 0.1284,
0.3823, 0.2412, 0.8320, 0.6559, 0.7567, 0.3082, 0.6391,
0.6003, 0.9169, 0.6491, 0.8636, 0.7921, 0.9829, 0.2122,
0.0234, 0.5027, 0.6219, 0.4056, 0.6024, 0.9485, 0.7115,
0.3451, 0.2106, 0.4603, 0.5533, 0.0486, 0.7718, 0.2406,
0.7476, 0.2536, 0.6648, 0.8494, 0.3832, 0.2494, 0.3734,
0.2158, 0.8473, 0.7907, 0.1672, 0.4406, 0.9048, 0.0481,
0.2471, 0.3739, 0.4422, 0.8044, 0.6496, 0.9822, 0.0162,
0.4389, 0.2354, 0.0506, 0.9853, 0.6680, 0.1153, 0.2338,
0.3680, 0.0319, 0.9285, 0.7733, 0.1113, 0.8243, 0.7520,
0.1949, 0.9210, 0.6430, 0.2592, 0.2631, 0.6721, 0.9714,
0.4340, 0.0745, 0.9262, 0.1076, 0.5913, 0.8244, 0.9226,
0.2082, 0.8533, 0.8589, 0.7031, 0.4953, 0.7932, 0.6515,
0.4222, 0.8735, 0.6638, 0.7179, 0.5208, 0.4634, 0.6346,
0.8158, 0.2966, 0.6425, 0.5722, 0.9826, 0.0998, 0.1347,
0.2221, 0.5267, 0.5951, 0.5359, 0.4663, 0.2881, 0.3374,
0.0562, 0.6246, 0.5624, 0.6535, 0.8938, 0.9675, 0.6807,
0.1069, 0.2400, 0.9511, 0.5834, 0.8067, 0.7875, 0.9192,
0.9314, 0.6987, 0.1271, 0.6400, 0.5017, 0.4446, 0.3635,
0.6910, 0.3672, 0.2439, 0.2649, 0.1640, 0.7850, 0.7337,
0.8578, 0.6221, 0.0166, 0.6421, 0.3661, 0.7555, 0.0663,
0.4310, 0.3023, 0.6408, 0.1570, 0.4641, 0.5173, 0.7738,
0.4925, 0.6237, 0.6803, 0.4675, 0.7691, 0.6378, 0.1895,
0.9558, 0.1102, 0.5469, 0.1449, 0.3673, 0.0670, 0.6119,
0.7794, 0.6773, 0.2571, 0.4058, 0.7148, 0.9526, 0.2736,
0.5870, 0.9203, 0.7770, 0.6000, 0.9050, 0.8928, 0.6043,
0.2173, 0.8021, 0.3987, 0.9319, 0.1321, 0.6419, 0.8805,
0.5762, 0.9898, 0.7741, 0.0014, 0.4154, 0.8250, 0.9940,
0.1492, 0.2679, 0.5259, 0.8599, 0.3844, 0.0824, 0.9404,
0.1299, 0.4514, 0.9935, 0.0880, 0.7071, 0.9205, 0.6893,
0.7071, 0.6541, 0.2951, 0.6104, 0.0685, 0.8105, 0.5565,
0.3738, 0.4508, 0.2772, 0.8218, 0.3212, 0.1522, 0.9104,
0.8334, 0.9032, 0.6331, 0.1635, 0.9594, 0.1631, 0.2170,
0.2663, 0.0335, 0.0622, 0.5555, 0.0460, 0.2288, 0.5383,
0.2672, 0.1372, 0.4498, 0.4359, 0.1932, 0.7826, 0.7543,
0.2390, 0.9424, 0.7304, 0.1308, 0.9979, 0.2674, 0.2207,
0.4649, 0.0767, 0.0635, 0.7269, 0.8666, 0.4565, 0.8178,
0.9247, 0.5805, 0.7682, 0.1326, 0.1208, 0.8191, 0.5636,
0.6199, 0.7422, 0.3247, 0.7303, 0.9963, 0.1741, 0.6580,
0.2115, 0.2373, 0.1476, 0.0673, 0.2244, 0.3259, 0.7683,
0.9841, 0.6551, 0.9793, 0.6693, 0.3136, 0.1028, 0.2181,
0.6644, 0.2183, 0.2541, 0.6732, 0.8967, 0.8898, 0.9288,
0.3995, 0.1632, 0.8336, 0.9092, 0.7542, 0.3277, 0.5676,
0.7198, 0.6792, 0.1867, 0.2225, 0.9889, 0.6153, 0.2516,
0.8157, 0.6179, 0.7287, 0.0399, 0.7523, 0.9450, 0.2052,
0.4578, 0.9994, 0.9638, 0.1661, 0.1734, 0.6150, 0.7844,
0.6947, 0.6125, 0.2980, 0.3428, 0.3989, 0.5310, 0.5801,
0.5691, 0.3263, 0.4789, 0.8018, 0.9784, 0.1424, 0.7686,
0.7759, 0.5730, 0.6912, 0.9861, 0.4485, 0.3292, 0.8811,
0.8909, 0.7811, 0.0343, 0.3755, 0.9717, 0.1991, 0.2348,
0.0415, 0.2611, 0.5831, 0.4307, 0.7342, 0.3183, 0.5113,
0.6527, 0.8104, 0.1210, 0.4177, 0.9794, 0.8917, 0.7427,
0.6576, 0.4750, 0.3355, 0.7430, 0.3699, 0.7745, 0.6011,
0.6918, 0.7276, 0.2705, 0.0994, 0.8232, 0.5870, 0.1146,
0.9875, 0.6768, 0.1684, 0.0647, 0.5265, 0.5565, 0.9341,
0.1991, 0.4732, 0.5823, 0.4300, 0.1062, 0.9316, 0.2859,
0.6377, 0.1954, 0.8861, 0.4825, 0.4980, 0.0519, 0.4206,
0.9348, 0.0941, 0.7470, 0.9779, 0.4837, 0.1233, 0.9046,
0.8605, 0.6756, 0.3581, 0.5206, 0.7869, 0.4967, 0.5488,
0.0842, 0.7040, 0.5311, 0.2386, 0.6312, 0.1512, 0.4338,
0.4572, 0.8489, 0.6417, 0.4462, 0.8036, 0.6098, 0.1997,
0.8349, 0.4730, 0.5787, 0.2206, 0.3643, 0.5429, 0.2836,
0.3462, 0.3657, 0.5533, 0.6283, 0.5639, 0.6018, 0.4269,
0.3299, 0.7280, 0.8104, 0.6276, 0.0662, 0.1279, 0.8930,
0.6281, 0.9424, 0.3968, 0.2508, 0.2171, 0.5602, 0.1197,
0.7457, 0.3991, 0.4626, 0.0622, 0.6755, 0.7264, 0.9811,
0.1693, 0.9437, 0.6089, 0.9176, 0.1836, 0.8271, 0.8856,
0.9443, 0.7809, 0.0108, 0.7203, 0.5947, 0.8905, 0.0445,
0.0699, 0.4006, 0.6961, 0.4831, 0.7407, 0.2880, 0.4599,
0.4693, 0.3042, 0.8173, 0.5769, 0.3609, 0.4964, 0.0841,
0.2442, 0.2771, 0.0993, 0.4282, 0.1780, 0.8141, 0.8384,
0.3696, 0.7660, 0.0872, 0.9099, 0.4227, 0.5207, 0.1521,
0.1139, 0.2068, 0.0133, 0.4689, 0.3938, 0.4969, 0.2244,
0.6359, 0.6660, 0.3449, 0.2158, 0.5108, 0.7421, 0.2597,
0.3621, 0.0177, 0.3102, 0.4907, 0.4913, 0.5419, 0.2531,
0.4241, 0.4212, 0.4517, 0.6030, 0.7879, 0.2272, 0.2337,
0.8575, 0.1110, 0.0202, 0.1069, 0.6565, 0.2442, 0.0772,
0.4766, 0.1118, 0.2209, 0.2595, 0.6296, 0.7056, 0.6889,
0.6495, 0.8593, 0.1117, 0.4068, 0.6759, 0.6510, 0.5487,
0.1141, 0.3036, 0.8762, 0.2552, 0.4586, 0.9505, 0.1165,
0.6656, 0.9939, 0.7003, 0.4030, 0.4376, 0.4250, 0.2459,
0.7688, 0.3425, 0.0164, 0.3476, 0.7114, 0.3631, 0.1853,
0.0197, 0.1895, 0.1403, 0.8574, 0.3452, 0.8160, 0.9020,
0.9156, 0.1928, 0.7611, 0.1365, 0.1221, 0.0355, 0.4036,
0.7580, 0.6105, 0.4257, 0.3053, 0.6391, 0.2544, 0.2600,
0.6769, 0.1254, 0.3276, 0.1147, 0.5396, 0.7679, 0.4043,
0.3654, 0.7254, 0.4094, 0.7651, 0.5771, 0.6880, 0.9243,
0.5574, 0.9087, 0.9140, 0.3571, 0.8742, 0.0448, 0.5066,
0.1946, 0.2322, 0.9189, 0.3201, 0.8150, 0.4373, 0.9521,
0.4274, 0.7234, 0.2347, 0.4717, 0.0954, 0.3797, 0.3487,
0.1178, 0.7890, 0.1625, 0.0516, 0.4215, 0.9427, 0.7114,
0.0679, 0.8178, 0.9847, 0.4645, 0.1250, 0.7080, 0.6793,
0.2496, 0.5513, 0.2581, 0.7638, 0.5884, 0.1229, 0.7480,
0.3331, 0.7886, 0.3105, 0.9359, 0.5589, 0.6762, 0.1715,
0.3992, 0.3033, 0.1567, 0.6501, 0.3727, 0.3524, 0.2620,
0.3809, 0.4793, 0.4363, 0.8401, 0.1721, 0.4691, 0.1140,
0.0769, 0.5503, 0.6917, 0.9551, 0.9730, 0.7478, 0.9795,
0.3056, 0.9739, 0.0738, 0.3801, 0.2976, 0.9665, 0.5065,
0.5275, 0.5874, 0.1639, 0.0384, 0.9320, 0.6764, 0.5528,
0.7685, 0.3392, 0.7970, 0.3212, 0.3294, 0.7715, 0.7566,
0.0845, 0.7230, 0.9756, 0.7438, 0.0730, 0.0140, 0.2442,
0.3170, 0.1531, 0.6572, 0.2241, 0.6559, 0.7594, 0.5163,
0.0770, 0.8216, 0.1121, 0.2414, 0.3304, 0.4292, 0.6703,
0.8489, 0.1680, 0.1843, 0.7202, 0.8341, 0.2089, 0.9189,
0.3321, 0.2930, 0.6854, 0.2746, 0.2375, 0.1258, 0.9921,
0.2697, 0.2706, 0.4161, 0.9534, 0.4156, 0.0203, 0.7281,
0.8287, 0.1664, 0.6949, 0.3616, 0.7643, 0.8454, 0.7725,
0.2379, 0.0818, 0.3522, 0.8770, 0.2477, 0.8016, 0.9264,
0.5983, 0.8318, 0.9309, 0.1421, 0.5214, 0.4590, 0.4466,
0.8836, 0.1506, 0.6918, 0.5040, 0.0693, 0.8909, 0.8473,
0.3000, 0.4501, 0.0317, 0.6074, 0.6142, 0.8717, 0.1123,
0.2734, 0.6236, 0.7128, 0.9839, 0.1268, 0.4137, 0.8249,
0.9714, 0.2626, 0.4457, 0.7949, 0.0601, 0.1474, 0.7151,
0.5980, 0.4383, 0.8719, 0.8532, 0.1146, 0.2021, 0.3510,
0.7357, 0.8046, 0.4561, 0.1123, 0.5495, 0.8039, 0.9162,
0.1794, 0.4379, 0.0797, 0.6351, 0.2957, 0.0267, 0.1551,
0.6665, 0.5637, 0.9045, 0.5240, 0.2534, 0.4744, 0.8888,
0.7171, 0.0746, 0.9509, 0.9155, 0.0161, 0.4715, 0.7253,
0.2094, 0.9385, 0.4007, 0.7703, 0.4403, 0.4696, 0.0635,
0.6452, 0.9162, 0.8772, 0.6423, 0.8830, 0.1271, 0.2269,
0.8334, 0.5840, 0.7807, 0.8628, 0.2077, 0.7466, 0.6649,
0.4775, 0.5364, 0.9753, 0.9333, 0.8689, 0.3676, 0.6997,
0.6413, 0.1514, 0.4442, 0.4757, 0.6288, 0.8351, 0.5958,
0.7445, 0.1575, 0.2611, 0.9676, 0.0288, 0.8028, 0.9286,
0.3416, 0.8684, 0.9159, 0.0786, 0.1630, 0.6937, 0.0573,
0.2736, 0.8433, 0.1001, 0.2551, 0.8051, 0.8270, 0.2224,
0.8216, 0.0075, 0.0447, 0.1405, 0.2786, 0.7581, 0.5283,
0.0187, 0.6181, 0.6165, 0.5798, 0.8513, 0.6720, 0.7857,
0.0688, 0.4059, 0.2379, 0.9488, 0.1719, 0.2302, 0.7356,
0.6534, 0.7287, 0.0684, 0.5311, 0.2033, 0.2442, 0.0088,
0.4083, 0.8184, 0.3400, 0.1257, 0.4984, 0.2301, 0.1742,
0.7550, 0.8626, 0.6692, 0.1226, 0.7922, 0.4923, 0.4013,
0.8096, 0.3364, 0.2426, 0.0395, 0.3774, 0.7735, 0.1798,
0.7857, 0.9528, 0.7629, 0.4383, 0.4673, 0.4848, 0.4766,
0.7546, 0.5048, 0.0907, 0.0024, 0.6060, 0.4046, 0.6692,
0.0093, 0.9058, 0.9962, 0.9902, 0.8031, 0.7622, 0.7882,
0.4125, 0.7561, 0.2878, 0.1422, 0.9781, 0.5586, 0.9705,
0.5239, 0.5728, 0.1892, 0.6013, 0.2173, 0.0813, 0.3227,
0.5416, 0.2267, 0.9476, 0.6435, 0.2364, 0.6455, 0.7828,
0.9169, 0.5877, 0.7036, 0.7500, 0.4633, 0.7657]),
size=(10000, 10000), nnz=1000, layout=torch.sparse_coo)
tensor([0.3315, 0.1043, 0.8974, ..., 0.8556, 0.8987, 0.2347])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 1000
Density: 1e-05
Time: 10.653273582458496 seconds
tensor(indices=tensor([[4854, 1972, 1654, ..., 649, 6272, 4588],
[9719, 4284, 6068, ..., 2523, 230, 5289]]),
values=tensor([0.0546, 0.9618, 0.5019, 0.3688, 0.2823, 0.2385, 0.3981,
0.3311, 0.3196, 0.0360, 0.2973, 0.2967, 0.8582, 0.3259,
0.3539, 0.6753, 0.6200, 0.0686, 0.7919, 0.5337, 0.7565,
0.3645, 0.2896, 0.2953, 0.1535, 0.6412, 0.0942, 0.1284,
0.3823, 0.2412, 0.8320, 0.6559, 0.7567, 0.3082, 0.6391,
0.6003, 0.9169, 0.6491, 0.8636, 0.7921, 0.9829, 0.2122,
0.0234, 0.5027, 0.6219, 0.4056, 0.6024, 0.9485, 0.7115,
0.3451, 0.2106, 0.4603, 0.5533, 0.0486, 0.7718, 0.2406,
0.7476, 0.2536, 0.6648, 0.8494, 0.3832, 0.2494, 0.3734,
0.2158, 0.8473, 0.7907, 0.1672, 0.4406, 0.9048, 0.0481,
0.2471, 0.3739, 0.4422, 0.8044, 0.6496, 0.9822, 0.0162,
0.4389, 0.2354, 0.0506, 0.9853, 0.6680, 0.1153, 0.2338,
0.3680, 0.0319, 0.9285, 0.7733, 0.1113, 0.8243, 0.7520,
0.1949, 0.9210, 0.6430, 0.2592, 0.2631, 0.6721, 0.9714,
0.4340, 0.0745, 0.9262, 0.1076, 0.5913, 0.8244, 0.9226,
0.2082, 0.8533, 0.8589, 0.7031, 0.4953, 0.7932, 0.6515,
0.4222, 0.8735, 0.6638, 0.7179, 0.5208, 0.4634, 0.6346,
0.8158, 0.2966, 0.6425, 0.5722, 0.9826, 0.0998, 0.1347,
0.2221, 0.5267, 0.5951, 0.5359, 0.4663, 0.2881, 0.3374,
0.0562, 0.6246, 0.5624, 0.6535, 0.8938, 0.9675, 0.6807,
0.1069, 0.2400, 0.9511, 0.5834, 0.8067, 0.7875, 0.9192,
0.9314, 0.6987, 0.1271, 0.6400, 0.5017, 0.4446, 0.3635,
0.6910, 0.3672, 0.2439, 0.2649, 0.1640, 0.7850, 0.7337,
0.8578, 0.6221, 0.0166, 0.6421, 0.3661, 0.7555, 0.0663,
0.4310, 0.3023, 0.6408, 0.1570, 0.4641, 0.5173, 0.7738,
0.4925, 0.6237, 0.6803, 0.4675, 0.7691, 0.6378, 0.1895,
0.9558, 0.1102, 0.5469, 0.1449, 0.3673, 0.0670, 0.6119,
0.7794, 0.6773, 0.2571, 0.4058, 0.7148, 0.9526, 0.2736,
0.5870, 0.9203, 0.7770, 0.6000, 0.9050, 0.8928, 0.6043,
0.2173, 0.8021, 0.3987, 0.9319, 0.1321, 0.6419, 0.8805,
0.5762, 0.9898, 0.7741, 0.0014, 0.4154, 0.8250, 0.9940,
0.1492, 0.2679, 0.5259, 0.8599, 0.3844, 0.0824, 0.9404,
0.1299, 0.4514, 0.9935, 0.0880, 0.7071, 0.9205, 0.6893,
0.7071, 0.6541, 0.2951, 0.6104, 0.0685, 0.8105, 0.5565,
0.3738, 0.4508, 0.2772, 0.8218, 0.3212, 0.1522, 0.9104,
0.8334, 0.9032, 0.6331, 0.1635, 0.9594, 0.1631, 0.2170,
0.2663, 0.0335, 0.0622, 0.5555, 0.0460, 0.2288, 0.5383,
0.2672, 0.1372, 0.4498, 0.4359, 0.1932, 0.7826, 0.7543,
0.2390, 0.9424, 0.7304, 0.1308, 0.9979, 0.2674, 0.2207,
0.4649, 0.0767, 0.0635, 0.7269, 0.8666, 0.4565, 0.8178,
0.9247, 0.5805, 0.7682, 0.1326, 0.1208, 0.8191, 0.5636,
0.6199, 0.7422, 0.3247, 0.7303, 0.9963, 0.1741, 0.6580,
0.2115, 0.2373, 0.1476, 0.0673, 0.2244, 0.3259, 0.7683,
0.9841, 0.6551, 0.9793, 0.6693, 0.3136, 0.1028, 0.2181,
0.6644, 0.2183, 0.2541, 0.6732, 0.8967, 0.8898, 0.9288,
0.3995, 0.1632, 0.8336, 0.9092, 0.7542, 0.3277, 0.5676,
0.7198, 0.6792, 0.1867, 0.2225, 0.9889, 0.6153, 0.2516,
0.8157, 0.6179, 0.7287, 0.0399, 0.7523, 0.9450, 0.2052,
0.4578, 0.9994, 0.9638, 0.1661, 0.1734, 0.6150, 0.7844,
0.6947, 0.6125, 0.2980, 0.3428, 0.3989, 0.5310, 0.5801,
0.5691, 0.3263, 0.4789, 0.8018, 0.9784, 0.1424, 0.7686,
0.7759, 0.5730, 0.6912, 0.9861, 0.4485, 0.3292, 0.8811,
0.8909, 0.7811, 0.0343, 0.3755, 0.9717, 0.1991, 0.2348,
0.0415, 0.2611, 0.5831, 0.4307, 0.7342, 0.3183, 0.5113,
0.6527, 0.8104, 0.1210, 0.4177, 0.9794, 0.8917, 0.7427,
0.6576, 0.4750, 0.3355, 0.7430, 0.3699, 0.7745, 0.6011,
0.6918, 0.7276, 0.2705, 0.0994, 0.8232, 0.5870, 0.1146,
0.9875, 0.6768, 0.1684, 0.0647, 0.5265, 0.5565, 0.9341,
0.1991, 0.4732, 0.5823, 0.4300, 0.1062, 0.9316, 0.2859,
0.6377, 0.1954, 0.8861, 0.4825, 0.4980, 0.0519, 0.4206,
0.9348, 0.0941, 0.7470, 0.9779, 0.4837, 0.1233, 0.9046,
0.8605, 0.6756, 0.3581, 0.5206, 0.7869, 0.4967, 0.5488,
0.0842, 0.7040, 0.5311, 0.2386, 0.6312, 0.1512, 0.4338,
0.4572, 0.8489, 0.6417, 0.4462, 0.8036, 0.6098, 0.1997,
0.8349, 0.4730, 0.5787, 0.2206, 0.3643, 0.5429, 0.2836,
0.3462, 0.3657, 0.5533, 0.6283, 0.5639, 0.6018, 0.4269,
0.3299, 0.7280, 0.8104, 0.6276, 0.0662, 0.1279, 0.8930,
0.6281, 0.9424, 0.3968, 0.2508, 0.2171, 0.5602, 0.1197,
0.7457, 0.3991, 0.4626, 0.0622, 0.6755, 0.7264, 0.9811,
0.1693, 0.9437, 0.6089, 0.9176, 0.1836, 0.8271, 0.8856,
0.9443, 0.7809, 0.0108, 0.7203, 0.5947, 0.8905, 0.0445,
0.0699, 0.4006, 0.6961, 0.4831, 0.7407, 0.2880, 0.4599,
0.4693, 0.3042, 0.8173, 0.5769, 0.3609, 0.4964, 0.0841,
0.2442, 0.2771, 0.0993, 0.4282, 0.1780, 0.8141, 0.8384,
0.3696, 0.7660, 0.0872, 0.9099, 0.4227, 0.5207, 0.1521,
0.1139, 0.2068, 0.0133, 0.4689, 0.3938, 0.4969, 0.2244,
0.6359, 0.6660, 0.3449, 0.2158, 0.5108, 0.7421, 0.2597,
0.3621, 0.0177, 0.3102, 0.4907, 0.4913, 0.5419, 0.2531,
0.4241, 0.4212, 0.4517, 0.6030, 0.7879, 0.2272, 0.2337,
0.8575, 0.1110, 0.0202, 0.1069, 0.6565, 0.2442, 0.0772,
0.4766, 0.1118, 0.2209, 0.2595, 0.6296, 0.7056, 0.6889,
0.6495, 0.8593, 0.1117, 0.4068, 0.6759, 0.6510, 0.5487,
0.1141, 0.3036, 0.8762, 0.2552, 0.4586, 0.9505, 0.1165,
0.6656, 0.9939, 0.7003, 0.4030, 0.4376, 0.4250, 0.2459,
0.7688, 0.3425, 0.0164, 0.3476, 0.7114, 0.3631, 0.1853,
0.0197, 0.1895, 0.1403, 0.8574, 0.3452, 0.8160, 0.9020,
0.9156, 0.1928, 0.7611, 0.1365, 0.1221, 0.0355, 0.4036,
0.7580, 0.6105, 0.4257, 0.3053, 0.6391, 0.2544, 0.2600,
0.6769, 0.1254, 0.3276, 0.1147, 0.5396, 0.7679, 0.4043,
0.3654, 0.7254, 0.4094, 0.7651, 0.5771, 0.6880, 0.9243,
0.5574, 0.9087, 0.9140, 0.3571, 0.8742, 0.0448, 0.5066,
0.1946, 0.2322, 0.9189, 0.3201, 0.8150, 0.4373, 0.9521,
0.4274, 0.7234, 0.2347, 0.4717, 0.0954, 0.3797, 0.3487,
0.1178, 0.7890, 0.1625, 0.0516, 0.4215, 0.9427, 0.7114,
0.0679, 0.8178, 0.9847, 0.4645, 0.1250, 0.7080, 0.6793,
0.2496, 0.5513, 0.2581, 0.7638, 0.5884, 0.1229, 0.7480,
0.3331, 0.7886, 0.3105, 0.9359, 0.5589, 0.6762, 0.1715,
0.3992, 0.3033, 0.1567, 0.6501, 0.3727, 0.3524, 0.2620,
0.3809, 0.4793, 0.4363, 0.8401, 0.1721, 0.4691, 0.1140,
0.0769, 0.5503, 0.6917, 0.9551, 0.9730, 0.7478, 0.9795,
0.3056, 0.9739, 0.0738, 0.3801, 0.2976, 0.9665, 0.5065,
0.5275, 0.5874, 0.1639, 0.0384, 0.9320, 0.6764, 0.5528,
0.7685, 0.3392, 0.7970, 0.3212, 0.3294, 0.7715, 0.7566,
0.0845, 0.7230, 0.9756, 0.7438, 0.0730, 0.0140, 0.2442,
0.3170, 0.1531, 0.6572, 0.2241, 0.6559, 0.7594, 0.5163,
0.0770, 0.8216, 0.1121, 0.2414, 0.3304, 0.4292, 0.6703,
0.8489, 0.1680, 0.1843, 0.7202, 0.8341, 0.2089, 0.9189,
0.3321, 0.2930, 0.6854, 0.2746, 0.2375, 0.1258, 0.9921,
0.2697, 0.2706, 0.4161, 0.9534, 0.4156, 0.0203, 0.7281,
0.8287, 0.1664, 0.6949, 0.3616, 0.7643, 0.8454, 0.7725,
0.2379, 0.0818, 0.3522, 0.8770, 0.2477, 0.8016, 0.9264,
0.5983, 0.8318, 0.9309, 0.1421, 0.5214, 0.4590, 0.4466,
0.8836, 0.1506, 0.6918, 0.5040, 0.0693, 0.8909, 0.8473,
0.3000, 0.4501, 0.0317, 0.6074, 0.6142, 0.8717, 0.1123,
0.2734, 0.6236, 0.7128, 0.9839, 0.1268, 0.4137, 0.8249,
0.9714, 0.2626, 0.4457, 0.7949, 0.0601, 0.1474, 0.7151,
0.5980, 0.4383, 0.8719, 0.8532, 0.1146, 0.2021, 0.3510,
0.7357, 0.8046, 0.4561, 0.1123, 0.5495, 0.8039, 0.9162,
0.1794, 0.4379, 0.0797, 0.6351, 0.2957, 0.0267, 0.1551,
0.6665, 0.5637, 0.9045, 0.5240, 0.2534, 0.4744, 0.8888,
0.7171, 0.0746, 0.9509, 0.9155, 0.0161, 0.4715, 0.7253,
0.2094, 0.9385, 0.4007, 0.7703, 0.4403, 0.4696, 0.0635,
0.6452, 0.9162, 0.8772, 0.6423, 0.8830, 0.1271, 0.2269,
0.8334, 0.5840, 0.7807, 0.8628, 0.2077, 0.7466, 0.6649,
0.4775, 0.5364, 0.9753, 0.9333, 0.8689, 0.3676, 0.6997,
0.6413, 0.1514, 0.4442, 0.4757, 0.6288, 0.8351, 0.5958,
0.7445, 0.1575, 0.2611, 0.9676, 0.0288, 0.8028, 0.9286,
0.3416, 0.8684, 0.9159, 0.0786, 0.1630, 0.6937, 0.0573,
0.2736, 0.8433, 0.1001, 0.2551, 0.8051, 0.8270, 0.2224,
0.8216, 0.0075, 0.0447, 0.1405, 0.2786, 0.7581, 0.5283,
0.0187, 0.6181, 0.6165, 0.5798, 0.8513, 0.6720, 0.7857,
0.0688, 0.4059, 0.2379, 0.9488, 0.1719, 0.2302, 0.7356,
0.6534, 0.7287, 0.0684, 0.5311, 0.2033, 0.2442, 0.0088,
0.4083, 0.8184, 0.3400, 0.1257, 0.4984, 0.2301, 0.1742,
0.7550, 0.8626, 0.6692, 0.1226, 0.7922, 0.4923, 0.4013,
0.8096, 0.3364, 0.2426, 0.0395, 0.3774, 0.7735, 0.1798,
0.7857, 0.9528, 0.7629, 0.4383, 0.4673, 0.4848, 0.4766,
0.7546, 0.5048, 0.0907, 0.0024, 0.6060, 0.4046, 0.6692,
0.0093, 0.9058, 0.9962, 0.9902, 0.8031, 0.7622, 0.7882,
0.4125, 0.7561, 0.2878, 0.1422, 0.9781, 0.5586, 0.9705,
0.5239, 0.5728, 0.1892, 0.6013, 0.2173, 0.0813, 0.3227,
0.5416, 0.2267, 0.9476, 0.6435, 0.2364, 0.6455, 0.7828,
0.9169, 0.5877, 0.7036, 0.7500, 0.4633, 0.7657]),
size=(10000, 10000), nnz=1000, layout=torch.sparse_coo)
tensor([0.3315, 0.1043, 0.8974, ..., 0.8556, 0.8987, 0.2347])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 1000
Density: 1e-05
Time: 10.653273582458496 seconds
[16.56, 16.36, 16.24, 15.96, 16.0, 16.12, 16.36, 16.32, 16.32, 16.52]
[16.28, 16.12, 16.4, 18.36, 20.08, 21.52, 22.48, 22.28, 21.04, 19.88, 20.12, 20.12, 20.48, 20.68]
14.219621419906616
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 329192, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.653273582458496, 'TIME_S_1KI': 0.03236188480418265, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 261.9017709636688, 'W': 18.418336412038514}
[16.56, 16.36, 16.24, 15.96, 16.0, 16.12, 16.36, 16.32, 16.32, 16.52, 16.72, 16.56, 16.56, 16.52, 16.56, 16.48, 16.52, 16.4, 16.4, 16.56]
294.86
14.743
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 329192, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.653273582458496, 'TIME_S_1KI': 0.03236188480418265, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 261.9017709636688, 'W': 18.418336412038514, 'J_1KI': 0.7955897195669057, 'W_1KI': 0.05595013369716917, 'W_D': 3.6753364120385132, 'J_D': 52.261892369985574, 'W_D_1KI': 0.01116471971384029, 'J_D_1KI': 3.39155256319725e-05}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 88995, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.443303108215332, "TIME_S_1KI": 0.11734707689437981, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 270.51667034149176, "W": 19.057403527564766, "J_1KI": 3.039683918663877, "W_1KI": 0.2141401598692597, "W_D": 3.6324035275647653, "J_D": 51.56136334061629, "W_D_1KI": 0.0408158158049864, "J_D_1KI": 0.0004586304377210675}

View File

@ -0,0 +1,73 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 10000 -sd 5e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.007787942886352539}
tensor(indices=tensor([[ 81, 6169, 4982, ..., 178, 4013, 1961],
[7045, 7394, 3645, ..., 7651, 4390, 2217]]),
values=tensor([0.8049, 0.4289, 0.7593, ..., 0.5596, 0.6808, 0.2640]),
size=(10000, 10000), nnz=5000, layout=torch.sparse_coo)
tensor([0.5931, 0.9373, 0.6013, ..., 0.5668, 0.9421, 0.1475])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 5000
Density: 5e-05
Time: 0.007787942886352539 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 13482 -ss 10000 -sd 5e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 1.5906615257263184}
tensor(indices=tensor([[3234, 8693, 2147, ..., 5688, 1534, 3090],
[9159, 9880, 3224, ..., 8340, 9421, 7104]]),
values=tensor([0.7853, 0.2358, 0.3716, ..., 0.2457, 0.7101, 0.4461]),
size=(10000, 10000), nnz=5000, layout=torch.sparse_coo)
tensor([0.9742, 0.9802, 0.6557, ..., 0.5070, 0.9590, 0.3935])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 5000
Density: 5e-05
Time: 1.5906615257263184 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 88995 -ss 10000 -sd 5e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.443303108215332}
tensor(indices=tensor([[5607, 79, 4390, ..., 1599, 3214, 3963],
[3275, 1974, 816, ..., 8032, 506, 939]]),
values=tensor([0.0722, 0.6184, 0.1263, ..., 0.7728, 0.1203, 0.7380]),
size=(10000, 10000), nnz=5000, layout=torch.sparse_coo)
tensor([0.1874, 0.1725, 0.9599, ..., 0.6031, 0.8165, 0.4528])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 5000
Density: 5e-05
Time: 10.443303108215332 seconds
tensor(indices=tensor([[5607, 79, 4390, ..., 1599, 3214, 3963],
[3275, 1974, 816, ..., 8032, 506, 939]]),
values=tensor([0.0722, 0.6184, 0.1263, ..., 0.7728, 0.1203, 0.7380]),
size=(10000, 10000), nnz=5000, layout=torch.sparse_coo)
tensor([0.1874, 0.1725, 0.9599, ..., 0.6031, 0.8165, 0.4528])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 5000
Density: 5e-05
Time: 10.443303108215332 seconds
[16.72, 16.4, 16.56, 16.64, 16.76, 17.16, 17.32, 17.12, 16.88, 16.68]
[16.28, 16.28, 16.32, 19.72, 20.96, 23.0, 24.12, 24.64, 21.84, 21.0, 20.32, 20.2, 20.08, 20.0]
14.194833517074585
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 88995, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.443303108215332, 'TIME_S_1KI': 0.11734707689437981, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 270.51667034149176, 'W': 19.057403527564766}
[16.72, 16.4, 16.56, 16.64, 16.76, 17.16, 17.32, 17.12, 16.88, 16.68, 16.76, 16.76, 16.76, 16.72, 16.28, 16.64, 17.52, 18.2, 19.48, 20.44]
308.5
15.425
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 88995, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.443303108215332, 'TIME_S_1KI': 0.11734707689437981, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 270.51667034149176, 'W': 19.057403527564766, 'J_1KI': 3.039683918663877, 'W_1KI': 0.2141401598692597, 'W_D': 3.6324035275647653, 'J_D': 51.56136334061629, 'W_D_1KI': 0.0408158158049864, 'J_D_1KI': 0.0004586304377210675}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 10, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 12.64857006072998, "TIME_S_1KI": 1264.857006072998, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 612.8634984588622, "W": 24.05277526457356, "J_1KI": 61286.34984588622, "W_1KI": 2405.277526457356, "W_D": 9.193775264573558, "J_D": 234.25692921972256, "W_D_1KI": 919.3775264573558, "J_D_1KI": 91937.75264573557}

View File

@ -0,0 +1,39 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 500000 -sd 0.0001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 12.64857006072998}
tensor(indices=tensor([[490436, 434679, 436915, ..., 139734, 282058, 357713],
[274216, 175918, 137273, ..., 106291, 40355, 344584]]),
values=tensor([0.5214, 0.8195, 0.0840, ..., 0.5932, 0.8280, 0.8598]),
size=(500000, 500000), nnz=25000000, layout=torch.sparse_coo)
tensor([0.3817, 0.5445, 0.8793, ..., 0.8491, 0.3699, 0.3958])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([500000, 500000])
Rows: 500000
Size: 250000000000
NNZ: 25000000
Density: 0.0001
Time: 12.64857006072998 seconds
tensor(indices=tensor([[490436, 434679, 436915, ..., 139734, 282058, 357713],
[274216, 175918, 137273, ..., 106291, 40355, 344584]]),
values=tensor([0.5214, 0.8195, 0.0840, ..., 0.5932, 0.8280, 0.8598]),
size=(500000, 500000), nnz=25000000, layout=torch.sparse_coo)
tensor([0.3817, 0.5445, 0.8793, ..., 0.8491, 0.3699, 0.3958])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([500000, 500000])
Rows: 500000
Size: 250000000000
NNZ: 25000000
Density: 0.0001
Time: 12.64857006072998 seconds
[16.8, 16.6, 16.64, 16.64, 16.6, 16.64, 16.76, 16.84, 16.84, 16.92]
[16.92, 16.96, 16.84, 20.04, 22.04, 23.48, 25.72, 26.48, 26.04, 26.16, 27.4, 28.0, 28.52, 28.52, 26.8, 25.6, 24.84, 24.76, 25.76, 26.56, 27.0, 26.56, 28.36, 26.72, 25.76]
25.479949474334717
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 10, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 12.64857006072998, 'TIME_S_1KI': 1264.857006072998, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 612.8634984588622, 'W': 24.05277526457356}
[16.8, 16.6, 16.64, 16.64, 16.6, 16.64, 16.76, 16.84, 16.84, 16.92, 16.36, 16.44, 16.12, 16.12, 16.2, 16.48, 16.28, 16.4, 16.48, 16.12]
297.18000000000006
14.859000000000004
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 10, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 12.64857006072998, 'TIME_S_1KI': 1264.857006072998, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 612.8634984588622, 'W': 24.05277526457356, 'J_1KI': 61286.34984588622, 'W_1KI': 2405.277526457356, 'W_D': 9.193775264573558, 'J_D': 234.25692921972256, 'W_D_1KI': 919.3775264573558, 'J_D_1KI': 91937.75264573557}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 85, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.22414517402649, "TIME_S_1KI": 120.28406087089988, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 441.509245891571, "W": 30.226765643160533, "J_1KI": 5194.226422253776, "W_1KI": 355.6090075665945, "W_D": 15.141765643160534, "J_D": 221.1691985011101, "W_D_1KI": 178.13841933130038, "J_D_1KI": 2095.746109780004}

View File

@ -0,0 +1,56 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 500000 -sd 1e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 1.2221043109893799}
tensor(indices=tensor([[453456, 92215, 427412, ..., 418685, 103637, 233573],
[ 33636, 48718, 269177, ..., 336146, 311811, 477976]]),
values=tensor([0.0230, 0.0242, 0.1102, ..., 0.5701, 0.0679, 0.6937]),
size=(500000, 500000), nnz=2500000, layout=torch.sparse_coo)
tensor([0.0691, 0.5190, 0.0132, ..., 0.3549, 0.1733, 0.7132])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([500000, 500000])
Rows: 500000
Size: 250000000000
NNZ: 2500000
Density: 1e-05
Time: 1.2221043109893799 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 85 -ss 500000 -sd 1e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.22414517402649}
tensor(indices=tensor([[260240, 85351, 123903, ..., 321649, 47553, 249584],
[344184, 213565, 477901, ..., 246665, 325062, 34759]]),
values=tensor([0.5697, 0.5352, 0.0767, ..., 0.7613, 0.3405, 0.0952]),
size=(500000, 500000), nnz=2500000, layout=torch.sparse_coo)
tensor([0.6035, 0.7626, 0.1866, ..., 0.6682, 0.2071, 0.1192])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([500000, 500000])
Rows: 500000
Size: 250000000000
NNZ: 2500000
Density: 1e-05
Time: 10.22414517402649 seconds
tensor(indices=tensor([[260240, 85351, 123903, ..., 321649, 47553, 249584],
[344184, 213565, 477901, ..., 246665, 325062, 34759]]),
values=tensor([0.5697, 0.5352, 0.0767, ..., 0.7613, 0.3405, 0.0952]),
size=(500000, 500000), nnz=2500000, layout=torch.sparse_coo)
tensor([0.6035, 0.7626, 0.1866, ..., 0.6682, 0.2071, 0.1192])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([500000, 500000])
Rows: 500000
Size: 250000000000
NNZ: 2500000
Density: 1e-05
Time: 10.22414517402649 seconds
[16.68, 16.56, 16.32, 16.68, 16.72, 16.88, 16.88, 16.8, 16.92, 16.84]
[16.84, 16.72, 16.88, 18.28, 18.96, 23.16, 28.72, 34.92, 39.92, 45.28, 46.4, 46.72, 46.36, 45.88]
14.606565952301025
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 85, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.22414517402649, 'TIME_S_1KI': 120.28406087089988, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 441.509245891571, 'W': 30.226765643160533}
[16.68, 16.56, 16.32, 16.68, 16.72, 16.88, 16.88, 16.8, 16.92, 16.84, 17.0, 16.96, 16.84, 16.84, 16.68, 16.68, 16.68, 16.88, 16.68, 16.88]
301.7
15.084999999999999
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 85, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.22414517402649, 'TIME_S_1KI': 120.28406087089988, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 441.509245891571, 'W': 30.226765643160533, 'J_1KI': 5194.226422253776, 'W_1KI': 355.6090075665945, 'W_D': 15.141765643160534, 'J_D': 221.1691985011101, 'W_D_1KI': 178.13841933130038, 'J_D_1KI': 2095.746109780004}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 16, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.14887547492981, "TIME_S_1KI": 634.3047171831131, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 446.6620703125, "W": 24.244680563469874, "J_1KI": 27916.37939453125, "W_1KI": 1515.2925352168672, "W_D": 9.130680563469873, "J_D": 168.21540185546877, "W_D_1KI": 570.6675352168671, "J_D_1KI": 35666.720951054194}

View File

@ -0,0 +1,56 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 500000 -sd 5e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 6.252246856689453}
tensor(indices=tensor([[168482, 109157, 139135, ..., 23544, 376992, 400952],
[430905, 452074, 310643, ..., 282410, 427036, 174169]]),
values=tensor([0.7070, 0.6863, 0.4236, ..., 0.8628, 0.0765, 0.6124]),
size=(500000, 500000), nnz=12500000, layout=torch.sparse_coo)
tensor([0.3127, 0.2848, 0.1569, ..., 0.6228, 0.9606, 0.0654])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([500000, 500000])
Rows: 500000
Size: 250000000000
NNZ: 12500000
Density: 5e-05
Time: 6.252246856689453 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 16 -ss 500000 -sd 5e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.14887547492981}
tensor(indices=tensor([[416108, 2264, 471967, ..., 939, 148738, 423683],
[ 3445, 337531, 280778, ..., 50285, 129885, 10398]]),
values=tensor([0.8474, 0.6306, 0.8958, ..., 0.7968, 0.8541, 0.8366]),
size=(500000, 500000), nnz=12500000, layout=torch.sparse_coo)
tensor([0.5104, 0.4137, 0.5956, ..., 0.5821, 0.0614, 0.8299])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([500000, 500000])
Rows: 500000
Size: 250000000000
NNZ: 12500000
Density: 5e-05
Time: 10.14887547492981 seconds
tensor(indices=tensor([[416108, 2264, 471967, ..., 939, 148738, 423683],
[ 3445, 337531, 280778, ..., 50285, 129885, 10398]]),
values=tensor([0.8474, 0.6306, 0.8958, ..., 0.7968, 0.8541, 0.8366]),
size=(500000, 500000), nnz=12500000, layout=torch.sparse_coo)
tensor([0.5104, 0.4137, 0.5956, ..., 0.5821, 0.0614, 0.8299])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([500000, 500000])
Rows: 500000
Size: 250000000000
NNZ: 12500000
Density: 5e-05
Time: 10.14887547492981 seconds
[17.48, 17.16, 17.32, 16.84, 16.44, 16.72, 17.0, 17.0, 17.16, 17.2]
[16.96, 16.72, 19.72, 19.72, 21.8, 23.0, 25.28, 28.4, 26.32, 28.6, 30.04, 29.48, 29.0, 29.36, 28.12, 28.16, 28.32, 28.32]
18.423095703125
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 16, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.14887547492981, 'TIME_S_1KI': 634.3047171831131, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 446.6620703125, 'W': 24.244680563469874}
[17.48, 17.16, 17.32, 16.84, 16.44, 16.72, 17.0, 17.0, 17.16, 17.2, 16.28, 16.28, 16.52, 16.52, 16.6, 16.84, 16.72, 16.68, 16.68, 16.64]
302.28000000000003
15.114
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 16, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.14887547492981, 'TIME_S_1KI': 634.3047171831131, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 446.6620703125, 'W': 24.244680563469874, 'J_1KI': 27916.37939453125, 'W_1KI': 1515.2925352168672, 'W_D': 9.130680563469873, 'J_D': 168.21540185546877, 'W_D_1KI': 570.6675352168671, 'J_D_1KI': 35666.720951054194}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1778, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.44342303276062, "TIME_S_1KI": 5.873691244522284, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 359.84609330177307, "W": 26.690882073452276, "J_1KI": 202.3881289661266, "W_1KI": 15.011744698229625, "W_D": 11.780882073452275, "J_D": 158.82968491315842, "W_D_1KI": 6.625917926576083, "J_D_1KI": 3.7266130070731625}

View File

@ -0,0 +1,73 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 50000 -sd 0.0001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.09349679946899414}
tensor(indices=tensor([[11244, 30890, 16389, ..., 29148, 5026, 856],
[10492, 33035, 45125, ..., 39727, 41928, 8324]]),
values=tensor([0.4818, 0.4973, 0.6152, ..., 0.1205, 0.4026, 0.7356]),
size=(50000, 50000), nnz=250000, layout=torch.sparse_coo)
tensor([0.5690, 0.0428, 0.6445, ..., 0.6439, 0.9256, 0.1962])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([50000, 50000])
Rows: 50000
Size: 2500000000
NNZ: 250000
Density: 0.0001
Time: 0.09349679946899414 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 1123 -ss 50000 -sd 0.0001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 6.628721237182617}
tensor(indices=tensor([[13208, 18123, 49772, ..., 18808, 48208, 10205],
[37715, 8739, 28481, ..., 39488, 2329, 6895]]),
values=tensor([0.7313, 0.0416, 0.7748, ..., 0.4902, 0.4676, 0.4179]),
size=(50000, 50000), nnz=250000, layout=torch.sparse_coo)
tensor([0.8552, 0.4811, 0.9521, ..., 0.6838, 0.6988, 0.7549])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([50000, 50000])
Rows: 50000
Size: 2500000000
NNZ: 250000
Density: 0.0001
Time: 6.628721237182617 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 1778 -ss 50000 -sd 0.0001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.44342303276062}
tensor(indices=tensor([[21532, 45538, 16871, ..., 24971, 35256, 43346],
[38506, 15721, 34837, ..., 48627, 30893, 13903]]),
values=tensor([0.0933, 0.7831, 0.5713, ..., 0.5170, 0.2974, 0.2342]),
size=(50000, 50000), nnz=250000, layout=torch.sparse_coo)
tensor([0.2432, 0.4339, 0.6151, ..., 0.5604, 0.5014, 0.9717])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([50000, 50000])
Rows: 50000
Size: 2500000000
NNZ: 250000
Density: 0.0001
Time: 10.44342303276062 seconds
tensor(indices=tensor([[21532, 45538, 16871, ..., 24971, 35256, 43346],
[38506, 15721, 34837, ..., 48627, 30893, 13903]]),
values=tensor([0.0933, 0.7831, 0.5713, ..., 0.5170, 0.2974, 0.2342]),
size=(50000, 50000), nnz=250000, layout=torch.sparse_coo)
tensor([0.2432, 0.4339, 0.6151, ..., 0.5604, 0.5014, 0.9717])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([50000, 50000])
Rows: 50000
Size: 2500000000
NNZ: 250000
Density: 0.0001
Time: 10.44342303276062 seconds
[16.72, 16.92, 16.64, 16.64, 16.2, 16.24, 16.2, 16.44, 16.68, 16.84]
[17.0, 17.04, 17.4, 18.68, 21.68, 26.12, 31.28, 31.28, 34.56, 38.6, 38.56, 38.32, 38.52]
13.481985807418823
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1778, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.44342303276062, 'TIME_S_1KI': 5.873691244522284, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 359.84609330177307, 'W': 26.690882073452276}
[16.72, 16.92, 16.64, 16.64, 16.2, 16.24, 16.2, 16.44, 16.68, 16.84, 16.68, 16.4, 16.36, 16.32, 16.48, 16.96, 16.68, 16.72, 16.8, 16.8]
298.2
14.91
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1778, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.44342303276062, 'TIME_S_1KI': 5.873691244522284, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 359.84609330177307, 'W': 26.690882073452276, 'J_1KI': 202.3881289661266, 'W_1KI': 15.011744698229625, 'W_D': 11.780882073452275, 'J_D': 158.82968491315842, 'W_D_1KI': 6.625917926576083, 'J_D_1KI': 3.7266130070731625}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 184, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.326260328292847, "TIME_S_1KI": 56.120980045069814, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 411.99043563842775, "W": 28.23306413648923, "J_1KI": 2239.0784545566726, "W_1KI": 153.4405659591806, "W_D": 13.442064136489229, "J_D": 196.15305773043633, "W_D_1KI": 73.0546963939632, "J_D_1KI": 397.0363934454522}

View File

@ -0,0 +1,56 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 50000 -sd 0.001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.5684177875518799}
tensor(indices=tensor([[41162, 13603, 11375, ..., 40680, 4766, 38183],
[45410, 46762, 37555, ..., 26435, 44149, 44106]]),
values=tensor([0.8659, 0.4595, 0.1004, ..., 0.5826, 0.6457, 0.9200]),
size=(50000, 50000), nnz=2500000, layout=torch.sparse_coo)
tensor([0.5708, 0.4094, 0.8205, ..., 0.4535, 0.1673, 0.5749])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([50000, 50000])
Rows: 50000
Size: 2500000000
NNZ: 2500000
Density: 0.001
Time: 0.5684177875518799 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 184 -ss 50000 -sd 0.001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.326260328292847}
tensor(indices=tensor([[12504, 44129, 13122, ..., 38229, 48871, 14747],
[19615, 42550, 37015, ..., 26953, 44143, 28147]]),
values=tensor([0.5805, 0.8597, 0.6297, ..., 0.9023, 0.5896, 0.7278]),
size=(50000, 50000), nnz=2500000, layout=torch.sparse_coo)
tensor([0.6769, 0.6786, 0.2415, ..., 0.7515, 0.6628, 0.7388])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([50000, 50000])
Rows: 50000
Size: 2500000000
NNZ: 2500000
Density: 0.001
Time: 10.326260328292847 seconds
tensor(indices=tensor([[12504, 44129, 13122, ..., 38229, 48871, 14747],
[19615, 42550, 37015, ..., 26953, 44143, 28147]]),
values=tensor([0.5805, 0.8597, 0.6297, ..., 0.9023, 0.5896, 0.7278]),
size=(50000, 50000), nnz=2500000, layout=torch.sparse_coo)
tensor([0.6769, 0.6786, 0.2415, ..., 0.7515, 0.6628, 0.7388])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([50000, 50000])
Rows: 50000
Size: 2500000000
NNZ: 2500000
Density: 0.001
Time: 10.326260328292847 seconds
[16.4, 16.44, 16.28, 16.4, 16.56, 16.32, 16.56, 16.96, 16.88, 16.84]
[16.84, 16.56, 19.8, 19.8, 22.36, 25.28, 30.6, 35.08, 35.84, 38.48, 39.2, 39.0, 38.92, 39.04]
14.592480421066284
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 184, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.326260328292847, 'TIME_S_1KI': 56.120980045069814, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 411.99043563842775, 'W': 28.23306413648923}
[16.4, 16.44, 16.28, 16.4, 16.56, 16.32, 16.56, 16.96, 16.88, 16.84, 16.44, 16.6, 16.4, 16.64, 16.32, 16.08, 16.16, 16.16, 16.08, 16.28]
295.82
14.791
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 184, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.326260328292847, 'TIME_S_1KI': 56.120980045069814, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 411.99043563842775, 'W': 28.23306413648923, 'J_1KI': 2239.0784545566726, 'W_1KI': 153.4405659591806, 'W_D': 13.442064136489229, 'J_D': 196.15305773043633, 'W_D_1KI': 73.0546963939632, 'J_D_1KI': 397.0363934454522}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 18, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.342544078826904, "TIME_S_1KI": 574.5857821570503, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 530.0986167526245, "W": 23.47686829958945, "J_1KI": 29449.92315292358, "W_1KI": 1304.270461088303, "W_D": 8.53086829958945, "J_D": 192.62371060752864, "W_D_1KI": 473.9371277549694, "J_D_1KI": 26329.840430831635}

View File

@ -0,0 +1,73 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 50000 -sd 0.01 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 5.938621759414673}
tensor(indices=tensor([[33962, 4303, 19644, ..., 22831, 19183, 15150],
[16907, 48572, 8707, ..., 42635, 21437, 36778]]),
values=tensor([0.1564, 0.4173, 0.0935, ..., 0.7954, 0.7396, 0.5651]),
size=(50000, 50000), nnz=25000000, layout=torch.sparse_coo)
tensor([0.1827, 0.1798, 0.1712, ..., 0.4482, 0.1689, 0.7752])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([50000, 50000])
Rows: 50000
Size: 2500000000
NNZ: 25000000
Density: 0.01
Time: 5.938621759414673 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 17 -ss 50000 -sd 0.01 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 9.826071500778198}
tensor(indices=tensor([[15032, 14866, 34006, ..., 33183, 39278, 1887],
[31823, 10906, 17965, ..., 39818, 15705, 29697]]),
values=tensor([0.0656, 0.1086, 0.8160, ..., 0.5944, 0.0846, 0.1136]),
size=(50000, 50000), nnz=25000000, layout=torch.sparse_coo)
tensor([0.0674, 0.8957, 0.9270, ..., 0.0566, 0.4698, 0.5164])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([50000, 50000])
Rows: 50000
Size: 2500000000
NNZ: 25000000
Density: 0.01
Time: 9.826071500778198 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 18 -ss 50000 -sd 0.01 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.342544078826904}
tensor(indices=tensor([[11244, 18386, 20275, ..., 48502, 35178, 23903],
[28265, 10496, 16525, ..., 34799, 38517, 26200]]),
values=tensor([0.9523, 0.0079, 0.4231, ..., 0.8081, 0.4550, 0.9210]),
size=(50000, 50000), nnz=25000000, layout=torch.sparse_coo)
tensor([0.3725, 0.3516, 0.7851, ..., 0.0259, 0.1462, 0.4294])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([50000, 50000])
Rows: 50000
Size: 2500000000
NNZ: 25000000
Density: 0.01
Time: 10.342544078826904 seconds
tensor(indices=tensor([[11244, 18386, 20275, ..., 48502, 35178, 23903],
[28265, 10496, 16525, ..., 34799, 38517, 26200]]),
values=tensor([0.9523, 0.0079, 0.4231, ..., 0.8081, 0.4550, 0.9210]),
size=(50000, 50000), nnz=25000000, layout=torch.sparse_coo)
tensor([0.3725, 0.3516, 0.7851, ..., 0.0259, 0.1462, 0.4294])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([50000, 50000])
Rows: 50000
Size: 2500000000
NNZ: 25000000
Density: 0.01
Time: 10.342544078826904 seconds
[16.4, 16.36, 16.2, 16.16, 16.04, 16.32, 16.56, 16.56, 16.24, 16.4]
[16.56, 16.4, 16.64, 18.24, 20.36, 21.12, 23.24, 23.36, 25.4, 25.52, 27.04, 27.04, 27.36, 28.08, 27.72, 27.6, 27.68, 28.04, 26.96, 28.32, 27.24, 26.36]
22.57961368560791
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 18, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.342544078826904, 'TIME_S_1KI': 574.5857821570503, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 530.0986167526245, 'W': 23.47686829958945}
[16.4, 16.36, 16.2, 16.16, 16.04, 16.32, 16.56, 16.56, 16.24, 16.4, 17.28, 16.76, 16.88, 16.8, 16.72, 16.72, 16.84, 17.16, 17.08, 16.96]
298.92
14.946000000000002
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 18, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.342544078826904, 'TIME_S_1KI': 574.5857821570503, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 530.0986167526245, 'W': 23.47686829958945, 'J_1KI': 29449.92315292358, 'W_1KI': 1304.270461088303, 'W_D': 8.53086829958945, 'J_D': 192.62371060752864, 'W_D_1KI': 473.9371277549694, 'J_D_1KI': 26329.840430831635}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 15157, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.835047960281372, "TIME_S_1KI": 0.714854388090082, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 415.2423467063904, "W": 28.507699379354285, "J_1KI": 27.396077502565838, "W_1KI": 1.8808272995549438, "W_D": 13.533699379354285, "J_D": 197.1314842042923, "W_D_1KI": 0.8929009289011206, "J_D_1KI": 0.0589101358383005}

View File

@ -0,0 +1,90 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 50000 -sd 1e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.013768911361694336}
tensor(indices=tensor([[33033, 11109, 18051, ..., 27132, 1656, 18047],
[ 5955, 40028, 25745, ..., 29029, 19940, 42153]]),
values=tensor([0.4677, 0.6824, 0.9028, ..., 0.7333, 0.7294, 0.5422]),
size=(50000, 50000), nnz=25000, layout=torch.sparse_coo)
tensor([0.8429, 0.2047, 0.7114, ..., 0.4629, 0.9550, 0.3146])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([50000, 50000])
Rows: 50000
Size: 2500000000
NNZ: 25000
Density: 1e-05
Time: 0.013768911361694336 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 7625 -ss 50000 -sd 1e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 5.658907651901245}
tensor(indices=tensor([[29559, 32038, 25388, ..., 565, 31919, 43432],
[ 9509, 32743, 47185, ..., 35573, 4789, 3963]]),
values=tensor([0.3165, 0.7586, 0.5704, ..., 0.3999, 0.7393, 0.5699]),
size=(50000, 50000), nnz=25000, layout=torch.sparse_coo)
tensor([0.1032, 0.7630, 0.8261, ..., 0.4542, 0.5917, 0.7318])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([50000, 50000])
Rows: 50000
Size: 2500000000
NNZ: 25000
Density: 1e-05
Time: 5.658907651901245 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 14148 -ss 50000 -sd 1e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.800445079803467}
tensor(indices=tensor([[ 6578, 2190, 46333, ..., 24615, 28424, 8843],
[42402, 36, 29812, ..., 27551, 4856, 29012]]),
values=tensor([0.2368, 0.8745, 0.6718, ..., 0.0545, 0.9603, 0.8446]),
size=(50000, 50000), nnz=25000, layout=torch.sparse_coo)
tensor([0.2697, 0.1796, 0.1572, ..., 0.6469, 0.0377, 0.0527])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([50000, 50000])
Rows: 50000
Size: 2500000000
NNZ: 25000
Density: 1e-05
Time: 9.800445079803467 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 15157 -ss 50000 -sd 1e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.835047960281372}
tensor(indices=tensor([[42461, 6468, 45164, ..., 16329, 24795, 38528],
[25076, 47168, 16720, ..., 19861, 7503, 2163]]),
values=tensor([0.0734, 0.7829, 0.7930, ..., 0.6312, 0.4098, 0.4089]),
size=(50000, 50000), nnz=25000, layout=torch.sparse_coo)
tensor([0.5159, 0.5899, 0.0471, ..., 0.7528, 0.0753, 0.7335])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([50000, 50000])
Rows: 50000
Size: 2500000000
NNZ: 25000
Density: 1e-05
Time: 10.835047960281372 seconds
tensor(indices=tensor([[42461, 6468, 45164, ..., 16329, 24795, 38528],
[25076, 47168, 16720, ..., 19861, 7503, 2163]]),
values=tensor([0.0734, 0.7829, 0.7930, ..., 0.6312, 0.4098, 0.4089]),
size=(50000, 50000), nnz=25000, layout=torch.sparse_coo)
tensor([0.5159, 0.5899, 0.0471, ..., 0.7528, 0.0753, 0.7335])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([50000, 50000])
Rows: 50000
Size: 2500000000
NNZ: 25000
Density: 1e-05
Time: 10.835047960281372 seconds
[16.48, 16.52, 16.72, 16.72, 16.72, 16.76, 16.96, 16.96, 16.96, 16.76]
[16.48, 16.8, 17.4, 19.16, 23.32, 27.56, 32.6, 36.2, 36.2, 39.84, 38.96, 38.68, 38.88, 38.84]
14.565971851348877
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 15157, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.835047960281372, 'TIME_S_1KI': 0.714854388090082, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 415.2423467063904, 'W': 28.507699379354285}
[16.48, 16.52, 16.72, 16.72, 16.72, 16.76, 16.96, 16.96, 16.96, 16.76, 16.08, 16.12, 16.2, 16.12, 16.28, 16.72, 16.68, 16.88, 17.04, 16.92]
299.48
14.974
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 15157, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.835047960281372, 'TIME_S_1KI': 0.714854388090082, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 415.2423467063904, 'W': 28.507699379354285, 'J_1KI': 27.396077502565838, 'W_1KI': 1.8808272995549438, 'W_D': 13.533699379354285, 'J_D': 197.1314842042923, 'W_D_1KI': 0.8929009289011206, 'J_D_1KI': 0.0589101358383005}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 3481, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.402421712875366, "TIME_S_1KI": 2.9883429224002773, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 353.7775730323791, "W": 26.24712784244181, "J_1KI": 101.63101782027553, "W_1KI": 7.540111416961163, "W_D": 11.136127842441809, "J_D": 150.10070072150228, "W_D_1KI": 3.199117449710373, "J_D_1KI": 0.9190225365442037}

View File

@ -0,0 +1,73 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 50000 -sd 5e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.036684274673461914}
tensor(indices=tensor([[18565, 37317, 37229, ..., 15515, 8032, 29397],
[22786, 29306, 38320, ..., 30817, 20212, 40410]]),
values=tensor([0.1056, 0.5534, 0.3575, ..., 0.6610, 0.1768, 0.9441]),
size=(50000, 50000), nnz=125000, layout=torch.sparse_coo)
tensor([0.4641, 0.9395, 0.1594, ..., 0.6973, 0.4970, 0.2160])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([50000, 50000])
Rows: 50000
Size: 2500000000
NNZ: 125000
Density: 5e-05
Time: 0.036684274673461914 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 2862 -ss 50000 -sd 5e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 8.631719589233398}
tensor(indices=tensor([[42858, 27308, 9084, ..., 37217, 18931, 37873],
[ 81, 3375, 13530, ..., 20114, 31496, 1187]]),
values=tensor([0.8565, 0.1635, 0.7362, ..., 0.0710, 0.2247, 0.4334]),
size=(50000, 50000), nnz=125000, layout=torch.sparse_coo)
tensor([0.4135, 0.1279, 0.8547, ..., 0.5297, 0.7620, 0.4742])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([50000, 50000])
Rows: 50000
Size: 2500000000
NNZ: 125000
Density: 5e-05
Time: 8.631719589233398 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 3481 -ss 50000 -sd 5e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.402421712875366}
tensor(indices=tensor([[33914, 31948, 14748, ..., 14390, 6168, 12016],
[40115, 2160, 12920, ..., 12525, 42484, 30064]]),
values=tensor([0.4182, 0.9936, 0.1094, ..., 0.4626, 0.3863, 0.9938]),
size=(50000, 50000), nnz=125000, layout=torch.sparse_coo)
tensor([0.8014, 0.1671, 0.7924, ..., 0.4574, 0.3021, 0.5942])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([50000, 50000])
Rows: 50000
Size: 2500000000
NNZ: 125000
Density: 5e-05
Time: 10.402421712875366 seconds
tensor(indices=tensor([[33914, 31948, 14748, ..., 14390, 6168, 12016],
[40115, 2160, 12920, ..., 12525, 42484, 30064]]),
values=tensor([0.4182, 0.9936, 0.1094, ..., 0.4626, 0.3863, 0.9938]),
size=(50000, 50000), nnz=125000, layout=torch.sparse_coo)
tensor([0.8014, 0.1671, 0.7924, ..., 0.4574, 0.3021, 0.5942])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([50000, 50000])
Rows: 50000
Size: 2500000000
NNZ: 125000
Density: 5e-05
Time: 10.402421712875366 seconds
[17.04, 17.0, 17.0, 17.04, 16.72, 16.36, 16.56, 16.68, 16.68, 16.76]
[16.56, 16.44, 18.44, 19.4, 22.52, 22.52, 26.96, 32.0, 34.36, 37.84, 38.6, 38.6, 38.64]
13.478715658187866
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 3481, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.402421712875366, 'TIME_S_1KI': 2.9883429224002773, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 353.7775730323791, 'W': 26.24712784244181}
[17.04, 17.0, 17.0, 17.04, 16.72, 16.36, 16.56, 16.68, 16.68, 16.76, 16.28, 16.48, 16.64, 16.6, 16.8, 17.0, 17.0, 17.04, 17.04, 17.08]
302.22
15.111
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 3481, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.402421712875366, 'TIME_S_1KI': 2.9883429224002773, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 353.7775730323791, 'W': 26.24712784244181, 'J_1KI': 101.63101782027553, 'W_1KI': 7.540111416961163, 'W_D': 11.136127842441809, 'J_D': 150.10070072150228, 'W_D_1KI': 3.199117449710373, 'J_D_1KI': 0.9190225365442037}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 168281, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.558050394058228, "TIME_S_1KI": 0.06274059694236561, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 258.021646194458, "W": 18.156079475026804, "J_1KI": 1.5332785412165248, "W_1KI": 0.10789144035884506, "W_D": 3.2230794750268057, "J_D": 45.80417667293551, "W_D_1KI": 0.01915296126732552, "J_D_1KI": 0.00011381535210347883}

View File

@ -0,0 +1,90 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 5000 -sd 0.0001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.0070648193359375}
tensor(indices=tensor([[3956, 2230, 2243, ..., 553, 2941, 3327],
[ 100, 3363, 3805, ..., 1214, 2035, 3498]]),
values=tensor([0.6449, 0.6155, 0.6951, ..., 0.1054, 0.5097, 0.8278]),
size=(5000, 5000), nnz=2500, layout=torch.sparse_coo)
tensor([0.7934, 0.1148, 0.8056, ..., 0.2671, 0.8625, 0.6224])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 2500
Density: 0.0001
Time: 0.0070648193359375 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 14862 -ss 5000 -sd 0.0001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 1.0316338539123535}
tensor(indices=tensor([[1030, 4118, 1650, ..., 2883, 3187, 2353],
[ 667, 828, 1877, ..., 3989, 4580, 4263]]),
values=tensor([0.1309, 0.0428, 0.8693, ..., 0.4535, 0.1348, 0.0724]),
size=(5000, 5000), nnz=2500, layout=torch.sparse_coo)
tensor([0.9292, 0.7381, 0.6360, ..., 0.7728, 0.3424, 0.9150])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 2500
Density: 0.0001
Time: 1.0316338539123535 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 151265 -ss 5000 -sd 0.0001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.438246726989746}
tensor(indices=tensor([[3854, 4647, 3797, ..., 4290, 1182, 2413],
[2979, 3440, 283, ..., 2311, 305, 3110]]),
values=tensor([0.3777, 0.1018, 0.5825, ..., 0.5209, 0.5950, 0.9338]),
size=(5000, 5000), nnz=2500, layout=torch.sparse_coo)
tensor([0.5017, 0.1845, 0.8952, ..., 0.2007, 0.0112, 0.1540])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 2500
Density: 0.0001
Time: 9.438246726989746 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 168281 -ss 5000 -sd 0.0001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.558050394058228}
tensor(indices=tensor([[3609, 3388, 2152, ..., 226, 3809, 171],
[2468, 2509, 1869, ..., 1996, 758, 1558]]),
values=tensor([0.0830, 0.3902, 0.7345, ..., 0.8874, 0.6618, 0.8227]),
size=(5000, 5000), nnz=2500, layout=torch.sparse_coo)
tensor([0.9648, 0.1928, 0.6569, ..., 0.1801, 0.7572, 0.2717])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 2500
Density: 0.0001
Time: 10.558050394058228 seconds
tensor(indices=tensor([[3609, 3388, 2152, ..., 226, 3809, 171],
[2468, 2509, 1869, ..., 1996, 758, 1558]]),
values=tensor([0.0830, 0.3902, 0.7345, ..., 0.8874, 0.6618, 0.8227]),
size=(5000, 5000), nnz=2500, layout=torch.sparse_coo)
tensor([0.9648, 0.1928, 0.6569, ..., 0.1801, 0.7572, 0.2717])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 2500
Density: 0.0001
Time: 10.558050394058228 seconds
[16.48, 16.36, 16.52, 16.56, 16.68, 16.6, 16.88, 17.04, 16.92, 16.8]
[16.56, 16.64, 16.64, 17.64, 19.2, 21.16, 22.0, 22.24, 21.16, 19.8, 19.84, 19.76, 19.72, 19.6]
14.211308479309082
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 168281, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.558050394058228, 'TIME_S_1KI': 0.06274059694236561, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 258.021646194458, 'W': 18.156079475026804}
[16.48, 16.36, 16.52, 16.56, 16.68, 16.6, 16.88, 17.04, 16.92, 16.8, 16.88, 16.6, 16.6, 16.68, 16.6, 16.4, 16.4, 16.28, 16.24, 16.44]
298.65999999999997
14.932999999999998
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 168281, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.558050394058228, 'TIME_S_1KI': 0.06274059694236561, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 258.021646194458, 'W': 18.156079475026804, 'J_1KI': 1.5332785412165248, 'W_1KI': 0.10789144035884506, 'W_D': 3.2230794750268057, 'J_D': 45.80417667293551, 'W_D_1KI': 0.01915296126732552, 'J_D_1KI': 0.00011381535210347883}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 19579, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.580077886581421, "TIME_S_1KI": 0.5403788695327351, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 279.89611061096195, "W": 19.667352009451033, "J_1KI": 14.295730660961334, "W_1KI": 1.004512590502632, "W_D": 4.875352009451035, "J_D": 69.38361934280404, "W_D_1KI": 0.2490092450815177, "J_D_1KI": 0.012718179941851867}

View File

@ -0,0 +1,73 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 5000 -sd 0.001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.011558294296264648}
tensor(indices=tensor([[3102, 170, 623, ..., 4318, 3355, 165],
[2789, 3644, 4439, ..., 3042, 2569, 785]]),
values=tensor([0.9058, 0.9769, 0.0114, ..., 0.8908, 0.0153, 0.7725]),
size=(5000, 5000), nnz=25000, layout=torch.sparse_coo)
tensor([0.5476, 0.7239, 0.9140, ..., 0.1881, 0.6789, 0.5908])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 25000
Density: 0.001
Time: 0.011558294296264648 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 9084 -ss 5000 -sd 0.001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 4.8714423179626465}
tensor(indices=tensor([[3623, 2606, 2418, ..., 4829, 281, 3438],
[4015, 2226, 570, ..., 2552, 1179, 1373]]),
values=tensor([0.3460, 0.2971, 0.5222, ..., 0.0239, 0.0798, 0.1975]),
size=(5000, 5000), nnz=25000, layout=torch.sparse_coo)
tensor([0.1235, 0.5688, 0.3759, ..., 0.8307, 0.0212, 0.3099])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 25000
Density: 0.001
Time: 4.8714423179626465 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 19579 -ss 5000 -sd 0.001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.580077886581421}
tensor(indices=tensor([[2638, 2285, 4642, ..., 1060, 4675, 1349],
[4205, 3626, 278, ..., 1169, 1702, 4020]]),
values=tensor([0.7579, 0.0941, 0.0015, ..., 0.8515, 0.3315, 0.3835]),
size=(5000, 5000), nnz=25000, layout=torch.sparse_coo)
tensor([0.3468, 0.9990, 0.4644, ..., 0.0220, 0.7046, 0.8273])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 25000
Density: 0.001
Time: 10.580077886581421 seconds
tensor(indices=tensor([[2638, 2285, 4642, ..., 1060, 4675, 1349],
[4205, 3626, 278, ..., 1169, 1702, 4020]]),
values=tensor([0.7579, 0.0941, 0.0015, ..., 0.8515, 0.3315, 0.3835]),
size=(5000, 5000), nnz=25000, layout=torch.sparse_coo)
tensor([0.3468, 0.9990, 0.4644, ..., 0.0220, 0.7046, 0.8273])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 25000
Density: 0.001
Time: 10.580077886581421 seconds
[16.72, 16.6, 16.6, 16.48, 16.04, 16.2, 16.68, 16.64, 16.8, 16.8]
[16.52, 15.96, 19.0, 21.24, 23.64, 24.6, 24.6, 25.52, 21.72, 21.4, 19.92, 19.88, 19.76, 19.68]
14.231509685516357
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 19579, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.580077886581421, 'TIME_S_1KI': 0.5403788695327351, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 279.89611061096195, 'W': 19.667352009451033}
[16.72, 16.6, 16.6, 16.48, 16.04, 16.2, 16.68, 16.64, 16.8, 16.8, 16.4, 16.28, 16.4, 16.2, 16.24, 16.24, 16.28, 16.32, 16.6, 16.56]
295.84
14.791999999999998
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 19579, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.580077886581421, 'TIME_S_1KI': 0.5403788695327351, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 279.89611061096195, 'W': 19.667352009451033, 'J_1KI': 14.295730660961334, 'W_1KI': 1.004512590502632, 'W_D': 4.875352009451035, 'J_D': 69.38361934280404, 'W_D_1KI': 0.2490092450815177, 'J_D_1KI': 0.012718179941851867}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1968, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.277064561843872, "TIME_S_1KI": 5.222085651343431, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 273.486970872879, "W": 19.269726615017994, "J_1KI": 138.9669567443491, "W_1KI": 9.791527751533533, "W_D": 4.205726615017992, "J_D": 59.6900752792358, "W_D_1KI": 2.1370562068180856, "J_D_1KI": 1.0859025441148809}

View File

@ -0,0 +1,73 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 5000 -sd 0.01 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.0581815242767334}
tensor(indices=tensor([[1705, 1843, 4243, ..., 1472, 574, 2171],
[ 999, 1582, 2374, ..., 1857, 3396, 926]]),
values=tensor([0.2793, 0.4750, 0.9003, ..., 0.4581, 0.2120, 0.3581]),
size=(5000, 5000), nnz=250000, layout=torch.sparse_coo)
tensor([0.4895, 0.6805, 0.6750, ..., 0.8029, 0.3171, 0.4262])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 250000
Density: 0.01
Time: 0.0581815242767334 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 1804 -ss 5000 -sd 0.01 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 9.62302303314209}
tensor(indices=tensor([[3263, 2220, 2592, ..., 2483, 3191, 2817],
[4244, 110, 4304, ..., 978, 1265, 521]]),
values=tensor([0.5038, 0.7305, 0.7346, ..., 0.1644, 0.1385, 0.4258]),
size=(5000, 5000), nnz=250000, layout=torch.sparse_coo)
tensor([0.1558, 0.5415, 0.2232, ..., 0.0177, 0.6458, 0.0827])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 250000
Density: 0.01
Time: 9.62302303314209 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 1968 -ss 5000 -sd 0.01 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.277064561843872}
tensor(indices=tensor([[4412, 41, 1508, ..., 2890, 4838, 4018],
[4820, 1611, 2655, ..., 2263, 2126, 3753]]),
values=tensor([0.2794, 0.8020, 0.5426, ..., 0.2909, 0.4609, 0.7425]),
size=(5000, 5000), nnz=250000, layout=torch.sparse_coo)
tensor([0.1277, 0.2756, 0.3462, ..., 0.0284, 0.7824, 0.0281])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 250000
Density: 0.01
Time: 10.277064561843872 seconds
tensor(indices=tensor([[4412, 41, 1508, ..., 2890, 4838, 4018],
[4820, 1611, 2655, ..., 2263, 2126, 3753]]),
values=tensor([0.2794, 0.8020, 0.5426, ..., 0.2909, 0.4609, 0.7425]),
size=(5000, 5000), nnz=250000, layout=torch.sparse_coo)
tensor([0.1277, 0.2756, 0.3462, ..., 0.0284, 0.7824, 0.0281])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 250000
Density: 0.01
Time: 10.277064561843872 seconds
[16.44, 16.4, 16.68, 17.16, 17.04, 17.0, 16.84, 16.64, 16.64, 16.2]
[16.2, 16.2, 16.4, 20.48, 22.72, 24.28, 25.16, 22.6, 21.8, 20.16, 20.4, 20.4, 20.52, 20.6]
14.19257140159607
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1968, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.277064561843872, 'TIME_S_1KI': 5.222085651343431, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 273.486970872879, 'W': 19.269726615017994}
[16.44, 16.4, 16.68, 17.16, 17.04, 17.0, 16.84, 16.64, 16.64, 16.2, 16.44, 16.8, 16.68, 16.8, 17.0, 16.8, 16.72, 16.68, 16.52, 16.68]
301.28000000000003
15.064000000000002
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1968, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.277064561843872, 'TIME_S_1KI': 5.222085651343431, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 273.486970872879, 'W': 19.269726615017994, 'J_1KI': 138.9669567443491, 'W_1KI': 9.791527751533533, 'W_D': 4.205726615017992, 'J_D': 59.6900752792358, 'W_D_1KI': 2.1370562068180856, 'J_D_1KI': 1.0859025441148809}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 370, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.596680641174316, "TIME_S_1KI": 28.639677408579235, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 258.78833953857423, "W": 19.654690540248374, "J_1KI": 699.4279446988493, "W_1KI": 53.120785243914526, "W_D": 4.792690540248376, "J_D": 63.10414423942572, "W_D_1KI": 12.953217676346963, "J_D_1KI": 35.00869642255936}

View File

@ -0,0 +1,56 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 5000 -sd 0.05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 0.2832469940185547}
tensor(indices=tensor([[4216, 4421, 4642, ..., 4167, 2972, 4683],
[ 724, 4244, 4649, ..., 3333, 3645, 147]]),
values=tensor([0.8581, 0.8007, 0.7199, ..., 0.3825, 0.8322, 0.5968]),
size=(5000, 5000), nnz=1250000, layout=torch.sparse_coo)
tensor([0.5296, 0.9285, 0.1851, ..., 0.3657, 0.2915, 0.3561])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 1250000
Density: 0.05
Time: 0.2832469940185547 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 370 -ss 5000 -sd 0.05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.596680641174316}
tensor(indices=tensor([[ 903, 730, 2755, ..., 910, 2642, 1332],
[1147, 2772, 1382, ..., 3911, 708, 3773]]),
values=tensor([0.2771, 0.3229, 0.1452, ..., 0.5103, 0.2731, 0.0454]),
size=(5000, 5000), nnz=1250000, layout=torch.sparse_coo)
tensor([0.0202, 0.9007, 0.6371, ..., 0.8745, 0.2608, 0.1412])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 1250000
Density: 0.05
Time: 10.596680641174316 seconds
tensor(indices=tensor([[ 903, 730, 2755, ..., 910, 2642, 1332],
[1147, 2772, 1382, ..., 3911, 708, 3773]]),
values=tensor([0.2771, 0.3229, 0.1452, ..., 0.5103, 0.2731, 0.0454]),
size=(5000, 5000), nnz=1250000, layout=torch.sparse_coo)
tensor([0.0202, 0.9007, 0.6371, ..., 0.8745, 0.2608, 0.1412])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 1250000
Density: 0.05
Time: 10.596680641174316 seconds
[16.28, 16.2, 16.32, 16.6, 16.8, 16.72, 16.72, 16.84, 16.6, 16.48]
[16.24, 16.28, 16.56, 21.04, 22.72, 24.72, 25.6, 23.56, 22.36, 22.36, 20.8, 20.8, 20.8]
13.166747093200684
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 370, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.596680641174316, 'TIME_S_1KI': 28.639677408579235, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 258.78833953857423, 'W': 19.654690540248374}
[16.28, 16.2, 16.32, 16.6, 16.8, 16.72, 16.72, 16.84, 16.6, 16.48, 16.6, 16.72, 16.48, 16.4, 16.52, 16.56, 16.32, 16.32, 16.32, 16.24]
297.23999999999995
14.861999999999998
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 370, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.596680641174316, 'TIME_S_1KI': 28.639677408579235, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 258.78833953857423, 'W': 19.654690540248374, 'J_1KI': 699.4279446988493, 'W_1KI': 53.120785243914526, 'W_D': 4.792690540248376, 'J_D': 63.10414423942572, 'W_D_1KI': 12.953217676346963, 'J_D_1KI': 35.00869642255936}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 188, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.026696681976318, "TIME_S_1KI": 53.33349298923574, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 278.07759874343867, "W": 19.571934998478163, "J_1KI": 1479.136163528929, "W_1KI": 104.10603722594767, "W_D": 4.928934998478162, "J_D": 70.03019419622416, "W_D_1KI": 26.217739353607246, "J_D_1KI": 139.45606039152793}

View File

@ -0,0 +1,56 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 5000 -sd 0.1 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 0.5578980445861816}
tensor(indices=tensor([[3844, 4051, 1353, ..., 2707, 1556, 4908],
[1304, 3255, 2512, ..., 2111, 1142, 1638]]),
values=tensor([0.4560, 0.5837, 0.9413, ..., 0.9865, 0.1177, 0.2599]),
size=(5000, 5000), nnz=2500000, layout=torch.sparse_coo)
tensor([0.1895, 0.4537, 0.0116, ..., 0.1378, 0.1077, 0.1212])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 2500000
Density: 0.1
Time: 0.5578980445861816 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 188 -ss 5000 -sd 0.1 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.026696681976318}
tensor(indices=tensor([[ 334, 4292, 235, ..., 2755, 3063, 332],
[2623, 4026, 3385, ..., 2226, 3224, 3278]]),
values=tensor([0.5389, 0.7778, 0.1906, ..., 0.1883, 0.4089, 0.2607]),
size=(5000, 5000), nnz=2500000, layout=torch.sparse_coo)
tensor([0.1524, 0.2872, 0.6357, ..., 0.5048, 0.7270, 0.2381])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 2500000
Density: 0.1
Time: 10.026696681976318 seconds
tensor(indices=tensor([[ 334, 4292, 235, ..., 2755, 3063, 332],
[2623, 4026, 3385, ..., 2226, 3224, 3278]]),
values=tensor([0.5389, 0.7778, 0.1906, ..., 0.1883, 0.4089, 0.2607]),
size=(5000, 5000), nnz=2500000, layout=torch.sparse_coo)
tensor([0.1524, 0.2872, 0.6357, ..., 0.5048, 0.7270, 0.2381])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 2500000
Density: 0.1
Time: 10.026696681976318 seconds
[16.16, 15.92, 16.0, 16.08, 16.24, 16.52, 16.6, 16.52, 16.52, 16.32]
[15.96, 16.0, 16.04, 21.04, 22.84, 24.8, 26.08, 23.44, 22.28, 21.04, 20.6, 20.6, 20.64, 20.76]
14.207976818084717
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 188, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.026696681976318, 'TIME_S_1KI': 53.33349298923574, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 278.07759874343867, 'W': 19.571934998478163}
[16.16, 15.92, 16.0, 16.08, 16.24, 16.52, 16.6, 16.52, 16.52, 16.32, 16.56, 16.24, 16.28, 16.12, 15.96, 16.32, 16.32, 16.32, 16.28, 16.2]
292.86
14.643
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 188, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.026696681976318, 'TIME_S_1KI': 53.33349298923574, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 278.07759874343867, 'W': 19.571934998478163, 'J_1KI': 1479.136163528929, 'W_1KI': 104.10603722594767, 'W_D': 4.928934998478162, 'J_D': 70.03019419622416, 'W_D_1KI': 26.217739353607246, 'J_D_1KI': 139.45606039152793}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 96, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.222102403640747, "TIME_S_1KI": 106.48023337125778, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 283.6666414546967, "W": 18.589544841781695, "J_1KI": 2954.860848486424, "W_1KI": 193.64109210189264, "W_D": 3.844544841781696, "J_D": 58.66572487235075, "W_D_1KI": 40.04734210189267, "J_D_1KI": 417.15981356138195}

View File

@ -0,0 +1,56 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 5000 -sd 0.2 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 1.0914530754089355}
tensor(indices=tensor([[1303, 2160, 4369, ..., 4435, 3810, 417],
[3400, 4600, 1739, ..., 224, 551, 4286]]),
values=tensor([0.1494, 0.6110, 0.0642, ..., 0.9959, 0.2030, 0.5785]),
size=(5000, 5000), nnz=5000000, layout=torch.sparse_coo)
tensor([0.4794, 0.4904, 0.5821, ..., 0.5127, 0.0773, 0.9625])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 5000000
Density: 0.2
Time: 1.0914530754089355 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 96 -ss 5000 -sd 0.2 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.222102403640747}
tensor(indices=tensor([[ 6, 2868, 3797, ..., 4974, 4960, 931],
[ 444, 3717, 4556, ..., 2406, 4953, 659]]),
values=tensor([0.2759, 0.5310, 0.4190, ..., 0.5786, 0.7798, 0.2127]),
size=(5000, 5000), nnz=5000000, layout=torch.sparse_coo)
tensor([0.6123, 0.1543, 0.6655, ..., 0.1791, 0.8116, 0.2360])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 5000000
Density: 0.2
Time: 10.222102403640747 seconds
tensor(indices=tensor([[ 6, 2868, 3797, ..., 4974, 4960, 931],
[ 444, 3717, 4556, ..., 2406, 4953, 659]]),
values=tensor([0.2759, 0.5310, 0.4190, ..., 0.5786, 0.7798, 0.2127]),
size=(5000, 5000), nnz=5000000, layout=torch.sparse_coo)
tensor([0.6123, 0.1543, 0.6655, ..., 0.1791, 0.8116, 0.2360])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 5000000
Density: 0.2
Time: 10.222102403640747 seconds
[16.56, 16.44, 16.32, 16.28, 16.72, 16.44, 16.48, 16.44, 16.08, 15.92]
[16.12, 16.12, 16.24, 17.36, 19.12, 21.0, 21.92, 22.48, 21.44, 21.36, 20.68, 20.72, 20.64, 20.76, 20.76]
15.259472131729126
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 96, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.222102403640747, 'TIME_S_1KI': 106.48023337125778, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 283.6666414546967, 'W': 18.589544841781695}
[16.56, 16.44, 16.32, 16.28, 16.72, 16.44, 16.48, 16.44, 16.08, 15.92, 16.52, 16.28, 16.32, 16.12, 16.08, 16.36, 16.6, 16.56, 16.6, 16.56]
294.9
14.745
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 96, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.222102403640747, 'TIME_S_1KI': 106.48023337125778, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 283.6666414546967, 'W': 18.589544841781695, 'J_1KI': 2954.860848486424, 'W_1KI': 193.64109210189264, 'W_D': 3.844544841781696, 'J_D': 58.66572487235075, 'W_D_1KI': 40.04734210189267, 'J_D_1KI': 417.15981356138195}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 63, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.021673440933228, "TIME_S_1KI": 159.07418160211472, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 296.1811933517456, "W": 19.37098300965613, "J_1KI": 4701.288783361042, "W_1KI": 307.4759207881925, "W_D": 4.480983009656132, "J_D": 68.51396723270419, "W_D_1KI": 71.12671443898623, "J_D_1KI": 1128.9954672854956}

View File

@ -0,0 +1,56 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 5000 -sd 0.3 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 1.6492033004760742}
tensor(indices=tensor([[ 945, 4589, 2774, ..., 2909, 736, 2667],
[2560, 3363, 4131, ..., 2105, 3960, 2928]]),
values=tensor([0.2201, 0.4510, 0.7924, ..., 0.8323, 0.0651, 0.5160]),
size=(5000, 5000), nnz=7500000, layout=torch.sparse_coo)
tensor([0.2493, 0.4630, 0.6009, ..., 0.6971, 0.1027, 0.3339])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 7500000
Density: 0.3
Time: 1.6492033004760742 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 63 -ss 5000 -sd 0.3 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.021673440933228}
tensor(indices=tensor([[4166, 4477, 4564, ..., 264, 2117, 2546],
[1294, 2850, 2607, ..., 362, 1048, 4735]]),
values=tensor([0.0149, 0.1469, 0.7394, ..., 0.7181, 0.3269, 0.1660]),
size=(5000, 5000), nnz=7500000, layout=torch.sparse_coo)
tensor([0.8789, 0.0830, 0.2305, ..., 0.2880, 0.6985, 0.6729])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 7500000
Density: 0.3
Time: 10.021673440933228 seconds
tensor(indices=tensor([[4166, 4477, 4564, ..., 264, 2117, 2546],
[1294, 2850, 2607, ..., 362, 1048, 4735]]),
values=tensor([0.0149, 0.1469, 0.7394, ..., 0.7181, 0.3269, 0.1660]),
size=(5000, 5000), nnz=7500000, layout=torch.sparse_coo)
tensor([0.8789, 0.0830, 0.2305, ..., 0.2880, 0.6985, 0.6729])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 7500000
Density: 0.3
Time: 10.021673440933228 seconds
[17.32, 17.0, 16.68, 16.6, 16.64, 16.76, 16.8, 16.76, 16.76, 16.64]
[16.52, 16.4, 16.68, 18.28, 19.96, 23.0, 23.96, 24.08, 23.76, 22.16, 21.0, 21.0, 20.8, 20.6, 20.56]
15.289941310882568
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 63, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.021673440933228, 'TIME_S_1KI': 159.07418160211472, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 296.1811933517456, 'W': 19.37098300965613}
[17.32, 17.0, 16.68, 16.6, 16.64, 16.76, 16.8, 16.76, 16.76, 16.64, 16.32, 16.2, 16.4, 16.32, 16.56, 16.16, 16.28, 16.08, 16.36, 16.6]
297.79999999999995
14.889999999999997
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 63, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.021673440933228, 'TIME_S_1KI': 159.07418160211472, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 296.1811933517456, 'W': 19.37098300965613, 'J_1KI': 4701.288783361042, 'W_1KI': 307.4759207881925, 'W_D': 4.480983009656132, 'J_D': 68.51396723270419, 'W_D_1KI': 71.12671443898623, 'J_D_1KI': 1128.9954672854956}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 48, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.4, "TIME_S": 10.146132707595825, "TIME_S_1KI": 211.37776474157968, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 325.9102397632598, "W": 20.01824681068372, "J_1KI": 6789.79666173458, "W_1KI": 417.04680855591084, "W_D": 5.35524681068372, "J_D": 87.18694441962234, "W_D_1KI": 111.56764188924417, "J_D_1KI": 2324.325872692587}

View File

@ -0,0 +1,56 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 5000 -sd 0.4 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.4, "TIME_S": 2.167170524597168}
tensor(indices=tensor([[ 488, 4773, 4527, ..., 2629, 4924, 3969],
[ 860, 3190, 4868, ..., 1859, 4874, 4035]]),
values=tensor([0.1016, 0.7267, 0.8882, ..., 0.9839, 0.5575, 0.6801]),
size=(5000, 5000), nnz=10000000, layout=torch.sparse_coo)
tensor([0.8969, 0.8054, 0.0829, ..., 0.5187, 0.3613, 0.7237])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 10000000
Density: 0.4
Time: 2.167170524597168 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 48 -ss 5000 -sd 0.4 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.4, "TIME_S": 10.146132707595825}
tensor(indices=tensor([[1697, 3818, 4103, ..., 3079, 1289, 2714],
[ 103, 2605, 2675, ..., 1234, 3413, 938]]),
values=tensor([0.9440, 0.3445, 0.4659, ..., 0.6576, 0.2575, 0.7871]),
size=(5000, 5000), nnz=10000000, layout=torch.sparse_coo)
tensor([0.3655, 0.4478, 0.5552, ..., 0.4179, 0.5971, 0.2546])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 10000000
Density: 0.4
Time: 10.146132707595825 seconds
tensor(indices=tensor([[1697, 3818, 4103, ..., 3079, 1289, 2714],
[ 103, 2605, 2675, ..., 1234, 3413, 938]]),
values=tensor([0.9440, 0.3445, 0.4659, ..., 0.6576, 0.2575, 0.7871]),
size=(5000, 5000), nnz=10000000, layout=torch.sparse_coo)
tensor([0.3655, 0.4478, 0.5552, ..., 0.4179, 0.5971, 0.2546])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 10000000
Density: 0.4
Time: 10.146132707595825 seconds
[16.32, 16.12, 16.52, 16.4, 16.48, 16.56, 16.72, 16.32, 16.24, 16.12]
[15.92, 15.8, 19.4, 19.4, 20.44, 23.08, 25.84, 26.64, 23.72, 22.56, 20.6, 20.48, 20.48, 20.72, 20.96, 22.84]
16.28065848350525
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 48, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.4, 'TIME_S': 10.146132707595825, 'TIME_S_1KI': 211.37776474157968, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 325.9102397632598, 'W': 20.01824681068372}
[16.32, 16.12, 16.52, 16.4, 16.48, 16.56, 16.72, 16.32, 16.24, 16.12, 16.2, 16.2, 15.96, 16.0, 16.2, 16.28, 16.28, 16.32, 16.32, 16.04]
293.26
14.663
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 48, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.4, 'TIME_S': 10.146132707595825, 'TIME_S_1KI': 211.37776474157968, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 325.9102397632598, 'W': 20.01824681068372, 'J_1KI': 6789.79666173458, 'W_1KI': 417.04680855591084, 'W_D': 5.35524681068372, 'J_D': 87.18694441962234, 'W_D_1KI': 111.56764188924417, 'J_D_1KI': 2324.325872692587}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 39, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 10.389892101287842, "TIME_S_1KI": 266.4074897766113, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 356.30051391601563, "W": 20.603235750156045, "J_1KI": 9135.91061323117, "W_1KI": 528.2880961578473, "W_D": 5.519235750156046, "J_D": 95.44648996162417, "W_D_1KI": 141.51886538861655, "J_D_1KI": 3628.688856118373}

View File

@ -0,0 +1,56 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 5000 -sd 0.5 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 2.680294990539551}
tensor(indices=tensor([[ 232, 2268, 3564, ..., 3025, 1104, 2113],
[4930, 4710, 1043, ..., 496, 3241, 1795]]),
values=tensor([0.3745, 0.9505, 0.0317, ..., 0.4463, 0.4365, 0.6949]),
size=(5000, 5000), nnz=12500000, layout=torch.sparse_coo)
tensor([0.5118, 0.3866, 0.4458, ..., 0.5438, 0.2065, 0.9705])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 12500000
Density: 0.5
Time: 2.680294990539551 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 39 -ss 5000 -sd 0.5 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 10.389892101287842}
tensor(indices=tensor([[ 646, 3657, 399, ..., 3262, 602, 2820],
[4655, 3729, 1355, ..., 2889, 4562, 2578]]),
values=tensor([0.7272, 0.5338, 0.0354, ..., 0.0316, 0.0331, 0.9529]),
size=(5000, 5000), nnz=12500000, layout=torch.sparse_coo)
tensor([0.7082, 0.9992, 0.2922, ..., 0.9082, 0.7559, 0.2396])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 12500000
Density: 0.5
Time: 10.389892101287842 seconds
tensor(indices=tensor([[ 646, 3657, 399, ..., 3262, 602, 2820],
[4655, 3729, 1355, ..., 2889, 4562, 2578]]),
values=tensor([0.7272, 0.5338, 0.0354, ..., 0.0316, 0.0331, 0.9529]),
size=(5000, 5000), nnz=12500000, layout=torch.sparse_coo)
tensor([0.7082, 0.9992, 0.2922, ..., 0.9082, 0.7559, 0.2396])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 12500000
Density: 0.5
Time: 10.389892101287842 seconds
[16.16, 16.32, 16.4, 17.08, 17.04, 17.12, 17.12, 17.08, 17.0, 16.76]
[16.52, 16.28, 16.4, 21.36, 23.04, 25.68, 27.48, 25.2, 23.6, 23.6, 23.24, 20.76, 20.56, 20.76, 20.96, 20.84, 23.04]
17.2934250831604
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 39, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.5, 'TIME_S': 10.389892101287842, 'TIME_S_1KI': 266.4074897766113, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 356.30051391601563, 'W': 20.603235750156045}
[16.16, 16.32, 16.4, 17.08, 17.04, 17.12, 17.12, 17.08, 17.0, 16.76, 16.28, 16.28, 16.44, 16.6, 16.52, 16.88, 16.88, 16.96, 17.0, 16.72]
301.68
15.084
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 39, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.5, 'TIME_S': 10.389892101287842, 'TIME_S_1KI': 266.4074897766113, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 356.30051391601563, 'W': 20.603235750156045, 'J_1KI': 9135.91061323117, 'W_1KI': 528.2880961578473, 'W_D': 5.519235750156046, 'J_D': 95.44648996162417, 'W_D_1KI': 141.51886538861655, 'J_D_1KI': 3628.688856118373}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 652466, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.900923252105713, "TIME_S_1KI": 0.016707266358868836, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 277.6165154457092, "W": 19.57926332943202, "J_1KI": 0.42548809508190344, "W_1KI": 0.030008097478538377, "W_D": 4.625263329432018, "J_D": 65.58211445093146, "W_D_1KI": 0.007088895558438322, "J_D_1KI": 1.0864773886207592e-05}

View File

@ -0,0 +1,535 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 5000 -sd 1e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.008069992065429688}
tensor(indices=tensor([[ 664, 4930, 1798, 3252, 3946, 4295, 4519, 4181, 2621,
4985, 1156, 2770, 3847, 1146, 3512, 4324, 2076, 387,
2436, 4560, 4421, 4032, 1885, 152, 1276, 1223, 3551,
174, 1494, 158, 4266, 839, 2702, 540, 4136, 803,
1669, 3838, 1784, 2329, 832, 2111, 4262, 2157, 3766,
2817, 4291, 4273, 2069, 490, 2744, 4001, 1392, 4428,
2000, 2415, 1622, 1061, 110, 1089, 4013, 198, 4355,
2043, 4800, 4574, 131, 1117, 1530, 4360, 4135, 812,
1527, 895, 657, 3188, 832, 2835, 2204, 198, 4539,
4408, 1046, 4693, 4806, 3475, 4407, 3488, 4953, 1447,
1254, 650, 1870, 3116, 2840, 3510, 2077, 3496, 4472,
4651, 4861, 3153, 2, 3805, 2354, 3821, 996, 517,
1357, 2359, 2581, 2352, 2227, 3670, 4367, 2835, 1544,
4185, 2880, 1672, 4926, 3664, 40, 3647, 3941, 2471,
4560, 4299, 3143, 3787, 2060, 1368, 930, 147, 3056,
2878, 2010, 2941, 917, 1586, 1955, 1190, 574, 4502,
388, 4230, 1939, 2848, 2507, 2644, 287, 1344, 1990,
1381, 2601, 747, 315, 3944, 1715, 4518, 3240, 2637,
232, 1184, 339, 1787, 2689, 4217, 4072, 1542, 344,
1976, 3343, 2848, 2050, 2076, 4989, 1633, 2082, 3518,
2016, 2530, 4677, 1397, 1211, 936, 475, 4678, 1559,
2188, 1342, 3728, 1251, 4152, 4891, 3770, 4813, 3981,
1284, 2510, 2944, 3149, 2021, 51, 2605, 103, 1642,
3101, 1191, 4960, 2035, 4340, 3620, 1056, 2819, 3689,
3709, 2214, 1301, 4580, 928, 1032, 1003, 1749, 4113,
4664, 4292, 950, 4925, 1595, 85, 3965, 4692, 2978,
4965, 2232, 1708, 1082, 508, 2089, 3354, 4680, 360,
1274, 3513, 2939, 1911, 1726, 1045, 2181],
[ 227, 1685, 1834, 4760, 2477, 1206, 1370, 4969, 2285,
4154, 3537, 2882, 476, 1657, 1264, 2936, 4505, 655,
172, 2416, 1928, 1148, 3342, 3077, 1196, 1301, 3298,
1659, 693, 3211, 339, 2330, 2725, 4934, 4983, 4525,
289, 1742, 1273, 2290, 3687, 518, 4074, 2495, 2222,
487, 4458, 73, 1464, 1309, 2746, 3413, 3337, 2501,
3677, 4544, 2684, 2022, 4890, 1086, 1022, 755, 2964,
474, 1304, 3752, 1417, 3331, 4538, 2615, 1830, 4470,
3609, 1871, 4471, 779, 1324, 3166, 3672, 2820, 321,
4659, 35, 1380, 210, 4203, 1645, 1296, 2662, 3090,
1042, 103, 576, 2454, 1215, 824, 1013, 1864, 4248,
307, 2509, 4386, 3, 1985, 3256, 3802, 943, 3714,
4522, 3576, 4210, 2090, 3438, 3967, 1564, 1863, 3263,
2286, 3440, 429, 2419, 1905, 907, 4188, 940, 3906,
4449, 3348, 3278, 3763, 2007, 3964, 573, 4214, 3591,
131, 2017, 1029, 1697, 1756, 4918, 2743, 4252, 1352,
3147, 2118, 2967, 451, 4607, 3947, 3655, 3938, 774,
1101, 1407, 1241, 3001, 2930, 352, 4751, 4101, 4416,
151, 3273, 2821, 2603, 2320, 491, 1042, 1599, 4185,
4810, 2192, 3559, 377, 3404, 1890, 1851, 4775, 1133,
384, 2066, 1786, 2265, 3514, 2058, 3787, 14, 2629,
4222, 1405, 1854, 2078, 1355, 3521, 1677, 4776, 3582,
574, 1847, 226, 4790, 4975, 361, 487, 2247, 1941,
3334, 1667, 3248, 4500, 229, 1484, 2425, 3025, 3524,
2889, 4298, 4920, 316, 3597, 1411, 1029, 733, 257,
2753, 1484, 436, 235, 2687, 2908, 3209, 4767, 1879,
2378, 4394, 4010, 541, 2114, 976, 2309, 1786, 904,
3958, 1974, 4912, 3796, 3066, 2802, 3789]]),
values=tensor([0.5478, 0.7056, 0.7047, 0.3907, 0.1936, 0.1434, 0.5362,
0.7092, 0.4309, 0.4755, 0.1170, 0.1815, 0.8437, 0.1320,
0.4893, 0.7832, 0.8076, 0.6627, 0.4173, 0.4168, 0.9147,
0.0305, 0.1742, 0.8991, 0.9110, 0.1332, 0.2154, 0.9640,
0.7797, 0.7831, 0.7187, 0.3847, 0.4541, 0.7475, 0.8114,
0.2441, 0.4632, 0.9117, 0.9441, 0.5983, 0.4901, 0.3437,
0.2617, 0.2485, 0.7118, 0.2219, 0.1317, 0.5238, 0.3914,
0.2178, 0.6886, 0.5681, 0.0202, 0.8330, 0.7685, 0.9526,
0.4855, 0.6656, 0.6872, 0.0441, 0.8700, 0.2680, 0.3375,
0.9234, 0.0170, 0.2131, 0.7436, 0.8296, 0.0546, 0.1471,
0.6863, 0.8161, 0.4032, 0.4274, 0.3899, 0.6303, 0.1371,
0.7743, 0.1286, 0.0226, 0.5868, 0.5392, 0.3803, 0.7072,
0.9965, 0.1328, 0.9937, 0.4945, 0.6532, 0.0676, 0.1266,
0.3365, 0.0678, 0.8188, 0.2290, 0.9214, 0.5333, 0.9066,
0.6876, 0.0305, 0.0055, 0.2622, 0.6721, 0.9806, 0.5098,
0.6957, 0.8504, 0.8837, 0.2222, 0.3826, 0.1748, 0.2531,
0.2562, 0.2514, 0.5238, 0.2018, 0.1344, 0.4871, 0.4122,
0.7600, 0.0932, 0.1621, 0.9619, 0.7573, 0.2498, 0.7948,
0.6398, 0.8321, 0.9915, 0.2662, 0.2166, 0.1111, 0.0943,
0.3203, 0.9544, 0.3327, 0.4141, 0.4955, 0.2020, 0.5638,
0.1565, 0.2953, 0.3244, 0.9269, 0.8990, 0.8711, 0.6869,
0.8622, 0.7318, 0.3443, 0.7774, 0.1845, 0.8328, 0.4849,
0.9562, 0.1240, 0.9302, 0.4756, 0.1352, 0.9399, 0.0781,
0.9452, 0.3237, 0.5029, 0.6363, 0.9118, 0.5470, 0.1844,
0.8554, 0.2034, 0.6470, 0.4447, 0.0686, 0.4577, 0.4534,
0.0832, 0.7085, 0.7166, 0.0447, 0.2665, 0.5048, 0.2450,
0.5307, 0.7659, 0.4786, 0.1418, 0.8720, 0.3272, 0.0125,
0.9431, 0.2795, 0.5223, 0.7190, 0.0966, 0.6423, 0.1997,
0.9068, 0.3006, 0.0762, 0.8873, 0.9474, 0.7672, 0.1354,
0.9120, 0.8878, 0.8157, 0.8469, 0.4956, 0.1563, 0.0011,
0.1351, 0.0633, 0.9698, 0.0620, 0.3840, 0.8019, 0.9943,
0.4723, 0.4214, 0.0447, 0.0477, 0.1476, 0.9014, 0.0753,
0.6803, 0.8515, 0.4763, 0.0839, 0.4336, 0.6019, 0.6703,
0.6200, 0.4603, 0.8676, 0.2675, 0.9946, 0.4776, 0.9099,
0.5130, 0.0339, 0.4682, 0.1878, 0.2460, 0.2344, 0.1080,
0.4357, 0.2186, 0.2272, 0.8348, 0.3487]),
size=(5000, 5000), nnz=250, layout=torch.sparse_coo)
tensor([0.1360, 0.1704, 0.2893, ..., 0.2178, 0.6550, 0.7906])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 250
Density: 1e-05
Time: 0.008069992065429688 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 13011 -ss 5000 -sd 1e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.2877483367919922}
tensor(indices=tensor([[3477, 3611, 2655, 840, 3833, 1914, 956, 1511, 3911,
884, 3345, 3818, 4383, 4925, 4096, 3582, 352, 1510,
1817, 2342, 2028, 1179, 4899, 1626, 597, 2720, 4264,
3894, 3495, 3809, 3664, 4577, 278, 2036, 2714, 2200,
4236, 529, 538, 3387, 2708, 4749, 1007, 1753, 3744,
2256, 2975, 2981, 2337, 481, 4337, 3842, 3461, 4171,
4662, 1666, 3868, 4324, 795, 2350, 3688, 2699, 1550,
2805, 1375, 3083, 2253, 3037, 3407, 2844, 2045, 2368,
2868, 1010, 3970, 3854, 4572, 452, 412, 3247, 1514,
2750, 1913, 2411, 3285, 2541, 1797, 3693, 1850, 2098,
3274, 1588, 2513, 2196, 825, 946, 191, 226, 1537,
698, 4482, 1724, 2460, 3525, 4941, 2616, 673, 4902,
2240, 2520, 3971, 2955, 3289, 3082, 4012, 4755, 20,
4055, 2643, 237, 3730, 3380, 123, 4560, 882, 4345,
885, 76, 241, 3928, 3630, 3159, 3052, 4972, 261,
255, 2327, 3533, 1748, 641, 2130, 2354, 3894, 587,
4821, 3536, 3295, 2694, 1037, 1697, 1886, 2527, 58,
4855, 892, 2529, 2236, 1336, 4868, 3733, 814, 243,
466, 3479, 3667, 1561, 4744, 3303, 1471, 3848, 3874,
365, 433, 1399, 1624, 4306, 1907, 3778, 382, 2928,
3349, 1707, 4473, 1136, 4368, 1128, 3876, 2055, 3864,
4828, 1769, 81, 2873, 274, 2862, 4202, 542, 3896,
4098, 4145, 4002, 4370, 4489, 1904, 3962, 1620, 4959,
215, 3356, 1895, 2259, 2950, 4756, 1621, 3272, 1979,
2572, 1532, 4609, 3652, 761, 2920, 331, 4467, 2688,
3913, 1589, 2065, 1637, 938, 2765, 4072, 4359, 68,
2235, 3545, 3455, 4372, 279, 153, 4677, 4057, 1588,
4985, 4988, 70, 1246, 3453, 2048, 555],
[3538, 1727, 1017, 804, 1700, 1693, 5, 465, 2603,
368, 2512, 2704, 3341, 3367, 4901, 4432, 4229, 2409,
3141, 4227, 3113, 267, 1697, 4704, 4478, 3278, 247,
259, 704, 1427, 1985, 3571, 414, 88, 1244, 1457,
79, 1494, 1626, 405, 2243, 1008, 3738, 909, 1636,
2270, 4838, 659, 4205, 2159, 2733, 4564, 56, 3545,
348, 2456, 4390, 4016, 2848, 525, 2051, 1388, 4760,
3578, 519, 2007, 3605, 3446, 2256, 3544, 4952, 3452,
4366, 2681, 3523, 4612, 230, 1656, 4828, 2657, 903,
501, 1509, 1560, 2926, 2952, 142, 4006, 58, 3964,
193, 2277, 1385, 4874, 1339, 1120, 4212, 3420, 4688,
3990, 2941, 3766, 890, 544, 904, 3739, 1438, 1074,
3937, 4631, 2947, 4344, 3049, 4861, 2867, 3327, 4296,
830, 2177, 2210, 4988, 3572, 4758, 4428, 1837, 4461,
3306, 2048, 1010, 3309, 4840, 4840, 333, 2154, 405,
3347, 3665, 1971, 537, 2725, 3655, 4408, 4233, 3801,
4950, 3463, 2921, 2808, 4651, 4924, 1327, 3037, 4194,
2513, 2626, 2649, 807, 3666, 2803, 1061, 2547, 4325,
3080, 4517, 975, 1092, 4070, 702, 4225, 2654, 2527,
438, 4951, 4056, 1825, 1671, 4466, 148, 1233, 2403,
1774, 2616, 1478, 1750, 1212, 4313, 4661, 3389, 1028,
4344, 2123, 1543, 3882, 3206, 1687, 3088, 4888, 4676,
260, 565, 1746, 231, 707, 2988, 130, 1913, 4964,
4281, 1591, 1869, 2007, 1608, 755, 1759, 604, 2415,
3407, 2991, 1405, 4524, 4051, 4594, 3896, 428, 3749,
2879, 1324, 628, 2281, 3559, 196, 2359, 4566, 3521,
2459, 4570, 4032, 3195, 2550, 620, 3334, 3490, 562,
3322, 4534, 397, 4728, 1685, 1482, 4969]]),
values=tensor([0.9849, 0.8818, 0.8584, 0.4875, 0.5177, 0.9192, 0.6572,
0.3662, 0.9670, 0.3872, 0.3036, 0.5200, 0.7714, 0.2232,
0.9006, 0.5557, 0.6312, 0.9320, 0.0165, 0.2735, 0.1932,
0.1355, 0.9851, 0.9431, 0.4292, 0.8489, 0.9178, 0.6777,
0.0607, 0.2320, 0.0845, 0.6071, 0.3885, 0.7081, 0.0452,
0.0999, 0.7447, 0.9400, 0.9739, 0.9473, 0.1005, 0.8684,
0.7080, 0.9705, 0.8679, 0.3477, 0.0486, 0.2863, 0.6324,
0.1179, 0.7374, 0.4103, 0.2815, 0.4975, 0.1108, 0.4681,
0.3680, 0.2232, 0.7214, 0.4334, 0.4380, 0.7473, 0.5234,
0.0365, 0.6777, 0.2226, 0.7133, 0.1178, 0.0666, 0.4798,
0.4167, 0.3609, 0.2409, 0.4480, 0.9400, 0.5244, 0.1724,
0.0385, 0.9391, 0.8581, 0.1877, 0.0217, 0.5553, 0.7351,
0.1314, 0.1859, 0.2337, 0.5785, 0.7907, 0.5077, 0.9739,
0.9648, 0.8810, 0.6052, 0.1608, 0.9813, 0.7701, 0.9916,
0.2638, 0.0745, 0.6661, 0.7738, 0.0039, 0.6546, 0.6118,
0.7432, 0.5169, 0.1005, 0.8166, 0.6080, 0.0207, 0.3868,
0.8981, 0.3719, 0.5138, 0.3947, 0.1610, 0.4791, 0.5326,
0.4433, 0.7155, 0.8163, 0.2183, 0.3885, 0.9623, 0.8678,
0.1647, 0.0423, 0.3487, 0.3285, 0.6303, 0.3733, 0.5618,
0.7513, 0.0310, 0.2902, 0.7791, 0.1040, 0.4654, 0.0998,
0.4001, 0.8015, 0.0754, 0.1587, 0.3364, 0.2020, 0.4977,
0.7455, 0.6895, 0.6846, 0.1977, 0.4137, 0.9377, 0.5152,
0.9768, 0.6665, 0.1917, 0.5539, 0.5968, 0.2984, 0.7945,
0.2705, 0.2146, 0.1598, 0.1116, 0.1109, 0.4816, 0.7969,
0.7859, 0.8810, 0.7142, 0.2551, 0.6023, 0.2201, 0.2197,
0.2500, 0.5558, 0.2337, 0.8018, 0.2552, 0.0327, 0.2900,
0.3396, 0.7355, 0.0700, 0.7093, 0.9055, 0.7784, 0.7197,
0.4975, 0.1554, 0.8521, 0.8334, 0.2641, 0.9429, 0.0535,
0.7627, 0.8737, 0.5579, 0.4793, 0.1122, 0.8415, 0.0910,
0.5006, 0.1759, 0.2400, 0.4011, 0.5869, 0.2358, 0.3276,
0.6846, 0.9205, 0.5225, 0.4563, 0.2238, 0.6037, 0.3599,
0.6425, 0.8924, 0.5998, 0.0085, 0.0645, 0.5407, 0.2890,
0.4224, 0.1710, 0.8487, 0.9686, 0.5352, 0.4874, 0.4820,
0.9833, 0.7249, 0.2196, 0.8624, 0.3360, 0.1483, 0.9238,
0.2273, 0.2954, 0.7485, 0.7151, 0.2174, 0.2781, 0.2399,
0.4069, 0.0407, 0.6707, 0.7104, 0.3223]),
size=(5000, 5000), nnz=250, layout=torch.sparse_coo)
tensor([0.3518, 0.5120, 0.5532, ..., 0.9536, 0.9900, 0.0346])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 250
Density: 1e-05
Time: 0.2877483367919922 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 474774 -ss 5000 -sd 1e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.640431642532349}
tensor(indices=tensor([[3128, 1360, 2394, 4783, 3296, 550, 4287, 4097, 4305,
3222, 539, 2195, 255, 3769, 4633, 2927, 467, 1981,
2952, 4258, 1766, 3479, 2132, 1614, 773, 112, 762,
1280, 1192, 3396, 1844, 2937, 2058, 896, 4410, 129,
4860, 632, 2990, 1331, 2487, 4884, 2796, 359, 2944,
803, 804, 857, 4919, 551, 1227, 4351, 3706, 39,
1971, 1389, 4682, 1805, 3061, 1002, 1014, 1954, 4647,
2776, 2316, 2127, 4708, 4448, 1961, 3078, 4508, 559,
829, 4928, 674, 2737, 4156, 3918, 193, 3455, 2050,
1763, 2883, 2547, 2447, 2878, 2512, 1207, 2204, 4273,
798, 962, 4049, 2494, 2221, 2723, 4750, 4477, 90,
2367, 4333, 2150, 1252, 3420, 3526, 4605, 3016, 692,
943, 57, 4814, 3539, 4852, 1466, 3525, 2826, 899,
2399, 1213, 1803, 4358, 4286, 3110, 1692, 4248, 1451,
1641, 2240, 2931, 4366, 496, 2722, 1139, 14, 65,
720, 4347, 4775, 2208, 4931, 3807, 486, 1484, 1857,
1750, 2218, 1019, 3570, 4610, 3036, 1184, 3052, 1954,
4860, 3992, 412, 1700, 2612, 2714, 1969, 1407, 3493,
3595, 4128, 1919, 4929, 552, 2250, 2673, 2312, 2320,
4591, 4431, 2648, 214, 1597, 421, 3408, 4252, 4243,
3355, 3073, 3936, 3223, 1359, 3707, 3567, 3159, 2019,
4828, 3268, 2935, 4514, 4923, 4963, 3259, 4691, 4746,
2316, 270, 334, 3101, 1256, 3463, 1377, 3886, 3568,
4663, 2994, 4107, 136, 98, 4583, 4473, 474, 2012,
2891, 183, 1629, 3889, 2890, 2739, 1085, 1019, 3383,
1248, 2505, 3757, 2299, 359, 1455, 4123, 2780, 925,
4232, 2672, 3760, 3259, 2415, 1338, 661, 1893, 230,
4699, 2801, 732, 3278, 83, 1911, 4271],
[2148, 916, 1520, 3310, 533, 3648, 1000, 2390, 178,
3718, 2354, 4382, 2079, 3051, 450, 3204, 3703, 4654,
1669, 1762, 2932, 4623, 2932, 371, 1013, 896, 747,
640, 441, 468, 4738, 4669, 4531, 3002, 4060, 1216,
1248, 2099, 3249, 1341, 706, 1784, 1815, 25, 2257,
3272, 4803, 1550, 2752, 1286, 552, 1626, 1833, 1341,
4685, 308, 3088, 2049, 4025, 849, 3902, 2534, 3494,
671, 1445, 4403, 4845, 4776, 2718, 4158, 1233, 4790,
2405, 2412, 4997, 4687, 4965, 2523, 4558, 3964, 4188,
462, 49, 2496, 1786, 4613, 4653, 1063, 4817, 3569,
1542, 4633, 77, 3959, 902, 1334, 4376, 3566, 2377,
1262, 2517, 71, 1403, 4185, 4906, 4064, 886, 3798,
3191, 4659, 4033, 4413, 2828, 2728, 1047, 505, 3040,
2255, 1567, 1757, 3892, 3131, 749, 4135, 4774, 2230,
155, 4929, 4009, 1085, 1598, 4579, 4790, 3694, 3870,
2111, 3323, 4183, 124, 137, 1520, 3236, 249, 581,
4999, 840, 3719, 3410, 1837, 3674, 1878, 1931, 3905,
808, 1006, 4889, 1709, 2521, 3711, 704, 879, 1980,
4837, 2598, 3631, 3332, 4759, 1667, 507, 2134, 1456,
287, 1422, 4217, 602, 3844, 896, 2645, 2976, 2949,
3621, 4416, 4041, 3032, 315, 1118, 1139, 1725, 3908,
3916, 4545, 4809, 2259, 3154, 3030, 1461, 1757, 4318,
825, 1984, 1875, 2301, 972, 1996, 233, 74, 1306,
2544, 1643, 789, 4865, 3177, 3739, 4070, 4214, 4807,
4078, 2821, 38, 4989, 2384, 4387, 1742, 3309, 4631,
1148, 1011, 4241, 3356, 4276, 367, 573, 4141, 84,
2854, 1738, 4498, 1730, 2488, 2149, 4208, 1523, 2615,
2804, 4126, 4596, 3860, 2512, 1604, 3064]]),
values=tensor([0.9822, 0.1534, 0.1686, 0.5947, 0.7246, 0.2474, 0.9544,
0.9002, 0.5549, 0.6022, 0.3601, 0.5476, 0.4151, 0.4654,
0.1566, 0.5469, 0.0781, 0.5394, 0.9966, 0.1074, 0.0973,
0.4397, 0.2161, 0.2235, 0.4113, 0.3325, 0.7980, 0.4203,
0.2621, 0.8819, 0.5377, 0.2702, 0.0875, 0.7708, 0.1628,
0.4825, 0.4567, 0.3855, 0.7640, 0.8886, 0.7914, 0.2717,
0.1986, 0.0231, 0.0461, 0.7087, 0.1190, 0.0307, 0.4844,
0.9855, 0.2634, 0.1760, 0.2304, 0.2753, 0.9429, 0.3134,
0.0284, 0.7189, 0.1069, 0.7654, 0.8805, 0.7903, 0.2783,
0.5666, 0.9545, 0.3065, 0.2293, 0.8232, 0.0688, 0.6704,
0.2342, 0.3965, 0.8513, 0.5908, 0.7413, 0.1564, 0.6546,
0.7975, 0.5058, 0.6244, 0.6420, 0.5084, 0.5303, 0.2070,
0.8040, 0.6628, 0.7549, 0.0951, 0.2973, 0.8999, 0.6411,
0.4591, 0.4369, 0.8794, 0.6863, 0.0289, 0.1288, 0.4316,
0.3599, 0.2581, 0.8396, 0.5147, 0.3632, 0.9620, 0.5698,
0.6621, 0.6122, 0.8311, 0.1953, 0.9165, 0.4396, 0.8153,
0.8396, 0.0337, 0.3298, 0.1881, 0.3038, 0.3242, 0.1854,
0.2863, 0.8736, 0.0755, 0.0821, 0.3582, 0.3870, 0.9219,
0.1419, 0.3133, 0.3257, 0.1205, 0.8028, 0.1316, 0.0697,
0.2440, 0.2572, 0.2460, 0.4508, 0.4553, 0.5597, 0.3545,
0.0693, 0.2173, 0.2814, 0.5150, 0.0483, 0.2946, 0.5622,
0.0764, 0.9745, 0.2487, 0.5250, 0.7227, 0.3393, 0.2127,
0.2007, 0.3635, 0.5301, 0.8381, 0.3362, 0.9981, 0.8321,
0.8542, 0.9747, 0.1981, 0.7535, 0.9735, 0.2741, 0.6191,
0.1461, 0.7833, 0.1997, 0.9947, 0.4343, 0.0393, 0.6682,
0.8420, 0.5376, 0.8536, 0.1142, 0.2691, 0.2629, 0.4109,
0.7381, 0.2761, 0.3793, 0.6378, 0.4568, 0.7861, 0.9356,
0.3378, 0.7598, 0.0671, 0.4736, 0.0503, 0.6163, 0.6588,
0.6120, 0.3661, 0.0194, 0.7332, 0.2584, 0.7912, 0.3036,
0.5970, 0.5204, 0.0686, 0.8139, 0.4411, 0.0793, 0.3333,
0.0064, 0.7947, 0.2414, 0.1441, 0.2754, 0.0165, 0.0787,
0.1391, 0.2265, 0.9901, 0.8627, 0.7933, 0.9161, 0.3608,
0.2697, 0.1733, 0.5878, 0.6437, 0.0039, 0.7442, 0.5785,
0.7495, 0.0770, 0.2339, 0.4228, 0.2513, 0.7691, 0.7740,
0.2943, 0.1347, 0.0357, 0.4640, 0.3174, 0.1347, 0.9333,
0.1092, 0.1714, 0.0601, 0.7413, 0.1599]),
size=(5000, 5000), nnz=250, layout=torch.sparse_coo)
tensor([0.8038, 0.3754, 0.8168, ..., 0.2215, 0.9556, 0.7170])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 250
Density: 1e-05
Time: 7.640431642532349 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 652466 -ss 5000 -sd 1e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.900923252105713}
tensor(indices=tensor([[3119, 4218, 1197, 1728, 1966, 3162, 471, 4398, 689,
426, 2339, 1139, 4483, 1325, 824, 1233, 4344, 1543,
2756, 2312, 4288, 4669, 4399, 2423, 4473, 615, 304,
1203, 3595, 1240, 800, 3659, 1540, 2507, 345, 3633,
153, 2776, 1885, 2482, 4846, 2900, 1825, 4930, 4211,
1775, 476, 952, 2204, 4155, 3700, 823, 3109, 1161,
1091, 4731, 1731, 4714, 1569, 1379, 307, 3976, 583,
2300, 2804, 2699, 3175, 4892, 4865, 843, 4590, 2689,
616, 492, 4924, 1583, 3298, 2812, 3192, 1200, 1137,
4209, 330, 2831, 4340, 2689, 543, 1790, 4159, 2874,
761, 2646, 4714, 4800, 881, 3578, 4887, 1661, 2706,
1859, 136, 3424, 105, 1029, 3975, 1286, 2965, 4856,
1154, 2510, 4220, 3016, 1134, 1479, 1448, 307, 462,
934, 2336, 3750, 1790, 1575, 3443, 939, 1241, 2837,
3900, 4291, 203, 1741, 859, 4951, 4488, 3294, 2886,
2610, 2662, 3452, 1898, 44, 4857, 213, 942, 4363,
796, 4218, 1609, 456, 2688, 2971, 4107, 2034, 3965,
3593, 4002, 3087, 358, 1630, 3151, 4014, 4838, 2938,
3540, 1767, 663, 1893, 1392, 1160, 2907, 763, 922,
3419, 1169, 2783, 4882, 4571, 4127, 1386, 4947, 625,
2376, 1666, 569, 1691, 2369, 4667, 836, 61, 3214,
4560, 3603, 3056, 1904, 4594, 1650, 644, 4894, 3393,
2437, 1873, 2135, 1128, 1722, 2256, 2848, 4414, 3755,
831, 4027, 3556, 1089, 181, 1511, 1830, 3582, 3749,
3611, 2411, 3124, 56, 3265, 2430, 3858, 1720, 2053,
3351, 984, 4170, 1134, 3745, 1630, 4345, 1473, 2765,
2640, 3357, 3473, 2386, 2178, 2533, 48, 3140, 4470,
2988, 4096, 883, 792, 1071, 1011, 3499],
[4549, 2279, 3645, 237, 3317, 4582, 4171, 4232, 2706,
92, 94, 3750, 2848, 484, 4218, 1986, 3696, 1672,
930, 2374, 1967, 3270, 4895, 3262, 2094, 4808, 222,
1753, 1069, 3932, 4014, 1224, 2176, 3990, 2419, 4813,
829, 4291, 636, 2217, 3375, 202, 1147, 3267, 983,
702, 4405, 444, 3639, 2242, 4305, 279, 2856, 2308,
2313, 4364, 2957, 1407, 1421, 4556, 4301, 895, 1516,
603, 3489, 2646, 3581, 1836, 1680, 3397, 4887, 1550,
407, 366, 3995, 4149, 1941, 3739, 4440, 1091, 2963,
3749, 3460, 4903, 455, 1704, 2786, 2508, 1940, 2760,
1348, 3769, 1810, 3657, 2796, 4348, 2607, 4542, 4804,
3615, 1544, 3108, 2347, 1683, 2847, 4550, 3462, 2759,
1848, 3686, 3005, 4294, 1915, 2265, 1694, 1489, 662,
303, 3738, 2807, 4571, 543, 4829, 4377, 4537, 1035,
183, 3822, 4930, 4024, 912, 4848, 4748, 2489, 3065,
3812, 3351, 4108, 63, 2447, 1957, 2692, 150, 969,
1308, 4258, 3115, 3689, 3796, 896, 4478, 540, 3953,
61, 3052, 489, 1814, 2160, 3810, 261, 467, 1597,
3910, 638, 33, 3095, 2586, 1546, 1220, 1154, 2606,
1129, 3854, 3262, 2689, 3172, 832, 338, 4232, 4949,
3068, 1177, 4860, 1777, 3990, 918, 4219, 4283, 2139,
3787, 2811, 4271, 4798, 334, 1313, 460, 1978, 4805,
793, 994, 1327, 514, 560, 4414, 341, 1150, 3312,
3806, 4496, 1658, 2567, 2306, 3480, 1642, 1603, 2916,
4101, 1615, 2278, 4133, 2593, 1278, 473, 2698, 3950,
2941, 696, 1261, 4941, 4572, 556, 2204, 2050, 270,
4547, 633, 2343, 3078, 2536, 1860, 1208, 4708, 157,
2124, 1314, 2371, 1568, 847, 587, 65]]),
values=tensor([0.6355, 0.0837, 0.8410, 0.0418, 0.6736, 0.2750, 0.7118,
0.4504, 0.1192, 0.0944, 0.6430, 0.2386, 0.7967, 0.9967,
0.2745, 0.6488, 0.9204, 0.4287, 0.2051, 0.7098, 0.2228,
0.2206, 0.1190, 0.9221, 0.7121, 0.2346, 0.9582, 0.8038,
0.3691, 0.7817, 0.5756, 0.9334, 0.1738, 0.9079, 0.0606,
0.1776, 0.8951, 0.7399, 0.1055, 0.2805, 0.8924, 0.5937,
0.5317, 0.1397, 0.5770, 0.6960, 0.2097, 0.9764, 0.2725,
0.5061, 0.8215, 0.1246, 0.3881, 0.4674, 0.9528, 0.1634,
0.9358, 0.4536, 0.4361, 0.4732, 0.8428, 0.2144, 0.1339,
0.4100, 0.7414, 0.9882, 0.2160, 0.9020, 0.2304, 0.2481,
0.2533, 0.3484, 0.0311, 0.6948, 0.2407, 0.9490, 0.7932,
0.3976, 0.2464, 0.4584, 0.9675, 0.8166, 0.9928, 0.6982,
0.3607, 0.7689, 0.6945, 0.7953, 0.6452, 0.3603, 0.3558,
0.7032, 0.9827, 0.4366, 0.6723, 0.9128, 0.5394, 0.4372,
0.0095, 0.3611, 0.0511, 0.1433, 0.3252, 0.8166, 0.8777,
0.6930, 0.4048, 0.8859, 0.5054, 0.6514, 0.1121, 0.9778,
0.5674, 0.2770, 0.9926, 0.0302, 0.4015, 0.3543, 0.5096,
0.8317, 0.1443, 0.4937, 0.3506, 0.4212, 0.3419, 0.3912,
0.7549, 0.8208, 0.9482, 0.2823, 0.8145, 0.4589, 0.9038,
0.4967, 0.3645, 0.4486, 0.5036, 0.0275, 0.9454, 0.6409,
0.3598, 0.2317, 0.8481, 0.9516, 0.0826, 0.9137, 0.2611,
0.3765, 0.8478, 0.3309, 0.5264, 0.5475, 0.5680, 0.8134,
0.2741, 0.2839, 0.1742, 0.4681, 0.2521, 0.8332, 0.6563,
0.6688, 0.2858, 0.7436, 0.0563, 0.1330, 0.9614, 0.0077,
0.6823, 0.2785, 0.9746, 0.6623, 0.6318, 0.0722, 0.6669,
0.0013, 0.0788, 0.6422, 0.9487, 0.2169, 0.6363, 0.1344,
0.4209, 0.4347, 0.7185, 0.6101, 0.5517, 0.0476, 0.4783,
0.6344, 0.5806, 0.9366, 0.6038, 0.3083, 0.8057, 0.9261,
0.5997, 0.6963, 0.8340, 0.9476, 0.8282, 0.3252, 0.7333,
0.9336, 0.5398, 0.0321, 0.0697, 0.3161, 0.9531, 0.8266,
0.3184, 0.3181, 0.1843, 0.8599, 0.1487, 0.2590, 0.4247,
0.1841, 0.2357, 0.9877, 0.7316, 0.0964, 0.5700, 0.6667,
0.7404, 0.7193, 0.6826, 0.4300, 0.2584, 0.8033, 0.6500,
0.0540, 0.9587, 0.2863, 0.3374, 0.3943, 0.8482, 0.2479,
0.5712, 0.6593, 0.4789, 0.9350, 0.8089, 0.3627, 0.4241,
0.3935, 0.4552, 0.1829, 0.8315, 0.0492]),
size=(5000, 5000), nnz=250, layout=torch.sparse_coo)
tensor([0.6042, 0.7803, 0.5228, ..., 0.2007, 0.5476, 0.8431])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 250
Density: 1e-05
Time: 10.900923252105713 seconds
tensor(indices=tensor([[3119, 4218, 1197, 1728, 1966, 3162, 471, 4398, 689,
426, 2339, 1139, 4483, 1325, 824, 1233, 4344, 1543,
2756, 2312, 4288, 4669, 4399, 2423, 4473, 615, 304,
1203, 3595, 1240, 800, 3659, 1540, 2507, 345, 3633,
153, 2776, 1885, 2482, 4846, 2900, 1825, 4930, 4211,
1775, 476, 952, 2204, 4155, 3700, 823, 3109, 1161,
1091, 4731, 1731, 4714, 1569, 1379, 307, 3976, 583,
2300, 2804, 2699, 3175, 4892, 4865, 843, 4590, 2689,
616, 492, 4924, 1583, 3298, 2812, 3192, 1200, 1137,
4209, 330, 2831, 4340, 2689, 543, 1790, 4159, 2874,
761, 2646, 4714, 4800, 881, 3578, 4887, 1661, 2706,
1859, 136, 3424, 105, 1029, 3975, 1286, 2965, 4856,
1154, 2510, 4220, 3016, 1134, 1479, 1448, 307, 462,
934, 2336, 3750, 1790, 1575, 3443, 939, 1241, 2837,
3900, 4291, 203, 1741, 859, 4951, 4488, 3294, 2886,
2610, 2662, 3452, 1898, 44, 4857, 213, 942, 4363,
796, 4218, 1609, 456, 2688, 2971, 4107, 2034, 3965,
3593, 4002, 3087, 358, 1630, 3151, 4014, 4838, 2938,
3540, 1767, 663, 1893, 1392, 1160, 2907, 763, 922,
3419, 1169, 2783, 4882, 4571, 4127, 1386, 4947, 625,
2376, 1666, 569, 1691, 2369, 4667, 836, 61, 3214,
4560, 3603, 3056, 1904, 4594, 1650, 644, 4894, 3393,
2437, 1873, 2135, 1128, 1722, 2256, 2848, 4414, 3755,
831, 4027, 3556, 1089, 181, 1511, 1830, 3582, 3749,
3611, 2411, 3124, 56, 3265, 2430, 3858, 1720, 2053,
3351, 984, 4170, 1134, 3745, 1630, 4345, 1473, 2765,
2640, 3357, 3473, 2386, 2178, 2533, 48, 3140, 4470,
2988, 4096, 883, 792, 1071, 1011, 3499],
[4549, 2279, 3645, 237, 3317, 4582, 4171, 4232, 2706,
92, 94, 3750, 2848, 484, 4218, 1986, 3696, 1672,
930, 2374, 1967, 3270, 4895, 3262, 2094, 4808, 222,
1753, 1069, 3932, 4014, 1224, 2176, 3990, 2419, 4813,
829, 4291, 636, 2217, 3375, 202, 1147, 3267, 983,
702, 4405, 444, 3639, 2242, 4305, 279, 2856, 2308,
2313, 4364, 2957, 1407, 1421, 4556, 4301, 895, 1516,
603, 3489, 2646, 3581, 1836, 1680, 3397, 4887, 1550,
407, 366, 3995, 4149, 1941, 3739, 4440, 1091, 2963,
3749, 3460, 4903, 455, 1704, 2786, 2508, 1940, 2760,
1348, 3769, 1810, 3657, 2796, 4348, 2607, 4542, 4804,
3615, 1544, 3108, 2347, 1683, 2847, 4550, 3462, 2759,
1848, 3686, 3005, 4294, 1915, 2265, 1694, 1489, 662,
303, 3738, 2807, 4571, 543, 4829, 4377, 4537, 1035,
183, 3822, 4930, 4024, 912, 4848, 4748, 2489, 3065,
3812, 3351, 4108, 63, 2447, 1957, 2692, 150, 969,
1308, 4258, 3115, 3689, 3796, 896, 4478, 540, 3953,
61, 3052, 489, 1814, 2160, 3810, 261, 467, 1597,
3910, 638, 33, 3095, 2586, 1546, 1220, 1154, 2606,
1129, 3854, 3262, 2689, 3172, 832, 338, 4232, 4949,
3068, 1177, 4860, 1777, 3990, 918, 4219, 4283, 2139,
3787, 2811, 4271, 4798, 334, 1313, 460, 1978, 4805,
793, 994, 1327, 514, 560, 4414, 341, 1150, 3312,
3806, 4496, 1658, 2567, 2306, 3480, 1642, 1603, 2916,
4101, 1615, 2278, 4133, 2593, 1278, 473, 2698, 3950,
2941, 696, 1261, 4941, 4572, 556, 2204, 2050, 270,
4547, 633, 2343, 3078, 2536, 1860, 1208, 4708, 157,
2124, 1314, 2371, 1568, 847, 587, 65]]),
values=tensor([0.6355, 0.0837, 0.8410, 0.0418, 0.6736, 0.2750, 0.7118,
0.4504, 0.1192, 0.0944, 0.6430, 0.2386, 0.7967, 0.9967,
0.2745, 0.6488, 0.9204, 0.4287, 0.2051, 0.7098, 0.2228,
0.2206, 0.1190, 0.9221, 0.7121, 0.2346, 0.9582, 0.8038,
0.3691, 0.7817, 0.5756, 0.9334, 0.1738, 0.9079, 0.0606,
0.1776, 0.8951, 0.7399, 0.1055, 0.2805, 0.8924, 0.5937,
0.5317, 0.1397, 0.5770, 0.6960, 0.2097, 0.9764, 0.2725,
0.5061, 0.8215, 0.1246, 0.3881, 0.4674, 0.9528, 0.1634,
0.9358, 0.4536, 0.4361, 0.4732, 0.8428, 0.2144, 0.1339,
0.4100, 0.7414, 0.9882, 0.2160, 0.9020, 0.2304, 0.2481,
0.2533, 0.3484, 0.0311, 0.6948, 0.2407, 0.9490, 0.7932,
0.3976, 0.2464, 0.4584, 0.9675, 0.8166, 0.9928, 0.6982,
0.3607, 0.7689, 0.6945, 0.7953, 0.6452, 0.3603, 0.3558,
0.7032, 0.9827, 0.4366, 0.6723, 0.9128, 0.5394, 0.4372,
0.0095, 0.3611, 0.0511, 0.1433, 0.3252, 0.8166, 0.8777,
0.6930, 0.4048, 0.8859, 0.5054, 0.6514, 0.1121, 0.9778,
0.5674, 0.2770, 0.9926, 0.0302, 0.4015, 0.3543, 0.5096,
0.8317, 0.1443, 0.4937, 0.3506, 0.4212, 0.3419, 0.3912,
0.7549, 0.8208, 0.9482, 0.2823, 0.8145, 0.4589, 0.9038,
0.4967, 0.3645, 0.4486, 0.5036, 0.0275, 0.9454, 0.6409,
0.3598, 0.2317, 0.8481, 0.9516, 0.0826, 0.9137, 0.2611,
0.3765, 0.8478, 0.3309, 0.5264, 0.5475, 0.5680, 0.8134,
0.2741, 0.2839, 0.1742, 0.4681, 0.2521, 0.8332, 0.6563,
0.6688, 0.2858, 0.7436, 0.0563, 0.1330, 0.9614, 0.0077,
0.6823, 0.2785, 0.9746, 0.6623, 0.6318, 0.0722, 0.6669,
0.0013, 0.0788, 0.6422, 0.9487, 0.2169, 0.6363, 0.1344,
0.4209, 0.4347, 0.7185, 0.6101, 0.5517, 0.0476, 0.4783,
0.6344, 0.5806, 0.9366, 0.6038, 0.3083, 0.8057, 0.9261,
0.5997, 0.6963, 0.8340, 0.9476, 0.8282, 0.3252, 0.7333,
0.9336, 0.5398, 0.0321, 0.0697, 0.3161, 0.9531, 0.8266,
0.3184, 0.3181, 0.1843, 0.8599, 0.1487, 0.2590, 0.4247,
0.1841, 0.2357, 0.9877, 0.7316, 0.0964, 0.5700, 0.6667,
0.7404, 0.7193, 0.6826, 0.4300, 0.2584, 0.8033, 0.6500,
0.0540, 0.9587, 0.2863, 0.3374, 0.3943, 0.8482, 0.2479,
0.5712, 0.6593, 0.4789, 0.9350, 0.8089, 0.3627, 0.4241,
0.3935, 0.4552, 0.1829, 0.8315, 0.0492]),
size=(5000, 5000), nnz=250, layout=torch.sparse_coo)
tensor([0.6042, 0.7803, 0.5228, ..., 0.2007, 0.5476, 0.8431])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 250
Density: 1e-05
Time: 10.900923252105713 seconds
[16.6, 16.56, 16.6, 16.76, 16.76, 16.8, 17.28, 17.24, 17.12, 16.92]
[16.84, 16.56, 16.88, 21.2, 23.4, 24.16, 24.8, 24.8, 22.32, 21.2, 20.0, 20.12, 20.12, 20.08]
14.179109334945679
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 652466, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.900923252105713, 'TIME_S_1KI': 0.016707266358868836, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 277.6165154457092, 'W': 19.57926332943202}
[16.6, 16.56, 16.6, 16.76, 16.76, 16.8, 17.28, 17.24, 17.12, 16.92, 16.44, 16.6, 16.48, 16.44, 16.36, 16.28, 16.2, 16.2, 16.2, 16.44]
299.08000000000004
14.954000000000002
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 652466, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.900923252105713, 'TIME_S_1KI': 0.016707266358868836, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 277.6165154457092, 'W': 19.57926332943202, 'J_1KI': 0.42548809508190344, 'W_1KI': 0.030008097478538377, 'W_D': 4.625263329432018, 'J_D': 65.58211445093146, 'W_D_1KI': 0.007088895558438322, 'J_D_1KI': 1.0864773886207592e-05}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 286349, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.45237112045288, "TIME_S_1KI": 0.03650220926370576, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 261.584655122757, "W": 18.391800548576306, "J_1KI": 0.9135169151027488, "W_1KI": 0.06422861804503004, "W_D": 3.7758005485763064, "J_D": 53.702816192627004, "W_D_1KI": 0.013186009200577989, "J_D_1KI": 4.604873493735961e-05}

View File

@ -0,0 +1,90 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 10 -ss 5000 -sd 5e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.0067138671875}
tensor(indices=tensor([[2960, 3352, 2272, ..., 4354, 3613, 3081],
[1683, 910, 4825, ..., 4503, 3569, 3443]]),
values=tensor([0.7470, 0.7400, 0.2423, ..., 0.7452, 0.6241, 0.1819]),
size=(5000, 5000), nnz=1250, layout=torch.sparse_coo)
tensor([0.8861, 0.1443, 0.1411, ..., 0.6596, 0.1915, 0.7341])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 1250
Density: 5e-05
Time: 0.0067138671875 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 15639 -ss 5000 -sd 5e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.6672103404998779}
tensor(indices=tensor([[2657, 10, 213, ..., 3459, 1898, 1412],
[1570, 991, 1711, ..., 3008, 4849, 3361]]),
values=tensor([0.0477, 0.3374, 0.7312, ..., 0.1165, 0.6978, 0.1653]),
size=(5000, 5000), nnz=1250, layout=torch.sparse_coo)
tensor([0.8830, 0.3419, 0.0938, ..., 0.1921, 0.2616, 0.4458])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 1250
Density: 5e-05
Time: 0.6672103404998779 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 246113 -ss 5000 -sd 5e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 9.024578332901001}
tensor(indices=tensor([[3242, 153, 953, ..., 3164, 1173, 3828],
[1636, 461, 1866, ..., 3350, 1390, 1427]]),
values=tensor([0.1174, 0.8189, 0.7761, ..., 0.6490, 0.4361, 0.8132]),
size=(5000, 5000), nnz=1250, layout=torch.sparse_coo)
tensor([0.9981, 0.3203, 0.0360, ..., 0.8201, 0.6163, 0.8541])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 1250
Density: 5e-05
Time: 9.024578332901001 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic coo 286349 -ss 5000 -sd 5e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.45237112045288}
tensor(indices=tensor([[4546, 268, 2475, ..., 4578, 2693, 1114],
[2810, 1887, 1881, ..., 2898, 4458, 2685]]),
values=tensor([0.3289, 0.4846, 0.8504, ..., 0.7188, 0.8266, 0.2598]),
size=(5000, 5000), nnz=1250, layout=torch.sparse_coo)
tensor([0.3695, 0.7282, 0.1314, ..., 0.6685, 0.6494, 0.9188])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 1250
Density: 5e-05
Time: 10.45237112045288 seconds
tensor(indices=tensor([[4546, 268, 2475, ..., 4578, 2693, 1114],
[2810, 1887, 1881, ..., 2898, 4458, 2685]]),
values=tensor([0.3289, 0.4846, 0.8504, ..., 0.7188, 0.8266, 0.2598]),
size=(5000, 5000), nnz=1250, layout=torch.sparse_coo)
tensor([0.3695, 0.7282, 0.1314, ..., 0.6685, 0.6494, 0.9188])
Matrix Type: synthetic
Matrix Format: coo
Shape: torch.Size([5000, 5000])
Rows: 5000
Size: 25000000
NNZ: 1250
Density: 5e-05
Time: 10.45237112045288 seconds
[16.56, 16.44, 16.2, 16.36, 16.12, 16.08, 16.36, 16.4, 16.48, 16.4]
[16.4, 16.28, 16.4, 17.72, 18.88, 21.72, 22.28, 22.24, 22.04, 20.92, 20.2, 20.04, 20.12, 20.12]
14.222895383834839
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 286349, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.45237112045288, 'TIME_S_1KI': 0.03650220926370576, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 261.584655122757, 'W': 18.391800548576306}
[16.56, 16.44, 16.2, 16.36, 16.12, 16.08, 16.36, 16.4, 16.48, 16.4, 16.36, 16.08, 15.96, 16.04, 15.84, 16.12, 16.32, 16.16, 16.44, 16.52]
292.32
14.616
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 286349, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.45237112045288, 'TIME_S_1KI': 0.03650220926370576, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 261.584655122757, 'W': 18.391800548576306, 'J_1KI': 0.9135169151027488, 'W_1KI': 0.06422861804503004, 'W_D': 3.7758005485763064, 'J_D': 53.702816192627004, 'W_D_1KI': 0.013186009200577989, 'J_D_1KI': 4.604873493735961e-05}

View File

@ -1 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1748, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.143786191940308, "TIME_S_1KI": 5.8030813455036085, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 530.3414198303223, "W": 36.295146632325824, "J_1KI": 303.3989815962942, "W_1KI": 20.763813862886625, "W_D": 17.602146632325823, "J_D": 257.20098424220083, "W_D_1KI": 10.069877936113171, "J_D_1KI": 5.760799734618519}
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1752, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.485095500946045, "TIME_S_1KI": 5.984643550768291, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 512.186183013916, "W": 34.91048158652564, "J_1KI": 292.3437117659338, "W_1KI": 19.926073964911897, "W_D": 16.22748158652564, "J_D": 238.08012596821786, "W_D_1KI": 9.262261179523769, "J_D_1KI": 5.286678755435941}

View File

@ -1,14 +1,34 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 100000 -sd 0.0001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.6005632877349854}
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.6985688209533691}
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 7, 17, ..., 999970,
tensor(crow_indices=tensor([ 0, 13, 22, ..., 999981,
999991, 1000000]),
col_indices=tensor([ 3841, 8582, 8659, ..., 46850, 51232, 80903]),
values=tensor([0.4815, 0.2359, 0.4039, ..., 0.8218, 0.1508, 0.2420]),
size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr)
tensor([0.4121, 0.4277, 0.6441, ..., 0.2185, 0.3156, 0.3986])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([100000, 100000])
Rows: 100000
Size: 10000000000
NNZ: 1000000
Density: 0.0001
Time: 0.6985688209533691 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1503 -ss 100000 -sd 0.0001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.003351211547852}
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 5, 22, ..., 999979,
999989, 1000000]),
col_indices=tensor([27708, 32922, 35240, ..., 82805, 88487, 98517]),
values=tensor([0.0088, 0.7733, 0.0012, ..., 0.6420, 0.7382, 0.2177]),
col_indices=tensor([16506, 20710, 37506, ..., 59060, 78382, 91823]),
values=tensor([0.6315, 0.8392, 0.3677, ..., 0.4353, 0.5265, 0.8972]),
size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr)
tensor([0.1129, 0.5965, 0.7496, ..., 0.0902, 0.9107, 0.7724])
tensor([0.3202, 0.2384, 0.4035, ..., 0.5180, 0.1753, 0.3933])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([100000, 100000])
@ -16,19 +36,19 @@ Rows: 100000
Size: 10000000000
NNZ: 1000000
Density: 0.0001
Time: 0.6005632877349854 seconds
Time: 9.003351211547852 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1748 -ss 100000 -sd 0.0001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.143786191940308}
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1752 -ss 100000 -sd 0.0001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.485095500946045}
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 10, 23, ..., 999980,
999992, 1000000]),
col_indices=tensor([ 8017, 17251, 18992, ..., 72823, 91334, 91663]),
values=tensor([0.4596, 0.1797, 0.9797, ..., 0.0499, 0.7967, 0.0183]),
tensor(crow_indices=tensor([ 0, 10, 27, ..., 999981,
999986, 1000000]),
col_indices=tensor([27575, 38852, 42502, ..., 91134, 92148, 97111]),
values=tensor([0.1986, 0.8938, 0.8330, ..., 0.0983, 0.0891, 0.3928]),
size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr)
tensor([0.8873, 0.5523, 0.3791, ..., 0.8812, 0.4027, 0.2259])
tensor([0.2333, 0.4383, 0.7667, ..., 0.5123, 0.4425, 0.6550])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([100000, 100000])
@ -36,16 +56,16 @@ Rows: 100000
Size: 10000000000
NNZ: 1000000
Density: 0.0001
Time: 10.143786191940308 seconds
Time: 10.485095500946045 seconds
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 10, 23, ..., 999980,
999992, 1000000]),
col_indices=tensor([ 8017, 17251, 18992, ..., 72823, 91334, 91663]),
values=tensor([0.4596, 0.1797, 0.9797, ..., 0.0499, 0.7967, 0.0183]),
tensor(crow_indices=tensor([ 0, 10, 27, ..., 999981,
999986, 1000000]),
col_indices=tensor([27575, 38852, 42502, ..., 91134, 92148, 97111]),
values=tensor([0.1986, 0.8938, 0.8330, ..., 0.0983, 0.0891, 0.3928]),
size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr)
tensor([0.8873, 0.5523, 0.3791, ..., 0.8812, 0.4027, 0.2259])
tensor([0.2333, 0.4383, 0.7667, ..., 0.5123, 0.4425, 0.6550])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([100000, 100000])
@ -53,13 +73,13 @@ Rows: 100000
Size: 10000000000
NNZ: 1000000
Density: 0.0001
Time: 10.143786191940308 seconds
Time: 10.485095500946045 seconds
[20.48, 20.6, 20.64, 20.68, 21.12, 21.12, 21.24, 21.12, 21.04, 21.04]
[20.76, 20.76, 21.04, 22.36, 24.68, 32.36, 38.56, 45.04, 50.12, 51.88, 51.52, 52.0, 52.0, 51.84]
14.611910104751587
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1748, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.143786191940308, 'TIME_S_1KI': 5.8030813455036085, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 530.3414198303223, 'W': 36.295146632325824}
[20.48, 20.6, 20.64, 20.68, 21.12, 21.12, 21.24, 21.12, 21.04, 21.04, 20.36, 20.64, 20.56, 20.72, 20.68, 20.52, 20.72, 20.76, 20.52, 20.48]
373.86
18.693
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1748, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.143786191940308, 'TIME_S_1KI': 5.8030813455036085, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 530.3414198303223, 'W': 36.295146632325824, 'J_1KI': 303.3989815962942, 'W_1KI': 20.763813862886625, 'W_D': 17.602146632325823, 'J_D': 257.20098424220083, 'W_D_1KI': 10.069877936113171, 'J_D_1KI': 5.760799734618519}
[21.12, 20.96, 20.8, 20.6, 20.8, 20.8, 20.8, 20.84, 20.72, 20.68]
[20.76, 20.8, 21.92, 21.92, 22.88, 27.32, 33.44, 40.64, 45.96, 51.28, 52.0, 51.52, 51.4, 51.84]
14.671415567398071
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1752, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.485095500946045, 'TIME_S_1KI': 5.984643550768291, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 512.186183013916, 'W': 34.91048158652564}
[21.12, 20.96, 20.8, 20.6, 20.8, 20.8, 20.8, 20.84, 20.72, 20.68, 21.0, 21.04, 20.92, 20.76, 20.48, 20.48, 20.48, 20.64, 20.64, 21.0]
373.65999999999997
18.683
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1752, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.485095500946045, 'TIME_S_1KI': 5.984643550768291, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 512.186183013916, 'W': 34.91048158652564, 'J_1KI': 292.3437117659338, 'W_1KI': 19.926073964911897, 'W_D': 16.22748158652564, 'J_D': 238.08012596821786, 'W_D_1KI': 9.262261179523769, 'J_D_1KI': 5.286678755435941}

View File

@ -1 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 175, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 11.183927774429321, "TIME_S_1KI": 63.90815871102469, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 628.162894821167, "W": 35.42748603907242, "J_1KI": 3589.5022561209544, "W_1KI": 202.44277736612813, "W_D": 16.71548603907242, "J_D": 296.38140530395515, "W_D_1KI": 95.51706308041383, "J_D_1KI": 545.8117890309362}
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 183, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.392640113830566, "TIME_S_1KI": 56.790383135686156, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 621.8855728912355, "W": 35.106665438111044, "J_1KI": 3398.2818190777894, "W_1KI": 191.83970184760133, "W_D": 16.547665438111046, "J_D": 293.1282214522363, "W_D_1KI": 90.42440130115325, "J_D_1KI": 494.12241148171177}

View File

@ -1,14 +1,14 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 100000 -sd 0.001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 5.9738054275512695}
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 5.7204060554504395}
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 100, 229, ..., 9999825,
9999913, 10000000]),
col_indices=tensor([ 2839, 3131, 5153, ..., 92533, 94576, 98932]),
values=tensor([0.4697, 0.9996, 0.7875, ..., 0.5192, 0.5202, 0.9540]),
tensor(crow_indices=tensor([ 0, 98, 204, ..., 9999786,
9999897, 10000000]),
col_indices=tensor([ 2168, 2221, 3670, ..., 97171, 97920, 99173]),
values=tensor([0.5868, 0.2768, 0.5813, ..., 0.2211, 0.2231, 0.3014]),
size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr)
tensor([0.9598, 0.0952, 0.8851, ..., 0.3844, 0.8104, 0.5939])
tensor([0.6888, 0.8719, 0.0407, ..., 0.0271, 0.8141, 0.6850])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([100000, 100000])
@ -16,19 +16,19 @@ Rows: 100000
Size: 10000000000
NNZ: 10000000
Density: 0.001
Time: 5.9738054275512695 seconds
Time: 5.7204060554504395 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 175 -ss 100000 -sd 0.001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 11.183927774429321}
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 183 -ss 100000 -sd 0.001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.392640113830566}
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 95, 193, ..., 9999801,
9999901, 10000000]),
col_indices=tensor([ 2869, 4015, 6080, ..., 94953, 95635, 98117]),
values=tensor([0.0857, 0.9758, 0.7363, ..., 0.8151, 0.8595, 0.7723]),
tensor(crow_indices=tensor([ 0, 97, 203, ..., 9999791,
9999906, 10000000]),
col_indices=tensor([ 466, 1594, 2031, ..., 98883, 99435, 99456]),
values=tensor([0.5174, 0.4660, 0.4037, ..., 0.7630, 0.3193, 0.8740]),
size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr)
tensor([0.7586, 0.5970, 0.0221, ..., 0.6721, 0.2659, 0.4588])
tensor([0.4869, 0.9209, 0.1121, ..., 0.4031, 0.7408, 0.7156])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([100000, 100000])
@ -36,16 +36,16 @@ Rows: 100000
Size: 10000000000
NNZ: 10000000
Density: 0.001
Time: 11.183927774429321 seconds
Time: 10.392640113830566 seconds
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 95, 193, ..., 9999801,
9999901, 10000000]),
col_indices=tensor([ 2869, 4015, 6080, ..., 94953, 95635, 98117]),
values=tensor([0.0857, 0.9758, 0.7363, ..., 0.8151, 0.8595, 0.7723]),
tensor(crow_indices=tensor([ 0, 97, 203, ..., 9999791,
9999906, 10000000]),
col_indices=tensor([ 466, 1594, 2031, ..., 98883, 99435, 99456]),
values=tensor([0.5174, 0.4660, 0.4037, ..., 0.7630, 0.3193, 0.8740]),
size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr)
tensor([0.7586, 0.5970, 0.0221, ..., 0.6721, 0.2659, 0.4588])
tensor([0.4869, 0.9209, 0.1121, ..., 0.4031, 0.7408, 0.7156])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([100000, 100000])
@ -53,13 +53,13 @@ Rows: 100000
Size: 10000000000
NNZ: 10000000
Density: 0.001
Time: 11.183927774429321 seconds
Time: 10.392640113830566 seconds
[20.52, 20.84, 20.72, 20.68, 20.8, 20.68, 20.68, 20.72, 20.64, 20.64]
[20.64, 20.76, 20.84, 24.4, 27.0, 28.6, 31.96, 32.96, 34.0, 38.76, 44.2, 47.96, 51.6, 50.84, 50.88, 50.6, 50.76]
17.730947494506836
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 175, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 11.183927774429321, 'TIME_S_1KI': 63.90815871102469, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 628.162894821167, 'W': 35.42748603907242}
[20.52, 20.84, 20.72, 20.68, 20.8, 20.68, 20.68, 20.72, 20.64, 20.64, 20.64, 20.64, 20.64, 20.72, 20.76, 20.76, 21.0, 20.92, 21.36, 21.56]
374.24
18.712
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 175, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 11.183927774429321, 'TIME_S_1KI': 63.90815871102469, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 628.162894821167, 'W': 35.42748603907242, 'J_1KI': 3589.5022561209544, 'W_1KI': 202.44277736612813, 'W_D': 16.71548603907242, 'J_D': 296.38140530395515, 'W_D_1KI': 95.51706308041383, 'J_D_1KI': 545.8117890309362}
[20.4, 20.28, 20.32, 20.28, 20.48, 20.48, 20.88, 20.84, 20.76, 20.76]
[20.72, 20.64, 21.04, 22.32, 24.12, 25.84, 28.68, 31.24, 36.6, 42.2, 42.2, 45.8, 51.08, 52.16, 52.0, 52.08, 52.32]
17.714173793792725
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 183, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.392640113830566, 'TIME_S_1KI': 56.790383135686156, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 621.8855728912355, 'W': 35.106665438111044}
[20.4, 20.28, 20.32, 20.28, 20.48, 20.48, 20.88, 20.84, 20.76, 20.76, 20.8, 20.68, 20.96, 21.0, 20.84, 20.72, 20.64, 20.56, 20.32, 20.32]
371.17999999999995
18.558999999999997
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 183, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.392640113830566, 'TIME_S_1KI': 56.790383135686156, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 621.8855728912355, 'W': 35.106665438111044, 'J_1KI': 3398.2818190777894, 'W_1KI': 191.83970184760133, 'W_D': 16.547665438111046, 'J_D': 293.1282214522363, 'W_D_1KI': 90.42440130115325, 'J_D_1KI': 494.12241148171177}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000000, "MATRIX_DENSITY": 0.01, "TIME_S": 55.23988056182861, "TIME_S_1KI": 552.3988056182861, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 3392.229231271745, "W": 34.21525226903433, "J_1KI": 33922.29231271745, "W_1KI": 342.1525226903433, "W_D": 15.519252269034329, "J_D": 1538.6372364158642, "W_D_1KI": 155.19252269034328, "J_D_1KI": 1551.9252269034328}

View File

@ -0,0 +1,45 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 100000 -sd 0.01 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000000, "MATRIX_DENSITY": 0.01, "TIME_S": 55.23988056182861}
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 975, 2002, ...,
99998038, 99999032, 100000000]),
col_indices=tensor([ 193, 475, 708, ..., 99676, 99979, 99985]),
values=tensor([0.3846, 0.7039, 0.8140, ..., 0.8966, 0.5567, 0.1696]),
size=(100000, 100000), nnz=100000000, layout=torch.sparse_csr)
tensor([0.9784, 0.7882, 0.1982, ..., 0.8110, 0.1934, 0.3487])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([100000, 100000])
Rows: 100000
Size: 10000000000
NNZ: 100000000
Density: 0.01
Time: 55.23988056182861 seconds
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 975, 2002, ...,
99998038, 99999032, 100000000]),
col_indices=tensor([ 193, 475, 708, ..., 99676, 99979, 99985]),
values=tensor([0.3846, 0.7039, 0.8140, ..., 0.8966, 0.5567, 0.1696]),
size=(100000, 100000), nnz=100000000, layout=torch.sparse_csr)
tensor([0.9784, 0.7882, 0.1982, ..., 0.8110, 0.1934, 0.3487])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([100000, 100000])
Rows: 100000
Size: 10000000000
NNZ: 100000000
Density: 0.01
Time: 55.23988056182861 seconds
[21.08, 21.04, 20.84, 21.08, 21.04, 21.04, 20.92, 20.88, 20.88, 20.72]
[20.8, 20.76, 20.92, 22.24, 24.44, 26.24, 27.2, 27.2, 26.72, 25.88, 27.64, 27.64, 29.6, 30.76, 30.64, 29.12, 27.36, 25.36, 26.56, 29.12, 32.64, 36.12, 36.04, 35.4, 34.08, 34.08, 28.52, 28.84, 28.6, 28.12, 27.72, 28.28, 28.12, 28.84, 29.32, 29.84, 29.72, 29.68, 29.68, 29.48, 29.92, 33.16, 35.88, 39.28, 42.08, 43.0, 42.28, 41.44, 40.48, 40.64, 40.88, 40.72, 40.84, 41.68, 41.32, 41.48, 41.32, 41.32, 41.4, 41.6, 41.04, 40.84, 40.52, 40.48, 41.32, 41.8, 41.56, 41.52, 40.16, 39.76, 39.12, 38.96, 39.96, 40.84, 40.92, 40.92, 41.64, 40.48, 41.04, 40.68, 40.48, 41.48, 42.2, 42.24, 42.56, 42.28, 41.8, 41.24, 40.48, 40.48, 40.96, 41.72, 41.92, 41.4, 41.24, 41.24]
99.1437737941742
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 55.23988056182861, 'TIME_S_1KI': 552.3988056182861, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3392.229231271745, 'W': 34.21525226903433}
[21.08, 21.04, 20.84, 21.08, 21.04, 21.04, 20.92, 20.88, 20.88, 20.72, 20.16, 20.16, 20.4, 20.36, 20.56, 20.68, 20.84, 20.88, 20.84, 21.0]
373.92
18.696
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 55.23988056182861, 'TIME_S_1KI': 552.3988056182861, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3392.229231271745, 'W': 34.21525226903433, 'J_1KI': 33922.29231271745, 'W_1KI': 342.1525226903433, 'W_D': 15.519252269034329, 'J_D': 1538.6372364158642, 'W_D_1KI': 155.19252269034328, 'J_D_1KI': 1551.9252269034328}

View File

@ -1 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 11597, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.436057329177856, "TIME_S_1KI": 0.8998928454926151, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 483.6025880336762, "W": 33.00177532885384, "J_1KI": 41.700662932971994, "W_1KI": 2.845716592985586, "W_D": 14.225775328853839, "J_D": 208.462172027588, "W_D_1KI": 1.2266771862424626, "J_D_1KI": 0.10577538900081596}
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 11845, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.452897548675537, "TIME_S_1KI": 0.8824734106100073, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 491.721949520111, "W": 33.55721565186675, "J_1KI": 41.51303921655644, "W_1KI": 2.833027914889552, "W_D": 15.062215651866751, "J_D": 220.71026754021645, "W_D_1KI": 1.2716095949233222, "J_D_1KI": 0.10735412367440457}

View File

@ -1,14 +1,14 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 100000 -sd 1e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.12187767028808594}
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.19909358024597168}
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 1, 2, ..., 99998, 99999,
tensor(crow_indices=tensor([ 0, 4, 5, ..., 99997, 99999,
100000]),
col_indices=tensor([99237, 81965, 52149, ..., 94819, 50598, 82628]),
values=tensor([0.3300, 0.8237, 0.5005, ..., 0.6469, 0.1010, 0.4687]),
col_indices=tensor([12266, 41353, 64119, ..., 57579, 58990, 6971]),
values=tensor([0.6227, 0.7944, 0.7450, ..., 0.9056, 0.8637, 0.0316]),
size=(100000, 100000), nnz=100000, layout=torch.sparse_csr)
tensor([0.0038, 0.2456, 0.3182, ..., 0.7163, 0.7510, 0.9775])
tensor([0.5310, 0.7756, 0.0968, ..., 0.3911, 0.0764, 0.5885])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([100000, 100000])
@ -16,19 +16,19 @@ Rows: 100000
Size: 10000000000
NNZ: 100000
Density: 1e-05
Time: 0.12187767028808594 seconds
Time: 0.19909358024597168 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 8615 -ss 100000 -sd 1e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.799410104751587}
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 5273 -ss 100000 -sd 1e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 5.112189292907715}
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 1, 1, ..., 99998, 99999,
tensor(crow_indices=tensor([ 0, 0, 2, ..., 99998, 99999,
100000]),
col_indices=tensor([88588, 42232, 90125, ..., 27244, 80106, 39636]),
values=tensor([0.8018, 0.8315, 0.5597, ..., 0.5532, 0.0030, 0.5793]),
col_indices=tensor([18500, 89431, 21652, ..., 1449, 96967, 19441]),
values=tensor([0.9093, 0.3424, 0.7088, ..., 0.3078, 0.7479, 0.8254]),
size=(100000, 100000), nnz=100000, layout=torch.sparse_csr)
tensor([0.1929, 0.1411, 0.4568, ..., 0.6294, 0.2188, 0.4350])
tensor([0.7902, 0.1848, 0.8411, ..., 0.5530, 0.0625, 0.5516])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([100000, 100000])
@ -36,19 +36,19 @@ Rows: 100000
Size: 10000000000
NNZ: 100000
Density: 1e-05
Time: 7.799410104751587 seconds
Time: 5.112189292907715 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 11597 -ss 100000 -sd 1e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.436057329177856}
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 10830 -ss 100000 -sd 1e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.599655628204346}
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 1, 1, ..., 99998, 99998,
tensor(crow_indices=tensor([ 0, 0, 1, ..., 99999, 100000,
100000]),
col_indices=tensor([24172, 83350, 29274, ..., 76990, 53592, 71081]),
values=tensor([0.7302, 0.8346, 0.3553, ..., 0.4222, 0.8183, 0.0288]),
col_indices=tensor([ 4135, 30090, 75785, ..., 75263, 77636, 9635]),
values=tensor([0.5430, 0.9022, 0.0393, ..., 0.9343, 0.9359, 0.0313]),
size=(100000, 100000), nnz=100000, layout=torch.sparse_csr)
tensor([0.8537, 0.9431, 0.0277, ..., 0.1357, 0.7019, 0.9196])
tensor([0.4424, 0.3111, 0.3025, ..., 0.8284, 0.3246, 0.9597])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([100000, 100000])
@ -56,16 +56,19 @@ Rows: 100000
Size: 10000000000
NNZ: 100000
Density: 1e-05
Time: 10.436057329177856 seconds
Time: 9.599655628204346 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 11845 -ss 100000 -sd 1e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.452897548675537}
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 1, 1, ..., 99998, 99998,
tensor(crow_indices=tensor([ 0, 0, 0, ..., 99997, 100000,
100000]),
col_indices=tensor([24172, 83350, 29274, ..., 76990, 53592, 71081]),
values=tensor([0.7302, 0.8346, 0.3553, ..., 0.4222, 0.8183, 0.0288]),
col_indices=tensor([26237, 4052, 39558, ..., 16301, 35459, 98674]),
values=tensor([0.0699, 0.2116, 0.3702, ..., 0.5467, 0.2088, 0.3545]),
size=(100000, 100000), nnz=100000, layout=torch.sparse_csr)
tensor([0.8537, 0.9431, 0.0277, ..., 0.1357, 0.7019, 0.9196])
tensor([0.6982, 0.4327, 0.4762, ..., 0.0773, 0.8958, 0.0557])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([100000, 100000])
@ -73,13 +76,30 @@ Rows: 100000
Size: 10000000000
NNZ: 100000
Density: 1e-05
Time: 10.436057329177856 seconds
Time: 10.452897548675537 seconds
[21.08, 20.64, 20.76, 20.76, 20.92, 21.32, 21.32, 21.36, 21.0, 20.8]
[20.64, 20.36, 20.72, 23.08, 24.72, 29.44, 35.88, 40.08, 43.56, 45.4, 45.96, 45.6, 45.36, 46.04]
14.653835535049438
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 11597, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.436057329177856, 'TIME_S_1KI': 0.8998928454926151, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 483.6025880336762, 'W': 33.00177532885384}
[21.08, 20.64, 20.76, 20.76, 20.92, 21.32, 21.32, 21.36, 21.0, 20.8, 20.36, 20.32, 20.32, 20.44, 20.64, 20.8, 21.0, 21.16, 21.12, 21.04]
375.52
18.776
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 11597, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.436057329177856, 'TIME_S_1KI': 0.8998928454926151, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 483.6025880336762, 'W': 33.00177532885384, 'J_1KI': 41.700662932971994, 'W_1KI': 2.845716592985586, 'W_D': 14.225775328853839, 'J_D': 208.462172027588, 'W_D_1KI': 1.2266771862424626, 'J_D_1KI': 0.10577538900081596}
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 0, 0, ..., 99997, 100000,
100000]),
col_indices=tensor([26237, 4052, 39558, ..., 16301, 35459, 98674]),
values=tensor([0.0699, 0.2116, 0.3702, ..., 0.5467, 0.2088, 0.3545]),
size=(100000, 100000), nnz=100000, layout=torch.sparse_csr)
tensor([0.6982, 0.4327, 0.4762, ..., 0.0773, 0.8958, 0.0557])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([100000, 100000])
Rows: 100000
Size: 10000000000
NNZ: 100000
Density: 1e-05
Time: 10.452897548675537 seconds
[20.44, 20.4, 20.64, 20.88, 20.76, 20.76, 20.88, 20.8, 20.96, 21.04]
[20.84, 20.88, 21.72, 26.12, 28.0, 32.48, 37.88, 39.16, 42.96, 44.8, 45.0, 45.32, 45.04, 45.04]
14.653240442276001
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 11845, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.452897548675537, 'TIME_S_1KI': 0.8824734106100073, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 491.721949520111, 'W': 33.55721565186675}
[20.44, 20.4, 20.64, 20.88, 20.76, 20.76, 20.88, 20.8, 20.96, 21.04, 20.68, 20.68, 20.52, 20.24, 20.2, 20.04, 20.28, 20.24, 20.36, 20.36]
369.9
18.494999999999997
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 11845, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.452897548675537, 'TIME_S_1KI': 0.8824734106100073, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 491.721949520111, 'W': 33.55721565186675, 'J_1KI': 41.51303921655644, 'W_1KI': 2.833027914889552, 'W_D': 15.062215651866751, 'J_D': 220.71026754021645, 'W_D_1KI': 1.2716095949233222, 'J_D_1KI': 0.10735412367440457}

View File

@ -1 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 3297, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.891435861587524, "TIME_S_1KI": 3.3034382352403777, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 528.672490940094, "W": 36.05478479295784, "J_1KI": 160.34955745832394, "W_1KI": 10.935633846817664, "W_D": 17.45578479295784, "J_D": 255.95474444794658, "W_D_1KI": 5.2944448871573675, "J_D_1KI": 1.605837090432929}
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 3160, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.255688428878784, "TIME_S_1KI": 3.2454710217970835, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 463.90646287918094, "W": 34.111621125184975, "J_1KI": 146.8058426832851, "W_1KI": 10.794816811767397, "W_D": 15.559621125184975, "J_D": 211.6055632019043, "W_D_1KI": 4.92393073581803, "J_D_1KI": 1.5582059290563386}

View File

@ -1,14 +1,14 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 100000 -sd 5e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.4573814868927002}
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.332211971282959}
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 10, 16, ..., 499990, 499995,
tensor(crow_indices=tensor([ 0, 10, 13, ..., 499990, 499997,
500000]),
col_indices=tensor([ 5164, 6869, 8448, ..., 29154, 68140, 97893]),
values=tensor([0.8386, 0.0921, 0.7067, ..., 0.9232, 0.1449, 0.6848]),
col_indices=tensor([16831, 31700, 33476, ..., 20126, 37524, 56641]),
values=tensor([0.4034, 0.0732, 0.2390, ..., 0.1660, 0.9005, 0.3603]),
size=(100000, 100000), nnz=500000, layout=torch.sparse_csr)
tensor([0.0246, 0.8160, 0.3295, ..., 0.0588, 0.6998, 0.9868])
tensor([0.3728, 0.2661, 0.0172, ..., 0.8787, 0.3705, 0.6094])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([100000, 100000])
@ -16,19 +16,19 @@ Rows: 100000
Size: 10000000000
NNZ: 500000
Density: 5e-05
Time: 0.4573814868927002 seconds
Time: 0.332211971282959 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 2295 -ss 100000 -sd 5e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 7.306779146194458}
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 3160 -ss 100000 -sd 5e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.255688428878784}
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 4, 8, ..., 499989, 499995,
tensor(crow_indices=tensor([ 0, 1, 7, ..., 499992, 499996,
500000]),
col_indices=tensor([ 2059, 19971, 54406, ..., 65065, 65922, 83323]),
values=tensor([0.5530, 0.6181, 0.7781, ..., 0.5380, 0.6243, 0.8378]),
col_indices=tensor([64602, 478, 27899, ..., 42044, 53218, 73264]),
values=tensor([0.8097, 0.5983, 0.2516, ..., 0.0269, 0.0458, 0.5960]),
size=(100000, 100000), nnz=500000, layout=torch.sparse_csr)
tensor([0.4055, 0.5945, 0.9428, ..., 0.6446, 0.1456, 0.3700])
tensor([0.5290, 0.0200, 0.8761, ..., 0.9070, 0.8739, 0.1739])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([100000, 100000])
@ -36,19 +36,16 @@ Rows: 100000
Size: 10000000000
NNZ: 500000
Density: 5e-05
Time: 7.306779146194458 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 3297 -ss 100000 -sd 5e-05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.891435861587524}
Time: 10.255688428878784 seconds
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 5, 11, ..., 499995, 499995,
tensor(crow_indices=tensor([ 0, 1, 7, ..., 499992, 499996,
500000]),
col_indices=tensor([ 8913, 22689, 49331, ..., 65321, 72756, 72788]),
values=tensor([0.7511, 0.0782, 0.7533, ..., 0.6341, 0.1803, 0.2288]),
col_indices=tensor([64602, 478, 27899, ..., 42044, 53218, 73264]),
values=tensor([0.8097, 0.5983, 0.2516, ..., 0.0269, 0.0458, 0.5960]),
size=(100000, 100000), nnz=500000, layout=torch.sparse_csr)
tensor([0.5601, 0.4293, 0.2285, ..., 0.5137, 0.5400, 0.5797])
tensor([0.5290, 0.0200, 0.8761, ..., 0.9070, 0.8739, 0.1739])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([100000, 100000])
@ -56,30 +53,13 @@ Rows: 100000
Size: 10000000000
NNZ: 500000
Density: 5e-05
Time: 10.891435861587524 seconds
Time: 10.255688428878784 seconds
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 5, 11, ..., 499995, 499995,
500000]),
col_indices=tensor([ 8913, 22689, 49331, ..., 65321, 72756, 72788]),
values=tensor([0.7511, 0.0782, 0.7533, ..., 0.6341, 0.1803, 0.2288]),
size=(100000, 100000), nnz=500000, layout=torch.sparse_csr)
tensor([0.5601, 0.4293, 0.2285, ..., 0.5137, 0.5400, 0.5797])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([100000, 100000])
Rows: 100000
Size: 10000000000
NNZ: 500000
Density: 5e-05
Time: 10.891435861587524 seconds
[20.84, 20.48, 20.44, 20.64, 20.64, 20.68, 20.72, 20.64, 20.64, 20.92]
[20.6, 20.48, 20.72, 25.12, 26.88, 32.4, 38.84, 42.28, 46.96, 50.12, 51.2, 51.8, 51.56, 51.6]
14.66303277015686
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 3297, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.891435861587524, 'TIME_S_1KI': 3.3034382352403777, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 528.672490940094, 'W': 36.05478479295784}
[20.84, 20.48, 20.44, 20.64, 20.64, 20.68, 20.72, 20.64, 20.64, 20.92, 20.84, 21.04, 20.84, 20.84, 20.76, 20.8, 20.68, 20.44, 20.28, 20.24]
371.98
18.599
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 3297, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.891435861587524, 'TIME_S_1KI': 3.3034382352403777, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 528.672490940094, 'W': 36.05478479295784, 'J_1KI': 160.34955745832394, 'W_1KI': 10.935633846817664, 'W_D': 17.45578479295784, 'J_D': 255.95474444794658, 'W_D_1KI': 5.2944448871573675, 'J_D_1KI': 1.605837090432929}
[20.4, 20.4, 20.36, 20.48, 20.48, 20.56, 20.72, 20.68, 20.88, 20.92]
[20.8, 20.96, 22.0, 23.08, 26.64, 32.64, 32.64, 39.84, 44.88, 50.64, 51.68, 51.72, 51.64]
13.599660396575928
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 3160, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.255688428878784, 'TIME_S_1KI': 3.2454710217970835, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 463.90646287918094, 'W': 34.111621125184975}
[20.4, 20.4, 20.36, 20.48, 20.48, 20.56, 20.72, 20.68, 20.88, 20.92, 20.52, 20.4, 20.36, 20.68, 20.72, 20.8, 20.88, 20.68, 20.56, 20.96]
371.03999999999996
18.552
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 3160, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.255688428878784, 'TIME_S_1KI': 3.2454710217970835, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 463.90646287918094, 'W': 34.111621125184975, 'J_1KI': 146.8058426832851, 'W_1KI': 10.794816811767397, 'W_D': 15.559621125184975, 'J_D': 211.6055632019043, 'W_D_1KI': 4.92393073581803, 'J_D_1KI': 1.5582059290563386}

View File

@ -1 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 32636, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.47010850906372, "TIME_S_1KI": 0.32081469877018387, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 319.63640854835506, "W": 22.48260624860275, "J_1KI": 9.793982367580435, "W_1KI": 0.6888897612637195, "W_D": 3.984606248602752, "J_D": 56.64935891771315, "W_D_1KI": 0.12209235962136145, "J_D_1KI": 0.003741033203252894}
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 32993, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.722160577774048, "TIME_S_1KI": 0.32498289266735514, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 325.13037155151375, "W": 22.887281127943623, "J_1KI": 9.854525855530376, "W_1KI": 0.6937011222969607, "W_D": 4.493281127943625, "J_D": 63.8303062057496, "W_D_1KI": 0.13618892273947883, "J_D_1KI": 0.0041278126493340655}

View File

@ -1,13 +1,13 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 0.0001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.050879478454589844}
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.04047083854675293}
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 0, 1, ..., 9998, 9999, 10000]),
col_indices=tensor([5382, 2827, 5658, ..., 9195, 8647, 1137]),
values=tensor([0.6423, 0.5656, 0.8194, ..., 0.3825, 0.7281, 0.0248]),
tensor(crow_indices=tensor([ 0, 3, 4, ..., 10000, 10000, 10000]),
col_indices=tensor([2549, 9361, 9970, ..., 704, 4011, 7891]),
values=tensor([0.5892, 0.1476, 0.4892, ..., 0.9338, 0.1639, 0.4664]),
size=(10000, 10000), nnz=10000, layout=torch.sparse_csr)
tensor([0.6609, 0.7541, 0.4159, ..., 0.2180, 0.3481, 0.0053])
tensor([0.8574, 0.7762, 0.9018, ..., 0.6074, 0.6936, 0.9938])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([10000, 10000])
@ -15,18 +15,18 @@ Rows: 10000
Size: 100000000
NNZ: 10000
Density: 0.0001
Time: 0.050879478454589844 seconds
Time: 0.04047083854675293 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 20637 -ss 10000 -sd 0.0001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 6.639445781707764}
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 25944 -ss 10000 -sd 0.0001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 8.256449699401855}
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 0, 1, ..., 9998, 10000, 10000]),
col_indices=tensor([1538, 6690, 5733, ..., 9607, 7438, 7782]),
values=tensor([0.7222, 0.1089, 0.5631, ..., 0.3116, 0.0243, 0.6999]),
tensor(crow_indices=tensor([ 0, 1, 2, ..., 9998, 10000, 10000]),
col_indices=tensor([2764, 9413, 5263, ..., 1959, 4242, 4549]),
values=tensor([0.9684, 0.2656, 0.2250, ..., 0.3440, 0.8382, 0.0353]),
size=(10000, 10000), nnz=10000, layout=torch.sparse_csr)
tensor([0.2878, 0.8940, 0.0961, ..., 0.0631, 0.2895, 0.2219])
tensor([0.2298, 0.9239, 0.9999, ..., 0.9160, 0.4053, 0.1195])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([10000, 10000])
@ -34,18 +34,18 @@ Rows: 10000
Size: 100000000
NNZ: 10000
Density: 0.0001
Time: 6.639445781707764 seconds
Time: 8.256449699401855 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 32636 -ss 10000 -sd 0.0001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.47010850906372}
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 32993 -ss 10000 -sd 0.0001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.722160577774048}
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 1, 2, ..., 9999, 10000, 10000]),
col_indices=tensor([7014, 8766, 3433, ..., 9466, 1431, 7728]),
values=tensor([0.0370, 0.3747, 0.2051, ..., 0.2901, 0.3737, 0.7201]),
tensor(crow_indices=tensor([ 0, 1, 2, ..., 9998, 9998, 10000]),
col_indices=tensor([5965, 6204, 1451, ..., 9267, 1058, 9600]),
values=tensor([0.3937, 0.8327, 0.3110, ..., 0.9645, 0.7301, 0.2055]),
size=(10000, 10000), nnz=10000, layout=torch.sparse_csr)
tensor([0.8451, 0.4833, 0.4298, ..., 0.9015, 0.0937, 0.6764])
tensor([0.5302, 0.5425, 0.3526, ..., 0.3577, 0.4587, 0.7959])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([10000, 10000])
@ -53,15 +53,15 @@ Rows: 10000
Size: 100000000
NNZ: 10000
Density: 0.0001
Time: 10.47010850906372 seconds
Time: 10.722160577774048 seconds
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 1, 2, ..., 9999, 10000, 10000]),
col_indices=tensor([7014, 8766, 3433, ..., 9466, 1431, 7728]),
values=tensor([0.0370, 0.3747, 0.2051, ..., 0.2901, 0.3737, 0.7201]),
tensor(crow_indices=tensor([ 0, 1, 2, ..., 9998, 9998, 10000]),
col_indices=tensor([5965, 6204, 1451, ..., 9267, 1058, 9600]),
values=tensor([0.3937, 0.8327, 0.3110, ..., 0.9645, 0.7301, 0.2055]),
size=(10000, 10000), nnz=10000, layout=torch.sparse_csr)
tensor([0.8451, 0.4833, 0.4298, ..., 0.9015, 0.0937, 0.6764])
tensor([0.5302, 0.5425, 0.3526, ..., 0.3577, 0.4587, 0.7959])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([10000, 10000])
@ -69,13 +69,13 @@ Rows: 10000
Size: 100000000
NNZ: 10000
Density: 0.0001
Time: 10.47010850906372 seconds
Time: 10.722160577774048 seconds
[20.64, 20.64, 20.48, 20.48, 20.48, 20.4, 20.32, 20.16, 20.24, 20.4]
[20.72, 20.64, 21.24, 23.32, 25.32, 26.04, 26.72, 26.72, 26.48, 25.08, 23.72, 23.6, 23.56, 23.48]
14.217053174972534
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 32636, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.47010850906372, 'TIME_S_1KI': 0.32081469877018387, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 319.63640854835506, 'W': 22.48260624860275}
[20.64, 20.64, 20.48, 20.48, 20.48, 20.4, 20.32, 20.16, 20.24, 20.4, 20.64, 20.56, 20.48, 20.52, 20.68, 20.84, 20.88, 20.88, 20.84, 20.48]
369.96
18.497999999999998
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 32636, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.47010850906372, 'TIME_S_1KI': 0.32081469877018387, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 319.63640854835506, 'W': 22.48260624860275, 'J_1KI': 9.793982367580435, 'W_1KI': 0.6888897612637195, 'W_D': 3.984606248602752, 'J_D': 56.64935891771315, 'W_D_1KI': 0.12209235962136145, 'J_D_1KI': 0.003741033203252894}
[20.24, 20.2, 20.16, 20.24, 20.32, 20.88, 20.84, 20.52, 20.88, 20.36]
[20.32, 20.56, 20.56, 23.56, 25.76, 28.24, 29.12, 29.28, 25.72, 24.52, 23.72, 23.72, 23.64, 23.48]
14.20572280883789
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 32993, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.722160577774048, 'TIME_S_1KI': 0.32498289266735514, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 325.13037155151375, 'W': 22.887281127943623}
[20.24, 20.2, 20.16, 20.24, 20.32, 20.88, 20.84, 20.52, 20.88, 20.36, 20.28, 20.32, 20.32, 20.44, 20.4, 20.4, 20.4, 20.32, 20.56, 20.48]
367.88
18.394
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 32993, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.722160577774048, 'TIME_S_1KI': 0.32498289266735514, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 325.13037155151375, 'W': 22.887281127943623, 'J_1KI': 9.854525855530376, 'W_1KI': 0.6937011222969607, 'W_D': 4.493281127943625, 'J_D': 63.8303062057496, 'W_D_1KI': 0.13618892273947883, 'J_D_1KI': 0.0041278126493340655}

View File

@ -1 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 4519, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.300970077514648, "TIME_S_1KI": 2.279479990598506, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 332.2094431686402, "W": 23.392743273719635, "J_1KI": 73.51392856132777, "W_1KI": 5.176530930232272, "W_D": 4.8837432737196345, "J_D": 69.35593720483783, "W_D_1KI": 1.0807132714582062, "J_D_1KI": 0.2391487655362262}
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 4704, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.513959884643555, "TIME_S_1KI": 2.235110519694633, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 329.1826779842377, "W": 23.013408423661655, "J_1KI": 69.9793107959689, "W_1KI": 4.892306212513107, "W_D": 4.506408423661657, "J_D": 64.45944753956805, "W_D_1KI": 0.9579949880233115, "J_D_1KI": 0.2036553971137992}

View File

@ -1,14 +1,14 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 0.001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.2727935314178467}
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.28493499755859375}
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 6, 18, ..., 99975, 99993,
tensor(crow_indices=tensor([ 0, 6, 15, ..., 99974, 99987,
100000]),
col_indices=tensor([2872, 4034, 5620, ..., 6357, 6556, 9590]),
values=tensor([0.7995, 0.0045, 0.2448, ..., 0.5761, 0.7842, 0.1546]),
col_indices=tensor([1008, 1745, 2458, ..., 8180, 8309, 8725]),
values=tensor([0.4541, 0.1167, 0.6157, ..., 0.2339, 0.7280, 0.6670]),
size=(10000, 10000), nnz=100000, layout=torch.sparse_csr)
tensor([0.8077, 0.7130, 0.7281, ..., 0.3829, 0.9486, 0.9162])
tensor([0.9535, 0.6938, 0.6793, ..., 0.3504, 0.5915, 0.1345])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([10000, 10000])
@ -16,19 +16,19 @@ Rows: 10000
Size: 100000000
NNZ: 100000
Density: 0.001
Time: 0.2727935314178467 seconds
Time: 0.28493499755859375 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 3849 -ss 10000 -sd 0.001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 8.942286252975464}
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 3685 -ss 10000 -sd 0.001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 8.224288940429688}
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 12, 21, ..., 99991, 99998,
tensor(crow_indices=tensor([ 0, 8, 23, ..., 99975, 99993,
100000]),
col_indices=tensor([ 425, 574, 695, ..., 9570, 6024, 9715]),
values=tensor([0.7410, 0.8879, 0.5840, ..., 0.6995, 0.9280, 0.9465]),
col_indices=tensor([2342, 2426, 3411, ..., 3261, 4460, 9472]),
values=tensor([0.8447, 0.2534, 0.2074, ..., 0.5724, 0.1389, 0.7449]),
size=(10000, 10000), nnz=100000, layout=torch.sparse_csr)
tensor([0.2929, 0.5164, 0.5482, ..., 0.5103, 0.5008, 0.9557])
tensor([0.2993, 0.9441, 0.0750, ..., 0.0171, 0.8286, 0.1160])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([10000, 10000])
@ -36,19 +36,19 @@ Rows: 10000
Size: 100000000
NNZ: 100000
Density: 0.001
Time: 8.942286252975464 seconds
Time: 8.224288940429688 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 4519 -ss 10000 -sd 0.001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.300970077514648}
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 4704 -ss 10000 -sd 0.001 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.513959884643555}
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 7, 16, ..., 99974, 99990,
tensor(crow_indices=tensor([ 0, 7, 18, ..., 99977, 99987,
100000]),
col_indices=tensor([ 582, 1691, 2515, ..., 7345, 7996, 8295]),
values=tensor([0.8177, 0.9283, 0.6030, ..., 0.2647, 0.3717, 0.8633]),
col_indices=tensor([ 68, 2486, 2822, ..., 8793, 8847, 9684]),
values=tensor([0.4423, 0.5768, 0.9908, ..., 0.4103, 0.7568, 0.2801]),
size=(10000, 10000), nnz=100000, layout=torch.sparse_csr)
tensor([0.2209, 0.7260, 0.0429, ..., 0.4887, 0.7834, 0.0043])
tensor([0.3663, 0.2060, 0.8473, ..., 0.8925, 0.9991, 0.3035])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([10000, 10000])
@ -56,16 +56,16 @@ Rows: 10000
Size: 100000000
NNZ: 100000
Density: 0.001
Time: 10.300970077514648 seconds
Time: 10.513959884643555 seconds
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 7, 16, ..., 99974, 99990,
tensor(crow_indices=tensor([ 0, 7, 18, ..., 99977, 99987,
100000]),
col_indices=tensor([ 582, 1691, 2515, ..., 7345, 7996, 8295]),
values=tensor([0.8177, 0.9283, 0.6030, ..., 0.2647, 0.3717, 0.8633]),
col_indices=tensor([ 68, 2486, 2822, ..., 8793, 8847, 9684]),
values=tensor([0.4423, 0.5768, 0.9908, ..., 0.4103, 0.7568, 0.2801]),
size=(10000, 10000), nnz=100000, layout=torch.sparse_csr)
tensor([0.2209, 0.7260, 0.0429, ..., 0.4887, 0.7834, 0.0043])
tensor([0.3663, 0.2060, 0.8473, ..., 0.8925, 0.9991, 0.3035])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([10000, 10000])
@ -73,13 +73,13 @@ Rows: 10000
Size: 100000000
NNZ: 100000
Density: 0.001
Time: 10.300970077514648 seconds
Time: 10.513959884643555 seconds
[20.48, 20.64, 20.44, 20.28, 20.28, 20.6, 20.72, 20.68, 20.68, 20.48]
[20.4, 20.36, 23.16, 24.08, 27.0, 27.6, 28.72, 28.72, 26.24, 26.28, 24.44, 24.28, 24.24, 24.08]
14.201388835906982
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4519, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.300970077514648, 'TIME_S_1KI': 2.279479990598506, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 332.2094431686402, 'W': 23.392743273719635}
[20.48, 20.64, 20.44, 20.28, 20.28, 20.6, 20.72, 20.68, 20.68, 20.48, 20.52, 20.6, 20.68, 20.64, 20.64, 20.52, 20.52, 20.48, 20.68, 20.72]
370.18
18.509
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4519, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.300970077514648, 'TIME_S_1KI': 2.279479990598506, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 332.2094431686402, 'W': 23.392743273719635, 'J_1KI': 73.51392856132777, 'W_1KI': 5.176530930232272, 'W_D': 4.8837432737196345, 'J_D': 69.35593720483783, 'W_D_1KI': 1.0807132714582062, 'J_D_1KI': 0.2391487655362262}
[20.44, 20.44, 20.44, 20.4, 20.24, 20.32, 20.48, 20.48, 20.52, 20.68]
[20.64, 20.56, 20.48, 24.2, 26.08, 28.48, 29.28, 27.2, 26.72, 24.2, 24.2, 24.12, 24.08, 23.96]
14.303951501846313
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4704, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.513959884643555, 'TIME_S_1KI': 2.235110519694633, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 329.1826779842377, 'W': 23.013408423661655}
[20.44, 20.44, 20.44, 20.4, 20.24, 20.32, 20.48, 20.48, 20.52, 20.68, 20.24, 20.44, 20.28, 20.72, 20.96, 21.08, 20.96, 21.0, 20.48, 20.44]
370.14
18.506999999999998
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4704, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.513959884643555, 'TIME_S_1KI': 2.235110519694633, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 329.1826779842377, 'W': 23.013408423661655, 'J_1KI': 69.9793107959689, 'W_1KI': 4.892306212513107, 'W_D': 4.506408423661657, 'J_D': 64.45944753956805, 'W_D_1KI': 0.9579949880233115, 'J_D_1KI': 0.2036553971137992}

View File

@ -1 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 490, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.49430251121521, "TIME_S_1KI": 21.416943900439204, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 322.6961988353729, "W": 22.678695903983957, "J_1KI": 658.5636710925977, "W_1KI": 46.283052865273376, "W_D": 4.3196959039839555, "J_D": 61.46515012335775, "W_D_1KI": 8.815705926497868, "J_D_1KI": 17.991236584689528}
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 466, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.031994819641113, "TIME_S_1KI": 21.527885879058182, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 325.8022685432434, "W": 22.86777901563946, "J_1KI": 699.1464990198356, "W_1KI": 49.07248715802459, "W_D": 4.6127790156394575, "J_D": 65.71927542924874, "W_D_1KI": 9.898667415535316, "J_D_1KI": 21.241775569818273}

View File

@ -1,14 +1,14 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 0.01 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 2.140977382659912}
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 2.2486960887908936}
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 103, 212, ..., 999798,
999901, 1000000]),
col_indices=tensor([ 63, 140, 146, ..., 9691, 9771, 9918]),
values=tensor([0.8748, 0.2571, 0.8906, ..., 0.1504, 0.2890, 0.7825]),
tensor(crow_indices=tensor([ 0, 77, 175, ..., 999811,
999910, 1000000]),
col_indices=tensor([ 35, 141, 347, ..., 9617, 9713, 9775]),
values=tensor([0.5684, 0.4118, 0.8956, ..., 0.8300, 0.5668, 0.8186]),
size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr)
tensor([0.5882, 0.3416, 0.1892, ..., 0.3016, 0.5220, 0.0626])
tensor([0.7862, 0.9671, 0.1334, ..., 0.0132, 0.8938, 0.7920])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([10000, 10000])
@ -16,19 +16,19 @@ Rows: 10000
Size: 100000000
NNZ: 1000000
Density: 0.01
Time: 2.140977382659912 seconds
Time: 2.2486960887908936 seconds
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 490 -ss 10000 -sd 0.01 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.49430251121521}
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 466 -ss 10000 -sd 0.01 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.031994819641113}
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 113, 202, ..., 999820,
999916, 1000000]),
col_indices=tensor([ 2, 35, 39, ..., 9519, 9605, 9656]),
values=tensor([0.0992, 0.7724, 0.9238, ..., 0.3639, 0.9758, 0.0697]),
tensor(crow_indices=tensor([ 0, 101, 225, ..., 999830,
999902, 1000000]),
col_indices=tensor([ 154, 165, 205, ..., 9812, 9815, 9915]),
values=tensor([0.8739, 0.8341, 0.5427, ..., 0.3042, 0.6360, 0.3675]),
size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr)
tensor([0.2199, 0.1288, 0.7757, ..., 0.1449, 0.2950, 0.2928])
tensor([0.1667, 0.6012, 0.2305, ..., 0.2181, 0.2842, 0.9004])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([10000, 10000])
@ -36,16 +36,16 @@ Rows: 10000
Size: 100000000
NNZ: 1000000
Density: 0.01
Time: 10.49430251121521 seconds
Time: 10.031994819641113 seconds
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 113, 202, ..., 999820,
999916, 1000000]),
col_indices=tensor([ 2, 35, 39, ..., 9519, 9605, 9656]),
values=tensor([0.0992, 0.7724, 0.9238, ..., 0.3639, 0.9758, 0.0697]),
tensor(crow_indices=tensor([ 0, 101, 225, ..., 999830,
999902, 1000000]),
col_indices=tensor([ 154, 165, 205, ..., 9812, 9815, 9915]),
values=tensor([0.8739, 0.8341, 0.5427, ..., 0.3042, 0.6360, 0.3675]),
size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr)
tensor([0.2199, 0.1288, 0.7757, ..., 0.1449, 0.2950, 0.2928])
tensor([0.1667, 0.6012, 0.2305, ..., 0.2181, 0.2842, 0.9004])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([10000, 10000])
@ -53,13 +53,13 @@ Rows: 10000
Size: 100000000
NNZ: 1000000
Density: 0.01
Time: 10.49430251121521 seconds
Time: 10.031994819641113 seconds
[20.68, 20.72, 20.56, 20.52, 20.48, 20.2, 19.92, 19.96, 19.92, 19.92]
[19.96, 20.36, 20.52, 22.04, 24.08, 26.92, 27.96, 27.96, 26.64, 25.04, 24.52, 24.4, 24.4, 24.52]
14.229045629501343
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 490, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.49430251121521, 'TIME_S_1KI': 21.416943900439204, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 322.6961988353729, 'W': 22.678695903983957}
[20.68, 20.72, 20.56, 20.52, 20.48, 20.2, 19.92, 19.96, 19.92, 19.92, 20.44, 20.36, 20.4, 20.52, 20.4, 20.64, 20.76, 20.52, 20.52, 20.52]
367.18
18.359
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 490, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.49430251121521, 'TIME_S_1KI': 21.416943900439204, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 322.6961988353729, 'W': 22.678695903983957, 'J_1KI': 658.5636710925977, 'W_1KI': 46.283052865273376, 'W_D': 4.3196959039839555, 'J_D': 61.46515012335775, 'W_D_1KI': 8.815705926497868, 'J_D_1KI': 17.991236584689528}
[20.0, 20.04, 20.24, 20.28, 20.28, 20.28, 20.44, 20.2, 20.12, 20.16]
[20.16, 20.4, 20.28, 22.2, 24.0, 27.88, 28.52, 28.36, 27.2, 25.84, 24.16, 24.32, 24.36, 24.36]
14.247219562530518
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 466, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.031994819641113, 'TIME_S_1KI': 21.527885879058182, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 325.8022685432434, 'W': 22.86777901563946}
[20.0, 20.04, 20.24, 20.28, 20.28, 20.28, 20.44, 20.2, 20.12, 20.16, 20.4, 20.44, 20.32, 20.44, 20.56, 20.32, 20.4, 20.36, 20.08, 20.04]
365.1
18.255000000000003
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 466, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.031994819641113, 'TIME_S_1KI': 21.527885879058182, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 325.8022685432434, 'W': 22.86777901563946, 'J_1KI': 699.1464990198356, 'W_1KI': 49.07248715802459, 'W_D': 4.6127790156394575, 'J_D': 65.71927542924874, 'W_D_1KI': 9.898667415535316, 'J_D_1KI': 21.241775569818273}

View File

@ -1 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.575754880905151, "TIME_S_1KI": 105.75754880905151, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 357.48722974777223, "W": 23.357767084816274, "J_1KI": 3574.8722974777224, "W_1KI": 233.57767084816274, "W_D": 4.891767084816273, "J_D": 74.86778412389756, "W_D_1KI": 48.91767084816273, "J_D_1KI": 489.1767084816273}
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.582204103469849, "TIME_S_1KI": 105.82204103469849, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 394.3855400466919, "W": 24.027936546671576, "J_1KI": 3943.8554004669195, "W_1KI": 240.27936546671577, "W_D": 5.732936546671578, "J_D": 94.09827063679698, "W_D_1KI": 57.32936546671578, "J_D_1KI": 573.2936546671577}

View File

@ -1,14 +1,14 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 0.05 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.575754880905151}
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.582204103469849}
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 505, 1011, ..., 4998999,
4999505, 5000000]),
col_indices=tensor([ 17, 34, 93, ..., 9927, 9945, 9977]),
values=tensor([0.3942, 0.9668, 0.2842, ..., 0.3748, 0.5474, 0.6270]),
tensor(crow_indices=tensor([ 0, 506, 1036, ..., 4999012,
4999522, 5000000]),
col_indices=tensor([ 2, 6, 14, ..., 9953, 9962, 9983]),
values=tensor([0.7970, 0.3700, 0.8324, ..., 0.2223, 0.8075, 0.1339]),
size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr)
tensor([0.3102, 0.7326, 0.1847, ..., 0.2267, 0.2009, 0.0941])
tensor([0.3881, 0.8882, 0.8978, ..., 0.9188, 0.6267, 0.4542])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([10000, 10000])
@ -16,16 +16,16 @@ Rows: 10000
Size: 100000000
NNZ: 5000000
Density: 0.05
Time: 10.575754880905151 seconds
Time: 10.582204103469849 seconds
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 505, 1011, ..., 4998999,
4999505, 5000000]),
col_indices=tensor([ 17, 34, 93, ..., 9927, 9945, 9977]),
values=tensor([0.3942, 0.9668, 0.2842, ..., 0.3748, 0.5474, 0.6270]),
tensor(crow_indices=tensor([ 0, 506, 1036, ..., 4999012,
4999522, 5000000]),
col_indices=tensor([ 2, 6, 14, ..., 9953, 9962, 9983]),
values=tensor([0.7970, 0.3700, 0.8324, ..., 0.2223, 0.8075, 0.1339]),
size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr)
tensor([0.3102, 0.7326, 0.1847, ..., 0.2267, 0.2009, 0.0941])
tensor([0.3881, 0.8882, 0.8978, ..., 0.9188, 0.6267, 0.4542])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([10000, 10000])
@ -33,13 +33,13 @@ Rows: 10000
Size: 100000000
NNZ: 5000000
Density: 0.05
Time: 10.575754880905151 seconds
Time: 10.582204103469849 seconds
[20.44, 20.44, 20.44, 20.52, 20.44, 20.4, 20.32, 20.2, 20.08, 20.32]
[20.32, 20.16, 21.08, 22.56, 24.44, 27.6, 27.6, 29.28, 28.88, 28.12, 25.16, 24.16, 24.12, 24.4, 24.56]
15.30485463142395
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.575754880905151, 'TIME_S_1KI': 105.75754880905151, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 357.48722974777223, 'W': 23.357767084816274}
[20.44, 20.44, 20.44, 20.52, 20.44, 20.4, 20.32, 20.2, 20.08, 20.32, 20.52, 20.56, 20.76, 20.76, 20.84, 20.84, 20.72, 20.56, 20.56, 20.48]
369.32
18.466
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.575754880905151, 'TIME_S_1KI': 105.75754880905151, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 357.48722974777223, 'W': 23.357767084816274, 'J_1KI': 3574.8722974777224, 'W_1KI': 233.57767084816274, 'W_D': 4.891767084816273, 'J_D': 74.86778412389756, 'W_D_1KI': 48.91767084816273, 'J_D_1KI': 489.1767084816273}
[20.0, 20.2, 20.08, 20.2, 20.2, 20.12, 20.4, 20.28, 20.44, 20.72]
[20.6, 20.72, 21.08, 24.84, 27.04, 29.48, 31.2, 28.84, 27.88, 27.88, 26.0, 23.84, 24.0, 24.32, 24.6, 24.48]
16.41362500190735
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.582204103469849, 'TIME_S_1KI': 105.82204103469849, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 394.3855400466919, 'W': 24.027936546671576}
[20.0, 20.2, 20.08, 20.2, 20.2, 20.12, 20.4, 20.28, 20.44, 20.72, 20.56, 20.44, 20.2, 20.24, 20.08, 20.28, 20.68, 20.68, 20.44, 20.6]
365.9
18.294999999999998
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.582204103469849, 'TIME_S_1KI': 105.82204103469849, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 394.3855400466919, 'W': 24.027936546671576, 'J_1KI': 3943.8554004669195, 'W_1KI': 240.27936546671577, 'W_D': 5.732936546671578, 'J_D': 94.09827063679698, 'W_D_1KI': 57.32936546671578, 'J_D_1KI': 573.2936546671577}

View File

@ -1 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 21.58586049079895, "TIME_S_1KI": 215.8586049079895, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 695.2596657943726, "W": 24.42843676698333, "J_1KI": 6952.596657943726, "W_1KI": 244.2843676698333, "W_D": 6.1854367669833294, "J_D": 176.04420374608034, "W_D_1KI": 61.854367669833294, "J_D_1KI": 618.543676698333}
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 21.590675115585327, "TIME_S_1KI": 215.90675115585327, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 698.2714468479157, "W": 24.533351073497297, "J_1KI": 6982.714468479157, "W_1KI": 245.33351073497298, "W_D": 6.067351073497296, "J_D": 172.68973977231983, "W_D_1KI": 60.67351073497296, "J_D_1KI": 606.7351073497296}

View File

@ -1,14 +1,14 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 0.1 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 21.58586049079895}
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 21.590675115585327}
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 983, 1945, ..., 9997995,
9998975, 10000000]),
col_indices=tensor([ 7, 29, 32, ..., 9986, 9994, 9999]),
values=tensor([0.5805, 0.0545, 0.7779, ..., 0.8799, 0.6314, 0.5149]),
tensor(crow_indices=tensor([ 0, 953, 1990, ..., 9998028,
9999002, 10000000]),
col_indices=tensor([ 3, 5, 31, ..., 9963, 9981, 9996]),
values=tensor([0.0177, 0.1736, 0.9045, ..., 0.8807, 0.7948, 0.3225]),
size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr)
tensor([0.1246, 0.2739, 0.0084, ..., 0.7975, 0.3318, 0.0977])
tensor([0.5695, 0.4055, 0.5858, ..., 0.6808, 0.9483, 0.6795])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([10000, 10000])
@ -16,16 +16,16 @@ Rows: 10000
Size: 100000000
NNZ: 10000000
Density: 0.1
Time: 21.58586049079895 seconds
Time: 21.590675115585327 seconds
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 983, 1945, ..., 9997995,
9998975, 10000000]),
col_indices=tensor([ 7, 29, 32, ..., 9986, 9994, 9999]),
values=tensor([0.5805, 0.0545, 0.7779, ..., 0.8799, 0.6314, 0.5149]),
tensor(crow_indices=tensor([ 0, 953, 1990, ..., 9998028,
9999002, 10000000]),
col_indices=tensor([ 3, 5, 31, ..., 9963, 9981, 9996]),
values=tensor([0.0177, 0.1736, 0.9045, ..., 0.8807, 0.7948, 0.3225]),
size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr)
tensor([0.1246, 0.2739, 0.0084, ..., 0.7975, 0.3318, 0.0977])
tensor([0.5695, 0.4055, 0.5858, ..., 0.6808, 0.9483, 0.6795])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([10000, 10000])
@ -33,13 +33,13 @@ Rows: 10000
Size: 100000000
NNZ: 10000000
Density: 0.1
Time: 21.58586049079895 seconds
Time: 21.590675115585327 seconds
[20.44, 20.24, 20.32, 20.24, 20.16, 20.52, 20.56, 20.68, 20.88, 21.04]
[20.8, 20.6, 23.72, 23.72, 26.04, 27.56, 30.88, 32.68, 29.8, 29.08, 27.52, 26.28, 24.44, 24.48, 24.48, 24.2, 24.2, 24.2, 24.12, 24.12, 24.28, 24.28, 24.4, 24.32, 24.16, 24.0, 24.08, 24.16]
28.461078882217407
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 21.58586049079895, 'TIME_S_1KI': 215.8586049079895, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 695.2596657943726, 'W': 24.42843676698333}
[20.44, 20.24, 20.32, 20.24, 20.16, 20.52, 20.56, 20.68, 20.88, 21.04, 19.8, 19.8, 19.8, 19.96, 20.0, 20.08, 20.12, 20.36, 20.32, 20.36]
364.86
18.243000000000002
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 21.58586049079895, 'TIME_S_1KI': 215.8586049079895, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 695.2596657943726, 'W': 24.42843676698333, 'J_1KI': 6952.596657943726, 'W_1KI': 244.2843676698333, 'W_D': 6.1854367669833294, 'J_D': 176.04420374608034, 'W_D_1KI': 61.854367669833294, 'J_D_1KI': 618.543676698333}
[20.76, 20.76, 20.76, 20.76, 20.48, 20.8, 20.84, 20.8, 20.76, 20.6]
[20.24, 20.28, 23.72, 25.04, 26.96, 30.6, 31.88, 31.88, 29.52, 29.44, 27.04, 25.04, 23.8, 23.76, 24.04, 24.2, 24.36, 24.36, 24.28, 24.28, 24.28, 24.2, 24.12, 24.32, 24.28, 24.52, 24.36, 24.52]
28.462130784988403
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 21.590675115585327, 'TIME_S_1KI': 215.90675115585327, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 698.2714468479157, 'W': 24.533351073497297}
[20.76, 20.76, 20.76, 20.76, 20.48, 20.8, 20.84, 20.8, 20.76, 20.6, 20.52, 20.48, 20.64, 20.56, 20.36, 20.36, 20.0, 20.12, 19.88, 20.04]
369.32000000000005
18.466
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 21.590675115585327, 'TIME_S_1KI': 215.90675115585327, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 698.2714468479157, 'W': 24.533351073497297, 'J_1KI': 6982.714468479157, 'W_1KI': 245.33351073497298, 'W_D': 6.067351073497296, 'J_D': 172.68973977231983, 'W_D_1KI': 60.67351073497296, 'J_D_1KI': 606.7351073497296}

View File

@ -1 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 42.006776571273804, "TIME_S_1KI": 420.06776571273804, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1323.3857918548583, "W": 24.65839535462019, "J_1KI": 13233.857918548583, "W_1KI": 246.58395354620188, "W_D": 6.256395354620192, "J_D": 335.77305422592167, "W_D_1KI": 62.56395354620192, "J_D_1KI": 625.6395354620192}
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 42.53456234931946, "TIME_S_1KI": 425.3456234931946, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1258.7017677497863, "W": 24.331627673949086, "J_1KI": 12587.017677497863, "W_1KI": 243.31627673949086, "W_D": 5.892627673949086, "J_D": 304.83208806586254, "W_D_1KI": 58.92627673949086, "J_D_1KI": 589.2627673949086}

View File

@ -1,14 +1,14 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 0.2 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 42.006776571273804}
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 42.53456234931946}
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 1950, 3929, ..., 19995954,
19997973, 20000000]),
col_indices=tensor([ 0, 10, 17, ..., 9977, 9980, 9990]),
values=tensor([0.1470, 0.8510, 0.9446, ..., 0.3735, 0.6466, 0.3885]),
tensor(crow_indices=tensor([ 0, 1981, 3961, ..., 19996043,
19998038, 20000000]),
col_indices=tensor([ 1, 3, 6, ..., 9979, 9991, 9993]),
values=tensor([0.0058, 0.7086, 0.6623, ..., 0.9502, 0.1257, 0.5097]),
size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr)
tensor([0.1499, 0.7404, 0.4886, ..., 0.1182, 0.4158, 0.3615])
tensor([0.3594, 0.8224, 0.5071, ..., 0.7554, 0.0445, 0.2812])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([10000, 10000])
@ -16,16 +16,16 @@ Rows: 10000
Size: 100000000
NNZ: 20000000
Density: 0.2
Time: 42.006776571273804 seconds
Time: 42.53456234931946 seconds
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 1950, 3929, ..., 19995954,
19997973, 20000000]),
col_indices=tensor([ 0, 10, 17, ..., 9977, 9980, 9990]),
values=tensor([0.1470, 0.8510, 0.9446, ..., 0.3735, 0.6466, 0.3885]),
tensor(crow_indices=tensor([ 0, 1981, 3961, ..., 19996043,
19998038, 20000000]),
col_indices=tensor([ 1, 3, 6, ..., 9979, 9991, 9993]),
values=tensor([0.0058, 0.7086, 0.6623, ..., 0.9502, 0.1257, 0.5097]),
size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr)
tensor([0.1499, 0.7404, 0.4886, ..., 0.1182, 0.4158, 0.3615])
tensor([0.3594, 0.8224, 0.5071, ..., 0.7554, 0.0445, 0.2812])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([10000, 10000])
@ -33,13 +33,13 @@ Rows: 10000
Size: 100000000
NNZ: 20000000
Density: 0.2
Time: 42.006776571273804 seconds
Time: 42.53456234931946 seconds
[20.44, 20.28, 20.36, 20.28, 20.32, 20.16, 20.32, 20.32, 20.52, 20.56]
[20.6, 20.56, 20.76, 24.64, 26.0, 26.92, 30.76, 29.04, 28.68, 29.52, 30.24, 30.24, 27.76, 27.48, 26.4, 24.64, 24.48, 24.32, 24.28, 24.28, 24.28, 24.08, 24.28, 24.28, 24.36, 24.2, 24.24, 24.6, 24.64, 24.52, 24.72, 24.48, 24.64, 24.4, 24.52, 24.52, 24.36, 24.4, 24.4, 24.4, 24.48, 24.68, 24.76, 24.56, 24.36, 24.16, 24.24, 24.4, 24.4, 24.76, 24.88, 24.96, 24.92]
53.668771743774414
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 42.006776571273804, 'TIME_S_1KI': 420.06776571273804, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1323.3857918548583, 'W': 24.65839535462019}
[20.44, 20.28, 20.36, 20.28, 20.32, 20.16, 20.32, 20.32, 20.52, 20.56, 20.12, 19.92, 20.0, 20.28, 20.44, 20.72, 20.96, 21.04, 21.04, 21.04]
368.03999999999996
18.401999999999997
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 42.006776571273804, 'TIME_S_1KI': 420.06776571273804, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1323.3857918548583, 'W': 24.65839535462019, 'J_1KI': 13233.857918548583, 'W_1KI': 246.58395354620188, 'W_D': 6.256395354620192, 'J_D': 335.77305422592167, 'W_D_1KI': 62.56395354620192, 'J_D_1KI': 625.6395354620192}
[20.48, 20.48, 20.28, 20.32, 20.32, 20.64, 20.72, 20.8, 20.8, 20.6]
[20.68, 20.52, 20.64, 22.6, 23.52, 25.2, 28.36, 29.8, 29.56, 30.0, 31.0, 27.24, 27.24, 27.16, 25.84, 24.08, 24.08, 24.32, 24.32, 24.2, 24.04, 24.08, 24.12, 24.16, 24.16, 24.28, 24.44, 24.36, 24.12, 23.96, 23.8, 24.08, 24.2, 24.32, 24.56, 24.56, 24.32, 24.32, 24.4, 24.28, 24.48, 24.4, 24.4, 24.36, 24.6, 24.52, 24.4, 24.52, 24.36, 24.24, 24.24]
51.731096029281616
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 42.53456234931946, 'TIME_S_1KI': 425.3456234931946, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1258.7017677497863, 'W': 24.331627673949086}
[20.48, 20.48, 20.28, 20.32, 20.32, 20.64, 20.72, 20.8, 20.8, 20.6, 19.76, 19.96, 20.32, 20.4, 20.48, 20.2, 20.28, 20.84, 20.88, 21.28]
368.78
18.439
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 42.53456234931946, 'TIME_S_1KI': 425.3456234931946, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1258.7017677497863, 'W': 24.331627673949086, 'J_1KI': 12587.017677497863, 'W_1KI': 243.31627673949086, 'W_D': 5.892627673949086, 'J_D': 304.83208806586254, 'W_D_1KI': 58.92627673949086, 'J_D_1KI': 589.2627673949086}

View File

@ -1 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 67.20304369926453, "TIME_S_1KI": 672.0304369926453, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1846.4787199783327, "W": 24.29422238106021, "J_1KI": 18464.787199783328, "W_1KI": 242.9422238106021, "W_D": 5.818222381060206, "J_D": 442.2131174325942, "W_D_1KI": 58.18222381060206, "J_D_1KI": 581.8222381060207}
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 63.5993595123291, "TIME_S_1KI": 635.993595123291, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1830.1276798915862, "W": 24.37217906347355, "J_1KI": 18301.27679891586, "W_1KI": 243.72179063473547, "W_D": 6.110179063473549, "J_D": 458.81854897069934, "W_D_1KI": 61.10179063473549, "J_D_1KI": 611.0179063473548}

View File

@ -1,14 +1,14 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 0.3 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 67.20304369926453}
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 63.5993595123291}
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 2926, 5920, ..., 29993999,
29997022, 30000000]),
col_indices=tensor([ 1, 4, 6, ..., 9978, 9982, 9992]),
values=tensor([0.3929, 0.6592, 0.7367, ..., 0.3321, 0.3012, 0.1502]),
tensor(crow_indices=tensor([ 0, 3020, 6019, ..., 29993935,
29996918, 30000000]),
col_indices=tensor([ 3, 10, 12, ..., 9996, 9998, 9999]),
values=tensor([0.4272, 0.9443, 0.2889, ..., 0.0892, 0.8844, 0.9121]),
size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr)
tensor([0.6782, 0.5388, 0.0901, ..., 0.7339, 0.4235, 0.1483])
tensor([0.7267, 0.4804, 0.8266, ..., 0.7945, 0.0876, 0.7736])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([10000, 10000])
@ -16,16 +16,16 @@ Rows: 10000
Size: 100000000
NNZ: 30000000
Density: 0.3
Time: 67.20304369926453 seconds
Time: 63.5993595123291 seconds
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 2926, 5920, ..., 29993999,
29997022, 30000000]),
col_indices=tensor([ 1, 4, 6, ..., 9978, 9982, 9992]),
values=tensor([0.3929, 0.6592, 0.7367, ..., 0.3321, 0.3012, 0.1502]),
tensor(crow_indices=tensor([ 0, 3020, 6019, ..., 29993935,
29996918, 30000000]),
col_indices=tensor([ 3, 10, 12, ..., 9996, 9998, 9999]),
values=tensor([0.4272, 0.9443, 0.2889, ..., 0.0892, 0.8844, 0.9121]),
size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr)
tensor([0.6782, 0.5388, 0.0901, ..., 0.7339, 0.4235, 0.1483])
tensor([0.7267, 0.4804, 0.8266, ..., 0.7945, 0.0876, 0.7736])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([10000, 10000])
@ -33,13 +33,13 @@ Rows: 10000
Size: 100000000
NNZ: 30000000
Density: 0.3
Time: 67.20304369926453 seconds
Time: 63.5993595123291 seconds
[20.6, 20.8, 20.76, 20.64, 20.32, 20.48, 20.48, 20.52, 20.8, 20.6]
[20.64, 20.6, 20.6, 21.32, 22.6, 24.24, 25.68, 28.84, 30.4, 30.64, 31.4, 31.32, 28.4, 28.16, 27.72, 26.8, 26.8, 25.96, 24.6, 24.4, 24.12, 24.12, 24.12, 24.08, 24.36, 24.56, 24.8, 24.88, 24.88, 24.92, 24.92, 24.72, 24.64, 24.44, 24.28, 24.52, 24.68, 24.64, 24.68, 24.64, 24.64, 24.52, 24.76, 24.84, 24.68, 24.72, 24.68, 24.68, 24.76, 24.68, 24.52, 24.2, 24.12, 24.12, 24.24, 24.48, 24.64, 24.76, 24.76, 24.52, 24.28, 24.32, 24.12, 24.04, 24.32, 24.32, 24.6, 24.52, 24.76, 24.72, 24.36, 24.12, 24.16, 24.36, 24.48]
76.0048496723175
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 67.20304369926453, 'TIME_S_1KI': 672.0304369926453, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1846.4787199783327, 'W': 24.29422238106021}
[20.6, 20.8, 20.76, 20.64, 20.32, 20.48, 20.48, 20.52, 20.8, 20.6, 20.04, 20.16, 20.28, 20.16, 20.16, 20.64, 20.72, 20.72, 20.92, 20.68]
369.52000000000004
18.476000000000003
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 67.20304369926453, 'TIME_S_1KI': 672.0304369926453, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1846.4787199783327, 'W': 24.29422238106021, 'J_1KI': 18464.787199783328, 'W_1KI': 242.9422238106021, 'W_D': 5.818222381060206, 'J_D': 442.2131174325942, 'W_D_1KI': 58.18222381060206, 'J_D_1KI': 581.8222381060207}
[20.12, 20.36, 20.28, 20.24, 20.4, 20.44, 20.32, 20.4, 20.48, 20.56]
[20.56, 20.48, 20.76, 22.32, 24.68, 26.0, 27.64, 30.32, 30.48, 30.52, 31.08, 31.48, 29.28, 29.36, 29.36, 28.84, 27.6, 26.24, 24.72, 24.8, 24.56, 24.56, 24.52, 24.24, 24.12, 24.36, 24.52, 24.52, 24.36, 24.48, 24.12, 23.72, 23.84, 24.24, 24.16, 24.24, 24.16, 24.2, 24.0, 24.0, 24.16, 24.32, 24.36, 24.48, 24.4, 24.32, 24.28, 24.16, 24.2, 24.08, 24.28, 24.36, 24.36, 24.4, 24.2, 24.28, 24.16, 24.28, 24.4, 24.48, 24.68, 24.72, 24.72, 24.56, 24.56, 24.48, 24.64, 24.44, 24.4, 24.44, 24.28, 24.24, 24.36, 24.52]
75.09085154533386
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 63.5993595123291, 'TIME_S_1KI': 635.993595123291, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1830.1276798915862, 'W': 24.37217906347355}
[20.12, 20.36, 20.28, 20.24, 20.4, 20.44, 20.32, 20.4, 20.48, 20.56, 20.2, 20.2, 20.36, 20.16, 20.08, 20.08, 20.12, 20.24, 20.4, 20.48]
365.24
18.262
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 63.5993595123291, 'TIME_S_1KI': 635.993595123291, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1830.1276798915862, 'W': 24.37217906347355, 'J_1KI': 18301.27679891586, 'W_1KI': 243.72179063473547, 'W_D': 6.110179063473549, 'J_D': 458.81854897069934, 'W_D_1KI': 61.10179063473549, 'J_D_1KI': 611.0179063473548}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 40000000, "MATRIX_DENSITY": 0.4, "TIME_S": 83.99711680412292, "TIME_S_1KI": 839.9711680412292, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2478.5038306999204, "W": 24.954187412594408, "J_1KI": 24785.038306999206, "W_1KI": 249.54187412594408, "W_D": 6.705187412594405, "J_D": 665.9737066528793, "W_D_1KI": 67.05187412594405, "J_D_1KI": 670.5187412594405}

View File

@ -0,0 +1,45 @@
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 0.4 -c 16']
{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 40000000, "MATRIX_DENSITY": 0.4, "TIME_S": 83.99711680412292}
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 3989, 7950, ..., 39991913,
39995922, 40000000]),
col_indices=tensor([ 0, 1, 6, ..., 9996, 9997, 9999]),
values=tensor([0.4556, 0.9367, 0.5980, ..., 0.0177, 0.8725, 0.2828]),
size=(10000, 10000), nnz=40000000, layout=torch.sparse_csr)
tensor([0.5334, 0.8652, 0.9709, ..., 0.8156, 0.3004, 0.2949])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 40000000
Density: 0.4
Time: 83.99711680412292 seconds
/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 3989, 7950, ..., 39991913,
39995922, 40000000]),
col_indices=tensor([ 0, 1, 6, ..., 9996, 9997, 9999]),
values=tensor([0.4556, 0.9367, 0.5980, ..., 0.0177, 0.8725, 0.2828]),
size=(10000, 10000), nnz=40000000, layout=torch.sparse_csr)
tensor([0.5334, 0.8652, 0.9709, ..., 0.8156, 0.3004, 0.2949])
Matrix Type: synthetic
Matrix Format: csr
Shape: torch.Size([10000, 10000])
Rows: 10000
Size: 100000000
NNZ: 40000000
Density: 0.4
Time: 83.99711680412292 seconds
[20.2, 20.04, 20.04, 20.04, 20.28, 20.2, 20.28, 20.64, 20.48, 20.64]
[20.92, 20.76, 21.2, 24.8, 26.64, 27.52, 29.04, 30.4, 30.4, 31.44, 31.2, 31.8, 30.56, 27.28, 27.84, 27.44, 28.2, 27.6, 26.92, 25.92, 25.92, 24.76, 24.68, 24.72, 24.84, 24.84, 24.92, 25.08, 25.16, 25.12, 25.12, 24.8, 24.68, 24.68, 24.68, 24.76, 24.92, 24.84, 24.8, 25.0, 25.08, 25.08, 25.48, 25.56, 25.56, 25.56, 25.32, 25.2, 24.96, 24.6, 24.72, 24.72, 24.76, 25.04, 25.04, 24.96, 24.8, 24.72, 24.72, 24.6, 24.64, 24.8, 25.04, 24.96, 25.04, 25.08, 24.88, 24.68, 24.76, 24.8, 24.8, 24.88, 24.92, 25.12, 25.08, 25.16, 25.36, 25.28, 25.32, 25.4, 25.2, 24.96, 24.96, 24.96, 24.8, 25.0, 25.04, 25.0, 24.92, 24.88, 24.84, 24.8, 24.6, 24.44, 24.48, 24.48, 24.6, 24.72]
99.32216143608093
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 40000000, 'MATRIX_DENSITY': 0.4, 'TIME_S': 83.99711680412292, 'TIME_S_1KI': 839.9711680412292, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2478.5038306999204, 'W': 24.954187412594408}
[20.2, 20.04, 20.04, 20.04, 20.28, 20.2, 20.28, 20.64, 20.48, 20.64, 20.4, 20.44, 20.36, 20.32, 20.24, 20.24, 20.24, 20.16, 20.16, 20.4]
364.98
18.249000000000002
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 40000000, 'MATRIX_DENSITY': 0.4, 'TIME_S': 83.99711680412292, 'TIME_S_1KI': 839.9711680412292, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2478.5038306999204, 'W': 24.954187412594408, 'J_1KI': 24785.038306999206, 'W_1KI': 249.54187412594408, 'W_D': 6.705187412594405, 'J_D': 665.9737066528793, 'W_D_1KI': 67.05187412594405, 'J_D_1KI': 670.5187412594405}

View File

@ -0,0 +1 @@
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 50000000, "MATRIX_DENSITY": 0.5, "TIME_S": 122.3178551197052, "TIME_S_1KI": 1223.178551197052, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 3064.272414226532, "W": 24.76047197717133, "J_1KI": 30642.72414226532, "W_1KI": 247.6047197717133, "W_D": 6.469471977171327, "J_D": 800.6400093073842, "W_D_1KI": 64.69471977171328, "J_D_1KI": 646.9471977171328}

Some files were not shown because too many files have changed in this diff Show More