From a8eff4c683a0d8a81fa7cb8be2e1a683af053ce6 Mon Sep 17 00:00:00 2001 From: cephi Date: Wed, 18 Dec 2024 14:28:06 -0500 Subject: [PATCH] as-caida coo --- .../altra_16_coo_10_10_10_as-caida_G_010.json | 1 + ...ltra_16_coo_10_10_10_as-caida_G_010.output | 77 ++++++++++++ .../altra_16_coo_10_10_10_as-caida_G_020.json | 1 + ...ltra_16_coo_10_10_10_as-caida_G_020.output | 77 ++++++++++++ .../altra_16_coo_10_10_10_as-caida_G_030.json | 1 + ...ltra_16_coo_10_10_10_as-caida_G_030.output | 77 ++++++++++++ .../altra_16_coo_10_10_10_as-caida_G_040.json | 1 + ...ltra_16_coo_10_10_10_as-caida_G_040.output | 77 ++++++++++++ .../altra_16_coo_10_10_10_as-caida_G_050.json | 1 + ...ltra_16_coo_10_10_10_as-caida_G_050.output | 77 ++++++++++++ .../altra_16_coo_10_10_10_as-caida_G_060.json | 1 + ...ltra_16_coo_10_10_10_as-caida_G_060.output | 59 ++++++++++ .../altra_16_coo_10_10_10_as-caida_G_070.json | 1 + ...ltra_16_coo_10_10_10_as-caida_G_070.output | 77 ++++++++++++ .../altra_16_coo_10_10_10_as-caida_G_080.json | 1 + ...ltra_16_coo_10_10_10_as-caida_G_080.output | 77 ++++++++++++ .../altra_16_coo_10_10_10_as-caida_G_090.json | 1 + ...ltra_16_coo_10_10_10_as-caida_G_090.output | 59 ++++++++++ .../altra_16_coo_10_10_10_as-caida_G_100.json | 1 + ...ltra_16_coo_10_10_10_as-caida_G_100.output | 59 ++++++++++ .../altra_16_coo_10_10_10_as-caida_G_110.json | 1 + ...ltra_16_coo_10_10_10_as-caida_G_110.output | 77 ++++++++++++ .../altra_16_coo_10_10_10_as-caida_G_120.json | 1 + ...ltra_16_coo_10_10_10_as-caida_G_120.output | 77 ++++++++++++ .../altra_16_csr_10_10_10_as-caida_G_005.json | 1 - ...ltra_16_csr_10_10_10_as-caida_G_005.output | 65 ----------- .../altra_16_csr_10_10_10_as-caida_G_015.json | 1 - ...ltra_16_csr_10_10_10_as-caida_G_015.output | 85 -------------- .../altra_16_csr_10_10_10_as-caida_G_025.json | 1 - ...ltra_16_csr_10_10_10_as-caida_G_025.output | 85 -------------- .../altra_16_csr_10_10_10_as-caida_G_035.json | 1 - ...ltra_16_csr_10_10_10_as-caida_G_035.output | 85 -------------- .../altra_16_csr_10_10_10_as-caida_G_045.json | 1 - ...ltra_16_csr_10_10_10_as-caida_G_045.output | 105 ----------------- .../altra_16_csr_10_10_10_as-caida_G_055.json | 1 - ...ltra_16_csr_10_10_10_as-caida_G_055.output | 86 -------------- .../altra_16_csr_10_10_10_as-caida_G_065.json | 1 - ...ltra_16_csr_10_10_10_as-caida_G_065.output | 85 -------------- .../altra_16_csr_10_10_10_as-caida_G_075.json | 1 - ...ltra_16_csr_10_10_10_as-caida_G_075.output | 65 ----------- .../altra_16_csr_10_10_10_as-caida_G_085.json | 1 - ...ltra_16_csr_10_10_10_as-caida_G_085.output | 85 -------------- .../altra_16_csr_10_10_10_as-caida_G_095.json | 1 - ...ltra_16_csr_10_10_10_as-caida_G_095.output | 89 -------------- .../altra_16_csr_10_10_10_as-caida_G_105.json | 1 - ...ltra_16_csr_10_10_10_as-caida_G_105.output | 89 -------------- .../altra_16_csr_10_10_10_as-caida_G_115.json | 1 - ...ltra_16_csr_10_10_10_as-caida_G_115.output | 89 -------------- ..._7313p_16_coo_10_10_10_as-caida_G_010.json | 1 + ...313p_16_coo_10_10_10_as-caida_G_010.output | 59 ++++++++++ ..._7313p_16_coo_10_10_10_as-caida_G_020.json | 1 + ...313p_16_coo_10_10_10_as-caida_G_020.output | 59 ++++++++++ ..._7313p_16_coo_10_10_10_as-caida_G_030.json | 1 + ...313p_16_coo_10_10_10_as-caida_G_030.output | 59 ++++++++++ ..._7313p_16_coo_10_10_10_as-caida_G_040.json | 1 + ...313p_16_coo_10_10_10_as-caida_G_040.output | 59 ++++++++++ ..._7313p_16_coo_10_10_10_as-caida_G_050.json | 1 + ...313p_16_coo_10_10_10_as-caida_G_050.output | 59 ++++++++++ ..._7313p_16_coo_10_10_10_as-caida_G_060.json | 1 + ...313p_16_coo_10_10_10_as-caida_G_060.output | 59 ++++++++++ ..._7313p_16_coo_10_10_10_as-caida_G_070.json | 1 + ...313p_16_coo_10_10_10_as-caida_G_070.output | 59 ++++++++++ ..._7313p_16_coo_10_10_10_as-caida_G_080.json | 1 + ...313p_16_coo_10_10_10_as-caida_G_080.output | 59 ++++++++++ ..._7313p_16_coo_10_10_10_as-caida_G_090.json | 1 + ...313p_16_coo_10_10_10_as-caida_G_090.output | 77 ++++++++++++ ..._7313p_16_coo_10_10_10_as-caida_G_100.json | 1 + ...313p_16_coo_10_10_10_as-caida_G_100.output | 59 ++++++++++ ..._7313p_16_coo_10_10_10_as-caida_G_110.json | 1 + ...313p_16_coo_10_10_10_as-caida_G_110.output | 59 ++++++++++ ..._7313p_16_coo_10_10_10_as-caida_G_120.json | 1 + ...313p_16_coo_10_10_10_as-caida_G_120.output | 59 ++++++++++ ..._7313p_16_csr_10_10_10_as-caida_G_005.json | 1 - ...313p_16_csr_10_10_10_as-caida_G_005.output | 85 -------------- ..._7313p_16_csr_10_10_10_as-caida_G_015.json | 1 - ...313p_16_csr_10_10_10_as-caida_G_015.output | 85 -------------- ..._7313p_16_csr_10_10_10_as-caida_G_025.json | 1 - ...313p_16_csr_10_10_10_as-caida_G_025.output | 85 -------------- ..._7313p_16_csr_10_10_10_as-caida_G_035.json | 1 - ...313p_16_csr_10_10_10_as-caida_G_035.output | 85 -------------- ..._7313p_16_csr_10_10_10_as-caida_G_045.json | 1 - ...313p_16_csr_10_10_10_as-caida_G_045.output | 85 -------------- ..._7313p_16_csr_10_10_10_as-caida_G_055.json | 1 - ...313p_16_csr_10_10_10_as-caida_G_055.output | 85 -------------- ..._7313p_16_csr_10_10_10_as-caida_G_065.json | 1 - ...313p_16_csr_10_10_10_as-caida_G_065.output | 85 -------------- ..._7313p_16_csr_10_10_10_as-caida_G_075.json | 1 - ...313p_16_csr_10_10_10_as-caida_G_075.output | 85 -------------- ..._7313p_16_csr_10_10_10_as-caida_G_085.json | 1 - ...313p_16_csr_10_10_10_as-caida_G_085.output | 85 -------------- ..._7313p_16_csr_10_10_10_as-caida_G_095.json | 1 - ...313p_16_csr_10_10_10_as-caida_G_095.output | 110 ------------------ ..._7313p_16_csr_10_10_10_as-caida_G_105.json | 1 - ...313p_16_csr_10_10_10_as-caida_G_105.output | 110 ------------------ ..._7313p_16_csr_10_10_10_as-caida_G_115.json | 1 - ...313p_16_csr_10_10_10_as-caida_G_115.output | 89 -------------- ...n_4216_16_coo_10_10_10_as-caida_G_010.json | 1 + ...4216_16_coo_10_10_10_as-caida_G_010.output | 59 ++++++++++ ...n_4216_16_coo_10_10_10_as-caida_G_020.json | 1 + ...4216_16_coo_10_10_10_as-caida_G_020.output | 59 ++++++++++ ...n_4216_16_coo_10_10_10_as-caida_G_030.json | 1 + ...4216_16_coo_10_10_10_as-caida_G_030.output | 59 ++++++++++ ...n_4216_16_coo_10_10_10_as-caida_G_040.json | 1 + ...4216_16_coo_10_10_10_as-caida_G_040.output | 59 ++++++++++ ...n_4216_16_coo_10_10_10_as-caida_G_050.json | 1 + ...4216_16_coo_10_10_10_as-caida_G_050.output | 59 ++++++++++ ...n_4216_16_coo_10_10_10_as-caida_G_060.json | 1 + ...4216_16_coo_10_10_10_as-caida_G_060.output | 59 ++++++++++ ...n_4216_16_coo_10_10_10_as-caida_G_070.json | 1 + ...4216_16_coo_10_10_10_as-caida_G_070.output | 59 ++++++++++ ...n_4216_16_coo_10_10_10_as-caida_G_080.json | 1 + ...4216_16_coo_10_10_10_as-caida_G_080.output | 59 ++++++++++ ...n_4216_16_coo_10_10_10_as-caida_G_090.json | 1 + ...4216_16_coo_10_10_10_as-caida_G_090.output | 59 ++++++++++ ...n_4216_16_coo_10_10_10_as-caida_G_100.json | 1 + ...4216_16_coo_10_10_10_as-caida_G_100.output | 59 ++++++++++ ...n_4216_16_coo_10_10_10_as-caida_G_110.json | 1 + ...4216_16_coo_10_10_10_as-caida_G_110.output | 59 ++++++++++ ...n_4216_16_coo_10_10_10_as-caida_G_120.json | 1 + ...4216_16_coo_10_10_10_as-caida_G_120.output | 59 ++++++++++ ...n_4216_16_csr_10_10_10_as-caida_G_005.json | 1 - ...4216_16_csr_10_10_10_as-caida_G_005.output | 85 -------------- ...n_4216_16_csr_10_10_10_as-caida_G_015.json | 1 - ...4216_16_csr_10_10_10_as-caida_G_015.output | 85 -------------- ...n_4216_16_csr_10_10_10_as-caida_G_025.json | 1 - ...4216_16_csr_10_10_10_as-caida_G_025.output | 85 -------------- ...n_4216_16_csr_10_10_10_as-caida_G_035.json | 1 - ...4216_16_csr_10_10_10_as-caida_G_035.output | 85 -------------- ...n_4216_16_csr_10_10_10_as-caida_G_045.json | 1 - ...4216_16_csr_10_10_10_as-caida_G_045.output | 85 -------------- ...n_4216_16_csr_10_10_10_as-caida_G_055.json | 1 - ...4216_16_csr_10_10_10_as-caida_G_055.output | 85 -------------- ...n_4216_16_csr_10_10_10_as-caida_G_065.json | 1 - ...4216_16_csr_10_10_10_as-caida_G_065.output | 85 -------------- ...n_4216_16_csr_10_10_10_as-caida_G_075.json | 1 - ...4216_16_csr_10_10_10_as-caida_G_075.output | 85 -------------- ...n_4216_16_csr_10_10_10_as-caida_G_085.json | 1 - ...4216_16_csr_10_10_10_as-caida_G_085.output | 85 -------------- ...n_4216_16_csr_10_10_10_as-caida_G_095.json | 1 - ...4216_16_csr_10_10_10_as-caida_G_095.output | 89 -------------- ...n_4216_16_csr_10_10_10_as-caida_G_105.json | 1 - ...4216_16_csr_10_10_10_as-caida_G_105.output | 89 -------------- ...n_4216_16_csr_10_10_10_as-caida_G_115.json | 1 - ...4216_16_csr_10_10_10_as-caida_G_115.output | 89 -------------- .../altra_1_coo_10_10_10_as-caida_G_010.json | 1 + ...altra_1_coo_10_10_10_as-caida_G_010.output | 77 ++++++++++++ .../altra_1_coo_10_10_10_as-caida_G_020.json | 1 + ...altra_1_coo_10_10_10_as-caida_G_020.output | 59 ++++++++++ .../altra_1_coo_10_10_10_as-caida_G_030.json | 1 + ...altra_1_coo_10_10_10_as-caida_G_030.output | 59 ++++++++++ .../altra_1_coo_10_10_10_as-caida_G_040.json | 1 + ...altra_1_coo_10_10_10_as-caida_G_040.output | 59 ++++++++++ .../altra_1_coo_10_10_10_as-caida_G_050.json | 1 + ...altra_1_coo_10_10_10_as-caida_G_050.output | 59 ++++++++++ .../altra_1_coo_10_10_10_as-caida_G_060.json | 1 + ...altra_1_coo_10_10_10_as-caida_G_060.output | 59 ++++++++++ .../altra_1_coo_10_10_10_as-caida_G_070.json | 1 + ...altra_1_coo_10_10_10_as-caida_G_070.output | 59 ++++++++++ .../altra_1_coo_10_10_10_as-caida_G_080.json | 1 + ...altra_1_coo_10_10_10_as-caida_G_080.output | 59 ++++++++++ .../altra_1_coo_10_10_10_as-caida_G_090.json | 1 + ...altra_1_coo_10_10_10_as-caida_G_090.output | 59 ++++++++++ .../altra_1_coo_10_10_10_as-caida_G_100.json | 1 + ...altra_1_coo_10_10_10_as-caida_G_100.output | 59 ++++++++++ .../altra_1_coo_10_10_10_as-caida_G_110.json | 1 + ...altra_1_coo_10_10_10_as-caida_G_110.output | 59 ++++++++++ .../altra_1_coo_10_10_10_as-caida_G_120.json | 1 + ...altra_1_coo_10_10_10_as-caida_G_120.output | 59 ++++++++++ .../altra_1_csr_10_10_10_as-caida_G_005.json | 1 - ...altra_1_csr_10_10_10_as-caida_G_005.output | 85 -------------- .../altra_1_csr_10_10_10_as-caida_G_015.json | 1 - ...altra_1_csr_10_10_10_as-caida_G_015.output | 65 ----------- .../altra_1_csr_10_10_10_as-caida_G_025.json | 1 - ...altra_1_csr_10_10_10_as-caida_G_025.output | 65 ----------- .../altra_1_csr_10_10_10_as-caida_G_035.json | 1 - ...altra_1_csr_10_10_10_as-caida_G_035.output | 85 -------------- .../altra_1_csr_10_10_10_as-caida_G_045.json | 1 - ...altra_1_csr_10_10_10_as-caida_G_045.output | 85 -------------- .../altra_1_csr_10_10_10_as-caida_G_055.json | 1 - ...altra_1_csr_10_10_10_as-caida_G_055.output | 65 ----------- .../altra_1_csr_10_10_10_as-caida_G_065.json | 1 - ...altra_1_csr_10_10_10_as-caida_G_065.output | 65 ----------- .../altra_1_csr_10_10_10_as-caida_G_075.json | 1 - ...altra_1_csr_10_10_10_as-caida_G_075.output | 65 ----------- .../altra_1_csr_10_10_10_as-caida_G_085.json | 1 - ...altra_1_csr_10_10_10_as-caida_G_085.output | 65 ----------- .../altra_1_csr_10_10_10_as-caida_G_095.json | 1 - ...altra_1_csr_10_10_10_as-caida_G_095.output | 89 -------------- .../altra_1_csr_10_10_10_as-caida_G_105.json | 1 - ...altra_1_csr_10_10_10_as-caida_G_105.output | 68 ----------- .../altra_1_csr_10_10_10_as-caida_G_115.json | 1 - ...altra_1_csr_10_10_10_as-caida_G_115.output | 89 -------------- ...c_7313p_1_coo_10_10_10_as-caida_G_010.json | 0 ...7313p_1_coo_10_10_10_as-caida_G_010.output | 55 +++++++++ ...c_7313p_1_coo_10_10_10_as-caida_G_020.json | 1 + ...7313p_1_coo_10_10_10_as-caida_G_020.output | 59 ++++++++++ ...c_7313p_1_coo_10_10_10_as-caida_G_030.json | 1 + ...7313p_1_coo_10_10_10_as-caida_G_030.output | 59 ++++++++++ ...c_7313p_1_coo_10_10_10_as-caida_G_040.json | 1 + ...7313p_1_coo_10_10_10_as-caida_G_040.output | 59 ++++++++++ ...c_7313p_1_coo_10_10_10_as-caida_G_050.json | 1 + ...7313p_1_coo_10_10_10_as-caida_G_050.output | 77 ++++++++++++ ...c_7313p_1_coo_10_10_10_as-caida_G_060.json | 1 + ...7313p_1_coo_10_10_10_as-caida_G_060.output | 59 ++++++++++ ...c_7313p_1_coo_10_10_10_as-caida_G_070.json | 1 + ...7313p_1_coo_10_10_10_as-caida_G_070.output | 59 ++++++++++ ...c_7313p_1_coo_10_10_10_as-caida_G_080.json | 1 + ...7313p_1_coo_10_10_10_as-caida_G_080.output | 59 ++++++++++ ...c_7313p_1_coo_10_10_10_as-caida_G_090.json | 1 + ...7313p_1_coo_10_10_10_as-caida_G_090.output | 59 ++++++++++ ...c_7313p_1_coo_10_10_10_as-caida_G_100.json | 1 + ...7313p_1_coo_10_10_10_as-caida_G_100.output | 59 ++++++++++ ...c_7313p_1_coo_10_10_10_as-caida_G_110.json | 1 + ...7313p_1_coo_10_10_10_as-caida_G_110.output | 59 ++++++++++ ...c_7313p_1_coo_10_10_10_as-caida_G_120.json | 1 + ...7313p_1_coo_10_10_10_as-caida_G_120.output | 59 ++++++++++ ...c_7313p_1_csr_10_10_10_as-caida_G_005.json | 1 - ...7313p_1_csr_10_10_10_as-caida_G_005.output | 85 -------------- ...c_7313p_1_csr_10_10_10_as-caida_G_015.json | 1 - ...7313p_1_csr_10_10_10_as-caida_G_015.output | 85 -------------- ...c_7313p_1_csr_10_10_10_as-caida_G_025.json | 1 - ...7313p_1_csr_10_10_10_as-caida_G_025.output | 85 -------------- ...c_7313p_1_csr_10_10_10_as-caida_G_035.json | 1 - ...7313p_1_csr_10_10_10_as-caida_G_035.output | 85 -------------- ...c_7313p_1_csr_10_10_10_as-caida_G_045.json | 1 - ...7313p_1_csr_10_10_10_as-caida_G_045.output | 105 ----------------- ...c_7313p_1_csr_10_10_10_as-caida_G_055.json | 1 - ...7313p_1_csr_10_10_10_as-caida_G_055.output | 85 -------------- ...c_7313p_1_csr_10_10_10_as-caida_G_065.json | 1 - ...7313p_1_csr_10_10_10_as-caida_G_065.output | 85 -------------- ...c_7313p_1_csr_10_10_10_as-caida_G_075.json | 1 - ...7313p_1_csr_10_10_10_as-caida_G_075.output | 85 -------------- ...c_7313p_1_csr_10_10_10_as-caida_G_085.json | 1 - ...7313p_1_csr_10_10_10_as-caida_G_085.output | 85 -------------- ...c_7313p_1_csr_10_10_10_as-caida_G_095.json | 1 - ...7313p_1_csr_10_10_10_as-caida_G_095.output | 90 -------------- ...c_7313p_1_csr_10_10_10_as-caida_G_105.json | 1 - ...7313p_1_csr_10_10_10_as-caida_G_105.output | 89 -------------- ...c_7313p_1_csr_10_10_10_as-caida_G_115.json | 1 - ...7313p_1_csr_10_10_10_as-caida_G_115.output | 89 -------------- ...on_4216_1_coo_10_10_10_as-caida_G_010.json | 1 + ..._4216_1_coo_10_10_10_as-caida_G_010.output | 59 ++++++++++ ...on_4216_1_coo_10_10_10_as-caida_G_020.json | 1 + ..._4216_1_coo_10_10_10_as-caida_G_020.output | 59 ++++++++++ ...on_4216_1_coo_10_10_10_as-caida_G_030.json | 1 + ..._4216_1_coo_10_10_10_as-caida_G_030.output | 59 ++++++++++ ...on_4216_1_coo_10_10_10_as-caida_G_040.json | 1 + ..._4216_1_coo_10_10_10_as-caida_G_040.output | 59 ++++++++++ ...on_4216_1_coo_10_10_10_as-caida_G_050.json | 1 + ..._4216_1_coo_10_10_10_as-caida_G_050.output | 77 ++++++++++++ ...on_4216_1_coo_10_10_10_as-caida_G_060.json | 1 + ..._4216_1_coo_10_10_10_as-caida_G_060.output | 59 ++++++++++ ...on_4216_1_coo_10_10_10_as-caida_G_070.json | 1 + ..._4216_1_coo_10_10_10_as-caida_G_070.output | 59 ++++++++++ ...on_4216_1_coo_10_10_10_as-caida_G_080.json | 1 + ..._4216_1_coo_10_10_10_as-caida_G_080.output | 59 ++++++++++ ...on_4216_1_coo_10_10_10_as-caida_G_090.json | 1 + ..._4216_1_coo_10_10_10_as-caida_G_090.output | 59 ++++++++++ ...on_4216_1_coo_10_10_10_as-caida_G_100.json | 1 + ..._4216_1_coo_10_10_10_as-caida_G_100.output | 59 ++++++++++ ...on_4216_1_coo_10_10_10_as-caida_G_110.json | 1 + ..._4216_1_coo_10_10_10_as-caida_G_110.output | 59 ++++++++++ ...on_4216_1_coo_10_10_10_as-caida_G_120.json | 1 + ..._4216_1_coo_10_10_10_as-caida_G_120.output | 59 ++++++++++ ...on_4216_1_csr_10_10_10_as-caida_G_005.json | 1 - ..._4216_1_csr_10_10_10_as-caida_G_005.output | 85 -------------- ...on_4216_1_csr_10_10_10_as-caida_G_015.json | 1 - ..._4216_1_csr_10_10_10_as-caida_G_015.output | 85 -------------- ...on_4216_1_csr_10_10_10_as-caida_G_025.json | 1 - ..._4216_1_csr_10_10_10_as-caida_G_025.output | 85 -------------- ...on_4216_1_csr_10_10_10_as-caida_G_035.json | 1 - ..._4216_1_csr_10_10_10_as-caida_G_035.output | 85 -------------- ...on_4216_1_csr_10_10_10_as-caida_G_045.json | 1 - ..._4216_1_csr_10_10_10_as-caida_G_045.output | 85 -------------- ...on_4216_1_csr_10_10_10_as-caida_G_055.json | 1 - ..._4216_1_csr_10_10_10_as-caida_G_055.output | 85 -------------- ...on_4216_1_csr_10_10_10_as-caida_G_065.json | 1 - ..._4216_1_csr_10_10_10_as-caida_G_065.output | 105 ----------------- ...on_4216_1_csr_10_10_10_as-caida_G_075.json | 1 - ..._4216_1_csr_10_10_10_as-caida_G_075.output | 85 -------------- ...on_4216_1_csr_10_10_10_as-caida_G_085.json | 1 - ..._4216_1_csr_10_10_10_as-caida_G_085.output | 85 -------------- ...on_4216_1_csr_10_10_10_as-caida_G_095.json | 1 - ..._4216_1_csr_10_10_10_as-caida_G_095.output | 89 -------------- ...on_4216_1_csr_10_10_10_as-caida_G_105.json | 1 - ..._4216_1_csr_10_10_10_as-caida_G_105.output | 89 -------------- ...on_4216_1_csr_10_10_10_as-caida_G_115.json | 1 - ..._4216_1_csr_10_10_10_as-caida_G_115.output | 89 -------------- ...altra_max_coo_10_10_10_as-caida_G_010.json | 1 + ...tra_max_coo_10_10_10_as-caida_G_010.output | 77 ++++++++++++ ...altra_max_coo_10_10_10_as-caida_G_020.json | 1 + ...tra_max_coo_10_10_10_as-caida_G_020.output | 77 ++++++++++++ ...altra_max_coo_10_10_10_as-caida_G_030.json | 1 + ...tra_max_coo_10_10_10_as-caida_G_030.output | 77 ++++++++++++ ...altra_max_coo_10_10_10_as-caida_G_040.json | 1 + ...tra_max_coo_10_10_10_as-caida_G_040.output | 77 ++++++++++++ ...altra_max_coo_10_10_10_as-caida_G_050.json | 1 + ...tra_max_coo_10_10_10_as-caida_G_050.output | 77 ++++++++++++ ...altra_max_coo_10_10_10_as-caida_G_060.json | 1 + ...tra_max_coo_10_10_10_as-caida_G_060.output | 77 ++++++++++++ ...altra_max_coo_10_10_10_as-caida_G_070.json | 1 + ...tra_max_coo_10_10_10_as-caida_G_070.output | 77 ++++++++++++ ...altra_max_coo_10_10_10_as-caida_G_080.json | 1 + ...tra_max_coo_10_10_10_as-caida_G_080.output | 59 ++++++++++ ...altra_max_coo_10_10_10_as-caida_G_090.json | 1 + ...tra_max_coo_10_10_10_as-caida_G_090.output | 59 ++++++++++ ...altra_max_coo_10_10_10_as-caida_G_100.json | 1 + ...tra_max_coo_10_10_10_as-caida_G_100.output | 95 +++++++++++++++ ...altra_max_coo_10_10_10_as-caida_G_110.json | 1 + ...tra_max_coo_10_10_10_as-caida_G_110.output | 77 ++++++++++++ ...altra_max_coo_10_10_10_as-caida_G_120.json | 1 + ...tra_max_coo_10_10_10_as-caida_G_120.output | 77 ++++++++++++ ...altra_max_csr_10_10_10_as-caida_G_005.json | 1 - ...tra_max_csr_10_10_10_as-caida_G_005.output | 85 -------------- ...altra_max_csr_10_10_10_as-caida_G_015.json | 1 - ...tra_max_csr_10_10_10_as-caida_G_015.output | 85 -------------- ...altra_max_csr_10_10_10_as-caida_G_025.json | 1 - ...tra_max_csr_10_10_10_as-caida_G_025.output | 85 -------------- ...altra_max_csr_10_10_10_as-caida_G_035.json | 1 - ...tra_max_csr_10_10_10_as-caida_G_035.output | 85 -------------- ...altra_max_csr_10_10_10_as-caida_G_045.json | 1 - ...tra_max_csr_10_10_10_as-caida_G_045.output | 85 -------------- ...altra_max_csr_10_10_10_as-caida_G_055.json | 1 - ...tra_max_csr_10_10_10_as-caida_G_055.output | 85 -------------- ...altra_max_csr_10_10_10_as-caida_G_065.json | 1 - ...tra_max_csr_10_10_10_as-caida_G_065.output | 85 -------------- ...altra_max_csr_10_10_10_as-caida_G_075.json | 1 - ...tra_max_csr_10_10_10_as-caida_G_075.output | 85 -------------- ...altra_max_csr_10_10_10_as-caida_G_085.json | 1 - ...tra_max_csr_10_10_10_as-caida_G_085.output | 85 -------------- ...altra_max_csr_10_10_10_as-caida_G_095.json | 1 - ...tra_max_csr_10_10_10_as-caida_G_095.output | 89 -------------- ...altra_max_csr_10_10_10_as-caida_G_105.json | 1 - ...tra_max_csr_10_10_10_as-caida_G_105.output | 89 -------------- ...altra_max_csr_10_10_10_as-caida_G_115.json | 1 - ...tra_max_csr_10_10_10_as-caida_G_115.output | 68 ----------- ...7313p_max_coo_10_10_10_as-caida_G_010.json | 1 + ...13p_max_coo_10_10_10_as-caida_G_010.output | 59 ++++++++++ ...7313p_max_coo_10_10_10_as-caida_G_020.json | 1 + ...13p_max_coo_10_10_10_as-caida_G_020.output | 59 ++++++++++ ...7313p_max_coo_10_10_10_as-caida_G_030.json | 1 + ...13p_max_coo_10_10_10_as-caida_G_030.output | 59 ++++++++++ ...7313p_max_coo_10_10_10_as-caida_G_040.json | 1 + ...13p_max_coo_10_10_10_as-caida_G_040.output | 59 ++++++++++ ...7313p_max_coo_10_10_10_as-caida_G_050.json | 1 + ...13p_max_coo_10_10_10_as-caida_G_050.output | 59 ++++++++++ ...7313p_max_coo_10_10_10_as-caida_G_060.json | 1 + ...13p_max_coo_10_10_10_as-caida_G_060.output | 59 ++++++++++ ...7313p_max_coo_10_10_10_as-caida_G_070.json | 1 + ...13p_max_coo_10_10_10_as-caida_G_070.output | 59 ++++++++++ ...7313p_max_coo_10_10_10_as-caida_G_080.json | 1 + ...13p_max_coo_10_10_10_as-caida_G_080.output | 59 ++++++++++ ...7313p_max_coo_10_10_10_as-caida_G_090.json | 1 + ...13p_max_coo_10_10_10_as-caida_G_090.output | 59 ++++++++++ ...7313p_max_coo_10_10_10_as-caida_G_100.json | 1 + ...13p_max_coo_10_10_10_as-caida_G_100.output | 59 ++++++++++ ...7313p_max_coo_10_10_10_as-caida_G_110.json | 1 + ...13p_max_coo_10_10_10_as-caida_G_110.output | 59 ++++++++++ ...7313p_max_coo_10_10_10_as-caida_G_120.json | 1 + ...13p_max_coo_10_10_10_as-caida_G_120.output | 59 ++++++++++ ...7313p_max_csr_10_10_10_as-caida_G_005.json | 1 - ...13p_max_csr_10_10_10_as-caida_G_005.output | 85 -------------- ...7313p_max_csr_10_10_10_as-caida_G_015.json | 1 - ...13p_max_csr_10_10_10_as-caida_G_015.output | 85 -------------- ...7313p_max_csr_10_10_10_as-caida_G_025.json | 1 - ...13p_max_csr_10_10_10_as-caida_G_025.output | 105 ----------------- ...7313p_max_csr_10_10_10_as-caida_G_035.json | 1 - ...13p_max_csr_10_10_10_as-caida_G_035.output | 85 -------------- ...7313p_max_csr_10_10_10_as-caida_G_045.json | 1 - ...13p_max_csr_10_10_10_as-caida_G_045.output | 105 ----------------- ...7313p_max_csr_10_10_10_as-caida_G_055.json | 1 - ...13p_max_csr_10_10_10_as-caida_G_055.output | 85 -------------- ...7313p_max_csr_10_10_10_as-caida_G_065.json | 1 - ...13p_max_csr_10_10_10_as-caida_G_065.output | 85 -------------- ...7313p_max_csr_10_10_10_as-caida_G_075.json | 1 - ...13p_max_csr_10_10_10_as-caida_G_075.output | 85 -------------- ...7313p_max_csr_10_10_10_as-caida_G_085.json | 1 - ...13p_max_csr_10_10_10_as-caida_G_085.output | 85 -------------- ...7313p_max_csr_10_10_10_as-caida_G_095.json | 1 - ...13p_max_csr_10_10_10_as-caida_G_095.output | 89 -------------- ...7313p_max_csr_10_10_10_as-caida_G_105.json | 1 - ...13p_max_csr_10_10_10_as-caida_G_105.output | 89 -------------- ...7313p_max_csr_10_10_10_as-caida_G_115.json | 1 - ...13p_max_csr_10_10_10_as-caida_G_115.output | 89 -------------- ..._4216_max_coo_10_10_10_as-caida_G_010.json | 1 + ...216_max_coo_10_10_10_as-caida_G_010.output | 59 ++++++++++ ..._4216_max_coo_10_10_10_as-caida_G_020.json | 1 + ...216_max_coo_10_10_10_as-caida_G_020.output | 59 ++++++++++ ..._4216_max_coo_10_10_10_as-caida_G_030.json | 1 + ...216_max_coo_10_10_10_as-caida_G_030.output | 59 ++++++++++ ..._4216_max_coo_10_10_10_as-caida_G_040.json | 1 + ...216_max_coo_10_10_10_as-caida_G_040.output | 59 ++++++++++ ..._4216_max_coo_10_10_10_as-caida_G_050.json | 1 + ...216_max_coo_10_10_10_as-caida_G_050.output | 59 ++++++++++ ..._4216_max_coo_10_10_10_as-caida_G_060.json | 1 + ...216_max_coo_10_10_10_as-caida_G_060.output | 59 ++++++++++ ..._4216_max_coo_10_10_10_as-caida_G_070.json | 1 + ...216_max_coo_10_10_10_as-caida_G_070.output | 59 ++++++++++ ..._4216_max_coo_10_10_10_as-caida_G_080.json | 1 + ...216_max_coo_10_10_10_as-caida_G_080.output | 59 ++++++++++ ..._4216_max_coo_10_10_10_as-caida_G_090.json | 1 + ...216_max_coo_10_10_10_as-caida_G_090.output | 59 ++++++++++ ..._4216_max_coo_10_10_10_as-caida_G_100.json | 1 + ...216_max_coo_10_10_10_as-caida_G_100.output | 59 ++++++++++ ..._4216_max_coo_10_10_10_as-caida_G_110.json | 1 + ...216_max_coo_10_10_10_as-caida_G_110.output | 59 ++++++++++ ..._4216_max_coo_10_10_10_as-caida_G_120.json | 1 + ...216_max_coo_10_10_10_as-caida_G_120.output | 59 ++++++++++ ..._4216_max_csr_10_10_10_as-caida_G_005.json | 1 - ...216_max_csr_10_10_10_as-caida_G_005.output | 85 -------------- ..._4216_max_csr_10_10_10_as-caida_G_015.json | 1 - ...216_max_csr_10_10_10_as-caida_G_015.output | 85 -------------- ..._4216_max_csr_10_10_10_as-caida_G_025.json | 1 - ...216_max_csr_10_10_10_as-caida_G_025.output | 85 -------------- ..._4216_max_csr_10_10_10_as-caida_G_035.json | 1 - ...216_max_csr_10_10_10_as-caida_G_035.output | 85 -------------- ..._4216_max_csr_10_10_10_as-caida_G_045.json | 1 - ...216_max_csr_10_10_10_as-caida_G_045.output | 85 -------------- ..._4216_max_csr_10_10_10_as-caida_G_055.json | 1 - ...216_max_csr_10_10_10_as-caida_G_055.output | 85 -------------- ..._4216_max_csr_10_10_10_as-caida_G_065.json | 1 - ...216_max_csr_10_10_10_as-caida_G_065.output | 85 -------------- ..._4216_max_csr_10_10_10_as-caida_G_075.json | 1 - ...216_max_csr_10_10_10_as-caida_G_075.output | 85 -------------- ..._4216_max_csr_10_10_10_as-caida_G_085.json | 1 - ...216_max_csr_10_10_10_as-caida_G_085.output | 85 -------------- ..._4216_max_csr_10_10_10_as-caida_G_095.json | 1 - ...216_max_csr_10_10_10_as-caida_G_095.output | 89 -------------- ..._4216_max_csr_10_10_10_as-caida_G_105.json | 1 - ...216_max_csr_10_10_10_as-caida_G_105.output | 89 -------------- ..._4216_max_csr_10_10_10_as-caida_G_115.json | 1 - ...216_max_csr_10_10_10_as-caida_G_115.output | 89 -------------- 432 files changed, 6907 insertions(+), 9338 deletions(-) create mode 100644 pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_010.json create mode 100644 pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_010.output create mode 100644 pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_020.json create mode 100644 pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_020.output create mode 100644 pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_030.json create mode 100644 pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_030.output create mode 100644 pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_040.json create mode 100644 pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_040.output create mode 100644 pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_050.json create mode 100644 pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_050.output create mode 100644 pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_060.json create mode 100644 pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_060.output create mode 100644 pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_070.json create mode 100644 pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_070.output create mode 100644 pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_080.json create mode 100644 pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_080.output create mode 100644 pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_090.json create mode 100644 pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_090.output create mode 100644 pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_100.json create mode 100644 pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_100.output create mode 100644 pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_110.json create mode 100644 pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_110.output create mode 100644 pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_120.json create mode 100644 pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_120.output delete mode 100644 pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_005.json delete mode 100644 pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_005.output delete mode 100644 pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_015.json delete mode 100644 pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_015.output delete mode 100644 pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_025.json delete mode 100644 pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_025.output delete mode 100644 pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_035.json delete mode 100644 pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_035.output delete mode 100644 pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_045.json delete mode 100644 pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_045.output delete mode 100644 pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_055.json delete mode 100644 pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_055.output delete mode 100644 pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_065.json delete mode 100644 pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_065.output delete mode 100644 pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_075.json delete mode 100644 pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_075.output delete mode 100644 pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_085.json delete mode 100644 pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_085.output delete mode 100644 pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_095.json delete mode 100644 pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_095.output delete mode 100644 pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_105.json delete mode 100644 pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_105.output delete mode 100644 pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_115.json delete mode 100644 pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_115.output create mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_010.json create mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_010.output create mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_020.json create mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_020.output create mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_030.json create mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_030.output create mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_040.json create mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_040.output create mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_050.json create mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_050.output create mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_060.json create mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_060.output create mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_070.json create mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_070.output create mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_080.json create mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_080.output create mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_090.json create mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_090.output create mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_100.json create mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_100.output create mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_110.json create mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_110.output create mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_120.json create mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_120.output delete mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_005.json delete mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_005.output delete mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_015.json delete mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_015.output delete mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_025.json delete mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_025.output delete mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_035.json delete mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_035.output delete mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_045.json delete mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_045.output delete mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_055.json delete mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_055.output delete mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_065.json delete mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_065.output delete mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_075.json delete mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_075.output delete mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_085.json delete mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_085.output delete mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_095.json delete mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_095.output delete mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_105.json delete mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_105.output delete mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_115.json delete mode 100644 pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_115.output create mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_010.json create mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_010.output create mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_020.json create mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_020.output create mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_030.json create mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_030.output create mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_040.json create mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_040.output create mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_050.json create mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_050.output create mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_060.json create mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_060.output create mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_070.json create mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_070.output create mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_080.json create mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_080.output create mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_090.json create mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_090.output create mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_100.json create mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_100.output create mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_110.json create mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_110.output create mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_120.json create mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_120.output delete mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_005.json delete mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_005.output delete mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_015.json delete mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_015.output delete mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_025.json delete mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_025.output delete mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_035.json delete mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_035.output delete mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_045.json delete mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_045.output delete mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_055.json delete mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_055.output delete mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_065.json delete mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_065.output delete mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_075.json delete mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_075.output delete mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_085.json delete mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_085.output delete mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_095.json delete mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_095.output delete mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_105.json delete mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_105.output delete mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_115.json delete mode 100644 pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_115.output create mode 100644 pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_010.json create mode 100644 pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_010.output create mode 100644 pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_020.json create mode 100644 pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_020.output create mode 100644 pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_030.json create mode 100644 pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_030.output create mode 100644 pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_040.json create mode 100644 pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_040.output create mode 100644 pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_050.json create mode 100644 pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_050.output create mode 100644 pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_060.json create mode 100644 pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_060.output create mode 100644 pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_070.json create mode 100644 pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_070.output create mode 100644 pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_080.json create mode 100644 pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_080.output create mode 100644 pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_090.json create mode 100644 pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_090.output create mode 100644 pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_100.json create mode 100644 pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_100.output create mode 100644 pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_110.json create mode 100644 pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_110.output create mode 100644 pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_120.json create mode 100644 pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_120.output delete mode 100644 pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_005.json delete mode 100644 pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_005.output delete mode 100644 pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_015.json delete mode 100644 pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_015.output delete mode 100644 pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_025.json delete mode 100644 pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_025.output delete mode 100644 pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_035.json delete mode 100644 pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_035.output delete mode 100644 pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_045.json delete mode 100644 pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_045.output delete mode 100644 pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_055.json delete mode 100644 pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_055.output delete mode 100644 pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_065.json delete mode 100644 pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_065.output delete mode 100644 pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_075.json delete mode 100644 pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_075.output delete mode 100644 pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_085.json delete mode 100644 pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_085.output delete mode 100644 pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_095.json delete mode 100644 pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_095.output delete mode 100644 pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_105.json delete mode 100644 pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_105.output delete mode 100644 pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_115.json delete mode 100644 pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_115.output create mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_010.json create mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_010.output create mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_020.json create mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_020.output create mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_030.json create mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_030.output create mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_040.json create mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_040.output create mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_050.json create mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_050.output create mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_060.json create mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_060.output create mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_070.json create mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_070.output create mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_080.json create mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_080.output create mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_090.json create mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_090.output create mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_100.json create mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_100.output create mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_110.json create mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_110.output create mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_120.json create mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_120.output delete mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_005.json delete mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_005.output delete mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_015.json delete mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_015.output delete mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_025.json delete mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_025.output delete mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_035.json delete mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_035.output delete mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_045.json delete mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_045.output delete mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_055.json delete mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_055.output delete mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_065.json delete mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_065.output delete mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_075.json delete mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_075.output delete mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_085.json delete mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_085.output delete mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_095.json delete mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_095.output delete mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_105.json delete mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_105.output delete mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_115.json delete mode 100644 pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_115.output create mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_010.json create mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_010.output create mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_020.json create mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_020.output create mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_030.json create mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_030.output create mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_040.json create mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_040.output create mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_050.json create mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_050.output create mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_060.json create mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_060.output create mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_070.json create mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_070.output create mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_080.json create mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_080.output create mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_090.json create mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_090.output create mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_100.json create mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_100.output create mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_110.json create mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_110.output create mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_120.json create mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_120.output delete mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_005.json delete mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_005.output delete mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_015.json delete mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_015.output delete mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_025.json delete mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_025.output delete mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_035.json delete mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_035.output delete mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_045.json delete mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_045.output delete mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_055.json delete mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_055.output delete mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_065.json delete mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_065.output delete mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_075.json delete mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_075.output delete mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_085.json delete mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_085.output delete mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_095.json delete mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_095.output delete mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_105.json delete mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_105.output delete mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_115.json delete mode 100644 pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_115.output create mode 100644 pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_010.json create mode 100644 pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_010.output create mode 100644 pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_020.json create mode 100644 pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_020.output create mode 100644 pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_030.json create mode 100644 pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_030.output create mode 100644 pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_040.json create mode 100644 pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_040.output create mode 100644 pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_050.json create mode 100644 pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_050.output create mode 100644 pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_060.json create mode 100644 pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_060.output create mode 100644 pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_070.json create mode 100644 pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_070.output create mode 100644 pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_080.json create mode 100644 pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_080.output create mode 100644 pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_090.json create mode 100644 pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_090.output create mode 100644 pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_100.json create mode 100644 pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_100.output create mode 100644 pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_110.json create mode 100644 pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_110.output create mode 100644 pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_120.json create mode 100644 pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_120.output delete mode 100644 pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_005.json delete mode 100644 pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_005.output delete mode 100644 pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_015.json delete mode 100644 pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_015.output delete mode 100644 pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_025.json delete mode 100644 pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_025.output delete mode 100644 pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_035.json delete mode 100644 pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_035.output delete mode 100644 pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_045.json delete mode 100644 pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_045.output delete mode 100644 pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_055.json delete mode 100644 pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_055.output delete mode 100644 pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_065.json delete mode 100644 pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_065.output delete mode 100644 pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_075.json delete mode 100644 pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_075.output delete mode 100644 pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_085.json delete mode 100644 pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_085.output delete mode 100644 pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_095.json delete mode 100644 pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_095.output delete mode 100644 pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_105.json delete mode 100644 pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_105.output delete mode 100644 pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_115.json delete mode 100644 pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_115.output create mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_010.json create mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_010.output create mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_020.json create mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_020.output create mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_030.json create mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_030.output create mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_040.json create mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_040.output create mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_050.json create mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_050.output create mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_060.json create mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_060.output create mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_070.json create mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_070.output create mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_080.json create mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_080.output create mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_090.json create mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_090.output create mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_100.json create mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_100.output create mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_110.json create mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_110.output create mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_120.json create mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_120.output delete mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_005.json delete mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_005.output delete mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_015.json delete mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_015.output delete mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_025.json delete mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_025.output delete mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_035.json delete mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_035.output delete mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_045.json delete mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_045.output delete mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_055.json delete mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_055.output delete mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_065.json delete mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_065.output delete mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_075.json delete mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_075.output delete mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_085.json delete mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_085.output delete mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_095.json delete mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_095.output delete mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_105.json delete mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_105.output delete mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_115.json delete mode 100644 pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_115.output create mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_010.json create mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_010.output create mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_020.json create mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_020.output create mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_030.json create mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_030.output create mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_040.json create mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_040.output create mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_050.json create mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_050.output create mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_060.json create mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_060.output create mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_070.json create mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_070.output create mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_080.json create mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_080.output create mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_090.json create mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_090.output create mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_100.json create mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_100.output create mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_110.json create mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_110.output create mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_120.json create mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_120.output delete mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_005.json delete mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_005.output delete mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_015.json delete mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_015.output delete mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_025.json delete mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_025.output delete mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_035.json delete mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_035.output delete mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_045.json delete mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_045.output delete mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_055.json delete mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_055.output delete mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_065.json delete mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_065.output delete mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_075.json delete mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_075.output delete mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_085.json delete mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_085.output delete mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_095.json delete mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_095.output delete mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_105.json delete mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_105.output delete mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_115.json delete mode 100644 pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_115.output diff --git a/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_010.json b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_010.json new file mode 100644 index 0000000..6f81294 --- /dev/null +++ b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_010.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 6644, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 10.559938669204712, "TIME_S_1KI": 1.5893947425052244, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 282.9499848461151, "W": 19.894091912020034, "J_1KI": 42.587294528313535, "W_1KI": 2.9942943877212573, "W_D": 4.928091912020031, "J_D": 70.09133857393259, "W_D_1KI": 0.7417356881426899, "J_D_1KI": 0.11163992897993526} diff --git a/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_010.output b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_010.output new file mode 100644 index 0000000..338089c --- /dev/null +++ b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_010.output @@ -0,0 +1,77 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_010.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 0.17511463165283203} + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.3471, 0.9472, 0.8809, ..., 0.4614, 0.6320, 0.9437]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 0.17511463165283203 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 5996 -m matrices/as-caida_pruned/as-caida_G_010.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 9.475815296173096} + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.0786, 0.3286, 0.8287, ..., 0.2886, 0.0657, 0.3483]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 9.475815296173096 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 6644 -m matrices/as-caida_pruned/as-caida_G_010.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 10.559938669204712} + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.3081, 0.2338, 0.7835, ..., 0.8001, 0.8735, 0.7461]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 10.559938669204712 seconds + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.3081, 0.2338, 0.7835, ..., 0.8001, 0.8735, 0.7461]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 10.559938669204712 seconds + +[16.52, 16.64, 16.64, 16.72, 16.68, 16.76, 16.6, 16.36, 16.12, 16.16] +[16.28, 16.4, 19.96, 21.0, 23.68, 23.68, 24.24, 25.16, 22.36, 21.32, 20.8, 20.76, 20.56, 20.6] +14.222814798355103 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 6644, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_010', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 74994, 'MATRIX_DENSITY': 7.616375021864427e-05, 'TIME_S': 10.559938669204712, 'TIME_S_1KI': 1.5893947425052244, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 282.9499848461151, 'W': 19.894091912020034} +[16.52, 16.64, 16.64, 16.72, 16.68, 16.76, 16.6, 16.36, 16.12, 16.16, 16.64, 16.84, 16.76, 16.68, 16.72, 16.72, 16.52, 16.6, 16.8, 17.0] +299.32000000000005 +14.966000000000003 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 6644, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_010', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 74994, 'MATRIX_DENSITY': 7.616375021864427e-05, 'TIME_S': 10.559938669204712, 'TIME_S_1KI': 1.5893947425052244, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 282.9499848461151, 'W': 19.894091912020034, 'J_1KI': 42.587294528313535, 'W_1KI': 2.9942943877212573, 'W_D': 4.928091912020031, 'J_D': 70.09133857393259, 'W_D_1KI': 0.7417356881426899, 'J_D_1KI': 0.11163992897993526} diff --git a/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_020.json b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_020.json new file mode 100644 index 0000000..74888e6 --- /dev/null +++ b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_020.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 6157, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_020", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 80948, "MATRIX_DENSITY": 8.221062021893506e-05, "TIME_S": 10.447131633758545, "TIME_S_1KI": 1.6967892859767004, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 273.603369216919, "W": 19.294003834671976, "J_1KI": 44.4377731390156, "W_1KI": 3.13366961745525, "W_D": 4.2190038346719785, "J_D": 59.82862208366404, "W_D_1KI": 0.685236939202855, "J_D_1KI": 0.1112939644636763} diff --git a/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_020.output b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_020.output new file mode 100644 index 0000000..a4224cf --- /dev/null +++ b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_020.output @@ -0,0 +1,77 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_020.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_020", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 80948, "MATRIX_DENSITY": 8.221062021893506e-05, "TIME_S": 0.2135164737701416} + +tensor(indices=tensor([[ 1040, 5699, 106, ..., 31378, 17998, 31377], + [ 0, 0, 2, ..., 31377, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 1.]), + size=(31379, 31379), nnz=80948, layout=torch.sparse_coo) +tensor([0.7628, 0.8034, 0.1705, ..., 0.9286, 0.7986, 0.6691]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_020 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 80948 +Density: 8.221062021893506e-05 +Time: 0.2135164737701416 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 4917 -m matrices/as-caida_pruned/as-caida_G_020.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_020", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 80948, "MATRIX_DENSITY": 8.221062021893506e-05, "TIME_S": 8.384274959564209} + +tensor(indices=tensor([[ 1040, 5699, 106, ..., 31378, 17998, 31377], + [ 0, 0, 2, ..., 31377, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 1.]), + size=(31379, 31379), nnz=80948, layout=torch.sparse_coo) +tensor([0.6786, 0.1047, 0.5064, ..., 0.9449, 0.2409, 0.4195]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_020 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 80948 +Density: 8.221062021893506e-05 +Time: 8.384274959564209 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 6157 -m matrices/as-caida_pruned/as-caida_G_020.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_020", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 80948, "MATRIX_DENSITY": 8.221062021893506e-05, "TIME_S": 10.447131633758545} + +tensor(indices=tensor([[ 1040, 5699, 106, ..., 31378, 17998, 31377], + [ 0, 0, 2, ..., 31377, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 1.]), + size=(31379, 31379), nnz=80948, layout=torch.sparse_coo) +tensor([0.2661, 0.3239, 0.0589, ..., 0.7524, 0.1646, 0.2356]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_020 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 80948 +Density: 8.221062021893506e-05 +Time: 10.447131633758545 seconds + +tensor(indices=tensor([[ 1040, 5699, 106, ..., 31378, 17998, 31377], + [ 0, 0, 2, ..., 31377, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 1.]), + size=(31379, 31379), nnz=80948, layout=torch.sparse_coo) +tensor([0.2661, 0.3239, 0.0589, ..., 0.7524, 0.1646, 0.2356]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_020 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 80948 +Density: 8.221062021893506e-05 +Time: 10.447131633758545 seconds + +[16.72, 17.0, 17.0, 17.08, 17.2, 17.12, 16.96, 16.8, 16.76, 16.48] +[16.68, 17.08, 18.04, 18.84, 21.68, 21.68, 22.8, 23.32, 23.24, 21.92, 21.08, 20.96, 20.6, 20.6] +14.180746078491211 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 6157, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_020', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 80948, 'MATRIX_DENSITY': 8.221062021893506e-05, 'TIME_S': 10.447131633758545, 'TIME_S_1KI': 1.6967892859767004, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 273.603369216919, 'W': 19.294003834671976} +[16.72, 17.0, 17.0, 17.08, 17.2, 17.12, 16.96, 16.8, 16.76, 16.48, 16.52, 16.48, 16.36, 16.4, 16.4, 16.44, 16.48, 16.72, 16.92, 17.04] +301.49999999999994 +15.074999999999998 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 6157, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_020', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 80948, 'MATRIX_DENSITY': 8.221062021893506e-05, 'TIME_S': 10.447131633758545, 'TIME_S_1KI': 1.6967892859767004, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 273.603369216919, 'W': 19.294003834671976, 'J_1KI': 44.4377731390156, 'W_1KI': 3.13366961745525, 'W_D': 4.2190038346719785, 'J_D': 59.82862208366404, 'W_D_1KI': 0.685236939202855, 'J_D_1KI': 0.1112939644636763} diff --git a/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_030.json b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_030.json new file mode 100644 index 0000000..1904469 --- /dev/null +++ b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_030.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 5667, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_030", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 86850, "MATRIX_DENSITY": 8.820467912752026e-05, "TIME_S": 10.373903036117554, "TIME_S_1KI": 1.8305810898389896, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 279.4291752243042, "W": 19.595129066747692, "J_1KI": 49.308130443674635, "W_1KI": 3.457760555275753, "W_D": 4.856129066747693, "J_D": 69.24905343985554, "W_D_1KI": 0.8569135462762825, "J_D_1KI": 0.15121114280506132} diff --git a/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_030.output b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_030.output new file mode 100644 index 0000000..9349377 --- /dev/null +++ b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_030.output @@ -0,0 +1,77 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_030.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_030", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 86850, "MATRIX_DENSITY": 8.820467912752026e-05, "TIME_S": 0.2259833812713623} + +tensor(indices=tensor([[ 1809, 21783, 106, ..., 7018, 160, 882], + [ 0, 0, 2, ..., 31357, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=86850, layout=torch.sparse_coo) +tensor([0.2384, 0.4578, 0.3485, ..., 0.8138, 0.6026, 0.3518]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_030 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 86850 +Density: 8.820467912752026e-05 +Time: 0.2259833812713623 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 4646 -m matrices/as-caida_pruned/as-caida_G_030.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_030", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 86850, "MATRIX_DENSITY": 8.820467912752026e-05, "TIME_S": 8.60727572441101} + +tensor(indices=tensor([[ 1809, 21783, 106, ..., 7018, 160, 882], + [ 0, 0, 2, ..., 31357, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=86850, layout=torch.sparse_coo) +tensor([0.9229, 0.9287, 0.9701, ..., 0.7114, 0.2046, 0.2710]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_030 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 86850 +Density: 8.820467912752026e-05 +Time: 8.60727572441101 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 5667 -m matrices/as-caida_pruned/as-caida_G_030.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_030", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 86850, "MATRIX_DENSITY": 8.820467912752026e-05, "TIME_S": 10.373903036117554} + +tensor(indices=tensor([[ 1809, 21783, 106, ..., 7018, 160, 882], + [ 0, 0, 2, ..., 31357, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=86850, layout=torch.sparse_coo) +tensor([0.4715, 0.9234, 0.3797, ..., 0.0569, 0.4086, 0.4497]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_030 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 86850 +Density: 8.820467912752026e-05 +Time: 10.373903036117554 seconds + +tensor(indices=tensor([[ 1809, 21783, 106, ..., 7018, 160, 882], + [ 0, 0, 2, ..., 31357, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=86850, layout=torch.sparse_coo) +tensor([0.4715, 0.9234, 0.3797, ..., 0.0569, 0.4086, 0.4497]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_030 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 86850 +Density: 8.820467912752026e-05 +Time: 10.373903036117554 seconds + +[16.4, 16.4, 16.56, 16.4, 16.44, 16.64, 16.6, 16.6, 16.68, 16.92] +[16.68, 16.48, 16.68, 20.4, 22.8, 24.32, 25.28, 23.08, 22.48, 21.04, 21.04, 20.92, 20.88, 20.64] +14.26013445854187 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 5667, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_030', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 86850, 'MATRIX_DENSITY': 8.820467912752026e-05, 'TIME_S': 10.373903036117554, 'TIME_S_1KI': 1.8305810898389896, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 279.4291752243042, 'W': 19.595129066747692} +[16.4, 16.4, 16.56, 16.4, 16.44, 16.64, 16.6, 16.6, 16.68, 16.92, 16.12, 16.04, 15.8, 15.96, 16.04, 16.0, 16.28, 16.52, 16.68, 16.84] +294.78 +14.738999999999999 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 5667, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_030', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 86850, 'MATRIX_DENSITY': 8.820467912752026e-05, 'TIME_S': 10.373903036117554, 'TIME_S_1KI': 1.8305810898389896, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 279.4291752243042, 'W': 19.595129066747692, 'J_1KI': 49.308130443674635, 'W_1KI': 3.457760555275753, 'W_D': 4.856129066747693, 'J_D': 69.24905343985554, 'W_D_1KI': 0.8569135462762825, 'J_D_1KI': 0.15121114280506132} diff --git a/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_040.json b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_040.json new file mode 100644 index 0000000..f2d2b41 --- /dev/null +++ b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_040.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 5490, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_040", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89658, "MATRIX_DENSITY": 9.105647807962247e-05, "TIME_S": 10.40391230583191, "TIME_S_1KI": 1.8950659937763041, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 265.913395280838, "W": 18.629131570080315, "J_1KI": 48.43595542456066, "W_1KI": 3.3932844389945926, "W_D": 3.6391315700803144, "J_D": 51.9451928305626, "W_D_1KI": 0.6628654954608952, "J_D_1KI": 0.12074052740635614} diff --git a/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_040.output b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_040.output new file mode 100644 index 0000000..e9d9bd3 --- /dev/null +++ b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_040.output @@ -0,0 +1,77 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_040.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_040", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89658, "MATRIX_DENSITY": 9.105647807962247e-05, "TIME_S": 0.22439122200012207} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 10144, 882, 16085], + [ 2, 2, 2, ..., 31371, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=89658, layout=torch.sparse_coo) +tensor([0.1454, 0.9169, 0.2081, ..., 0.7984, 0.1283, 0.7510]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_040 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 89658 +Density: 9.105647807962247e-05 +Time: 0.22439122200012207 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 4679 -m matrices/as-caida_pruned/as-caida_G_040.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_040", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89658, "MATRIX_DENSITY": 9.105647807962247e-05, "TIME_S": 8.948421478271484} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 10144, 882, 16085], + [ 2, 2, 2, ..., 31371, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=89658, layout=torch.sparse_coo) +tensor([0.8553, 0.2546, 0.4170, ..., 0.7841, 0.1035, 0.1720]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_040 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 89658 +Density: 9.105647807962247e-05 +Time: 8.948421478271484 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 5490 -m matrices/as-caida_pruned/as-caida_G_040.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_040", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89658, "MATRIX_DENSITY": 9.105647807962247e-05, "TIME_S": 10.40391230583191} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 10144, 882, 16085], + [ 2, 2, 2, ..., 31371, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=89658, layout=torch.sparse_coo) +tensor([0.6042, 0.9931, 0.5226, ..., 0.9778, 0.8320, 0.0661]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_040 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 89658 +Density: 9.105647807962247e-05 +Time: 10.40391230583191 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 10144, 882, 16085], + [ 2, 2, 2, ..., 31371, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=89658, layout=torch.sparse_coo) +tensor([0.6042, 0.9931, 0.5226, ..., 0.9778, 0.8320, 0.0661]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_040 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 89658 +Density: 9.105647807962247e-05 +Time: 10.40391230583191 seconds + +[16.44, 16.32, 16.52, 16.72, 16.64, 16.8, 16.84, 16.8, 16.8, 16.8] +[16.72, 16.48, 16.72, 17.72, 19.4, 20.96, 21.96, 21.92, 22.28, 21.0, 20.96, 20.96, 21.0, 20.92] +14.274062871932983 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 5490, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_040', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89658, 'MATRIX_DENSITY': 9.105647807962247e-05, 'TIME_S': 10.40391230583191, 'TIME_S_1KI': 1.8950659937763041, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 265.913395280838, 'W': 18.629131570080315} +[16.44, 16.32, 16.52, 16.72, 16.64, 16.8, 16.84, 16.8, 16.8, 16.8, 16.88, 16.8, 16.6, 16.64, 16.56, 16.56, 16.52, 16.6, 16.68, 16.68] +299.8 +14.99 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 5490, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_040', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89658, 'MATRIX_DENSITY': 9.105647807962247e-05, 'TIME_S': 10.40391230583191, 'TIME_S_1KI': 1.8950659937763041, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 265.913395280838, 'W': 18.629131570080315, 'J_1KI': 48.43595542456066, 'W_1KI': 3.3932844389945926, 'W_D': 3.6391315700803144, 'J_D': 51.9451928305626, 'W_D_1KI': 0.6628654954608952, 'J_D_1KI': 0.12074052740635614} diff --git a/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_050.json b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_050.json new file mode 100644 index 0000000..8abe402 --- /dev/null +++ b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_050.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 5417, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 10.343466758728027, "TIME_S_1KI": 1.9094455895750466, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 281.49025360107413, "W": 19.728120633755104, "J_1KI": 51.96423363505153, "W_1KI": 3.641890462203268, "W_D": 4.954120633755103, "J_D": 70.68776085948934, "W_D_1KI": 0.9145506061944071, "J_D_1KI": 0.16882972239143568} diff --git a/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_050.output b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_050.output new file mode 100644 index 0000000..805c174 --- /dev/null +++ b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_050.output @@ -0,0 +1,77 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_050.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 0.21228814125061035} + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.3434, 0.0026, 0.8832, ..., 0.4180, 0.8589, 0.1973]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 0.21228814125061035 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 4946 -m matrices/as-caida_pruned/as-caida_G_050.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 9.58672308921814} + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.6652, 0.6138, 0.1566, ..., 0.2394, 0.6281, 0.2308]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 9.58672308921814 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 5417 -m matrices/as-caida_pruned/as-caida_G_050.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 10.343466758728027} + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.6679, 0.0443, 0.6559, ..., 0.4078, 0.6922, 0.7735]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 10.343466758728027 seconds + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.6679, 0.0443, 0.6559, ..., 0.4078, 0.6922, 0.7735]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 10.343466758728027 seconds + +[16.04, 16.32, 16.36, 16.2, 16.24, 16.12, 16.2, 16.2, 16.52, 16.72] +[16.68, 16.88, 16.88, 21.08, 22.36, 24.6, 25.32, 23.6, 22.64, 20.64, 20.64, 20.88, 21.4, 21.12] +14.26847791671753 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 5417, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_050', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 90392, 'MATRIX_DENSITY': 9.180192695100532e-05, 'TIME_S': 10.343466758728027, 'TIME_S_1KI': 1.9094455895750466, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 281.49025360107413, 'W': 19.728120633755104} +[16.04, 16.32, 16.36, 16.2, 16.24, 16.12, 16.2, 16.2, 16.52, 16.72, 16.52, 16.64, 16.6, 16.48, 16.4, 16.32, 16.48, 16.44, 16.84, 16.96] +295.48 +14.774000000000001 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 5417, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_050', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 90392, 'MATRIX_DENSITY': 9.180192695100532e-05, 'TIME_S': 10.343466758728027, 'TIME_S_1KI': 1.9094455895750466, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 281.49025360107413, 'W': 19.728120633755104, 'J_1KI': 51.96423363505153, 'W_1KI': 3.641890462203268, 'W_D': 4.954120633755103, 'J_D': 70.68776085948934, 'W_D_1KI': 0.9145506061944071, 'J_D_1KI': 0.16882972239143568} diff --git a/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_060.json b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_060.json new file mode 100644 index 0000000..9abd535 --- /dev/null +++ b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_060.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 5164, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_060", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 94180, "MATRIX_DENSITY": 9.564901186217454e-05, "TIME_S": 10.403054475784302, "TIME_S_1KI": 2.0145341742417315, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 274.7938276672363, "W": 19.323381225072442, "J_1KI": 53.21336709280331, "W_1KI": 3.741940593546174, "W_D": 4.4473812250724425, "J_D": 63.24529313468935, "W_D_1KI": 0.8612279676747565, "J_D_1KI": 0.16677536167210621} diff --git a/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_060.output b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_060.output new file mode 100644 index 0000000..12ba257 --- /dev/null +++ b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_060.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_060.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_060", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 94180, "MATRIX_DENSITY": 9.564901186217454e-05, "TIME_S": 0.2032930850982666} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 882], + [ 2, 2, 2, ..., 31355, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=94180, layout=torch.sparse_coo) +tensor([0.6402, 0.6620, 0.2797, ..., 0.7961, 0.8098, 0.7007]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_060 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 94180 +Density: 9.564901186217454e-05 +Time: 0.2032930850982666 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 5164 -m matrices/as-caida_pruned/as-caida_G_060.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_060", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 94180, "MATRIX_DENSITY": 9.564901186217454e-05, "TIME_S": 10.403054475784302} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 882], + [ 2, 2, 2, ..., 31355, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=94180, layout=torch.sparse_coo) +tensor([0.7965, 0.8169, 0.0055, ..., 0.9599, 0.2086, 0.2807]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_060 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 94180 +Density: 9.564901186217454e-05 +Time: 10.403054475784302 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 882], + [ 2, 2, 2, ..., 31355, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=94180, layout=torch.sparse_coo) +tensor([0.7965, 0.8169, 0.0055, ..., 0.9599, 0.2086, 0.2807]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_060 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 94180 +Density: 9.564901186217454e-05 +Time: 10.403054475784302 seconds + +[16.56, 16.48, 16.52, 16.36, 16.36, 16.36, 16.52, 16.44, 16.6, 16.64] +[16.52, 16.64, 17.24, 19.0, 21.08, 22.0, 22.88, 22.88, 22.56, 22.32, 21.16, 21.52, 21.8, 21.44] +14.220794200897217 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 5164, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_060', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 94180, 'MATRIX_DENSITY': 9.564901186217454e-05, 'TIME_S': 10.403054475784302, 'TIME_S_1KI': 2.0145341742417315, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 274.7938276672363, 'W': 19.323381225072442} +[16.56, 16.48, 16.52, 16.36, 16.36, 16.36, 16.52, 16.44, 16.6, 16.64, 16.52, 16.4, 16.8, 16.88, 16.88, 16.68, 16.52, 16.52, 16.28, 16.12] +297.52 +14.876 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 5164, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_060', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 94180, 'MATRIX_DENSITY': 9.564901186217454e-05, 'TIME_S': 10.403054475784302, 'TIME_S_1KI': 2.0145341742417315, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 274.7938276672363, 'W': 19.323381225072442, 'J_1KI': 53.21336709280331, 'W_1KI': 3.741940593546174, 'W_D': 4.4473812250724425, 'J_D': 63.24529313468935, 'W_D_1KI': 0.8612279676747565, 'J_D_1KI': 0.16677536167210621} diff --git a/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_070.json b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_070.json new file mode 100644 index 0000000..0cd8ade --- /dev/null +++ b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_070.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 6085, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_070", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 78684, "MATRIX_DENSITY": 7.991130653390679e-05, "TIME_S": 10.561926126480103, "TIME_S_1KI": 1.7357314916154647, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 269.13966796874996, "W": 18.871496391148096, "J_1KI": 44.230019386811826, "W_1KI": 3.1013141152256525, "W_D": 3.663496391148094, "J_D": 52.24769577789302, "W_D_1KI": 0.6020536386438938, "J_D_1KI": 0.09894061440326932} diff --git a/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_070.output b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_070.output new file mode 100644 index 0000000..a8aa2b6 --- /dev/null +++ b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_070.output @@ -0,0 +1,77 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_070.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_070", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 78684, "MATRIX_DENSITY": 7.991130653390679e-05, "TIME_S": 0.2066023349761963} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 16263, 2242, 2242], + [ 2, 2, 2, ..., 31240, 31283, 31284]]), + values=tensor([3., 3., 3., ..., 1., 3., 3.]), + size=(31379, 31379), nnz=78684, layout=torch.sparse_coo) +tensor([0.8673, 0.7061, 0.4866, ..., 0.0493, 0.1107, 0.0552]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_070 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 78684 +Density: 7.991130653390679e-05 +Time: 0.2066023349761963 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 5082 -m matrices/as-caida_pruned/as-caida_G_070.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_070", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 78684, "MATRIX_DENSITY": 7.991130653390679e-05, "TIME_S": 8.768118619918823} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 16263, 2242, 2242], + [ 2, 2, 2, ..., 31240, 31283, 31284]]), + values=tensor([3., 3., 3., ..., 1., 3., 3.]), + size=(31379, 31379), nnz=78684, layout=torch.sparse_coo) +tensor([0.8493, 0.0371, 0.3015, ..., 0.1411, 0.3368, 0.0260]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_070 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 78684 +Density: 7.991130653390679e-05 +Time: 8.768118619918823 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 6085 -m matrices/as-caida_pruned/as-caida_G_070.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_070", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 78684, "MATRIX_DENSITY": 7.991130653390679e-05, "TIME_S": 10.561926126480103} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 16263, 2242, 2242], + [ 2, 2, 2, ..., 31240, 31283, 31284]]), + values=tensor([3., 3., 3., ..., 1., 3., 3.]), + size=(31379, 31379), nnz=78684, layout=torch.sparse_coo) +tensor([0.7275, 0.8434, 0.8863, ..., 0.9050, 0.9221, 0.3785]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_070 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 78684 +Density: 7.991130653390679e-05 +Time: 10.561926126480103 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 16263, 2242, 2242], + [ 2, 2, 2, ..., 31240, 31283, 31284]]), + values=tensor([3., 3., 3., ..., 1., 3., 3.]), + size=(31379, 31379), nnz=78684, layout=torch.sparse_coo) +tensor([0.7275, 0.8434, 0.8863, ..., 0.9050, 0.9221, 0.3785]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_070 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 78684 +Density: 7.991130653390679e-05 +Time: 10.561926126480103 seconds + +[19.28, 17.96, 17.36, 16.56, 16.32, 16.4, 17.04, 17.0, 17.0, 17.16] +[17.4, 17.12, 17.08, 19.0, 19.8, 22.0, 22.72, 23.2, 22.12, 20.64, 20.36, 20.36, 20.44, 20.48] +14.261702537536621 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 6085, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_070', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 78684, 'MATRIX_DENSITY': 7.991130653390679e-05, 'TIME_S': 10.561926126480103, 'TIME_S_1KI': 1.7357314916154647, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 269.13966796874996, 'W': 18.871496391148096} +[19.28, 17.96, 17.36, 16.56, 16.32, 16.4, 17.04, 17.0, 17.0, 17.16, 16.52, 16.44, 16.6, 16.44, 16.64, 16.92, 16.68, 16.88, 17.04, 16.8] +304.16 +15.208000000000002 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 6085, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_070', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 78684, 'MATRIX_DENSITY': 7.991130653390679e-05, 'TIME_S': 10.561926126480103, 'TIME_S_1KI': 1.7357314916154647, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 269.13966796874996, 'W': 18.871496391148096, 'J_1KI': 44.230019386811826, 'W_1KI': 3.1013141152256525, 'W_D': 3.663496391148094, 'J_D': 52.24769577789302, 'W_D_1KI': 0.6020536386438938, 'J_D_1KI': 0.09894061440326932} diff --git a/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_080.json b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_080.json new file mode 100644 index 0000000..40ffd8a --- /dev/null +++ b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_080.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 5047, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_080", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 98112, "MATRIX_DENSITY": 9.964234287345156e-05, "TIME_S": 10.559667587280273, "TIME_S_1KI": 2.092266215034728, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 269.87574887275696, "W": 18.935720713656302, "J_1KI": 53.47250819749494, "W_1KI": 3.7518765035974444, "W_D": 3.7907207136563006, "J_D": 54.026123791933024, "W_D_1KI": 0.7510839535677235, "J_D_1KI": 0.14881790243069615} diff --git a/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_080.output b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_080.output new file mode 100644 index 0000000..ad8dc08 --- /dev/null +++ b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_080.output @@ -0,0 +1,77 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_080.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_080", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 98112, "MATRIX_DENSITY": 9.964234287345156e-05, "TIME_S": 0.24757122993469238} + +tensor(indices=tensor([[22754, 22754, 106, ..., 4133, 31329, 12170], + [ 0, 1, 2, ..., 31373, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 1., 1., 3.]), + size=(31379, 31379), nnz=98112, layout=torch.sparse_coo) +tensor([0.2333, 0.8417, 0.3112, ..., 0.5523, 0.2091, 0.4998]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_080 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 98112 +Density: 9.964234287345156e-05 +Time: 0.24757122993469238 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 4241 -m matrices/as-caida_pruned/as-caida_G_080.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_080", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 98112, "MATRIX_DENSITY": 9.964234287345156e-05, "TIME_S": 8.82285213470459} + +tensor(indices=tensor([[22754, 22754, 106, ..., 4133, 31329, 12170], + [ 0, 1, 2, ..., 31373, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 1., 1., 3.]), + size=(31379, 31379), nnz=98112, layout=torch.sparse_coo) +tensor([0.6754, 0.6232, 0.9458, ..., 0.0677, 0.5517, 0.2251]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_080 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 98112 +Density: 9.964234287345156e-05 +Time: 8.82285213470459 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 5047 -m matrices/as-caida_pruned/as-caida_G_080.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_080", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 98112, "MATRIX_DENSITY": 9.964234287345156e-05, "TIME_S": 10.559667587280273} + +tensor(indices=tensor([[22754, 22754, 106, ..., 4133, 31329, 12170], + [ 0, 1, 2, ..., 31373, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 1., 1., 3.]), + size=(31379, 31379), nnz=98112, layout=torch.sparse_coo) +tensor([0.7372, 0.6053, 0.0592, ..., 0.4445, 0.7424, 0.7545]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_080 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 98112 +Density: 9.964234287345156e-05 +Time: 10.559667587280273 seconds + +tensor(indices=tensor([[22754, 22754, 106, ..., 4133, 31329, 12170], + [ 0, 1, 2, ..., 31373, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 1., 1., 3.]), + size=(31379, 31379), nnz=98112, layout=torch.sparse_coo) +tensor([0.7372, 0.6053, 0.0592, ..., 0.4445, 0.7424, 0.7545]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_080 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 98112 +Density: 9.964234287345156e-05 +Time: 10.559667587280273 seconds + +[16.8, 16.52, 16.68, 16.84, 16.76, 17.16, 17.16, 17.08, 16.52, 16.56] +[16.92, 16.84, 16.96, 18.68, 20.52, 21.84, 22.84, 22.88, 22.36, 20.72, 20.72, 20.76, 20.68, 20.76] +14.252203702926636 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 5047, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_080', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 98112, 'MATRIX_DENSITY': 9.964234287345156e-05, 'TIME_S': 10.559667587280273, 'TIME_S_1KI': 2.092266215034728, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 269.87574887275696, 'W': 18.935720713656302} +[16.8, 16.52, 16.68, 16.84, 16.76, 17.16, 17.16, 17.08, 16.52, 16.56, 16.6, 16.48, 16.92, 16.96, 16.96, 17.04, 16.84, 16.76, 16.8, 16.88] +302.90000000000003 +15.145000000000001 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 5047, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_080', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 98112, 'MATRIX_DENSITY': 9.964234287345156e-05, 'TIME_S': 10.559667587280273, 'TIME_S_1KI': 2.092266215034728, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 269.87574887275696, 'W': 18.935720713656302, 'J_1KI': 53.47250819749494, 'W_1KI': 3.7518765035974444, 'W_D': 3.7907207136563006, 'J_D': 54.026123791933024, 'W_D_1KI': 0.7510839535677235, 'J_D_1KI': 0.14881790243069615} diff --git a/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_090.json b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_090.json new file mode 100644 index 0000000..99477b4 --- /dev/null +++ b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_090.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 4841, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_090", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 100924, "MATRIX_DENSITY": 0.00010249820421722343, "TIME_S": 10.36881422996521, "TIME_S_1KI": 2.1418744536180974, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 286.9453951072693, "W": 20.105071747721635, "J_1KI": 59.27399196597176, "W_1KI": 4.1530823688745375, "W_D": 5.071071747721632, "J_D": 72.37580171442029, "W_D_1KI": 1.0475256657140326, "J_D_1KI": 0.2163862147725744} diff --git a/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_090.output b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_090.output new file mode 100644 index 0000000..21ef95b --- /dev/null +++ b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_090.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_090.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_090", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 100924, "MATRIX_DENSITY": 0.00010249820421722343, "TIME_S": 0.21688628196716309} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 31211, 12170], + [ 2, 2, 2, ..., 31373, 31376, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=100924, layout=torch.sparse_coo) +tensor([0.6044, 0.9052, 0.9070, ..., 0.7470, 0.2235, 0.3476]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_090 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 100924 +Density: 0.00010249820421722343 +Time: 0.21688628196716309 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 4841 -m matrices/as-caida_pruned/as-caida_G_090.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_090", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 100924, "MATRIX_DENSITY": 0.00010249820421722343, "TIME_S": 10.36881422996521} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 31211, 12170], + [ 2, 2, 2, ..., 31373, 31376, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=100924, layout=torch.sparse_coo) +tensor([0.3156, 0.4706, 0.3695, ..., 0.2773, 0.3242, 0.6388]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_090 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 100924 +Density: 0.00010249820421722343 +Time: 10.36881422996521 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 31211, 12170], + [ 2, 2, 2, ..., 31373, 31376, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=100924, layout=torch.sparse_coo) +tensor([0.3156, 0.4706, 0.3695, ..., 0.2773, 0.3242, 0.6388]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_090 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 100924 +Density: 0.00010249820421722343 +Time: 10.36881422996521 seconds + +[16.52, 16.52, 16.68, 16.72, 16.68, 16.72, 16.88, 17.04, 16.96, 17.36] +[17.24, 16.84, 20.12, 22.16, 22.16, 24.2, 25.04, 25.8, 21.96, 21.44, 20.72, 20.84, 20.92, 20.88] +14.272289037704468 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4841, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_090', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 100924, 'MATRIX_DENSITY': 0.00010249820421722343, 'TIME_S': 10.36881422996521, 'TIME_S_1KI': 2.1418744536180974, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 286.9453951072693, 'W': 20.105071747721635} +[16.52, 16.52, 16.68, 16.72, 16.68, 16.72, 16.88, 17.04, 16.96, 17.36, 17.24, 16.56, 16.52, 16.56, 16.48, 16.48, 16.56, 16.56, 16.8, 16.8] +300.68000000000006 +15.034000000000002 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4841, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_090', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 100924, 'MATRIX_DENSITY': 0.00010249820421722343, 'TIME_S': 10.36881422996521, 'TIME_S_1KI': 2.1418744536180974, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 286.9453951072693, 'W': 20.105071747721635, 'J_1KI': 59.27399196597176, 'W_1KI': 4.1530823688745375, 'W_D': 5.071071747721632, 'J_D': 72.37580171442029, 'W_D_1KI': 1.0475256657140326, 'J_D_1KI': 0.2163862147725744} diff --git a/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_100.json b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_100.json new file mode 100644 index 0000000..b4939ce --- /dev/null +++ b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_100.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 4694, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_100", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102888, "MATRIX_DENSITY": 0.00010449283852702711, "TIME_S": 10.377132654190063, "TIME_S_1KI": 2.2107227639944744, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 270.65173756599427, "W": 19.038925804006492, "J_1KI": 57.65908341840525, "W_1KI": 4.056013166597038, "W_D": 4.348925804006491, "J_D": 61.82304282903671, "W_D_1KI": 0.9264861107811017, "J_D_1KI": 0.19737667464446138} diff --git a/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_100.output b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_100.output new file mode 100644 index 0000000..01bf8c3 --- /dev/null +++ b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_100.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_100.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_100", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102888, "MATRIX_DENSITY": 0.00010449283852702711, "TIME_S": 0.2236778736114502} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 25970, 5128, 12170], + [ 2, 2, 2, ..., 31373, 31377, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=102888, layout=torch.sparse_coo) +tensor([0.9725, 0.4397, 0.5107, ..., 0.9228, 0.6104, 0.9148]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_100 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 102888 +Density: 0.00010449283852702711 +Time: 0.2236778736114502 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 4694 -m matrices/as-caida_pruned/as-caida_G_100.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_100", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102888, "MATRIX_DENSITY": 0.00010449283852702711, "TIME_S": 10.377132654190063} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 25970, 5128, 12170], + [ 2, 2, 2, ..., 31373, 31377, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=102888, layout=torch.sparse_coo) +tensor([0.6359, 0.4254, 0.1494, ..., 0.2018, 0.9705, 0.7062]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_100 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 102888 +Density: 0.00010449283852702711 +Time: 10.377132654190063 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 25970, 5128, 12170], + [ 2, 2, 2, ..., 31373, 31377, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=102888, layout=torch.sparse_coo) +tensor([0.6359, 0.4254, 0.1494, ..., 0.2018, 0.9705, 0.7062]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_100 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 102888 +Density: 0.00010449283852702711 +Time: 10.377132654190063 seconds + +[16.68, 16.92, 16.68, 16.4, 16.12, 16.12, 16.16, 16.2, 16.08, 16.16] +[16.24, 16.48, 16.96, 19.16, 21.36, 22.08, 23.16, 22.68, 22.68, 21.8, 20.72, 20.44, 20.44, 20.36] +14.215704202651978 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4694, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_100', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102888, 'MATRIX_DENSITY': 0.00010449283852702711, 'TIME_S': 10.377132654190063, 'TIME_S_1KI': 2.2107227639944744, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 270.65173756599427, 'W': 19.038925804006492} +[16.68, 16.92, 16.68, 16.4, 16.12, 16.12, 16.16, 16.2, 16.08, 16.16, 16.76, 16.4, 16.36, 16.28, 16.12, 16.08, 16.2, 16.32, 16.32, 16.48] +293.8 +14.690000000000001 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4694, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_100', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102888, 'MATRIX_DENSITY': 0.00010449283852702711, 'TIME_S': 10.377132654190063, 'TIME_S_1KI': 2.2107227639944744, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 270.65173756599427, 'W': 19.038925804006492, 'J_1KI': 57.65908341840525, 'W_1KI': 4.056013166597038, 'W_D': 4.348925804006491, 'J_D': 61.82304282903671, 'W_D_1KI': 0.9264861107811017, 'J_D_1KI': 0.19737667464446138} diff --git a/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_110.json b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_110.json new file mode 100644 index 0000000..e0b4bcf --- /dev/null +++ b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_110.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 4747, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_110", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104846, "MATRIX_DENSITY": 0.0001064813792493263, "TIME_S": 10.490605115890503, "TIME_S_1KI": 2.20994419968201, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 265.2582043838501, "W": 18.664908076245766, "J_1KI": 55.879124580545636, "W_1KI": 3.9319376608901977, "W_D": 3.8899080762457654, "J_D": 55.28181694269181, "W_D_1KI": 0.8194455606163399, "J_D_1KI": 0.17262388047531912} diff --git a/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_110.output b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_110.output new file mode 100644 index 0000000..09882e7 --- /dev/null +++ b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_110.output @@ -0,0 +1,77 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_110.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_110", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104846, "MATRIX_DENSITY": 0.0001064813792493263, "TIME_S": 0.24533939361572266} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 2616, 12170], + [ 2, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=104846, layout=torch.sparse_coo) +tensor([0.8491, 0.3135, 0.1444, ..., 0.8000, 0.8444, 0.5839]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_110 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 104846 +Density: 0.0001064813792493263 +Time: 0.24533939361572266 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 4279 -m matrices/as-caida_pruned/as-caida_G_110.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_110", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104846, "MATRIX_DENSITY": 0.0001064813792493263, "TIME_S": 9.464306592941284} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 2616, 12170], + [ 2, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=104846, layout=torch.sparse_coo) +tensor([0.0201, 0.8500, 0.3074, ..., 0.9892, 0.1776, 0.1910]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_110 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 104846 +Density: 0.0001064813792493263 +Time: 9.464306592941284 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 4747 -m matrices/as-caida_pruned/as-caida_G_110.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_110", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104846, "MATRIX_DENSITY": 0.0001064813792493263, "TIME_S": 10.490605115890503} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 2616, 12170], + [ 2, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=104846, layout=torch.sparse_coo) +tensor([0.7081, 0.3802, 0.2336, ..., 0.4048, 0.3605, 0.4195]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_110 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 104846 +Density: 0.0001064813792493263 +Time: 10.490605115890503 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 2616, 12170], + [ 2, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=104846, layout=torch.sparse_coo) +tensor([0.7081, 0.3802, 0.2336, ..., 0.4048, 0.3605, 0.4195]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_110 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 104846 +Density: 0.0001064813792493263 +Time: 10.490605115890503 seconds + +[16.52, 16.28, 16.4, 16.72, 16.56, 16.36, 16.36, 16.44, 16.24, 16.08] +[16.48, 16.6, 16.96, 18.28, 19.72, 21.32, 22.2, 22.2, 21.72, 21.72, 20.6, 20.28, 20.56, 20.88] +14.211599826812744 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4747, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_110', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104846, 'MATRIX_DENSITY': 0.0001064813792493263, 'TIME_S': 10.490605115890503, 'TIME_S_1KI': 2.20994419968201, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 265.2582043838501, 'W': 18.664908076245766} +[16.52, 16.28, 16.4, 16.72, 16.56, 16.36, 16.36, 16.44, 16.24, 16.08, 15.96, 15.84, 16.08, 16.48, 16.68, 16.88, 16.76, 16.6, 16.36, 16.36] +295.5 +14.775 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4747, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_110', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104846, 'MATRIX_DENSITY': 0.0001064813792493263, 'TIME_S': 10.490605115890503, 'TIME_S_1KI': 2.20994419968201, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 265.2582043838501, 'W': 18.664908076245766, 'J_1KI': 55.879124580545636, 'W_1KI': 3.9319376608901977, 'W_D': 3.8899080762457654, 'J_D': 55.28181694269181, 'W_D_1KI': 0.8194455606163399, 'J_D_1KI': 0.17262388047531912} diff --git a/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_120.json b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_120.json new file mode 100644 index 0000000..e4a3160 --- /dev/null +++ b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_120.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 4652, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_120", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106510, "MATRIX_DENSITY": 0.0001081713341839054, "TIME_S": 10.588041067123413, "TIME_S_1KI": 2.2760191459852566, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 291.5600438308715, "W": 20.506065841615797, "J_1KI": 62.67412808058287, "W_1KI": 4.408010714018873, "W_D": 5.508065841615798, "J_D": 78.31496936607354, "W_D_1KI": 1.1840210321616076, "J_D_1KI": 0.25451870854720715} diff --git a/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_120.output b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_120.output new file mode 100644 index 0000000..fe53824 --- /dev/null +++ b/pytorch/output_as-caida_16core/altra_16_coo_10_10_10_as-caida_G_120.output @@ -0,0 +1,77 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_120.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_120", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106510, "MATRIX_DENSITY": 0.0001081713341839054, "TIME_S": 0.2656247615814209} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 12170], + [ 2, 2, 2, ..., 31355, 31360, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=106510, layout=torch.sparse_coo) +tensor([0.3456, 0.4102, 0.6456, ..., 0.5106, 0.1829, 0.4538]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_120 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 106510 +Density: 0.0001081713341839054 +Time: 0.2656247615814209 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 3952 -m matrices/as-caida_pruned/as-caida_G_120.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_120", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106510, "MATRIX_DENSITY": 0.0001081713341839054, "TIME_S": 8.919629573822021} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 12170], + [ 2, 2, 2, ..., 31355, 31360, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=106510, layout=torch.sparse_coo) +tensor([0.7266, 0.0356, 0.3831, ..., 0.4998, 0.1232, 0.2973]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_120 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 106510 +Density: 0.0001081713341839054 +Time: 8.919629573822021 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 4652 -m matrices/as-caida_pruned/as-caida_G_120.mtx -c 16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_120", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106510, "MATRIX_DENSITY": 0.0001081713341839054, "TIME_S": 10.588041067123413} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 12170], + [ 2, 2, 2, ..., 31355, 31360, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=106510, layout=torch.sparse_coo) +tensor([0.1991, 0.7050, 0.2626, ..., 0.8268, 0.9165, 0.3589]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_120 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 106510 +Density: 0.0001081713341839054 +Time: 10.588041067123413 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 12170], + [ 2, 2, 2, ..., 31355, 31360, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=106510, layout=torch.sparse_coo) +tensor([0.1991, 0.7050, 0.2626, ..., 0.8268, 0.9165, 0.3589]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_120 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 106510 +Density: 0.0001081713341839054 +Time: 10.588041067123413 seconds + +[16.32, 16.48, 16.52, 16.52, 16.52, 16.64, 16.84, 16.76, 16.8, 16.8] +[16.64, 16.56, 19.76, 21.56, 23.76, 24.32, 24.32, 25.56, 23.2, 22.92, 21.76, 22.08, 21.84, 21.72] +14.218234062194824 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4652, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_120', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106510, 'MATRIX_DENSITY': 0.0001081713341839054, 'TIME_S': 10.588041067123413, 'TIME_S_1KI': 2.2760191459852566, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 291.5600438308715, 'W': 20.506065841615797} +[16.32, 16.48, 16.52, 16.52, 16.52, 16.64, 16.84, 16.76, 16.8, 16.8, 17.2, 17.2, 17.0, 16.8, 16.76, 16.64, 16.64, 16.28, 16.28, 16.24] +299.96 +14.998 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4652, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_120', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106510, 'MATRIX_DENSITY': 0.0001081713341839054, 'TIME_S': 10.588041067123413, 'TIME_S_1KI': 2.2760191459852566, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 291.5600438308715, 'W': 20.506065841615797, 'J_1KI': 62.67412808058287, 'W_1KI': 4.408010714018873, 'W_D': 5.508065841615798, 'J_D': 78.31496936607354, 'W_D_1KI': 1.1840210321616076, 'J_D_1KI': 0.25451870854720715} diff --git a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_005.json b/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_005.json deleted file mode 100644 index cc64c57..0000000 --- a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_005.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 5806, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 10.171998977661133, "TIME_S_1KI": 1.7519805335275807, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 312.83616289138786, "W": 23.626422472883572, "J_1KI": 53.88152995029071, "W_1KI": 4.069311483445328, "W_D": 5.210422472883575, "J_D": 68.9909179153442, "W_D_1KI": 0.8974203363561101, "J_D_1KI": 0.15456774653050467} diff --git a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_005.output b/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_005.output deleted file mode 100644 index 04c69bd..0000000 --- a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_005.output +++ /dev/null @@ -1,65 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_005.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 0.1808183193206787} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.7415, 0.8054, 0.6431, ..., 0.7043, 0.2095, 0.2852]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 0.1808183193206787 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 5806 -m matrices/as-caida_pruned/as-caida_G_005.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 10.171998977661133} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.0310, 0.3080, 0.7594, ..., 0.0941, 0.5225, 0.9795]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 10.171998977661133 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.0310, 0.3080, 0.7594, ..., 0.0941, 0.5225, 0.9795]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 10.171998977661133 seconds - -[20.56, 20.64, 20.44, 20.48, 20.48, 20.44, 20.6, 20.64, 20.64, 20.76] -[20.8, 20.88, 21.04, 25.72, 26.8, 29.92, 30.76, 28.4, 26.88, 24.6, 24.56, 24.56, 24.72] -13.240945100784302 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 5806, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_005', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 70026, 'MATRIX_DENSITY': 7.111825976492498e-05, 'TIME_S': 10.171998977661133, 'TIME_S_1KI': 1.7519805335275807, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 312.83616289138786, 'W': 23.626422472883572} -[20.56, 20.64, 20.44, 20.48, 20.48, 20.44, 20.6, 20.64, 20.64, 20.76, 20.2, 20.36, 20.24, 20.2, 20.24, 20.36, 20.4, 20.56, 20.6, 20.48] -368.31999999999994 -18.415999999999997 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 5806, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_005', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 70026, 'MATRIX_DENSITY': 7.111825976492498e-05, 'TIME_S': 10.171998977661133, 'TIME_S_1KI': 1.7519805335275807, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 312.83616289138786, 'W': 23.626422472883572, 'J_1KI': 53.88152995029071, 'W_1KI': 4.069311483445328, 'W_D': 5.210422472883575, 'J_D': 68.9909179153442, 'W_D_1KI': 0.8974203363561101, 'J_D_1KI': 0.15456774653050467} diff --git a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_015.json b/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_015.json deleted file mode 100644 index 9fa31bf..0000000 --- a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_015.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 5449, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 10.42112112045288, "TIME_S_1KI": 1.9124832300335624, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 326.5276795768738, "W": 22.970903604955094, "J_1KI": 59.924330992269006, "W_1KI": 4.21561820608462, "W_D": 4.577903604955093, "J_D": 65.0741593434811, "W_D_1KI": 0.8401364663158548, "J_D_1KI": 0.15418177029103594} diff --git a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_015.output b/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_015.output deleted file mode 100644 index e3feb4a..0000000 --- a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_015.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_015.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 0.24444031715393066} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.0041, 0.0059, 0.8299, ..., 0.3077, 0.8545, 0.8513]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 0.24444031715393066 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4295 -m matrices/as-caida_pruned/as-caida_G_015.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 8.275424003601074} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.5048, 0.0128, 0.9259, ..., 0.5690, 0.7343, 0.9731]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 8.275424003601074 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 5449 -m matrices/as-caida_pruned/as-caida_G_015.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 10.42112112045288} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.2882, 0.9342, 0.0969, ..., 0.6573, 0.4161, 0.3369]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 10.42112112045288 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.2882, 0.9342, 0.0969, ..., 0.6573, 0.4161, 0.3369]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 10.42112112045288 seconds - -[20.72, 20.48, 20.48, 20.32, 20.36, 20.36, 20.28, 20.36, 20.36, 20.24] -[20.4, 20.36, 20.28, 25.0, 25.96, 28.32, 29.16, 26.92, 25.8, 24.32, 24.4, 24.24, 24.24, 24.24] -14.21483826637268 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 5449, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_015', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 77124, 'MATRIX_DENSITY': 7.832697378273889e-05, 'TIME_S': 10.42112112045288, 'TIME_S_1KI': 1.9124832300335624, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 326.5276795768738, 'W': 22.970903604955094} -[20.72, 20.48, 20.48, 20.32, 20.36, 20.36, 20.28, 20.36, 20.36, 20.24, 20.48, 20.36, 20.32, 20.2, 20.16, 20.6, 20.76, 20.72, 20.8, 20.44] -367.86 -18.393 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 5449, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_015', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 77124, 'MATRIX_DENSITY': 7.832697378273889e-05, 'TIME_S': 10.42112112045288, 'TIME_S_1KI': 1.9124832300335624, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 326.5276795768738, 'W': 22.970903604955094, 'J_1KI': 59.924330992269006, 'W_1KI': 4.21561820608462, 'W_D': 4.577903604955093, 'J_D': 65.0741593434811, 'W_D_1KI': 0.8401364663158548, 'J_D_1KI': 0.15418177029103594} diff --git a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_025.json b/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_025.json deleted file mode 100644 index 8393438..0000000 --- a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_025.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 5009, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 10.436067342758179, "TIME_S_1KI": 2.0834632347291233, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 339.9102258396148, "W": 23.870320724339745, "J_1KI": 67.85989735268812, "W_1KI": 4.7654862695827, "W_D": 5.56032072433975, "J_D": 79.17823539018632, "W_D_1KI": 1.110066026021112, "J_D_1KI": 0.22161429946518504} diff --git a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_025.output b/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_025.output deleted file mode 100644 index ee06650..0000000 --- a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_025.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_025.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 0.2360525131225586} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.8761, 0.0368, 0.8631, ..., 0.6340, 0.9685, 0.1396]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 0.2360525131225586 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4448 -m matrices/as-caida_pruned/as-caida_G_025.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 9.323699712753296} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.4095, 0.9128, 0.5370, ..., 0.1298, 0.9549, 0.0765]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 9.323699712753296 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 5009 -m matrices/as-caida_pruned/as-caida_G_025.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 10.436067342758179} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.6896, 0.4674, 0.9391, ..., 0.8690, 0.1471, 0.0542]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 10.436067342758179 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.6896, 0.4674, 0.9391, ..., 0.8690, 0.1471, 0.0542]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 10.436067342758179 seconds - -[20.2, 20.32, 20.52, 20.52, 20.64, 20.64, 20.64, 20.64, 20.64, 20.52] -[20.44, 20.72, 20.72, 23.84, 26.4, 29.12, 30.32, 31.08, 27.36, 26.24, 24.52, 25.04, 25.36, 25.64] -14.239868402481079 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 5009, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_025', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 85850, 'MATRIX_DENSITY': 8.718908121010495e-05, 'TIME_S': 10.436067342758179, 'TIME_S_1KI': 2.0834632347291233, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 339.9102258396148, 'W': 23.870320724339745} -[20.2, 20.32, 20.52, 20.52, 20.64, 20.64, 20.64, 20.64, 20.64, 20.52, 20.2, 20.16, 20.16, 20.16, 20.2, 20.24, 20.16, 20.2, 19.92, 19.96] -366.19999999999993 -18.309999999999995 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 5009, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_025', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 85850, 'MATRIX_DENSITY': 8.718908121010495e-05, 'TIME_S': 10.436067342758179, 'TIME_S_1KI': 2.0834632347291233, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 339.9102258396148, 'W': 23.870320724339745, 'J_1KI': 67.85989735268812, 'W_1KI': 4.7654862695827, 'W_D': 5.56032072433975, 'J_D': 79.17823539018632, 'W_D_1KI': 1.110066026021112, 'J_D_1KI': 0.22161429946518504} diff --git a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_035.json b/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_035.json deleted file mode 100644 index b64425d..0000000 --- a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_035.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 4906, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 10.369710445404053, "TIME_S_1KI": 2.113679259152885, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 320.3935369491577, "W": 22.512475730235575, "J_1KI": 65.30646900716626, "W_1KI": 4.5887639075082705, "W_D": 4.301475730235577, "J_D": 61.217834938526146, "W_D_1KI": 0.8767785834153234, "J_D_1KI": 0.17871556938755065} diff --git a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_035.output b/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_035.output deleted file mode 100644 index 8c69e76..0000000 --- a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_035.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_035.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 0.28984951972961426} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.2495, 0.4746, 0.6508, ..., 0.6030, 0.3808, 0.6963]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 0.28984951972961426 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 3622 -m matrices/as-caida_pruned/as-caida_G_035.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 7.750367879867554} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.1862, 0.1434, 0.8787, ..., 0.7704, 0.8925, 0.8878]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 7.750367879867554 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4906 -m matrices/as-caida_pruned/as-caida_G_035.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 10.369710445404053} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.7972, 0.7657, 0.0835, ..., 0.8008, 0.2416, 0.9619]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 10.369710445404053 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.7972, 0.7657, 0.0835, ..., 0.8008, 0.2416, 0.9619]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 10.369710445404053 seconds - -[20.08, 19.84, 19.84, 19.92, 19.96, 20.04, 20.08, 20.2, 20.2, 20.2] -[20.36, 20.32, 21.32, 22.76, 24.92, 24.92, 25.72, 26.36, 26.24, 25.64, 24.64, 24.68, 24.72, 24.56] -14.231821537017822 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4906, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_035', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 87560, 'MATRIX_DENSITY': 8.892575364888514e-05, 'TIME_S': 10.369710445404053, 'TIME_S_1KI': 2.113679259152885, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 320.3935369491577, 'W': 22.512475730235575} -[20.08, 19.84, 19.84, 19.92, 19.96, 20.04, 20.08, 20.2, 20.2, 20.2, 20.36, 20.4, 20.56, 20.4, 20.6, 20.6, 20.6, 20.28, 20.12, 20.52] -364.21999999999997 -18.211 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4906, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_035', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 87560, 'MATRIX_DENSITY': 8.892575364888514e-05, 'TIME_S': 10.369710445404053, 'TIME_S_1KI': 2.113679259152885, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 320.3935369491577, 'W': 22.512475730235575, 'J_1KI': 65.30646900716626, 'W_1KI': 4.5887639075082705, 'W_D': 4.301475730235577, 'J_D': 61.217834938526146, 'W_D_1KI': 0.8767785834153234, 'J_D_1KI': 0.17871556938755065} diff --git a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_045.json b/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_045.json deleted file mode 100644 index 332fb37..0000000 --- a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_045.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 4905, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 10.552767515182495, "TIME_S_1KI": 2.1514306860718646, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 328.58112309455873, "W": 23.14675123767438, "J_1KI": 66.9890159214187, "W_1KI": 4.719011465377039, "W_D": 4.7337512376743796, "J_D": 67.19825526070599, "W_D_1KI": 0.9650868986084362, "J_D_1KI": 0.196755738758091} diff --git a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_045.output b/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_045.output deleted file mode 100644 index 88c6f0e..0000000 --- a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_045.output +++ /dev/null @@ -1,105 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_045.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 0.2738626003265381} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.8777, 0.5124, 0.0822, ..., 0.9706, 0.3708, 0.5874]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 0.2738626003265381 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 3834 -m matrices/as-caida_pruned/as-caida_G_045.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 8.640145778656006} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.9169, 0.5590, 0.9513, ..., 0.6480, 0.9706, 0.8048]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 8.640145778656006 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4659 -m matrices/as-caida_pruned/as-caida_G_045.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 9.972679376602173} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.6180, 0.9542, 0.9412, ..., 0.9357, 0.2218, 0.1163]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 9.972679376602173 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4905 -m matrices/as-caida_pruned/as-caida_G_045.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 10.552767515182495} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.7047, 0.9313, 0.0358, ..., 0.9576, 0.8194, 0.2072]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 10.552767515182495 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.7047, 0.9313, 0.0358, ..., 0.9576, 0.8194, 0.2072]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 10.552767515182495 seconds - -[20.24, 20.28, 20.32, 20.28, 20.64, 20.72, 20.8, 20.96, 20.88, 20.6] -[20.6, 20.52, 20.28, 22.6, 24.08, 26.32, 27.4, 28.32, 27.04, 26.4, 25.72, 25.72, 25.88, 25.88] -14.195561170578003 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4905, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_045', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89152, 'MATRIX_DENSITY': 9.054258553341032e-05, 'TIME_S': 10.552767515182495, 'TIME_S_1KI': 2.1514306860718646, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 328.58112309455873, 'W': 23.14675123767438} -[20.24, 20.28, 20.32, 20.28, 20.64, 20.72, 20.8, 20.96, 20.88, 20.6, 20.8, 20.4, 20.12, 19.96, 20.16, 20.24, 20.4, 20.6, 20.48, 20.4] -368.26 -18.413 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4905, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_045', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89152, 'MATRIX_DENSITY': 9.054258553341032e-05, 'TIME_S': 10.552767515182495, 'TIME_S_1KI': 2.1514306860718646, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 328.58112309455873, 'W': 23.14675123767438, 'J_1KI': 66.9890159214187, 'W_1KI': 4.719011465377039, 'W_D': 4.7337512376743796, 'J_D': 67.19825526070599, 'W_D_1KI': 0.9650868986084362, 'J_D_1KI': 0.196755738758091} diff --git a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_055.json b/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_055.json deleted file mode 100644 index ddd2c19..0000000 --- a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_055.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 4732, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 10.468129873275757, "TIME_S_1KI": 2.212199888688875, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 340.41829671859733, "W": 23.891063458309905, "J_1KI": 71.93962314425134, "W_1KI": 5.048829978510124, "W_D": 5.390063458309907, "J_D": 76.80178092050545, "W_D_1KI": 1.1390666649006567, "J_D_1KI": 0.24071569418864255} diff --git a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_055.output b/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_055.output deleted file mode 100644 index d8de122..0000000 --- a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_055.output +++ /dev/null @@ -1,86 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_055.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 0.2837095260620117} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.1141, 0.9590, 0.8822, ..., 0.4586, 0.3032, 0.3922]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 0.2837095260620117 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 3700 -m matrices/as-caida_pruned/as-caida_G_055.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 8.209553480148315} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([1.3531e-01, 9.2471e-01, 3.7424e-01, ..., 8.7339e-04, 4.3447e-01, - 4.7205e-01]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 8.209553480148315 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4732 -m matrices/as-caida_pruned/as-caida_G_055.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 10.468129873275757} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.1672, 0.2165, 0.1528, ..., 0.1782, 0.4621, 0.9393]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 10.468129873275757 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.1672, 0.2165, 0.1528, ..., 0.1782, 0.4621, 0.9393]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 10.468129873275757 seconds - -[20.4, 20.44, 20.52, 20.76, 20.6, 20.84, 20.92, 20.84, 20.6, 20.6] -[20.6, 20.72, 20.72, 24.32, 26.2, 29.28, 30.44, 28.2, 28.0, 25.56, 25.68, 25.84, 25.84, 25.8] -14.24877119064331 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4732, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_055', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 91476, 'MATRIX_DENSITY': 9.290283509348351e-05, 'TIME_S': 10.468129873275757, 'TIME_S_1KI': 2.212199888688875, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 340.41829671859733, 'W': 23.891063458309905} -[20.4, 20.44, 20.52, 20.76, 20.6, 20.84, 20.92, 20.84, 20.6, 20.6, 20.64, 20.36, 20.52, 20.52, 20.48, 20.36, 20.36, 20.32, 20.44, 20.64] -370.02 -18.500999999999998 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4732, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_055', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 91476, 'MATRIX_DENSITY': 9.290283509348351e-05, 'TIME_S': 10.468129873275757, 'TIME_S_1KI': 2.212199888688875, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 340.41829671859733, 'W': 23.891063458309905, 'J_1KI': 71.93962314425134, 'W_1KI': 5.048829978510124, 'W_D': 5.390063458309907, 'J_D': 76.80178092050545, 'W_D_1KI': 1.1390666649006567, 'J_D_1KI': 0.24071569418864255} diff --git a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_065.json b/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_065.json deleted file mode 100644 index 4edf738..0000000 --- a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_065.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 4558, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 10.40420150756836, "TIME_S_1KI": 2.2826242886284245, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 329.84002380371095, "W": 23.226044906428264, "J_1KI": 72.3650776225781, "W_1KI": 5.095665841691151, "W_D": 4.6110449064282655, "J_D": 65.48283049583436, "W_D_1KI": 1.0116377591988295, "J_D_1KI": 0.2219477312853948} diff --git a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_065.output b/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_065.output deleted file mode 100644 index bfc13d8..0000000 --- a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_065.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_065.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 0.2867097854614258} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.2765, 0.7404, 0.5834, ..., 0.0305, 0.2184, 0.6277]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 0.2867097854614258 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 3662 -m matrices/as-caida_pruned/as-caida_G_065.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 8.434634447097778} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.9579, 0.2280, 0.6543, ..., 0.1974, 0.2729, 0.8108]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 8.434634447097778 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4558 -m matrices/as-caida_pruned/as-caida_G_065.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 10.40420150756836} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.9497, 0.5746, 0.8058, ..., 0.6531, 0.4871, 0.2425]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 10.40420150756836 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.9497, 0.5746, 0.8058, ..., 0.6531, 0.4871, 0.2425]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 10.40420150756836 seconds - -[20.64, 20.64, 20.6, 20.56, 20.4, 20.2, 20.16, 20.24, 20.44, 20.48] -[20.4, 20.4, 20.32, 24.04, 25.44, 28.52, 29.28, 29.6, 26.24, 25.04, 24.36, 24.48, 24.64, 24.64] -14.201299667358398 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4558, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_065', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 95068, 'MATRIX_DENSITY': 9.655086281283934e-05, 'TIME_S': 10.40420150756836, 'TIME_S_1KI': 2.2826242886284245, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 329.84002380371095, 'W': 23.226044906428264} -[20.64, 20.64, 20.6, 20.56, 20.4, 20.2, 20.16, 20.24, 20.44, 20.48, 20.76, 20.76, 20.84, 20.72, 20.92, 21.16, 21.12, 20.96, 21.04, 21.2] -372.29999999999995 -18.615 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4558, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_065', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 95068, 'MATRIX_DENSITY': 9.655086281283934e-05, 'TIME_S': 10.40420150756836, 'TIME_S_1KI': 2.2826242886284245, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 329.84002380371095, 'W': 23.226044906428264, 'J_1KI': 72.3650776225781, 'W_1KI': 5.095665841691151, 'W_D': 4.6110449064282655, 'J_D': 65.48283049583436, 'W_D_1KI': 1.0116377591988295, 'J_D_1KI': 0.2219477312853948} diff --git a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_075.json b/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_075.json deleted file mode 100644 index dda358e..0000000 --- a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_075.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 4325, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 10.857763290405273, "TIME_S_1KI": 2.5104655006717396, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 335.7423639297486, "W": 23.58156237869744, "J_1KI": 77.62829223809216, "W_1KI": 5.45238436501675, "W_D": 5.256562378697442, "J_D": 74.84027779102334, "W_D_1KI": 1.2153901453635703, "J_D_1KI": 0.28101506251180813} diff --git a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_075.output b/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_075.output deleted file mode 100644 index d65e9d8..0000000 --- a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_075.output +++ /dev/null @@ -1,65 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_075.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 0.24277067184448242} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.0081, 0.1025, 0.4852, ..., 0.3080, 0.4481, 0.5761]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 0.24277067184448242 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4325 -m matrices/as-caida_pruned/as-caida_G_075.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 10.857763290405273} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.2760, 0.7522, 0.4563, ..., 0.1844, 0.1938, 0.2151]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 10.857763290405273 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.2760, 0.7522, 0.4563, ..., 0.1844, 0.1938, 0.2151]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 10.857763290405273 seconds - -[20.32, 20.4, 20.16, 20.16, 20.2, 20.32, 20.32, 20.52, 20.44, 20.48] -[20.4, 20.44, 20.72, 24.96, 27.28, 28.88, 29.68, 27.12, 26.68, 26.68, 24.92, 25.16, 24.88, 24.6] -14.237494468688965 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4325, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_075', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 97492, 'MATRIX_DENSITY': 9.901267216465406e-05, 'TIME_S': 10.857763290405273, 'TIME_S_1KI': 2.5104655006717396, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 335.7423639297486, 'W': 23.58156237869744} -[20.32, 20.4, 20.16, 20.16, 20.2, 20.32, 20.32, 20.52, 20.44, 20.48, 20.2, 20.44, 20.6, 20.68, 20.64, 20.44, 20.36, 20.08, 20.16, 20.16] -366.5 -18.325 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4325, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_075', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 97492, 'MATRIX_DENSITY': 9.901267216465406e-05, 'TIME_S': 10.857763290405273, 'TIME_S_1KI': 2.5104655006717396, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 335.7423639297486, 'W': 23.58156237869744, 'J_1KI': 77.62829223809216, 'W_1KI': 5.45238436501675, 'W_D': 5.256562378697442, 'J_D': 74.84027779102334, 'W_D_1KI': 1.2153901453635703, 'J_D_1KI': 0.28101506251180813} diff --git a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_085.json b/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_085.json deleted file mode 100644 index 940e178..0000000 --- a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_085.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 4299, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 10.420058727264404, "TIME_S_1KI": 2.423833153585579, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 326.41223700523375, "W": 22.905972813666082, "J_1KI": 75.92748011287131, "W_1KI": 5.32820954028055, "W_D": 4.372972813666085, "J_D": 62.31526816534997, "W_D_1KI": 1.0172069815459606, "J_D_1KI": 0.23661478984553633} diff --git a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_085.output b/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_085.output deleted file mode 100644 index e7f8144..0000000 --- a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_085.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_085.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 0.2965834140777588} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.4492, 0.3348, 0.2820, ..., 0.6380, 0.4778, 0.0633]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 0.2965834140777588 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 3540 -m matrices/as-caida_pruned/as-caida_G_085.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 8.64511513710022} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.6270, 0.7806, 0.1009, ..., 0.0616, 0.3576, 0.1481]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 8.64511513710022 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4299 -m matrices/as-caida_pruned/as-caida_G_085.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 10.420058727264404} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.3742, 0.9296, 0.9529, ..., 0.5552, 0.6324, 0.8504]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 10.420058727264404 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.3742, 0.9296, 0.9529, ..., 0.5552, 0.6324, 0.8504]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 10.420058727264404 seconds - -[21.0, 20.84, 20.84, 20.52, 20.56, 20.44, 20.52, 20.52, 20.6, 20.68] -[20.72, 20.36, 20.68, 24.16, 25.6, 27.56, 28.48, 26.48, 26.4, 24.6, 24.6, 24.68, 24.36, 24.12] -14.25009274482727 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4299, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_085', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 99166, 'MATRIX_DENSITY': 0.0001007127830784073, 'TIME_S': 10.420058727264404, 'TIME_S_1KI': 2.423833153585579, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 326.41223700523375, 'W': 22.905972813666082} -[21.0, 20.84, 20.84, 20.52, 20.56, 20.44, 20.52, 20.52, 20.6, 20.68, 20.32, 20.56, 20.4, 20.44, 20.48, 20.4, 20.72, 20.68, 20.76, 20.76] -370.65999999999997 -18.532999999999998 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4299, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_085', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 99166, 'MATRIX_DENSITY': 0.0001007127830784073, 'TIME_S': 10.420058727264404, 'TIME_S_1KI': 2.423833153585579, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 326.41223700523375, 'W': 22.905972813666082, 'J_1KI': 75.92748011287131, 'W_1KI': 5.32820954028055, 'W_D': 4.372972813666085, 'J_D': 62.31526816534997, 'W_D_1KI': 1.0172069815459606, 'J_D_1KI': 0.23661478984553633} diff --git a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_095.json b/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_095.json deleted file mode 100644 index 7c8a651..0000000 --- a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_095.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 4276, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 10.67867112159729, "TIME_S_1KI": 2.4973505897093755, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 339.92240665435787, "W": 23.947333156007627, "J_1KI": 79.49541783310521, "W_1KI": 5.600405321797855, "W_D": 5.373333156007625, "J_D": 76.27222314262384, "W_D_1KI": 1.2566260888698844, "J_D_1KI": 0.2938788795299075} diff --git a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_095.output b/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_095.output deleted file mode 100644 index b48990a..0000000 --- a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_095.output +++ /dev/null @@ -1,89 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_095.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 0.31911325454711914} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.3207, 0.9700, 0.3262, ..., 0.9362, 0.9941, 0.3912]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 0.31911325454711914 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 3290 -m matrices/as-caida_pruned/as-caida_G_095.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 8.077399730682373} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.5291, 0.8021, 0.1066, ..., 0.7881, 0.0805, 0.4870]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 8.077399730682373 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4276 -m matrices/as-caida_pruned/as-caida_G_095.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 10.67867112159729} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.1501, 0.9759, 0.0443, ..., 0.6183, 0.1649, 0.2013]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 10.67867112159729 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.1501, 0.9759, 0.0443, ..., 0.6183, 0.1649, 0.2013]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 10.67867112159729 seconds - -[20.72, 20.84, 20.68, 20.36, 20.24, 20.2, 20.4, 20.32, 20.32, 20.28] -[20.32, 20.36, 20.52, 24.24, 26.84, 29.28, 30.8, 30.56, 26.92, 26.36, 25.44, 25.44, 25.36, 25.4] -14.19458293914795 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4276, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_095', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102290, 'MATRIX_DENSITY': 0.00010388551097241275, 'TIME_S': 10.67867112159729, 'TIME_S_1KI': 2.4973505897093755, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 339.92240665435787, 'W': 23.947333156007627} -[20.72, 20.84, 20.68, 20.36, 20.24, 20.2, 20.4, 20.32, 20.32, 20.28, 20.76, 20.88, 20.68, 20.84, 20.88, 21.0, 20.76, 20.88, 20.84, 20.96] -371.48 -18.574 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4276, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_095', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102290, 'MATRIX_DENSITY': 0.00010388551097241275, 'TIME_S': 10.67867112159729, 'TIME_S_1KI': 2.4973505897093755, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 339.92240665435787, 'W': 23.947333156007627, 'J_1KI': 79.49541783310521, 'W_1KI': 5.600405321797855, 'W_D': 5.373333156007625, 'J_D': 76.27222314262384, 'W_D_1KI': 1.2566260888698844, 'J_D_1KI': 0.2938788795299075} diff --git a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_105.json b/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_105.json deleted file mode 100644 index b1ad1ed..0000000 --- a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_105.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 4151, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 11.793859243392944, "TIME_S_1KI": 2.8412091648742335, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 356.85992715835573, "W": 25.058368416517443, "J_1KI": 85.96962832049041, "W_1KI": 6.036706436164163, "W_D": 5.961368416517441, "J_D": 84.89672845101359, "W_D_1KI": 1.4361282622301712, "J_D_1KI": 0.3459716362876828} diff --git a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_105.output b/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_105.output deleted file mode 100644 index d09ad65..0000000 --- a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_105.output +++ /dev/null @@ -1,89 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_105.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 0.33879852294921875} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.1080, 0.7126, 0.2741, ..., 0.0141, 0.6709, 0.0416]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 0.33879852294921875 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 3099 -m matrices/as-caida_pruned/as-caida_G_105.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 7.838690519332886} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.5517, 0.4219, 0.5041, ..., 0.2191, 0.6881, 0.0206]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 7.838690519332886 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4151 -m matrices/as-caida_pruned/as-caida_G_105.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 11.793859243392944} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.6544, 0.9539, 0.4979, ..., 0.4670, 0.0344, 0.9767]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 11.793859243392944 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.6544, 0.9539, 0.4979, ..., 0.4670, 0.0344, 0.9767]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 11.793859243392944 seconds - -[23.72, 23.12, 22.6, 21.2, 21.04, 21.04, 21.2, 21.6, 21.96, 22.48] -[22.96, 22.84, 22.8, 26.76, 28.44, 29.48, 30.2, 28.12, 28.12, 28.04, 26.36, 27.0, 27.12, 27.12] -14.241147756576538 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4151, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_105', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104726, 'MATRIX_DENSITY': 0.00010635950749923647, 'TIME_S': 11.793859243392944, 'TIME_S_1KI': 2.8412091648742335, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 356.85992715835573, 'W': 25.058368416517443} -[23.72, 23.12, 22.6, 21.2, 21.04, 21.04, 21.2, 21.6, 21.96, 22.48, 21.08, 20.44, 20.4, 20.6, 20.6, 20.6, 20.64, 20.48, 20.48, 20.6] -381.94 -19.097 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4151, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_105', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104726, 'MATRIX_DENSITY': 0.00010635950749923647, 'TIME_S': 11.793859243392944, 'TIME_S_1KI': 2.8412091648742335, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 356.85992715835573, 'W': 25.058368416517443, 'J_1KI': 85.96962832049041, 'W_1KI': 6.036706436164163, 'W_D': 5.961368416517441, 'J_D': 84.89672845101359, 'W_D_1KI': 1.4361282622301712, 'J_D_1KI': 0.3459716362876828} diff --git a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_115.json b/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_115.json deleted file mode 100644 index cde0fa8..0000000 --- a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_115.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 3898, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 10.276582956314087, "TIME_S_1KI": 2.6363732571354768, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 299.2206564903259, "W": 22.616425322779282, "J_1KI": 76.76261069531193, "W_1KI": 5.802058830882319, "W_D": 4.17842532277928, "J_D": 55.28155534458152, "W_D_1KI": 1.0719408216468136, "J_D_1KI": 0.27499764536860277} diff --git a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_115.output b/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_115.output deleted file mode 100644 index 78918ca..0000000 --- a/pytorch/output_as-caida_16core/altra_16_csr_10_10_10_as-caida_G_115.output +++ /dev/null @@ -1,89 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_115.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 0.29033493995666504} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.0287, 0.9302, 0.4533, ..., 0.1887, 0.8093, 0.0476]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 0.29033493995666504 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 3616 -m matrices/as-caida_pruned/as-caida_G_115.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 9.739661455154419} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.1589, 0.7243, 0.3638, ..., 0.5413, 0.9750, 0.3668]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 9.739661455154419 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 3898 -m matrices/as-caida_pruned/as-caida_G_115.mtx -c 16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 10.276582956314087} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.5554, 0.1424, 0.7572, ..., 0.7612, 0.5304, 0.9292]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 10.276582956314087 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.5554, 0.1424, 0.7572, ..., 0.7612, 0.5304, 0.9292]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 10.276582956314087 seconds - -[20.68, 20.84, 20.88, 20.88, 20.48, 20.32, 20.28, 20.04, 20.2, 20.24] -[20.12, 20.44, 21.0, 22.68, 25.16, 26.56, 26.56, 27.28, 26.48, 26.6, 24.04, 24.28, 24.76] -13.230236530303955 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 3898, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_115', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106312, 'MATRIX_DENSITY': 0.00010797024579625715, 'TIME_S': 10.276582956314087, 'TIME_S_1KI': 2.6363732571354768, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 299.2206564903259, 'W': 22.616425322779282} -[20.68, 20.84, 20.88, 20.88, 20.48, 20.32, 20.28, 20.04, 20.2, 20.24, 20.4, 20.36, 20.36, 20.48, 20.52, 20.4, 20.52, 20.52, 20.68, 20.68] -368.76000000000005 -18.438000000000002 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 3898, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_115', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106312, 'MATRIX_DENSITY': 0.00010797024579625715, 'TIME_S': 10.276582956314087, 'TIME_S_1KI': 2.6363732571354768, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 299.2206564903259, 'W': 22.616425322779282, 'J_1KI': 76.76261069531193, 'W_1KI': 5.802058830882319, 'W_D': 4.17842532277928, 'J_D': 55.28155534458152, 'W_D_1KI': 1.0719408216468136, 'J_D_1KI': 0.27499764536860277} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_010.json b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_010.json new file mode 100644 index 0000000..d324571 --- /dev/null +++ b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_010.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 4769, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 10.119500637054443, "TIME_S_1KI": 2.1219334529365574, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 844.3043718338013, "W": 66.0, "J_1KI": 177.0401282939403, "W_1KI": 13.839379324806039, "W_D": 30.517749999999992, "J_D": 390.3980264171361, "W_D_1KI": 6.3991927028727185, "J_D_1KI": 1.3418311392058542} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_010.output b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_010.output new file mode 100644 index 0000000..b73b062 --- /dev/null +++ b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_010.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_010.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 0.22014713287353516} + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.0446, 0.3085, 0.7701, ..., 0.1983, 0.0942, 0.8281]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 0.22014713287353516 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '4769', '-m', 'matrices/as-caida_pruned/as-caida_G_010.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 10.119500637054443} + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.3597, 0.7528, 0.5477, ..., 0.4164, 0.8221, 0.3719]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 10.119500637054443 seconds + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.3597, 0.7528, 0.5477, ..., 0.4164, 0.8221, 0.3719]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 10.119500637054443 seconds + +[40.21, 39.0, 39.39, 38.97, 38.89, 38.84, 39.29, 38.87, 38.89, 38.82] +[66.0] +12.792490482330322 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4769, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_010', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 74994, 'MATRIX_DENSITY': 7.616375021864427e-05, 'TIME_S': 10.119500637054443, 'TIME_S_1KI': 2.1219334529365574, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 844.3043718338013, 'W': 66.0} +[40.21, 39.0, 39.39, 38.97, 38.89, 38.84, 39.29, 38.87, 38.89, 38.82, 39.89, 39.44, 39.27, 38.9, 39.39, 39.34, 38.89, 38.81, 44.42, 39.17] +709.6450000000001 +35.48225000000001 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4769, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_010', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 74994, 'MATRIX_DENSITY': 7.616375021864427e-05, 'TIME_S': 10.119500637054443, 'TIME_S_1KI': 2.1219334529365574, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 844.3043718338013, 'W': 66.0, 'J_1KI': 177.0401282939403, 'W_1KI': 13.839379324806039, 'W_D': 30.517749999999992, 'J_D': 390.3980264171361, 'W_D_1KI': 6.3991927028727185, 'J_D_1KI': 1.3418311392058542} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_020.json b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_020.json new file mode 100644 index 0000000..b346d50 --- /dev/null +++ b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_020.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 4385, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_020", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 80948, "MATRIX_DENSITY": 8.221062021893506e-05, "TIME_S": 10.059838056564331, "TIME_S_1KI": 2.2941477894103377, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 832.878444750309, "W": 65.69, "J_1KI": 189.9380717788618, "W_1KI": 14.980615735461802, "W_D": 29.879499999999993, "J_D": 378.8398765400647, "W_D_1KI": 6.814025085518813, "J_D_1KI": 1.5539395862072551} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_020.output b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_020.output new file mode 100644 index 0000000..60c216c --- /dev/null +++ b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_020.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_020.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_020", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 80948, "MATRIX_DENSITY": 8.221062021893506e-05, "TIME_S": 0.23944783210754395} + +tensor(indices=tensor([[ 1040, 5699, 106, ..., 31378, 17998, 31377], + [ 0, 0, 2, ..., 31377, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 1.]), + size=(31379, 31379), nnz=80948, layout=torch.sparse_coo) +tensor([0.8563, 0.4350, 0.3757, ..., 0.6412, 0.9309, 0.3113]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_020 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 80948 +Density: 8.221062021893506e-05 +Time: 0.23944783210754395 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '4385', '-m', 'matrices/as-caida_pruned/as-caida_G_020.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_020", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 80948, "MATRIX_DENSITY": 8.221062021893506e-05, "TIME_S": 10.059838056564331} + +tensor(indices=tensor([[ 1040, 5699, 106, ..., 31378, 17998, 31377], + [ 0, 0, 2, ..., 31377, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 1.]), + size=(31379, 31379), nnz=80948, layout=torch.sparse_coo) +tensor([0.4982, 0.1677, 0.2557, ..., 0.3629, 0.8799, 0.2576]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_020 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 80948 +Density: 8.221062021893506e-05 +Time: 10.059838056564331 seconds + +tensor(indices=tensor([[ 1040, 5699, 106, ..., 31378, 17998, 31377], + [ 0, 0, 2, ..., 31377, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 1.]), + size=(31379, 31379), nnz=80948, layout=torch.sparse_coo) +tensor([0.4982, 0.1677, 0.2557, ..., 0.3629, 0.8799, 0.2576]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_020 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 80948 +Density: 8.221062021893506e-05 +Time: 10.059838056564331 seconds + +[40.19, 39.19, 38.83, 38.95, 38.96, 39.61, 44.61, 39.86, 39.01, 38.95] +[65.69] +12.678922891616821 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4385, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_020', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 80948, 'MATRIX_DENSITY': 8.221062021893506e-05, 'TIME_S': 10.059838056564331, 'TIME_S_1KI': 2.2941477894103377, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 832.878444750309, 'W': 65.69} +[40.19, 39.19, 38.83, 38.95, 38.96, 39.61, 44.61, 39.86, 39.01, 38.95, 39.79, 39.77, 38.91, 44.15, 39.01, 38.92, 39.18, 39.16, 39.01, 39.23] +716.21 +35.810500000000005 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4385, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_020', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 80948, 'MATRIX_DENSITY': 8.221062021893506e-05, 'TIME_S': 10.059838056564331, 'TIME_S_1KI': 2.2941477894103377, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 832.878444750309, 'W': 65.69, 'J_1KI': 189.9380717788618, 'W_1KI': 14.980615735461802, 'W_D': 29.879499999999993, 'J_D': 378.8398765400647, 'W_D_1KI': 6.814025085518813, 'J_D_1KI': 1.5539395862072551} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_030.json b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_030.json new file mode 100644 index 0000000..eaa390d --- /dev/null +++ b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_030.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 4096, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_030", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 86850, "MATRIX_DENSITY": 8.820467912752026e-05, "TIME_S": 10.174330949783325, "TIME_S_1KI": 2.4839675170369446, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 834.314271697998, "W": 65.58, "J_1KI": 203.69000773876905, "W_1KI": 16.0107421875, "W_D": 30.34375, "J_D": 386.03573775291443, "W_D_1KI": 7.40814208984375, "J_D_1KI": 1.8086284399032593} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_030.output b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_030.output new file mode 100644 index 0000000..fd9cd3d --- /dev/null +++ b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_030.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_030.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_030", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 86850, "MATRIX_DENSITY": 8.820467912752026e-05, "TIME_S": 0.25633716583251953} + +tensor(indices=tensor([[ 1809, 21783, 106, ..., 7018, 160, 882], + [ 0, 0, 2, ..., 31357, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=86850, layout=torch.sparse_coo) +tensor([0.5364, 0.8049, 0.8196, ..., 0.5812, 0.6014, 0.6461]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_030 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 86850 +Density: 8.820467912752026e-05 +Time: 0.25633716583251953 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '4096', '-m', 'matrices/as-caida_pruned/as-caida_G_030.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_030", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 86850, "MATRIX_DENSITY": 8.820467912752026e-05, "TIME_S": 10.174330949783325} + +tensor(indices=tensor([[ 1809, 21783, 106, ..., 7018, 160, 882], + [ 0, 0, 2, ..., 31357, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=86850, layout=torch.sparse_coo) +tensor([0.3286, 0.4849, 0.5053, ..., 0.6082, 0.2308, 0.6882]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_030 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 86850 +Density: 8.820467912752026e-05 +Time: 10.174330949783325 seconds + +tensor(indices=tensor([[ 1809, 21783, 106, ..., 7018, 160, 882], + [ 0, 0, 2, ..., 31357, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=86850, layout=torch.sparse_coo) +tensor([0.3286, 0.4849, 0.5053, ..., 0.6082, 0.2308, 0.6882]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_030 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 86850 +Density: 8.820467912752026e-05 +Time: 10.174330949783325 seconds + +[39.54, 39.89, 38.95, 39.07, 38.91, 38.97, 39.35, 39.34, 39.7, 38.87] +[65.58] +12.722084045410156 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4096, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_030', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 86850, 'MATRIX_DENSITY': 8.820467912752026e-05, 'TIME_S': 10.174330949783325, 'TIME_S_1KI': 2.4839675170369446, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 834.314271697998, 'W': 65.58} +[39.54, 39.89, 38.95, 39.07, 38.91, 38.97, 39.35, 39.34, 39.7, 38.87, 39.42, 39.22, 38.81, 38.99, 38.88, 38.8, 39.11, 38.71, 39.78, 38.66] +704.725 +35.23625 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4096, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_030', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 86850, 'MATRIX_DENSITY': 8.820467912752026e-05, 'TIME_S': 10.174330949783325, 'TIME_S_1KI': 2.4839675170369446, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 834.314271697998, 'W': 65.58, 'J_1KI': 203.69000773876905, 'W_1KI': 16.0107421875, 'W_D': 30.34375, 'J_D': 386.03573775291443, 'W_D_1KI': 7.40814208984375, 'J_D_1KI': 1.8086284399032593} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_040.json b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_040.json new file mode 100644 index 0000000..85698b6 --- /dev/null +++ b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_040.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 4004, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_040", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89658, "MATRIX_DENSITY": 9.105647807962247e-05, "TIME_S": 10.24946665763855, "TIME_S_1KI": 2.5598068575520854, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 833.9421323108672, "W": 65.66, "J_1KI": 208.2772558218949, "W_1KI": 16.398601398601397, "W_D": 30.284, "J_D": 384.6345344944, "W_D_1KI": 7.563436563436563, "J_D_1KI": 1.888970170688452} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_040.output b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_040.output new file mode 100644 index 0000000..996b8a6 --- /dev/null +++ b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_040.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_040.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_040", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89658, "MATRIX_DENSITY": 9.105647807962247e-05, "TIME_S": 0.26219677925109863} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 10144, 882, 16085], + [ 2, 2, 2, ..., 31371, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=89658, layout=torch.sparse_coo) +tensor([0.0260, 0.4189, 0.5812, ..., 0.5058, 0.4531, 0.0567]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_040 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 89658 +Density: 9.105647807962247e-05 +Time: 0.26219677925109863 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '4004', '-m', 'matrices/as-caida_pruned/as-caida_G_040.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_040", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89658, "MATRIX_DENSITY": 9.105647807962247e-05, "TIME_S": 10.24946665763855} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 10144, 882, 16085], + [ 2, 2, 2, ..., 31371, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=89658, layout=torch.sparse_coo) +tensor([0.8902, 0.3143, 0.5532, ..., 0.3943, 0.7593, 0.2179]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_040 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 89658 +Density: 9.105647807962247e-05 +Time: 10.24946665763855 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 10144, 882, 16085], + [ 2, 2, 2, ..., 31371, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=89658, layout=torch.sparse_coo) +tensor([0.8902, 0.3143, 0.5532, ..., 0.3943, 0.7593, 0.2179]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_040 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 89658 +Density: 9.105647807962247e-05 +Time: 10.24946665763855 seconds + +[39.68, 38.87, 39.22, 39.03, 40.34, 39.12, 39.31, 38.99, 39.3, 39.25] +[65.66] +12.700915813446045 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4004, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_040', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89658, 'MATRIX_DENSITY': 9.105647807962247e-05, 'TIME_S': 10.24946665763855, 'TIME_S_1KI': 2.5598068575520854, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 833.9421323108672, 'W': 65.66} +[39.68, 38.87, 39.22, 39.03, 40.34, 39.12, 39.31, 38.99, 39.3, 39.25, 39.85, 38.84, 39.0, 38.84, 40.31, 38.82, 39.07, 40.34, 39.17, 39.12] +707.52 +35.376 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4004, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_040', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89658, 'MATRIX_DENSITY': 9.105647807962247e-05, 'TIME_S': 10.24946665763855, 'TIME_S_1KI': 2.5598068575520854, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 833.9421323108672, 'W': 65.66, 'J_1KI': 208.2772558218949, 'W_1KI': 16.398601398601397, 'W_D': 30.284, 'J_D': 384.6345344944, 'W_D_1KI': 7.563436563436563, 'J_D_1KI': 1.888970170688452} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_050.json b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_050.json new file mode 100644 index 0000000..91a3b98 --- /dev/null +++ b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_050.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 3968, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 10.143889904022217, "TIME_S_1KI": 2.5564238669410826, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 839.2623137211799, "W": 66.19, "J_1KI": 211.50763954666832, "W_1KI": 16.680947580645164, "W_D": 30.254749999999987, "J_D": 383.61794056588394, "W_D_1KI": 7.624684979838706, "J_D_1KI": 1.9215435937093515} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_050.output b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_050.output new file mode 100644 index 0000000..bd72311 --- /dev/null +++ b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_050.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_050.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 0.26460933685302734} + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.4903, 0.0512, 0.8825, ..., 0.8792, 0.0182, 0.9061]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 0.26460933685302734 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '3968', '-m', 'matrices/as-caida_pruned/as-caida_G_050.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 10.143889904022217} + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.5633, 0.2597, 0.7063, ..., 0.4684, 0.8924, 0.4968]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 10.143889904022217 seconds + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.5633, 0.2597, 0.7063, ..., 0.4684, 0.8924, 0.4968]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 10.143889904022217 seconds + +[40.24, 38.72, 38.71, 39.16, 38.94, 38.67, 45.46, 48.6, 38.79, 39.01] +[66.19] +12.679593801498413 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3968, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_050', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 90392, 'MATRIX_DENSITY': 9.180192695100532e-05, 'TIME_S': 10.143889904022217, 'TIME_S_1KI': 2.5564238669410826, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 839.2623137211799, 'W': 66.19} +[40.24, 38.72, 38.71, 39.16, 38.94, 38.67, 45.46, 48.6, 38.79, 39.01, 39.67, 39.0, 38.87, 39.08, 40.02, 38.77, 39.28, 39.06, 38.75, 38.73] +718.7050000000002 +35.93525000000001 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3968, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_050', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 90392, 'MATRIX_DENSITY': 9.180192695100532e-05, 'TIME_S': 10.143889904022217, 'TIME_S_1KI': 2.5564238669410826, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 839.2623137211799, 'W': 66.19, 'J_1KI': 211.50763954666832, 'W_1KI': 16.680947580645164, 'W_D': 30.254749999999987, 'J_D': 383.61794056588394, 'W_D_1KI': 7.624684979838706, 'J_D_1KI': 1.9215435937093515} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_060.json b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_060.json new file mode 100644 index 0000000..8d9edd9 --- /dev/null +++ b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_060.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 3829, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_060", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 94180, "MATRIX_DENSITY": 9.564901186217454e-05, "TIME_S": 10.307322263717651, "TIME_S_1KI": 2.6919097058547012, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 845.4719912147523, "W": 66.26, "J_1KI": 220.80751925169818, "W_1KI": 17.304779315748238, "W_D": 30.35900000000001, "J_D": 387.3782701673509, "W_D_1KI": 7.928702010968923, "J_D_1KI": 2.070697835196898} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_060.output b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_060.output new file mode 100644 index 0000000..3ef304c --- /dev/null +++ b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_060.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_060.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_060", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 94180, "MATRIX_DENSITY": 9.564901186217454e-05, "TIME_S": 0.27417469024658203} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 882], + [ 2, 2, 2, ..., 31355, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=94180, layout=torch.sparse_coo) +tensor([0.4001, 0.3766, 0.8606, ..., 0.3087, 0.4498, 0.0921]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_060 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 94180 +Density: 9.564901186217454e-05 +Time: 0.27417469024658203 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '3829', '-m', 'matrices/as-caida_pruned/as-caida_G_060.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_060", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 94180, "MATRIX_DENSITY": 9.564901186217454e-05, "TIME_S": 10.307322263717651} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 882], + [ 2, 2, 2, ..., 31355, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=94180, layout=torch.sparse_coo) +tensor([0.7941, 0.9125, 0.8658, ..., 0.7137, 0.9132, 0.0526]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_060 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 94180 +Density: 9.564901186217454e-05 +Time: 10.307322263717651 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 882], + [ 2, 2, 2, ..., 31355, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=94180, layout=torch.sparse_coo) +tensor([0.7941, 0.9125, 0.8658, ..., 0.7137, 0.9132, 0.0526]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_060 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 94180 +Density: 9.564901186217454e-05 +Time: 10.307322263717651 seconds + +[39.94, 39.42, 39.4, 39.09, 40.38, 38.9, 38.95, 38.83, 38.97, 39.11] +[66.26] +12.759915351867676 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3829, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_060', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 94180, 'MATRIX_DENSITY': 9.564901186217454e-05, 'TIME_S': 10.307322263717651, 'TIME_S_1KI': 2.6919097058547012, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 845.4719912147523, 'W': 66.26} +[39.94, 39.42, 39.4, 39.09, 40.38, 38.9, 38.95, 38.83, 38.97, 39.11, 39.47, 39.94, 39.33, 38.94, 39.31, 39.01, 39.26, 38.75, 47.56, 45.44] +718.02 +35.900999999999996 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3829, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_060', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 94180, 'MATRIX_DENSITY': 9.564901186217454e-05, 'TIME_S': 10.307322263717651, 'TIME_S_1KI': 2.6919097058547012, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 845.4719912147523, 'W': 66.26, 'J_1KI': 220.80751925169818, 'W_1KI': 17.304779315748238, 'W_D': 30.35900000000001, 'J_D': 387.3782701673509, 'W_D_1KI': 7.928702010968923, 'J_D_1KI': 2.070697835196898} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_070.json b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_070.json new file mode 100644 index 0000000..363955f --- /dev/null +++ b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_070.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 4500, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_070", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 78684, "MATRIX_DENSITY": 7.991130653390679e-05, "TIME_S": 10.017730236053467, "TIME_S_1KI": 2.226162274678548, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 835.5015341281892, "W": 65.95, "J_1KI": 185.66700758404204, "W_1KI": 14.655555555555555, "W_D": 30.592999999999996, "J_D": 387.57389588451383, "W_D_1KI": 6.798444444444444, "J_D_1KI": 1.5107654320987653} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_070.output b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_070.output new file mode 100644 index 0000000..fb1e3c6 --- /dev/null +++ b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_070.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_070.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_070", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 78684, "MATRIX_DENSITY": 7.991130653390679e-05, "TIME_S": 0.23329615592956543} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 16263, 2242, 2242], + [ 2, 2, 2, ..., 31240, 31283, 31284]]), + values=tensor([3., 3., 3., ..., 1., 3., 3.]), + size=(31379, 31379), nnz=78684, layout=torch.sparse_coo) +tensor([0.1520, 0.4880, 0.9188, ..., 0.4689, 0.3143, 0.0563]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_070 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 78684 +Density: 7.991130653390679e-05 +Time: 0.23329615592956543 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '4500', '-m', 'matrices/as-caida_pruned/as-caida_G_070.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_070", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 78684, "MATRIX_DENSITY": 7.991130653390679e-05, "TIME_S": 10.017730236053467} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 16263, 2242, 2242], + [ 2, 2, 2, ..., 31240, 31283, 31284]]), + values=tensor([3., 3., 3., ..., 1., 3., 3.]), + size=(31379, 31379), nnz=78684, layout=torch.sparse_coo) +tensor([0.5868, 0.5082, 0.3411, ..., 0.8337, 0.3200, 0.6532]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_070 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 78684 +Density: 7.991130653390679e-05 +Time: 10.017730236053467 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 16263, 2242, 2242], + [ 2, 2, 2, ..., 31240, 31283, 31284]]), + values=tensor([3., 3., 3., ..., 1., 3., 3.]), + size=(31379, 31379), nnz=78684, layout=torch.sparse_coo) +tensor([0.5868, 0.5082, 0.3411, ..., 0.8337, 0.3200, 0.6532]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_070 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 78684 +Density: 7.991130653390679e-05 +Time: 10.017730236053467 seconds + +[39.54, 38.95, 38.94, 39.93, 39.28, 39.33, 39.35, 39.58, 38.92, 39.12] +[65.95] +12.66871166229248 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4500, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_070', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 78684, 'MATRIX_DENSITY': 7.991130653390679e-05, 'TIME_S': 10.017730236053467, 'TIME_S_1KI': 2.226162274678548, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 835.5015341281892, 'W': 65.95} +[39.54, 38.95, 38.94, 39.93, 39.28, 39.33, 39.35, 39.58, 38.92, 39.12, 39.6, 38.82, 38.91, 38.82, 39.1, 39.7, 39.48, 40.0, 39.34, 39.12] +707.1400000000001 +35.357000000000006 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4500, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_070', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 78684, 'MATRIX_DENSITY': 7.991130653390679e-05, 'TIME_S': 10.017730236053467, 'TIME_S_1KI': 2.226162274678548, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 835.5015341281892, 'W': 65.95, 'J_1KI': 185.66700758404204, 'W_1KI': 14.655555555555555, 'W_D': 30.592999999999996, 'J_D': 387.57389588451383, 'W_D_1KI': 6.798444444444444, 'J_D_1KI': 1.5107654320987653} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_080.json b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_080.json new file mode 100644 index 0000000..6859055 --- /dev/null +++ b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_080.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 3675, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_080", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 98112, "MATRIX_DENSITY": 9.964234287345156e-05, "TIME_S": 10.307059049606323, "TIME_S_1KI": 2.804641918260224, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 846.6635090303421, "W": 66.61, "J_1KI": 230.3846283075761, "W_1KI": 18.125170068027213, "W_D": 31.482750000000003, "J_D": 400.16957797515397, "W_D_1KI": 8.566734693877551, "J_D_1KI": 2.331084270442871} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_080.output b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_080.output new file mode 100644 index 0000000..2b02f8b --- /dev/null +++ b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_080.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_080.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_080", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 98112, "MATRIX_DENSITY": 9.964234287345156e-05, "TIME_S": 0.285677433013916} + +tensor(indices=tensor([[22754, 22754, 106, ..., 4133, 31329, 12170], + [ 0, 1, 2, ..., 31373, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 1., 1., 3.]), + size=(31379, 31379), nnz=98112, layout=torch.sparse_coo) +tensor([0.7257, 0.7920, 0.6933, ..., 0.0911, 0.4605, 0.7017]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_080 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 98112 +Density: 9.964234287345156e-05 +Time: 0.285677433013916 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '3675', '-m', 'matrices/as-caida_pruned/as-caida_G_080.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_080", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 98112, "MATRIX_DENSITY": 9.964234287345156e-05, "TIME_S": 10.307059049606323} + +tensor(indices=tensor([[22754, 22754, 106, ..., 4133, 31329, 12170], + [ 0, 1, 2, ..., 31373, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 1., 1., 3.]), + size=(31379, 31379), nnz=98112, layout=torch.sparse_coo) +tensor([0.7345, 0.1504, 0.1232, ..., 0.2947, 0.1030, 0.8497]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_080 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 98112 +Density: 9.964234287345156e-05 +Time: 10.307059049606323 seconds + +tensor(indices=tensor([[22754, 22754, 106, ..., 4133, 31329, 12170], + [ 0, 1, 2, ..., 31373, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 1., 1., 3.]), + size=(31379, 31379), nnz=98112, layout=torch.sparse_coo) +tensor([0.7345, 0.1504, 0.1232, ..., 0.2947, 0.1030, 0.8497]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_080 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 98112 +Density: 9.964234287345156e-05 +Time: 10.307059049606323 seconds + +[39.44, 39.32, 38.9, 38.76, 39.44, 38.76, 38.91, 38.69, 38.8, 38.91] +[66.61] +12.710756778717041 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3675, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_080', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 98112, 'MATRIX_DENSITY': 9.964234287345156e-05, 'TIME_S': 10.307059049606323, 'TIME_S_1KI': 2.804641918260224, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 846.6635090303421, 'W': 66.61} +[39.44, 39.32, 38.9, 38.76, 39.44, 38.76, 38.91, 38.69, 38.8, 38.91, 39.43, 39.63, 39.3, 38.73, 38.86, 38.83, 39.06, 39.01, 39.0, 39.31] +702.545 +35.12725 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3675, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_080', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 98112, 'MATRIX_DENSITY': 9.964234287345156e-05, 'TIME_S': 10.307059049606323, 'TIME_S_1KI': 2.804641918260224, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 846.6635090303421, 'W': 66.61, 'J_1KI': 230.3846283075761, 'W_1KI': 18.125170068027213, 'W_D': 31.482750000000003, 'J_D': 400.16957797515397, 'W_D_1KI': 8.566734693877551, 'J_D_1KI': 2.331084270442871} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_090.json b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_090.json new file mode 100644 index 0000000..39d235e --- /dev/null +++ b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_090.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 3641, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_090", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 100924, "MATRIX_DENSITY": 0.00010249820421722343, "TIME_S": 10.4994535446167, "TIME_S_1KI": 2.8836730416414995, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 862.6610073566436, "W": 65.96, "J_1KI": 236.9296916662026, "W_1KI": 18.11590222466355, "W_D": 30.651999999999987, "J_D": 400.883644595146, "W_D_1KI": 8.418566327931883, "J_D_1KI": 2.312157739063961} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_090.output b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_090.output new file mode 100644 index 0000000..880f507 --- /dev/null +++ b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_090.output @@ -0,0 +1,77 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_090.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_090", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 100924, "MATRIX_DENSITY": 0.00010249820421722343, "TIME_S": 0.43505334854125977} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 31211, 12170], + [ 2, 2, 2, ..., 31373, 31376, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=100924, layout=torch.sparse_coo) +tensor([0.3836, 0.2671, 0.6063, ..., 0.6627, 0.4538, 0.8080]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_090 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 100924 +Density: 0.00010249820421722343 +Time: 0.43505334854125977 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '2413', '-m', 'matrices/as-caida_pruned/as-caida_G_090.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_090", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 100924, "MATRIX_DENSITY": 0.00010249820421722343, "TIME_S": 6.957933187484741} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 31211, 12170], + [ 2, 2, 2, ..., 31373, 31376, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=100924, layout=torch.sparse_coo) +tensor([0.8754, 0.4075, 0.0830, ..., 0.8566, 0.5369, 0.0410]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_090 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 100924 +Density: 0.00010249820421722343 +Time: 6.957933187484741 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '3641', '-m', 'matrices/as-caida_pruned/as-caida_G_090.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_090", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 100924, "MATRIX_DENSITY": 0.00010249820421722343, "TIME_S": 10.4994535446167} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 31211, 12170], + [ 2, 2, 2, ..., 31373, 31376, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=100924, layout=torch.sparse_coo) +tensor([0.9951, 0.2145, 0.3500, ..., 0.5198, 0.3390, 0.2036]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_090 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 100924 +Density: 0.00010249820421722343 +Time: 10.4994535446167 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 31211, 12170], + [ 2, 2, 2, ..., 31373, 31376, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=100924, layout=torch.sparse_coo) +tensor([0.9951, 0.2145, 0.3500, ..., 0.5198, 0.3390, 0.2036]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_090 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 100924 +Density: 0.00010249820421722343 +Time: 10.4994535446167 seconds + +[39.64, 38.8, 38.97, 38.87, 40.71, 39.01, 38.97, 39.25, 38.83, 39.14] +[65.96] +13.078547716140747 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3641, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_090', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 100924, 'MATRIX_DENSITY': 0.00010249820421722343, 'TIME_S': 10.4994535446167, 'TIME_S_1KI': 2.8836730416414995, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 862.6610073566436, 'W': 65.96} +[39.64, 38.8, 38.97, 38.87, 40.71, 39.01, 38.97, 39.25, 38.83, 39.14, 40.1, 39.44, 39.23, 39.14, 40.34, 39.22, 38.78, 38.92, 38.8, 38.88] +706.1600000000001 +35.30800000000001 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3641, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_090', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 100924, 'MATRIX_DENSITY': 0.00010249820421722343, 'TIME_S': 10.4994535446167, 'TIME_S_1KI': 2.8836730416414995, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 862.6610073566436, 'W': 65.96, 'J_1KI': 236.9296916662026, 'W_1KI': 18.11590222466355, 'W_D': 30.651999999999987, 'J_D': 400.883644595146, 'W_D_1KI': 8.418566327931883, 'J_D_1KI': 2.312157739063961} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_100.json b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_100.json new file mode 100644 index 0000000..da12c4a --- /dev/null +++ b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_100.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 3499, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_100", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102888, "MATRIX_DENSITY": 0.00010449283852702711, "TIME_S": 10.198312997817993, "TIME_S_1KI": 2.914636466938552, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 849.0300207567216, "W": 66.06, "J_1KI": 242.6493343117238, "W_1KI": 18.8796799085453, "W_D": 30.453500000000005, "J_D": 391.40078318369393, "W_D_1KI": 8.703486710488713, "J_D_1KI": 2.487421180476911} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_100.output b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_100.output new file mode 100644 index 0000000..4532586 --- /dev/null +++ b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_100.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_100.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_100", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102888, "MATRIX_DENSITY": 0.00010449283852702711, "TIME_S": 0.300034761428833} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 25970, 5128, 12170], + [ 2, 2, 2, ..., 31373, 31377, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=102888, layout=torch.sparse_coo) +tensor([0.4366, 0.2238, 0.9183, ..., 0.9467, 0.9183, 0.9974]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_100 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 102888 +Density: 0.00010449283852702711 +Time: 0.300034761428833 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '3499', '-m', 'matrices/as-caida_pruned/as-caida_G_100.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_100", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102888, "MATRIX_DENSITY": 0.00010449283852702711, "TIME_S": 10.198312997817993} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 25970, 5128, 12170], + [ 2, 2, 2, ..., 31373, 31377, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=102888, layout=torch.sparse_coo) +tensor([0.8270, 0.5392, 0.0636, ..., 0.6653, 0.7568, 0.9567]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_100 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 102888 +Density: 0.00010449283852702711 +Time: 10.198312997817993 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 25970, 5128, 12170], + [ 2, 2, 2, ..., 31373, 31377, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=102888, layout=torch.sparse_coo) +tensor([0.8270, 0.5392, 0.0636, ..., 0.6653, 0.7568, 0.9567]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_100 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 102888 +Density: 0.00010449283852702711 +Time: 10.198312997817993 seconds + +[39.54, 39.01, 44.76, 39.42, 38.97, 39.06, 38.96, 39.12, 38.98, 38.88] +[66.06] +12.852407217025757 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3499, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_100', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102888, 'MATRIX_DENSITY': 0.00010449283852702711, 'TIME_S': 10.198312997817993, 'TIME_S_1KI': 2.914636466938552, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 849.0300207567216, 'W': 66.06} +[39.54, 39.01, 44.76, 39.42, 38.97, 39.06, 38.96, 39.12, 38.98, 38.88, 39.55, 39.18, 39.5, 39.4, 39.09, 39.44, 41.01, 38.83, 38.92, 38.99] +712.13 +35.6065 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3499, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_100', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102888, 'MATRIX_DENSITY': 0.00010449283852702711, 'TIME_S': 10.198312997817993, 'TIME_S_1KI': 2.914636466938552, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 849.0300207567216, 'W': 66.06, 'J_1KI': 242.6493343117238, 'W_1KI': 18.8796799085453, 'W_D': 30.453500000000005, 'J_D': 391.40078318369393, 'W_D_1KI': 8.703486710488713, 'J_D_1KI': 2.487421180476911} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_110.json b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_110.json new file mode 100644 index 0000000..76c647d --- /dev/null +++ b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_110.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 3420, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_110", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104846, "MATRIX_DENSITY": 0.0001064813792493263, "TIME_S": 10.225680589675903, "TIME_S_1KI": 2.9899650847005566, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 844.1981732225418, "W": 65.97, "J_1KI": 246.84157111770227, "W_1KI": 19.289473684210527, "W_D": 30.471000000000004, "J_D": 389.92818760442736, "W_D_1KI": 8.909649122807018, "J_D_1KI": 2.605160562224274} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_110.output b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_110.output new file mode 100644 index 0000000..ca9c4d0 --- /dev/null +++ b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_110.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_110.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_110", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104846, "MATRIX_DENSITY": 0.0001064813792493263, "TIME_S": 0.30701661109924316} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 2616, 12170], + [ 2, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=104846, layout=torch.sparse_coo) +tensor([0.7605, 0.8373, 0.4680, ..., 0.9745, 0.5492, 0.3927]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_110 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 104846 +Density: 0.0001064813792493263 +Time: 0.30701661109924316 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '3420', '-m', 'matrices/as-caida_pruned/as-caida_G_110.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_110", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104846, "MATRIX_DENSITY": 0.0001064813792493263, "TIME_S": 10.225680589675903} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 2616, 12170], + [ 2, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=104846, layout=torch.sparse_coo) +tensor([0.7576, 0.8859, 0.4351, ..., 0.9404, 0.5520, 0.3307]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_110 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 104846 +Density: 0.0001064813792493263 +Time: 10.225680589675903 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 2616, 12170], + [ 2, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=104846, layout=torch.sparse_coo) +tensor([0.7576, 0.8859, 0.4351, ..., 0.9404, 0.5520, 0.3307]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_110 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 104846 +Density: 0.0001064813792493263 +Time: 10.225680589675903 seconds + +[39.84, 39.37, 38.9, 39.05, 39.29, 39.45, 38.94, 38.82, 38.93, 38.9] +[65.97] +12.796698093414307 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3420, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_110', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104846, 'MATRIX_DENSITY': 0.0001064813792493263, 'TIME_S': 10.225680589675903, 'TIME_S_1KI': 2.9899650847005566, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 844.1981732225418, 'W': 65.97} +[39.84, 39.37, 38.9, 39.05, 39.29, 39.45, 38.94, 38.82, 38.93, 38.9, 39.96, 38.85, 39.44, 39.37, 38.97, 39.0, 39.29, 44.03, 39.54, 38.78] +709.9799999999999 +35.498999999999995 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3420, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_110', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104846, 'MATRIX_DENSITY': 0.0001064813792493263, 'TIME_S': 10.225680589675903, 'TIME_S_1KI': 2.9899650847005566, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 844.1981732225418, 'W': 65.97, 'J_1KI': 246.84157111770227, 'W_1KI': 19.289473684210527, 'W_D': 30.471000000000004, 'J_D': 389.92818760442736, 'W_D_1KI': 8.909649122807018, 'J_D_1KI': 2.605160562224274} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_120.json b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_120.json new file mode 100644 index 0000000..01b12e6 --- /dev/null +++ b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_120.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 3394, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_120", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106510, "MATRIX_DENSITY": 0.0001081713341839054, "TIME_S": 10.34037709236145, "TIME_S_1KI": 3.0466638457163966, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 844.1848246479035, "W": 66.18, "J_1KI": 248.72858710898748, "W_1KI": 19.49911608721273, "W_D": 30.526500000000013, "J_D": 389.3926873619558, "W_D_1KI": 8.99425456688274, "J_D_1KI": 2.6500455412147144} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_120.output b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_120.output new file mode 100644 index 0000000..6c68976 --- /dev/null +++ b/pytorch/output_as-caida_16core/epyc_7313p_16_coo_10_10_10_as-caida_G_120.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_120.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_120", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106510, "MATRIX_DENSITY": 0.0001081713341839054, "TIME_S": 0.309314489364624} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 12170], + [ 2, 2, 2, ..., 31355, 31360, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=106510, layout=torch.sparse_coo) +tensor([0.8467, 0.4792, 0.3688, ..., 0.8111, 0.4001, 0.1665]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_120 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 106510 +Density: 0.0001081713341839054 +Time: 0.309314489364624 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '3394', '-m', 'matrices/as-caida_pruned/as-caida_G_120.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_120", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106510, "MATRIX_DENSITY": 0.0001081713341839054, "TIME_S": 10.34037709236145} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 12170], + [ 2, 2, 2, ..., 31355, 31360, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=106510, layout=torch.sparse_coo) +tensor([0.5583, 0.2788, 0.6104, ..., 0.7605, 0.2906, 0.0391]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_120 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 106510 +Density: 0.0001081713341839054 +Time: 10.34037709236145 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 12170], + [ 2, 2, 2, ..., 31355, 31360, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=106510, layout=torch.sparse_coo) +tensor([0.5583, 0.2788, 0.6104, ..., 0.7605, 0.2906, 0.0391]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_120 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 106510 +Density: 0.0001081713341839054 +Time: 10.34037709236145 seconds + +[40.3, 44.55, 39.36, 39.43, 39.43, 39.38, 39.86, 38.9, 38.87, 39.02] +[66.18] +12.755890369415283 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3394, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_120', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106510, 'MATRIX_DENSITY': 0.0001081713341839054, 'TIME_S': 10.34037709236145, 'TIME_S_1KI': 3.0466638457163966, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 844.1848246479035, 'W': 66.18} +[40.3, 44.55, 39.36, 39.43, 39.43, 39.38, 39.86, 38.9, 38.87, 39.02, 40.16, 39.0, 38.87, 38.79, 39.53, 39.93, 39.44, 39.04, 39.36, 39.18] +713.0699999999999 +35.653499999999994 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3394, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_120', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106510, 'MATRIX_DENSITY': 0.0001081713341839054, 'TIME_S': 10.34037709236145, 'TIME_S_1KI': 3.0466638457163966, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 844.1848246479035, 'W': 66.18, 'J_1KI': 248.72858710898748, 'W_1KI': 19.49911608721273, 'W_D': 30.526500000000013, 'J_D': 389.3926873619558, 'W_D_1KI': 8.99425456688274, 'J_D_1KI': 2.6500455412147144} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_005.json b/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_005.json deleted file mode 100644 index 4d89138..0000000 --- a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_005.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 130629, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 11.046883583068848, "TIME_S_1KI": 0.08456685409111948, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1447.5023779034616, "W": 103.45, "J_1KI": 11.081018593906878, "W_1KI": 0.7919374717711994, "W_D": 67.28425, "J_D": 941.4607237356305, "W_D_1KI": 0.5150789640891379, "J_D_1KI": 0.003943067497180089} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_005.output b/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_005.output deleted file mode 100644 index 531c512..0000000 --- a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_005.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_005.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 0.02265310287475586} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.1109, 0.3688, 0.8394, ..., 0.5778, 0.7474, 0.0459]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 0.02265310287475586 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '46351', '-m', 'matrices/as-caida_pruned/as-caida_G_005.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 3.7256975173950195} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.7624, 0.1488, 0.7288, ..., 0.4517, 0.7426, 0.4871]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 3.7256975173950195 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '130629', '-m', 'matrices/as-caida_pruned/as-caida_G_005.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 11.046883583068848} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.6772, 0.5623, 0.5296, ..., 0.8301, 0.9620, 0.4995]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 11.046883583068848 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.6772, 0.5623, 0.5296, ..., 0.8301, 0.9620, 0.4995]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 11.046883583068848 seconds - -[40.01, 39.79, 39.68, 39.98, 39.67, 39.17, 44.96, 39.73, 39.43, 39.12] -[103.45] -13.992289781570435 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 130629, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_005', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 70026, 'MATRIX_DENSITY': 7.111825976492498e-05, 'TIME_S': 11.046883583068848, 'TIME_S_1KI': 0.08456685409111948, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1447.5023779034616, 'W': 103.45} -[40.01, 39.79, 39.68, 39.98, 39.67, 39.17, 44.96, 39.73, 39.43, 39.12, 40.63, 39.49, 44.41, 39.16, 39.85, 39.65, 39.59, 39.3, 39.78, 39.59] -723.315 -36.16575 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 130629, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_005', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 70026, 'MATRIX_DENSITY': 7.111825976492498e-05, 'TIME_S': 11.046883583068848, 'TIME_S_1KI': 0.08456685409111948, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1447.5023779034616, 'W': 103.45, 'J_1KI': 11.081018593906878, 'W_1KI': 0.7919374717711994, 'W_D': 67.28425, 'J_D': 941.4607237356305, 'W_D_1KI': 0.5150789640891379, 'J_D_1KI': 0.003943067497180089} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_015.json b/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_015.json deleted file mode 100644 index 4246a76..0000000 --- a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_015.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 122232, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 10.012900829315186, "TIME_S_1KI": 0.08191718068357864, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1344.7570972156525, "W": 103.87, "J_1KI": 11.001677933893355, "W_1KI": 0.8497774723476668, "W_D": 67.6435, "J_D": 875.7492702946663, "W_D_1KI": 0.5534025459781399, "J_D_1KI": 0.004527476814403265} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_015.output b/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_015.output deleted file mode 100644 index 78932cf..0000000 --- a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_015.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_015.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 0.02150440216064453} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.2547, 0.3736, 0.4755, ..., 0.0068, 0.6237, 0.5320]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 0.02150440216064453 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '48827', '-m', 'matrices/as-caida_pruned/as-caida_G_015.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 4.194327354431152} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.7417, 0.4748, 0.0091, ..., 0.5058, 0.6479, 0.7190]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 4.194327354431152 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '122232', '-m', 'matrices/as-caida_pruned/as-caida_G_015.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 10.012900829315186} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.8581, 0.1137, 0.8207, ..., 0.0910, 0.4048, 0.6394]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 10.012900829315186 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.8581, 0.1137, 0.8207, ..., 0.0910, 0.4048, 0.6394]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 10.012900829315186 seconds - -[40.42, 39.32, 39.31, 39.25, 54.33, 39.25, 39.4, 39.12, 39.27, 40.74] -[103.87] -12.946539878845215 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 122232, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_015', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 77124, 'MATRIX_DENSITY': 7.832697378273889e-05, 'TIME_S': 10.012900829315186, 'TIME_S_1KI': 0.08191718068357864, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1344.7570972156525, 'W': 103.87} -[40.42, 39.32, 39.31, 39.25, 54.33, 39.25, 39.4, 39.12, 39.27, 40.74, 39.91, 39.57, 39.25, 39.28, 39.45, 39.43, 39.72, 39.1, 39.4, 39.09] -724.53 -36.2265 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 122232, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_015', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 77124, 'MATRIX_DENSITY': 7.832697378273889e-05, 'TIME_S': 10.012900829315186, 'TIME_S_1KI': 0.08191718068357864, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1344.7570972156525, 'W': 103.87, 'J_1KI': 11.001677933893355, 'W_1KI': 0.8497774723476668, 'W_D': 67.6435, 'J_D': 875.7492702946663, 'W_D_1KI': 0.5534025459781399, 'J_D_1KI': 0.004527476814403265} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_025.json b/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_025.json deleted file mode 100644 index 634c711..0000000 --- a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_025.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 120118, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 12.039484739303589, "TIME_S_1KI": 0.10023047952266595, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1377.8382610416413, "W": 104.04, "J_1KI": 11.47070598113223, "W_1KI": 0.8661482875172747, "W_D": 68.01325, "J_D": 900.7233574374318, "W_D_1KI": 0.5662203000382956, "J_D_1KI": 0.004713867197574848} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_025.output b/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_025.output deleted file mode 100644 index 41dc918..0000000 --- a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_025.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_025.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 0.028760671615600586} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.0546, 0.6478, 0.5019, ..., 0.1774, 0.5884, 0.7696]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 0.028760671615600586 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '36508', '-m', 'matrices/as-caida_pruned/as-caida_G_025.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 3.191291332244873} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.7513, 0.6718, 0.2286, ..., 0.8031, 0.6348, 0.1488]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 3.191291332244873 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '120118', '-m', 'matrices/as-caida_pruned/as-caida_G_025.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 12.039484739303589} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.0727, 0.2026, 0.8265, ..., 0.2293, 0.8547, 0.4127]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 12.039484739303589 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.0727, 0.2026, 0.8265, ..., 0.2293, 0.8547, 0.4127]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 12.039484739303589 seconds - -[41.14, 39.71, 39.25, 39.89, 39.22, 39.19, 39.32, 39.24, 44.24, 39.23] -[104.04] -13.243351221084595 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 120118, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_025', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 85850, 'MATRIX_DENSITY': 8.718908121010495e-05, 'TIME_S': 12.039484739303589, 'TIME_S_1KI': 0.10023047952266595, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1377.8382610416413, 'W': 104.04} -[41.14, 39.71, 39.25, 39.89, 39.22, 39.19, 39.32, 39.24, 44.24, 39.23, 40.57, 39.23, 39.41, 39.27, 39.7, 44.55, 39.47, 39.31, 39.26, 39.61] -720.5350000000001 -36.02675000000001 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 120118, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_025', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 85850, 'MATRIX_DENSITY': 8.718908121010495e-05, 'TIME_S': 12.039484739303589, 'TIME_S_1KI': 0.10023047952266595, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1377.8382610416413, 'W': 104.04, 'J_1KI': 11.47070598113223, 'W_1KI': 0.8661482875172747, 'W_D': 68.01325, 'J_D': 900.7233574374318, 'W_D_1KI': 0.5662203000382956, 'J_D_1KI': 0.004713867197574848} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_035.json b/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_035.json deleted file mode 100644 index 206e20b..0000000 --- a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_035.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 117637, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 10.62736988067627, "TIME_S_1KI": 0.09034036808721975, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1348.652883746624, "W": 104.36999999999999, "J_1KI": 11.464529729138144, "W_1KI": 0.8872208573833061, "W_D": 68.05524999999999, "J_D": 879.3993404867051, "W_D_1KI": 0.5785190883820566, "J_D_1KI": 0.00491783272594555} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_035.output b/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_035.output deleted file mode 100644 index 2b9239c..0000000 --- a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_035.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_035.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 0.029236316680908203} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.3402, 0.2499, 0.3172, ..., 0.1488, 0.4072, 0.2122]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 0.029236316680908203 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '35914', '-m', 'matrices/as-caida_pruned/as-caida_G_035.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 3.2055723667144775} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.5217, 0.6973, 0.2862, ..., 0.9929, 0.5018, 0.4794]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 3.2055723667144775 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '117637', '-m', 'matrices/as-caida_pruned/as-caida_G_035.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 10.62736988067627} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.6504, 0.2249, 0.2739, ..., 0.8117, 0.7999, 0.0068]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 10.62736988067627 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.6504, 0.2249, 0.2739, ..., 0.8117, 0.7999, 0.0068]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 10.62736988067627 seconds - -[39.98, 40.1, 39.44, 39.73, 39.36, 44.62, 40.72, 39.73, 40.41, 39.38] -[104.37] -12.921844244003296 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 117637, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_035', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 87560, 'MATRIX_DENSITY': 8.892575364888514e-05, 'TIME_S': 10.62736988067627, 'TIME_S_1KI': 0.09034036808721975, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1348.652883746624, 'W': 104.36999999999999} -[39.98, 40.1, 39.44, 39.73, 39.36, 44.62, 40.72, 39.73, 40.41, 39.38, 40.08, 39.64, 42.5, 41.53, 39.76, 39.42, 39.32, 39.21, 40.44, 41.29] -726.2950000000001 -36.314750000000004 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 117637, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_035', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 87560, 'MATRIX_DENSITY': 8.892575364888514e-05, 'TIME_S': 10.62736988067627, 'TIME_S_1KI': 0.09034036808721975, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1348.652883746624, 'W': 104.36999999999999, 'J_1KI': 11.464529729138144, 'W_1KI': 0.8872208573833061, 'W_D': 68.05524999999999, 'J_D': 879.3993404867051, 'W_D_1KI': 0.5785190883820566, 'J_D_1KI': 0.00491783272594555} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_045.json b/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_045.json deleted file mode 100644 index 3e95d74..0000000 --- a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_045.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 129597, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 11.245419979095459, "TIME_S_1KI": 0.08677222450439022, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1476.8643749785424, "W": 104.97, "J_1KI": 11.395822241090013, "W_1KI": 0.8099724530660432, "W_D": 69.20224999999999, "J_D": 973.6337781590818, "W_D_1KI": 0.5339803390510582, "J_D_1KI": 0.004120314043157312} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_045.output b/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_045.output deleted file mode 100644 index 958bdda..0000000 --- a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_045.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_045.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 0.027070283889770508} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.9579, 0.3823, 0.7927, ..., 0.9257, 0.1735, 0.9344]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 0.027070283889770508 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '38787', '-m', 'matrices/as-caida_pruned/as-caida_G_045.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 3.142535448074341} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.7648, 0.3979, 0.1181, ..., 0.8603, 0.9960, 0.9728]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 3.142535448074341 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '129597', '-m', 'matrices/as-caida_pruned/as-caida_G_045.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 11.245419979095459} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.1180, 0.3748, 0.1643, ..., 0.9664, 0.3966, 0.4847]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 11.245419979095459 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.1180, 0.3748, 0.1643, ..., 0.9664, 0.3966, 0.4847]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 11.245419979095459 seconds - -[39.97, 39.69, 41.18, 39.43, 39.33, 39.4, 39.92, 39.67, 40.11, 39.3] -[104.97] -14.069394826889038 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 129597, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_045', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89152, 'MATRIX_DENSITY': 9.054258553341032e-05, 'TIME_S': 11.245419979095459, 'TIME_S_1KI': 0.08677222450439022, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1476.8643749785424, 'W': 104.97} -[39.97, 39.69, 41.18, 39.43, 39.33, 39.4, 39.92, 39.67, 40.11, 39.3, 40.3, 39.27, 39.34, 39.54, 39.86, 39.21, 39.39, 41.12, 39.24, 39.74] -715.355 -35.76775 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 129597, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_045', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89152, 'MATRIX_DENSITY': 9.054258553341032e-05, 'TIME_S': 11.245419979095459, 'TIME_S_1KI': 0.08677222450439022, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1476.8643749785424, 'W': 104.97, 'J_1KI': 11.395822241090013, 'W_1KI': 0.8099724530660432, 'W_D': 69.20224999999999, 'J_D': 973.6337781590818, 'W_D_1KI': 0.5339803390510582, 'J_D_1KI': 0.004120314043157312} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_055.json b/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_055.json deleted file mode 100644 index 1a48113..0000000 --- a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_055.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 122142, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 11.075148582458496, "TIME_S_1KI": 0.09067436739580567, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1444.9410432815553, "W": 104.47000000000001, "J_1KI": 11.830009687753233, "W_1KI": 0.855315943737617, "W_D": 68.78025000000001, "J_D": 951.3104833173753, "W_D_1KI": 0.5631171095937516, "J_D_1KI": 0.004610347870460215} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_055.output b/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_055.output deleted file mode 100644 index d27a247..0000000 --- a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_055.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_055.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 0.02579522132873535} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.4101, 0.8209, 0.7582, ..., 0.7042, 0.4089, 0.9250]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 0.02579522132873535 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '40705', '-m', 'matrices/as-caida_pruned/as-caida_G_055.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 3.499220609664917} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.5165, 0.5886, 0.2570, ..., 0.5351, 0.5985, 0.2855]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 3.499220609664917 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '122142', '-m', 'matrices/as-caida_pruned/as-caida_G_055.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 11.075148582458496} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.1241, 0.2147, 0.8696, ..., 0.1307, 0.0728, 0.1644]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 11.075148582458496 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.1241, 0.2147, 0.8696, ..., 0.1307, 0.0728, 0.1644]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 11.075148582458496 seconds - -[40.03, 39.33, 39.47, 39.33, 39.45, 39.87, 39.7, 39.82, 40.96, 39.66] -[104.47] -13.831157684326172 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 122142, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_055', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 91476, 'MATRIX_DENSITY': 9.290283509348351e-05, 'TIME_S': 11.075148582458496, 'TIME_S_1KI': 0.09067436739580567, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1444.9410432815553, 'W': 104.47000000000001} -[40.03, 39.33, 39.47, 39.33, 39.45, 39.87, 39.7, 39.82, 40.96, 39.66, 39.88, 39.36, 39.59, 39.25, 40.14, 39.15, 39.32, 39.55, 39.92, 39.6] -713.7950000000001 -35.689750000000004 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 122142, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_055', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 91476, 'MATRIX_DENSITY': 9.290283509348351e-05, 'TIME_S': 11.075148582458496, 'TIME_S_1KI': 0.09067436739580567, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1444.9410432815553, 'W': 104.47000000000001, 'J_1KI': 11.830009687753233, 'W_1KI': 0.855315943737617, 'W_D': 68.78025000000001, 'J_D': 951.3104833173753, 'W_D_1KI': 0.5631171095937516, 'J_D_1KI': 0.004610347870460215} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_065.json b/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_065.json deleted file mode 100644 index 9c73b0a..0000000 --- a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_065.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 121043, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 10.490303754806519, "TIME_S_1KI": 0.08666592661125815, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1396.8674520850182, "W": 104.75, "J_1KI": 11.540258024710377, "W_1KI": 0.8653949422932347, "W_D": 68.499, "J_D": 913.4512992875575, "W_D_1KI": 0.5659063308080599, "J_D_1KI": 0.004675250372248373} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_065.output b/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_065.output deleted file mode 100644 index ca600af..0000000 --- a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_065.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_065.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 0.028383970260620117} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.6987, 0.1536, 0.6933, ..., 0.9556, 0.5512, 0.6559]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 0.028383970260620117 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '36992', '-m', 'matrices/as-caida_pruned/as-caida_G_065.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 3.2088987827301025} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.2523, 0.5417, 0.6382, ..., 0.2729, 0.0339, 0.5004]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 3.2088987827301025 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '121043', '-m', 'matrices/as-caida_pruned/as-caida_G_065.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 10.490303754806519} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.9743, 0.5130, 0.5318, ..., 0.8200, 0.9366, 0.1557]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 10.490303754806519 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.9743, 0.5130, 0.5318, ..., 0.8200, 0.9366, 0.1557]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 10.490303754806519 seconds - -[41.45, 39.82, 40.25, 39.93, 39.31, 39.37, 39.34, 39.68, 44.83, 39.67] -[104.75] -13.33525013923645 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 121043, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_065', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 95068, 'MATRIX_DENSITY': 9.655086281283934e-05, 'TIME_S': 10.490303754806519, 'TIME_S_1KI': 0.08666592661125815, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1396.8674520850182, 'W': 104.75} -[41.45, 39.82, 40.25, 39.93, 39.31, 39.37, 39.34, 39.68, 44.83, 39.67, 40.18, 39.27, 39.88, 39.63, 40.85, 43.9, 39.97, 39.48, 39.27, 39.18] -725.02 -36.251 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 121043, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_065', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 95068, 'MATRIX_DENSITY': 9.655086281283934e-05, 'TIME_S': 10.490303754806519, 'TIME_S_1KI': 0.08666592661125815, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1396.8674520850182, 'W': 104.75, 'J_1KI': 11.540258024710377, 'W_1KI': 0.8653949422932347, 'W_D': 68.499, 'J_D': 913.4512992875575, 'W_D_1KI': 0.5659063308080599, 'J_D_1KI': 0.004675250372248373} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_075.json b/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_075.json deleted file mode 100644 index 6f29e46..0000000 --- a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_075.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 120423, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 10.76958441734314, "TIME_S_1KI": 0.08943129150862493, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1443.2409217905997, "W": 104.71, "J_1KI": 11.984761397661574, "W_1KI": 0.8695182813914285, "W_D": 68.72225, "J_D": 947.213861498654, "W_D_1KI": 0.5706737915514478, "J_D_1KI": 0.0047389102708905095} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_075.output b/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_075.output deleted file mode 100644 index d3e5c99..0000000 --- a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_075.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_075.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 0.026674270629882812} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.6187, 0.1169, 0.0618, ..., 0.0036, 0.3565, 0.7239]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 0.026674270629882812 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '39363', '-m', 'matrices/as-caida_pruned/as-caida_G_075.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 3.4321558475494385} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.5402, 0.1074, 0.0917, ..., 0.8328, 0.8213, 0.8141]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 3.4321558475494385 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '120423', '-m', 'matrices/as-caida_pruned/as-caida_G_075.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 10.76958441734314} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.9766, 0.5800, 0.0793, ..., 0.9152, 0.2119, 0.8249]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 10.76958441734314 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.9766, 0.5800, 0.0793, ..., 0.9152, 0.2119, 0.8249]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 10.76958441734314 seconds - -[40.44, 39.88, 39.92, 39.3, 39.43, 39.42, 39.28, 39.2, 40.68, 39.23] -[104.71] -13.783219575881958 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 120423, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_075', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 97492, 'MATRIX_DENSITY': 9.901267216465406e-05, 'TIME_S': 10.76958441734314, 'TIME_S_1KI': 0.08943129150862493, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1443.2409217905997, 'W': 104.71} -[40.44, 39.88, 39.92, 39.3, 39.43, 39.42, 39.28, 39.2, 40.68, 39.23, 53.53, 39.71, 40.17, 39.13, 39.61, 39.81, 39.45, 39.24, 39.21, 39.43] -719.7549999999999 -35.98774999999999 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 120423, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_075', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 97492, 'MATRIX_DENSITY': 9.901267216465406e-05, 'TIME_S': 10.76958441734314, 'TIME_S_1KI': 0.08943129150862493, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1443.2409217905997, 'W': 104.71, 'J_1KI': 11.984761397661574, 'W_1KI': 0.8695182813914285, 'W_D': 68.72225, 'J_D': 947.213861498654, 'W_D_1KI': 0.5706737915514478, 'J_D_1KI': 0.0047389102708905095} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_085.json b/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_085.json deleted file mode 100644 index df39cfe..0000000 --- a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_085.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 123818, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 12.64590573310852, "TIME_S_1KI": 0.10213301566095818, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1404.5768914031983, "W": 105.84, "J_1KI": 11.343882887812743, "W_1KI": 0.8548030173318903, "W_D": 69.798, "J_D": 926.2722776470184, "W_D_1KI": 0.5637144841622381, "J_D_1KI": 0.004552766836503886} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_085.output b/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_085.output deleted file mode 100644 index b82b034..0000000 --- a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_085.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_085.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 0.027594804763793945} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.3579, 0.6537, 0.3650, ..., 0.6368, 0.7499, 0.3578]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 0.027594804763793945 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '38050', '-m', 'matrices/as-caida_pruned/as-caida_G_085.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 3.2266926765441895} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.5666, 0.3607, 0.0681, ..., 0.1783, 0.0421, 0.2428]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 3.2266926765441895 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '123818', '-m', 'matrices/as-caida_pruned/as-caida_G_085.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 12.64590573310852} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.9239, 0.0838, 0.6171, ..., 0.0890, 0.6862, 0.2789]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 12.64590573310852 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.9239, 0.0838, 0.6171, ..., 0.0890, 0.6862, 0.2789]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 12.64590573310852 seconds - -[40.09, 39.23, 39.46, 39.19, 39.83, 39.63, 39.26, 44.52, 39.29, 39.12] -[105.84] -13.270756721496582 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 123818, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_085', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 99166, 'MATRIX_DENSITY': 0.0001007127830784073, 'TIME_S': 12.64590573310852, 'TIME_S_1KI': 0.10213301566095818, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1404.5768914031983, 'W': 105.84} -[40.09, 39.23, 39.46, 39.19, 39.83, 39.63, 39.26, 44.52, 39.29, 39.12, 40.73, 39.74, 39.65, 39.19, 44.6, 39.27, 39.31, 39.32, 39.56, 39.64] -720.8399999999999 -36.041999999999994 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 123818, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_085', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 99166, 'MATRIX_DENSITY': 0.0001007127830784073, 'TIME_S': 12.64590573310852, 'TIME_S_1KI': 0.10213301566095818, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1404.5768914031983, 'W': 105.84, 'J_1KI': 11.343882887812743, 'W_1KI': 0.8548030173318903, 'W_D': 69.798, 'J_D': 926.2722776470184, 'W_D_1KI': 0.5637144841622381, 'J_D_1KI': 0.004552766836503886} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_095.json b/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_095.json deleted file mode 100644 index d2c7977..0000000 --- a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_095.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 123367, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 10.797792911529541, "TIME_S_1KI": 0.08752578008324383, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1381.98059548378, "W": 106.36000000000001, "J_1KI": 11.202190176333865, "W_1KI": 0.8621430366305415, "W_D": 70.495, "J_D": 915.9714373695851, "W_D_1KI": 0.5714250974733924, "J_D_1KI": 0.004631912079189673} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_095.output b/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_095.output deleted file mode 100644 index 61411f0..0000000 --- a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_095.output +++ /dev/null @@ -1,110 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_095.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 0.02869391441345215} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.6977, 0.1794, 0.1733, ..., 0.5021, 0.2371, 0.5915]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 0.02869391441345215 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '36593', '-m', 'matrices/as-caida_pruned/as-caida_G_095.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 3.28193736076355} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.2038, 0.2117, 0.0495, ..., 0.7353, 0.4058, 0.7220]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 3.28193736076355 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '117073', '-m', 'matrices/as-caida_pruned/as-caida_G_095.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 9.964244604110718} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.2057, 0.4266, 0.2763, ..., 0.1377, 0.7100, 0.3501]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 9.964244604110718 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '123367', '-m', 'matrices/as-caida_pruned/as-caida_G_095.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 10.797792911529541} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.2200, 0.4810, 0.3293, ..., 0.7198, 0.3850, 0.3915]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 10.797792911529541 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.2200, 0.4810, 0.3293, ..., 0.7198, 0.3850, 0.3915]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 10.797792911529541 seconds - -[40.51, 39.95, 39.69, 39.82, 39.8, 39.17, 39.45, 39.15, 39.47, 39.6] -[106.36] -12.9934241771698 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 123367, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_095', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102290, 'MATRIX_DENSITY': 0.00010388551097241275, 'TIME_S': 10.797792911529541, 'TIME_S_1KI': 0.08752578008324383, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1381.98059548378, 'W': 106.36000000000001} -[40.51, 39.95, 39.69, 39.82, 39.8, 39.17, 39.45, 39.15, 39.47, 39.6, 41.41, 39.21, 39.7, 39.75, 39.19, 39.65, 39.19, 40.91, 42.9, 39.08] -717.3000000000001 -35.865 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 123367, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_095', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102290, 'MATRIX_DENSITY': 0.00010388551097241275, 'TIME_S': 10.797792911529541, 'TIME_S_1KI': 0.08752578008324383, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1381.98059548378, 'W': 106.36000000000001, 'J_1KI': 11.202190176333865, 'W_1KI': 0.8621430366305415, 'W_D': 70.495, 'J_D': 915.9714373695851, 'W_D_1KI': 0.5714250974733924, 'J_D_1KI': 0.004631912079189673} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_105.json b/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_105.json deleted file mode 100644 index 706b79f..0000000 --- a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_105.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 130315, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 11.23905086517334, "TIME_S_1KI": 0.0862452585287445, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1479.8992812085153, "W": 106.81, "J_1KI": 11.356323379568856, "W_1KI": 0.8196293596285923, "W_D": 71.0115, "J_D": 983.8954012502431, "W_D_1KI": 0.5449219199631662, "J_D_1KI": 0.004181574799241578} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_105.output b/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_105.output deleted file mode 100644 index 8b920ee..0000000 --- a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_105.output +++ /dev/null @@ -1,110 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_105.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 0.02874302864074707} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.0653, 0.6055, 0.4558, ..., 0.6884, 0.5872, 0.3001]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 0.02874302864074707 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '36530', '-m', 'matrices/as-caida_pruned/as-caida_G_105.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 3.1528003215789795} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.0149, 0.2762, 0.5141, ..., 0.7208, 0.6938, 0.9073]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 3.1528003215789795 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '121658', '-m', 'matrices/as-caida_pruned/as-caida_G_105.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 9.802452087402344} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.9575, 0.4028, 0.3578, ..., 0.2947, 0.5779, 0.9432]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 9.802452087402344 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '130315', '-m', 'matrices/as-caida_pruned/as-caida_G_105.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 11.23905086517334} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.3162, 0.7565, 0.7515, ..., 0.4628, 0.3648, 0.1630]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 11.23905086517334 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.3162, 0.7565, 0.7515, ..., 0.4628, 0.3648, 0.1630]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 11.23905086517334 seconds - -[40.79, 41.78, 39.38, 39.23, 39.79, 39.25, 39.89, 39.93, 39.66, 39.98] -[106.81] -13.855437517166138 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 130315, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_105', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104726, 'MATRIX_DENSITY': 0.00010635950749923647, 'TIME_S': 11.23905086517334, 'TIME_S_1KI': 0.0862452585287445, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1479.8992812085153, 'W': 106.81} -[40.79, 41.78, 39.38, 39.23, 39.79, 39.25, 39.89, 39.93, 39.66, 39.98, 41.03, 39.28, 39.81, 39.38, 39.32, 39.19, 40.5, 39.21, 39.67, 39.6] -715.97 -35.798500000000004 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 130315, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_105', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104726, 'MATRIX_DENSITY': 0.00010635950749923647, 'TIME_S': 11.23905086517334, 'TIME_S_1KI': 0.0862452585287445, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1479.8992812085153, 'W': 106.81, 'J_1KI': 11.356323379568856, 'W_1KI': 0.8196293596285923, 'W_D': 71.0115, 'J_D': 983.8954012502431, 'W_D_1KI': 0.5449219199631662, 'J_D_1KI': 0.004181574799241578} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_115.json b/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_115.json deleted file mode 100644 index 706d530..0000000 --- a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_115.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 122384, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 10.623056411743164, "TIME_S_1KI": 0.08680102310549716, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1373.5208738970757, "W": 106.31, "J_1KI": 11.223042831555397, "W_1KI": 0.8686593018695254, "W_D": 70.50425, "J_D": 910.9120409505963, "W_D_1KI": 0.5760904203163812, "J_D_1KI": 0.004707236406036584} diff --git a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_115.output b/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_115.output deleted file mode 100644 index 4525251..0000000 --- a/pytorch/output_as-caida_16core/epyc_7313p_16_csr_10_10_10_as-caida_G_115.output +++ /dev/null @@ -1,89 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_115.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 0.029188871383666992} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.1969, 0.7804, 0.2686, ..., 0.5827, 0.0798, 0.7838]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 0.029188871383666992 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '35972', '-m', 'matrices/as-caida_pruned/as-caida_G_115.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 3.086211681365967} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.5660, 0.8309, 0.9656, ..., 0.1156, 0.8355, 0.1569]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 3.086211681365967 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '122384', '-m', 'matrices/as-caida_pruned/as-caida_G_115.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 10.623056411743164} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.4590, 0.4390, 0.2483, ..., 0.8018, 0.3092, 0.2454]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 10.623056411743164 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.4590, 0.4390, 0.2483, ..., 0.8018, 0.3092, 0.2454]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 10.623056411743164 seconds - -[39.96, 41.64, 39.36, 39.3, 39.65, 39.66, 39.8, 40.15, 39.67, 40.32] -[106.31] -12.919959306716919 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 122384, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_115', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106312, 'MATRIX_DENSITY': 0.00010797024579625715, 'TIME_S': 10.623056411743164, 'TIME_S_1KI': 0.08680102310549716, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1373.5208738970757, 'W': 106.31} -[39.96, 41.64, 39.36, 39.3, 39.65, 39.66, 39.8, 40.15, 39.67, 40.32, 39.97, 39.29, 39.38, 39.24, 39.46, 39.22, 39.78, 41.14, 39.67, 39.16] -716.115 -35.80575 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 122384, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_115', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106312, 'MATRIX_DENSITY': 0.00010797024579625715, 'TIME_S': 10.623056411743164, 'TIME_S_1KI': 0.08680102310549716, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1373.5208738970757, 'W': 106.31, 'J_1KI': 11.223042831555397, 'W_1KI': 0.8686593018695254, 'W_D': 70.50425, 'J_D': 910.9120409505963, 'W_D_1KI': 0.5760904203163812, 'J_D_1KI': 0.004707236406036584} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_010.json b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_010.json new file mode 100644 index 0000000..f041a66 --- /dev/null +++ b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_010.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 3781, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 10.045656204223633, "TIME_S_1KI": 2.6568781285965706, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 735.7539411067963, "W": 54.2, "J_1KI": 194.59242028743623, "W_1KI": 14.334832055011901, "W_D": 36.8215, "J_D": 499.84434949195384, "W_D_1KI": 9.738561227188574, "J_D_1KI": 2.575657558103299} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_010.output b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_010.output new file mode 100644 index 0000000..8b54a2a --- /dev/null +++ b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_010.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_010.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 0.2776789665222168} + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.3307, 0.3897, 0.8418, ..., 0.5769, 0.7460, 0.7214]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 0.2776789665222168 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '3781', '-m', 'matrices/as-caida_pruned/as-caida_G_010.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 10.045656204223633} + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.8381, 0.6468, 0.8832, ..., 0.6716, 0.5945, 0.2145]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 10.045656204223633 seconds + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.8381, 0.6468, 0.8832, ..., 0.6716, 0.5945, 0.2145]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 10.045656204223633 seconds + +[18.97, 19.7, 18.61, 18.68, 18.95, 18.76, 18.82, 18.79, 23.19, 18.83] +[54.2] +13.574795961380005 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 3781, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_010', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 74994, 'MATRIX_DENSITY': 7.616375021864427e-05, 'TIME_S': 10.045656204223633, 'TIME_S_1KI': 2.6568781285965706, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 735.7539411067963, 'W': 54.2} +[18.97, 19.7, 18.61, 18.68, 18.95, 18.76, 18.82, 18.79, 23.19, 18.83, 18.72, 18.54, 18.93, 18.5, 22.74, 19.06, 19.06, 19.0, 18.57, 18.82] +347.57 +17.3785 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 3781, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_010', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 74994, 'MATRIX_DENSITY': 7.616375021864427e-05, 'TIME_S': 10.045656204223633, 'TIME_S_1KI': 2.6568781285965706, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 735.7539411067963, 'W': 54.2, 'J_1KI': 194.59242028743623, 'W_1KI': 14.334832055011901, 'W_D': 36.8215, 'J_D': 499.84434949195384, 'W_D_1KI': 9.738561227188574, 'J_D_1KI': 2.575657558103299} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_020.json b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_020.json new file mode 100644 index 0000000..f050e87 --- /dev/null +++ b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_020.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 3534, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_020", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 80948, "MATRIX_DENSITY": 8.221062021893506e-05, "TIME_S": 10.09178638458252, "TIME_S_1KI": 2.8556271603232934, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 738.7126415205003, "W": 54.38, "J_1KI": 209.03017586884556, "W_1KI": 15.387662705149973, "W_D": 37.230500000000006, "J_D": 505.7491908813716, "W_D_1KI": 10.534946236559142, "J_D_1KI": 2.981026099762066} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_020.output b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_020.output new file mode 100644 index 0000000..6a2bcd9 --- /dev/null +++ b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_020.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_020.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_020", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 80948, "MATRIX_DENSITY": 8.221062021893506e-05, "TIME_S": 0.29705047607421875} + +tensor(indices=tensor([[ 1040, 5699, 106, ..., 31378, 17998, 31377], + [ 0, 0, 2, ..., 31377, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 1.]), + size=(31379, 31379), nnz=80948, layout=torch.sparse_coo) +tensor([0.5345, 0.3485, 0.5768, ..., 0.6584, 0.2810, 0.8312]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_020 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 80948 +Density: 8.221062021893506e-05 +Time: 0.29705047607421875 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '3534', '-m', 'matrices/as-caida_pruned/as-caida_G_020.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_020", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 80948, "MATRIX_DENSITY": 8.221062021893506e-05, "TIME_S": 10.09178638458252} + +tensor(indices=tensor([[ 1040, 5699, 106, ..., 31378, 17998, 31377], + [ 0, 0, 2, ..., 31377, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 1.]), + size=(31379, 31379), nnz=80948, layout=torch.sparse_coo) +tensor([0.6572, 0.3345, 0.1097, ..., 0.7719, 0.7425, 0.7121]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_020 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 80948 +Density: 8.221062021893506e-05 +Time: 10.09178638458252 seconds + +tensor(indices=tensor([[ 1040, 5699, 106, ..., 31378, 17998, 31377], + [ 0, 0, 2, ..., 31377, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 1.]), + size=(31379, 31379), nnz=80948, layout=torch.sparse_coo) +tensor([0.6572, 0.3345, 0.1097, ..., 0.7719, 0.7425, 0.7121]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_020 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 80948 +Density: 8.221062021893506e-05 +Time: 10.09178638458252 seconds + +[19.07, 18.48, 19.1, 18.47, 18.95, 18.68, 18.6, 18.62, 18.69, 19.55] +[54.38] +13.584270715713501 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 3534, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_020', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 80948, 'MATRIX_DENSITY': 8.221062021893506e-05, 'TIME_S': 10.09178638458252, 'TIME_S_1KI': 2.8556271603232934, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 738.7126415205003, 'W': 54.38} +[19.07, 18.48, 19.1, 18.47, 18.95, 18.68, 18.6, 18.62, 18.69, 19.55, 19.01, 19.54, 18.68, 18.64, 18.65, 19.28, 18.79, 18.69, 22.88, 18.87] +342.99 +17.1495 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 3534, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_020', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 80948, 'MATRIX_DENSITY': 8.221062021893506e-05, 'TIME_S': 10.09178638458252, 'TIME_S_1KI': 2.8556271603232934, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 738.7126415205003, 'W': 54.38, 'J_1KI': 209.03017586884556, 'W_1KI': 15.387662705149973, 'W_D': 37.230500000000006, 'J_D': 505.7491908813716, 'W_D_1KI': 10.534946236559142, 'J_D_1KI': 2.981026099762066} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_030.json b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_030.json new file mode 100644 index 0000000..6b2dcf3 --- /dev/null +++ b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_030.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 3294, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_030", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 86850, "MATRIX_DENSITY": 8.820467912752026e-05, "TIME_S": 10.149410963058472, "TIME_S_1KI": 3.081181227400872, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 741.0869712638855, "W": 54.36, "J_1KI": 224.980865593165, "W_1KI": 16.502732240437158, "W_D": 37.05375, "J_D": 505.1517910498381, "W_D_1KI": 11.248861566484518, "J_D_1KI": 3.4149549382163076} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_030.output b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_030.output new file mode 100644 index 0000000..25e5fe4 --- /dev/null +++ b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_030.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_030.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_030", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 86850, "MATRIX_DENSITY": 8.820467912752026e-05, "TIME_S": 0.3187413215637207} + +tensor(indices=tensor([[ 1809, 21783, 106, ..., 7018, 160, 882], + [ 0, 0, 2, ..., 31357, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=86850, layout=torch.sparse_coo) +tensor([0.4177, 0.5151, 0.0667, ..., 0.8094, 0.2277, 0.0684]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_030 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 86850 +Density: 8.820467912752026e-05 +Time: 0.3187413215637207 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '3294', '-m', 'matrices/as-caida_pruned/as-caida_G_030.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_030", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 86850, "MATRIX_DENSITY": 8.820467912752026e-05, "TIME_S": 10.149410963058472} + +tensor(indices=tensor([[ 1809, 21783, 106, ..., 7018, 160, 882], + [ 0, 0, 2, ..., 31357, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=86850, layout=torch.sparse_coo) +tensor([0.7955, 0.2382, 0.5654, ..., 0.9694, 0.1549, 0.8614]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_030 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 86850 +Density: 8.820467912752026e-05 +Time: 10.149410963058472 seconds + +tensor(indices=tensor([[ 1809, 21783, 106, ..., 7018, 160, 882], + [ 0, 0, 2, ..., 31357, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=86850, layout=torch.sparse_coo) +tensor([0.7955, 0.2382, 0.5654, ..., 0.9694, 0.1549, 0.8614]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_030 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 86850 +Density: 8.820467912752026e-05 +Time: 10.149410963058472 seconds + +[18.82, 18.59, 18.74, 18.88, 23.01, 19.2, 18.73, 19.09, 18.64, 18.97] +[54.36] +13.632946491241455 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 3294, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_030', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 86850, 'MATRIX_DENSITY': 8.820467912752026e-05, 'TIME_S': 10.149410963058472, 'TIME_S_1KI': 3.081181227400872, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 741.0869712638855, 'W': 54.36} +[18.82, 18.59, 18.74, 18.88, 23.01, 19.2, 18.73, 19.09, 18.64, 18.97, 20.76, 21.2, 18.74, 19.11, 18.89, 18.67, 18.69, 18.58, 18.68, 18.82] +346.125 +17.30625 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 3294, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_030', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 86850, 'MATRIX_DENSITY': 8.820467912752026e-05, 'TIME_S': 10.149410963058472, 'TIME_S_1KI': 3.081181227400872, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 741.0869712638855, 'W': 54.36, 'J_1KI': 224.980865593165, 'W_1KI': 16.502732240437158, 'W_D': 37.05375, 'J_D': 505.1517910498381, 'W_D_1KI': 11.248861566484518, 'J_D_1KI': 3.4149549382163076} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_040.json b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_040.json new file mode 100644 index 0000000..0331216 --- /dev/null +++ b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_040.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 3193, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_040", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89658, "MATRIX_DENSITY": 9.105647807962247e-05, "TIME_S": 10.120986938476562, "TIME_S_1KI": 3.16974222940074, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 737.1458910942079, "W": 54.20000000000001, "J_1KI": 230.86310400695518, "W_1KI": 16.974632007516444, "W_D": 37.178250000000006, "J_D": 505.64195988142495, "W_D_1KI": 11.64367366113373, "J_D_1KI": 3.6466250113165457} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_040.output b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_040.output new file mode 100644 index 0000000..dd787b0 --- /dev/null +++ b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_040.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_040.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_040", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89658, "MATRIX_DENSITY": 9.105647807962247e-05, "TIME_S": 0.32877588272094727} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 10144, 882, 16085], + [ 2, 2, 2, ..., 31371, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=89658, layout=torch.sparse_coo) +tensor([0.5226, 0.8510, 0.7322, ..., 0.0795, 0.0784, 0.5733]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_040 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 89658 +Density: 9.105647807962247e-05 +Time: 0.32877588272094727 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '3193', '-m', 'matrices/as-caida_pruned/as-caida_G_040.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_040", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89658, "MATRIX_DENSITY": 9.105647807962247e-05, "TIME_S": 10.120986938476562} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 10144, 882, 16085], + [ 2, 2, 2, ..., 31371, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=89658, layout=torch.sparse_coo) +tensor([0.9799, 0.9991, 0.0859, ..., 0.5045, 0.9507, 0.6943]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_040 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 89658 +Density: 9.105647807962247e-05 +Time: 10.120986938476562 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 10144, 882, 16085], + [ 2, 2, 2, ..., 31371, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=89658, layout=torch.sparse_coo) +tensor([0.9799, 0.9991, 0.0859, ..., 0.5045, 0.9507, 0.6943]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_040 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 89658 +Density: 9.105647807962247e-05 +Time: 10.120986938476562 seconds + +[22.68, 19.39, 18.68, 19.26, 18.9, 18.77, 18.71, 18.42, 18.66, 18.91] +[54.2] +13.600477695465088 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 3193, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_040', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89658, 'MATRIX_DENSITY': 9.105647807962247e-05, 'TIME_S': 10.120986938476562, 'TIME_S_1KI': 3.16974222940074, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 737.1458910942079, 'W': 54.20000000000001} +[22.68, 19.39, 18.68, 19.26, 18.9, 18.77, 18.71, 18.42, 18.66, 18.91, 20.45, 18.43, 18.53, 18.38, 18.81, 18.62, 18.57, 18.68, 19.15, 18.91] +340.435 +17.02175 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 3193, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_040', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89658, 'MATRIX_DENSITY': 9.105647807962247e-05, 'TIME_S': 10.120986938476562, 'TIME_S_1KI': 3.16974222940074, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 737.1458910942079, 'W': 54.20000000000001, 'J_1KI': 230.86310400695518, 'W_1KI': 16.974632007516444, 'W_D': 37.178250000000006, 'J_D': 505.64195988142495, 'W_D_1KI': 11.64367366113373, 'J_D_1KI': 3.6466250113165457} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_050.json b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_050.json new file mode 100644 index 0000000..cf180e5 --- /dev/null +++ b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_050.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 3164, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 10.11651086807251, "TIME_S_1KI": 3.1973801732214, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 741.210281200409, "W": 54.31, "J_1KI": 234.26367926688022, "W_1KI": 17.164981036662454, "W_D": 36.722750000000005, "J_D": 501.1835730795861, "W_D_1KI": 11.60643173198483, "J_D_1KI": 3.6682780442429936} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_050.output b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_050.output new file mode 100644 index 0000000..6eb35b4 --- /dev/null +++ b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_050.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_050.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 0.331831693649292} + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.5540, 0.0317, 0.9498, ..., 0.3026, 0.5739, 0.2268]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 0.331831693649292 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '3164', '-m', 'matrices/as-caida_pruned/as-caida_G_050.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 10.11651086807251} + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.8494, 0.9051, 0.9723, ..., 0.5613, 0.2576, 0.9611]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 10.11651086807251 seconds + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.8494, 0.9051, 0.9723, ..., 0.5613, 0.2576, 0.9611]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 10.11651086807251 seconds + +[18.99, 18.51, 19.06, 18.63, 18.95, 18.48, 18.86, 19.63, 18.71, 18.68] +[54.31] +13.647768020629883 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 3164, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_050', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 90392, 'MATRIX_DENSITY': 9.180192695100532e-05, 'TIME_S': 10.11651086807251, 'TIME_S_1KI': 3.1973801732214, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 741.210281200409, 'W': 54.31} +[18.99, 18.51, 19.06, 18.63, 18.95, 18.48, 18.86, 19.63, 18.71, 18.68, 19.21, 18.48, 19.04, 18.56, 18.73, 18.61, 32.18, 19.01, 18.49, 18.75] +351.74499999999995 +17.587249999999997 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 3164, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_050', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 90392, 'MATRIX_DENSITY': 9.180192695100532e-05, 'TIME_S': 10.11651086807251, 'TIME_S_1KI': 3.1973801732214, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 741.210281200409, 'W': 54.31, 'J_1KI': 234.26367926688022, 'W_1KI': 17.164981036662454, 'W_D': 36.722750000000005, 'J_D': 501.1835730795861, 'W_D_1KI': 11.60643173198483, 'J_D_1KI': 3.6682780442429936} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_060.json b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_060.json new file mode 100644 index 0000000..40f44b5 --- /dev/null +++ b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_060.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 3051, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_060", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 94180, "MATRIX_DENSITY": 9.564901186217454e-05, "TIME_S": 10.164569616317749, "TIME_S_1KI": 3.3315534632309896, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 742.350820941925, "W": 54.36, "J_1KI": 243.31393672301704, "W_1KI": 17.817109144542773, "W_D": 37.224000000000004, "J_D": 508.33824427413947, "W_D_1KI": 12.200589970501476, "J_D_1KI": 3.9988823239926172} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_060.output b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_060.output new file mode 100644 index 0000000..ea0c513 --- /dev/null +++ b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_060.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_060.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_060", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 94180, "MATRIX_DENSITY": 9.564901186217454e-05, "TIME_S": 0.34404420852661133} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 882], + [ 2, 2, 2, ..., 31355, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=94180, layout=torch.sparse_coo) +tensor([0.1342, 0.2799, 0.9911, ..., 0.3873, 0.5016, 0.1666]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_060 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 94180 +Density: 9.564901186217454e-05 +Time: 0.34404420852661133 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '3051', '-m', 'matrices/as-caida_pruned/as-caida_G_060.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_060", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 94180, "MATRIX_DENSITY": 9.564901186217454e-05, "TIME_S": 10.164569616317749} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 882], + [ 2, 2, 2, ..., 31355, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=94180, layout=torch.sparse_coo) +tensor([0.3858, 0.7661, 0.5297, ..., 0.1302, 0.4737, 0.9995]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_060 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 94180 +Density: 9.564901186217454e-05 +Time: 10.164569616317749 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 882], + [ 2, 2, 2, ..., 31355, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=94180, layout=torch.sparse_coo) +tensor([0.3858, 0.7661, 0.5297, ..., 0.1302, 0.4737, 0.9995]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_060 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 94180 +Density: 9.564901186217454e-05 +Time: 10.164569616317749 seconds + +[18.88, 18.75, 19.01, 18.78, 19.27, 18.7, 18.65, 18.59, 18.93, 18.57] +[54.36] +13.656196117401123 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 3051, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_060', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 94180, 'MATRIX_DENSITY': 9.564901186217454e-05, 'TIME_S': 10.164569616317749, 'TIME_S_1KI': 3.3315534632309896, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 742.350820941925, 'W': 54.36} +[18.88, 18.75, 19.01, 18.78, 19.27, 18.7, 18.65, 18.59, 18.93, 18.57, 19.02, 18.87, 18.63, 18.57, 18.48, 18.65, 18.8, 18.54, 23.83, 18.87] +342.71999999999997 +17.136 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 3051, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_060', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 94180, 'MATRIX_DENSITY': 9.564901186217454e-05, 'TIME_S': 10.164569616317749, 'TIME_S_1KI': 3.3315534632309896, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 742.350820941925, 'W': 54.36, 'J_1KI': 243.31393672301704, 'W_1KI': 17.817109144542773, 'W_D': 37.224000000000004, 'J_D': 508.33824427413947, 'W_D_1KI': 12.200589970501476, 'J_D_1KI': 3.9988823239926172} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_070.json b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_070.json new file mode 100644 index 0000000..a5395f9 --- /dev/null +++ b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_070.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 3625, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_070", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 78684, "MATRIX_DENSITY": 7.991130653390679e-05, "TIME_S": 10.109321594238281, "TIME_S_1KI": 2.7887783708243536, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 739.2311378860473, "W": 54.24, "J_1KI": 203.9258311409786, "W_1KI": 14.962758620689655, "W_D": 37.352500000000006, "J_D": 509.0732130879165, "W_D_1KI": 10.304137931034486, "J_D_1KI": 2.8425208085612375} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_070.output b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_070.output new file mode 100644 index 0000000..74bed62 --- /dev/null +++ b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_070.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_070.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_070", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 78684, "MATRIX_DENSITY": 7.991130653390679e-05, "TIME_S": 0.2895786762237549} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 16263, 2242, 2242], + [ 2, 2, 2, ..., 31240, 31283, 31284]]), + values=tensor([3., 3., 3., ..., 1., 3., 3.]), + size=(31379, 31379), nnz=78684, layout=torch.sparse_coo) +tensor([0.9567, 0.8680, 0.7556, ..., 0.9807, 0.5892, 0.6596]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_070 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 78684 +Density: 7.991130653390679e-05 +Time: 0.2895786762237549 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '3625', '-m', 'matrices/as-caida_pruned/as-caida_G_070.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_070", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 78684, "MATRIX_DENSITY": 7.991130653390679e-05, "TIME_S": 10.109321594238281} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 16263, 2242, 2242], + [ 2, 2, 2, ..., 31240, 31283, 31284]]), + values=tensor([3., 3., 3., ..., 1., 3., 3.]), + size=(31379, 31379), nnz=78684, layout=torch.sparse_coo) +tensor([0.1358, 0.9885, 0.5252, ..., 0.5711, 0.5627, 0.5690]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_070 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 78684 +Density: 7.991130653390679e-05 +Time: 10.109321594238281 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 16263, 2242, 2242], + [ 2, 2, 2, ..., 31240, 31283, 31284]]), + values=tensor([3., 3., 3., ..., 1., 3., 3.]), + size=(31379, 31379), nnz=78684, layout=torch.sparse_coo) +tensor([0.1358, 0.9885, 0.5252, ..., 0.5711, 0.5627, 0.5690]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_070 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 78684 +Density: 7.991130653390679e-05 +Time: 10.109321594238281 seconds + +[19.27, 18.64, 18.49, 18.67, 18.5, 18.61, 18.9, 18.46, 18.79, 18.59] +[54.24] +13.628892660140991 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 3625, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_070', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 78684, 'MATRIX_DENSITY': 7.991130653390679e-05, 'TIME_S': 10.109321594238281, 'TIME_S_1KI': 2.7887783708243536, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 739.2311378860473, 'W': 54.24} +[19.27, 18.64, 18.49, 18.67, 18.5, 18.61, 18.9, 18.46, 18.79, 18.59, 19.18, 18.68, 18.74, 18.96, 19.53, 18.88, 18.86, 18.74, 18.51, 18.54] +337.75 +16.8875 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 3625, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_070', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 78684, 'MATRIX_DENSITY': 7.991130653390679e-05, 'TIME_S': 10.109321594238281, 'TIME_S_1KI': 2.7887783708243536, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 739.2311378860473, 'W': 54.24, 'J_1KI': 203.9258311409786, 'W_1KI': 14.962758620689655, 'W_D': 37.352500000000006, 'J_D': 509.0732130879165, 'W_D_1KI': 10.304137931034486, 'J_D_1KI': 2.8425208085612375} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_080.json b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_080.json new file mode 100644 index 0000000..cb1a803 --- /dev/null +++ b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_080.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 2927, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_080", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 98112, "MATRIX_DENSITY": 9.964234287345156e-05, "TIME_S": 10.156116485595703, "TIME_S_1KI": 3.4698040606749925, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 740.3946319580078, "W": 54.08, "J_1KI": 252.95341030338497, "W_1KI": 18.47625555175948, "W_D": 37.199999999999996, "J_D": 509.295124053955, "W_D_1KI": 12.709258626580116, "J_D_1KI": 4.342076742938202} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_080.output b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_080.output new file mode 100644 index 0000000..b9bbbff --- /dev/null +++ b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_080.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_080.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_080", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 98112, "MATRIX_DENSITY": 9.964234287345156e-05, "TIME_S": 0.35871315002441406} + +tensor(indices=tensor([[22754, 22754, 106, ..., 4133, 31329, 12170], + [ 0, 1, 2, ..., 31373, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 1., 1., 3.]), + size=(31379, 31379), nnz=98112, layout=torch.sparse_coo) +tensor([0.2879, 0.3410, 0.9666, ..., 0.6570, 0.2603, 0.5416]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_080 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 98112 +Density: 9.964234287345156e-05 +Time: 0.35871315002441406 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '2927', '-m', 'matrices/as-caida_pruned/as-caida_G_080.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_080", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 98112, "MATRIX_DENSITY": 9.964234287345156e-05, "TIME_S": 10.156116485595703} + +tensor(indices=tensor([[22754, 22754, 106, ..., 4133, 31329, 12170], + [ 0, 1, 2, ..., 31373, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 1., 1., 3.]), + size=(31379, 31379), nnz=98112, layout=torch.sparse_coo) +tensor([0.2402, 0.3020, 0.8697, ..., 0.2688, 0.7526, 0.1517]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_080 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 98112 +Density: 9.964234287345156e-05 +Time: 10.156116485595703 seconds + +tensor(indices=tensor([[22754, 22754, 106, ..., 4133, 31329, 12170], + [ 0, 1, 2, ..., 31373, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 1., 1., 3.]), + size=(31379, 31379), nnz=98112, layout=torch.sparse_coo) +tensor([0.2402, 0.3020, 0.8697, ..., 0.2688, 0.7526, 0.1517]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_080 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 98112 +Density: 9.964234287345156e-05 +Time: 10.156116485595703 seconds + +[19.35, 18.48, 19.47, 18.52, 18.55, 18.63, 19.0, 18.58, 18.71, 18.76] +[54.08] +13.690729141235352 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2927, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_080', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 98112, 'MATRIX_DENSITY': 9.964234287345156e-05, 'TIME_S': 10.156116485595703, 'TIME_S_1KI': 3.4698040606749925, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 740.3946319580078, 'W': 54.08} +[19.35, 18.48, 19.47, 18.52, 18.55, 18.63, 19.0, 18.58, 18.71, 18.76, 19.12, 18.68, 18.64, 18.42, 18.72, 18.53, 18.94, 18.66, 19.2, 18.51] +337.6 +16.880000000000003 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2927, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_080', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 98112, 'MATRIX_DENSITY': 9.964234287345156e-05, 'TIME_S': 10.156116485595703, 'TIME_S_1KI': 3.4698040606749925, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 740.3946319580078, 'W': 54.08, 'J_1KI': 252.95341030338497, 'W_1KI': 18.47625555175948, 'W_D': 37.199999999999996, 'J_D': 509.295124053955, 'W_D_1KI': 12.709258626580116, 'J_D_1KI': 4.342076742938202} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_090.json b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_090.json new file mode 100644 index 0000000..c5cbc9c --- /dev/null +++ b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_090.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 2844, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_090", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 100924, "MATRIX_DENSITY": 0.00010249820421722343, "TIME_S": 10.155162334442139, "TIME_S_1KI": 3.5707321851062375, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 741.4158288598061, "W": 54.17, "J_1KI": 260.6947358860078, "W_1KI": 19.047116736990155, "W_D": 37.403000000000006, "J_D": 511.92867356181154, "W_D_1KI": 13.151547116736992, "J_D_1KI": 4.624313332186003} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_090.output b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_090.output new file mode 100644 index 0000000..bfede00 --- /dev/null +++ b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_090.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_090.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_090", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 100924, "MATRIX_DENSITY": 0.00010249820421722343, "TIME_S": 0.36909985542297363} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 31211, 12170], + [ 2, 2, 2, ..., 31373, 31376, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=100924, layout=torch.sparse_coo) +tensor([0.6115, 0.0678, 0.7772, ..., 0.9400, 0.7315, 0.2207]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_090 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 100924 +Density: 0.00010249820421722343 +Time: 0.36909985542297363 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '2844', '-m', 'matrices/as-caida_pruned/as-caida_G_090.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_090", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 100924, "MATRIX_DENSITY": 0.00010249820421722343, "TIME_S": 10.155162334442139} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 31211, 12170], + [ 2, 2, 2, ..., 31373, 31376, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=100924, layout=torch.sparse_coo) +tensor([0.8336, 0.4770, 0.3131, ..., 0.7360, 0.6190, 0.8432]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_090 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 100924 +Density: 0.00010249820421722343 +Time: 10.155162334442139 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 31211, 12170], + [ 2, 2, 2, ..., 31373, 31376, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=100924, layout=torch.sparse_coo) +tensor([0.8336, 0.4770, 0.3131, ..., 0.7360, 0.6190, 0.8432]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_090 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 100924 +Density: 0.00010249820421722343 +Time: 10.155162334442139 seconds + +[18.62, 18.16, 19.0, 18.39, 18.92, 18.45, 18.78, 18.29, 18.77, 18.3] +[54.17] +13.686834573745728 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2844, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_090', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 100924, 'MATRIX_DENSITY': 0.00010249820421722343, 'TIME_S': 10.155162334442139, 'TIME_S_1KI': 3.5707321851062375, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 741.4158288598061, 'W': 54.17} +[18.62, 18.16, 19.0, 18.39, 18.92, 18.45, 18.78, 18.29, 18.77, 18.3, 19.2, 18.61, 18.77, 19.45, 18.65, 18.67, 18.39, 18.26, 18.56, 18.32] +335.34 +16.767 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2844, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_090', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 100924, 'MATRIX_DENSITY': 0.00010249820421722343, 'TIME_S': 10.155162334442139, 'TIME_S_1KI': 3.5707321851062375, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 741.4158288598061, 'W': 54.17, 'J_1KI': 260.6947358860078, 'W_1KI': 19.047116736990155, 'W_D': 37.403000000000006, 'J_D': 511.92867356181154, 'W_D_1KI': 13.151547116736992, 'J_D_1KI': 4.624313332186003} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_100.json b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_100.json new file mode 100644 index 0000000..bfa1bb8 --- /dev/null +++ b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_100.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 2799, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_100", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102888, "MATRIX_DENSITY": 0.00010449283852702711, "TIME_S": 10.173045873641968, "TIME_S_1KI": 3.634528715127534, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 742.0090924072266, "W": 54.27, "J_1KI": 265.0979251186947, "W_1KI": 19.389067524115756, "W_D": 37.21000000000001, "J_D": 508.7554510498048, "W_D_1KI": 13.294033583422655, "J_D_1KI": 4.749565410297484} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_100.output b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_100.output new file mode 100644 index 0000000..33ea9fd --- /dev/null +++ b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_100.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_100.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_100", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102888, "MATRIX_DENSITY": 0.00010449283852702711, "TIME_S": 0.3750295639038086} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 25970, 5128, 12170], + [ 2, 2, 2, ..., 31373, 31377, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=102888, layout=torch.sparse_coo) +tensor([0.8757, 0.3241, 0.5761, ..., 0.7495, 0.3449, 0.1132]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_100 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 102888 +Density: 0.00010449283852702711 +Time: 0.3750295639038086 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '2799', '-m', 'matrices/as-caida_pruned/as-caida_G_100.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_100", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102888, "MATRIX_DENSITY": 0.00010449283852702711, "TIME_S": 10.173045873641968} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 25970, 5128, 12170], + [ 2, 2, 2, ..., 31373, 31377, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=102888, layout=torch.sparse_coo) +tensor([0.3877, 0.1412, 0.0233, ..., 0.0160, 0.7273, 0.1197]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_100 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 102888 +Density: 0.00010449283852702711 +Time: 10.173045873641968 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 25970, 5128, 12170], + [ 2, 2, 2, ..., 31373, 31377, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=102888, layout=torch.sparse_coo) +tensor([0.3877, 0.1412, 0.0233, ..., 0.0160, 0.7273, 0.1197]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_100 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 102888 +Density: 0.00010449283852702711 +Time: 10.173045873641968 seconds + +[19.79, 18.71, 18.59, 18.47, 18.79, 18.75, 18.67, 18.57, 18.92, 18.56] +[54.27] +13.67254638671875 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2799, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_100', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102888, 'MATRIX_DENSITY': 0.00010449283852702711, 'TIME_S': 10.173045873641968, 'TIME_S_1KI': 3.634528715127534, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 742.0090924072266, 'W': 54.27} +[19.79, 18.71, 18.59, 18.47, 18.79, 18.75, 18.67, 18.57, 18.92, 18.56, 18.64, 18.57, 19.14, 18.68, 18.68, 22.25, 19.27, 18.57, 18.83, 18.49] +341.2 +17.06 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2799, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_100', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102888, 'MATRIX_DENSITY': 0.00010449283852702711, 'TIME_S': 10.173045873641968, 'TIME_S_1KI': 3.634528715127534, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 742.0090924072266, 'W': 54.27, 'J_1KI': 265.0979251186947, 'W_1KI': 19.389067524115756, 'W_D': 37.21000000000001, 'J_D': 508.7554510498048, 'W_D_1KI': 13.294033583422655, 'J_D_1KI': 4.749565410297484} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_110.json b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_110.json new file mode 100644 index 0000000..0c35faf --- /dev/null +++ b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_110.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 2745, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_110", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104846, "MATRIX_DENSITY": 0.0001064813792493263, "TIME_S": 10.160125970840454, "TIME_S_1KI": 3.7013209365538997, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 738.6148199796676, "W": 54.04999999999999, "J_1KI": 269.07643715106286, "W_1KI": 19.690346083788704, "W_D": 37.206749999999985, "J_D": 508.4450870171783, "W_D_1KI": 13.554371584699448, "J_D_1KI": 4.937840285865009} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_110.output b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_110.output new file mode 100644 index 0000000..2a75f87 --- /dev/null +++ b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_110.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_110.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_110", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104846, "MATRIX_DENSITY": 0.0001064813792493263, "TIME_S": 0.3823854923248291} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 2616, 12170], + [ 2, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=104846, layout=torch.sparse_coo) +tensor([0.1846, 0.1440, 0.0485, ..., 0.2372, 0.0918, 0.7447]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_110 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 104846 +Density: 0.0001064813792493263 +Time: 0.3823854923248291 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '2745', '-m', 'matrices/as-caida_pruned/as-caida_G_110.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_110", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104846, "MATRIX_DENSITY": 0.0001064813792493263, "TIME_S": 10.160125970840454} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 2616, 12170], + [ 2, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=104846, layout=torch.sparse_coo) +tensor([0.2474, 0.9347, 0.9275, ..., 0.7344, 0.5963, 0.3988]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_110 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 104846 +Density: 0.0001064813792493263 +Time: 10.160125970840454 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 2616, 12170], + [ 2, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=104846, layout=torch.sparse_coo) +tensor([0.2474, 0.9347, 0.9275, ..., 0.7344, 0.5963, 0.3988]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_110 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 104846 +Density: 0.0001064813792493263 +Time: 10.160125970840454 seconds + +[22.38, 18.74, 18.66, 19.0, 18.55, 18.45, 18.43, 18.62, 18.52, 18.45] +[54.05] +13.665399074554443 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2745, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_110', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104846, 'MATRIX_DENSITY': 0.0001064813792493263, 'TIME_S': 10.160125970840454, 'TIME_S_1KI': 3.7013209365538997, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 738.6148199796676, 'W': 54.04999999999999} +[22.38, 18.74, 18.66, 19.0, 18.55, 18.45, 18.43, 18.62, 18.52, 18.45, 18.85, 18.47, 18.72, 18.25, 18.7, 18.53, 18.63, 18.79, 18.56, 18.81] +336.865 +16.84325 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2745, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_110', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104846, 'MATRIX_DENSITY': 0.0001064813792493263, 'TIME_S': 10.160125970840454, 'TIME_S_1KI': 3.7013209365538997, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 738.6148199796676, 'W': 54.04999999999999, 'J_1KI': 269.07643715106286, 'W_1KI': 19.690346083788704, 'W_D': 37.206749999999985, 'J_D': 508.4450870171783, 'W_D_1KI': 13.554371584699448, 'J_D_1KI': 4.937840285865009} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_120.json b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_120.json new file mode 100644 index 0000000..c206bbf --- /dev/null +++ b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_120.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 2707, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_120", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106510, "MATRIX_DENSITY": 0.0001081713341839054, "TIME_S": 10.189634084701538, "TIME_S_1KI": 3.7641795658298998, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 744.9943315029144, "W": 54.21, "J_1KI": 275.21031825006077, "W_1KI": 20.025858884373847, "W_D": 37.37875, "J_D": 513.6867158949375, "W_D_1KI": 13.808182489841151, "J_D_1KI": 5.100917063110879} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_120.output b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_120.output new file mode 100644 index 0000000..5aa8e9a --- /dev/null +++ b/pytorch/output_as-caida_16core/xeon_4216_16_coo_10_10_10_as-caida_G_120.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_120.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_120", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106510, "MATRIX_DENSITY": 0.0001081713341839054, "TIME_S": 0.38787221908569336} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 12170], + [ 2, 2, 2, ..., 31355, 31360, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=106510, layout=torch.sparse_coo) +tensor([0.9457, 0.7692, 0.0445, ..., 0.6073, 0.5689, 0.2068]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_120 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 106510 +Density: 0.0001081713341839054 +Time: 0.38787221908569336 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '2707', '-m', 'matrices/as-caida_pruned/as-caida_G_120.mtx', '-c', '16'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_120", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106510, "MATRIX_DENSITY": 0.0001081713341839054, "TIME_S": 10.189634084701538} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 12170], + [ 2, 2, 2, ..., 31355, 31360, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=106510, layout=torch.sparse_coo) +tensor([0.6976, 0.9804, 0.6664, ..., 0.1768, 0.5922, 0.2372]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_120 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 106510 +Density: 0.0001081713341839054 +Time: 10.189634084701538 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 12170], + [ 2, 2, 2, ..., 31355, 31360, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=106510, layout=torch.sparse_coo) +tensor([0.6976, 0.9804, 0.6664, ..., 0.1768, 0.5922, 0.2372]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_120 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 106510 +Density: 0.0001081713341839054 +Time: 10.189634084701538 seconds + +[19.14, 18.23, 18.68, 19.65, 18.76, 18.45, 18.39, 18.2, 18.73, 18.92] +[54.21] +13.74274730682373 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2707, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_120', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106510, 'MATRIX_DENSITY': 0.0001081713341839054, 'TIME_S': 10.189634084701538, 'TIME_S_1KI': 3.7641795658298998, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 744.9943315029144, 'W': 54.21} +[19.14, 18.23, 18.68, 19.65, 18.76, 18.45, 18.39, 18.2, 18.73, 18.92, 18.9, 18.53, 18.74, 18.33, 18.52, 18.66, 19.08, 18.54, 19.46, 18.39] +336.625 +16.83125 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2707, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_120', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106510, 'MATRIX_DENSITY': 0.0001081713341839054, 'TIME_S': 10.189634084701538, 'TIME_S_1KI': 3.7641795658298998, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 744.9943315029144, 'W': 54.21, 'J_1KI': 275.21031825006077, 'W_1KI': 20.025858884373847, 'W_D': 37.37875, 'J_D': 513.6867158949375, 'W_D_1KI': 13.808182489841151, 'J_D_1KI': 5.100917063110879} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_005.json b/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_005.json deleted file mode 100644 index 253b8c7..0000000 --- a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_005.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 118951, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 10.958328008651733, "TIME_S_1KI": 0.0921247236984282, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1244.7510617017745, "W": 85.66, "J_1KI": 10.46440182681755, "W_1KI": 0.7201284562550967, "W_D": 68.79275, "J_D": 999.64801073879, "W_D_1KI": 0.578328471387378, "J_D_1KI": 0.004861905081818379} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_005.output b/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_005.output deleted file mode 100644 index cc25f85..0000000 --- a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_005.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_005.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 0.02218484878540039} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.8422, 0.7050, 0.1082, ..., 0.1730, 0.8671, 0.7264]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 0.02218484878540039 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '47329', '-m', 'matrices/as-caida_pruned/as-caida_G_005.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 4.177785634994507} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.4803, 0.7198, 0.6367, ..., 0.1841, 0.4829, 0.5995]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 4.177785634994507 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '118951', '-m', 'matrices/as-caida_pruned/as-caida_G_005.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 10.958328008651733} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.4882, 0.5169, 0.2032, ..., 0.7665, 0.8923, 0.8813]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 10.958328008651733 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.4882, 0.5169, 0.2032, ..., 0.7665, 0.8923, 0.8813]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 10.958328008651733 seconds - -[19.13, 18.64, 19.2, 18.61, 18.66, 18.55, 19.69, 18.7, 18.45, 18.58] -[85.66] -14.531298875808716 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 118951, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_005', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 70026, 'MATRIX_DENSITY': 7.111825976492498e-05, 'TIME_S': 10.958328008651733, 'TIME_S_1KI': 0.0921247236984282, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1244.7510617017745, 'W': 85.66} -[19.13, 18.64, 19.2, 18.61, 18.66, 18.55, 19.69, 18.7, 18.45, 18.58, 18.68, 18.33, 18.75, 18.56, 18.36, 18.54, 18.71, 18.72, 19.33, 18.7] -337.345 -16.867250000000002 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 118951, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_005', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 70026, 'MATRIX_DENSITY': 7.111825976492498e-05, 'TIME_S': 10.958328008651733, 'TIME_S_1KI': 0.0921247236984282, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1244.7510617017745, 'W': 85.66, 'J_1KI': 10.46440182681755, 'W_1KI': 0.7201284562550967, 'W_D': 68.79275, 'J_D': 999.64801073879, 'W_D_1KI': 0.578328471387378, 'J_D_1KI': 0.004861905081818379} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_015.json b/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_015.json deleted file mode 100644 index 2fcbe89..0000000 --- a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_015.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 111343, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 10.612449407577515, "TIME_S_1KI": 0.09531312617387276, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1276.1634995460508, "W": 85.24, "J_1KI": 11.46155123847975, "W_1KI": 0.7655622715392975, "W_D": 68.50299999999999, "J_D": 1025.5869100117682, "W_D_1KI": 0.6152429878842853, "J_D_1KI": 0.005525654849288103} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_015.output b/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_015.output deleted file mode 100644 index 88be5a2..0000000 --- a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_015.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_015.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 0.024092912673950195} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.5683, 0.4138, 0.4073, ..., 0.3902, 0.8427, 0.0854]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 0.024092912673950195 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '43581', '-m', 'matrices/as-caida_pruned/as-caida_G_015.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 4.109806299209595} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.5410, 0.2199, 0.7901, ..., 0.5082, 0.9299, 0.4005]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 4.109806299209595 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '111343', '-m', 'matrices/as-caida_pruned/as-caida_G_015.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 10.612449407577515} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.4631, 0.6798, 0.1713, ..., 0.4196, 0.8931, 0.1487]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 10.612449407577515 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.4631, 0.6798, 0.1713, ..., 0.4196, 0.8931, 0.1487]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 10.612449407577515 seconds - -[19.22, 18.22, 18.5, 18.78, 18.53, 18.22, 18.28, 18.61, 18.44, 18.23] -[85.24] -14.971415996551514 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 111343, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_015', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 77124, 'MATRIX_DENSITY': 7.832697378273889e-05, 'TIME_S': 10.612449407577515, 'TIME_S_1KI': 0.09531312617387276, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1276.1634995460508, 'W': 85.24} -[19.22, 18.22, 18.5, 18.78, 18.53, 18.22, 18.28, 18.61, 18.44, 18.23, 18.99, 19.53, 18.43, 18.28, 18.91, 18.45, 18.67, 18.31, 19.19, 18.34] -334.74 -16.737000000000002 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 111343, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_015', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 77124, 'MATRIX_DENSITY': 7.832697378273889e-05, 'TIME_S': 10.612449407577515, 'TIME_S_1KI': 0.09531312617387276, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1276.1634995460508, 'W': 85.24, 'J_1KI': 11.46155123847975, 'W_1KI': 0.7655622715392975, 'W_D': 68.50299999999999, 'J_D': 1025.5869100117682, 'W_D_1KI': 0.6152429878842853, 'J_D_1KI': 0.005525654849288103} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_025.json b/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_025.json deleted file mode 100644 index e3e64e8..0000000 --- a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_025.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 104212, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 10.081001043319702, "TIME_S_1KI": 0.0967355107216031, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1181.1547214508057, "W": 85.36, "J_1KI": 11.334152702671533, "W_1KI": 0.8190995278854643, "W_D": 68.42425, "J_D": 946.8091137444973, "W_D_1KI": 0.6565870533143975, "J_D_1KI": 0.006300493736943898} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_025.output b/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_025.output deleted file mode 100644 index f0ae3c3..0000000 --- a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_025.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_025.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 0.02489328384399414} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.3735, 0.0521, 0.5930, ..., 0.9245, 0.5806, 0.1020]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 0.02489328384399414 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '42180', '-m', 'matrices/as-caida_pruned/as-caida_G_025.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 4.24988055229187} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.0848, 0.9892, 0.3897, ..., 0.8536, 0.7541, 0.3970]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 4.24988055229187 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '104212', '-m', 'matrices/as-caida_pruned/as-caida_G_025.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 10.081001043319702} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.7565, 0.9410, 0.8976, ..., 0.0615, 0.0494, 0.4926]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 10.081001043319702 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.7565, 0.9410, 0.8976, ..., 0.0615, 0.0494, 0.4926]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 10.081001043319702 seconds - -[19.13, 19.56, 18.72, 18.55, 18.88, 18.69, 18.9, 18.45, 18.62, 18.63] -[85.36] -13.837332725524902 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 104212, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_025', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 85850, 'MATRIX_DENSITY': 8.718908121010495e-05, 'TIME_S': 10.081001043319702, 'TIME_S_1KI': 0.0967355107216031, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1181.1547214508057, 'W': 85.36} -[19.13, 19.56, 18.72, 18.55, 18.88, 18.69, 18.9, 18.45, 18.62, 18.63, 19.24, 18.49, 18.65, 18.66, 20.06, 18.54, 18.65, 18.59, 18.9, 18.61] -338.715 -16.93575 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 104212, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_025', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 85850, 'MATRIX_DENSITY': 8.718908121010495e-05, 'TIME_S': 10.081001043319702, 'TIME_S_1KI': 0.0967355107216031, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1181.1547214508057, 'W': 85.36, 'J_1KI': 11.334152702671533, 'W_1KI': 0.8190995278854643, 'W_D': 68.42425, 'J_D': 946.8091137444973, 'W_D_1KI': 0.6565870533143975, 'J_D_1KI': 0.006300493736943898} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_035.json b/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_035.json deleted file mode 100644 index 96f01c7..0000000 --- a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_035.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 108087, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 10.658639669418335, "TIME_S_1KI": 0.09861167087085713, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1189.6392674064637, "W": 85.63000000000001, "J_1KI": 11.006312205968003, "W_1KI": 0.792232183333796, "W_D": 68.6405, "J_D": 953.6077792177201, "W_D_1KI": 0.635048618242712, "J_D_1KI": 0.005875346880223449} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_035.output b/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_035.output deleted file mode 100644 index 3e77f2c..0000000 --- a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_035.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_035.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 0.024932384490966797} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.9497, 0.8791, 0.4095, ..., 0.2660, 0.5237, 0.9335]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 0.024932384490966797 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '42113', '-m', 'matrices/as-caida_pruned/as-caida_G_035.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 4.0910210609436035} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.3329, 0.1103, 0.0954, ..., 0.6205, 0.8185, 0.8635]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 4.0910210609436035 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '108087', '-m', 'matrices/as-caida_pruned/as-caida_G_035.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 10.658639669418335} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.4504, 0.2201, 0.9468, ..., 0.4623, 0.1299, 0.0544]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 10.658639669418335 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.4504, 0.2201, 0.9468, ..., 0.4623, 0.1299, 0.0544]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 10.658639669418335 seconds - -[19.09, 18.49, 18.84, 18.58, 18.97, 18.67, 19.82, 19.26, 19.0, 18.71] -[85.63] -13.892786026000977 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 108087, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_035', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 87560, 'MATRIX_DENSITY': 8.892575364888514e-05, 'TIME_S': 10.658639669418335, 'TIME_S_1KI': 0.09861167087085713, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1189.6392674064637, 'W': 85.63000000000001} -[19.09, 18.49, 18.84, 18.58, 18.97, 18.67, 19.82, 19.26, 19.0, 18.71, 18.89, 18.81, 18.96, 18.53, 18.69, 19.02, 18.99, 18.72, 18.87, 18.45] -339.78999999999996 -16.9895 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 108087, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_035', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 87560, 'MATRIX_DENSITY': 8.892575364888514e-05, 'TIME_S': 10.658639669418335, 'TIME_S_1KI': 0.09861167087085713, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1189.6392674064637, 'W': 85.63000000000001, 'J_1KI': 11.006312205968003, 'W_1KI': 0.792232183333796, 'W_D': 68.6405, 'J_D': 953.6077792177201, 'W_D_1KI': 0.635048618242712, 'J_D_1KI': 0.005875346880223449} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_045.json b/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_045.json deleted file mode 100644 index f0db0de..0000000 --- a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_045.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 100525, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 10.002086639404297, "TIME_S_1KI": 0.09949849927286046, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1185.355191230774, "W": 85.6, "J_1KI": 11.791645772004715, "W_1KI": 0.8515294702810245, "W_D": 68.72399999999999, "J_D": 951.6629691839216, "W_D_1KI": 0.6836508331260879, "J_D_1KI": 0.0068008041096850325} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_045.output b/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_045.output deleted file mode 100644 index 351314e..0000000 --- a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_045.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_045.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 0.02538919448852539} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.5332, 0.1841, 0.2305, ..., 0.7034, 0.6077, 0.7798]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 0.02538919448852539 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '41356', '-m', 'matrices/as-caida_pruned/as-caida_G_045.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 4.319673299789429} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.4945, 0.7975, 0.9129, ..., 0.8365, 0.5676, 0.7345]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 4.319673299789429 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100525', '-m', 'matrices/as-caida_pruned/as-caida_G_045.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 10.002086639404297} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.5847, 0.9197, 0.3856, ..., 0.5045, 0.0806, 0.9239]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 10.002086639404297 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.5847, 0.9197, 0.3856, ..., 0.5045, 0.0806, 0.9239]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 10.002086639404297 seconds - -[18.95, 18.66, 19.21, 18.65, 18.7, 18.61, 18.93, 18.45, 18.7, 18.82] -[85.6] -13.847607374191284 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 100525, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_045', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89152, 'MATRIX_DENSITY': 9.054258553341032e-05, 'TIME_S': 10.002086639404297, 'TIME_S_1KI': 0.09949849927286046, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1185.355191230774, 'W': 85.6} -[18.95, 18.66, 19.21, 18.65, 18.7, 18.61, 18.93, 18.45, 18.7, 18.82, 19.0, 18.49, 18.6, 18.39, 20.14, 18.43, 18.49, 18.66, 18.8, 18.45] -337.5199999999999 -16.875999999999998 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 100525, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_045', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89152, 'MATRIX_DENSITY': 9.054258553341032e-05, 'TIME_S': 10.002086639404297, 'TIME_S_1KI': 0.09949849927286046, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1185.355191230774, 'W': 85.6, 'J_1KI': 11.791645772004715, 'W_1KI': 0.8515294702810245, 'W_D': 68.72399999999999, 'J_D': 951.6629691839216, 'W_D_1KI': 0.6836508331260879, 'J_D_1KI': 0.0068008041096850325} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_055.json b/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_055.json deleted file mode 100644 index dcdc997..0000000 --- a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_055.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 105102, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 10.51480507850647, "TIME_S_1KI": 0.10004381532707722, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1208.6983181548117, "W": 85.70999999999998, "J_1KI": 11.500240891275253, "W_1KI": 0.8154935205800078, "W_D": 68.93374999999997, "J_D": 972.1165288659927, "W_D_1KI": 0.6558747692717548, "J_D_1KI": 0.0062403643058339025} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_055.output b/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_055.output deleted file mode 100644 index 74c7c49..0000000 --- a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_055.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_055.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 0.02582073211669922} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.9834, 0.8900, 0.8704, ..., 0.9063, 0.0304, 0.0345]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 0.02582073211669922 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '40664', '-m', 'matrices/as-caida_pruned/as-caida_G_055.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 4.062415599822998} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.3357, 0.2120, 0.4208, ..., 0.4775, 0.1882, 0.4136]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 4.062415599822998 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '105102', '-m', 'matrices/as-caida_pruned/as-caida_G_055.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 10.51480507850647} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.1109, 0.0481, 0.9697, ..., 0.8619, 0.5058, 0.3084]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 10.51480507850647 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.1109, 0.0481, 0.9697, ..., 0.8619, 0.5058, 0.3084]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 10.51480507850647 seconds - -[18.92, 18.5, 18.86, 19.4, 18.53, 18.55, 18.81, 18.88, 18.58, 19.05] -[85.71] -14.102185487747192 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 105102, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_055', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 91476, 'MATRIX_DENSITY': 9.290283509348351e-05, 'TIME_S': 10.51480507850647, 'TIME_S_1KI': 0.10004381532707722, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1208.6983181548117, 'W': 85.70999999999998} -[18.92, 18.5, 18.86, 19.4, 18.53, 18.55, 18.81, 18.88, 18.58, 19.05, 18.71, 18.29, 18.49, 18.92, 18.32, 18.49, 18.42, 18.56, 18.48, 18.21] -335.525 -16.776249999999997 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 105102, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_055', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 91476, 'MATRIX_DENSITY': 9.290283509348351e-05, 'TIME_S': 10.51480507850647, 'TIME_S_1KI': 0.10004381532707722, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1208.6983181548117, 'W': 85.70999999999998, 'J_1KI': 11.500240891275253, 'W_1KI': 0.8154935205800078, 'W_D': 68.93374999999997, 'J_D': 972.1165288659927, 'W_D_1KI': 0.6558747692717548, 'J_D_1KI': 0.0062403643058339025} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_065.json b/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_065.json deleted file mode 100644 index 92c3f69..0000000 --- a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_065.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 103844, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 11.030998468399048, "TIME_S_1KI": 0.10622663291474758, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1189.5098596334458, "W": 85.7, "J_1KI": 11.45477696962218, "W_1KI": 0.8252763761026155, "W_D": 68.47900000000001, "J_D": 950.4836135103704, "W_D_1KI": 0.6594410847039791, "J_D_1KI": 0.006350305118292623} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_065.output b/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_065.output deleted file mode 100644 index 1f7dd97..0000000 --- a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_065.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_065.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 0.0243070125579834} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.3510, 0.2711, 0.2123, ..., 0.7532, 0.4454, 0.2960]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 0.0243070125579834 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '43197', '-m', 'matrices/as-caida_pruned/as-caida_G_065.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 4.367758750915527} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.0208, 0.4742, 0.2939, ..., 0.4314, 0.8353, 0.3494]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 4.367758750915527 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '103844', '-m', 'matrices/as-caida_pruned/as-caida_G_065.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 11.030998468399048} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.6493, 0.5875, 0.0698, ..., 0.4859, 0.5621, 0.3281]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 11.030998468399048 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.6493, 0.5875, 0.0698, ..., 0.4859, 0.5621, 0.3281]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 11.030998468399048 seconds - -[18.89, 18.36, 18.45, 18.25, 18.55, 18.4, 23.39, 18.39, 19.05, 18.39] -[85.7] -13.879928350448608 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 103844, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_065', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 95068, 'MATRIX_DENSITY': 9.655086281283934e-05, 'TIME_S': 11.030998468399048, 'TIME_S_1KI': 0.10622663291474758, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1189.5098596334458, 'W': 85.7} -[18.89, 18.36, 18.45, 18.25, 18.55, 18.4, 23.39, 18.39, 19.05, 18.39, 18.99, 18.45, 23.17, 18.68, 18.53, 19.54, 18.63, 18.63, 18.53, 18.57] -344.41999999999996 -17.220999999999997 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 103844, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_065', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 95068, 'MATRIX_DENSITY': 9.655086281283934e-05, 'TIME_S': 11.030998468399048, 'TIME_S_1KI': 0.10622663291474758, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1189.5098596334458, 'W': 85.7, 'J_1KI': 11.45477696962218, 'W_1KI': 0.8252763761026155, 'W_D': 68.47900000000001, 'J_D': 950.4836135103704, 'W_D_1KI': 0.6594410847039791, 'J_D_1KI': 0.006350305118292623} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_075.json b/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_075.json deleted file mode 100644 index 52891fa..0000000 --- a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_075.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 105572, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 10.73673415184021, "TIME_S_1KI": 0.1017005849263082, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1231.2992347717284, "W": 86.3, "J_1KI": 11.663123127076577, "W_1KI": 0.8174515970143598, "W_D": 69.285, "J_D": 988.534965019226, "W_D_1KI": 0.6562819687038229, "J_D_1KI": 0.006216439668698357} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_075.output b/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_075.output deleted file mode 100644 index cd9e97b..0000000 --- a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_075.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_075.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 0.024676084518432617} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.7484, 0.8878, 0.0538, ..., 0.1893, 0.9984, 0.9508]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 0.024676084518432617 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '42551', '-m', 'matrices/as-caida_pruned/as-caida_G_075.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 4.232024908065796} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.9890, 0.2220, 0.6515, ..., 0.9314, 0.4703, 0.0858]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 4.232024908065796 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '105572', '-m', 'matrices/as-caida_pruned/as-caida_G_075.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 10.73673415184021} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.1882, 0.6590, 0.2723, ..., 0.2031, 0.5459, 0.8199]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 10.73673415184021 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.1882, 0.6590, 0.2723, ..., 0.2031, 0.5459, 0.8199]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 10.73673415184021 seconds - -[18.77, 18.76, 20.69, 18.88, 18.46, 19.3, 18.82, 18.52, 18.64, 18.63] -[86.3] -14.267662048339844 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 105572, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_075', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 97492, 'MATRIX_DENSITY': 9.901267216465406e-05, 'TIME_S': 10.73673415184021, 'TIME_S_1KI': 0.1017005849263082, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1231.2992347717284, 'W': 86.3} -[18.77, 18.76, 20.69, 18.88, 18.46, 19.3, 18.82, 18.52, 18.64, 18.63, 19.02, 18.96, 18.67, 18.88, 18.59, 18.43, 18.73, 19.37, 19.23, 18.32] -340.29999999999995 -17.014999999999997 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 105572, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_075', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 97492, 'MATRIX_DENSITY': 9.901267216465406e-05, 'TIME_S': 10.73673415184021, 'TIME_S_1KI': 0.1017005849263082, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1231.2992347717284, 'W': 86.3, 'J_1KI': 11.663123127076577, 'W_1KI': 0.8174515970143598, 'W_D': 69.285, 'J_D': 988.534965019226, 'W_D_1KI': 0.6562819687038229, 'J_D_1KI': 0.006216439668698357} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_085.json b/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_085.json deleted file mode 100644 index a627580..0000000 --- a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_085.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 106480, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 10.531679153442383, "TIME_S_1KI": 0.09890758032909826, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1190.395678498745, "W": 86.17, "J_1KI": 11.17952365231729, "W_1KI": 0.8092599549211119, "W_D": 69.328, "J_D": 957.7318277702332, "W_D_1KI": 0.6510894064613073, "J_D_1KI": 0.006114663847307544} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_085.output b/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_085.output deleted file mode 100644 index 07afbfa..0000000 --- a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_085.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_085.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 0.02328658103942871} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.2863, 0.5847, 0.8482, ..., 0.4284, 0.4105, 0.6616]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 0.02328658103942871 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '45090', '-m', 'matrices/as-caida_pruned/as-caida_G_085.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 4.446286916732788} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.5970, 0.5454, 0.1693, ..., 0.9920, 0.1544, 0.9728]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 4.446286916732788 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '106480', '-m', 'matrices/as-caida_pruned/as-caida_G_085.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 10.531679153442383} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.7784, 0.7505, 0.3000, ..., 0.8404, 0.5502, 0.8322]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 10.531679153442383 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.7784, 0.7505, 0.3000, ..., 0.8404, 0.5502, 0.8322]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 10.531679153442383 seconds - -[19.21, 19.37, 18.51, 18.62, 19.05, 18.73, 19.09, 18.38, 18.96, 19.04] -[86.17] -13.814502477645874 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 106480, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_085', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 99166, 'MATRIX_DENSITY': 0.0001007127830784073, 'TIME_S': 10.531679153442383, 'TIME_S_1KI': 0.09890758032909826, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1190.395678498745, 'W': 86.17} -[19.21, 19.37, 18.51, 18.62, 19.05, 18.73, 19.09, 18.38, 18.96, 19.04, 18.74, 18.5, 18.95, 18.29, 18.76, 18.43, 18.59, 18.5, 18.53, 18.17] -336.8399999999999 -16.841999999999995 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 106480, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_085', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 99166, 'MATRIX_DENSITY': 0.0001007127830784073, 'TIME_S': 10.531679153442383, 'TIME_S_1KI': 0.09890758032909826, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1190.395678498745, 'W': 86.17, 'J_1KI': 11.17952365231729, 'W_1KI': 0.8092599549211119, 'W_D': 69.328, 'J_D': 957.7318277702332, 'W_D_1KI': 0.6510894064613073, 'J_D_1KI': 0.006114663847307544} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_095.json b/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_095.json deleted file mode 100644 index a3e924b..0000000 --- a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_095.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 104065, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 10.379182815551758, "TIME_S_1KI": 0.09973749882815315, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1212.61552161932, "W": 85.99, "J_1KI": 11.652481829811366, "W_1KI": 0.8263104790275307, "W_D": 69.18924999999999, "J_D": 975.6943653820156, "W_D_1KI": 0.6648657089319174, "J_D_1KI": 0.006388946417449838} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_095.output b/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_095.output deleted file mode 100644 index 6d4b807..0000000 --- a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_095.output +++ /dev/null @@ -1,89 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_095.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 0.025043249130249023} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.2035, 0.4087, 0.6865, ..., 0.9100, 0.1998, 0.7367]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 0.025043249130249023 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '41927', '-m', 'matrices/as-caida_pruned/as-caida_G_095.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 4.230342864990234} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.5515, 0.9023, 0.2427, ..., 0.4631, 0.3433, 0.5826]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 4.230342864990234 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '104065', '-m', 'matrices/as-caida_pruned/as-caida_G_095.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 10.379182815551758} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.6625, 0.9150, 0.9753, ..., 0.4828, 0.8648, 0.9099]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 10.379182815551758 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.6625, 0.9150, 0.9753, ..., 0.4828, 0.8648, 0.9099]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 10.379182815551758 seconds - -[19.15, 18.78, 18.48, 18.51, 18.58, 18.54, 18.54, 18.39, 18.69, 18.84] -[85.99] -14.101820230484009 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 104065, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_095', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102290, 'MATRIX_DENSITY': 0.00010388551097241275, 'TIME_S': 10.379182815551758, 'TIME_S_1KI': 0.09973749882815315, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1212.61552161932, 'W': 85.99} -[19.15, 18.78, 18.48, 18.51, 18.58, 18.54, 18.54, 18.39, 18.69, 18.84, 20.02, 18.38, 18.49, 18.45, 18.71, 18.57, 18.85, 18.98, 18.94, 18.26] -336.015 -16.80075 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 104065, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_095', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102290, 'MATRIX_DENSITY': 0.00010388551097241275, 'TIME_S': 10.379182815551758, 'TIME_S_1KI': 0.09973749882815315, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1212.61552161932, 'W': 85.99, 'J_1KI': 11.652481829811366, 'W_1KI': 0.8263104790275307, 'W_D': 69.18924999999999, 'J_D': 975.6943653820156, 'W_D_1KI': 0.6648657089319174, 'J_D_1KI': 0.006388946417449838} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_105.json b/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_105.json deleted file mode 100644 index 725bf61..0000000 --- a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_105.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 100814, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 10.194071531295776, "TIME_S_1KI": 0.10111761790322552, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1196.0577488923072, "W": 86.07, "J_1KI": 11.8640044923553, "W_1KI": 0.8537504711647191, "W_D": 69.22699999999999, "J_D": 962.001740241289, "W_D_1KI": 0.6866804213700477, "J_D_1KI": 0.006811359745373139} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_105.output b/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_105.output deleted file mode 100644 index 304c321..0000000 --- a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_105.output +++ /dev/null @@ -1,89 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_105.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 0.023812294006347656} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.9211, 0.8071, 0.6204, ..., 0.9847, 0.2575, 0.7368]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 0.023812294006347656 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '44094', '-m', 'matrices/as-caida_pruned/as-caida_G_105.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 4.5924482345581055} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.8718, 0.5640, 0.5184, ..., 0.6471, 0.8654, 0.3406]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 4.5924482345581055 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100814', '-m', 'matrices/as-caida_pruned/as-caida_G_105.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 10.194071531295776} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.1208, 0.0816, 0.0441, ..., 0.8026, 0.5634, 0.6977]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 10.194071531295776 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.1208, 0.0816, 0.0441, ..., 0.8026, 0.5634, 0.6977]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 10.194071531295776 seconds - -[19.02, 18.57, 18.51, 18.59, 18.84, 18.86, 18.78, 18.52, 18.61, 18.92] -[86.07] -13.896337270736694 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 100814, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_105', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104726, 'MATRIX_DENSITY': 0.00010635950749923647, 'TIME_S': 10.194071531295776, 'TIME_S_1KI': 0.10111761790322552, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1196.0577488923072, 'W': 86.07} -[19.02, 18.57, 18.51, 18.59, 18.84, 18.86, 18.78, 18.52, 18.61, 18.92, 19.41, 18.61, 18.61, 18.39, 18.76, 18.27, 18.39, 18.46, 18.45, 21.93] -336.86 -16.843 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 100814, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_105', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104726, 'MATRIX_DENSITY': 0.00010635950749923647, 'TIME_S': 10.194071531295776, 'TIME_S_1KI': 0.10111761790322552, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1196.0577488923072, 'W': 86.07, 'J_1KI': 11.8640044923553, 'W_1KI': 0.8537504711647191, 'W_D': 69.22699999999999, 'J_D': 962.001740241289, 'W_D_1KI': 0.6866804213700477, 'J_D_1KI': 0.006811359745373139} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_115.json b/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_115.json deleted file mode 100644 index efcda8e..0000000 --- a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_115.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 103838, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 10.47437047958374, "TIME_S_1KI": 0.10087222865987153, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1219.8774162769319, "W": 86.43, "J_1KI": 11.74789013922583, "W_1KI": 0.8323542441110191, "W_D": 69.44200000000001, "J_D": 980.1079201793672, "W_D_1KI": 0.6687532502552053, "J_D_1KI": 0.006440351800450753} diff --git a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_115.output b/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_115.output deleted file mode 100644 index 6c56636..0000000 --- a/pytorch/output_as-caida_16core/xeon_4216_16_csr_10_10_10_as-caida_G_115.output +++ /dev/null @@ -1,89 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_115.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 0.02495574951171875} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.7637, 0.0348, 0.3593, ..., 0.5639, 0.9253, 0.8280]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 0.02495574951171875 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '42074', '-m', 'matrices/as-caida_pruned/as-caida_G_115.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 4.254471302032471} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.9777, 0.8326, 0.9278, ..., 0.9597, 0.3522, 0.8734]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 4.254471302032471 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '103838', '-m', 'matrices/as-caida_pruned/as-caida_G_115.mtx', '-c', '16'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 10.47437047958374} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.3121, 0.4413, 0.1857, ..., 0.7457, 0.4579, 0.8211]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 10.47437047958374 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.3121, 0.4413, 0.1857, ..., 0.7457, 0.4579, 0.8211]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 10.47437047958374 seconds - -[19.18, 18.73, 18.88, 18.69, 19.03, 18.53, 18.6, 19.09, 18.57, 18.44] -[86.43] -14.11405086517334 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 103838, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_115', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106312, 'MATRIX_DENSITY': 0.00010797024579625715, 'TIME_S': 10.47437047958374, 'TIME_S_1KI': 0.10087222865987153, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1219.8774162769319, 'W': 86.43} -[19.18, 18.73, 18.88, 18.69, 19.03, 18.53, 18.6, 19.09, 18.57, 18.44, 19.57, 18.51, 18.39, 18.4, 18.57, 18.52, 19.38, 21.21, 18.66, 18.81] -339.76000000000005 -16.988000000000003 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 103838, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_115', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106312, 'MATRIX_DENSITY': 0.00010797024579625715, 'TIME_S': 10.47437047958374, 'TIME_S_1KI': 0.10087222865987153, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1219.8774162769319, 'W': 86.43, 'J_1KI': 11.74789013922583, 'W_1KI': 0.8323542441110191, 'W_D': 69.44200000000001, 'J_D': 980.1079201793672, 'W_D_1KI': 0.6687532502552053, 'J_D_1KI': 0.006440351800450753} diff --git a/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_010.json b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_010.json new file mode 100644 index 0000000..9477087 --- /dev/null +++ b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_010.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 6684, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 10.596766233444214, "TIME_S_1KI": 1.5853929134416838, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 327.90283897399905, "W": 22.36582722247819, "J_1KI": 49.057875370137495, "W_1KI": 3.3461740308914107, "W_D": 3.775827222478192, "J_D": 55.35697175025943, "W_D_1KI": 0.5649053295149898, "J_D_1KI": 0.08451605767728752} diff --git a/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_010.output b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_010.output new file mode 100644 index 0000000..3d52824 --- /dev/null +++ b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_010.output @@ -0,0 +1,77 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_010.mtx -c 1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 0.1712493896484375} + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.6452, 0.0568, 0.3264, ..., 0.3600, 0.0611, 0.3174]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 0.1712493896484375 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 6131 -m matrices/as-caida_pruned/as-caida_G_010.mtx -c 1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 9.630002737045288} + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.1282, 0.3720, 0.9892, ..., 0.5185, 0.4502, 0.8046]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 9.630002737045288 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 6684 -m matrices/as-caida_pruned/as-caida_G_010.mtx -c 1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 10.596766233444214} + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.1347, 0.6614, 0.0574, ..., 0.7477, 0.0306, 0.5424]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 10.596766233444214 seconds + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.1347, 0.6614, 0.0574, ..., 0.7477, 0.0306, 0.5424]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 10.596766233444214 seconds + +[20.44, 20.56, 20.56, 20.48, 20.76, 20.76, 20.76, 21.24, 21.16, 21.0] +[21.08, 21.04, 21.04, 21.72, 22.72, 24.6, 25.48, 26.32, 25.84, 24.96, 25.04, 25.04, 24.68, 24.88] +14.66088581085205 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 6684, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_010', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 74994, 'MATRIX_DENSITY': 7.616375021864427e-05, 'TIME_S': 10.596766233444214, 'TIME_S_1KI': 1.5853929134416838, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 327.90283897399905, 'W': 22.36582722247819} +[20.44, 20.56, 20.56, 20.48, 20.76, 20.76, 20.76, 21.24, 21.16, 21.0, 20.84, 20.76, 20.68, 20.72, 20.44, 20.48, 20.4, 20.4, 20.28, 20.44] +371.8 +18.59 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 6684, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_010', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 74994, 'MATRIX_DENSITY': 7.616375021864427e-05, 'TIME_S': 10.596766233444214, 'TIME_S_1KI': 1.5853929134416838, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 327.90283897399905, 'W': 22.36582722247819, 'J_1KI': 49.057875370137495, 'W_1KI': 3.3461740308914107, 'W_D': 3.775827222478192, 'J_D': 55.35697175025943, 'W_D_1KI': 0.5649053295149898, 'J_D_1KI': 0.08451605767728752} diff --git a/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_020.json b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_020.json new file mode 100644 index 0000000..6287bd1 --- /dev/null +++ b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_020.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 5943, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_020", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 80948, "MATRIX_DENSITY": 8.221062021893506e-05, "TIME_S": 10.110217094421387, "TIME_S_1KI": 1.7011975592161177, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 324.9486833190918, "W": 23.872072143622507, "J_1KI": 54.67755061738042, "W_1KI": 4.0168386578533575, "W_D": 5.442072143622507, "J_D": 74.0779504585266, "W_D_1KI": 0.9157112811076068, "J_D_1KI": 0.15408232897654497} diff --git a/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_020.output b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_020.output new file mode 100644 index 0000000..49afc5f --- /dev/null +++ b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_020.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_020.mtx -c 1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_020", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 80948, "MATRIX_DENSITY": 8.221062021893506e-05, "TIME_S": 0.17665648460388184} + +tensor(indices=tensor([[ 1040, 5699, 106, ..., 31378, 17998, 31377], + [ 0, 0, 2, ..., 31377, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 1.]), + size=(31379, 31379), nnz=80948, layout=torch.sparse_coo) +tensor([0.0371, 0.9727, 0.1237, ..., 0.8123, 0.0651, 0.8577]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_020 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 80948 +Density: 8.221062021893506e-05 +Time: 0.17665648460388184 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 5943 -m matrices/as-caida_pruned/as-caida_G_020.mtx -c 1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_020", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 80948, "MATRIX_DENSITY": 8.221062021893506e-05, "TIME_S": 10.110217094421387} + +tensor(indices=tensor([[ 1040, 5699, 106, ..., 31378, 17998, 31377], + [ 0, 0, 2, ..., 31377, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 1.]), + size=(31379, 31379), nnz=80948, layout=torch.sparse_coo) +tensor([0.6592, 0.6422, 0.6073, ..., 0.5638, 0.6280, 0.3780]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_020 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 80948 +Density: 8.221062021893506e-05 +Time: 10.110217094421387 seconds + +tensor(indices=tensor([[ 1040, 5699, 106, ..., 31378, 17998, 31377], + [ 0, 0, 2, ..., 31377, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 1.]), + size=(31379, 31379), nnz=80948, layout=torch.sparse_coo) +tensor([0.6592, 0.6422, 0.6073, ..., 0.5638, 0.6280, 0.3780]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_020 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 80948 +Density: 8.221062021893506e-05 +Time: 10.110217094421387 seconds + +[20.36, 20.36, 20.36, 20.2, 20.44, 20.32, 20.28, 20.24, 20.12, 20.16] +[20.24, 20.48, 23.68, 25.96, 28.0, 29.0, 29.0, 29.64, 26.08, 25.8, 24.64, 24.88, 24.88] +13.612085342407227 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 5943, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_020', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 80948, 'MATRIX_DENSITY': 8.221062021893506e-05, 'TIME_S': 10.110217094421387, 'TIME_S_1KI': 1.7011975592161177, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 324.9486833190918, 'W': 23.872072143622507} +[20.36, 20.36, 20.36, 20.2, 20.44, 20.32, 20.28, 20.24, 20.12, 20.16, 20.52, 20.76, 20.8, 20.56, 20.48, 20.48, 20.52, 20.68, 20.96, 21.04] +368.6 +18.43 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 5943, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_020', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 80948, 'MATRIX_DENSITY': 8.221062021893506e-05, 'TIME_S': 10.110217094421387, 'TIME_S_1KI': 1.7011975592161177, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 324.9486833190918, 'W': 23.872072143622507, 'J_1KI': 54.67755061738042, 'W_1KI': 4.0168386578533575, 'W_D': 5.442072143622507, 'J_D': 74.0779504585266, 'W_D_1KI': 0.9157112811076068, 'J_D_1KI': 0.15408232897654497} diff --git a/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_030.json b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_030.json new file mode 100644 index 0000000..6a78561 --- /dev/null +++ b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_030.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 5511, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_030", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 86850, "MATRIX_DENSITY": 8.820467912752026e-05, "TIME_S": 10.074766874313354, "TIME_S_1KI": 1.8281195562172663, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 299.8301674938202, "W": 22.025321363262098, "J_1KI": 54.4057643792089, "W_1KI": 3.9966106629036653, "W_D": 3.413321363262096, "J_D": 46.465461237907405, "W_D_1KI": 0.6193651539216287, "J_D_1KI": 0.11238707202352181} diff --git a/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_030.output b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_030.output new file mode 100644 index 0000000..5394c10 --- /dev/null +++ b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_030.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_030.mtx -c 1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_030", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 86850, "MATRIX_DENSITY": 8.820467912752026e-05, "TIME_S": 0.1905057430267334} + +tensor(indices=tensor([[ 1809, 21783, 106, ..., 7018, 160, 882], + [ 0, 0, 2, ..., 31357, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=86850, layout=torch.sparse_coo) +tensor([0.3570, 0.4245, 0.5682, ..., 0.1493, 0.7612, 0.0314]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_030 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 86850 +Density: 8.820467912752026e-05 +Time: 0.1905057430267334 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 5511 -m matrices/as-caida_pruned/as-caida_G_030.mtx -c 1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_030", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 86850, "MATRIX_DENSITY": 8.820467912752026e-05, "TIME_S": 10.074766874313354} + +tensor(indices=tensor([[ 1809, 21783, 106, ..., 7018, 160, 882], + [ 0, 0, 2, ..., 31357, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=86850, layout=torch.sparse_coo) +tensor([0.6012, 0.1948, 0.6091, ..., 0.0586, 0.9511, 0.3949]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_030 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 86850 +Density: 8.820467912752026e-05 +Time: 10.074766874313354 seconds + +tensor(indices=tensor([[ 1809, 21783, 106, ..., 7018, 160, 882], + [ 0, 0, 2, ..., 31357, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=86850, layout=torch.sparse_coo) +tensor([0.6012, 0.1948, 0.6091, ..., 0.0586, 0.9511, 0.3949]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_030 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 86850 +Density: 8.820467912752026e-05 +Time: 10.074766874313354 seconds + +[20.92, 20.88, 21.0, 21.0, 20.64, 20.8, 20.92, 20.72, 20.72, 20.72] +[20.36, 20.2, 20.8, 22.16, 23.96, 24.64, 26.0, 25.44, 25.08, 25.08, 24.4, 24.6, 24.52] +13.612975835800171 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 5511, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_030', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 86850, 'MATRIX_DENSITY': 8.820467912752026e-05, 'TIME_S': 10.074766874313354, 'TIME_S_1KI': 1.8281195562172663, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 299.8301674938202, 'W': 22.025321363262098} +[20.92, 20.88, 21.0, 21.0, 20.64, 20.8, 20.92, 20.72, 20.72, 20.72, 20.6, 20.6, 20.44, 20.56, 20.44, 20.52, 20.44, 20.64, 20.52, 20.56] +372.24 +18.612000000000002 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 5511, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_030', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 86850, 'MATRIX_DENSITY': 8.820467912752026e-05, 'TIME_S': 10.074766874313354, 'TIME_S_1KI': 1.8281195562172663, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 299.8301674938202, 'W': 22.025321363262098, 'J_1KI': 54.4057643792089, 'W_1KI': 3.9966106629036653, 'W_D': 3.413321363262096, 'J_D': 46.465461237907405, 'W_D_1KI': 0.6193651539216287, 'J_D_1KI': 0.11238707202352181} diff --git a/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_040.json b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_040.json new file mode 100644 index 0000000..b546f1e --- /dev/null +++ b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_040.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 5410, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_040", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89658, "MATRIX_DENSITY": 9.105647807962247e-05, "TIME_S": 10.350580930709839, "TIME_S_1KI": 1.9132312256395267, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 304.02454459190375, "W": 22.31971265525147, "J_1KI": 56.19677349203397, "W_1KI": 4.1256400471814185, "W_D": 3.7447126552514725, "J_D": 51.00802941441544, "W_D_1KI": 0.6921834852590522, "J_D_1KI": 0.1279451913602684} diff --git a/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_040.output b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_040.output new file mode 100644 index 0000000..9dd6711 --- /dev/null +++ b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_040.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_040.mtx -c 1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_040", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89658, "MATRIX_DENSITY": 9.105647807962247e-05, "TIME_S": 0.19407224655151367} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 10144, 882, 16085], + [ 2, 2, 2, ..., 31371, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=89658, layout=torch.sparse_coo) +tensor([0.9858, 0.9455, 0.4455, ..., 0.7237, 0.4288, 0.4336]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_040 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 89658 +Density: 9.105647807962247e-05 +Time: 0.19407224655151367 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 5410 -m matrices/as-caida_pruned/as-caida_G_040.mtx -c 1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_040", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89658, "MATRIX_DENSITY": 9.105647807962247e-05, "TIME_S": 10.350580930709839} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 10144, 882, 16085], + [ 2, 2, 2, ..., 31371, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=89658, layout=torch.sparse_coo) +tensor([0.1823, 0.4661, 0.2277, ..., 0.5151, 0.2736, 0.1670]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_040 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 89658 +Density: 9.105647807962247e-05 +Time: 10.350580930709839 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 10144, 882, 16085], + [ 2, 2, 2, ..., 31371, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=89658, layout=torch.sparse_coo) +tensor([0.1823, 0.4661, 0.2277, ..., 0.5151, 0.2736, 0.1670]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_040 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 89658 +Density: 9.105647807962247e-05 +Time: 10.350580930709839 seconds + +[20.68, 20.72, 20.68, 20.64, 20.88, 20.84, 21.0, 21.0, 20.92, 20.6] +[20.6, 20.64, 20.72, 22.32, 24.08, 25.2, 26.12, 26.24, 25.8, 24.96, 25.04, 24.84, 24.76] +13.621346712112427 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 5410, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_040', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89658, 'MATRIX_DENSITY': 9.105647807962247e-05, 'TIME_S': 10.350580930709839, 'TIME_S_1KI': 1.9132312256395267, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 304.02454459190375, 'W': 22.31971265525147} +[20.68, 20.72, 20.68, 20.64, 20.88, 20.84, 21.0, 21.0, 20.92, 20.6, 21.04, 20.8, 20.44, 20.4, 20.4, 20.36, 20.2, 20.52, 20.28, 20.52] +371.5 +18.575 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 5410, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_040', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89658, 'MATRIX_DENSITY': 9.105647807962247e-05, 'TIME_S': 10.350580930709839, 'TIME_S_1KI': 1.9132312256395267, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 304.02454459190375, 'W': 22.31971265525147, 'J_1KI': 56.19677349203397, 'W_1KI': 4.1256400471814185, 'W_D': 3.7447126552514725, 'J_D': 51.00802941441544, 'W_D_1KI': 0.6921834852590522, 'J_D_1KI': 0.1279451913602684} diff --git a/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_050.json b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_050.json new file mode 100644 index 0000000..cea6c2e --- /dev/null +++ b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_050.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 5314, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 11.12612009048462, "TIME_S_1KI": 2.093737314731769, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 311.38884366989146, "W": 22.878302616552556, "J_1KI": 58.59782530483467, "W_1KI": 4.305288411093819, "W_D": 4.562302616552561, "J_D": 62.09595878028885, "W_D_1KI": 0.85854396246755, "J_D_1KI": 0.16156265759645277} diff --git a/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_050.output b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_050.output new file mode 100644 index 0000000..4532f75 --- /dev/null +++ b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_050.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_050.mtx -c 1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 0.19758129119873047} + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.5739, 0.3810, 0.5582, ..., 0.5489, 0.7422, 0.9564]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 0.19758129119873047 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 5314 -m matrices/as-caida_pruned/as-caida_G_050.mtx -c 1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 11.12612009048462} + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.3057, 0.8174, 0.7028, ..., 0.2954, 0.7423, 0.1816]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 11.12612009048462 seconds + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.3057, 0.8174, 0.7028, ..., 0.2954, 0.7423, 0.1816]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 11.12612009048462 seconds + +[20.0, 20.16, 20.24, 20.36, 20.52, 20.48, 20.48, 20.6, 20.68, 20.64] +[20.56, 20.56, 20.72, 23.88, 25.68, 27.24, 27.96, 28.36, 25.36, 24.56, 24.72, 24.48, 24.84] +13.61066198348999 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 5314, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_050', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 90392, 'MATRIX_DENSITY': 9.180192695100532e-05, 'TIME_S': 11.12612009048462, 'TIME_S_1KI': 2.093737314731769, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 311.38884366989146, 'W': 22.878302616552556} +[20.0, 20.16, 20.24, 20.36, 20.52, 20.48, 20.48, 20.6, 20.68, 20.64, 20.44, 20.24, 20.4, 20.2, 20.24, 20.08, 20.28, 20.28, 20.36, 20.36] +366.31999999999994 +18.315999999999995 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 5314, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_050', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 90392, 'MATRIX_DENSITY': 9.180192695100532e-05, 'TIME_S': 11.12612009048462, 'TIME_S_1KI': 2.093737314731769, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 311.38884366989146, 'W': 22.878302616552556, 'J_1KI': 58.59782530483467, 'W_1KI': 4.305288411093819, 'W_D': 4.562302616552561, 'J_D': 62.09595878028885, 'W_D_1KI': 0.85854396246755, 'J_D_1KI': 0.16156265759645277} diff --git a/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_060.json b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_060.json new file mode 100644 index 0000000..6d47c16 --- /dev/null +++ b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_060.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 5085, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_060", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 94180, "MATRIX_DENSITY": 9.564901186217454e-05, "TIME_S": 10.525958061218262, "TIME_S_1KI": 2.07000158529366, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 302.745055847168, "W": 22.22538985335849, "J_1KI": 59.536884139069414, "W_1KI": 4.370774799087215, "W_D": 3.7583898533584907, "J_D": 51.19523003005984, "W_D_1KI": 0.7391130488413945, "J_D_1KI": 0.14535163202387308} diff --git a/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_060.output b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_060.output new file mode 100644 index 0000000..5c16455 --- /dev/null +++ b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_060.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_060.mtx -c 1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_060", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 94180, "MATRIX_DENSITY": 9.564901186217454e-05, "TIME_S": 0.20647120475769043} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 882], + [ 2, 2, 2, ..., 31355, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=94180, layout=torch.sparse_coo) +tensor([0.0225, 0.3409, 0.5054, ..., 0.6730, 0.1689, 0.7085]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_060 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 94180 +Density: 9.564901186217454e-05 +Time: 0.20647120475769043 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 5085 -m matrices/as-caida_pruned/as-caida_G_060.mtx -c 1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_060", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 94180, "MATRIX_DENSITY": 9.564901186217454e-05, "TIME_S": 10.525958061218262} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 882], + [ 2, 2, 2, ..., 31355, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=94180, layout=torch.sparse_coo) +tensor([0.6334, 0.5452, 0.7080, ..., 0.3004, 0.6728, 0.2545]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_060 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 94180 +Density: 9.564901186217454e-05 +Time: 10.525958061218262 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 882], + [ 2, 2, 2, ..., 31355, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=94180, layout=torch.sparse_coo) +tensor([0.6334, 0.5452, 0.7080, ..., 0.3004, 0.6728, 0.2545]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_060 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 94180 +Density: 9.564901186217454e-05 +Time: 10.525958061218262 seconds + +[20.16, 20.24, 20.16, 20.2, 20.4, 20.32, 20.2, 20.2, 20.28, 20.12] +[20.0, 20.08, 20.48, 22.0, 23.72, 25.12, 26.12, 26.04, 26.0, 25.04, 25.12, 25.12, 24.88] +13.621585845947266 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 5085, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_060', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 94180, 'MATRIX_DENSITY': 9.564901186217454e-05, 'TIME_S': 10.525958061218262, 'TIME_S_1KI': 2.07000158529366, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 302.745055847168, 'W': 22.22538985335849} +[20.16, 20.24, 20.16, 20.2, 20.4, 20.32, 20.2, 20.2, 20.28, 20.12, 20.56, 20.68, 20.6, 21.0, 21.0, 20.92, 21.0, 20.88, 20.52, 20.64] +369.34 +18.467 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 5085, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_060', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 94180, 'MATRIX_DENSITY': 9.564901186217454e-05, 'TIME_S': 10.525958061218262, 'TIME_S_1KI': 2.07000158529366, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 302.745055847168, 'W': 22.22538985335849, 'J_1KI': 59.536884139069414, 'W_1KI': 4.370774799087215, 'W_D': 3.7583898533584907, 'J_D': 51.19523003005984, 'W_D_1KI': 0.7391130488413945, 'J_D_1KI': 0.14535163202387308} diff --git a/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_070.json b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_070.json new file mode 100644 index 0000000..f1d701e --- /dev/null +++ b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_070.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 6077, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_070", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 78684, "MATRIX_DENSITY": 7.991130653390679e-05, "TIME_S": 10.154123067855835, "TIME_S_1KI": 1.6709104933118044, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 303.88201436996457, "W": 22.316826518529073, "J_1KI": 50.00526812077745, "W_1KI": 3.672342688584675, "W_D": 3.690826518529075, "J_D": 50.25695728778838, "W_D_1KI": 0.607343511359071, "J_D_1KI": 0.09994133805480847} diff --git a/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_070.output b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_070.output new file mode 100644 index 0000000..c064c7f --- /dev/null +++ b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_070.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_070.mtx -c 1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_070", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 78684, "MATRIX_DENSITY": 7.991130653390679e-05, "TIME_S": 0.1727752685546875} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 16263, 2242, 2242], + [ 2, 2, 2, ..., 31240, 31283, 31284]]), + values=tensor([3., 3., 3., ..., 1., 3., 3.]), + size=(31379, 31379), nnz=78684, layout=torch.sparse_coo) +tensor([0.0538, 0.1111, 0.8161, ..., 0.1419, 0.7593, 0.0124]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_070 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 78684 +Density: 7.991130653390679e-05 +Time: 0.1727752685546875 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 6077 -m matrices/as-caida_pruned/as-caida_G_070.mtx -c 1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_070", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 78684, "MATRIX_DENSITY": 7.991130653390679e-05, "TIME_S": 10.154123067855835} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 16263, 2242, 2242], + [ 2, 2, 2, ..., 31240, 31283, 31284]]), + values=tensor([3., 3., 3., ..., 1., 3., 3.]), + size=(31379, 31379), nnz=78684, layout=torch.sparse_coo) +tensor([0.6200, 0.8753, 0.7259, ..., 0.9512, 0.7379, 0.9253]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_070 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 78684 +Density: 7.991130653390679e-05 +Time: 10.154123067855835 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 16263, 2242, 2242], + [ 2, 2, 2, ..., 31240, 31283, 31284]]), + values=tensor([3., 3., 3., ..., 1., 3., 3.]), + size=(31379, 31379), nnz=78684, layout=torch.sparse_coo) +tensor([0.6200, 0.8753, 0.7259, ..., 0.9512, 0.7379, 0.9253]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_070 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 78684 +Density: 7.991130653390679e-05 +Time: 10.154123067855835 seconds + +[20.64, 20.52, 20.4, 20.52, 20.32, 20.4, 20.48, 20.48, 20.48, 21.04] +[21.16, 21.08, 21.08, 22.2, 23.72, 25.16, 26.24, 26.8, 25.52, 24.92, 24.68, 24.52, 24.52] +13.616721630096436 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 6077, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_070', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 78684, 'MATRIX_DENSITY': 7.991130653390679e-05, 'TIME_S': 10.154123067855835, 'TIME_S_1KI': 1.6709104933118044, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 303.88201436996457, 'W': 22.316826518529073} +[20.64, 20.52, 20.4, 20.52, 20.32, 20.4, 20.48, 20.48, 20.48, 21.04, 20.48, 20.36, 20.64, 20.84, 20.84, 21.16, 21.2, 21.2, 21.2, 20.8] +372.52 +18.625999999999998 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 6077, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_070', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 78684, 'MATRIX_DENSITY': 7.991130653390679e-05, 'TIME_S': 10.154123067855835, 'TIME_S_1KI': 1.6709104933118044, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 303.88201436996457, 'W': 22.316826518529073, 'J_1KI': 50.00526812077745, 'W_1KI': 3.672342688584675, 'W_D': 3.690826518529075, 'J_D': 50.25695728778838, 'W_D_1KI': 0.607343511359071, 'J_D_1KI': 0.09994133805480847} diff --git a/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_080.json b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_080.json new file mode 100644 index 0000000..bbcd998 --- /dev/null +++ b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_080.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 4917, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_080", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 98112, "MATRIX_DENSITY": 9.964234287345156e-05, "TIME_S": 10.629328727722168, "TIME_S_1KI": 2.161750808973392, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 303.4654243469238, "W": 22.302782898169355, "J_1KI": 61.71759697924014, "W_1KI": 4.535851718155248, "W_D": 3.767782898169351, "J_D": 51.26677873611439, "W_D_1KI": 0.7662767740836589, "J_D_1KI": 0.15584233762124444} diff --git a/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_080.output b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_080.output new file mode 100644 index 0000000..b6068b1 --- /dev/null +++ b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_080.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_080.mtx -c 1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_080", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 98112, "MATRIX_DENSITY": 9.964234287345156e-05, "TIME_S": 0.21352767944335938} + +tensor(indices=tensor([[22754, 22754, 106, ..., 4133, 31329, 12170], + [ 0, 1, 2, ..., 31373, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 1., 1., 3.]), + size=(31379, 31379), nnz=98112, layout=torch.sparse_coo) +tensor([0.0366, 0.2556, 0.7847, ..., 0.9501, 0.2572, 0.0287]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_080 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 98112 +Density: 9.964234287345156e-05 +Time: 0.21352767944335938 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 4917 -m matrices/as-caida_pruned/as-caida_G_080.mtx -c 1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_080", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 98112, "MATRIX_DENSITY": 9.964234287345156e-05, "TIME_S": 10.629328727722168} + +tensor(indices=tensor([[22754, 22754, 106, ..., 4133, 31329, 12170], + [ 0, 1, 2, ..., 31373, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 1., 1., 3.]), + size=(31379, 31379), nnz=98112, layout=torch.sparse_coo) +tensor([0.9819, 0.7006, 0.5627, ..., 0.4346, 0.7844, 0.5739]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_080 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 98112 +Density: 9.964234287345156e-05 +Time: 10.629328727722168 seconds + +tensor(indices=tensor([[22754, 22754, 106, ..., 4133, 31329, 12170], + [ 0, 1, 2, ..., 31373, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 1., 1., 3.]), + size=(31379, 31379), nnz=98112, layout=torch.sparse_coo) +tensor([0.9819, 0.7006, 0.5627, ..., 0.4346, 0.7844, 0.5739]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_080 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 98112 +Density: 9.964234287345156e-05 +Time: 10.629328727722168 seconds + +[20.36, 20.56, 20.52, 20.8, 20.92, 20.92, 20.84, 20.84, 20.64, 20.4] +[20.4, 20.52, 20.92, 22.68, 23.56, 25.2, 26.04, 26.16, 25.72, 25.0, 25.0, 24.8, 25.0] +13.606616973876953 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4917, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_080', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 98112, 'MATRIX_DENSITY': 9.964234287345156e-05, 'TIME_S': 10.629328727722168, 'TIME_S_1KI': 2.161750808973392, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 303.4654243469238, 'W': 22.302782898169355} +[20.36, 20.56, 20.52, 20.8, 20.92, 20.92, 20.84, 20.84, 20.64, 20.4, 20.52, 20.36, 20.52, 20.52, 20.32, 20.32, 20.44, 20.6, 20.52, 20.84] +370.70000000000005 +18.535000000000004 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4917, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_080', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 98112, 'MATRIX_DENSITY': 9.964234287345156e-05, 'TIME_S': 10.629328727722168, 'TIME_S_1KI': 2.161750808973392, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 303.4654243469238, 'W': 22.302782898169355, 'J_1KI': 61.71759697924014, 'W_1KI': 4.535851718155248, 'W_D': 3.767782898169351, 'J_D': 51.26677873611439, 'W_D_1KI': 0.7662767740836589, 'J_D_1KI': 0.15584233762124444} diff --git a/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_090.json b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_090.json new file mode 100644 index 0000000..e4070a2 --- /dev/null +++ b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_090.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 4831, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_090", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 100924, "MATRIX_DENSITY": 0.00010249820421722343, "TIME_S": 10.462406873703003, "TIME_S_1KI": 2.165681406272615, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 322.1915158748627, "W": 21.996883087414542, "J_1KI": 66.69251001342636, "W_1KI": 4.553277393379123, "W_D": 3.7938830874145424, "J_D": 55.5695522010327, "W_D_1KI": 0.7853204486471833, "J_D_1KI": 0.1625585693742876} diff --git a/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_090.output b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_090.output new file mode 100644 index 0000000..ccea40b --- /dev/null +++ b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_090.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_090.mtx -c 1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_090", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 100924, "MATRIX_DENSITY": 0.00010249820421722343, "TIME_S": 0.2173292636871338} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 31211, 12170], + [ 2, 2, 2, ..., 31373, 31376, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=100924, layout=torch.sparse_coo) +tensor([0.3815, 0.7351, 0.7102, ..., 0.3255, 0.6582, 0.9932]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_090 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 100924 +Density: 0.00010249820421722343 +Time: 0.2173292636871338 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 4831 -m matrices/as-caida_pruned/as-caida_G_090.mtx -c 1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_090", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 100924, "MATRIX_DENSITY": 0.00010249820421722343, "TIME_S": 10.462406873703003} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 31211, 12170], + [ 2, 2, 2, ..., 31373, 31376, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=100924, layout=torch.sparse_coo) +tensor([0.1771, 0.8170, 0.9072, ..., 0.3320, 0.6397, 0.5278]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_090 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 100924 +Density: 0.00010249820421722343 +Time: 10.462406873703003 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 31211, 12170], + [ 2, 2, 2, ..., 31373, 31376, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=100924, layout=torch.sparse_coo) +tensor([0.1771, 0.8170, 0.9072, ..., 0.3320, 0.6397, 0.5278]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_090 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 100924 +Density: 0.00010249820421722343 +Time: 10.462406873703003 seconds + +[20.44, 20.24, 20.16, 20.32, 20.44, 20.44, 20.36, 20.36, 20.16, 19.72] +[19.76, 19.92, 20.72, 21.96, 21.96, 24.0, 25.12, 25.56, 25.4, 25.44, 24.72, 24.68, 24.52, 24.68] +14.647144079208374 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4831, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_090', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 100924, 'MATRIX_DENSITY': 0.00010249820421722343, 'TIME_S': 10.462406873703003, 'TIME_S_1KI': 2.165681406272615, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 322.1915158748627, 'W': 21.996883087414542} +[20.44, 20.24, 20.16, 20.32, 20.44, 20.44, 20.36, 20.36, 20.16, 19.72, 20.0, 19.96, 20.04, 20.12, 20.32, 20.32, 20.24, 20.32, 20.12, 20.12] +364.06 +18.203 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4831, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_090', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 100924, 'MATRIX_DENSITY': 0.00010249820421722343, 'TIME_S': 10.462406873703003, 'TIME_S_1KI': 2.165681406272615, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 322.1915158748627, 'W': 21.996883087414542, 'J_1KI': 66.69251001342636, 'W_1KI': 4.553277393379123, 'W_D': 3.7938830874145424, 'J_D': 55.5695522010327, 'W_D_1KI': 0.7853204486471833, 'J_D_1KI': 0.1625585693742876} diff --git a/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_100.json b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_100.json new file mode 100644 index 0000000..b44334e --- /dev/null +++ b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_100.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 4664, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_100", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102888, "MATRIX_DENSITY": 0.00010449283852702711, "TIME_S": 10.589112997055054, "TIME_S_1KI": 2.2703930096601743, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 300.8093952274322, "W": 22.10024910726145, "J_1KI": 64.49601098358323, "W_1KI": 4.738475366050912, "W_D": 3.6292491072614546, "J_D": 49.39818658995631, "W_D_1KI": 0.7781408892070014, "J_D_1KI": 0.16683981329481162} diff --git a/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_100.output b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_100.output new file mode 100644 index 0000000..a4f6ee1 --- /dev/null +++ b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_100.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_100.mtx -c 1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_100", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102888, "MATRIX_DENSITY": 0.00010449283852702711, "TIME_S": 0.2251274585723877} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 25970, 5128, 12170], + [ 2, 2, 2, ..., 31373, 31377, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=102888, layout=torch.sparse_coo) +tensor([0.2175, 0.7006, 0.4911, ..., 0.0119, 0.6684, 0.1169]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_100 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 102888 +Density: 0.00010449283852702711 +Time: 0.2251274585723877 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 4664 -m matrices/as-caida_pruned/as-caida_G_100.mtx -c 1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_100", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102888, "MATRIX_DENSITY": 0.00010449283852702711, "TIME_S": 10.589112997055054} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 25970, 5128, 12170], + [ 2, 2, 2, ..., 31373, 31377, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=102888, layout=torch.sparse_coo) +tensor([0.3252, 0.3126, 0.8576, ..., 0.9552, 0.7071, 0.1882]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_100 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 102888 +Density: 0.00010449283852702711 +Time: 10.589112997055054 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 25970, 5128, 12170], + [ 2, 2, 2, ..., 31373, 31377, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=102888, layout=torch.sparse_coo) +tensor([0.3252, 0.3126, 0.8576, ..., 0.9552, 0.7071, 0.1882]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_100 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 102888 +Density: 0.00010449283852702711 +Time: 10.589112997055054 seconds + +[20.52, 20.56, 20.52, 20.56, 20.6, 20.6, 20.84, 20.6, 20.32, 20.16] +[20.24, 20.32, 20.72, 21.92, 23.52, 24.76, 25.68, 25.8, 25.72, 24.88, 24.84, 24.84, 24.92] +13.611131429672241 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4664, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_100', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102888, 'MATRIX_DENSITY': 0.00010449283852702711, 'TIME_S': 10.589112997055054, 'TIME_S_1KI': 2.2703930096601743, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 300.8093952274322, 'W': 22.10024910726145} +[20.52, 20.56, 20.52, 20.56, 20.6, 20.6, 20.84, 20.6, 20.32, 20.16, 20.4, 20.2, 20.2, 20.2, 20.52, 20.64, 20.76, 20.76, 20.68, 20.64] +369.41999999999996 +18.470999999999997 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4664, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_100', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102888, 'MATRIX_DENSITY': 0.00010449283852702711, 'TIME_S': 10.589112997055054, 'TIME_S_1KI': 2.2703930096601743, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 300.8093952274322, 'W': 22.10024910726145, 'J_1KI': 64.49601098358323, 'W_1KI': 4.738475366050912, 'W_D': 3.6292491072614546, 'J_D': 49.39818658995631, 'W_D_1KI': 0.7781408892070014, 'J_D_1KI': 0.16683981329481162} diff --git a/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_110.json b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_110.json new file mode 100644 index 0000000..6208968 --- /dev/null +++ b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_110.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 4636, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_110", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104846, "MATRIX_DENSITY": 0.0001064813792493263, "TIME_S": 10.19464373588562, "TIME_S_1KI": 2.1990171992850778, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 335.45444195747376, "W": 22.879855937024917, "J_1KI": 72.35859403741884, "W_1KI": 4.935257967434193, "W_D": 4.441855937024918, "J_D": 65.12454924154285, "W_D_1KI": 0.9581225058293612, "J_D_1KI": 0.20667008322462493} diff --git a/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_110.output b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_110.output new file mode 100644 index 0000000..65aefa3 --- /dev/null +++ b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_110.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_110.mtx -c 1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_110", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104846, "MATRIX_DENSITY": 0.0001064813792493263, "TIME_S": 0.2264866828918457} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 2616, 12170], + [ 2, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=104846, layout=torch.sparse_coo) +tensor([0.9539, 0.4312, 0.6583, ..., 0.3840, 0.0268, 0.7022]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_110 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 104846 +Density: 0.0001064813792493263 +Time: 0.2264866828918457 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 4636 -m matrices/as-caida_pruned/as-caida_G_110.mtx -c 1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_110", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104846, "MATRIX_DENSITY": 0.0001064813792493263, "TIME_S": 10.19464373588562} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 2616, 12170], + [ 2, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=104846, layout=torch.sparse_coo) +tensor([0.6691, 0.3799, 0.2025, ..., 0.9525, 0.1251, 0.0624]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_110 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 104846 +Density: 0.0001064813792493263 +Time: 10.19464373588562 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 2616, 12170], + [ 2, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=104846, layout=torch.sparse_coo) +tensor([0.6691, 0.3799, 0.2025, ..., 0.9525, 0.1251, 0.0624]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_110 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 104846 +Density: 0.0001064813792493263 +Time: 10.19464373588562 seconds + +[20.6, 20.6, 20.6, 20.72, 20.76, 20.88, 20.8, 20.8, 20.72, 20.72] +[20.64, 20.72, 21.84, 23.48, 25.12, 25.88, 26.6, 26.32, 26.32, 25.8, 24.88, 24.96, 24.64, 24.6] +14.66156268119812 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4636, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_110', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104846, 'MATRIX_DENSITY': 0.0001064813792493263, 'TIME_S': 10.19464373588562, 'TIME_S_1KI': 2.1990171992850778, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 335.45444195747376, 'W': 22.879855937024917} +[20.6, 20.6, 20.6, 20.72, 20.76, 20.88, 20.8, 20.8, 20.72, 20.72, 20.24, 20.16, 20.08, 20.08, 20.2, 20.28, 20.28, 20.44, 20.44, 20.28] +368.76 +18.438 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4636, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_110', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104846, 'MATRIX_DENSITY': 0.0001064813792493263, 'TIME_S': 10.19464373588562, 'TIME_S_1KI': 2.1990171992850778, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 335.45444195747376, 'W': 22.879855937024917, 'J_1KI': 72.35859403741884, 'W_1KI': 4.935257967434193, 'W_D': 4.441855937024918, 'J_D': 65.12454924154285, 'W_D_1KI': 0.9581225058293612, 'J_D_1KI': 0.20667008322462493} diff --git a/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_120.json b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_120.json new file mode 100644 index 0000000..94c893b --- /dev/null +++ b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_120.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 4561, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_120", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106510, "MATRIX_DENSITY": 0.0001081713341839054, "TIME_S": 10.306824684143066, "TIME_S_1KI": 2.2597730068281225, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 300.2287587738037, "W": 22.06639017218802, "J_1KI": 65.82520473006001, "W_1KI": 4.8380596737969785, "W_D": 3.5303901721880173, "J_D": 48.03344140624998, "W_D_1KI": 0.7740386257811922, "J_D_1KI": 0.16970809598359837} diff --git a/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_120.output b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_120.output new file mode 100644 index 0000000..c95dd8c --- /dev/null +++ b/pytorch/output_as-caida_1core/altra_1_coo_10_10_10_as-caida_G_120.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_120.mtx -c 1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_120", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106510, "MATRIX_DENSITY": 0.0001081713341839054, "TIME_S": 0.23018765449523926} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 12170], + [ 2, 2, 2, ..., 31355, 31360, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=106510, layout=torch.sparse_coo) +tensor([0.9774, 0.2338, 0.9789, ..., 0.6740, 0.3484, 0.3404]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_120 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 106510 +Density: 0.0001081713341839054 +Time: 0.23018765449523926 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 4561 -m matrices/as-caida_pruned/as-caida_G_120.mtx -c 1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_120", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106510, "MATRIX_DENSITY": 0.0001081713341839054, "TIME_S": 10.306824684143066} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 12170], + [ 2, 2, 2, ..., 31355, 31360, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=106510, layout=torch.sparse_coo) +tensor([0.4499, 0.4864, 0.0865, ..., 0.0486, 0.2555, 0.8299]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_120 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 106510 +Density: 0.0001081713341839054 +Time: 10.306824684143066 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 12170], + [ 2, 2, 2, ..., 31355, 31360, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=106510, layout=torch.sparse_coo) +tensor([0.4499, 0.4864, 0.0865, ..., 0.0486, 0.2555, 0.8299]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_120 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 106510 +Density: 0.0001081713341839054 +Time: 10.306824684143066 seconds + +[20.36, 20.4, 20.64, 20.8, 20.64, 20.52, 20.48, 20.08, 19.88, 20.04] +[20.2, 20.32, 20.32, 21.24, 23.16, 25.0, 25.96, 26.48, 26.24, 24.84, 24.68, 24.6, 24.68] +13.605703353881836 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4561, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_120', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106510, 'MATRIX_DENSITY': 0.0001081713341839054, 'TIME_S': 10.306824684143066, 'TIME_S_1KI': 2.2597730068281225, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 300.2287587738037, 'W': 22.06639017218802} +[20.36, 20.4, 20.64, 20.8, 20.64, 20.52, 20.48, 20.08, 19.88, 20.04, 20.48, 20.64, 20.36, 20.6, 20.6, 20.88, 21.12, 21.12, 21.12, 20.8] +370.72 +18.536 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4561, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_120', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106510, 'MATRIX_DENSITY': 0.0001081713341839054, 'TIME_S': 10.306824684143066, 'TIME_S_1KI': 2.2597730068281225, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 300.2287587738037, 'W': 22.06639017218802, 'J_1KI': 65.82520473006001, 'W_1KI': 4.8380596737969785, 'W_D': 3.5303901721880173, 'J_D': 48.03344140624998, 'W_D_1KI': 0.7740386257811922, 'J_D_1KI': 0.16970809598359837} diff --git a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_005.json b/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_005.json deleted file mode 100644 index fba9bea..0000000 --- a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_005.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 6124, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 10.514057636260986, "TIME_S_1KI": 1.7168611424332114, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 323.7508854293823, "W": 22.266094017640313, "J_1KI": 52.865918587423636, "W_1KI": 3.635874268066674, "W_D": 3.974094017640315, "J_D": 57.78366227912903, "W_D_1KI": 0.6489376253494963, "J_D_1KI": 0.1059663006775794} diff --git a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_005.output b/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_005.output deleted file mode 100644 index 3a8f57d..0000000 --- a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_005.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_005.mtx -c 1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 0.18268108367919922} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.1439, 0.3000, 0.8170, ..., 0.9615, 0.9230, 0.5483]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 0.18268108367919922 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 5747 -m matrices/as-caida_pruned/as-caida_G_005.mtx -c 1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 9.852523803710938} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.0400, 0.8950, 0.6861, ..., 0.6705, 0.3750, 0.3934]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 9.852523803710938 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 6124 -m matrices/as-caida_pruned/as-caida_G_005.mtx -c 1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 10.514057636260986} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.4293, 0.3058, 0.4645, ..., 0.7892, 0.5701, 0.7940]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 10.514057636260986 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.4293, 0.3058, 0.4645, ..., 0.7892, 0.5701, 0.7940]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 10.514057636260986 seconds - -[20.6, 20.36, 20.44, 20.36, 20.24, 20.24, 20.12, 20.12, 20.12, 20.2] -[20.4, 20.4, 20.6, 21.52, 23.12, 24.8, 25.76, 26.28, 25.56, 24.96, 25.04, 24.88, 24.92, 24.72] -14.54008436203003 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 6124, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_005', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 70026, 'MATRIX_DENSITY': 7.111825976492498e-05, 'TIME_S': 10.514057636260986, 'TIME_S_1KI': 1.7168611424332114, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 323.7508854293823, 'W': 22.266094017640313} -[20.6, 20.36, 20.44, 20.36, 20.24, 20.24, 20.12, 20.12, 20.12, 20.2, 20.36, 20.32, 20.16, 20.2, 20.2, 20.2, 20.36, 20.52, 20.84, 20.92] -365.84 -18.291999999999998 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 6124, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_005', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 70026, 'MATRIX_DENSITY': 7.111825976492498e-05, 'TIME_S': 10.514057636260986, 'TIME_S_1KI': 1.7168611424332114, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 323.7508854293823, 'W': 22.266094017640313, 'J_1KI': 52.865918587423636, 'W_1KI': 3.635874268066674, 'W_D': 3.974094017640315, 'J_D': 57.78366227912903, 'W_D_1KI': 0.6489376253494963, 'J_D_1KI': 0.1059663006775794} diff --git a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_015.json b/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_015.json deleted file mode 100644 index 0d7a637..0000000 --- a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_015.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 5301, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 10.19014310836792, "TIME_S_1KI": 1.9223058118030407, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 311.1123313903809, "W": 22.88424377272302, "J_1KI": 58.68936641961534, "W_1KI": 4.31696732177382, "W_D": 4.340243772723021, "J_D": 59.00581082534796, "W_D_1KI": 0.8187594364691607, "J_D_1KI": 0.1544537703205359} diff --git a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_015.output b/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_015.output deleted file mode 100644 index d4b8de4..0000000 --- a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_015.output +++ /dev/null @@ -1,65 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_015.mtx -c 1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 0.19806742668151855} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.8497, 0.2593, 0.7660, ..., 0.4860, 0.0646, 0.1972]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 0.19806742668151855 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 5301 -m matrices/as-caida_pruned/as-caida_G_015.mtx -c 1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 10.19014310836792} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.9506, 0.6483, 0.4255, ..., 0.7600, 0.5524, 0.6427]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 10.19014310836792 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.9506, 0.6483, 0.4255, ..., 0.7600, 0.5524, 0.6427]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 10.19014310836792 seconds - -[20.32, 20.32, 20.32, 20.56, 20.56, 20.64, 20.56, 20.36, 20.28, 20.12] -[19.96, 20.12, 21.44, 23.84, 25.76, 25.76, 26.84, 27.28, 26.2, 26.24, 25.04, 25.28, 24.96] -13.595045328140259 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 5301, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_015', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 77124, 'MATRIX_DENSITY': 7.832697378273889e-05, 'TIME_S': 10.19014310836792, 'TIME_S_1KI': 1.9223058118030407, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 311.1123313903809, 'W': 22.88424377272302} -[20.32, 20.32, 20.32, 20.56, 20.56, 20.64, 20.56, 20.36, 20.28, 20.12, 19.96, 20.04, 20.44, 20.4, 21.0, 21.24, 21.2, 21.32, 20.96, 20.96] -370.88 -18.544 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 5301, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_015', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 77124, 'MATRIX_DENSITY': 7.832697378273889e-05, 'TIME_S': 10.19014310836792, 'TIME_S_1KI': 1.9223058118030407, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 311.1123313903809, 'W': 22.88424377272302, 'J_1KI': 58.68936641961534, 'W_1KI': 4.31696732177382, 'W_D': 4.340243772723021, 'J_D': 59.00581082534796, 'W_D_1KI': 0.8187594364691607, 'J_D_1KI': 0.1544537703205359} diff --git a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_025.json b/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_025.json deleted file mode 100644 index 893b380..0000000 --- a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_025.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 4892, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 10.115711212158203, "TIME_S_1KI": 2.067806870841824, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 307.40472288131707, "W": 22.646829011678925, "J_1KI": 62.838250793400874, "W_1KI": 4.629359977857507, "W_D": 4.094829011678925, "J_D": 55.58260615348808, "W_D_1KI": 0.8370459958460599, "J_D_1KI": 0.1711050686520973} diff --git a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_025.output b/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_025.output deleted file mode 100644 index b73490e..0000000 --- a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_025.output +++ /dev/null @@ -1,65 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_025.mtx -c 1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 0.2146143913269043} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.5233, 0.6684, 0.0720, ..., 0.8096, 0.6371, 0.4657]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 0.2146143913269043 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4892 -m matrices/as-caida_pruned/as-caida_G_025.mtx -c 1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 10.115711212158203} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.2946, 0.5991, 0.8521, ..., 0.8859, 0.0862, 0.1832]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 10.115711212158203 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.2946, 0.5991, 0.8521, ..., 0.8859, 0.0862, 0.1832]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 10.115711212158203 seconds - -[20.32, 20.6, 20.76, 20.72, 20.72, 20.72, 20.8, 20.6, 20.56, 20.76] -[20.72, 20.68, 21.0, 22.84, 24.56, 25.56, 26.44, 26.76, 25.56, 25.2, 25.52, 25.52, 25.52] -13.573852777481079 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4892, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_025', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 85850, 'MATRIX_DENSITY': 8.718908121010495e-05, 'TIME_S': 10.115711212158203, 'TIME_S_1KI': 2.067806870841824, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 307.40472288131707, 'W': 22.646829011678925} -[20.32, 20.6, 20.76, 20.72, 20.72, 20.72, 20.8, 20.6, 20.56, 20.76, 20.0, 20.0, 20.16, 20.32, 20.28, 20.64, 21.0, 21.04, 21.0, 21.16] -371.03999999999996 -18.552 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4892, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_025', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 85850, 'MATRIX_DENSITY': 8.718908121010495e-05, 'TIME_S': 10.115711212158203, 'TIME_S_1KI': 2.067806870841824, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 307.40472288131707, 'W': 22.646829011678925, 'J_1KI': 62.838250793400874, 'W_1KI': 4.629359977857507, 'W_D': 4.094829011678925, 'J_D': 55.58260615348808, 'W_D_1KI': 0.8370459958460599, 'J_D_1KI': 0.1711050686520973} diff --git a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_035.json b/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_035.json deleted file mode 100644 index 1ccb8e4..0000000 --- a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_035.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 4974, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 10.731950759887695, "TIME_S_1KI": 2.1576097225347195, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 342.8746109008789, "W": 23.52079658107547, "J_1KI": 68.93337573399253, "W_1KI": 4.728748810027236, "W_D": 4.868796581075472, "J_D": 70.97492329978948, "W_D_1KI": 0.9788493327453702, "J_D_1KI": 0.19679319114301774} diff --git a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_035.output b/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_035.output deleted file mode 100644 index 5ba179d..0000000 --- a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_035.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_035.mtx -c 1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 0.22348880767822266} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.7766, 0.4782, 0.2449, ..., 0.0046, 0.9056, 0.4984]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 0.22348880767822266 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4698 -m matrices/as-caida_pruned/as-caida_G_035.mtx -c 1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 9.915407419204712} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.3469, 0.1883, 0.3355, ..., 0.8764, 0.8263, 0.9306]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 9.915407419204712 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4974 -m matrices/as-caida_pruned/as-caida_G_035.mtx -c 1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 10.731950759887695} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.3179, 0.6318, 0.5104, ..., 0.0206, 0.4518, 0.3308]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 10.731950759887695 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.3179, 0.6318, 0.5104, ..., 0.0206, 0.4518, 0.3308]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 10.731950759887695 seconds - -[20.48, 20.6, 20.6, 20.36, 20.4, 20.56, 20.6, 20.88, 21.16, 20.88] -[20.76, 20.76, 20.76, 23.6, 25.72, 27.76, 28.8, 29.72, 26.76, 25.88, 25.56, 25.32, 24.96, 24.96] -14.577508449554443 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4974, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_035', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 87560, 'MATRIX_DENSITY': 8.892575364888514e-05, 'TIME_S': 10.731950759887695, 'TIME_S_1KI': 2.1576097225347195, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 342.8746109008789, 'W': 23.52079658107547} -[20.48, 20.6, 20.6, 20.36, 20.4, 20.56, 20.6, 20.88, 21.16, 20.88, 20.6, 20.68, 20.72, 20.76, 20.96, 20.96, 21.04, 20.88, 20.64, 20.52] -373.03999999999996 -18.651999999999997 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4974, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_035', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 87560, 'MATRIX_DENSITY': 8.892575364888514e-05, 'TIME_S': 10.731950759887695, 'TIME_S_1KI': 2.1576097225347195, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 342.8746109008789, 'W': 23.52079658107547, 'J_1KI': 68.93337573399253, 'W_1KI': 4.728748810027236, 'W_D': 4.868796581075472, 'J_D': 70.97492329978948, 'W_D_1KI': 0.9788493327453702, 'J_D_1KI': 0.19679319114301774} diff --git a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_045.json b/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_045.json deleted file mode 100644 index 66cd4e3..0000000 --- a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_045.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 4843, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 10.373887062072754, "TIME_S_1KI": 2.1420373863458093, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 332.9727068328857, "W": 22.843118658084368, "J_1KI": 68.75339806584466, "W_1KI": 4.716729022937098, "W_D": 4.402118658084369, "J_D": 64.16748025178906, "W_D_1KI": 0.9089652401578296, "J_D_1KI": 0.18768640102371045} diff --git a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_045.output b/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_045.output deleted file mode 100644 index f96d685..0000000 --- a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_045.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_045.mtx -c 1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 0.23405838012695312} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.2593, 0.7313, 0.0475, ..., 0.6609, 0.0319, 0.0461]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 0.23405838012695312 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4486 -m matrices/as-caida_pruned/as-caida_G_045.mtx -c 1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 9.72571873664856} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.8910, 0.8980, 0.3385, ..., 0.3949, 0.7661, 0.7330]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 9.72571873664856 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4843 -m matrices/as-caida_pruned/as-caida_G_045.mtx -c 1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 10.373887062072754} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.4834, 0.2409, 0.6592, ..., 0.5071, 0.3977, 0.4858]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 10.373887062072754 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.4834, 0.2409, 0.6592, ..., 0.5071, 0.3977, 0.4858]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 10.373887062072754 seconds - -[20.88, 21.0, 21.08, 21.08, 20.96, 20.8, 20.68, 20.28, 20.6, 20.8] -[20.6, 20.88, 21.36, 22.44, 24.12, 25.6, 26.4, 26.48, 26.48, 26.88, 25.56, 25.12, 25.0, 24.48] -14.576499462127686 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4843, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_045', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89152, 'MATRIX_DENSITY': 9.054258553341032e-05, 'TIME_S': 10.373887062072754, 'TIME_S_1KI': 2.1420373863458093, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 332.9727068328857, 'W': 22.843118658084368} -[20.88, 21.0, 21.08, 21.08, 20.96, 20.8, 20.68, 20.28, 20.6, 20.8, 19.96, 19.92, 20.2, 20.2, 20.36, 20.36, 20.16, 20.0, 20.24, 20.16] -368.82 -18.441 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4843, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_045', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89152, 'MATRIX_DENSITY': 9.054258553341032e-05, 'TIME_S': 10.373887062072754, 'TIME_S_1KI': 2.1420373863458093, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 332.9727068328857, 'W': 22.843118658084368, 'J_1KI': 68.75339806584466, 'W_1KI': 4.716729022937098, 'W_D': 4.402118658084369, 'J_D': 64.16748025178906, 'W_D_1KI': 0.9089652401578296, 'J_D_1KI': 0.18768640102371045} diff --git a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_055.json b/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_055.json deleted file mode 100644 index 77336b8..0000000 --- a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_055.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 4597, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 10.816685914993286, "TIME_S_1KI": 2.35298801718366, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 324.7557634544372, "W": 22.27027274930315, "J_1KI": 70.64515193701048, "W_1KI": 4.84452311274813, "W_D": 3.9532727493031494, "J_D": 57.64851307821269, "W_D_1KI": 0.8599679680885685, "J_D_1KI": 0.18707156147238815} diff --git a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_055.output b/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_055.output deleted file mode 100644 index 8734f9a..0000000 --- a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_055.output +++ /dev/null @@ -1,65 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_055.mtx -c 1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 0.22839808464050293} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.2187, 0.5179, 0.0914, ..., 0.1693, 0.7207, 0.1990]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 0.22839808464050293 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4597 -m matrices/as-caida_pruned/as-caida_G_055.mtx -c 1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 10.816685914993286} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.0686, 0.3478, 0.1639, ..., 0.3403, 0.2083, 0.0411]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 10.816685914993286 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.0686, 0.3478, 0.1639, ..., 0.3403, 0.2083, 0.0411]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 10.816685914993286 seconds - -[20.2, 20.36, 20.48, 20.52, 20.32, 20.32, 20.28, 19.92, 20.0, 20.08] -[20.12, 20.12, 20.6, 21.84, 23.64, 25.04, 25.96, 26.0, 25.96, 25.04, 24.68, 24.68, 24.68, 24.44] -14.582478046417236 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4597, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_055', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 91476, 'MATRIX_DENSITY': 9.290283509348351e-05, 'TIME_S': 10.816685914993286, 'TIME_S_1KI': 2.35298801718366, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 324.7557634544372, 'W': 22.27027274930315} -[20.2, 20.36, 20.48, 20.52, 20.32, 20.32, 20.28, 19.92, 20.0, 20.08, 20.56, 20.32, 20.36, 20.4, 20.28, 20.44, 20.6, 20.48, 20.52, 20.64] -366.34000000000003 -18.317 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4597, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_055', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 91476, 'MATRIX_DENSITY': 9.290283509348351e-05, 'TIME_S': 10.816685914993286, 'TIME_S_1KI': 2.35298801718366, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 324.7557634544372, 'W': 22.27027274930315, 'J_1KI': 70.64515193701048, 'W_1KI': 4.84452311274813, 'W_D': 3.9532727493031494, 'J_D': 57.64851307821269, 'W_D_1KI': 0.8599679680885685, 'J_D_1KI': 0.18707156147238815} diff --git a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_065.json b/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_065.json deleted file mode 100644 index 6cfe633..0000000 --- a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_065.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 4457, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 10.40576696395874, "TIME_S_1KI": 2.3347020336456676, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 304.0924919033051, "W": 22.47261995332125, "J_1KI": 68.22806639068995, "W_1KI": 5.042095569513406, "W_D": 3.977619953321252, "J_D": 53.82391398787505, "W_D_1KI": 0.8924433370700587, "J_D_1KI": 0.20023408953781888} diff --git a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_065.output b/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_065.output deleted file mode 100644 index 2383595..0000000 --- a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_065.output +++ /dev/null @@ -1,65 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_065.mtx -c 1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 0.23553967475891113} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.1485, 0.8406, 0.3211, ..., 0.8758, 0.2934, 0.6273]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 0.23553967475891113 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4457 -m matrices/as-caida_pruned/as-caida_G_065.mtx -c 1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 10.40576696395874} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.0947, 0.4563, 0.0701, ..., 0.1127, 0.0889, 0.4578]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 10.40576696395874 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.0947, 0.4563, 0.0701, ..., 0.1127, 0.0889, 0.4578]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 10.40576696395874 seconds - -[20.16, 20.24, 20.52, 20.72, 20.92, 20.84, 20.84, 21.04, 20.6, 20.44] -[20.16, 20.12, 20.84, 22.08, 24.0, 25.48, 26.48, 26.04, 26.28, 25.32, 25.36, 25.56, 25.64] -13.531688451766968 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4457, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_065', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 95068, 'MATRIX_DENSITY': 9.655086281283934e-05, 'TIME_S': 10.40576696395874, 'TIME_S_1KI': 2.3347020336456676, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 304.0924919033051, 'W': 22.47261995332125} -[20.16, 20.24, 20.52, 20.72, 20.92, 20.84, 20.84, 21.04, 20.6, 20.44, 20.24, 20.24, 20.6, 20.56, 20.52, 20.56, 20.48, 20.28, 20.32, 20.4] -369.9 -18.494999999999997 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4457, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_065', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 95068, 'MATRIX_DENSITY': 9.655086281283934e-05, 'TIME_S': 10.40576696395874, 'TIME_S_1KI': 2.3347020336456676, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 304.0924919033051, 'W': 22.47261995332125, 'J_1KI': 68.22806639068995, 'W_1KI': 5.042095569513406, 'W_D': 3.977619953321252, 'J_D': 53.82391398787505, 'W_D_1KI': 0.8924433370700587, 'J_D_1KI': 0.20023408953781888} diff --git a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_075.json b/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_075.json deleted file mode 100644 index 2e451d6..0000000 --- a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_075.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 4241, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 10.165872573852539, "TIME_S_1KI": 2.397046115032431, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 308.4233190155029, "W": 22.773842448783192, "J_1KI": 72.724196891182, "W_1KI": 5.369922765570194, "W_D": 4.36484244878319, "J_D": 59.1125190253257, "W_D_1KI": 1.0292012376286699, "J_D_1KI": 0.2426789053592714} diff --git a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_075.output b/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_075.output deleted file mode 100644 index 15086a5..0000000 --- a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_075.output +++ /dev/null @@ -1,65 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_075.mtx -c 1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 0.24754810333251953} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.2352, 0.9461, 0.6829, ..., 0.6578, 0.9838, 0.5986]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 0.24754810333251953 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4241 -m matrices/as-caida_pruned/as-caida_G_075.mtx -c 1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 10.165872573852539} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.1680, 0.3295, 0.5975, ..., 0.6100, 0.6760, 0.0664]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 10.165872573852539 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.1680, 0.3295, 0.5975, ..., 0.6100, 0.6760, 0.0664]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 10.165872573852539 seconds - -[20.8, 20.76, 20.64, 20.64, 20.48, 20.68, 20.6, 20.56, 20.68, 20.52] -[20.32, 20.32, 20.36, 23.6, 24.68, 27.04, 27.88, 28.48, 25.8, 24.88, 24.64, 24.72, 24.8] -13.54287576675415 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4241, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_075', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 97492, 'MATRIX_DENSITY': 9.901267216465406e-05, 'TIME_S': 10.165872573852539, 'TIME_S_1KI': 2.397046115032431, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 308.4233190155029, 'W': 22.773842448783192} -[20.8, 20.76, 20.64, 20.64, 20.48, 20.68, 20.6, 20.56, 20.68, 20.52, 20.24, 20.32, 20.2, 20.2, 20.2, 20.16, 20.44, 20.44, 20.24, 20.32] -368.18000000000006 -18.409000000000002 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4241, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_075', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 97492, 'MATRIX_DENSITY': 9.901267216465406e-05, 'TIME_S': 10.165872573852539, 'TIME_S_1KI': 2.397046115032431, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 308.4233190155029, 'W': 22.773842448783192, 'J_1KI': 72.724196891182, 'W_1KI': 5.369922765570194, 'W_D': 4.36484244878319, 'J_D': 59.1125190253257, 'W_D_1KI': 1.0292012376286699, 'J_D_1KI': 0.2426789053592714} diff --git a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_085.json b/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_085.json deleted file mode 100644 index 80844ab..0000000 --- a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_085.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 4258, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 10.52000379562378, "TIME_S_1KI": 2.470644386008403, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 340.48363485336307, "W": 23.399428779350817, "J_1KI": 79.96327732582505, "W_1KI": 5.495403658842371, "W_D": 4.919428779350817, "J_D": 71.58230262756351, "W_D_1KI": 1.1553379002702717, "J_D_1KI": 0.2713334664796317} diff --git a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_085.output b/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_085.output deleted file mode 100644 index e5dc514..0000000 --- a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_085.output +++ /dev/null @@ -1,65 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_085.mtx -c 1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 0.246551513671875} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.0320, 0.2964, 0.1884, ..., 0.9782, 0.1676, 0.8891]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 0.246551513671875 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4258 -m matrices/as-caida_pruned/as-caida_G_085.mtx -c 1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 10.52000379562378} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.0888, 0.3161, 0.3875, ..., 0.4649, 0.9695, 0.2632]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 10.52000379562378 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.0888, 0.3161, 0.3875, ..., 0.4649, 0.9695, 0.2632]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 10.52000379562378 seconds - -[20.24, 20.4, 20.28, 20.32, 20.52, 20.48, 20.6, 20.72, 20.68, 20.76] -[20.8, 20.68, 23.92, 24.68, 24.68, 26.56, 27.48, 28.76, 26.44, 25.24, 25.28, 24.8, 25.08, 25.2] -14.55093789100647 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4258, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_085', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 99166, 'MATRIX_DENSITY': 0.0001007127830784073, 'TIME_S': 10.52000379562378, 'TIME_S_1KI': 2.470644386008403, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 340.48363485336307, 'W': 23.399428779350817} -[20.24, 20.4, 20.28, 20.32, 20.52, 20.48, 20.6, 20.72, 20.68, 20.76, 20.28, 20.36, 20.32, 20.44, 20.64, 20.64, 20.76, 20.76, 20.72, 20.64] -369.6 -18.48 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4258, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_085', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 99166, 'MATRIX_DENSITY': 0.0001007127830784073, 'TIME_S': 10.52000379562378, 'TIME_S_1KI': 2.470644386008403, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 340.48363485336307, 'W': 23.399428779350817, 'J_1KI': 79.96327732582505, 'W_1KI': 5.495403658842371, 'W_D': 4.919428779350817, 'J_D': 71.58230262756351, 'W_D_1KI': 1.1553379002702717, 'J_D_1KI': 0.2713334664796317} diff --git a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_095.json b/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_095.json deleted file mode 100644 index 73a712c..0000000 --- a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_095.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 4299, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 10.539864301681519, "TIME_S_1KI": 2.451701396064554, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 330.04471103668214, "W": 22.651642406245635, "J_1KI": 76.77243801737198, "W_1KI": 5.269049175679375, "W_D": 4.1926424062456356, "J_D": 61.08870282483105, "W_D_1KI": 0.9752599223646513, "J_D_1KI": 0.2268573906407656} diff --git a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_095.output b/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_095.output deleted file mode 100644 index 0dcb914..0000000 --- a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_095.output +++ /dev/null @@ -1,89 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_095.mtx -c 1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 0.2615513801574707} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.3439, 0.2522, 0.8155, ..., 0.9546, 0.8272, 0.9957]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 0.2615513801574707 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4014 -m matrices/as-caida_pruned/as-caida_G_095.mtx -c 1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 9.802011013031006} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.1432, 0.6569, 0.7193, ..., 0.9653, 0.9751, 0.3574]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 9.802011013031006 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4299 -m matrices/as-caida_pruned/as-caida_G_095.mtx -c 1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 10.539864301681519} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.7221, 0.0635, 0.9129, ..., 0.8366, 0.9671, 0.5596]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 10.539864301681519 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.7221, 0.0635, 0.9129, ..., 0.8366, 0.9671, 0.5596]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 10.539864301681519 seconds - -[20.28, 20.32, 20.44, 20.64, 20.88, 20.92, 20.76, 20.6, 20.36, 20.2] -[20.08, 20.04, 21.68, 23.8, 23.8, 26.2, 26.88, 27.4, 25.72, 24.76, 24.44, 24.48, 24.6, 24.48] -14.570453882217407 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4299, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_095', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102290, 'MATRIX_DENSITY': 0.00010388551097241275, 'TIME_S': 10.539864301681519, 'TIME_S_1KI': 2.451701396064554, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 330.04471103668214, 'W': 22.651642406245635} -[20.28, 20.32, 20.44, 20.64, 20.88, 20.92, 20.76, 20.6, 20.36, 20.2, 20.56, 20.4, 20.28, 20.48, 20.4, 20.4, 20.4, 20.4, 20.64, 20.68] -369.18 -18.459 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4299, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_095', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102290, 'MATRIX_DENSITY': 0.00010388551097241275, 'TIME_S': 10.539864301681519, 'TIME_S_1KI': 2.451701396064554, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 330.04471103668214, 'W': 22.651642406245635, 'J_1KI': 76.77243801737198, 'W_1KI': 5.269049175679375, 'W_D': 4.1926424062456356, 'J_D': 61.08870282483105, 'W_D_1KI': 0.9752599223646513, 'J_D_1KI': 0.2268573906407656} diff --git a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_105.json b/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_105.json deleted file mode 100644 index 2b479f7..0000000 --- a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_105.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 4049, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 10.376229763031006, "TIME_S_1KI": 2.562664796994568, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 310.42938493728633, "W": 22.891819526408486, "J_1KI": 76.66816125890006, "W_1KI": 5.653697092222397, "W_D": 4.550819526408485, "J_D": 61.7123555824756, "W_D_1KI": 1.1239366575471685, "J_D_1KI": 0.2775837632865321} diff --git a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_105.output b/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_105.output deleted file mode 100644 index 5514581..0000000 --- a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_105.output +++ /dev/null @@ -1,68 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_105.mtx -c 1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 0.2592613697052002} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.4913, 0.3479, 0.5546, ..., 0.3694, 0.0850, 0.9788]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 0.2592613697052002 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4049 -m matrices/as-caida_pruned/as-caida_G_105.mtx -c 1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 10.376229763031006} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.3564, 0.9920, 0.3563, ..., 0.1738, 0.9526, 0.3099]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 10.376229763031006 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.3564, 0.9920, 0.3563, ..., 0.1738, 0.9526, 0.3099]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 10.376229763031006 seconds - -[20.6, 20.4, 20.48, 20.56, 20.64, 20.36, 20.32, 20.32, 20.32, 20.24] -[20.32, 20.52, 20.76, 22.96, 23.72, 26.2, 27.36, 27.96, 27.24, 25.8, 25.52, 25.16, 25.52] -13.560712575912476 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4049, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_105', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104726, 'MATRIX_DENSITY': 0.00010635950749923647, 'TIME_S': 10.376229763031006, 'TIME_S_1KI': 2.562664796994568, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 310.42938493728633, 'W': 22.891819526408486} -[20.6, 20.4, 20.48, 20.56, 20.64, 20.36, 20.32, 20.32, 20.32, 20.24, 20.56, 20.32, 20.24, 20.24, 20.12, 20.28, 20.44, 20.44, 20.48, 20.32] -366.82 -18.341 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4049, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_105', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104726, 'MATRIX_DENSITY': 0.00010635950749923647, 'TIME_S': 10.376229763031006, 'TIME_S_1KI': 2.562664796994568, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 310.42938493728633, 'W': 22.891819526408486, 'J_1KI': 76.66816125890006, 'W_1KI': 5.653697092222397, 'W_D': 4.550819526408485, 'J_D': 61.7123555824756, 'W_D_1KI': 1.1239366575471685, 'J_D_1KI': 0.2775837632865321} diff --git a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_115.json b/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_115.json deleted file mode 100644 index 4a8e502..0000000 --- a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_115.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 1, "ITERATIONS": 4098, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 10.480108499526978, "TIME_S_1KI": 2.5573715225785696, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 337.20645687103274, "W": 23.049017782427377, "J_1KI": 82.28561661079374, "W_1KI": 5.624455290977886, "W_D": 4.55101778242738, "J_D": 66.58125721693045, "W_D_1KI": 1.1105460669661738, "J_D_1KI": 0.2709970880834977} diff --git a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_115.output b/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_115.output deleted file mode 100644 index 261c286..0000000 --- a/pytorch/output_as-caida_1core/altra_1_csr_10_10_10_as-caida_G_115.output +++ /dev/null @@ -1,89 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_115.mtx -c 1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 0.2717466354370117} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.2910, 0.1313, 0.5488, ..., 0.2360, 0.4747, 0.6889]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 0.2717466354370117 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 3863 -m matrices/as-caida_pruned/as-caida_G_115.mtx -c 1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 9.896336078643799} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.7215, 0.6948, 0.2553, ..., 0.1689, 0.6463, 0.2591]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 9.896336078643799 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4098 -m matrices/as-caida_pruned/as-caida_G_115.mtx -c 1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 10.480108499526978} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.7345, 0.2555, 0.9166, ..., 0.8790, 0.4016, 0.3913]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 10.480108499526978 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.7345, 0.2555, 0.9166, ..., 0.8790, 0.4016, 0.3913]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 10.480108499526978 seconds - -[20.52, 20.56, 20.72, 20.72, 20.8, 20.08, 20.16, 20.24, 20.2, 20.52] -[20.84, 20.84, 21.28, 22.72, 24.36, 25.48, 26.68, 26.36, 26.36, 26.44, 26.0, 25.88, 25.64, 25.44] -14.629970788955688 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4098, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_115', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106312, 'MATRIX_DENSITY': 0.00010797024579625715, 'TIME_S': 10.480108499526978, 'TIME_S_1KI': 2.5573715225785696, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 337.20645687103274, 'W': 23.049017782427377} -[20.52, 20.56, 20.72, 20.72, 20.8, 20.08, 20.16, 20.24, 20.2, 20.52, 20.68, 20.64, 20.44, 20.4, 20.44, 20.36, 20.52, 20.84, 21.36, 21.24] -369.96 -18.497999999999998 -{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4098, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_115', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106312, 'MATRIX_DENSITY': 0.00010797024579625715, 'TIME_S': 10.480108499526978, 'TIME_S_1KI': 2.5573715225785696, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 337.20645687103274, 'W': 23.049017782427377, 'J_1KI': 82.28561661079374, 'W_1KI': 5.624455290977886, 'W_D': 4.55101778242738, 'J_D': 66.58125721693045, 'W_D_1KI': 1.1105460669661738, 'J_D_1KI': 0.2709970880834977} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_010.json b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_010.json new file mode 100644 index 0000000..e69de29 diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_010.output b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_010.output new file mode 100644 index 0000000..3c8a67d --- /dev/null +++ b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_010.output @@ -0,0 +1,55 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_010.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 0.2207937240600586} + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.7193, 0.7070, 0.1341, ..., 0.0458, 0.8165, 0.6087]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 0.2207937240600586 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '4755', '-m', 'matrices/as-caida_pruned/as-caida_G_010.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 10.089951038360596} + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.1581, 0.9236, 0.8715, ..., 0.0128, 0.7061, 0.4474]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 10.089951038360596 seconds + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.1581, 0.9236, 0.8715, ..., 0.0128, 0.7061, 0.4474]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 10.089951038360596 seconds + +[44.57, 39.27, 38.78, 39.37, 39.08, 39.0, 39.29, 40.29, 38.94, 38.6] +[64.64] +12.744337558746338 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 4755, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_010', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 74994, 'MATRIX_DENSITY': 7.616375021864427e-05, 'TIME_S': 10.089951038360596, 'TIME_S_1KI': 2.1219665695816183, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 823.7939797973632, 'W': 64.64} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_020.json b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_020.json new file mode 100644 index 0000000..dfbc954 --- /dev/null +++ b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_020.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 4416, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_020", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 80948, "MATRIX_DENSITY": 8.221062021893506e-05, "TIME_S": 10.121088027954102, "TIME_S_1KI": 2.291913049808447, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 820.2321936893463, "W": 64.26, "J_1KI": 185.74098588979763, "W_1KI": 14.551630434782611, "W_D": 29.148750000000007, "J_D": 372.0626074665786, "W_D_1KI": 6.600713315217393, "J_D_1KI": 1.494726747105388} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_020.output b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_020.output new file mode 100644 index 0000000..6b94cd3 --- /dev/null +++ b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_020.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_020.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_020", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 80948, "MATRIX_DENSITY": 8.221062021893506e-05, "TIME_S": 0.23772501945495605} + +tensor(indices=tensor([[ 1040, 5699, 106, ..., 31378, 17998, 31377], + [ 0, 0, 2, ..., 31377, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 1.]), + size=(31379, 31379), nnz=80948, layout=torch.sparse_coo) +tensor([0.0235, 0.3572, 0.0680, ..., 0.1697, 0.5664, 0.9391]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_020 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 80948 +Density: 8.221062021893506e-05 +Time: 0.23772501945495605 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '4416', '-m', 'matrices/as-caida_pruned/as-caida_G_020.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_020", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 80948, "MATRIX_DENSITY": 8.221062021893506e-05, "TIME_S": 10.121088027954102} + +tensor(indices=tensor([[ 1040, 5699, 106, ..., 31378, 17998, 31377], + [ 0, 0, 2, ..., 31377, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 1.]), + size=(31379, 31379), nnz=80948, layout=torch.sparse_coo) +tensor([0.0401, 0.4359, 0.4509, ..., 0.9036, 0.4719, 0.1003]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_020 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 80948 +Density: 8.221062021893506e-05 +Time: 10.121088027954102 seconds + +tensor(indices=tensor([[ 1040, 5699, 106, ..., 31378, 17998, 31377], + [ 0, 0, 2, ..., 31377, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 1.]), + size=(31379, 31379), nnz=80948, layout=torch.sparse_coo) +tensor([0.0401, 0.4359, 0.4509, ..., 0.9036, 0.4719, 0.1003]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_020 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 80948 +Density: 8.221062021893506e-05 +Time: 10.121088027954102 seconds + +[39.19, 38.57, 38.56, 38.59, 38.79, 39.22, 39.07, 40.12, 39.27, 38.64] +[64.26] +12.764273166656494 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 4416, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_020', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 80948, 'MATRIX_DENSITY': 8.221062021893506e-05, 'TIME_S': 10.121088027954102, 'TIME_S_1KI': 2.291913049808447, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 820.2321936893463, 'W': 64.26} +[39.19, 38.57, 38.56, 38.59, 38.79, 39.22, 39.07, 40.12, 39.27, 38.64, 40.06, 38.55, 39.14, 38.67, 38.83, 39.68, 39.14, 39.01, 38.72, 38.7] +702.2249999999999 +35.11125 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 4416, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_020', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 80948, 'MATRIX_DENSITY': 8.221062021893506e-05, 'TIME_S': 10.121088027954102, 'TIME_S_1KI': 2.291913049808447, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 820.2321936893463, 'W': 64.26, 'J_1KI': 185.74098588979763, 'W_1KI': 14.551630434782611, 'W_D': 29.148750000000007, 'J_D': 372.0626074665786, 'W_D_1KI': 6.600713315217393, 'J_D_1KI': 1.494726747105388} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_030.json b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_030.json new file mode 100644 index 0000000..5236f95 --- /dev/null +++ b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_030.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 4131, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_030", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 86850, "MATRIX_DENSITY": 8.820467912752026e-05, "TIME_S": 10.162817478179932, "TIME_S_1KI": 2.4601349499346243, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 827.8255462884903, "W": 64.19, "J_1KI": 200.39349946465512, "W_1KI": 15.538610505930768, "W_D": 28.75374999999999, "J_D": 370.82238357365117, "W_D_1KI": 6.960481723553617, "J_D_1KI": 1.6849386888292464} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_030.output b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_030.output new file mode 100644 index 0000000..4fb4ec6 --- /dev/null +++ b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_030.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_030.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_030", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 86850, "MATRIX_DENSITY": 8.820467912752026e-05, "TIME_S": 0.25415992736816406} + +tensor(indices=tensor([[ 1809, 21783, 106, ..., 7018, 160, 882], + [ 0, 0, 2, ..., 31357, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=86850, layout=torch.sparse_coo) +tensor([0.2884, 0.9387, 0.6290, ..., 0.6114, 0.3783, 0.6499]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_030 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 86850 +Density: 8.820467912752026e-05 +Time: 0.25415992736816406 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '4131', '-m', 'matrices/as-caida_pruned/as-caida_G_030.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_030", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 86850, "MATRIX_DENSITY": 8.820467912752026e-05, "TIME_S": 10.162817478179932} + +tensor(indices=tensor([[ 1809, 21783, 106, ..., 7018, 160, 882], + [ 0, 0, 2, ..., 31357, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=86850, layout=torch.sparse_coo) +tensor([0.4470, 0.6434, 0.7978, ..., 0.5536, 0.7218, 0.3322]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_030 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 86850 +Density: 8.820467912752026e-05 +Time: 10.162817478179932 seconds + +tensor(indices=tensor([[ 1809, 21783, 106, ..., 7018, 160, 882], + [ 0, 0, 2, ..., 31357, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=86850, layout=torch.sparse_coo) +tensor([0.4470, 0.6434, 0.7978, ..., 0.5536, 0.7218, 0.3322]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_030 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 86850 +Density: 8.820467912752026e-05 +Time: 10.162817478179932 seconds + +[44.49, 39.48, 39.15, 38.71, 38.82, 38.87, 38.91, 40.2, 39.15, 39.32] +[64.19] +12.896487712860107 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 4131, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_030', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 86850, 'MATRIX_DENSITY': 8.820467912752026e-05, 'TIME_S': 10.162817478179932, 'TIME_S_1KI': 2.4601349499346243, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 827.8255462884903, 'W': 64.19} +[44.49, 39.48, 39.15, 38.71, 38.82, 38.87, 38.91, 40.2, 39.15, 39.32, 39.88, 38.69, 39.25, 39.21, 39.54, 39.44, 39.9, 38.69, 39.08, 39.58] +708.7250000000001 +35.43625000000001 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 4131, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_030', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 86850, 'MATRIX_DENSITY': 8.820467912752026e-05, 'TIME_S': 10.162817478179932, 'TIME_S_1KI': 2.4601349499346243, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 827.8255462884903, 'W': 64.19, 'J_1KI': 200.39349946465512, 'W_1KI': 15.538610505930768, 'W_D': 28.75374999999999, 'J_D': 370.82238357365117, 'W_D_1KI': 6.960481723553617, 'J_D_1KI': 1.6849386888292464} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_040.json b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_040.json new file mode 100644 index 0000000..c370098 --- /dev/null +++ b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_040.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 3997, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_040", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89658, "MATRIX_DENSITY": 9.105647807962247e-05, "TIME_S": 10.245208740234375, "TIME_S_1KI": 2.563224603511227, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 831.8510894393921, "W": 64.56, "J_1KI": 208.11886150597752, "W_1KI": 16.152114085564172, "W_D": 29.440500000000007, "J_D": 379.33878560471544, "W_D_1KI": 7.365649236927697, "J_D_1KI": 1.8427944050357012} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_040.output b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_040.output new file mode 100644 index 0000000..06c6aa2 --- /dev/null +++ b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_040.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_040.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_040", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89658, "MATRIX_DENSITY": 9.105647807962247e-05, "TIME_S": 0.26263952255249023} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 10144, 882, 16085], + [ 2, 2, 2, ..., 31371, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=89658, layout=torch.sparse_coo) +tensor([0.8342, 0.9025, 0.0628, ..., 0.9825, 0.6628, 0.4174]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_040 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 89658 +Density: 9.105647807962247e-05 +Time: 0.26263952255249023 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '3997', '-m', 'matrices/as-caida_pruned/as-caida_G_040.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_040", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89658, "MATRIX_DENSITY": 9.105647807962247e-05, "TIME_S": 10.245208740234375} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 10144, 882, 16085], + [ 2, 2, 2, ..., 31371, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=89658, layout=torch.sparse_coo) +tensor([0.9207, 0.7750, 0.6618, ..., 0.6017, 0.5476, 0.1750]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_040 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 89658 +Density: 9.105647807962247e-05 +Time: 10.245208740234375 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 10144, 882, 16085], + [ 2, 2, 2, ..., 31371, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=89658, layout=torch.sparse_coo) +tensor([0.9207, 0.7750, 0.6618, ..., 0.6017, 0.5476, 0.1750]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_040 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 89658 +Density: 9.105647807962247e-05 +Time: 10.245208740234375 seconds + +[39.49, 39.26, 39.7, 38.64, 38.88, 39.13, 38.87, 39.07, 38.99, 39.04] +[64.56] +12.88493013381958 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3997, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_040', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89658, 'MATRIX_DENSITY': 9.105647807962247e-05, 'TIME_S': 10.245208740234375, 'TIME_S_1KI': 2.563224603511227, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 831.8510894393921, 'W': 64.56} +[39.49, 39.26, 39.7, 38.64, 38.88, 39.13, 38.87, 39.07, 38.99, 39.04, 39.43, 39.03, 38.73, 38.85, 38.79, 38.9, 39.03, 38.71, 39.18, 39.3] +702.3899999999999 +35.119499999999995 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3997, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_040', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89658, 'MATRIX_DENSITY': 9.105647807962247e-05, 'TIME_S': 10.245208740234375, 'TIME_S_1KI': 2.563224603511227, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 831.8510894393921, 'W': 64.56, 'J_1KI': 208.11886150597752, 'W_1KI': 16.152114085564172, 'W_D': 29.440500000000007, 'J_D': 379.33878560471544, 'W_D_1KI': 7.365649236927697, 'J_D_1KI': 1.8427944050357012} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_050.json b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_050.json new file mode 100644 index 0000000..a98cbc5 --- /dev/null +++ b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_050.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 4105, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 10.512435913085938, "TIME_S_1KI": 2.5608857279137487, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 842.4721863651276, "W": 64.09, "J_1KI": 205.23073967481795, "W_1KI": 15.612667478684532, "W_D": 28.655500000000004, "J_D": 376.68063249158865, "W_D_1KI": 6.980633373934228, "J_D_1KI": 1.700519701323807} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_050.output b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_050.output new file mode 100644 index 0000000..6eead2d --- /dev/null +++ b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_050.output @@ -0,0 +1,77 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_050.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 0.27527284622192383} + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.6627, 0.6243, 0.6833, ..., 0.7393, 0.2909, 0.1265]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 0.27527284622192383 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '3814', '-m', 'matrices/as-caida_pruned/as-caida_G_050.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 9.753319501876831} + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.7710, 0.9795, 0.0255, ..., 0.5137, 0.4257, 0.8258]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 9.753319501876831 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '4105', '-m', 'matrices/as-caida_pruned/as-caida_G_050.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 10.512435913085938} + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.2395, 0.3691, 0.6298, ..., 0.7469, 0.6234, 0.8096]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 10.512435913085938 seconds + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.2395, 0.3691, 0.6298, ..., 0.7469, 0.6234, 0.8096]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 10.512435913085938 seconds + +[39.37, 44.05, 38.74, 38.95, 39.03, 38.84, 38.98, 38.9, 40.99, 39.08] +[64.09] +13.145142555236816 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 4105, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_050', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 90392, 'MATRIX_DENSITY': 9.180192695100532e-05, 'TIME_S': 10.512435913085938, 'TIME_S_1KI': 2.5608857279137487, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 842.4721863651276, 'W': 64.09} +[39.37, 44.05, 38.74, 38.95, 39.03, 38.84, 38.98, 38.9, 40.99, 39.08, 40.71, 38.66, 38.67, 38.77, 38.71, 38.75, 39.88, 38.82, 39.04, 38.66] +708.69 +35.4345 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 4105, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_050', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 90392, 'MATRIX_DENSITY': 9.180192695100532e-05, 'TIME_S': 10.512435913085938, 'TIME_S_1KI': 2.5608857279137487, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 842.4721863651276, 'W': 64.09, 'J_1KI': 205.23073967481795, 'W_1KI': 15.612667478684532, 'W_D': 28.655500000000004, 'J_D': 376.68063249158865, 'W_D_1KI': 6.980633373934228, 'J_D_1KI': 1.700519701323807} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_060.json b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_060.json new file mode 100644 index 0000000..8470d53 --- /dev/null +++ b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_060.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 3805, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_060", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 94180, "MATRIX_DENSITY": 9.564901186217454e-05, "TIME_S": 10.303282022476196, "TIME_S_1KI": 2.7078270755522196, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 835.0861724472046, "W": 64.61, "J_1KI": 219.47074177324694, "W_1KI": 16.980289093298293, "W_D": 29.412499999999994, "J_D": 380.15743765830985, "W_D_1KI": 7.729960578186595, "J_D_1KI": 2.031527090193586} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_060.output b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_060.output new file mode 100644 index 0000000..c48423f --- /dev/null +++ b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_060.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_060.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_060", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 94180, "MATRIX_DENSITY": 9.564901186217454e-05, "TIME_S": 0.27593994140625} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 882], + [ 2, 2, 2, ..., 31355, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=94180, layout=torch.sparse_coo) +tensor([0.5741, 0.3508, 0.6294, ..., 0.6771, 0.5726, 0.8802]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_060 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 94180 +Density: 9.564901186217454e-05 +Time: 0.27593994140625 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '3805', '-m', 'matrices/as-caida_pruned/as-caida_G_060.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_060", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 94180, "MATRIX_DENSITY": 9.564901186217454e-05, "TIME_S": 10.303282022476196} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 882], + [ 2, 2, 2, ..., 31355, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=94180, layout=torch.sparse_coo) +tensor([0.6342, 0.3575, 0.2194, ..., 0.9307, 0.7618, 0.1139]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_060 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 94180 +Density: 9.564901186217454e-05 +Time: 10.303282022476196 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 882], + [ 2, 2, 2, ..., 31355, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=94180, layout=torch.sparse_coo) +tensor([0.6342, 0.3575, 0.2194, ..., 0.9307, 0.7618, 0.1139]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_060 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 94180 +Density: 9.564901186217454e-05 +Time: 10.303282022476196 seconds + +[39.73, 39.01, 39.04, 38.7, 38.7, 39.04, 38.67, 38.86, 39.26, 38.63] +[64.61] +12.925029754638672 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3805, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_060', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 94180, 'MATRIX_DENSITY': 9.564901186217454e-05, 'TIME_S': 10.303282022476196, 'TIME_S_1KI': 2.7078270755522196, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 835.0861724472046, 'W': 64.61} +[39.73, 39.01, 39.04, 38.7, 38.7, 39.04, 38.67, 38.86, 39.26, 38.63, 39.38, 38.79, 39.29, 38.99, 39.44, 38.58, 38.73, 38.98, 38.9, 44.2] +703.95 +35.197500000000005 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3805, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_060', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 94180, 'MATRIX_DENSITY': 9.564901186217454e-05, 'TIME_S': 10.303282022476196, 'TIME_S_1KI': 2.7078270755522196, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 835.0861724472046, 'W': 64.61, 'J_1KI': 219.47074177324694, 'W_1KI': 16.980289093298293, 'W_D': 29.412499999999994, 'J_D': 380.15743765830985, 'W_D_1KI': 7.729960578186595, 'J_D_1KI': 2.031527090193586} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_070.json b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_070.json new file mode 100644 index 0000000..a8d53ed --- /dev/null +++ b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_070.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 4535, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_070", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 78684, "MATRIX_DENSITY": 7.991130653390679e-05, "TIME_S": 10.21589732170105, "TIME_S_1KI": 2.2526785714886546, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 823.099357624054, "W": 64.62, "J_1KI": 181.49930708358414, "W_1KI": 14.24917309812569, "W_D": 28.899750000000004, "J_D": 368.111508209467, "W_D_1KI": 6.3726019845645, "J_D_1KI": 1.4052044067396912} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_070.output b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_070.output new file mode 100644 index 0000000..a440572 --- /dev/null +++ b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_070.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_070.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_070", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 78684, "MATRIX_DENSITY": 7.991130653390679e-05, "TIME_S": 0.2315065860748291} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 16263, 2242, 2242], + [ 2, 2, 2, ..., 31240, 31283, 31284]]), + values=tensor([3., 3., 3., ..., 1., 3., 3.]), + size=(31379, 31379), nnz=78684, layout=torch.sparse_coo) +tensor([0.8660, 0.5400, 0.0017, ..., 0.4869, 0.6314, 0.4209]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_070 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 78684 +Density: 7.991130653390679e-05 +Time: 0.2315065860748291 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '4535', '-m', 'matrices/as-caida_pruned/as-caida_G_070.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_070", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 78684, "MATRIX_DENSITY": 7.991130653390679e-05, "TIME_S": 10.21589732170105} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 16263, 2242, 2242], + [ 2, 2, 2, ..., 31240, 31283, 31284]]), + values=tensor([3., 3., 3., ..., 1., 3., 3.]), + size=(31379, 31379), nnz=78684, layout=torch.sparse_coo) +tensor([0.9540, 0.5437, 0.4375, ..., 0.2324, 0.3656, 0.4211]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_070 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 78684 +Density: 7.991130653390679e-05 +Time: 10.21589732170105 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 16263, 2242, 2242], + [ 2, 2, 2, ..., 31240, 31283, 31284]]), + values=tensor([3., 3., 3., ..., 1., 3., 3.]), + size=(31379, 31379), nnz=78684, layout=torch.sparse_coo) +tensor([0.9540, 0.5437, 0.4375, ..., 0.2324, 0.3656, 0.4211]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_070 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 78684 +Density: 7.991130653390679e-05 +Time: 10.21589732170105 seconds + +[39.49, 39.72, 38.82, 38.92, 38.77, 38.77, 39.14, 39.07, 44.3, 39.0] +[64.62] +12.737532615661621 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 4535, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_070', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 78684, 'MATRIX_DENSITY': 7.991130653390679e-05, 'TIME_S': 10.21589732170105, 'TIME_S_1KI': 2.2526785714886546, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 823.099357624054, 'W': 64.62} +[39.49, 39.72, 38.82, 38.92, 38.77, 38.77, 39.14, 39.07, 44.3, 39.0, 40.02, 39.36, 38.91, 38.99, 39.34, 43.83, 39.06, 38.67, 40.1, 38.76] +714.405 +35.72025 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 4535, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_070', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 78684, 'MATRIX_DENSITY': 7.991130653390679e-05, 'TIME_S': 10.21589732170105, 'TIME_S_1KI': 2.2526785714886546, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 823.099357624054, 'W': 64.62, 'J_1KI': 181.49930708358414, 'W_1KI': 14.24917309812569, 'W_D': 28.899750000000004, 'J_D': 368.111508209467, 'W_D_1KI': 6.3726019845645, 'J_D_1KI': 1.4052044067396912} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_080.json b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_080.json new file mode 100644 index 0000000..5e73d37 --- /dev/null +++ b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_080.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 3671, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_080", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 98112, "MATRIX_DENSITY": 9.964234287345156e-05, "TIME_S": 10.285452842712402, "TIME_S_1KI": 2.8018122698753483, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 839.5388057041168, "W": 65.64, "J_1KI": 228.69485309292205, "W_1KI": 17.880686461454644, "W_D": 30.34825, "J_D": 388.155599637568, "W_D_1KI": 8.26702533369654, "J_D_1KI": 2.2519818397429963} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_080.output b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_080.output new file mode 100644 index 0000000..5d8c8b3 --- /dev/null +++ b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_080.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_080.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_080", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 98112, "MATRIX_DENSITY": 9.964234287345156e-05, "TIME_S": 0.2859976291656494} + +tensor(indices=tensor([[22754, 22754, 106, ..., 4133, 31329, 12170], + [ 0, 1, 2, ..., 31373, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 1., 1., 3.]), + size=(31379, 31379), nnz=98112, layout=torch.sparse_coo) +tensor([0.8952, 0.0142, 0.8326, ..., 0.6365, 0.8117, 0.7686]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_080 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 98112 +Density: 9.964234287345156e-05 +Time: 0.2859976291656494 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '3671', '-m', 'matrices/as-caida_pruned/as-caida_G_080.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_080", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 98112, "MATRIX_DENSITY": 9.964234287345156e-05, "TIME_S": 10.285452842712402} + +tensor(indices=tensor([[22754, 22754, 106, ..., 4133, 31329, 12170], + [ 0, 1, 2, ..., 31373, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 1., 1., 3.]), + size=(31379, 31379), nnz=98112, layout=torch.sparse_coo) +tensor([0.5570, 0.5250, 0.0792, ..., 0.3673, 0.3544, 0.0961]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_080 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 98112 +Density: 9.964234287345156e-05 +Time: 10.285452842712402 seconds + +tensor(indices=tensor([[22754, 22754, 106, ..., 4133, 31329, 12170], + [ 0, 1, 2, ..., 31373, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 1., 1., 3.]), + size=(31379, 31379), nnz=98112, layout=torch.sparse_coo) +tensor([0.5570, 0.5250, 0.0792, ..., 0.3673, 0.3544, 0.0961]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_080 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 98112 +Density: 9.964234287345156e-05 +Time: 10.285452842712402 seconds + +[40.38, 39.72, 39.27, 39.4, 39.14, 38.78, 38.91, 38.86, 39.0, 38.94] +[65.64] +12.790048837661743 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3671, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_080', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 98112, 'MATRIX_DENSITY': 9.964234287345156e-05, 'TIME_S': 10.285452842712402, 'TIME_S_1KI': 2.8018122698753483, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 839.5388057041168, 'W': 65.64} +[40.38, 39.72, 39.27, 39.4, 39.14, 38.78, 38.91, 38.86, 39.0, 38.94, 41.77, 38.81, 39.47, 39.42, 39.34, 38.81, 38.87, 38.95, 39.1, 38.88] +705.835 +35.29175 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3671, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_080', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 98112, 'MATRIX_DENSITY': 9.964234287345156e-05, 'TIME_S': 10.285452842712402, 'TIME_S_1KI': 2.8018122698753483, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 839.5388057041168, 'W': 65.64, 'J_1KI': 228.69485309292205, 'W_1KI': 17.880686461454644, 'W_D': 30.34825, 'J_D': 388.155599637568, 'W_D_1KI': 8.26702533369654, 'J_D_1KI': 2.2519818397429963} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_090.json b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_090.json new file mode 100644 index 0000000..eb07b88 --- /dev/null +++ b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_090.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 3559, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_090", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 100924, "MATRIX_DENSITY": 0.00010249820421722343, "TIME_S": 10.288646697998047, "TIME_S_1KI": 2.8908813425113924, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 827.4728859138489, "W": 64.54, "J_1KI": 232.50151332223908, "W_1KI": 18.134307389716213, "W_D": 29.44275000000001, "J_D": 377.48802776169794, "W_D_1KI": 8.272759202023044, "J_D_1KI": 2.324461703293915} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_090.output b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_090.output new file mode 100644 index 0000000..92e1dbd --- /dev/null +++ b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_090.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_090.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_090", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 100924, "MATRIX_DENSITY": 0.00010249820421722343, "TIME_S": 0.29495930671691895} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 31211, 12170], + [ 2, 2, 2, ..., 31373, 31376, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=100924, layout=torch.sparse_coo) +tensor([0.2607, 0.4837, 0.6430, ..., 0.6947, 0.6284, 0.2554]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_090 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 100924 +Density: 0.00010249820421722343 +Time: 0.29495930671691895 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '3559', '-m', 'matrices/as-caida_pruned/as-caida_G_090.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_090", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 100924, "MATRIX_DENSITY": 0.00010249820421722343, "TIME_S": 10.288646697998047} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 31211, 12170], + [ 2, 2, 2, ..., 31373, 31376, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=100924, layout=torch.sparse_coo) +tensor([0.4767, 0.7304, 0.9472, ..., 0.5940, 0.9603, 0.9730]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_090 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 100924 +Density: 0.00010249820421722343 +Time: 10.288646697998047 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 31211, 12170], + [ 2, 2, 2, ..., 31373, 31376, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=100924, layout=torch.sparse_coo) +tensor([0.4767, 0.7304, 0.9472, ..., 0.5940, 0.9603, 0.9730]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_090 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 100924 +Density: 0.00010249820421722343 +Time: 10.288646697998047 seconds + +[39.76, 38.69, 38.68, 38.81, 38.8, 38.63, 39.27, 38.64, 39.15, 38.97] +[64.54] +12.821085929870605 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3559, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_090', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 100924, 'MATRIX_DENSITY': 0.00010249820421722343, 'TIME_S': 10.288646697998047, 'TIME_S_1KI': 2.8908813425113924, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 827.4728859138489, 'W': 64.54} +[39.76, 38.69, 38.68, 38.81, 38.8, 38.63, 39.27, 38.64, 39.15, 38.97, 39.32, 39.14, 39.02, 39.15, 40.18, 39.14, 38.78, 38.75, 38.64, 38.9] +701.9449999999999 +35.097249999999995 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3559, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_090', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 100924, 'MATRIX_DENSITY': 0.00010249820421722343, 'TIME_S': 10.288646697998047, 'TIME_S_1KI': 2.8908813425113924, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 827.4728859138489, 'W': 64.54, 'J_1KI': 232.50151332223908, 'W_1KI': 18.134307389716213, 'W_D': 29.44275000000001, 'J_D': 377.48802776169794, 'W_D_1KI': 8.272759202023044, 'J_D_1KI': 2.324461703293915} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_100.json b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_100.json new file mode 100644 index 0000000..f712666 --- /dev/null +++ b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_100.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 3466, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_100", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102888, "MATRIX_DENSITY": 0.00010449283852702711, "TIME_S": 10.216759204864502, "TIME_S_1KI": 2.9477089454311893, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 824.1242619323731, "W": 64.28, "J_1KI": 237.773878226305, "W_1KI": 18.54587420657819, "W_D": 29.159750000000003, "J_D": 373.8527916440964, "W_D_1KI": 8.413084246970572, "J_D_1KI": 2.427318017014014} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_100.output b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_100.output new file mode 100644 index 0000000..c8fe2ea --- /dev/null +++ b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_100.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_100.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_100", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102888, "MATRIX_DENSITY": 0.00010449283852702711, "TIME_S": 0.30286097526550293} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 25970, 5128, 12170], + [ 2, 2, 2, ..., 31373, 31377, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=102888, layout=torch.sparse_coo) +tensor([0.1346, 0.6834, 0.0769, ..., 0.1899, 0.9126, 0.0749]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_100 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 102888 +Density: 0.00010449283852702711 +Time: 0.30286097526550293 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '3466', '-m', 'matrices/as-caida_pruned/as-caida_G_100.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_100", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102888, "MATRIX_DENSITY": 0.00010449283852702711, "TIME_S": 10.216759204864502} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 25970, 5128, 12170], + [ 2, 2, 2, ..., 31373, 31377, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=102888, layout=torch.sparse_coo) +tensor([0.8679, 0.3448, 0.8903, ..., 0.4126, 0.1445, 0.5625]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_100 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 102888 +Density: 0.00010449283852702711 +Time: 10.216759204864502 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 25970, 5128, 12170], + [ 2, 2, 2, ..., 31373, 31377, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=102888, layout=torch.sparse_coo) +tensor([0.8679, 0.3448, 0.8903, ..., 0.4126, 0.1445, 0.5625]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_100 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 102888 +Density: 0.00010449283852702711 +Time: 10.216759204864502 seconds + +[39.2, 38.49, 40.21, 39.1, 39.12, 38.92, 39.01, 38.86, 39.07, 38.7] +[64.28] +12.820850372314453 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3466, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_100', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102888, 'MATRIX_DENSITY': 0.00010449283852702711, 'TIME_S': 10.216759204864502, 'TIME_S_1KI': 2.9477089454311893, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 824.1242619323731, 'W': 64.28} +[39.2, 38.49, 40.21, 39.1, 39.12, 38.92, 39.01, 38.86, 39.07, 38.7, 40.79, 39.33, 39.12, 38.6, 38.68, 38.71, 38.73, 38.72, 38.79, 39.2] +702.405 +35.12025 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3466, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_100', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102888, 'MATRIX_DENSITY': 0.00010449283852702711, 'TIME_S': 10.216759204864502, 'TIME_S_1KI': 2.9477089454311893, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 824.1242619323731, 'W': 64.28, 'J_1KI': 237.773878226305, 'W_1KI': 18.54587420657819, 'W_D': 29.159750000000003, 'J_D': 373.8527916440964, 'W_D_1KI': 8.413084246970572, 'J_D_1KI': 2.427318017014014} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_110.json b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_110.json new file mode 100644 index 0000000..08f93ab --- /dev/null +++ b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_110.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 3410, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_110", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104846, "MATRIX_DENSITY": 0.0001064813792493263, "TIME_S": 10.241238594055176, "TIME_S_1KI": 3.003295775382749, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 826.9096626901627, "W": 64.42, "J_1KI": 242.49550225517967, "W_1KI": 18.891495601173023, "W_D": 28.857, "J_D": 370.41496641182897, "W_D_1KI": 8.462463343108503, "J_D_1KI": 2.481660804430646} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_110.output b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_110.output new file mode 100644 index 0000000..815c8c8 --- /dev/null +++ b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_110.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_110.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_110", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104846, "MATRIX_DENSITY": 0.0001064813792493263, "TIME_S": 0.30785369873046875} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 2616, 12170], + [ 2, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=104846, layout=torch.sparse_coo) +tensor([0.7479, 0.2250, 0.4771, ..., 0.2967, 0.2342, 0.3149]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_110 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 104846 +Density: 0.0001064813792493263 +Time: 0.30785369873046875 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '3410', '-m', 'matrices/as-caida_pruned/as-caida_G_110.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_110", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104846, "MATRIX_DENSITY": 0.0001064813792493263, "TIME_S": 10.241238594055176} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 2616, 12170], + [ 2, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=104846, layout=torch.sparse_coo) +tensor([0.7523, 0.7156, 0.5672, ..., 0.1173, 0.6715, 0.3557]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_110 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 104846 +Density: 0.0001064813792493263 +Time: 10.241238594055176 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 2616, 12170], + [ 2, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=104846, layout=torch.sparse_coo) +tensor([0.7523, 0.7156, 0.5672, ..., 0.1173, 0.6715, 0.3557]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_110 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 104846 +Density: 0.0001064813792493263 +Time: 10.241238594055176 seconds + +[39.38, 39.23, 39.25, 44.21, 39.55, 38.68, 39.01, 38.76, 38.91, 38.86] +[64.42] +12.836225748062134 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3410, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_110', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104846, 'MATRIX_DENSITY': 0.0001064813792493263, 'TIME_S': 10.241238594055176, 'TIME_S_1KI': 3.003295775382749, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 826.9096626901627, 'W': 64.42} +[39.38, 39.23, 39.25, 44.21, 39.55, 38.68, 39.01, 38.76, 38.91, 38.86, 44.69, 38.85, 38.75, 38.76, 39.51, 38.83, 39.06, 40.12, 38.94, 38.75] +711.26 +35.563 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3410, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_110', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104846, 'MATRIX_DENSITY': 0.0001064813792493263, 'TIME_S': 10.241238594055176, 'TIME_S_1KI': 3.003295775382749, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 826.9096626901627, 'W': 64.42, 'J_1KI': 242.49550225517967, 'W_1KI': 18.891495601173023, 'W_D': 28.857, 'J_D': 370.41496641182897, 'W_D_1KI': 8.462463343108503, 'J_D_1KI': 2.481660804430646} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_120.json b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_120.json new file mode 100644 index 0000000..742da2a --- /dev/null +++ b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_120.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 3357, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_120", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106510, "MATRIX_DENSITY": 0.0001081713341839054, "TIME_S": 10.11987042427063, "TIME_S_1KI": 3.0145577671345336, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 824.0880398988724, "W": 64.55, "J_1KI": 245.48347926686694, "W_1KI": 19.22847780756628, "W_D": 29.363499999999995, "J_D": 374.87388318467134, "W_D_1KI": 8.746946678582066, "J_D_1KI": 2.6055843546565582} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_120.output b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_120.output new file mode 100644 index 0000000..f5893c7 --- /dev/null +++ b/pytorch/output_as-caida_1core/epyc_7313p_1_coo_10_10_10_as-caida_G_120.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_120.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_120", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106510, "MATRIX_DENSITY": 0.0001081713341839054, "TIME_S": 0.31275391578674316} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 12170], + [ 2, 2, 2, ..., 31355, 31360, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=106510, layout=torch.sparse_coo) +tensor([0.0867, 0.2151, 0.5078, ..., 0.5251, 0.7813, 0.9678]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_120 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 106510 +Density: 0.0001081713341839054 +Time: 0.31275391578674316 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '3357', '-m', 'matrices/as-caida_pruned/as-caida_G_120.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_120", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106510, "MATRIX_DENSITY": 0.0001081713341839054, "TIME_S": 10.11987042427063} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 12170], + [ 2, 2, 2, ..., 31355, 31360, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=106510, layout=torch.sparse_coo) +tensor([0.0264, 0.0548, 0.6354, ..., 0.2854, 0.8133, 0.3306]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_120 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 106510 +Density: 0.0001081713341839054 +Time: 10.11987042427063 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 12170], + [ 2, 2, 2, ..., 31355, 31360, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=106510, layout=torch.sparse_coo) +tensor([0.0264, 0.0548, 0.6354, ..., 0.2854, 0.8133, 0.3306]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_120 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 106510 +Density: 0.0001081713341839054 +Time: 10.11987042427063 seconds + +[40.83, 38.77, 39.28, 39.2, 40.1, 39.39, 38.83, 38.9, 38.73, 38.94] +[64.55] +12.766662120819092 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3357, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_120', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106510, 'MATRIX_DENSITY': 0.0001081713341839054, 'TIME_S': 10.11987042427063, 'TIME_S_1KI': 3.0145577671345336, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 824.0880398988724, 'W': 64.55} +[40.83, 38.77, 39.28, 39.2, 40.1, 39.39, 38.83, 38.9, 38.73, 38.94, 39.33, 38.72, 38.68, 38.62, 38.83, 38.96, 39.06, 39.56, 39.13, 38.84] +703.73 +35.1865 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3357, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_120', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106510, 'MATRIX_DENSITY': 0.0001081713341839054, 'TIME_S': 10.11987042427063, 'TIME_S_1KI': 3.0145577671345336, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 824.0880398988724, 'W': 64.55, 'J_1KI': 245.48347926686694, 'W_1KI': 19.22847780756628, 'W_D': 29.363499999999995, 'J_D': 374.87388318467134, 'W_D_1KI': 8.746946678582066, 'J_D_1KI': 2.6055843546565582} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_005.json b/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_005.json deleted file mode 100644 index 2cc2723..0000000 --- a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_005.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 43083, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 10.477100133895874, "TIME_S_1KI": 0.2431840896385088, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 851.2608031511307, "W": 65.15, "J_1KI": 19.758624124390845, "W_1KI": 1.5121973864401275, "W_D": 29.482000000000006, "J_D": 385.2167459478379, "W_D_1KI": 0.6843070352575262, "J_D_1KI": 0.01588345833060665} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_005.output b/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_005.output deleted file mode 100644 index ba290cf..0000000 --- a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_005.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_005.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 0.03452706336975098} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.7546, 0.5295, 0.0524, ..., 0.5498, 0.1309, 0.9141]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 0.03452706336975098 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '30410', '-m', 'matrices/as-caida_pruned/as-caida_G_005.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 7.411336183547974} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.6311, 0.0149, 0.4270, ..., 0.8172, 0.7151, 0.0022]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 7.411336183547974 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '43083', '-m', 'matrices/as-caida_pruned/as-caida_G_005.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 10.477100133895874} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.5533, 0.0502, 0.2758, ..., 0.2070, 0.2491, 0.2171]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 10.477100133895874 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.5533, 0.0502, 0.2758, ..., 0.2070, 0.2491, 0.2171]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 10.477100133895874 seconds - -[40.15, 38.92, 39.51, 39.69, 38.96, 39.49, 39.05, 39.12, 39.72, 39.3] -[65.15] -13.06616735458374 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 43083, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_005', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 70026, 'MATRIX_DENSITY': 7.111825976492498e-05, 'TIME_S': 10.477100133895874, 'TIME_S_1KI': 0.2431840896385088, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 851.2608031511307, 'W': 65.15} -[40.15, 38.92, 39.51, 39.69, 38.96, 39.49, 39.05, 39.12, 39.72, 39.3, 39.55, 39.14, 39.79, 38.87, 39.85, 39.3, 43.36, 40.57, 39.04, 38.96] -713.36 -35.668 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 43083, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_005', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 70026, 'MATRIX_DENSITY': 7.111825976492498e-05, 'TIME_S': 10.477100133895874, 'TIME_S_1KI': 0.2431840896385088, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 851.2608031511307, 'W': 65.15, 'J_1KI': 19.758624124390845, 'W_1KI': 1.5121973864401275, 'W_D': 29.482000000000006, 'J_D': 385.2167459478379, 'W_D_1KI': 0.6843070352575262, 'J_D_1KI': 0.01588345833060665} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_015.json b/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_015.json deleted file mode 100644 index 61da900..0000000 --- a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_015.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 38858, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 10.485401391983032, "TIME_S_1KI": 0.269838936434789, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 857.5578077483177, "W": 65.17, "J_1KI": 22.069015588767247, "W_1KI": 1.6771321220855422, "W_D": 29.260250000000006, "J_D": 385.0292441946865, "W_D_1KI": 0.7530045293118536, "J_D_1KI": 0.019378365569814544} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_015.output b/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_015.output deleted file mode 100644 index 7a0d3ec..0000000 --- a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_015.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_015.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 0.03696393966674805} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.7337, 0.4673, 0.2553, ..., 0.7979, 0.4172, 0.5121]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 0.03696393966674805 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '28406', '-m', 'matrices/as-caida_pruned/as-caida_G_015.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 7.675543546676636} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.1361, 0.1751, 0.5794, ..., 0.9159, 0.1555, 0.6066]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 7.675543546676636 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '38858', '-m', 'matrices/as-caida_pruned/as-caida_G_015.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 10.485401391983032} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.0846, 0.1902, 0.2817, ..., 0.3581, 0.4321, 0.1894]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 10.485401391983032 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.0846, 0.1902, 0.2817, ..., 0.3581, 0.4321, 0.1894]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 10.485401391983032 seconds - -[40.2, 38.88, 39.37, 39.26, 39.72, 44.47, 39.38, 38.79, 39.26, 39.05] -[65.17] -13.15878176689148 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 38858, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_015', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 77124, 'MATRIX_DENSITY': 7.832697378273889e-05, 'TIME_S': 10.485401391983032, 'TIME_S_1KI': 0.269838936434789, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 857.5578077483177, 'W': 65.17} -[40.2, 38.88, 39.37, 39.26, 39.72, 44.47, 39.38, 38.79, 39.26, 39.05, 39.64, 39.12, 44.98, 38.93, 39.41, 39.85, 39.14, 39.66, 39.04, 38.98] -718.1949999999999 -35.909749999999995 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 38858, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_015', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 77124, 'MATRIX_DENSITY': 7.832697378273889e-05, 'TIME_S': 10.485401391983032, 'TIME_S_1KI': 0.269838936434789, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 857.5578077483177, 'W': 65.17, 'J_1KI': 22.069015588767247, 'W_1KI': 1.6771321220855422, 'W_D': 29.260250000000006, 'J_D': 385.0292441946865, 'W_D_1KI': 0.7530045293118536, 'J_D_1KI': 0.019378365569814544} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_025.json b/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_025.json deleted file mode 100644 index 4eb5957..0000000 --- a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_025.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 36057, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 10.52190113067627, "TIME_S_1KI": 0.29181299416690987, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 870.8484698581696, "W": 65.88, "J_1KI": 24.151994615696523, "W_1KI": 1.8271070804559446, "W_D": 30.036999999999992, "J_D": 397.05032618594157, "W_D_1KI": 0.8330421277421858, "J_D_1KI": 0.02310347859617233} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_025.output b/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_025.output deleted file mode 100644 index 4921121..0000000 --- a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_025.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_025.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 0.03890419006347656} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.5918, 0.7842, 0.2922, ..., 0.7811, 0.4187, 0.7857]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 0.03890419006347656 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '26989', '-m', 'matrices/as-caida_pruned/as-caida_G_025.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 7.8591344356536865} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.4944, 0.9993, 0.3541, ..., 0.8129, 0.1587, 0.8643]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 7.8591344356536865 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '36057', '-m', 'matrices/as-caida_pruned/as-caida_G_025.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 10.52190113067627} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.3640, 0.1663, 0.5631, ..., 0.5487, 0.9918, 0.2869]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 10.52190113067627 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.3640, 0.1663, 0.5631, ..., 0.5487, 0.9918, 0.2869]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 10.52190113067627 seconds - -[40.01, 39.03, 39.43, 39.2, 39.48, 39.28, 44.38, 38.91, 39.07, 39.26] -[65.88] -13.218707799911499 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 36057, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_025', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 85850, 'MATRIX_DENSITY': 8.718908121010495e-05, 'TIME_S': 10.52190113067627, 'TIME_S_1KI': 0.29181299416690987, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 870.8484698581696, 'W': 65.88} -[40.01, 39.03, 39.43, 39.2, 39.48, 39.28, 44.38, 38.91, 39.07, 39.26, 40.2, 38.93, 39.03, 44.7, 39.08, 39.28, 39.65, 38.85, 39.34, 38.97] -716.8600000000001 -35.843 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 36057, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_025', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 85850, 'MATRIX_DENSITY': 8.718908121010495e-05, 'TIME_S': 10.52190113067627, 'TIME_S_1KI': 0.29181299416690987, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 870.8484698581696, 'W': 65.88, 'J_1KI': 24.151994615696523, 'W_1KI': 1.8271070804559446, 'W_D': 30.036999999999992, 'J_D': 397.05032618594157, 'W_D_1KI': 0.8330421277421858, 'J_D_1KI': 0.02310347859617233} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_035.json b/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_035.json deleted file mode 100644 index c0ad406..0000000 --- a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_035.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 35173, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 10.447309255599976, "TIME_S_1KI": 0.29702639114093127, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 861.1301214361191, "W": 65.59, "J_1KI": 24.48270325067862, "W_1KI": 1.8647826457794332, "W_D": 29.845750000000002, "J_D": 391.84440191876894, "W_D_1KI": 0.8485414948966538, "J_D_1KI": 0.024124797284754036} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_035.output b/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_035.output deleted file mode 100644 index bf75d87..0000000 --- a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_035.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_035.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 0.03972125053405762} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.7495, 0.7125, 0.1641, ..., 0.3237, 0.6914, 0.4632]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 0.03972125053405762 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '26434', '-m', 'matrices/as-caida_pruned/as-caida_G_035.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 7.891004800796509} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.4191, 0.3155, 0.4177, ..., 0.6606, 0.8993, 0.7459]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 7.891004800796509 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '35173', '-m', 'matrices/as-caida_pruned/as-caida_G_035.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 10.447309255599976} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.1483, 0.5699, 0.1162, ..., 0.9827, 0.6104, 0.1631]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 10.447309255599976 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.1483, 0.5699, 0.1162, ..., 0.9827, 0.6104, 0.1631]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 10.447309255599976 seconds - -[39.68, 44.32, 39.73, 38.97, 39.63, 39.5, 39.25, 39.37, 39.5, 39.02] -[65.59] -13.128984928131104 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 35173, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_035', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 87560, 'MATRIX_DENSITY': 8.892575364888514e-05, 'TIME_S': 10.447309255599976, 'TIME_S_1KI': 0.29702639114093127, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 861.1301214361191, 'W': 65.59} -[39.68, 44.32, 39.73, 38.97, 39.63, 39.5, 39.25, 39.37, 39.5, 39.02, 39.68, 38.91, 39.15, 39.15, 41.28, 39.51, 39.35, 39.72, 38.94, 38.83] -714.885 -35.74425 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 35173, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_035', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 87560, 'MATRIX_DENSITY': 8.892575364888514e-05, 'TIME_S': 10.447309255599976, 'TIME_S_1KI': 0.29702639114093127, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 861.1301214361191, 'W': 65.59, 'J_1KI': 24.48270325067862, 'W_1KI': 1.8647826457794332, 'W_D': 29.845750000000002, 'J_D': 391.84440191876894, 'W_D_1KI': 0.8485414948966538, 'J_D_1KI': 0.024124797284754036} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_045.json b/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_045.json deleted file mode 100644 index cb38459..0000000 --- a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_045.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 34316, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 10.484640121459961, "TIME_S_1KI": 0.3055321168393741, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 862.8062327885629, "W": 65.67, "J_1KI": 25.142972164254658, "W_1KI": 1.9136845786222172, "W_D": 30.424499999999995, "J_D": 399.73272772157185, "W_D_1KI": 0.8865980883552861, "J_D_1KI": 0.025836288855207078} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_045.output b/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_045.output deleted file mode 100644 index 95736a8..0000000 --- a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_045.output +++ /dev/null @@ -1,105 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_045.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 0.04044318199157715} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.9025, 0.6353, 0.0498, ..., 0.1623, 0.8280, 0.3887]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 0.04044318199157715 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '25962', '-m', 'matrices/as-caida_pruned/as-caida_G_045.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 8.462014198303223} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.0457, 0.1982, 0.5371, ..., 0.8451, 0.9072, 0.4847]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 8.462014198303223 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '32214', '-m', 'matrices/as-caida_pruned/as-caida_G_045.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 9.856708288192749} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.9221, 0.7340, 0.0148, ..., 0.4303, 0.3457, 0.2080]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 9.856708288192749 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '34316', '-m', 'matrices/as-caida_pruned/as-caida_G_045.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 10.484640121459961} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.9270, 0.0174, 0.7942, ..., 0.2212, 0.8209, 0.0128]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 10.484640121459961 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.9270, 0.0174, 0.7942, ..., 0.2212, 0.8209, 0.0128]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 10.484640121459961 seconds - -[40.45, 39.27, 39.34, 38.8, 39.26, 39.86, 39.18, 39.18, 38.87, 39.35] -[65.67] -13.138514280319214 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 34316, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_045', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89152, 'MATRIX_DENSITY': 9.054258553341032e-05, 'TIME_S': 10.484640121459961, 'TIME_S_1KI': 0.3055321168393741, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 862.8062327885629, 'W': 65.67} -[40.45, 39.27, 39.34, 38.8, 39.26, 39.86, 39.18, 39.18, 38.87, 39.35, 39.9, 39.2, 38.96, 38.82, 39.04, 38.79, 39.3, 38.81, 38.94, 38.88] -704.9100000000001 -35.24550000000001 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 34316, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_045', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89152, 'MATRIX_DENSITY': 9.054258553341032e-05, 'TIME_S': 10.484640121459961, 'TIME_S_1KI': 0.3055321168393741, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 862.8062327885629, 'W': 65.67, 'J_1KI': 25.142972164254658, 'W_1KI': 1.9136845786222172, 'W_D': 30.424499999999995, 'J_D': 399.73272772157185, 'W_D_1KI': 0.8865980883552861, 'J_D_1KI': 0.025836288855207078} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_055.json b/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_055.json deleted file mode 100644 index c15af60..0000000 --- a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_055.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 33510, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 10.483581304550171, "TIME_S_1KI": 0.31284933764697614, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 858.1138673710824, "W": 65.23, "J_1KI": 25.60769523637966, "W_1KI": 1.9465831095195465, "W_D": 29.08325, "J_D": 382.59604680699107, "W_D_1KI": 0.8678976424947777, "J_D_1KI": 0.02589966107116615} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_055.output b/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_055.output deleted file mode 100644 index df4afb4..0000000 --- a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_055.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_055.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 0.04136204719543457} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.2193, 0.1796, 0.4399, ..., 0.4451, 0.3006, 0.2875]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 0.04136204719543457 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '25385', '-m', 'matrices/as-caida_pruned/as-caida_G_055.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 7.95404314994812} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.9926, 0.3031, 0.5874, ..., 0.7443, 0.4408, 0.2995]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 7.95404314994812 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '33510', '-m', 'matrices/as-caida_pruned/as-caida_G_055.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 10.483581304550171} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.7506, 0.9011, 0.4947, ..., 0.5418, 0.4388, 0.4192]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 10.483581304550171 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.7506, 0.9011, 0.4947, ..., 0.5418, 0.4388, 0.4192]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 10.483581304550171 seconds - -[40.21, 39.23, 39.1, 39.38, 39.37, 39.09, 39.81, 39.02, 40.1, 38.85] -[65.23] -13.155202627182007 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 33510, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_055', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 91476, 'MATRIX_DENSITY': 9.290283509348351e-05, 'TIME_S': 10.483581304550171, 'TIME_S_1KI': 0.31284933764697614, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 858.1138673710824, 'W': 65.23} -[40.21, 39.23, 39.1, 39.38, 39.37, 39.09, 39.81, 39.02, 40.1, 38.85, 39.87, 39.56, 40.29, 39.1, 50.99, 41.72, 39.11, 38.85, 39.27, 38.96] -722.9350000000001 -36.146750000000004 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 33510, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_055', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 91476, 'MATRIX_DENSITY': 9.290283509348351e-05, 'TIME_S': 10.483581304550171, 'TIME_S_1KI': 0.31284933764697614, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 858.1138673710824, 'W': 65.23, 'J_1KI': 25.60769523637966, 'W_1KI': 1.9465831095195465, 'W_D': 29.08325, 'J_D': 382.59604680699107, 'W_D_1KI': 0.8678976424947777, 'J_D_1KI': 0.02589966107116615} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_065.json b/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_065.json deleted file mode 100644 index 2ed5a03..0000000 --- a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_065.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 32796, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 10.488871335983276, "TIME_S_1KI": 0.3198216653245297, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 858.9457808732986, "W": 64.95, "J_1KI": 26.190565339471235, "W_1KI": 1.9804244420051227, "W_D": 29.534750000000003, "J_D": 390.588897638917, "W_D_1KI": 0.900559519453592, "J_D_1KI": 0.027459431621343823} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_065.output b/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_065.output deleted file mode 100644 index 4e4ed45..0000000 --- a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_065.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_065.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 0.042150020599365234} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.1926, 0.4247, 0.2336, ..., 0.9542, 0.9130, 0.4279]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 0.042150020599365234 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '24911', '-m', 'matrices/as-caida_pruned/as-caida_G_065.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 7.975389719009399} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.7725, 0.0253, 0.1316, ..., 0.7396, 0.9784, 0.7056]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 7.975389719009399 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '32796', '-m', 'matrices/as-caida_pruned/as-caida_G_065.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 10.488871335983276} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.1802, 0.5827, 0.7701, ..., 0.8741, 0.2809, 0.8210]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 10.488871335983276 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.1802, 0.5827, 0.7701, ..., 0.8741, 0.2809, 0.8210]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 10.488871335983276 seconds - -[39.86, 39.29, 39.08, 38.93, 39.59, 39.04, 39.49, 40.53, 39.33, 39.32] -[64.95] -13.22472333908081 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 32796, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_065', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 95068, 'MATRIX_DENSITY': 9.655086281283934e-05, 'TIME_S': 10.488871335983276, 'TIME_S_1KI': 0.3198216653245297, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 858.9457808732986, 'W': 64.95} -[39.86, 39.29, 39.08, 38.93, 39.59, 39.04, 39.49, 40.53, 39.33, 39.32, 40.13, 40.37, 38.95, 38.92, 39.06, 38.93, 38.92, 38.89, 39.88, 38.9] -708.305 -35.41525 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 32796, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_065', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 95068, 'MATRIX_DENSITY': 9.655086281283934e-05, 'TIME_S': 10.488871335983276, 'TIME_S_1KI': 0.3198216653245297, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 858.9457808732986, 'W': 64.95, 'J_1KI': 26.190565339471235, 'W_1KI': 1.9804244420051227, 'W_D': 29.534750000000003, 'J_D': 390.588897638917, 'W_D_1KI': 0.900559519453592, 'J_D_1KI': 0.027459431621343823} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_075.json b/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_075.json deleted file mode 100644 index bc43cfa..0000000 --- a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_075.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 32317, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 10.516169548034668, "TIME_S_1KI": 0.32540673787896984, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 867.264186372757, "W": 65.48, "J_1KI": 26.836160113028964, "W_1KI": 2.026178172478881, "W_D": 19.231750000000005, "J_D": 254.71912059062726, "W_D_1KI": 0.5950970077668103, "J_D_1KI": 0.018414364197382502} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_075.output b/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_075.output deleted file mode 100644 index 419c65f..0000000 --- a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_075.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_075.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 0.04397153854370117} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.8835, 0.2905, 0.1746, ..., 0.2508, 0.5375, 0.9105]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 0.04397153854370117 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '23879', '-m', 'matrices/as-caida_pruned/as-caida_G_075.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 7.75836181640625} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.2327, 0.1142, 0.1910, ..., 0.9478, 0.2863, 0.7780]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 7.75836181640625 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '32317', '-m', 'matrices/as-caida_pruned/as-caida_G_075.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 10.516169548034668} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.8802, 0.8846, 0.9410, ..., 0.6286, 0.1450, 0.7013]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 10.516169548034668 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.8802, 0.8846, 0.9410, ..., 0.6286, 0.1450, 0.7013]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 10.516169548034668 seconds - -[39.64, 38.82, 40.18, 38.79, 38.93, 39.23, 39.2, 38.83, 40.26, 39.15] -[65.48] -13.244718790054321 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 32317, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_075', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 97492, 'MATRIX_DENSITY': 9.901267216465406e-05, 'TIME_S': 10.516169548034668, 'TIME_S_1KI': 0.32540673787896984, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 867.264186372757, 'W': 65.48} -[39.64, 38.82, 40.18, 38.79, 38.93, 39.23, 39.2, 38.83, 40.26, 39.15, 68.29, 72.7, 70.94, 63.35, 66.33, 64.79, 60.51, 60.49, 58.48, 39.19] -924.965 -46.24825 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 32317, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_075', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 97492, 'MATRIX_DENSITY': 9.901267216465406e-05, 'TIME_S': 10.516169548034668, 'TIME_S_1KI': 0.32540673787896984, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 867.264186372757, 'W': 65.48, 'J_1KI': 26.836160113028964, 'W_1KI': 2.026178172478881, 'W_D': 19.231750000000005, 'J_D': 254.71912059062726, 'W_D_1KI': 0.5950970077668103, 'J_D_1KI': 0.018414364197382502} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_085.json b/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_085.json deleted file mode 100644 index b427c33..0000000 --- a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_085.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 31855, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 10.502902507781982, "TIME_S_1KI": 0.3297097004483435, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 855.4069772052765, "W": 65.08, "J_1KI": 26.85314635709548, "W_1KI": 2.043007377177837, "W_D": 29.676000000000002, "J_D": 390.0592725191117, "W_D_1KI": 0.9315962957149585, "J_D_1KI": 0.029244900195101505} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_085.output b/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_085.output deleted file mode 100644 index ea5504f..0000000 --- a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_085.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_085.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 0.04311323165893555} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.1764, 0.0789, 0.0500, ..., 0.7871, 0.4459, 0.1044]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 0.04311323165893555 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '24354', '-m', 'matrices/as-caida_pruned/as-caida_G_085.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 8.02746057510376} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.4941, 0.1029, 0.9153, ..., 0.6749, 0.6031, 0.7456]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 8.02746057510376 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '31855', '-m', 'matrices/as-caida_pruned/as-caida_G_085.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 10.502902507781982} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.8603, 0.6409, 0.8738, ..., 0.6986, 0.4715, 0.6839]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 10.502902507781982 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.8603, 0.6409, 0.8738, ..., 0.6986, 0.4715, 0.6839]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 10.502902507781982 seconds - -[39.81, 38.99, 39.18, 39.42, 39.32, 38.97, 39.04, 38.84, 38.98, 38.98] -[65.08] -13.143930196762085 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 31855, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_085', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 99166, 'MATRIX_DENSITY': 0.0001007127830784073, 'TIME_S': 10.502902507781982, 'TIME_S_1KI': 0.3297097004483435, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 855.4069772052765, 'W': 65.08} -[39.81, 38.99, 39.18, 39.42, 39.32, 38.97, 39.04, 38.84, 38.98, 38.98, 40.72, 41.01, 39.07, 38.92, 39.38, 39.46, 39.36, 39.9, 39.05, 38.87] -708.0799999999999 -35.403999999999996 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 31855, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_085', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 99166, 'MATRIX_DENSITY': 0.0001007127830784073, 'TIME_S': 10.502902507781982, 'TIME_S_1KI': 0.3297097004483435, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 855.4069772052765, 'W': 65.08, 'J_1KI': 26.85314635709548, 'W_1KI': 2.043007377177837, 'W_D': 29.676000000000002, 'J_D': 390.0592725191117, 'W_D_1KI': 0.9315962957149585, 'J_D_1KI': 0.029244900195101505} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_095.json b/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_095.json deleted file mode 100644 index c7609a2..0000000 --- a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_095.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 30992, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 10.461604595184326, "TIME_S_1KI": 0.3375582277744039, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 855.3391364908218, "W": 65.31, "J_1KI": 27.598707295134933, "W_1KI": 2.107318017552917, "W_D": 30.06725, "J_D": 393.77883404767516, "W_D_1KI": 0.9701616546205473, "J_D_1KI": 0.03130361559823655} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_095.output b/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_095.output deleted file mode 100644 index 4dc3c3e..0000000 --- a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_095.output +++ /dev/null @@ -1,90 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_095.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 0.04361534118652344} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([1.2265e-01, 9.2792e-01, 5.3994e-01, ..., 3.2830e-04, 7.8885e-01, - 4.0460e-01]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 0.04361534118652344 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '24074', '-m', 'matrices/as-caida_pruned/as-caida_G_095.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 8.15611457824707} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.1199, 0.5589, 0.0427, ..., 0.8467, 0.0895, 0.6403]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 8.15611457824707 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '30992', '-m', 'matrices/as-caida_pruned/as-caida_G_095.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 10.461604595184326} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.8237, 0.6815, 0.7303, ..., 0.8961, 0.9057, 0.1353]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 10.461604595184326 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.8237, 0.6815, 0.7303, ..., 0.8961, 0.9057, 0.1353]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 10.461604595184326 seconds - -[39.49, 38.75, 39.8, 39.15, 38.92, 38.75, 39.12, 39.0, 39.17, 39.28] -[65.31] -13.09660291671753 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 30992, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_095', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102290, 'MATRIX_DENSITY': 0.00010388551097241275, 'TIME_S': 10.461604595184326, 'TIME_S_1KI': 0.3375582277744039, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 855.3391364908218, 'W': 65.31} -[39.49, 38.75, 39.8, 39.15, 38.92, 38.75, 39.12, 39.0, 39.17, 39.28, 39.59, 39.49, 39.32, 39.13, 39.22, 39.92, 38.97, 38.72, 38.76, 38.97] -704.855 -35.24275 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 30992, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_095', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102290, 'MATRIX_DENSITY': 0.00010388551097241275, 'TIME_S': 10.461604595184326, 'TIME_S_1KI': 0.3375582277744039, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 855.3391364908218, 'W': 65.31, 'J_1KI': 27.598707295134933, 'W_1KI': 2.107318017552917, 'W_D': 30.06725, 'J_D': 393.77883404767516, 'W_D_1KI': 0.9701616546205473, 'J_D_1KI': 0.03130361559823655} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_105.json b/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_105.json deleted file mode 100644 index 45b4823..0000000 --- a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_105.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 30536, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 10.540117979049683, "TIME_S_1KI": 0.3451702246217475, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 861.2643821239473, "W": 65.4, "J_1KI": 28.204885450744932, "W_1KI": 2.141734346345298, "W_D": 29.81275, "J_D": 392.6094756600261, "W_D_1KI": 0.9763148414985592, "J_D_1KI": 0.031972584539512676} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_105.output b/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_105.output deleted file mode 100644 index 6c9a46f..0000000 --- a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_105.output +++ /dev/null @@ -1,89 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_105.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 0.044251441955566406} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.6090, 0.7079, 0.0401, ..., 0.3126, 0.5822, 0.6098]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 0.044251441955566406 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '23728', '-m', 'matrices/as-caida_pruned/as-caida_G_105.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 8.158772230148315} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.2992, 0.2859, 0.3611, ..., 0.2485, 0.8593, 0.7485]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 8.158772230148315 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '30536', '-m', 'matrices/as-caida_pruned/as-caida_G_105.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 10.540117979049683} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.7959, 0.6851, 0.8740, ..., 0.0031, 0.3114, 0.8796]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 10.540117979049683 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.7959, 0.6851, 0.8740, ..., 0.0031, 0.3114, 0.8796]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 10.540117979049683 seconds - -[40.59, 39.08, 39.45, 39.57, 39.25, 39.0, 39.96, 39.75, 39.54, 39.19] -[65.4] -13.169180154800415 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 30536, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_105', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104726, 'MATRIX_DENSITY': 0.00010635950749923647, 'TIME_S': 10.540117979049683, 'TIME_S_1KI': 0.3451702246217475, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 861.2643821239473, 'W': 65.4} -[40.59, 39.08, 39.45, 39.57, 39.25, 39.0, 39.96, 39.75, 39.54, 39.19, 40.78, 41.19, 39.05, 39.13, 39.19, 39.09, 39.45, 39.45, 39.13, 40.37] -711.7450000000001 -35.587250000000004 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 30536, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_105', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104726, 'MATRIX_DENSITY': 0.00010635950749923647, 'TIME_S': 10.540117979049683, 'TIME_S_1KI': 0.3451702246217475, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 861.2643821239473, 'W': 65.4, 'J_1KI': 28.204885450744932, 'W_1KI': 2.141734346345298, 'W_D': 29.81275, 'J_D': 392.6094756600261, 'W_D_1KI': 0.9763148414985592, 'J_D_1KI': 0.031972584539512676} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_115.json b/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_115.json deleted file mode 100644 index b5a6d38..0000000 --- a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_115.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 30237, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 10.500168800354004, "TIME_S_1KI": 0.34726225486503304, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 857.1604746675492, "W": 65.26, "J_1KI": 28.34806610006116, "W_1KI": 2.1582828984356914, "W_D": 29.86950000000001, "J_D": 392.3223229862453, "W_D_1KI": 0.9878460164698883, "J_D_1KI": 0.032670106706018734} diff --git a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_115.output b/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_115.output deleted file mode 100644 index 5bbb6c5..0000000 --- a/pytorch/output_as-caida_1core/epyc_7313p_1_csr_10_10_10_as-caida_G_115.output +++ /dev/null @@ -1,89 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_115.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 0.04454636573791504} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.7341, 0.3777, 0.6942, ..., 0.5169, 0.0997, 0.0147]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 0.04454636573791504 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '23570', '-m', 'matrices/as-caida_pruned/as-caida_G_115.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 8.184704303741455} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.5580, 0.0255, 0.1246, ..., 0.1598, 0.8729, 0.3337]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 8.184704303741455 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '30237', '-m', 'matrices/as-caida_pruned/as-caida_G_115.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 10.500168800354004} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.2420, 0.6857, 0.8364, ..., 0.8458, 0.0047, 0.6450]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 10.500168800354004 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.2420, 0.6857, 0.8364, ..., 0.8458, 0.0047, 0.6450]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 10.500168800354004 seconds - -[40.88, 39.7, 39.32, 38.97, 39.02, 38.99, 39.0, 38.96, 38.99, 39.43] -[65.26] -13.134546041488647 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 30237, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_115', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106312, 'MATRIX_DENSITY': 0.00010797024579625715, 'TIME_S': 10.500168800354004, 'TIME_S_1KI': 0.34726225486503304, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 857.1604746675492, 'W': 65.26} -[40.88, 39.7, 39.32, 38.97, 39.02, 38.99, 39.0, 38.96, 38.99, 39.43, 42.02, 39.37, 39.48, 38.85, 39.01, 39.6, 39.28, 38.9, 39.76, 38.89] -707.81 -35.390499999999996 -{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 30237, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_115', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106312, 'MATRIX_DENSITY': 0.00010797024579625715, 'TIME_S': 10.500168800354004, 'TIME_S_1KI': 0.34726225486503304, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 857.1604746675492, 'W': 65.26, 'J_1KI': 28.34806610006116, 'W_1KI': 2.1582828984356914, 'W_D': 29.86950000000001, 'J_D': 392.3223229862453, 'W_D_1KI': 0.9878460164698883, 'J_D_1KI': 0.032670106706018734} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_010.json b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_010.json new file mode 100644 index 0000000..4b9f352 --- /dev/null +++ b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_010.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 3790, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 10.07475233078003, "TIME_S_1KI": 2.65824599756729, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 731.8950152492523, "W": 52.68, "J_1KI": 193.11214122671566, "W_1KI": 13.899736147757256, "W_D": 35.516000000000005, "J_D": 493.43172668170934, "W_D_1KI": 9.370976253298155, "J_D_1KI": 2.472553101134078} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_010.output b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_010.output new file mode 100644 index 0000000..0ebaca7 --- /dev/null +++ b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_010.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_010.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 0.2769815921783447} + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.8960, 0.3749, 0.9657, ..., 0.2230, 0.7966, 0.0159]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 0.2769815921783447 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '3790', '-m', 'matrices/as-caida_pruned/as-caida_G_010.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 10.07475233078003} + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.6474, 0.0251, 0.6591, ..., 0.8505, 0.7101, 0.8498]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 10.07475233078003 seconds + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.6474, 0.0251, 0.6591, ..., 0.8505, 0.7101, 0.8498]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 10.07475233078003 seconds + +[18.98, 18.79, 22.75, 18.97, 18.58, 19.56, 19.02, 18.67, 18.78, 19.18] +[52.68] +13.893223524093628 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3790, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_010', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 74994, 'MATRIX_DENSITY': 7.616375021864427e-05, 'TIME_S': 10.07475233078003, 'TIME_S_1KI': 2.65824599756729, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 731.8950152492523, 'W': 52.68} +[18.98, 18.79, 22.75, 18.97, 18.58, 19.56, 19.02, 18.67, 18.78, 19.18, 19.04, 19.32, 18.81, 18.86, 18.6, 18.51, 18.63, 18.78, 18.69, 18.72] +343.28 +17.163999999999998 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3790, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_010', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 74994, 'MATRIX_DENSITY': 7.616375021864427e-05, 'TIME_S': 10.07475233078003, 'TIME_S_1KI': 2.65824599756729, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 731.8950152492523, 'W': 52.68, 'J_1KI': 193.11214122671566, 'W_1KI': 13.899736147757256, 'W_D': 35.516000000000005, 'J_D': 493.43172668170934, 'W_D_1KI': 9.370976253298155, 'J_D_1KI': 2.472553101134078} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_020.json b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_020.json new file mode 100644 index 0000000..08b56c8 --- /dev/null +++ b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_020.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 3518, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_020", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 80948, "MATRIX_DENSITY": 8.221062021893506e-05, "TIME_S": 10.111847162246704, "TIME_S_1KI": 2.87431698756302, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 736.1022858762741, "W": 53.06, "J_1KI": 209.2388532905839, "W_1KI": 15.082433200682207, "W_D": 36.133, "J_D": 501.2737258870602, "W_D_1KI": 10.270892552586696, "J_D_1KI": 2.919526024043973} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_020.output b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_020.output new file mode 100644 index 0000000..0b9fa77 --- /dev/null +++ b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_020.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_020.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_020", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 80948, "MATRIX_DENSITY": 8.221062021893506e-05, "TIME_S": 0.2984433174133301} + +tensor(indices=tensor([[ 1040, 5699, 106, ..., 31378, 17998, 31377], + [ 0, 0, 2, ..., 31377, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 1.]), + size=(31379, 31379), nnz=80948, layout=torch.sparse_coo) +tensor([0.4460, 0.0480, 0.9008, ..., 0.7954, 0.4313, 0.1974]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_020 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 80948 +Density: 8.221062021893506e-05 +Time: 0.2984433174133301 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '3518', '-m', 'matrices/as-caida_pruned/as-caida_G_020.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_020", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 80948, "MATRIX_DENSITY": 8.221062021893506e-05, "TIME_S": 10.111847162246704} + +tensor(indices=tensor([[ 1040, 5699, 106, ..., 31378, 17998, 31377], + [ 0, 0, 2, ..., 31377, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 1.]), + size=(31379, 31379), nnz=80948, layout=torch.sparse_coo) +tensor([0.9483, 0.3621, 0.6533, ..., 0.1002, 0.5049, 0.6191]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_020 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 80948 +Density: 8.221062021893506e-05 +Time: 10.111847162246704 seconds + +tensor(indices=tensor([[ 1040, 5699, 106, ..., 31378, 17998, 31377], + [ 0, 0, 2, ..., 31377, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 1.]), + size=(31379, 31379), nnz=80948, layout=torch.sparse_coo) +tensor([0.9483, 0.3621, 0.6533, ..., 0.1002, 0.5049, 0.6191]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_020 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 80948 +Density: 8.221062021893506e-05 +Time: 10.111847162246704 seconds + +[18.96, 18.58, 18.72, 18.63, 18.68, 18.61, 18.99, 18.58, 19.62, 18.63] +[53.06] +13.873017072677612 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3518, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_020', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 80948, 'MATRIX_DENSITY': 8.221062021893506e-05, 'TIME_S': 10.111847162246704, 'TIME_S_1KI': 2.87431698756302, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 736.1022858762741, 'W': 53.06} +[18.96, 18.58, 18.72, 18.63, 18.68, 18.61, 18.99, 18.58, 19.62, 18.63, 20.16, 18.59, 18.91, 18.65, 18.94, 18.56, 18.69, 18.8, 18.78, 18.67] +338.53999999999996 +16.927 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3518, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_020', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 80948, 'MATRIX_DENSITY': 8.221062021893506e-05, 'TIME_S': 10.111847162246704, 'TIME_S_1KI': 2.87431698756302, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 736.1022858762741, 'W': 53.06, 'J_1KI': 209.2388532905839, 'W_1KI': 15.082433200682207, 'W_D': 36.133, 'J_D': 501.2737258870602, 'W_D_1KI': 10.270892552586696, 'J_D_1KI': 2.919526024043973} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_030.json b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_030.json new file mode 100644 index 0000000..5d82afe --- /dev/null +++ b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_030.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 3294, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_030", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 86850, "MATRIX_DENSITY": 8.820467912752026e-05, "TIME_S": 10.230846405029297, "TIME_S_1KI": 3.1059035837976006, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 738.3630283427239, "W": 52.93, "J_1KI": 224.15392481564172, "W_1KI": 16.068609593199756, "W_D": 35.9885, "J_D": 502.0324550446272, "W_D_1KI": 10.925470552519732, "J_D_1KI": 3.316779159842056} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_030.output b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_030.output new file mode 100644 index 0000000..fb15217 --- /dev/null +++ b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_030.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_030.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_030", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 86850, "MATRIX_DENSITY": 8.820467912752026e-05, "TIME_S": 0.3187541961669922} + +tensor(indices=tensor([[ 1809, 21783, 106, ..., 7018, 160, 882], + [ 0, 0, 2, ..., 31357, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=86850, layout=torch.sparse_coo) +tensor([0.0863, 0.5454, 0.2256, ..., 0.2332, 0.3855, 0.9152]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_030 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 86850 +Density: 8.820467912752026e-05 +Time: 0.3187541961669922 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '3294', '-m', 'matrices/as-caida_pruned/as-caida_G_030.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_030", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 86850, "MATRIX_DENSITY": 8.820467912752026e-05, "TIME_S": 10.230846405029297} + +tensor(indices=tensor([[ 1809, 21783, 106, ..., 7018, 160, 882], + [ 0, 0, 2, ..., 31357, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=86850, layout=torch.sparse_coo) +tensor([0.1619, 0.9494, 0.3484, ..., 0.8281, 0.3278, 0.6453]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_030 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 86850 +Density: 8.820467912752026e-05 +Time: 10.230846405029297 seconds + +tensor(indices=tensor([[ 1809, 21783, 106, ..., 7018, 160, 882], + [ 0, 0, 2, ..., 31357, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=86850, layout=torch.sparse_coo) +tensor([0.1619, 0.9494, 0.3484, ..., 0.8281, 0.3278, 0.6453]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_030 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 86850 +Density: 8.820467912752026e-05 +Time: 10.230846405029297 seconds + +[19.34, 18.89, 18.49, 18.47, 19.05, 18.95, 18.76, 19.91, 18.62, 18.72] +[52.93] +13.949802160263062 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3294, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_030', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 86850, 'MATRIX_DENSITY': 8.820467912752026e-05, 'TIME_S': 10.230846405029297, 'TIME_S_1KI': 3.1059035837976006, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 738.3630283427239, 'W': 52.93} +[19.34, 18.89, 18.49, 18.47, 19.05, 18.95, 18.76, 19.91, 18.62, 18.72, 19.0, 18.66, 18.81, 19.22, 18.72, 18.57, 18.48, 18.68, 18.75, 18.54] +338.83000000000004 +16.9415 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3294, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_030', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 86850, 'MATRIX_DENSITY': 8.820467912752026e-05, 'TIME_S': 10.230846405029297, 'TIME_S_1KI': 3.1059035837976006, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 738.3630283427239, 'W': 52.93, 'J_1KI': 224.15392481564172, 'W_1KI': 16.068609593199756, 'W_D': 35.9885, 'J_D': 502.0324550446272, 'W_D_1KI': 10.925470552519732, 'J_D_1KI': 3.316779159842056} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_040.json b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_040.json new file mode 100644 index 0000000..f89b80e --- /dev/null +++ b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_040.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 3217, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_040", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89658, "MATRIX_DENSITY": 9.105647807962247e-05, "TIME_S": 10.207746505737305, "TIME_S_1KI": 3.17306388117417, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 744.4694485092164, "W": 52.96, "J_1KI": 231.41729826211264, "W_1KI": 16.4625427416848, "W_D": 35.877250000000004, "J_D": 504.3337711768747, "W_D_1KI": 11.152393534348773, "J_D_1KI": 3.4667061033101563} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_040.output b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_040.output new file mode 100644 index 0000000..e304c1f --- /dev/null +++ b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_040.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_040.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_040", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89658, "MATRIX_DENSITY": 9.105647807962247e-05, "TIME_S": 0.3262941837310791} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 10144, 882, 16085], + [ 2, 2, 2, ..., 31371, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=89658, layout=torch.sparse_coo) +tensor([0.1558, 0.0745, 0.3518, ..., 0.6033, 0.7572, 0.5852]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_040 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 89658 +Density: 9.105647807962247e-05 +Time: 0.3262941837310791 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '3217', '-m', 'matrices/as-caida_pruned/as-caida_G_040.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_040", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89658, "MATRIX_DENSITY": 9.105647807962247e-05, "TIME_S": 10.207746505737305} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 10144, 882, 16085], + [ 2, 2, 2, ..., 31371, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=89658, layout=torch.sparse_coo) +tensor([0.1912, 0.3839, 0.1051, ..., 0.7729, 0.4202, 0.7652]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_040 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 89658 +Density: 9.105647807962247e-05 +Time: 10.207746505737305 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 10144, 882, 16085], + [ 2, 2, 2, ..., 31371, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=89658, layout=torch.sparse_coo) +tensor([0.1912, 0.3839, 0.1051, ..., 0.7729, 0.4202, 0.7652]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_040 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 89658 +Density: 9.105647807962247e-05 +Time: 10.207746505737305 seconds + +[18.85, 18.5, 18.75, 23.09, 18.77, 18.4, 19.48, 18.65, 18.55, 18.88] +[52.96] +14.057202577590942 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3217, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_040', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89658, 'MATRIX_DENSITY': 9.105647807962247e-05, 'TIME_S': 10.207746505737305, 'TIME_S_1KI': 3.17306388117417, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 744.4694485092164, 'W': 52.96} +[18.85, 18.5, 18.75, 23.09, 18.77, 18.4, 19.48, 18.65, 18.55, 18.88, 19.35, 18.41, 19.06, 18.6, 18.99, 18.59, 18.51, 18.62, 18.97, 18.35] +341.655 +17.082749999999997 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3217, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_040', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89658, 'MATRIX_DENSITY': 9.105647807962247e-05, 'TIME_S': 10.207746505737305, 'TIME_S_1KI': 3.17306388117417, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 744.4694485092164, 'W': 52.96, 'J_1KI': 231.41729826211264, 'W_1KI': 16.4625427416848, 'W_D': 35.877250000000004, 'J_D': 504.3337711768747, 'W_D_1KI': 11.152393534348773, 'J_D_1KI': 3.4667061033101563} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_050.json b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_050.json new file mode 100644 index 0000000..bd1d920 --- /dev/null +++ b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_050.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 3276, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 10.485815286636353, "TIME_S_1KI": 3.2007983170440637, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 757.6888778162003, "W": 53.26, "J_1KI": 231.28476123815636, "W_1KI": 16.257631257631257, "W_D": 36.31425, "J_D": 516.614782787025, "W_D_1KI": 11.084935897435898, "J_D_1KI": 3.3836800663723743} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_050.output b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_050.output new file mode 100644 index 0000000..5467ff2 --- /dev/null +++ b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_050.output @@ -0,0 +1,77 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_050.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 0.3464834690093994} + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.4573, 0.4502, 0.9019, ..., 0.2183, 0.4724, 0.4386]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 0.3464834690093994 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '3030', '-m', 'matrices/as-caida_pruned/as-caida_G_050.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 9.709679126739502} + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.3074, 0.9896, 0.7273, ..., 0.5093, 0.3314, 0.7564]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 9.709679126739502 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '3276', '-m', 'matrices/as-caida_pruned/as-caida_G_050.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 10.485815286636353} + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.1333, 0.9782, 0.0708, ..., 0.9713, 0.8665, 0.2240]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 10.485815286636353 seconds + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.1333, 0.9782, 0.0708, ..., 0.9713, 0.8665, 0.2240]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 10.485815286636353 seconds + +[19.73, 18.73, 18.86, 18.65, 18.6, 18.61, 18.6, 18.49, 19.26, 18.69] +[53.26] +14.226227521896362 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3276, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_050', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 90392, 'MATRIX_DENSITY': 9.180192695100532e-05, 'TIME_S': 10.485815286636353, 'TIME_S_1KI': 3.2007983170440637, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 757.6888778162003, 'W': 53.26} +[19.73, 18.73, 18.86, 18.65, 18.6, 18.61, 18.6, 18.49, 19.26, 18.69, 18.99, 18.57, 18.64, 18.59, 19.1, 18.92, 19.68, 18.79, 18.77, 18.7] +338.91499999999996 +16.945749999999997 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3276, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_050', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 90392, 'MATRIX_DENSITY': 9.180192695100532e-05, 'TIME_S': 10.485815286636353, 'TIME_S_1KI': 3.2007983170440637, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 757.6888778162003, 'W': 53.26, 'J_1KI': 231.28476123815636, 'W_1KI': 16.257631257631257, 'W_D': 36.31425, 'J_D': 516.614782787025, 'W_D_1KI': 11.084935897435898, 'J_D_1KI': 3.3836800663723743} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_060.json b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_060.json new file mode 100644 index 0000000..587f2d5 --- /dev/null +++ b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_060.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 3035, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_060", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 94180, "MATRIX_DENSITY": 9.564901186217454e-05, "TIME_S": 10.118342638015747, "TIME_S_1KI": 3.3338855479458807, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 732.9580327033997, "W": 52.7, "J_1KI": 241.50182296652378, "W_1KI": 17.364085667215814, "W_D": 35.8665, "J_D": 498.83565996122366, "W_D_1KI": 11.817627677100495, "J_D_1KI": 3.893781771697033} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_060.output b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_060.output new file mode 100644 index 0000000..a128e94 --- /dev/null +++ b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_060.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_060.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_060", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 94180, "MATRIX_DENSITY": 9.564901186217454e-05, "TIME_S": 0.3459279537200928} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 882], + [ 2, 2, 2, ..., 31355, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=94180, layout=torch.sparse_coo) +tensor([0.2184, 0.4433, 0.1203, ..., 0.9256, 0.1328, 0.8094]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_060 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 94180 +Density: 9.564901186217454e-05 +Time: 0.3459279537200928 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '3035', '-m', 'matrices/as-caida_pruned/as-caida_G_060.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_060", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 94180, "MATRIX_DENSITY": 9.564901186217454e-05, "TIME_S": 10.118342638015747} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 882], + [ 2, 2, 2, ..., 31355, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=94180, layout=torch.sparse_coo) +tensor([0.6094, 0.5790, 0.4396, ..., 0.3400, 0.1509, 0.2721]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_060 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 94180 +Density: 9.564901186217454e-05 +Time: 10.118342638015747 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 882], + [ 2, 2, 2, ..., 31355, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=94180, layout=torch.sparse_coo) +tensor([0.6094, 0.5790, 0.4396, ..., 0.3400, 0.1509, 0.2721]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_060 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 94180 +Density: 9.564901186217454e-05 +Time: 10.118342638015747 seconds + +[20.0, 18.47, 18.98, 18.67, 18.63, 18.59, 18.42, 18.45, 18.7, 18.48] +[52.7] +13.908122062683105 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3035, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_060', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 94180, 'MATRIX_DENSITY': 9.564901186217454e-05, 'TIME_S': 10.118342638015747, 'TIME_S_1KI': 3.3338855479458807, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 732.9580327033997, 'W': 52.7} +[20.0, 18.47, 18.98, 18.67, 18.63, 18.59, 18.42, 18.45, 18.7, 18.48, 18.81, 18.47, 18.49, 18.48, 18.49, 18.42, 19.3, 18.59, 18.71, 20.33] +336.67 +16.8335 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3035, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_060', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 94180, 'MATRIX_DENSITY': 9.564901186217454e-05, 'TIME_S': 10.118342638015747, 'TIME_S_1KI': 3.3338855479458807, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 732.9580327033997, 'W': 52.7, 'J_1KI': 241.50182296652378, 'W_1KI': 17.364085667215814, 'W_D': 35.8665, 'J_D': 498.83565996122366, 'W_D_1KI': 11.817627677100495, 'J_D_1KI': 3.893781771697033} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_070.json b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_070.json new file mode 100644 index 0000000..59b6581 --- /dev/null +++ b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_070.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 3609, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_070", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 78684, "MATRIX_DENSITY": 7.991130653390679e-05, "TIME_S": 10.091247320175171, "TIME_S_1KI": 2.7961339208022085, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 733.9008146309852, "W": 53.43, "J_1KI": 203.35295500997097, "W_1KI": 14.804655029093931, "W_D": 15.148000000000003, "J_D": 208.0690537157059, "W_D_1KI": 4.197284566361874, "J_D_1KI": 1.1630048673765234} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_070.output b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_070.output new file mode 100644 index 0000000..ccb40ae --- /dev/null +++ b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_070.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_070.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_070", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 78684, "MATRIX_DENSITY": 7.991130653390679e-05, "TIME_S": 0.29088449478149414} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 16263, 2242, 2242], + [ 2, 2, 2, ..., 31240, 31283, 31284]]), + values=tensor([3., 3., 3., ..., 1., 3., 3.]), + size=(31379, 31379), nnz=78684, layout=torch.sparse_coo) +tensor([0.3296, 0.4555, 0.8251, ..., 0.9676, 0.1678, 0.7767]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_070 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 78684 +Density: 7.991130653390679e-05 +Time: 0.29088449478149414 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '3609', '-m', 'matrices/as-caida_pruned/as-caida_G_070.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_070", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 78684, "MATRIX_DENSITY": 7.991130653390679e-05, "TIME_S": 10.091247320175171} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 16263, 2242, 2242], + [ 2, 2, 2, ..., 31240, 31283, 31284]]), + values=tensor([3., 3., 3., ..., 1., 3., 3.]), + size=(31379, 31379), nnz=78684, layout=torch.sparse_coo) +tensor([0.2358, 0.1057, 0.3645, ..., 0.4479, 0.6831, 0.0933]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_070 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 78684 +Density: 7.991130653390679e-05 +Time: 10.091247320175171 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 16263, 2242, 2242], + [ 2, 2, 2, ..., 31240, 31283, 31284]]), + values=tensor([3., 3., 3., ..., 1., 3., 3.]), + size=(31379, 31379), nnz=78684, layout=torch.sparse_coo) +tensor([0.2358, 0.1057, 0.3645, ..., 0.4479, 0.6831, 0.0933]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_070 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 78684 +Density: 7.991130653390679e-05 +Time: 10.091247320175171 seconds + +[18.86, 18.79, 18.84, 26.46, 44.17, 44.52, 41.9, 48.05, 43.18, 43.6] +[53.43] +13.73574423789978 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3609, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_070', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 78684, 'MATRIX_DENSITY': 7.991130653390679e-05, 'TIME_S': 10.091247320175171, 'TIME_S_1KI': 2.7961339208022085, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 733.9008146309852, 'W': 53.43} +[18.86, 18.79, 18.84, 26.46, 44.17, 44.52, 41.9, 48.05, 43.18, 43.6, 50.34, 50.27, 54.49, 52.88, 53.24, 53.39, 47.22, 44.67, 44.5, 45.34] +765.64 +38.282 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3609, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_070', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 78684, 'MATRIX_DENSITY': 7.991130653390679e-05, 'TIME_S': 10.091247320175171, 'TIME_S_1KI': 2.7961339208022085, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 733.9008146309852, 'W': 53.43, 'J_1KI': 203.35295500997097, 'W_1KI': 14.804655029093931, 'W_D': 15.148000000000003, 'J_D': 208.0690537157059, 'W_D_1KI': 4.197284566361874, 'J_D_1KI': 1.1630048673765234} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_080.json b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_080.json new file mode 100644 index 0000000..15ab2ac --- /dev/null +++ b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_080.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 2930, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_080", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 98112, "MATRIX_DENSITY": 9.964234287345156e-05, "TIME_S": 10.166032314300537, "TIME_S_1KI": 3.469635602150354, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 736.2924279117585, "W": 52.84000000000001, "J_1KI": 251.29434399718718, "W_1KI": 18.03412969283277, "W_D": 36.02175000000001, "J_D": 501.94060872691887, "W_D_1KI": 12.294112627986351, "J_D_1KI": 4.195942876445853} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_080.output b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_080.output new file mode 100644 index 0000000..e1deb6e --- /dev/null +++ b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_080.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_080.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_080", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 98112, "MATRIX_DENSITY": 9.964234287345156e-05, "TIME_S": 0.35835909843444824} + +tensor(indices=tensor([[22754, 22754, 106, ..., 4133, 31329, 12170], + [ 0, 1, 2, ..., 31373, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 1., 1., 3.]), + size=(31379, 31379), nnz=98112, layout=torch.sparse_coo) +tensor([0.2872, 0.2621, 0.4251, ..., 0.2905, 0.8613, 0.6302]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_080 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 98112 +Density: 9.964234287345156e-05 +Time: 0.35835909843444824 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '2930', '-m', 'matrices/as-caida_pruned/as-caida_G_080.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_080", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 98112, "MATRIX_DENSITY": 9.964234287345156e-05, "TIME_S": 10.166032314300537} + +tensor(indices=tensor([[22754, 22754, 106, ..., 4133, 31329, 12170], + [ 0, 1, 2, ..., 31373, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 1., 1., 3.]), + size=(31379, 31379), nnz=98112, layout=torch.sparse_coo) +tensor([0.5178, 0.7227, 0.4392, ..., 0.3813, 0.9423, 0.6524]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_080 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 98112 +Density: 9.964234287345156e-05 +Time: 10.166032314300537 seconds + +tensor(indices=tensor([[22754, 22754, 106, ..., 4133, 31329, 12170], + [ 0, 1, 2, ..., 31373, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 1., 1., 3.]), + size=(31379, 31379), nnz=98112, layout=torch.sparse_coo) +tensor([0.5178, 0.7227, 0.4392, ..., 0.3813, 0.9423, 0.6524]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_080 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 98112 +Density: 9.964234287345156e-05 +Time: 10.166032314300537 seconds + +[19.06, 18.53, 18.58, 18.31, 18.51, 18.43, 18.46, 18.71, 19.1, 18.97] +[52.84] +13.934376001358032 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 2930, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_080', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 98112, 'MATRIX_DENSITY': 9.964234287345156e-05, 'TIME_S': 10.166032314300537, 'TIME_S_1KI': 3.469635602150354, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 736.2924279117585, 'W': 52.84000000000001} +[19.06, 18.53, 18.58, 18.31, 18.51, 18.43, 18.46, 18.71, 19.1, 18.97, 18.85, 18.34, 18.36, 19.14, 18.63, 18.65, 19.92, 18.53, 18.58, 18.29] +336.365 +16.81825 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 2930, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_080', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 98112, 'MATRIX_DENSITY': 9.964234287345156e-05, 'TIME_S': 10.166032314300537, 'TIME_S_1KI': 3.469635602150354, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 736.2924279117585, 'W': 52.84000000000001, 'J_1KI': 251.29434399718718, 'W_1KI': 18.03412969283277, 'W_D': 36.02175000000001, 'J_D': 501.94060872691887, 'W_D_1KI': 12.294112627986351, 'J_D_1KI': 4.195942876445853} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_090.json b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_090.json new file mode 100644 index 0000000..2b2e584 --- /dev/null +++ b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_090.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 2850, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_090", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 100924, "MATRIX_DENSITY": 0.00010249820421722343, "TIME_S": 10.14395546913147, "TIME_S_1KI": 3.5592826207478843, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 737.2876004338264, "W": 52.86999999999999, "J_1KI": 258.6974036609917, "W_1KI": 18.550877192982455, "W_D": 35.65474999999999, "J_D": 497.2159082952141, "W_D_1KI": 12.510438596491225, "J_D_1KI": 4.38962757771622} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_090.output b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_090.output new file mode 100644 index 0000000..d56d587 --- /dev/null +++ b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_090.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_090.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_090", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 100924, "MATRIX_DENSITY": 0.00010249820421722343, "TIME_S": 0.3683297634124756} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 31211, 12170], + [ 2, 2, 2, ..., 31373, 31376, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=100924, layout=torch.sparse_coo) +tensor([0.2574, 0.1514, 0.3958, ..., 0.6654, 0.7186, 0.6215]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_090 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 100924 +Density: 0.00010249820421722343 +Time: 0.3683297634124756 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '2850', '-m', 'matrices/as-caida_pruned/as-caida_G_090.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_090", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 100924, "MATRIX_DENSITY": 0.00010249820421722343, "TIME_S": 10.14395546913147} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 31211, 12170], + [ 2, 2, 2, ..., 31373, 31376, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=100924, layout=torch.sparse_coo) +tensor([0.7332, 0.8487, 0.4467, ..., 0.4800, 0.4482, 0.4976]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_090 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 100924 +Density: 0.00010249820421722343 +Time: 10.14395546913147 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 31211, 12170], + [ 2, 2, 2, ..., 31373, 31376, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=100924, layout=torch.sparse_coo) +tensor([0.7332, 0.8487, 0.4467, ..., 0.4800, 0.4482, 0.4976]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_090 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 100924 +Density: 0.00010249820421722343 +Time: 10.14395546913147 seconds + +[19.21, 19.38, 19.37, 19.18, 18.77, 18.76, 18.63, 18.47, 18.64, 18.86] +[52.87] +13.945292234420776 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 2850, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_090', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 100924, 'MATRIX_DENSITY': 0.00010249820421722343, 'TIME_S': 10.14395546913147, 'TIME_S_1KI': 3.5592826207478843, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 737.2876004338264, 'W': 52.86999999999999} +[19.21, 19.38, 19.37, 19.18, 18.77, 18.76, 18.63, 18.47, 18.64, 18.86, 19.72, 19.53, 18.58, 18.78, 18.64, 18.74, 18.6, 19.34, 22.54, 18.92] +344.30499999999995 +17.215249999999997 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 2850, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_090', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 100924, 'MATRIX_DENSITY': 0.00010249820421722343, 'TIME_S': 10.14395546913147, 'TIME_S_1KI': 3.5592826207478843, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 737.2876004338264, 'W': 52.86999999999999, 'J_1KI': 258.6974036609917, 'W_1KI': 18.550877192982455, 'W_D': 35.65474999999999, 'J_D': 497.2159082952141, 'W_D_1KI': 12.510438596491225, 'J_D_1KI': 4.38962757771622} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_100.json b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_100.json new file mode 100644 index 0000000..42ba2c3 --- /dev/null +++ b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_100.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 2796, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_100", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102888, "MATRIX_DENSITY": 0.00010449283852702711, "TIME_S": 10.187014102935791, "TIME_S_1KI": 3.6434242142116564, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 738.0817759895325, "W": 52.86, "J_1KI": 263.977745346757, "W_1KI": 18.905579399141633, "W_D": 35.8915, "J_D": 501.1513821969032, "W_D_1KI": 12.83673104434907, "J_D_1KI": 4.591105523729997} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_100.output b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_100.output new file mode 100644 index 0000000..84041b8 --- /dev/null +++ b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_100.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_100.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_100", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102888, "MATRIX_DENSITY": 0.00010449283852702711, "TIME_S": 0.37551331520080566} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 25970, 5128, 12170], + [ 2, 2, 2, ..., 31373, 31377, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=102888, layout=torch.sparse_coo) +tensor([0.6033, 0.6068, 0.3883, ..., 0.8627, 0.3099, 0.0760]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_100 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 102888 +Density: 0.00010449283852702711 +Time: 0.37551331520080566 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '2796', '-m', 'matrices/as-caida_pruned/as-caida_G_100.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_100", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102888, "MATRIX_DENSITY": 0.00010449283852702711, "TIME_S": 10.187014102935791} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 25970, 5128, 12170], + [ 2, 2, 2, ..., 31373, 31377, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=102888, layout=torch.sparse_coo) +tensor([0.9620, 0.5120, 0.9302, ..., 0.9970, 0.7591, 0.4507]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_100 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 102888 +Density: 0.00010449283852702711 +Time: 10.187014102935791 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 25970, 5128, 12170], + [ 2, 2, 2, ..., 31373, 31377, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=102888, layout=torch.sparse_coo) +tensor([0.9620, 0.5120, 0.9302, ..., 0.9970, 0.7591, 0.4507]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_100 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 102888 +Density: 0.00010449283852702711 +Time: 10.187014102935791 seconds + +[19.08, 19.61, 18.58, 18.52, 18.81, 18.86, 18.63, 18.67, 18.85, 18.95] +[52.86] +13.9629545211792 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 2796, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_100', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102888, 'MATRIX_DENSITY': 0.00010449283852702711, 'TIME_S': 10.187014102935791, 'TIME_S_1KI': 3.6434242142116564, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 738.0817759895325, 'W': 52.86} +[19.08, 19.61, 18.58, 18.52, 18.81, 18.86, 18.63, 18.67, 18.85, 18.95, 19.19, 18.65, 18.99, 18.71, 18.75, 19.09, 19.15, 18.64, 18.79, 18.92] +339.37 +16.9685 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 2796, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_100', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102888, 'MATRIX_DENSITY': 0.00010449283852702711, 'TIME_S': 10.187014102935791, 'TIME_S_1KI': 3.6434242142116564, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 738.0817759895325, 'W': 52.86, 'J_1KI': 263.977745346757, 'W_1KI': 18.905579399141633, 'W_D': 35.8915, 'J_D': 501.1513821969032, 'W_D_1KI': 12.83673104434907, 'J_D_1KI': 4.591105523729997} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_110.json b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_110.json new file mode 100644 index 0000000..4fec191 --- /dev/null +++ b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_110.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 2742, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_110", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104846, "MATRIX_DENSITY": 0.0001064813792493263, "TIME_S": 10.172459602355957, "TIME_S_1KI": 3.709868563951844, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 738.6302569985389, "W": 53.05, "J_1KI": 269.37646134155324, "W_1KI": 19.34719183078045, "W_D": 36.104749999999996, "J_D": 502.696715765655, "W_D_1KI": 13.167304886943835, "J_D_1KI": 4.802080556872296} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_110.output b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_110.output new file mode 100644 index 0000000..73b027a --- /dev/null +++ b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_110.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_110.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_110", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104846, "MATRIX_DENSITY": 0.0001064813792493263, "TIME_S": 0.3828270435333252} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 2616, 12170], + [ 2, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=104846, layout=torch.sparse_coo) +tensor([0.7356, 0.6611, 0.3413, ..., 0.8036, 0.8729, 0.8173]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_110 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 104846 +Density: 0.0001064813792493263 +Time: 0.3828270435333252 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '2742', '-m', 'matrices/as-caida_pruned/as-caida_G_110.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_110", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104846, "MATRIX_DENSITY": 0.0001064813792493263, "TIME_S": 10.172459602355957} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 2616, 12170], + [ 2, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=104846, layout=torch.sparse_coo) +tensor([0.0452, 0.5340, 0.0808, ..., 0.7595, 0.2650, 0.2619]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_110 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 104846 +Density: 0.0001064813792493263 +Time: 10.172459602355957 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 2616, 12170], + [ 2, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=104846, layout=torch.sparse_coo) +tensor([0.0452, 0.5340, 0.0808, ..., 0.7595, 0.2650, 0.2619]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_110 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 104846 +Density: 0.0001064813792493263 +Time: 10.172459602355957 seconds + +[19.5, 18.59, 18.93, 18.59, 18.76, 18.46, 18.56, 18.65, 19.1, 18.61] +[53.05] +13.923284769058228 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 2742, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_110', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104846, 'MATRIX_DENSITY': 0.0001064813792493263, 'TIME_S': 10.172459602355957, 'TIME_S_1KI': 3.709868563951844, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 738.6302569985389, 'W': 53.05} +[19.5, 18.59, 18.93, 18.59, 18.76, 18.46, 18.56, 18.65, 19.1, 18.61, 18.79, 18.58, 18.94, 19.39, 18.87, 19.02, 19.04, 18.88, 18.84, 18.51] +338.905 +16.945249999999998 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 2742, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_110', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104846, 'MATRIX_DENSITY': 0.0001064813792493263, 'TIME_S': 10.172459602355957, 'TIME_S_1KI': 3.709868563951844, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 738.6302569985389, 'W': 53.05, 'J_1KI': 269.37646134155324, 'W_1KI': 19.34719183078045, 'W_D': 36.104749999999996, 'J_D': 502.696715765655, 'W_D_1KI': 13.167304886943835, 'J_D_1KI': 4.802080556872296} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_120.json b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_120.json new file mode 100644 index 0000000..da72dbc --- /dev/null +++ b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_120.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 2656, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_120", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106510, "MATRIX_DENSITY": 0.0001081713341839054, "TIME_S": 10.007952213287354, "TIME_S_1KI": 3.7680542971714437, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 730.8129847311974, "W": 52.79, "J_1KI": 275.15549123915565, "W_1KI": 19.875753012048193, "W_D": 35.510999999999996, "J_D": 491.6063629624843, "W_D_1KI": 13.370105421686745, "J_D_1KI": 5.033925234068804} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_120.output b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_120.output new file mode 100644 index 0000000..2135174 --- /dev/null +++ b/pytorch/output_as-caida_1core/xeon_4216_1_coo_10_10_10_as-caida_G_120.output @@ -0,0 +1,59 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_120.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_120", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106510, "MATRIX_DENSITY": 0.0001081713341839054, "TIME_S": 0.3952159881591797} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 12170], + [ 2, 2, 2, ..., 31355, 31360, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=106510, layout=torch.sparse_coo) +tensor([0.1404, 0.8175, 0.0124, ..., 0.7312, 0.3496, 0.9826]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_120 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 106510 +Density: 0.0001081713341839054 +Time: 0.3952159881591797 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '2656', '-m', 'matrices/as-caida_pruned/as-caida_G_120.mtx', '-c', '1'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_120", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106510, "MATRIX_DENSITY": 0.0001081713341839054, "TIME_S": 10.007952213287354} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 12170], + [ 2, 2, 2, ..., 31355, 31360, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=106510, layout=torch.sparse_coo) +tensor([0.5064, 0.7184, 0.1043, ..., 0.0170, 0.9266, 0.2559]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_120 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 106510 +Density: 0.0001081713341839054 +Time: 10.007952213287354 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 12170], + [ 2, 2, 2, ..., 31355, 31360, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=106510, layout=torch.sparse_coo) +tensor([0.5064, 0.7184, 0.1043, ..., 0.0170, 0.9266, 0.2559]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_120 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 106510 +Density: 0.0001081713341839054 +Time: 10.007952213287354 seconds + +[19.49, 18.55, 18.49, 18.53, 18.81, 22.55, 18.56, 18.55, 19.57, 18.95] +[52.79] +13.843776941299438 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 2656, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_120', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106510, 'MATRIX_DENSITY': 0.0001081713341839054, 'TIME_S': 10.007952213287354, 'TIME_S_1KI': 3.7680542971714437, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 730.8129847311974, 'W': 52.79} +[19.49, 18.55, 18.49, 18.53, 18.81, 22.55, 18.56, 18.55, 19.57, 18.95, 18.88, 22.81, 19.26, 18.48, 19.12, 18.51, 18.87, 18.53, 18.47, 18.52] +345.58000000000004 +17.279000000000003 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 2656, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_120', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106510, 'MATRIX_DENSITY': 0.0001081713341839054, 'TIME_S': 10.007952213287354, 'TIME_S_1KI': 3.7680542971714437, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 730.8129847311974, 'W': 52.79, 'J_1KI': 275.15549123915565, 'W_1KI': 19.875753012048193, 'W_D': 35.510999999999996, 'J_D': 491.6063629624843, 'W_D_1KI': 13.370105421686745, 'J_D_1KI': 5.033925234068804} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_005.json b/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_005.json deleted file mode 100644 index d27eaee..0000000 --- a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_005.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 24585, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 10.531149864196777, "TIME_S_1KI": 0.4283567160543737, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 791.8324437737465, "W": 51.25, "J_1KI": 32.20794971623943, "W_1KI": 2.0846044335977223, "W_D": 34.32525, "J_D": 530.3384700613617, "W_D_1KI": 1.3961866992068332, "J_D_1KI": 0.05679018503993627} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_005.output b/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_005.output deleted file mode 100644 index e758720..0000000 --- a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_005.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_005.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 0.05796647071838379} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.1404, 0.8835, 0.3196, ..., 0.0994, 0.4882, 0.6406]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 0.05796647071838379 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '18113', '-m', 'matrices/as-caida_pruned/as-caida_G_005.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 7.735689640045166} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.5576, 0.2413, 0.8850, ..., 0.5956, 0.8314, 0.8126]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 7.735689640045166 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '24585', '-m', 'matrices/as-caida_pruned/as-caida_G_005.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 10.531149864196777} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.5694, 0.0146, 0.7356, ..., 0.9762, 0.7728, 0.4476]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 10.531149864196777 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.5694, 0.0146, 0.7356, ..., 0.9762, 0.7728, 0.4476]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 10.531149864196777 seconds - -[18.73, 18.22, 18.48, 18.73, 18.67, 18.5, 18.68, 18.44, 18.46, 18.66] -[51.25] -15.45038914680481 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 24585, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_005', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 70026, 'MATRIX_DENSITY': 7.111825976492498e-05, 'TIME_S': 10.531149864196777, 'TIME_S_1KI': 0.4283567160543737, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 791.8324437737465, 'W': 51.25} -[18.73, 18.22, 18.48, 18.73, 18.67, 18.5, 18.68, 18.44, 18.46, 18.66, 19.19, 18.59, 18.77, 18.6, 18.48, 18.55, 18.66, 18.93, 22.2, 18.49] -338.495 -16.92475 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 24585, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_005', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 70026, 'MATRIX_DENSITY': 7.111825976492498e-05, 'TIME_S': 10.531149864196777, 'TIME_S_1KI': 0.4283567160543737, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 791.8324437737465, 'W': 51.25, 'J_1KI': 32.20794971623943, 'W_1KI': 2.0846044335977223, 'W_D': 34.32525, 'J_D': 530.3384700613617, 'W_D_1KI': 1.3961866992068332, 'J_D_1KI': 0.05679018503993627} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_015.json b/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_015.json deleted file mode 100644 index d7993e2..0000000 --- a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_015.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 22326, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 11.536637306213379, "TIME_S_1KI": 0.5167355238830682, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 786.4002640724183, "W": 51.46000000000001, "J_1KI": 35.22351805394689, "W_1KI": 2.304935949117621, "W_D": 34.605250000000005, "J_D": 528.8297267448903, "W_D_1KI": 1.5499977604586583, "J_D_1KI": 0.06942568128901991} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_015.output b/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_015.output deleted file mode 100644 index 1bc2ade..0000000 --- a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_015.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_015.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 0.06119132041931152} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.5762, 0.9295, 0.5427, ..., 0.4978, 0.3271, 0.2927]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 0.06119132041931152 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '17159', '-m', 'matrices/as-caida_pruned/as-caida_G_015.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 8.069887161254883} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.6269, 0.3774, 0.5755, ..., 0.2711, 0.6777, 0.1164]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 8.069887161254883 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '22326', '-m', 'matrices/as-caida_pruned/as-caida_G_015.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 11.536637306213379} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.1977, 0.1619, 0.4572, ..., 0.7258, 0.1988, 0.9324]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 11.536637306213379 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.1977, 0.1619, 0.4572, ..., 0.7258, 0.1988, 0.9324]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 11.536637306213379 seconds - -[19.37, 18.48, 18.69, 18.78, 18.91, 18.43, 18.91, 18.58, 19.73, 18.48] -[51.46] -15.281777381896973 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 22326, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_015', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 77124, 'MATRIX_DENSITY': 7.832697378273889e-05, 'TIME_S': 11.536637306213379, 'TIME_S_1KI': 0.5167355238830682, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 786.4002640724183, 'W': 51.46000000000001} -[19.37, 18.48, 18.69, 18.78, 18.91, 18.43, 18.91, 18.58, 19.73, 18.48, 19.21, 18.86, 18.55, 18.48, 18.51, 18.54, 18.44, 18.39, 18.75, 19.07] -337.095 -16.854750000000003 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 22326, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_015', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 77124, 'MATRIX_DENSITY': 7.832697378273889e-05, 'TIME_S': 11.536637306213379, 'TIME_S_1KI': 0.5167355238830682, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 786.4002640724183, 'W': 51.46000000000001, 'J_1KI': 35.22351805394689, 'W_1KI': 2.304935949117621, 'W_D': 34.605250000000005, 'J_D': 528.8297267448903, 'W_D_1KI': 1.5499977604586583, 'J_D_1KI': 0.06942568128901991} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_025.json b/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_025.json deleted file mode 100644 index b2b7d85..0000000 --- a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_025.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 18821, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 10.504743814468384, "TIME_S_1KI": 0.5581395151409799, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 734.5338620448113, "W": 51.230000000000004, "J_1KI": 39.027355722055745, "W_1KI": 2.7219595133096015, "W_D": 34.108250000000005, "J_D": 489.042838182509, "W_D_1KI": 1.812244301578025, "J_D_1KI": 0.09628841727740423} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_025.output b/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_025.output deleted file mode 100644 index 90f0d29..0000000 --- a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_025.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_025.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 0.0701456069946289} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.9196, 0.4027, 0.9458, ..., 0.2281, 0.7234, 0.8003]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 0.0701456069946289 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '14968', '-m', 'matrices/as-caida_pruned/as-caida_G_025.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 8.350371360778809} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.8651, 0.5048, 0.3484, ..., 0.4454, 0.2746, 0.9370]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 8.350371360778809 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '18821', '-m', 'matrices/as-caida_pruned/as-caida_G_025.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 10.504743814468384} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.6340, 0.0545, 0.8586, ..., 0.8211, 0.3677, 0.7072]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 10.504743814468384 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.6340, 0.0545, 0.8586, ..., 0.8211, 0.3677, 0.7072]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 10.504743814468384 seconds - -[19.75, 18.72, 18.91, 18.56, 18.68, 18.41, 18.8, 18.57, 19.13, 22.25] -[51.23] -14.337963342666626 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 18821, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_025', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 85850, 'MATRIX_DENSITY': 8.718908121010495e-05, 'TIME_S': 10.504743814468384, 'TIME_S_1KI': 0.5581395151409799, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 734.5338620448113, 'W': 51.230000000000004} -[19.75, 18.72, 18.91, 18.56, 18.68, 18.41, 18.8, 18.57, 19.13, 22.25, 19.1, 18.76, 18.51, 18.55, 18.62, 22.18, 18.61, 18.88, 18.75, 18.49] -342.435 -17.12175 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 18821, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_025', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 85850, 'MATRIX_DENSITY': 8.718908121010495e-05, 'TIME_S': 10.504743814468384, 'TIME_S_1KI': 0.5581395151409799, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 734.5338620448113, 'W': 51.230000000000004, 'J_1KI': 39.027355722055745, 'W_1KI': 2.7219595133096015, 'W_D': 34.108250000000005, 'J_D': 489.042838182509, 'W_D_1KI': 1.812244301578025, 'J_D_1KI': 0.09628841727740423} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_035.json b/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_035.json deleted file mode 100644 index 8823eba..0000000 --- a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_035.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 20462, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 10.523966312408447, "TIME_S_1KI": 0.5143175795332053, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 815.268922715187, "W": 51.17, "J_1KI": 39.84307119124167, "W_1KI": 2.5007330661714398, "W_D": 33.975, "J_D": 541.3086114764213, "W_D_1KI": 1.6603948783110156, "J_D_1KI": 0.0811452877681075} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_035.output b/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_035.output deleted file mode 100644 index 75c581b..0000000 --- a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_035.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_035.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 0.07111167907714844} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.4364, 0.4295, 0.9701, ..., 0.8211, 0.4909, 0.8334]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 0.07111167907714844 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '14765', '-m', 'matrices/as-caida_pruned/as-caida_G_035.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 7.576246500015259} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.4654, 0.9230, 0.1647, ..., 0.9259, 0.4832, 0.5316]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 7.576246500015259 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '20462', '-m', 'matrices/as-caida_pruned/as-caida_G_035.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 10.523966312408447} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.9802, 0.9301, 0.1785, ..., 0.2797, 0.8123, 0.6307]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 10.523966312408447 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.9802, 0.9301, 0.1785, ..., 0.2797, 0.8123, 0.6307]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 10.523966312408447 seconds - -[19.45, 18.69, 18.94, 18.43, 18.57, 18.71, 18.77, 18.49, 18.55, 22.44] -[51.17] -15.932556629180908 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 20462, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_035', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 87560, 'MATRIX_DENSITY': 8.892575364888514e-05, 'TIME_S': 10.523966312408447, 'TIME_S_1KI': 0.5143175795332053, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 815.268922715187, 'W': 51.17} -[19.45, 18.69, 18.94, 18.43, 18.57, 18.71, 18.77, 18.49, 18.55, 22.44, 18.92, 18.51, 18.96, 23.11, 18.62, 18.6, 19.39, 18.51, 19.19, 18.91] -343.90000000000003 -17.195 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 20462, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_035', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 87560, 'MATRIX_DENSITY': 8.892575364888514e-05, 'TIME_S': 10.523966312408447, 'TIME_S_1KI': 0.5143175795332053, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 815.268922715187, 'W': 51.17, 'J_1KI': 39.84307119124167, 'W_1KI': 2.5007330661714398, 'W_D': 33.975, 'J_D': 541.3086114764213, 'W_D_1KI': 1.6603948783110156, 'J_D_1KI': 0.0811452877681075} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_045.json b/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_045.json deleted file mode 100644 index 076f312..0000000 --- a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_045.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 20010, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 11.59175419807434, "TIME_S_1KI": 0.5792980608732804, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 732.6207900404929, "W": 51.54999999999999, "J_1KI": 36.61273313545692, "W_1KI": 2.576211894052973, "W_D": 34.619249999999994, "J_D": 492.00353609329454, "W_D_1KI": 1.7300974512743625, "J_D_1KI": 0.0864616417428467} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_045.output b/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_045.output deleted file mode 100644 index 641af44..0000000 --- a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_045.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_045.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 0.06652593612670898} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.6643, 0.8543, 0.2565, ..., 0.9055, 0.9867, 0.8474]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 0.06652593612670898 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '15783', '-m', 'matrices/as-caida_pruned/as-caida_G_045.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 8.281726121902466} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.0337, 0.0275, 0.6347, ..., 0.6984, 0.9483, 0.5691]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 8.281726121902466 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '20010', '-m', 'matrices/as-caida_pruned/as-caida_G_045.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 11.59175419807434} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.8084, 0.5325, 0.2590, ..., 0.3310, 0.8155, 0.3301]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 11.59175419807434 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.8084, 0.5325, 0.2590, ..., 0.3310, 0.8155, 0.3301]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 11.59175419807434 seconds - -[19.13, 18.4, 18.97, 18.7, 19.22, 18.41, 18.83, 18.48, 18.52, 18.45] -[51.55] -14.211848497390747 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 20010, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_045', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89152, 'MATRIX_DENSITY': 9.054258553341032e-05, 'TIME_S': 11.59175419807434, 'TIME_S_1KI': 0.5792980608732804, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 732.6207900404929, 'W': 51.54999999999999} -[19.13, 18.4, 18.97, 18.7, 19.22, 18.41, 18.83, 18.48, 18.52, 18.45, 19.53, 18.8, 18.54, 18.5, 19.03, 18.53, 18.43, 18.45, 18.93, 22.64] -338.615 -16.93075 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 20010, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_045', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89152, 'MATRIX_DENSITY': 9.054258553341032e-05, 'TIME_S': 11.59175419807434, 'TIME_S_1KI': 0.5792980608732804, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 732.6207900404929, 'W': 51.54999999999999, 'J_1KI': 36.61273313545692, 'W_1KI': 2.576211894052973, 'W_D': 34.619249999999994, 'J_D': 492.00353609329454, 'W_D_1KI': 1.7300974512743625, 'J_D_1KI': 0.0864616417428467} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_055.json b/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_055.json deleted file mode 100644 index 48cbf8f..0000000 --- a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_055.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 19548, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 10.464083194732666, "TIME_S_1KI": 0.5353019845883296, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 732.7007483005524, "W": 51.11, "J_1KI": 37.48213363518275, "W_1KI": 2.6145897278493964, "W_D": 33.930499999999995, "J_D": 486.4195409941673, "W_D_1KI": 1.7357530182115817, "J_D_1KI": 0.08879440445117565} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_055.output b/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_055.output deleted file mode 100644 index badbc0b..0000000 --- a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_055.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_055.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 0.07336711883544922} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.0799, 0.9526, 0.9637, ..., 0.9474, 0.7458, 0.3085]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 0.07336711883544922 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '14311', '-m', 'matrices/as-caida_pruned/as-caida_G_055.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 7.686976194381714} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.8753, 0.6638, 0.8748, ..., 0.2712, 0.9678, 0.3069]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 7.686976194381714 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '19548', '-m', 'matrices/as-caida_pruned/as-caida_G_055.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 10.464083194732666} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.4610, 0.8810, 0.6667, ..., 0.9302, 0.2771, 0.3767]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 10.464083194732666 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.4610, 0.8810, 0.6667, ..., 0.9302, 0.2771, 0.3767]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 10.464083194732666 seconds - -[19.14, 18.52, 19.06, 18.57, 18.57, 18.64, 19.64, 22.11, 19.05, 18.43] -[51.11] -14.335761070251465 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 19548, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_055', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 91476, 'MATRIX_DENSITY': 9.290283509348351e-05, 'TIME_S': 10.464083194732666, 'TIME_S_1KI': 0.5353019845883296, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 732.7007483005524, 'W': 51.11} -[19.14, 18.52, 19.06, 18.57, 18.57, 18.64, 19.64, 22.11, 19.05, 18.43, 19.35, 18.43, 18.57, 21.26, 18.97, 18.59, 18.67, 18.39, 18.78, 18.62] -343.59000000000003 -17.1795 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 19548, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_055', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 91476, 'MATRIX_DENSITY': 9.290283509348351e-05, 'TIME_S': 10.464083194732666, 'TIME_S_1KI': 0.5353019845883296, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 732.7007483005524, 'W': 51.11, 'J_1KI': 37.48213363518275, 'W_1KI': 2.6145897278493964, 'W_D': 33.930499999999995, 'J_D': 486.4195409941673, 'W_D_1KI': 1.7357530182115817, 'J_D_1KI': 0.08879440445117565} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_065.json b/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_065.json deleted file mode 100644 index 9daa366..0000000 --- a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_065.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 19229, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 10.47281002998352, "TIME_S_1KI": 0.5446362280921275, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 735.5914888072015, "W": 51.27, "J_1KI": 38.25427681144112, "W_1KI": 2.666285298247439, "W_D": 34.261500000000005, "J_D": 491.5636394337416, "W_D_1KI": 1.781761922096833, "J_D_1KI": 0.0926601446823461} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_065.output b/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_065.output deleted file mode 100644 index 72ee088..0000000 --- a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_065.output +++ /dev/null @@ -1,105 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_065.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 0.06865715980529785} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.4901, 0.0666, 0.4753, ..., 0.5898, 0.7621, 0.4426]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 0.06865715980529785 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '15293', '-m', 'matrices/as-caida_pruned/as-caida_G_065.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 9.309351921081543} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.9797, 0.1862, 0.4685, ..., 0.3877, 0.4753, 0.7598]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 9.309351921081543 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '17248', '-m', 'matrices/as-caida_pruned/as-caida_G_065.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 9.417802572250366} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.2025, 0.5486, 0.8359, ..., 0.6633, 0.0587, 0.9608]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 9.417802572250366 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '19229', '-m', 'matrices/as-caida_pruned/as-caida_G_065.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 10.47281002998352} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.9709, 0.1511, 0.4432, ..., 0.8939, 0.4938, 0.1652]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 10.47281002998352 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.9709, 0.1511, 0.4432, ..., 0.8939, 0.4938, 0.1652]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 10.47281002998352 seconds - -[18.91, 22.63, 19.24, 18.52, 18.84, 18.59, 18.72, 18.36, 18.85, 18.37] -[51.27] -14.347405672073364 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 19229, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_065', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 95068, 'MATRIX_DENSITY': 9.655086281283934e-05, 'TIME_S': 10.47281002998352, 'TIME_S_1KI': 0.5446362280921275, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 735.5914888072015, 'W': 51.27} -[18.91, 22.63, 19.24, 18.52, 18.84, 18.59, 18.72, 18.36, 18.85, 18.37, 19.24, 18.47, 18.46, 18.62, 19.16, 18.39, 18.45, 18.47, 19.01, 18.26] -340.16999999999996 -17.008499999999998 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 19229, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_065', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 95068, 'MATRIX_DENSITY': 9.655086281283934e-05, 'TIME_S': 10.47281002998352, 'TIME_S_1KI': 0.5446362280921275, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 735.5914888072015, 'W': 51.27, 'J_1KI': 38.25427681144112, 'W_1KI': 2.666285298247439, 'W_D': 34.261500000000005, 'J_D': 491.5636394337416, 'W_D_1KI': 1.781761922096833, 'J_D_1KI': 0.0926601446823461} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_075.json b/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_075.json deleted file mode 100644 index b670e50..0000000 --- a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_075.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 18895, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 10.52974534034729, "TIME_S_1KI": 0.557276810814887, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 731.8454258918762, "W": 51.4, "J_1KI": 38.73222682677302, "W_1KI": 2.7202963747023023, "W_D": 34.51575, "J_D": 491.44345834100244, "W_D_1KI": 1.8267134162476844, "J_D_1KI": 0.09667707945211348} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_075.output b/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_075.output deleted file mode 100644 index 4542b1a..0000000 --- a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_075.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_075.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 0.06986713409423828} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.6412, 0.9170, 0.6451, ..., 0.6226, 0.2917, 0.6640]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 0.06986713409423828 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '15028', '-m', 'matrices/as-caida_pruned/as-caida_G_075.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 8.351078987121582} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.1989, 0.7767, 0.9282, ..., 0.6106, 0.4662, 0.7304]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 8.351078987121582 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '18895', '-m', 'matrices/as-caida_pruned/as-caida_G_075.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 10.52974534034729} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.2342, 0.7865, 0.1763, ..., 0.6603, 0.8473, 0.6206]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 10.52974534034729 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.2342, 0.7865, 0.1763, ..., 0.6603, 0.8473, 0.6206]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 10.52974534034729 seconds - -[19.04, 18.64, 18.67, 18.52, 18.72, 19.12, 19.11, 18.73, 18.51, 19.11] -[51.4] -14.238237857818604 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 18895, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_075', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 97492, 'MATRIX_DENSITY': 9.901267216465406e-05, 'TIME_S': 10.52974534034729, 'TIME_S_1KI': 0.557276810814887, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 731.8454258918762, 'W': 51.4} -[19.04, 18.64, 18.67, 18.52, 18.72, 19.12, 19.11, 18.73, 18.51, 19.11, 19.23, 18.93, 18.61, 19.01, 18.59, 18.49, 18.73, 18.71, 18.62, 18.57] -337.685 -16.88425 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 18895, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_075', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 97492, 'MATRIX_DENSITY': 9.901267216465406e-05, 'TIME_S': 10.52974534034729, 'TIME_S_1KI': 0.557276810814887, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 731.8454258918762, 'W': 51.4, 'J_1KI': 38.73222682677302, 'W_1KI': 2.7202963747023023, 'W_D': 34.51575, 'J_D': 491.44345834100244, 'W_D_1KI': 1.8267134162476844, 'J_D_1KI': 0.09667707945211348} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_085.json b/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_085.json deleted file mode 100644 index 3ea5426..0000000 --- a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_085.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 18645, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 10.518952131271362, "TIME_S_1KI": 0.5641701330797191, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 737.6119203472138, "W": 51.34, "J_1KI": 39.56084314010264, "W_1KI": 2.7535532314293376, "W_D": 34.097500000000004, "J_D": 489.8855172193051, "W_D_1KI": 1.828774470367391, "J_D_1KI": 0.09808390830610839} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_085.output b/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_085.output deleted file mode 100644 index 9d8d636..0000000 --- a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_085.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_085.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 0.0699915885925293} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.7446, 0.2717, 0.8801, ..., 0.1140, 0.4332, 0.2882]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 0.0699915885925293 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '15001', '-m', 'matrices/as-caida_pruned/as-caida_G_085.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 8.447453022003174} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.7520, 0.7891, 0.1920, ..., 0.3124, 0.0972, 0.0468]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 8.447453022003174 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '18645', '-m', 'matrices/as-caida_pruned/as-caida_G_085.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 10.518952131271362} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.3323, 0.6853, 0.9554, ..., 0.7735, 0.0729, 0.3877]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 10.518952131271362 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.3323, 0.6853, 0.9554, ..., 0.7735, 0.0729, 0.3877]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 10.518952131271362 seconds - -[18.83, 18.36, 18.45, 18.83, 18.31, 18.39, 23.19, 18.95, 18.51, 18.47] -[51.34] -14.367197513580322 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 18645, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_085', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 99166, 'MATRIX_DENSITY': 0.0001007127830784073, 'TIME_S': 10.518952131271362, 'TIME_S_1KI': 0.5641701330797191, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 737.6119203472138, 'W': 51.34} -[18.83, 18.36, 18.45, 18.83, 18.31, 18.39, 23.19, 18.95, 18.51, 18.47, 19.38, 21.16, 20.25, 18.57, 19.26, 18.53, 18.9, 18.58, 19.02, 18.5] -344.84999999999997 -17.2425 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 18645, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_085', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 99166, 'MATRIX_DENSITY': 0.0001007127830784073, 'TIME_S': 10.518952131271362, 'TIME_S_1KI': 0.5641701330797191, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 737.6119203472138, 'W': 51.34, 'J_1KI': 39.56084314010264, 'W_1KI': 2.7535532314293376, 'W_D': 34.097500000000004, 'J_D': 489.8855172193051, 'W_D_1KI': 1.828774470367391, 'J_D_1KI': 0.09808390830610839} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_095.json b/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_095.json deleted file mode 100644 index 3926144..0000000 --- a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_095.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 18160, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 10.447108745574951, "TIME_S_1KI": 0.5752813185889291, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 728.1026530575753, "W": 51.47, "J_1KI": 40.09375842828058, "W_1KI": 2.834251101321586, "W_D": 34.3515, "J_D": 485.94168032848836, "W_D_1KI": 1.891602422907489, "J_D_1KI": 0.10416312901472957} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_095.output b/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_095.output deleted file mode 100644 index c40d387..0000000 --- a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_095.output +++ /dev/null @@ -1,89 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_095.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 0.07135295867919922} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.2816, 0.0519, 0.4526, ..., 0.4658, 0.0063, 0.4440]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 0.07135295867919922 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '14715', '-m', 'matrices/as-caida_pruned/as-caida_G_095.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 8.507978677749634} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.2864, 0.5383, 0.4718, ..., 0.4578, 0.9727, 0.9566]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 8.507978677749634 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '18160', '-m', 'matrices/as-caida_pruned/as-caida_G_095.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 10.447108745574951} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.7032, 0.3468, 0.7464, ..., 0.5468, 0.4215, 0.7103]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 10.447108745574951 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.7032, 0.3468, 0.7464, ..., 0.5468, 0.4215, 0.7103]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 10.447108745574951 seconds - -[19.54, 18.52, 18.53, 18.56, 18.7, 18.39, 18.57, 19.3, 18.89, 22.85] -[51.47] -14.146156072616577 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 18160, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_095', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102290, 'MATRIX_DENSITY': 0.00010388551097241275, 'TIME_S': 10.447108745574951, 'TIME_S_1KI': 0.5752813185889291, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 728.1026530575753, 'W': 51.47} -[19.54, 18.52, 18.53, 18.56, 18.7, 18.39, 18.57, 19.3, 18.89, 22.85, 18.87, 18.66, 18.64, 18.39, 22.24, 19.23, 18.56, 18.41, 18.82, 18.66] -342.37 -17.1185 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 18160, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_095', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102290, 'MATRIX_DENSITY': 0.00010388551097241275, 'TIME_S': 10.447108745574951, 'TIME_S_1KI': 0.5752813185889291, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 728.1026530575753, 'W': 51.47, 'J_1KI': 40.09375842828058, 'W_1KI': 2.834251101321586, 'W_D': 34.3515, 'J_D': 485.94168032848836, 'W_D_1KI': 1.891602422907489, 'J_D_1KI': 0.10416312901472957} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_105.json b/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_105.json deleted file mode 100644 index ef2ea78..0000000 --- a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_105.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 17816, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 10.415440320968628, "TIME_S_1KI": 0.5846116031078036, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 736.0956484270096, "W": 51.53, "J_1KI": 41.31654964228837, "W_1KI": 2.8923439604849577, "W_D": 34.6645, "J_D": 495.17538530755036, "W_D_1KI": 1.9456948810058372, "J_D_1KI": 0.109210534407602} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_105.output b/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_105.output deleted file mode 100644 index 8d2a378..0000000 --- a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_105.output +++ /dev/null @@ -1,89 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_105.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 0.07289290428161621} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.2212, 0.1777, 0.5151, ..., 0.3390, 0.7939, 0.3077]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 0.07289290428161621 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '14404', '-m', 'matrices/as-caida_pruned/as-caida_G_105.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 8.488957166671753} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.1035, 0.0189, 0.8464, ..., 0.3615, 0.8119, 0.4494]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 8.488957166671753 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '17816', '-m', 'matrices/as-caida_pruned/as-caida_G_105.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 10.415440320968628} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.8605, 0.5482, 0.2234, ..., 0.4827, 0.0878, 0.0084]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 10.415440320968628 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.8605, 0.5482, 0.2234, ..., 0.4827, 0.0878, 0.0084]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 10.415440320968628 seconds - -[19.37, 18.59, 18.91, 18.57, 18.46, 19.18, 18.55, 18.37, 18.39, 18.4] -[51.53] -14.28479814529419 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 17816, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_105', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104726, 'MATRIX_DENSITY': 0.00010635950749923647, 'TIME_S': 10.415440320968628, 'TIME_S_1KI': 0.5846116031078036, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 736.0956484270096, 'W': 51.53} -[19.37, 18.59, 18.91, 18.57, 18.46, 19.18, 18.55, 18.37, 18.39, 18.4, 19.0, 18.46, 18.84, 18.52, 18.63, 19.09, 19.6, 18.71, 18.79, 18.53] -337.31000000000006 -16.865500000000004 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 17816, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_105', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104726, 'MATRIX_DENSITY': 0.00010635950749923647, 'TIME_S': 10.415440320968628, 'TIME_S_1KI': 0.5846116031078036, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 736.0956484270096, 'W': 51.53, 'J_1KI': 41.31654964228837, 'W_1KI': 2.8923439604849577, 'W_D': 34.6645, 'J_D': 495.17538530755036, 'W_D_1KI': 1.9456948810058372, 'J_D_1KI': 0.109210534407602} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_115.json b/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_115.json deleted file mode 100644 index 0480bc3..0000000 --- a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_115.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 17784, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 10.485624551773071, "TIME_S_1KI": 0.5896100175310993, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 734.9326595020294, "W": 51.42, "J_1KI": 41.325498172628734, "W_1KI": 2.8913630229419707, "W_D": 34.413, "J_D": 491.8560406737327, "W_D_1KI": 1.9350539811066125, "J_D_1KI": 0.10880870339106008} diff --git a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_115.output b/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_115.output deleted file mode 100644 index 588bc33..0000000 --- a/pytorch/output_as-caida_1core/xeon_4216_1_csr_10_10_10_as-caida_G_115.output +++ /dev/null @@ -1,89 +0,0 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_115.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 0.073089599609375} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.4304, 0.3415, 0.8565, ..., 0.5779, 0.8119, 0.1412]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 0.073089599609375 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '14365', '-m', 'matrices/as-caida_pruned/as-caida_G_115.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 8.481326341629028} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.0724, 0.0070, 0.1571, ..., 0.0880, 0.9717, 0.4875]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 8.481326341629028 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '17784', '-m', 'matrices/as-caida_pruned/as-caida_G_115.mtx', '-c', '1'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 10.485624551773071} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.0693, 0.9266, 0.3660, ..., 0.8825, 0.1759, 0.2255]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 10.485624551773071 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.0693, 0.9266, 0.3660, ..., 0.8825, 0.1759, 0.2255]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 10.485624551773071 seconds - -[19.17, 18.45, 18.63, 18.57, 22.5, 18.51, 18.76, 18.65, 18.52, 18.6] -[51.42] -14.292739391326904 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 17784, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_115', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106312, 'MATRIX_DENSITY': 0.00010797024579625715, 'TIME_S': 10.485624551773071, 'TIME_S_1KI': 0.5896100175310993, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 734.9326595020294, 'W': 51.42} -[19.17, 18.45, 18.63, 18.57, 22.5, 18.51, 18.76, 18.65, 18.52, 18.6, 19.86, 18.33, 18.58, 18.45, 18.8, 18.42, 18.91, 18.37, 19.02, 19.71] -340.14000000000004 -17.007 -{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 17784, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_115', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106312, 'MATRIX_DENSITY': 0.00010797024579625715, 'TIME_S': 10.485624551773071, 'TIME_S_1KI': 0.5896100175310993, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 734.9326595020294, 'W': 51.42, 'J_1KI': 41.325498172628734, 'W_1KI': 2.8913630229419707, 'W_D': 34.413, 'J_D': 491.8560406737327, 'W_D_1KI': 1.9350539811066125, 'J_D_1KI': 0.10880870339106008} diff --git a/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_010.json b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_010.json new file mode 100644 index 0000000..46e4410 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_010.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 6520, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 10.294081211090088, "TIME_S_1KI": 1.5788468115168846, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 348.8066624069213, "W": 24.428518062094398, "J_1KI": 53.49795435688977, "W_1KI": 3.746705224247607, "W_D": 5.844518062094398, "J_D": 83.45192424011222, "W_D_1KI": 0.8963984757813493, "J_D_1KI": 0.13748442880082046} diff --git a/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_010.output b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_010.output new file mode 100644 index 0000000..1a3175f --- /dev/null +++ b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_010.output @@ -0,0 +1,77 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_010.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 0.20679163932800293} + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.3962, 0.7949, 0.0510, ..., 0.2901, 0.1189, 0.6776]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 0.20679163932800293 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 5077 -m matrices/as-caida_pruned/as-caida_G_010.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 8.175580024719238} + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.7993, 0.0201, 0.1553, ..., 0.7216, 0.2752, 0.9217]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 8.175580024719238 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 6520 -m matrices/as-caida_pruned/as-caida_G_010.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 10.294081211090088} + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.0621, 0.7958, 0.9107, ..., 0.7152, 0.8546, 0.2603]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 10.294081211090088 seconds + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.0621, 0.7958, 0.9107, ..., 0.7152, 0.8546, 0.2603]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 10.294081211090088 seconds + +[20.56, 20.88, 20.76, 20.76, 20.64, 20.64, 20.64, 20.8, 20.84, 20.88] +[21.0, 21.04, 23.6, 24.72, 28.92, 29.52, 29.52, 30.64, 28.16, 27.92, 24.88, 25.0, 24.92, 25.0] +14.278666496276855 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 6520, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_010', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 74994, 'MATRIX_DENSITY': 7.616375021864427e-05, 'TIME_S': 10.294081211090088, 'TIME_S_1KI': 1.5788468115168846, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 348.8066624069213, 'W': 24.428518062094398} +[20.56, 20.88, 20.76, 20.76, 20.64, 20.64, 20.64, 20.8, 20.84, 20.88, 20.32, 20.44, 20.64, 20.56, 20.56, 20.64, 20.48, 20.48, 20.68, 20.72] +371.68 +18.584 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 6520, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_010', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 74994, 'MATRIX_DENSITY': 7.616375021864427e-05, 'TIME_S': 10.294081211090088, 'TIME_S_1KI': 1.5788468115168846, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 348.8066624069213, 'W': 24.428518062094398, 'J_1KI': 53.49795435688977, 'W_1KI': 3.746705224247607, 'W_D': 5.844518062094398, 'J_D': 83.45192424011222, 'W_D_1KI': 0.8963984757813493, 'J_D_1KI': 0.13748442880082046} diff --git a/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_020.json b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_020.json new file mode 100644 index 0000000..b6114a8 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_020.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 6171, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_020", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 80948, "MATRIX_DENSITY": 8.221062021893506e-05, "TIME_S": 10.506993770599365, "TIME_S_1KI": 1.7026403776696428, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 357.4520938873291, "W": 25.117938919455142, "J_1KI": 57.92450071095919, "W_1KI": 4.070319060031622, "W_D": 6.18893891945514, "J_D": 88.07447071170806, "W_D_1KI": 1.002906971229159, "J_D_1KI": 0.16251936010843607} diff --git a/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_020.output b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_020.output new file mode 100644 index 0000000..7df181c --- /dev/null +++ b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_020.output @@ -0,0 +1,77 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_020.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_020", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 80948, "MATRIX_DENSITY": 8.221062021893506e-05, "TIME_S": 0.21974730491638184} + +tensor(indices=tensor([[ 1040, 5699, 106, ..., 31378, 17998, 31377], + [ 0, 0, 2, ..., 31377, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 1.]), + size=(31379, 31379), nnz=80948, layout=torch.sparse_coo) +tensor([0.1158, 0.2240, 0.7242, ..., 0.5463, 0.2616, 0.3514]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_020 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 80948 +Density: 8.221062021893506e-05 +Time: 0.21974730491638184 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 4778 -m matrices/as-caida_pruned/as-caida_G_020.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_020", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 80948, "MATRIX_DENSITY": 8.221062021893506e-05, "TIME_S": 8.128859996795654} + +tensor(indices=tensor([[ 1040, 5699, 106, ..., 31378, 17998, 31377], + [ 0, 0, 2, ..., 31377, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 1.]), + size=(31379, 31379), nnz=80948, layout=torch.sparse_coo) +tensor([0.6047, 0.3172, 0.5169, ..., 0.7554, 0.7229, 0.5726]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_020 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 80948 +Density: 8.221062021893506e-05 +Time: 8.128859996795654 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 6171 -m matrices/as-caida_pruned/as-caida_G_020.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_020", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 80948, "MATRIX_DENSITY": 8.221062021893506e-05, "TIME_S": 10.506993770599365} + +tensor(indices=tensor([[ 1040, 5699, 106, ..., 31378, 17998, 31377], + [ 0, 0, 2, ..., 31377, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 1.]), + size=(31379, 31379), nnz=80948, layout=torch.sparse_coo) +tensor([0.7008, 0.1457, 0.4845, ..., 0.1337, 0.1871, 0.6145]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_020 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 80948 +Density: 8.221062021893506e-05 +Time: 10.506993770599365 seconds + +tensor(indices=tensor([[ 1040, 5699, 106, ..., 31378, 17998, 31377], + [ 0, 0, 2, ..., 31377, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 1.]), + size=(31379, 31379), nnz=80948, layout=torch.sparse_coo) +tensor([0.7008, 0.1457, 0.4845, ..., 0.1337, 0.1871, 0.6145]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_020 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 80948 +Density: 8.221062021893506e-05 +Time: 10.506993770599365 seconds + +[20.56, 20.68, 20.48, 20.56, 20.72, 20.72, 20.52, 21.08, 21.16, 20.96] +[20.6, 20.52, 20.6, 24.32, 28.84, 32.6, 33.76, 31.36, 31.36, 31.4, 25.12, 24.84, 24.48, 24.56] +14.230948448181152 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 6171, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_020', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 80948, 'MATRIX_DENSITY': 8.221062021893506e-05, 'TIME_S': 10.506993770599365, 'TIME_S_1KI': 1.7026403776696428, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 357.4520938873291, 'W': 25.117938919455142} +[20.56, 20.68, 20.48, 20.56, 20.72, 20.72, 20.52, 21.08, 21.16, 20.96, 23.28, 23.12, 23.12, 21.44, 20.56, 20.36, 20.44, 20.48, 20.48, 20.52] +378.58000000000004 +18.929000000000002 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 6171, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_020', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 80948, 'MATRIX_DENSITY': 8.221062021893506e-05, 'TIME_S': 10.506993770599365, 'TIME_S_1KI': 1.7026403776696428, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 357.4520938873291, 'W': 25.117938919455142, 'J_1KI': 57.92450071095919, 'W_1KI': 4.070319060031622, 'W_D': 6.18893891945514, 'J_D': 88.07447071170806, 'W_D_1KI': 1.002906971229159, 'J_D_1KI': 0.16251936010843607} diff --git a/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_030.json b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_030.json new file mode 100644 index 0000000..32d48e6 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_030.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 5638, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_030", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 86850, "MATRIX_DENSITY": 8.820467912752026e-05, "TIME_S": 10.297351598739624, "TIME_S_1KI": 1.826419226452576, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 321.09055640220646, "W": 22.48005003143365, "J_1KI": 56.95114515824875, "W_1KI": 3.987238387980427, "W_D": 3.9500500314336477, "J_D": 56.419970624446904, "W_D_1KI": 0.7006119246955743, "J_D_1KI": 0.1242660384348305} diff --git a/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_030.output b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_030.output new file mode 100644 index 0000000..2b1b2ce --- /dev/null +++ b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_030.output @@ -0,0 +1,77 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_030.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_030", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 86850, "MATRIX_DENSITY": 8.820467912752026e-05, "TIME_S": 0.2008957862854004} + +tensor(indices=tensor([[ 1809, 21783, 106, ..., 7018, 160, 882], + [ 0, 0, 2, ..., 31357, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=86850, layout=torch.sparse_coo) +tensor([0.1303, 0.3745, 0.0020, ..., 0.4343, 0.9266, 0.0145]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_030 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 86850 +Density: 8.820467912752026e-05 +Time: 0.2008957862854004 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 5226 -m matrices/as-caida_pruned/as-caida_G_030.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_030", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 86850, "MATRIX_DENSITY": 8.820467912752026e-05, "TIME_S": 9.732299566268921} + +tensor(indices=tensor([[ 1809, 21783, 106, ..., 7018, 160, 882], + [ 0, 0, 2, ..., 31357, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=86850, layout=torch.sparse_coo) +tensor([0.0201, 0.4650, 0.5470, ..., 0.2799, 0.0488, 0.7366]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_030 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 86850 +Density: 8.820467912752026e-05 +Time: 9.732299566268921 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 5638 -m matrices/as-caida_pruned/as-caida_G_030.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_030", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 86850, "MATRIX_DENSITY": 8.820467912752026e-05, "TIME_S": 10.297351598739624} + +tensor(indices=tensor([[ 1809, 21783, 106, ..., 7018, 160, 882], + [ 0, 0, 2, ..., 31357, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=86850, layout=torch.sparse_coo) +tensor([0.6755, 0.6129, 0.0214, ..., 0.6343, 0.7130, 0.7988]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_030 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 86850 +Density: 8.820467912752026e-05 +Time: 10.297351598739624 seconds + +tensor(indices=tensor([[ 1809, 21783, 106, ..., 7018, 160, 882], + [ 0, 0, 2, ..., 31357, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=86850, layout=torch.sparse_coo) +tensor([0.6755, 0.6129, 0.0214, ..., 0.6343, 0.7130, 0.7988]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_030 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 86850 +Density: 8.820467912752026e-05 +Time: 10.297351598739624 seconds + +[20.84, 20.68, 20.44, 20.68, 20.64, 21.08, 21.12, 20.88, 20.8, 20.84] +[20.84, 20.48, 20.64, 21.48, 22.6, 26.08, 26.92, 27.32, 27.36, 24.72, 24.56, 24.64, 24.6, 24.6] +14.283355951309204 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 5638, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_030', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 86850, 'MATRIX_DENSITY': 8.820467912752026e-05, 'TIME_S': 10.297351598739624, 'TIME_S_1KI': 1.826419226452576, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 321.09055640220646, 'W': 22.48005003143365} +[20.84, 20.68, 20.44, 20.68, 20.64, 21.08, 21.12, 20.88, 20.8, 20.84, 20.36, 20.36, 20.28, 20.6, 20.4, 20.36, 20.4, 20.52, 20.2, 20.28] +370.6 +18.53 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 5638, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_030', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 86850, 'MATRIX_DENSITY': 8.820467912752026e-05, 'TIME_S': 10.297351598739624, 'TIME_S_1KI': 1.826419226452576, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 321.09055640220646, 'W': 22.48005003143365, 'J_1KI': 56.95114515824875, 'W_1KI': 3.987238387980427, 'W_D': 3.9500500314336477, 'J_D': 56.419970624446904, 'W_D_1KI': 0.7006119246955743, 'J_D_1KI': 0.1242660384348305} diff --git a/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_040.json b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_040.json new file mode 100644 index 0000000..8db8426 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_040.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 5488, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_040", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89658, "MATRIX_DENSITY": 9.105647807962247e-05, "TIME_S": 10.577706813812256, "TIME_S_1KI": 1.9274247109716212, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 327.8115686225891, "W": 23.00616552238044, "J_1KI": 59.73242868487411, "W_1KI": 4.192085554369614, "W_D": 4.53616552238044, "J_D": 64.63517503499985, "W_D_1KI": 0.8265607730285058, "J_D_1KI": 0.1506123857559231} diff --git a/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_040.output b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_040.output new file mode 100644 index 0000000..d3f9184 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_040.output @@ -0,0 +1,77 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_040.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_040", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89658, "MATRIX_DENSITY": 9.105647807962247e-05, "TIME_S": 0.22672438621520996} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 10144, 882, 16085], + [ 2, 2, 2, ..., 31371, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=89658, layout=torch.sparse_coo) +tensor([0.8412, 0.5874, 0.2396, ..., 0.1123, 0.2059, 0.1835]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_040 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 89658 +Density: 9.105647807962247e-05 +Time: 0.22672438621520996 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 4631 -m matrices/as-caida_pruned/as-caida_G_040.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_040", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89658, "MATRIX_DENSITY": 9.105647807962247e-05, "TIME_S": 8.860018014907837} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 10144, 882, 16085], + [ 2, 2, 2, ..., 31371, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=89658, layout=torch.sparse_coo) +tensor([0.0910, 0.4891, 0.7108, ..., 0.4990, 0.9888, 0.9047]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_040 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 89658 +Density: 9.105647807962247e-05 +Time: 8.860018014907837 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 5488 -m matrices/as-caida_pruned/as-caida_G_040.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_040", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89658, "MATRIX_DENSITY": 9.105647807962247e-05, "TIME_S": 10.577706813812256} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 10144, 882, 16085], + [ 2, 2, 2, ..., 31371, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=89658, layout=torch.sparse_coo) +tensor([0.1178, 0.7765, 0.7175, ..., 0.6580, 0.4270, 0.1906]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_040 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 89658 +Density: 9.105647807962247e-05 +Time: 10.577706813812256 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 10144, 882, 16085], + [ 2, 2, 2, ..., 31371, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=89658, layout=torch.sparse_coo) +tensor([0.1178, 0.7765, 0.7175, ..., 0.6580, 0.4270, 0.1906]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_040 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 89658 +Density: 9.105647807962247e-05 +Time: 10.577706813812256 seconds + +[20.04, 20.4, 20.48, 20.48, 20.4, 20.24, 20.4, 20.36, 20.36, 20.44] +[20.52, 20.52, 20.52, 22.12, 23.36, 27.0, 28.0, 28.16, 27.56, 27.2, 24.6, 24.88, 25.0, 24.88] +14.248857259750366 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 5488, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_040', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89658, 'MATRIX_DENSITY': 9.105647807962247e-05, 'TIME_S': 10.577706813812256, 'TIME_S_1KI': 1.9274247109716212, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 327.8115686225891, 'W': 23.00616552238044} +[20.04, 20.4, 20.48, 20.48, 20.4, 20.24, 20.4, 20.36, 20.36, 20.44, 20.4, 20.44, 20.44, 20.48, 20.96, 20.96, 20.96, 20.88, 20.4, 20.64] +369.4 +18.47 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 5488, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_040', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89658, 'MATRIX_DENSITY': 9.105647807962247e-05, 'TIME_S': 10.577706813812256, 'TIME_S_1KI': 1.9274247109716212, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 327.8115686225891, 'W': 23.00616552238044, 'J_1KI': 59.73242868487411, 'W_1KI': 4.192085554369614, 'W_D': 4.53616552238044, 'J_D': 64.63517503499985, 'W_D_1KI': 0.8265607730285058, 'J_D_1KI': 0.1506123857559231} diff --git a/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_050.json b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_050.json new file mode 100644 index 0000000..31b3512 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_050.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 5467, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 10.85263729095459, "TIME_S_1KI": 1.985117485084066, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 325.97135974884037, "W": 22.911335227452682, "J_1KI": 59.62527158383764, "W_1KI": 4.190842368292058, "W_D": 4.288335227452684, "J_D": 61.01235267496114, "W_D_1KI": 0.7844037365013141, "J_D_1KI": 0.14347973961977575} diff --git a/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_050.output b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_050.output new file mode 100644 index 0000000..d18f417 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_050.output @@ -0,0 +1,77 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_050.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 0.20174312591552734} + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.9131, 0.1095, 0.3252, ..., 0.6947, 0.7431, 0.2652]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 0.20174312591552734 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 5204 -m matrices/as-caida_pruned/as-caida_G_050.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 9.994465827941895} + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.1376, 0.6246, 0.8279, ..., 0.6146, 0.4949, 0.4216]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 9.994465827941895 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 5467 -m matrices/as-caida_pruned/as-caida_G_050.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 10.85263729095459} + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.3536, 0.2503, 0.0794, ..., 0.5520, 0.6302, 0.4872]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 10.85263729095459 seconds + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.3536, 0.2503, 0.0794, ..., 0.5520, 0.6302, 0.4872]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 10.85263729095459 seconds + +[22.76, 22.4, 21.76, 21.48, 21.04, 20.44, 20.4, 20.4, 20.48, 20.36] +[20.28, 20.4, 20.68, 21.88, 23.76, 27.44, 28.68, 28.48, 28.44, 24.68, 24.68, 24.52, 24.44, 24.4] +14.227514743804932 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 5467, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_050', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 90392, 'MATRIX_DENSITY': 9.180192695100532e-05, 'TIME_S': 10.85263729095459, 'TIME_S_1KI': 1.985117485084066, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 325.97135974884037, 'W': 22.911335227452682} +[22.76, 22.4, 21.76, 21.48, 21.04, 20.44, 20.4, 20.4, 20.48, 20.36, 19.88, 19.8, 19.84, 20.32, 20.52, 20.64, 20.72, 20.44, 20.24, 20.08] +372.46 +18.622999999999998 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 5467, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_050', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 90392, 'MATRIX_DENSITY': 9.180192695100532e-05, 'TIME_S': 10.85263729095459, 'TIME_S_1KI': 1.985117485084066, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 325.97135974884037, 'W': 22.911335227452682, 'J_1KI': 59.62527158383764, 'W_1KI': 4.190842368292058, 'W_D': 4.288335227452684, 'J_D': 61.01235267496114, 'W_D_1KI': 0.7844037365013141, 'J_D_1KI': 0.14347973961977575} diff --git a/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_060.json b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_060.json new file mode 100644 index 0000000..b85e4be --- /dev/null +++ b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_060.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 5103, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_060", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 94180, "MATRIX_DENSITY": 9.564901186217454e-05, "TIME_S": 10.115683794021606, "TIME_S_1KI": 1.9823013509742515, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 334.9760350322723, "W": 25.35362202799804, "J_1KI": 65.64296198947135, "W_1KI": 4.968375862825405, "W_D": 6.870622027998039, "J_D": 90.7757369973659, "W_D_1KI": 1.3463887963938936, "J_D_1KI": 0.2638426016840865} diff --git a/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_060.output b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_060.output new file mode 100644 index 0000000..7130655 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_060.output @@ -0,0 +1,77 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_060.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_060", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 94180, "MATRIX_DENSITY": 9.564901186217454e-05, "TIME_S": 0.24750185012817383} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 882], + [ 2, 2, 2, ..., 31355, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=94180, layout=torch.sparse_coo) +tensor([0.4835, 0.5164, 0.0589, ..., 0.2612, 0.9317, 0.7411]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_060 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 94180 +Density: 9.564901186217454e-05 +Time: 0.24750185012817383 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 4242 -m matrices/as-caida_pruned/as-caida_G_060.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_060", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 94180, "MATRIX_DENSITY": 9.564901186217454e-05, "TIME_S": 8.72828221321106} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 882], + [ 2, 2, 2, ..., 31355, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=94180, layout=torch.sparse_coo) +tensor([0.9985, 0.6010, 0.2902, ..., 0.1119, 0.1091, 0.5221]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_060 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 94180 +Density: 9.564901186217454e-05 +Time: 8.72828221321106 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 5103 -m matrices/as-caida_pruned/as-caida_G_060.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_060", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 94180, "MATRIX_DENSITY": 9.564901186217454e-05, "TIME_S": 10.115683794021606} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 882], + [ 2, 2, 2, ..., 31355, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=94180, layout=torch.sparse_coo) +tensor([0.7460, 0.1656, 0.9156, ..., 0.1936, 0.4136, 0.1561]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_060 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 94180 +Density: 9.564901186217454e-05 +Time: 10.115683794021606 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 882], + [ 2, 2, 2, ..., 31355, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=94180, layout=torch.sparse_coo) +tensor([0.7460, 0.1656, 0.9156, ..., 0.1936, 0.4136, 0.1561]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_060 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 94180 +Density: 9.564901186217454e-05 +Time: 10.115683794021606 seconds + +[21.0, 21.04, 20.4, 20.4, 20.32, 20.52, 20.6, 20.88, 21.12, 21.08] +[21.12, 21.36, 21.6, 26.68, 30.8, 32.24, 32.88, 32.88, 30.08, 28.64, 24.88, 24.8, 24.68] +13.212157011032104 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 5103, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_060', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 94180, 'MATRIX_DENSITY': 9.564901186217454e-05, 'TIME_S': 10.115683794021606, 'TIME_S_1KI': 1.9823013509742515, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 334.9760350322723, 'W': 25.35362202799804} +[21.0, 21.04, 20.4, 20.4, 20.32, 20.52, 20.6, 20.88, 21.12, 21.08, 20.52, 20.48, 20.24, 20.16, 20.4, 20.4, 20.44, 20.4, 20.4, 20.32] +369.66 +18.483 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 5103, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_060', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 94180, 'MATRIX_DENSITY': 9.564901186217454e-05, 'TIME_S': 10.115683794021606, 'TIME_S_1KI': 1.9823013509742515, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 334.9760350322723, 'W': 25.35362202799804, 'J_1KI': 65.64296198947135, 'W_1KI': 4.968375862825405, 'W_D': 6.870622027998039, 'J_D': 90.7757369973659, 'W_D_1KI': 1.3463887963938936, 'J_D_1KI': 0.2638426016840865} diff --git a/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_070.json b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_070.json new file mode 100644 index 0000000..e9d6e60 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_070.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 6057, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_070", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 78684, "MATRIX_DENSITY": 7.991130653390679e-05, "TIME_S": 10.495833396911621, "TIME_S_1KI": 1.732843552404098, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 329.9003308677673, "W": 23.162184495225404, "J_1KI": 54.46596184047669, "W_1KI": 3.8240357429792646, "W_D": 4.690184495225402, "J_D": 66.80256851959226, "W_D_1KI": 0.7743411747111445, "J_D_1KI": 0.12784236003155763} diff --git a/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_070.output b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_070.output new file mode 100644 index 0000000..d73b830 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_070.output @@ -0,0 +1,77 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_070.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_070", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 78684, "MATRIX_DENSITY": 7.991130653390679e-05, "TIME_S": 0.22460079193115234} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 16263, 2242, 2242], + [ 2, 2, 2, ..., 31240, 31283, 31284]]), + values=tensor([3., 3., 3., ..., 1., 3., 3.]), + size=(31379, 31379), nnz=78684, layout=torch.sparse_coo) +tensor([0.7855, 0.6434, 0.0312, ..., 0.3314, 0.6466, 0.1730]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_070 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 78684 +Density: 7.991130653390679e-05 +Time: 0.22460079193115234 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 4674 -m matrices/as-caida_pruned/as-caida_G_070.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_070", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 78684, "MATRIX_DENSITY": 7.991130653390679e-05, "TIME_S": 8.101359128952026} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 16263, 2242, 2242], + [ 2, 2, 2, ..., 31240, 31283, 31284]]), + values=tensor([3., 3., 3., ..., 1., 3., 3.]), + size=(31379, 31379), nnz=78684, layout=torch.sparse_coo) +tensor([0.9033, 0.0969, 0.2616, ..., 0.9004, 0.7861, 0.2629]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_070 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 78684 +Density: 7.991130653390679e-05 +Time: 8.101359128952026 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 6057 -m matrices/as-caida_pruned/as-caida_G_070.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_070", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 78684, "MATRIX_DENSITY": 7.991130653390679e-05, "TIME_S": 10.495833396911621} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 16263, 2242, 2242], + [ 2, 2, 2, ..., 31240, 31283, 31284]]), + values=tensor([3., 3., 3., ..., 1., 3., 3.]), + size=(31379, 31379), nnz=78684, layout=torch.sparse_coo) +tensor([0.6762, 0.4741, 0.7464, ..., 0.3227, 0.6893, 0.1626]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_070 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 78684 +Density: 7.991130653390679e-05 +Time: 10.495833396911621 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 16263, 2242, 2242], + [ 2, 2, 2, ..., 31240, 31283, 31284]]), + values=tensor([3., 3., 3., ..., 1., 3., 3.]), + size=(31379, 31379), nnz=78684, layout=torch.sparse_coo) +tensor([0.6762, 0.4741, 0.7464, ..., 0.3227, 0.6893, 0.1626]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_070 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 78684 +Density: 7.991130653390679e-05 +Time: 10.495833396911621 seconds + +[20.68, 20.6, 20.4, 20.56, 20.44, 20.44, 20.44, 20.6, 20.36, 20.12] +[20.36, 20.24, 20.64, 22.28, 23.72, 27.48, 28.48, 28.48, 28.0, 28.0, 24.96, 24.64, 24.64, 24.44] +14.24305772781372 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 6057, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_070', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 78684, 'MATRIX_DENSITY': 7.991130653390679e-05, 'TIME_S': 10.495833396911621, 'TIME_S_1KI': 1.732843552404098, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 329.9003308677673, 'W': 23.162184495225404} +[20.68, 20.6, 20.4, 20.56, 20.44, 20.44, 20.44, 20.6, 20.36, 20.12, 20.4, 20.48, 20.68, 20.92, 20.76, 20.72, 20.68, 20.4, 20.2, 20.32] +369.44 +18.472 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 6057, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_070', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 78684, 'MATRIX_DENSITY': 7.991130653390679e-05, 'TIME_S': 10.495833396911621, 'TIME_S_1KI': 1.732843552404098, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 329.9003308677673, 'W': 23.162184495225404, 'J_1KI': 54.46596184047669, 'W_1KI': 3.8240357429792646, 'W_D': 4.690184495225402, 'J_D': 66.80256851959226, 'W_D_1KI': 0.7743411747111445, 'J_D_1KI': 0.12784236003155763} diff --git a/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_080.json b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_080.json new file mode 100644 index 0000000..fac3eeb --- /dev/null +++ b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_080.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 4719, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_080", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 98112, "MATRIX_DENSITY": 9.964234287345156e-05, "TIME_S": 10.253804922103882, "TIME_S_1KI": 2.1728766522788474, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 354.2040447235107, "W": 24.884304983030177, "J_1KI": 75.0591321728143, "W_1KI": 5.273215720074205, "W_D": 6.290304983030175, "J_D": 89.53641538524623, "W_D_1KI": 1.3329741434689926, "J_D_1KI": 0.28246962141745974} diff --git a/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_080.output b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_080.output new file mode 100644 index 0000000..245dd39 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_080.output @@ -0,0 +1,59 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_080.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_080", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 98112, "MATRIX_DENSITY": 9.964234287345156e-05, "TIME_S": 0.2224886417388916} + +tensor(indices=tensor([[22754, 22754, 106, ..., 4133, 31329, 12170], + [ 0, 1, 2, ..., 31373, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 1., 1., 3.]), + size=(31379, 31379), nnz=98112, layout=torch.sparse_coo) +tensor([0.5847, 0.1218, 0.4110, ..., 0.3507, 0.5457, 0.1789]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_080 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 98112 +Density: 9.964234287345156e-05 +Time: 0.2224886417388916 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 4719 -m matrices/as-caida_pruned/as-caida_G_080.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_080", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 98112, "MATRIX_DENSITY": 9.964234287345156e-05, "TIME_S": 10.253804922103882} + +tensor(indices=tensor([[22754, 22754, 106, ..., 4133, 31329, 12170], + [ 0, 1, 2, ..., 31373, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 1., 1., 3.]), + size=(31379, 31379), nnz=98112, layout=torch.sparse_coo) +tensor([0.5957, 0.8633, 0.4337, ..., 0.9702, 0.0110, 0.9071]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_080 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 98112 +Density: 9.964234287345156e-05 +Time: 10.253804922103882 seconds + +tensor(indices=tensor([[22754, 22754, 106, ..., 4133, 31329, 12170], + [ 0, 1, 2, ..., 31373, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 1., 1., 3.]), + size=(31379, 31379), nnz=98112, layout=torch.sparse_coo) +tensor([0.5957, 0.8633, 0.4337, ..., 0.9702, 0.0110, 0.9071]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_080 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 98112 +Density: 9.964234287345156e-05 +Time: 10.253804922103882 seconds + +[20.76, 20.8, 20.8, 20.92, 21.04, 21.08, 21.0, 20.92, 20.88, 20.6] +[20.8, 20.84, 23.6, 25.56, 30.56, 30.56, 31.04, 32.08, 28.68, 28.44, 24.8, 24.68, 24.76, 24.8] +14.234034061431885 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4719, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_080', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 98112, 'MATRIX_DENSITY': 9.964234287345156e-05, 'TIME_S': 10.253804922103882, 'TIME_S_1KI': 2.1728766522788474, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 354.2040447235107, 'W': 24.884304983030177} +[20.76, 20.8, 20.8, 20.92, 21.04, 21.08, 21.0, 20.92, 20.88, 20.6, 20.32, 20.36, 20.28, 20.4, 20.44, 20.44, 20.6, 20.56, 20.32, 20.4] +371.88 +18.594 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4719, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_080', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 98112, 'MATRIX_DENSITY': 9.964234287345156e-05, 'TIME_S': 10.253804922103882, 'TIME_S_1KI': 2.1728766522788474, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 354.2040447235107, 'W': 24.884304983030177, 'J_1KI': 75.0591321728143, 'W_1KI': 5.273215720074205, 'W_D': 6.290304983030175, 'J_D': 89.53641538524623, 'W_D_1KI': 1.3329741434689926, 'J_D_1KI': 0.28246962141745974} diff --git a/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_090.json b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_090.json new file mode 100644 index 0000000..d5334aa --- /dev/null +++ b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_090.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 4846, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_090", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 100924, "MATRIX_DENSITY": 0.00010249820421722343, "TIME_S": 10.36161494255066, "TIME_S_1KI": 2.138178898586599, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 351.4446623516082, "W": 24.65769698049189, "J_1KI": 72.52262945761622, "W_1KI": 5.08825773431529, "W_D": 6.245696980491893, "J_D": 89.01954096508018, "W_D_1KI": 1.2888355304358012, "J_D_1KI": 0.265958631951259} diff --git a/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_090.output b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_090.output new file mode 100644 index 0000000..bae7c4a --- /dev/null +++ b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_090.output @@ -0,0 +1,59 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_090.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_090", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 100924, "MATRIX_DENSITY": 0.00010249820421722343, "TIME_S": 0.21666717529296875} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 31211, 12170], + [ 2, 2, 2, ..., 31373, 31376, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=100924, layout=torch.sparse_coo) +tensor([0.9488, 0.9009, 0.6804, ..., 0.0977, 0.6993, 0.4762]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_090 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 100924 +Density: 0.00010249820421722343 +Time: 0.21666717529296875 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 4846 -m matrices/as-caida_pruned/as-caida_G_090.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_090", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 100924, "MATRIX_DENSITY": 0.00010249820421722343, "TIME_S": 10.36161494255066} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 31211, 12170], + [ 2, 2, 2, ..., 31373, 31376, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=100924, layout=torch.sparse_coo) +tensor([1.0000, 0.9984, 0.9461, ..., 0.9086, 0.1536, 0.5682]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_090 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 100924 +Density: 0.00010249820421722343 +Time: 10.36161494255066 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 31211, 12170], + [ 2, 2, 2, ..., 31373, 31376, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=100924, layout=torch.sparse_coo) +tensor([1.0000, 0.9984, 0.9461, ..., 0.9086, 0.1536, 0.5682]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_090 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 100924 +Density: 0.00010249820421722343 +Time: 10.36161494255066 seconds + +[20.68, 20.52, 20.4, 20.28, 20.4, 20.84, 20.52, 20.36, 20.64, 20.68] +[20.48, 20.64, 20.64, 24.12, 24.96, 31.96, 32.88, 33.64, 30.64, 27.44, 24.8, 25.08, 25.28, 25.4] +14.252939462661743 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4846, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_090', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 100924, 'MATRIX_DENSITY': 0.00010249820421722343, 'TIME_S': 10.36161494255066, 'TIME_S_1KI': 2.138178898586599, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 351.4446623516082, 'W': 24.65769698049189} +[20.68, 20.52, 20.4, 20.28, 20.4, 20.84, 20.52, 20.36, 20.64, 20.68, 20.08, 19.88, 19.88, 20.16, 20.2, 20.48, 20.68, 20.88, 20.96, 20.88] +368.24 +18.412 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4846, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_090', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 100924, 'MATRIX_DENSITY': 0.00010249820421722343, 'TIME_S': 10.36161494255066, 'TIME_S_1KI': 2.138178898586599, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 351.4446623516082, 'W': 24.65769698049189, 'J_1KI': 72.52262945761622, 'W_1KI': 5.08825773431529, 'W_D': 6.245696980491893, 'J_D': 89.01954096508018, 'W_D_1KI': 1.2888355304358012, 'J_D_1KI': 0.265958631951259} diff --git a/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_100.json b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_100.json new file mode 100644 index 0000000..4663799 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_100.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 4840, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_100", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102888, "MATRIX_DENSITY": 0.00010449283852702711, "TIME_S": 10.68853497505188, "TIME_S_1KI": 2.20837499484543, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 366.4244141674042, "W": 24.001572968085217, "J_1KI": 75.70752358830666, "W_1KI": 4.95900267935645, "W_D": 5.636572968085215, "J_D": 86.0517746269703, "W_D_1KI": 1.1645811917531437, "J_D_1KI": 0.2406159487093272} diff --git a/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_100.output b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_100.output new file mode 100644 index 0000000..519b46f --- /dev/null +++ b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_100.output @@ -0,0 +1,95 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_100.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_100", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102888, "MATRIX_DENSITY": 0.00010449283852702711, "TIME_S": 0.2537684440612793} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 25970, 5128, 12170], + [ 2, 2, 2, ..., 31373, 31377, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=102888, layout=torch.sparse_coo) +tensor([0.3383, 0.7557, 0.1440, ..., 0.8833, 0.2656, 0.4061]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_100 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 102888 +Density: 0.00010449283852702711 +Time: 0.2537684440612793 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 4137 -m matrices/as-caida_pruned/as-caida_G_100.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_100", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102888, "MATRIX_DENSITY": 0.00010449283852702711, "TIME_S": 9.465908765792847} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 25970, 5128, 12170], + [ 2, 2, 2, ..., 31373, 31377, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=102888, layout=torch.sparse_coo) +tensor([0.6614, 0.3769, 0.5613, ..., 0.7060, 0.1233, 0.3078]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_100 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 102888 +Density: 0.00010449283852702711 +Time: 9.465908765792847 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 4588 -m matrices/as-caida_pruned/as-caida_G_100.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_100", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102888, "MATRIX_DENSITY": 0.00010449283852702711, "TIME_S": 9.952504396438599} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 25970, 5128, 12170], + [ 2, 2, 2, ..., 31373, 31377, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=102888, layout=torch.sparse_coo) +tensor([0.1627, 0.9645, 0.0448, ..., 0.1042, 0.3242, 0.1039]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_100 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 102888 +Density: 0.00010449283852702711 +Time: 9.952504396438599 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 4840 -m matrices/as-caida_pruned/as-caida_G_100.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_100", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102888, "MATRIX_DENSITY": 0.00010449283852702711, "TIME_S": 10.68853497505188} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 25970, 5128, 12170], + [ 2, 2, 2, ..., 31373, 31377, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=102888, layout=torch.sparse_coo) +tensor([0.4745, 0.2868, 0.2691, ..., 0.4147, 0.1319, 0.0523]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_100 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 102888 +Density: 0.00010449283852702711 +Time: 10.68853497505188 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 25970, 5128, 12170], + [ 2, 2, 2, ..., 31373, 31377, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=102888, layout=torch.sparse_coo) +tensor([0.4745, 0.2868, 0.2691, ..., 0.4147, 0.1319, 0.0523]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_100 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 102888 +Density: 0.00010449283852702711 +Time: 10.68853497505188 seconds + +[20.36, 20.44, 20.64, 20.44, 20.4, 20.36, 20.36, 20.4, 20.4, 20.2] +[20.04, 20.08, 20.32, 21.44, 23.6, 30.8, 31.8, 32.12, 30.88, 27.28, 24.8, 24.68, 24.68, 24.88, 24.84] +15.266683340072632 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4840, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_100', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102888, 'MATRIX_DENSITY': 0.00010449283852702711, 'TIME_S': 10.68853497505188, 'TIME_S_1KI': 2.20837499484543, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 366.4244141674042, 'W': 24.001572968085217} +[20.36, 20.44, 20.64, 20.44, 20.4, 20.36, 20.36, 20.4, 20.4, 20.2, 20.68, 20.72, 20.56, 20.48, 20.4, 20.12, 20.2, 20.24, 20.24, 20.56] +367.30000000000007 +18.365000000000002 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4840, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_100', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102888, 'MATRIX_DENSITY': 0.00010449283852702711, 'TIME_S': 10.68853497505188, 'TIME_S_1KI': 2.20837499484543, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 366.4244141674042, 'W': 24.001572968085217, 'J_1KI': 75.70752358830666, 'W_1KI': 4.95900267935645, 'W_D': 5.636572968085215, 'J_D': 86.0517746269703, 'W_D_1KI': 1.1645811917531437, 'J_D_1KI': 0.2406159487093272} diff --git a/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_110.json b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_110.json new file mode 100644 index 0000000..3000ad6 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_110.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 4705, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_110", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104846, "MATRIX_DENSITY": 0.0001064813792493263, "TIME_S": 10.883554220199585, "TIME_S_1KI": 2.3131889947289235, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 363.10562927246093, "W": 25.50254716925525, "J_1KI": 77.17441642347734, "W_1KI": 5.420307581138204, "W_D": 7.0935471692552525, "J_D": 100.99802547454833, "W_D_1KI": 1.5076614599904894, "J_D_1KI": 0.32043814239967894} diff --git a/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_110.output b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_110.output new file mode 100644 index 0000000..61a043a --- /dev/null +++ b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_110.output @@ -0,0 +1,77 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_110.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_110", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104846, "MATRIX_DENSITY": 0.0001064813792493263, "TIME_S": 0.26070666313171387} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 2616, 12170], + [ 2, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=104846, layout=torch.sparse_coo) +tensor([0.6946, 0.5229, 0.9398, ..., 0.8749, 0.2570, 0.4318]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_110 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 104846 +Density: 0.0001064813792493263 +Time: 0.26070666313171387 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 4027 -m matrices/as-caida_pruned/as-caida_G_110.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_110", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104846, "MATRIX_DENSITY": 0.0001064813792493263, "TIME_S": 8.985443830490112} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 2616, 12170], + [ 2, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=104846, layout=torch.sparse_coo) +tensor([0.1567, 0.5033, 0.4051, ..., 0.1151, 0.6035, 0.7460]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_110 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 104846 +Density: 0.0001064813792493263 +Time: 8.985443830490112 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 4705 -m matrices/as-caida_pruned/as-caida_G_110.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_110", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104846, "MATRIX_DENSITY": 0.0001064813792493263, "TIME_S": 10.883554220199585} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 2616, 12170], + [ 2, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=104846, layout=torch.sparse_coo) +tensor([0.5248, 0.0513, 0.5600, ..., 0.1896, 0.4784, 0.9417]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_110 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 104846 +Density: 0.0001064813792493263 +Time: 10.883554220199585 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 2616, 12170], + [ 2, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=104846, layout=torch.sparse_coo) +tensor([0.5248, 0.0513, 0.5600, ..., 0.1896, 0.4784, 0.9417]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_110 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 104846 +Density: 0.0001064813792493263 +Time: 10.883554220199585 seconds + +[20.32, 20.2, 20.2, 20.36, 20.24, 20.2, 20.16, 20.36, 20.48, 20.44] +[20.6, 20.52, 23.52, 24.48, 31.44, 32.48, 32.48, 33.56, 30.96, 30.84, 24.76, 24.8, 24.84, 24.56] +14.238014221191406 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4705, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_110', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104846, 'MATRIX_DENSITY': 0.0001064813792493263, 'TIME_S': 10.883554220199585, 'TIME_S_1KI': 2.3131889947289235, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 363.10562927246093, 'W': 25.50254716925525} +[20.32, 20.2, 20.2, 20.36, 20.24, 20.2, 20.16, 20.36, 20.48, 20.44, 20.36, 20.32, 20.36, 20.44, 20.36, 20.64, 20.64, 21.12, 21.08, 20.92] +368.18 +18.409 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4705, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_110', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104846, 'MATRIX_DENSITY': 0.0001064813792493263, 'TIME_S': 10.883554220199585, 'TIME_S_1KI': 2.3131889947289235, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 363.10562927246093, 'W': 25.50254716925525, 'J_1KI': 77.17441642347734, 'W_1KI': 5.420307581138204, 'W_D': 7.0935471692552525, 'J_D': 100.99802547454833, 'W_D_1KI': 1.5076614599904894, 'J_D_1KI': 0.32043814239967894} diff --git a/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_120.json b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_120.json new file mode 100644 index 0000000..96cc02a --- /dev/null +++ b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_120.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 4648, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_120", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106510, "MATRIX_DENSITY": 0.0001081713341839054, "TIME_S": 10.618494272232056, "TIME_S_1KI": 2.284529748759048, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 334.98270019531253, "W": 23.516723983529083, "J_1KI": 72.07028833806207, "W_1KI": 5.059536141034656, "W_D": 5.003723983529085, "J_D": 71.2752750854493, "W_D_1KI": 1.076532698693865, "J_D_1KI": 0.23161202639713102} diff --git a/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_120.output b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_120.output new file mode 100644 index 0000000..87fd18c --- /dev/null +++ b/pytorch/output_as-caida_maxcore/altra_max_coo_10_10_10_as-caida_G_120.output @@ -0,0 +1,77 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 100 -m matrices/as-caida_pruned/as-caida_G_120.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_120", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106510, "MATRIX_DENSITY": 0.0001081713341839054, "TIME_S": 0.2820718288421631} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 12170], + [ 2, 2, 2, ..., 31355, 31360, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=106510, layout=torch.sparse_coo) +tensor([0.4852, 0.3480, 0.0346, ..., 0.0697, 0.5303, 0.1133]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_120 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 106510 +Density: 0.0001081713341839054 +Time: 0.2820718288421631 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 3722 -m matrices/as-caida_pruned/as-caida_G_120.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_120", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106510, "MATRIX_DENSITY": 0.0001081713341839054, "TIME_S": 8.406552076339722} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 12170], + [ 2, 2, 2, ..., 31355, 31360, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=106510, layout=torch.sparse_coo) +tensor([0.1794, 0.0744, 0.4639, ..., 0.4809, 0.9452, 0.1633]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_120 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 106510 +Density: 0.0001081713341839054 +Time: 8.406552076339722 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 4648 -m matrices/as-caida_pruned/as-caida_G_120.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_120", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106510, "MATRIX_DENSITY": 0.0001081713341839054, "TIME_S": 10.618494272232056} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 12170], + [ 2, 2, 2, ..., 31355, 31360, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=106510, layout=torch.sparse_coo) +tensor([0.8721, 0.5237, 0.9372, ..., 0.6662, 0.6718, 0.8104]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_120 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 106510 +Density: 0.0001081713341839054 +Time: 10.618494272232056 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 12170], + [ 2, 2, 2, ..., 31355, 31360, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=106510, layout=torch.sparse_coo) +tensor([0.8721, 0.5237, 0.9372, ..., 0.6662, 0.6718, 0.8104]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_120 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 106510 +Density: 0.0001081713341839054 +Time: 10.618494272232056 seconds + +[20.52, 20.56, 20.6, 20.68, 20.44, 20.36, 20.52, 20.6, 20.6, 20.72] +[20.92, 20.88, 21.2, 23.52, 24.0, 28.92, 29.96, 29.52, 28.68, 24.92, 24.8, 24.8, 24.92, 24.72] +14.24444580078125 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4648, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_120', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106510, 'MATRIX_DENSITY': 0.0001081713341839054, 'TIME_S': 10.618494272232056, 'TIME_S_1KI': 2.284529748759048, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 334.98270019531253, 'W': 23.516723983529083} +[20.52, 20.56, 20.6, 20.68, 20.44, 20.36, 20.52, 20.6, 20.6, 20.72, 20.16, 20.32, 20.6, 20.52, 20.72, 20.88, 20.84, 20.52, 20.56, 20.48] +370.26 +18.512999999999998 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4648, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_120', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106510, 'MATRIX_DENSITY': 0.0001081713341839054, 'TIME_S': 10.618494272232056, 'TIME_S_1KI': 2.284529748759048, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 334.98270019531253, 'W': 23.516723983529083, 'J_1KI': 72.07028833806207, 'W_1KI': 5.059536141034656, 'W_D': 5.003723983529085, 'J_D': 71.2752750854493, 'W_D_1KI': 1.076532698693865, 'J_D_1KI': 0.23161202639713102} diff --git a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_005.json b/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_005.json deleted file mode 100644 index 83b3559..0000000 --- a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_005.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 5968, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 10.525087594985962, "TIME_S_1KI": 1.7635870635030098, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 272.15640623092645, "W": 19.161924669821744, "J_1KI": 45.60261498507481, "W_1KI": 3.2107782623695953, "W_D": 4.226924669821745, "J_D": 60.03492067575449, "W_D_1KI": 0.708264857543858, "J_D_1KI": 0.11867708739005664} diff --git a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_005.output b/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_005.output deleted file mode 100644 index 7a87255..0000000 --- a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_005.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_005.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 0.23140215873718262} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.4043, 0.1456, 0.8788, ..., 0.2899, 0.4254, 0.2185]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 0.23140215873718262 seconds - -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4537 -m matrices/as-caida_pruned/as-caida_G_005.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 7.981162071228027} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.6074, 0.8880, 0.3045, ..., 0.0454, 0.8927, 0.3776]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 7.981162071228027 seconds - -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 5968 -m matrices/as-caida_pruned/as-caida_G_005.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 10.525087594985962} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.9329, 0.1644, 0.2943, ..., 0.4186, 0.6680, 0.2503]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 10.525087594985962 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.9329, 0.1644, 0.2943, ..., 0.4186, 0.6680, 0.2503]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 10.525087594985962 seconds - -[16.68, 16.44, 16.68, 16.88, 16.84, 16.72, 16.76, 16.76, 16.64, 16.56] -[16.84, 16.52, 17.32, 18.8, 20.28, 23.6, 24.52, 23.72, 23.16, 20.48, 20.48, 20.32, 20.28, 20.28] -14.202978610992432 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 5968, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_005', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 70026, 'MATRIX_DENSITY': 7.111825976492498e-05, 'TIME_S': 10.525087594985962, 'TIME_S_1KI': 1.7635870635030098, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 272.15640623092645, 'W': 19.161924669821744} -[16.68, 16.44, 16.68, 16.88, 16.84, 16.72, 16.76, 16.76, 16.64, 16.56, 16.48, 16.48, 16.48, 16.6, 16.28, 16.6, 16.48, 16.48, 16.48, 16.48] -298.7 -14.934999999999999 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 5968, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_005', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 70026, 'MATRIX_DENSITY': 7.111825976492498e-05, 'TIME_S': 10.525087594985962, 'TIME_S_1KI': 1.7635870635030098, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 272.15640623092645, 'W': 19.161924669821744, 'J_1KI': 45.60261498507481, 'W_1KI': 3.2107782623695953, 'W_D': 4.226924669821745, 'J_D': 60.03492067575449, 'W_D_1KI': 0.708264857543858, 'J_D_1KI': 0.11867708739005664} diff --git a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_015.json b/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_015.json deleted file mode 100644 index 8be9e23..0000000 --- a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_015.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 5272, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 10.199397802352905, "TIME_S_1KI": 1.9346353949834798, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 269.08102276802066, "W": 20.433569505252233, "J_1KI": 51.039647717758086, "W_1KI": 3.8758667498581625, "W_D": 5.440569505252233, "J_D": 71.64455561900142, "W_D_1KI": 1.0319744888566451, "J_D_1KI": 0.19574629910027413} diff --git a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_015.output b/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_015.output deleted file mode 100644 index c2ade6c..0000000 --- a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_015.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_015.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 0.25819969177246094} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.1310, 0.9221, 0.7402, ..., 0.2439, 0.9445, 0.3797]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 0.25819969177246094 seconds - -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4066 -m matrices/as-caida_pruned/as-caida_G_015.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 8.096591711044312} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.1967, 0.8576, 0.8759, ..., 0.1214, 0.7615, 0.8638]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 8.096591711044312 seconds - -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 5272 -m matrices/as-caida_pruned/as-caida_G_015.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 10.199397802352905} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.1490, 0.8093, 0.3487, ..., 0.4943, 0.2296, 0.2275]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 10.199397802352905 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.1490, 0.8093, 0.3487, ..., 0.4943, 0.2296, 0.2275]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 10.199397802352905 seconds - -[16.92, 16.92, 16.92, 16.36, 16.52, 16.48, 16.64, 16.6, 16.56, 16.6] -[16.64, 16.92, 17.6, 18.72, 24.2, 24.2, 25.08, 25.84, 25.64, 25.96, 20.96, 21.28, 21.48] -13.16857647895813 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 5272, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_015', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 77124, 'MATRIX_DENSITY': 7.832697378273889e-05, 'TIME_S': 10.199397802352905, 'TIME_S_1KI': 1.9346353949834798, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 269.08102276802066, 'W': 20.433569505252233} -[16.92, 16.92, 16.92, 16.36, 16.52, 16.48, 16.64, 16.6, 16.56, 16.6, 16.8, 16.72, 16.72, 16.72, 16.72, 16.72, 16.72, 16.68, 16.44, 16.52] -299.86 -14.993 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 5272, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_015', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 77124, 'MATRIX_DENSITY': 7.832697378273889e-05, 'TIME_S': 10.199397802352905, 'TIME_S_1KI': 1.9346353949834798, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 269.08102276802066, 'W': 20.433569505252233, 'J_1KI': 51.039647717758086, 'W_1KI': 3.8758667498581625, 'W_D': 5.440569505252233, 'J_D': 71.64455561900142, 'W_D_1KI': 1.0319744888566451, 'J_D_1KI': 0.19574629910027413} diff --git a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_025.json b/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_025.json deleted file mode 100644 index 89e7aab..0000000 --- a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_025.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 4821, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 10.69611644744873, "TIME_S_1KI": 2.2186509951148583, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 249.86814396858213, "W": 18.967472090057612, "J_1KI": 51.82911096631034, "W_1KI": 3.934343930731718, "W_D": 4.019472090057613, "J_D": 52.95054744815828, "W_D_1KI": 0.8337423957804633, "J_D_1KI": 0.17293972117412637} diff --git a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_025.output b/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_025.output deleted file mode 100644 index 2fd70ad..0000000 --- a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_025.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_025.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 0.26701927185058594} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.7832, 0.3673, 0.6801, ..., 0.8769, 0.0952, 0.5341]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 0.26701927185058594 seconds - -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 3932 -m matrices/as-caida_pruned/as-caida_G_025.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 8.563699960708618} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.7522, 0.7746, 0.7995, ..., 0.5259, 0.5024, 0.1696]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 8.563699960708618 seconds - -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4821 -m matrices/as-caida_pruned/as-caida_G_025.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 10.69611644744873} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.0926, 0.0666, 0.7412, ..., 0.4121, 0.6596, 0.6440]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 10.69611644744873 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.0926, 0.0666, 0.7412, ..., 0.4121, 0.6596, 0.6440]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 10.69611644744873 seconds - -[17.0, 16.88, 16.88, 16.76, 16.68, 16.68, 16.72, 16.72, 16.24, 16.32] -[16.36, 16.28, 16.64, 18.24, 19.08, 22.76, 23.84, 23.92, 23.92, 21.0, 21.0, 21.08, 20.68] -13.173507928848267 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4821, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_025', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 85850, 'MATRIX_DENSITY': 8.718908121010495e-05, 'TIME_S': 10.69611644744873, 'TIME_S_1KI': 2.2186509951148583, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 249.86814396858213, 'W': 18.967472090057612} -[17.0, 16.88, 16.88, 16.76, 16.68, 16.68, 16.72, 16.72, 16.24, 16.32, 16.44, 16.68, 16.8, 16.64, 16.6, 16.24, 16.32, 16.28, 16.52, 16.88] -298.96 -14.947999999999999 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4821, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_025', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 85850, 'MATRIX_DENSITY': 8.718908121010495e-05, 'TIME_S': 10.69611644744873, 'TIME_S_1KI': 2.2186509951148583, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 249.86814396858213, 'W': 18.967472090057612, 'J_1KI': 51.82911096631034, 'W_1KI': 3.934343930731718, 'W_D': 4.019472090057613, 'J_D': 52.95054744815828, 'W_D_1KI': 0.8337423957804633, 'J_D_1KI': 0.17293972117412637} diff --git a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_035.json b/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_035.json deleted file mode 100644 index fb8fd0b..0000000 --- a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_035.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 4874, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 10.324414014816284, "TIME_S_1KI": 2.118263031353362, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 316.37779233932497, "W": 22.209521493082242, "J_1KI": 64.91132382833914, "W_1KI": 4.556733995297957, "W_D": 7.24852149308224, "J_D": 103.25621956419945, "W_D_1KI": 1.4871812665330817, "J_D_1KI": 0.3051254137326799} diff --git a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_035.output b/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_035.output deleted file mode 100644 index 13dde5b..0000000 --- a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_035.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_035.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 0.2807776927947998} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.6842, 0.1495, 0.0414, ..., 0.6601, 0.3430, 0.9557]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 0.2807776927947998 seconds - -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 3739 -m matrices/as-caida_pruned/as-caida_G_035.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 8.053443431854248} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.8981, 0.1545, 0.9805, ..., 0.9874, 0.0100, 0.6766]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 8.053443431854248 seconds - -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4874 -m matrices/as-caida_pruned/as-caida_G_035.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 10.324414014816284} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.0642, 0.5090, 0.9459, ..., 0.2103, 0.6817, 0.2365]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 10.324414014816284 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.0642, 0.5090, 0.9459, ..., 0.2103, 0.6817, 0.2365]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 10.324414014816284 seconds - -[16.24, 16.12, 16.2, 16.04, 16.04, 16.52, 17.12, 17.28, 17.36, 17.08] -[16.84, 16.76, 19.6, 21.72, 28.36, 29.16, 30.08, 30.08, 27.72, 26.6, 20.76, 20.68, 20.76, 21.04] -14.245142221450806 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4874, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_035', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 87560, 'MATRIX_DENSITY': 8.892575364888514e-05, 'TIME_S': 10.324414014816284, 'TIME_S_1KI': 2.118263031353362, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 316.37779233932497, 'W': 22.209521493082242} -[16.24, 16.12, 16.2, 16.04, 16.04, 16.52, 17.12, 17.28, 17.36, 17.08, 16.88, 16.88, 16.88, 16.92, 16.68, 16.76, 16.44, 16.44, 16.28, 16.32] -299.22 -14.961000000000002 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4874, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_035', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 87560, 'MATRIX_DENSITY': 8.892575364888514e-05, 'TIME_S': 10.324414014816284, 'TIME_S_1KI': 2.118263031353362, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 316.37779233932497, 'W': 22.209521493082242, 'J_1KI': 64.91132382833914, 'W_1KI': 4.556733995297957, 'W_D': 7.24852149308224, 'J_D': 103.25621956419945, 'W_D_1KI': 1.4871812665330817, 'J_D_1KI': 0.3051254137326799} diff --git a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_045.json b/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_045.json deleted file mode 100644 index 7e89948..0000000 --- a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_045.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 4657, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 11.087504863739014, "TIME_S_1KI": 2.380825609563885, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 301.57965709686283, "W": 22.814763029917664, "J_1KI": 64.75835454087671, "W_1KI": 4.89902577408582, "W_D": 7.638763029917666, "J_D": 100.97389712905891, "W_D_1KI": 1.640275505672679, "J_D_1KI": 0.35221720113220506} diff --git a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_045.output b/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_045.output deleted file mode 100644 index a098f6a..0000000 --- a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_045.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_045.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 0.30149173736572266} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.3987, 0.5045, 0.3045, ..., 0.2984, 0.8050, 0.7869]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 0.30149173736572266 seconds - -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 3482 -m matrices/as-caida_pruned/as-caida_G_045.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 7.849581480026245} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.1977, 0.0810, 0.4349, ..., 0.8550, 0.4211, 0.9804]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 7.849581480026245 seconds - -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4657 -m matrices/as-caida_pruned/as-caida_G_045.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 11.087504863739014} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.6761, 0.3112, 0.9967, ..., 0.7840, 0.7388, 0.4121]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 11.087504863739014 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.6761, 0.3112, 0.9967, ..., 0.7840, 0.7388, 0.4121]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 11.087504863739014 seconds - -[16.56, 16.8, 16.88, 16.88, 17.04, 16.96, 17.2, 17.12, 17.32, 17.0] -[16.88, 16.68, 19.68, 21.68, 28.56, 30.0, 30.0, 30.92, 28.64, 27.84, 21.96, 21.6, 21.68] -13.218618869781494 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4657, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_045', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89152, 'MATRIX_DENSITY': 9.054258553341032e-05, 'TIME_S': 11.087504863739014, 'TIME_S_1KI': 2.380825609563885, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 301.57965709686283, 'W': 22.814763029917664} -[16.56, 16.8, 16.88, 16.88, 17.04, 16.96, 17.2, 17.12, 17.32, 17.0, 16.6, 16.52, 16.68, 16.76, 16.84, 16.88, 16.6, 16.6, 16.84, 17.04] -303.52 -15.175999999999998 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4657, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_045', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89152, 'MATRIX_DENSITY': 9.054258553341032e-05, 'TIME_S': 11.087504863739014, 'TIME_S_1KI': 2.380825609563885, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 301.57965709686283, 'W': 22.814763029917664, 'J_1KI': 64.75835454087671, 'W_1KI': 4.89902577408582, 'W_D': 7.638763029917666, 'J_D': 100.97389712905891, 'W_D_1KI': 1.640275505672679, 'J_D_1KI': 0.35221720113220506} diff --git a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_055.json b/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_055.json deleted file mode 100644 index efbb301..0000000 --- a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_055.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 4739, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 10.536023616790771, "TIME_S_1KI": 2.2232588345201036, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 296.09617205619816, "W": 20.864532191184587, "J_1KI": 62.48072843557674, "W_1KI": 4.40272888609086, "W_D": 5.663532191184588, "J_D": 80.37324713349346, "W_D_1KI": 1.1950901437401538, "J_D_1KI": 0.2521819252458649} diff --git a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_055.output b/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_055.output deleted file mode 100644 index 213e50c..0000000 --- a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_055.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_055.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 0.2958800792694092} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.0279, 0.3720, 0.5419, ..., 0.9391, 0.6222, 0.1335]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 0.2958800792694092 seconds - -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 3548 -m matrices/as-caida_pruned/as-caida_G_055.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 7.860142707824707} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.0798, 0.6202, 0.2546, ..., 0.5902, 0.1772, 0.5374]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 7.860142707824707 seconds - -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4739 -m matrices/as-caida_pruned/as-caida_G_055.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 10.536023616790771} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.8748, 0.1554, 0.2380, ..., 0.7350, 0.2527, 0.7569]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 10.536023616790771 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.8748, 0.1554, 0.2380, ..., 0.7350, 0.2527, 0.7569]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 10.536023616790771 seconds - -[16.32, 16.6, 16.8, 16.8, 17.0, 16.76, 16.84, 17.08, 17.24, 17.52] -[17.4, 17.4, 17.0, 20.2, 22.04, 27.64, 28.64, 29.48, 25.76, 23.6, 20.68, 20.52, 20.36, 20.36] -14.191364049911499 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4739, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_055', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 91476, 'MATRIX_DENSITY': 9.290283509348351e-05, 'TIME_S': 10.536023616790771, 'TIME_S_1KI': 2.2232588345201036, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 296.09617205619816, 'W': 20.864532191184587} -[16.32, 16.6, 16.8, 16.8, 17.0, 16.76, 16.84, 17.08, 17.24, 17.52, 17.2, 17.2, 17.16, 17.04, 16.92, 16.8, 16.6, 16.6, 16.64, 16.84] -304.02 -15.200999999999999 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4739, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_055', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 91476, 'MATRIX_DENSITY': 9.290283509348351e-05, 'TIME_S': 10.536023616790771, 'TIME_S_1KI': 2.2232588345201036, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 296.09617205619816, 'W': 20.864532191184587, 'J_1KI': 62.48072843557674, 'W_1KI': 4.40272888609086, 'W_D': 5.663532191184588, 'J_D': 80.37324713349346, 'W_D_1KI': 1.1950901437401538, 'J_D_1KI': 0.2521819252458649} diff --git a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_065.json b/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_065.json deleted file mode 100644 index a60fb61..0000000 --- a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_065.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 4568, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 10.563419342041016, "TIME_S_1KI": 2.3124823428285937, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 318.5167537593842, "W": 20.961702986599526, "J_1KI": 69.72783576168655, "W_1KI": 4.588814138922839, "W_D": 5.795702986599526, "J_D": 88.0667235016823, "W_D_1KI": 1.268761599518285, "J_D_1KI": 0.27774991232887153} diff --git a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_065.output b/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_065.output deleted file mode 100644 index e314abf..0000000 --- a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_065.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_065.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 0.2923262119293213} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.4849, 0.2731, 0.9040, ..., 0.3334, 0.6361, 0.9845]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 0.2923262119293213 seconds - -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 3591 -m matrices/as-caida_pruned/as-caida_G_065.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 8.252921104431152} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.4814, 0.9926, 0.6267, ..., 0.1528, 0.7014, 0.4043]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 8.252921104431152 seconds - -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4568 -m matrices/as-caida_pruned/as-caida_G_065.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 10.563419342041016} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.5323, 0.6987, 0.7869, ..., 0.7650, 0.9130, 0.3621]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 10.563419342041016 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.5323, 0.6987, 0.7869, ..., 0.7650, 0.9130, 0.3621]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 10.563419342041016 seconds - -[17.04, 17.04, 17.04, 17.04, 17.0, 17.0, 16.92, 16.92, 16.92, 16.84] -[16.56, 16.68, 19.6, 21.2, 21.2, 26.52, 27.64, 28.44, 24.84, 24.72, 20.76, 20.96, 21.36, 21.44, 21.4] -15.195175409317017 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4568, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_065', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 95068, 'MATRIX_DENSITY': 9.655086281283934e-05, 'TIME_S': 10.563419342041016, 'TIME_S_1KI': 2.3124823428285937, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 318.5167537593842, 'W': 20.961702986599526} -[17.04, 17.04, 17.04, 17.04, 17.0, 17.0, 16.92, 16.92, 16.92, 16.84, 16.8, 16.64, 16.72, 16.72, 16.48, 16.44, 16.68, 16.96, 16.92, 17.08] -303.32 -15.166 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4568, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_065', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 95068, 'MATRIX_DENSITY': 9.655086281283934e-05, 'TIME_S': 10.563419342041016, 'TIME_S_1KI': 2.3124823428285937, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 318.5167537593842, 'W': 20.961702986599526, 'J_1KI': 69.72783576168655, 'W_1KI': 4.588814138922839, 'W_D': 5.795702986599526, 'J_D': 88.0667235016823, 'W_D_1KI': 1.268761599518285, 'J_D_1KI': 0.27774991232887153} diff --git a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_075.json b/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_075.json deleted file mode 100644 index 72a8002..0000000 --- a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_075.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 4489, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 10.591835021972656, "TIME_S_1KI": 2.359508804181924, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 293.3003367614746, "W": 20.65804885532527, "J_1KI": 65.33756666551005, "W_1KI": 4.601926677506186, "W_D": 5.662048855325271, "J_D": 80.38904582214357, "W_D_1KI": 1.2613162965750213, "J_D_1KI": 0.28097934875808} diff --git a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_075.output b/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_075.output deleted file mode 100644 index 05a6be0..0000000 --- a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_075.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_075.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 0.2903709411621094} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.5496, 0.8721, 0.4707, ..., 0.6399, 0.3015, 0.0205]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 0.2903709411621094 seconds - -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 3616 -m matrices/as-caida_pruned/as-caida_G_075.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 8.456918239593506} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.8149, 0.0064, 0.2491, ..., 0.0040, 0.4481, 0.7236]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 8.456918239593506 seconds - -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4489 -m matrices/as-caida_pruned/as-caida_G_075.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 10.591835021972656} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.6259, 0.8430, 0.9333, ..., 0.4721, 0.8188, 0.1886]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 10.591835021972656 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.6259, 0.8430, 0.9333, ..., 0.4721, 0.8188, 0.1886]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 10.591835021972656 seconds - -[16.64, 16.72, 16.88, 17.2, 17.0, 16.92, 16.72, 16.44, 16.24, 16.36] -[16.36, 16.44, 16.52, 20.16, 21.24, 27.36, 28.6, 29.16, 26.2, 23.56, 20.64, 20.4, 20.52, 20.52] -14.197872161865234 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4489, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_075', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 97492, 'MATRIX_DENSITY': 9.901267216465406e-05, 'TIME_S': 10.591835021972656, 'TIME_S_1KI': 2.359508804181924, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 293.3003367614746, 'W': 20.65804885532527} -[16.64, 16.72, 16.88, 17.2, 17.0, 16.92, 16.72, 16.44, 16.24, 16.36, 16.16, 16.08, 16.2, 16.48, 16.4, 16.56, 16.8, 17.04, 17.12, 17.08] -299.91999999999996 -14.995999999999999 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4489, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_075', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 97492, 'MATRIX_DENSITY': 9.901267216465406e-05, 'TIME_S': 10.591835021972656, 'TIME_S_1KI': 2.359508804181924, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 293.3003367614746, 'W': 20.65804885532527, 'J_1KI': 65.33756666551005, 'W_1KI': 4.601926677506186, 'W_D': 5.662048855325271, 'J_D': 80.38904582214357, 'W_D_1KI': 1.2613162965750213, 'J_D_1KI': 0.28097934875808} diff --git a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_085.json b/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_085.json deleted file mode 100644 index 41045b6..0000000 --- a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_085.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 4271, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 10.287059783935547, "TIME_S_1KI": 2.408583419324642, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 283.75852571487434, "W": 19.954165262711065, "J_1KI": 66.43842793605111, "W_1KI": 4.672012470782268, "W_D": 4.871165262711063, "J_D": 69.27048339343077, "W_D_1KI": 1.1405210167902278, "J_D_1KI": 0.26703840243273885} diff --git a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_085.output b/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_085.output deleted file mode 100644 index 918dbe8..0000000 --- a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_085.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_085.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 0.30860424041748047} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.6175, 0.3198, 0.3809, ..., 0.8583, 0.2210, 0.7236]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 0.30860424041748047 seconds - -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 3402 -m matrices/as-caida_pruned/as-caida_G_085.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 8.36231279373169} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.2189, 0.7362, 0.7287, ..., 0.2468, 0.1466, 0.5130]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 8.36231279373169 seconds - -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4271 -m matrices/as-caida_pruned/as-caida_G_085.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 10.287059783935547} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.3002, 0.9937, 0.1201, ..., 0.2870, 0.2280, 0.7451]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 10.287059783935547 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.3002, 0.9937, 0.1201, ..., 0.2870, 0.2280, 0.7451]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 10.287059783935547 seconds - -[16.52, 16.64, 16.6, 16.32, 16.16, 16.4, 16.72, 17.0, 17.0, 17.44] -[17.48, 17.52, 17.16, 19.72, 20.28, 25.76, 26.2, 26.24, 25.12, 20.56, 20.6, 20.6, 20.56, 20.4] -14.220515966415405 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4271, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_085', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 99166, 'MATRIX_DENSITY': 0.0001007127830784073, 'TIME_S': 10.287059783935547, 'TIME_S_1KI': 2.408583419324642, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 283.75852571487434, 'W': 19.954165262711065} -[16.52, 16.64, 16.6, 16.32, 16.16, 16.4, 16.72, 17.0, 17.0, 17.44, 17.12, 17.2, 17.36, 17.12, 16.88, 16.76, 16.76, 16.32, 16.56, 16.64] -301.66 -15.083000000000002 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4271, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_085', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 99166, 'MATRIX_DENSITY': 0.0001007127830784073, 'TIME_S': 10.287059783935547, 'TIME_S_1KI': 2.408583419324642, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 283.75852571487434, 'W': 19.954165262711065, 'J_1KI': 66.43842793605111, 'W_1KI': 4.672012470782268, 'W_D': 4.871165262711063, 'J_D': 69.27048339343077, 'W_D_1KI': 1.1405210167902278, 'J_D_1KI': 0.26703840243273885} diff --git a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_095.json b/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_095.json deleted file mode 100644 index dc9a8a8..0000000 --- a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_095.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 4250, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 10.384530544281006, "TIME_S_1KI": 2.4434189515955307, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 290.7397892761231, "W": 19.124429821644952, "J_1KI": 68.4093621826172, "W_1KI": 4.499865840387048, "W_D": 4.16442982164495, "J_D": 63.309884796142576, "W_D_1KI": 0.9798658403870469, "J_D_1KI": 0.23055666832636398} diff --git a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_095.output b/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_095.output deleted file mode 100644 index 031e728..0000000 --- a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_095.output +++ /dev/null @@ -1,89 +0,0 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_095.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 0.26108789443969727} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.7556, 0.9846, 0.5564, ..., 0.2660, 0.6333, 0.6730]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 0.26108789443969727 seconds - -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4021 -m matrices/as-caida_pruned/as-caida_G_095.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 9.932278633117676} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.9238, 0.9591, 0.3426, ..., 0.4580, 0.1545, 0.0101]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 9.932278633117676 seconds - -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4250 -m matrices/as-caida_pruned/as-caida_G_095.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 10.384530544281006} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.2116, 0.2482, 0.7132, ..., 0.4592, 0.9483, 0.3636]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 10.384530544281006 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.2116, 0.2482, 0.7132, ..., 0.4592, 0.9483, 0.3636]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 10.384530544281006 seconds - -[16.56, 16.56, 16.6, 16.64, 16.52, 16.64, 16.36, 16.4, 16.68, 16.92] -[16.92, 16.84, 17.48, 18.12, 18.12, 21.68, 22.84, 23.64, 23.52, 23.32, 20.64, 20.72, 20.56, 20.44, 20.44] -15.202533721923828 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4250, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_095', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102290, 'MATRIX_DENSITY': 0.00010388551097241275, 'TIME_S': 10.384530544281006, 'TIME_S_1KI': 2.4434189515955307, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 290.7397892761231, 'W': 19.124429821644952} -[16.56, 16.56, 16.6, 16.64, 16.52, 16.64, 16.36, 16.4, 16.68, 16.92, 16.52, 16.64, 16.6, 16.6, 16.64, 16.8, 16.8, 16.6, 16.76, 16.72] -299.20000000000005 -14.960000000000003 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4250, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_095', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102290, 'MATRIX_DENSITY': 0.00010388551097241275, 'TIME_S': 10.384530544281006, 'TIME_S_1KI': 2.4434189515955307, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 290.7397892761231, 'W': 19.124429821644952, 'J_1KI': 68.4093621826172, 'W_1KI': 4.499865840387048, 'W_D': 4.16442982164495, 'J_D': 63.309884796142576, 'W_D_1KI': 0.9798658403870469, 'J_D_1KI': 0.23055666832636398} diff --git a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_105.json b/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_105.json deleted file mode 100644 index 137d00d..0000000 --- a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_105.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 4088, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 10.275744199752808, "TIME_S_1KI": 2.513636056691, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 289.4017578125, "W": 20.387012119755294, "J_1KI": 70.79299359405577, "W_1KI": 4.987038189764015, "W_D": 5.504012119755293, "J_D": 78.13164445686343, "W_D_1KI": 1.346382612464602, "J_D_1KI": 0.32934995412539186} diff --git a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_105.output b/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_105.output deleted file mode 100644 index 7d25df3..0000000 --- a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_105.output +++ /dev/null @@ -1,89 +0,0 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_105.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 0.31772923469543457} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.8246, 0.9143, 0.6234, ..., 0.5880, 0.0932, 0.8821]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 0.31772923469543457 seconds - -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 3304 -m matrices/as-caida_pruned/as-caida_G_105.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 8.484694242477417} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.5893, 0.7585, 0.8994, ..., 0.5279, 0.1317, 0.1500]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 8.484694242477417 seconds - -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 4088 -m matrices/as-caida_pruned/as-caida_G_105.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 10.275744199752808} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.6257, 0.8973, 0.7039, ..., 0.3870, 0.8920, 0.1294]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 10.275744199752808 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.6257, 0.8973, 0.7039, ..., 0.3870, 0.8920, 0.1294]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 10.275744199752808 seconds - -[16.64, 16.6, 16.52, 16.8, 16.76, 16.6, 16.56, 16.48, 16.28, 16.48] -[16.72, 16.6, 17.92, 17.92, 19.24, 25.56, 26.8, 27.68, 26.8, 26.44, 20.84, 20.4, 20.6, 20.48] -14.195398330688477 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4088, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_105', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104726, 'MATRIX_DENSITY': 0.00010635950749923647, 'TIME_S': 10.275744199752808, 'TIME_S_1KI': 2.513636056691, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 289.4017578125, 'W': 20.387012119755294} -[16.64, 16.6, 16.52, 16.8, 16.76, 16.6, 16.56, 16.48, 16.28, 16.48, 16.36, 16.44, 16.44, 16.52, 16.68, 16.8, 16.68, 16.48, 16.2, 16.16] -297.66 -14.883000000000001 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4088, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_105', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104726, 'MATRIX_DENSITY': 0.00010635950749923647, 'TIME_S': 10.275744199752808, 'TIME_S_1KI': 2.513636056691, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 289.4017578125, 'W': 20.387012119755294, 'J_1KI': 70.79299359405577, 'W_1KI': 4.987038189764015, 'W_D': 5.504012119755293, 'J_D': 78.13164445686343, 'W_D_1KI': 1.346382612464602, 'J_D_1KI': 0.32934995412539186} diff --git a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_115.json b/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_115.json deleted file mode 100644 index db98120..0000000 --- a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_115.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Altra", "CORES": 80, "ITERATIONS": 3741, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 10.685789585113525, "TIME_S_1KI": 2.8563992475577455, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 251.80008142471314, "W": 19.08240471242988, "J_1KI": 67.30822812742933, "W_1KI": 5.100883376752173, "W_D": 4.222404712429881, "J_D": 55.71634531497957, "W_D_1KI": 1.1286834302138147, "J_D_1KI": 0.3017063432808914} diff --git a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_115.output b/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_115.output deleted file mode 100644 index 8a8882c..0000000 --- a/pytorch/output_as-caida_maxcore/altra_max_csr_10_10_10_as-caida_G_115.output +++ /dev/null @@ -1,68 +0,0 @@ -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 100 -m matrices/as-caida_pruned/as-caida_G_115.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 0.28065943717956543} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.5799, 0.8054, 0.1060, ..., 0.8848, 0.9407, 0.5317]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 0.28065943717956543 seconds - -['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse csr 3741 -m matrices/as-caida_pruned/as-caida_G_115.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 10.685789585113525} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.6935, 0.6685, 0.1445, ..., 0.3962, 0.8482, 0.0100]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 10.685789585113525 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.6935, 0.6685, 0.1445, ..., 0.3962, 0.8482, 0.0100]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 10.685789585113525 seconds - -[16.24, 16.12, 15.88, 16.04, 16.12, 16.2, 16.36, 16.44, 16.52, 16.44] -[16.64, 16.56, 17.16, 17.16, 18.44, 22.28, 23.4, 24.16, 24.24, 23.92, 20.76, 20.88, 20.88] -13.195406198501587 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 3741, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_115', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106312, 'MATRIX_DENSITY': 0.00010797024579625715, 'TIME_S': 10.685789585113525, 'TIME_S_1KI': 2.8563992475577455, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 251.80008142471314, 'W': 19.08240471242988} -[16.24, 16.12, 15.88, 16.04, 16.12, 16.2, 16.36, 16.44, 16.52, 16.44, 16.8, 16.8, 17.04, 16.8, 16.8, 16.64, 16.76, 16.76, 16.84, 16.68] -297.2 -14.86 -{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 3741, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_115', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106312, 'MATRIX_DENSITY': 0.00010797024579625715, 'TIME_S': 10.685789585113525, 'TIME_S_1KI': 2.8563992475577455, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 251.80008142471314, 'W': 19.08240471242988, 'J_1KI': 67.30822812742933, 'W_1KI': 5.100883376752173, 'W_D': 4.222404712429881, 'J_D': 55.71634531497957, 'W_D_1KI': 1.1286834302138147, 'J_D_1KI': 0.3017063432808914} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_010.json b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_010.json new file mode 100644 index 0000000..d9869d7 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_010.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 4703, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 10.008824825286865, "TIME_S_1KI": 2.1281787848791973, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 826.1763758516313, "W": 65.54, "J_1KI": 175.6700777911187, "W_1KI": 13.935785668722094, "W_D": 29.863750000000003, "J_D": 376.45292560786015, "W_D_1KI": 6.349936210929195, "J_D_1KI": 1.3501884352390376} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_010.output b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_010.output new file mode 100644 index 0000000..b8adeec --- /dev/null +++ b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_010.output @@ -0,0 +1,59 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_010.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 0.2232527732849121} + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.8848, 0.2757, 0.1921, ..., 0.8912, 0.0855, 0.7985]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 0.2232527732849121 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '4703', '-m', 'matrices/as-caida_pruned/as-caida_G_010.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 10.008824825286865} + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.4541, 0.5049, 0.2858, ..., 0.2191, 0.6676, 0.5763]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 10.008824825286865 seconds + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.4541, 0.5049, 0.2858, ..., 0.2191, 0.6676, 0.5763]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 10.008824825286865 seconds + +[40.34, 38.98, 38.95, 38.74, 39.28, 39.15, 39.27, 43.92, 39.21, 38.9] +[65.54] +12.605681657791138 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4703, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_010', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 74994, 'MATRIX_DENSITY': 7.616375021864427e-05, 'TIME_S': 10.008824825286865, 'TIME_S_1KI': 2.1281787848791973, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 826.1763758516313, 'W': 65.54} +[40.34, 38.98, 38.95, 38.74, 39.28, 39.15, 39.27, 43.92, 39.21, 38.9, 39.42, 38.8, 38.88, 39.13, 44.24, 38.8, 38.81, 39.29, 39.11, 39.27] +713.5250000000001 +35.67625 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4703, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_010', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 74994, 'MATRIX_DENSITY': 7.616375021864427e-05, 'TIME_S': 10.008824825286865, 'TIME_S_1KI': 2.1281787848791973, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 826.1763758516313, 'W': 65.54, 'J_1KI': 175.6700777911187, 'W_1KI': 13.935785668722094, 'W_D': 29.863750000000003, 'J_D': 376.45292560786015, 'W_D_1KI': 6.349936210929195, 'J_D_1KI': 1.3501884352390376} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_020.json b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_020.json new file mode 100644 index 0000000..ababd7f --- /dev/null +++ b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_020.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 4418, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_020", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 80948, "MATRIX_DENSITY": 8.221062021893506e-05, "TIME_S": 10.107865333557129, "TIME_S_1KI": 2.287882601529454, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 841.7510198760032, "W": 65.57, "J_1KI": 190.5276188039844, "W_1KI": 14.8415572657311, "W_D": 29.96249999999999, "J_D": 384.6418321341275, "W_D_1KI": 6.781914893617019, "J_D_1KI": 1.5350644847480803} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_020.output b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_020.output new file mode 100644 index 0000000..7c32592 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_020.output @@ -0,0 +1,59 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_020.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_020", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 80948, "MATRIX_DENSITY": 8.221062021893506e-05, "TIME_S": 0.23764944076538086} + +tensor(indices=tensor([[ 1040, 5699, 106, ..., 31378, 17998, 31377], + [ 0, 0, 2, ..., 31377, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 1.]), + size=(31379, 31379), nnz=80948, layout=torch.sparse_coo) +tensor([0.6275, 0.9141, 0.2899, ..., 0.8339, 0.3734, 0.5760]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_020 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 80948 +Density: 8.221062021893506e-05 +Time: 0.23764944076538086 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '4418', '-m', 'matrices/as-caida_pruned/as-caida_G_020.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_020", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 80948, "MATRIX_DENSITY": 8.221062021893506e-05, "TIME_S": 10.107865333557129} + +tensor(indices=tensor([[ 1040, 5699, 106, ..., 31378, 17998, 31377], + [ 0, 0, 2, ..., 31377, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 1.]), + size=(31379, 31379), nnz=80948, layout=torch.sparse_coo) +tensor([0.7029, 0.0459, 0.4990, ..., 0.6818, 0.6868, 0.2545]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_020 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 80948 +Density: 8.221062021893506e-05 +Time: 10.107865333557129 seconds + +tensor(indices=tensor([[ 1040, 5699, 106, ..., 31378, 17998, 31377], + [ 0, 0, 2, ..., 31377, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 1.]), + size=(31379, 31379), nnz=80948, layout=torch.sparse_coo) +tensor([0.7029, 0.0459, 0.4990, ..., 0.6818, 0.6868, 0.2545]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_020 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 80948 +Density: 8.221062021893506e-05 +Time: 10.107865333557129 seconds + +[39.79, 44.41, 38.93, 38.93, 39.05, 38.84, 39.03, 38.96, 41.63, 39.41] +[65.57] +12.837441205978394 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4418, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_020', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 80948, 'MATRIX_DENSITY': 8.221062021893506e-05, 'TIME_S': 10.107865333557129, 'TIME_S_1KI': 2.287882601529454, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 841.7510198760032, 'W': 65.57} +[39.79, 44.41, 38.93, 38.93, 39.05, 38.84, 39.03, 38.96, 41.63, 39.41, 39.59, 38.89, 38.82, 38.72, 39.27, 38.75, 39.55, 39.1, 40.3, 39.15] +712.15 +35.6075 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4418, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_020', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 80948, 'MATRIX_DENSITY': 8.221062021893506e-05, 'TIME_S': 10.107865333557129, 'TIME_S_1KI': 2.287882601529454, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 841.7510198760032, 'W': 65.57, 'J_1KI': 190.5276188039844, 'W_1KI': 14.8415572657311, 'W_D': 29.96249999999999, 'J_D': 384.6418321341275, 'W_D_1KI': 6.781914893617019, 'J_D_1KI': 1.5350644847480803} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_030.json b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_030.json new file mode 100644 index 0000000..778ee6a --- /dev/null +++ b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_030.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 4152, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_030", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 86850, "MATRIX_DENSITY": 8.820467912752026e-05, "TIME_S": 10.310458898544312, "TIME_S_1KI": 2.4832511798035433, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 834.9410343790054, "W": 65.66, "J_1KI": 201.09369806816122, "W_1KI": 15.814065510597302, "W_D": 29.447499999999998, "J_D": 374.4582106286287, "W_D_1KI": 7.092365125240847, "J_D_1KI": 1.7081804251543464} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_030.output b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_030.output new file mode 100644 index 0000000..e425e9c --- /dev/null +++ b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_030.output @@ -0,0 +1,59 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_030.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_030", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 86850, "MATRIX_DENSITY": 8.820467912752026e-05, "TIME_S": 0.252856969833374} + +tensor(indices=tensor([[ 1809, 21783, 106, ..., 7018, 160, 882], + [ 0, 0, 2, ..., 31357, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=86850, layout=torch.sparse_coo) +tensor([0.8748, 0.7494, 0.5916, ..., 0.4489, 0.0617, 0.9361]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_030 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 86850 +Density: 8.820467912752026e-05 +Time: 0.252856969833374 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '4152', '-m', 'matrices/as-caida_pruned/as-caida_G_030.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_030", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 86850, "MATRIX_DENSITY": 8.820467912752026e-05, "TIME_S": 10.310458898544312} + +tensor(indices=tensor([[ 1809, 21783, 106, ..., 7018, 160, 882], + [ 0, 0, 2, ..., 31357, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=86850, layout=torch.sparse_coo) +tensor([0.9734, 0.9062, 0.7795, ..., 0.0992, 0.2281, 0.8942]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_030 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 86850 +Density: 8.820467912752026e-05 +Time: 10.310458898544312 seconds + +tensor(indices=tensor([[ 1809, 21783, 106, ..., 7018, 160, 882], + [ 0, 0, 2, ..., 31357, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=86850, layout=torch.sparse_coo) +tensor([0.9734, 0.9062, 0.7795, ..., 0.0992, 0.2281, 0.8942]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_030 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 86850 +Density: 8.820467912752026e-05 +Time: 10.310458898544312 seconds + +[40.58, 38.97, 38.88, 43.71, 50.65, 39.41, 39.15, 39.64, 39.39, 39.34] +[65.66] +12.716129064559937 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4152, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_030', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 86850, 'MATRIX_DENSITY': 8.820467912752026e-05, 'TIME_S': 10.310458898544312, 'TIME_S_1KI': 2.4832511798035433, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 834.9410343790054, 'W': 65.66} +[40.58, 38.97, 38.88, 43.71, 50.65, 39.41, 39.15, 39.64, 39.39, 39.34, 40.0, 39.05, 39.14, 38.86, 39.36, 38.87, 38.9, 38.96, 39.07, 44.56] +724.25 +36.2125 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4152, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_030', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 86850, 'MATRIX_DENSITY': 8.820467912752026e-05, 'TIME_S': 10.310458898544312, 'TIME_S_1KI': 2.4832511798035433, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 834.9410343790054, 'W': 65.66, 'J_1KI': 201.09369806816122, 'W_1KI': 15.814065510597302, 'W_D': 29.447499999999998, 'J_D': 374.4582106286287, 'W_D_1KI': 7.092365125240847, 'J_D_1KI': 1.7081804251543464} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_040.json b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_040.json new file mode 100644 index 0000000..a75089c --- /dev/null +++ b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_040.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 3996, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_040", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89658, "MATRIX_DENSITY": 9.105647807962247e-05, "TIME_S": 10.239723682403564, "TIME_S_1KI": 2.562493414014906, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 829.8117070198059, "W": 65.75, "J_1KI": 207.66058734229378, "W_1KI": 16.453953953953956, "W_D": 30.548000000000002, "J_D": 385.53746047210694, "W_D_1KI": 7.644644644644645, "J_D_1KI": 1.9130742353965577} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_040.output b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_040.output new file mode 100644 index 0000000..7f53e4e --- /dev/null +++ b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_040.output @@ -0,0 +1,59 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_040.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_040", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89658, "MATRIX_DENSITY": 9.105647807962247e-05, "TIME_S": 0.26274991035461426} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 10144, 882, 16085], + [ 2, 2, 2, ..., 31371, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=89658, layout=torch.sparse_coo) +tensor([0.4467, 0.2195, 0.1532, ..., 0.4372, 0.3775, 0.0992]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_040 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 89658 +Density: 9.105647807962247e-05 +Time: 0.26274991035461426 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '3996', '-m', 'matrices/as-caida_pruned/as-caida_G_040.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_040", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89658, "MATRIX_DENSITY": 9.105647807962247e-05, "TIME_S": 10.239723682403564} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 10144, 882, 16085], + [ 2, 2, 2, ..., 31371, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=89658, layout=torch.sparse_coo) +tensor([0.8968, 0.1955, 0.3658, ..., 0.2484, 0.8175, 0.1254]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_040 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 89658 +Density: 9.105647807962247e-05 +Time: 10.239723682403564 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 10144, 882, 16085], + [ 2, 2, 2, ..., 31371, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=89658, layout=torch.sparse_coo) +tensor([0.8968, 0.1955, 0.3658, ..., 0.2484, 0.8175, 0.1254]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_040 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 89658 +Density: 9.105647807962247e-05 +Time: 10.239723682403564 seconds + +[40.16, 38.72, 38.98, 38.87, 38.8, 39.26, 38.86, 38.69, 39.79, 39.01] +[65.75] +12.620710372924805 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3996, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_040', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89658, 'MATRIX_DENSITY': 9.105647807962247e-05, 'TIME_S': 10.239723682403564, 'TIME_S_1KI': 2.562493414014906, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 829.8117070198059, 'W': 65.75} +[40.16, 38.72, 38.98, 38.87, 38.8, 39.26, 38.86, 38.69, 39.79, 39.01, 40.63, 39.18, 39.31, 39.3, 39.12, 38.92, 39.46, 38.68, 38.8, 38.8] +704.04 +35.202 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3996, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_040', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89658, 'MATRIX_DENSITY': 9.105647807962247e-05, 'TIME_S': 10.239723682403564, 'TIME_S_1KI': 2.562493414014906, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 829.8117070198059, 'W': 65.75, 'J_1KI': 207.66058734229378, 'W_1KI': 16.453953953953956, 'W_D': 30.548000000000002, 'J_D': 385.53746047210694, 'W_D_1KI': 7.644644644644645, 'J_D_1KI': 1.9130742353965577} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_050.json b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_050.json new file mode 100644 index 0000000..af2f102 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_050.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 3933, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 10.178140640258789, "TIME_S_1KI": 2.5878821866917847, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 824.0304309225082, "W": 65.38, "J_1KI": 209.51701777841552, "W_1KI": 16.623442664632595, "W_D": 29.83, "J_D": 375.96861049890515, "W_D_1KI": 7.584541062801932, "J_D_1KI": 1.9284365783884903} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_050.output b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_050.output new file mode 100644 index 0000000..992382c --- /dev/null +++ b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_050.output @@ -0,0 +1,59 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_050.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 0.26694178581237793} + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.0710, 0.3373, 0.2480, ..., 0.0478, 0.1593, 0.2325]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 0.26694178581237793 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '3933', '-m', 'matrices/as-caida_pruned/as-caida_G_050.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 10.178140640258789} + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.4747, 0.9145, 0.1922, ..., 0.0929, 0.7925, 0.8361]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 10.178140640258789 seconds + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.4747, 0.9145, 0.1922, ..., 0.0929, 0.7925, 0.8361]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 10.178140640258789 seconds + +[39.79, 38.71, 39.68, 39.18, 39.54, 38.8, 39.13, 38.82, 38.78, 41.48] +[65.38] +12.603708028793335 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3933, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_050', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 90392, 'MATRIX_DENSITY': 9.180192695100532e-05, 'TIME_S': 10.178140640258789, 'TIME_S_1KI': 2.5878821866917847, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 824.0304309225082, 'W': 65.38} +[39.79, 38.71, 39.68, 39.18, 39.54, 38.8, 39.13, 38.82, 38.78, 41.48, 40.64, 39.0, 39.11, 38.85, 39.17, 39.14, 39.33, 44.33, 38.92, 39.11] +711.0 +35.55 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3933, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_050', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 90392, 'MATRIX_DENSITY': 9.180192695100532e-05, 'TIME_S': 10.178140640258789, 'TIME_S_1KI': 2.5878821866917847, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 824.0304309225082, 'W': 65.38, 'J_1KI': 209.51701777841552, 'W_1KI': 16.623442664632595, 'W_D': 29.83, 'J_D': 375.96861049890515, 'W_D_1KI': 7.584541062801932, 'J_D_1KI': 1.9284365783884903} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_060.json b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_060.json new file mode 100644 index 0000000..b18e6b9 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_060.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 3804, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_060", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 94180, "MATRIX_DENSITY": 9.564901186217454e-05, "TIME_S": 12.353318214416504, "TIME_S_1KI": 3.2474548408034973, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 845.1751568555833, "W": 66.09, "J_1KI": 222.18064060346563, "W_1KI": 17.373817034700316, "W_D": 30.768, "J_D": 393.468743019104, "W_D_1KI": 8.088328075709779, "J_D_1KI": 2.1262692102286485} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_060.output b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_060.output new file mode 100644 index 0000000..1897035 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_060.output @@ -0,0 +1,59 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_060.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_060", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 94180, "MATRIX_DENSITY": 9.564901186217454e-05, "TIME_S": 0.27599334716796875} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 882], + [ 2, 2, 2, ..., 31355, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=94180, layout=torch.sparse_coo) +tensor([0.9598, 0.4731, 0.9270, ..., 0.4379, 0.2062, 0.0452]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_060 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 94180 +Density: 9.564901186217454e-05 +Time: 0.27599334716796875 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '3804', '-m', 'matrices/as-caida_pruned/as-caida_G_060.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_060", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 94180, "MATRIX_DENSITY": 9.564901186217454e-05, "TIME_S": 12.353318214416504} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 882], + [ 2, 2, 2, ..., 31355, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=94180, layout=torch.sparse_coo) +tensor([0.7957, 0.7031, 0.8032, ..., 0.7891, 0.1128, 0.3736]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_060 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 94180 +Density: 9.564901186217454e-05 +Time: 12.353318214416504 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 882], + [ 2, 2, 2, ..., 31355, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=94180, layout=torch.sparse_coo) +tensor([0.7957, 0.7031, 0.8032, ..., 0.7891, 0.1128, 0.3736]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_060 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 94180 +Density: 9.564901186217454e-05 +Time: 12.353318214416504 seconds + +[41.21, 38.86, 38.99, 38.87, 38.94, 38.8, 39.35, 38.89, 39.18, 40.17] +[66.09] +12.788245677947998 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3804, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_060', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 94180, 'MATRIX_DENSITY': 9.564901186217454e-05, 'TIME_S': 12.353318214416504, 'TIME_S_1KI': 3.2474548408034973, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 845.1751568555833, 'W': 66.09} +[41.21, 38.86, 38.99, 38.87, 38.94, 38.8, 39.35, 38.89, 39.18, 40.17, 40.66, 39.1, 39.15, 39.5, 39.23, 39.57, 39.85, 38.76, 38.95, 38.86] +706.44 +35.322 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3804, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_060', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 94180, 'MATRIX_DENSITY': 9.564901186217454e-05, 'TIME_S': 12.353318214416504, 'TIME_S_1KI': 3.2474548408034973, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 845.1751568555833, 'W': 66.09, 'J_1KI': 222.18064060346563, 'W_1KI': 17.373817034700316, 'W_D': 30.768, 'J_D': 393.468743019104, 'W_D_1KI': 8.088328075709779, 'J_D_1KI': 2.1262692102286485} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_070.json b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_070.json new file mode 100644 index 0000000..1b79241 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_070.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 4546, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_070", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 78684, "MATRIX_DENSITY": 7.991130653390679e-05, "TIME_S": 10.119814157485962, "TIME_S_1KI": 2.2260919836088786, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 833.4089278078079, "W": 65.77, "J_1KI": 183.3279647619463, "W_1KI": 14.46766388033436, "W_D": 30.516250000000007, "J_D": 386.688690789342, "W_D_1KI": 6.712769467663882, "J_D_1KI": 1.4766320870356098} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_070.output b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_070.output new file mode 100644 index 0000000..59de5c8 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_070.output @@ -0,0 +1,59 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_070.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_070", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 78684, "MATRIX_DENSITY": 7.991130653390679e-05, "TIME_S": 0.23096632957458496} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 16263, 2242, 2242], + [ 2, 2, 2, ..., 31240, 31283, 31284]]), + values=tensor([3., 3., 3., ..., 1., 3., 3.]), + size=(31379, 31379), nnz=78684, layout=torch.sparse_coo) +tensor([0.0341, 0.9748, 0.2739, ..., 0.2710, 0.9287, 0.6259]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_070 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 78684 +Density: 7.991130653390679e-05 +Time: 0.23096632957458496 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '4546', '-m', 'matrices/as-caida_pruned/as-caida_G_070.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_070", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 78684, "MATRIX_DENSITY": 7.991130653390679e-05, "TIME_S": 10.119814157485962} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 16263, 2242, 2242], + [ 2, 2, 2, ..., 31240, 31283, 31284]]), + values=tensor([3., 3., 3., ..., 1., 3., 3.]), + size=(31379, 31379), nnz=78684, layout=torch.sparse_coo) +tensor([0.9812, 0.4918, 0.1589, ..., 0.1908, 0.0888, 0.0916]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_070 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 78684 +Density: 7.991130653390679e-05 +Time: 10.119814157485962 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 16263, 2242, 2242], + [ 2, 2, 2, ..., 31240, 31283, 31284]]), + values=tensor([3., 3., 3., ..., 1., 3., 3.]), + size=(31379, 31379), nnz=78684, layout=torch.sparse_coo) +tensor([0.9812, 0.4918, 0.1589, ..., 0.1908, 0.0888, 0.0916]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_070 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 78684 +Density: 7.991130653390679e-05 +Time: 10.119814157485962 seconds + +[40.79, 38.91, 39.08, 39.0, 38.88, 38.89, 39.99, 39.27, 39.29, 38.78] +[65.77] +12.671566486358643 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4546, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_070', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 78684, 'MATRIX_DENSITY': 7.991130653390679e-05, 'TIME_S': 10.119814157485962, 'TIME_S_1KI': 2.2260919836088786, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 833.4089278078079, 'W': 65.77} +[40.79, 38.91, 39.08, 39.0, 38.88, 38.89, 39.99, 39.27, 39.29, 38.78, 40.3, 39.29, 38.87, 39.43, 38.88, 39.12, 38.92, 38.82, 38.97, 39.06] +705.0749999999998 +35.25374999999999 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4546, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_070', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 78684, 'MATRIX_DENSITY': 7.991130653390679e-05, 'TIME_S': 10.119814157485962, 'TIME_S_1KI': 2.2260919836088786, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 833.4089278078079, 'W': 65.77, 'J_1KI': 183.3279647619463, 'W_1KI': 14.46766388033436, 'W_D': 30.516250000000007, 'J_D': 386.688690789342, 'W_D_1KI': 6.712769467663882, 'J_D_1KI': 1.4766320870356098} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_080.json b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_080.json new file mode 100644 index 0000000..19c3499 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_080.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 3611, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_080", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 98112, "MATRIX_DENSITY": 9.964234287345156e-05, "TIME_S": 10.018825054168701, "TIME_S_1KI": 2.774529231284603, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 831.5180498886108, "W": 65.86, "J_1KI": 230.27362223445328, "W_1KI": 18.238715037385766, "W_D": 30.576999999999998, "J_D": 386.05112984275814, "W_D_1KI": 8.467737468845195, "J_D_1KI": 2.3449840678053713} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_080.output b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_080.output new file mode 100644 index 0000000..8ac058b --- /dev/null +++ b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_080.output @@ -0,0 +1,59 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_080.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_080", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 98112, "MATRIX_DENSITY": 9.964234287345156e-05, "TIME_S": 0.29074978828430176} + +tensor(indices=tensor([[22754, 22754, 106, ..., 4133, 31329, 12170], + [ 0, 1, 2, ..., 31373, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 1., 1., 3.]), + size=(31379, 31379), nnz=98112, layout=torch.sparse_coo) +tensor([0.7438, 0.9132, 0.2473, ..., 0.6387, 0.6934, 0.4568]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_080 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 98112 +Density: 9.964234287345156e-05 +Time: 0.29074978828430176 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '3611', '-m', 'matrices/as-caida_pruned/as-caida_G_080.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_080", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 98112, "MATRIX_DENSITY": 9.964234287345156e-05, "TIME_S": 10.018825054168701} + +tensor(indices=tensor([[22754, 22754, 106, ..., 4133, 31329, 12170], + [ 0, 1, 2, ..., 31373, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 1., 1., 3.]), + size=(31379, 31379), nnz=98112, layout=torch.sparse_coo) +tensor([0.3151, 0.8608, 0.5898, ..., 0.8957, 0.6156, 0.9820]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_080 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 98112 +Density: 9.964234287345156e-05 +Time: 10.018825054168701 seconds + +tensor(indices=tensor([[22754, 22754, 106, ..., 4133, 31329, 12170], + [ 0, 1, 2, ..., 31373, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 1., 1., 3.]), + size=(31379, 31379), nnz=98112, layout=torch.sparse_coo) +tensor([0.3151, 0.8608, 0.5898, ..., 0.8957, 0.6156, 0.9820]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_080 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 98112 +Density: 9.964234287345156e-05 +Time: 10.018825054168701 seconds + +[40.82, 38.78, 39.38, 40.04, 39.03, 38.96, 38.95, 38.99, 38.86, 38.95] +[65.86] +12.625539779663086 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3611, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_080', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 98112, 'MATRIX_DENSITY': 9.964234287345156e-05, 'TIME_S': 10.018825054168701, 'TIME_S_1KI': 2.774529231284603, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 831.5180498886108, 'W': 65.86} +[40.82, 38.78, 39.38, 40.04, 39.03, 38.96, 38.95, 38.99, 38.86, 38.95, 40.22, 38.87, 39.28, 39.53, 39.36, 39.38, 38.89, 39.03, 38.91, 38.85] +705.66 +35.283 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3611, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_080', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 98112, 'MATRIX_DENSITY': 9.964234287345156e-05, 'TIME_S': 10.018825054168701, 'TIME_S_1KI': 2.774529231284603, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 831.5180498886108, 'W': 65.86, 'J_1KI': 230.27362223445328, 'W_1KI': 18.238715037385766, 'W_D': 30.576999999999998, 'J_D': 386.05112984275814, 'W_D_1KI': 8.467737468845195, 'J_D_1KI': 2.3449840678053713} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_090.json b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_090.json new file mode 100644 index 0000000..d69d1e8 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_090.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 3584, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_090", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 100924, "MATRIX_DENSITY": 0.00010249820421722343, "TIME_S": 10.236180067062378, "TIME_S_1KI": 2.8560770276401723, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 828.1314778900146, "W": 64.96, "J_1KI": 231.06347039341927, "W_1KI": 18.125, "W_D": 29.182249999999996, "J_D": 372.024935662806, "W_D_1KI": 8.142368861607142, "J_D_1KI": 2.27186631183235} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_090.output b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_090.output new file mode 100644 index 0000000..ac401bb --- /dev/null +++ b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_090.output @@ -0,0 +1,59 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_090.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_090", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 100924, "MATRIX_DENSITY": 0.00010249820421722343, "TIME_S": 0.2929418087005615} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 31211, 12170], + [ 2, 2, 2, ..., 31373, 31376, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=100924, layout=torch.sparse_coo) +tensor([0.7085, 0.9197, 0.4303, ..., 0.1479, 0.9942, 0.1356]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_090 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 100924 +Density: 0.00010249820421722343 +Time: 0.2929418087005615 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '3584', '-m', 'matrices/as-caida_pruned/as-caida_G_090.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_090", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 100924, "MATRIX_DENSITY": 0.00010249820421722343, "TIME_S": 10.236180067062378} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 31211, 12170], + [ 2, 2, 2, ..., 31373, 31376, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=100924, layout=torch.sparse_coo) +tensor([0.0112, 0.0522, 0.7227, ..., 0.7432, 0.5405, 0.0816]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_090 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 100924 +Density: 0.00010249820421722343 +Time: 10.236180067062378 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 31211, 12170], + [ 2, 2, 2, ..., 31373, 31376, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=100924, layout=torch.sparse_coo) +tensor([0.0112, 0.0522, 0.7227, ..., 0.7432, 0.5405, 0.0816]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_090 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 100924 +Density: 0.00010249820421722343 +Time: 10.236180067062378 seconds + +[39.94, 38.93, 39.33, 41.12, 42.86, 39.04, 39.04, 38.89, 38.85, 39.79] +[64.96] +12.748329401016235 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3584, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_090', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 100924, 'MATRIX_DENSITY': 0.00010249820421722343, 'TIME_S': 10.236180067062378, 'TIME_S_1KI': 2.8560770276401723, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 828.1314778900146, 'W': 64.96} +[39.94, 38.93, 39.33, 41.12, 42.86, 39.04, 39.04, 38.89, 38.85, 39.79, 39.71, 44.38, 39.44, 39.21, 39.32, 38.8, 39.09, 39.15, 38.99, 38.79] +715.555 +35.77775 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3584, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_090', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 100924, 'MATRIX_DENSITY': 0.00010249820421722343, 'TIME_S': 10.236180067062378, 'TIME_S_1KI': 2.8560770276401723, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 828.1314778900146, 'W': 64.96, 'J_1KI': 231.06347039341927, 'W_1KI': 18.125, 'W_D': 29.182249999999996, 'J_D': 372.024935662806, 'W_D_1KI': 8.142368861607142, 'J_D_1KI': 2.27186631183235} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_100.json b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_100.json new file mode 100644 index 0000000..1e8a855 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_100.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 3488, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_100", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102888, "MATRIX_DENSITY": 0.00010449283852702711, "TIME_S": 10.151569366455078, "TIME_S_1KI": 2.9104269972634973, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 841.6076977157593, "W": 65.84, "J_1KI": 241.2866105836466, "W_1KI": 18.876146788990827, "W_D": 30.44775, "J_D": 389.2020166786909, "W_D_1KI": 8.72928612385321, "J_D_1KI": 2.5026623061505764} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_100.output b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_100.output new file mode 100644 index 0000000..0ce6b93 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_100.output @@ -0,0 +1,59 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_100.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_100", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102888, "MATRIX_DENSITY": 0.00010449283852702711, "TIME_S": 0.30100226402282715} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 25970, 5128, 12170], + [ 2, 2, 2, ..., 31373, 31377, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=102888, layout=torch.sparse_coo) +tensor([0.5580, 0.6237, 0.2356, ..., 0.5373, 0.0720, 0.3912]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_100 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 102888 +Density: 0.00010449283852702711 +Time: 0.30100226402282715 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '3488', '-m', 'matrices/as-caida_pruned/as-caida_G_100.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_100", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102888, "MATRIX_DENSITY": 0.00010449283852702711, "TIME_S": 10.151569366455078} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 25970, 5128, 12170], + [ 2, 2, 2, ..., 31373, 31377, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=102888, layout=torch.sparse_coo) +tensor([0.1967, 0.8001, 0.8234, ..., 0.5668, 0.7237, 0.3611]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_100 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 102888 +Density: 0.00010449283852702711 +Time: 10.151569366455078 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 25970, 5128, 12170], + [ 2, 2, 2, ..., 31373, 31377, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=102888, layout=torch.sparse_coo) +tensor([0.1967, 0.8001, 0.8234, ..., 0.5668, 0.7237, 0.3611]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_100 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 102888 +Density: 0.00010449283852702711 +Time: 10.151569366455078 seconds + +[39.73, 38.88, 39.86, 38.8, 39.01, 39.32, 39.04, 39.33, 40.4, 38.89] +[65.84] +12.782619953155518 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3488, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_100', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102888, 'MATRIX_DENSITY': 0.00010449283852702711, 'TIME_S': 10.151569366455078, 'TIME_S_1KI': 2.9104269972634973, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 841.6076977157593, 'W': 65.84} +[39.73, 38.88, 39.86, 38.8, 39.01, 39.32, 39.04, 39.33, 40.4, 38.89, 39.79, 39.35, 38.95, 40.54, 38.88, 38.84, 38.85, 39.25, 39.8, 39.08] +707.845 +35.392250000000004 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3488, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_100', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102888, 'MATRIX_DENSITY': 0.00010449283852702711, 'TIME_S': 10.151569366455078, 'TIME_S_1KI': 2.9104269972634973, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 841.6076977157593, 'W': 65.84, 'J_1KI': 241.2866105836466, 'W_1KI': 18.876146788990827, 'W_D': 30.44775, 'J_D': 389.2020166786909, 'W_D_1KI': 8.72928612385321, 'J_D_1KI': 2.5026623061505764} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_110.json b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_110.json new file mode 100644 index 0000000..d569f8e --- /dev/null +++ b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_110.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 3430, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_110", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104846, "MATRIX_DENSITY": 0.0001064813792493263, "TIME_S": 10.159168720245361, "TIME_S_1KI": 2.9618567697508342, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 832.8163108348847, "W": 65.64, "J_1KI": 242.8035891646894, "W_1KI": 19.137026239067055, "W_D": 30.43925000000001, "J_D": 386.2020702251793, "W_D_1KI": 8.874416909620994, "J_D_1KI": 2.587293559656266} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_110.output b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_110.output new file mode 100644 index 0000000..0e321ad --- /dev/null +++ b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_110.output @@ -0,0 +1,59 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_110.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_110", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104846, "MATRIX_DENSITY": 0.0001064813792493263, "TIME_S": 0.3060433864593506} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 2616, 12170], + [ 2, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=104846, layout=torch.sparse_coo) +tensor([0.7413, 0.0993, 0.9522, ..., 0.9342, 0.7322, 0.7430]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_110 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 104846 +Density: 0.0001064813792493263 +Time: 0.3060433864593506 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '3430', '-m', 'matrices/as-caida_pruned/as-caida_G_110.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_110", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104846, "MATRIX_DENSITY": 0.0001064813792493263, "TIME_S": 10.159168720245361} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 2616, 12170], + [ 2, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=104846, layout=torch.sparse_coo) +tensor([0.7607, 0.0388, 0.0239, ..., 0.4178, 0.0363, 0.1430]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_110 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 104846 +Density: 0.0001064813792493263 +Time: 10.159168720245361 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 2616, 12170], + [ 2, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=104846, layout=torch.sparse_coo) +tensor([0.7607, 0.0388, 0.0239, ..., 0.4178, 0.0363, 0.1430]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_110 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 104846 +Density: 0.0001064813792493263 +Time: 10.159168720245361 seconds + +[41.1, 39.08, 39.01, 38.93, 38.88, 38.94, 39.18, 38.93, 38.84, 38.97] +[65.64] +12.687634229660034 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3430, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_110', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104846, 'MATRIX_DENSITY': 0.0001064813792493263, 'TIME_S': 10.159168720245361, 'TIME_S_1KI': 2.9618567697508342, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 832.8163108348847, 'W': 65.64} +[41.1, 39.08, 39.01, 38.93, 38.88, 38.94, 39.18, 38.93, 38.84, 38.97, 40.2, 38.97, 38.85, 39.2, 38.88, 39.38, 39.41, 39.05, 38.93, 38.84] +704.0149999999999 +35.20074999999999 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3430, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_110', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104846, 'MATRIX_DENSITY': 0.0001064813792493263, 'TIME_S': 10.159168720245361, 'TIME_S_1KI': 2.9618567697508342, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 832.8163108348847, 'W': 65.64, 'J_1KI': 242.8035891646894, 'W_1KI': 19.137026239067055, 'W_D': 30.43925000000001, 'J_D': 386.2020702251793, 'W_D_1KI': 8.874416909620994, 'J_D_1KI': 2.587293559656266} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_120.json b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_120.json new file mode 100644 index 0000000..cb35461 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_120.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 3357, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_120", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106510, "MATRIX_DENSITY": 0.0001081713341839054, "TIME_S": 10.2005615234375, "TIME_S_1KI": 3.0385944365318736, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 853.6973136162758, "W": 65.47, "J_1KI": 254.3036382532844, "W_1KI": 19.50253202263926, "W_D": 29.643249999999995, "J_D": 386.53372371858353, "W_D_1KI": 8.830280011915399, "J_D_1KI": 2.6304081060218643} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_120.output b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_120.output new file mode 100644 index 0000000..573b968 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/epyc_7313p_max_coo_10_10_10_as-caida_G_120.output @@ -0,0 +1,59 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_120.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_120", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106510, "MATRIX_DENSITY": 0.0001081713341839054, "TIME_S": 0.3127403259277344} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 12170], + [ 2, 2, 2, ..., 31355, 31360, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=106510, layout=torch.sparse_coo) +tensor([0.1266, 0.8526, 0.4094, ..., 0.2128, 0.0846, 0.8122]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_120 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 106510 +Density: 0.0001081713341839054 +Time: 0.3127403259277344 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '3357', '-m', 'matrices/as-caida_pruned/as-caida_G_120.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_120", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106510, "MATRIX_DENSITY": 0.0001081713341839054, "TIME_S": 10.2005615234375} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 12170], + [ 2, 2, 2, ..., 31355, 31360, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=106510, layout=torch.sparse_coo) +tensor([0.1467, 0.6509, 0.7619, ..., 0.0273, 0.2393, 0.9346]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_120 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 106510 +Density: 0.0001081713341839054 +Time: 10.2005615234375 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 12170], + [ 2, 2, 2, ..., 31355, 31360, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=106510, layout=torch.sparse_coo) +tensor([0.1467, 0.6509, 0.7619, ..., 0.0273, 0.2393, 0.9346]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_120 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 106510 +Density: 0.0001081713341839054 +Time: 10.2005615234375 seconds + +[39.54, 39.46, 38.99, 39.29, 39.63, 39.34, 44.62, 39.25, 39.38, 39.01] +[65.47] +13.03951907157898 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3357, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_120', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106510, 'MATRIX_DENSITY': 0.0001081713341839054, 'TIME_S': 10.2005615234375, 'TIME_S_1KI': 3.0385944365318736, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 853.6973136162758, 'W': 65.47} +[39.54, 39.46, 38.99, 39.29, 39.63, 39.34, 44.62, 39.25, 39.38, 39.01, 39.57, 38.85, 39.07, 44.14, 38.97, 39.22, 39.56, 38.96, 39.16, 39.17] +716.5350000000001 +35.826750000000004 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3357, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_120', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106510, 'MATRIX_DENSITY': 0.0001081713341839054, 'TIME_S': 10.2005615234375, 'TIME_S_1KI': 3.0385944365318736, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 853.6973136162758, 'W': 65.47, 'J_1KI': 254.3036382532844, 'W_1KI': 19.50253202263926, 'W_D': 29.643249999999995, 'J_D': 386.53372371858353, 'W_D_1KI': 8.830280011915399, 'J_D_1KI': 2.6304081060218643} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_005.json b/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_005.json deleted file mode 100644 index 4a37c59..0000000 --- a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_005.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 130157, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 10.980890989303589, "TIME_S_1KI": 0.08436650344817097, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1360.8988891363142, "W": 103.84999999999998, "J_1KI": 10.455825573240887, "W_1KI": 0.797882557219358, "W_D": 68.19524999999999, "J_D": 893.6623973940609, "W_D_1KI": 0.5239460805027774, "J_D_1KI": 0.004025492908585611} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_005.output b/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_005.output deleted file mode 100644 index 8a7f427..0000000 --- a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_005.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_005.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 0.027045488357543945} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.0726, 0.8672, 0.2478, ..., 0.8634, 0.5840, 0.1396]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 0.027045488357543945 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '38823', '-m', 'matrices/as-caida_pruned/as-caida_G_005.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 3.131915807723999} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.8327, 0.6571, 0.9655, ..., 0.9197, 0.6003, 0.8237]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 3.131915807723999 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '130157', '-m', 'matrices/as-caida_pruned/as-caida_G_005.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 10.980890989303589} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.5182, 0.8575, 0.3280, ..., 0.2900, 0.6283, 0.6352]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 10.980890989303589 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.5182, 0.8575, 0.3280, ..., 0.2900, 0.6283, 0.6352]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 10.980890989303589 seconds - -[40.02, 39.58, 40.96, 39.71, 39.45, 39.25, 39.49, 39.49, 39.68, 39.5] -[103.85] -13.104466915130615 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 130157, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_005', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 70026, 'MATRIX_DENSITY': 7.111825976492498e-05, 'TIME_S': 10.980890989303589, 'TIME_S_1KI': 0.08436650344817097, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1360.8988891363142, 'W': 103.84999999999998} -[40.02, 39.58, 40.96, 39.71, 39.45, 39.25, 39.49, 39.49, 39.68, 39.5, 39.99, 40.15, 39.53, 39.12, 39.3, 39.41, 39.19, 39.32, 39.94, 39.54] -713.095 -35.65475 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 130157, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_005', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 70026, 'MATRIX_DENSITY': 7.111825976492498e-05, 'TIME_S': 10.980890989303589, 'TIME_S_1KI': 0.08436650344817097, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1360.8988891363142, 'W': 103.84999999999998, 'J_1KI': 10.455825573240887, 'W_1KI': 0.797882557219358, 'W_D': 68.19524999999999, 'J_D': 893.6623973940609, 'W_D_1KI': 0.5239460805027774, 'J_D_1KI': 0.004025492908585611} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_015.json b/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_015.json deleted file mode 100644 index 86d232e..0000000 --- a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_015.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 127569, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 11.044095754623413, "TIME_S_1KI": 0.08657350731465649, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1376.8041901683807, "W": 104.67999999999999, "J_1KI": 10.792623522708343, "W_1KI": 0.8205755316730553, "W_D": 68.81824999999999, "J_D": 905.1323553692697, "W_D_1KI": 0.539459037854024, "J_D_1KI": 0.004228762770375437} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_015.output b/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_015.output deleted file mode 100644 index eb5a0a8..0000000 --- a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_015.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_015.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 0.024904251098632812} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.5342, 0.2839, 0.0573, ..., 0.3701, 0.8163, 0.3579]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 0.024904251098632812 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '42161', '-m', 'matrices/as-caida_pruned/as-caida_G_015.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 3.470177412033081} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.2040, 0.7311, 0.0868, ..., 0.2631, 0.7558, 0.0829]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 3.470177412033081 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '127569', '-m', 'matrices/as-caida_pruned/as-caida_G_015.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 11.044095754623413} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.8849, 0.5798, 0.8579, ..., 0.4043, 0.5210, 0.4997]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 11.044095754623413 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.8849, 0.5798, 0.8579, ..., 0.4043, 0.5210, 0.4997]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 11.044095754623413 seconds - -[40.38, 41.29, 40.48, 39.34, 39.37, 39.3, 39.47, 39.55, 40.0, 39.59] -[104.68] -13.152504682540894 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 127569, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_015', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 77124, 'MATRIX_DENSITY': 7.832697378273889e-05, 'TIME_S': 11.044095754623413, 'TIME_S_1KI': 0.08657350731465649, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1376.8041901683807, 'W': 104.67999999999999} -[40.38, 41.29, 40.48, 39.34, 39.37, 39.3, 39.47, 39.55, 40.0, 39.59, 40.5, 39.43, 39.41, 41.1, 40.42, 39.23, 40.12, 39.53, 39.35, 39.22] -717.235 -35.86175 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 127569, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_015', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 77124, 'MATRIX_DENSITY': 7.832697378273889e-05, 'TIME_S': 11.044095754623413, 'TIME_S_1KI': 0.08657350731465649, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1376.8041901683807, 'W': 104.67999999999999, 'J_1KI': 10.792623522708343, 'W_1KI': 0.8205755316730553, 'W_D': 68.81824999999999, 'J_D': 905.1323553692697, 'W_D_1KI': 0.539459037854024, 'J_D_1KI': 0.004228762770375437} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_025.json b/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_025.json deleted file mode 100644 index eb322b1..0000000 --- a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_025.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 122117, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 10.6493821144104, "TIME_S_1KI": 0.0872063849784256, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1405.5062645673752, "W": 105.55, "J_1KI": 11.509505347882564, "W_1KI": 0.8643350229697749, "W_D": 69.588, "J_D": 926.6354328632353, "W_D_1KI": 0.5698469500560938, "J_D_1KI": 0.0046664014842822355} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_025.output b/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_025.output deleted file mode 100644 index abe0184..0000000 --- a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_025.output +++ /dev/null @@ -1,105 +0,0 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_025.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 0.027940988540649414} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.7800, 0.8216, 0.9425, ..., 0.9095, 0.6124, 0.7757]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 0.027940988540649414 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '37579', '-m', 'matrices/as-caida_pruned/as-caida_G_025.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 3.4802803993225098} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.1792, 0.6829, 0.8674, ..., 0.8857, 0.9544, 0.5010]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 3.4802803993225098 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '113375', '-m', 'matrices/as-caida_pruned/as-caida_G_025.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 9.748293399810791} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.9918, 0.4166, 0.8271, ..., 0.2758, 0.1683, 0.2261]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 9.748293399810791 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '122117', '-m', 'matrices/as-caida_pruned/as-caida_G_025.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 10.6493821144104} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.2449, 0.0211, 0.8597, ..., 0.1539, 0.4018, 0.0751]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 10.6493821144104 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.2449, 0.0211, 0.8597, ..., 0.1539, 0.4018, 0.0751]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 10.6493821144104 seconds - -[41.05, 40.38, 40.06, 39.47, 40.24, 39.63, 39.65, 39.45, 39.9, 40.39] -[105.55] -13.316023349761963 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 122117, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_025', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 85850, 'MATRIX_DENSITY': 8.718908121010495e-05, 'TIME_S': 10.6493821144104, 'TIME_S_1KI': 0.0872063849784256, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1405.5062645673752, 'W': 105.55} -[41.05, 40.38, 40.06, 39.47, 40.24, 39.63, 39.65, 39.45, 39.9, 40.39, 40.87, 39.32, 39.97, 39.77, 39.91, 40.1, 39.85, 39.52, 41.22, 39.29] -719.24 -35.962 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 122117, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_025', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 85850, 'MATRIX_DENSITY': 8.718908121010495e-05, 'TIME_S': 10.6493821144104, 'TIME_S_1KI': 0.0872063849784256, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1405.5062645673752, 'W': 105.55, 'J_1KI': 11.509505347882564, 'W_1KI': 0.8643350229697749, 'W_D': 69.588, 'J_D': 926.6354328632353, 'W_D_1KI': 0.5698469500560938, 'J_D_1KI': 0.0046664014842822355} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_035.json b/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_035.json deleted file mode 100644 index ee00d05..0000000 --- a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_035.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 119218, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 10.408023834228516, "TIME_S_1KI": 0.08730245293687627, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1334.6079625511168, "W": 104.82, "J_1KI": 11.194685052182697, "W_1KI": 0.8792296465298864, "W_D": 69.02749999999999, "J_D": 878.884288637638, "W_D_1KI": 0.579002331862638, "J_D_1KI": 0.004856668723369274} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_035.output b/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_035.output deleted file mode 100644 index c85480e..0000000 --- a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_035.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_035.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 0.02867746353149414} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.6240, 0.5141, 0.7011, ..., 0.5180, 0.0910, 0.3078]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 0.02867746353149414 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '36614', '-m', 'matrices/as-caida_pruned/as-caida_G_035.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 3.22471284866333} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.8117, 0.1193, 0.9490, ..., 0.3605, 0.3665, 0.8073]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 3.22471284866333 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '119218', '-m', 'matrices/as-caida_pruned/as-caida_G_035.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 10.408023834228516} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.4188, 0.0252, 0.5651, ..., 0.9342, 0.6089, 0.7497]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 10.408023834228516 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.4188, 0.0252, 0.5651, ..., 0.9342, 0.6089, 0.7497]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 10.408023834228516 seconds - -[40.18, 39.58, 40.1, 39.73, 39.46, 39.77, 39.41, 39.32, 39.48, 39.48] -[104.82] -12.732378959655762 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 119218, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_035', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 87560, 'MATRIX_DENSITY': 8.892575364888514e-05, 'TIME_S': 10.408023834228516, 'TIME_S_1KI': 0.08730245293687627, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1334.6079625511168, 'W': 104.82} -[40.18, 39.58, 40.1, 39.73, 39.46, 39.77, 39.41, 39.32, 39.48, 39.48, 42.99, 39.89, 39.53, 39.6, 39.67, 39.64, 39.89, 39.62, 39.62, 40.43] -715.85 -35.792500000000004 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 119218, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_035', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 87560, 'MATRIX_DENSITY': 8.892575364888514e-05, 'TIME_S': 10.408023834228516, 'TIME_S_1KI': 0.08730245293687627, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1334.6079625511168, 'W': 104.82, 'J_1KI': 11.194685052182697, 'W_1KI': 0.8792296465298864, 'W_D': 69.02749999999999, 'J_D': 878.884288637638, 'W_D_1KI': 0.579002331862638, 'J_D_1KI': 0.004856668723369274} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_045.json b/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_045.json deleted file mode 100644 index df8b678..0000000 --- a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_045.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 123262, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 10.604638814926147, "TIME_S_1KI": 0.08603331776967879, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1498.7498827266693, "W": 104.66, "J_1KI": 12.159058612765241, "W_1KI": 0.8490856873975758, "W_D": 69.0005, "J_D": 988.099477193594, "W_D_1KI": 0.5597872823741299, "J_D_1KI": 0.004541442475167772} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_045.output b/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_045.output deleted file mode 100644 index 793de8a..0000000 --- a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_045.output +++ /dev/null @@ -1,105 +0,0 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_045.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 0.022446870803833008} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.7240, 0.4288, 0.8026, ..., 0.9422, 0.3141, 0.8470]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 0.022446870803833008 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '46777', '-m', 'matrices/as-caida_pruned/as-caida_G_045.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 4.238167762756348} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.6263, 0.4951, 0.8826, ..., 0.4290, 0.9805, 0.9078]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 4.238167762756348 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '115889', '-m', 'matrices/as-caida_pruned/as-caida_G_045.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 9.87186861038208} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.6856, 0.8550, 0.0184, ..., 0.3333, 0.3446, 0.1554]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 9.87186861038208 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '123262', '-m', 'matrices/as-caida_pruned/as-caida_G_045.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 10.604638814926147} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.7577, 0.3700, 0.4727, ..., 0.6682, 0.7731, 0.8829]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 10.604638814926147 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.7577, 0.3700, 0.4727, ..., 0.6682, 0.7731, 0.8829]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 10.604638814926147 seconds - -[40.75, 39.54, 39.62, 39.96, 39.38, 39.41, 39.91, 39.55, 39.67, 39.71] -[104.66] -14.320178508758545 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 123262, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_045', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89152, 'MATRIX_DENSITY': 9.054258553341032e-05, 'TIME_S': 10.604638814926147, 'TIME_S_1KI': 0.08603331776967879, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1498.7498827266693, 'W': 104.66} -[40.75, 39.54, 39.62, 39.96, 39.38, 39.41, 39.91, 39.55, 39.67, 39.71, 39.94, 39.22, 39.33, 39.47, 39.36, 39.85, 40.29, 39.23, 39.64, 39.12] -713.1899999999999 -35.659499999999994 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 123262, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_045', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89152, 'MATRIX_DENSITY': 9.054258553341032e-05, 'TIME_S': 10.604638814926147, 'TIME_S_1KI': 0.08603331776967879, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1498.7498827266693, 'W': 104.66, 'J_1KI': 12.159058612765241, 'W_1KI': 0.8490856873975758, 'W_D': 69.0005, 'J_D': 988.099477193594, 'W_D_1KI': 0.5597872823741299, 'J_D_1KI': 0.004541442475167772} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_055.json b/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_055.json deleted file mode 100644 index d19ae4f..0000000 --- a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_055.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 115993, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 11.341620922088623, "TIME_S_1KI": 0.0977784945823336, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1311.9969903469087, "W": 105.11000000000001, "J_1KI": 11.311001442732826, "W_1KI": 0.906175372651798, "W_D": 68.70625000000001, "J_D": 857.6005443632604, "W_D_1KI": 0.5923310027329237, "J_D_1KI": 0.005106609905191897} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_055.output b/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_055.output deleted file mode 100644 index 9ccce60..0000000 --- a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_055.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_055.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 0.028304576873779297} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.7892, 0.3566, 0.7127, ..., 0.2432, 0.3071, 0.5377]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 0.028304576873779297 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '37096', '-m', 'matrices/as-caida_pruned/as-caida_G_055.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 3.358018398284912} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.1850, 0.6800, 0.5942, ..., 0.9886, 0.1400, 0.4140]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 3.358018398284912 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '115993', '-m', 'matrices/as-caida_pruned/as-caida_G_055.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 11.341620922088623} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.2569, 0.5049, 0.9878, ..., 0.1193, 0.2877, 0.6010]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 11.341620922088623 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.2569, 0.5049, 0.9878, ..., 0.1193, 0.2877, 0.6010]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 11.341620922088623 seconds - -[40.22, 39.34, 39.44, 39.29, 39.78, 39.4, 39.25, 39.27, 39.2, 39.57] -[105.11] -12.482132911682129 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 115993, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_055', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 91476, 'MATRIX_DENSITY': 9.290283509348351e-05, 'TIME_S': 11.341620922088623, 'TIME_S_1KI': 0.0977784945823336, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1311.9969903469087, 'W': 105.11000000000001} -[40.22, 39.34, 39.44, 39.29, 39.78, 39.4, 39.25, 39.27, 39.2, 39.57, 40.43, 40.81, 39.88, 39.99, 39.29, 39.57, 39.3, 49.45, 45.11, 39.19] -728.075 -36.40375 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 115993, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_055', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 91476, 'MATRIX_DENSITY': 9.290283509348351e-05, 'TIME_S': 11.341620922088623, 'TIME_S_1KI': 0.0977784945823336, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1311.9969903469087, 'W': 105.11000000000001, 'J_1KI': 11.311001442732826, 'W_1KI': 0.906175372651798, 'W_D': 68.70625000000001, 'J_D': 857.6005443632604, 'W_D_1KI': 0.5923310027329237, 'J_D_1KI': 0.005106609905191897} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_065.json b/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_065.json deleted file mode 100644 index 02301d3..0000000 --- a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_065.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 119305, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 10.269909381866455, "TIME_S_1KI": 0.08608113140158799, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1369.542292098999, "W": 104.99, "J_1KI": 11.479336927194996, "W_1KI": 0.8800134110054063, "W_D": 69.32875, "J_D": 904.3590359401703, "W_D_1KI": 0.5811051506642639, "J_D_1KI": 0.004870752698246209} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_065.output b/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_065.output deleted file mode 100644 index a82eb47..0000000 --- a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_065.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_065.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 0.05011296272277832} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.1460, 0.2426, 0.2871, ..., 0.8209, 0.8175, 0.1827]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 0.05011296272277832 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '20952', '-m', 'matrices/as-caida_pruned/as-caida_G_065.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 1.843977928161621} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.4486, 0.9899, 0.6798, ..., 0.6606, 0.4190, 0.7337]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 1.843977928161621 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '119305', '-m', 'matrices/as-caida_pruned/as-caida_G_065.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 10.269909381866455} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.1419, 0.9123, 0.3177, ..., 0.8018, 0.7036, 0.8347]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 10.269909381866455 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.1419, 0.9123, 0.3177, ..., 0.8018, 0.7036, 0.8347]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 10.269909381866455 seconds - -[40.89, 39.97, 39.48, 39.83, 39.9, 39.69, 39.45, 39.42, 39.72, 39.16] -[104.99] -13.044502258300781 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 119305, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_065', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 95068, 'MATRIX_DENSITY': 9.655086281283934e-05, 'TIME_S': 10.269909381866455, 'TIME_S_1KI': 0.08608113140158799, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1369.542292098999, 'W': 104.99} -[40.89, 39.97, 39.48, 39.83, 39.9, 39.69, 39.45, 39.42, 39.72, 39.16, 39.96, 39.46, 39.25, 39.6, 39.18, 39.57, 39.73, 39.28, 40.1, 39.18] -713.2249999999999 -35.661249999999995 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 119305, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_065', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 95068, 'MATRIX_DENSITY': 9.655086281283934e-05, 'TIME_S': 10.269909381866455, 'TIME_S_1KI': 0.08608113140158799, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1369.542292098999, 'W': 104.99, 'J_1KI': 11.479336927194996, 'W_1KI': 0.8800134110054063, 'W_D': 69.32875, 'J_D': 904.3590359401703, 'W_D_1KI': 0.5811051506642639, 'J_D_1KI': 0.004870752698246209} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_075.json b/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_075.json deleted file mode 100644 index 52bd678..0000000 --- a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_075.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 117871, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 10.46876573562622, "TIME_S_1KI": 0.08881544854651459, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1384.9325737524032, "W": 105.46, "J_1KI": 11.749561586415686, "W_1KI": 0.8947069253675628, "W_D": 69.29524999999998, "J_D": 910.0061533407567, "W_D_1KI": 0.5878905752899355, "J_D_1KI": 0.004987576038974264} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_075.output b/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_075.output deleted file mode 100644 index edf1a35..0000000 --- a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_075.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_075.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 0.029708385467529297} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.7657, 0.6949, 0.8038, ..., 0.0810, 0.5586, 0.1756]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 0.029708385467529297 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '35343', '-m', 'matrices/as-caida_pruned/as-caida_G_075.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 3.1483521461486816} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.7560, 0.3404, 0.1077, ..., 0.6219, 0.8552, 0.3773]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 3.1483521461486816 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '117871', '-m', 'matrices/as-caida_pruned/as-caida_G_075.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 10.46876573562622} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.9284, 0.7225, 0.5215, ..., 0.9584, 0.4959, 0.3353]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 10.46876573562622 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.9284, 0.7225, 0.5215, ..., 0.9584, 0.4959, 0.3353]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 10.46876573562622 seconds - -[40.06, 40.12, 39.51, 39.49, 39.39, 39.9, 39.43, 39.81, 44.85, 39.81] -[105.46] -13.132302045822144 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 117871, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_075', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 97492, 'MATRIX_DENSITY': 9.901267216465406e-05, 'TIME_S': 10.46876573562622, 'TIME_S_1KI': 0.08881544854651459, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1384.9325737524032, 'W': 105.46} -[40.06, 40.12, 39.51, 39.49, 39.39, 39.9, 39.43, 39.81, 44.85, 39.81, 40.59, 39.7, 39.35, 39.63, 39.73, 44.15, 39.7, 39.24, 39.48, 39.17] -723.2950000000001 -36.164750000000005 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 117871, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_075', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 97492, 'MATRIX_DENSITY': 9.901267216465406e-05, 'TIME_S': 10.46876573562622, 'TIME_S_1KI': 0.08881544854651459, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1384.9325737524032, 'W': 105.46, 'J_1KI': 11.749561586415686, 'W_1KI': 0.8947069253675628, 'W_D': 69.29524999999998, 'J_D': 910.0061533407567, 'W_D_1KI': 0.5878905752899355, 'J_D_1KI': 0.004987576038974264} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_085.json b/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_085.json deleted file mode 100644 index dac1835..0000000 --- a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_085.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 121444, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 10.505080699920654, "TIME_S_1KI": 0.08650143852245194, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1336.2899490594864, "W": 106.5, "J_1KI": 11.003342685184005, "W_1KI": 0.8769473996245183, "W_D": 70.737, "J_D": 887.5600199682711, "W_D_1KI": 0.5824659925562399, "J_D_1KI": 0.004796169366590691} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_085.output b/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_085.output deleted file mode 100644 index c674a30..0000000 --- a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_085.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_085.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 0.027776479721069336} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.7671, 0.5798, 0.8911, ..., 0.4919, 0.5874, 0.4864]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 0.027776479721069336 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '37801', '-m', 'matrices/as-caida_pruned/as-caida_G_085.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 3.268259286880493} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.7766, 0.5291, 0.5743, ..., 0.9245, 0.7238, 0.3581]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 3.268259286880493 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '121444', '-m', 'matrices/as-caida_pruned/as-caida_G_085.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 10.505080699920654} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.5279, 0.9609, 0.7308, ..., 0.9106, 0.1679, 0.0523]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 10.505080699920654 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.5279, 0.9609, 0.7308, ..., 0.9106, 0.1679, 0.0523]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 10.505080699920654 seconds - -[40.27, 40.61, 39.36, 39.54, 39.41, 39.69, 39.72, 39.77, 40.14, 39.67] -[106.5] -12.54732346534729 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 121444, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_085', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 99166, 'MATRIX_DENSITY': 0.0001007127830784073, 'TIME_S': 10.505080699920654, 'TIME_S_1KI': 0.08650143852245194, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1336.2899490594864, 'W': 106.5} -[40.27, 40.61, 39.36, 39.54, 39.41, 39.69, 39.72, 39.77, 40.14, 39.67, 41.71, 39.67, 39.95, 39.27, 39.45, 39.23, 39.37, 40.22, 39.21, 39.65] -715.26 -35.763 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 121444, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_085', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 99166, 'MATRIX_DENSITY': 0.0001007127830784073, 'TIME_S': 10.505080699920654, 'TIME_S_1KI': 0.08650143852245194, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1336.2899490594864, 'W': 106.5, 'J_1KI': 11.003342685184005, 'W_1KI': 0.8769473996245183, 'W_D': 70.737, 'J_D': 887.5600199682711, 'W_D_1KI': 0.5824659925562399, 'J_D_1KI': 0.004796169366590691} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_095.json b/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_095.json deleted file mode 100644 index 336d888..0000000 --- a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_095.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 123705, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 10.90046238899231, "TIME_S_1KI": 0.08811658695276917, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1428.9193895983694, "W": 106.12999999999998, "J_1KI": 11.5510237225526, "W_1KI": 0.85792813548361, "W_D": 69.78774999999999, "J_D": 939.6124482374786, "W_D_1KI": 0.5641465583444485, "J_D_1KI": 0.00456041840139403} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_095.output b/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_095.output deleted file mode 100644 index ea67830..0000000 --- a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_095.output +++ /dev/null @@ -1,89 +0,0 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_095.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 0.0280454158782959} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.6080, 0.8018, 0.6987, ..., 0.3141, 0.8100, 0.8933]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 0.0280454158782959 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '37439', '-m', 'matrices/as-caida_pruned/as-caida_G_095.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 3.1777875423431396} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.8331, 0.2134, 0.1814, ..., 0.8302, 0.3682, 0.5485]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 3.1777875423431396 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '123705', '-m', 'matrices/as-caida_pruned/as-caida_G_095.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 10.90046238899231} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.6564, 0.4288, 0.1493, ..., 0.5365, 0.7866, 0.0555]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 10.90046238899231 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.6564, 0.4288, 0.1493, ..., 0.5365, 0.7866, 0.0555]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 10.90046238899231 seconds - -[45.18, 51.54, 39.34, 39.19, 39.19, 39.24, 39.49, 39.13, 40.19, 40.24] -[106.13] -13.46385931968689 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 123705, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_095', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102290, 'MATRIX_DENSITY': 0.00010388551097241275, 'TIME_S': 10.90046238899231, 'TIME_S_1KI': 0.08811658695276917, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1428.9193895983694, 'W': 106.12999999999998} -[45.18, 51.54, 39.34, 39.19, 39.19, 39.24, 39.49, 39.13, 40.19, 40.24, 39.83, 39.8, 39.94, 39.19, 39.68, 40.58, 39.51, 39.26, 39.27, 39.36] -726.845 -36.34225 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 123705, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_095', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102290, 'MATRIX_DENSITY': 0.00010388551097241275, 'TIME_S': 10.90046238899231, 'TIME_S_1KI': 0.08811658695276917, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1428.9193895983694, 'W': 106.12999999999998, 'J_1KI': 11.5510237225526, 'W_1KI': 0.85792813548361, 'W_D': 69.78774999999999, 'J_D': 939.6124482374786, 'W_D_1KI': 0.5641465583444485, 'J_D_1KI': 0.00456041840139403} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_105.json b/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_105.json deleted file mode 100644 index 7178369..0000000 --- a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_105.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 122486, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 10.397178411483765, "TIME_S_1KI": 0.08488462690824881, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1412.024871377945, "W": 106.03999999999999, "J_1KI": 11.528051135459929, "W_1KI": 0.8657315938148032, "W_D": 70.02574999999999, "J_D": 932.4603983109591, "W_D_1KI": 0.5717041131231323, "J_D_1KI": 0.004667505781257714} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_105.output b/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_105.output deleted file mode 100644 index 4c2c51c..0000000 --- a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_105.output +++ /dev/null @@ -1,89 +0,0 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_105.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 0.028494596481323242} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.0686, 0.0328, 0.2033, ..., 0.1197, 0.3793, 0.1423]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 0.028494596481323242 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '36849', '-m', 'matrices/as-caida_pruned/as-caida_G_105.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 3.158832311630249} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.1470, 0.7207, 0.2182, ..., 0.8892, 0.7915, 0.0167]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 3.158832311630249 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '122486', '-m', 'matrices/as-caida_pruned/as-caida_G_105.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 10.397178411483765} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.7336, 0.8024, 0.7188, ..., 0.1561, 0.7889, 0.4305]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 10.397178411483765 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.7336, 0.8024, 0.7188, ..., 0.1561, 0.7889, 0.4305]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 10.397178411483765 seconds - -[50.54, 39.93, 39.56, 39.45, 39.38, 39.37, 39.74, 39.95, 39.8, 41.73] -[106.04] -13.315964460372925 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 122486, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_105', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104726, 'MATRIX_DENSITY': 0.00010635950749923647, 'TIME_S': 10.397178411483765, 'TIME_S_1KI': 0.08488462690824881, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1412.024871377945, 'W': 106.03999999999999} -[50.54, 39.93, 39.56, 39.45, 39.38, 39.37, 39.74, 39.95, 39.8, 41.73, 39.97, 39.3, 39.55, 39.68, 39.55, 39.47, 40.65, 39.24, 39.69, 39.71] -720.2850000000001 -36.014250000000004 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 122486, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_105', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104726, 'MATRIX_DENSITY': 0.00010635950749923647, 'TIME_S': 10.397178411483765, 'TIME_S_1KI': 0.08488462690824881, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1412.024871377945, 'W': 106.03999999999999, 'J_1KI': 11.528051135459929, 'W_1KI': 0.8657315938148032, 'W_D': 70.02574999999999, 'J_D': 932.4603983109591, 'W_D_1KI': 0.5717041131231323, 'J_D_1KI': 0.004667505781257714} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_115.json b/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_115.json deleted file mode 100644 index a790206..0000000 --- a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_115.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 124105, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 10.59231972694397, "TIME_S_1KI": 0.08534966139111212, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 4742.8229215764995, "W": 99.33, "J_1KI": 38.21621144656943, "W_1KI": 0.8003706538817936, "W_D": 61.29225, "J_D": 2926.5910421322587, "W_D_1KI": 0.49387413883405185, "J_D_1KI": 0.003979486232094209} diff --git a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_115.output b/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_115.output deleted file mode 100644 index c33a124..0000000 --- a/pytorch/output_as-caida_maxcore/epyc_7313p_max_csr_10_10_10_as-caida_G_115.output +++ /dev/null @@ -1,89 +0,0 @@ -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_115.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 0.02862715721130371} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.8751, 0.4686, 0.5237, ..., 0.8724, 0.2861, 0.0906]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 0.02862715721130371 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '36678', '-m', 'matrices/as-caida_pruned/as-caida_G_115.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 3.1031546592712402} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.7984, 0.5145, 0.9517, ..., 0.9171, 0.3029, 0.5667]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 3.1031546592712402 seconds - -['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'csr', '124105', '-m', 'matrices/as-caida_pruned/as-caida_G_115.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 10.59231972694397} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.9062, 0.9528, 0.4977, ..., 0.5925, 0.1787, 0.9051]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 10.59231972694397 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.9062, 0.9528, 0.4977, ..., 0.5925, 0.1787, 0.9051]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 10.59231972694397 seconds - -[40.47, 39.18, 39.36, 39.46, 39.2, 39.2, 39.25, 49.28, 64.87, 63.39] -[99.33] -47.74814176559448 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 124105, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_115', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106312, 'MATRIX_DENSITY': 0.00010797024579625715, 'TIME_S': 10.59231972694397, 'TIME_S_1KI': 0.08534966139111212, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 4742.8229215764995, 'W': 99.33} -[40.47, 39.18, 39.36, 39.46, 39.2, 39.2, 39.25, 49.28, 64.87, 63.39, 40.46, 39.73, 40.14, 40.06, 39.55, 39.41, 40.08, 39.85, 40.03, 39.89] -760.7549999999999 -38.037749999999996 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 124105, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_115', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106312, 'MATRIX_DENSITY': 0.00010797024579625715, 'TIME_S': 10.59231972694397, 'TIME_S_1KI': 0.08534966139111212, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 4742.8229215764995, 'W': 99.33, 'J_1KI': 38.21621144656943, 'W_1KI': 0.8003706538817936, 'W_D': 61.29225, 'J_D': 2926.5910421322587, 'W_D_1KI': 0.49387413883405185, 'J_D_1KI': 0.003979486232094209} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_010.json b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_010.json new file mode 100644 index 0000000..4889c6d --- /dev/null +++ b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_010.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 3789, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 10.054757833480835, "TIME_S_1KI": 2.6536705815468022, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 730.6265703058242, "W": 54.23, "J_1KI": 192.8283373728752, "W_1KI": 14.312483504882554, "W_D": 37.41225, "J_D": 504.04543435227873, "W_D_1KI": 9.873911322248613, "J_D_1KI": 2.6059412304694147} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_010.output b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_010.output new file mode 100644 index 0000000..7647f48 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_010.output @@ -0,0 +1,59 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_010.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 0.2771122455596924} + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.0036, 0.3684, 0.4760, ..., 0.9250, 0.8163, 0.0588]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 0.2771122455596924 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '3789', '-m', 'matrices/as-caida_pruned/as-caida_G_010.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_010", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 74994, "MATRIX_DENSITY": 7.616375021864427e-05, "TIME_S": 10.054757833480835} + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.7678, 0.6724, 0.7645, ..., 0.9086, 0.3480, 0.4542]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 10.054757833480835 seconds + +tensor(indices=tensor([[ 1040, 2020, 2054, ..., 160, 160, 12170], + [ 0, 0, 0, ..., 31353, 31360, 31378]]), + values=tensor([3., 1., 1., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=74994, layout=torch.sparse_coo) +tensor([0.7678, 0.6724, 0.7645, ..., 0.9086, 0.3480, 0.4542]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_010 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 74994 +Density: 7.616375021864427e-05 +Time: 10.054757833480835 seconds + +[19.22, 18.37, 18.61, 18.66, 18.64, 18.61, 18.52, 19.7, 18.57, 18.39] +[54.23] +13.472737789154053 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 3789, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_010', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 74994, 'MATRIX_DENSITY': 7.616375021864427e-05, 'TIME_S': 10.054757833480835, 'TIME_S_1KI': 2.6536705815468022, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 730.6265703058242, 'W': 54.23} +[19.22, 18.37, 18.61, 18.66, 18.64, 18.61, 18.52, 19.7, 18.57, 18.39, 19.04, 18.64, 19.0, 18.46, 18.64, 18.53, 18.83, 18.34, 18.67, 18.48] +336.355 +16.81775 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 3789, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_010', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 74994, 'MATRIX_DENSITY': 7.616375021864427e-05, 'TIME_S': 10.054757833480835, 'TIME_S_1KI': 2.6536705815468022, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 730.6265703058242, 'W': 54.23, 'J_1KI': 192.8283373728752, 'W_1KI': 14.312483504882554, 'W_D': 37.41225, 'J_D': 504.04543435227873, 'W_D_1KI': 9.873911322248613, 'J_D_1KI': 2.6059412304694147} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_020.json b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_020.json new file mode 100644 index 0000000..fd3084a --- /dev/null +++ b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_020.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 3524, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_020", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 80948, "MATRIX_DENSITY": 8.221062021893506e-05, "TIME_S": 10.09221887588501, "TIME_S_1KI": 2.8638532564940435, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 736.2833187866212, "W": 53.84, "J_1KI": 208.93397241391065, "W_1KI": 15.278093076049943, "W_D": 37.005, "J_D": 506.0580277061463, "W_D_1KI": 10.500851305334848, "J_D_1KI": 2.979810245554724} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_020.output b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_020.output new file mode 100644 index 0000000..3c93c2b --- /dev/null +++ b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_020.output @@ -0,0 +1,59 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_020.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_020", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 80948, "MATRIX_DENSITY": 8.221062021893506e-05, "TIME_S": 0.29787468910217285} + +tensor(indices=tensor([[ 1040, 5699, 106, ..., 31378, 17998, 31377], + [ 0, 0, 2, ..., 31377, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 1.]), + size=(31379, 31379), nnz=80948, layout=torch.sparse_coo) +tensor([0.5847, 0.5165, 0.5005, ..., 0.1796, 0.7948, 0.8111]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_020 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 80948 +Density: 8.221062021893506e-05 +Time: 0.29787468910217285 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '3524', '-m', 'matrices/as-caida_pruned/as-caida_G_020.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_020", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 80948, "MATRIX_DENSITY": 8.221062021893506e-05, "TIME_S": 10.09221887588501} + +tensor(indices=tensor([[ 1040, 5699, 106, ..., 31378, 17998, 31377], + [ 0, 0, 2, ..., 31377, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 1.]), + size=(31379, 31379), nnz=80948, layout=torch.sparse_coo) +tensor([0.2559, 0.3826, 0.3094, ..., 0.0424, 0.9713, 0.6407]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_020 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 80948 +Density: 8.221062021893506e-05 +Time: 10.09221887588501 seconds + +tensor(indices=tensor([[ 1040, 5699, 106, ..., 31378, 17998, 31377], + [ 0, 0, 2, ..., 31377, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 1.]), + size=(31379, 31379), nnz=80948, layout=torch.sparse_coo) +tensor([0.2559, 0.3826, 0.3094, ..., 0.0424, 0.9713, 0.6407]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_020 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 80948 +Density: 8.221062021893506e-05 +Time: 10.09221887588501 seconds + +[18.65, 18.68, 18.75, 18.44, 18.64, 18.69, 18.5, 18.58, 18.71, 18.79] +[53.84] +13.675395965576172 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 3524, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_020', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 80948, 'MATRIX_DENSITY': 8.221062021893506e-05, 'TIME_S': 10.09221887588501, 'TIME_S_1KI': 2.8638532564940435, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 736.2833187866212, 'W': 53.84} +[18.65, 18.68, 18.75, 18.44, 18.64, 18.69, 18.5, 18.58, 18.71, 18.79, 18.99, 18.43, 18.82, 18.8, 18.64, 18.62, 19.65, 18.7, 18.64, 18.39] +336.7 +16.835 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 3524, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_020', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 80948, 'MATRIX_DENSITY': 8.221062021893506e-05, 'TIME_S': 10.09221887588501, 'TIME_S_1KI': 2.8638532564940435, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 736.2833187866212, 'W': 53.84, 'J_1KI': 208.93397241391065, 'W_1KI': 15.278093076049943, 'W_D': 37.005, 'J_D': 506.0580277061463, 'W_D_1KI': 10.500851305334848, 'J_D_1KI': 2.979810245554724} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_030.json b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_030.json new file mode 100644 index 0000000..0124c4c --- /dev/null +++ b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_030.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 3288, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_030", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 86850, "MATRIX_DENSITY": 8.820467912752026e-05, "TIME_S": 10.057994604110718, "TIME_S_1KI": 3.0590007920044764, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 733.475068244934, "W": 54.12, "J_1KI": 223.07635895527193, "W_1KI": 16.45985401459854, "W_D": 37.28675, "J_D": 505.33816520476336, "W_D_1KI": 11.340252433090024, "J_D_1KI": 3.4489818835431945} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_030.output b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_030.output new file mode 100644 index 0000000..cbb7d45 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_030.output @@ -0,0 +1,59 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_030.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_030", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 86850, "MATRIX_DENSITY": 8.820467912752026e-05, "TIME_S": 0.31927919387817383} + +tensor(indices=tensor([[ 1809, 21783, 106, ..., 7018, 160, 882], + [ 0, 0, 2, ..., 31357, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=86850, layout=torch.sparse_coo) +tensor([0.4351, 0.1623, 0.7665, ..., 0.9374, 0.2061, 0.6451]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_030 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 86850 +Density: 8.820467912752026e-05 +Time: 0.31927919387817383 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '3288', '-m', 'matrices/as-caida_pruned/as-caida_G_030.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_030", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 86850, "MATRIX_DENSITY": 8.820467912752026e-05, "TIME_S": 10.057994604110718} + +tensor(indices=tensor([[ 1809, 21783, 106, ..., 7018, 160, 882], + [ 0, 0, 2, ..., 31357, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=86850, layout=torch.sparse_coo) +tensor([0.2915, 0.3876, 0.0269, ..., 0.3325, 0.1904, 0.5633]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_030 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 86850 +Density: 8.820467912752026e-05 +Time: 10.057994604110718 seconds + +tensor(indices=tensor([[ 1809, 21783, 106, ..., 7018, 160, 882], + [ 0, 0, 2, ..., 31357, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=86850, layout=torch.sparse_coo) +tensor([0.2915, 0.3876, 0.0269, ..., 0.3325, 0.1904, 0.5633]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_030 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 86850 +Density: 8.820467912752026e-05 +Time: 10.057994604110718 seconds + +[18.93, 18.53, 18.73, 18.81, 18.79, 18.36, 18.72, 18.48, 18.53, 18.81] +[54.12] +13.552754402160645 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 3288, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_030', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 86850, 'MATRIX_DENSITY': 8.820467912752026e-05, 'TIME_S': 10.057994604110718, 'TIME_S_1KI': 3.0590007920044764, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 733.475068244934, 'W': 54.12} +[18.93, 18.53, 18.73, 18.81, 18.79, 18.36, 18.72, 18.48, 18.53, 18.81, 20.29, 18.76, 18.66, 18.46, 18.71, 18.63, 18.79, 18.67, 18.54, 18.96] +336.66499999999996 +16.83325 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 3288, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_030', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 86850, 'MATRIX_DENSITY': 8.820467912752026e-05, 'TIME_S': 10.057994604110718, 'TIME_S_1KI': 3.0590007920044764, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 733.475068244934, 'W': 54.12, 'J_1KI': 223.07635895527193, 'W_1KI': 16.45985401459854, 'W_D': 37.28675, 'J_D': 505.33816520476336, 'W_D_1KI': 11.340252433090024, 'J_D_1KI': 3.4489818835431945} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_040.json b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_040.json new file mode 100644 index 0000000..631489b --- /dev/null +++ b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_040.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 3196, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_040", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89658, "MATRIX_DENSITY": 9.105647807962247e-05, "TIME_S": 10.146000146865845, "TIME_S_1KI": 3.174593287504958, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 733.9809441184997, "W": 53.98, "J_1KI": 229.6561151810074, "W_1KI": 16.889862327909885, "W_D": 37.098749999999995, "J_D": 504.44193313479417, "W_D_1KI": 11.60786921151439, "J_D_1KI": 3.6319991275076315} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_040.output b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_040.output new file mode 100644 index 0000000..e94af54 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_040.output @@ -0,0 +1,59 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_040.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_040", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89658, "MATRIX_DENSITY": 9.105647807962247e-05, "TIME_S": 0.3285257816314697} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 10144, 882, 16085], + [ 2, 2, 2, ..., 31371, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=89658, layout=torch.sparse_coo) +tensor([0.9175, 0.8426, 0.2112, ..., 0.5889, 0.1735, 0.5712]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_040 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 89658 +Density: 9.105647807962247e-05 +Time: 0.3285257816314697 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '3196', '-m', 'matrices/as-caida_pruned/as-caida_G_040.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_040", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89658, "MATRIX_DENSITY": 9.105647807962247e-05, "TIME_S": 10.146000146865845} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 10144, 882, 16085], + [ 2, 2, 2, ..., 31371, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=89658, layout=torch.sparse_coo) +tensor([0.6162, 0.1071, 0.4372, ..., 0.0944, 0.1142, 0.7906]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_040 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 89658 +Density: 9.105647807962247e-05 +Time: 10.146000146865845 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 10144, 882, 16085], + [ 2, 2, 2, ..., 31371, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=89658, layout=torch.sparse_coo) +tensor([0.6162, 0.1071, 0.4372, ..., 0.0944, 0.1142, 0.7906]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_040 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 89658 +Density: 9.105647807962247e-05 +Time: 10.146000146865845 seconds + +[19.0, 18.52, 18.66, 18.39, 18.91, 18.86, 18.77, 19.42, 19.15, 18.49] +[53.98] +13.597275733947754 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 3196, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_040', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89658, 'MATRIX_DENSITY': 9.105647807962247e-05, 'TIME_S': 10.146000146865845, 'TIME_S_1KI': 3.174593287504958, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 733.9809441184997, 'W': 53.98} +[19.0, 18.52, 18.66, 18.39, 18.91, 18.86, 18.77, 19.42, 19.15, 18.49, 18.97, 18.54, 18.55, 18.5, 18.87, 18.44, 18.79, 18.67, 19.03, 18.65] +337.625 +16.88125 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 3196, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_040', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89658, 'MATRIX_DENSITY': 9.105647807962247e-05, 'TIME_S': 10.146000146865845, 'TIME_S_1KI': 3.174593287504958, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 733.9809441184997, 'W': 53.98, 'J_1KI': 229.6561151810074, 'W_1KI': 16.889862327909885, 'W_D': 37.098749999999995, 'J_D': 504.44193313479417, 'W_D_1KI': 11.60786921151439, 'J_D_1KI': 3.6319991275076315} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_050.json b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_050.json new file mode 100644 index 0000000..2a8c27d --- /dev/null +++ b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_050.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 3173, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 10.158684253692627, "TIME_S_1KI": 3.2016023490994727, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 734.5092616081238, "W": 54.0, "J_1KI": 231.4873185024027, "W_1KI": 17.018594390167035, "W_D": 36.646, "J_D": 498.4597481646538, "W_D_1KI": 11.549322407815946, "J_D_1KI": 3.639874695183091} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_050.output b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_050.output new file mode 100644 index 0000000..72165a4 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_050.output @@ -0,0 +1,59 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_050.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 0.33089375495910645} + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.4901, 0.1592, 0.3608, ..., 0.8125, 0.4975, 0.7928]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 0.33089375495910645 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '3173', '-m', 'matrices/as-caida_pruned/as-caida_G_050.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_050", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 90392, "MATRIX_DENSITY": 9.180192695100532e-05, "TIME_S": 10.158684253692627} + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.2775, 0.5186, 0.2995, ..., 0.9066, 0.1361, 0.6941]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 10.158684253692627 seconds + +tensor(indices=tensor([[ 5326, 106, 329, ..., 882, 2232, 16085], + [ 0, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=90392, layout=torch.sparse_coo) +tensor([0.2775, 0.5186, 0.2995, ..., 0.9066, 0.1361, 0.6941]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_050 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 90392 +Density: 9.180192695100532e-05 +Time: 10.158684253692627 seconds + +[19.25, 18.71, 18.78, 18.66, 18.91, 18.46, 18.66, 22.84, 18.92, 18.58] +[54.0] +13.602023363113403 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 3173, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_050', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 90392, 'MATRIX_DENSITY': 9.180192695100532e-05, 'TIME_S': 10.158684253692627, 'TIME_S_1KI': 3.2016023490994727, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 734.5092616081238, 'W': 54.0} +[19.25, 18.71, 18.78, 18.66, 18.91, 18.46, 18.66, 22.84, 18.92, 18.58, 19.05, 18.54, 18.72, 22.88, 19.3, 18.7, 19.49, 18.71, 18.93, 18.86] +347.08000000000004 +17.354000000000003 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 3173, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_050', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 90392, 'MATRIX_DENSITY': 9.180192695100532e-05, 'TIME_S': 10.158684253692627, 'TIME_S_1KI': 3.2016023490994727, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 734.5092616081238, 'W': 54.0, 'J_1KI': 231.4873185024027, 'W_1KI': 17.018594390167035, 'W_D': 36.646, 'J_D': 498.4597481646538, 'W_D_1KI': 11.549322407815946, 'J_D_1KI': 3.639874695183091} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_060.json b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_060.json new file mode 100644 index 0000000..3125bf9 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_060.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 3061, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_060", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 94180, "MATRIX_DENSITY": 9.564901186217454e-05, "TIME_S": 10.206637859344482, "TIME_S_1KI": 3.3344128909978705, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 737.6953972578049, "W": 53.98, "J_1KI": 240.99816963665626, "W_1KI": 17.634759882391375, "W_D": 37.14175, "J_D": 507.58240128010516, "W_D_1KI": 12.133861483175433, "J_D_1KI": 3.9640187792144506} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_060.output b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_060.output new file mode 100644 index 0000000..f90405d --- /dev/null +++ b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_060.output @@ -0,0 +1,59 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_060.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_060", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 94180, "MATRIX_DENSITY": 9.564901186217454e-05, "TIME_S": 0.34302210807800293} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 882], + [ 2, 2, 2, ..., 31355, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=94180, layout=torch.sparse_coo) +tensor([0.2781, 0.7230, 0.0586, ..., 0.3440, 0.9802, 0.1606]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_060 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 94180 +Density: 9.564901186217454e-05 +Time: 0.34302210807800293 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '3061', '-m', 'matrices/as-caida_pruned/as-caida_G_060.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_060", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 94180, "MATRIX_DENSITY": 9.564901186217454e-05, "TIME_S": 10.206637859344482} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 882], + [ 2, 2, 2, ..., 31355, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=94180, layout=torch.sparse_coo) +tensor([0.7827, 0.6593, 0.8669, ..., 0.2962, 0.3999, 0.9577]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_060 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 94180 +Density: 9.564901186217454e-05 +Time: 10.206637859344482 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 882], + [ 2, 2, 2, ..., 31355, 31360, 31373]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=94180, layout=torch.sparse_coo) +tensor([0.7827, 0.6593, 0.8669, ..., 0.2962, 0.3999, 0.9577]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_060 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 94180 +Density: 9.564901186217454e-05 +Time: 10.206637859344482 seconds + +[19.56, 18.45, 18.83, 18.6, 18.83, 19.02, 18.51, 18.64, 19.08, 18.45] +[53.98] +13.66608738899231 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 3061, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_060', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 94180, 'MATRIX_DENSITY': 9.564901186217454e-05, 'TIME_S': 10.206637859344482, 'TIME_S_1KI': 3.3344128909978705, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 737.6953972578049, 'W': 53.98} +[19.56, 18.45, 18.83, 18.6, 18.83, 19.02, 18.51, 18.64, 19.08, 18.45, 18.81, 18.39, 18.89, 18.6, 18.83, 18.39, 18.87, 18.54, 18.61, 18.55] +336.76499999999993 +16.838249999999995 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 3061, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_060', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 94180, 'MATRIX_DENSITY': 9.564901186217454e-05, 'TIME_S': 10.206637859344482, 'TIME_S_1KI': 3.3344128909978705, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 737.6953972578049, 'W': 53.98, 'J_1KI': 240.99816963665626, 'W_1KI': 17.634759882391375, 'W_D': 37.14175, 'J_D': 507.58240128010516, 'W_D_1KI': 12.133861483175433, 'J_D_1KI': 3.9640187792144506} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_070.json b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_070.json new file mode 100644 index 0000000..5229b46 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_070.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 3618, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_070", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 78684, "MATRIX_DENSITY": 7.991130653390679e-05, "TIME_S": 10.082251787185669, "TIME_S_1KI": 2.786692036259168, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 729.4078706383706, "W": 53.95, "J_1KI": 201.60527104432578, "W_1KI": 14.911553344389166, "W_D": 36.9335, "J_D": 499.3435697909594, "W_D_1KI": 10.208264234383638, "J_D_1KI": 2.821521347259159} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_070.output b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_070.output new file mode 100644 index 0000000..871f570 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_070.output @@ -0,0 +1,59 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_070.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_070", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 78684, "MATRIX_DENSITY": 7.991130653390679e-05, "TIME_S": 0.29018712043762207} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 16263, 2242, 2242], + [ 2, 2, 2, ..., 31240, 31283, 31284]]), + values=tensor([3., 3., 3., ..., 1., 3., 3.]), + size=(31379, 31379), nnz=78684, layout=torch.sparse_coo) +tensor([0.7659, 0.4365, 0.6327, ..., 0.3851, 0.4076, 0.3493]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_070 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 78684 +Density: 7.991130653390679e-05 +Time: 0.29018712043762207 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '3618', '-m', 'matrices/as-caida_pruned/as-caida_G_070.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_070", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 78684, "MATRIX_DENSITY": 7.991130653390679e-05, "TIME_S": 10.082251787185669} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 16263, 2242, 2242], + [ 2, 2, 2, ..., 31240, 31283, 31284]]), + values=tensor([3., 3., 3., ..., 1., 3., 3.]), + size=(31379, 31379), nnz=78684, layout=torch.sparse_coo) +tensor([0.5137, 0.6737, 0.3843, ..., 0.9499, 0.9690, 0.5940]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_070 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 78684 +Density: 7.991130653390679e-05 +Time: 10.082251787185669 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 16263, 2242, 2242], + [ 2, 2, 2, ..., 31240, 31283, 31284]]), + values=tensor([3., 3., 3., ..., 1., 3., 3.]), + size=(31379, 31379), nnz=78684, layout=torch.sparse_coo) +tensor([0.5137, 0.6737, 0.3843, ..., 0.9499, 0.9690, 0.5940]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_070 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 78684 +Density: 7.991130653390679e-05 +Time: 10.082251787185669 seconds + +[22.45, 19.75, 18.79, 19.02, 18.81, 18.73, 18.74, 18.48, 18.89, 18.56] +[53.95] +13.520071744918823 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 3618, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_070', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 78684, 'MATRIX_DENSITY': 7.991130653390679e-05, 'TIME_S': 10.082251787185669, 'TIME_S_1KI': 2.786692036259168, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 729.4078706383706, 'W': 53.95} +[22.45, 19.75, 18.79, 19.02, 18.81, 18.73, 18.74, 18.48, 18.89, 18.56, 19.85, 18.56, 19.01, 18.44, 18.87, 18.47, 18.54, 18.68, 18.85, 18.54] +340.33000000000004 +17.0165 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 3618, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_070', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 78684, 'MATRIX_DENSITY': 7.991130653390679e-05, 'TIME_S': 10.082251787185669, 'TIME_S_1KI': 2.786692036259168, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 729.4078706383706, 'W': 53.95, 'J_1KI': 201.60527104432578, 'W_1KI': 14.911553344389166, 'W_D': 36.9335, 'J_D': 499.3435697909594, 'W_D_1KI': 10.208264234383638, 'J_D_1KI': 2.821521347259159} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_080.json b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_080.json new file mode 100644 index 0000000..5143c4f --- /dev/null +++ b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_080.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 2921, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_080", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 98112, "MATRIX_DENSITY": 9.964234287345156e-05, "TIME_S": 10.14036750793457, "TIME_S_1KI": 3.4715397151436393, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 732.9535217666626, "W": 53.87, "J_1KI": 250.925546650689, "W_1KI": 18.4423142759329, "W_D": 36.6275, "J_D": 498.3526103305816, "W_D_1KI": 12.539370078740156, "J_D_1KI": 4.292834672625866} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_080.output b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_080.output new file mode 100644 index 0000000..b2ef0b6 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_080.output @@ -0,0 +1,59 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_080.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_080", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 98112, "MATRIX_DENSITY": 9.964234287345156e-05, "TIME_S": 0.35939598083496094} + +tensor(indices=tensor([[22754, 22754, 106, ..., 4133, 31329, 12170], + [ 0, 1, 2, ..., 31373, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 1., 1., 3.]), + size=(31379, 31379), nnz=98112, layout=torch.sparse_coo) +tensor([0.2656, 0.5462, 0.5504, ..., 0.6065, 0.9124, 0.1617]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_080 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 98112 +Density: 9.964234287345156e-05 +Time: 0.35939598083496094 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '2921', '-m', 'matrices/as-caida_pruned/as-caida_G_080.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_080", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 98112, "MATRIX_DENSITY": 9.964234287345156e-05, "TIME_S": 10.14036750793457} + +tensor(indices=tensor([[22754, 22754, 106, ..., 4133, 31329, 12170], + [ 0, 1, 2, ..., 31373, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 1., 1., 3.]), + size=(31379, 31379), nnz=98112, layout=torch.sparse_coo) +tensor([0.0773, 0.1226, 0.0216, ..., 0.7027, 0.7292, 0.0023]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_080 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 98112 +Density: 9.964234287345156e-05 +Time: 10.14036750793457 seconds + +tensor(indices=tensor([[22754, 22754, 106, ..., 4133, 31329, 12170], + [ 0, 1, 2, ..., 31373, 31373, 31378]]), + values=tensor([3., 3., 3., ..., 1., 1., 3.]), + size=(31379, 31379), nnz=98112, layout=torch.sparse_coo) +tensor([0.0773, 0.1226, 0.0216, ..., 0.7027, 0.7292, 0.0023]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_080 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 98112 +Density: 9.964234287345156e-05 +Time: 10.14036750793457 seconds + +[18.88, 18.48, 18.82, 21.78, 19.59, 18.79, 20.12, 18.68, 19.09, 18.75] +[53.87] +13.605968475341797 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2921, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_080', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 98112, 'MATRIX_DENSITY': 9.964234287345156e-05, 'TIME_S': 10.14036750793457, 'TIME_S_1KI': 3.4715397151436393, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 732.9535217666626, 'W': 53.87} +[18.88, 18.48, 18.82, 21.78, 19.59, 18.79, 20.12, 18.68, 19.09, 18.75, 23.32, 18.87, 18.54, 19.09, 18.55, 18.81, 18.68, 18.55, 18.59, 18.69] +344.84999999999997 +17.2425 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2921, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_080', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 98112, 'MATRIX_DENSITY': 9.964234287345156e-05, 'TIME_S': 10.14036750793457, 'TIME_S_1KI': 3.4715397151436393, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 732.9535217666626, 'W': 53.87, 'J_1KI': 250.925546650689, 'W_1KI': 18.4423142759329, 'W_D': 36.6275, 'J_D': 498.3526103305816, 'W_D_1KI': 12.539370078740156, 'J_D_1KI': 4.292834672625866} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_090.json b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_090.json new file mode 100644 index 0000000..c681870 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_090.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 2860, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_090", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 100924, "MATRIX_DENSITY": 0.00010249820421722343, "TIME_S": 10.217082023620605, "TIME_S_1KI": 3.572406301965247, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 735.0842245078087, "W": 53.83, "J_1KI": 257.02245612161147, "W_1KI": 18.82167832167832, "W_D": 36.512249999999995, "J_D": 498.5989035163521, "W_D_1KI": 12.766520979020978, "J_D_1KI": 4.463818524133209} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_090.output b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_090.output new file mode 100644 index 0000000..2fa8743 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_090.output @@ -0,0 +1,59 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_090.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_090", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 100924, "MATRIX_DENSITY": 0.00010249820421722343, "TIME_S": 0.36713242530822754} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 31211, 12170], + [ 2, 2, 2, ..., 31373, 31376, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=100924, layout=torch.sparse_coo) +tensor([0.5084, 0.4803, 0.6642, ..., 0.7048, 0.3875, 0.4898]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_090 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 100924 +Density: 0.00010249820421722343 +Time: 0.36713242530822754 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '2860', '-m', 'matrices/as-caida_pruned/as-caida_G_090.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_090", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 100924, "MATRIX_DENSITY": 0.00010249820421722343, "TIME_S": 10.217082023620605} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 31211, 12170], + [ 2, 2, 2, ..., 31373, 31376, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=100924, layout=torch.sparse_coo) +tensor([0.0892, 0.6894, 0.6770, ..., 0.4957, 0.6311, 0.9391]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_090 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 100924 +Density: 0.00010249820421722343 +Time: 10.217082023620605 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 31211, 12170], + [ 2, 2, 2, ..., 31373, 31376, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=100924, layout=torch.sparse_coo) +tensor([0.0892, 0.6894, 0.6770, ..., 0.4957, 0.6311, 0.9391]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_090 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 100924 +Density: 0.00010249820421722343 +Time: 10.217082023620605 seconds + +[18.97, 19.36, 18.8, 19.12, 18.66, 18.39, 18.52, 18.67, 22.15, 19.11] +[53.83] +13.65566086769104 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2860, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_090', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 100924, 'MATRIX_DENSITY': 0.00010249820421722343, 'TIME_S': 10.217082023620605, 'TIME_S_1KI': 3.572406301965247, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 735.0842245078087, 'W': 53.83} +[18.97, 19.36, 18.8, 19.12, 18.66, 18.39, 18.52, 18.67, 22.15, 19.11, 19.11, 18.55, 18.85, 18.72, 20.37, 21.37, 18.95, 19.11, 18.9, 18.54] +346.355 +17.31775 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2860, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_090', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 100924, 'MATRIX_DENSITY': 0.00010249820421722343, 'TIME_S': 10.217082023620605, 'TIME_S_1KI': 3.572406301965247, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 735.0842245078087, 'W': 53.83, 'J_1KI': 257.02245612161147, 'W_1KI': 18.82167832167832, 'W_D': 36.512249999999995, 'J_D': 498.5989035163521, 'W_D_1KI': 12.766520979020978, 'J_D_1KI': 4.463818524133209} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_100.json b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_100.json new file mode 100644 index 0000000..a39f480 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_100.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 2804, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_100", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102888, "MATRIX_DENSITY": 0.00010449283852702711, "TIME_S": 10.20534372329712, "TIME_S_1KI": 3.6395662351273605, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 735.9308099389076, "W": 54.35, "J_1KI": 262.45749284554483, "W_1KI": 19.383024251069898, "W_D": 37.32725, "J_D": 505.43281187289955, "W_D_1KI": 13.312143366619116, "J_D_1KI": 4.74755469565589} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_100.output b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_100.output new file mode 100644 index 0000000..593a45d --- /dev/null +++ b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_100.output @@ -0,0 +1,59 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_100.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_100", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102888, "MATRIX_DENSITY": 0.00010449283852702711, "TIME_S": 0.3744540214538574} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 25970, 5128, 12170], + [ 2, 2, 2, ..., 31373, 31377, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=102888, layout=torch.sparse_coo) +tensor([0.5274, 0.3477, 0.3539, ..., 0.2639, 0.5123, 0.8764]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_100 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 102888 +Density: 0.00010449283852702711 +Time: 0.3744540214538574 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '2804', '-m', 'matrices/as-caida_pruned/as-caida_G_100.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_100", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102888, "MATRIX_DENSITY": 0.00010449283852702711, "TIME_S": 10.20534372329712} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 25970, 5128, 12170], + [ 2, 2, 2, ..., 31373, 31377, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=102888, layout=torch.sparse_coo) +tensor([0.5455, 0.2895, 0.9964, ..., 0.6113, 0.2638, 0.9675]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_100 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 102888 +Density: 0.00010449283852702711 +Time: 10.20534372329712 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 25970, 5128, 12170], + [ 2, 2, 2, ..., 31373, 31377, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=102888, layout=torch.sparse_coo) +tensor([0.5455, 0.2895, 0.9964, ..., 0.6113, 0.2638, 0.9675]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_100 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 102888 +Density: 0.00010449283852702711 +Time: 10.20534372329712 seconds + +[19.1, 18.38, 18.59, 18.38, 18.7, 18.52, 18.82, 18.47, 18.76, 18.4] +[54.35] +13.540585279464722 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2804, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_100', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102888, 'MATRIX_DENSITY': 0.00010449283852702711, 'TIME_S': 10.20534372329712, 'TIME_S_1KI': 3.6395662351273605, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 735.9308099389076, 'W': 54.35} +[19.1, 18.38, 18.59, 18.38, 18.7, 18.52, 18.82, 18.47, 18.76, 18.4, 19.81, 18.69, 18.6, 18.87, 18.89, 18.54, 18.74, 18.74, 22.69, 18.84] +340.45500000000004 +17.022750000000002 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2804, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_100', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102888, 'MATRIX_DENSITY': 0.00010449283852702711, 'TIME_S': 10.20534372329712, 'TIME_S_1KI': 3.6395662351273605, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 735.9308099389076, 'W': 54.35, 'J_1KI': 262.45749284554483, 'W_1KI': 19.383024251069898, 'W_D': 37.32725, 'J_D': 505.43281187289955, 'W_D_1KI': 13.312143366619116, 'J_D_1KI': 4.74755469565589} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_110.json b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_110.json new file mode 100644 index 0000000..591e509 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_110.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 2749, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_110", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104846, "MATRIX_DENSITY": 0.0001064813792493263, "TIME_S": 10.189832925796509, "TIME_S_1KI": 3.7067416972704654, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 743.873167939186, "W": 54.22, "J_1KI": 270.5977329716937, "W_1KI": 19.72353583121135, "W_D": 37.3375, "J_D": 512.2531244546175, "W_D_1KI": 13.582211713350308, "J_D_1KI": 4.9407827258458745} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_110.output b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_110.output new file mode 100644 index 0000000..0b927e6 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_110.output @@ -0,0 +1,59 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_110.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_110", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104846, "MATRIX_DENSITY": 0.0001064813792493263, "TIME_S": 0.3818802833557129} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 2616, 12170], + [ 2, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=104846, layout=torch.sparse_coo) +tensor([0.2169, 0.4239, 0.1731, ..., 0.3502, 0.1909, 0.7270]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_110 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 104846 +Density: 0.0001064813792493263 +Time: 0.3818802833557129 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '2749', '-m', 'matrices/as-caida_pruned/as-caida_G_110.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_110", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104846, "MATRIX_DENSITY": 0.0001064813792493263, "TIME_S": 10.189832925796509} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 2616, 12170], + [ 2, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=104846, layout=torch.sparse_coo) +tensor([0.9336, 0.5763, 0.2787, ..., 0.9165, 0.5750, 0.3999]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_110 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 104846 +Density: 0.0001064813792493263 +Time: 10.189832925796509 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 882, 2616, 12170], + [ 2, 2, 2, ..., 31373, 31378, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=104846, layout=torch.sparse_coo) +tensor([0.9336, 0.5763, 0.2787, ..., 0.9165, 0.5750, 0.3999]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_110 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 104846 +Density: 0.0001064813792493263 +Time: 10.189832925796509 seconds + +[19.85, 18.66, 18.48, 18.7, 18.55, 18.66, 18.77, 18.58, 18.89, 18.88] +[54.22] +13.719534635543823 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2749, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_110', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104846, 'MATRIX_DENSITY': 0.0001064813792493263, 'TIME_S': 10.189832925796509, 'TIME_S_1KI': 3.7067416972704654, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 743.873167939186, 'W': 54.22} +[19.85, 18.66, 18.48, 18.7, 18.55, 18.66, 18.77, 18.58, 18.89, 18.88, 18.9, 18.47, 18.56, 18.94, 18.47, 19.71, 18.51, 18.79, 18.62, 18.95] +337.65 +16.8825 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2749, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_110', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104846, 'MATRIX_DENSITY': 0.0001064813792493263, 'TIME_S': 10.189832925796509, 'TIME_S_1KI': 3.7067416972704654, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 743.873167939186, 'W': 54.22, 'J_1KI': 270.5977329716937, 'W_1KI': 19.72353583121135, 'W_D': 37.3375, 'J_D': 512.2531244546175, 'W_D_1KI': 13.582211713350308, 'J_D_1KI': 4.9407827258458745} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_120.json b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_120.json new file mode 100644 index 0000000..01779a0 --- /dev/null +++ b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_120.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 2697, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_120", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106510, "MATRIX_DENSITY": 0.0001081713341839054, "TIME_S": 10.159295082092285, "TIME_S_1KI": 3.7668873126037394, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 733.4488546848297, "W": 53.9, "J_1KI": 271.949890502347, "W_1KI": 19.985168705969595, "W_D": 36.5805, "J_D": 497.7722788274288, "W_D_1KI": 13.563403781979977, "J_D_1KI": 5.0290707385910185} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_120.output b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_120.output new file mode 100644 index 0000000..c6b075b --- /dev/null +++ b/pytorch/output_as-caida_maxcore/xeon_4216_max_coo_10_10_10_as-caida_G_120.output @@ -0,0 +1,59 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_120.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_120", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106510, "MATRIX_DENSITY": 0.0001081713341839054, "TIME_S": 0.3892490863800049} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 12170], + [ 2, 2, 2, ..., 31355, 31360, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=106510, layout=torch.sparse_coo) +tensor([0.2262, 0.4017, 0.5915, ..., 0.3746, 0.6358, 0.6857]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_120 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 106510 +Density: 0.0001081713341839054 +Time: 0.3892490863800049 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '2697', '-m', 'matrices/as-caida_pruned/as-caida_G_120.mtx'] +{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_120", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106510, "MATRIX_DENSITY": 0.0001081713341839054, "TIME_S": 10.159295082092285} + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 12170], + [ 2, 2, 2, ..., 31355, 31360, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=106510, layout=torch.sparse_coo) +tensor([0.7548, 0.9101, 0.2656, ..., 0.2883, 0.5440, 0.6668]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_120 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 106510 +Density: 0.0001081713341839054 +Time: 10.159295082092285 seconds + +tensor(indices=tensor([[ 106, 329, 1040, ..., 155, 160, 12170], + [ 2, 2, 2, ..., 31355, 31360, 31378]]), + values=tensor([3., 3., 3., ..., 3., 3., 3.]), + size=(31379, 31379), nnz=106510, layout=torch.sparse_coo) +tensor([0.7548, 0.9101, 0.2656, ..., 0.2883, 0.5440, 0.6668]) +Matrix Type: SuiteSparse +Matrix: as-caida_G_120 +Matrix Format: coo +Shape: torch.Size([31379, 31379]) +Rows: 31379 +Size: 984641641 +NNZ: 106510 +Density: 0.0001081713341839054 +Time: 10.159295082092285 seconds + +[19.18, 18.7, 18.68, 18.47, 22.01, 19.37, 19.04, 19.17, 18.69, 18.79] +[53.9] +13.607585430145264 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2697, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_120', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106510, 'MATRIX_DENSITY': 0.0001081713341839054, 'TIME_S': 10.159295082092285, 'TIME_S_1KI': 3.7668873126037394, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 733.4488546848297, 'W': 53.9} +[19.18, 18.7, 18.68, 18.47, 22.01, 19.37, 19.04, 19.17, 18.69, 18.79, 19.33, 22.72, 18.91, 18.69, 19.14, 18.52, 18.89, 18.62, 18.91, 18.42] +346.39 +17.319499999999998 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2697, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_120', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106510, 'MATRIX_DENSITY': 0.0001081713341839054, 'TIME_S': 10.159295082092285, 'TIME_S_1KI': 3.7668873126037394, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 733.4488546848297, 'W': 53.9, 'J_1KI': 271.949890502347, 'W_1KI': 19.985168705969595, 'W_D': 36.5805, 'J_D': 497.7722788274288, 'W_D_1KI': 13.563403781979977, 'J_D_1KI': 5.0290707385910185} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_005.json b/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_005.json deleted file mode 100644 index cb8197c..0000000 --- a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_005.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 114732, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 10.352796077728271, "TIME_S_1KI": 0.09023459956880618, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1152.0286125135422, "W": 84.58, "J_1KI": 10.04104009791115, "W_1KI": 0.7371962486490254, "W_D": 67.46775, "J_D": 918.9498512876629, "W_D_1KI": 0.5880464909528291, "J_D_1KI": 0.005125392139532381} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_005.output b/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_005.output deleted file mode 100644 index 5c696d9..0000000 --- a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_005.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_005.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 0.022900104522705078} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.6590, 0.2806, 0.2495, ..., 0.2832, 0.5182, 0.5123]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 0.022900104522705078 seconds - -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '45851', '-m', 'matrices/as-caida_pruned/as-caida_G_005.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 4.196166276931763} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.0852, 0.1228, 0.9411, ..., 0.5747, 0.5628, 0.7446]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 4.196166276931763 seconds - -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '114732', '-m', 'matrices/as-caida_pruned/as-caida_G_005.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_005", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 70026, "MATRIX_DENSITY": 7.111825976492498e-05, "TIME_S": 10.352796077728271} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.5031, 0.9770, 0.1362, ..., 0.3615, 0.8578, 0.7650]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 10.352796077728271 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 63, 63, ..., 70025, 70025, 70026]), - col_indices=tensor([ 111, 761, 822, ..., 978, 978, 12170]), - values=tensor([4., 3., 3., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=70026, layout=torch.sparse_csr) -tensor([0.5031, 0.9770, 0.1362, ..., 0.3615, 0.8578, 0.7650]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_005 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 70026 -Density: 7.111825976492498e-05 -Time: 10.352796077728271 seconds - -[19.42, 18.64, 18.8, 18.86, 18.73, 18.71, 18.65, 18.39, 18.57, 18.62] -[84.58] -13.620579481124878 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 114732, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_005', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 70026, 'MATRIX_DENSITY': 7.111825976492498e-05, 'TIME_S': 10.352796077728271, 'TIME_S_1KI': 0.09023459956880618, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1152.0286125135422, 'W': 84.58} -[19.42, 18.64, 18.8, 18.86, 18.73, 18.71, 18.65, 18.39, 18.57, 18.62, 18.93, 18.74, 18.93, 19.06, 18.58, 18.76, 19.16, 18.8, 22.96, 18.84] -342.245 -17.11225 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 114732, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_005', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 70026, 'MATRIX_DENSITY': 7.111825976492498e-05, 'TIME_S': 10.352796077728271, 'TIME_S_1KI': 0.09023459956880618, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1152.0286125135422, 'W': 84.58, 'J_1KI': 10.04104009791115, 'W_1KI': 0.7371962486490254, 'W_D': 67.46775, 'J_D': 918.9498512876629, 'W_D_1KI': 0.5880464909528291, 'J_D_1KI': 0.005125392139532381} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_015.json b/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_015.json deleted file mode 100644 index 9a89d63..0000000 --- a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_015.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 107283, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 10.024356126785278, "TIME_S_1KI": 0.09343843970419617, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1167.401763653755, "W": 84.69, "J_1KI": 10.881516770166336, "W_1KI": 0.7894074550487962, "W_D": 67.7505, "J_D": 933.9007343065739, "W_D_1KI": 0.6315119823271163, "J_D_1KI": 0.0058864124076239135} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_015.output b/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_015.output deleted file mode 100644 index 8223898..0000000 --- a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_015.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_015.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 0.024006128311157227} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.9343, 0.0575, 0.7588, ..., 0.4632, 0.2744, 0.8237]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 0.024006128311157227 seconds - -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '43738', '-m', 'matrices/as-caida_pruned/as-caida_G_015.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 4.2806923389434814} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.8682, 0.4247, 0.3572, ..., 0.4764, 0.2418, 0.9826]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 4.2806923389434814 seconds - -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '107283', '-m', 'matrices/as-caida_pruned/as-caida_G_015.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_015", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 77124, "MATRIX_DENSITY": 7.832697378273889e-05, "TIME_S": 10.024356126785278} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.4742, 0.5931, 0.8061, ..., 0.3283, 0.2105, 0.2866]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 10.024356126785278 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 4, ..., 77124, 77124, 77124]), - col_indices=tensor([1040, 2054, 4842, ..., 160, 160, 8230]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=77124, layout=torch.sparse_csr) -tensor([0.4742, 0.5931, 0.8061, ..., 0.3283, 0.2105, 0.2866]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_015 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 77124 -Density: 7.832697378273889e-05 -Time: 10.024356126785278 seconds - -[19.22, 18.5, 18.53, 20.77, 19.04, 18.5, 18.59, 19.04, 18.95, 18.38] -[84.69] -13.784410953521729 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 107283, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_015', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 77124, 'MATRIX_DENSITY': 7.832697378273889e-05, 'TIME_S': 10.024356126785278, 'TIME_S_1KI': 0.09343843970419617, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1167.401763653755, 'W': 84.69} -[19.22, 18.5, 18.53, 20.77, 19.04, 18.5, 18.59, 19.04, 18.95, 18.38, 19.57, 18.55, 19.15, 18.4, 18.43, 18.65, 18.7, 18.52, 18.6, 18.57] -338.78999999999996 -16.9395 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 107283, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_015', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 77124, 'MATRIX_DENSITY': 7.832697378273889e-05, 'TIME_S': 10.024356126785278, 'TIME_S_1KI': 0.09343843970419617, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1167.401763653755, 'W': 84.69, 'J_1KI': 10.881516770166336, 'W_1KI': 0.7894074550487962, 'W_D': 67.7505, 'J_D': 933.9007343065739, 'W_D_1KI': 0.6315119823271163, 'J_D_1KI': 0.0058864124076239135} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_025.json b/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_025.json deleted file mode 100644 index ac04a12..0000000 --- a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_025.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 109001, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 10.287229776382446, "TIME_S_1KI": 0.09437738898159143, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1204.7143850159644, "W": 85.57, "J_1KI": 11.052324153135883, "W_1KI": 0.7850386693700058, "W_D": 68.3185, "J_D": 961.8356867209673, "W_D_1KI": 0.6267694791790901, "J_D_1KI": 0.005750125954615922} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_025.output b/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_025.output deleted file mode 100644 index c5dbd7f..0000000 --- a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_025.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_025.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 0.023378610610961914} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.2787, 0.0070, 0.8156, ..., 0.2081, 0.1934, 0.2181]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 0.023378610610961914 seconds - -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '44912', '-m', 'matrices/as-caida_pruned/as-caida_G_025.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 4.326327562332153} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.1269, 0.3329, 0.3331, ..., 0.2645, 0.1870, 0.6544]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 4.326327562332153 seconds - -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '109001', '-m', 'matrices/as-caida_pruned/as-caida_G_025.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_025", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 85850, "MATRIX_DENSITY": 8.718908121010495e-05, "TIME_S": 10.287229776382446} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.2367, 0.6225, 0.7020, ..., 0.6877, 0.6724, 0.8482]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 10.287229776382446 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 3, ..., 85845, 85847, 85850]), - col_indices=tensor([ 346, 13811, 21783, ..., 15310, 17998, 31377]), - values=tensor([1., 1., 1., ..., 1., 1., 3.]), size=(31379, 31379), - nnz=85850, layout=torch.sparse_csr) -tensor([0.2367, 0.6225, 0.7020, ..., 0.6877, 0.6724, 0.8482]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_025 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 85850 -Density: 8.718908121010495e-05 -Time: 10.287229776382446 seconds - -[19.11, 18.88, 18.79, 18.69, 18.99, 18.57, 22.71, 18.57, 18.78, 18.52] -[85.57] -14.078700304031372 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 109001, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_025', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 85850, 'MATRIX_DENSITY': 8.718908121010495e-05, 'TIME_S': 10.287229776382446, 'TIME_S_1KI': 0.09437738898159143, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1204.7143850159644, 'W': 85.57} -[19.11, 18.88, 18.79, 18.69, 18.99, 18.57, 22.71, 18.57, 18.78, 18.52, 19.61, 18.91, 22.51, 18.3, 18.93, 18.54, 18.82, 18.5, 18.7, 18.44] -345.03 -17.2515 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 109001, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_025', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 85850, 'MATRIX_DENSITY': 8.718908121010495e-05, 'TIME_S': 10.287229776382446, 'TIME_S_1KI': 0.09437738898159143, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1204.7143850159644, 'W': 85.57, 'J_1KI': 11.052324153135883, 'W_1KI': 0.7850386693700058, 'W_D': 68.3185, 'J_D': 961.8356867209673, 'W_D_1KI': 0.6267694791790901, 'J_D_1KI': 0.005750125954615922} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_035.json b/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_035.json deleted file mode 100644 index 5edced6..0000000 --- a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_035.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 103439, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 10.351110458374023, "TIME_S_1KI": 0.10006970734804109, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1118.8645426464082, "W": 85.18, "J_1KI": 10.81666047280434, "W_1KI": 0.8234805054186526, "W_D": 67.80525, "J_D": 890.64205248034, "W_D_1KI": 0.6555095273542861, "J_D_1KI": 0.006337160329801005} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_035.output b/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_035.output deleted file mode 100644 index 6408866..0000000 --- a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_035.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_035.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 0.02468276023864746} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.4003, 0.8236, 0.0269, ..., 0.2308, 0.8303, 0.1459]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 0.02468276023864746 seconds - -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '42539', '-m', 'matrices/as-caida_pruned/as-caida_G_035.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 4.318082571029663} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.2117, 0.5564, 0.7291, ..., 0.0848, 0.9734, 0.5692]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 4.318082571029663 seconds - -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '103439', '-m', 'matrices/as-caida_pruned/as-caida_G_035.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_035", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 87560, "MATRIX_DENSITY": 8.892575364888514e-05, "TIME_S": 10.351110458374023} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.7311, 0.5094, 0.4269, ..., 0.7263, 0.3700, 0.5742]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 10.351110458374023 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 2, ..., 87559, 87559, 87560]), - col_indices=tensor([ 1809, 21783, 106, ..., 10144, 882, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=87560, layout=torch.sparse_csr) -tensor([0.7311, 0.5094, 0.4269, ..., 0.7263, 0.3700, 0.5742]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_035 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 87560 -Density: 8.892575364888514e-05 -Time: 10.351110458374023 seconds - -[19.14, 18.98, 18.66, 18.56, 18.83, 18.87, 22.69, 18.77, 18.81, 18.9] -[85.18] -13.13529634475708 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 103439, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_035', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 87560, 'MATRIX_DENSITY': 8.892575364888514e-05, 'TIME_S': 10.351110458374023, 'TIME_S_1KI': 0.10006970734804109, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1118.8645426464082, 'W': 85.18} -[19.14, 18.98, 18.66, 18.56, 18.83, 18.87, 22.69, 18.77, 18.81, 18.9, 19.57, 18.61, 18.66, 22.69, 19.25, 19.17, 18.61, 18.71, 19.31, 19.02] -347.49499999999995 -17.37475 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 103439, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_035', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 87560, 'MATRIX_DENSITY': 8.892575364888514e-05, 'TIME_S': 10.351110458374023, 'TIME_S_1KI': 0.10006970734804109, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1118.8645426464082, 'W': 85.18, 'J_1KI': 10.81666047280434, 'W_1KI': 0.8234805054186526, 'W_D': 67.80525, 'J_D': 890.64205248034, 'W_D_1KI': 0.6555095273542861, 'J_D_1KI': 0.006337160329801005} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_045.json b/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_045.json deleted file mode 100644 index cee2dd2..0000000 --- a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_045.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 104342, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 10.794602870941162, "TIME_S_1KI": 0.10345405369785093, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1213.257156124115, "W": 85.72, "J_1KI": 11.627696959269661, "W_1KI": 0.8215292020471142, "W_D": 68.65825, "J_D": 971.7698686357736, "W_D_1KI": 0.6580116348162772, "J_D_1KI": 0.006306296935234874} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_045.output b/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_045.output deleted file mode 100644 index 8f96d81..0000000 --- a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_045.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_045.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 0.024647951126098633} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.2181, 0.0875, 0.6140, ..., 0.7443, 0.8424, 0.1920]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 0.024647951126098633 seconds - -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '42599', '-m', 'matrices/as-caida_pruned/as-caida_G_045.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 4.286748647689819} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.9399, 0.2522, 0.4169, ..., 0.3599, 0.7670, 0.0171]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 4.286748647689819 seconds - -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '104342', '-m', 'matrices/as-caida_pruned/as-caida_G_045.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_045", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 89152, "MATRIX_DENSITY": 9.054258553341032e-05, "TIME_S": 10.794602870941162} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.4314, 0.9415, 0.5407, ..., 0.5093, 0.0658, 0.7203]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 10.794602870941162 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 89150, 89150, 89152]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 2232, 16085]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=89152, layout=torch.sparse_csr) -tensor([0.4314, 0.9415, 0.5407, ..., 0.5093, 0.0658, 0.7203]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_045 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 89152 -Density: 9.054258553341032e-05 -Time: 10.794602870941162 seconds - -[19.11, 18.76, 19.16, 18.8, 18.66, 18.43, 18.88, 18.35, 18.59, 18.42] -[85.72] -14.153723239898682 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 104342, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_045', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89152, 'MATRIX_DENSITY': 9.054258553341032e-05, 'TIME_S': 10.794602870941162, 'TIME_S_1KI': 0.10345405369785093, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1213.257156124115, 'W': 85.72} -[19.11, 18.76, 19.16, 18.8, 18.66, 18.43, 18.88, 18.35, 18.59, 18.42, 19.33, 19.07, 18.75, 18.46, 18.8, 18.47, 18.71, 22.15, 19.49, 18.55] -341.235 -17.06175 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 104342, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_045', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 89152, 'MATRIX_DENSITY': 9.054258553341032e-05, 'TIME_S': 10.794602870941162, 'TIME_S_1KI': 0.10345405369785093, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1213.257156124115, 'W': 85.72, 'J_1KI': 11.627696959269661, 'W_1KI': 0.8215292020471142, 'W_D': 68.65825, 'J_D': 971.7698686357736, 'W_D_1KI': 0.6580116348162772, 'J_D_1KI': 0.006306296935234874} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_055.json b/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_055.json deleted file mode 100644 index 16ff754..0000000 --- a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_055.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 108819, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 10.897866487503052, "TIME_S_1KI": 0.10014672518129235, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1284.6524841690064, "W": 86.48, "J_1KI": 11.805406079535802, "W_1KI": 0.7947141583730782, "W_D": 69.0845, "J_D": 1026.2439239428045, "W_D_1KI": 0.6348569643168932, "J_D_1KI": 0.005834063576368954} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_055.output b/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_055.output deleted file mode 100644 index 1351c73..0000000 --- a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_055.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_055.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 0.023081541061401367} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.2528, 0.0970, 0.7933, ..., 0.5516, 0.4644, 0.6686]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 0.023081541061401367 seconds - -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '45490', '-m', 'matrices/as-caida_pruned/as-caida_G_055.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 4.389326810836792} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.3779, 0.3653, 0.4471, ..., 0.3867, 0.0629, 0.2299]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 4.389326810836792 seconds - -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '108819', '-m', 'matrices/as-caida_pruned/as-caida_G_055.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_055", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 91476, "MATRIX_DENSITY": 9.290283509348351e-05, "TIME_S": 10.897866487503052} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.8117, 0.8203, 0.5161, ..., 0.5522, 0.8518, 0.2789]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 10.897866487503052 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 91475, 91475, 91476]), - col_indices=tensor([21783, 106, 329, ..., 160, 882, 17255]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=91476, layout=torch.sparse_csr) -tensor([0.8117, 0.8203, 0.5161, ..., 0.5522, 0.8518, 0.2789]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_055 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 91476 -Density: 9.290283509348351e-05 -Time: 10.897866487503052 seconds - -[19.82, 19.58, 22.76, 18.73, 18.98, 18.92, 19.19, 18.75, 18.85, 18.86] -[86.48] -14.854908466339111 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 108819, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_055', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 91476, 'MATRIX_DENSITY': 9.290283509348351e-05, 'TIME_S': 10.897866487503052, 'TIME_S_1KI': 0.10014672518129235, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1284.6524841690064, 'W': 86.48} -[19.82, 19.58, 22.76, 18.73, 18.98, 18.92, 19.19, 18.75, 18.85, 18.86, 19.16, 18.57, 19.11, 18.51, 18.92, 18.66, 20.05, 18.75, 19.25, 22.82] -347.91 -17.395500000000002 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 108819, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_055', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 91476, 'MATRIX_DENSITY': 9.290283509348351e-05, 'TIME_S': 10.897866487503052, 'TIME_S_1KI': 0.10014672518129235, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1284.6524841690064, 'W': 86.48, 'J_1KI': 11.805406079535802, 'W_1KI': 0.7947141583730782, 'W_D': 69.0845, 'J_D': 1026.2439239428045, 'W_D_1KI': 0.6348569643168932, 'J_D_1KI': 0.005834063576368954} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_065.json b/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_065.json deleted file mode 100644 index 322da9f..0000000 --- a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_065.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 101100, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 10.192413091659546, "TIME_S_1KI": 0.10081516411137038, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1177.807462463379, "W": 86.32, "J_1KI": 11.649925444741632, "W_1KI": 0.8538081107814045, "W_D": 56.87149999999999, "J_D": 775.9925521488188, "W_D_1KI": 0.5625272007912957, "J_D_1KI": 0.005564067267965339} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_065.output b/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_065.output deleted file mode 100644 index 1d544ec..0000000 --- a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_065.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_065.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 0.023540258407592773} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.6962, 0.9656, 0.9232, ..., 0.4983, 0.2135, 0.8824]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 0.023540258407592773 seconds - -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '44604', '-m', 'matrices/as-caida_pruned/as-caida_G_065.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 4.632462501525879} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.2472, 0.8203, 0.9803, ..., 0.4259, 0.4111, 0.8965]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 4.632462501525879 seconds - -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '101100', '-m', 'matrices/as-caida_pruned/as-caida_G_065.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_065", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 95068, "MATRIX_DENSITY": 9.655086281283934e-05, "TIME_S": 10.192413091659546} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.2591, 0.4101, 0.9221, ..., 0.4342, 0.1148, 0.3704]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 10.192413091659546 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 95068, 95068, 95068]), - col_indices=tensor([ 106, 329, 1040, ..., 155, 160, 882]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=95068, layout=torch.sparse_csr) -tensor([0.2591, 0.4101, 0.9221, ..., 0.4342, 0.1148, 0.3704]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_065 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 95068 -Density: 9.655086281283934e-05 -Time: 10.192413091659546 seconds - -[43.11, 45.01, 42.05, 51.61, 51.92, 51.75, 47.55, 42.25, 42.99, 42.64] -[86.32] -13.644664764404297 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 101100, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_065', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 95068, 'MATRIX_DENSITY': 9.655086281283934e-05, 'TIME_S': 10.192413091659546, 'TIME_S_1KI': 0.10081516411137038, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1177.807462463379, 'W': 86.32} -[43.11, 45.01, 42.05, 51.61, 51.92, 51.75, 47.55, 42.25, 42.99, 42.64, 19.89, 18.77, 19.55, 18.49, 19.73, 18.5, 18.75, 18.62, 19.33, 18.56] -588.97 -29.448500000000003 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 101100, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_065', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 95068, 'MATRIX_DENSITY': 9.655086281283934e-05, 'TIME_S': 10.192413091659546, 'TIME_S_1KI': 0.10081516411137038, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1177.807462463379, 'W': 86.32, 'J_1KI': 11.649925444741632, 'W_1KI': 0.8538081107814045, 'W_D': 56.87149999999999, 'J_D': 775.9925521488188, 'W_D_1KI': 0.5625272007912957, 'J_D_1KI': 0.005564067267965339} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_075.json b/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_075.json deleted file mode 100644 index 139ccda..0000000 --- a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_075.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 105268, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 10.531576871871948, "TIME_S_1KI": 0.10004537819538652, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1219.4668582105637, "W": 86.09, "J_1KI": 11.584402270495913, "W_1KI": 0.8178173804005017, "W_D": 69.07325, "J_D": 978.4241975129843, "W_D_1KI": 0.6561656913781967, "J_D_1KI": 0.006233287336875372} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_075.output b/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_075.output deleted file mode 100644 index ad13e41..0000000 --- a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_075.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_075.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 0.024872303009033203} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.9027, 0.7284, 0.4730, ..., 0.3675, 0.6758, 0.7746]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 0.024872303009033203 seconds - -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '42215', '-m', 'matrices/as-caida_pruned/as-caida_G_075.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 4.210744380950928} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.9390, 0.3678, 0.4837, ..., 0.7294, 0.6703, 0.0534]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 4.210744380950928 seconds - -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '105268', '-m', 'matrices/as-caida_pruned/as-caida_G_075.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_075", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 97492, "MATRIX_DENSITY": 9.901267216465406e-05, "TIME_S": 10.531576871871948} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.7677, 0.2796, 0.1915, ..., 0.1541, 0.8730, 0.0067]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 10.531576871871948 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 97491, 97491, 97492]), - col_indices=tensor([22754, 22754, 106, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=97492, layout=torch.sparse_csr) -tensor([0.7677, 0.2796, 0.1915, ..., 0.1541, 0.8730, 0.0067]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_075 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 97492 -Density: 9.901267216465406e-05 -Time: 10.531576871871948 seconds - -[19.05, 18.57, 18.7, 18.82, 18.8, 18.65, 18.86, 19.11, 18.93, 18.94] -[86.09] -14.16502332687378 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 105268, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_075', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 97492, 'MATRIX_DENSITY': 9.901267216465406e-05, 'TIME_S': 10.531576871871948, 'TIME_S_1KI': 0.10004537819538652, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1219.4668582105637, 'W': 86.09} -[19.05, 18.57, 18.7, 18.82, 18.8, 18.65, 18.86, 19.11, 18.93, 18.94, 18.9, 18.76, 19.26, 19.08, 19.08, 19.0, 18.81, 19.15, 18.76, 19.1] -340.33500000000004 -17.016750000000002 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 105268, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_075', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 97492, 'MATRIX_DENSITY': 9.901267216465406e-05, 'TIME_S': 10.531576871871948, 'TIME_S_1KI': 0.10004537819538652, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1219.4668582105637, 'W': 86.09, 'J_1KI': 11.584402270495913, 'W_1KI': 0.8178173804005017, 'W_D': 69.07325, 'J_D': 978.4241975129843, 'W_D_1KI': 0.6561656913781967, 'J_D_1KI': 0.006233287336875372} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_085.json b/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_085.json deleted file mode 100644 index d8ea646..0000000 --- a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_085.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 110476, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 10.772056579589844, "TIME_S_1KI": 0.0975058526701713, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1209.966497516632, "W": 86.6, "J_1KI": 10.952301834938194, "W_1KI": 0.7838806618632101, "W_D": 69.526, "J_D": 971.4102852926254, "W_D_1KI": 0.6293312574676853, "J_D_1KI": 0.005696542755600178} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_085.output b/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_085.output deleted file mode 100644 index 1ebf518..0000000 --- a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_085.output +++ /dev/null @@ -1,85 +0,0 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_085.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 0.02397441864013672} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.7886, 0.1701, 0.5772, ..., 0.5950, 0.8361, 0.6037]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 0.02397441864013672 seconds - -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '43796', '-m', 'matrices/as-caida_pruned/as-caida_G_085.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 4.1625049114227295} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.6182, 0.4960, 0.6196, ..., 0.3101, 0.0930, 0.9002]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 4.1625049114227295 seconds - -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '110476', '-m', 'matrices/as-caida_pruned/as-caida_G_085.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_085", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 99166, "MATRIX_DENSITY": 0.0001007127830784073, "TIME_S": 10.772056579589844} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.8448, 0.2084, 0.2325, ..., 0.3995, 0.9349, 0.2762]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 10.772056579589844 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99165, 99165, 99166]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 31211, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=99166, layout=torch.sparse_csr) -tensor([0.8448, 0.2084, 0.2325, ..., 0.3995, 0.9349, 0.2762]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_085 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 99166 -Density: 0.0001007127830784073 -Time: 10.772056579589844 seconds - -[22.78, 18.74, 18.96, 19.11, 18.72, 18.74, 18.69, 19.0, 18.58, 18.61] -[86.6] -13.971899509429932 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 110476, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_085', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 99166, 'MATRIX_DENSITY': 0.0001007127830784073, 'TIME_S': 10.772056579589844, 'TIME_S_1KI': 0.0975058526701713, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1209.966497516632, 'W': 86.6} -[22.78, 18.74, 18.96, 19.11, 18.72, 18.74, 18.69, 19.0, 18.58, 18.61, 19.3, 19.21, 18.84, 18.59, 18.51, 19.52, 19.13, 18.42, 18.76, 19.23] -341.48 -17.074 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 110476, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_085', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 99166, 'MATRIX_DENSITY': 0.0001007127830784073, 'TIME_S': 10.772056579589844, 'TIME_S_1KI': 0.0975058526701713, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1209.966497516632, 'W': 86.6, 'J_1KI': 10.952301834938194, 'W_1KI': 0.7838806618632101, 'W_D': 69.526, 'J_D': 971.4102852926254, 'W_D_1KI': 0.6293312574676853, 'J_D_1KI': 0.005696542755600178} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_095.json b/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_095.json deleted file mode 100644 index fbaff5d..0000000 --- a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_095.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 107497, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 10.770461082458496, "TIME_S_1KI": 0.10019313173817405, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1238.6108507156373, "W": 86.48, "J_1KI": 11.522282954088368, "W_1KI": 0.8044875670948957, "W_D": 69.43700000000001, "J_D": 994.5122761464121, "W_D_1KI": 0.6459436077285879, "J_D_1KI": 0.006008945437813036} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_095.output b/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_095.output deleted file mode 100644 index 7ff6446..0000000 --- a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_095.output +++ /dev/null @@ -1,89 +0,0 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_095.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 0.0250704288482666} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.4833, 0.8951, 0.5308, ..., 0.3731, 0.7013, 0.1331]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 0.0250704288482666 seconds - -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '41882', '-m', 'matrices/as-caida_pruned/as-caida_G_095.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 4.090898036956787} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.0579, 0.7468, 0.4378, ..., 0.4871, 0.7748, 0.6891]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 4.090898036956787 seconds - -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '107497', '-m', 'matrices/as-caida_pruned/as-caida_G_095.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_095", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 102290, "MATRIX_DENSITY": 0.00010388551097241275, "TIME_S": 10.770461082458496} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.2379, 0.0163, 0.9504, ..., 0.9694, 0.0397, 0.3577]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 10.770461082458496 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 102289, 102289, - 102290]), - col_indices=tensor([ 106, 329, 1040, ..., 882, 25970, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=102290, layout=torch.sparse_csr) -tensor([0.2379, 0.0163, 0.9504, ..., 0.9694, 0.0397, 0.3577]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_095 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 102290 -Density: 0.00010388551097241275 -Time: 10.770461082458496 seconds - -[18.93, 21.33, 19.05, 18.6, 18.75, 19.05, 18.88, 18.52, 18.7, 18.69] -[86.48] -14.322512149810791 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 107497, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_095', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102290, 'MATRIX_DENSITY': 0.00010388551097241275, 'TIME_S': 10.770461082458496, 'TIME_S_1KI': 0.10019313173817405, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1238.6108507156373, 'W': 86.48} -[18.93, 21.33, 19.05, 18.6, 18.75, 19.05, 18.88, 18.52, 18.7, 18.69, 19.38, 18.53, 19.04, 18.57, 19.18, 18.64, 18.84, 18.71, 18.71, 18.52] -340.86 -17.043 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 107497, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_095', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 102290, 'MATRIX_DENSITY': 0.00010388551097241275, 'TIME_S': 10.770461082458496, 'TIME_S_1KI': 0.10019313173817405, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1238.6108507156373, 'W': 86.48, 'J_1KI': 11.522282954088368, 'W_1KI': 0.8044875670948957, 'W_D': 69.43700000000001, 'J_D': 994.5122761464121, 'W_D_1KI': 0.6459436077285879, 'J_D_1KI': 0.006008945437813036} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_105.json b/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_105.json deleted file mode 100644 index 6f2de89..0000000 --- a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_105.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 103831, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 10.351726531982422, "TIME_S_1KI": 0.09969784102996622, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1209.3511731219292, "W": 86.07, "J_1KI": 11.647303532874856, "W_1KI": 0.8289431865242557, "W_D": 69.082, "J_D": 970.6564161915778, "W_D_1KI": 0.6653311631401025, "J_D_1KI": 0.0064078277502875106} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_105.output b/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_105.output deleted file mode 100644 index bcbcdde..0000000 --- a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_105.output +++ /dev/null @@ -1,89 +0,0 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_105.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 0.023554086685180664} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.2517, 0.3763, 0.9196, ..., 0.6094, 0.1457, 0.6521]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 0.023554086685180664 seconds - -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '44578', '-m', 'matrices/as-caida_pruned/as-caida_G_105.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 4.50795316696167} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.4299, 0.9586, 0.9105, ..., 0.3781, 0.8739, 0.8459]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 4.50795316696167 seconds - -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '103831', '-m', 'matrices/as-caida_pruned/as-caida_G_105.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_105", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 104726, "MATRIX_DENSITY": 0.00010635950749923647, "TIME_S": 10.351726531982422} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.8719, 0.2400, 0.7607, ..., 0.7182, 0.0947, 0.1009]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 10.351726531982422 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 104725, 104725, - 104726]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=104726, layout=torch.sparse_csr) -tensor([0.8719, 0.2400, 0.7607, ..., 0.7182, 0.0947, 0.1009]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_105 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 104726 -Density: 0.00010635950749923647 -Time: 10.351726531982422 seconds - -[19.38, 18.67, 18.72, 18.67, 19.24, 18.61, 18.54, 18.91, 19.05, 18.66] -[86.07] -14.050786256790161 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 103831, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_105', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104726, 'MATRIX_DENSITY': 0.00010635950749923647, 'TIME_S': 10.351726531982422, 'TIME_S_1KI': 0.09969784102996622, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1209.3511731219292, 'W': 86.07} -[19.38, 18.67, 18.72, 18.67, 19.24, 18.61, 18.54, 18.91, 19.05, 18.66, 19.08, 18.59, 19.94, 18.67, 18.85, 18.81, 19.2, 18.59, 18.8, 18.68] -339.76 -16.988 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 103831, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_105', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 104726, 'MATRIX_DENSITY': 0.00010635950749923647, 'TIME_S': 10.351726531982422, 'TIME_S_1KI': 0.09969784102996622, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1209.3511731219292, 'W': 86.07, 'J_1KI': 11.647303532874856, 'W_1KI': 0.8289431865242557, 'W_D': 69.082, 'J_D': 970.6564161915778, 'W_D_1KI': 0.6653311631401025, 'J_D_1KI': 0.0064078277502875106} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_115.json b/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_115.json deleted file mode 100644 index b47cb22..0000000 --- a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_115.json +++ /dev/null @@ -1 +0,0 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 104289, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 10.945078134536743, "TIME_S_1KI": 0.10494949740180406, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1223.009027416706, "W": 86.63, "J_1KI": 11.727114340119341, "W_1KI": 0.8306724582650136, "W_D": 69.74199999999999, "J_D": 984.5907375054358, "W_D_1KI": 0.6687378342874127, "J_D_1KI": 0.006412352542333446} diff --git a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_115.output b/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_115.output deleted file mode 100644 index 312abf7..0000000 --- a/pytorch/output_as-caida_maxcore/xeon_4216_max_csr_10_10_10_as-caida_G_115.output +++ /dev/null @@ -1,89 +0,0 @@ -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '100', '-m', 'matrices/as-caida_pruned/as-caida_G_115.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 0.024857282638549805} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.9051, 0.6149, 0.4220, ..., 0.0889, 0.4273, 0.7147]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 0.024857282638549805 seconds - -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '42241', '-m', 'matrices/as-caida_pruned/as-caida_G_115.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 4.252889633178711} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.2480, 0.5973, 0.7725, ..., 0.3227, 0.0475, 0.0987]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 4.252889633178711 seconds - -['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'csr', '104289', '-m', 'matrices/as-caida_pruned/as-caida_G_115.mtx'] -{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "as-caida_G_115", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [31379, 31379], "MATRIX_ROWS": 31379, "MATRIX_SIZE": 984641641, "MATRIX_NNZ": 106312, "MATRIX_DENSITY": 0.00010797024579625715, "TIME_S": 10.945078134536743} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.4120, 0.5717, 0.6301, ..., 0.0346, 0.1378, 0.3165]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 10.945078134536743 seconds - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 106311, 106311, - 106312]), - col_indices=tensor([ 106, 329, 1040, ..., 160, 882, 12170]), - values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(31379, 31379), - nnz=106312, layout=torch.sparse_csr) -tensor([0.4120, 0.5717, 0.6301, ..., 0.0346, 0.1378, 0.3165]) -Matrix Type: SuiteSparse -Matrix: as-caida_G_115 -Matrix Format: csr -Shape: torch.Size([31379, 31379]) -Rows: 31379 -Size: 984641641 -NNZ: 106312 -Density: 0.00010797024579625715 -Time: 10.945078134536743 seconds - -[19.1, 18.45, 19.14, 18.48, 19.1, 19.01, 18.81, 18.56, 18.71, 18.72] -[86.63] -14.117615461349487 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 104289, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_115', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106312, 'MATRIX_DENSITY': 0.00010797024579625715, 'TIME_S': 10.945078134536743, 'TIME_S_1KI': 0.10494949740180406, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1223.009027416706, 'W': 86.63} -[19.1, 18.45, 19.14, 18.48, 19.1, 19.01, 18.81, 18.56, 18.71, 18.72, 20.23, 18.52, 18.94, 18.59, 18.76, 18.47, 18.57, 18.57, 18.84, 18.43] -337.76 -16.887999999999998 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 104289, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'as-caida_G_115', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [31379, 31379], 'MATRIX_ROWS': 31379, 'MATRIX_SIZE': 984641641, 'MATRIX_NNZ': 106312, 'MATRIX_DENSITY': 0.00010797024579625715, 'TIME_S': 10.945078134536743, 'TIME_S_1KI': 0.10494949740180406, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1223.009027416706, 'W': 86.63, 'J_1KI': 11.727114340119341, 'W_1KI': 0.8306724582650136, 'W_D': 69.74199999999999, 'J_D': 984.5907375054358, 'W_D_1KI': 0.6687378342874127, 'J_D_1KI': 0.006412352542333446}