From a9a2b170fc13d87b903c64369f0735f96c887489 Mon Sep 17 00:00:00 2001 From: cephi Date: Tue, 17 Dec 2024 17:15:38 -0500 Subject: [PATCH] datarm ../pytorch-xeon_4216.Containerfile ! --- ..._csr_10_10_10_synthetic_100000_0.0001.json | 2 +- ...sr_10_10_10_synthetic_100000_0.0001.output | 58 +- ...6_csr_10_10_10_synthetic_100000_0.001.json | 2 +- ...csr_10_10_10_synthetic_100000_0.001.output | 64 +- ...6_csr_10_10_10_synthetic_100000_1e-05.json | 2 +- ...csr_10_10_10_synthetic_100000_1e-05.output | 98 +- ...6_csr_10_10_10_synthetic_100000_5e-05.json | 2 +- ...csr_10_10_10_synthetic_100000_5e-05.output | 74 +- ...6_csr_10_10_10_synthetic_10000_0.0001.json | 2 +- ...csr_10_10_10_synthetic_10000_0.0001.output | 68 +- ...16_csr_10_10_10_synthetic_10000_0.001.json | 2 +- ..._csr_10_10_10_synthetic_10000_0.001.output | 74 +- ..._16_csr_10_10_10_synthetic_10000_0.01.json | 2 +- ...6_csr_10_10_10_synthetic_10000_0.01.output | 64 +- ..._16_csr_10_10_10_synthetic_10000_0.05.json | 2 +- ...6_csr_10_10_10_synthetic_10000_0.05.output | 44 +- ...a_16_csr_10_10_10_synthetic_10000_0.1.json | 2 +- ...16_csr_10_10_10_synthetic_10000_0.1.output | 44 +- ...a_16_csr_10_10_10_synthetic_10000_0.2.json | 2 +- ...16_csr_10_10_10_synthetic_10000_0.2.output | 44 +- ...a_16_csr_10_10_10_synthetic_10000_0.3.json | 2 +- ...16_csr_10_10_10_synthetic_10000_0.3.output | 44 +- ...16_csr_10_10_10_synthetic_10000_1e-05.json | 2 +- ..._csr_10_10_10_synthetic_10000_1e-05.output | 2538 +++++++-------- ...16_csr_10_10_10_synthetic_10000_5e-05.json | 2 +- ..._csr_10_10_10_synthetic_10000_5e-05.output | 64 +- ..._csr_10_10_10_synthetic_500000_0.0001.json | 2 +- ...sr_10_10_10_synthetic_500000_0.0001.output | 69 +- ...6_csr_10_10_10_synthetic_500000_1e-05.json | 2 +- ...csr_10_10_10_synthetic_500000_1e-05.output | 66 +- ...6_csr_10_10_10_synthetic_500000_5e-05.json | 2 +- ...csr_10_10_10_synthetic_500000_5e-05.output | 67 +- ...6_csr_10_10_10_synthetic_50000_0.0001.json | 2 +- ...csr_10_10_10_synthetic_50000_0.0001.output | 74 +- ...16_csr_10_10_10_synthetic_50000_0.001.json | 2 +- ..._csr_10_10_10_synthetic_50000_0.001.output | 84 +- ..._16_csr_10_10_10_synthetic_50000_0.01.json | 2 +- ...6_csr_10_10_10_synthetic_50000_0.01.output | 44 +- ...16_csr_10_10_10_synthetic_50000_1e-05.json | 2 +- ..._csr_10_10_10_synthetic_50000_1e-05.output | 68 +- ...16_csr_10_10_10_synthetic_50000_5e-05.json | 2 +- ..._csr_10_10_10_synthetic_50000_5e-05.output | 74 +- ...16_csr_10_10_10_synthetic_5000_0.0001.json | 2 +- ..._csr_10_10_10_synthetic_5000_0.0001.output | 93 +- ..._16_csr_10_10_10_synthetic_5000_0.001.json | 2 +- ...6_csr_10_10_10_synthetic_5000_0.001.output | 68 +- ...a_16_csr_10_10_10_synthetic_5000_0.01.json | 2 +- ...16_csr_10_10_10_synthetic_5000_0.01.output | 74 +- ...a_16_csr_10_10_10_synthetic_5000_0.05.json | 2 +- ...16_csr_10_10_10_synthetic_5000_0.05.output | 64 +- ...ra_16_csr_10_10_10_synthetic_5000_0.1.json | 2 +- ..._16_csr_10_10_10_synthetic_5000_0.1.output | 64 +- ...ra_16_csr_10_10_10_synthetic_5000_0.2.json | 2 +- ..._16_csr_10_10_10_synthetic_5000_0.2.output | 44 +- ...ra_16_csr_10_10_10_synthetic_5000_0.3.json | 2 +- ..._16_csr_10_10_10_synthetic_5000_0.3.output | 44 +- ...ra_16_csr_10_10_10_synthetic_5000_0.4.json | 1 + ..._16_csr_10_10_10_synthetic_5000_0.4.output | 45 + ...ra_16_csr_10_10_10_synthetic_5000_0.5.json | 1 + ..._16_csr_10_10_10_synthetic_5000_0.5.output | 45 + ..._16_csr_10_10_10_synthetic_5000_1e-05.json | 2 +- ...6_csr_10_10_10_synthetic_5000_1e-05.output | 664 ++-- ..._16_csr_10_10_10_synthetic_5000_5e-05.json | 2 +- ...6_csr_10_10_10_synthetic_5000_5e-05.output | 68 +- ..._csr_10_10_10_synthetic_100000_0.0001.json | 2 +- ...sr_10_10_10_synthetic_100000_0.0001.output | 120 +- ...6_csr_10_10_10_synthetic_100000_0.001.json | 2 +- ...csr_10_10_10_synthetic_100000_0.001.output | 80 +- ...6_csr_10_10_10_synthetic_100000_1e-05.json | 2 +- ...csr_10_10_10_synthetic_100000_1e-05.output | 68 +- ...6_csr_10_10_10_synthetic_100000_5e-05.json | 2 +- ...csr_10_10_10_synthetic_100000_5e-05.output | 68 +- ...6_csr_10_10_10_synthetic_10000_0.0001.json | 2 +- ...csr_10_10_10_synthetic_10000_0.0001.output | 68 +- ...16_csr_10_10_10_synthetic_10000_0.001.json | 2 +- ..._csr_10_10_10_synthetic_10000_0.001.output | 89 +- ..._16_csr_10_10_10_synthetic_10000_0.01.json | 2 +- ...6_csr_10_10_10_synthetic_10000_0.01.output | 96 +- ..._16_csr_10_10_10_synthetic_10000_0.05.json | 2 +- ...6_csr_10_10_10_synthetic_10000_0.05.output | 76 +- ...p_16_csr_10_10_10_synthetic_10000_0.1.json | 2 +- ...16_csr_10_10_10_synthetic_10000_0.1.output | 78 +- ...p_16_csr_10_10_10_synthetic_10000_0.2.json | 2 +- ...16_csr_10_10_10_synthetic_10000_0.2.output | 76 +- ...p_16_csr_10_10_10_synthetic_10000_0.3.json | 2 +- ...16_csr_10_10_10_synthetic_10000_0.3.output | 60 +- ...16_csr_10_10_10_synthetic_10000_1e-05.json | 2 +- ..._csr_10_10_10_synthetic_10000_1e-05.output | 2623 ++++++++-------- ...16_csr_10_10_10_synthetic_10000_5e-05.json | 2 +- ..._csr_10_10_10_synthetic_10000_5e-05.output | 68 +- ..._csr_10_10_10_synthetic_500000_0.0001.json | 2 +- ...sr_10_10_10_synthetic_500000_0.0001.output | 87 +- ...6_csr_10_10_10_synthetic_500000_1e-05.json | 2 +- ...csr_10_10_10_synthetic_500000_1e-05.output | 106 +- ...6_csr_10_10_10_synthetic_500000_5e-05.json | 2 +- ...csr_10_10_10_synthetic_500000_5e-05.output | 87 +- ...6_csr_10_10_10_synthetic_50000_0.0001.json | 2 +- ...csr_10_10_10_synthetic_50000_0.0001.output | 102 +- ...16_csr_10_10_10_synthetic_50000_0.001.json | 2 +- ..._csr_10_10_10_synthetic_50000_0.001.output | 76 +- ..._16_csr_10_10_10_synthetic_50000_0.01.json | 2 +- ...6_csr_10_10_10_synthetic_50000_0.01.output | 80 +- ...16_csr_10_10_10_synthetic_50000_1e-05.json | 2 +- ..._csr_10_10_10_synthetic_50000_1e-05.output | 68 +- ...16_csr_10_10_10_synthetic_50000_5e-05.json | 2 +- ..._csr_10_10_10_synthetic_50000_5e-05.output | 68 +- ...16_csr_10_10_10_synthetic_5000_0.0001.json | 2 +- ..._csr_10_10_10_synthetic_5000_0.0001.output | 68 +- ..._16_csr_10_10_10_synthetic_5000_0.001.json | 2 +- ...6_csr_10_10_10_synthetic_5000_0.001.output | 68 +- ...p_16_csr_10_10_10_synthetic_5000_0.01.json | 2 +- ...16_csr_10_10_10_synthetic_5000_0.01.output | 68 +- ...p_16_csr_10_10_10_synthetic_5000_0.05.json | 2 +- ...16_csr_10_10_10_synthetic_5000_0.05.output | 98 +- ...3p_16_csr_10_10_10_synthetic_5000_0.1.json | 2 +- ..._16_csr_10_10_10_synthetic_5000_0.1.output | 76 +- ...3p_16_csr_10_10_10_synthetic_5000_0.2.json | 2 +- ..._16_csr_10_10_10_synthetic_5000_0.2.output | 76 +- ...3p_16_csr_10_10_10_synthetic_5000_0.3.json | 2 +- ..._16_csr_10_10_10_synthetic_5000_0.3.output | 76 +- ...3p_16_csr_10_10_10_synthetic_5000_0.4.json | 1 + ..._16_csr_10_10_10_synthetic_5000_0.4.output | 85 + ...3p_16_csr_10_10_10_synthetic_5000_0.5.json | 1 + ..._16_csr_10_10_10_synthetic_5000_0.5.output | 85 + ..._16_csr_10_10_10_synthetic_5000_1e-05.json | 2 +- ...6_csr_10_10_10_synthetic_5000_1e-05.output | 693 ++--- ..._16_csr_10_10_10_synthetic_5000_5e-05.json | 2 +- ...6_csr_10_10_10_synthetic_5000_5e-05.output | 68 +- ..._csr_10_10_10_synthetic_100000_0.0001.json | 2 +- ...sr_10_10_10_synthetic_100000_0.0001.output | 80 +- ...6_csr_10_10_10_synthetic_100000_0.001.json | 2 +- ...csr_10_10_10_synthetic_100000_0.001.output | 80 +- ...6_csr_10_10_10_synthetic_100000_1e-05.json | 2 +- ...csr_10_10_10_synthetic_100000_1e-05.output | 68 +- ...6_csr_10_10_10_synthetic_100000_5e-05.json | 2 +- ...csr_10_10_10_synthetic_100000_5e-05.output | 74 +- ...6_csr_10_10_10_synthetic_10000_0.0001.json | 2 +- ...csr_10_10_10_synthetic_10000_0.0001.output | 68 +- ...16_csr_10_10_10_synthetic_10000_0.001.json | 2 +- ..._csr_10_10_10_synthetic_10000_0.001.output | 68 +- ..._16_csr_10_10_10_synthetic_10000_0.01.json | 2 +- ...6_csr_10_10_10_synthetic_10000_0.01.output | 80 +- ..._16_csr_10_10_10_synthetic_10000_0.05.json | 2 +- ...6_csr_10_10_10_synthetic_10000_0.05.output | 80 +- ...6_16_csr_10_10_10_synthetic_10000_0.1.json | 2 +- ...16_csr_10_10_10_synthetic_10000_0.1.output | 80 +- ...6_16_csr_10_10_10_synthetic_10000_0.2.json | 2 +- ...16_csr_10_10_10_synthetic_10000_0.2.output | 60 +- ...6_16_csr_10_10_10_synthetic_10000_0.3.json | 2 +- ...16_csr_10_10_10_synthetic_10000_0.3.output | 104 +- ...16_csr_10_10_10_synthetic_10000_1e-05.json | 2 +- ..._csr_10_10_10_synthetic_10000_1e-05.output | 2756 ++++++++--------- ...16_csr_10_10_10_synthetic_10000_5e-05.json | 2 +- ..._csr_10_10_10_synthetic_10000_5e-05.output | 64 +- ..._csr_10_10_10_synthetic_500000_0.0001.json | 2 +- ...sr_10_10_10_synthetic_500000_0.0001.output | 90 +- ...6_csr_10_10_10_synthetic_500000_1e-05.json | 2 +- ...csr_10_10_10_synthetic_500000_1e-05.output | 85 +- ...6_csr_10_10_10_synthetic_500000_5e-05.json | 2 +- ...csr_10_10_10_synthetic_500000_5e-05.output | 66 +- ...6_csr_10_10_10_synthetic_50000_0.0001.json | 2 +- ...csr_10_10_10_synthetic_50000_0.0001.output | 68 +- ...16_csr_10_10_10_synthetic_50000_0.001.json | 2 +- ..._csr_10_10_10_synthetic_50000_0.001.output | 81 +- ..._16_csr_10_10_10_synthetic_50000_0.01.json | 2 +- ...6_csr_10_10_10_synthetic_50000_0.01.output | 104 +- ...16_csr_10_10_10_synthetic_50000_1e-05.json | 2 +- ..._csr_10_10_10_synthetic_50000_1e-05.output | 90 +- ...16_csr_10_10_10_synthetic_50000_5e-05.json | 2 +- ..._csr_10_10_10_synthetic_50000_5e-05.output | 118 +- ...16_csr_10_10_10_synthetic_5000_0.0001.json | 2 +- ..._csr_10_10_10_synthetic_5000_0.0001.output | 89 +- ..._16_csr_10_10_10_synthetic_5000_0.001.json | 2 +- ...6_csr_10_10_10_synthetic_5000_0.001.output | 68 +- ...6_16_csr_10_10_10_synthetic_5000_0.01.json | 2 +- ...16_csr_10_10_10_synthetic_5000_0.01.output | 68 +- ...6_16_csr_10_10_10_synthetic_5000_0.05.json | 2 +- ...16_csr_10_10_10_synthetic_5000_0.05.output | 76 +- ...16_16_csr_10_10_10_synthetic_5000_0.1.json | 2 +- ..._16_csr_10_10_10_synthetic_5000_0.1.output | 80 +- ...16_16_csr_10_10_10_synthetic_5000_0.2.json | 2 +- ..._16_csr_10_10_10_synthetic_5000_0.2.output | 82 +- ...16_16_csr_10_10_10_synthetic_5000_0.3.json | 2 +- ..._16_csr_10_10_10_synthetic_5000_0.3.output | 80 +- ...16_16_csr_10_10_10_synthetic_5000_0.4.json | 1 + ..._16_csr_10_10_10_synthetic_5000_0.4.output | 65 + ...16_16_csr_10_10_10_synthetic_5000_0.5.json | 1 + ..._16_csr_10_10_10_synthetic_5000_0.5.output | 85 + ..._16_csr_10_10_10_synthetic_5000_1e-05.json | 2 +- ...6_csr_10_10_10_synthetic_5000_1e-05.output | 611 ++-- ..._16_csr_10_10_10_synthetic_5000_5e-05.json | 2 +- ...6_csr_10_10_10_synthetic_5000_5e-05.output | 64 +- pytorch/synthetic_densities | 2 + 193 files changed, 8613 insertions(+), 8109 deletions(-) create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.4.json create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.4.output create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.5.json create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.5.output create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.4.json create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.4.output create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.5.json create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.5.output create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.4.json create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.4.output create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.5.json create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.5.output diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_0.0001.json index 980d684..e9b3498 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_0.0001.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_0.0001.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1755, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.253487825393677, "TIME_S_1KI": 5.842443205352523, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 467.2838370990753, "W": 31.934101368331916, "J_1KI": 266.2585966376497, "W_1KI": 18.196069155744684, "W_D": 16.879101368331916, "J_D": 246.98773149132728, "W_D_1KI": 9.617721577397104, "J_D_1KI": 5.480183234984104} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1748, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.143786191940308, "TIME_S_1KI": 5.8030813455036085, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 530.3414198303223, "W": 36.295146632325824, "J_1KI": 303.3989815962942, "W_1KI": 20.763813862886625, "W_D": 17.602146632325823, "J_D": 257.20098424220083, "W_D_1KI": 10.069877936113171, "J_D_1KI": 5.760799734618519} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_0.0001.output index 365e810..2da7ef7 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_0.0001.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_0.0001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 0.0001 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 5.980836629867554} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 100000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.6005632877349854} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 11, 22, ..., 999980, +tensor(crow_indices=tensor([ 0, 7, 17, ..., 999970, 999989, 1000000]), - col_indices=tensor([ 6100, 13265, 27848, ..., 84407, 91090, 94721]), - values=tensor([0.4400, 0.3445, 0.5606, ..., 0.5861, 0.7102, 0.2795]), + col_indices=tensor([27708, 32922, 35240, ..., 82805, 88487, 98517]), + values=tensor([0.0088, 0.7733, 0.0012, ..., 0.6420, 0.7382, 0.2177]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.6757, 0.5029, 0.1898, ..., 0.2612, 0.6123, 0.0844]) +tensor([0.1129, 0.5965, 0.7496, ..., 0.0902, 0.9107, 0.7724]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,19 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 5.980836629867554 seconds +Time: 0.6005632877349854 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1755 -ss 100000 -sd 0.0001 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.253487825393677} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1748 -ss 100000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.143786191940308} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 5, 18, ..., 999983, - 999994, 1000000]), - col_indices=tensor([22305, 51740, 53616, ..., 72974, 76091, 88145]), - values=tensor([0.7756, 0.0657, 0.7358, ..., 0.9841, 0.0331, 0.5251]), +tensor(crow_indices=tensor([ 0, 10, 23, ..., 999980, + 999992, 1000000]), + col_indices=tensor([ 8017, 17251, 18992, ..., 72823, 91334, 91663]), + values=tensor([0.4596, 0.1797, 0.9797, ..., 0.0499, 0.7967, 0.0183]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.4750, 0.6821, 0.2847, ..., 0.3502, 0.4038, 0.5877]) +tensor([0.8873, 0.5523, 0.3791, ..., 0.8812, 0.4027, 0.2259]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -36,16 +36,16 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 10.253487825393677 seconds +Time: 10.143786191940308 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 5, 18, ..., 999983, - 999994, 1000000]), - col_indices=tensor([22305, 51740, 53616, ..., 72974, 76091, 88145]), - values=tensor([0.7756, 0.0657, 0.7358, ..., 0.9841, 0.0331, 0.5251]), +tensor(crow_indices=tensor([ 0, 10, 23, ..., 999980, + 999992, 1000000]), + col_indices=tensor([ 8017, 17251, 18992, ..., 72823, 91334, 91663]), + values=tensor([0.4596, 0.1797, 0.9797, ..., 0.0499, 0.7967, 0.0183]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.4750, 0.6821, 0.2847, ..., 0.3502, 0.4038, 0.5877]) +tensor([0.8873, 0.5523, 0.3791, ..., 0.8812, 0.4027, 0.2259]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -53,13 +53,13 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 10.253487825393677 seconds +Time: 10.143786191940308 seconds -[16.48, 16.16, 16.52, 16.48, 16.48, 16.48, 16.72, 16.72, 16.84, 17.12] -[17.08, 17.16, 17.96, 19.72, 22.2, 27.16, 34.52, 39.08, 43.72, 45.96, 46.32, 46.32, 46.2, 46.28] -14.632753610610962 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1755, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.253487825393677, 'TIME_S_1KI': 5.842443205352523, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 467.2838370990753, 'W': 31.934101368331916} -[16.48, 16.16, 16.52, 16.48, 16.48, 16.48, 16.72, 16.72, 16.84, 17.12, 16.72, 16.8, 16.96, 17.0, 17.04, 16.88, 16.8, 16.88, 16.76, 16.84] -301.1 -15.055000000000001 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1755, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.253487825393677, 'TIME_S_1KI': 5.842443205352523, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 467.2838370990753, 'W': 31.934101368331916, 'J_1KI': 266.2585966376497, 'W_1KI': 18.196069155744684, 'W_D': 16.879101368331916, 'J_D': 246.98773149132728, 'W_D_1KI': 9.617721577397104, 'J_D_1KI': 5.480183234984104} +[20.48, 20.6, 20.64, 20.68, 21.12, 21.12, 21.24, 21.12, 21.04, 21.04] +[20.76, 20.76, 21.04, 22.36, 24.68, 32.36, 38.56, 45.04, 50.12, 51.88, 51.52, 52.0, 52.0, 51.84] +14.611910104751587 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1748, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.143786191940308, 'TIME_S_1KI': 5.8030813455036085, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 530.3414198303223, 'W': 36.295146632325824} +[20.48, 20.6, 20.64, 20.68, 21.12, 21.12, 21.24, 21.12, 21.04, 21.04, 20.36, 20.64, 20.56, 20.72, 20.68, 20.52, 20.72, 20.76, 20.52, 20.48] +373.86 +18.693 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1748, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.143786191940308, 'TIME_S_1KI': 5.8030813455036085, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 530.3414198303223, 'W': 36.295146632325824, 'J_1KI': 303.3989815962942, 'W_1KI': 20.763813862886625, 'W_D': 17.602146632325823, 'J_D': 257.20098424220083, 'W_D_1KI': 10.069877936113171, 'J_D_1KI': 5.760799734618519} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_0.001.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_0.001.json index 0a97dfa..fdbe85f 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_0.001.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_0.001.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 57.53653693199158, "TIME_S_1KI": 57.53653693199158, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2684.526071929932, "W": 41.311972802980506, "J_1KI": 2684.526071929932, "W_1KI": 41.311972802980506, "W_D": 26.003972802980506, "J_D": 1689.784782156945, "W_D_1KI": 26.003972802980506, "J_D_1KI": 26.003972802980506} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 175, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 11.183927774429321, "TIME_S_1KI": 63.90815871102469, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 628.162894821167, "W": 35.42748603907242, "J_1KI": 3589.5022561209544, "W_1KI": 202.44277736612813, "W_D": 16.71548603907242, "J_D": 296.38140530395515, "W_D_1KI": 95.51706308041383, "J_D_1KI": 545.8117890309362} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_0.001.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_0.001.output index 01b19d4..887a602 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_0.001.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_0.001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 0.001 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 57.53653693199158} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 100000 -sd 0.001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 5.9738054275512695} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 92, 190, ..., 9999802, - 9999900, 10000000]), - col_indices=tensor([ 766, 3080, 3658, ..., 98863, 99077, 99078]), - values=tensor([0.0329, 0.7493, 0.2063, ..., 0.1215, 0.3807, 0.7288]), +tensor(crow_indices=tensor([ 0, 100, 229, ..., 9999825, + 9999913, 10000000]), + col_indices=tensor([ 2839, 3131, 5153, ..., 92533, 94576, 98932]), + values=tensor([0.4697, 0.9996, 0.7875, ..., 0.5192, 0.5202, 0.9540]), size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.3516, 0.3347, 0.9443, ..., 0.8917, 0.2195, 0.8723]) +tensor([0.9598, 0.0952, 0.8851, ..., 0.3844, 0.8104, 0.5939]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,16 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 10000000 Density: 0.001 -Time: 57.53653693199158 seconds +Time: 5.9738054275512695 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 175 -ss 100000 -sd 0.001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 11.183927774429321} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 92, 190, ..., 9999802, - 9999900, 10000000]), - col_indices=tensor([ 766, 3080, 3658, ..., 98863, 99077, 99078]), - values=tensor([0.0329, 0.7493, 0.2063, ..., 0.1215, 0.3807, 0.7288]), +tensor(crow_indices=tensor([ 0, 95, 193, ..., 9999801, + 9999901, 10000000]), + col_indices=tensor([ 2869, 4015, 6080, ..., 94953, 95635, 98117]), + values=tensor([0.0857, 0.9758, 0.7363, ..., 0.8151, 0.8595, 0.7723]), size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.3516, 0.3347, 0.9443, ..., 0.8917, 0.2195, 0.8723]) +tensor([0.7586, 0.5970, 0.0221, ..., 0.6721, 0.2659, 0.4588]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -33,13 +36,30 @@ Rows: 100000 Size: 10000000000 NNZ: 10000000 Density: 0.001 -Time: 57.53653693199158 seconds +Time: 11.183927774429321 seconds -[17.2, 17.2, 16.8, 16.8, 17.0, 16.88, 16.88, 17.0, 17.0, 16.6] -[16.88, 16.84, 17.36, 19.48, 20.16, 21.92, 24.16, 24.88, 27.6, 33.04, 37.56, 43.08, 47.0, 46.96, 47.68, 47.76, 47.76, 47.48, 47.4, 46.92, 47.28, 47.04, 47.56, 48.36, 48.0, 47.68, 47.44, 46.16, 45.68, 46.04, 46.32, 47.44, 47.76, 47.84, 47.64, 47.36, 47.08, 46.96, 46.96, 47.16, 46.68, 46.24, 46.2, 46.44, 46.56, 47.0, 48.08, 48.0, 48.12, 48.44, 48.48, 48.2, 47.64, 47.32, 47.2, 47.2, 47.56, 47.52, 47.68, 47.8, 47.8, 48.0] -64.98179316520691 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 57.53653693199158, 'TIME_S_1KI': 57.53653693199158, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2684.526071929932, 'W': 41.311972802980506} -[17.2, 17.2, 16.8, 16.8, 17.0, 16.88, 16.88, 17.0, 17.0, 16.6, 17.12, 17.12, 17.04, 17.0, 17.0, 16.96, 16.88, 16.92, 17.32, 17.8] -306.16 -15.308000000000002 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 57.53653693199158, 'TIME_S_1KI': 57.53653693199158, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2684.526071929932, 'W': 41.311972802980506, 'J_1KI': 2684.526071929932, 'W_1KI': 41.311972802980506, 'W_D': 26.003972802980506, 'J_D': 1689.784782156945, 'W_D_1KI': 26.003972802980506, 'J_D_1KI': 26.003972802980506} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 95, 193, ..., 9999801, + 9999901, 10000000]), + col_indices=tensor([ 2869, 4015, 6080, ..., 94953, 95635, 98117]), + values=tensor([0.0857, 0.9758, 0.7363, ..., 0.8151, 0.8595, 0.7723]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.7586, 0.5970, 0.0221, ..., 0.6721, 0.2659, 0.4588]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 11.183927774429321 seconds + +[20.52, 20.84, 20.72, 20.68, 20.8, 20.68, 20.68, 20.72, 20.64, 20.64] +[20.64, 20.76, 20.84, 24.4, 27.0, 28.6, 31.96, 32.96, 34.0, 38.76, 44.2, 47.96, 51.6, 50.84, 50.88, 50.6, 50.76] +17.730947494506836 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 175, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 11.183927774429321, 'TIME_S_1KI': 63.90815871102469, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 628.162894821167, 'W': 35.42748603907242} +[20.52, 20.84, 20.72, 20.68, 20.8, 20.68, 20.68, 20.72, 20.64, 20.64, 20.64, 20.64, 20.64, 20.72, 20.76, 20.76, 21.0, 20.92, 21.36, 21.56] +374.24 +18.712 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 175, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 11.183927774429321, 'TIME_S_1KI': 63.90815871102469, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 628.162894821167, 'W': 35.42748603907242, 'J_1KI': 3589.5022561209544, 'W_1KI': 202.44277736612813, 'W_D': 16.71548603907242, 'J_D': 296.38140530395515, 'W_D_1KI': 95.51706308041383, 'J_D_1KI': 545.8117890309362} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_1e-05.json index 9a23625..eff1e86 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_1e-05.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_1e-05.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 11928, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.779903888702393, "TIME_S_1KI": 0.9037478109240772, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 428.71311614990236, "W": 29.263266081724595, "J_1KI": 35.94174347333186, "W_1KI": 2.4533254595677896, "W_D": 14.015266081724594, "J_D": 205.326650100708, "W_D_1KI": 1.1749887727803985, "J_D_1KI": 0.09850677169520444} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 11597, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.436057329177856, "TIME_S_1KI": 0.8998928454926151, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 483.6025880336762, "W": 33.00177532885384, "J_1KI": 41.700662932971994, "W_1KI": 2.845716592985586, "W_D": 14.225775328853839, "J_D": 208.462172027588, "W_D_1KI": 1.2266771862424626, "J_D_1KI": 0.10577538900081596} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_1e-05.output index 0a26541..cdfe200 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_1e-05.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_1e-05.output @@ -1,14 +1,54 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 1e-05 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.8802759647369385} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 100000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.12187767028808594} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 99998, 99999, + 100000]), + col_indices=tensor([99237, 81965, 52149, ..., 94819, 50598, 82628]), + values=tensor([0.3300, 0.8237, 0.5005, ..., 0.6469, 0.1010, 0.4687]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.0038, 0.2456, 0.3182, ..., 0.7163, 0.7510, 0.9775]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 0.12187767028808594 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 8615 -ss 100000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.799410104751587} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 99998, 99999, + 100000]), + col_indices=tensor([88588, 42232, 90125, ..., 27244, 80106, 39636]), + values=tensor([0.8018, 0.8315, 0.5597, ..., 0.5532, 0.0030, 0.5793]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.1929, 0.1411, 0.4568, ..., 0.6294, 0.2188, 0.4350]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 7.799410104751587 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 11597 -ss 100000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.436057329177856} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 1, 1, ..., 99998, 99998, 100000]), - col_indices=tensor([50190, 32056, 73796, ..., 55938, 31334, 37461]), - values=tensor([0.0722, 0.7116, 0.8310, ..., 0.7930, 0.8115, 0.4149]), + col_indices=tensor([24172, 83350, 29274, ..., 76990, 53592, 71081]), + values=tensor([0.7302, 0.8346, 0.3553, ..., 0.4222, 0.8183, 0.0288]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.5168, 0.3496, 0.0063, ..., 0.9888, 0.0960, 0.5324]) +tensor([0.8537, 0.9431, 0.0277, ..., 0.1357, 0.7019, 0.9196]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,19 +56,16 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 0.8802759647369385 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 11928 -ss 100000 -sd 1e-05 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.779903888702393} +Time: 10.436057329177856 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 3, ..., 99995, 99996, +tensor(crow_indices=tensor([ 0, 1, 1, ..., 99998, 99998, 100000]), - col_indices=tensor([15079, 22431, 71484, ..., 38240, 57604, 63673]), - values=tensor([0.6856, 0.2309, 0.0261, ..., 0.6883, 0.7108, 0.1151]), + col_indices=tensor([24172, 83350, 29274, ..., 76990, 53592, 71081]), + values=tensor([0.7302, 0.8346, 0.3553, ..., 0.4222, 0.8183, 0.0288]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.6131, 0.6051, 0.4027, ..., 0.3545, 0.9505, 0.4978]) +tensor([0.8537, 0.9431, 0.0277, ..., 0.1357, 0.7019, 0.9196]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -36,30 +73,13 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 10.779903888702393 seconds +Time: 10.436057329177856 seconds -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 3, ..., 99995, 99996, - 100000]), - col_indices=tensor([15079, 22431, 71484, ..., 38240, 57604, 63673]), - values=tensor([0.6856, 0.2309, 0.0261, ..., 0.6883, 0.7108, 0.1151]), - size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.6131, 0.6051, 0.4027, ..., 0.3545, 0.9505, 0.4978]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([100000, 100000]) -Rows: 100000 -Size: 10000000000 -NNZ: 100000 -Density: 1e-05 -Time: 10.779903888702393 seconds - -[17.04, 17.24, 17.0, 17.0, 16.8, 16.64, 16.64, 16.68, 16.92, 16.84] -[16.64, 16.52, 16.72, 17.8, 20.04, 25.4, 30.88, 34.96, 39.88, 41.96, 42.28, 42.44, 42.56, 42.56] -14.650214195251465 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 11928, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.779903888702393, 'TIME_S_1KI': 0.9037478109240772, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 428.71311614990236, 'W': 29.263266081724595} -[17.04, 17.24, 17.0, 17.0, 16.8, 16.64, 16.64, 16.68, 16.92, 16.84, 16.84, 16.84, 17.0, 17.0, 16.92, 17.0, 17.16, 17.0, 17.16, 17.2] -304.96000000000004 -15.248000000000001 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 11928, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.779903888702393, 'TIME_S_1KI': 0.9037478109240772, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 428.71311614990236, 'W': 29.263266081724595, 'J_1KI': 35.94174347333186, 'W_1KI': 2.4533254595677896, 'W_D': 14.015266081724594, 'J_D': 205.326650100708, 'W_D_1KI': 1.1749887727803985, 'J_D_1KI': 0.09850677169520444} +[21.08, 20.64, 20.76, 20.76, 20.92, 21.32, 21.32, 21.36, 21.0, 20.8] +[20.64, 20.36, 20.72, 23.08, 24.72, 29.44, 35.88, 40.08, 43.56, 45.4, 45.96, 45.6, 45.36, 46.04] +14.653835535049438 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 11597, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.436057329177856, 'TIME_S_1KI': 0.8998928454926151, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 483.6025880336762, 'W': 33.00177532885384} +[21.08, 20.64, 20.76, 20.76, 20.92, 21.32, 21.32, 21.36, 21.0, 20.8, 20.36, 20.32, 20.32, 20.44, 20.64, 20.8, 21.0, 21.16, 21.12, 21.04] +375.52 +18.776 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 11597, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.436057329177856, 'TIME_S_1KI': 0.8998928454926151, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 483.6025880336762, 'W': 33.00177532885384, 'J_1KI': 41.700662932971994, 'W_1KI': 2.845716592985586, 'W_D': 14.225775328853839, 'J_D': 208.462172027588, 'W_D_1KI': 1.2266771862424626, 'J_D_1KI': 0.10577538900081596} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_5e-05.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_5e-05.json index 6ac986d..67cd5e0 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_5e-05.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_5e-05.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 3268, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.551287174224854, "TIME_S_1KI": 3.2286680459684374, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 514.9588033294677, "W": 35.14704993762719, "J_1KI": 157.57613320975145, "W_1KI": 10.754911241623986, "W_D": 16.333049937627187, "J_D": 239.30451817512508, "W_D_1KI": 4.997873297927536, "J_D_1KI": 1.5293369944698703} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 3297, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.891435861587524, "TIME_S_1KI": 3.3034382352403777, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 528.672490940094, "W": 36.05478479295784, "J_1KI": 160.34955745832394, "W_1KI": 10.935633846817664, "W_D": 17.45578479295784, "J_D": 255.95474444794658, "W_D_1KI": 5.2944448871573675, "J_D_1KI": 1.605837090432929} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_5e-05.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_5e-05.output index c2c09d9..3c3d8e5 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_5e-05.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_5e-05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 5e-05 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 3.21274733543396} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 100000 -sd 5e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.4573814868927002} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 5, 10, ..., 499991, 499996, +tensor(crow_indices=tensor([ 0, 10, 16, ..., 499990, 499995, 500000]), - col_indices=tensor([ 6819, 16249, 65142, ..., 35181, 90238, 95591]), - values=tensor([0.9907, 0.7784, 0.8470, ..., 0.0401, 0.4552, 0.5172]), + col_indices=tensor([ 5164, 6869, 8448, ..., 29154, 68140, 97893]), + values=tensor([0.8386, 0.0921, 0.7067, ..., 0.9232, 0.1449, 0.6848]), size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) -tensor([0.1211, 0.3699, 0.8120, ..., 0.3387, 0.3308, 0.0427]) +tensor([0.0246, 0.8160, 0.3295, ..., 0.0588, 0.6998, 0.9868]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,19 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 500000 Density: 5e-05 -Time: 3.21274733543396 seconds +Time: 0.4573814868927002 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 3268 -ss 100000 -sd 5e-05 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.551287174224854} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 2295 -ss 100000 -sd 5e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 7.306779146194458} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 6, 10, ..., 499988, 499994, +tensor(crow_indices=tensor([ 0, 4, 8, ..., 499989, 499995, 500000]), - col_indices=tensor([ 4698, 29712, 45324, ..., 47109, 54294, 79244]), - values=tensor([0.0467, 0.0395, 0.2018, ..., 0.4601, 0.1623, 0.8954]), + col_indices=tensor([ 2059, 19971, 54406, ..., 65065, 65922, 83323]), + values=tensor([0.5530, 0.6181, 0.7781, ..., 0.5380, 0.6243, 0.8378]), size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) -tensor([0.1366, 0.5632, 0.5706, ..., 0.2593, 0.9938, 0.0917]) +tensor([0.4055, 0.5945, 0.9428, ..., 0.6446, 0.1456, 0.3700]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -36,16 +36,19 @@ Rows: 100000 Size: 10000000000 NNZ: 500000 Density: 5e-05 -Time: 10.551287174224854 seconds +Time: 7.306779146194458 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 3297 -ss 100000 -sd 5e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.891435861587524} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 6, 10, ..., 499988, 499994, +tensor(crow_indices=tensor([ 0, 5, 11, ..., 499995, 499995, 500000]), - col_indices=tensor([ 4698, 29712, 45324, ..., 47109, 54294, 79244]), - values=tensor([0.0467, 0.0395, 0.2018, ..., 0.4601, 0.1623, 0.8954]), + col_indices=tensor([ 8913, 22689, 49331, ..., 65321, 72756, 72788]), + values=tensor([0.7511, 0.0782, 0.7533, ..., 0.6341, 0.1803, 0.2288]), size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) -tensor([0.1366, 0.5632, 0.5706, ..., 0.2593, 0.9938, 0.0917]) +tensor([0.5601, 0.4293, 0.2285, ..., 0.5137, 0.5400, 0.5797]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -53,13 +56,30 @@ Rows: 100000 Size: 10000000000 NNZ: 500000 Density: 5e-05 -Time: 10.551287174224854 seconds +Time: 10.891435861587524 seconds -[20.52, 20.48, 20.56, 20.6, 20.6, 20.88, 21.08, 21.04, 21.04, 20.92] -[20.68, 20.64, 20.84, 22.28, 23.8, 29.96, 35.72, 42.6, 47.2, 50.88, 50.56, 50.96, 50.68, 50.8] -14.651551246643066 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 3268, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.551287174224854, 'TIME_S_1KI': 3.2286680459684374, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 514.9588033294677, 'W': 35.14704993762719} -[20.52, 20.48, 20.56, 20.6, 20.6, 20.88, 21.08, 21.04, 21.04, 20.92, 20.72, 21.08, 21.16, 21.16, 21.24, 21.28, 21.16, 20.88, 20.68, 20.56] -376.28 -18.814 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 3268, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.551287174224854, 'TIME_S_1KI': 3.2286680459684374, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 514.9588033294677, 'W': 35.14704993762719, 'J_1KI': 157.57613320975145, 'W_1KI': 10.754911241623986, 'W_D': 16.333049937627187, 'J_D': 239.30451817512508, 'W_D_1KI': 4.997873297927536, 'J_D_1KI': 1.5293369944698703} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 11, ..., 499995, 499995, + 500000]), + col_indices=tensor([ 8913, 22689, 49331, ..., 65321, 72756, 72788]), + values=tensor([0.7511, 0.0782, 0.7533, ..., 0.6341, 0.1803, 0.2288]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.5601, 0.4293, 0.2285, ..., 0.5137, 0.5400, 0.5797]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 10.891435861587524 seconds + +[20.84, 20.48, 20.44, 20.64, 20.64, 20.68, 20.72, 20.64, 20.64, 20.92] +[20.6, 20.48, 20.72, 25.12, 26.88, 32.4, 38.84, 42.28, 46.96, 50.12, 51.2, 51.8, 51.56, 51.6] +14.66303277015686 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 3297, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.891435861587524, 'TIME_S_1KI': 3.3034382352403777, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 528.672490940094, 'W': 36.05478479295784} +[20.84, 20.48, 20.44, 20.64, 20.64, 20.68, 20.72, 20.64, 20.64, 20.92, 20.84, 21.04, 20.84, 20.84, 20.76, 20.8, 20.68, 20.44, 20.28, 20.24] +371.98 +18.599 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 3297, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.891435861587524, 'TIME_S_1KI': 3.3034382352403777, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 528.672490940094, 'W': 36.05478479295784, 'J_1KI': 160.34955745832394, 'W_1KI': 10.935633846817664, 'W_D': 17.45578479295784, 'J_D': 255.95474444794658, 'W_D_1KI': 5.2944448871573675, 'J_D_1KI': 1.605837090432929} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.0001.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.0001.json index 47534f3..6fa3845 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.0001.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.0001.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 32824, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.612937211990356, "TIME_S_1KI": 0.3233285770165232, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 275.6484677696228, "W": 19.42651909848855, "J_1KI": 8.397771989081855, "W_1KI": 0.5918388709020398, "W_D": 4.498519098488551, "J_D": 63.83078154373167, "W_D_1KI": 0.13704969225227123, "J_D_1KI": 0.004175289186335341} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 32636, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.47010850906372, "TIME_S_1KI": 0.32081469877018387, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 319.63640854835506, "W": 22.48260624860275, "J_1KI": 9.793982367580435, "W_1KI": 0.6888897612637195, "W_D": 3.984606248602752, "J_D": 56.64935891771315, "W_D_1KI": 0.12209235962136145, "J_D_1KI": 0.003741033203252894} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.0001.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.0001.output index 0d66d25..21cdb17 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.0001.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.0001.output @@ -1,13 +1,13 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.0001 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.3622722625732422} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.050879478454589844} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 4, ..., 9997, 10000, 10000]), - col_indices=tensor([2430, 5032, 1477, ..., 758, 3153, 4599]), - values=tensor([0.8038, 0.4543, 0.3152, ..., 0.6785, 0.4391, 0.0535]), +tensor(crow_indices=tensor([ 0, 0, 1, ..., 9998, 9999, 10000]), + col_indices=tensor([5382, 2827, 5658, ..., 9195, 8647, 1137]), + values=tensor([0.6423, 0.5656, 0.8194, ..., 0.3825, 0.7281, 0.0248]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.9594, 0.1900, 0.3074, ..., 0.8950, 0.9459, 0.6732]) +tensor([0.6609, 0.7541, 0.4159, ..., 0.2180, 0.3481, 0.0053]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -15,18 +15,18 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 0.3622722625732422 seconds +Time: 0.050879478454589844 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 28983 -ss 10000 -sd 0.0001 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.27123761177063} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 20637 -ss 10000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 6.639445781707764} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 10000, 10000, 10000]), - col_indices=tensor([1532, 2817, 884, ..., 2356, 6175, 1948]), - values=tensor([0.3809, 0.2852, 0.7235, ..., 0.6592, 0.2563, 0.7726]), +tensor(crow_indices=tensor([ 0, 0, 1, ..., 9998, 10000, 10000]), + col_indices=tensor([1538, 6690, 5733, ..., 9607, 7438, 7782]), + values=tensor([0.7222, 0.1089, 0.5631, ..., 0.3116, 0.0243, 0.6999]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.6771, 0.1497, 0.5070, ..., 0.8092, 0.9643, 0.7887]) +tensor([0.2878, 0.8940, 0.0961, ..., 0.0631, 0.2895, 0.2219]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -34,18 +34,18 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 9.27123761177063 seconds +Time: 6.639445781707764 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 32824 -ss 10000 -sd 0.0001 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.612937211990356} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 32636 -ss 10000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.47010850906372} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 9999, 9999, 10000]), - col_indices=tensor([3350, 4490, 6839, ..., 6784, 8596, 8737]), - values=tensor([0.3991, 0.5600, 0.2439, ..., 0.8859, 0.9485, 0.6345]), +tensor(crow_indices=tensor([ 0, 1, 2, ..., 9999, 10000, 10000]), + col_indices=tensor([7014, 8766, 3433, ..., 9466, 1431, 7728]), + values=tensor([0.0370, 0.3747, 0.2051, ..., 0.2901, 0.3737, 0.7201]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.2861, 0.2741, 0.4038, ..., 0.8389, 0.9796, 0.7969]) +tensor([0.8451, 0.4833, 0.4298, ..., 0.9015, 0.0937, 0.6764]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -53,15 +53,15 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 10.612937211990356 seconds +Time: 10.47010850906372 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 9999, 9999, 10000]), - col_indices=tensor([3350, 4490, 6839, ..., 6784, 8596, 8737]), - values=tensor([0.3991, 0.5600, 0.2439, ..., 0.8859, 0.9485, 0.6345]), +tensor(crow_indices=tensor([ 0, 1, 2, ..., 9999, 10000, 10000]), + col_indices=tensor([7014, 8766, 3433, ..., 9466, 1431, 7728]), + values=tensor([0.0370, 0.3747, 0.2051, ..., 0.2901, 0.3737, 0.7201]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.2861, 0.2741, 0.4038, ..., 0.8389, 0.9796, 0.7969]) +tensor([0.8451, 0.4833, 0.4298, ..., 0.9015, 0.0937, 0.6764]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -69,13 +69,13 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 10.612937211990356 seconds +Time: 10.47010850906372 seconds -[16.64, 16.84, 16.96, 16.88, 16.84, 16.72, 17.08, 16.96, 16.92, 16.92] -[17.08, 16.72, 16.76, 21.08, 22.52, 24.76, 25.6, 23.4, 22.04, 20.32, 20.04, 20.0, 20.0, 20.12] -14.189287662506104 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 32824, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.612937211990356, 'TIME_S_1KI': 0.3233285770165232, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 275.6484677696228, 'W': 19.42651909848855} -[16.64, 16.84, 16.96, 16.88, 16.84, 16.72, 17.08, 16.96, 16.92, 16.92, 16.36, 16.04, 15.84, 15.92, 16.12, 16.28, 16.36, 16.68, 16.72, 16.88] -298.56 -14.928 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 32824, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.612937211990356, 'TIME_S_1KI': 0.3233285770165232, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 275.6484677696228, 'W': 19.42651909848855, 'J_1KI': 8.397771989081855, 'W_1KI': 0.5918388709020398, 'W_D': 4.498519098488551, 'J_D': 63.83078154373167, 'W_D_1KI': 0.13704969225227123, 'J_D_1KI': 0.004175289186335341} +[20.64, 20.64, 20.48, 20.48, 20.48, 20.4, 20.32, 20.16, 20.24, 20.4] +[20.72, 20.64, 21.24, 23.32, 25.32, 26.04, 26.72, 26.72, 26.48, 25.08, 23.72, 23.6, 23.56, 23.48] +14.217053174972534 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 32636, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.47010850906372, 'TIME_S_1KI': 0.32081469877018387, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 319.63640854835506, 'W': 22.48260624860275} +[20.64, 20.64, 20.48, 20.48, 20.48, 20.4, 20.32, 20.16, 20.24, 20.4, 20.64, 20.56, 20.48, 20.52, 20.68, 20.84, 20.88, 20.88, 20.84, 20.48] +369.96 +18.497999999999998 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 32636, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.47010850906372, 'TIME_S_1KI': 0.32081469877018387, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 319.63640854835506, 'W': 22.48260624860275, 'J_1KI': 9.793982367580435, 'W_1KI': 0.6888897612637195, 'W_D': 3.984606248602752, 'J_D': 56.64935891771315, 'W_D_1KI': 0.12209235962136145, 'J_D_1KI': 0.003741033203252894} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.001.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.001.json index 650d27e..c0d7ab3 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.001.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.001.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 4599, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.21649432182312, "TIME_S_1KI": 2.2214599525599303, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 276.3690100479126, "W": 19.391688491473598, "J_1KI": 60.09328333287945, "W_1KI": 4.2165010853389, "W_D": 4.4646884914736, "J_D": 63.630433167457575, "W_D_1KI": 0.9707954971675582, "J_D_1KI": 0.21108838816428752} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 4519, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.300970077514648, "TIME_S_1KI": 2.279479990598506, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 332.2094431686402, "W": 23.392743273719635, "J_1KI": 73.51392856132777, "W_1KI": 5.176530930232272, "W_D": 4.8837432737196345, "J_D": 69.35593720483783, "W_D_1KI": 1.0807132714582062, "J_D_1KI": 0.2391487655362262} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.001.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.001.output index 7a35653..f0ce63e 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.001.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.001 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 2.282747268676758} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 0.001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.2727935314178467} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 15, 26, ..., 99983, 99992, +tensor(crow_indices=tensor([ 0, 6, 18, ..., 99975, 99993, 100000]), - col_indices=tensor([ 746, 1254, 2691, ..., 5665, 9904, 9986]), - values=tensor([0.7024, 0.2927, 0.8116, ..., 0.2675, 0.5863, 0.1724]), + col_indices=tensor([2872, 4034, 5620, ..., 6357, 6556, 9590]), + values=tensor([0.7995, 0.0045, 0.2448, ..., 0.5761, 0.7842, 0.1546]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.2042, 0.3555, 0.3767, ..., 0.6038, 0.4952, 0.0036]) +tensor([0.8077, 0.7130, 0.7281, ..., 0.3829, 0.9486, 0.9162]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,19 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 2.282747268676758 seconds +Time: 0.2727935314178467 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 4599 -ss 10000 -sd 0.001 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.21649432182312} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 3849 -ss 10000 -sd 0.001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 8.942286252975464} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 6, 18, ..., 99975, 99989, +tensor(crow_indices=tensor([ 0, 12, 21, ..., 99991, 99998, 100000]), - col_indices=tensor([5193, 5456, 6247, ..., 5100, 5946, 8330]), - values=tensor([0.7086, 0.0012, 0.4180, ..., 0.5448, 0.8405, 0.8114]), + col_indices=tensor([ 425, 574, 695, ..., 9570, 6024, 9715]), + values=tensor([0.7410, 0.8879, 0.5840, ..., 0.6995, 0.9280, 0.9465]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.0495, 0.0946, 0.7654, ..., 0.8976, 0.3544, 0.9283]) +tensor([0.2929, 0.5164, 0.5482, ..., 0.5103, 0.5008, 0.9557]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -36,16 +36,19 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 10.21649432182312 seconds +Time: 8.942286252975464 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 4519 -ss 10000 -sd 0.001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.300970077514648} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 6, 18, ..., 99975, 99989, +tensor(crow_indices=tensor([ 0, 7, 16, ..., 99974, 99990, 100000]), - col_indices=tensor([5193, 5456, 6247, ..., 5100, 5946, 8330]), - values=tensor([0.7086, 0.0012, 0.4180, ..., 0.5448, 0.8405, 0.8114]), + col_indices=tensor([ 582, 1691, 2515, ..., 7345, 7996, 8295]), + values=tensor([0.8177, 0.9283, 0.6030, ..., 0.2647, 0.3717, 0.8633]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.0495, 0.0946, 0.7654, ..., 0.8976, 0.3544, 0.9283]) +tensor([0.2209, 0.7260, 0.0429, ..., 0.4887, 0.7834, 0.0043]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -53,13 +56,30 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 10.21649432182312 seconds +Time: 10.300970077514648 seconds -[16.44, 16.28, 16.32, 16.56, 16.56, 16.6, 16.76, 16.76, 16.72, 16.68] -[16.52, 16.48, 16.6, 20.0, 22.08, 24.8, 25.56, 23.6, 23.04, 20.28, 20.28, 20.04, 20.16, 20.2] -14.251931190490723 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4599, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.21649432182312, 'TIME_S_1KI': 2.2214599525599303, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 276.3690100479126, 'W': 19.391688491473598} -[16.44, 16.28, 16.32, 16.56, 16.56, 16.6, 16.76, 16.76, 16.72, 16.68, 16.4, 16.48, 16.68, 16.36, 16.44, 16.64, 16.64, 16.8, 16.8, 16.76] -298.53999999999996 -14.926999999999998 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4599, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.21649432182312, 'TIME_S_1KI': 2.2214599525599303, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 276.3690100479126, 'W': 19.391688491473598, 'J_1KI': 60.09328333287945, 'W_1KI': 4.2165010853389, 'W_D': 4.4646884914736, 'J_D': 63.630433167457575, 'W_D_1KI': 0.9707954971675582, 'J_D_1KI': 0.21108838816428752} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 7, 16, ..., 99974, 99990, + 100000]), + col_indices=tensor([ 582, 1691, 2515, ..., 7345, 7996, 8295]), + values=tensor([0.8177, 0.9283, 0.6030, ..., 0.2647, 0.3717, 0.8633]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.2209, 0.7260, 0.0429, ..., 0.4887, 0.7834, 0.0043]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.300970077514648 seconds + +[20.48, 20.64, 20.44, 20.28, 20.28, 20.6, 20.72, 20.68, 20.68, 20.48] +[20.4, 20.36, 23.16, 24.08, 27.0, 27.6, 28.72, 28.72, 26.24, 26.28, 24.44, 24.28, 24.24, 24.08] +14.201388835906982 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4519, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.300970077514648, 'TIME_S_1KI': 2.279479990598506, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 332.2094431686402, 'W': 23.392743273719635} +[20.48, 20.64, 20.44, 20.28, 20.28, 20.6, 20.72, 20.68, 20.68, 20.48, 20.52, 20.6, 20.68, 20.64, 20.64, 20.52, 20.52, 20.48, 20.68, 20.72] +370.18 +18.509 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4519, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.300970077514648, 'TIME_S_1KI': 2.279479990598506, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 332.2094431686402, 'W': 23.392743273719635, 'J_1KI': 73.51392856132777, 'W_1KI': 5.176530930232272, 'W_D': 4.8837432737196345, 'J_D': 69.35593720483783, 'W_D_1KI': 1.0807132714582062, 'J_D_1KI': 0.2391487655362262} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.01.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.01.json index d799afd..6d63757 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.01.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.01.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 21.366477489471436, "TIME_S_1KI": 21.366477489471436, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 489.4337509441374, "W": 19.31282985940674, "J_1KI": 489.4337509441374, "W_1KI": 19.31282985940674, "W_D": 4.539829859406739, "J_D": 115.05025275492645, "W_D_1KI": 4.539829859406739, "J_D_1KI": 4.539829859406739} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 490, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.49430251121521, "TIME_S_1KI": 21.416943900439204, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 322.6961988353729, "W": 22.678695903983957, "J_1KI": 658.5636710925977, "W_1KI": 46.283052865273376, "W_D": 4.3196959039839555, "J_D": 61.46515012335775, "W_D_1KI": 8.815705926497868, "J_D_1KI": 17.991236584689528} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.01.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.01.output index 7e1dd33..8697ed9 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.01.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.01.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.01 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 21.366477489471436} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 0.01 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 2.140977382659912} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 93, 201, ..., 999801, - 999899, 1000000]), - col_indices=tensor([ 106, 113, 159, ..., 9934, 9937, 9966]), - values=tensor([0.1214, 0.4144, 0.1866, ..., 0.5194, 0.7412, 0.0565]), +tensor(crow_indices=tensor([ 0, 103, 212, ..., 999798, + 999901, 1000000]), + col_indices=tensor([ 63, 140, 146, ..., 9691, 9771, 9918]), + values=tensor([0.8748, 0.2571, 0.8906, ..., 0.1504, 0.2890, 0.7825]), size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.4749, 0.5757, 0.5717, ..., 0.5026, 0.5396, 0.1085]) +tensor([0.5882, 0.3416, 0.1892, ..., 0.3016, 0.5220, 0.0626]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,16 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 1000000 Density: 0.01 -Time: 21.366477489471436 seconds +Time: 2.140977382659912 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 490 -ss 10000 -sd 0.01 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.49430251121521} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 93, 201, ..., 999801, - 999899, 1000000]), - col_indices=tensor([ 106, 113, 159, ..., 9934, 9937, 9966]), - values=tensor([0.1214, 0.4144, 0.1866, ..., 0.5194, 0.7412, 0.0565]), +tensor(crow_indices=tensor([ 0, 113, 202, ..., 999820, + 999916, 1000000]), + col_indices=tensor([ 2, 35, 39, ..., 9519, 9605, 9656]), + values=tensor([0.0992, 0.7724, 0.9238, ..., 0.3639, 0.9758, 0.0697]), size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.4749, 0.5757, 0.5717, ..., 0.5026, 0.5396, 0.1085]) +tensor([0.2199, 0.1288, 0.7757, ..., 0.1449, 0.2950, 0.2928]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -33,13 +36,30 @@ Rows: 10000 Size: 100000000 NNZ: 1000000 Density: 0.01 -Time: 21.366477489471436 seconds +Time: 10.49430251121521 seconds -[16.76, 16.8, 16.72, 16.6, 16.36, 16.12, 16.0, 16.04, 16.28, 16.36] -[16.48, 16.48, 16.36, 17.76, 18.4, 22.04, 22.96, 22.96, 22.68, 21.88, 20.28, 20.28, 20.36, 20.0, 20.0, 19.8, 19.72, 19.84, 19.96, 20.12, 20.32, 20.36, 20.56, 20.72, 20.6] -25.34241509437561 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 21.366477489471436, 'TIME_S_1KI': 21.366477489471436, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 489.4337509441374, 'W': 19.31282985940674} -[16.76, 16.8, 16.72, 16.6, 16.36, 16.12, 16.0, 16.04, 16.28, 16.36, 16.6, 16.56, 16.28, 16.28, 16.28, 16.24, 16.56, 16.68, 16.52, 16.56] -295.46000000000004 -14.773000000000001 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 21.366477489471436, 'TIME_S_1KI': 21.366477489471436, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 489.4337509441374, 'W': 19.31282985940674, 'J_1KI': 489.4337509441374, 'W_1KI': 19.31282985940674, 'W_D': 4.539829859406739, 'J_D': 115.05025275492645, 'W_D_1KI': 4.539829859406739, 'J_D_1KI': 4.539829859406739} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 113, 202, ..., 999820, + 999916, 1000000]), + col_indices=tensor([ 2, 35, 39, ..., 9519, 9605, 9656]), + values=tensor([0.0992, 0.7724, 0.9238, ..., 0.3639, 0.9758, 0.0697]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.2199, 0.1288, 0.7757, ..., 0.1449, 0.2950, 0.2928]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.49430251121521 seconds + +[20.68, 20.72, 20.56, 20.52, 20.48, 20.2, 19.92, 19.96, 19.92, 19.92] +[19.96, 20.36, 20.52, 22.04, 24.08, 26.92, 27.96, 27.96, 26.64, 25.04, 24.52, 24.4, 24.4, 24.52] +14.229045629501343 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 490, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.49430251121521, 'TIME_S_1KI': 21.416943900439204, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 322.6961988353729, 'W': 22.678695903983957} +[20.68, 20.72, 20.56, 20.52, 20.48, 20.2, 19.92, 19.96, 19.92, 19.92, 20.44, 20.36, 20.4, 20.52, 20.4, 20.64, 20.76, 20.52, 20.52, 20.52] +367.18 +18.359 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 490, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.49430251121521, 'TIME_S_1KI': 21.416943900439204, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 322.6961988353729, 'W': 22.678695903983957, 'J_1KI': 658.5636710925977, 'W_1KI': 46.283052865273376, 'W_D': 4.3196959039839555, 'J_D': 61.46515012335775, 'W_D_1KI': 8.815705926497868, 'J_D_1KI': 17.991236584689528} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.05.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.05.json index c5bc81a..d53721b 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.05.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.05.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 106.56549715995789, "TIME_S_1KI": 106.56549715995789, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2685.1749729537964, "W": 24.108298502680796, "J_1KI": 2685.1749729537964, "W_1KI": 24.108298502680796, "W_D": 5.534298502680798, "J_D": 616.4084881644253, "W_D_1KI": 5.534298502680798, "J_D_1KI": 5.534298502680798} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.575754880905151, "TIME_S_1KI": 105.75754880905151, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 357.48722974777223, "W": 23.357767084816274, "J_1KI": 3574.8722974777224, "W_1KI": 233.57767084816274, "W_D": 4.891767084816273, "J_D": 74.86778412389756, "W_D_1KI": 48.91767084816273, "J_D_1KI": 489.1767084816273} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.05.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.05.output index 1729b52..5bc40f5 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.05.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.05 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 106.56549715995789} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 0.05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.575754880905151} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 506, 1012, ..., 4998963, - 4999486, 5000000]), - col_indices=tensor([ 12, 18, 20, ..., 9951, 9962, 9995]), - values=tensor([0.8717, 0.8420, 0.2460, ..., 0.1141, 0.5771, 0.8192]), +tensor(crow_indices=tensor([ 0, 505, 1011, ..., 4998999, + 4999505, 5000000]), + col_indices=tensor([ 17, 34, 93, ..., 9927, 9945, 9977]), + values=tensor([0.3942, 0.9668, 0.2842, ..., 0.3748, 0.5474, 0.6270]), size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.3519, 0.6034, 0.3549, ..., 0.4924, 0.0253, 0.7056]) +tensor([0.3102, 0.7326, 0.1847, ..., 0.2267, 0.2009, 0.0941]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,16 +16,16 @@ Rows: 10000 Size: 100000000 NNZ: 5000000 Density: 0.05 -Time: 106.56549715995789 seconds +Time: 10.575754880905151 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 506, 1012, ..., 4998963, - 4999486, 5000000]), - col_indices=tensor([ 12, 18, 20, ..., 9951, 9962, 9995]), - values=tensor([0.8717, 0.8420, 0.2460, ..., 0.1141, 0.5771, 0.8192]), +tensor(crow_indices=tensor([ 0, 505, 1011, ..., 4998999, + 4999505, 5000000]), + col_indices=tensor([ 17, 34, 93, ..., 9927, 9945, 9977]), + values=tensor([0.3942, 0.9668, 0.2842, ..., 0.3748, 0.5474, 0.6270]), size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.3519, 0.6034, 0.3549, ..., 0.4924, 0.0253, 0.7056]) +tensor([0.3102, 0.7326, 0.1847, ..., 0.2267, 0.2009, 0.0941]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -33,13 +33,13 @@ Rows: 10000 Size: 100000000 NNZ: 5000000 Density: 0.05 -Time: 106.56549715995789 seconds +Time: 10.575754880905151 seconds -[20.96, 20.76, 20.72, 20.52, 20.44, 20.56, 20.84, 20.84, 20.6, 20.6] -[20.64, 20.64, 21.08, 23.16, 24.52, 27.56, 29.68, 29.72, 28.4, 27.2, 27.2, 24.36, 24.36, 24.36, 24.84, 24.88, 24.76, 24.96, 24.72, 24.4, 24.36, 24.16, 24.12, 24.12, 24.24, 24.64, 24.72, 24.76, 24.88, 24.76, 24.4, 24.4, 24.32, 24.32, 24.24, 24.24, 24.44, 24.36, 24.16, 24.16, 24.2, 24.24, 24.4, 24.68, 24.56, 24.6, 24.52, 24.48, 24.48, 24.24, 24.36, 24.36, 24.44, 24.52, 24.52, 24.32, 24.44, 24.28, 24.04, 23.96, 23.96, 24.04, 24.16, 24.28, 24.36, 24.44, 24.48, 24.56, 24.64, 24.56, 24.48, 24.24, 24.24, 24.24, 24.2, 24.28, 24.36, 24.2, 24.4, 24.12, 24.16, 24.24, 24.48, 24.48, 24.8, 24.8, 24.92, 24.92, 24.96, 24.84, 24.72, 24.88, 24.72, 24.68, 24.48, 24.28, 24.0, 24.04, 24.04, 24.16, 24.32, 24.28, 24.32, 24.32, 24.48, 24.4, 24.68, 24.8, 24.64, 24.48] -111.37969660758972 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 106.56549715995789, 'TIME_S_1KI': 106.56549715995789, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2685.1749729537964, 'W': 24.108298502680796} -[20.96, 20.76, 20.72, 20.52, 20.44, 20.56, 20.84, 20.84, 20.6, 20.6, 20.64, 20.6, 20.6, 20.72, 20.8, 20.6, 20.52, 20.28, 20.68, 20.6] -371.47999999999996 -18.573999999999998 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 106.56549715995789, 'TIME_S_1KI': 106.56549715995789, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2685.1749729537964, 'W': 24.108298502680796, 'J_1KI': 2685.1749729537964, 'W_1KI': 24.108298502680796, 'W_D': 5.534298502680798, 'J_D': 616.4084881644253, 'W_D_1KI': 5.534298502680798, 'J_D_1KI': 5.534298502680798} +[20.44, 20.44, 20.44, 20.52, 20.44, 20.4, 20.32, 20.2, 20.08, 20.32] +[20.32, 20.16, 21.08, 22.56, 24.44, 27.6, 27.6, 29.28, 28.88, 28.12, 25.16, 24.16, 24.12, 24.4, 24.56] +15.30485463142395 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.575754880905151, 'TIME_S_1KI': 105.75754880905151, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 357.48722974777223, 'W': 23.357767084816274} +[20.44, 20.44, 20.44, 20.52, 20.44, 20.4, 20.32, 20.2, 20.08, 20.32, 20.52, 20.56, 20.76, 20.76, 20.84, 20.84, 20.72, 20.56, 20.56, 20.48] +369.32 +18.466 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.575754880905151, 'TIME_S_1KI': 105.75754880905151, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 357.48722974777223, 'W': 23.357767084816274, 'J_1KI': 3574.8722974777224, 'W_1KI': 233.57767084816274, 'W_D': 4.891767084816273, 'J_D': 74.86778412389756, 'W_D_1KI': 48.91767084816273, 'J_D_1KI': 489.1767084816273} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.1.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.1.json index f711a9d..d4908f3 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.1.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.1.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 213.33555269241333, "TIME_S_1KI": 213.33555269241333, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 5226.200544624329, "W": 24.133137838334523, "J_1KI": 5226.200544624329, "W_1KI": 24.133137838334523, "W_D": 5.8551378383345245, "J_D": 1267.97123376751, "W_D_1KI": 5.8551378383345245, "J_D_1KI": 5.8551378383345245} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 21.58586049079895, "TIME_S_1KI": 215.8586049079895, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 695.2596657943726, "W": 24.42843676698333, "J_1KI": 6952.596657943726, "W_1KI": 244.2843676698333, "W_D": 6.1854367669833294, "J_D": 176.04420374608034, "W_D_1KI": 61.854367669833294, "J_D_1KI": 618.543676698333} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.1.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.1.output index dc4c095..b9e17f1 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.1.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.1.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.1 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 213.33555269241333} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 0.1 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 21.58586049079895} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1053, 2094, ..., 9997974, - 9998964, 10000000]), - col_indices=tensor([ 7, 12, 13, ..., 9961, 9986, 9993]), - values=tensor([0.1704, 0.0678, 0.1172, ..., 0.2208, 0.7370, 0.2820]), +tensor(crow_indices=tensor([ 0, 983, 1945, ..., 9997995, + 9998975, 10000000]), + col_indices=tensor([ 7, 29, 32, ..., 9986, 9994, 9999]), + values=tensor([0.5805, 0.0545, 0.7779, ..., 0.8799, 0.6314, 0.5149]), size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.7446, 0.0915, 0.8679, ..., 0.5982, 0.0596, 0.6566]) +tensor([0.1246, 0.2739, 0.0084, ..., 0.7975, 0.3318, 0.0977]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,16 +16,16 @@ Rows: 10000 Size: 100000000 NNZ: 10000000 Density: 0.1 -Time: 213.33555269241333 seconds +Time: 21.58586049079895 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1053, 2094, ..., 9997974, - 9998964, 10000000]), - col_indices=tensor([ 7, 12, 13, ..., 9961, 9986, 9993]), - values=tensor([0.1704, 0.0678, 0.1172, ..., 0.2208, 0.7370, 0.2820]), +tensor(crow_indices=tensor([ 0, 983, 1945, ..., 9997995, + 9998975, 10000000]), + col_indices=tensor([ 7, 29, 32, ..., 9986, 9994, 9999]), + values=tensor([0.5805, 0.0545, 0.7779, ..., 0.8799, 0.6314, 0.5149]), size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.7446, 0.0915, 0.8679, ..., 0.5982, 0.0596, 0.6566]) +tensor([0.1246, 0.2739, 0.0084, ..., 0.7975, 0.3318, 0.0977]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -33,13 +33,13 @@ Rows: 10000 Size: 100000000 NNZ: 10000000 Density: 0.1 -Time: 213.33555269241333 seconds +Time: 21.58586049079895 seconds -[20.4, 20.4, 20.4, 20.36, 20.36, 20.16, 20.32, 20.2, 20.2, 20.28] -[20.32, 20.48, 21.4, 22.68, 24.52, 24.52, 27.12, 28.4, 28.88, 28.48, 27.56, 25.92, 24.36, 24.48, 24.52, 24.56, 24.56, 24.24, 24.24, 24.2, 23.96, 23.92, 24.16, 24.36, 24.48, 24.52, 24.56, 24.56, 24.36, 24.28, 24.28, 24.48, 24.36, 24.36, 24.6, 24.36, 24.24, 24.2, 24.24, 24.12, 24.16, 24.12, 24.24, 24.24, 24.36, 24.48, 24.48, 24.56, 24.4, 24.4, 24.24, 24.56, 24.84, 24.76, 24.76, 24.76, 24.84, 24.52, 24.64, 24.64, 24.64, 24.64, 24.52, 24.52, 24.52, 24.4, 24.36, 24.36, 24.36, 24.32, 24.24, 24.44, 24.2, 24.08, 24.2, 24.0, 23.92, 23.88, 23.84, 24.08, 24.08, 24.4, 24.6, 24.72, 24.8, 24.68, 24.4, 24.36, 24.24, 24.12, 24.16, 24.2, 24.04, 24.04, 24.0, 24.12, 24.32, 24.36, 24.32, 24.4, 24.16, 24.08, 24.12, 24.32, 24.32, 24.32, 24.44, 24.56, 24.32, 24.36, 24.56, 24.68, 24.44, 24.48, 24.52, 24.44, 24.56, 24.56, 24.68, 24.6, 24.2, 24.6, 24.16, 24.24, 24.32, 24.56, 24.28, 24.48, 24.8, 24.68, 24.68, 24.84, 24.84, 24.84, 24.88, 24.56, 24.84, 24.68, 24.48, 24.76, 24.64, 24.64, 24.64, 24.52, 24.8, 24.68, 24.52, 24.68, 24.6, 24.44, 24.68, 24.76, 24.76, 24.64, 24.6, 24.6, 24.56, 24.44, 24.4, 24.52, 24.48, 24.44, 24.44, 24.32, 24.44, 24.28, 24.44, 24.44, 24.36, 24.16, 24.04, 24.0, 24.12, 24.0, 24.12, 24.4, 24.4, 24.32, 24.28, 24.28, 24.28, 24.2, 24.32, 24.32, 24.4, 24.6, 24.44, 24.56, 24.76, 24.84, 24.72, 24.72, 24.72, 24.56, 24.52, 24.56, 24.64, 24.6, 24.36, 24.44, 24.4, 24.4, 24.56, 24.72, 24.72, 24.6, 24.48, 24.36, 24.24, 24.24, 24.28, 24.44, 24.56, 24.56] -216.55702543258667 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 213.33555269241333, 'TIME_S_1KI': 213.33555269241333, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 5226.200544624329, 'W': 24.133137838334523} -[20.4, 20.4, 20.4, 20.36, 20.36, 20.16, 20.32, 20.2, 20.2, 20.28, 20.2, 19.96, 20.08, 20.24, 20.24, 20.28, 20.48, 20.6, 20.64, 20.4] -365.55999999999995 -18.278 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 213.33555269241333, 'TIME_S_1KI': 213.33555269241333, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 5226.200544624329, 'W': 24.133137838334523, 'J_1KI': 5226.200544624329, 'W_1KI': 24.133137838334523, 'W_D': 5.8551378383345245, 'J_D': 1267.97123376751, 'W_D_1KI': 5.8551378383345245, 'J_D_1KI': 5.8551378383345245} +[20.44, 20.24, 20.32, 20.24, 20.16, 20.52, 20.56, 20.68, 20.88, 21.04] +[20.8, 20.6, 23.72, 23.72, 26.04, 27.56, 30.88, 32.68, 29.8, 29.08, 27.52, 26.28, 24.44, 24.48, 24.48, 24.2, 24.2, 24.2, 24.12, 24.12, 24.28, 24.28, 24.4, 24.32, 24.16, 24.0, 24.08, 24.16] +28.461078882217407 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 21.58586049079895, 'TIME_S_1KI': 215.8586049079895, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 695.2596657943726, 'W': 24.42843676698333} +[20.44, 20.24, 20.32, 20.24, 20.16, 20.52, 20.56, 20.68, 20.88, 21.04, 19.8, 19.8, 19.8, 19.96, 20.0, 20.08, 20.12, 20.36, 20.32, 20.36] +364.86 +18.243000000000002 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 21.58586049079895, 'TIME_S_1KI': 215.8586049079895, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 695.2596657943726, 'W': 24.42843676698333, 'J_1KI': 6952.596657943726, 'W_1KI': 244.2843676698333, 'W_D': 6.1854367669833294, 'J_D': 176.04420374608034, 'W_D_1KI': 61.854367669833294, 'J_D_1KI': 618.543676698333} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.2.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.2.json index 1e2c2f4..00303c3 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.2.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.2.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 424.4943735599518, "TIME_S_1KI": 424.4943735599518, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 10473.538437499996, "W": 24.301530579701517, "J_1KI": 10473.538437499996, "W_1KI": 24.301530579701517, "W_D": 5.865530579701517, "J_D": 2527.942006835934, "W_D_1KI": 5.865530579701517, "J_D_1KI": 5.865530579701517} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 42.006776571273804, "TIME_S_1KI": 420.06776571273804, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1323.3857918548583, "W": 24.65839535462019, "J_1KI": 13233.857918548583, "W_1KI": 246.58395354620188, "W_D": 6.256395354620192, "J_D": 335.77305422592167, "W_D_1KI": 62.56395354620192, "J_D_1KI": 625.6395354620192} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.2.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.2.output index a51b684..7c8bead 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.2.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.2.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.2 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 424.4943735599518} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 0.2 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 42.006776571273804} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1949, 3966, ..., 19996026, - 19998069, 20000000]), - col_indices=tensor([ 7, 21, 26, ..., 9986, 9990, 9999]), - values=tensor([0.4961, 0.8613, 0.9281, ..., 0.1556, 0.7430, 0.8560]), +tensor(crow_indices=tensor([ 0, 1950, 3929, ..., 19995954, + 19997973, 20000000]), + col_indices=tensor([ 0, 10, 17, ..., 9977, 9980, 9990]), + values=tensor([0.1470, 0.8510, 0.9446, ..., 0.3735, 0.6466, 0.3885]), size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) -tensor([0.5082, 0.3131, 0.5448, ..., 0.5922, 0.3726, 0.5476]) +tensor([0.1499, 0.7404, 0.4886, ..., 0.1182, 0.4158, 0.3615]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,16 +16,16 @@ Rows: 10000 Size: 100000000 NNZ: 20000000 Density: 0.2 -Time: 424.4943735599518 seconds +Time: 42.006776571273804 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1949, 3966, ..., 19996026, - 19998069, 20000000]), - col_indices=tensor([ 7, 21, 26, ..., 9986, 9990, 9999]), - values=tensor([0.4961, 0.8613, 0.9281, ..., 0.1556, 0.7430, 0.8560]), +tensor(crow_indices=tensor([ 0, 1950, 3929, ..., 19995954, + 19997973, 20000000]), + col_indices=tensor([ 0, 10, 17, ..., 9977, 9980, 9990]), + values=tensor([0.1470, 0.8510, 0.9446, ..., 0.3735, 0.6466, 0.3885]), size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) -tensor([0.5082, 0.3131, 0.5448, ..., 0.5922, 0.3726, 0.5476]) +tensor([0.1499, 0.7404, 0.4886, ..., 0.1182, 0.4158, 0.3615]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -33,13 +33,13 @@ Rows: 10000 Size: 100000000 NNZ: 20000000 Density: 0.2 -Time: 424.4943735599518 seconds +Time: 42.006776571273804 seconds -[20.56, 20.4, 20.48, 20.48, 20.56, 20.8, 20.96, 20.68, 20.68, 20.52] -[20.4, 20.4, 20.84, 23.24, 23.96, 25.96, 29.08, 30.08, 29.8, 30.04, 30.84, 27.8, 27.8, 27.2, 26.24, 24.6, 24.44, 24.32, 24.24, 24.32, 24.2, 24.44, 24.6, 24.6, 24.72, 24.72, 24.84, 24.88, 24.92, 24.96, 24.6, 24.48, 24.36, 24.16, 24.36, 24.64, 24.68, 24.68, 24.72, 24.68, 24.52, 24.52, 24.4, 24.44, 24.24, 24.36, 24.4, 24.48, 24.44, 24.44, 24.44, 24.24, 24.28, 24.24, 24.44, 24.4, 24.28, 24.24, 24.28, 24.24, 24.48, 24.84, 24.84, 24.56, 24.64, 24.6, 24.88, 24.68, 24.56, 24.56, 24.4, 24.4, 24.32, 24.36, 24.44, 24.44, 24.36, 24.48, 24.64, 24.8, 24.68, 24.92, 24.88, 24.76, 24.88, 24.68, 24.36, 24.36, 24.4, 24.44, 24.68, 24.76, 24.56, 24.64, 24.24, 24.32, 24.72, 24.6, 24.96, 24.96, 25.12, 25.04, 24.44, 24.36, 24.28, 24.16, 24.4, 24.44, 24.56, 24.68, 24.72, 24.48, 24.48, 24.4, 24.36, 24.24, 24.2, 24.52, 24.64, 24.84, 24.8, 24.56, 24.28, 24.16, 24.16, 24.16, 24.28, 24.4, 24.6, 24.64, 24.52, 24.56, 24.44, 24.36, 24.56, 24.84, 24.64, 24.64, 24.84, 24.72, 24.48, 24.6, 24.64, 24.68, 24.6, 24.4, 24.4, 24.16, 24.12, 24.12, 24.28, 24.4, 24.48, 24.76, 24.6, 24.44, 24.28, 24.32, 24.24, 24.32, 24.4, 24.4, 24.56, 24.48, 24.48, 24.28, 24.68, 24.52, 24.32, 24.4, 24.56, 24.28, 24.4, 24.72, 24.72, 24.76, 24.76, 24.72, 24.64, 24.56, 24.6, 24.56, 24.64, 24.48, 24.44, 24.4, 24.4, 24.36, 24.32, 24.48, 24.48, 24.48, 24.32, 24.4, 24.08, 24.16, 24.28, 24.44, 24.48, 24.48, 24.6, 24.56, 24.44, 24.4, 24.44, 24.44, 24.64, 24.72, 24.44, 24.48, 24.32, 24.32, 24.4, 24.28, 24.52, 24.56, 24.68, 24.68, 24.72, 24.88, 24.96, 25.04, 24.84, 24.84, 24.84, 24.6, 24.64, 24.6, 24.6, 24.6, 24.36, 24.28, 24.32, 24.48, 24.48, 24.44, 24.44, 24.56, 24.56, 24.84, 24.72, 24.8, 24.72, 24.6, 24.56, 24.68, 24.88, 24.88, 24.88, 24.88, 24.48, 24.48, 24.32, 24.32, 24.36, 24.36, 24.44, 24.32, 24.36, 24.44, 24.32, 24.32, 24.28, 24.64, 24.8, 24.8, 24.96, 24.76, 24.8, 24.68, 24.52, 24.64, 24.48, 24.48, 24.56, 24.48, 24.32, 24.28, 24.32, 24.36, 24.28, 24.36, 24.4, 24.28, 24.36, 24.36, 24.32, 24.16, 24.04, 24.2, 24.2, 24.32, 24.36, 24.52, 24.36, 24.44, 24.56, 24.64, 24.64, 24.84, 24.8, 24.8, 24.64, 24.48, 24.52, 24.4, 24.6, 24.32, 24.24, 24.2, 24.2, 24.16, 24.2, 24.56, 24.56, 24.68, 24.8, 24.8, 24.68, 24.64, 24.68, 24.6, 24.64, 24.64, 24.6, 24.6, 24.4, 24.28, 24.36, 24.4, 24.48, 24.44, 24.48, 24.52, 24.36, 24.36, 24.44, 24.32, 24.24, 24.44, 24.44, 24.68, 24.56, 24.4, 24.52, 24.4, 24.24, 24.24, 24.4, 24.44, 24.48, 24.6, 24.76, 24.76, 24.64, 24.72, 24.44, 24.48, 24.6, 24.56, 24.56, 24.64, 24.72, 24.56, 24.4, 24.24, 24.2, 24.16, 24.08, 24.04, 24.12, 24.32, 24.32, 24.36, 24.36, 24.6, 24.56, 24.52, 24.76, 24.6, 24.68, 24.56, 24.76, 24.8, 24.76, 24.76, 24.88, 24.64, 24.76, 24.52, 24.44, 24.2, 24.68, 24.48, 24.84, 25.0, 25.12, 25.12, 24.96, 24.84, 24.52, 24.28, 24.2, 24.48, 24.48, 24.52, 24.52, 24.56, 24.6, 24.6, 24.76, 24.76, 25.0, 24.88, 24.92, 24.88, 24.64, 24.72, 24.64, 24.68, 24.68, 24.56, 24.56, 24.36, 24.28, 24.32] -430.982666015625 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 424.4943735599518, 'TIME_S_1KI': 424.4943735599518, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 10473.538437499996, 'W': 24.301530579701517} -[20.56, 20.4, 20.48, 20.48, 20.56, 20.8, 20.96, 20.68, 20.68, 20.52, 20.2, 20.36, 20.48, 20.56, 20.28, 20.2, 20.2, 20.24, 20.52, 20.4] -368.72 -18.436 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 424.4943735599518, 'TIME_S_1KI': 424.4943735599518, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 10473.538437499996, 'W': 24.301530579701517, 'J_1KI': 10473.538437499996, 'W_1KI': 24.301530579701517, 'W_D': 5.865530579701517, 'J_D': 2527.942006835934, 'W_D_1KI': 5.865530579701517, 'J_D_1KI': 5.865530579701517} +[20.44, 20.28, 20.36, 20.28, 20.32, 20.16, 20.32, 20.32, 20.52, 20.56] +[20.6, 20.56, 20.76, 24.64, 26.0, 26.92, 30.76, 29.04, 28.68, 29.52, 30.24, 30.24, 27.76, 27.48, 26.4, 24.64, 24.48, 24.32, 24.28, 24.28, 24.28, 24.08, 24.28, 24.28, 24.36, 24.2, 24.24, 24.6, 24.64, 24.52, 24.72, 24.48, 24.64, 24.4, 24.52, 24.52, 24.36, 24.4, 24.4, 24.4, 24.48, 24.68, 24.76, 24.56, 24.36, 24.16, 24.24, 24.4, 24.4, 24.76, 24.88, 24.96, 24.92] +53.668771743774414 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 42.006776571273804, 'TIME_S_1KI': 420.06776571273804, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1323.3857918548583, 'W': 24.65839535462019} +[20.44, 20.28, 20.36, 20.28, 20.32, 20.16, 20.32, 20.32, 20.52, 20.56, 20.12, 19.92, 20.0, 20.28, 20.44, 20.72, 20.96, 21.04, 21.04, 21.04] +368.03999999999996 +18.401999999999997 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 42.006776571273804, 'TIME_S_1KI': 420.06776571273804, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1323.3857918548583, 'W': 24.65839535462019, 'J_1KI': 13233.857918548583, 'W_1KI': 246.58395354620188, 'W_D': 6.256395354620192, 'J_D': 335.77305422592167, 'W_D_1KI': 62.56395354620192, 'J_D_1KI': 625.6395354620192} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.3.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.3.json index 25c5266..efd7bc8 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.3.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.3.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 637.8268127441406, "TIME_S_1KI": 637.8268127441406, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 15996.775521488189, "W": 24.370595996658984, "J_1KI": 15996.775521488189, "W_1KI": 24.370595996658984, "W_D": 5.917595996658985, "J_D": 3884.2896906743035, "W_D_1KI": 5.917595996658985, "J_D_1KI": 5.917595996658985} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 67.20304369926453, "TIME_S_1KI": 672.0304369926453, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1846.4787199783327, "W": 24.29422238106021, "J_1KI": 18464.787199783328, "W_1KI": 242.9422238106021, "W_D": 5.818222381060206, "J_D": 442.2131174325942, "W_D_1KI": 58.18222381060206, "J_D_1KI": 581.8222381060207} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.3.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.3.output index 294dece..f1c9a57 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.3.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.3.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.3 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 637.8268127441406} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 0.3 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 67.20304369926453} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2961, 5942, ..., 29993896, - 29996981, 30000000]), - col_indices=tensor([ 2, 5, 14, ..., 9994, 9995, 9996]), - values=tensor([0.0155, 0.6045, 0.5805, ..., 0.2136, 0.4050, 0.0107]), +tensor(crow_indices=tensor([ 0, 2926, 5920, ..., 29993999, + 29997022, 30000000]), + col_indices=tensor([ 1, 4, 6, ..., 9978, 9982, 9992]), + values=tensor([0.3929, 0.6592, 0.7367, ..., 0.3321, 0.3012, 0.1502]), size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) -tensor([0.2173, 0.9101, 0.0107, ..., 0.2401, 0.6161, 0.6478]) +tensor([0.6782, 0.5388, 0.0901, ..., 0.7339, 0.4235, 0.1483]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,16 +16,16 @@ Rows: 10000 Size: 100000000 NNZ: 30000000 Density: 0.3 -Time: 637.8268127441406 seconds +Time: 67.20304369926453 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2961, 5942, ..., 29993896, - 29996981, 30000000]), - col_indices=tensor([ 2, 5, 14, ..., 9994, 9995, 9996]), - values=tensor([0.0155, 0.6045, 0.5805, ..., 0.2136, 0.4050, 0.0107]), +tensor(crow_indices=tensor([ 0, 2926, 5920, ..., 29993999, + 29997022, 30000000]), + col_indices=tensor([ 1, 4, 6, ..., 9978, 9982, 9992]), + values=tensor([0.3929, 0.6592, 0.7367, ..., 0.3321, 0.3012, 0.1502]), size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) -tensor([0.2173, 0.9101, 0.0107, ..., 0.2401, 0.6161, 0.6478]) +tensor([0.6782, 0.5388, 0.0901, ..., 0.7339, 0.4235, 0.1483]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -33,13 +33,13 @@ Rows: 10000 Size: 100000000 NNZ: 30000000 Density: 0.3 -Time: 637.8268127441406 seconds +Time: 67.20304369926453 seconds -[20.6, 20.64, 20.76, 20.6, 20.44, 20.44, 20.48, 20.64, 20.64, 20.88] -[20.96, 21.0, 21.0, 25.76, 26.8, 28.52, 29.6, 31.28, 31.2, 30.36, 31.16, 30.84, 30.84, 29.04, 28.4, 28.24, 27.2, 26.12, 24.68, 24.6, 24.44, 24.4, 24.4, 24.64, 24.72, 24.72, 24.96, 24.92, 24.64, 24.76, 24.76, 25.12, 25.12, 25.2, 24.92, 24.68, 24.48, 24.48, 24.6, 24.52, 24.44, 24.6, 24.48, 24.28, 24.24, 24.2, 24.32, 24.48, 24.6, 24.6, 24.56, 24.48, 24.4, 24.24, 24.28, 24.52, 24.4, 24.56, 24.56, 24.32, 24.48, 24.48, 24.48, 24.4, 24.64, 24.84, 24.76, 24.76, 24.8, 24.64, 24.56, 24.52, 24.28, 24.4, 24.4, 24.48, 24.72, 24.76, 24.68, 24.76, 24.76, 24.64, 24.64, 24.36, 24.2, 24.36, 24.36, 24.28, 24.48, 24.6, 24.4, 24.24, 24.4, 24.32, 24.36, 24.4, 24.52, 24.12, 24.36, 24.36, 24.6, 24.72, 24.56, 24.92, 24.48, 24.56, 24.56, 24.56, 24.16, 24.24, 24.24, 24.24, 24.36, 24.4, 24.56, 24.52, 24.72, 24.68, 24.8, 24.8, 24.76, 24.76, 24.64, 24.64, 24.64, 24.68, 24.52, 24.48, 24.56, 24.4, 24.6, 24.56, 24.6, 24.76, 24.76, 24.84, 24.84, 25.0, 24.92, 24.68, 24.72, 24.68, 24.84, 24.84, 24.72, 24.8, 24.64, 24.52, 24.52, 24.76, 24.8, 24.64, 24.6, 24.6, 24.56, 24.8, 25.0, 24.92, 24.8, 24.76, 24.52, 24.52, 24.44, 24.64, 24.76, 24.76, 24.64, 24.36, 24.36, 24.52, 24.56, 24.72, 24.96, 24.96, 24.76, 24.72, 24.84, 24.68, 24.52, 24.76, 24.68, 24.44, 24.52, 24.48, 24.52, 24.92, 24.92, 24.76, 24.52, 24.8, 24.68, 24.52, 24.72, 24.92, 24.6, 24.48, 24.44, 24.52, 24.52, 24.24, 24.4, 24.4, 24.4, 24.24, 24.28, 24.48, 24.44, 24.48, 24.8, 24.64, 24.64, 24.72, 24.8, 24.64, 24.52, 24.48, 24.28, 24.24, 24.2, 24.36, 24.4, 24.44, 24.44, 24.44, 24.72, 24.72, 24.76, 24.72, 24.8, 24.48, 24.24, 24.36, 24.36, 24.4, 24.64, 24.64, 24.76, 24.64, 24.56, 24.24, 24.32, 24.32, 24.4, 24.64, 24.76, 24.76, 24.92, 24.92, 24.96, 25.04, 24.76, 25.0, 24.8, 24.76, 24.72, 24.52, 24.52, 24.44, 24.6, 24.6, 24.6, 24.6, 24.64, 24.68, 24.68, 24.84, 25.0, 25.0, 24.88, 24.72, 24.56, 24.4, 24.4, 24.48, 24.52, 24.56, 24.44, 24.64, 24.56, 24.44, 24.36, 24.56, 24.72, 24.64, 24.92, 24.92, 24.84, 24.64, 24.68, 24.64, 24.68, 24.68, 24.8, 24.88, 24.88, 24.76, 24.96, 24.96, 24.76, 24.8, 24.64, 24.84, 24.68, 24.56, 24.72, 24.56, 24.56, 24.44, 24.28, 24.28, 24.36, 24.2, 24.04, 24.2, 24.32, 24.32, 24.52, 24.52, 24.4, 24.48, 24.72, 24.68, 24.68, 24.6, 24.68, 24.52, 24.52, 24.72, 24.64, 24.68, 24.8, 24.48, 24.6, 24.84, 24.84, 24.56, 24.56, 24.28, 24.24, 24.2, 24.32, 24.32, 24.16, 24.28, 24.44, 24.4, 24.4, 24.68, 24.84, 24.84, 24.76, 24.64, 24.6, 24.4, 24.56, 24.4, 24.4, 24.68, 24.8, 24.8, 24.72, 24.72, 24.56, 24.36, 24.48, 24.64, 24.72, 24.84, 24.88, 24.64, 24.6, 24.6, 24.56, 24.44, 24.44, 24.56, 24.6, 24.64, 24.48, 24.56, 24.28, 24.36, 24.44, 24.28, 24.28, 24.16, 24.24, 24.4, 24.36, 24.6, 24.64, 24.6, 24.6, 24.72, 24.84, 24.76, 24.76, 24.68, 24.68, 24.6, 24.52, 24.52, 24.48, 24.36, 24.32, 24.24, 24.2, 24.4, 24.4, 24.48, 24.52, 24.72, 24.68, 24.88, 24.88, 24.8, 24.92, 24.84, 24.76, 24.6, 24.44, 24.44, 24.4, 24.28, 24.24, 24.32, 24.16, 24.4, 24.52, 24.4, 24.28, 24.28, 24.2, 24.2, 24.08, 24.16, 24.28, 24.32, 24.4, 24.28, 24.24, 24.04, 24.04, 24.12, 24.16, 24.16, 24.4, 24.4, 24.48, 24.6, 24.76, 24.68, 24.6, 24.64, 24.48, 24.36, 24.36, 24.44, 24.44, 24.48, 24.72, 24.88, 24.64, 24.8, 24.64, 24.64, 24.6, 24.48, 24.48, 24.64, 24.64, 24.88, 24.64, 24.48, 24.36, 24.52, 24.48, 24.68, 24.88, 24.8, 24.92, 24.88, 24.88, 24.88, 25.04, 24.64, 24.8, 24.92, 24.8, 24.72, 24.72, 24.6, 24.4, 24.44, 24.52, 24.52, 24.36, 24.44, 24.6, 24.56, 24.48, 24.8, 24.72, 24.8, 24.72, 24.92, 24.68, 24.68, 24.52, 24.52, 24.48, 24.44, 24.36, 24.4, 24.36, 24.44, 24.4, 24.4, 24.32, 24.24, 24.24, 24.2, 24.12, 24.2, 24.36, 24.36, 24.52, 24.52, 24.4, 24.24, 24.24, 24.32, 24.32, 24.16, 24.2, 24.24, 24.28, 24.24, 24.44, 24.6, 24.44, 24.32, 24.4, 24.48, 24.48, 24.36, 24.68, 24.6, 24.52, 24.52, 24.52, 24.68, 24.48, 24.56, 24.44, 24.32, 24.28, 24.28, 24.24, 24.44, 24.4, 24.36, 24.24, 24.36, 24.72, 24.8, 24.64, 24.68, 24.44, 24.44, 24.44, 24.52, 24.68, 24.68, 24.84, 24.76, 24.96, 24.92, 24.92, 25.04, 25.48, 25.48, 25.16, 25.16, 24.76, 24.24, 24.32, 24.2, 24.32, 24.36, 24.4, 24.44, 24.56, 24.72, 24.72, 24.72, 24.64, 24.76, 24.6, 24.28, 24.12, 24.2, 24.24, 24.44, 25.04, 25.12, 25.12, 25.04, 25.08, 24.96, 24.64, 24.68, 24.88, 24.96, 25.12, 25.16, 25.16, 24.88, 25.08, 25.08, 25.12, 25.08, 24.84, 24.76, 24.56, 24.44, 24.68, 24.84, 24.64, 24.84, 24.76, 24.76, 24.56, 24.56, 24.8, 24.96, 24.96, 25.08, 24.92, 24.8, 24.76, 24.84, 24.76, 24.76, 24.8, 24.84, 24.72, 24.52, 24.6] -656.396565914154 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 637.8268127441406, 'TIME_S_1KI': 637.8268127441406, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 15996.775521488189, 'W': 24.370595996658984} -[20.6, 20.64, 20.76, 20.6, 20.44, 20.44, 20.48, 20.64, 20.64, 20.88, 20.28, 20.44, 20.44, 20.64, 20.68, 20.44, 20.36, 20.36, 20.12, 20.12] -369.06 -18.453 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 637.8268127441406, 'TIME_S_1KI': 637.8268127441406, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 15996.775521488189, 'W': 24.370595996658984, 'J_1KI': 15996.775521488189, 'W_1KI': 24.370595996658984, 'W_D': 5.917595996658985, 'J_D': 3884.2896906743035, 'W_D_1KI': 5.917595996658985, 'J_D_1KI': 5.917595996658985} +[20.6, 20.8, 20.76, 20.64, 20.32, 20.48, 20.48, 20.52, 20.8, 20.6] +[20.64, 20.6, 20.6, 21.32, 22.6, 24.24, 25.68, 28.84, 30.4, 30.64, 31.4, 31.32, 28.4, 28.16, 27.72, 26.8, 26.8, 25.96, 24.6, 24.4, 24.12, 24.12, 24.12, 24.08, 24.36, 24.56, 24.8, 24.88, 24.88, 24.92, 24.92, 24.72, 24.64, 24.44, 24.28, 24.52, 24.68, 24.64, 24.68, 24.64, 24.64, 24.52, 24.76, 24.84, 24.68, 24.72, 24.68, 24.68, 24.76, 24.68, 24.52, 24.2, 24.12, 24.12, 24.24, 24.48, 24.64, 24.76, 24.76, 24.52, 24.28, 24.32, 24.12, 24.04, 24.32, 24.32, 24.6, 24.52, 24.76, 24.72, 24.36, 24.12, 24.16, 24.36, 24.48] +76.0048496723175 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 67.20304369926453, 'TIME_S_1KI': 672.0304369926453, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1846.4787199783327, 'W': 24.29422238106021} +[20.6, 20.8, 20.76, 20.64, 20.32, 20.48, 20.48, 20.52, 20.8, 20.6, 20.04, 20.16, 20.28, 20.16, 20.16, 20.64, 20.72, 20.72, 20.92, 20.68] +369.52000000000004 +18.476000000000003 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 67.20304369926453, 'TIME_S_1KI': 672.0304369926453, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1846.4787199783327, 'W': 24.29422238106021, 'J_1KI': 18464.787199783328, 'W_1KI': 242.9422238106021, 'W_D': 5.818222381060206, 'J_D': 442.2131174325942, 'W_D_1KI': 58.18222381060206, 'J_D_1KI': 581.8222381060207} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_1e-05.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_1e-05.json index 7258aa7..e0e6919 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_1e-05.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_1e-05.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 141920, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.197850227355957, "TIME_S_1KI": 0.0718563291104563, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 278.53162281036373, "W": 19.575620643059622, "J_1KI": 1.9625959893627658, "W_1KI": 0.1379341928062262, "W_D": 4.584620643059623, "J_D": 65.2322524514198, "W_D_1KI": 0.032304260449969154, "J_D_1KI": 0.00022762303022808028} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 145476, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.560847282409668, "TIME_S_1KI": 0.07259511728676668, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 314.8679765701293, "W": 22.125839021878733, "J_1KI": 2.1643980902013342, "W_1KI": 0.15209270960075016, "W_D": 3.6298390218787304, "J_D": 51.65544533538807, "W_D_1KI": 0.024951462934633413, "J_D_1KI": 0.00017151600906426773} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_1e-05.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_1e-05.output index 5a62a56..29cdb63 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_1e-05.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_1e-05.output @@ -1,538 +1,373 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 1e-05 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.08288788795471191} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 999, 1000, 1000]), - col_indices=tensor([8276, 8512, 1857, 9453, 5594, 1786, 645, 6447, 5709, - 9757, 8196, 1491, 9162, 8503, 189, 10, 1296, 6876, - 119, 8563, 749, 1550, 2318, 8246, 5733, 8006, 6329, - 7471, 3720, 9382, 1064, 3289, 8282, 2516, 8872, 2976, - 6001, 4221, 9050, 2, 6851, 1283, 8840, 7445, 9952, - 3963, 7775, 4665, 7671, 1625, 7201, 7423, 9095, 4003, - 9039, 8222, 4002, 4851, 2216, 6397, 2573, 1155, 1658, - 5402, 1265, 1882, 3515, 3745, 1128, 1774, 309, 5274, - 84, 2261, 875, 7389, 8770, 9055, 1245, 4813, 5184, - 2172, 1801, 9623, 6859, 2196, 1926, 1262, 2389, 9131, - 4836, 349, 6978, 9280, 3446, 5839, 9885, 3634, 6691, - 6641, 6961, 8613, 9421, 2247, 8553, 789, 6806, 4532, - 3327, 6426, 7167, 5921, 1683, 7786, 6904, 6367, 1125, - 9619, 9609, 8436, 4889, 8881, 3076, 6406, 2789, 4771, - 2473, 5921, 8649, 8808, 7551, 2275, 7532, 4047, 4956, - 5524, 4175, 8896, 4876, 8812, 1107, 9810, 8830, 3587, - 136, 2620, 31, 3149, 3602, 2128, 2913, 8880, 726, - 7360, 1751, 1097, 2482, 144, 3484, 7883, 399, 5282, - 6192, 617, 8440, 5826, 8493, 582, 6530, 6362, 9475, - 8907, 7405, 6669, 1159, 3728, 5359, 1439, 8034, 9646, - 4353, 7554, 6570, 5321, 5696, 6269, 7260, 7711, 2189, - 5467, 325, 2394, 1067, 3162, 962, 7835, 314, 776, - 6740, 6522, 5597, 7108, 5973, 3994, 4684, 1352, 9931, - 3211, 8724, 1338, 7817, 6195, 3455, 5915, 5511, 3061, - 4751, 4079, 855, 2750, 867, 3028, 909, 1327, 4954, - 3595, 1917, 91, 504, 6823, 8015, 2422, 1403, 4497, - 5229, 4813, 2971, 8367, 8880, 1956, 3166, 5488, 9128, - 6641, 7389, 1943, 8532, 4925, 7368, 3456, 4332, 7488, - 2324, 6868, 2121, 7163, 7046, 8735, 121, 8887, 9517, - 183, 1044, 2494, 5670, 5007, 6137, 6582, 303, 2805, - 3015, 7091, 3855, 7442, 4578, 3251, 4654, 5804, 5413, - 2177, 6177, 9913, 1625, 687, 1292, 8586, 2035, 982, - 755, 6758, 8888, 6048, 6343, 4633, 5897, 8444, 8150, - 7781, 725, 9438, 5710, 9382, 2574, 6058, 2513, 1778, - 122, 5128, 3907, 7410, 714, 8662, 6688, 8127, 2969, - 3345, 2095, 8474, 4307, 7012, 4768, 8186, 9653, 2657, - 2922, 365, 1018, 5800, 2932, 4696, 53, 4859, 6082, - 3621, 7055, 5341, 3697, 8788, 5491, 9475, 5441, 8426, - 468, 4496, 9637, 2301, 6187, 8587, 7515, 9602, 474, - 8388, 4988, 1646, 4000, 1983, 6870, 1879, 6888, 8175, - 5903, 9721, 4513, 6443, 1310, 1878, 3545, 9708, 3759, - 4145, 3434, 3654, 9428, 7967, 9740, 6844, 1449, 7083, - 1834, 5218, 6245, 5070, 2311, 7720, 5551, 5987, 6790, - 8087, 9122, 7936, 8051, 8437, 8069, 5792, 3862, 8013, - 8124, 4516, 9113, 4585, 1855, 712, 9434, 2244, 3421, - 4542, 6206, 2077, 2592, 7046, 1572, 7802, 3200, 77, - 6437, 48, 1913, 9201, 7000, 8497, 9838, 3928, 3446, - 7826, 5623, 7464, 4422, 5549, 9989, 7594, 978, 1027, - 6384, 3539, 9787, 925, 7836, 8272, 9420, 3565, 8139, - 2606, 3726, 8508, 2076, 9512, 7264, 1105, 7456, 5922, - 436, 5531, 390, 2872, 3410, 7077, 3257, 3900, 6181, - 5454, 2692, 5017, 7524, 23, 8143, 6664, 4624, 2842, - 2670, 1422, 8225, 5272, 1575, 8020, 5275, 6922, 6385, - 4869, 9485, 2381, 2187, 6952, 4575, 1420, 1739, 4554, - 5624, 1084, 6261, 9289, 1978, 8620, 1011, 8635, 7344, - 382, 3903, 3275, 7645, 2123, 214, 9598, 1316, 1120, - 2758, 2802, 7016, 8168, 6862, 1434, 5271, 3562, 7784, - 3573, 1026, 3030, 3397, 4904, 3559, 3831, 4325, 2931, - 6053, 4715, 4402, 5494, 5195, 4357, 7489, 4384, 5428, - 4227, 6900, 7913, 5278, 4013, 2964, 4776, 8792, 3615, - 7657, 8348, 7496, 3765, 8272, 7356, 7651, 2612, 6825, - 9694, 7320, 6793, 1758, 1804, 3531, 7520, 6794, 3575, - 4660, 3318, 7366, 7252, 3513, 8003, 1227, 4245, 740, - 1978, 5598, 4116, 9710, 2221, 9171, 3774, 7468, 3136, - 7275, 7997, 662, 9678, 6614, 8059, 2192, 9061, 5551, - 4200, 4515, 7372, 3749, 3276, 2792, 7457, 2381, 6612, - 7249, 7320, 6891, 9247, 1261, 9238, 7375, 339, 9753, - 7589, 42, 2877, 8207, 6655, 9620, 3940, 9667, 8842, - 5016, 5306, 133, 1644, 3110, 7972, 8268, 1236, 3030, - 3019, 6866, 1577, 9822, 1764, 678, 9569, 3249, 4696, - 18, 7170, 8217, 2029, 7944, 6850, 6037, 8945, 6928, - 7526, 4511, 2970, 5334, 9872, 9778, 3374, 3290, 9601, - 7633, 8431, 4263, 6931, 4613, 5918, 5854, 3669, 5964, - 8766, 9373, 1519, 897, 7762, 3322, 317, 2004, 4986, - 2838, 1416, 6403, 9000, 5671, 5891, 6742, 6946, 9606, - 1593, 9057, 2615, 5046, 5323, 4070, 7686, 887, 7814, - 7112, 1506, 1176, 1966, 6574, 6725, 9003, 3522, 1536, - 721, 968, 2645, 3006, 1202, 8059, 4357, 257, 5956, - 8291, 3587, 1324, 4026, 5017, 6089, 3533, 4487, 4336, - 4372, 523, 6809, 2865, 106, 8919, 2101, 5588, 9401, - 3615, 294, 5552, 1273, 4483, 2278, 6780, 8548, 8854, - 6295, 6334, 610, 1787, 2551, 2927, 7034, 1297, 9805, - 5095, 9343, 1737, 5095, 5412, 4606, 4112, 4125, 8521, - 240, 5569, 7517, 719, 4246, 9580, 3217, 607, 7225, - 8130, 9863, 59, 3517, 5417, 3027, 1563, 5660, 5670, - 134, 2586, 4182, 5906, 6707, 5824, 6326, 9832, 7981, - 1245, 7038, 2749, 9123, 1573, 7744, 9273, 3171, 6936, - 8920, 9094, 1562, 7017, 8555, 6399, 214, 9350, 1242, - 9441, 6024, 8234, 2555, 3841, 4838, 5524, 6282, 2049, - 5804, 2937, 8104, 8373, 3557, 1729, 75, 3087, 5017, - 6320, 7348, 3083, 3813, 2460, 1915, 6617, 9077, 5280, - 7414, 2772, 8800, 8002, 7643, 517, 7232, 1736, 2354, - 3354, 3614, 7610, 1724, 1872, 3047, 5536, 498, 8083, - 6992, 3529, 4235, 790, 8660, 5410, 4700, 674, 2734, - 6580, 8218, 3383, 800, 694, 1064, 6285, 2980, 3993, - 1143, 7009, 5232, 6283, 4927, 9228, 4526, 9337, 1565, - 1843, 8745, 4576, 5017, 8330, 565, 1296, 2370, 3236, - 1490, 8360, 4005, 1703, 7955, 922, 8095, 8868, 6378, - 9202, 5596, 7385, 3993, 6695, 5210, 3534, 9358, 4634, - 2010, 3022, 4876, 2404, 9761, 5559, 2165, 255, 7891, - 4079, 5756, 4511, 1871, 3057, 6381, 2383, 8869, 5138, - 1577, 1723, 1186, 3546, 3866, 1005, 6690, 1524, 9037, - 9232, 1927, 9957, 9615, 306, 2669, 6217, 4611, 1726, - 604, 1333, 3992, 1237, 545, 671, 9514, 993, 3862, - 8762, 9011, 665, 2875, 5108, 4200, 9504, 532, 6855, - 4348, 4716, 4934, 5606, 6782, 7589, 2798, 8991, 9289, - 6406, 607, 3680, 7537, 1575, 6436, 5327, 5806, 4006, - 7679, 3762, 721, 3215, 8429, 3165, 9396, 5645, 5117, - 9584, 6594, 9927, 4550, 5236, 1966, 1697, 6465, 3372, - 3084, 279, 6182, 2834, 2239, 2312, 4050, 7053, 6341, - 2787, 2419, 3190, 2698, 5971, 4594, 4787, 50, 5176, - 8465]), - values=tensor([0.1245, 0.3818, 0.2094, 0.1577, 0.3656, 0.7612, 0.6327, - 0.6604, 0.2965, 0.4693, 0.5770, 0.7401, 0.9832, 0.4056, - 0.5757, 0.4783, 0.0984, 0.4679, 0.7672, 0.1199, 0.5875, - 0.4548, 0.4261, 0.7656, 0.8501, 0.6874, 0.2179, 0.3269, - 0.1971, 0.0899, 0.3434, 0.6804, 0.2757, 0.7906, 0.0273, - 0.1203, 0.7662, 0.1366, 0.8859, 0.3751, 0.5143, 0.5055, - 0.7621, 0.4188, 0.1528, 0.5383, 0.2740, 0.1571, 0.8247, - 0.0143, 0.5848, 0.8785, 0.1587, 0.2973, 0.5407, 0.9462, - 0.2767, 0.3658, 0.6420, 0.1081, 0.1550, 0.4887, 0.3542, - 0.4467, 0.8817, 0.7810, 0.4989, 0.6946, 0.1755, 0.1838, - 0.0013, 0.0832, 0.2867, 0.5049, 0.4506, 0.4576, 0.3050, - 0.8657, 0.2519, 0.7953, 0.4007, 0.8761, 0.8492, 0.1099, - 0.7929, 0.3747, 0.0524, 0.4391, 0.3472, 0.8201, 0.0424, - 0.8252, 0.8114, 0.1823, 0.6663, 0.6930, 0.5818, 0.4644, - 0.4318, 0.7739, 0.0173, 0.6102, 0.6665, 0.3372, 0.7108, - 0.1573, 0.3062, 0.2868, 0.1402, 0.6120, 0.2102, 0.5513, - 0.5413, 0.9452, 0.4056, 0.1381, 0.7432, 0.0571, 0.3706, - 0.4822, 0.5782, 0.1239, 0.0775, 0.5319, 0.3228, 0.6896, - 0.2726, 0.1341, 0.5306, 0.9142, 0.9096, 0.5020, 0.9514, - 0.9017, 0.5102, 0.0340, 0.7420, 0.4322, 0.8736, 0.4773, - 0.0061, 0.8970, 0.2282, 0.1135, 0.4735, 0.7641, 0.6684, - 0.7803, 0.5548, 0.7874, 0.7264, 0.5921, 0.4576, 0.0450, - 0.0638, 0.0382, 0.2119, 0.8834, 0.6833, 0.8537, 0.2833, - 0.3744, 0.7613, 0.7596, 0.0793, 0.7556, 0.3236, 0.5321, - 0.9360, 0.4142, 0.7940, 0.3038, 0.0240, 0.4817, 0.9965, - 0.9610, 0.0716, 0.2156, 0.2327, 0.3825, 0.2509, 0.9412, - 0.7528, 0.5792, 0.8462, 0.3324, 0.5622, 0.9454, 0.0244, - 0.4780, 0.3934, 0.1591, 0.2852, 0.2205, 0.9671, 0.9748, - 0.3564, 0.4950, 0.6302, 0.1186, 0.5454, 0.5686, 0.4811, - 0.2045, 0.4676, 0.4340, 0.3804, 0.9345, 0.2026, 0.5164, - 0.3309, 0.8805, 0.8710, 0.4757, 0.6928, 0.9663, 0.4633, - 0.1033, 0.2782, 0.5097, 0.1747, 0.0522, 0.4778, 0.9716, - 0.5347, 0.5449, 0.6951, 0.7746, 0.6695, 0.9769, 0.1496, - 0.1827, 0.7502, 0.3151, 0.6496, 0.0381, 0.8213, 0.4136, - 0.7596, 0.1014, 0.0237, 0.5817, 0.3057, 0.6599, 0.3209, - 0.1791, 0.4293, 0.2334, 0.8138, 0.1052, 0.1613, 0.2399, - 0.7322, 0.1756, 0.3117, 0.4917, 0.6137, 0.8067, 0.1741, - 0.3133, 0.3665, 0.2732, 0.0524, 0.5998, 0.1848, 0.7671, - 0.1991, 0.4054, 0.5139, 0.9878, 0.0305, 0.7011, 0.3081, - 0.9427, 0.6765, 0.3244, 0.6294, 0.5028, 0.9150, 0.4199, - 0.6526, 0.5757, 0.2641, 0.5860, 0.0452, 0.8240, 0.1926, - 0.8869, 0.4359, 0.6882, 0.7532, 0.9317, 0.9139, 0.5780, - 0.8631, 0.2248, 0.6258, 0.9840, 0.4124, 0.7692, 0.2864, - 0.0444, 0.9926, 0.9374, 0.3794, 0.4518, 0.6429, 0.3953, - 0.8250, 0.1534, 0.5111, 0.0795, 0.3267, 0.9581, 0.3156, - 0.7268, 0.8133, 0.8663, 0.7222, 0.2367, 0.3868, 0.0399, - 0.7807, 0.0074, 0.9426, 0.1418, 0.0064, 0.3379, 0.9855, - 0.8657, 0.5112, 0.8864, 0.5991, 0.3144, 0.3511, 0.0243, - 0.9685, 0.5134, 0.3114, 0.5038, 0.7213, 0.4452, 0.7423, - 0.6360, 0.6354, 0.9825, 0.0279, 0.1208, 0.7218, 0.7425, - 0.7616, 0.1573, 0.6443, 0.7731, 0.4128, 0.0865, 0.6156, - 0.7669, 0.8044, 0.0235, 0.5931, 0.6874, 0.9140, 0.4077, - 0.0687, 0.7123, 0.7951, 0.8856, 0.8880, 0.1863, 0.9067, - 0.5306, 0.8132, 0.8043, 0.3196, 0.4647, 0.4612, 0.9179, - 0.7496, 0.2101, 0.0530, 0.2839, 0.5042, 0.2441, 0.7641, - 0.3206, 0.4726, 0.2974, 0.7204, 0.4526, 0.5767, 0.2708, - 0.8534, 0.4637, 0.8968, 0.1213, 0.9959, 0.4052, 0.0078, - 0.0658, 0.5272, 0.0316, 0.4140, 0.4811, 0.1680, 0.5471, - 0.6979, 0.8319, 0.7834, 0.2648, 0.5388, 0.4331, 0.4875, - 0.8169, 0.4048, 0.2791, 0.7377, 0.2582, 0.6781, 0.0955, - 0.5159, 0.1713, 0.1085, 0.5551, 0.3083, 0.3436, 0.7631, - 0.1028, 0.3923, 0.3445, 0.7995, 0.4349, 0.0777, 0.6485, - 0.0491, 0.8348, 0.3699, 0.0058, 0.7453, 0.5659, 0.6523, - 0.9968, 0.3097, 0.7458, 0.8322, 0.5862, 0.0936, 0.6042, - 0.8788, 0.2508, 0.2797, 0.3842, 0.5270, 0.6266, 0.2776, - 0.8671, 0.3005, 0.1594, 0.8424, 0.9687, 0.1043, 0.5038, - 0.4791, 0.4092, 0.5708, 0.0590, 0.7282, 0.6973, 0.5168, - 0.7962, 0.7980, 0.9092, 0.8486, 0.2280, 0.4549, 0.9124, - 0.1570, 0.5221, 0.0479, 0.0369, 0.8882, 0.6277, 0.4187, - 0.6274, 0.2305, 0.4948, 0.8926, 0.6738, 0.7183, 0.7407, - 0.6741, 0.6388, 0.9883, 0.0987, 0.2665, 0.9773, 0.6037, - 0.5178, 0.6422, 0.8373, 0.3511, 0.8642, 0.8879, 0.5537, - 0.7700, 0.4488, 0.4880, 0.6921, 0.1486, 0.6546, 0.3013, - 0.7849, 0.6191, 0.4842, 0.1815, 0.7591, 0.4614, 0.1535, - 0.3979, 0.8546, 0.4054, 0.2999, 0.0048, 0.1366, 0.3412, - 0.8072, 0.6366, 0.6288, 0.1982, 0.9033, 0.0954, 0.9062, - 0.0513, 0.1147, 0.0631, 0.2263, 0.8361, 0.0565, 0.3142, - 0.4270, 0.0695, 0.5763, 0.6962, 0.3865, 0.7696, 0.2598, - 0.0060, 0.7960, 0.9025, 0.7023, 0.8571, 0.2155, 0.8520, - 0.9719, 0.7297, 0.2123, 0.4489, 0.2584, 0.5603, 0.3917, - 0.2858, 0.4662, 0.9411, 0.0181, 0.2832, 0.4354, 0.4500, - 0.0128, 0.1405, 0.3871, 0.9958, 0.1200, 0.4749, 0.7452, - 0.8394, 0.3346, 0.7561, 0.3818, 0.0145, 0.0460, 0.9487, - 0.1402, 0.1902, 0.0543, 0.1052, 0.0981, 0.5798, 0.3034, - 0.6376, 0.9449, 0.1583, 0.5504, 0.1919, 0.1303, 0.3605, - 0.9440, 0.0620, 0.4890, 0.6488, 0.3940, 0.0067, 0.4663, - 0.6567, 0.3770, 0.5054, 0.1380, 0.2497, 0.6100, 0.0902, - 0.1967, 0.9021, 0.3610, 0.1279, 0.3340, 0.8779, 0.4824, - 0.7443, 0.9637, 0.3980, 0.3829, 0.6872, 0.5466, 0.0185, - 0.5055, 0.6057, 0.4788, 0.5933, 0.8939, 0.9818, 0.6818, - 0.6749, 0.7665, 0.9848, 0.1299, 0.4256, 0.5598, 0.6809, - 0.8879, 0.1537, 0.1813, 0.7981, 0.5256, 0.9639, 0.4583, - 0.4319, 0.6998, 0.9903, 0.7229, 0.4589, 0.6796, 0.6045, - 0.7007, 0.8420, 0.9619, 0.3304, 0.0617, 0.4075, 0.7436, - 0.2040, 0.4557, 0.5995, 0.4210, 0.1320, 0.0195, 0.8479, - 0.7959, 0.7938, 0.5863, 0.3990, 0.1914, 0.9004, 0.6627, - 0.5619, 0.8791, 0.7615, 0.9836, 0.4387, 0.5637, 0.6659, - 0.0086, 0.7805, 0.4991, 0.9871, 0.4798, 0.8041, 0.0192, - 0.2124, 0.5684, 0.8468, 0.9113, 0.6212, 0.5698, 0.8014, - 0.3065, 0.3411, 0.0734, 0.3332, 0.1320, 0.9902, 0.1724, - 0.5897, 0.9345, 0.5116, 0.2368, 0.3790, 0.1573, 0.8815, - 0.0944, 0.0525, 0.5771, 0.9508, 0.6884, 0.2247, 0.0927, - 0.2997, 0.8991, 0.4303, 0.0318, 0.7181, 0.8480, 0.2590, - 0.2112, 0.7754, 0.2854, 0.1226, 0.5505, 0.9374, 0.7026, - 0.1723, 0.5362, 0.9042, 0.9043, 0.2444, 0.0024, 0.4516, - 0.1736, 0.8349, 0.7438, 0.8713, 0.3333, 0.9702, 0.0976, - 0.3725, 0.8106, 0.5712, 0.7101, 0.9500, 0.8201, 0.1752, - 0.0728, 0.1177, 0.2203, 0.7342, 0.9231, 0.8108, 0.6705, - 0.8900, 0.7335, 0.2987, 0.4853, 0.9568, 0.7158, 0.1787, - 0.8435, 0.4204, 0.6816, 0.2429, 0.7845, 0.3783, 0.9300, - 0.1803, 0.9735, 0.1494, 0.0737, 0.0658, 0.8234, 0.2687, - 0.1869, 0.6593, 0.7727, 0.6024, 0.7869, 0.2111, 0.2790, - 0.3397, 0.8180, 0.2802, 0.8573, 0.7564, 0.2726, 0.4840, - 0.5071, 0.2160, 0.6845, 0.3046, 0.3110, 0.0319, 0.2883, - 0.8756, 0.8700, 0.9477, 0.7582, 0.0312, 0.7275, 0.5753, - 0.4665, 0.0331, 0.4322, 0.1182, 0.2475, 0.4723, 0.8688, - 0.3075, 0.8869, 0.2497, 0.5244, 0.5040, 0.7162, 0.7628, - 0.7902, 0.8786, 0.6224, 0.7451, 0.8022, 0.4326, 0.9537, - 0.1995, 0.5730, 0.6864, 0.6112, 0.2079, 0.1363, 0.6884, - 0.8766, 0.7722, 0.9711, 0.4384, 0.7103, 0.9813, 0.6983, - 0.6490, 0.5048, 0.9815, 0.5532, 0.3076, 0.5743, 0.8792, - 0.2884, 0.4181, 0.9345, 0.2975, 0.8904, 0.8585, 0.7041, - 0.7858, 0.9509, 0.9913, 0.9947, 0.1505, 0.7515, 0.5658, - 0.3947, 0.2227, 0.5169, 0.1156, 0.4560, 0.4151, 0.8225, - 0.8598, 0.6976, 0.0313, 0.4616, 0.0585, 0.1294, 0.0517, - 0.1040, 0.5525, 0.5945, 0.8019, 0.2127, 0.5916, 0.2221, - 0.8648, 0.6361, 0.6550, 0.4248, 0.1319, 0.4808, 0.4100, - 0.3212, 0.5505, 0.1283, 0.1416, 0.6578, 0.7816, 0.0779, - 0.1876, 0.4334, 0.8940, 0.6358, 0.3036, 0.4683, 0.8709, - 0.5340, 0.2787, 0.2064, 0.9470, 0.4341, 0.0752, 0.1006, - 0.5759, 0.2817, 0.9669, 0.8867, 0.9491, 0.4506, 0.8648, - 0.1579, 0.2283, 0.8323, 0.1121, 0.5750, 0.3976, 0.9212, - 0.1706, 0.8255, 0.1475, 0.5604, 0.4833, 0.5802, 0.3597, - 0.7856, 0.9771, 0.2688, 0.4479, 0.9486, 0.8916, 0.8197, - 0.3055, 0.2577, 0.8058, 0.8715, 0.8602, 0.0761, 0.6514, - 0.3807, 0.4425, 0.3380, 0.6201, 0.9309, 0.3440, 0.9225, - 0.7987, 0.0785, 0.2455, 0.9692, 0.9564, 0.3172, 0.1983, - 0.4076, 0.3450, 0.7906, 0.8020, 0.6271, 0.1755, 0.8210, - 0.0990, 0.0570, 0.0300, 0.7859, 0.5313, 0.6641, 0.6688, - 0.2322, 0.1610, 0.1823, 0.1078, 0.6360, 0.4913, 0.4992, - 0.9529, 0.3422, 0.7400, 0.0826, 0.4553, 0.9529, 0.0415, - 0.7348, 0.0743, 0.9889, 0.5217, 0.7483, 0.5876, 0.0144, - 0.8254, 0.8920, 0.2868, 0.2736, 0.3612, 0.1545]), - size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.4940, 0.1637, 0.9163, ..., 0.2332, 0.8903, 0.4879]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([10000, 10000]) -Rows: 10000 -Size: 100000000 -NNZ: 1000 -Density: 1e-05 -Time: 0.08288788795471191 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 126677 -ss 10000 -sd 1e-05 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.372220277786255} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.015525579452514648} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), - col_indices=tensor([4171, 3057, 7209, 2948, 4077, 8602, 6723, 7385, 3185, - 1979, 4898, 5146, 6082, 3916, 3357, 1239, 1865, 5288, - 7084, 3669, 8567, 390, 222, 7937, 7436, 7536, 100, - 9939, 953, 6752, 4459, 1164, 7573, 5755, 4330, 1051, - 6926, 4784, 6452, 173, 7327, 2769, 9411, 547, 7184, - 1803, 2735, 3553, 2593, 8603, 9787, 409, 5628, 6192, - 968, 7416, 6382, 1295, 829, 5935, 257, 823, 2011, - 1692, 9205, 9876, 7722, 8228, 3769, 5411, 4265, 6838, - 3788, 5377, 1539, 121, 7640, 6556, 2886, 373, 633, - 3388, 2063, 2691, 1816, 4562, 4715, 1544, 5746, 4224, - 9753, 3302, 257, 5030, 1700, 5572, 5488, 8810, 44, - 3892, 6196, 680, 9235, 3771, 3078, 9652, 8313, 8340, - 8194, 9811, 6858, 7697, 1051, 6425, 3442, 9895, 8537, - 6956, 3173, 2655, 5724, 9506, 1362, 5282, 7899, 4034, - 717, 6956, 2074, 8234, 9231, 8400, 1721, 8096, 8058, - 1564, 2837, 5525, 6467, 9105, 8508, 2425, 8050, 3104, - 4383, 807, 8898, 4439, 9565, 3772, 5003, 435, 7644, - 1652, 1914, 2238, 1718, 8446, 8758, 3283, 6522, 4570, - 7929, 5444, 633, 5009, 5898, 6412, 6138, 7641, 8023, - 3779, 6596, 1843, 4611, 5333, 3629, 1447, 5379, 4896, - 2089, 9462, 7859, 9196, 1537, 6884, 3472, 9048, 9935, - 3380, 3192, 8628, 3425, 8179, 6368, 2038, 9136, 8061, - 4989, 8687, 552, 2271, 3149, 9135, 582, 9927, 9097, - 2493, 9502, 7584, 4043, 4133, 6860, 691, 8767, 6168, - 9739, 5803, 3262, 4083, 3153, 7197, 5661, 4584, 5627, - 5286, 6261, 3581, 5434, 706, 8759, 9491, 8376, 5759, - 3936, 7006, 5446, 611, 6403, 7493, 2501, 344, 9152, - 150, 9135, 7259, 2392, 2575, 860, 4372, 1162, 1538, - 2024, 4841, 4854, 4474, 8570, 9195, 6099, 1575, 7604, - 2154, 4244, 6565, 6969, 3326, 3755, 4895, 8572, 6142, - 2184, 8551, 118, 8884, 795, 1091, 9777, 3962, 6775, - 5235, 8730, 9354, 5232, 6956, 7770, 9887, 4021, 5102, - 7542, 7149, 8658, 8721, 993, 4855, 8263, 7566, 4198, - 9643, 9042, 1412, 6406, 201, 8489, 2307, 9064, 2555, - 9663, 9159, 2978, 360, 4929, 5940, 6745, 3315, 7591, - 5668, 6700, 5879, 7321, 7180, 3279, 4488, 8581, 958, - 7425, 7701, 2088, 1418, 8898, 556, 6955, 8597, 1909, - 2715, 6282, 9823, 3990, 1424, 2696, 2113, 1383, 7011, - 3430, 8570, 4503, 3770, 1789, 3311, 9299, 9464, 6616, - 8873, 1240, 2624, 4370, 5836, 8559, 7737, 358, 9586, - 7848, 2968, 7333, 9753, 5901, 7252, 4963, 3089, 4167, - 474, 858, 6778, 1967, 4227, 9344, 2784, 6491, 1519, - 5597, 6764, 523, 1385, 6925, 2974, 4181, 3929, 5908, - 6560, 1590, 1699, 7323, 6440, 7896, 46, 3088, 6798, - 9850, 5931, 1626, 7674, 4915, 5518, 7943, 1927, 1848, - 9685, 9157, 2844, 4061, 1680, 534, 7745, 4726, 1978, - 6642, 1627, 1780, 6356, 796, 3636, 2194, 1594, 4485, - 5547, 5732, 991, 7922, 4644, 5251, 8603, 8177, 3055, - 3092, 864, 1671, 625, 6335, 872, 6033, 3915, 9704, - 2838, 5280, 6839, 1107, 8192, 9854, 10, 7358, 5729, - 7672, 9018, 7999, 9886, 3903, 332, 6039, 2718, 486, - 9338, 4888, 642, 2641, 8493, 9074, 7037, 4121, 2857, - 7670, 437, 3150, 3472, 6363, 1462, 9423, 2752, 9604, - 6126, 1966, 967, 6018, 6151, 6956, 9567, 1377, 2627, - 3339, 7453, 8116, 8505, 1963, 320, 1354, 8233, 2890, - 4712, 5923, 7507, 1168, 4122, 4404, 7181, 1991, 2191, - 8275, 7285, 2794, 9311, 4057, 4194, 9595, 7009, 5312, - 7563, 3003, 262, 4441, 3726, 4811, 590, 214, 3678, - 4769, 7922, 9858, 9078, 4474, 5472, 2117, 9957, 4905, - 4210, 9118, 2443, 4337, 559, 429, 5091, 7411, 2322, - 2740, 970, 7099, 7791, 9424, 2375, 6748, 5364, 3376, - 759, 6765, 6563, 7009, 5917, 8033, 103, 2556, 9654, - 7379, 1825, 1993, 7549, 4098, 3695, 8920, 8903, 9769, - 1722, 6589, 8831, 183, 6202, 1828, 7236, 5919, 4066, - 7989, 8517, 9644, 5713, 6870, 1471, 3063, 5308, 1800, - 4028, 398, 6076, 49, 5584, 6701, 874, 7580, 7109, - 7567, 7489, 165, 216, 2596, 2574, 8422, 5803, 4359, - 7017, 1094, 5107, 6174, 3445, 6851, 9183, 7690, 4452, - 8138, 4660, 3624, 4709, 9349, 5515, 101, 6164, 8143, - 1521, 1313, 1392, 4319, 521, 2718, 7242, 2894, 8876, - 7894, 8783, 5732, 5611, 8956, 4200, 5663, 8786, 4299, - 9359, 3300, 7300, 262, 8236, 3471, 8269, 3654, 7419, - 6, 3744, 8175, 6445, 7372, 7446, 9800, 761, 6696, - 415, 9859, 8573, 6158, 5109, 3984, 7163, 2377, 9369, - 7478, 5206, 1692, 4134, 7467, 9029, 431, 562, 4095, - 1381, 2986, 3374, 522, 4253, 4868, 5790, 8736, 7209, - 1524, 9247, 4314, 1512, 3044, 7263, 7101, 7578, 3761, - 9421, 4055, 8908, 8447, 6895, 3233, 6594, 7225, 8934, - 1620, 8931, 6629, 1371, 1481, 9971, 8892, 8055, 6339, - 2626, 3951, 2540, 7730, 8105, 1818, 9698, 6348, 8238, - 8909, 92, 9679, 5649, 6994, 8423, 9617, 8893, 7878, - 139, 4894, 3194, 6365, 3139, 8540, 8124, 8207, 7468, - 3137, 9027, 4981, 9129, 8139, 7731, 869, 9157, 8972, - 754, 7007, 3578, 658, 5120, 8944, 8958, 1363, 7546, - 5022, 8634, 9033, 4340, 1112, 5028, 4052, 5410, 9972, - 5272, 7759, 9481, 6252, 2832, 4357, 7820, 3555, 4324, - 20, 1504, 9542, 713, 1188, 1948, 3456, 1550, 136, - 2414, 5911, 6860, 4407, 6346, 7014, 5031, 6493, 2142, - 1672, 3712, 1898, 8437, 9729, 3991, 167, 4352, 5778, - 8900, 1295, 7690, 1238, 7305, 1352, 3474, 4757, 448, - 4751, 7038, 5655, 3913, 2112, 3311, 2122, 7321, 1658, - 9669, 1257, 6025, 4153, 3492, 4168, 843, 4347, 5234, - 4124, 3706, 6196, 9808, 5421, 5783, 5258, 2911, 5185, - 5334, 7727, 8197, 3498, 5897, 6029, 9707, 5802, 2571, - 7156, 7850, 7317, 249, 6660, 9594, 8499, 6553, 367, - 452, 2085, 3023, 7242, 2596, 6241, 3814, 4512, 3007, - 6430, 8255, 3146, 7416, 5434, 5823, 2994, 627, 262, - 5259, 1903, 4724, 1430, 729, 5769, 4005, 3066, 7263, - 5434, 2017, 9296, 466, 1984, 9099, 2145, 2980, 9331, - 7656, 3853, 4124, 4440, 4606, 4994, 3593, 5296, 6185, - 2913, 2613, 1513, 7347, 1102, 7495, 7027, 2473, 5744, - 394, 6818, 7551, 8928, 2745, 6186, 2232, 8871, 5872, - 2457, 5632, 8334, 406, 2307, 4965, 8901, 8286, 7300, - 1451, 785, 7023, 5972, 2973, 2951, 2860, 2555, 3468, - 5575, 2968, 6407, 4850, 4514, 934, 1371, 5509, 5185, - 6086, 2474, 120, 192, 3431, 9336, 8993, 2772, 1393, - 752, 6364, 7216, 2822, 8956, 1582, 2682, 3898, 4597, - 8811, 3172, 7041, 265, 5793, 7404, 4892, 9652, 5243, - 951, 6585, 8400, 7544, 5140, 5368, 7880, 3221, 1693, - 6758, 7073, 7494, 687, 4440, 7953, 9316, 1257, 3158, - 7707, 5424, 2405, 5820, 1689, 6718, 6603, 4211, 9517, - 9615]), - values=tensor([0.4415, 0.6013, 0.5126, 0.9698, 0.1034, 0.0639, 0.4558, - 0.2905, 0.4310, 0.2619, 0.9778, 0.6823, 0.9070, 0.1229, - 0.8548, 0.3336, 0.0404, 0.9142, 0.8199, 0.0542, 0.7053, - 0.4688, 0.8485, 0.2928, 0.6756, 0.2645, 0.9947, 0.2741, - 0.5856, 0.1620, 0.4957, 0.3399, 0.5914, 0.2897, 0.1526, - 0.1693, 0.5980, 0.2886, 0.5541, 0.3334, 0.5449, 0.4062, - 0.5414, 0.6879, 0.2033, 0.0945, 0.6450, 0.7402, 0.2638, - 0.2943, 0.5515, 0.1512, 0.9724, 0.4802, 0.3050, 0.3013, - 0.9225, 0.9783, 0.5092, 0.7142, 0.1530, 0.1832, 0.4581, - 0.1377, 0.4616, 0.9132, 0.5714, 0.8993, 0.1126, 0.6871, - 0.5589, 0.3161, 0.4140, 0.9816, 0.6789, 0.6752, 0.7765, - 0.8042, 0.3426, 0.8369, 0.8937, 0.5076, 0.7416, 0.8606, - 0.2242, 0.5767, 0.8912, 0.6587, 0.9801, 0.3691, 0.7054, - 0.2320, 0.7870, 0.6422, 0.3693, 0.6632, 0.7760, 0.1448, - 0.4345, 0.0515, 0.3358, 0.9018, 0.5133, 0.2405, 0.4186, - 0.9543, 0.9360, 0.7747, 0.6893, 0.7048, 0.9897, 0.5550, - 0.9691, 0.4907, 0.4556, 0.6844, 0.3056, 0.0603, 0.0778, - 0.8454, 0.6882, 0.7264, 0.8823, 0.6269, 0.5507, 0.1535, - 0.3271, 0.4840, 0.1687, 0.2816, 0.3788, 0.0525, 0.8448, - 0.4092, 0.6448, 0.0704, 0.0081, 0.9023, 0.5796, 0.6260, - 0.4056, 0.6689, 0.4193, 0.6796, 0.5630, 0.9806, 0.2222, - 0.5558, 0.2750, 0.8217, 0.1518, 0.6088, 0.3728, 0.6107, - 0.7218, 0.7832, 0.0315, 0.1777, 0.4923, 0.6962, 0.5172, - 0.2135, 0.9904, 0.7255, 0.8147, 0.2772, 0.5359, 0.5445, - 0.6578, 0.1756, 0.7465, 0.9196, 0.8367, 0.8344, 0.1261, - 0.5996, 0.8036, 0.3773, 0.7719, 0.0903, 0.3028, 0.2725, - 0.9127, 0.9162, 0.5408, 0.6634, 0.6958, 0.5282, 0.5569, - 0.4442, 0.2693, 0.5361, 0.4599, 0.3625, 0.0550, 0.1984, - 0.5349, 0.2482, 0.6378, 0.0691, 0.8641, 0.3287, 0.3415, - 0.4697, 0.9585, 0.0278, 0.0861, 0.0753, 0.5865, 0.7297, - 0.7984, 0.7314, 0.7714, 0.3176, 0.0359, 0.8791, 0.6106, - 0.9543, 0.1131, 0.3027, 0.3898, 0.1352, 0.1799, 0.1900, - 0.9195, 0.4614, 0.3998, 0.1611, 0.2860, 0.0189, 0.1376, - 0.0642, 0.6253, 0.3117, 0.6206, 0.2776, 0.7335, 0.0215, - 0.1020, 0.0450, 0.8422, 0.1455, 0.6809, 0.3764, 0.1098, - 0.5745, 0.6518, 0.6141, 0.7556, 0.0799, 0.6027, 0.9244, - 0.2771, 0.9147, 0.3379, 0.8431, 0.7801, 0.1199, 0.8711, - 0.3760, 0.5248, 0.4262, 0.0309, 0.0502, 0.0138, 0.5777, - 0.5941, 0.7357, 0.9003, 0.1504, 0.5942, 0.0234, 0.9430, - 0.3015, 0.5012, 0.3805, 0.7971, 0.2703, 0.2556, 0.4135, - 0.9302, 0.7793, 0.8013, 0.2127, 0.1854, 0.8157, 0.9489, - 0.5990, 0.6312, 0.5622, 0.3686, 0.8562, 0.4716, 0.4828, - 0.4596, 0.1787, 0.8020, 0.5056, 0.5302, 0.5941, 0.1504, - 0.1235, 0.0377, 0.2361, 0.5933, 0.4742, 0.6778, 0.2338, - 0.1840, 0.7674, 0.9783, 0.7128, 0.0084, 0.4766, 0.8942, - 0.6541, 0.0450, 0.8813, 0.8581, 0.6083, 0.3958, 0.5902, - 0.6407, 0.3035, 0.5362, 0.6238, 0.0892, 0.0057, 0.4585, - 0.6267, 0.1433, 0.2999, 0.2599, 0.8013, 0.1761, 0.8615, - 0.3483, 0.3247, 0.1179, 0.2298, 0.6436, 0.1866, 0.2388, - 0.4454, 0.7344, 0.5541, 0.4582, 0.3439, 0.7475, 0.6069, - 0.9289, 0.9691, 0.3224, 0.0400, 0.6214, 0.2663, 0.8787, - 0.6913, 0.2276, 0.2654, 0.2824, 0.9542, 0.4508, 0.7718, - 0.5819, 0.7007, 0.7532, 0.2890, 0.5844, 0.4034, 0.4560, - 0.5721, 0.3861, 0.4393, 0.4255, 0.7961, 0.8238, 0.6457, - 0.5584, 0.9889, 0.2485, 0.1868, 0.6329, 0.4246, 0.0722, - 0.2295, 0.5590, 0.5341, 0.5840, 0.5867, 0.2096, 0.2893, - 0.6630, 0.5421, 0.6229, 0.5147, 0.3445, 0.0323, 0.1572, - 0.7699, 0.5255, 0.4444, 0.2885, 0.7488, 0.7088, 0.2912, - 0.7436, 0.7915, 0.0733, 0.9105, 0.6975, 0.6753, 0.9628, - 0.0220, 0.9450, 0.7152, 0.6484, 0.2016, 0.7266, 0.4621, - 0.9244, 0.3208, 0.1924, 0.5143, 0.1364, 0.2001, 0.4960, - 0.0313, 0.3327, 0.3586, 0.1335, 0.6516, 0.0035, 0.3676, - 0.9186, 0.7489, 0.2595, 0.4232, 0.1239, 0.4474, 0.2603, - 0.1655, 0.0450, 0.7379, 0.4038, 0.2505, 0.5416, 0.6372, - 0.8776, 0.1829, 0.7521, 0.4974, 0.9526, 0.5187, 0.0162, - 0.0784, 0.6127, 0.7950, 0.8684, 0.1502, 0.2616, 0.0109, - 0.7618, 0.5504, 0.4625, 0.5130, 0.3349, 0.2075, 0.7484, - 0.2322, 0.9482, 0.0557, 0.2593, 0.8634, 0.2678, 0.7997, - 0.1470, 0.8854, 0.1792, 0.3971, 0.4395, 0.2147, 0.8617, - 0.7653, 0.9522, 0.6222, 0.1151, 0.7874, 0.6605, 0.9141, - 0.5394, 0.0543, 0.9805, 0.6427, 0.6026, 0.5450, 0.3987, - 0.2173, 0.7257, 0.9467, 0.3590, 0.8305, 0.9851, 0.7266, - 0.7210, 0.4619, 0.9947, 0.4160, 0.9266, 0.9716, 0.3095, - 0.6290, 0.7516, 0.0773, 0.3839, 0.5656, 0.5713, 0.8387, - 0.5951, 0.8347, 0.8002, 0.6353, 0.6676, 0.8665, 0.1704, - 0.1516, 0.2652, 0.7229, 0.2765, 0.1121, 0.9817, 0.8564, - 0.3469, 0.3504, 0.3072, 0.2632, 0.5895, 0.5174, 0.4026, - 0.1364, 0.5608, 0.7744, 0.7937, 0.8143, 0.5205, 0.4612, - 0.0113, 0.0541, 0.3102, 0.5930, 0.9411, 0.5533, 0.6919, - 0.6365, 0.8476, 0.0198, 0.0366, 0.9327, 0.7269, 0.3586, - 0.7745, 0.0834, 0.0832, 0.6023, 0.7883, 0.7545, 0.9670, - 0.4813, 0.6739, 0.0831, 0.5227, 0.7484, 0.4197, 0.4165, - 0.1262, 0.5130, 0.3426, 0.2503, 0.2406, 0.0887, 0.5780, - 0.6191, 0.0626, 0.5445, 0.1171, 0.4482, 0.9651, 0.6499, - 0.4185, 0.9964, 0.8638, 0.7514, 0.7064, 0.6449, 0.1740, - 0.2789, 0.9708, 0.0411, 0.0976, 0.3315, 0.1025, 0.3725, - 0.3011, 0.0041, 0.4219, 0.9494, 0.9327, 0.5777, 0.0742, - 0.3001, 0.5165, 0.7896, 0.2761, 0.7934, 0.8226, 0.0769, - 0.4508, 0.9088, 0.9363, 0.3806, 0.7336, 0.2494, 0.8425, - 0.1188, 0.3084, 0.8034, 0.6387, 0.5120, 0.0964, 0.4423, - 0.0326, 0.5969, 0.3875, 0.7015, 0.1614, 0.0456, 0.3080, - 0.4419, 0.5501, 0.4593, 0.6924, 0.3353, 0.4249, 0.6182, - 0.6731, 0.0665, 0.4382, 0.1282, 0.8806, 0.5417, 0.1511, - 0.8967, 0.1791, 0.7341, 0.7820, 0.3063, 0.1693, 0.2448, - 0.5324, 0.8764, 0.8032, 0.6217, 0.7666, 0.0290, 0.5756, - 0.5368, 0.6837, 0.8425, 0.9269, 0.8851, 0.7297, 0.4100, - 0.0830, 0.7274, 0.6707, 0.7886, 0.6064, 0.6168, 0.8794, - 0.2459, 0.2226, 0.7328, 0.0671, 0.9354, 0.1578, 0.9391, - 0.7607, 0.6549, 0.3751, 0.8607, 0.8558, 0.5714, 0.1929, - 0.4860, 0.1420, 0.1337, 0.1905, 0.9881, 0.1650, 0.2729, - 0.1906, 0.0516, 0.3917, 0.7651, 0.2976, 0.1600, 0.3865, - 0.8835, 0.2804, 0.2193, 0.9395, 0.5070, 0.3572, 0.0397, - 0.8047, 0.7010, 0.1034, 0.0082, 0.2831, 0.4944, 0.8787, - 0.4122, 0.0980, 0.0169, 0.0079, 0.0244, 0.7492, 0.9822, - 0.5642, 0.8464, 0.4997, 0.6173, 0.0653, 0.9125, 0.0781, - 0.4155, 0.9481, 0.6939, 0.2718, 0.4249, 0.8118, 0.3439, - 0.5777, 0.9966, 0.3292, 0.1202, 0.7200, 0.2519, 0.8671, - 0.0653, 0.3801, 0.1987, 0.0712, 0.4025, 0.2125, 0.8575, - 0.8190, 0.0269, 0.7551, 0.9860, 0.5051, 0.2462, 0.7202, - 0.9788, 0.6497, 0.9001, 0.7066, 0.2703, 0.2680, 0.1810, - 0.0814, 0.5232, 0.3867, 0.1370, 0.9077, 0.4343, 0.7542, - 0.7324, 0.8975, 0.6439, 0.4352, 0.7082, 0.8315, 0.9360, - 0.7744, 0.7737, 0.3185, 0.7683, 0.7204, 0.6797, 0.1381, - 0.0680, 0.8863, 0.4171, 0.9753, 0.7834, 0.6247, 0.4415, - 0.3685, 0.6455, 0.4171, 0.4496, 0.6336, 0.5676, 0.3524, - 0.0609, 0.3024, 0.8095, 0.3386, 0.4790, 0.6576, 0.2983, - 0.5918, 0.3457, 0.5714, 0.4836, 0.5379, 0.2760, 0.4745, - 0.8249, 0.5231, 0.2518, 0.1107, 0.7531, 0.9927, 0.6691, - 0.5479, 0.8661, 0.1062, 0.2639, 0.8719, 0.4872, 0.7824, - 0.4431, 0.6183, 0.3399, 0.5890, 0.0408, 0.2008, 0.6868, - 0.1677, 0.8079, 0.7914, 0.5275, 0.5099, 0.8609, 0.7195, - 0.7869, 0.2394, 0.6218, 0.0175, 0.7397, 0.5786, 0.2749, - 0.5056, 0.3739, 0.1506, 0.3525, 0.9063, 0.1263, 0.7479, - 0.4609, 0.6911, 0.5454, 0.6017, 0.9923, 0.0775, 0.5711, - 0.0871, 0.9472, 0.5472, 0.4527, 0.7268, 0.4719, 0.0237, - 0.5548, 0.3452, 0.5147, 0.5543, 0.3881, 0.6377, 0.4363, - 0.8582, 0.1181, 0.4029, 0.1913, 0.7190, 0.0104, 0.9330, - 0.7107, 0.5703, 0.5688, 0.0687, 0.2854, 0.1080, 0.1319, - 0.6260, 0.3483, 0.0434, 0.6685, 0.9786, 0.1326, 0.9894, - 0.7212, 0.3212, 0.3659, 0.3632, 0.8856, 0.1125, 0.3702, - 0.4390, 0.3271, 0.9685, 0.8393, 0.6468, 0.3694, 0.8215, - 0.8256, 0.0243, 0.8467, 0.6851, 0.5169, 0.2961, 0.3100, - 0.4346, 0.9920, 0.8174, 0.4419, 0.9220, 0.7491, 0.9513, - 0.9558, 0.2557, 0.0819, 0.6161, 0.3992, 0.4513, 0.3794, - 0.2566, 0.9818, 0.1875, 0.6689, 0.9989, 0.6274, 0.1447, - 0.7124, 0.9271, 0.5618, 0.3250, 0.0051, 0.0734, 0.6607, - 0.4316, 0.8575, 0.9087, 0.3760, 0.5591, 0.5008, 0.1099, - 0.7937, 0.4907, 0.5126, 0.1552, 0.8388, 0.0713, 0.2170, - 0.5683, 0.3341, 0.5338, 0.8690, 0.0444, 0.5187, 0.8890, - 0.5402, 0.5834, 0.6082, 0.8602, 0.8437, 0.4723, 0.7593, - 0.8109, 0.2675, 0.3399, 0.6022, 0.0546, 0.7369, 0.0541, - 0.5651, 0.6738, 0.4614, 0.6944, 0.2561, 0.0901, 0.2038, - 0.5369, 0.1848, 0.5378, 0.5862, 0.0851, 0.9818]), + col_indices=tensor([3898, 1482, 5519, 8868, 7883, 9892, 3663, 8094, 3265, + 5214, 2679, 8390, 8300, 1254, 5771, 2330, 2277, 5567, + 3590, 9876, 9425, 1312, 3675, 250, 2676, 6405, 193, + 4817, 1118, 5220, 848, 1258, 8124, 2361, 9824, 8605, + 9110, 7791, 9707, 7161, 2008, 5741, 2334, 3730, 757, + 2296, 932, 6682, 8936, 2942, 9026, 5748, 1994, 1085, + 8416, 9758, 9650, 6359, 2155, 2494, 3974, 6463, 3581, + 5365, 2085, 839, 8439, 7015, 1395, 6847, 8399, 8014, + 2130, 4017, 54, 2801, 9388, 5676, 8884, 4034, 7935, + 8947, 2234, 5545, 9207, 3191, 9648, 2875, 4561, 7931, + 3725, 5272, 5784, 4597, 9489, 9250, 7919, 1669, 9885, + 3310, 3149, 6923, 5545, 6508, 9800, 2657, 407, 655, + 406, 5436, 7564, 5016, 8520, 4483, 4450, 4851, 2131, + 3975, 4798, 7045, 7501, 7521, 8639, 1296, 7684, 6036, + 1810, 3941, 2660, 7466, 7025, 675, 3142, 6789, 8851, + 6431, 2897, 4149, 5159, 680, 7589, 1161, 4000, 1900, + 6580, 7108, 3052, 1112, 5611, 1198, 1887, 1274, 7907, + 3980, 3920, 7284, 8685, 2676, 8814, 2020, 2087, 7588, + 3473, 6720, 3346, 2385, 331, 4730, 8085, 823, 9752, + 6054, 4004, 3518, 6972, 6393, 1022, 1826, 136, 9104, + 644, 7087, 4535, 6495, 835, 3627, 1719, 5375, 3188, + 2721, 5370, 4060, 7632, 6334, 3349, 38, 8498, 3165, + 8955, 2406, 4105, 3127, 5298, 6106, 8762, 5107, 5923, + 5348, 1666, 7355, 5280, 5787, 8949, 6219, 1327, 3885, + 4849, 3598, 3254, 3228, 5330, 4493, 6213, 7289, 3249, + 8132, 1290, 6830, 5688, 301, 690, 2742, 8864, 5921, + 5003, 9181, 3079, 5148, 1551, 1694, 5480, 2170, 996, + 4985, 1075, 5138, 124, 940, 948, 790, 7486, 9030, + 1477, 9142, 6659, 1811, 9169, 4503, 6175, 4785, 257, + 6391, 3383, 3331, 6911, 1486, 8788, 912, 7174, 9477, + 2748, 6272, 6520, 2719, 8184, 7316, 355, 1823, 8556, + 1459, 3956, 2370, 4381, 4423, 3578, 3880, 2683, 6911, + 2226, 9500, 796, 7668, 4666, 352, 6328, 9286, 6457, + 6272, 7478, 7423, 9055, 4170, 4251, 4175, 8805, 3517, + 7463, 5717, 5192, 4123, 6402, 6096, 3259, 4246, 3250, + 9200, 9472, 913, 8843, 8722, 570, 5337, 2453, 5040, + 5362, 1911, 6859, 1882, 1285, 6680, 1244, 5808, 2588, + 6330, 9064, 794, 6569, 9800, 7433, 8463, 8846, 1304, + 7393, 935, 8025, 9550, 5525, 2976, 4949, 8851, 1570, + 3653, 6681, 4564, 728, 7281, 2542, 4708, 3948, 9376, + 6780, 9074, 2736, 9846, 1380, 937, 7606, 2545, 5198, + 5963, 9747, 3442, 3023, 85, 8214, 770, 1399, 3822, + 9430, 1851, 2996, 5209, 2392, 9546, 4627, 1175, 617, + 8182, 6735, 5491, 7308, 8708, 2805, 8080, 7395, 4480, + 7631, 718, 6417, 689, 5328, 6587, 329, 9209, 5321, + 1461, 6105, 9464, 1295, 7201, 6830, 6066, 6587, 4948, + 3548, 7991, 675, 5203, 1178, 3798, 316, 2004, 1726, + 4002, 1942, 3929, 5033, 5856, 6830, 2915, 4600, 8654, + 5488, 5734, 2078, 667, 6513, 5791, 3009, 2836, 6123, + 6550, 1123, 1084, 663, 7685, 49, 494, 2703, 2647, + 7554, 6681, 5448, 7756, 1560, 7102, 8537, 9152, 84, + 3412, 2379, 6668, 3950, 3737, 3834, 9623, 5269, 4317, + 8632, 3929, 7262, 8925, 8077, 1607, 7516, 928, 9628, + 3158, 8912, 7204, 843, 5299, 6571, 6817, 7581, 3627, + 5903, 1128, 6080, 6794, 135, 8922, 789, 4054, 7312, + 4581, 2854, 8527, 6140, 4291, 3168, 7090, 1112, 9120, + 9629, 458, 4871, 6869, 7933, 6321, 81, 9105, 20, + 4065, 9879, 6324, 5948, 4258, 6176, 8280, 5550, 3648, + 7828, 4940, 925, 9064, 4130, 997, 220, 3952, 3265, + 6751, 778, 1658, 2790, 9143, 4446, 5474, 5369, 9890, + 175, 5804, 2578, 9295, 68, 9554, 875, 4714, 6630, + 6903, 8256, 9485, 6873, 788, 4576, 257, 4058, 9901, + 1081, 6164, 1099, 9686, 1784, 8594, 5780, 5851, 1800, + 5807, 2784, 1548, 5394, 1010, 5864, 5995, 2197, 3622, + 6360, 3236, 1985, 7074, 4983, 423, 3106, 5792, 3257, + 3522, 3832, 8509, 3852, 7499, 7269, 9610, 1857, 3828, + 1095, 6707, 489, 8713, 7327, 839, 4913, 6149, 7538, + 8425, 3515, 9652, 3014, 3558, 6510, 3484, 3152, 9750, + 2084, 2579, 5450, 9665, 6024, 8898, 7948, 302, 5315, + 4180, 7959, 8289, 7761, 8450, 7959, 3206, 7670, 9154, + 9147, 6208, 5499, 7616, 9052, 4253, 8243, 2955, 7028, + 8394, 3989, 1599, 2737, 7385, 5626, 8082, 6230, 7546, + 57, 2410, 2942, 700, 3122, 9243, 2814, 7397, 4819, + 1084, 7234, 7860, 4622, 6516, 8828, 7448, 8210, 8805, + 9395, 6187, 2031, 3767, 7179, 2583, 6085, 53, 4677, + 4729, 9923, 5613, 1409, 9440, 8359, 7777, 2897, 714, + 7282, 512, 8652, 6139, 3021, 3847, 1702, 2455, 7034, + 1994, 4895, 247, 8803, 6199, 492, 8970, 5329, 1576, + 3945, 8058, 9716, 5849, 5153, 3106, 3211, 3905, 6116, + 1826, 7235, 9824, 1073, 4092, 8941, 2805, 3916, 9074, + 3940, 6464, 5740, 9399, 1287, 3979, 6746, 3637, 4616, + 8686, 7537, 7730, 8467, 9287, 3649, 9249, 9531, 8797, + 8683, 9126, 8105, 4413, 4839, 9084, 7493, 1505, 4616, + 1315, 9867, 8108, 9105, 3235, 2976, 2185, 8767, 9318, + 1590, 5862, 8416, 8494, 8249, 1922, 2173, 387, 689, + 5537, 319, 2548, 8781, 3876, 2904, 3074, 5424, 2666, + 1126, 9321, 8588, 3445, 8617, 334, 9161, 2384, 5147, + 6895, 9089, 6921, 7186, 4121, 7073, 3155, 3080, 9515, + 7841, 4184, 6560, 3776, 3166, 1037, 8649, 3341, 5486, + 8702, 8561, 2034, 4122, 6170, 611, 3580, 3403, 2813, + 9678, 1682, 4710, 1831, 6141, 5603, 6459, 1617, 1704, + 3743, 8018, 4183, 2372, 4280, 5580, 5554, 685, 4906, + 6177, 8204, 7285, 3595, 6551, 4218, 1732, 9617, 2156, + 3300, 434, 1438, 2176, 7789, 6779, 4580, 226, 6725, + 8186, 2641, 2667, 1600, 4234, 2261, 5072, 8276, 7022, + 8494, 775, 6, 6308, 1899, 4053, 5784, 3072, 8025, + 9379, 1116, 5148, 7628, 5060, 7829, 5341, 3570, 8529, + 1061, 3503, 8581, 9989, 8482, 7388, 2356, 4100, 322, + 4769, 9793, 1301, 2512, 7579, 4298, 1600, 8953, 8920, + 1692, 4787, 9285, 898, 2698, 1475, 3001, 3611, 3866, + 9122, 3753, 1211, 3092, 2312, 1040, 1123, 4411, 7130, + 9430, 8051, 8329, 3156, 6985, 5781, 3991, 8161, 6751, + 1449, 9718, 369, 9063, 273, 371, 8003, 9858, 1365, + 1729, 6226, 4643, 9125, 2272, 8996, 3896, 1943, 4185, + 4415, 9955, 2412, 9510, 3232, 4806, 2200, 1990, 6139, + 6256, 358, 9382, 2583, 7365, 9846, 8260, 733, 2064, + 118, 7040, 8862, 4366, 6192, 8535, 9244, 9993, 8572, + 3490, 6291, 7873, 3279, 5895, 2996, 7172, 761, 8005, + 1773, 7176, 2507, 2938, 3630, 9271, 4295, 6683, 5600, + 2223, 796, 5209, 6697, 614, 4824, 298, 6536, 5113, + 5778, 5914, 2119, 5281, 1677, 5222, 2043, 1439, 5141, + 1903]), + values=tensor([8.8707e-01, 8.2479e-01, 8.1424e-01, 6.0134e-01, + 2.1717e-01, 8.7330e-01, 7.2034e-01, 8.8373e-01, + 6.7753e-01, 7.2863e-01, 2.3933e-01, 7.4252e-01, + 7.9896e-02, 1.7017e-01, 7.4504e-01, 4.4774e-01, + 7.3251e-01, 7.9618e-01, 1.2655e-01, 1.0721e-01, + 6.0589e-01, 3.9688e-01, 1.0220e-01, 4.9557e-01, + 7.9026e-02, 8.0845e-01, 2.4031e-01, 1.3799e-02, + 3.6592e-01, 9.1889e-01, 4.4397e-01, 9.5919e-02, + 5.2901e-01, 6.3995e-01, 7.8787e-01, 7.3005e-01, + 5.9923e-01, 1.5700e-01, 6.1980e-01, 8.2992e-02, + 8.1762e-01, 6.8552e-01, 5.1150e-01, 6.6341e-01, + 9.1871e-01, 4.9767e-02, 8.7331e-01, 3.8092e-01, + 3.0824e-01, 3.9823e-01, 4.3039e-01, 9.3772e-01, + 1.4926e-01, 7.9505e-01, 8.0083e-01, 6.1216e-01, + 2.0931e-01, 6.1824e-01, 6.4771e-01, 5.6077e-01, + 7.8449e-01, 7.6306e-01, 7.5572e-01, 9.7267e-01, + 3.5240e-01, 5.5727e-01, 1.8393e-02, 9.6845e-01, + 6.0478e-02, 8.9628e-01, 4.4149e-01, 3.1202e-02, + 1.7476e-01, 9.2967e-01, 8.8825e-01, 9.2412e-01, + 9.8151e-01, 9.7789e-01, 3.3578e-01, 3.7791e-01, + 5.2634e-01, 5.3450e-01, 4.7320e-01, 3.5529e-02, + 8.2385e-01, 6.8358e-01, 9.8549e-01, 5.6940e-01, + 7.9720e-01, 2.6003e-01, 6.6890e-01, 1.7961e-01, + 6.2016e-01, 2.3928e-01, 1.8421e-02, 3.3260e-01, + 1.0002e-01, 8.5414e-02, 3.1758e-01, 3.3376e-01, + 6.7478e-01, 9.7524e-02, 4.6108e-01, 1.0332e-02, + 4.0865e-01, 3.7106e-02, 6.9802e-01, 8.7269e-01, + 8.2593e-01, 9.5227e-01, 3.3687e-01, 9.4058e-01, + 7.4500e-01, 3.6415e-01, 4.5557e-01, 9.7232e-01, + 5.1097e-01, 5.5568e-01, 2.7656e-01, 3.3562e-01, + 7.3346e-01, 7.7270e-01, 9.0672e-01, 2.6724e-01, + 2.5245e-01, 4.3405e-01, 6.8147e-01, 5.7156e-01, + 8.0443e-01, 2.9648e-01, 5.6969e-01, 8.6520e-01, + 4.0162e-01, 7.0064e-01, 9.6519e-01, 7.6895e-01, + 3.9290e-01, 8.0828e-01, 1.5562e-02, 5.5538e-01, + 9.3270e-01, 4.4461e-01, 7.5449e-01, 9.9752e-01, + 3.2640e-01, 5.5045e-01, 9.9590e-01, 5.7782e-01, + 3.0729e-01, 9.4262e-02, 9.6363e-01, 7.8404e-01, + 4.7225e-01, 2.8178e-01, 4.0082e-01, 4.3801e-02, + 9.9491e-01, 7.4034e-01, 6.3304e-01, 7.9732e-01, + 3.8854e-02, 3.3586e-01, 1.2839e-01, 6.2910e-01, + 1.3753e-01, 5.4593e-01, 1.8915e-01, 8.0045e-01, + 1.5614e-02, 5.9397e-01, 6.1183e-01, 5.9631e-02, + 2.4885e-01, 1.7688e-01, 3.3617e-01, 8.6754e-01, + 6.9855e-01, 9.5329e-01, 3.7958e-01, 4.4295e-01, + 3.9831e-01, 5.8230e-02, 5.4947e-01, 1.1816e-01, + 2.4831e-01, 2.1298e-01, 9.6579e-01, 8.9969e-01, + 3.8227e-01, 9.3422e-01, 1.6318e-01, 1.9859e-01, + 9.2078e-01, 9.3321e-02, 8.2575e-01, 7.2248e-01, + 8.1688e-01, 7.9359e-01, 5.1287e-01, 6.0873e-01, + 3.4040e-01, 4.0884e-01, 3.0602e-01, 7.1454e-01, + 9.3968e-01, 1.3258e-01, 3.7262e-01, 2.4053e-01, + 2.6331e-01, 9.9278e-01, 5.5712e-01, 1.1806e-01, + 3.2942e-01, 6.4174e-01, 6.8423e-01, 2.5605e-01, + 9.5326e-01, 6.1876e-01, 9.1393e-02, 9.7102e-01, + 6.2910e-01, 9.9254e-01, 6.9186e-01, 7.1631e-01, + 3.8637e-01, 4.1415e-01, 9.1739e-01, 9.1011e-01, + 7.0735e-01, 2.6752e-01, 6.7070e-02, 5.6268e-01, + 8.9992e-01, 7.8722e-02, 9.8479e-01, 8.4552e-02, + 4.0442e-01, 5.1450e-01, 8.6027e-01, 3.6511e-01, + 3.6834e-02, 9.6351e-01, 8.2693e-01, 8.1645e-01, + 7.5576e-01, 5.1891e-01, 3.3959e-01, 1.2834e-01, + 1.4061e-02, 2.5165e-01, 4.1608e-02, 4.2840e-01, + 9.2551e-01, 6.1411e-01, 6.3363e-01, 4.0275e-01, + 5.9319e-01, 2.9263e-01, 2.1565e-01, 4.4295e-01, + 5.1955e-01, 4.5938e-01, 8.5177e-01, 9.2589e-01, + 6.1009e-01, 7.1321e-01, 3.9839e-01, 6.6454e-01, + 4.9760e-01, 7.4274e-01, 6.1422e-01, 9.7794e-01, + 2.5439e-01, 7.2161e-01, 8.4072e-01, 9.1789e-01, + 2.0604e-01, 4.9255e-01, 3.0544e-01, 7.3972e-01, + 5.1823e-01, 2.7708e-02, 1.0035e-01, 3.6838e-01, + 6.9918e-01, 9.7863e-01, 4.6654e-01, 7.0863e-01, + 5.2875e-01, 1.3497e-01, 5.8760e-01, 1.5144e-01, + 8.5865e-01, 5.7095e-01, 4.1667e-01, 3.1601e-02, + 2.1484e-01, 8.1898e-02, 8.0481e-02, 3.2171e-01, + 4.1080e-01, 3.7800e-01, 2.5945e-01, 7.1999e-01, + 8.7656e-02, 6.2152e-01, 7.8688e-01, 5.0297e-01, + 7.9838e-01, 1.5162e-01, 6.3852e-01, 8.1854e-02, + 5.8775e-01, 2.1661e-01, 1.9911e-01, 6.6725e-01, + 6.6917e-01, 6.4379e-01, 5.7853e-01, 5.7889e-01, + 3.4456e-01, 3.7407e-01, 8.9088e-01, 9.6166e-01, + 3.6272e-01, 3.1812e-01, 5.3217e-02, 6.0500e-01, + 8.7168e-01, 9.1038e-01, 4.5582e-01, 6.3918e-02, + 6.9142e-01, 3.2649e-01, 9.8192e-01, 6.0464e-01, + 9.6815e-01, 1.0503e-01, 7.1600e-01, 4.3663e-01, + 8.7706e-01, 4.5971e-02, 6.6596e-01, 9.3079e-01, + 1.5823e-01, 3.2003e-01, 1.2870e-01, 6.3500e-01, + 5.3860e-01, 4.0744e-01, 2.8252e-01, 9.0788e-01, + 9.4387e-01, 3.8651e-01, 4.5116e-01, 7.6362e-01, + 9.0434e-01, 3.7603e-01, 8.1415e-01, 3.1082e-01, + 2.3815e-01, 3.2440e-01, 2.3116e-01, 3.3219e-01, + 4.3396e-01, 2.5441e-01, 3.3591e-01, 3.7212e-01, + 9.9808e-01, 7.3589e-01, 5.1922e-01, 3.1994e-01, + 5.7040e-01, 9.8825e-01, 6.5887e-01, 9.4511e-01, + 1.4550e-01, 6.0308e-01, 6.0994e-01, 3.0875e-01, + 9.5170e-01, 7.2979e-01, 1.0265e-03, 4.4914e-01, + 4.0148e-01, 5.7954e-01, 3.6786e-01, 1.5804e-01, + 7.6112e-01, 2.7800e-01, 3.6618e-01, 3.8852e-01, + 6.2086e-01, 7.5561e-01, 3.3979e-01, 9.2805e-01, + 2.8089e-01, 2.6715e-01, 4.1424e-03, 5.2598e-01, + 6.1266e-01, 2.0902e-01, 5.0368e-01, 8.0383e-01, + 7.4025e-01, 4.4304e-01, 7.4164e-01, 1.8111e-01, + 9.0030e-01, 2.8654e-01, 5.1264e-02, 6.6938e-01, + 4.7722e-03, 4.2012e-01, 6.0558e-01, 6.9264e-01, + 1.6392e-01, 8.8908e-01, 5.7035e-01, 1.4618e-01, + 6.2172e-01, 4.4803e-01, 4.2737e-01, 2.5387e-01, + 7.3742e-01, 4.9420e-01, 5.4518e-01, 4.1535e-01, + 9.8074e-01, 2.9175e-01, 7.5267e-01, 5.0346e-01, + 3.7893e-01, 3.1575e-01, 1.8698e-01, 4.7304e-01, + 9.0176e-02, 6.7209e-01, 3.8501e-01, 3.2009e-01, + 6.0189e-02, 6.3261e-01, 5.9643e-01, 5.9368e-01, + 8.3045e-01, 7.8057e-01, 7.7127e-02, 6.9980e-01, + 7.4648e-01, 4.1912e-01, 6.6123e-01, 8.0898e-01, + 9.4798e-01, 6.1651e-01, 7.6225e-01, 4.9304e-02, + 3.8411e-01, 5.1162e-01, 4.2531e-01, 4.4692e-01, + 9.0702e-01, 9.2927e-01, 7.5881e-01, 6.8857e-01, + 7.8800e-01, 5.1040e-01, 1.1781e-02, 2.1146e-01, + 2.3732e-01, 8.1244e-01, 4.9067e-01, 8.1642e-01, + 1.0624e-01, 6.6891e-01, 8.1822e-01, 5.6763e-01, + 1.5228e-01, 7.8509e-02, 9.4350e-02, 9.0172e-01, + 3.1038e-01, 4.9468e-01, 6.6537e-01, 5.0303e-01, + 2.8804e-01, 8.0134e-01, 3.1829e-02, 8.0496e-01, + 4.3146e-01, 2.1680e-01, 8.5241e-01, 4.0167e-01, + 6.2134e-01, 5.0197e-01, 6.2379e-01, 4.6456e-01, + 8.5710e-01, 3.8621e-01, 9.3479e-02, 8.4115e-01, + 1.3886e-01, 4.5770e-01, 4.5754e-01, 8.0833e-01, + 4.9763e-01, 2.5510e-01, 9.6840e-01, 1.9707e-01, + 4.0702e-01, 7.7955e-01, 5.7241e-01, 2.2345e-01, + 4.6512e-02, 8.3993e-01, 5.3641e-01, 6.2885e-01, + 3.4946e-01, 3.5017e-01, 4.0024e-01, 1.4394e-01, + 5.9394e-01, 6.1531e-01, 3.5865e-01, 2.2163e-03, + 4.5091e-01, 8.5622e-01, 9.8299e-01, 2.6351e-01, + 1.5344e-01, 8.8509e-01, 9.4732e-01, 2.3528e-01, + 4.9871e-04, 9.2326e-01, 6.8197e-01, 7.7192e-01, + 3.7885e-01, 1.9122e-01, 4.2807e-01, 4.4857e-01, + 1.8060e-01, 5.1258e-01, 7.8550e-01, 1.0826e-02, + 4.0016e-01, 5.1045e-01, 9.8409e-03, 9.4114e-01, + 7.7132e-01, 5.9286e-01, 4.3541e-01, 7.4579e-01, + 9.4221e-02, 2.5992e-01, 8.5052e-01, 6.8925e-01, + 3.1627e-01, 2.0341e-01, 2.6395e-01, 9.5170e-01, + 2.6815e-02, 5.5151e-01, 9.4061e-01, 7.8800e-01, + 7.9643e-01, 1.9611e-01, 3.9293e-01, 8.1546e-01, + 6.0137e-01, 7.1575e-01, 6.3150e-01, 4.2849e-01, + 7.8772e-01, 3.2756e-01, 8.6487e-01, 2.6993e-01, + 8.7612e-01, 3.3995e-01, 1.0473e-01, 9.2012e-01, + 3.5880e-01, 3.0548e-01, 7.9299e-02, 7.5157e-01, + 4.4155e-02, 4.3668e-01, 6.7371e-01, 3.6075e-01, + 8.1871e-01, 4.1564e-01, 7.8281e-01, 7.8903e-01, + 1.2638e-01, 8.9728e-02, 9.2093e-01, 6.7936e-01, + 2.5980e-01, 1.6090e-01, 1.8550e-01, 1.4940e-01, + 7.0870e-01, 9.5589e-02, 5.0303e-01, 6.9889e-01, + 1.5938e-01, 2.2200e-01, 6.2784e-01, 1.5446e-01, + 1.2124e-02, 8.7384e-01, 6.0268e-02, 8.1065e-02, + 9.6171e-01, 5.4637e-01, 6.6976e-01, 6.1643e-01, + 1.7711e-01, 6.3124e-01, 7.1647e-01, 1.8549e-01, + 7.9711e-01, 8.6392e-01, 6.8736e-01, 7.6796e-01, + 3.6441e-01, 7.4881e-01, 7.4269e-01, 3.0689e-01, + 7.3449e-01, 5.6269e-01, 8.7710e-01, 8.8517e-01, + 6.5795e-01, 4.5779e-01, 9.4681e-01, 5.7892e-01, + 5.7829e-01, 7.6546e-02, 8.1582e-01, 9.6362e-01, + 9.3306e-01, 5.3107e-01, 9.4367e-01, 9.9397e-01, + 2.1635e-02, 3.3178e-01, 6.0266e-01, 3.8334e-01, + 9.5467e-01, 6.0713e-01, 9.6563e-01, 1.5662e-01, + 4.2960e-02, 4.6865e-01, 4.7849e-01, 1.1095e-01, + 4.4027e-01, 7.9249e-01, 1.3336e-01, 1.8189e-01, + 6.7993e-01, 1.6154e-01, 3.7795e-01, 9.8899e-01, + 6.0252e-01, 8.8063e-01, 5.0927e-01, 8.2521e-01, + 6.4850e-01, 9.2767e-01, 1.6998e-01, 5.2612e-01, + 5.6923e-01, 1.4796e-01, 8.0528e-01, 4.2194e-01, + 6.5700e-01, 6.3868e-01, 1.8030e-01, 5.5921e-01, + 2.3978e-01, 2.7126e-01, 1.5009e-01, 4.5821e-01, + 5.9677e-01, 6.0861e-01, 2.3955e-01, 7.1788e-01, + 3.6544e-01, 3.7107e-01, 7.6629e-01, 1.4653e-01, + 9.6017e-01, 2.9226e-01, 9.6527e-01, 5.7781e-01, + 3.1803e-01, 3.4564e-01, 8.5270e-01, 8.0335e-01, + 7.2978e-01, 7.4313e-01, 2.9239e-01, 9.3231e-02, + 3.7290e-01, 9.6242e-01, 9.3227e-01, 5.2356e-02, + 4.5231e-01, 7.0243e-01, 2.0260e-01, 6.0563e-01, + 6.3537e-01, 7.0126e-03, 2.0549e-01, 6.4348e-01, + 1.1234e-01, 9.1736e-01, 9.5159e-01, 2.5712e-01, + 3.6692e-02, 2.6733e-01, 6.4886e-01, 7.0188e-01, + 7.3541e-01, 7.5349e-02, 1.9926e-01, 6.8626e-01, + 9.8980e-01, 5.8998e-01, 9.5392e-01, 2.7051e-02, + 6.8310e-01, 1.5713e-01, 5.7251e-01, 9.5125e-02, + 6.3484e-01, 8.0309e-01, 3.5265e-01, 3.2764e-01, + 4.8770e-01, 9.2443e-01, 3.0410e-01, 5.5153e-02, + 4.4606e-01, 1.5785e-01, 6.6155e-01, 1.6335e-01, + 1.6467e-01, 8.6871e-02, 9.3798e-01, 5.7792e-01, + 5.6320e-01, 7.8288e-01, 4.2018e-01, 9.8989e-01, + 1.5890e-02, 5.4217e-01, 7.9690e-01, 6.7578e-01, + 1.7863e-01, 2.4870e-01, 2.4165e-01, 9.3261e-01, + 4.3334e-01, 4.5406e-01, 1.2943e-01, 2.4438e-01, + 6.1877e-01, 1.5403e-01, 2.3696e-01, 6.0019e-01, + 7.6954e-02, 4.8879e-01, 3.9922e-01, 6.1722e-02, + 9.8407e-01, 1.3447e-01, 3.0239e-01, 9.1036e-01, + 9.3287e-01, 4.3368e-01, 2.4395e-01, 4.6772e-01, + 1.3810e-01, 4.4311e-01, 1.8397e-01, 1.7834e-01, + 5.5151e-01, 6.6086e-01, 8.9171e-01, 6.7263e-01, + 8.5315e-01, 7.7935e-01, 9.3442e-01, 4.3695e-01, + 1.5108e-01, 3.6121e-01, 3.5574e-01, 7.4972e-01, + 8.1697e-01, 8.9608e-01, 4.1783e-01, 5.6045e-02, + 2.1298e-01, 7.5669e-01, 2.7640e-01, 8.8664e-01, + 7.8179e-01, 2.7053e-02, 1.3976e-01, 6.5301e-01, + 2.0818e-01, 9.5708e-02, 7.3530e-01, 5.6532e-01, + 1.9201e-01, 7.5872e-01, 8.5304e-01, 7.6696e-01, + 2.3298e-01, 7.3064e-02, 4.5750e-01, 3.0491e-01, + 8.4562e-01, 5.0911e-01, 8.4650e-01, 1.7022e-01, + 1.6887e-01, 2.5773e-01, 4.1362e-01, 2.3742e-01, + 9.0183e-01, 9.8016e-01, 4.6076e-02, 3.1594e-01, + 6.9052e-01, 9.5460e-01, 9.5283e-01, 7.5063e-01, + 2.9345e-01, 3.4141e-01, 4.1893e-01, 5.2709e-01, + 7.8712e-01, 7.9375e-01, 9.2839e-01, 8.4541e-01, + 6.4293e-01, 9.0380e-01, 6.3515e-01, 8.8752e-01, + 4.0009e-03, 5.8117e-02, 3.0656e-02, 8.5350e-01, + 7.0642e-01, 1.4772e-02, 7.6152e-01, 9.4227e-01, + 1.6103e-01, 5.6090e-01, 8.9968e-02, 4.7046e-01, + 5.8490e-01, 8.4874e-01, 9.9450e-01, 7.0178e-01, + 8.8232e-01, 9.9210e-01, 3.7964e-01, 5.7953e-01, + 7.0927e-01, 5.9254e-01, 3.0037e-01, 1.9808e-01, + 1.3903e-01, 6.7066e-01, 4.3748e-01, 7.7025e-01, + 8.2460e-01, 5.1989e-01, 6.9893e-01, 3.1880e-02, + 6.5270e-01, 7.5305e-01, 2.6387e-01, 2.3470e-01, + 7.7775e-01, 5.4475e-02, 8.4215e-01, 7.9833e-01, + 6.8635e-01, 5.8313e-01, 6.2967e-01, 9.3181e-02, + 2.5176e-01, 2.8259e-01, 8.5278e-01, 2.0479e-01, + 3.2888e-01, 4.0002e-01, 4.2985e-01, 1.6745e-02, + 6.4703e-01, 3.8685e-01, 2.7396e-01, 4.0083e-02, + 6.9795e-01, 3.2896e-01, 9.4557e-01, 6.2325e-01, + 6.2040e-01, 7.2851e-01, 1.4586e-01, 2.2619e-01, + 8.3001e-01, 6.9165e-01, 9.3075e-01, 8.4699e-02, + 9.1120e-01, 6.1131e-01, 6.7315e-01, 6.2863e-01, + 6.1502e-02, 6.6647e-01, 3.9426e-01, 3.4242e-01, + 2.4155e-01, 7.0349e-01, 6.4289e-01, 2.0874e-01, + 3.7193e-03, 1.9972e-01, 6.8698e-01, 1.8595e-01, + 5.9335e-01, 5.0666e-01, 6.8596e-01, 7.5661e-01, + 4.4919e-01, 9.2522e-01, 3.4907e-01, 4.9716e-01, + 5.3208e-01, 1.8718e-01, 8.8527e-01, 3.9827e-01, + 3.4328e-01, 2.1804e-01, 3.2701e-01, 7.1900e-01, + 8.8112e-01, 5.6475e-01, 2.6203e-01, 5.6843e-01, + 3.6244e-01, 7.4864e-01, 4.2898e-02, 1.0206e-01, + 5.8229e-01, 3.6364e-01, 9.0089e-01, 6.3906e-01, + 9.4625e-01, 1.5743e-01, 7.0745e-01, 9.7285e-01, + 3.2107e-01, 4.6844e-01, 5.0980e-01, 3.0922e-01, + 6.4165e-01, 5.8791e-01, 5.8697e-01, 5.0368e-01, + 1.3440e-01, 7.0304e-01, 9.5832e-01, 4.9678e-01, + 7.5464e-01, 5.7994e-01, 2.8987e-01, 9.1487e-03, + 6.1330e-01, 3.2294e-01, 3.1984e-01, 5.8267e-01, + 6.6203e-01, 7.6829e-01, 9.8125e-01, 6.4370e-01, + 6.1405e-01, 2.6304e-01, 8.6038e-01, 6.6028e-01, + 1.6081e-02, 9.8894e-01, 5.8987e-01, 3.5565e-01]), size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.9110, 0.9462, 0.7927, ..., 0.0987, 0.6084, 0.0709]) +tensor([0.3198, 0.6605, 0.6944, ..., 0.6134, 0.5235, 0.6507]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -540,378 +375,650 @@ Rows: 10000 Size: 100000000 NNZ: 1000 Density: 1e-05 -Time: 9.372220277786255 seconds +Time: 0.015525579452514648 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 141920 -ss 10000 -sd 1e-05 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.197850227355957} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 67630 -ss 10000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 4.8812994956970215} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 999, 999, 1000]), + col_indices=tensor([8647, 4654, 5499, 4449, 7451, 3553, 6737, 3727, 9375, + 328, 3652, 7464, 1792, 3337, 3219, 9816, 8774, 722, + 7286, 8975, 5239, 5207, 7520, 2047, 9786, 1775, 7824, + 1686, 6523, 1807, 7651, 3617, 6569, 7853, 4440, 4649, + 2754, 2264, 1878, 5699, 1779, 6715, 4641, 6933, 4479, + 8379, 2007, 678, 8640, 712, 2714, 3092, 8404, 958, + 6892, 5229, 232, 1407, 5081, 5811, 8597, 2045, 959, + 9609, 9725, 137, 6909, 8887, 5531, 9907, 8259, 3598, + 3106, 4242, 1459, 975, 9373, 279, 5289, 239, 4982, + 7449, 2338, 3106, 7326, 5651, 7345, 5951, 2276, 9406, + 1555, 187, 5936, 3172, 5886, 8072, 5078, 8086, 5802, + 9928, 7066, 2942, 5468, 8880, 3550, 6036, 7923, 2059, + 5727, 8966, 3271, 5191, 8019, 143, 8926, 3410, 1927, + 5129, 6995, 4214, 8413, 2923, 5122, 289, 6094, 9084, + 3943, 7811, 5472, 4461, 9629, 2075, 1933, 9084, 666, + 1579, 5138, 7074, 4251, 2116, 8273, 7982, 7533, 4948, + 9847, 5061, 4404, 5976, 6566, 4338, 4776, 2382, 9615, + 4466, 7669, 7291, 5642, 7421, 9834, 953, 7266, 4045, + 4744, 4897, 9364, 1730, 4368, 9844, 1957, 9401, 1180, + 2799, 2434, 2079, 3790, 944, 1503, 5578, 6431, 8745, + 9367, 9630, 9634, 3838, 2042, 1290, 752, 5314, 9275, + 1425, 3780, 3456, 7397, 6659, 2673, 3050, 213, 3865, + 108, 374, 8126, 9474, 7399, 1622, 8557, 3681, 4079, + 3800, 9932, 1087, 1720, 2470, 9941, 7514, 803, 6483, + 6709, 7368, 2720, 2999, 6038, 6911, 1766, 360, 1533, + 1807, 5357, 5158, 2293, 7675, 8708, 6003, 955, 3712, + 7798, 1523, 5030, 4107, 8054, 1811, 47, 8376, 4369, + 3092, 3036, 7834, 3657, 7158, 1452, 2555, 7073, 7909, + 7008, 2655, 9224, 6660, 9253, 1818, 4261, 3550, 579, + 5989, 8739, 5752, 2907, 2571, 1252, 8072, 119, 3969, + 1752, 2664, 8669, 8282, 3748, 1807, 2214, 2082, 1936, + 5224, 9356, 8771, 9920, 2445, 9815, 3980, 583, 9973, + 8012, 4204, 3618, 3650, 5388, 358, 1532, 1955, 4875, + 158, 6910, 686, 8612, 6716, 2830, 2503, 2259, 8773, + 9299, 2216, 6023, 9677, 1449, 3531, 9724, 643, 8636, + 3334, 5334, 3817, 8516, 9990, 2373, 5938, 4650, 9304, + 4529, 4507, 9739, 8866, 5608, 724, 4488, 9831, 257, + 2286, 7193, 1443, 6012, 8866, 327, 2031, 3505, 4806, + 6614, 384, 3462, 494, 3168, 3506, 6739, 5696, 7354, + 9211, 6058, 9379, 1835, 4352, 2144, 4085, 70, 1475, + 9132, 9185, 6667, 9380, 4485, 7941, 1673, 3774, 5096, + 1961, 1035, 737, 664, 885, 9541, 1359, 1408, 8312, + 5862, 2042, 7184, 2999, 9384, 5279, 8734, 1236, 2120, + 7519, 5331, 9850, 3362, 7044, 5123, 9555, 7957, 1966, + 4504, 9159, 7008, 2116, 6625, 9822, 5379, 5010, 96, + 6277, 7752, 9818, 4290, 1742, 8951, 1186, 3862, 2517, + 9435, 8552, 3364, 3956, 4806, 2389, 9824, 8423, 1737, + 3271, 5071, 836, 5580, 9804, 5970, 4791, 6708, 506, + 5852, 8007, 4051, 4343, 4073, 9299, 5039, 3444, 1200, + 3576, 7481, 5426, 7249, 286, 6046, 6879, 1392, 3912, + 5483, 3682, 6743, 235, 4404, 9434, 5444, 7481, 6774, + 1351, 3311, 6546, 8886, 4270, 2502, 694, 1728, 6058, + 5335, 9753, 5031, 6419, 2685, 4780, 4575, 2462, 1331, + 6584, 7477, 346, 1448, 1524, 8493, 3416, 5801, 5122, + 9403, 20, 3995, 7626, 7649, 4382, 6018, 4365, 415, + 1738, 1419, 3860, 5817, 1889, 5409, 6227, 459, 3324, + 462, 8734, 6319, 6608, 2415, 1202, 8065, 3675, 3079, + 7072, 1983, 4067, 8193, 238, 8863, 1444, 1643, 9833, + 9735, 3625, 4690, 2588, 2956, 8114, 2900, 2471, 2097, + 9641, 705, 9577, 9145, 5785, 4597, 41, 1057, 2855, + 1577, 3417, 2854, 6268, 5170, 6633, 6168, 6675, 610, + 79, 3397, 4486, 8438, 1953, 8993, 2, 9913, 3737, + 8115, 1773, 5791, 7003, 8850, 7715, 7068, 2545, 22, + 2997, 7784, 2193, 8115, 4276, 9097, 8603, 2402, 6620, + 4490, 3390, 8009, 9364, 1928, 6058, 1117, 8459, 7279, + 9802, 937, 4414, 269, 5996, 3388, 2213, 8303, 1471, + 6791, 5503, 786, 3105, 6092, 3993, 5432, 5514, 1482, + 284, 4826, 3661, 1299, 3045, 947, 2784, 6465, 53, + 3237, 3325, 8755, 4946, 5582, 9687, 4216, 8261, 8643, + 4128, 9567, 5015, 2626, 7520, 7301, 1665, 4611, 1178, + 4466, 8878, 105, 9091, 656, 38, 6417, 9503, 8593, + 85, 2340, 2943, 6566, 86, 5872, 5085, 7636, 6075, + 8279, 3927, 2818, 3066, 5835, 9800, 3701, 8166, 5053, + 2914, 5582, 6646, 4031, 152, 1816, 2513, 6513, 9514, + 7368, 2044, 9261, 8730, 2154, 9077, 900, 5045, 1209, + 7769, 5333, 2182, 9868, 7515, 6495, 8081, 9467, 485, + 4842, 7595, 346, 3896, 4589, 7304, 102, 9131, 1881, + 7363, 4667, 3124, 1494, 7640, 2085, 5969, 327, 8422, + 4445, 7075, 7495, 4090, 7290, 414, 7042, 2615, 5534, + 9631, 6285, 5895, 6803, 3363, 109, 1042, 5715, 699, + 6263, 3089, 8671, 1903, 1932, 1891, 6086, 2033, 4653, + 236, 8358, 3454, 2498, 1012, 1022, 7187, 8474, 6396, + 2842, 3209, 5149, 2014, 5465, 5988, 5452, 2136, 2496, + 5828, 8399, 834, 1934, 4582, 2435, 4518, 8149, 1215, + 2360, 572, 7934, 7805, 7177, 4755, 7951, 6277, 3279, + 3301, 4324, 7617, 3138, 4131, 8647, 4535, 537, 9550, + 7765, 7501, 7201, 79, 676, 5103, 21, 5905, 5104, + 8383, 1494, 9361, 748, 2928, 9945, 8214, 6916, 8639, + 9369, 2781, 3513, 6667, 4267, 1563, 9150, 329, 6830, + 2855, 9810, 1621, 8822, 1933, 9318, 1258, 8146, 8930, + 8826, 5989, 2187, 6638, 9013, 7520, 9266, 3394, 1048, + 8429, 6417, 8432, 9384, 9431, 9345, 7911, 313, 7347, + 7640, 9284, 302, 4482, 517, 9019, 2279, 7907, 7949, + 94, 3374, 6951, 3507, 2953, 7996, 9649, 4108, 9885, + 1601, 9214, 4791, 7898, 3000, 8842, 4620, 6241, 6616, + 2733, 147, 5293, 9372, 2648, 2261, 1230, 6095, 4677, + 2716, 6197, 8800, 7896, 4094, 6693, 1892, 1616, 5199, + 6890, 5117, 7860, 6533, 6255, 6453, 8306, 6190, 616, + 6010, 482, 4524, 4452, 5701, 2687, 6600, 6294, 7700, + 8616, 665, 690, 6448, 6296, 6304, 8118, 8907, 31, + 6487, 9750, 5850, 4854, 162, 383, 206, 7720, 7300, + 1965, 2943, 9050, 8357, 4610, 1564, 3450, 7501, 5942, + 805, 2704, 8681, 8214, 7783, 2722, 8026, 3060, 4714, + 1241, 6614, 1767, 9333, 6280, 2376, 4705, 5029, 507, + 2510, 3816, 3176, 4093, 4640, 1394, 4466, 1634, 5625, + 9616, 9856, 5608, 847, 5783, 8919, 4444, 2893, 8647, + 657, 2075, 373, 2227, 3120, 4500, 9463, 5337, 7565, + 9168, 5069, 8132, 5707, 2138, 1858, 3288, 6897, 4099, + 3082, 484, 3044, 2456, 7707, 5443, 5260, 805, 9070, + 2483, 8225, 9487, 1239, 1687, 3954, 6303, 8989, 5541, + 7977, 7424, 7522, 2231, 1796, 5265, 9895, 4183, 3338, + 1377]), + values=tensor([2.6711e-01, 1.5256e-01, 4.7895e-01, 9.7177e-01, + 3.3217e-01, 4.8662e-01, 9.6837e-02, 4.9364e-02, + 4.1631e-01, 7.9638e-01, 4.9818e-01, 1.0329e-01, + 8.5050e-01, 3.5207e-01, 8.8170e-01, 1.3600e-01, + 8.9499e-01, 8.9928e-01, 9.5856e-02, 2.0110e-01, + 6.7254e-01, 8.1814e-01, 1.4681e-01, 1.3722e-01, + 8.1086e-01, 1.9533e-01, 8.2412e-01, 8.9212e-01, + 9.7206e-01, 6.8201e-02, 3.7707e-01, 2.6646e-01, + 7.2796e-01, 8.8582e-01, 2.5316e-01, 6.6138e-01, + 7.9265e-01, 3.3510e-01, 6.5242e-02, 9.4971e-01, + 4.5732e-01, 4.8267e-02, 1.9899e-01, 8.6938e-01, + 2.0791e-01, 4.0034e-01, 7.8684e-01, 4.0125e-01, + 2.0749e-02, 7.8661e-01, 1.5651e-02, 2.8427e-01, + 1.1615e-01, 8.5568e-01, 1.5852e-01, 5.8611e-02, + 3.7139e-01, 9.1537e-01, 7.3291e-01, 6.1366e-02, + 9.4998e-01, 3.3764e-01, 5.4722e-01, 2.2605e-01, + 9.0416e-01, 2.5427e-01, 8.4136e-01, 5.3180e-01, + 9.3963e-01, 8.3464e-01, 7.9459e-02, 2.1388e-01, + 7.0909e-01, 1.5803e-01, 4.7915e-01, 5.6413e-01, + 7.7630e-01, 9.0240e-01, 1.3854e-01, 7.6111e-01, + 5.9490e-01, 7.5820e-01, 4.9648e-01, 3.5839e-01, + 9.7634e-01, 6.3633e-01, 6.7076e-01, 1.2479e-01, + 6.1116e-01, 2.5072e-01, 3.9865e-01, 3.1353e-01, + 8.0245e-01, 8.9919e-01, 7.6141e-01, 5.2578e-02, + 6.3377e-01, 3.9030e-01, 5.8898e-01, 9.7807e-01, + 6.7515e-02, 9.7033e-01, 5.3258e-01, 2.4756e-01, + 6.1442e-01, 5.7467e-01, 9.1736e-01, 3.8045e-01, + 6.4755e-01, 8.4549e-01, 3.4941e-02, 2.2137e-01, + 2.6165e-01, 1.5812e-01, 4.4836e-01, 4.0372e-01, + 6.8160e-01, 3.4621e-01, 3.1729e-01, 7.9594e-01, + 8.5949e-03, 4.1101e-01, 2.9323e-01, 3.0476e-01, + 2.1348e-01, 1.9134e-01, 9.2995e-01, 5.6460e-01, + 1.6420e-01, 4.6461e-01, 1.6407e-01, 9.0001e-01, + 2.1794e-01, 4.7626e-01, 9.9720e-01, 1.9139e-01, + 7.5819e-01, 6.4924e-01, 2.8439e-01, 8.1343e-01, + 9.9954e-01, 2.0023e-01, 1.9576e-01, 2.2422e-01, + 3.9389e-01, 4.0590e-01, 9.4587e-01, 9.5859e-01, + 9.1196e-01, 3.3142e-01, 6.5074e-02, 8.1017e-01, + 2.6550e-01, 5.0111e-01, 4.9418e-01, 3.1742e-01, + 4.8848e-01, 7.9520e-01, 2.2326e-01, 9.0457e-01, + 2.3438e-01, 3.5241e-01, 8.5370e-01, 2.5089e-01, + 9.9178e-01, 5.9049e-01, 1.4631e-01, 3.6536e-02, + 5.5173e-01, 4.9073e-01, 4.1231e-01, 2.7039e-01, + 3.3169e-01, 2.5824e-01, 9.4158e-03, 2.0982e-01, + 3.0498e-01, 8.5326e-01, 4.7060e-01, 7.8361e-01, + 1.3420e-01, 2.0663e-01, 7.7739e-01, 5.1495e-01, + 1.6129e-01, 6.9651e-01, 1.0713e-02, 6.5069e-01, + 5.6758e-01, 4.3940e-01, 8.3930e-01, 6.0393e-01, + 3.0148e-01, 9.9091e-02, 5.5146e-02, 3.0113e-01, + 7.6004e-01, 5.5121e-01, 4.1376e-01, 3.0646e-01, + 8.9187e-01, 3.8609e-01, 4.1549e-01, 2.1979e-01, + 5.1501e-01, 2.2452e-01, 1.4563e-01, 1.4372e-02, + 4.8200e-02, 5.2964e-01, 1.1575e-03, 3.5902e-01, + 7.5079e-01, 3.0657e-01, 9.7819e-01, 6.8395e-01, + 5.8067e-01, 8.4327e-01, 5.8382e-01, 7.1746e-01, + 2.3417e-03, 4.3092e-01, 9.2003e-01, 9.2056e-01, + 3.9954e-01, 7.7219e-01, 1.6823e-01, 6.3088e-01, + 9.6458e-01, 8.5932e-02, 6.4564e-02, 8.0078e-01, + 2.8911e-01, 6.4202e-01, 9.9214e-01, 3.9409e-01, + 4.4199e-01, 5.1642e-01, 7.1285e-01, 4.9413e-01, + 7.5052e-01, 2.8058e-01, 2.2623e-01, 2.1988e-01, + 6.1212e-01, 6.0671e-01, 8.2609e-01, 9.1290e-01, + 7.1068e-01, 9.9832e-01, 2.6371e-01, 6.6080e-01, + 5.4266e-01, 4.3958e-01, 1.5237e-01, 3.0533e-01, + 9.5470e-01, 7.7750e-01, 7.7943e-01, 5.6432e-01, + 8.5319e-01, 3.9678e-02, 8.6073e-01, 5.0306e-01, + 8.2644e-01, 8.2269e-01, 3.4132e-01, 9.1906e-01, + 7.9166e-01, 3.2085e-01, 4.6701e-01, 9.9773e-01, + 6.9791e-01, 3.6137e-01, 1.1040e-01, 1.7501e-01, + 9.8849e-01, 4.4263e-01, 1.9965e-01, 3.4535e-01, + 5.6003e-01, 3.6558e-01, 9.4761e-01, 8.2034e-01, + 2.4737e-01, 4.2745e-01, 1.7134e-01, 5.8162e-01, + 1.6103e-01, 6.0025e-01, 2.7172e-01, 7.9051e-01, + 9.2993e-01, 3.7228e-02, 4.5206e-01, 6.1660e-01, + 3.6437e-01, 4.8195e-01, 9.5990e-01, 6.9781e-01, + 7.3194e-01, 9.0573e-01, 9.1063e-01, 8.5010e-01, + 8.7019e-01, 3.7969e-01, 1.0579e-01, 3.2359e-01, + 2.3793e-01, 3.0734e-01, 4.3956e-01, 7.3710e-01, + 3.4507e-01, 4.9102e-02, 8.9148e-01, 6.3684e-01, + 3.3010e-01, 4.9130e-01, 1.4864e-01, 8.4955e-01, + 7.1091e-01, 1.8830e-01, 7.9391e-01, 3.4619e-01, + 2.0274e-01, 7.6287e-01, 9.2535e-01, 8.5751e-01, + 2.0318e-01, 3.7269e-01, 8.1414e-01, 6.3746e-01, + 2.4272e-02, 9.0444e-01, 2.7878e-01, 6.2372e-01, + 8.5718e-01, 5.8344e-01, 7.8253e-01, 8.7141e-02, + 1.8131e-01, 7.4047e-01, 3.6256e-01, 4.1791e-01, + 9.5543e-01, 5.4189e-01, 8.9479e-01, 9.2614e-01, + 3.3140e-01, 3.7395e-02, 1.7005e-02, 6.2850e-01, + 6.3872e-01, 7.6598e-02, 5.2965e-01, 5.2871e-02, + 3.4428e-01, 3.5255e-01, 3.5881e-01, 4.4021e-01, + 9.4895e-01, 5.3642e-02, 1.2858e-01, 2.7157e-01, + 4.5236e-01, 4.0391e-01, 4.7756e-01, 8.1354e-01, + 8.3760e-02, 5.6691e-01, 6.4345e-02, 7.4975e-01, + 4.5835e-02, 2.0528e-01, 2.5545e-01, 5.2956e-01, + 8.8487e-02, 3.1582e-03, 9.6494e-01, 6.3755e-01, + 9.1466e-01, 4.2722e-01, 3.3045e-01, 7.7722e-01, + 2.3250e-01, 9.4868e-01, 5.6161e-01, 3.1958e-01, + 8.5872e-01, 7.0911e-01, 3.9428e-01, 7.6624e-01, + 3.2459e-01, 4.3472e-01, 1.1225e-01, 5.3608e-01, + 3.8279e-01, 1.1010e-01, 5.9535e-01, 8.1914e-01, + 3.5874e-01, 2.9956e-01, 7.5475e-01, 4.1724e-01, + 6.6390e-01, 4.5093e-02, 1.4779e-01, 3.3404e-01, + 6.0949e-01, 3.4111e-01, 5.3452e-01, 4.6772e-01, + 6.5799e-01, 1.4563e-01, 8.9795e-02, 7.0677e-01, + 9.6720e-01, 3.5216e-01, 6.8202e-01, 6.4105e-01, + 5.2730e-02, 9.0455e-01, 5.0695e-01, 2.2618e-01, + 4.1787e-01, 4.9977e-01, 1.7190e-01, 8.1795e-01, + 2.5523e-01, 1.6846e-01, 3.0340e-01, 1.2116e-01, + 5.7507e-01, 3.2181e-02, 4.0972e-01, 5.3684e-01, + 7.7024e-02, 2.5776e-01, 3.8207e-02, 5.0350e-01, + 6.8774e-01, 3.7681e-01, 7.8401e-01, 3.5398e-01, + 1.7284e-01, 8.2055e-01, 8.0188e-01, 7.5652e-01, + 8.4424e-01, 7.5359e-02, 5.7660e-01, 6.7798e-01, + 5.1769e-01, 2.5610e-01, 6.8145e-01, 1.9421e-01, + 2.4913e-01, 3.1308e-01, 7.1412e-01, 5.3230e-01, + 3.8665e-01, 2.4735e-01, 3.3487e-01, 3.6920e-01, + 9.0259e-01, 4.9511e-01, 5.0551e-01, 4.5521e-01, + 2.8694e-01, 8.0323e-01, 7.3814e-01, 3.2435e-02, + 9.1875e-01, 1.7711e-01, 1.7888e-01, 4.0248e-01, + 7.6070e-01, 1.6275e-01, 2.8341e-01, 7.5435e-01, + 8.6267e-01, 4.2804e-01, 4.0729e-01, 4.6713e-01, + 6.8111e-01, 6.2087e-01, 5.1119e-01, 5.5762e-01, + 2.1222e-01, 3.0056e-01, 9.3891e-01, 7.6294e-01, + 9.2317e-01, 6.5980e-01, 6.9628e-01, 3.8871e-01, + 2.1686e-02, 8.4704e-01, 1.3727e-01, 2.5067e-01, + 3.1685e-01, 2.0661e-01, 4.0914e-01, 5.7463e-01, + 9.9025e-01, 9.5729e-01, 9.5966e-01, 7.1123e-01, + 4.3624e-01, 8.1709e-01, 6.3299e-01, 7.6594e-01, + 2.4838e-01, 3.6857e-01, 9.2991e-01, 1.9568e-01, + 8.4934e-01, 9.8161e-01, 4.7543e-01, 3.4680e-01, + 8.5980e-01, 5.5619e-01, 8.9898e-01, 1.1013e-01, + 5.1630e-01, 6.2091e-01, 8.6039e-01, 4.2882e-01, + 6.1202e-01, 8.7425e-01, 4.3832e-01, 5.2528e-01, + 9.2188e-01, 8.4098e-01, 6.1872e-01, 7.1332e-01, + 7.0086e-01, 9.5349e-01, 2.9772e-01, 1.4673e-01, + 4.6976e-01, 1.7743e-01, 7.4055e-01, 9.7266e-01, + 8.9465e-01, 8.7893e-01, 5.5357e-01, 9.5969e-01, + 9.4823e-01, 8.3593e-01, 7.5239e-01, 8.5419e-01, + 8.2583e-01, 6.3540e-02, 9.2498e-01, 9.5993e-01, + 7.7555e-01, 2.7650e-01, 4.8435e-01, 3.2763e-01, + 6.3364e-01, 3.2754e-01, 5.6219e-01, 2.8495e-01, + 5.3835e-01, 3.8651e-01, 1.3108e-02, 7.7623e-01, + 3.0955e-01, 6.0302e-01, 8.1158e-01, 2.7890e-01, + 2.2545e-01, 5.6962e-02, 4.3985e-01, 6.0311e-01, + 1.9924e-01, 1.1954e-01, 6.5392e-02, 7.3132e-01, + 4.1029e-01, 3.1499e-01, 4.5299e-01, 6.2903e-01, + 3.9752e-01, 3.2276e-01, 7.1679e-01, 2.7750e-01, + 1.6683e-01, 8.9769e-01, 2.6029e-02, 2.7055e-01, + 8.4552e-02, 3.8641e-01, 1.2100e-01, 5.4977e-01, + 5.6060e-01, 9.5285e-01, 7.9471e-01, 8.9880e-01, + 7.2027e-01, 6.6256e-01, 4.0963e-02, 7.9062e-01, + 1.1688e-01, 6.4308e-01, 7.9788e-01, 2.4992e-01, + 2.6054e-01, 2.4177e-01, 6.5576e-01, 5.0046e-02, + 2.6875e-01, 7.4788e-01, 9.9256e-01, 7.4616e-01, + 9.4601e-01, 8.6212e-01, 3.7690e-01, 6.9520e-01, + 5.7234e-01, 8.1622e-01, 5.1617e-01, 4.5916e-01, + 1.9811e-01, 8.1565e-01, 6.0003e-01, 8.9139e-01, + 5.3729e-01, 7.2110e-01, 8.6277e-01, 9.4231e-01, + 8.4618e-01, 4.9181e-01, 6.9875e-01, 2.7656e-01, + 2.0255e-01, 5.9269e-02, 1.4714e-01, 6.9136e-01, + 3.8930e-01, 5.4488e-01, 5.5210e-01, 9.9922e-01, + 2.7776e-01, 6.7954e-01, 2.6406e-01, 9.1547e-01, + 4.4960e-01, 3.0461e-01, 2.7204e-02, 3.8050e-01, + 7.6526e-01, 9.9671e-01, 9.6274e-02, 4.6527e-01, + 6.3199e-01, 1.3465e-01, 1.2424e-01, 4.2475e-01, + 1.5085e-02, 5.3115e-01, 2.5265e-01, 5.4656e-01, + 8.3119e-01, 7.9993e-01, 1.3612e-01, 6.2849e-01, + 9.6348e-01, 8.4367e-01, 1.0647e-01, 3.5132e-01, + 5.4878e-02, 3.0414e-01, 3.8242e-01, 3.4146e-01, + 5.8380e-01, 4.3874e-01, 6.8347e-01, 3.3214e-01, + 9.5222e-01, 2.4075e-01, 5.4615e-01, 5.0775e-01, + 6.2950e-01, 6.5791e-01, 5.3492e-01, 4.6581e-01, + 2.9513e-01, 5.5712e-01, 9.6987e-01, 9.2809e-01, + 6.6533e-01, 1.5652e-01, 3.0325e-01, 8.3782e-01, + 3.8865e-02, 6.0800e-01, 5.9107e-03, 7.1721e-01, + 1.8278e-01, 2.9456e-01, 7.1928e-01, 4.3675e-01, + 4.2686e-04, 3.2199e-01, 3.1531e-01, 9.5563e-01, + 5.9256e-01, 6.6577e-01, 9.4022e-01, 5.4210e-01, + 2.2494e-01, 8.8292e-01, 5.0262e-01, 1.7811e-01, + 7.3303e-01, 3.7569e-01, 1.6461e-01, 4.7748e-01, + 6.5068e-01, 7.6588e-01, 6.9365e-01, 1.6987e-01, + 9.3394e-01, 5.6170e-01, 7.6574e-01, 4.8042e-01, + 5.2666e-01, 4.4468e-02, 7.1181e-01, 5.8269e-01, + 5.8374e-01, 3.1109e-01, 4.0255e-01, 4.9434e-01, + 6.6836e-01, 2.9763e-01, 7.7282e-01, 7.7640e-01, + 5.5950e-01, 8.2989e-01, 3.9255e-01, 3.2097e-01, + 3.5498e-01, 1.4379e-01, 6.9156e-01, 6.0956e-01, + 5.7389e-01, 2.1995e-01, 5.8540e-02, 1.3269e-01, + 2.2999e-01, 4.0583e-01, 7.6687e-01, 3.5515e-02, + 3.8287e-01, 5.1448e-01, 8.5014e-01, 2.6067e-01, + 6.8776e-01, 4.4364e-01, 5.2084e-01, 5.8748e-01, + 7.7529e-01, 5.3467e-03, 3.3276e-01, 2.7419e-01, + 2.1121e-01, 5.0536e-01, 6.9922e-01, 3.7431e-02, + 8.7829e-01, 5.9974e-01, 7.9058e-03, 3.0586e-01, + 3.7018e-01, 7.6306e-01, 7.8815e-01, 6.7061e-01, + 9.4150e-01, 5.2596e-01, 9.8341e-01, 7.4131e-01, + 4.6374e-01, 3.6025e-02, 8.4405e-01, 5.0067e-01, + 1.3499e-01, 1.0402e-01, 2.6472e-02, 9.9025e-01, + 4.3637e-01, 2.0747e-01, 8.8258e-01, 7.6534e-01, + 2.0794e-01, 6.9392e-01, 3.5335e-01, 3.5247e-02, + 2.4280e-01, 3.4927e-01, 3.3197e-01, 6.3293e-01, + 5.4021e-01, 3.0541e-01, 1.3719e-01, 4.9790e-01, + 6.1273e-01, 5.6672e-01, 1.8746e-01, 9.1112e-01, + 5.0549e-01, 2.7840e-01, 8.5873e-01, 3.6234e-01, + 7.5441e-01, 8.7309e-01, 2.3727e-01, 5.8749e-01, + 8.4630e-02, 7.2921e-01, 4.7617e-01, 2.0277e-01, + 7.1199e-01, 6.3057e-01, 7.4494e-01, 5.9390e-01, + 6.3551e-01, 7.0786e-01, 7.5953e-01, 9.4655e-01, + 6.3295e-01, 2.9744e-01, 5.7620e-02, 8.4973e-01, + 2.3404e-01, 9.0329e-01, 9.1647e-01, 8.5317e-01, + 3.9654e-03, 6.7276e-01, 7.7647e-01, 2.8644e-03, + 1.2519e-01, 2.2041e-01, 9.9379e-01, 7.0161e-01, + 9.8575e-01, 1.5756e-01, 5.1589e-01, 6.4543e-01, + 9.7651e-01, 6.5372e-01, 8.7253e-01, 3.7374e-01, + 2.1858e-01, 2.3323e-01, 3.9934e-02, 5.3707e-01, + 7.2272e-01, 3.0457e-01, 8.7516e-01, 9.0816e-01, + 6.7837e-01, 4.3251e-01, 3.3498e-01, 9.0997e-01, + 6.9389e-02, 7.7021e-01, 8.7092e-01, 3.8024e-01, + 5.4805e-01, 1.9497e-01, 5.6864e-01, 5.6939e-01, + 1.8313e-02, 1.8784e-01, 3.8429e-01, 5.5461e-02, + 1.5808e-01, 4.2510e-01, 4.4210e-01, 2.2740e-01, + 6.7933e-01, 4.3438e-01, 9.9588e-01, 8.9235e-01, + 4.4846e-01, 9.2256e-01, 4.5922e-01, 6.8803e-01, + 1.9931e-01, 2.3433e-01, 1.4563e-01, 8.9319e-01, + 8.7190e-01, 7.9103e-01, 2.3878e-01, 3.1898e-01, + 8.8999e-01, 6.2143e-01, 1.3975e-01, 3.9679e-01, + 3.7014e-01, 4.5515e-01, 2.9703e-01, 9.1947e-01, + 1.2286e-01, 4.4267e-01, 7.6303e-01, 5.3320e-01, + 5.6167e-01, 9.1226e-02, 2.2957e-01, 3.7713e-01, + 8.1719e-01, 2.0355e-02, 4.1507e-01, 6.6296e-01, + 3.8091e-01, 6.7962e-01, 5.0347e-01, 4.7727e-01, + 7.4304e-01, 5.9352e-01, 6.8517e-01, 1.9044e-02, + 9.1414e-01, 1.4885e-01, 1.5007e-01, 3.7674e-02, + 6.0095e-01, 2.4963e-01, 1.8637e-01, 6.8931e-01, + 2.8481e-01, 6.1241e-01, 5.2515e-01, 9.8569e-01, + 8.9238e-01, 7.5556e-01, 4.9874e-01, 7.9759e-01, + 9.6169e-01, 7.9671e-01, 8.1893e-01, 4.5951e-01, + 7.5276e-01, 4.0520e-01, 4.0465e-02, 1.9412e-01, + 3.5283e-01, 6.9192e-01, 3.7641e-01, 4.3958e-02, + 8.6658e-01, 1.6543e-01, 8.0442e-01, 2.8446e-01, + 7.9453e-01, 5.9950e-01, 8.1424e-02, 7.0566e-01, + 8.2535e-01, 1.1568e-01, 2.6458e-01, 4.1053e-02, + 9.9795e-01, 1.0083e-01, 8.4276e-01, 9.7061e-01, + 6.5811e-01, 8.8023e-01, 9.4782e-01, 1.7553e-01, + 2.3410e-02, 7.5416e-01, 9.5642e-01, 5.3947e-01, + 1.7772e-01, 2.1459e-01, 8.0957e-01, 7.8863e-01, + 7.3928e-01, 5.6401e-01, 5.4479e-01, 1.4586e-01, + 5.2477e-01, 8.2925e-01, 7.6176e-01, 7.7261e-01, + 9.2809e-01, 7.2949e-01, 6.4136e-01, 4.5900e-01, + 9.7133e-01, 8.6138e-01, 7.7439e-01, 9.1759e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.0493, 0.7033, 0.8450, ..., 0.3708, 0.9702, 0.0106]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 4.8812994956970215 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 145476 -ss 10000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.560847282409668} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), - col_indices=tensor([7056, 919, 9795, 9151, 2044, 7967, 5705, 2623, 1627, - 6717, 8708, 775, 127, 1374, 5044, 4299, 6342, 2263, - 5929, 5936, 1548, 2847, 6130, 6554, 2239, 7163, 1692, - 5793, 7119, 1287, 7508, 865, 1459, 7418, 3194, 4266, - 5780, 5575, 180, 8863, 8594, 4896, 438, 2537, 9988, - 4607, 5188, 6211, 6192, 6056, 7097, 5429, 1839, 2821, - 5784, 5246, 8081, 948, 4779, 1850, 1043, 9101, 2658, - 6891, 8025, 4761, 559, 865, 7629, 6085, 5946, 6354, - 9409, 9347, 7997, 4210, 3579, 999, 6644, 8129, 3149, - 6858, 4041, 4647, 7223, 2236, 7192, 9546, 9793, 3327, - 3171, 2565, 5976, 7978, 3677, 2920, 144, 9344, 6975, - 2500, 5379, 6794, 7366, 5322, 1940, 4044, 8778, 8972, - 3256, 9932, 4555, 9183, 8216, 4060, 4031, 360, 1944, - 7355, 8202, 9688, 593, 6710, 7830, 6044, 3654, 5591, - 7924, 1626, 5386, 2008, 4406, 634, 5326, 8955, 8209, - 5178, 2353, 3613, 9298, 6923, 1330, 2295, 8418, 4016, - 6041, 3493, 2023, 3116, 9349, 4002, 5551, 6028, 3519, - 6478, 8114, 4566, 1480, 1179, 4402, 6390, 2641, 4788, - 5490, 7082, 2181, 7781, 5904, 491, 2224, 8974, 482, - 7270, 9130, 6779, 3453, 7281, 6000, 9094, 1080, 96, - 3235, 2362, 7656, 6780, 2699, 3796, 1691, 106, 5591, - 2247, 1360, 4408, 8461, 5554, 962, 5012, 1178, 665, - 8966, 149, 3510, 466, 7726, 3308, 1620, 3276, 3031, - 3091, 7257, 8304, 7811, 2312, 9044, 4159, 2417, 6077, - 5309, 1633, 575, 3648, 8105, 8542, 7301, 3395, 9379, - 2616, 5588, 3562, 5579, 6202, 1237, 1076, 4693, 5863, - 4521, 8863, 2402, 4796, 8453, 8138, 8938, 9681, 8822, - 3016, 4280, 6174, 1987, 2265, 9622, 8422, 8024, 2552, - 7142, 6196, 3924, 6374, 3611, 5004, 6476, 3085, 3871, - 7485, 3089, 5859, 3123, 8069, 3938, 8070, 3319, 4967, - 6032, 3132, 8882, 8168, 9948, 9153, 5960, 4617, 2269, - 9592, 3316, 8405, 7722, 5455, 3568, 9972, 3178, 7732, - 3073, 9461, 3455, 1563, 3313, 5518, 1888, 5013, 9499, - 7686, 8128, 3614, 58, 6450, 6598, 9327, 2675, 6405, - 1465, 5960, 4, 919, 8839, 74, 8303, 7367, 985, - 1714, 972, 3691, 196, 2221, 5916, 9621, 719, 7868, - 6821, 1399, 599, 7980, 2535, 2710, 8687, 3504, 500, - 8756, 2206, 3927, 9619, 5296, 3265, 3270, 8220, 9811, - 8515, 3994, 4320, 3608, 6591, 3810, 1151, 5003, 1681, - 9535, 5842, 20, 673, 3013, 3128, 9579, 416, 4669, - 1672, 5675, 7857, 9285, 3183, 9934, 3384, 3124, 6569, - 9838, 4601, 323, 9366, 3658, 3481, 8266, 106, 4724, - 9925, 449, 231, 1193, 8640, 6487, 4395, 7873, 2975, - 371, 4139, 2769, 51, 7434, 3992, 2930, 3651, 8635, - 2260, 5356, 167, 5798, 384, 6039, 7889, 8913, 9072, - 4191, 8932, 4779, 1901, 9554, 5285, 2097, 2772, 9175, - 6725, 2156, 148, 5, 476, 3156, 6607, 7786, 8502, - 1087, 2367, 867, 1415, 3356, 4022, 2905, 4640, 6433, - 1986, 3092, 5931, 6521, 8577, 8053, 2869, 6427, 3755, - 6368, 9012, 2562, 8601, 9397, 1396, 3615, 1144, 9404, - 4843, 3491, 1114, 7468, 9175, 5343, 2695, 6775, 3132, - 763, 2580, 5472, 6555, 5197, 7683, 7083, 9461, 6717, - 3416, 4535, 7651, 8103, 5254, 5119, 4843, 7481, 9740, - 875, 8435, 1895, 4149, 1288, 2687, 4563, 8844, 5497, - 6857, 8265, 5805, 7507, 6505, 6546, 761, 9841, 4528, - 9297, 3090, 2401, 1436, 8521, 3201, 3280, 647, 6053, - 9778, 5421, 2338, 7895, 9657, 4768, 4164, 346, 6739, - 5802, 3214, 837, 1345, 161, 7417, 6331, 4380, 8050, - 5202, 8517, 4660, 8461, 3874, 4103, 9836, 4667, 1660, - 1906, 1376, 4340, 1934, 9527, 6941, 331, 4783, 1013, - 8971, 6772, 975, 1578, 3459, 408, 1053, 7816, 3059, - 6639, 3329, 9285, 4169, 206, 4382, 9903, 2838, 624, - 6682, 7989, 5248, 6652, 4925, 1208, 2515, 3523, 7868, - 5124, 932, 3036, 2610, 9397, 6019, 4365, 3159, 7967, - 6712, 4292, 9634, 2506, 2306, 6880, 1422, 5592, 3014, - 2127, 2108, 7692, 2917, 5954, 9346, 9190, 5918, 9056, - 1095, 6544, 2601, 8317, 1507, 8478, 427, 8983, 7403, - 1403, 9463, 9521, 1040, 2364, 4790, 3646, 1839, 5831, - 2407, 5569, 8636, 3161, 4775, 5244, 6918, 2550, 2648, - 9459, 505, 4866, 459, 3616, 1899, 4865, 6781, 645, - 8187, 4087, 8269, 527, 142, 3293, 2115, 9227, 4492, - 4310, 5673, 305, 9750, 3677, 3525, 7465, 7997, 3251, - 3987, 3609, 7768, 9505, 2837, 6841, 9179, 2234, 5163, - 4220, 1985, 3135, 228, 4791, 5638, 6344, 6055, 1786, - 6558, 448, 7423, 7966, 6313, 1661, 2565, 5057, 6400, - 9258, 4995, 104, 6131, 2357, 478, 9553, 4258, 9824, - 7655, 1162, 7233, 6219, 4197, 5671, 698, 3933, 5858, - 5825, 1485, 2940, 1221, 3277, 8498, 517, 4954, 4571, - 3551, 3811, 2162, 1085, 4990, 2770, 5124, 3331, 2642, - 4071, 9626, 4506, 3366, 3577, 4151, 3800, 2366, 4168, - 3825, 9342, 9534, 8100, 1320, 5092, 3157, 2094, 6070, - 8057, 5993, 2362, 411, 8733, 397, 7089, 7206, 2945, - 3064, 5117, 3443, 470, 608, 3384, 8567, 5110, 4565, - 6431, 5474, 8783, 7927, 5169, 4863, 7172, 8183, 1224, - 9394, 692, 7991, 536, 2135, 5294, 8037, 8526, 1190, - 63, 849, 9116, 6147, 7935, 7112, 6626, 226, 5579, - 9554, 4960, 2909, 3565, 5132, 4287, 1865, 5728, 7111, - 4986, 5695, 7077, 5616, 8771, 9145, 8441, 9676, 1058, - 6430, 6079, 4862, 6083, 1292, 6175, 658, 1311, 8075, - 3408, 4717, 4970, 3386, 6451, 4509, 1589, 2526, 3046, - 4015, 115, 606, 6816, 9023, 74, 3707, 8570, 3733, - 7439, 8010, 2330, 2707, 7997, 6578, 6530, 9528, 1545, - 1828, 6104, 2474, 5308, 5222, 6365, 8862, 4445, 3256, - 8596, 7733, 4546, 4298, 3962, 1735, 405, 9446, 2765, - 5223, 1245, 1928, 1613, 1076, 3386, 5499, 7117, 7236, - 1089, 5676, 7344, 5770, 9734, 6262, 6225, 7764, 2961, - 5070, 7253, 556, 1687, 3579, 9804, 7261, 2963, 8905, - 7732, 2949, 3331, 8106, 4114, 6793, 2309, 6606, 2474, - 1922, 3120, 8805, 7588, 3625, 3473, 6466, 7065, 4574, - 1985, 4989, 8004, 6734, 5981, 3660, 7778, 125, 7384, - 6141, 1158, 4521, 6919, 144, 914, 7797, 4111, 6086, - 6673, 8442, 7879, 7713, 9248, 4408, 1097, 7867, 1626, - 2747, 651, 2532, 5546, 1372, 589, 1653, 7492, 6806, - 1244, 9203, 2206, 5006, 203, 739, 5153, 6454, 4270, - 4396, 3640, 2150, 9255, 9834, 7708, 1267, 1636, 5030, - 795, 8742, 7543, 566, 6397, 3605, 8166, 8086, 4077, - 8364, 3818, 1834, 6488, 7143, 7438, 5866, 8540, 856, - 7785, 7368, 3461, 1705, 3376, 6688, 1751, 642, 9424, - 2608, 4435, 1836, 3463, 6828, 5152, 1957, 8354, 4656, - 6595, 4201, 9042, 3819, 3824, 5439, 7490, 1010, 4810, - 9972, 7566, 955, 751, 8629, 3365, 7594, 1053, 2299, - 7870]), - values=tensor([5.2060e-01, 5.8752e-01, 7.2713e-01, 1.0305e-01, - 9.3686e-01, 4.5302e-01, 7.9066e-01, 3.3889e-01, - 9.1304e-01, 7.1777e-01, 8.2105e-01, 1.2503e-01, - 3.7067e-02, 6.7818e-01, 7.9631e-01, 1.5332e-01, - 4.2909e-02, 3.6354e-01, 7.8473e-02, 3.9129e-01, - 5.0385e-01, 2.7311e-01, 2.8426e-01, 9.8490e-01, - 4.6471e-01, 1.8436e-01, 2.9210e-01, 7.6968e-01, - 9.8680e-01, 6.5393e-01, 6.5447e-01, 7.6587e-01, - 5.1696e-01, 3.0301e-01, 1.2974e-01, 4.9850e-01, - 9.5414e-01, 3.3815e-01, 1.2515e-01, 6.9570e-01, - 2.4680e-01, 5.9705e-01, 6.2698e-01, 7.7985e-01, - 6.0484e-01, 4.0524e-01, 6.3660e-01, 3.4506e-01, - 8.0482e-01, 7.8297e-02, 6.1842e-01, 5.7868e-01, - 6.3483e-01, 6.6108e-01, 9.3584e-04, 7.4347e-01, - 6.9134e-01, 8.5039e-01, 7.7178e-01, 3.8597e-01, - 1.9561e-01, 2.9964e-01, 5.3888e-01, 7.9254e-01, - 8.6409e-01, 7.5097e-01, 3.3689e-01, 7.8610e-02, - 4.5323e-01, 8.5126e-01, 6.9200e-01, 1.9498e-02, - 8.3003e-01, 8.6298e-01, 4.3806e-01, 7.1679e-01, - 8.1194e-01, 9.9720e-01, 8.2151e-01, 9.6087e-01, - 6.3853e-01, 3.4560e-01, 5.5284e-01, 4.4640e-01, - 3.7580e-01, 3.2438e-01, 8.9706e-01, 2.8604e-01, - 2.9762e-01, 2.8814e-01, 6.0684e-01, 4.1394e-01, - 6.2215e-01, 9.4551e-01, 4.0044e-01, 8.6963e-01, - 5.5266e-01, 5.9098e-01, 5.9783e-01, 1.7437e-01, - 3.4636e-01, 2.4680e-01, 2.3300e-01, 1.5789e-01, - 7.2572e-01, 4.7658e-01, 7.9251e-01, 5.5119e-01, - 3.4901e-01, 1.8926e-01, 7.2681e-02, 4.1166e-01, - 2.3574e-01, 9.2902e-01, 4.2647e-01, 4.2048e-01, - 7.6334e-01, 2.7562e-01, 1.2457e-01, 8.0447e-01, - 2.7298e-01, 2.6366e-01, 9.0147e-01, 9.8730e-01, - 4.8371e-01, 4.3424e-01, 8.9082e-01, 9.3669e-02, - 2.4573e-01, 1.7890e-01, 7.0955e-01, 7.5968e-01, - 4.4304e-01, 7.1779e-01, 7.2909e-01, 7.9905e-01, - 2.0894e-01, 1.6586e-01, 7.5174e-02, 4.0334e-01, - 1.0341e-01, 7.8773e-01, 8.5689e-01, 8.9735e-01, - 1.9547e-01, 8.9818e-01, 8.1080e-01, 5.8252e-01, - 6.2795e-01, 2.4733e-02, 3.7285e-01, 7.4750e-01, - 4.5329e-01, 5.4283e-01, 1.3581e-01, 8.2036e-01, - 3.3337e-02, 6.6711e-01, 2.7268e-01, 5.5912e-01, - 5.5669e-01, 3.5501e-01, 6.2792e-01, 9.7736e-01, - 3.5615e-01, 8.9429e-03, 5.2671e-01, 1.1444e-01, - 7.5357e-02, 8.8607e-01, 8.5215e-01, 8.6159e-01, - 3.1847e-01, 1.4552e-01, 6.4152e-01, 7.1863e-01, - 3.3005e-01, 3.2445e-02, 1.0168e-01, 8.4233e-01, - 8.8000e-01, 2.7047e-01, 7.1423e-01, 7.8187e-01, - 8.9146e-02, 4.9672e-01, 5.9046e-01, 1.9515e-01, - 9.8528e-01, 5.0321e-01, 5.8000e-01, 7.4168e-01, - 3.5260e-02, 1.2683e-01, 4.5738e-01, 6.8617e-01, - 4.4433e-01, 4.8514e-01, 5.5207e-01, 3.5556e-01, - 8.9692e-01, 3.6084e-01, 3.8720e-01, 5.8634e-01, - 7.0358e-01, 3.0095e-01, 1.3903e-01, 1.1694e-01, - 9.7711e-01, 3.7841e-01, 2.3352e-01, 4.5329e-01, - 8.2085e-01, 3.0580e-01, 4.8927e-01, 3.0347e-01, - 5.1485e-02, 5.2444e-02, 3.0794e-01, 5.9206e-01, - 8.3589e-01, 1.7323e-01, 3.1820e-01, 7.0798e-01, - 1.5440e-01, 1.9361e-01, 1.0835e-01, 8.1042e-01, - 7.1437e-02, 4.4926e-01, 8.1084e-01, 6.5975e-01, - 2.3167e-01, 9.5539e-01, 9.0418e-01, 1.8474e-01, - 8.4342e-01, 2.5289e-01, 6.3702e-01, 3.5397e-01, - 1.1201e-01, 4.5470e-01, 1.3388e-01, 2.6199e-01, - 8.1948e-01, 6.9816e-01, 9.3318e-01, 6.6708e-02, - 2.6242e-01, 4.7858e-02, 6.7194e-01, 4.8540e-01, - 5.6054e-01, 6.7286e-01, 8.0291e-01, 7.4681e-02, - 5.2165e-01, 3.6455e-01, 2.6177e-01, 2.8656e-01, - 4.8881e-01, 1.5495e-01, 8.1151e-01, 6.4157e-01, - 4.6118e-01, 9.8777e-02, 3.7165e-01, 7.8764e-01, - 6.8295e-01, 2.4347e-01, 1.6075e-01, 8.7591e-01, - 3.4120e-01, 5.4312e-01, 2.2322e-01, 7.3732e-01, - 9.2524e-02, 8.0737e-01, 4.2221e-01, 6.0497e-02, - 2.2442e-01, 1.6638e-01, 9.3025e-01, 3.6644e-01, - 9.7051e-01, 2.6113e-01, 3.3298e-01, 5.5566e-01, - 8.4633e-01, 2.1670e-02, 3.4866e-01, 4.1243e-01, - 4.3974e-02, 5.1011e-02, 9.7001e-01, 9.2475e-01, - 6.8789e-01, 4.8683e-01, 8.8514e-01, 2.8747e-01, - 8.3000e-01, 5.9514e-01, 1.9359e-01, 9.9127e-01, - 4.6767e-01, 9.0117e-02, 3.1439e-01, 7.7717e-01, - 3.2578e-01, 7.6461e-01, 4.9560e-01, 7.0813e-01, - 8.9512e-01, 3.4294e-01, 7.9012e-01, 2.1834e-01, - 9.9954e-01, 8.4021e-01, 5.2415e-01, 5.5913e-01, - 6.0001e-01, 4.0800e-01, 9.2418e-01, 9.8484e-02, - 1.2325e-01, 9.2593e-01, 8.8126e-01, 2.1903e-01, - 8.6474e-02, 5.6159e-01, 1.6813e-01, 3.7588e-01, - 1.1257e-01, 7.7701e-01, 6.1191e-01, 9.3067e-01, - 1.7717e-01, 6.9689e-01, 4.1894e-01, 3.1744e-01, - 6.8942e-01, 5.4469e-01, 6.9142e-01, 5.9683e-01, - 4.4063e-01, 7.9936e-01, 7.7242e-01, 2.8988e-01, - 9.4011e-01, 6.2090e-01, 4.0644e-01, 4.6521e-01, - 6.9337e-01, 9.9796e-02, 8.2484e-01, 6.9345e-01, - 6.1383e-01, 7.4834e-01, 4.0722e-01, 9.9024e-01, - 8.5334e-01, 8.8771e-01, 5.0253e-01, 7.2537e-01, - 6.4116e-01, 4.1841e-01, 9.1987e-01, 6.3601e-02, - 6.2845e-01, 9.8979e-01, 3.2048e-02, 4.9481e-01, - 7.6203e-01, 8.4482e-01, 1.8315e-01, 9.7150e-01, - 6.4234e-01, 3.9806e-01, 3.1906e-01, 8.5592e-01, - 2.7348e-01, 1.0324e-01, 3.3822e-01, 1.0261e-01, - 7.8657e-01, 4.1245e-02, 6.2280e-01, 1.5594e-01, - 1.4057e-01, 9.3217e-01, 5.3651e-01, 3.1414e-01, - 7.4943e-01, 1.8062e-01, 6.8355e-01, 1.7011e-01, - 7.9311e-01, 5.6505e-01, 1.7516e-01, 3.2628e-01, - 7.4869e-01, 3.6292e-02, 7.7730e-01, 5.6876e-01, - 7.4365e-01, 3.1819e-01, 2.9167e-01, 8.0054e-01, - 5.2095e-02, 8.4271e-01, 9.4201e-01, 2.6332e-01, - 4.1440e-01, 2.8004e-01, 6.3749e-01, 8.2784e-01, - 3.8989e-01, 4.8344e-01, 6.1792e-01, 7.7696e-01, - 2.9025e-01, 3.0195e-01, 1.6203e-02, 4.9882e-02, - 9.5260e-01, 3.8574e-02, 8.6137e-01, 1.0206e-01, - 1.8185e-01, 3.7184e-01, 1.8011e-01, 5.8471e-01, - 9.0896e-01, 7.8819e-01, 1.2554e-01, 9.1937e-01, - 4.7326e-01, 8.1565e-01, 4.0860e-01, 9.5624e-01, - 6.4546e-01, 2.1755e-01, 1.8583e-01, 7.2313e-01, - 5.0034e-01, 9.6810e-01, 1.1208e-01, 3.3256e-01, - 1.0626e-01, 8.2704e-01, 9.0571e-01, 9.1930e-01, - 5.0810e-01, 2.9139e-02, 4.8153e-01, 8.3425e-01, - 7.7208e-01, 2.0930e-01, 7.7873e-01, 1.9398e-01, - 4.6583e-01, 7.2143e-01, 7.7072e-01, 8.8225e-01, - 5.6393e-01, 4.5270e-01, 4.5709e-01, 3.4438e-02, - 8.3723e-01, 8.7398e-01, 7.7789e-01, 3.1834e-01, - 6.7630e-01, 7.2696e-01, 6.2046e-01, 8.7032e-01, - 7.5275e-01, 1.2652e-01, 1.6913e-01, 8.9638e-01, - 8.4284e-01, 6.7028e-01, 1.6150e-01, 4.8858e-01, - 5.2657e-01, 2.6709e-01, 5.3737e-01, 7.9635e-02, - 4.6502e-01, 6.6489e-01, 3.3302e-02, 6.7807e-03, - 3.2601e-01, 6.2838e-01, 8.8805e-01, 6.4081e-01, - 8.3664e-01, 2.1253e-01, 9.9560e-01, 1.0008e-01, - 8.1128e-01, 7.1759e-02, 1.9140e-01, 3.9544e-01, - 2.0466e-01, 1.0560e-01, 5.0978e-01, 4.3684e-01, - 1.8097e-02, 5.2480e-01, 1.3644e-01, 6.5843e-01, - 4.7603e-01, 3.9206e-01, 2.5961e-01, 4.4991e-01, - 2.7612e-01, 5.3666e-01, 1.0518e-02, 8.5692e-01, - 2.4882e-01, 9.3487e-01, 5.1282e-01, 9.4781e-01, - 6.6273e-01, 7.0853e-01, 2.2742e-01, 9.1791e-01, - 6.9906e-01, 3.2979e-01, 5.6041e-01, 8.6281e-01, - 9.5303e-01, 7.5565e-01, 4.3419e-01, 8.3829e-01, - 2.4070e-01, 6.8860e-01, 5.5668e-01, 1.8449e-01, - 9.9667e-01, 7.7594e-01, 5.3148e-01, 4.1552e-01, - 5.1947e-01, 1.3992e-01, 4.4856e-01, 7.4868e-01, - 6.3705e-01, 3.5783e-01, 1.2134e-01, 6.9568e-01, - 1.2509e-01, 1.7793e-01, 3.2242e-02, 4.1301e-01, - 5.9646e-01, 1.6615e-01, 3.1664e-01, 8.1783e-02, - 2.9824e-02, 2.1237e-01, 5.2911e-01, 5.1732e-01, - 1.9451e-01, 3.5512e-01, 2.9795e-01, 5.1951e-01, - 1.9558e-01, 3.7898e-01, 5.9402e-01, 4.2044e-01, - 8.7643e-01, 6.5956e-01, 7.4035e-01, 4.6048e-01, - 1.2749e-02, 9.2360e-01, 3.6981e-01, 9.4150e-01, - 9.7784e-01, 5.7582e-01, 3.1385e-01, 3.8101e-01, - 9.2912e-01, 4.3789e-01, 7.2061e-01, 5.2086e-01, - 7.3528e-01, 8.5192e-01, 3.5126e-01, 7.6776e-01, - 2.8613e-01, 6.3526e-02, 2.8596e-01, 6.3501e-01, - 4.9176e-02, 8.7348e-01, 5.2000e-01, 5.8496e-01, - 4.8855e-01, 7.2483e-01, 3.5412e-01, 6.6161e-01, - 5.5561e-01, 5.4683e-02, 9.0732e-01, 7.5460e-02, - 3.1367e-01, 7.3793e-01, 3.5729e-01, 2.8849e-01, - 8.9432e-01, 9.7713e-02, 1.1743e-01, 4.3089e-01, - 8.1021e-01, 8.8355e-01, 1.9843e-01, 6.1349e-02, - 8.3824e-01, 6.2155e-02, 2.0617e-01, 4.8812e-01, - 9.8256e-01, 8.8490e-02, 5.0411e-01, 9.5740e-01, - 9.7775e-02, 5.1726e-01, 7.1232e-01, 4.7675e-02, - 2.2480e-02, 3.7611e-01, 5.9660e-01, 6.2244e-01, - 4.4880e-01, 8.5892e-01, 1.9312e-01, 3.0721e-01, - 6.9925e-01, 6.7802e-01, 9.2157e-01, 8.5335e-01, - 4.1058e-01, 1.3666e-01, 3.9121e-01, 4.7478e-02, - 7.7467e-01, 5.8273e-03, 7.4476e-01, 1.9062e-01, - 7.5316e-02, 8.1639e-01, 5.2018e-01, 5.6018e-01, - 9.6970e-01, 3.0172e-02, 6.0521e-01, 4.0407e-02, - 5.7990e-01, 9.5453e-01, 8.8848e-01, 3.7532e-01, - 9.6133e-01, 7.7502e-01, 4.0087e-01, 6.8611e-01, - 3.2210e-02, 2.8094e-01, 7.3871e-01, 9.1462e-01, - 1.9356e-01, 2.6926e-01, 1.8582e-01, 5.4929e-02, - 9.1024e-01, 2.6956e-01, 5.5420e-01, 3.6135e-01, - 3.5875e-01, 6.0498e-01, 3.7275e-01, 9.8664e-01, - 8.8819e-01, 2.7405e-01, 1.1934e-01, 7.3250e-01, - 8.9712e-01, 8.8231e-01, 3.3160e-01, 9.5892e-01, - 8.4187e-01, 2.7689e-01, 1.6102e-02, 9.3174e-01, - 7.5817e-01, 9.0117e-01, 2.4771e-01, 2.6531e-01, - 5.1327e-01, 3.8035e-01, 4.0058e-01, 4.0599e-04, - 9.2180e-01, 9.3958e-01, 5.5013e-01, 6.4800e-01, - 1.1731e-01, 5.7797e-01, 2.5301e-01, 6.8211e-01, - 9.6611e-01, 2.1744e-01, 2.7821e-01, 3.8118e-01, - 6.2557e-01, 8.9564e-01, 9.8076e-01, 4.2087e-01, - 1.3319e-02, 1.8018e-01, 6.2599e-01, 1.4615e-01, - 7.4026e-01, 9.7573e-01, 1.0896e-01, 4.9573e-01, - 7.0308e-01, 6.3058e-01, 1.5012e-01, 5.9222e-01, - 6.5591e-01, 4.5450e-01, 1.3452e-01, 1.1006e-01, - 6.2072e-01, 1.7700e-01, 3.2033e-01, 7.1407e-01, - 9.3104e-01, 7.3480e-01, 7.5735e-01, 5.3846e-01, - 1.2357e-01, 6.0479e-01, 5.0554e-01, 7.2641e-01, - 7.1854e-01, 3.9348e-02, 4.3940e-02, 5.5093e-01, - 1.1556e-02, 4.5159e-01, 8.0712e-01, 7.2793e-01, - 9.4343e-01, 4.6801e-01, 6.8975e-01, 6.8837e-01, - 5.9669e-02, 7.6994e-01, 4.3286e-01, 7.1974e-01, - 4.6165e-01, 5.8672e-01, 5.0695e-01, 4.7555e-01, - 6.9675e-01, 3.7575e-01, 7.2625e-01, 6.6386e-01, - 3.0499e-01, 7.8592e-01, 5.7412e-01, 1.8771e-01, - 2.0747e-02, 9.7205e-01, 1.9993e-01, 4.5722e-01, - 9.2382e-02, 3.5018e-01, 5.2392e-01, 1.1923e-01, - 8.3795e-01, 3.4123e-02, 2.8436e-01, 1.9208e-01, - 6.4406e-02, 7.8742e-01, 2.0108e-01, 9.3581e-01, - 1.7748e-01, 8.9101e-01, 1.2175e-01, 8.8756e-01, - 7.8316e-01, 4.0800e-01, 5.6851e-01, 9.2774e-01, - 3.7604e-01, 5.3144e-01, 8.0134e-02, 6.2059e-02, - 8.7489e-03, 2.6598e-01, 6.7003e-01, 8.4602e-01, - 6.0322e-01, 6.8827e-01, 3.2298e-01, 7.1255e-01, - 9.5221e-01, 9.1295e-01, 2.3726e-01, 8.5325e-02, - 3.8353e-01, 7.7125e-01, 7.3426e-01, 5.3143e-01, - 8.0892e-01, 8.7041e-01, 5.8474e-01, 8.7437e-01, - 3.1761e-01, 8.3607e-01, 2.6952e-01, 6.1480e-01, - 7.6446e-01, 6.1953e-01, 4.9927e-01, 7.5728e-01, - 9.1551e-01, 2.2186e-01, 7.1374e-01, 2.5784e-01, - 8.5969e-01, 9.0881e-01, 1.8012e-01, 9.8941e-02, - 6.1818e-01, 2.8776e-01, 9.6763e-01, 2.0033e-01, - 8.2090e-01, 1.9388e-01, 1.7567e-01, 4.4690e-01, - 2.0662e-01, 1.0745e-01, 9.3569e-01, 8.0811e-01, - 9.1073e-02, 3.4629e-01, 7.8523e-01, 1.1764e-01, - 2.8677e-01, 7.0343e-01, 8.7211e-01, 3.6672e-01, - 9.7703e-01, 5.2406e-01, 4.9980e-01, 5.4475e-01, - 8.9090e-01, 4.3209e-02, 4.4884e-01, 9.0686e-01, - 1.1154e-01, 1.0570e-01, 4.1471e-01, 9.7202e-01, - 3.8561e-01, 2.0579e-01, 4.4916e-01, 1.9721e-01, - 5.1959e-01, 7.6768e-01, 9.2048e-01, 2.2598e-01, - 9.6825e-01, 5.9095e-01, 2.7735e-02, 9.8780e-01, - 5.5600e-01, 6.4011e-01, 4.9115e-01, 1.5679e-01, - 9.0323e-01, 1.9041e-01, 8.5013e-01, 1.2025e-01, - 1.1804e-01, 6.8892e-01, 2.0461e-01, 1.9657e-01, - 7.0597e-01, 5.5451e-01, 1.8591e-01, 6.9899e-01, - 5.3076e-01, 7.3978e-01, 9.5676e-01, 4.0627e-01, - 8.3752e-01, 3.1046e-01, 5.6607e-01, 4.4132e-01, - 5.2029e-01, 8.5109e-01, 6.6508e-01, 2.6182e-01, - 6.7981e-01, 8.4438e-01, 4.1711e-01, 3.6277e-01, - 9.2177e-01, 3.6580e-02, 5.1418e-02, 4.5413e-01, - 5.0643e-01, 1.2991e-01, 7.2776e-01, 6.5957e-01, - 6.6907e-01, 4.4236e-01, 5.5565e-01, 1.1326e-01, - 6.2352e-01, 4.1680e-02, 8.5603e-01, 7.0539e-01, - 3.5385e-01, 5.1926e-01, 6.4794e-02, 6.4126e-01, - 3.0824e-01, 8.7537e-01, 3.8092e-03, 1.4017e-01, - 7.9757e-01, 2.7307e-01, 7.7809e-01, 5.3453e-01, - 3.5741e-01, 8.3152e-01, 9.6330e-01, 4.5118e-01, - 6.9011e-01, 8.9458e-01, 5.3158e-01, 8.2853e-01, - 1.8923e-01, 6.5167e-01, 3.8821e-01, 5.7283e-01, - 1.9550e-01, 4.8766e-01, 5.8973e-01, 6.6654e-01, - 3.4043e-01, 3.0734e-01, 7.2507e-01, 4.5141e-01, - 8.7825e-01, 1.8915e-01, 9.1650e-01, 2.5972e-01, - 1.2721e-02, 4.2352e-01, 6.5855e-01, 4.8197e-01, - 6.3384e-01, 1.1340e-01, 9.1519e-02, 7.2253e-01, - 7.7717e-01, 7.7128e-01, 7.9797e-01, 9.5449e-01, - 1.9479e-01, 9.4967e-01, 6.5866e-01, 2.6908e-01, - 6.6522e-01, 9.9513e-01, 6.4628e-01, 3.2376e-01, - 6.8241e-01, 2.0082e-01, 6.7192e-01, 6.3818e-01, - 8.3533e-01, 1.4580e-01, 6.7572e-01, 3.1304e-02, - 5.6257e-01, 6.4916e-01, 4.5939e-01, 1.6735e-01]), + col_indices=tensor([5150, 3949, 6725, 9833, 6214, 5081, 1554, 3283, 4592, + 1367, 5501, 6306, 1908, 8847, 9684, 2365, 4516, 2030, + 6246, 1037, 3129, 6994, 6859, 6054, 2697, 3073, 4745, + 5149, 9683, 6168, 7171, 2986, 8282, 5962, 9044, 9859, + 4416, 2729, 3201, 9334, 70, 3704, 1992, 4539, 3854, + 9774, 4984, 5696, 4186, 7809, 2303, 2349, 6788, 8167, + 7467, 8573, 1950, 1383, 4872, 1688, 3467, 531, 2507, + 77, 4045, 9094, 8112, 2615, 9777, 5813, 1750, 6905, + 7986, 8272, 5559, 7416, 2650, 6301, 7023, 6146, 5728, + 154, 3305, 852, 1556, 1672, 8260, 3100, 4027, 2524, + 7136, 1881, 3609, 4077, 5415, 1342, 7463, 0, 7237, + 949, 4271, 7500, 4398, 202, 6370, 6523, 8149, 1606, + 644, 1179, 4251, 732, 4140, 9430, 7869, 4357, 3082, + 7706, 929, 1350, 2066, 3153, 7727, 3490, 4529, 2830, + 604, 9531, 3037, 674, 1118, 7439, 1800, 9605, 7647, + 7273, 8451, 1727, 5065, 8403, 4478, 8920, 7608, 949, + 4223, 6471, 1464, 4183, 9344, 7358, 8169, 5124, 7436, + 7379, 4302, 4579, 6954, 7352, 2475, 6524, 6023, 4419, + 4933, 4411, 5203, 2328, 5122, 1046, 4112, 415, 8434, + 5247, 5282, 7252, 5516, 6132, 9262, 1383, 4445, 3838, + 3480, 5499, 6857, 5666, 2223, 3948, 5622, 6586, 8728, + 1267, 1798, 4209, 2945, 7759, 2936, 2435, 508, 7969, + 658, 334, 4257, 5246, 6393, 357, 3505, 4514, 1464, + 8590, 9903, 4716, 9051, 4470, 9570, 4777, 3595, 8441, + 9110, 9670, 2187, 8548, 3616, 2595, 1352, 5502, 4886, + 8337, 7807, 4921, 643, 1759, 191, 6520, 5823, 2075, + 4740, 3014, 8077, 3584, 7499, 5306, 1223, 1385, 7517, + 8020, 7952, 2205, 3204, 4927, 5397, 2795, 9112, 9159, + 2689, 6163, 2719, 3134, 7968, 7593, 4653, 54, 597, + 3621, 6399, 2434, 6710, 967, 6700, 1213, 1026, 551, + 5577, 3471, 9061, 2300, 9239, 9461, 23, 3996, 596, + 2494, 5453, 3959, 6826, 5001, 7382, 416, 1281, 7317, + 7289, 1990, 4004, 9139, 5821, 8865, 9134, 9753, 7856, + 3678, 597, 9576, 3434, 7138, 8525, 4380, 4708, 1098, + 1864, 2641, 5053, 725, 7343, 1604, 5046, 9253, 1076, + 1733, 7452, 5764, 4569, 2060, 2335, 2788, 666, 560, + 4714, 8624, 8928, 6013, 1750, 3137, 5802, 2485, 8605, + 4692, 8176, 851, 670, 6436, 4116, 3254, 4703, 3344, + 9079, 2177, 3623, 7381, 508, 1878, 8203, 179, 3099, + 5174, 8679, 6987, 5356, 2553, 3507, 667, 8739, 4484, + 5254, 6753, 2060, 7479, 4766, 9854, 7766, 9804, 802, + 2515, 3329, 2210, 7753, 2069, 70, 3487, 1593, 4737, + 6304, 4273, 1474, 5728, 8160, 440, 2963, 5961, 9940, + 3963, 6482, 6596, 1104, 8908, 2324, 4677, 901, 5681, + 7684, 1987, 3941, 1028, 3945, 522, 155, 9582, 618, + 9191, 2285, 2363, 1005, 6492, 2446, 5028, 8066, 9102, + 7602, 8504, 3215, 2742, 946, 538, 5191, 4078, 3141, + 982, 1552, 5688, 9154, 3693, 2376, 5721, 4025, 5733, + 4065, 1715, 8170, 7847, 2860, 4001, 475, 7239, 5611, + 5117, 3773, 7630, 4037, 8971, 3180, 5691, 7586, 7012, + 1221, 6168, 6276, 2660, 6301, 4688, 6558, 7433, 4113, + 3119, 4374, 617, 7732, 5185, 9146, 7702, 4380, 1370, + 4149, 205, 3424, 954, 5456, 1934, 9488, 5247, 9946, + 2494, 4258, 7045, 5497, 588, 1288, 5965, 6814, 3539, + 1764, 4809, 3064, 9477, 5056, 3833, 5491, 8813, 623, + 9737, 8723, 3926, 2417, 6250, 1832, 4224, 3868, 2666, + 5475, 2503, 4400, 2951, 8789, 8901, 2576, 1586, 2358, + 8683, 701, 2218, 324, 2750, 4642, 6563, 7866, 2142, + 2049, 8029, 6801, 8630, 4530, 1913, 7492, 4784, 1756, + 2725, 811, 3186, 5499, 565, 5265, 4256, 9478, 1700, + 8194, 7843, 9531, 2519, 7331, 6421, 4938, 2047, 9115, + 5085, 6558, 2790, 5305, 7400, 6481, 8276, 6051, 376, + 2232, 3828, 5087, 901, 859, 311, 5986, 646, 2534, + 3646, 6330, 6624, 44, 9526, 1720, 7671, 786, 2103, + 7291, 6456, 6706, 9840, 151, 5594, 5539, 8478, 8848, + 9399, 6447, 7659, 8019, 3178, 3373, 8082, 4366, 3291, + 1095, 8101, 138, 8637, 5651, 2986, 4186, 1262, 8903, + 7692, 5148, 5226, 6772, 7717, 1398, 9840, 6283, 4653, + 916, 1943, 7857, 14, 2435, 9045, 6355, 6437, 5876, + 2079, 6222, 9106, 7167, 8674, 3568, 5387, 6404, 4327, + 9378, 7023, 3428, 7208, 3991, 3503, 1112, 5994, 7543, + 8077, 3450, 7732, 95, 4124, 4136, 4748, 216, 5127, + 2129, 134, 2135, 8151, 9959, 5515, 3277, 4587, 1429, + 2979, 932, 7056, 783, 3334, 7562, 460, 5737, 5306, + 1839, 8429, 174, 7235, 4614, 34, 4009, 7389, 701, + 5758, 8329, 9563, 8743, 4338, 3477, 1180, 1540, 5860, + 9475, 5545, 4339, 9525, 5428, 2826, 7521, 4441, 8311, + 1115, 7387, 6593, 2389, 3900, 8596, 9443, 4909, 2179, + 2149, 5400, 6357, 6980, 7081, 5466, 6799, 5303, 6495, + 572, 6717, 3685, 9544, 9986, 5977, 7724, 1134, 4967, + 2145, 3442, 1984, 9728, 2275, 9320, 1257, 102, 4987, + 8007, 1513, 959, 4257, 799, 4709, 204, 6285, 7273, + 8278, 2651, 8788, 6857, 3198, 3750, 7764, 9530, 2525, + 5355, 2828, 6803, 3742, 9808, 2702, 3428, 5248, 7386, + 9259, 3003, 8487, 8936, 9681, 4024, 4691, 9077, 8624, + 670, 3644, 2024, 5179, 8050, 1290, 8269, 8524, 4786, + 2503, 35, 5675, 3549, 6350, 1714, 678, 5292, 9599, + 9848, 2823, 3918, 8633, 2596, 7468, 1783, 4984, 5190, + 2747, 7283, 6599, 5946, 9563, 8503, 9940, 9756, 3292, + 4953, 1009, 8896, 653, 1878, 8055, 8508, 2037, 2440, + 37, 3449, 5269, 3294, 7638, 3773, 5688, 5609, 7128, + 1885, 2653, 15, 148, 8228, 7481, 7965, 3146, 3889, + 6682, 8636, 1153, 8978, 9471, 4557, 8139, 4145, 2086, + 2623, 2951, 2381, 6771, 7405, 7405, 7866, 6651, 961, + 6157, 9117, 8248, 4454, 4081, 1801, 8411, 624, 6352, + 5499, 2637, 2893, 2441, 8243, 5608, 5218, 6178, 2460, + 7724, 4117, 2164, 8643, 7095, 2933, 8474, 6756, 7154, + 4556, 7730, 8140, 7610, 525, 1161, 9855, 6850, 3574, + 5534, 4716, 9318, 179, 5902, 7492, 3084, 3893, 1120, + 3911, 5634, 9144, 2088, 5803, 5300, 9679, 7556, 7644, + 1213, 9980, 8515, 3166, 262, 4231, 480, 4900, 7635, + 9607, 6653, 3153, 9282, 6882, 6866, 9053, 6078, 1605, + 2679, 9434, 1838, 5200, 8526, 145, 8529, 81, 7768, + 2792, 1368, 1146, 6845, 2082, 779, 3727, 3189, 5616, + 2883, 6077, 3380, 5032, 8816, 3861, 2679, 2096, 1826, + 4481, 3081, 2880, 9558, 48, 8852, 7596, 4096, 1993, + 3536, 4469, 1068, 8771, 110, 3938, 7946, 5524, 2146, + 2369, 7248, 6850, 2766, 3813, 4176, 2118, 2240, 2650, + 661, 3663, 7071, 4825, 3012, 5874, 7763, 2, 9014, + 386, 6880, 6261, 4740, 4948, 6569, 5412, 7485, 5084, + 2240, 7660, 5562, 8271, 9281, 7660, 7758, 8339, 2685, + 4281]), + values=tensor([0.7305, 0.2440, 0.3019, 0.7007, 0.9449, 0.8426, 0.6302, + 0.6840, 0.3760, 0.2330, 0.8640, 0.1425, 0.7949, 0.3165, + 0.9440, 0.0634, 0.1824, 0.8939, 0.0831, 0.8632, 0.5557, + 0.9222, 0.7152, 0.4959, 0.3642, 0.8742, 0.0533, 0.8773, + 0.3271, 0.1850, 0.8267, 0.0692, 0.8764, 0.6532, 0.0689, + 0.0059, 0.9796, 0.6870, 0.9154, 0.4784, 0.5447, 0.7909, + 0.5242, 0.2989, 0.3478, 0.3160, 0.9938, 0.4624, 0.7891, + 0.5624, 0.6799, 0.1505, 0.3167, 0.1174, 0.4734, 0.9357, + 0.4414, 0.2681, 0.3600, 0.9851, 0.0984, 0.9817, 0.6071, + 0.2437, 0.6382, 0.9904, 0.2276, 0.5007, 0.7924, 0.8288, + 0.4341, 0.5700, 0.0922, 0.1698, 0.6893, 0.1819, 0.6179, + 0.0688, 0.2326, 0.7694, 0.2736, 0.3807, 0.6497, 0.0934, + 0.2985, 0.3575, 0.2669, 0.2111, 0.0895, 0.1728, 0.5018, + 0.9851, 0.2093, 0.7627, 0.8317, 0.2321, 0.2733, 0.9575, + 0.1373, 0.4112, 0.4346, 0.2690, 0.0832, 0.9308, 0.0856, + 0.4248, 0.1271, 0.2415, 0.1779, 0.9677, 0.0600, 0.9191, + 0.1112, 0.1565, 0.1580, 0.1619, 0.6745, 0.6379, 0.9366, + 0.4143, 0.1271, 0.0864, 0.7266, 0.3906, 0.9727, 0.7339, + 0.0407, 0.0059, 0.6237, 0.7622, 0.9907, 0.2749, 0.4392, + 0.2002, 0.6558, 0.9415, 0.5261, 0.2561, 0.7660, 0.3448, + 0.1122, 0.7076, 0.6037, 0.4897, 0.4670, 0.8339, 0.5757, + 0.4177, 0.7623, 0.5865, 0.8495, 0.6497, 0.9778, 0.6297, + 0.3389, 0.2747, 0.0702, 0.1398, 0.1005, 0.4201, 0.1831, + 0.2403, 0.3332, 0.4306, 0.5321, 0.7778, 0.0204, 0.4136, + 0.1536, 0.7541, 0.0838, 0.5081, 0.7545, 0.0833, 0.4845, + 0.3873, 0.2490, 0.4675, 0.2018, 0.9437, 0.0574, 0.7574, + 0.4217, 0.4481, 0.8897, 0.5683, 0.3881, 0.1927, 0.8680, + 0.3664, 0.8069, 0.2192, 0.4607, 0.7321, 0.3086, 0.6446, + 0.3613, 0.6584, 0.1132, 0.8934, 0.0915, 0.5183, 0.8634, + 0.8577, 0.6923, 0.8618, 0.6853, 0.8256, 0.8384, 0.2295, + 0.3689, 0.5760, 0.2086, 0.3564, 0.8483, 0.6783, 0.7902, + 0.6082, 0.2549, 0.6415, 0.4994, 0.2078, 0.5032, 0.3790, + 0.4926, 0.0907, 0.6911, 0.2975, 0.8561, 0.2283, 0.4530, + 0.2236, 0.5933, 0.7581, 0.3982, 0.1913, 0.0682, 0.2359, + 0.4488, 0.3220, 0.4875, 0.7597, 0.7930, 0.2062, 0.4708, + 0.1870, 0.0373, 0.0367, 0.8306, 0.1947, 0.2315, 0.0207, + 0.8163, 0.7626, 0.9301, 0.8099, 0.3633, 0.5641, 0.8120, + 0.6141, 0.5594, 0.4658, 0.2150, 0.1654, 0.3051, 0.0343, + 0.3400, 0.5978, 0.5354, 0.0263, 0.3151, 0.8046, 0.5327, + 0.3066, 0.2487, 0.3111, 0.0893, 0.1612, 0.5907, 0.3107, + 0.8584, 0.8229, 0.4034, 0.2252, 0.3659, 0.2053, 0.7999, + 0.7701, 0.7502, 0.7518, 0.5690, 0.1322, 0.1586, 0.1160, + 0.9796, 0.3007, 0.1296, 0.7414, 0.1813, 0.4708, 0.0361, + 0.8196, 0.1266, 0.8025, 0.2789, 0.7870, 0.4347, 0.9531, + 0.2674, 0.9698, 0.4764, 0.0519, 0.6509, 0.3234, 0.4769, + 0.3125, 0.1997, 0.6900, 0.7719, 0.1567, 0.8227, 0.8361, + 0.3658, 0.9962, 0.8049, 0.2839, 0.0239, 0.5230, 0.1679, + 0.0012, 0.1941, 0.1825, 0.6328, 0.8021, 0.7872, 0.5540, + 0.0997, 0.9139, 0.1493, 0.1197, 0.6714, 0.2685, 0.5289, + 0.4741, 0.4375, 0.4510, 0.6505, 0.0060, 0.0804, 0.3052, + 0.4065, 0.1432, 0.8715, 0.0973, 0.2004, 0.0400, 0.2303, + 0.6891, 0.4089, 0.8692, 0.1440, 0.3744, 0.8894, 0.4839, + 0.5594, 0.2863, 0.2636, 0.1806, 0.4900, 0.9233, 0.0287, + 0.1519, 0.0238, 0.9718, 0.0696, 0.4915, 0.4842, 0.1594, + 0.7936, 0.6860, 0.5880, 0.4352, 0.0092, 0.6365, 0.1016, + 0.1299, 0.9522, 0.9906, 0.4238, 0.2435, 0.5165, 0.1731, + 0.6409, 0.2362, 0.6101, 0.1717, 0.7603, 0.4938, 0.2723, + 0.7599, 0.9112, 0.0268, 0.9393, 0.8969, 0.3631, 0.2998, + 0.3500, 0.7422, 0.9345, 0.9975, 0.0517, 0.1544, 0.6201, + 0.5972, 0.3434, 0.9546, 0.0842, 0.2284, 0.4080, 0.3233, + 0.9813, 0.3166, 0.9934, 0.5541, 0.2131, 0.8230, 0.1841, + 0.3426, 0.7598, 0.6218, 0.4928, 0.7872, 0.4823, 0.5321, + 0.2430, 0.9717, 0.6158, 0.5835, 0.2198, 0.3750, 0.8817, + 0.8977, 0.6208, 0.4204, 0.5681, 0.7034, 0.0297, 0.1272, + 0.9109, 0.2850, 0.6202, 0.3491, 0.4077, 0.0265, 0.9469, + 0.5186, 0.0530, 0.5136, 0.4687, 0.4898, 0.2296, 0.6555, + 0.6814, 0.2474, 0.5224, 0.6744, 0.7214, 0.5305, 0.5181, + 0.3443, 0.7930, 0.3254, 0.8409, 0.0232, 0.8876, 0.4606, + 0.8758, 0.4816, 0.3285, 0.3194, 0.0473, 0.5240, 0.4558, + 0.2643, 0.3823, 0.3375, 0.5496, 0.8842, 0.2643, 0.8295, + 0.0774, 0.7973, 0.2342, 0.2846, 0.4365, 0.5561, 0.8911, + 0.9974, 0.3818, 0.8914, 0.6534, 0.3445, 0.0570, 0.5409, + 0.8934, 0.8748, 0.8762, 0.1700, 0.1286, 0.5886, 0.2604, + 0.5122, 0.3910, 0.6718, 0.8386, 0.7880, 0.7735, 0.8382, + 0.7683, 0.8908, 0.5226, 0.8048, 0.4884, 0.3660, 0.1809, + 0.2335, 0.6855, 0.8170, 0.5295, 0.7842, 0.7798, 0.2910, + 0.3853, 0.8829, 0.7835, 0.1690, 0.4663, 0.2045, 0.1035, + 0.4997, 0.5297, 0.1289, 0.5179, 0.0606, 0.8583, 0.3048, + 0.7708, 0.1893, 0.6309, 0.7686, 0.9828, 0.9048, 0.3841, + 0.2185, 0.6435, 0.4478, 0.9468, 0.8737, 0.2111, 0.1349, + 0.9495, 0.4091, 0.3367, 0.4818, 0.6928, 0.9558, 0.4398, + 0.5439, 0.7708, 0.4337, 0.4611, 0.2583, 0.1955, 0.4439, + 0.4445, 0.7809, 0.8863, 0.3069, 0.4805, 0.8381, 0.8548, + 0.5700, 0.1066, 0.1066, 0.8937, 0.5723, 0.6920, 0.0327, + 0.2123, 0.4301, 0.6855, 0.9118, 0.1103, 0.8642, 0.3839, + 0.6499, 0.7405, 0.8262, 0.1273, 0.8596, 0.1214, 0.5538, + 0.2683, 0.7685, 0.0380, 0.9668, 0.3679, 0.4231, 0.3206, + 0.2939, 0.2000, 0.2628, 0.6644, 0.0046, 0.4634, 0.6009, + 0.9618, 0.0916, 0.1533, 0.8964, 0.0750, 0.6530, 0.7420, + 0.0171, 0.1412, 0.9378, 0.1278, 0.5952, 0.5957, 0.1602, + 0.4569, 0.6997, 0.3923, 0.9702, 0.9204, 0.6140, 0.5178, + 0.9051, 0.2480, 0.1154, 0.8068, 0.0751, 0.2951, 0.2063, + 0.5678, 0.8248, 0.3371, 0.6619, 0.2068, 0.7570, 0.0168, + 0.6561, 0.1487, 0.6018, 0.3884, 0.9519, 0.9836, 0.1373, + 0.8836, 0.8831, 0.2552, 0.0736, 0.2226, 0.3008, 0.4150, + 0.1279, 0.9067, 0.1991, 0.2146, 0.2746, 0.7514, 0.1652, + 0.6727, 0.7846, 0.1471, 0.6132, 0.2493, 0.3325, 0.1885, + 0.6417, 0.6590, 0.4757, 0.4061, 0.4359, 0.7236, 0.4441, + 0.8643, 0.8479, 0.1003, 0.0185, 0.7836, 0.3159, 0.9798, + 0.5805, 0.8284, 0.5046, 0.3086, 0.3844, 0.2360, 0.1980, + 0.4207, 0.9796, 0.1878, 0.5333, 0.3240, 0.4450, 0.8072, + 0.9168, 0.9993, 0.1170, 0.7410, 0.7954, 0.0307, 0.0989, + 0.1791, 0.2914, 0.1820, 0.6230, 0.6850, 0.2813, 0.1157, + 0.9867, 0.0737, 0.8029, 0.1015, 0.4682, 0.7620, 0.7696, + 0.1064, 0.5765, 0.9709, 0.1174, 0.5832, 0.0978, 0.3568, + 0.0730, 0.0563, 0.7057, 0.7628, 0.0959, 0.4747, 0.3801, + 0.4508, 0.6394, 0.2715, 0.6105, 0.9926, 0.0896, 0.9574, + 0.6793, 0.6180, 0.4648, 0.2921, 0.3386, 0.6820, 0.5212, + 0.2154, 0.4717, 0.5014, 0.2617, 0.2977, 0.8006, 0.3353, + 0.8470, 0.7611, 0.1607, 0.8669, 0.7715, 0.5232, 0.4841, + 0.9115, 0.0228, 0.4693, 0.3305, 0.8215, 0.0869, 0.1824, + 0.6579, 0.0833, 0.9613, 0.4715, 0.3285, 0.5471, 0.6905, + 0.3957, 0.1840, 0.6202, 0.6851, 0.4733, 0.5934, 0.1386, + 0.7851, 0.7342, 0.6370, 0.2348, 0.9459, 0.2391, 0.7316, + 0.0941, 0.4717, 0.1253, 0.8566, 0.1216, 0.7571, 0.4196, + 0.8179, 0.8132, 0.2885, 0.9707, 0.1275, 0.3342, 0.3134, + 0.7312, 0.8352, 0.1365, 0.9373, 0.3091, 0.3749, 0.0663, + 0.0702, 0.0409, 0.7695, 0.6795, 0.1004, 0.2734, 0.4594, + 0.7910, 0.2158, 0.2145, 0.3182, 0.4406, 0.5618, 0.1494, + 0.2911, 0.5915, 0.9878, 0.1365, 0.7549, 0.8342, 0.9059, + 0.4562, 0.0558, 0.1508, 0.1673, 0.9872, 0.7096, 0.7520, + 0.1691, 0.3662, 0.9410, 0.2625, 0.1475, 0.8645, 0.3039, + 0.2029, 0.3516, 0.6215, 0.5740, 0.4584, 0.2225, 0.4006, + 0.3128, 0.0380, 0.6050, 0.2938, 0.0878, 0.3289, 0.8456, + 0.2525, 0.9209, 0.0593, 0.6809, 0.3115, 0.4275, 0.2499, + 0.9295, 0.5425, 0.4391, 0.3831, 0.4593, 0.7149, 0.1921, + 0.1184, 0.2786, 0.9624, 0.1167, 0.0044, 0.4051, 0.0108, + 0.4520, 0.6056, 0.9254, 0.0610, 0.3916, 0.2002, 0.0181, + 0.2959, 0.8354, 0.8965, 0.7722, 0.6322, 0.5425, 0.0976, + 0.8386, 0.2720, 0.5773, 0.9188, 0.0410, 0.3565, 0.1415, + 0.0175, 0.2161, 0.8758, 0.7699, 0.2833, 0.0538, 0.3260, + 0.5205, 0.1162, 0.9185, 0.1645, 0.4861, 0.6898, 0.0238, + 0.7657, 0.0799, 0.4505, 0.6300, 0.6548, 0.1225, 0.0206, + 0.5211, 0.1829, 0.9455, 0.5775, 0.0847, 0.2663, 0.6607, + 0.9023, 0.5472, 0.7809, 0.3315, 0.1532, 0.1912, 0.3343, + 0.7726, 0.2157, 0.2423, 0.7378, 0.9800, 0.4469, 0.4539, + 0.9687, 0.0064, 0.0441, 0.0697, 0.5833, 0.6814, 0.6849, + 0.0435, 0.1250, 0.2613, 0.0854, 0.3080, 0.5157, 0.4405, + 0.5866, 0.4456, 0.1962, 0.6798, 0.4460, 0.0218, 0.8899, + 0.8373, 0.1209, 0.8163, 0.3718, 0.6930, 0.1628, 0.4197, + 0.2782, 0.5692, 0.9005, 0.5938, 0.2539, 0.8654, 0.7168, + 0.9464, 0.8460, 0.4902, 0.5805, 0.0640, 0.5710, 0.7328, + 0.9874, 0.0901, 0.6221, 0.7762, 0.9765, 0.8525]), size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.0747, 0.3561, 0.1255, ..., 0.0664, 0.4841, 0.3262]) +tensor([0.4976, 0.0481, 0.1913, ..., 0.0301, 0.3766, 0.0826]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -919,375 +1026,268 @@ Rows: 10000 Size: 100000000 NNZ: 1000 Density: 1e-05 -Time: 10.197850227355957 seconds +Time: 10.560847282409668 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), - col_indices=tensor([7056, 919, 9795, 9151, 2044, 7967, 5705, 2623, 1627, - 6717, 8708, 775, 127, 1374, 5044, 4299, 6342, 2263, - 5929, 5936, 1548, 2847, 6130, 6554, 2239, 7163, 1692, - 5793, 7119, 1287, 7508, 865, 1459, 7418, 3194, 4266, - 5780, 5575, 180, 8863, 8594, 4896, 438, 2537, 9988, - 4607, 5188, 6211, 6192, 6056, 7097, 5429, 1839, 2821, - 5784, 5246, 8081, 948, 4779, 1850, 1043, 9101, 2658, - 6891, 8025, 4761, 559, 865, 7629, 6085, 5946, 6354, - 9409, 9347, 7997, 4210, 3579, 999, 6644, 8129, 3149, - 6858, 4041, 4647, 7223, 2236, 7192, 9546, 9793, 3327, - 3171, 2565, 5976, 7978, 3677, 2920, 144, 9344, 6975, - 2500, 5379, 6794, 7366, 5322, 1940, 4044, 8778, 8972, - 3256, 9932, 4555, 9183, 8216, 4060, 4031, 360, 1944, - 7355, 8202, 9688, 593, 6710, 7830, 6044, 3654, 5591, - 7924, 1626, 5386, 2008, 4406, 634, 5326, 8955, 8209, - 5178, 2353, 3613, 9298, 6923, 1330, 2295, 8418, 4016, - 6041, 3493, 2023, 3116, 9349, 4002, 5551, 6028, 3519, - 6478, 8114, 4566, 1480, 1179, 4402, 6390, 2641, 4788, - 5490, 7082, 2181, 7781, 5904, 491, 2224, 8974, 482, - 7270, 9130, 6779, 3453, 7281, 6000, 9094, 1080, 96, - 3235, 2362, 7656, 6780, 2699, 3796, 1691, 106, 5591, - 2247, 1360, 4408, 8461, 5554, 962, 5012, 1178, 665, - 8966, 149, 3510, 466, 7726, 3308, 1620, 3276, 3031, - 3091, 7257, 8304, 7811, 2312, 9044, 4159, 2417, 6077, - 5309, 1633, 575, 3648, 8105, 8542, 7301, 3395, 9379, - 2616, 5588, 3562, 5579, 6202, 1237, 1076, 4693, 5863, - 4521, 8863, 2402, 4796, 8453, 8138, 8938, 9681, 8822, - 3016, 4280, 6174, 1987, 2265, 9622, 8422, 8024, 2552, - 7142, 6196, 3924, 6374, 3611, 5004, 6476, 3085, 3871, - 7485, 3089, 5859, 3123, 8069, 3938, 8070, 3319, 4967, - 6032, 3132, 8882, 8168, 9948, 9153, 5960, 4617, 2269, - 9592, 3316, 8405, 7722, 5455, 3568, 9972, 3178, 7732, - 3073, 9461, 3455, 1563, 3313, 5518, 1888, 5013, 9499, - 7686, 8128, 3614, 58, 6450, 6598, 9327, 2675, 6405, - 1465, 5960, 4, 919, 8839, 74, 8303, 7367, 985, - 1714, 972, 3691, 196, 2221, 5916, 9621, 719, 7868, - 6821, 1399, 599, 7980, 2535, 2710, 8687, 3504, 500, - 8756, 2206, 3927, 9619, 5296, 3265, 3270, 8220, 9811, - 8515, 3994, 4320, 3608, 6591, 3810, 1151, 5003, 1681, - 9535, 5842, 20, 673, 3013, 3128, 9579, 416, 4669, - 1672, 5675, 7857, 9285, 3183, 9934, 3384, 3124, 6569, - 9838, 4601, 323, 9366, 3658, 3481, 8266, 106, 4724, - 9925, 449, 231, 1193, 8640, 6487, 4395, 7873, 2975, - 371, 4139, 2769, 51, 7434, 3992, 2930, 3651, 8635, - 2260, 5356, 167, 5798, 384, 6039, 7889, 8913, 9072, - 4191, 8932, 4779, 1901, 9554, 5285, 2097, 2772, 9175, - 6725, 2156, 148, 5, 476, 3156, 6607, 7786, 8502, - 1087, 2367, 867, 1415, 3356, 4022, 2905, 4640, 6433, - 1986, 3092, 5931, 6521, 8577, 8053, 2869, 6427, 3755, - 6368, 9012, 2562, 8601, 9397, 1396, 3615, 1144, 9404, - 4843, 3491, 1114, 7468, 9175, 5343, 2695, 6775, 3132, - 763, 2580, 5472, 6555, 5197, 7683, 7083, 9461, 6717, - 3416, 4535, 7651, 8103, 5254, 5119, 4843, 7481, 9740, - 875, 8435, 1895, 4149, 1288, 2687, 4563, 8844, 5497, - 6857, 8265, 5805, 7507, 6505, 6546, 761, 9841, 4528, - 9297, 3090, 2401, 1436, 8521, 3201, 3280, 647, 6053, - 9778, 5421, 2338, 7895, 9657, 4768, 4164, 346, 6739, - 5802, 3214, 837, 1345, 161, 7417, 6331, 4380, 8050, - 5202, 8517, 4660, 8461, 3874, 4103, 9836, 4667, 1660, - 1906, 1376, 4340, 1934, 9527, 6941, 331, 4783, 1013, - 8971, 6772, 975, 1578, 3459, 408, 1053, 7816, 3059, - 6639, 3329, 9285, 4169, 206, 4382, 9903, 2838, 624, - 6682, 7989, 5248, 6652, 4925, 1208, 2515, 3523, 7868, - 5124, 932, 3036, 2610, 9397, 6019, 4365, 3159, 7967, - 6712, 4292, 9634, 2506, 2306, 6880, 1422, 5592, 3014, - 2127, 2108, 7692, 2917, 5954, 9346, 9190, 5918, 9056, - 1095, 6544, 2601, 8317, 1507, 8478, 427, 8983, 7403, - 1403, 9463, 9521, 1040, 2364, 4790, 3646, 1839, 5831, - 2407, 5569, 8636, 3161, 4775, 5244, 6918, 2550, 2648, - 9459, 505, 4866, 459, 3616, 1899, 4865, 6781, 645, - 8187, 4087, 8269, 527, 142, 3293, 2115, 9227, 4492, - 4310, 5673, 305, 9750, 3677, 3525, 7465, 7997, 3251, - 3987, 3609, 7768, 9505, 2837, 6841, 9179, 2234, 5163, - 4220, 1985, 3135, 228, 4791, 5638, 6344, 6055, 1786, - 6558, 448, 7423, 7966, 6313, 1661, 2565, 5057, 6400, - 9258, 4995, 104, 6131, 2357, 478, 9553, 4258, 9824, - 7655, 1162, 7233, 6219, 4197, 5671, 698, 3933, 5858, - 5825, 1485, 2940, 1221, 3277, 8498, 517, 4954, 4571, - 3551, 3811, 2162, 1085, 4990, 2770, 5124, 3331, 2642, - 4071, 9626, 4506, 3366, 3577, 4151, 3800, 2366, 4168, - 3825, 9342, 9534, 8100, 1320, 5092, 3157, 2094, 6070, - 8057, 5993, 2362, 411, 8733, 397, 7089, 7206, 2945, - 3064, 5117, 3443, 470, 608, 3384, 8567, 5110, 4565, - 6431, 5474, 8783, 7927, 5169, 4863, 7172, 8183, 1224, - 9394, 692, 7991, 536, 2135, 5294, 8037, 8526, 1190, - 63, 849, 9116, 6147, 7935, 7112, 6626, 226, 5579, - 9554, 4960, 2909, 3565, 5132, 4287, 1865, 5728, 7111, - 4986, 5695, 7077, 5616, 8771, 9145, 8441, 9676, 1058, - 6430, 6079, 4862, 6083, 1292, 6175, 658, 1311, 8075, - 3408, 4717, 4970, 3386, 6451, 4509, 1589, 2526, 3046, - 4015, 115, 606, 6816, 9023, 74, 3707, 8570, 3733, - 7439, 8010, 2330, 2707, 7997, 6578, 6530, 9528, 1545, - 1828, 6104, 2474, 5308, 5222, 6365, 8862, 4445, 3256, - 8596, 7733, 4546, 4298, 3962, 1735, 405, 9446, 2765, - 5223, 1245, 1928, 1613, 1076, 3386, 5499, 7117, 7236, - 1089, 5676, 7344, 5770, 9734, 6262, 6225, 7764, 2961, - 5070, 7253, 556, 1687, 3579, 9804, 7261, 2963, 8905, - 7732, 2949, 3331, 8106, 4114, 6793, 2309, 6606, 2474, - 1922, 3120, 8805, 7588, 3625, 3473, 6466, 7065, 4574, - 1985, 4989, 8004, 6734, 5981, 3660, 7778, 125, 7384, - 6141, 1158, 4521, 6919, 144, 914, 7797, 4111, 6086, - 6673, 8442, 7879, 7713, 9248, 4408, 1097, 7867, 1626, - 2747, 651, 2532, 5546, 1372, 589, 1653, 7492, 6806, - 1244, 9203, 2206, 5006, 203, 739, 5153, 6454, 4270, - 4396, 3640, 2150, 9255, 9834, 7708, 1267, 1636, 5030, - 795, 8742, 7543, 566, 6397, 3605, 8166, 8086, 4077, - 8364, 3818, 1834, 6488, 7143, 7438, 5866, 8540, 856, - 7785, 7368, 3461, 1705, 3376, 6688, 1751, 642, 9424, - 2608, 4435, 1836, 3463, 6828, 5152, 1957, 8354, 4656, - 6595, 4201, 9042, 3819, 3824, 5439, 7490, 1010, 4810, - 9972, 7566, 955, 751, 8629, 3365, 7594, 1053, 2299, - 7870]), - values=tensor([5.2060e-01, 5.8752e-01, 7.2713e-01, 1.0305e-01, - 9.3686e-01, 4.5302e-01, 7.9066e-01, 3.3889e-01, - 9.1304e-01, 7.1777e-01, 8.2105e-01, 1.2503e-01, - 3.7067e-02, 6.7818e-01, 7.9631e-01, 1.5332e-01, - 4.2909e-02, 3.6354e-01, 7.8473e-02, 3.9129e-01, - 5.0385e-01, 2.7311e-01, 2.8426e-01, 9.8490e-01, - 4.6471e-01, 1.8436e-01, 2.9210e-01, 7.6968e-01, - 9.8680e-01, 6.5393e-01, 6.5447e-01, 7.6587e-01, - 5.1696e-01, 3.0301e-01, 1.2974e-01, 4.9850e-01, - 9.5414e-01, 3.3815e-01, 1.2515e-01, 6.9570e-01, - 2.4680e-01, 5.9705e-01, 6.2698e-01, 7.7985e-01, - 6.0484e-01, 4.0524e-01, 6.3660e-01, 3.4506e-01, - 8.0482e-01, 7.8297e-02, 6.1842e-01, 5.7868e-01, - 6.3483e-01, 6.6108e-01, 9.3584e-04, 7.4347e-01, - 6.9134e-01, 8.5039e-01, 7.7178e-01, 3.8597e-01, - 1.9561e-01, 2.9964e-01, 5.3888e-01, 7.9254e-01, - 8.6409e-01, 7.5097e-01, 3.3689e-01, 7.8610e-02, - 4.5323e-01, 8.5126e-01, 6.9200e-01, 1.9498e-02, - 8.3003e-01, 8.6298e-01, 4.3806e-01, 7.1679e-01, - 8.1194e-01, 9.9720e-01, 8.2151e-01, 9.6087e-01, - 6.3853e-01, 3.4560e-01, 5.5284e-01, 4.4640e-01, - 3.7580e-01, 3.2438e-01, 8.9706e-01, 2.8604e-01, - 2.9762e-01, 2.8814e-01, 6.0684e-01, 4.1394e-01, - 6.2215e-01, 9.4551e-01, 4.0044e-01, 8.6963e-01, - 5.5266e-01, 5.9098e-01, 5.9783e-01, 1.7437e-01, - 3.4636e-01, 2.4680e-01, 2.3300e-01, 1.5789e-01, - 7.2572e-01, 4.7658e-01, 7.9251e-01, 5.5119e-01, - 3.4901e-01, 1.8926e-01, 7.2681e-02, 4.1166e-01, - 2.3574e-01, 9.2902e-01, 4.2647e-01, 4.2048e-01, - 7.6334e-01, 2.7562e-01, 1.2457e-01, 8.0447e-01, - 2.7298e-01, 2.6366e-01, 9.0147e-01, 9.8730e-01, - 4.8371e-01, 4.3424e-01, 8.9082e-01, 9.3669e-02, - 2.4573e-01, 1.7890e-01, 7.0955e-01, 7.5968e-01, - 4.4304e-01, 7.1779e-01, 7.2909e-01, 7.9905e-01, - 2.0894e-01, 1.6586e-01, 7.5174e-02, 4.0334e-01, - 1.0341e-01, 7.8773e-01, 8.5689e-01, 8.9735e-01, - 1.9547e-01, 8.9818e-01, 8.1080e-01, 5.8252e-01, - 6.2795e-01, 2.4733e-02, 3.7285e-01, 7.4750e-01, - 4.5329e-01, 5.4283e-01, 1.3581e-01, 8.2036e-01, - 3.3337e-02, 6.6711e-01, 2.7268e-01, 5.5912e-01, - 5.5669e-01, 3.5501e-01, 6.2792e-01, 9.7736e-01, - 3.5615e-01, 8.9429e-03, 5.2671e-01, 1.1444e-01, - 7.5357e-02, 8.8607e-01, 8.5215e-01, 8.6159e-01, - 3.1847e-01, 1.4552e-01, 6.4152e-01, 7.1863e-01, - 3.3005e-01, 3.2445e-02, 1.0168e-01, 8.4233e-01, - 8.8000e-01, 2.7047e-01, 7.1423e-01, 7.8187e-01, - 8.9146e-02, 4.9672e-01, 5.9046e-01, 1.9515e-01, - 9.8528e-01, 5.0321e-01, 5.8000e-01, 7.4168e-01, - 3.5260e-02, 1.2683e-01, 4.5738e-01, 6.8617e-01, - 4.4433e-01, 4.8514e-01, 5.5207e-01, 3.5556e-01, - 8.9692e-01, 3.6084e-01, 3.8720e-01, 5.8634e-01, - 7.0358e-01, 3.0095e-01, 1.3903e-01, 1.1694e-01, - 9.7711e-01, 3.7841e-01, 2.3352e-01, 4.5329e-01, - 8.2085e-01, 3.0580e-01, 4.8927e-01, 3.0347e-01, - 5.1485e-02, 5.2444e-02, 3.0794e-01, 5.9206e-01, - 8.3589e-01, 1.7323e-01, 3.1820e-01, 7.0798e-01, - 1.5440e-01, 1.9361e-01, 1.0835e-01, 8.1042e-01, - 7.1437e-02, 4.4926e-01, 8.1084e-01, 6.5975e-01, - 2.3167e-01, 9.5539e-01, 9.0418e-01, 1.8474e-01, - 8.4342e-01, 2.5289e-01, 6.3702e-01, 3.5397e-01, - 1.1201e-01, 4.5470e-01, 1.3388e-01, 2.6199e-01, - 8.1948e-01, 6.9816e-01, 9.3318e-01, 6.6708e-02, - 2.6242e-01, 4.7858e-02, 6.7194e-01, 4.8540e-01, - 5.6054e-01, 6.7286e-01, 8.0291e-01, 7.4681e-02, - 5.2165e-01, 3.6455e-01, 2.6177e-01, 2.8656e-01, - 4.8881e-01, 1.5495e-01, 8.1151e-01, 6.4157e-01, - 4.6118e-01, 9.8777e-02, 3.7165e-01, 7.8764e-01, - 6.8295e-01, 2.4347e-01, 1.6075e-01, 8.7591e-01, - 3.4120e-01, 5.4312e-01, 2.2322e-01, 7.3732e-01, - 9.2524e-02, 8.0737e-01, 4.2221e-01, 6.0497e-02, - 2.2442e-01, 1.6638e-01, 9.3025e-01, 3.6644e-01, - 9.7051e-01, 2.6113e-01, 3.3298e-01, 5.5566e-01, - 8.4633e-01, 2.1670e-02, 3.4866e-01, 4.1243e-01, - 4.3974e-02, 5.1011e-02, 9.7001e-01, 9.2475e-01, - 6.8789e-01, 4.8683e-01, 8.8514e-01, 2.8747e-01, - 8.3000e-01, 5.9514e-01, 1.9359e-01, 9.9127e-01, - 4.6767e-01, 9.0117e-02, 3.1439e-01, 7.7717e-01, - 3.2578e-01, 7.6461e-01, 4.9560e-01, 7.0813e-01, - 8.9512e-01, 3.4294e-01, 7.9012e-01, 2.1834e-01, - 9.9954e-01, 8.4021e-01, 5.2415e-01, 5.5913e-01, - 6.0001e-01, 4.0800e-01, 9.2418e-01, 9.8484e-02, - 1.2325e-01, 9.2593e-01, 8.8126e-01, 2.1903e-01, - 8.6474e-02, 5.6159e-01, 1.6813e-01, 3.7588e-01, - 1.1257e-01, 7.7701e-01, 6.1191e-01, 9.3067e-01, - 1.7717e-01, 6.9689e-01, 4.1894e-01, 3.1744e-01, - 6.8942e-01, 5.4469e-01, 6.9142e-01, 5.9683e-01, - 4.4063e-01, 7.9936e-01, 7.7242e-01, 2.8988e-01, - 9.4011e-01, 6.2090e-01, 4.0644e-01, 4.6521e-01, - 6.9337e-01, 9.9796e-02, 8.2484e-01, 6.9345e-01, - 6.1383e-01, 7.4834e-01, 4.0722e-01, 9.9024e-01, - 8.5334e-01, 8.8771e-01, 5.0253e-01, 7.2537e-01, - 6.4116e-01, 4.1841e-01, 9.1987e-01, 6.3601e-02, - 6.2845e-01, 9.8979e-01, 3.2048e-02, 4.9481e-01, - 7.6203e-01, 8.4482e-01, 1.8315e-01, 9.7150e-01, - 6.4234e-01, 3.9806e-01, 3.1906e-01, 8.5592e-01, - 2.7348e-01, 1.0324e-01, 3.3822e-01, 1.0261e-01, - 7.8657e-01, 4.1245e-02, 6.2280e-01, 1.5594e-01, - 1.4057e-01, 9.3217e-01, 5.3651e-01, 3.1414e-01, - 7.4943e-01, 1.8062e-01, 6.8355e-01, 1.7011e-01, - 7.9311e-01, 5.6505e-01, 1.7516e-01, 3.2628e-01, - 7.4869e-01, 3.6292e-02, 7.7730e-01, 5.6876e-01, - 7.4365e-01, 3.1819e-01, 2.9167e-01, 8.0054e-01, - 5.2095e-02, 8.4271e-01, 9.4201e-01, 2.6332e-01, - 4.1440e-01, 2.8004e-01, 6.3749e-01, 8.2784e-01, - 3.8989e-01, 4.8344e-01, 6.1792e-01, 7.7696e-01, - 2.9025e-01, 3.0195e-01, 1.6203e-02, 4.9882e-02, - 9.5260e-01, 3.8574e-02, 8.6137e-01, 1.0206e-01, - 1.8185e-01, 3.7184e-01, 1.8011e-01, 5.8471e-01, - 9.0896e-01, 7.8819e-01, 1.2554e-01, 9.1937e-01, - 4.7326e-01, 8.1565e-01, 4.0860e-01, 9.5624e-01, - 6.4546e-01, 2.1755e-01, 1.8583e-01, 7.2313e-01, - 5.0034e-01, 9.6810e-01, 1.1208e-01, 3.3256e-01, - 1.0626e-01, 8.2704e-01, 9.0571e-01, 9.1930e-01, - 5.0810e-01, 2.9139e-02, 4.8153e-01, 8.3425e-01, - 7.7208e-01, 2.0930e-01, 7.7873e-01, 1.9398e-01, - 4.6583e-01, 7.2143e-01, 7.7072e-01, 8.8225e-01, - 5.6393e-01, 4.5270e-01, 4.5709e-01, 3.4438e-02, - 8.3723e-01, 8.7398e-01, 7.7789e-01, 3.1834e-01, - 6.7630e-01, 7.2696e-01, 6.2046e-01, 8.7032e-01, - 7.5275e-01, 1.2652e-01, 1.6913e-01, 8.9638e-01, - 8.4284e-01, 6.7028e-01, 1.6150e-01, 4.8858e-01, - 5.2657e-01, 2.6709e-01, 5.3737e-01, 7.9635e-02, - 4.6502e-01, 6.6489e-01, 3.3302e-02, 6.7807e-03, - 3.2601e-01, 6.2838e-01, 8.8805e-01, 6.4081e-01, - 8.3664e-01, 2.1253e-01, 9.9560e-01, 1.0008e-01, - 8.1128e-01, 7.1759e-02, 1.9140e-01, 3.9544e-01, - 2.0466e-01, 1.0560e-01, 5.0978e-01, 4.3684e-01, - 1.8097e-02, 5.2480e-01, 1.3644e-01, 6.5843e-01, - 4.7603e-01, 3.9206e-01, 2.5961e-01, 4.4991e-01, - 2.7612e-01, 5.3666e-01, 1.0518e-02, 8.5692e-01, - 2.4882e-01, 9.3487e-01, 5.1282e-01, 9.4781e-01, - 6.6273e-01, 7.0853e-01, 2.2742e-01, 9.1791e-01, - 6.9906e-01, 3.2979e-01, 5.6041e-01, 8.6281e-01, - 9.5303e-01, 7.5565e-01, 4.3419e-01, 8.3829e-01, - 2.4070e-01, 6.8860e-01, 5.5668e-01, 1.8449e-01, - 9.9667e-01, 7.7594e-01, 5.3148e-01, 4.1552e-01, - 5.1947e-01, 1.3992e-01, 4.4856e-01, 7.4868e-01, - 6.3705e-01, 3.5783e-01, 1.2134e-01, 6.9568e-01, - 1.2509e-01, 1.7793e-01, 3.2242e-02, 4.1301e-01, - 5.9646e-01, 1.6615e-01, 3.1664e-01, 8.1783e-02, - 2.9824e-02, 2.1237e-01, 5.2911e-01, 5.1732e-01, - 1.9451e-01, 3.5512e-01, 2.9795e-01, 5.1951e-01, - 1.9558e-01, 3.7898e-01, 5.9402e-01, 4.2044e-01, - 8.7643e-01, 6.5956e-01, 7.4035e-01, 4.6048e-01, - 1.2749e-02, 9.2360e-01, 3.6981e-01, 9.4150e-01, - 9.7784e-01, 5.7582e-01, 3.1385e-01, 3.8101e-01, - 9.2912e-01, 4.3789e-01, 7.2061e-01, 5.2086e-01, - 7.3528e-01, 8.5192e-01, 3.5126e-01, 7.6776e-01, - 2.8613e-01, 6.3526e-02, 2.8596e-01, 6.3501e-01, - 4.9176e-02, 8.7348e-01, 5.2000e-01, 5.8496e-01, - 4.8855e-01, 7.2483e-01, 3.5412e-01, 6.6161e-01, - 5.5561e-01, 5.4683e-02, 9.0732e-01, 7.5460e-02, - 3.1367e-01, 7.3793e-01, 3.5729e-01, 2.8849e-01, - 8.9432e-01, 9.7713e-02, 1.1743e-01, 4.3089e-01, - 8.1021e-01, 8.8355e-01, 1.9843e-01, 6.1349e-02, - 8.3824e-01, 6.2155e-02, 2.0617e-01, 4.8812e-01, - 9.8256e-01, 8.8490e-02, 5.0411e-01, 9.5740e-01, - 9.7775e-02, 5.1726e-01, 7.1232e-01, 4.7675e-02, - 2.2480e-02, 3.7611e-01, 5.9660e-01, 6.2244e-01, - 4.4880e-01, 8.5892e-01, 1.9312e-01, 3.0721e-01, - 6.9925e-01, 6.7802e-01, 9.2157e-01, 8.5335e-01, - 4.1058e-01, 1.3666e-01, 3.9121e-01, 4.7478e-02, - 7.7467e-01, 5.8273e-03, 7.4476e-01, 1.9062e-01, - 7.5316e-02, 8.1639e-01, 5.2018e-01, 5.6018e-01, - 9.6970e-01, 3.0172e-02, 6.0521e-01, 4.0407e-02, - 5.7990e-01, 9.5453e-01, 8.8848e-01, 3.7532e-01, - 9.6133e-01, 7.7502e-01, 4.0087e-01, 6.8611e-01, - 3.2210e-02, 2.8094e-01, 7.3871e-01, 9.1462e-01, - 1.9356e-01, 2.6926e-01, 1.8582e-01, 5.4929e-02, - 9.1024e-01, 2.6956e-01, 5.5420e-01, 3.6135e-01, - 3.5875e-01, 6.0498e-01, 3.7275e-01, 9.8664e-01, - 8.8819e-01, 2.7405e-01, 1.1934e-01, 7.3250e-01, - 8.9712e-01, 8.8231e-01, 3.3160e-01, 9.5892e-01, - 8.4187e-01, 2.7689e-01, 1.6102e-02, 9.3174e-01, - 7.5817e-01, 9.0117e-01, 2.4771e-01, 2.6531e-01, - 5.1327e-01, 3.8035e-01, 4.0058e-01, 4.0599e-04, - 9.2180e-01, 9.3958e-01, 5.5013e-01, 6.4800e-01, - 1.1731e-01, 5.7797e-01, 2.5301e-01, 6.8211e-01, - 9.6611e-01, 2.1744e-01, 2.7821e-01, 3.8118e-01, - 6.2557e-01, 8.9564e-01, 9.8076e-01, 4.2087e-01, - 1.3319e-02, 1.8018e-01, 6.2599e-01, 1.4615e-01, - 7.4026e-01, 9.7573e-01, 1.0896e-01, 4.9573e-01, - 7.0308e-01, 6.3058e-01, 1.5012e-01, 5.9222e-01, - 6.5591e-01, 4.5450e-01, 1.3452e-01, 1.1006e-01, - 6.2072e-01, 1.7700e-01, 3.2033e-01, 7.1407e-01, - 9.3104e-01, 7.3480e-01, 7.5735e-01, 5.3846e-01, - 1.2357e-01, 6.0479e-01, 5.0554e-01, 7.2641e-01, - 7.1854e-01, 3.9348e-02, 4.3940e-02, 5.5093e-01, - 1.1556e-02, 4.5159e-01, 8.0712e-01, 7.2793e-01, - 9.4343e-01, 4.6801e-01, 6.8975e-01, 6.8837e-01, - 5.9669e-02, 7.6994e-01, 4.3286e-01, 7.1974e-01, - 4.6165e-01, 5.8672e-01, 5.0695e-01, 4.7555e-01, - 6.9675e-01, 3.7575e-01, 7.2625e-01, 6.6386e-01, - 3.0499e-01, 7.8592e-01, 5.7412e-01, 1.8771e-01, - 2.0747e-02, 9.7205e-01, 1.9993e-01, 4.5722e-01, - 9.2382e-02, 3.5018e-01, 5.2392e-01, 1.1923e-01, - 8.3795e-01, 3.4123e-02, 2.8436e-01, 1.9208e-01, - 6.4406e-02, 7.8742e-01, 2.0108e-01, 9.3581e-01, - 1.7748e-01, 8.9101e-01, 1.2175e-01, 8.8756e-01, - 7.8316e-01, 4.0800e-01, 5.6851e-01, 9.2774e-01, - 3.7604e-01, 5.3144e-01, 8.0134e-02, 6.2059e-02, - 8.7489e-03, 2.6598e-01, 6.7003e-01, 8.4602e-01, - 6.0322e-01, 6.8827e-01, 3.2298e-01, 7.1255e-01, - 9.5221e-01, 9.1295e-01, 2.3726e-01, 8.5325e-02, - 3.8353e-01, 7.7125e-01, 7.3426e-01, 5.3143e-01, - 8.0892e-01, 8.7041e-01, 5.8474e-01, 8.7437e-01, - 3.1761e-01, 8.3607e-01, 2.6952e-01, 6.1480e-01, - 7.6446e-01, 6.1953e-01, 4.9927e-01, 7.5728e-01, - 9.1551e-01, 2.2186e-01, 7.1374e-01, 2.5784e-01, - 8.5969e-01, 9.0881e-01, 1.8012e-01, 9.8941e-02, - 6.1818e-01, 2.8776e-01, 9.6763e-01, 2.0033e-01, - 8.2090e-01, 1.9388e-01, 1.7567e-01, 4.4690e-01, - 2.0662e-01, 1.0745e-01, 9.3569e-01, 8.0811e-01, - 9.1073e-02, 3.4629e-01, 7.8523e-01, 1.1764e-01, - 2.8677e-01, 7.0343e-01, 8.7211e-01, 3.6672e-01, - 9.7703e-01, 5.2406e-01, 4.9980e-01, 5.4475e-01, - 8.9090e-01, 4.3209e-02, 4.4884e-01, 9.0686e-01, - 1.1154e-01, 1.0570e-01, 4.1471e-01, 9.7202e-01, - 3.8561e-01, 2.0579e-01, 4.4916e-01, 1.9721e-01, - 5.1959e-01, 7.6768e-01, 9.2048e-01, 2.2598e-01, - 9.6825e-01, 5.9095e-01, 2.7735e-02, 9.8780e-01, - 5.5600e-01, 6.4011e-01, 4.9115e-01, 1.5679e-01, - 9.0323e-01, 1.9041e-01, 8.5013e-01, 1.2025e-01, - 1.1804e-01, 6.8892e-01, 2.0461e-01, 1.9657e-01, - 7.0597e-01, 5.5451e-01, 1.8591e-01, 6.9899e-01, - 5.3076e-01, 7.3978e-01, 9.5676e-01, 4.0627e-01, - 8.3752e-01, 3.1046e-01, 5.6607e-01, 4.4132e-01, - 5.2029e-01, 8.5109e-01, 6.6508e-01, 2.6182e-01, - 6.7981e-01, 8.4438e-01, 4.1711e-01, 3.6277e-01, - 9.2177e-01, 3.6580e-02, 5.1418e-02, 4.5413e-01, - 5.0643e-01, 1.2991e-01, 7.2776e-01, 6.5957e-01, - 6.6907e-01, 4.4236e-01, 5.5565e-01, 1.1326e-01, - 6.2352e-01, 4.1680e-02, 8.5603e-01, 7.0539e-01, - 3.5385e-01, 5.1926e-01, 6.4794e-02, 6.4126e-01, - 3.0824e-01, 8.7537e-01, 3.8092e-03, 1.4017e-01, - 7.9757e-01, 2.7307e-01, 7.7809e-01, 5.3453e-01, - 3.5741e-01, 8.3152e-01, 9.6330e-01, 4.5118e-01, - 6.9011e-01, 8.9458e-01, 5.3158e-01, 8.2853e-01, - 1.8923e-01, 6.5167e-01, 3.8821e-01, 5.7283e-01, - 1.9550e-01, 4.8766e-01, 5.8973e-01, 6.6654e-01, - 3.4043e-01, 3.0734e-01, 7.2507e-01, 4.5141e-01, - 8.7825e-01, 1.8915e-01, 9.1650e-01, 2.5972e-01, - 1.2721e-02, 4.2352e-01, 6.5855e-01, 4.8197e-01, - 6.3384e-01, 1.1340e-01, 9.1519e-02, 7.2253e-01, - 7.7717e-01, 7.7128e-01, 7.9797e-01, 9.5449e-01, - 1.9479e-01, 9.4967e-01, 6.5866e-01, 2.6908e-01, - 6.6522e-01, 9.9513e-01, 6.4628e-01, 3.2376e-01, - 6.8241e-01, 2.0082e-01, 6.7192e-01, 6.3818e-01, - 8.3533e-01, 1.4580e-01, 6.7572e-01, 3.1304e-02, - 5.6257e-01, 6.4916e-01, 4.5939e-01, 1.6735e-01]), + col_indices=tensor([5150, 3949, 6725, 9833, 6214, 5081, 1554, 3283, 4592, + 1367, 5501, 6306, 1908, 8847, 9684, 2365, 4516, 2030, + 6246, 1037, 3129, 6994, 6859, 6054, 2697, 3073, 4745, + 5149, 9683, 6168, 7171, 2986, 8282, 5962, 9044, 9859, + 4416, 2729, 3201, 9334, 70, 3704, 1992, 4539, 3854, + 9774, 4984, 5696, 4186, 7809, 2303, 2349, 6788, 8167, + 7467, 8573, 1950, 1383, 4872, 1688, 3467, 531, 2507, + 77, 4045, 9094, 8112, 2615, 9777, 5813, 1750, 6905, + 7986, 8272, 5559, 7416, 2650, 6301, 7023, 6146, 5728, + 154, 3305, 852, 1556, 1672, 8260, 3100, 4027, 2524, + 7136, 1881, 3609, 4077, 5415, 1342, 7463, 0, 7237, + 949, 4271, 7500, 4398, 202, 6370, 6523, 8149, 1606, + 644, 1179, 4251, 732, 4140, 9430, 7869, 4357, 3082, + 7706, 929, 1350, 2066, 3153, 7727, 3490, 4529, 2830, + 604, 9531, 3037, 674, 1118, 7439, 1800, 9605, 7647, + 7273, 8451, 1727, 5065, 8403, 4478, 8920, 7608, 949, + 4223, 6471, 1464, 4183, 9344, 7358, 8169, 5124, 7436, + 7379, 4302, 4579, 6954, 7352, 2475, 6524, 6023, 4419, + 4933, 4411, 5203, 2328, 5122, 1046, 4112, 415, 8434, + 5247, 5282, 7252, 5516, 6132, 9262, 1383, 4445, 3838, + 3480, 5499, 6857, 5666, 2223, 3948, 5622, 6586, 8728, + 1267, 1798, 4209, 2945, 7759, 2936, 2435, 508, 7969, + 658, 334, 4257, 5246, 6393, 357, 3505, 4514, 1464, + 8590, 9903, 4716, 9051, 4470, 9570, 4777, 3595, 8441, + 9110, 9670, 2187, 8548, 3616, 2595, 1352, 5502, 4886, + 8337, 7807, 4921, 643, 1759, 191, 6520, 5823, 2075, + 4740, 3014, 8077, 3584, 7499, 5306, 1223, 1385, 7517, + 8020, 7952, 2205, 3204, 4927, 5397, 2795, 9112, 9159, + 2689, 6163, 2719, 3134, 7968, 7593, 4653, 54, 597, + 3621, 6399, 2434, 6710, 967, 6700, 1213, 1026, 551, + 5577, 3471, 9061, 2300, 9239, 9461, 23, 3996, 596, + 2494, 5453, 3959, 6826, 5001, 7382, 416, 1281, 7317, + 7289, 1990, 4004, 9139, 5821, 8865, 9134, 9753, 7856, + 3678, 597, 9576, 3434, 7138, 8525, 4380, 4708, 1098, + 1864, 2641, 5053, 725, 7343, 1604, 5046, 9253, 1076, + 1733, 7452, 5764, 4569, 2060, 2335, 2788, 666, 560, + 4714, 8624, 8928, 6013, 1750, 3137, 5802, 2485, 8605, + 4692, 8176, 851, 670, 6436, 4116, 3254, 4703, 3344, + 9079, 2177, 3623, 7381, 508, 1878, 8203, 179, 3099, + 5174, 8679, 6987, 5356, 2553, 3507, 667, 8739, 4484, + 5254, 6753, 2060, 7479, 4766, 9854, 7766, 9804, 802, + 2515, 3329, 2210, 7753, 2069, 70, 3487, 1593, 4737, + 6304, 4273, 1474, 5728, 8160, 440, 2963, 5961, 9940, + 3963, 6482, 6596, 1104, 8908, 2324, 4677, 901, 5681, + 7684, 1987, 3941, 1028, 3945, 522, 155, 9582, 618, + 9191, 2285, 2363, 1005, 6492, 2446, 5028, 8066, 9102, + 7602, 8504, 3215, 2742, 946, 538, 5191, 4078, 3141, + 982, 1552, 5688, 9154, 3693, 2376, 5721, 4025, 5733, + 4065, 1715, 8170, 7847, 2860, 4001, 475, 7239, 5611, + 5117, 3773, 7630, 4037, 8971, 3180, 5691, 7586, 7012, + 1221, 6168, 6276, 2660, 6301, 4688, 6558, 7433, 4113, + 3119, 4374, 617, 7732, 5185, 9146, 7702, 4380, 1370, + 4149, 205, 3424, 954, 5456, 1934, 9488, 5247, 9946, + 2494, 4258, 7045, 5497, 588, 1288, 5965, 6814, 3539, + 1764, 4809, 3064, 9477, 5056, 3833, 5491, 8813, 623, + 9737, 8723, 3926, 2417, 6250, 1832, 4224, 3868, 2666, + 5475, 2503, 4400, 2951, 8789, 8901, 2576, 1586, 2358, + 8683, 701, 2218, 324, 2750, 4642, 6563, 7866, 2142, + 2049, 8029, 6801, 8630, 4530, 1913, 7492, 4784, 1756, + 2725, 811, 3186, 5499, 565, 5265, 4256, 9478, 1700, + 8194, 7843, 9531, 2519, 7331, 6421, 4938, 2047, 9115, + 5085, 6558, 2790, 5305, 7400, 6481, 8276, 6051, 376, + 2232, 3828, 5087, 901, 859, 311, 5986, 646, 2534, + 3646, 6330, 6624, 44, 9526, 1720, 7671, 786, 2103, + 7291, 6456, 6706, 9840, 151, 5594, 5539, 8478, 8848, + 9399, 6447, 7659, 8019, 3178, 3373, 8082, 4366, 3291, + 1095, 8101, 138, 8637, 5651, 2986, 4186, 1262, 8903, + 7692, 5148, 5226, 6772, 7717, 1398, 9840, 6283, 4653, + 916, 1943, 7857, 14, 2435, 9045, 6355, 6437, 5876, + 2079, 6222, 9106, 7167, 8674, 3568, 5387, 6404, 4327, + 9378, 7023, 3428, 7208, 3991, 3503, 1112, 5994, 7543, + 8077, 3450, 7732, 95, 4124, 4136, 4748, 216, 5127, + 2129, 134, 2135, 8151, 9959, 5515, 3277, 4587, 1429, + 2979, 932, 7056, 783, 3334, 7562, 460, 5737, 5306, + 1839, 8429, 174, 7235, 4614, 34, 4009, 7389, 701, + 5758, 8329, 9563, 8743, 4338, 3477, 1180, 1540, 5860, + 9475, 5545, 4339, 9525, 5428, 2826, 7521, 4441, 8311, + 1115, 7387, 6593, 2389, 3900, 8596, 9443, 4909, 2179, + 2149, 5400, 6357, 6980, 7081, 5466, 6799, 5303, 6495, + 572, 6717, 3685, 9544, 9986, 5977, 7724, 1134, 4967, + 2145, 3442, 1984, 9728, 2275, 9320, 1257, 102, 4987, + 8007, 1513, 959, 4257, 799, 4709, 204, 6285, 7273, + 8278, 2651, 8788, 6857, 3198, 3750, 7764, 9530, 2525, + 5355, 2828, 6803, 3742, 9808, 2702, 3428, 5248, 7386, + 9259, 3003, 8487, 8936, 9681, 4024, 4691, 9077, 8624, + 670, 3644, 2024, 5179, 8050, 1290, 8269, 8524, 4786, + 2503, 35, 5675, 3549, 6350, 1714, 678, 5292, 9599, + 9848, 2823, 3918, 8633, 2596, 7468, 1783, 4984, 5190, + 2747, 7283, 6599, 5946, 9563, 8503, 9940, 9756, 3292, + 4953, 1009, 8896, 653, 1878, 8055, 8508, 2037, 2440, + 37, 3449, 5269, 3294, 7638, 3773, 5688, 5609, 7128, + 1885, 2653, 15, 148, 8228, 7481, 7965, 3146, 3889, + 6682, 8636, 1153, 8978, 9471, 4557, 8139, 4145, 2086, + 2623, 2951, 2381, 6771, 7405, 7405, 7866, 6651, 961, + 6157, 9117, 8248, 4454, 4081, 1801, 8411, 624, 6352, + 5499, 2637, 2893, 2441, 8243, 5608, 5218, 6178, 2460, + 7724, 4117, 2164, 8643, 7095, 2933, 8474, 6756, 7154, + 4556, 7730, 8140, 7610, 525, 1161, 9855, 6850, 3574, + 5534, 4716, 9318, 179, 5902, 7492, 3084, 3893, 1120, + 3911, 5634, 9144, 2088, 5803, 5300, 9679, 7556, 7644, + 1213, 9980, 8515, 3166, 262, 4231, 480, 4900, 7635, + 9607, 6653, 3153, 9282, 6882, 6866, 9053, 6078, 1605, + 2679, 9434, 1838, 5200, 8526, 145, 8529, 81, 7768, + 2792, 1368, 1146, 6845, 2082, 779, 3727, 3189, 5616, + 2883, 6077, 3380, 5032, 8816, 3861, 2679, 2096, 1826, + 4481, 3081, 2880, 9558, 48, 8852, 7596, 4096, 1993, + 3536, 4469, 1068, 8771, 110, 3938, 7946, 5524, 2146, + 2369, 7248, 6850, 2766, 3813, 4176, 2118, 2240, 2650, + 661, 3663, 7071, 4825, 3012, 5874, 7763, 2, 9014, + 386, 6880, 6261, 4740, 4948, 6569, 5412, 7485, 5084, + 2240, 7660, 5562, 8271, 9281, 7660, 7758, 8339, 2685, + 4281]), + values=tensor([0.7305, 0.2440, 0.3019, 0.7007, 0.9449, 0.8426, 0.6302, + 0.6840, 0.3760, 0.2330, 0.8640, 0.1425, 0.7949, 0.3165, + 0.9440, 0.0634, 0.1824, 0.8939, 0.0831, 0.8632, 0.5557, + 0.9222, 0.7152, 0.4959, 0.3642, 0.8742, 0.0533, 0.8773, + 0.3271, 0.1850, 0.8267, 0.0692, 0.8764, 0.6532, 0.0689, + 0.0059, 0.9796, 0.6870, 0.9154, 0.4784, 0.5447, 0.7909, + 0.5242, 0.2989, 0.3478, 0.3160, 0.9938, 0.4624, 0.7891, + 0.5624, 0.6799, 0.1505, 0.3167, 0.1174, 0.4734, 0.9357, + 0.4414, 0.2681, 0.3600, 0.9851, 0.0984, 0.9817, 0.6071, + 0.2437, 0.6382, 0.9904, 0.2276, 0.5007, 0.7924, 0.8288, + 0.4341, 0.5700, 0.0922, 0.1698, 0.6893, 0.1819, 0.6179, + 0.0688, 0.2326, 0.7694, 0.2736, 0.3807, 0.6497, 0.0934, + 0.2985, 0.3575, 0.2669, 0.2111, 0.0895, 0.1728, 0.5018, + 0.9851, 0.2093, 0.7627, 0.8317, 0.2321, 0.2733, 0.9575, + 0.1373, 0.4112, 0.4346, 0.2690, 0.0832, 0.9308, 0.0856, + 0.4248, 0.1271, 0.2415, 0.1779, 0.9677, 0.0600, 0.9191, + 0.1112, 0.1565, 0.1580, 0.1619, 0.6745, 0.6379, 0.9366, + 0.4143, 0.1271, 0.0864, 0.7266, 0.3906, 0.9727, 0.7339, + 0.0407, 0.0059, 0.6237, 0.7622, 0.9907, 0.2749, 0.4392, + 0.2002, 0.6558, 0.9415, 0.5261, 0.2561, 0.7660, 0.3448, + 0.1122, 0.7076, 0.6037, 0.4897, 0.4670, 0.8339, 0.5757, + 0.4177, 0.7623, 0.5865, 0.8495, 0.6497, 0.9778, 0.6297, + 0.3389, 0.2747, 0.0702, 0.1398, 0.1005, 0.4201, 0.1831, + 0.2403, 0.3332, 0.4306, 0.5321, 0.7778, 0.0204, 0.4136, + 0.1536, 0.7541, 0.0838, 0.5081, 0.7545, 0.0833, 0.4845, + 0.3873, 0.2490, 0.4675, 0.2018, 0.9437, 0.0574, 0.7574, + 0.4217, 0.4481, 0.8897, 0.5683, 0.3881, 0.1927, 0.8680, + 0.3664, 0.8069, 0.2192, 0.4607, 0.7321, 0.3086, 0.6446, + 0.3613, 0.6584, 0.1132, 0.8934, 0.0915, 0.5183, 0.8634, + 0.8577, 0.6923, 0.8618, 0.6853, 0.8256, 0.8384, 0.2295, + 0.3689, 0.5760, 0.2086, 0.3564, 0.8483, 0.6783, 0.7902, + 0.6082, 0.2549, 0.6415, 0.4994, 0.2078, 0.5032, 0.3790, + 0.4926, 0.0907, 0.6911, 0.2975, 0.8561, 0.2283, 0.4530, + 0.2236, 0.5933, 0.7581, 0.3982, 0.1913, 0.0682, 0.2359, + 0.4488, 0.3220, 0.4875, 0.7597, 0.7930, 0.2062, 0.4708, + 0.1870, 0.0373, 0.0367, 0.8306, 0.1947, 0.2315, 0.0207, + 0.8163, 0.7626, 0.9301, 0.8099, 0.3633, 0.5641, 0.8120, + 0.6141, 0.5594, 0.4658, 0.2150, 0.1654, 0.3051, 0.0343, + 0.3400, 0.5978, 0.5354, 0.0263, 0.3151, 0.8046, 0.5327, + 0.3066, 0.2487, 0.3111, 0.0893, 0.1612, 0.5907, 0.3107, + 0.8584, 0.8229, 0.4034, 0.2252, 0.3659, 0.2053, 0.7999, + 0.7701, 0.7502, 0.7518, 0.5690, 0.1322, 0.1586, 0.1160, + 0.9796, 0.3007, 0.1296, 0.7414, 0.1813, 0.4708, 0.0361, + 0.8196, 0.1266, 0.8025, 0.2789, 0.7870, 0.4347, 0.9531, + 0.2674, 0.9698, 0.4764, 0.0519, 0.6509, 0.3234, 0.4769, + 0.3125, 0.1997, 0.6900, 0.7719, 0.1567, 0.8227, 0.8361, + 0.3658, 0.9962, 0.8049, 0.2839, 0.0239, 0.5230, 0.1679, + 0.0012, 0.1941, 0.1825, 0.6328, 0.8021, 0.7872, 0.5540, + 0.0997, 0.9139, 0.1493, 0.1197, 0.6714, 0.2685, 0.5289, + 0.4741, 0.4375, 0.4510, 0.6505, 0.0060, 0.0804, 0.3052, + 0.4065, 0.1432, 0.8715, 0.0973, 0.2004, 0.0400, 0.2303, + 0.6891, 0.4089, 0.8692, 0.1440, 0.3744, 0.8894, 0.4839, + 0.5594, 0.2863, 0.2636, 0.1806, 0.4900, 0.9233, 0.0287, + 0.1519, 0.0238, 0.9718, 0.0696, 0.4915, 0.4842, 0.1594, + 0.7936, 0.6860, 0.5880, 0.4352, 0.0092, 0.6365, 0.1016, + 0.1299, 0.9522, 0.9906, 0.4238, 0.2435, 0.5165, 0.1731, + 0.6409, 0.2362, 0.6101, 0.1717, 0.7603, 0.4938, 0.2723, + 0.7599, 0.9112, 0.0268, 0.9393, 0.8969, 0.3631, 0.2998, + 0.3500, 0.7422, 0.9345, 0.9975, 0.0517, 0.1544, 0.6201, + 0.5972, 0.3434, 0.9546, 0.0842, 0.2284, 0.4080, 0.3233, + 0.9813, 0.3166, 0.9934, 0.5541, 0.2131, 0.8230, 0.1841, + 0.3426, 0.7598, 0.6218, 0.4928, 0.7872, 0.4823, 0.5321, + 0.2430, 0.9717, 0.6158, 0.5835, 0.2198, 0.3750, 0.8817, + 0.8977, 0.6208, 0.4204, 0.5681, 0.7034, 0.0297, 0.1272, + 0.9109, 0.2850, 0.6202, 0.3491, 0.4077, 0.0265, 0.9469, + 0.5186, 0.0530, 0.5136, 0.4687, 0.4898, 0.2296, 0.6555, + 0.6814, 0.2474, 0.5224, 0.6744, 0.7214, 0.5305, 0.5181, + 0.3443, 0.7930, 0.3254, 0.8409, 0.0232, 0.8876, 0.4606, + 0.8758, 0.4816, 0.3285, 0.3194, 0.0473, 0.5240, 0.4558, + 0.2643, 0.3823, 0.3375, 0.5496, 0.8842, 0.2643, 0.8295, + 0.0774, 0.7973, 0.2342, 0.2846, 0.4365, 0.5561, 0.8911, + 0.9974, 0.3818, 0.8914, 0.6534, 0.3445, 0.0570, 0.5409, + 0.8934, 0.8748, 0.8762, 0.1700, 0.1286, 0.5886, 0.2604, + 0.5122, 0.3910, 0.6718, 0.8386, 0.7880, 0.7735, 0.8382, + 0.7683, 0.8908, 0.5226, 0.8048, 0.4884, 0.3660, 0.1809, + 0.2335, 0.6855, 0.8170, 0.5295, 0.7842, 0.7798, 0.2910, + 0.3853, 0.8829, 0.7835, 0.1690, 0.4663, 0.2045, 0.1035, + 0.4997, 0.5297, 0.1289, 0.5179, 0.0606, 0.8583, 0.3048, + 0.7708, 0.1893, 0.6309, 0.7686, 0.9828, 0.9048, 0.3841, + 0.2185, 0.6435, 0.4478, 0.9468, 0.8737, 0.2111, 0.1349, + 0.9495, 0.4091, 0.3367, 0.4818, 0.6928, 0.9558, 0.4398, + 0.5439, 0.7708, 0.4337, 0.4611, 0.2583, 0.1955, 0.4439, + 0.4445, 0.7809, 0.8863, 0.3069, 0.4805, 0.8381, 0.8548, + 0.5700, 0.1066, 0.1066, 0.8937, 0.5723, 0.6920, 0.0327, + 0.2123, 0.4301, 0.6855, 0.9118, 0.1103, 0.8642, 0.3839, + 0.6499, 0.7405, 0.8262, 0.1273, 0.8596, 0.1214, 0.5538, + 0.2683, 0.7685, 0.0380, 0.9668, 0.3679, 0.4231, 0.3206, + 0.2939, 0.2000, 0.2628, 0.6644, 0.0046, 0.4634, 0.6009, + 0.9618, 0.0916, 0.1533, 0.8964, 0.0750, 0.6530, 0.7420, + 0.0171, 0.1412, 0.9378, 0.1278, 0.5952, 0.5957, 0.1602, + 0.4569, 0.6997, 0.3923, 0.9702, 0.9204, 0.6140, 0.5178, + 0.9051, 0.2480, 0.1154, 0.8068, 0.0751, 0.2951, 0.2063, + 0.5678, 0.8248, 0.3371, 0.6619, 0.2068, 0.7570, 0.0168, + 0.6561, 0.1487, 0.6018, 0.3884, 0.9519, 0.9836, 0.1373, + 0.8836, 0.8831, 0.2552, 0.0736, 0.2226, 0.3008, 0.4150, + 0.1279, 0.9067, 0.1991, 0.2146, 0.2746, 0.7514, 0.1652, + 0.6727, 0.7846, 0.1471, 0.6132, 0.2493, 0.3325, 0.1885, + 0.6417, 0.6590, 0.4757, 0.4061, 0.4359, 0.7236, 0.4441, + 0.8643, 0.8479, 0.1003, 0.0185, 0.7836, 0.3159, 0.9798, + 0.5805, 0.8284, 0.5046, 0.3086, 0.3844, 0.2360, 0.1980, + 0.4207, 0.9796, 0.1878, 0.5333, 0.3240, 0.4450, 0.8072, + 0.9168, 0.9993, 0.1170, 0.7410, 0.7954, 0.0307, 0.0989, + 0.1791, 0.2914, 0.1820, 0.6230, 0.6850, 0.2813, 0.1157, + 0.9867, 0.0737, 0.8029, 0.1015, 0.4682, 0.7620, 0.7696, + 0.1064, 0.5765, 0.9709, 0.1174, 0.5832, 0.0978, 0.3568, + 0.0730, 0.0563, 0.7057, 0.7628, 0.0959, 0.4747, 0.3801, + 0.4508, 0.6394, 0.2715, 0.6105, 0.9926, 0.0896, 0.9574, + 0.6793, 0.6180, 0.4648, 0.2921, 0.3386, 0.6820, 0.5212, + 0.2154, 0.4717, 0.5014, 0.2617, 0.2977, 0.8006, 0.3353, + 0.8470, 0.7611, 0.1607, 0.8669, 0.7715, 0.5232, 0.4841, + 0.9115, 0.0228, 0.4693, 0.3305, 0.8215, 0.0869, 0.1824, + 0.6579, 0.0833, 0.9613, 0.4715, 0.3285, 0.5471, 0.6905, + 0.3957, 0.1840, 0.6202, 0.6851, 0.4733, 0.5934, 0.1386, + 0.7851, 0.7342, 0.6370, 0.2348, 0.9459, 0.2391, 0.7316, + 0.0941, 0.4717, 0.1253, 0.8566, 0.1216, 0.7571, 0.4196, + 0.8179, 0.8132, 0.2885, 0.9707, 0.1275, 0.3342, 0.3134, + 0.7312, 0.8352, 0.1365, 0.9373, 0.3091, 0.3749, 0.0663, + 0.0702, 0.0409, 0.7695, 0.6795, 0.1004, 0.2734, 0.4594, + 0.7910, 0.2158, 0.2145, 0.3182, 0.4406, 0.5618, 0.1494, + 0.2911, 0.5915, 0.9878, 0.1365, 0.7549, 0.8342, 0.9059, + 0.4562, 0.0558, 0.1508, 0.1673, 0.9872, 0.7096, 0.7520, + 0.1691, 0.3662, 0.9410, 0.2625, 0.1475, 0.8645, 0.3039, + 0.2029, 0.3516, 0.6215, 0.5740, 0.4584, 0.2225, 0.4006, + 0.3128, 0.0380, 0.6050, 0.2938, 0.0878, 0.3289, 0.8456, + 0.2525, 0.9209, 0.0593, 0.6809, 0.3115, 0.4275, 0.2499, + 0.9295, 0.5425, 0.4391, 0.3831, 0.4593, 0.7149, 0.1921, + 0.1184, 0.2786, 0.9624, 0.1167, 0.0044, 0.4051, 0.0108, + 0.4520, 0.6056, 0.9254, 0.0610, 0.3916, 0.2002, 0.0181, + 0.2959, 0.8354, 0.8965, 0.7722, 0.6322, 0.5425, 0.0976, + 0.8386, 0.2720, 0.5773, 0.9188, 0.0410, 0.3565, 0.1415, + 0.0175, 0.2161, 0.8758, 0.7699, 0.2833, 0.0538, 0.3260, + 0.5205, 0.1162, 0.9185, 0.1645, 0.4861, 0.6898, 0.0238, + 0.7657, 0.0799, 0.4505, 0.6300, 0.6548, 0.1225, 0.0206, + 0.5211, 0.1829, 0.9455, 0.5775, 0.0847, 0.2663, 0.6607, + 0.9023, 0.5472, 0.7809, 0.3315, 0.1532, 0.1912, 0.3343, + 0.7726, 0.2157, 0.2423, 0.7378, 0.9800, 0.4469, 0.4539, + 0.9687, 0.0064, 0.0441, 0.0697, 0.5833, 0.6814, 0.6849, + 0.0435, 0.1250, 0.2613, 0.0854, 0.3080, 0.5157, 0.4405, + 0.5866, 0.4456, 0.1962, 0.6798, 0.4460, 0.0218, 0.8899, + 0.8373, 0.1209, 0.8163, 0.3718, 0.6930, 0.1628, 0.4197, + 0.2782, 0.5692, 0.9005, 0.5938, 0.2539, 0.8654, 0.7168, + 0.9464, 0.8460, 0.4902, 0.5805, 0.0640, 0.5710, 0.7328, + 0.9874, 0.0901, 0.6221, 0.7762, 0.9765, 0.8525]), size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.0747, 0.3561, 0.1255, ..., 0.0664, 0.4841, 0.3262]) +tensor([0.4976, 0.0481, 0.1913, ..., 0.0301, 0.3766, 0.0826]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -1295,13 +1295,13 @@ Rows: 10000 Size: 100000000 NNZ: 1000 Density: 1e-05 -Time: 10.197850227355957 seconds +Time: 10.560847282409668 seconds -[16.64, 16.64, 16.92, 16.76, 17.12, 17.2, 17.04, 17.0, 16.76, 16.88] -[16.68, 16.88, 19.88, 22.24, 22.24, 24.24, 24.56, 25.08, 21.56, 20.04, 19.4, 19.68, 19.88, 19.92] -14.228495121002197 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 141920, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.197850227355957, 'TIME_S_1KI': 0.0718563291104563, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 278.53162281036373, 'W': 19.575620643059622} -[16.64, 16.64, 16.92, 16.76, 17.12, 17.2, 17.04, 17.0, 16.76, 16.88, 16.16, 16.08, 16.16, 16.12, 16.12, 16.24, 16.56, 16.84, 16.88, 17.08] -299.82 -14.991 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 141920, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.197850227355957, 'TIME_S_1KI': 0.0718563291104563, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 278.53162281036373, 'W': 19.575620643059622, 'J_1KI': 1.9625959893627658, 'W_1KI': 0.1379341928062262, 'W_D': 4.584620643059623, 'J_D': 65.2322524514198, 'W_D_1KI': 0.032304260449969154, 'J_D_1KI': 0.00022762303022808028} +[20.4, 20.16, 20.52, 20.6, 20.92, 20.92, 20.96, 20.76, 20.68, 20.44] +[20.4, 20.52, 20.92, 23.12, 24.52, 26.12, 26.6, 26.16, 24.72, 24.72, 23.36, 23.32, 23.4, 23.52] +14.230781316757202 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 145476, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.560847282409668, 'TIME_S_1KI': 0.07259511728676668, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 314.8679765701293, 'W': 22.125839021878733} +[20.4, 20.16, 20.52, 20.6, 20.92, 20.92, 20.96, 20.76, 20.68, 20.44, 20.2, 20.44, 20.48, 20.56, 20.52, 20.48, 20.4, 20.4, 20.4, 20.4] +369.9200000000001 +18.496000000000002 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 145476, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.560847282409668, 'TIME_S_1KI': 0.07259511728676668, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 314.8679765701293, 'W': 22.125839021878733, 'J_1KI': 2.1643980902013342, 'W_1KI': 0.15209270960075016, 'W_D': 3.6298390218787304, 'J_D': 51.65544533538807, 'W_D_1KI': 0.024951462934633413, 'J_D_1KI': 0.00017151600906426773} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_5e-05.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_5e-05.json index 282c250..2bcb239 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_5e-05.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_5e-05.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 52721, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 11.043588876724243, "TIME_S_1KI": 0.20947229522816796, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 310.41147632598876, "W": 21.8334966893401, "J_1KI": 5.8878146530981725, "W_1KI": 0.4141328254270613, "W_D": 3.2964966893401026, "J_D": 46.86699609327319, "W_D_1KI": 0.06252720337892116, "J_D_1KI": 0.0011860018470613448} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 52342, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.44128155708313, "TIME_S_1KI": 0.19948189899283808, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 334.7413140869141, "W": 23.567352524316387, "J_1KI": 6.395271752835469, "W_1KI": 0.4502570120422679, "W_D": 3.4093525243163825, "J_D": 48.42508902931206, "W_D_1KI": 0.06513607665577133, "J_D_1KI": 0.0012444323231013588} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_5e-05.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_5e-05.output index 2fcd1ba..0a68cee 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_5e-05.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_5e-05.output @@ -1,13 +1,13 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 5e-05 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.24570083618164062} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 10000 -sd 5e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.027875900268554688} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 1, ..., 5000, 5000, 5000]), - col_indices=tensor([7274, 1823, 9481, ..., 3720, 7669, 6157]), - values=tensor([0.0699, 0.4403, 0.9366, ..., 0.7220, 0.3462, 0.9666]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 5000, 5000, 5000]), + col_indices=tensor([4151, 7566, 61, ..., 1923, 6890, 8738]), + values=tensor([0.6199, 0.1524, 0.8589, ..., 0.4429, 0.5764, 0.1533]), size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) -tensor([0.3652, 0.9468, 0.8818, ..., 0.3143, 0.5478, 0.8274]) +tensor([0.5335, 0.6247, 0.4039, ..., 0.6064, 0.4993, 0.4017]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -15,18 +15,18 @@ Rows: 10000 Size: 100000000 NNZ: 5000 Density: 5e-05 -Time: 0.24570083618164062 seconds +Time: 0.027875900268554688 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 42734 -ss 10000 -sd 5e-05 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 8.510959386825562} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 37666 -ss 10000 -sd 5e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 7.555848598480225} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 4999, 4999, 5000]), - col_indices=tensor([3889, 8009, 975, ..., 383, 3476, 3024]), - values=tensor([0.2888, 0.9236, 0.0703, ..., 0.2234, 0.4670, 0.5913]), +tensor(crow_indices=tensor([ 0, 0, 2, ..., 4999, 5000, 5000]), + col_indices=tensor([4832, 7617, 3198, ..., 2337, 8239, 2535]), + values=tensor([0.0012, 0.2497, 0.5477, ..., 0.0331, 0.3343, 0.4565]), size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) -tensor([0.8206, 0.5304, 0.1258, ..., 0.8056, 0.8493, 0.1547]) +tensor([0.1414, 0.6293, 0.2915, ..., 0.6179, 0.0556, 0.9688]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -34,18 +34,18 @@ Rows: 10000 Size: 100000000 NNZ: 5000 Density: 5e-05 -Time: 8.510959386825562 seconds +Time: 7.555848598480225 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 52721 -ss 10000 -sd 5e-05 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 11.043588876724243} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 52342 -ss 10000 -sd 5e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.44128155708313} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 1, 1, ..., 4999, 5000, 5000]), - col_indices=tensor([3785, 9007, 8216, ..., 3831, 7720, 5051]), - values=tensor([0.5982, 0.6190, 0.5749, ..., 0.7670, 0.1287, 0.1052]), + col_indices=tensor([6929, 6481, 6208, ..., 5185, 5914, 4436]), + values=tensor([0.2292, 0.3731, 0.2148, ..., 0.4978, 0.6385, 0.1071]), size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) -tensor([0.6986, 0.7258, 0.0612, ..., 0.6419, 0.7078, 0.3008]) +tensor([0.7171, 0.2412, 0.9457, ..., 0.4356, 0.0163, 0.8101]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -53,15 +53,15 @@ Rows: 10000 Size: 100000000 NNZ: 5000 Density: 5e-05 -Time: 11.043588876724243 seconds +Time: 10.44128155708313 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 1, 1, ..., 4999, 5000, 5000]), - col_indices=tensor([3785, 9007, 8216, ..., 3831, 7720, 5051]), - values=tensor([0.5982, 0.6190, 0.5749, ..., 0.7670, 0.1287, 0.1052]), + col_indices=tensor([6929, 6481, 6208, ..., 5185, 5914, 4436]), + values=tensor([0.2292, 0.3731, 0.2148, ..., 0.4978, 0.6385, 0.1071]), size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) -tensor([0.6986, 0.7258, 0.0612, ..., 0.6419, 0.7078, 0.3008]) +tensor([0.7171, 0.2412, 0.9457, ..., 0.4356, 0.0163, 0.8101]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -69,13 +69,13 @@ Rows: 10000 Size: 100000000 NNZ: 5000 Density: 5e-05 -Time: 11.043588876724243 seconds +Time: 10.44128155708313 seconds -[20.64, 20.64, 20.64, 20.64, 20.48, 20.52, 20.4, 20.52, 20.6, 20.56] -[20.56, 20.6, 20.72, 22.44, 23.64, 25.6, 26.32, 25.84, 25.0, 23.2, 23.28, 23.24, 23.44, 23.44] -14.217213153839111 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 52721, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 11.043588876724243, 'TIME_S_1KI': 0.20947229522816796, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 310.41147632598876, 'W': 21.8334966893401} -[20.64, 20.64, 20.64, 20.64, 20.48, 20.52, 20.4, 20.52, 20.6, 20.56, 20.36, 20.48, 20.48, 20.44, 20.56, 20.68, 20.88, 20.96, 20.72, 20.64] -370.74 -18.537 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 52721, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 11.043588876724243, 'TIME_S_1KI': 0.20947229522816796, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 310.41147632598876, 'W': 21.8334966893401, 'J_1KI': 5.8878146530981725, 'W_1KI': 0.4141328254270613, 'W_D': 3.2964966893401026, 'J_D': 46.86699609327319, 'W_D_1KI': 0.06252720337892116, 'J_D_1KI': 0.0011860018470613448} +[25.48, 25.4, 25.4, 24.8, 24.68, 24.36, 24.4, 24.16, 24.24, 23.68] +[23.36, 22.52, 25.48, 26.0, 27.84, 27.84, 27.8, 28.32, 24.88, 24.76, 23.72, 23.52, 23.72, 23.68] +14.20360279083252 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 52342, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.44128155708313, 'TIME_S_1KI': 0.19948189899283808, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 334.7413140869141, 'W': 23.567352524316387} +[25.48, 25.4, 25.4, 24.8, 24.68, 24.36, 24.4, 24.16, 24.24, 23.68, 20.0, 19.92, 19.76, 20.2, 20.12, 20.12, 20.36, 20.24, 20.24, 20.36] +403.1600000000001 +20.158000000000005 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 52342, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.44128155708313, 'TIME_S_1KI': 0.19948189899283808, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 334.7413140869141, 'W': 23.567352524316387, 'J_1KI': 6.395271752835469, 'W_1KI': 0.4502570120422679, 'W_D': 3.4093525243163825, 'J_D': 48.42508902931206, 'W_D_1KI': 0.06513607665577133, 'J_D_1KI': 0.0012444323231013588} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_0.0001.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_0.0001.json index 8015441..ece3918 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_0.0001.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_0.0001.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 78.25872588157654, "TIME_S_1KI": 78.25872588157654, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 4354.838327121737, "W": 46.22946318790178, "J_1KI": 4354.838327121737, "W_1KI": 46.22946318790178, "W_D": 27.22746318790178, "J_D": 2564.8405165128734, "W_D_1KI": 27.22746318790178, "J_D_1KI": 27.22746318790178} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 137, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.396055936813354, "TIME_S_1KI": 75.88361997673981, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 753.5857475948335, "W": 33.1694657622459, "J_1KI": 5500.625894852799, "W_1KI": 242.11288877551752, "W_D": 14.2684657622459, "J_D": 324.16899673771866, "W_D_1KI": 104.14938512588249, "J_D_1KI": 760.2144899699452} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_0.0001.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_0.0001.output index f9d34b2..5419742 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_0.0001.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_0.0001.output @@ -1,15 +1,15 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 500000 -sd 0.0001 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 78.25872588157654} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 500000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 7.629654169082642} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 62, 108, ..., 24999902, - 24999957, 25000000]), - col_indices=tensor([ 8122, 13146, 17492, ..., 475877, 485043, - 496973]), - values=tensor([0.3209, 0.8894, 0.3965, ..., 0.0269, 0.4047, 0.8747]), +tensor(crow_indices=tensor([ 0, 44, 92, ..., 24999905, + 24999955, 25000000]), + col_indices=tensor([ 2191, 6192, 41052, ..., 471066, 488040, + 493296]), + values=tensor([0.3986, 0.5227, 0.3241, ..., 0.9261, 0.7192, 0.3287]), size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) -tensor([0.9161, 0.4114, 0.3584, ..., 0.3416, 0.2120, 0.9282]) +tensor([0.0957, 0.3468, 0.1431, ..., 0.5849, 0.2942, 0.3782]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -17,17 +17,20 @@ Rows: 500000 Size: 250000000000 NNZ: 25000000 Density: 0.0001 -Time: 78.25872588157654 seconds +Time: 7.629654169082642 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 137 -ss 500000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.396055936813354} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 62, 108, ..., 24999902, - 24999957, 25000000]), - col_indices=tensor([ 8122, 13146, 17492, ..., 475877, 485043, - 496973]), - values=tensor([0.3209, 0.8894, 0.3965, ..., 0.0269, 0.4047, 0.8747]), +tensor(crow_indices=tensor([ 0, 53, 94, ..., 24999919, + 24999951, 25000000]), + col_indices=tensor([ 2485, 12624, 22152, ..., 462150, 467889, + 476331]), + values=tensor([0.9572, 0.0985, 0.5455, ..., 0.5648, 0.8530, 0.8208]), size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) -tensor([0.9161, 0.4114, 0.3584, ..., 0.3416, 0.2120, 0.9282]) +tensor([0.3242, 0.9080, 0.9457, ..., 0.2147, 0.3332, 0.4113]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -35,13 +38,31 @@ Rows: 500000 Size: 250000000000 NNZ: 25000000 Density: 0.0001 -Time: 78.25872588157654 seconds +Time: 10.396055936813354 seconds -[21.04, 21.2, 21.24, 21.2, 21.44, 21.2, 21.08, 21.04, 20.84, 20.8] -[20.96, 20.88, 21.6, 21.6, 22.56, 24.32, 26.6, 27.68, 30.32, 31.76, 31.8, 31.36, 31.8, 32.64, 38.12, 43.32, 49.08, 53.24, 53.16, 52.56, 52.56, 52.56, 52.6, 52.28, 52.68, 53.0, 53.04, 53.24, 53.08, 53.48, 53.36, 53.16, 53.16, 52.68, 52.84, 52.88, 53.12, 52.96, 52.88, 53.2, 53.16, 53.0, 53.0, 52.96, 53.12, 52.84, 52.76, 53.08, 52.96, 52.84, 52.96, 52.92, 53.12, 53.2, 53.04, 53.28, 53.16, 53.12, 52.68, 52.96, 52.88, 52.72, 53.04, 53.08, 52.76, 52.76, 52.92, 53.32, 53.28, 53.32, 53.44, 53.28, 53.32, 53.4, 53.48, 53.48, 53.4, 53.4, 53.44, 53.12, 53.32, 53.44, 53.56, 53.52, 53.4, 53.36, 53.12, 53.12, 53.12, 53.16] -94.20049524307251 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 78.25872588157654, 'TIME_S_1KI': 78.25872588157654, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 4354.838327121737, 'W': 46.22946318790178} -[21.04, 21.2, 21.24, 21.2, 21.44, 21.2, 21.08, 21.04, 20.84, 20.8, 21.64, 21.52, 21.28, 21.2, 21.12, 20.8, 20.84, 20.76, 21.0, 21.08] -380.03999999999996 -19.002 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 78.25872588157654, 'TIME_S_1KI': 78.25872588157654, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 4354.838327121737, 'W': 46.22946318790178, 'J_1KI': 4354.838327121737, 'W_1KI': 46.22946318790178, 'W_D': 27.22746318790178, 'J_D': 2564.8405165128734, 'W_D_1KI': 27.22746318790178, 'J_D_1KI': 27.22746318790178} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 53, 94, ..., 24999919, + 24999951, 25000000]), + col_indices=tensor([ 2485, 12624, 22152, ..., 462150, 467889, + 476331]), + values=tensor([0.9572, 0.0985, 0.5455, ..., 0.5648, 0.8530, 0.8208]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.3242, 0.9080, 0.9457, ..., 0.2147, 0.3332, 0.4113]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 10.396055936813354 seconds + +[20.64, 20.72, 20.84, 20.96, 21.08, 21.36, 21.56, 21.56, 21.36, 21.36] +[21.36, 21.04, 20.8, 24.16, 25.16, 26.72, 28.8, 27.16, 30.52, 29.84, 29.76, 29.92, 29.92, 30.28, 32.88, 38.36, 44.52, 49.04, 53.12, 53.28, 53.2, 52.84] +22.719260931015015 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 137, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.396055936813354, 'TIME_S_1KI': 75.88361997673981, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 753.5857475948335, 'W': 33.1694657622459} +[20.64, 20.72, 20.84, 20.96, 21.08, 21.36, 21.56, 21.56, 21.36, 21.36, 20.8, 20.84, 20.88, 21.0, 21.04, 20.84, 20.96, 20.68, 20.68, 20.52] +378.02 +18.901 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 137, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.396055936813354, 'TIME_S_1KI': 75.88361997673981, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 753.5857475948335, 'W': 33.1694657622459, 'J_1KI': 5500.625894852799, 'W_1KI': 242.11288877551752, 'W_D': 14.2684657622459, 'J_D': 324.16899673771866, 'W_D_1KI': 104.14938512588249, 'J_D_1KI': 760.2144899699452} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_1e-05.json index 35c105f..28ed47d 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_1e-05.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_1e-05.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1484, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.88543152809143, "TIME_S_1KI": 7.335196447500964, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 480.2575412559509, "W": 32.95171788766838, "J_1KI": 323.6236800916111, "W_1KI": 22.204661649372223, "W_D": 16.90171788766838, "J_D": 246.33548707246783, "W_D_1KI": 11.389297767970607, "J_D_1KI": 7.67472895415809} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1548, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 11.061279058456421, "TIME_S_1KI": 7.145529107529987, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 576.3272948646545, "W": 36.84956710355697, "J_1KI": 372.3044540469344, "W_1KI": 23.80462991185851, "W_D": 18.03556710355697, "J_D": 282.0763014917373, "W_D_1KI": 11.65088314183267, "J_D_1KI": 7.526410298341518} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_1e-05.output index 2875e7e..ddb3af3 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_1e-05.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_1e-05.output @@ -1,15 +1,15 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 500000 -sd 1e-05 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.073613166809082} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 500000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.6782102584838867} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 6, 13, ..., 2499990, - 2499995, 2500000]), - col_indices=tensor([ 8141, 69274, 149925, ..., 390687, 407872, - 439375]), - values=tensor([0.4271, 0.3560, 0.2859, ..., 0.3294, 0.0849, 0.5690]), +tensor(crow_indices=tensor([ 0, 8, 13, ..., 2499990, + 2499997, 2500000]), + col_indices=tensor([ 40175, 122073, 147940, ..., 245767, 297950, + 495791]), + values=tensor([0.1248, 0.8645, 0.7112, ..., 0.2227, 0.8085, 0.2637]), size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.1896, 0.3447, 0.8973, ..., 0.8957, 0.5716, 0.6993]) +tensor([0.3055, 0.1588, 0.3916, ..., 0.3608, 0.8122, 0.4114]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -17,20 +17,20 @@ Rows: 500000 Size: 250000000000 NNZ: 2500000 Density: 1e-05 -Time: 7.073613166809082 seconds +Time: 0.6782102584838867 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1484 -ss 500000 -sd 1e-05 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.88543152809143} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1548 -ss 500000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 11.061279058456421} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 10, 15, ..., 2499994, - 2500000, 2500000]), - col_indices=tensor([ 19808, 30523, 42041, ..., 253465, 473291, - 475423]), - values=tensor([0.2655, 0.1335, 0.5252, ..., 0.0072, 0.8874, 0.1974]), +tensor(crow_indices=tensor([ 0, 0, 4, ..., 2499989, + 2499994, 2500000]), + col_indices=tensor([ 33871, 87157, 252512, ..., 380315, 410804, + 497208]), + values=tensor([0.0607, 0.8545, 0.0688, ..., 0.9965, 0.6178, 0.6113]), size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.7673, 0.2797, 0.0430, ..., 0.8352, 0.7956, 0.1250]) +tensor([0.3094, 0.9384, 0.5289, ..., 0.5205, 0.7717, 0.7334]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -38,17 +38,17 @@ Rows: 500000 Size: 250000000000 NNZ: 2500000 Density: 1e-05 -Time: 10.88543152809143 seconds +Time: 11.061279058456421 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 10, 15, ..., 2499994, - 2500000, 2500000]), - col_indices=tensor([ 19808, 30523, 42041, ..., 253465, 473291, - 475423]), - values=tensor([0.2655, 0.1335, 0.5252, ..., 0.0072, 0.8874, 0.1974]), +tensor(crow_indices=tensor([ 0, 0, 4, ..., 2499989, + 2499994, 2500000]), + col_indices=tensor([ 33871, 87157, 252512, ..., 380315, 410804, + 497208]), + values=tensor([0.0607, 0.8545, 0.0688, ..., 0.9965, 0.6178, 0.6113]), size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.7673, 0.2797, 0.0430, ..., 0.8352, 0.7956, 0.1250]) +tensor([0.3094, 0.9384, 0.5289, ..., 0.5205, 0.7717, 0.7334]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -56,13 +56,13 @@ Rows: 500000 Size: 250000000000 NNZ: 2500000 Density: 1e-05 -Time: 10.88543152809143 seconds +Time: 11.061279058456421 seconds -[20.16, 19.76, 19.4, 19.48, 19.12, 18.68, 18.6, 18.12, 18.12, 17.68] -[17.44, 17.16, 17.36, 21.36, 23.28, 27.36, 35.28, 38.6, 44.16, 47.92, 48.84, 48.56, 48.96, 49.04] -14.574582815170288 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1484, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.88543152809143, 'TIME_S_1KI': 7.335196447500964, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 480.2575412559509, 'W': 32.95171788766838} -[20.16, 19.76, 19.4, 19.48, 19.12, 18.68, 18.6, 18.12, 18.12, 17.68, 16.68, 16.56, 16.56, 16.56, 16.72, 16.64, 16.76, 17.08, 17.04, 17.08] -321.0 -16.05 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1484, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.88543152809143, 'TIME_S_1KI': 7.335196447500964, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 480.2575412559509, 'W': 32.95171788766838, 'J_1KI': 323.6236800916111, 'W_1KI': 22.204661649372223, 'W_D': 16.90171788766838, 'J_D': 246.33548707246783, 'W_D_1KI': 11.389297767970607, 'J_D_1KI': 7.67472895415809} +[20.72, 20.76, 21.12, 20.92, 20.92, 20.92, 20.88, 20.44, 20.48, 20.48] +[20.56, 20.56, 21.24, 22.4, 24.48, 28.6, 36.72, 41.88, 48.52, 48.52, 52.36, 52.92, 53.48, 53.4, 53.48] +15.640001773834229 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1548, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 11.061279058456421, 'TIME_S_1KI': 7.145529107529987, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 576.3272948646545, 'W': 36.84956710355697} +[20.72, 20.76, 21.12, 20.92, 20.92, 20.92, 20.88, 20.44, 20.48, 20.48, 20.6, 20.68, 20.88, 21.24, 21.48, 21.32, 21.48, 20.96, 20.64, 20.52] +376.28 +18.814 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1548, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 11.061279058456421, 'TIME_S_1KI': 7.145529107529987, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 576.3272948646545, 'W': 36.84956710355697, 'J_1KI': 372.3044540469344, 'W_1KI': 23.80462991185851, 'W_D': 18.03556710355697, 'J_D': 282.0763014917373, 'W_D_1KI': 11.65088314183267, 'J_D_1KI': 7.526410298341518} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_5e-05.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_5e-05.json index e64af38..9620135 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_5e-05.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_5e-05.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 37.50764799118042, "TIME_S_1KI": 37.50764799118042, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2045.1465811538696, "W": 43.475713756728496, "J_1KI": 2045.1465811538699, "W_1KI": 43.475713756728496, "W_D": 24.798713756728496, "J_D": 1166.5594483480452, "W_D_1KI": 24.798713756728496, "J_D_1KI": 24.798713756728496} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 285, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 11.060697317123413, "TIME_S_1KI": 38.809464270608466, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 641.8192787170411, "W": 34.323302144261945, "J_1KI": 2251.9974691826005, "W_1KI": 120.43263910267349, "W_D": 15.818302144261942, "J_D": 295.7900504469872, "W_D_1KI": 55.50281454126997, "J_D_1KI": 194.74671768866656} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_5e-05.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_5e-05.output index c540d96..0f40f5a 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_5e-05.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_5e-05.output @@ -1,15 +1,15 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 500000 -sd 5e-05 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 37.50764799118042} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 500000 -sd 5e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 3.6834404468536377} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 37, 66, ..., 12499959, +tensor(crow_indices=tensor([ 0, 36, 64, ..., 12499962, 12499977, 12500000]), - col_indices=tensor([ 2833, 12397, 17330, ..., 457394, 482426, - 493028]), - values=tensor([0.7637, 0.4211, 0.1191, ..., 0.6468, 0.8330, 0.4871]), + col_indices=tensor([ 6540, 37225, 45963, ..., 476281, 491551, + 491729]), + values=tensor([0.4995, 0.3434, 0.2289, ..., 0.9980, 0.3953, 0.2839]), size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) -tensor([0.3810, 0.7581, 0.5448, ..., 0.8790, 0.4682, 0.1184]) +tensor([0.6494, 0.0196, 0.1697, ..., 0.1655, 0.3294, 0.8926]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -17,17 +17,20 @@ Rows: 500000 Size: 250000000000 NNZ: 12500000 Density: 5e-05 -Time: 37.50764799118042 seconds +Time: 3.6834404468536377 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 285 -ss 500000 -sd 5e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 11.060697317123413} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 37, 66, ..., 12499959, - 12499977, 12500000]), - col_indices=tensor([ 2833, 12397, 17330, ..., 457394, 482426, - 493028]), - values=tensor([0.7637, 0.4211, 0.1191, ..., 0.6468, 0.8330, 0.4871]), +tensor(crow_indices=tensor([ 0, 30, 51, ..., 12499947, + 12499979, 12500000]), + col_indices=tensor([ 32854, 40713, 51141, ..., 464012, 471829, + 496055]), + values=tensor([0.7704, 0.8573, 0.2864, ..., 0.9432, 0.9508, 0.7094]), size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) -tensor([0.3810, 0.7581, 0.5448, ..., 0.8790, 0.4682, 0.1184]) +tensor([0.9627, 0.2273, 0.6691, ..., 0.1238, 0.9472, 0.0057]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -35,13 +38,31 @@ Rows: 500000 Size: 250000000000 NNZ: 12500000 Density: 5e-05 -Time: 37.50764799118042 seconds +Time: 11.060697317123413 seconds -[21.08, 20.96, 20.88, 20.72, 20.6, 20.6, 20.64, 20.2, 20.28, 20.6] -[20.72, 20.68, 21.2, 23.0, 24.88, 26.4, 29.84, 29.72, 30.96, 36.72, 36.72, 41.28, 45.64, 50.76, 52.76, 52.48, 53.28, 52.92, 52.8, 52.76, 52.48, 52.52, 52.68, 52.72, 53.4, 53.44, 53.4, 53.36, 53.12, 53.4, 53.2, 53.0, 53.0, 53.24, 53.08, 52.92, 53.0, 52.72, 52.8, 52.64, 52.8, 52.96, 52.8, 52.8, 52.68] -47.04112720489502 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 37.50764799118042, 'TIME_S_1KI': 37.50764799118042, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2045.1465811538696, 'W': 43.475713756728496} -[21.08, 20.96, 20.88, 20.72, 20.6, 20.6, 20.64, 20.2, 20.28, 20.6, 20.92, 21.12, 21.0, 20.84, 20.92, 20.72, 20.72, 20.56, 21.0, 20.96] -373.54 -18.677 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 37.50764799118042, 'TIME_S_1KI': 37.50764799118042, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2045.1465811538696, 'W': 43.475713756728496, 'J_1KI': 2045.1465811538699, 'W_1KI': 43.475713756728496, 'W_D': 24.798713756728496, 'J_D': 1166.5594483480452, 'W_D_1KI': 24.798713756728496, 'J_D_1KI': 24.798713756728496} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 30, 51, ..., 12499947, + 12499979, 12500000]), + col_indices=tensor([ 32854, 40713, 51141, ..., 464012, 471829, + 496055]), + values=tensor([0.7704, 0.8573, 0.2864, ..., 0.9432, 0.9508, 0.7094]), + size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.9627, 0.2273, 0.6691, ..., 0.1238, 0.9472, 0.0057]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 12500000 +Density: 5e-05 +Time: 11.060697317123413 seconds + +[20.52, 20.84, 20.92, 20.88, 20.88, 20.72, 20.52, 20.32, 20.36, 20.2] +[20.44, 20.6, 21.48, 21.48, 23.84, 25.24, 27.32, 30.28, 29.76, 32.76, 37.84, 41.44, 46.92, 51.96, 52.12, 52.64, 52.6, 52.8] +18.699228763580322 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 285, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 11.060697317123413, 'TIME_S_1KI': 38.809464270608466, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 641.8192787170411, 'W': 34.323302144261945} +[20.52, 20.84, 20.92, 20.88, 20.88, 20.72, 20.52, 20.32, 20.36, 20.2, 20.52, 20.44, 20.6, 20.44, 20.44, 20.48, 20.48, 20.36, 20.44, 20.72] +370.1 +18.505000000000003 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 285, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 11.060697317123413, 'TIME_S_1KI': 38.809464270608466, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 641.8192787170411, 'W': 34.323302144261945, 'J_1KI': 2251.9974691826005, 'W_1KI': 120.43263910267349, 'W_D': 15.818302144261942, 'J_D': 295.7900504469872, 'W_D_1KI': 55.50281454126997, 'J_D_1KI': 194.74671768866656} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.0001.json index 0acd95a..29a7f3d 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.0001.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.0001.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 3392, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.727018594741821, "TIME_S_1KI": 3.1624465196762443, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 423.8805270671845, "W": 29.00744018011372, "J_1KI": 124.96477802688223, "W_1KI": 8.55172175121277, "W_D": 13.914440180113719, "J_D": 203.32922177100187, "W_D_1KI": 4.102134487061827, "J_D_1KI": 1.2093556860441705} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 3424, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.731184720993042, "TIME_S_1KI": 3.1341076872059115, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 463.79336466789243, "W": 31.765422510706816, "J_1KI": 135.4536695875854, "W_1KI": 9.27728461177185, "W_D": 13.349422510706813, "J_D": 194.90921553230277, "W_D_1KI": 3.8987799388746534, "J_D_1KI": 1.1386623653255412} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.0001.output index f123524..192c47b 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.0001.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.0001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 0.0001 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 3.0953831672668457} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 50000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.4611988067626953} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 6, 13, ..., 249985, 249991, +tensor(crow_indices=tensor([ 0, 7, 9, ..., 249990, 249996, 250000]), - col_indices=tensor([ 782, 10679, 21591, ..., 21721, 25862, 26402]), - values=tensor([0.1080, 0.2599, 0.9753, ..., 0.8598, 0.0309, 0.7621]), + col_indices=tensor([ 1266, 4071, 18947, ..., 33754, 36171, 46993]), + values=tensor([0.2894, 0.3028, 0.5808, ..., 0.9499, 0.5530, 0.4490]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.0624, 0.3415, 0.4601, ..., 0.0482, 0.7737, 0.1465]) +tensor([0.9097, 0.0887, 0.0049, ..., 0.6179, 0.8641, 0.1772]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -16,19 +16,19 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 3.0953831672668457 seconds +Time: 0.4611988067626953 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 3392 -ss 50000 -sd 0.0001 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.727018594741821} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 2276 -ss 50000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 6.978086233139038} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 6, ..., 249992, 249997, +tensor(crow_indices=tensor([ 0, 5, 9, ..., 249990, 249995, 250000]), - col_indices=tensor([29888, 37512, 45145, ..., 10362, 27481, 28096]), - values=tensor([0.5987, 0.4413, 0.1210, ..., 0.9023, 0.1888, 0.1246]), + col_indices=tensor([ 2233, 6887, 19755, ..., 38632, 41476, 48223]), + values=tensor([0.3109, 0.9167, 0.4160, ..., 0.6671, 0.8506, 0.5777]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.0260, 0.0462, 0.3716, ..., 0.4992, 0.3586, 0.2225]) +tensor([0.7812, 0.4224, 0.5960, ..., 0.2514, 0.6292, 0.3012]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -36,16 +36,19 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 10.727018594741821 seconds +Time: 6.978086233139038 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 3424 -ss 50000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.731184720993042} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 6, ..., 249992, 249997, +tensor(crow_indices=tensor([ 0, 6, 7, ..., 249990, 249996, 250000]), - col_indices=tensor([29888, 37512, 45145, ..., 10362, 27481, 28096]), - values=tensor([0.5987, 0.4413, 0.1210, ..., 0.9023, 0.1888, 0.1246]), + col_indices=tensor([12104, 14436, 24112, ..., 12878, 32819, 38734]), + values=tensor([0.5759, 0.9600, 0.3696, ..., 0.0040, 0.7766, 0.9665]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.0260, 0.0462, 0.3716, ..., 0.4992, 0.3586, 0.2225]) +tensor([0.4011, 0.3434, 0.3941, ..., 0.7256, 0.6030, 0.5117]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -53,13 +56,30 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 10.727018594741821 seconds +Time: 10.731184720993042 seconds -[16.52, 16.28, 16.24, 16.16, 16.44, 16.44, 16.6, 16.52, 16.56, 16.68] -[16.44, 16.64, 17.44, 19.52, 22.44, 27.08, 32.32, 35.8, 38.92, 39.84, 40.12, 40.12, 40.24, 40.6] -14.612820863723755 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 3392, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.727018594741821, 'TIME_S_1KI': 3.1624465196762443, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 423.8805270671845, 'W': 29.00744018011372} -[16.52, 16.28, 16.24, 16.16, 16.44, 16.44, 16.6, 16.52, 16.56, 16.68, 16.84, 16.68, 16.84, 17.24, 17.32, 17.48, 17.4, 17.24, 16.96, 16.88] -301.86 -15.093 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 3392, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.727018594741821, 'TIME_S_1KI': 3.1624465196762443, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 423.8805270671845, 'W': 29.00744018011372, 'J_1KI': 124.96477802688223, 'W_1KI': 8.55172175121277, 'W_D': 13.914440180113719, 'J_D': 203.32922177100187, 'W_D_1KI': 4.102134487061827, 'J_D_1KI': 1.2093556860441705} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 7, ..., 249990, 249996, + 250000]), + col_indices=tensor([12104, 14436, 24112, ..., 12878, 32819, 38734]), + values=tensor([0.5759, 0.9600, 0.3696, ..., 0.0040, 0.7766, 0.9665]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.4011, 0.3434, 0.3941, ..., 0.7256, 0.6030, 0.5117]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.731184720993042 seconds + +[20.72, 20.68, 20.48, 20.6, 20.64, 20.32, 20.32, 20.36, 20.32, 20.4] +[20.52, 20.76, 22.24, 22.24, 24.16, 27.64, 32.84, 38.08, 39.84, 44.4, 44.52, 43.96, 44.12, 44.28] +14.60057282447815 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 3424, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.731184720993042, 'TIME_S_1KI': 3.1341076872059115, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 463.79336466789243, 'W': 31.765422510706816} +[20.72, 20.68, 20.48, 20.6, 20.64, 20.32, 20.32, 20.36, 20.32, 20.4, 20.68, 20.44, 20.48, 20.48, 20.2, 20.32, 20.44, 20.44, 20.6, 20.6] +368.32000000000005 +18.416000000000004 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 3424, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.731184720993042, 'TIME_S_1KI': 3.1341076872059115, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 463.79336466789243, 'W': 31.765422510706816, 'J_1KI': 135.4536695875854, 'W_1KI': 9.27728461177185, 'W_D': 13.349422510706813, 'J_D': 194.90921553230277, 'W_D_1KI': 3.8987799388746534, 'J_D_1KI': 1.1386623653255412} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.001.json index 3f36d4c..e699ae2 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.001.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.001.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 29.441463470458984, "TIME_S_1KI": 29.441463470458984, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1067.5749865341186, "W": 32.87033016720936, "J_1KI": 1067.5749865341186, "W_1KI": 32.87033016720936, "W_D": 17.51733016720936, "J_D": 568.9344591989515, "W_D_1KI": 17.51733016720936, "J_D_1KI": 17.51733016720936} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 385, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 11.064192295074463, "TIME_S_1KI": 28.738161805388216, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 468.0283072185517, "W": 32.037671646494225, "J_1KI": 1215.657940827407, "W_1KI": 83.21473154933565, "W_D": 13.341671646494227, "J_D": 194.90430094528205, "W_D_1KI": 34.65369258829669, "J_D_1KI": 90.00959113843297} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.001.output index c095d19..c964dd6 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.001.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 0.001 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 29.441463470458984} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 50000 -sd 0.001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 2.9453940391540527} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 37, 79, ..., 2499907, - 2499951, 2500000]), - col_indices=tensor([ 2466, 3763, 4276, ..., 47502, 48879, 49149]), - values=tensor([0.0148, 0.9908, 0.2997, ..., 0.9281, 0.7443, 0.4383]), +tensor(crow_indices=tensor([ 0, 37, 86, ..., 2499902, + 2499952, 2500000]), + col_indices=tensor([ 541, 1139, 1813, ..., 42919, 43072, 44933]), + values=tensor([0.0452, 0.1724, 0.8861, ..., 0.4157, 0.9772, 0.2120]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.6700, 0.5614, 0.5608, ..., 0.8928, 0.8615, 0.5607]) +tensor([0.1045, 0.1557, 0.1178, ..., 0.5894, 0.9079, 0.5773]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -16,16 +16,19 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 29.441463470458984 seconds +Time: 2.9453940391540527 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 356 -ss 50000 -sd 0.001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 9.708060026168823} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 37, 79, ..., 2499907, - 2499951, 2500000]), - col_indices=tensor([ 2466, 3763, 4276, ..., 47502, 48879, 49149]), - values=tensor([0.0148, 0.9908, 0.2997, ..., 0.9281, 0.7443, 0.4383]), +tensor(crow_indices=tensor([ 0, 46, 99, ..., 2499902, + 2499948, 2500000]), + col_indices=tensor([ 4031, 7226, 7309, ..., 44877, 48582, 49711]), + values=tensor([0.9329, 0.4420, 0.5313, ..., 0.9423, 0.2849, 0.2389]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.6700, 0.5614, 0.5608, ..., 0.8928, 0.8615, 0.5607]) +tensor([0.0088, 0.8123, 0.3302, ..., 0.9483, 0.6171, 0.9552]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -33,13 +36,50 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 29.441463470458984 seconds +Time: 9.708060026168823 seconds -[16.92, 17.36, 17.08, 16.84, 17.2, 17.28, 17.4, 17.44, 17.36, 17.36] -[17.08, 17.24, 17.08, 21.52, 22.36, 25.24, 29.48, 32.12, 34.64, 38.4, 38.76, 38.64, 38.8, 39.0, 39.0, 39.44, 39.4, 39.28, 39.32, 39.32, 39.24, 39.12, 39.0, 39.08, 39.32, 39.36, 39.28, 39.28, 39.16, 38.92, 39.08] -32.47837734222412 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 29.441463470458984, 'TIME_S_1KI': 29.441463470458984, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1067.5749865341186, 'W': 32.87033016720936} -[16.92, 17.36, 17.08, 16.84, 17.2, 17.28, 17.4, 17.44, 17.36, 17.36, 16.68, 16.88, 16.76, 16.92, 16.84, 17.04, 17.0, 17.0, 16.68, 17.0] -307.06000000000006 -15.353000000000003 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 29.441463470458984, 'TIME_S_1KI': 29.441463470458984, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1067.5749865341186, 'W': 32.87033016720936, 'J_1KI': 1067.5749865341186, 'W_1KI': 32.87033016720936, 'W_D': 17.51733016720936, 'J_D': 568.9344591989515, 'W_D_1KI': 17.51733016720936, 'J_D_1KI': 17.51733016720936} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 385 -ss 50000 -sd 0.001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 11.064192295074463} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 67, 125, ..., 2499902, + 2499956, 2500000]), + col_indices=tensor([ 1129, 2884, 2891, ..., 49010, 49022, 49816]), + values=tensor([0.8127, 0.7656, 0.2912, ..., 0.8978, 0.1718, 0.1428]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.7569, 0.5985, 0.1427, ..., 0.6714, 0.1732, 0.3064]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 11.064192295074463 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 67, 125, ..., 2499902, + 2499956, 2500000]), + col_indices=tensor([ 1129, 2884, 2891, ..., 49010, 49022, 49816]), + values=tensor([0.8127, 0.7656, 0.2912, ..., 0.8978, 0.1718, 0.1428]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.7569, 0.5985, 0.1427, ..., 0.6714, 0.1732, 0.3064]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 11.064192295074463 seconds + +[20.72, 20.52, 20.56, 20.48, 20.48, 20.52, 20.56, 20.6, 20.36, 20.6] +[20.48, 20.52, 21.48, 23.4, 25.44, 29.64, 35.04, 38.48, 42.0, 43.12, 43.12, 43.84, 43.68, 43.32] +14.608686685562134 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 385, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 11.064192295074463, 'TIME_S_1KI': 28.738161805388216, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 468.0283072185517, 'W': 32.037671646494225} +[20.72, 20.52, 20.56, 20.48, 20.48, 20.52, 20.56, 20.6, 20.36, 20.6, 20.84, 20.8, 21.0, 21.24, 21.16, 21.08, 21.28, 20.92, 20.84, 20.88] +373.91999999999996 +18.695999999999998 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 385, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 11.064192295074463, 'TIME_S_1KI': 28.738161805388216, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 468.0283072185517, 'W': 32.037671646494225, 'J_1KI': 1215.657940827407, 'W_1KI': 83.21473154933565, 'W_D': 13.341671646494227, 'J_D': 194.90430094528205, 'W_D_1KI': 34.65369258829669, 'J_D_1KI': 90.00959113843297} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.01.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.01.json index cc8d9c0..3c1f90f 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.01.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.01.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 324.79648518562317, "TIME_S_1KI": 324.79648518562317, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 11877.425473241823, "W": 35.646067141867775, "J_1KI": 11877.425473241823, "W_1KI": 35.646067141867775, "W_D": 16.970067141867776, "J_D": 5654.50059192373, "W_D_1KI": 16.970067141867776, "J_D_1KI": 16.970067141867776} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 32.80737018585205, "TIME_S_1KI": 328.0737018585205, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1398.267660713196, "W": 32.405416577679354, "J_1KI": 13982.676607131958, "W_1KI": 324.0541657767935, "W_D": 13.697416577679352, "J_D": 591.0325080986024, "W_D_1KI": 136.97416577679354, "J_D_1KI": 1369.7416577679353} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.01.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.01.output index b2a5634..0d92e6b 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.01.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.01.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 0.01 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 324.79648518562317} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 50000 -sd 0.01 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 32.80737018585205} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 495, 976, ..., 24999061, - 24999546, 25000000]), - col_indices=tensor([ 151, 490, 496, ..., 49361, 49363, 49505]), - values=tensor([0.8177, 0.6830, 0.3837, ..., 0.7178, 0.0658, 0.9045]), +tensor(crow_indices=tensor([ 0, 489, 963, ..., 24999055, + 24999529, 25000000]), + col_indices=tensor([ 18, 157, 241, ..., 49747, 49771, 49960]), + values=tensor([0.7706, 0.7949, 0.9210, ..., 0.0962, 0.6322, 0.0053]), size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) -tensor([0.7632, 0.2578, 0.8207, ..., 0.6267, 0.5426, 0.4264]) +tensor([0.2729, 0.2896, 0.6966, ..., 0.6831, 0.4086, 0.6520]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -16,16 +16,16 @@ Rows: 50000 Size: 2500000000 NNZ: 25000000 Density: 0.01 -Time: 324.79648518562317 seconds +Time: 32.80737018585205 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 495, 976, ..., 24999061, - 24999546, 25000000]), - col_indices=tensor([ 151, 490, 496, ..., 49361, 49363, 49505]), - values=tensor([0.8177, 0.6830, 0.3837, ..., 0.7178, 0.0658, 0.9045]), +tensor(crow_indices=tensor([ 0, 489, 963, ..., 24999055, + 24999529, 25000000]), + col_indices=tensor([ 18, 157, 241, ..., 49747, 49771, 49960]), + values=tensor([0.7706, 0.7949, 0.9210, ..., 0.0962, 0.6322, 0.0053]), size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) -tensor([0.7632, 0.2578, 0.8207, ..., 0.6267, 0.5426, 0.4264]) +tensor([0.2729, 0.2896, 0.6966, ..., 0.6831, 0.4086, 0.6520]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -33,13 +33,13 @@ Rows: 50000 Size: 2500000000 NNZ: 25000000 Density: 0.01 -Time: 324.79648518562317 seconds +Time: 32.80737018585205 seconds -[20.76, 20.6, 20.88, 20.96, 20.84, 20.88, 20.88, 20.68, 20.8, 20.88] -[21.16, 21.04, 21.12, 26.2, 28.16, 29.12, 31.64, 29.84, 30.96, 30.96, 31.32, 31.32, 31.52, 31.84, 31.92, 33.6, 35.32, 36.84, 37.0, 36.88, 36.84, 36.12, 36.76, 36.76, 36.4, 37.24, 37.32, 37.12, 37.84, 37.0, 37.76, 37.32, 37.0, 35.96, 36.28, 35.4, 35.8, 36.36, 37.12, 37.12, 38.8, 38.96, 38.72, 38.44, 37.4, 38.36, 38.0, 38.04, 37.84, 37.56, 36.92, 36.92, 36.84, 36.48, 36.64, 36.64, 36.52, 35.64, 36.12, 36.84, 37.56, 37.52, 38.6, 37.96, 37.32, 37.44, 36.76, 37.36, 37.44, 37.76, 37.8, 37.8, 38.68, 38.12, 37.96, 37.72, 37.88, 37.92, 37.84, 36.92, 36.6, 36.4, 36.48, 36.4, 37.2, 37.04, 37.16, 36.8, 36.8, 36.72, 37.72, 38.0, 37.96, 37.76, 37.08, 37.48, 36.64, 36.8, 36.88, 37.2, 37.24, 37.44, 37.48, 38.04, 38.04, 38.16, 38.68, 37.96, 38.24, 37.16, 36.68, 36.84, 36.88, 37.16, 37.76, 37.92, 37.76, 37.56, 36.52, 36.0, 37.0, 36.44, 36.36, 36.68, 37.08, 37.4, 37.24, 37.32, 36.6, 36.2, 37.16, 37.32, 37.6, 37.6, 37.6, 37.56, 37.56, 37.24, 36.48, 36.28, 36.48, 36.64, 37.68, 38.24, 37.72, 37.64, 38.24, 37.6, 37.0, 37.0, 36.88, 36.88, 37.28, 38.48, 39.08, 38.28, 38.04, 37.48, 36.64, 36.72, 36.84, 36.84, 37.2, 37.36, 37.76, 37.96, 38.24, 37.88, 37.88, 37.12, 37.6, 36.76, 37.52, 37.68, 36.76, 37.72, 37.48, 38.04, 37.88, 37.6, 37.56, 36.96, 37.0, 37.0, 37.92, 37.08, 37.44, 36.8, 36.84, 36.08, 36.52, 36.48, 36.56, 36.84, 37.2, 37.36, 36.52, 37.0, 36.12, 36.12, 37.0, 36.68, 36.88, 37.56, 37.72, 38.36, 38.2, 38.48, 38.72, 38.36, 38.28, 37.96, 37.76, 36.36, 37.0, 36.48, 36.52, 36.52, 37.16, 36.6, 36.52, 36.6, 37.52, 37.12, 37.8, 37.88, 37.04, 36.64, 36.44, 36.04, 36.32, 37.68, 37.88, 37.88, 38.04, 38.04, 37.68, 37.92, 37.96, 36.92, 37.64, 36.4, 36.32, 36.4, 36.32, 36.2, 37.04, 37.16, 37.68, 37.64, 37.64, 38.12, 38.04, 37.64, 37.24, 36.56, 36.48, 37.28, 36.6, 36.44, 37.08, 37.08, 36.56, 37.48, 38.08, 37.2, 37.2, 36.96, 36.72, 36.64, 36.24, 37.32, 37.96, 38.2, 38.28, 38.36, 38.36, 37.88, 38.36, 37.64, 36.88, 36.88, 37.2, 36.4, 36.52, 37.2, 37.52, 37.44, 36.8, 37.48, 36.92, 37.32, 38.0, 37.76, 36.72, 37.84, 37.64, 37.64, 38.32, 38.32, 37.88, 38.16, 38.24, 37.64, 37.76, 37.12, 37.04, 36.24, 36.68, 36.4, 36.6, 36.6, 36.64, 37.16, 38.08, 37.28, 37.28, 37.24, 36.52, 36.4, 36.88, 36.2, 36.92] -333.20437359809875 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 324.79648518562317, 'TIME_S_1KI': 324.79648518562317, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 11877.425473241823, 'W': 35.646067141867775} -[20.76, 20.6, 20.88, 20.96, 20.84, 20.88, 20.88, 20.68, 20.8, 20.88, 20.44, 20.44, 20.64, 20.68, 20.68, 20.68, 20.68, 20.84, 20.88, 20.88] -373.52 -18.676 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 324.79648518562317, 'TIME_S_1KI': 324.79648518562317, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 11877.425473241823, 'W': 35.646067141867775, 'J_1KI': 11877.425473241823, 'W_1KI': 35.646067141867775, 'W_D': 16.970067141867776, 'J_D': 5654.50059192373, 'W_D_1KI': 16.970067141867776, 'J_D_1KI': 16.970067141867776} +[20.96, 20.68, 20.68, 20.68, 20.72, 20.64, 20.64, 20.76, 20.84, 20.92] +[20.92, 20.84, 21.32, 22.6, 25.12, 26.44, 26.44, 28.96, 28.92, 32.68, 31.76, 31.16, 31.4, 31.52, 32.12, 34.6, 36.28, 37.8, 37.28, 37.56, 37.96, 37.96, 38.28, 38.36, 37.96, 37.32, 36.48, 36.68, 36.84, 37.44, 37.44, 37.76, 38.0, 39.0, 37.68, 36.84, 37.4, 37.4, 36.8, 37.32, 37.6, 37.72] +43.14919567108154 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 32.80737018585205, 'TIME_S_1KI': 328.0737018585205, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1398.267660713196, 'W': 32.405416577679354} +[20.96, 20.68, 20.68, 20.68, 20.72, 20.64, 20.64, 20.76, 20.84, 20.92, 21.04, 20.84, 20.72, 20.68, 20.72, 20.6, 20.92, 21.2, 20.96, 20.84] +374.16 +18.708000000000002 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 32.80737018585205, 'TIME_S_1KI': 328.0737018585205, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1398.267660713196, 'W': 32.405416577679354, 'J_1KI': 13982.676607131958, 'W_1KI': 324.0541657767935, 'W_D': 13.697416577679352, 'J_D': 591.0325080986024, 'W_D_1KI': 136.97416577679354, 'J_D_1KI': 1369.7416577679353} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_1e-05.json index 719c8cd..a4de095 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_1e-05.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_1e-05.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 20098, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.650188207626343, "TIME_S_1KI": 0.5299128374776765, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 402.8303679275513, "W": 27.52967890413959, "J_1KI": 20.04330619601708, "W_1KI": 1.3697720621026763, "W_D": 12.350678904139592, "J_D": 180.72235947370535, "W_D_1KI": 0.6145227835674988, "J_D_1KI": 0.030576315233729664} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 19951, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.462696075439453, "TIME_S_1KI": 0.5244196318700542, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 488.71538955688476, "W": 33.3802333465878, "J_1KI": 24.49578414900931, "W_1KI": 1.6731107887618566, "W_D": 15.011233346587801, "J_D": 219.77739569807053, "W_D_1KI": 0.752405059725718, "J_D_1KI": 0.03771264897627778} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_1e-05.output index b0c7cd1..06a37e6 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_1e-05.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_1e-05.output @@ -1,13 +1,13 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 1e-05 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.648245096206665} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 50000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.05949115753173828} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 24997, 24999, 25000]), - col_indices=tensor([ 889, 16856, 49649, ..., 20622, 24354, 47394]), - values=tensor([0.8512, 0.0995, 0.9072, ..., 0.9114, 0.3857, 0.4483]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 24998, 24999, 25000]), + col_indices=tensor([35821, 49411, 3789, ..., 32092, 27347, 39445]), + values=tensor([0.1439, 0.1701, 0.0383, ..., 0.6521, 0.3755, 0.5678]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.8531, 0.5584, 0.8209, ..., 0.8853, 0.7506, 0.6837]) +tensor([0.8709, 0.6173, 0.3475, ..., 0.7020, 0.1451, 0.7453]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -15,18 +15,18 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 0.648245096206665 seconds +Time: 0.05949115753173828 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 16197 -ss 50000 -sd 1e-05 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 8.461615800857544} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 17649 -ss 50000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.288093090057373} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 25000, 25000, 25000]), - col_indices=tensor([37259, 33129, 13575, ..., 31298, 24333, 9136]), - values=tensor([0.0302, 0.8728, 0.1875, ..., 0.5590, 0.6136, 0.6206]), +tensor(crow_indices=tensor([ 0, 0, 2, ..., 24999, 25000, 25000]), + col_indices=tensor([10903, 22613, 1325, ..., 4616, 25772, 38217]), + values=tensor([0.1548, 0.5404, 0.0562, ..., 0.6796, 0.5534, 0.6437]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.6191, 0.3887, 0.4199, ..., 0.2754, 0.8424, 0.8817]) +tensor([0.8066, 0.3465, 0.3699, ..., 0.5654, 0.2544, 0.1290]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -34,18 +34,18 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 8.461615800857544 seconds +Time: 9.288093090057373 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 20098 -ss 50000 -sd 1e-05 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.650188207626343} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 19951 -ss 50000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.462696075439453} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 24999, 25000, 25000]), - col_indices=tensor([ 35, 8013, 35741, ..., 26171, 43365, 6398]), - values=tensor([0.7135, 0.5997, 0.1893, ..., 0.8752, 0.2236, 0.9882]), +tensor(crow_indices=tensor([ 0, 1, 2, ..., 24997, 24998, 25000]), + col_indices=tensor([36526, 27522, 9271, ..., 28337, 20494, 41611]), + values=tensor([0.2838, 0.5711, 0.3512, ..., 0.1758, 0.7475, 0.3339]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.7523, 0.4685, 0.7648, ..., 0.0829, 0.9708, 0.7467]) +tensor([0.9803, 0.0496, 0.4924, ..., 0.5397, 0.0486, 0.3592]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -53,15 +53,15 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 10.650188207626343 seconds +Time: 10.462696075439453 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 24999, 25000, 25000]), - col_indices=tensor([ 35, 8013, 35741, ..., 26171, 43365, 6398]), - values=tensor([0.7135, 0.5997, 0.1893, ..., 0.8752, 0.2236, 0.9882]), +tensor(crow_indices=tensor([ 0, 1, 2, ..., 24997, 24998, 25000]), + col_indices=tensor([36526, 27522, 9271, ..., 28337, 20494, 41611]), + values=tensor([0.2838, 0.5711, 0.3512, ..., 0.1758, 0.7475, 0.3339]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.7523, 0.4685, 0.7648, ..., 0.0829, 0.9708, 0.7467]) +tensor([0.9803, 0.0496, 0.4924, ..., 0.5397, 0.0486, 0.3592]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -69,13 +69,13 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 10.650188207626343 seconds +Time: 10.462696075439453 seconds -[16.64, 16.56, 16.56, 16.96, 17.08, 17.16, 16.88, 16.96, 16.48, 16.36] -[16.44, 16.44, 16.68, 18.12, 19.04, 22.72, 28.64, 33.16, 36.92, 39.76, 39.32, 39.28, 39.68, 39.6] -14.632585048675537 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 20098, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.650188207626343, 'TIME_S_1KI': 0.5299128374776765, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 402.8303679275513, 'W': 27.52967890413959} -[16.64, 16.56, 16.56, 16.96, 17.08, 17.16, 16.88, 16.96, 16.48, 16.36, 17.12, 16.92, 16.68, 16.88, 16.76, 16.8, 16.8, 17.12, 17.32, 17.2] -303.58 -15.178999999999998 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 20098, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.650188207626343, 'TIME_S_1KI': 0.5299128374776765, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 402.8303679275513, 'W': 27.52967890413959, 'J_1KI': 20.04330619601708, 'W_1KI': 1.3697720621026763, 'W_D': 12.350678904139592, 'J_D': 180.72235947370535, 'W_D_1KI': 0.6145227835674988, 'J_D_1KI': 0.030576315233729664} +[20.44, 20.56, 20.6, 20.64, 20.64, 20.44, 20.44, 20.44, 20.4, 20.56] +[20.44, 20.64, 23.28, 24.2, 26.6, 32.52, 37.24, 40.44, 44.28, 44.96, 44.96, 44.92, 44.44, 43.84] +14.640861988067627 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 19951, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.462696075439453, 'TIME_S_1KI': 0.5244196318700542, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 488.71538955688476, 'W': 33.3802333465878} +[20.44, 20.56, 20.6, 20.64, 20.64, 20.44, 20.44, 20.44, 20.4, 20.56, 20.32, 20.32, 20.12, 20.24, 20.32, 20.56, 20.52, 20.28, 20.2, 20.0] +367.38 +18.369 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 19951, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.462696075439453, 'TIME_S_1KI': 0.5244196318700542, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 488.71538955688476, 'W': 33.3802333465878, 'J_1KI': 24.49578414900931, 'W_1KI': 1.6731107887618566, 'W_D': 15.011233346587801, 'J_D': 219.77739569807053, 'W_D_1KI': 0.752405059725718, 'J_D_1KI': 0.03771264897627778} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_5e-05.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_5e-05.json index f5cb3fd..cff7542 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_5e-05.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_5e-05.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 6265, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.399809837341309, "TIME_S_1KI": 1.6599856085141753, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 409.2376235961914, "W": 30.158092261325162, "J_1KI": 65.32124877832264, "W_1KI": 4.813741781536339, "W_D": 11.570092261325161, "J_D": 157.0032023506164, "W_D_1KI": 1.846782483850784, "J_D_1KI": 0.2947777308620565} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 6322, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.657772779464722, "TIME_S_1KI": 1.68582296416715, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 425.8721401214599, "W": 31.344652680689325, "J_1KI": 67.3635147297469, "W_1KI": 4.958027946961298, "W_D": 12.573652680689325, "J_D": 170.83514789009087, "W_D_1KI": 1.9888726163697126, "J_D_1KI": 0.31459547870447846} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_5e-05.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_5e-05.output index 80257e9..57f8461 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_5e-05.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_5e-05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 5e-05 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 1.6757559776306152} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 50000 -sd 5e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.3423471450805664} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 4, ..., 124996, 124997, +tensor(crow_indices=tensor([ 0, 4, 7, ..., 124998, 124999, 125000]), - col_indices=tensor([11324, 36531, 41582, ..., 26561, 37075, 42675]), - values=tensor([0.0907, 0.5500, 0.9495, ..., 0.7742, 0.3202, 0.5187]), + col_indices=tensor([ 303, 26221, 28347, ..., 8622, 14261, 4291]), + values=tensor([0.9240, 0.5223, 0.0365, ..., 0.6044, 0.0072, 0.5479]), size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) -tensor([0.4295, 0.8994, 0.1269, ..., 0.0289, 0.7051, 0.4729]) +tensor([0.1523, 0.9417, 0.1754, ..., 0.6908, 0.2427, 0.5501]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -16,19 +16,19 @@ Rows: 50000 Size: 2500000000 NNZ: 125000 Density: 5e-05 -Time: 1.6757559776306152 seconds +Time: 0.3423471450805664 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 6265 -ss 50000 -sd 5e-05 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.399809837341309} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 3067 -ss 50000 -sd 5e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 5.0935986042022705} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 6, ..., 124998, 125000, +tensor(crow_indices=tensor([ 0, 1, 3, ..., 124997, 125000, 125000]), - col_indices=tensor([ 5059, 34750, 35724, ..., 34703, 6591, 31118]), - values=tensor([0.4217, 0.1867, 0.1593, ..., 0.5339, 0.2274, 0.5888]), + col_indices=tensor([ 1194, 5034, 6320, ..., 11179, 21504, 33093]), + values=tensor([0.7209, 0.3055, 0.4482, ..., 0.3076, 0.8643, 0.0918]), size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) -tensor([0.7798, 0.1756, 0.8709, ..., 0.5047, 0.8577, 0.3016]) +tensor([0.9680, 0.6265, 0.9723, ..., 0.1304, 0.1284, 0.7215]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -36,16 +36,19 @@ Rows: 50000 Size: 2500000000 NNZ: 125000 Density: 5e-05 -Time: 10.399809837341309 seconds +Time: 5.0935986042022705 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 6322 -ss 50000 -sd 5e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.657772779464722} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 6, ..., 124998, 125000, +tensor(crow_indices=tensor([ 0, 1, 2, ..., 124992, 124996, 125000]), - col_indices=tensor([ 5059, 34750, 35724, ..., 34703, 6591, 31118]), - values=tensor([0.4217, 0.1867, 0.1593, ..., 0.5339, 0.2274, 0.5888]), + col_indices=tensor([41720, 5446, 23409, ..., 23991, 37197, 42632]), + values=tensor([0.7857, 0.2010, 0.0929, ..., 0.8446, 0.3352, 0.3559]), size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) -tensor([0.7798, 0.1756, 0.8709, ..., 0.5047, 0.8577, 0.3016]) +tensor([0.5851, 0.1828, 0.1733, ..., 0.7326, 0.4663, 0.8685]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -53,13 +56,30 @@ Rows: 50000 Size: 2500000000 NNZ: 125000 Density: 5e-05 -Time: 10.399809837341309 seconds +Time: 10.657772779464722 seconds -[20.92, 20.84, 20.96, 20.84, 20.68, 20.64, 20.84, 20.76, 20.84, 21.08] -[21.08, 21.16, 21.84, 21.84, 23.04, 26.04, 31.36, 35.8, 40.08, 43.12, 43.68, 43.84, 43.84] -13.569745063781738 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 6265, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.399809837341309, 'TIME_S_1KI': 1.6599856085141753, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 409.2376235961914, 'W': 30.158092261325162} -[20.92, 20.84, 20.96, 20.84, 20.68, 20.64, 20.84, 20.76, 20.84, 21.08, 20.04, 19.96, 20.16, 20.28, 20.56, 20.88, 20.76, 20.68, 20.68, 20.76] -371.76000000000005 -18.588 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 6265, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.399809837341309, 'TIME_S_1KI': 1.6599856085141753, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 409.2376235961914, 'W': 30.158092261325162, 'J_1KI': 65.32124877832264, 'W_1KI': 4.813741781536339, 'W_D': 11.570092261325161, 'J_D': 157.0032023506164, 'W_D_1KI': 1.846782483850784, 'J_D_1KI': 0.2947777308620565} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 124992, 124996, + 125000]), + col_indices=tensor([41720, 5446, 23409, ..., 23991, 37197, 42632]), + values=tensor([0.7857, 0.2010, 0.0929, ..., 0.8446, 0.3352, 0.3559]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.5851, 0.1828, 0.1733, ..., 0.7326, 0.4663, 0.8685]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 10.657772779464722 seconds + +[20.44, 20.32, 20.44, 20.56, 20.76, 20.84, 20.88, 21.04, 21.08, 21.08] +[21.08, 20.88, 20.92, 24.6, 25.64, 31.32, 35.8, 37.92, 41.28, 43.2, 43.12, 43.4, 43.48] +13.586755752563477 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 6322, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.657772779464722, 'TIME_S_1KI': 1.68582296416715, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 425.8721401214599, 'W': 31.344652680689325} +[20.44, 20.32, 20.44, 20.56, 20.76, 20.84, 20.88, 21.04, 21.08, 21.08, 20.84, 20.88, 20.84, 20.72, 20.96, 20.96, 21.08, 21.16, 21.2, 21.04] +375.42 +18.771 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 6322, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.657772779464722, 'TIME_S_1KI': 1.68582296416715, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 425.8721401214599, 'W': 31.344652680689325, 'J_1KI': 67.3635147297469, 'W_1KI': 4.958027946961298, 'W_D': 12.573652680689325, 'J_D': 170.83514789009087, 'W_D_1KI': 1.9888726163697126, 'J_D_1KI': 0.31459547870447846} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.0001.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.0001.json index c3c7f57..3609346 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.0001.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.0001.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 96690, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.663233041763306, "TIME_S_1KI": 0.11028268736956569, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 262.53495136260995, "W": 18.48739374467239, "J_1KI": 2.7152234084456506, "W_1KI": 0.19120274841940624, "W_D": 3.6973937446723912, "J_D": 52.505783147812, "W_D_1KI": 0.038239670541652615, "J_D_1KI": 0.0003954873362462779} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 98325, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.519834756851196, "TIME_S_1KI": 0.10699043739487614, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 316.21768825531, "W": 22.200046075478067, "J_1KI": 3.216045647142741, "W_1KI": 0.22578231452304162, "W_D": 3.72304607547807, "J_D": 53.03110719919203, "W_D_1KI": 0.03786469438574187, "J_D_1KI": 0.0003850973240350051} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.0001.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.0001.output index 61cae4f..555507d 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.0001.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.0001.output @@ -1,32 +1,13 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.0001 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.11520600318908691} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 2498, 2498, 2500]), - col_indices=tensor([4712, 1560, 1507, ..., 2651, 244, 3781]), - values=tensor([0.1646, 0.3564, 0.3355, ..., 0.5785, 0.6935, 0.4198]), - size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.6842, 0.2217, 0.0992, ..., 0.1824, 0.3701, 0.4149]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([5000, 5000]) -Rows: 5000 -Size: 25000000 -NNZ: 2500 -Density: 0.0001 -Time: 0.11520600318908691 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 91141 -ss 5000 -sd 0.0001 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.897401094436646} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.018892765045166016} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 2499, 2500, 2500]), - col_indices=tensor([1451, 2006, 3586, ..., 3975, 4446, 2086]), - values=tensor([0.6609, 0.8356, 0.1353, ..., 0.7408, 0.3224, 0.8471]), + col_indices=tensor([3456, 1605, 749, ..., 2516, 837, 4620]), + values=tensor([0.8429, 0.4221, 0.2092, ..., 0.3256, 0.3578, 0.9398]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.2892, 0.1223, 0.3419, ..., 0.7884, 0.7802, 0.0113]) +tensor([0.1595, 0.2560, 0.8545, ..., 0.4673, 0.4412, 0.6412]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -34,18 +15,19 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 9.897401094436646 seconds +Time: 0.018892765045166016 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 96690 -ss 5000 -sd 0.0001 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.663233041763306} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 55576 -ss 5000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 5.934850692749023} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 2, ..., 2499, 2499, 2500]), - col_indices=tensor([2205, 2444, 2425, ..., 3761, 2544, 2990]), - values=tensor([0.2656, 0.9114, 0.3983, ..., 0.8675, 0.7517, 0.7885]), - size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.1659, 0.6941, 0.7553, ..., 0.7483, 0.8019, 0.7277]) +tensor(crow_indices=tensor([ 0, 2, 2, ..., 2499, 2500, 2500]), + col_indices=tensor([2304, 3497, 2599, ..., 3517, 2336, 3180]), + values=tensor([7.9793e-01, 1.3489e-04, 7.1193e-01, ..., + 7.4115e-01, 8.0632e-01, 9.8789e-03]), size=(5000, 5000), + nnz=2500, layout=torch.sparse_csr) +tensor([0.4232, 0.5545, 0.0889, ..., 0.2237, 0.6245, 0.5041]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,15 +35,18 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 10.663233041763306 seconds +Time: 5.934850692749023 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 98325 -ss 5000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.519834756851196} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 2, ..., 2499, 2499, 2500]), - col_indices=tensor([2205, 2444, 2425, ..., 3761, 2544, 2990]), - values=tensor([0.2656, 0.9114, 0.3983, ..., 0.8675, 0.7517, 0.7885]), +tensor(crow_indices=tensor([ 0, 1, 1, ..., 2500, 2500, 2500]), + col_indices=tensor([ 417, 1523, 4116, ..., 1599, 2107, 3220]), + values=tensor([0.7284, 0.4903, 0.1270, ..., 0.3684, 0.2323, 0.2388]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.1659, 0.6941, 0.7553, ..., 0.7483, 0.8019, 0.7277]) +tensor([0.8570, 0.2399, 0.2271, ..., 0.1785, 0.2270, 0.3588]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -69,13 +54,29 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 10.663233041763306 seconds +Time: 10.519834756851196 seconds -[16.32, 16.04, 16.32, 16.56, 16.56, 16.64, 16.96, 16.96, 16.76, 16.76] -[16.76, 16.88, 17.08, 18.96, 20.48, 21.96, 22.64, 22.36, 21.0, 19.8, 19.8, 19.6, 19.72, 19.8] -14.20075511932373 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 96690, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.663233041763306, 'TIME_S_1KI': 0.11028268736956569, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 262.53495136260995, 'W': 18.48739374467239} -[16.32, 16.04, 16.32, 16.56, 16.56, 16.64, 16.96, 16.96, 16.76, 16.76, 16.48, 16.4, 16.2, 16.28, 16.28, 16.12, 16.12, 16.28, 16.36, 16.36] -295.79999999999995 -14.789999999999997 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 96690, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.663233041763306, 'TIME_S_1KI': 0.11028268736956569, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 262.53495136260995, 'W': 18.48739374467239, 'J_1KI': 2.7152234084456506, 'W_1KI': 0.19120274841940624, 'W_D': 3.6973937446723912, 'J_D': 52.505783147812, 'W_D_1KI': 0.038239670541652615, 'J_D_1KI': 0.0003954873362462779} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 2500, 2500, 2500]), + col_indices=tensor([ 417, 1523, 4116, ..., 1599, 2107, 3220]), + values=tensor([0.7284, 0.4903, 0.1270, ..., 0.3684, 0.2323, 0.2388]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([0.8570, 0.2399, 0.2271, ..., 0.1785, 0.2270, 0.3588]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 10.519834756851196 seconds + +[20.24, 20.24, 20.16, 20.08, 20.32, 20.6, 20.6, 20.56, 20.52, 20.6] +[20.68, 20.8, 21.12, 22.88, 24.6, 25.72, 26.32, 26.12, 25.12, 25.12, 23.36, 23.52, 23.52, 23.76] +14.24401044845581 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 98325, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.519834756851196, 'TIME_S_1KI': 0.10699043739487614, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 316.21768825531, 'W': 22.200046075478067} +[20.24, 20.24, 20.16, 20.08, 20.32, 20.6, 20.6, 20.56, 20.52, 20.6, 20.68, 20.68, 20.72, 20.52, 20.44, 20.56, 20.8, 20.84, 20.76, 20.76] +369.53999999999996 +18.476999999999997 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 98325, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.519834756851196, 'TIME_S_1KI': 0.10699043739487614, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 316.21768825531, 'W': 22.200046075478067, 'J_1KI': 3.216045647142741, 'W_1KI': 0.22578231452304162, 'W_D': 3.72304607547807, 'J_D': 53.03110719919203, 'W_D_1KI': 0.03786469438574187, 'J_D_1KI': 0.0003850973240350051} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.001.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.001.json index 810fc32..2fa1f21 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.001.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.001.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 17852, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.54783010482788, "TIME_S_1KI": 0.5908486502816425, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 261.2027643966674, "W": 18.408959018952206, "J_1KI": 14.6315686979984, "W_1KI": 1.0311986902841253, "W_D": 3.4579590189522076, "J_D": 49.0646132674217, "W_D_1KI": 0.19370149109075777, "J_D_1KI": 0.010850408418707023} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 17780, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.605318784713745, "TIME_S_1KI": 0.5964746223123591, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 313.57909806251524, "W": 22.019197605482734, "J_1KI": 17.636619688555413, "W_1KI": 1.2384250621756319, "W_D": 3.4661976054827335, "J_D": 49.36270332407948, "W_D_1KI": 0.19494924665257218, "J_D_1KI": 0.010964524558637355} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.001.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.001.output index 5d5c1f0..8d3b43b 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.001.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.001.output @@ -1,13 +1,13 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.001 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.6220724582672119} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 0.001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.06766819953918457} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 4, ..., 24988, 24993, 25000]), - col_indices=tensor([2208, 3192, 3630, ..., 2657, 2751, 4682]), - values=tensor([0.3516, 0.9043, 0.4344, ..., 0.9354, 0.2858, 0.8708]), +tensor(crow_indices=tensor([ 0, 7, 15, ..., 24992, 24996, 25000]), + col_indices=tensor([ 734, 800, 1880, ..., 3125, 3280, 3794]), + values=tensor([0.0540, 0.4911, 0.3592, ..., 0.2590, 0.5736, 0.3057]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.1847, 0.5253, 0.6086, ..., 0.9552, 0.0514, 0.1920]) +tensor([0.9823, 0.9343, 0.9377, ..., 0.0786, 0.0908, 0.1511]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -15,18 +15,18 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 0.6220724582672119 seconds +Time: 0.06766819953918457 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 16879 -ss 5000 -sd 0.001 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 9.927400827407837} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 15516 -ss 5000 -sd 0.001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 9.162637948989868} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 7, 17, ..., 24988, 24992, 25000]), - col_indices=tensor([1765, 1880, 2380, ..., 3402, 4335, 4928]), - values=tensor([0.8113, 0.6065, 0.0419, ..., 0.8515, 0.2786, 0.9879]), +tensor(crow_indices=tensor([ 0, 8, 11, ..., 24988, 24995, 25000]), + col_indices=tensor([ 62, 227, 575, ..., 2337, 2631, 3700]), + values=tensor([0.5265, 0.4146, 0.5026, ..., 0.0706, 0.1241, 0.5991]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.6729, 0.2847, 0.7618, ..., 0.5837, 0.8359, 0.7138]) +tensor([0.6610, 0.4053, 0.0257, ..., 0.7779, 0.2973, 0.6422]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -34,18 +34,18 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 9.927400827407837 seconds +Time: 9.162637948989868 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 17852 -ss 5000 -sd 0.001 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.54783010482788} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 17780 -ss 5000 -sd 0.001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.605318784713745} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 5, 10, ..., 24988, 24991, 25000]), - col_indices=tensor([ 732, 2237, 2424, ..., 1459, 1662, 4133]), - values=tensor([0.5131, 0.9715, 0.7721, ..., 0.9714, 0.5730, 0.7149]), +tensor(crow_indices=tensor([ 0, 6, 8, ..., 24994, 24997, 25000]), + col_indices=tensor([ 423, 1662, 2124, ..., 288, 1379, 2658]), + values=tensor([0.1096, 0.1453, 0.3978, ..., 0.4089, 0.5724, 0.6122]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.7581, 0.5458, 0.9932, ..., 0.3205, 0.5744, 0.9847]) +tensor([0.2174, 0.6127, 0.5782, ..., 0.6057, 0.7055, 0.7233]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,15 +53,15 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 10.54783010482788 seconds +Time: 10.605318784713745 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 5, 10, ..., 24988, 24991, 25000]), - col_indices=tensor([ 732, 2237, 2424, ..., 1459, 1662, 4133]), - values=tensor([0.5131, 0.9715, 0.7721, ..., 0.9714, 0.5730, 0.7149]), +tensor(crow_indices=tensor([ 0, 6, 8, ..., 24994, 24997, 25000]), + col_indices=tensor([ 423, 1662, 2124, ..., 288, 1379, 2658]), + values=tensor([0.1096, 0.1453, 0.3978, ..., 0.4089, 0.5724, 0.6122]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.7581, 0.5458, 0.9932, ..., 0.3205, 0.5744, 0.9847]) +tensor([0.2174, 0.6127, 0.5782, ..., 0.6057, 0.7055, 0.7233]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -69,13 +69,13 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 10.54783010482788 seconds +Time: 10.605318784713745 seconds -[16.36, 16.36, 16.32, 16.6, 16.8, 17.04, 17.2, 17.08, 16.8, 16.52] -[16.48, 16.4, 17.36, 19.52, 19.52, 21.32, 21.84, 22.56, 21.0, 20.28, 19.68, 19.84, 19.92, 19.92] -14.188893795013428 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 17852, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.54783010482788, 'TIME_S_1KI': 0.5908486502816425, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 261.2027643966674, 'W': 18.408959018952206} -[16.36, 16.36, 16.32, 16.6, 16.8, 17.04, 17.2, 17.08, 16.8, 16.52, 16.4, 16.36, 16.32, 16.32, 16.76, 16.96, 16.72, 16.44, 16.2, 16.2] -299.02 -14.950999999999999 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 17852, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.54783010482788, 'TIME_S_1KI': 0.5908486502816425, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 261.2027643966674, 'W': 18.408959018952206, 'J_1KI': 14.6315686979984, 'W_1KI': 1.0311986902841253, 'W_D': 3.4579590189522076, 'J_D': 49.0646132674217, 'W_D_1KI': 0.19370149109075777, 'J_D_1KI': 0.010850408418707023} +[20.64, 20.56, 20.28, 20.4, 20.28, 20.28, 20.36, 20.44, 20.4, 20.4] +[20.64, 20.56, 20.76, 22.16, 23.52, 25.36, 26.08, 26.2, 25.48, 23.84, 23.92, 23.84, 23.84, 23.88] +14.24116826057434 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 17780, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.605318784713745, 'TIME_S_1KI': 0.5964746223123591, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 313.57909806251524, 'W': 22.019197605482734} +[20.64, 20.56, 20.28, 20.4, 20.28, 20.28, 20.36, 20.44, 20.4, 20.4, 20.84, 20.68, 20.92, 20.96, 20.88, 20.88, 21.0, 20.8, 20.68, 20.64] +371.06 +18.553 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 17780, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.605318784713745, 'TIME_S_1KI': 0.5964746223123591, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 313.57909806251524, 'W': 22.019197605482734, 'J_1KI': 17.636619688555413, 'W_1KI': 1.2384250621756319, 'W_D': 3.4661976054827335, 'J_D': 49.36270332407948, 'W_D_1KI': 0.19494924665257218, 'J_D_1KI': 0.010964524558637355} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.01.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.01.json index cca3281..84660f7 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.01.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.01.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1933, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.477078676223755, "TIME_S_1KI": 5.420113127896407, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 268.2967868804932, "W": 18.818848497168876, "J_1KI": 138.79813082281075, "W_1KI": 9.7355656995183, "W_D": 3.947848497168877, "J_D": 56.283734206199696, "W_D_1KI": 2.0423427300408057, "J_D_1KI": 1.0565663373206444} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1921, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.388477563858032, "TIME_S_1KI": 5.407848809920892, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 312.91259566307076, "W": 21.966357313024826, "J_1KI": 162.89047145396708, "W_1KI": 11.434855446655297, "W_D": 3.429357313024827, "J_D": 48.85148151707659, "W_D_1KI": 1.785193812089967, "J_D_1KI": 0.9293044310723411} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.01.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.01.output index 3224ea8..1a4afe9 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.01.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.01.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.01 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 5.431562900543213} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 0.01 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.593717098236084} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 36, 79, ..., 249900, 249941, +tensor(crow_indices=tensor([ 0, 39, 88, ..., 249897, 249951, 250000]), - col_indices=tensor([ 80, 388, 404, ..., 4737, 4807, 4857]), - values=tensor([0.4885, 0.5213, 0.1721, ..., 0.5810, 0.1625, 0.7107]), + col_indices=tensor([ 1, 41, 120, ..., 4868, 4902, 4963]), + values=tensor([0.6487, 0.6379, 0.3189, ..., 0.3941, 0.1960, 0.9453]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.1545, 0.4718, 0.9539, ..., 0.2261, 0.6017, 0.7355]) +tensor([0.9493, 0.7713, 0.4212, ..., 0.5345, 0.1694, 0.1229]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,19 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 5.431562900543213 seconds +Time: 0.593717098236084 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1933 -ss 5000 -sd 0.01 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.477078676223755} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1768 -ss 5000 -sd 0.01 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 9.65909719467163} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 40, 89, ..., 249917, 249964, +tensor(crow_indices=tensor([ 0, 53, 105, ..., 249907, 249948, 250000]), - col_indices=tensor([ 165, 177, 195, ..., 4656, 4719, 4927]), - values=tensor([0.2100, 0.9405, 0.2582, ..., 0.7931, 0.5258, 0.8197]), + col_indices=tensor([ 103, 261, 471, ..., 4857, 4933, 4959]), + values=tensor([0.8889, 0.3073, 0.1638, ..., 0.6109, 0.3049, 0.0052]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.9173, 0.2185, 0.4076, ..., 0.3362, 0.1795, 0.2923]) +tensor([0.5335, 0.0728, 0.9615, ..., 0.8926, 0.1348, 0.8188]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -36,16 +36,19 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 10.477078676223755 seconds +Time: 9.65909719467163 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1921 -ss 5000 -sd 0.01 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.388477563858032} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 40, 89, ..., 249917, 249964, +tensor(crow_indices=tensor([ 0, 65, 98, ..., 249897, 249948, 250000]), - col_indices=tensor([ 165, 177, 195, ..., 4656, 4719, 4927]), - values=tensor([0.2100, 0.9405, 0.2582, ..., 0.7931, 0.5258, 0.8197]), + col_indices=tensor([ 141, 179, 219, ..., 4719, 4923, 4985]), + values=tensor([0.6589, 0.9882, 0.9555, ..., 0.3007, 0.0365, 0.3378]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.9173, 0.2185, 0.4076, ..., 0.3362, 0.1795, 0.2923]) +tensor([0.9859, 0.3282, 0.7924, ..., 0.6550, 0.5905, 0.4141]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,13 +56,30 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 10.477078676223755 seconds +Time: 10.388477563858032 seconds -[17.04, 17.04, 16.96, 17.04, 16.64, 16.4, 16.44, 16.32, 16.24, 16.36] -[16.44, 16.52, 17.76, 19.52, 21.52, 21.52, 22.36, 22.76, 21.68, 21.36, 19.84, 20.04, 20.0, 20.08] -14.25681209564209 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1933, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.477078676223755, 'TIME_S_1KI': 5.420113127896407, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 268.2967868804932, 'W': 18.818848497168876} -[17.04, 17.04, 16.96, 17.04, 16.64, 16.4, 16.44, 16.32, 16.24, 16.36, 16.4, 16.24, 16.32, 16.36, 16.36, 16.48, 16.68, 16.56, 16.4, 16.08] -297.41999999999996 -14.870999999999999 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1933, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.477078676223755, 'TIME_S_1KI': 5.420113127896407, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 268.2967868804932, 'W': 18.818848497168876, 'J_1KI': 138.79813082281075, 'W_1KI': 9.7355656995183, 'W_D': 3.947848497168877, 'J_D': 56.283734206199696, 'W_D_1KI': 2.0423427300408057, 'J_D_1KI': 1.0565663373206444} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 65, 98, ..., 249897, 249948, + 250000]), + col_indices=tensor([ 141, 179, 219, ..., 4719, 4923, 4985]), + values=tensor([0.6589, 0.9882, 0.9555, ..., 0.3007, 0.0365, 0.3378]), + size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) +tensor([0.9859, 0.3282, 0.7924, ..., 0.6550, 0.5905, 0.4141]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250000 +Density: 0.01 +Time: 10.388477563858032 seconds + +[21.12, 20.84, 20.6, 20.44, 20.44, 20.44, 20.52, 20.52, 20.6, 20.96] +[20.8, 20.8, 20.76, 21.68, 22.28, 24.84, 25.84, 26.2, 25.88, 24.96, 23.84, 23.92, 23.72, 23.88] +14.245083570480347 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1921, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.388477563858032, 'TIME_S_1KI': 5.407848809920892, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 312.91259566307076, 'W': 21.966357313024826} +[21.12, 20.84, 20.6, 20.44, 20.44, 20.44, 20.52, 20.52, 20.6, 20.96, 20.44, 20.44, 20.44, 20.48, 20.56, 20.68, 20.68, 20.56, 20.84, 20.8] +370.74 +18.537 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1921, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.388477563858032, 'TIME_S_1KI': 5.407848809920892, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 312.91259566307076, 'W': 21.966357313024826, 'J_1KI': 162.89047145396708, 'W_1KI': 11.434855446655297, 'W_D': 3.429357313024827, 'J_D': 48.85148151707659, 'W_D_1KI': 1.785193812089967, 'J_D_1KI': 0.9293044310723411} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.05.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.05.json index 8f974e7..50afdc0 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.05.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.05.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 26.830852508544922, "TIME_S_1KI": 26.830852508544922, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 724.3529372215271, "W": 23.831275335163394, "J_1KI": 724.3529372215271, "W_1KI": 23.831275335163394, "W_D": 5.2862753351633955, "J_D": 160.67663237214092, "W_D_1KI": 5.2862753351633955, "J_D_1KI": 5.2862753351633955} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 396, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.481398582458496, "TIME_S_1KI": 26.468178238531554, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 323.34643746376037, "W": 22.685982650996596, "J_1KI": 816.5314077367685, "W_1KI": 57.28783497726413, "W_D": 4.214982650996596, "J_D": 60.07672866272925, "W_D_1KI": 10.643895583324738, "J_D_1KI": 26.878524200314995} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.05.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.05.output index e6b75ff..07e41de 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.05.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.05 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 26.830852508544922} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 0.05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 2.6507530212402344} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 229, 490, ..., 1249494, - 1249740, 1250000]), - col_indices=tensor([ 18, 28, 58, ..., 4928, 4934, 4938]), - values=tensor([0.5574, 0.5312, 0.0435, ..., 0.2785, 0.4540, 0.5116]), +tensor(crow_indices=tensor([ 0, 267, 531, ..., 1249531, + 1249748, 1250000]), + col_indices=tensor([ 12, 24, 45, ..., 4958, 4983, 4986]), + values=tensor([0.7384, 0.2434, 0.0755, ..., 0.4736, 0.1384, 0.4678]), size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.0667, 0.4882, 0.3630, ..., 0.8923, 0.8020, 0.4280]) +tensor([0.2921, 0.5624, 0.4015, ..., 0.8005, 0.9400, 0.6114]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,16 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 1250000 Density: 0.05 -Time: 26.830852508544922 seconds +Time: 2.6507530212402344 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 396 -ss 5000 -sd 0.05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.481398582458496} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 229, 490, ..., 1249494, - 1249740, 1250000]), - col_indices=tensor([ 18, 28, 58, ..., 4928, 4934, 4938]), - values=tensor([0.5574, 0.5312, 0.0435, ..., 0.2785, 0.4540, 0.5116]), +tensor(crow_indices=tensor([ 0, 247, 505, ..., 1249488, + 1249757, 1250000]), + col_indices=tensor([ 27, 35, 41, ..., 4930, 4938, 4952]), + values=tensor([0.8294, 0.9821, 0.6691, ..., 0.3905, 0.4873, 0.1672]), size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.0667, 0.4882, 0.3630, ..., 0.8923, 0.8020, 0.4280]) +tensor([0.8352, 0.4457, 0.1150, ..., 0.9988, 0.2164, 0.9018]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -33,13 +36,30 @@ Rows: 5000 Size: 25000000 NNZ: 1250000 Density: 0.05 -Time: 26.830852508544922 seconds +Time: 10.481398582458496 seconds -[20.52, 20.64, 20.8, 20.76, 20.84, 20.84, 20.8, 20.88, 20.8, 20.88] -[20.64, 20.72, 20.92, 24.36, 26.68, 28.84, 29.6, 27.08, 27.08, 26.84, 23.8, 24.0, 24.32, 24.44, 24.48, 24.52, 24.36, 24.12, 24.24, 24.2, 24.2, 24.28, 24.28, 24.28, 24.2, 24.28, 24.16, 24.12, 24.08, 24.08] -30.395055532455444 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 26.830852508544922, 'TIME_S_1KI': 26.830852508544922, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 724.3529372215271, 'W': 23.831275335163394} -[20.52, 20.64, 20.8, 20.76, 20.84, 20.84, 20.8, 20.88, 20.8, 20.88, 20.44, 20.56, 20.56, 20.6, 20.6, 20.48, 20.32, 20.2, 20.2, 20.2] -370.9 -18.544999999999998 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 26.830852508544922, 'TIME_S_1KI': 26.830852508544922, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 724.3529372215271, 'W': 23.831275335163394, 'J_1KI': 724.3529372215271, 'W_1KI': 23.831275335163394, 'W_D': 5.2862753351633955, 'J_D': 160.67663237214092, 'W_D_1KI': 5.2862753351633955, 'J_D_1KI': 5.2862753351633955} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 247, 505, ..., 1249488, + 1249757, 1250000]), + col_indices=tensor([ 27, 35, 41, ..., 4930, 4938, 4952]), + values=tensor([0.8294, 0.9821, 0.6691, ..., 0.3905, 0.4873, 0.1672]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.8352, 0.4457, 0.1150, ..., 0.9988, 0.2164, 0.9018]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 10.481398582458496 seconds + +[20.72, 20.84, 20.92, 20.68, 20.6, 20.44, 20.48, 20.24, 20.44, 20.24] +[20.24, 20.52, 20.72, 22.36, 24.28, 26.72, 27.0, 27.56, 26.28, 25.88, 24.68, 24.52, 24.36, 24.36] +14.253137826919556 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 396, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.481398582458496, 'TIME_S_1KI': 26.468178238531554, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 323.34643746376037, 'W': 22.685982650996596} +[20.72, 20.84, 20.92, 20.68, 20.6, 20.44, 20.48, 20.24, 20.44, 20.24, 20.24, 20.24, 20.36, 20.48, 20.48, 20.6, 20.68, 20.64, 20.4, 20.6] +369.42 +18.471 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 396, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.481398582458496, 'TIME_S_1KI': 26.468178238531554, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 323.34643746376037, 'W': 22.685982650996596, 'J_1KI': 816.5314077367685, 'W_1KI': 57.28783497726413, 'W_D': 4.214982650996596, 'J_D': 60.07672866272925, 'W_D_1KI': 10.643895583324738, 'J_D_1KI': 26.878524200314995} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.1.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.1.json index db59bda..721e6aa 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.1.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.1.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 52.60684037208557, "TIME_S_1KI": 52.60684037208557, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1396.747187700272, "W": 24.19749919495284, "J_1KI": 1396.747187700272, "W_1KI": 24.19749919495284, "W_D": 5.574499194952839, "J_D": 321.77565171742464, "W_D_1KI": 5.574499194952839, "J_D_1KI": 5.574499194952839} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 199, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.477930784225464, "TIME_S_1KI": 52.6529185136958, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 366.7794834327698, "W": 23.985504753820422, "J_1KI": 1843.11298207422, "W_1KI": 120.53017464231368, "W_D": 5.225504753820424, "J_D": 79.90692520141607, "W_D_1KI": 26.25881785839409, "J_D_1KI": 131.95385858489493} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.1.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.1.output index 919a009..a6a4a54 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.1.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.1.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.1 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 52.60684037208557} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 0.1 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 5.267488241195679} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 495, 1009, ..., 2499036, - 2499501, 2500000]), - col_indices=tensor([ 3, 5, 7, ..., 4975, 4989, 4996]), - values=tensor([0.3153, 0.9204, 0.9402, ..., 0.8644, 0.1243, 0.2567]), +tensor(crow_indices=tensor([ 0, 489, 972, ..., 2499002, + 2499515, 2500000]), + col_indices=tensor([ 0, 4, 21, ..., 4965, 4988, 4998]), + values=tensor([0.4985, 0.2439, 0.0801, ..., 0.3726, 0.6532, 0.2308]), size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.0882, 0.6551, 0.2953, ..., 0.5102, 0.2382, 0.8339]) +tensor([0.7620, 0.1310, 0.6898, ..., 0.4324, 0.6267, 0.4614]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,16 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 2500000 Density: 0.1 -Time: 52.60684037208557 seconds +Time: 5.267488241195679 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 199 -ss 5000 -sd 0.1 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.477930784225464} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 495, 1009, ..., 2499036, - 2499501, 2500000]), - col_indices=tensor([ 3, 5, 7, ..., 4975, 4989, 4996]), - values=tensor([0.3153, 0.9204, 0.9402, ..., 0.8644, 0.1243, 0.2567]), +tensor(crow_indices=tensor([ 0, 479, 980, ..., 2498983, + 2499479, 2500000]), + col_indices=tensor([ 7, 13, 23, ..., 4987, 4988, 4998]), + values=tensor([0.4519, 0.3203, 0.6830, ..., 0.2361, 0.6866, 0.7928]), size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.0882, 0.6551, 0.2953, ..., 0.5102, 0.2382, 0.8339]) +tensor([0.4502, 0.7188, 0.8112, ..., 0.2797, 0.2285, 0.9848]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -33,13 +36,30 @@ Rows: 5000 Size: 25000000 NNZ: 2500000 Density: 0.1 -Time: 52.60684037208557 seconds +Time: 10.477930784225464 seconds -[20.32, 20.32, 20.52, 20.36, 20.68, 20.64, 20.64, 20.84, 20.84, 20.64] -[21.04, 20.8, 23.84, 25.56, 28.32, 28.32, 30.0, 30.76, 27.04, 26.12, 23.96, 24.04, 23.96, 24.4, 24.48, 24.44, 24.4, 24.4, 24.4, 24.44, 24.52, 24.64, 24.44, 24.48, 24.36, 24.52, 24.36, 24.36, 24.28, 24.28, 24.2, 24.2, 24.04, 24.12, 24.04, 24.04, 24.08, 24.16, 24.12, 23.96, 24.0, 24.04, 24.04, 23.92, 23.92, 24.16, 24.32, 24.52, 24.68, 24.64, 24.24, 24.12, 24.2, 24.2, 24.2, 24.36, 24.36] -57.72279095649719 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 52.60684037208557, 'TIME_S_1KI': 52.60684037208557, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1396.747187700272, 'W': 24.19749919495284} -[20.32, 20.32, 20.52, 20.36, 20.68, 20.64, 20.64, 20.84, 20.84, 20.64, 20.48, 20.4, 20.44, 20.76, 20.76, 20.96, 21.12, 21.08, 21.0, 20.76] -372.46000000000004 -18.623 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 52.60684037208557, 'TIME_S_1KI': 52.60684037208557, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1396.747187700272, 'W': 24.19749919495284, 'J_1KI': 1396.747187700272, 'W_1KI': 24.19749919495284, 'W_D': 5.574499194952839, 'J_D': 321.77565171742464, 'W_D_1KI': 5.574499194952839, 'J_D_1KI': 5.574499194952839} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 479, 980, ..., 2498983, + 2499479, 2500000]), + col_indices=tensor([ 7, 13, 23, ..., 4987, 4988, 4998]), + values=tensor([0.4519, 0.3203, 0.6830, ..., 0.2361, 0.6866, 0.7928]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.4502, 0.7188, 0.8112, ..., 0.2797, 0.2285, 0.9848]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 10.477930784225464 seconds + +[20.56, 20.84, 21.36, 21.88, 21.64, 21.6, 21.4, 20.76, 20.76, 20.72] +[21.16, 21.2, 21.4, 25.96, 27.32, 30.6, 31.24, 28.68, 27.4, 26.08, 24.2, 24.2, 24.4, 24.36, 24.2] +15.291714191436768 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 199, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.477930784225464, 'TIME_S_1KI': 52.6529185136958, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 366.7794834327698, 'W': 23.985504753820422} +[20.56, 20.84, 21.36, 21.88, 21.64, 21.6, 21.4, 20.76, 20.76, 20.72, 20.44, 20.32, 20.44, 20.64, 20.64, 20.44, 20.4, 20.36, 20.44, 20.84] +375.2 +18.759999999999998 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 199, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.477930784225464, 'TIME_S_1KI': 52.6529185136958, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 366.7794834327698, 'W': 23.985504753820422, 'J_1KI': 1843.11298207422, 'W_1KI': 120.53017464231368, 'W_D': 5.225504753820424, 'J_D': 79.90692520141607, 'W_D_1KI': 26.25881785839409, 'J_D_1KI': 131.95385858489493} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.2.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.2.json index 72274ad..328683d 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.2.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.2.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 105.2479407787323, "TIME_S_1KI": 105.2479407787323, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2877.626370677949, "W": 24.097306664358964, "J_1KI": 2877.626370677949, "W_1KI": 24.097306664358964, "W_D": 5.6223066643589625, "J_D": 671.3985984718811, "W_D_1KI": 5.6223066643589625, "J_D_1KI": 5.6223066643589625} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.774195671081543, "TIME_S_1KI": 107.74195671081543, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 357.5530287361145, "W": 23.422029760012947, "J_1KI": 3575.5302873611454, "W_1KI": 234.22029760012947, "W_D": 5.2480297600129475, "J_D": 80.11470204830175, "W_D_1KI": 52.480297600129475, "J_D_1KI": 524.8029760012947} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.2.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.2.output index f4956b7..4419f1e 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.2.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.2.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.2 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 105.2479407787323} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 0.2 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.774195671081543} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 987, 1961, ..., 4998062, - 4998993, 5000000]), - col_indices=tensor([ 2, 8, 14, ..., 4993, 4994, 4998]), - values=tensor([0.2058, 0.7964, 0.8021, ..., 0.0689, 0.5253, 0.0161]), +tensor(crow_indices=tensor([ 0, 1044, 1986, ..., 4998023, + 4998990, 5000000]), + col_indices=tensor([ 2, 11, 17, ..., 4984, 4985, 4991]), + values=tensor([0.4872, 0.8747, 0.2341, ..., 0.7866, 0.4499, 0.5164]), size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.1259, 0.8957, 0.2222, ..., 0.6970, 0.5570, 0.6933]) +tensor([0.5529, 0.0016, 0.5040, ..., 0.3915, 0.6771, 0.4202]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,16 +16,16 @@ Rows: 5000 Size: 25000000 NNZ: 5000000 Density: 0.2 -Time: 105.2479407787323 seconds +Time: 10.774195671081543 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 987, 1961, ..., 4998062, - 4998993, 5000000]), - col_indices=tensor([ 2, 8, 14, ..., 4993, 4994, 4998]), - values=tensor([0.2058, 0.7964, 0.8021, ..., 0.0689, 0.5253, 0.0161]), +tensor(crow_indices=tensor([ 0, 1044, 1986, ..., 4998023, + 4998990, 5000000]), + col_indices=tensor([ 2, 11, 17, ..., 4984, 4985, 4991]), + values=tensor([0.4872, 0.8747, 0.2341, ..., 0.7866, 0.4499, 0.5164]), size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.1259, 0.8957, 0.2222, ..., 0.6970, 0.5570, 0.6933]) +tensor([0.5529, 0.0016, 0.5040, ..., 0.3915, 0.6771, 0.4202]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -33,13 +33,13 @@ Rows: 5000 Size: 25000000 NNZ: 5000000 Density: 0.2 -Time: 105.2479407787323 seconds +Time: 10.774195671081543 seconds -[20.6, 20.48, 20.6, 20.6, 20.72, 20.72, 20.68, 20.68, 20.52, 20.76] -[20.8, 20.6, 20.6, 24.4, 25.4, 28.96, 30.96, 31.56, 28.6, 27.8, 25.4, 24.24, 24.24, 24.24, 24.24, 24.24, 24.16, 24.04, 24.12, 24.2, 24.2, 24.28, 24.36, 24.2, 24.32, 24.4, 24.56, 24.56, 24.56, 24.44, 24.44, 24.24, 24.2, 24.16, 24.04, 24.32, 24.24, 24.32, 24.4, 24.4, 24.36, 24.4, 24.6, 24.8, 24.72, 24.88, 24.88, 24.64, 24.48, 24.48, 24.2, 24.12, 24.12, 24.28, 24.48, 24.56, 24.56, 24.6, 24.28, 24.16, 24.16, 24.04, 24.08, 24.24, 24.24, 24.64, 24.72, 24.6, 24.48, 24.12, 24.16, 24.08, 24.16, 24.2, 23.84, 23.92, 23.92, 23.92, 23.76, 24.2, 24.16, 24.28, 24.64, 24.44, 24.36, 24.52, 24.36, 24.4, 24.48, 24.48, 24.56, 24.56, 24.56, 24.36, 24.36, 24.2, 24.32, 24.08, 24.16, 24.24, 24.4, 24.4, 24.44, 24.68, 24.56, 24.4, 24.28, 24.4, 24.32, 24.4, 24.6, 24.48, 24.44, 24.6, 24.6, 24.48, 24.28, 24.24] -119.4169294834137 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 105.2479407787323, 'TIME_S_1KI': 105.2479407787323, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2877.626370677949, 'W': 24.097306664358964} -[20.6, 20.48, 20.6, 20.6, 20.72, 20.72, 20.68, 20.68, 20.52, 20.76, 20.2, 20.32, 20.2, 20.12, 20.32, 20.24, 20.6, 20.72, 20.8, 20.8] -369.5 -18.475 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 105.2479407787323, 'TIME_S_1KI': 105.2479407787323, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2877.626370677949, 'W': 24.097306664358964, 'J_1KI': 2877.626370677949, 'W_1KI': 24.097306664358964, 'W_D': 5.6223066643589625, 'J_D': 671.3985984718811, 'W_D_1KI': 5.6223066643589625, 'J_D_1KI': 5.6223066643589625} +[20.36, 20.12, 20.12, 20.04, 20.28, 20.12, 20.08, 20.4, 20.4, 20.72] +[20.8, 21.08, 22.4, 23.32, 25.48, 25.48, 27.96, 29.08, 28.16, 27.04, 25.64, 24.2, 24.2, 24.4, 24.44] +15.265672206878662 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.774195671081543, 'TIME_S_1KI': 107.74195671081543, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 357.5530287361145, 'W': 23.422029760012947} +[20.36, 20.12, 20.12, 20.04, 20.28, 20.12, 20.08, 20.4, 20.4, 20.72, 20.32, 20.16, 20.04, 20.08, 20.08, 20.0, 20.16, 20.28, 20.28, 20.28] +363.48 +18.174 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.774195671081543, 'TIME_S_1KI': 107.74195671081543, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 357.5530287361145, 'W': 23.422029760012947, 'J_1KI': 3575.5302873611454, 'W_1KI': 234.22029760012947, 'W_D': 5.2480297600129475, 'J_D': 80.11470204830175, 'W_D_1KI': 52.480297600129475, 'J_D_1KI': 524.8029760012947} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.3.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.3.json index 46e1ba0..1787dbd 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.3.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.3.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 171.51510739326477, "TIME_S_1KI": 171.51510739326477, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 4017.952876434326, "W": 24.359705854077962, "J_1KI": 4017.9528764343263, "W_1KI": 24.359705854077962, "W_D": 5.79370585407796, "J_D": 955.6288257770532, "W_D_1KI": 5.79370585407796, "J_D_1KI": 5.79370585407796} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 15.919427633285522, "TIME_S_1KI": 159.19427633285522, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 506.52752479553226, "W": 23.776826253573663, "J_1KI": 5065.275247955323, "W_1KI": 237.76826253573662, "W_D": 5.445826253573667, "J_D": 116.01468014574058, "W_D_1KI": 54.45826253573667, "J_D_1KI": 544.5826253573666} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.3.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.3.output index 2f85bb6..2f8bfb8 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.3.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.3.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 0.3 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 171.51510739326477} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 0.3 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 15.919427633285522} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1461, 2933, ..., 7497082, - 7498527, 7500000]), - col_indices=tensor([ 0, 1, 3, ..., 4992, 4997, 4999]), - values=tensor([0.2348, 0.4295, 0.7390, ..., 0.0266, 0.0621, 0.6356]), +tensor(crow_indices=tensor([ 0, 1464, 2929, ..., 7497018, + 7498512, 7500000]), + col_indices=tensor([ 1, 9, 13, ..., 4985, 4989, 4990]), + values=tensor([0.4014, 0.1905, 0.8906, ..., 0.4332, 0.9731, 0.1283]), size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) -tensor([0.3584, 0.9157, 0.1902, ..., 0.2272, 0.0135, 0.3908]) +tensor([0.5776, 0.8031, 0.5959, ..., 0.3626, 0.0858, 0.0842]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,16 +16,16 @@ Rows: 5000 Size: 25000000 NNZ: 7500000 Density: 0.3 -Time: 171.51510739326477 seconds +Time: 15.919427633285522 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1461, 2933, ..., 7497082, - 7498527, 7500000]), - col_indices=tensor([ 0, 1, 3, ..., 4992, 4997, 4999]), - values=tensor([0.2348, 0.4295, 0.7390, ..., 0.0266, 0.0621, 0.6356]), +tensor(crow_indices=tensor([ 0, 1464, 2929, ..., 7497018, + 7498512, 7500000]), + col_indices=tensor([ 1, 9, 13, ..., 4985, 4989, 4990]), + values=tensor([0.4014, 0.1905, 0.8906, ..., 0.4332, 0.9731, 0.1283]), size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) -tensor([0.3584, 0.9157, 0.1902, ..., 0.2272, 0.0135, 0.3908]) +tensor([0.5776, 0.8031, 0.5959, ..., 0.3626, 0.0858, 0.0842]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -33,13 +33,13 @@ Rows: 5000 Size: 25000000 NNZ: 7500000 Density: 0.3 -Time: 171.51510739326477 seconds +Time: 15.919427633285522 seconds -[21.16, 20.96, 20.88, 20.76, 20.72, 20.72, 20.72, 20.6, 20.56, 20.56] -[20.6, 20.48, 20.88, 21.96, 23.44, 26.4, 27.84, 28.8, 28.48, 27.04, 25.6, 24.28, 24.28, 24.48, 24.64, 24.64, 24.6, 24.6, 24.4, 24.24, 24.36, 24.48, 24.44, 24.52, 24.6, 24.6, 24.96, 25.04, 25.04, 25.12, 24.68, 24.56, 24.64, 24.6, 24.68, 24.92, 24.84, 24.84, 24.56, 24.48, 24.8, 24.56, 24.76, 24.76, 24.68, 24.64, 24.72, 24.64, 24.6, 24.6, 24.68, 24.68, 24.56, 24.48, 24.6, 24.48, 24.48, 24.56, 24.64, 24.52, 24.48, 24.6, 24.6, 24.52, 24.24, 24.32, 24.44, 24.32, 24.44, 24.44, 24.64, 24.84, 24.6, 24.76, 24.76, 24.8, 24.92, 25.08, 25.04, 24.92, 24.52, 24.6, 24.56, 24.6, 24.48, 24.6, 24.56, 24.56, 24.4, 24.36, 24.48, 24.48, 24.64, 24.64, 24.52, 24.56, 24.52, 24.44, 24.52, 24.52, 24.52, 24.48, 24.32, 24.52, 24.84, 25.04, 25.04, 25.0, 24.92, 24.68, 24.36, 24.36, 24.36, 24.24, 24.36, 24.36, 24.8, 24.72, 24.84, 24.68, 24.44, 24.56, 24.64, 24.72, 24.72, 25.16, 25.56, 25.68, 25.56, 25.36, 24.88, 24.8, 24.72, 24.52, 24.48, 24.6, 24.6, 24.6, 24.44, 24.44, 24.36, 24.44, 24.56, 24.56, 24.76, 24.64, 24.48, 24.72, 24.72, 24.72, 24.56, 24.92, 24.8, 24.56, 24.72, 24.8, 24.88, 24.88, 24.96, 24.84, 24.6, 24.6, 24.16] -164.9425859451294 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 171.51510739326477, 'TIME_S_1KI': 171.51510739326477, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 4017.952876434326, 'W': 24.359705854077962} -[21.16, 20.96, 20.88, 20.76, 20.72, 20.72, 20.72, 20.6, 20.56, 20.56, 20.0, 20.24, 20.64, 20.6, 20.8, 20.76, 20.44, 20.48, 20.4, 20.36] -371.32000000000005 -18.566000000000003 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 171.51510739326477, 'TIME_S_1KI': 171.51510739326477, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 4017.952876434326, 'W': 24.359705854077962, 'J_1KI': 4017.9528764343263, 'W_1KI': 24.359705854077962, 'W_D': 5.79370585407796, 'J_D': 955.6288257770532, 'W_D_1KI': 5.79370585407796, 'J_D_1KI': 5.79370585407796} +[20.2, 20.32, 20.32, 20.32, 20.32, 20.24, 20.52, 20.56, 20.64, 20.76] +[20.76, 20.64, 21.8, 21.8, 22.88, 24.6, 28.28, 30.28, 29.56, 29.28, 26.08, 25.32, 24.68, 24.72, 24.64, 24.44, 24.44, 24.48, 24.24, 24.32, 24.48] +21.303411960601807 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 15.919427633285522, 'TIME_S_1KI': 159.19427633285522, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 506.52752479553226, 'W': 23.776826253573663} +[20.2, 20.32, 20.32, 20.32, 20.32, 20.24, 20.52, 20.56, 20.64, 20.76, 20.12, 20.12, 19.96, 20.2, 20.04, 20.4, 20.6, 20.56, 20.64, 20.64] +366.61999999999995 +18.330999999999996 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 15.919427633285522, 'TIME_S_1KI': 159.19427633285522, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 506.52752479553226, 'W': 23.776826253573663, 'J_1KI': 5065.275247955323, 'W_1KI': 237.76826253573662, 'W_D': 5.445826253573667, 'J_D': 116.01468014574058, 'W_D_1KI': 54.45826253573667, 'J_D_1KI': 544.5826253573666} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.4.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.4.json new file mode 100644 index 0000000..d18f4ce --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.4.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.4, "TIME_S": 21.475390195846558, "TIME_S_1KI": 214.75390195846558, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 659.3497357940673, "W": 24.06026504427972, "J_1KI": 6593.497357940673, "W_1KI": 240.60265044279723, "W_D": 5.657265044279722, "J_D": 155.03221620368953, "W_D_1KI": 56.57265044279722, "J_D_1KI": 565.7265044279723} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.4.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.4.output new file mode 100644 index 0000000..6dfec86 --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.4.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 0.4 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.4, "TIME_S": 21.475390195846558} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2112, 4108, ..., 9995977, + 9998003, 10000000]), + col_indices=tensor([ 0, 2, 5, ..., 4993, 4997, 4998]), + values=tensor([0.6521, 0.2294, 0.7060, ..., 0.9592, 0.5713, 0.6385]), + size=(5000, 5000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.2067, 0.4320, 0.3905, ..., 0.7782, 0.8244, 0.2696]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 10000000 +Density: 0.4 +Time: 21.475390195846558 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2112, 4108, ..., 9995977, + 9998003, 10000000]), + col_indices=tensor([ 0, 2, 5, ..., 4993, 4997, 4998]), + values=tensor([0.6521, 0.2294, 0.7060, ..., 0.9592, 0.5713, 0.6385]), + size=(5000, 5000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.2067, 0.4320, 0.3905, ..., 0.7782, 0.8244, 0.2696]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 10000000 +Density: 0.4 +Time: 21.475390195846558 seconds + +[20.36, 20.32, 20.12, 20.16, 20.12, 20.28, 20.68, 20.96, 21.08, 21.04] +[20.56, 20.44, 20.44, 23.96, 25.32, 27.12, 30.0, 32.28, 29.04, 28.16, 26.48, 25.72, 24.44, 24.36, 24.24, 24.24, 24.2, 24.16, 24.28, 24.32, 24.36, 24.48, 24.04, 23.92, 23.8, 23.68, 23.88] +27.40409278869629 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.4, 'TIME_S': 21.475390195846558, 'TIME_S_1KI': 214.75390195846558, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 659.3497357940673, 'W': 24.06026504427972} +[20.36, 20.32, 20.12, 20.16, 20.12, 20.28, 20.68, 20.96, 21.08, 21.04, 20.4, 20.4, 20.36, 20.56, 20.6, 20.4, 20.24, 20.36, 20.28, 20.48] +368.06 +18.403 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.4, 'TIME_S': 21.475390195846558, 'TIME_S_1KI': 214.75390195846558, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 659.3497357940673, 'W': 24.06026504427972, 'J_1KI': 6593.497357940673, 'W_1KI': 240.60265044279723, 'W_D': 5.657265044279722, 'J_D': 155.03221620368953, 'W_D_1KI': 56.57265044279722, 'J_D_1KI': 565.7265044279723} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.5.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.5.json new file mode 100644 index 0000000..dc66501 --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.5.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 100, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 26.60726523399353, "TIME_S_1KI": 266.0726523399353, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 821.7415859985354, "W": 24.511735271206813, "J_1KI": 8217.415859985353, "W_1KI": 245.11735271206814, "W_D": 6.057735271206813, "J_D": 203.08203129005446, "W_D_1KI": 60.57735271206813, "J_D_1KI": 605.7735271206813} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.5.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.5.output new file mode 100644 index 0000000..ad4e507 --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_0.5.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 0.5 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 26.60726523399353} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2547, 5140, ..., 12494977, + 12497506, 12500000]), + col_indices=tensor([ 3, 4, 6, ..., 4994, 4995, 4998]), + values=tensor([0.6176, 0.1216, 0.2065, ..., 0.5783, 0.0575, 0.3833]), + size=(5000, 5000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.3583, 0.1424, 0.2491, ..., 0.0607, 0.2583, 0.4693]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 12500000 +Density: 0.5 +Time: 26.60726523399353 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2547, 5140, ..., 12494977, + 12497506, 12500000]), + col_indices=tensor([ 3, 4, 6, ..., 4994, 4995, 4998]), + values=tensor([0.6176, 0.1216, 0.2065, ..., 0.5783, 0.0575, 0.3833]), + size=(5000, 5000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.3583, 0.1424, 0.2491, ..., 0.0607, 0.2583, 0.4693]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 12500000 +Density: 0.5 +Time: 26.60726523399353 seconds + +[20.28, 20.52, 20.68, 20.56, 20.44, 20.52, 20.44, 20.44, 20.72, 21.0] +[20.92, 20.68, 20.68, 23.84, 26.2, 27.84, 31.04, 29.96, 30.76, 29.48, 26.6, 26.6, 26.28, 24.68, 24.6, 24.48, 24.4, 24.24, 24.32, 24.32, 24.48, 24.52, 24.44, 24.52, 24.52, 24.56, 24.4, 24.56, 24.72, 24.68, 24.84, 24.8, 24.64] +33.524415016174316 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.5, 'TIME_S': 26.60726523399353, 'TIME_S_1KI': 266.0726523399353, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 821.7415859985354, 'W': 24.511735271206813} +[20.28, 20.52, 20.68, 20.56, 20.44, 20.52, 20.44, 20.44, 20.72, 21.0, 20.24, 20.2, 20.4, 20.6, 20.6, 20.6, 20.44, 20.56, 20.52, 20.16] +369.08000000000004 +18.454 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 100, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.5, 'TIME_S': 26.60726523399353, 'TIME_S_1KI': 266.0726523399353, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 821.7415859985354, 'W': 24.511735271206813, 'J_1KI': 8217.415859985353, 'W_1KI': 245.11735271206814, 'W_D': 6.057735271206813, 'J_D': 203.08203129005446, 'W_D_1KI': 60.57735271206813, 'J_D_1KI': 605.7735271206813} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_1e-05.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_1e-05.json index aba0d5e..b24de3c 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_1e-05.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_1e-05.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 293134, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.89356017112732, "TIME_S_1KI": 0.03716239048055606, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 278.4485914421082, "W": 19.57952781791354, "J_1KI": 0.9499020633638819, "W_1KI": 0.06679377969772711, "W_D": 4.613527817913537, "J_D": 65.610893910408, "W_D_1KI": 0.01573863085794735, "J_D_1KI": 5.3690908792386244e-05} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 284909, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.16942024230957, "TIME_S_1KI": 0.035693573184102885, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 316.9542731094361, "W": 22.304497332617817, "J_1KI": 1.1124754679895548, "W_1KI": 0.07828639085679223, "W_D": 3.6764973326178207, "J_D": 52.24424125194558, "W_D_1KI": 0.012904110900736098, "J_D_1KI": 4.529204377796454e-05} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_1e-05.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_1e-05.output index ebedd90..ece41ca 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_1e-05.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_1e-05.output @@ -1,75 +1,75 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 1e-05 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.04628562927246094} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.012842655181884766} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([ 683, 1119, 1321, 2450, 3482, 3631, 1761, 3022, 756, - 3517, 37, 3468, 4655, 1287, 913, 1692, 3561, 1823, - 1971, 4332, 175, 242, 3518, 2634, 2163, 1929, 1347, - 4194, 4673, 3242, 1554, 3336, 2363, 4819, 1624, 2276, - 4446, 1440, 2278, 2820, 2808, 2194, 1293, 3294, 2532, - 2630, 3533, 2517, 2068, 4492, 3196, 31, 2012, 3028, - 3263, 1298, 1827, 4518, 2739, 383, 2502, 2163, 2983, - 275, 3460, 724, 4585, 3927, 4513, 2645, 242, 1435, - 3115, 1351, 1335, 3004, 3671, 2087, 2361, 3470, 3033, - 1776, 2762, 2985, 544, 2787, 1009, 4955, 757, 4621, - 3559, 4933, 3451, 2535, 2363, 1115, 250, 284, 3453, - 4194, 4788, 4427, 434, 2792, 219, 1976, 286, 1619, - 3123, 2185, 100, 1443, 2614, 3193, 4750, 1625, 61, - 2975, 2813, 3271, 969, 1209, 2770, 2904, 1769, 343, - 239, 3167, 403, 2400, 1507, 4176, 1210, 627, 332, - 3526, 2019, 4707, 4667, 3689, 1411, 474, 2037, 1559, - 3233, 2371, 3442, 4237, 1757, 4685, 2495, 737, 562, - 4385, 4537, 1150, 2708, 4099, 4510, 4059, 58, 3153, - 2292, 1450, 3200, 4511, 1556, 237, 2082, 3442, 4661, - 3624, 407, 1680, 104, 2285, 3192, 1818, 2013, 2874, - 4274, 1703, 393, 4638, 3642, 1595, 4200, 2976, 747, - 1685, 436, 4175, 3319, 2858, 4687, 1967, 1550, 4498, - 5, 3295, 2892, 3076, 2947, 1470, 2928, 4594, 372, - 1505, 3795, 2014, 3988, 420, 2057, 4772, 3022, 3131, - 376, 1473, 4703, 771, 759, 172, 3505, 2361, 168, - 3559, 881, 3500, 894, 4238, 842, 291, 2606, 4128, - 2513, 4919, 1689, 1039, 4346, 4963, 184, 2438, 3794, - 631, 3050, 4745, 3174, 1910, 3181, 4415]), - values=tensor([0.5133, 0.9500, 0.6089, 0.1299, 0.0389, 0.7021, 0.0545, - 0.1504, 0.2775, 0.3654, 0.5414, 0.7066, 0.5062, 0.9276, - 0.5403, 0.1473, 0.0619, 0.8013, 0.5229, 0.9618, 0.3595, - 0.9768, 0.4894, 0.9436, 0.2586, 0.3228, 0.7550, 0.4654, - 0.5557, 0.6099, 0.1466, 0.3234, 0.9559, 0.4861, 0.6590, - 0.2645, 0.3128, 0.2881, 0.8916, 0.9625, 0.3287, 0.6208, - 0.1989, 0.4749, 0.6654, 0.5023, 0.5464, 0.6484, 0.8692, - 0.5946, 0.3095, 0.4520, 0.2934, 0.1142, 0.3825, 0.0692, - 0.4451, 0.9095, 0.2024, 0.8392, 0.4692, 0.1054, 0.2753, - 0.1688, 0.2684, 0.5848, 0.9464, 0.6200, 0.5357, 0.5307, - 0.7002, 0.6351, 0.9452, 0.4196, 0.3107, 0.9700, 0.4879, - 0.0926, 0.0442, 0.1064, 0.9432, 0.8436, 0.3680, 0.1497, - 0.1266, 0.6045, 0.6916, 0.0824, 0.1706, 0.8211, 0.8262, - 0.7835, 0.0310, 0.3323, 0.1890, 0.5250, 0.8324, 0.5975, - 0.0174, 0.0556, 0.9553, 0.6279, 0.3153, 0.4085, 0.9318, - 0.3588, 0.1032, 0.7200, 0.2145, 0.8631, 0.4178, 0.0372, - 0.7636, 0.4317, 0.2105, 0.2684, 0.0231, 0.6996, 0.0880, - 0.2381, 0.6281, 0.3203, 0.4143, 0.7477, 0.1347, 0.5900, - 0.7586, 0.5291, 0.6348, 0.4495, 0.3601, 0.9398, 0.3999, - 0.2033, 0.1346, 0.0706, 0.9911, 0.9515, 0.0420, 0.6637, - 0.2691, 0.3435, 0.7224, 0.4624, 0.4390, 0.3084, 0.3677, - 0.2556, 0.8927, 0.7015, 0.4402, 0.6275, 0.9141, 0.3633, - 0.0870, 0.2460, 0.1945, 0.8036, 0.3884, 0.5353, 0.6776, - 0.4646, 0.1680, 0.4783, 0.9893, 0.5596, 0.0460, 0.9167, - 0.8564, 0.2217, 0.2454, 0.6476, 0.0091, 0.6634, 0.6906, - 0.5109, 0.0619, 0.8391, 0.3721, 0.4015, 0.1086, 0.8568, - 0.0263, 0.0960, 0.2106, 0.8204, 0.3496, 0.0650, 0.0530, - 0.2300, 0.7920, 0.0833, 0.8839, 0.6947, 0.7490, 0.6930, - 0.4034, 0.9770, 0.5568, 0.5813, 0.4457, 0.4409, 0.3165, - 0.4290, 0.8018, 0.4890, 0.7248, 0.5066, 0.4197, 0.9251, - 0.4526, 0.8257, 0.6029, 0.9210, 0.8099, 0.1966, 0.6605, - 0.5583, 0.0851, 0.2553, 0.8703, 0.6237, 0.8267, 0.9769, - 0.6623, 0.5390, 0.0172, 0.1684, 0.4788, 0.5289, 0.0477, - 0.8018, 0.0914, 0.3275, 0.7127, 0.1031, 0.8096, 0.1163, - 0.3143, 0.8185, 0.2797, 0.8908, 0.1307, 0.5822, 0.2044, - 0.6227, 0.4853, 0.6034, 0.6732, 0.0321]), + col_indices=tensor([1287, 2037, 612, 4005, 465, 4495, 4486, 1954, 4095, + 1514, 3786, 3287, 3358, 3432, 3673, 489, 2823, 505, + 4424, 1572, 4277, 474, 3301, 30, 2842, 4780, 2739, + 564, 2900, 4485, 4784, 2295, 755, 3717, 1261, 1856, + 2818, 3372, 3761, 1939, 4279, 1416, 4196, 1024, 159, + 3430, 1464, 630, 4128, 1057, 4758, 4930, 4819, 4211, + 3868, 1700, 2760, 4521, 1355, 4737, 4580, 1838, 4056, + 1953, 4561, 1726, 3125, 4174, 510, 4743, 502, 2822, + 338, 1706, 4412, 4712, 3417, 4607, 4478, 4287, 4365, + 4223, 3755, 467, 2870, 999, 1516, 3711, 3345, 4540, + 4303, 4477, 4047, 3188, 522, 451, 4048, 1301, 3760, + 3807, 142, 526, 3797, 3415, 942, 3041, 1022, 555, + 2433, 3440, 4291, 2481, 2516, 1226, 4664, 1242, 2239, + 3542, 3300, 3985, 1261, 628, 3797, 3571, 1648, 545, + 3417, 523, 297, 1814, 2339, 1387, 4149, 2499, 1698, + 4107, 3910, 907, 1601, 3072, 2976, 1955, 76, 3173, + 63, 633, 2089, 1360, 1226, 4574, 730, 2472, 4618, + 425, 3915, 1299, 1950, 4945, 1796, 628, 1797, 3210, + 2055, 2428, 876, 1161, 1529, 1660, 2886, 4614, 2062, + 2433, 3539, 1521, 33, 1294, 4198, 863, 2582, 1498, + 77, 507, 2697, 2034, 2514, 1935, 4132, 2925, 876, + 2808, 4770, 271, 3697, 1635, 2519, 4995, 3590, 3245, + 130, 480, 3111, 3121, 3132, 1937, 3910, 1943, 2562, + 426, 3962, 1910, 1189, 1897, 1056, 462, 1607, 1444, + 118, 191, 2005, 615, 1379, 633, 2360, 3526, 4732, + 2267, 3397, 1029, 3432, 2182, 2675, 4099, 3777, 2171, + 2640, 3913, 4300, 2946, 3758, 3305, 1103, 4800, 3668, + 4286, 3562, 281, 919, 4442, 2167, 2728]), + values=tensor([0.8347, 0.3655, 0.0811, 0.8356, 0.0205, 0.3330, 0.9286, + 0.0736, 0.7654, 0.8451, 0.0234, 0.4126, 0.2439, 0.1012, + 0.1525, 0.4404, 0.8423, 0.5434, 0.2968, 0.3607, 0.9939, + 0.0443, 0.6432, 0.5086, 0.6326, 0.2329, 0.7870, 0.7820, + 0.9646, 0.4656, 0.9109, 0.0130, 0.3562, 0.2378, 0.0761, + 0.1724, 0.0722, 0.8084, 0.1566, 0.8788, 0.9593, 0.2473, + 0.2746, 0.1767, 0.8469, 0.1106, 0.8653, 0.5297, 0.8543, + 0.5387, 0.4683, 0.0500, 0.6408, 0.2485, 0.5053, 0.9278, + 0.6730, 0.1223, 0.9361, 0.1415, 0.0908, 0.6368, 0.4532, + 0.7711, 0.1924, 0.7435, 0.0645, 0.3989, 0.7433, 0.7022, + 0.6974, 0.8264, 0.3293, 0.6363, 0.9947, 0.1723, 0.3099, + 0.5498, 0.6041, 0.9256, 0.6505, 0.2218, 0.5727, 0.8460, + 0.3386, 0.9152, 0.1985, 0.3213, 0.2437, 0.8619, 0.4265, + 0.8019, 0.3028, 0.4559, 0.9203, 0.9762, 0.2222, 0.3112, + 0.4047, 0.0709, 0.2379, 0.3209, 0.9982, 0.9963, 0.6946, + 0.0267, 0.7677, 0.2026, 0.6034, 0.5006, 0.8273, 0.2191, + 0.6497, 0.2706, 0.0892, 0.8677, 0.9857, 0.5541, 0.2974, + 0.1559, 0.1745, 0.4744, 0.1426, 0.1224, 0.3669, 0.1827, + 0.5044, 0.5810, 0.3220, 0.7231, 0.9240, 0.0412, 0.3152, + 0.9088, 0.3617, 0.9935, 0.3508, 0.0434, 0.0453, 0.5299, + 0.2529, 0.0232, 0.7419, 0.0564, 0.5519, 0.6136, 0.5013, + 0.9801, 0.4708, 0.5636, 0.5144, 0.1368, 0.7207, 0.1775, + 0.9552, 0.2262, 0.7144, 0.1124, 0.8514, 0.1783, 0.8401, + 0.1256, 0.7454, 0.1258, 0.2191, 0.5753, 0.9252, 0.8693, + 0.6514, 0.3440, 0.7780, 0.4771, 0.0787, 0.5042, 0.0634, + 0.8013, 0.8286, 0.4280, 0.3433, 0.9749, 0.0712, 0.9286, + 0.0320, 0.8979, 0.5094, 0.4000, 0.4693, 0.8308, 0.6000, + 0.3933, 0.7591, 0.2335, 0.5450, 0.3018, 0.3121, 0.4779, + 0.9302, 0.5324, 0.1295, 0.6438, 0.5030, 0.3371, 0.9613, + 0.8059, 0.9687, 0.2898, 0.7067, 0.8974, 0.1763, 0.0222, + 0.0300, 0.9494, 0.3209, 0.6515, 0.7028, 0.8063, 0.2794, + 0.7392, 0.1814, 0.3171, 0.4591, 0.7578, 0.6336, 0.8392, + 0.6142, 0.8521, 0.4206, 0.9799, 0.4517, 0.1512, 0.3696, + 0.0957, 0.3165, 0.3328, 0.9242, 0.5247, 0.8176, 0.9760, + 0.3689, 0.9384, 0.3805, 0.7826, 0.4113, 0.3311, 0.7250, + 0.9146, 0.3319, 0.6199, 0.8288, 0.1278]), size=(5000, 5000), nnz=250, layout=torch.sparse_csr) -tensor([0.7002, 0.3467, 0.9676, ..., 0.8135, 0.6463, 0.9360]) +tensor([0.0363, 0.1704, 0.8959, ..., 0.1381, 0.6314, 0.8045]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -77,188 +77,80 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 0.04628562927246094 seconds +Time: 0.012842655181884766 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 226852 -ss 5000 -sd 1e-05 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 8.58342981338501} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 250, 250, 250]), - col_indices=tensor([2568, 3647, 442, 965, 263, 2383, 651, 4423, 3036, - 1922, 4223, 1539, 1097, 1063, 4112, 2393, 2048, 391, - 3893, 324, 2099, 2458, 2688, 682, 96, 2079, 4917, - 1561, 2320, 1455, 2135, 3126, 2991, 4240, 1021, 4993, - 3258, 3975, 1172, 1489, 4782, 364, 2199, 94, 1257, - 4686, 607, 1510, 89, 4888, 4165, 3842, 3018, 4662, - 3670, 3231, 4131, 746, 49, 680, 3901, 1594, 359, - 3311, 2321, 3005, 4317, 2855, 829, 3097, 2418, 1365, - 3858, 1930, 3446, 1588, 4464, 2454, 3676, 2837, 1569, - 2885, 1556, 3076, 4363, 2721, 3030, 172, 2121, 2698, - 3156, 442, 947, 2541, 828, 1038, 4897, 3795, 2214, - 609, 3658, 77, 3238, 2356, 89, 2253, 2806, 2065, - 2259, 579, 2660, 1688, 2237, 2605, 1390, 4025, 2509, - 2831, 635, 2338, 2347, 3405, 393, 82, 2030, 4203, - 4365, 3211, 1439, 3151, 1397, 476, 3123, 1758, 2491, - 252, 1078, 102, 4624, 527, 163, 2201, 1415, 53, - 3597, 2281, 1819, 1693, 3944, 4697, 560, 1457, 1677, - 2072, 2996, 1150, 4324, 2498, 4491, 2244, 3104, 2934, - 632, 2182, 4187, 1162, 422, 1444, 3294, 1160, 1691, - 2846, 266, 3519, 3656, 2923, 1457, 1651, 1147, 1014, - 671, 3331, 4535, 2766, 1343, 680, 3907, 3255, 700, - 2823, 4644, 4966, 3493, 4426, 2084, 2312, 2388, 1167, - 2294, 2501, 1866, 3421, 4059, 858, 4657, 794, 658, - 2225, 1411, 1995, 2476, 795, 2719, 1100, 685, 3038, - 1607, 4350, 2782, 410, 2489, 2516, 1183, 2789, 4067, - 4708, 2699, 3392, 4757, 4834, 2136, 1271, 2790, 3056, - 2835, 3630, 2085, 603, 3829, 4234, 710, 378, 2071, - 1558, 4206, 4361, 1063, 3780, 352, 168]), - values=tensor([6.8562e-01, 9.9314e-01, 3.4074e-01, 1.7233e-01, - 1.4522e-02, 6.3720e-01, 5.5464e-02, 7.3826e-01, - 1.5940e-01, 1.2632e-01, 2.2414e-01, 7.6966e-01, - 6.9475e-01, 9.2958e-01, 3.8229e-01, 7.5368e-01, - 7.6972e-01, 6.6374e-01, 5.6166e-01, 6.7113e-01, - 2.6640e-01, 3.1404e-01, 8.1747e-01, 7.0390e-01, - 3.3211e-02, 4.2381e-01, 1.8457e-01, 3.9280e-01, - 7.9738e-01, 4.8542e-01, 5.6000e-01, 2.0755e-01, - 7.0598e-01, 8.6707e-01, 1.7337e-01, 7.0748e-01, - 9.7389e-01, 7.9562e-01, 6.7701e-01, 4.6490e-01, - 5.4665e-01, 4.9560e-02, 5.8946e-01, 3.8658e-01, - 3.0672e-01, 2.5947e-01, 8.6455e-01, 8.5056e-02, - 3.3869e-01, 3.9093e-01, 5.9721e-01, 6.2207e-01, - 8.8265e-01, 8.1640e-01, 1.7680e-01, 2.4072e-01, - 3.6980e-01, 2.2490e-01, 6.0225e-01, 7.0554e-01, - 8.5790e-01, 7.4936e-01, 1.7010e-01, 2.0063e-01, - 1.1246e-01, 6.8727e-01, 6.8037e-01, 8.9757e-01, - 3.8505e-01, 6.5721e-01, 9.3013e-01, 4.9507e-01, - 7.9582e-01, 3.6413e-01, 6.2028e-01, 2.8858e-01, - 2.8115e-01, 4.5974e-01, 9.8822e-01, 1.1635e-01, - 5.8307e-01, 5.1420e-02, 1.1202e-01, 5.4531e-01, - 7.6023e-01, 9.0514e-01, 5.3398e-01, 1.7667e-01, - 9.2343e-01, 9.0805e-01, 9.6041e-01, 5.0364e-01, - 2.4720e-01, 1.5194e-01, 2.2205e-01, 3.0452e-01, - 6.8304e-02, 7.0941e-02, 2.3679e-01, 2.9428e-01, - 2.6988e-01, 2.9905e-01, 9.7067e-01, 3.9498e-01, - 4.5558e-01, 6.9955e-01, 5.3969e-02, 3.5860e-01, - 7.2397e-01, 7.1675e-01, 8.0095e-01, 4.8315e-01, - 4.1035e-01, 3.9824e-01, 5.0060e-01, 5.6947e-01, - 2.5338e-01, 1.2799e-01, 9.1108e-01, 7.6016e-02, - 8.5394e-01, 4.5257e-01, 4.8350e-01, 1.3291e-01, - 2.2106e-01, 8.0845e-01, 6.7657e-01, 4.4898e-01, - 6.6830e-01, 4.0859e-01, 8.4227e-01, 7.7311e-01, - 5.4753e-01, 3.9804e-01, 9.4899e-01, 8.2056e-01, - 7.7146e-01, 6.3508e-01, 6.2972e-01, 7.4169e-01, - 7.8963e-01, 1.0699e-01, 5.7796e-01, 7.2429e-01, - 6.3979e-02, 4.5238e-02, 6.3144e-01, 9.8512e-01, - 5.1816e-01, 3.2546e-01, 8.7580e-01, 9.7697e-01, - 4.6167e-01, 2.4042e-01, 1.1377e-01, 9.7747e-01, - 7.4258e-01, 6.3887e-01, 7.3930e-01, 2.3402e-01, - 4.1461e-01, 4.8691e-01, 2.7849e-01, 5.9673e-01, - 8.6946e-02, 9.5615e-01, 9.7242e-01, 8.9092e-01, - 4.1164e-01, 3.3893e-01, 9.4485e-01, 3.2960e-01, - 7.1004e-01, 4.1240e-01, 1.1151e-01, 7.6114e-01, - 5.5779e-01, 9.3723e-01, 2.2015e-01, 9.0422e-01, - 2.5683e-01, 4.6041e-01, 3.3427e-01, 4.3355e-02, - 3.1777e-01, 6.8533e-01, 4.9880e-01, 7.0528e-01, - 6.2605e-01, 9.9580e-01, 3.8253e-02, 1.0464e-02, - 6.2010e-02, 4.9009e-02, 8.8508e-01, 8.3043e-01, - 9.5592e-01, 8.5708e-01, 5.1611e-01, 1.7460e-01, - 4.5394e-01, 4.2516e-01, 8.0836e-01, 5.2242e-01, - 8.0860e-01, 5.1184e-01, 7.3172e-01, 9.2625e-01, - 3.8652e-01, 8.6518e-01, 6.9408e-01, 2.5732e-01, - 6.0297e-01, 2.2091e-01, 1.2658e-02, 7.6721e-01, - 9.6888e-02, 6.6146e-01, 4.4139e-01, 1.9043e-01, - 1.1703e-04, 3.3229e-01, 3.7446e-01, 3.2871e-01, - 5.5144e-01, 4.6404e-01, 7.9360e-01, 3.2754e-01, - 9.8665e-01, 3.2413e-01, 4.6510e-01, 6.8652e-01, - 9.6619e-01, 4.0817e-01, 5.0618e-01, 8.0048e-01, - 3.4373e-01, 9.9556e-01, 1.4700e-01, 1.2820e-01, - 8.0477e-01, 2.3035e-01, 5.4135e-01, 3.8689e-01, - 1.8548e-01, 9.7019e-01, 2.2577e-01, 3.2056e-01, - 4.1451e-02, 1.3423e-01]), size=(5000, 5000), nnz=250, - layout=torch.sparse_csr) -tensor([0.0595, 0.8939, 0.2592, ..., 0.5348, 0.8468, 0.6804]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([5000, 5000]) -Rows: 5000 -Size: 25000000 -NNZ: 250 -Density: 1e-05 -Time: 8.58342981338501 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 277505 -ss 5000 -sd 1e-05 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.940149784088135} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 81758 -ss 5000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 3.01309871673584} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([3014, 4957, 1583, 2867, 2783, 475, 2139, 2382, 3400, - 1371, 4277, 2356, 2363, 809, 3070, 166, 954, 1491, - 2451, 1189, 312, 609, 4247, 23, 459, 898, 2311, - 4831, 338, 2271, 1779, 2454, 4584, 3113, 487, 1534, - 2828, 4851, 633, 1451, 3532, 1285, 3207, 3942, 1871, - 1291, 465, 1879, 4867, 2362, 2141, 1675, 4085, 954, - 3823, 3407, 284, 572, 14, 2939, 2313, 3750, 1562, - 2613, 2778, 2860, 3224, 2726, 239, 3475, 2082, 2253, - 3516, 1146, 3276, 4995, 2558, 345, 3127, 2150, 75, - 826, 1135, 4736, 4690, 2556, 910, 1899, 2387, 947, - 695, 304, 2013, 2, 897, 3875, 3772, 1882, 451, - 3308, 1440, 3959, 2068, 783, 1822, 1945, 4659, 2440, - 4920, 2894, 4923, 1763, 2739, 4990, 4910, 2298, 1281, - 1642, 4403, 354, 879, 3935, 4111, 1373, 3061, 948, - 4840, 4778, 2992, 2315, 2233, 3168, 3973, 2138, 2299, - 4743, 1438, 4906, 254, 4427, 953, 1389, 2612, 1867, - 4913, 4975, 2438, 2961, 96, 3956, 1648, 4671, 3511, - 2332, 4616, 3807, 1099, 2689, 951, 1859, 3672, 4327, - 4946, 755, 3445, 807, 2050, 4470, 819, 3494, 4764, - 1487, 2681, 1451, 1828, 600, 2998, 2378, 1446, 2079, - 873, 270, 4942, 3757, 4929, 2560, 3562, 3539, 1466, - 871, 1762, 750, 1346, 533, 2678, 341, 1486, 2504, - 3221, 679, 2068, 2145, 3144, 834, 1808, 3153, 3407, - 2103, 1634, 1022, 1783, 3740, 3527, 3470, 3178, 4350, - 3648, 2120, 4578, 1596, 135, 2530, 1745, 608, 4825, - 4913, 4142, 3012, 1856, 2018, 3602, 264, 275, 4814, - 1938, 4047, 1223, 3103, 4868, 3533, 4726, 3018, 1931, - 379, 2338, 475, 3665, 4431, 938, 707]), - values=tensor([0.8419, 0.4424, 0.5698, 0.2999, 0.9295, 0.4679, 0.3442, - 0.3474, 0.7467, 0.0757, 0.0276, 0.8208, 0.7200, 0.1976, - 0.3319, 0.9583, 0.8463, 0.9566, 0.3073, 0.6760, 0.4346, - 0.2886, 0.9486, 0.0795, 0.8036, 0.5111, 0.4404, 0.5873, - 0.2286, 0.4238, 0.6160, 0.9372, 0.8314, 0.1765, 0.9714, - 0.5934, 0.0764, 0.5254, 0.7722, 0.8765, 0.7821, 0.7165, - 0.7425, 0.1690, 0.9418, 0.7089, 0.3090, 0.3146, 0.3776, - 0.3970, 0.7107, 0.4232, 0.2742, 0.1785, 0.3661, 0.7381, - 0.7677, 0.2922, 0.0118, 0.5142, 0.3228, 0.6287, 0.6950, - 0.5212, 0.9233, 0.5583, 0.3402, 0.9655, 0.1707, 0.5180, - 0.7601, 0.0519, 0.3853, 0.1663, 0.4842, 0.9445, 0.1159, - 0.1236, 0.2320, 0.4008, 0.3127, 0.0194, 0.2149, 0.2742, - 0.3828, 0.5264, 0.2515, 0.8214, 0.1769, 0.1933, 0.8188, - 0.5274, 0.2875, 0.2494, 0.8088, 0.9923, 0.5445, 0.3175, - 0.6285, 0.6236, 0.2042, 0.2625, 0.5051, 0.4802, 0.6055, - 0.2595, 0.3970, 0.4291, 0.2183, 0.7748, 0.7343, 0.0474, - 0.5801, 0.6534, 0.2948, 0.0363, 0.3237, 0.2880, 0.2211, - 0.1790, 0.3192, 0.9079, 0.1088, 0.8037, 0.5242, 0.3090, - 0.6078, 0.5167, 0.1361, 0.1093, 0.6079, 0.0095, 0.5118, - 0.3018, 0.1316, 0.6571, 0.0073, 0.3654, 0.4280, 0.8191, - 0.3184, 0.2360, 0.6869, 0.0155, 0.5085, 0.4025, 0.0799, - 0.7194, 0.4048, 0.5539, 0.2632, 0.0734, 0.9784, 0.3601, - 0.9418, 0.0499, 0.8840, 0.6116, 0.9865, 0.6081, 0.4861, - 0.7266, 0.7795, 0.1224, 0.6387, 0.9470, 0.4315, 0.0825, - 0.8006, 0.5528, 0.3202, 0.1662, 0.3257, 0.8268, 0.0860, - 0.4786, 0.2279, 0.0058, 0.4003, 0.0577, 0.1538, 0.9729, - 0.3529, 0.3205, 0.9176, 0.5843, 0.6548, 0.1570, 0.8380, - 0.7278, 0.2116, 0.1503, 0.0103, 0.8089, 0.9813, 0.7760, - 0.2123, 0.9690, 0.9240, 0.5892, 0.4778, 0.5100, 0.0404, - 0.6261, 0.6426, 0.9521, 0.0053, 0.5755, 0.0743, 0.7500, - 0.3281, 0.4225, 0.6900, 0.0916, 0.8990, 0.2711, 0.5755, - 0.5712, 0.7556, 0.0051, 0.6971, 0.0437, 0.5565, 0.4256, - 0.2960, 0.6043, 0.6836, 0.9303, 0.4472, 0.6016, 0.6132, - 0.9503, 0.8339, 0.2697, 0.0658, 0.7983, 0.4874, 0.1771, - 0.9875, 0.2001, 0.2752, 0.5608, 0.4997, 0.6797, 0.1612, - 0.9007, 0.9904, 0.7264, 0.3981, 0.6661]), + col_indices=tensor([3901, 3663, 229, 3286, 2751, 3483, 2128, 1446, 4503, + 3960, 1594, 4088, 4861, 755, 2490, 2051, 2278, 4729, + 1103, 1042, 1554, 2825, 4031, 3744, 2602, 531, 4883, + 202, 3192, 4676, 1858, 1406, 3540, 1868, 4258, 1296, + 40, 2235, 3617, 4799, 680, 649, 3963, 1933, 1725, + 575, 4509, 1266, 2706, 2278, 2363, 503, 1376, 3736, + 4576, 1431, 3018, 4449, 379, 171, 699, 4269, 423, + 15, 756, 1388, 2467, 4283, 3498, 330, 1828, 2936, + 727, 2300, 2833, 2863, 109, 1560, 2849, 1474, 443, + 230, 4619, 4963, 1262, 1748, 3663, 2453, 3127, 315, + 2799, 4404, 3122, 4451, 3711, 4611, 77, 2376, 1019, + 1276, 1245, 139, 3620, 243, 636, 3728, 523, 3275, + 1319, 407, 4648, 783, 1431, 764, 2964, 886, 1325, + 4241, 4394, 4361, 2591, 57, 2666, 3482, 767, 690, + 1227, 174, 1857, 1992, 525, 1315, 1715, 350, 2942, + 4827, 2788, 3414, 2521, 2538, 2474, 540, 1078, 638, + 3541, 2163, 4818, 623, 1593, 2829, 4885, 1974, 2036, + 2239, 4847, 1633, 3181, 2785, 2293, 3813, 4130, 3145, + 586, 2131, 1377, 3635, 1416, 96, 1290, 4122, 4111, + 3371, 3627, 1730, 4198, 1682, 3780, 3696, 967, 3018, + 2372, 3866, 4983, 4085, 4264, 3039, 2899, 4144, 4646, + 2984, 172, 4147, 1120, 2707, 124, 2849, 2323, 1520, + 3250, 2548, 2660, 4708, 2235, 593, 199, 448, 1975, + 4340, 1665, 3502, 4596, 1936, 3151, 759, 4834, 1142, + 2548, 2586, 1859, 3767, 1222, 4845, 1226, 3446, 4199, + 4381, 2057, 3436, 396, 3566, 1282, 173, 1462, 3915, + 4165, 1821, 3059, 730, 1341, 2913, 4066, 2638, 3070, + 430, 826, 3316, 2761, 4646, 4961, 2657]), + values=tensor([0.2777, 0.7994, 0.6055, 0.8858, 0.5401, 0.6289, 0.2315, + 0.7108, 0.2919, 0.9440, 0.4352, 0.9935, 0.7547, 0.9487, + 0.1198, 0.7138, 0.2381, 0.9158, 0.3679, 0.3919, 0.7781, + 0.8318, 0.6054, 0.4010, 0.3469, 0.3425, 0.7408, 0.3350, + 0.1090, 0.6705, 0.8875, 0.7480, 0.9795, 0.0427, 0.1593, + 0.2017, 0.8682, 0.9704, 0.5078, 0.7021, 0.2351, 0.1990, + 0.1799, 0.1614, 0.9052, 0.7818, 0.9469, 0.9144, 0.6416, + 0.0978, 0.2154, 0.3794, 0.0722, 0.4288, 0.4423, 0.0392, + 0.2361, 0.1773, 0.5238, 0.6266, 0.9495, 0.4070, 0.9779, + 0.1080, 0.9756, 0.0212, 0.7575, 0.6901, 0.5589, 0.8829, + 0.5870, 0.3829, 0.0909, 0.7414, 0.5878, 0.3480, 0.1168, + 0.3972, 0.2804, 0.8860, 0.5903, 0.9778, 0.2522, 0.2229, + 0.0973, 0.3159, 0.6835, 0.0134, 0.3067, 0.7266, 0.6764, + 0.3082, 0.0327, 0.3921, 0.8622, 0.8074, 0.6252, 0.9606, + 0.3313, 0.3455, 0.4533, 0.6697, 0.2711, 0.3754, 0.8727, + 0.6651, 0.0380, 0.1210, 0.0259, 0.0087, 0.3017, 0.7186, + 0.9688, 0.5810, 0.6939, 0.8057, 0.2727, 0.5144, 0.0126, + 0.0636, 0.8543, 0.9756, 0.4583, 0.3014, 0.5014, 0.4285, + 0.3361, 0.3583, 0.8660, 0.8752, 0.5050, 0.1837, 0.7102, + 0.1957, 0.9064, 0.7982, 0.5015, 0.4099, 0.5809, 0.8801, + 0.0073, 0.5658, 0.8433, 0.7251, 0.8971, 0.9752, 0.6676, + 0.2814, 0.9394, 0.9811, 0.1778, 0.5627, 0.3569, 0.2951, + 0.4362, 0.7414, 0.7224, 0.6917, 0.2922, 0.7465, 0.6523, + 0.5621, 0.0779, 0.8744, 0.6553, 0.5271, 0.0990, 0.8629, + 0.6483, 0.0044, 0.2027, 0.6359, 0.0842, 0.9816, 0.4377, + 0.7291, 0.7757, 0.4150, 0.9512, 0.9053, 0.6628, 0.9162, + 0.6353, 0.3725, 0.8919, 0.1505, 0.1975, 0.7728, 0.1846, + 0.5340, 0.4217, 0.7643, 0.3438, 0.6005, 0.7795, 0.2067, + 0.6674, 0.9142, 0.4620, 0.8140, 0.1036, 0.3590, 0.3372, + 0.0756, 0.4219, 0.7019, 0.2017, 0.1876, 0.8857, 0.9443, + 0.7034, 0.3858, 0.6463, 0.0872, 0.7101, 0.2546, 0.8101, + 0.3637, 0.4495, 0.8137, 0.4469, 0.4204, 0.1055, 0.8379, + 0.1725, 0.3312, 0.1791, 0.6141, 0.0562, 0.4774, 0.5212, + 0.7724, 0.9039, 0.5626, 0.1051, 0.2569, 0.5243, 0.3982, + 0.0444, 0.0991, 0.8125, 0.2081, 0.2559, 0.6572, 0.3238, + 0.3534, 0.8270, 0.9704, 0.5262, 0.1397]), size=(5000, 5000), nnz=250, layout=torch.sparse_csr) -tensor([0.5019, 0.1367, 0.6742, ..., 0.0249, 0.2703, 0.5698]) +tensor([0.2610, 0.0051, 0.8611, ..., 0.6706, 0.7457, 0.2823]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -266,80 +158,80 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 9.940149784088135 seconds +Time: 3.01309871673584 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 293134 -ss 5000 -sd 1e-05 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.89356017112732} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 284909 -ss 5000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.16942024230957} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([3878, 1793, 196, 4523, 2590, 2367, 223, 4753, 811, - 1344, 3831, 3891, 1471, 342, 75, 2706, 3424, 2402, - 4777, 1498, 772, 4383, 2094, 2326, 2946, 1126, 2886, - 1923, 932, 4969, 3541, 896, 863, 2668, 4869, 4410, - 1937, 3764, 94, 3879, 1282, 4972, 2002, 1481, 4954, - 2173, 3425, 2770, 4498, 897, 827, 829, 4189, 4991, - 1934, 1179, 1128, 2114, 2395, 2017, 3561, 4691, 2694, - 1416, 4554, 620, 4382, 4973, 3582, 230, 4891, 3107, - 1979, 140, 933, 4466, 308, 3556, 3173, 4882, 4797, - 1238, 3925, 3354, 291, 1290, 414, 2445, 3042, 2325, - 2660, 1731, 777, 3782, 2858, 3541, 2112, 2412, 4004, - 942, 1750, 1450, 45, 960, 1184, 3190, 4107, 4960, - 4877, 4158, 1493, 3953, 2210, 1987, 3321, 3595, 1029, - 1281, 3168, 3718, 1747, 2899, 1694, 1765, 2658, 2297, - 2811, 4794, 2166, 3385, 3144, 590, 756, 1857, 2472, - 2864, 4092, 2483, 1698, 3039, 4797, 2893, 4815, 1160, - 92, 3486, 728, 546, 1233, 1206, 3098, 284, 3217, - 1908, 3538, 556, 1018, 3457, 4789, 3509, 986, 1353, - 3714, 674, 3739, 3917, 378, 4295, 1240, 678, 634, - 156, 182, 2959, 787, 2431, 894, 4155, 1278, 4710, - 115, 3800, 3528, 4651, 4055, 3457, 4797, 3790, 2898, - 2898, 1677, 2106, 3532, 1869, 3926, 1788, 4954, 1802, - 3662, 3116, 1672, 1899, 2743, 4402, 201, 2790, 4915, - 3309, 2448, 4340, 71, 1083, 3547, 1833, 4517, 4811, - 4522, 4837, 4905, 1773, 2748, 2712, 2488, 4842, 2297, - 377, 2695, 2905, 534, 1022, 2504, 1436, 3486, 3980, - 4913, 361, 4684, 2741, 722, 1718, 3274, 513, 1785, - 4555, 575, 662, 3842, 1584, 2198, 215]), - values=tensor([0.8076, 0.3370, 0.6780, 0.9299, 0.5410, 0.0897, 0.3343, - 0.8017, 0.5673, 0.5602, 0.9800, 0.8553, 0.3447, 0.6119, - 0.3490, 0.5758, 0.1388, 0.7568, 0.7228, 0.2456, 0.6799, - 0.7488, 0.1368, 0.7230, 0.3714, 0.8061, 0.2178, 0.6691, - 0.7090, 0.6240, 0.5615, 0.6385, 0.8034, 0.6963, 0.9896, - 0.1078, 0.2316, 0.3754, 0.7350, 0.4907, 0.3665, 0.2209, - 0.4611, 0.7569, 0.4815, 0.7270, 0.4688, 0.5127, 0.0439, - 0.4951, 0.3454, 0.1899, 0.8750, 0.1915, 0.8080, 0.6042, - 0.7305, 0.2510, 0.4960, 0.3143, 0.3207, 0.3323, 0.5478, - 0.3218, 0.1649, 0.9155, 0.2697, 0.4415, 0.6177, 0.1457, - 0.9256, 0.6524, 0.8106, 0.1943, 0.2636, 0.7375, 0.5837, - 0.4529, 0.4107, 0.4337, 0.4074, 0.1673, 0.9988, 0.7338, - 0.1243, 0.9778, 0.4221, 0.2348, 0.5442, 0.1259, 0.4222, - 0.6127, 0.0857, 0.6974, 0.0596, 0.3553, 0.4614, 0.5799, - 0.4404, 0.3360, 0.3314, 0.9445, 0.7231, 0.9851, 0.8853, - 0.4987, 0.3871, 0.5069, 0.6349, 0.9384, 0.3450, 0.4613, - 0.2127, 0.4994, 0.0034, 0.9538, 0.3203, 0.8248, 0.5140, - 0.0568, 0.3913, 0.0456, 0.0790, 0.1457, 0.8710, 0.7025, - 0.5191, 0.7160, 0.2410, 0.7547, 0.7169, 0.9282, 0.0473, - 0.4454, 0.5093, 0.4795, 0.3417, 0.5014, 0.0605, 0.9341, - 0.8068, 0.8325, 0.0916, 0.8219, 0.9882, 0.3617, 0.8114, - 0.3412, 0.2133, 0.4138, 0.2870, 0.1987, 0.5576, 0.8136, - 0.4067, 0.6195, 0.5018, 0.5513, 0.5252, 0.0402, 0.7889, - 0.3122, 0.6215, 0.9385, 0.7669, 0.1080, 0.2818, 0.0494, - 0.0251, 0.3317, 0.4666, 0.5981, 0.5539, 0.1688, 0.7416, - 0.8841, 0.4123, 0.1102, 0.1371, 0.7232, 0.6598, 0.7427, - 0.8150, 0.1180, 0.3866, 0.1447, 0.4442, 0.5099, 0.1417, - 0.2917, 0.8599, 0.3553, 0.2307, 0.1388, 0.1482, 0.8529, - 0.3988, 0.9926, 0.3184, 0.2404, 0.4847, 0.5288, 0.0738, - 0.0517, 0.1797, 0.1796, 0.7215, 0.5955, 0.6432, 0.0017, - 0.6486, 0.6664, 0.4487, 0.7630, 0.7774, 0.9276, 0.9518, - 0.4507, 0.3399, 0.7495, 0.4581, 0.6140, 0.0659, 0.8137, - 0.4343, 0.4836, 0.5681, 0.7947, 0.1417, 0.8229, 0.0824, - 0.2070, 0.8783, 0.3511, 0.9580, 0.1053, 0.3375, 0.2396, - 0.0513, 0.5334, 0.3977, 0.6765, 0.1035, 0.8974, 0.8093, - 0.7238, 0.8002, 0.6243, 0.9654, 0.2803]), + col_indices=tensor([1669, 2388, 3410, 214, 4888, 2047, 1859, 3824, 1130, + 3331, 4650, 808, 1845, 4600, 2980, 4756, 2639, 4242, + 120, 4542, 2175, 1322, 104, 704, 854, 2110, 1063, + 1256, 2794, 2665, 1239, 4623, 2397, 2905, 1669, 3634, + 691, 1001, 4550, 1274, 2606, 2628, 4848, 3423, 4205, + 4849, 3844, 4805, 2751, 822, 856, 3866, 2362, 4396, + 3513, 3731, 4108, 1129, 2401, 2429, 238, 3568, 2538, + 4839, 3438, 2131, 3982, 1035, 620, 3061, 2659, 870, + 31, 582, 3725, 2164, 3897, 4881, 3537, 2824, 936, + 4420, 341, 4499, 2690, 351, 3823, 4169, 4790, 4554, + 2495, 1376, 3626, 221, 4721, 2833, 4128, 83, 287, + 4091, 4135, 4551, 3973, 764, 392, 4740, 2858, 4378, + 2517, 4820, 3243, 3784, 1749, 2694, 3058, 661, 4273, + 2427, 4542, 135, 3704, 3578, 4193, 3743, 3465, 2179, + 4188, 2714, 3316, 1323, 3063, 3972, 3355, 1842, 1656, + 2481, 1669, 1106, 4204, 1040, 565, 3967, 2999, 776, + 1132, 4335, 252, 3480, 3592, 4417, 2743, 508, 1998, + 2250, 4747, 3247, 3778, 2520, 4340, 4333, 889, 3347, + 1306, 252, 3840, 4251, 3753, 922, 1530, 732, 4724, + 4652, 2305, 676, 3763, 2577, 479, 3149, 3237, 682, + 2204, 1170, 4037, 1115, 902, 2463, 2133, 49, 3338, + 846, 2596, 1254, 611, 336, 2556, 4596, 3162, 2347, + 1052, 1946, 3013, 1910, 3262, 793, 681, 3061, 4097, + 649, 4096, 3982, 4856, 2244, 770, 1157, 3683, 1150, + 4034, 4307, 4867, 947, 1680, 3888, 190, 677, 2841, + 816, 454, 4546, 1683, 1115, 4528, 4055, 324, 2442, + 1530, 1512, 2880, 1124, 741, 2337, 2820, 1096, 969, + 4662, 1861, 4067, 2109, 3996, 1635, 499]), + values=tensor([0.8132, 0.1702, 0.5583, 0.1261, 0.6291, 0.5508, 0.1330, + 0.9627, 0.2059, 0.3644, 0.3622, 0.4731, 0.3091, 0.8919, + 0.7060, 0.5289, 0.7945, 0.3422, 0.4040, 0.9747, 0.1778, + 0.1060, 0.3373, 0.1041, 0.0936, 0.4036, 0.4021, 0.5444, + 0.4938, 0.5992, 0.1894, 0.3036, 0.6677, 0.4744, 0.8443, + 0.2067, 0.1390, 0.7860, 0.2069, 0.5019, 0.5539, 0.4807, + 0.6194, 0.5176, 0.2767, 0.7631, 0.4453, 0.0999, 0.7181, + 0.2470, 0.2255, 0.5250, 0.2866, 0.8997, 0.0544, 0.1824, + 0.2628, 0.9339, 0.2590, 0.5943, 0.2439, 0.4256, 0.8224, + 0.2204, 0.5000, 0.2703, 0.2122, 0.2501, 0.5794, 0.6155, + 0.5183, 0.5021, 0.6112, 0.1537, 0.1024, 0.3154, 0.0744, + 0.5354, 0.3979, 0.6342, 0.7319, 0.0847, 0.3194, 0.5800, + 0.2467, 0.5775, 0.6339, 0.2050, 0.2286, 0.7874, 0.1733, + 0.7255, 0.0573, 0.6716, 0.4231, 0.6554, 0.3477, 0.4703, + 0.1981, 0.3923, 0.3520, 0.4289, 0.4033, 0.1353, 0.5197, + 0.9189, 0.6985, 0.9291, 0.8051, 0.5530, 0.0423, 0.9594, + 0.8487, 0.2554, 0.0395, 0.4103, 0.1345, 0.0607, 0.2812, + 0.7571, 0.9906, 0.2249, 0.3326, 0.1389, 0.8069, 0.2156, + 0.3462, 0.2324, 0.0457, 0.8244, 0.5205, 0.0833, 0.1781, + 0.3837, 0.9227, 0.2976, 0.9031, 0.2499, 0.3484, 0.3298, + 0.6568, 0.3816, 0.5687, 0.3523, 0.3593, 0.7242, 0.1034, + 0.3478, 0.4454, 0.7734, 0.2847, 0.4512, 0.5866, 0.1633, + 0.7139, 0.4511, 0.5642, 0.2230, 0.1384, 0.2467, 0.5114, + 0.5149, 0.4901, 0.7340, 0.5840, 0.0495, 0.1493, 0.4501, + 0.5299, 0.1752, 0.0737, 0.0887, 0.7004, 0.7171, 0.6451, + 0.1099, 0.6191, 0.3209, 0.2667, 0.2735, 0.3592, 0.7035, + 0.1766, 0.2292, 0.6138, 0.2492, 0.8422, 0.5205, 0.0949, + 0.6311, 0.1200, 0.6842, 0.3167, 0.3418, 0.7978, 0.1885, + 0.9433, 0.6390, 0.5217, 0.8313, 0.4066, 0.8623, 0.9330, + 0.7999, 0.0688, 0.3315, 0.2496, 0.2006, 0.0199, 0.1239, + 0.0030, 0.9251, 0.8374, 0.2492, 0.6001, 0.0171, 0.3645, + 0.9564, 0.7314, 0.8427, 0.8917, 0.1465, 0.2355, 0.6975, + 0.9025, 0.0358, 0.2860, 0.4051, 0.9734, 0.8626, 0.4028, + 0.9642, 0.0743, 0.8714, 0.6919, 0.3640, 0.9239, 0.1573, + 0.9549, 0.3068, 0.2789, 0.0169, 0.6253, 0.7318, 0.1857, + 0.1394, 0.2220, 0.2355, 0.9726, 0.9750]), size=(5000, 5000), nnz=250, layout=torch.sparse_csr) -tensor([0.4617, 0.6014, 0.4133, ..., 0.3579, 0.3877, 0.5185]) +tensor([0.9060, 0.0911, 0.6185, ..., 0.7353, 0.0547, 0.2301]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -347,77 +239,77 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 10.89356017112732 seconds +Time: 10.16942024230957 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([3878, 1793, 196, 4523, 2590, 2367, 223, 4753, 811, - 1344, 3831, 3891, 1471, 342, 75, 2706, 3424, 2402, - 4777, 1498, 772, 4383, 2094, 2326, 2946, 1126, 2886, - 1923, 932, 4969, 3541, 896, 863, 2668, 4869, 4410, - 1937, 3764, 94, 3879, 1282, 4972, 2002, 1481, 4954, - 2173, 3425, 2770, 4498, 897, 827, 829, 4189, 4991, - 1934, 1179, 1128, 2114, 2395, 2017, 3561, 4691, 2694, - 1416, 4554, 620, 4382, 4973, 3582, 230, 4891, 3107, - 1979, 140, 933, 4466, 308, 3556, 3173, 4882, 4797, - 1238, 3925, 3354, 291, 1290, 414, 2445, 3042, 2325, - 2660, 1731, 777, 3782, 2858, 3541, 2112, 2412, 4004, - 942, 1750, 1450, 45, 960, 1184, 3190, 4107, 4960, - 4877, 4158, 1493, 3953, 2210, 1987, 3321, 3595, 1029, - 1281, 3168, 3718, 1747, 2899, 1694, 1765, 2658, 2297, - 2811, 4794, 2166, 3385, 3144, 590, 756, 1857, 2472, - 2864, 4092, 2483, 1698, 3039, 4797, 2893, 4815, 1160, - 92, 3486, 728, 546, 1233, 1206, 3098, 284, 3217, - 1908, 3538, 556, 1018, 3457, 4789, 3509, 986, 1353, - 3714, 674, 3739, 3917, 378, 4295, 1240, 678, 634, - 156, 182, 2959, 787, 2431, 894, 4155, 1278, 4710, - 115, 3800, 3528, 4651, 4055, 3457, 4797, 3790, 2898, - 2898, 1677, 2106, 3532, 1869, 3926, 1788, 4954, 1802, - 3662, 3116, 1672, 1899, 2743, 4402, 201, 2790, 4915, - 3309, 2448, 4340, 71, 1083, 3547, 1833, 4517, 4811, - 4522, 4837, 4905, 1773, 2748, 2712, 2488, 4842, 2297, - 377, 2695, 2905, 534, 1022, 2504, 1436, 3486, 3980, - 4913, 361, 4684, 2741, 722, 1718, 3274, 513, 1785, - 4555, 575, 662, 3842, 1584, 2198, 215]), - values=tensor([0.8076, 0.3370, 0.6780, 0.9299, 0.5410, 0.0897, 0.3343, - 0.8017, 0.5673, 0.5602, 0.9800, 0.8553, 0.3447, 0.6119, - 0.3490, 0.5758, 0.1388, 0.7568, 0.7228, 0.2456, 0.6799, - 0.7488, 0.1368, 0.7230, 0.3714, 0.8061, 0.2178, 0.6691, - 0.7090, 0.6240, 0.5615, 0.6385, 0.8034, 0.6963, 0.9896, - 0.1078, 0.2316, 0.3754, 0.7350, 0.4907, 0.3665, 0.2209, - 0.4611, 0.7569, 0.4815, 0.7270, 0.4688, 0.5127, 0.0439, - 0.4951, 0.3454, 0.1899, 0.8750, 0.1915, 0.8080, 0.6042, - 0.7305, 0.2510, 0.4960, 0.3143, 0.3207, 0.3323, 0.5478, - 0.3218, 0.1649, 0.9155, 0.2697, 0.4415, 0.6177, 0.1457, - 0.9256, 0.6524, 0.8106, 0.1943, 0.2636, 0.7375, 0.5837, - 0.4529, 0.4107, 0.4337, 0.4074, 0.1673, 0.9988, 0.7338, - 0.1243, 0.9778, 0.4221, 0.2348, 0.5442, 0.1259, 0.4222, - 0.6127, 0.0857, 0.6974, 0.0596, 0.3553, 0.4614, 0.5799, - 0.4404, 0.3360, 0.3314, 0.9445, 0.7231, 0.9851, 0.8853, - 0.4987, 0.3871, 0.5069, 0.6349, 0.9384, 0.3450, 0.4613, - 0.2127, 0.4994, 0.0034, 0.9538, 0.3203, 0.8248, 0.5140, - 0.0568, 0.3913, 0.0456, 0.0790, 0.1457, 0.8710, 0.7025, - 0.5191, 0.7160, 0.2410, 0.7547, 0.7169, 0.9282, 0.0473, - 0.4454, 0.5093, 0.4795, 0.3417, 0.5014, 0.0605, 0.9341, - 0.8068, 0.8325, 0.0916, 0.8219, 0.9882, 0.3617, 0.8114, - 0.3412, 0.2133, 0.4138, 0.2870, 0.1987, 0.5576, 0.8136, - 0.4067, 0.6195, 0.5018, 0.5513, 0.5252, 0.0402, 0.7889, - 0.3122, 0.6215, 0.9385, 0.7669, 0.1080, 0.2818, 0.0494, - 0.0251, 0.3317, 0.4666, 0.5981, 0.5539, 0.1688, 0.7416, - 0.8841, 0.4123, 0.1102, 0.1371, 0.7232, 0.6598, 0.7427, - 0.8150, 0.1180, 0.3866, 0.1447, 0.4442, 0.5099, 0.1417, - 0.2917, 0.8599, 0.3553, 0.2307, 0.1388, 0.1482, 0.8529, - 0.3988, 0.9926, 0.3184, 0.2404, 0.4847, 0.5288, 0.0738, - 0.0517, 0.1797, 0.1796, 0.7215, 0.5955, 0.6432, 0.0017, - 0.6486, 0.6664, 0.4487, 0.7630, 0.7774, 0.9276, 0.9518, - 0.4507, 0.3399, 0.7495, 0.4581, 0.6140, 0.0659, 0.8137, - 0.4343, 0.4836, 0.5681, 0.7947, 0.1417, 0.8229, 0.0824, - 0.2070, 0.8783, 0.3511, 0.9580, 0.1053, 0.3375, 0.2396, - 0.0513, 0.5334, 0.3977, 0.6765, 0.1035, 0.8974, 0.8093, - 0.7238, 0.8002, 0.6243, 0.9654, 0.2803]), + col_indices=tensor([1669, 2388, 3410, 214, 4888, 2047, 1859, 3824, 1130, + 3331, 4650, 808, 1845, 4600, 2980, 4756, 2639, 4242, + 120, 4542, 2175, 1322, 104, 704, 854, 2110, 1063, + 1256, 2794, 2665, 1239, 4623, 2397, 2905, 1669, 3634, + 691, 1001, 4550, 1274, 2606, 2628, 4848, 3423, 4205, + 4849, 3844, 4805, 2751, 822, 856, 3866, 2362, 4396, + 3513, 3731, 4108, 1129, 2401, 2429, 238, 3568, 2538, + 4839, 3438, 2131, 3982, 1035, 620, 3061, 2659, 870, + 31, 582, 3725, 2164, 3897, 4881, 3537, 2824, 936, + 4420, 341, 4499, 2690, 351, 3823, 4169, 4790, 4554, + 2495, 1376, 3626, 221, 4721, 2833, 4128, 83, 287, + 4091, 4135, 4551, 3973, 764, 392, 4740, 2858, 4378, + 2517, 4820, 3243, 3784, 1749, 2694, 3058, 661, 4273, + 2427, 4542, 135, 3704, 3578, 4193, 3743, 3465, 2179, + 4188, 2714, 3316, 1323, 3063, 3972, 3355, 1842, 1656, + 2481, 1669, 1106, 4204, 1040, 565, 3967, 2999, 776, + 1132, 4335, 252, 3480, 3592, 4417, 2743, 508, 1998, + 2250, 4747, 3247, 3778, 2520, 4340, 4333, 889, 3347, + 1306, 252, 3840, 4251, 3753, 922, 1530, 732, 4724, + 4652, 2305, 676, 3763, 2577, 479, 3149, 3237, 682, + 2204, 1170, 4037, 1115, 902, 2463, 2133, 49, 3338, + 846, 2596, 1254, 611, 336, 2556, 4596, 3162, 2347, + 1052, 1946, 3013, 1910, 3262, 793, 681, 3061, 4097, + 649, 4096, 3982, 4856, 2244, 770, 1157, 3683, 1150, + 4034, 4307, 4867, 947, 1680, 3888, 190, 677, 2841, + 816, 454, 4546, 1683, 1115, 4528, 4055, 324, 2442, + 1530, 1512, 2880, 1124, 741, 2337, 2820, 1096, 969, + 4662, 1861, 4067, 2109, 3996, 1635, 499]), + values=tensor([0.8132, 0.1702, 0.5583, 0.1261, 0.6291, 0.5508, 0.1330, + 0.9627, 0.2059, 0.3644, 0.3622, 0.4731, 0.3091, 0.8919, + 0.7060, 0.5289, 0.7945, 0.3422, 0.4040, 0.9747, 0.1778, + 0.1060, 0.3373, 0.1041, 0.0936, 0.4036, 0.4021, 0.5444, + 0.4938, 0.5992, 0.1894, 0.3036, 0.6677, 0.4744, 0.8443, + 0.2067, 0.1390, 0.7860, 0.2069, 0.5019, 0.5539, 0.4807, + 0.6194, 0.5176, 0.2767, 0.7631, 0.4453, 0.0999, 0.7181, + 0.2470, 0.2255, 0.5250, 0.2866, 0.8997, 0.0544, 0.1824, + 0.2628, 0.9339, 0.2590, 0.5943, 0.2439, 0.4256, 0.8224, + 0.2204, 0.5000, 0.2703, 0.2122, 0.2501, 0.5794, 0.6155, + 0.5183, 0.5021, 0.6112, 0.1537, 0.1024, 0.3154, 0.0744, + 0.5354, 0.3979, 0.6342, 0.7319, 0.0847, 0.3194, 0.5800, + 0.2467, 0.5775, 0.6339, 0.2050, 0.2286, 0.7874, 0.1733, + 0.7255, 0.0573, 0.6716, 0.4231, 0.6554, 0.3477, 0.4703, + 0.1981, 0.3923, 0.3520, 0.4289, 0.4033, 0.1353, 0.5197, + 0.9189, 0.6985, 0.9291, 0.8051, 0.5530, 0.0423, 0.9594, + 0.8487, 0.2554, 0.0395, 0.4103, 0.1345, 0.0607, 0.2812, + 0.7571, 0.9906, 0.2249, 0.3326, 0.1389, 0.8069, 0.2156, + 0.3462, 0.2324, 0.0457, 0.8244, 0.5205, 0.0833, 0.1781, + 0.3837, 0.9227, 0.2976, 0.9031, 0.2499, 0.3484, 0.3298, + 0.6568, 0.3816, 0.5687, 0.3523, 0.3593, 0.7242, 0.1034, + 0.3478, 0.4454, 0.7734, 0.2847, 0.4512, 0.5866, 0.1633, + 0.7139, 0.4511, 0.5642, 0.2230, 0.1384, 0.2467, 0.5114, + 0.5149, 0.4901, 0.7340, 0.5840, 0.0495, 0.1493, 0.4501, + 0.5299, 0.1752, 0.0737, 0.0887, 0.7004, 0.7171, 0.6451, + 0.1099, 0.6191, 0.3209, 0.2667, 0.2735, 0.3592, 0.7035, + 0.1766, 0.2292, 0.6138, 0.2492, 0.8422, 0.5205, 0.0949, + 0.6311, 0.1200, 0.6842, 0.3167, 0.3418, 0.7978, 0.1885, + 0.9433, 0.6390, 0.5217, 0.8313, 0.4066, 0.8623, 0.9330, + 0.7999, 0.0688, 0.3315, 0.2496, 0.2006, 0.0199, 0.1239, + 0.0030, 0.9251, 0.8374, 0.2492, 0.6001, 0.0171, 0.3645, + 0.9564, 0.7314, 0.8427, 0.8917, 0.1465, 0.2355, 0.6975, + 0.9025, 0.0358, 0.2860, 0.4051, 0.9734, 0.8626, 0.4028, + 0.9642, 0.0743, 0.8714, 0.6919, 0.3640, 0.9239, 0.1573, + 0.9549, 0.3068, 0.2789, 0.0169, 0.6253, 0.7318, 0.1857, + 0.1394, 0.2220, 0.2355, 0.9726, 0.9750]), size=(5000, 5000), nnz=250, layout=torch.sparse_csr) -tensor([0.4617, 0.6014, 0.4133, ..., 0.3579, 0.3877, 0.5185]) +tensor([0.9060, 0.0911, 0.6185, ..., 0.7353, 0.0547, 0.2301]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -425,13 +317,13 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 10.89356017112732 seconds +Time: 10.16942024230957 seconds -[16.36, 16.36, 16.4, 16.6, 16.6, 16.96, 16.96, 16.88, 16.88, 16.48] -[16.32, 16.28, 19.04, 20.36, 23.52, 24.24, 24.96, 24.96, 22.16, 21.36, 19.68, 19.76, 19.8, 19.64] -14.221415042877197 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 293134, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.89356017112732, 'TIME_S_1KI': 0.03716239048055606, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 278.4485914421082, 'W': 19.57952781791354} -[16.36, 16.36, 16.4, 16.6, 16.6, 16.96, 16.96, 16.88, 16.88, 16.48, 16.6, 16.64, 16.68, 16.76, 16.68, 16.56, 16.4, 16.4, 16.52, 16.64] -299.32000000000005 -14.966000000000003 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 293134, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.89356017112732, 'TIME_S_1KI': 0.03716239048055606, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 278.4485914421082, 'W': 19.57952781791354, 'J_1KI': 0.9499020633638819, 'W_1KI': 0.06679377969772711, 'W_D': 4.613527817913537, 'J_D': 65.610893910408, 'W_D_1KI': 0.01573863085794735, 'J_D_1KI': 5.3690908792386244e-05} +[20.28, 20.4, 20.4, 20.48, 20.76, 21.28, 21.16, 20.96, 20.76, 20.4] +[20.12, 20.44, 21.32, 22.44, 25.12, 25.12, 25.76, 26.28, 25.96, 25.44, 23.88, 24.04, 24.16, 23.84] +14.210330247879028 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 284909, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.16942024230957, 'TIME_S_1KI': 0.035693573184102885, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 316.9542731094361, 'W': 22.304497332617817} +[20.28, 20.4, 20.4, 20.48, 20.76, 21.28, 21.16, 20.96, 20.76, 20.4, 20.8, 20.88, 20.72, 20.76, 20.84, 20.84, 20.44, 20.52, 20.32, 20.6] +372.55999999999995 +18.627999999999997 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 284909, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.16942024230957, 'TIME_S_1KI': 0.035693573184102885, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 316.9542731094361, 'W': 22.304497332617817, 'J_1KI': 1.1124754679895548, 'W_1KI': 0.07828639085679223, 'W_D': 3.6764973326178207, 'J_D': 52.24424125194558, 'W_D_1KI': 0.012904110900736098, 'J_D_1KI': 4.529204377796454e-05} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_5e-05.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_5e-05.json index c47b89b..758834a 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_5e-05.json +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_5e-05.json @@ -1 +1 @@ -{"CPU": "Altra", "CORES": 16, "ITERATIONS": 151147, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.619585275650024, "TIME_S_1KI": 0.07025998051995755, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 328.34527337074286, "W": 23.06683265939357, "J_1KI": 2.1723571977660345, "W_1KI": 0.15261191197571614, "W_D": 4.6928326593935665, "J_D": 66.80021679544454, "W_D_1KI": 0.031048136313612352, "J_D_1KI": 0.00020541682146263144} +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 154432, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.621034145355225, "TIME_S_1KI": 0.06877482740206191, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 316.4244461250305, "W": 22.262246477486542, "J_1KI": 2.0489564735613763, "W_1KI": 0.144155657360434, "W_D": 3.7392464774865424, "J_D": 53.14778078484536, "W_D_1KI": 0.024212899382812774, "J_D_1KI": 0.00015678680184685024} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_5e-05.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_5e-05.output index b0a08a7..8f01bb5 100644 --- a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_5e-05.output +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_5000_5e-05.output @@ -1,13 +1,13 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 5000 -sd 5e-05 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.07715368270874023} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 100 -ss 5000 -sd 5e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.014879941940307617} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 1250, 1250, 1250]), - col_indices=tensor([4186, 604, 2911, ..., 3524, 2664, 807]), - values=tensor([0.1303, 0.5472, 0.9541, ..., 0.4453, 0.4813, 0.2933]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1248, 1250, 1250]), + col_indices=tensor([1397, 3608, 621, ..., 1983, 2722, 4972]), + values=tensor([0.7898, 0.8890, 0.9853, ..., 0.2806, 0.4332, 0.7785]), size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) -tensor([0.2363, 0.5745, 0.8536, ..., 0.3028, 0.7626, 0.7945]) +tensor([0.8515, 0.1205, 0.1290, ..., 0.0596, 0.1294, 0.2178]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -15,18 +15,18 @@ Rows: 5000 Size: 25000000 NNZ: 1250 Density: 5e-05 -Time: 0.07715368270874023 seconds +Time: 0.014879941940307617 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 136092 -ss 5000 -sd 5e-05 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 9.454103946685791} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 70564 -ss 5000 -sd 5e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 4.797720670700073} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 1250, 1250, 1250]), - col_indices=tensor([2642, 3295, 3317, ..., 552, 1688, 3754]), - values=tensor([0.5853, 0.8410, 0.7758, ..., 0.7543, 0.4171, 0.3907]), +tensor(crow_indices=tensor([ 0, 1, 2, ..., 1249, 1250, 1250]), + col_indices=tensor([4236, 1927, 389, ..., 3900, 4084, 4178]), + values=tensor([0.5819, 0.5926, 0.4032, ..., 0.1422, 0.8129, 0.9187]), size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) -tensor([0.4145, 0.1634, 0.4401, ..., 0.9903, 0.7928, 0.8495]) +tensor([0.4782, 0.7587, 0.6755, ..., 0.4641, 0.3230, 0.1517]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -34,18 +34,18 @@ Rows: 5000 Size: 25000000 NNZ: 1250 Density: 5e-05 -Time: 9.454103946685791 seconds +Time: 4.797720670700073 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 151147 -ss 5000 -sd 5e-05 -c 16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.619585275650024} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 154432 -ss 5000 -sd 5e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.621034145355225} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 1250, 1250, 1250]), - col_indices=tensor([2120, 4070, 3230, ..., 2901, 3405, 168]), - values=tensor([0.1519, 0.7232, 0.6282, ..., 0.2528, 0.5199, 0.9452]), +tensor(crow_indices=tensor([ 0, 1, 1, ..., 1249, 1250, 1250]), + col_indices=tensor([ 91, 2944, 3974, ..., 4430, 70, 3263]), + values=tensor([0.2553, 0.0855, 0.4739, ..., 0.3797, 0.6721, 0.4378]), size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) -tensor([0.2553, 0.4766, 0.2217, ..., 0.4056, 0.3500, 0.9553]) +tensor([0.8009, 0.9874, 0.1682, ..., 0.8612, 0.3697, 0.0752]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,15 +53,15 @@ Rows: 5000 Size: 25000000 NNZ: 1250 Density: 5e-05 -Time: 10.619585275650024 seconds +Time: 10.621034145355225 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 1250, 1250, 1250]), - col_indices=tensor([2120, 4070, 3230, ..., 2901, 3405, 168]), - values=tensor([0.1519, 0.7232, 0.6282, ..., 0.2528, 0.5199, 0.9452]), +tensor(crow_indices=tensor([ 0, 1, 1, ..., 1249, 1250, 1250]), + col_indices=tensor([ 91, 2944, 3974, ..., 4430, 70, 3263]), + values=tensor([0.2553, 0.0855, 0.4739, ..., 0.3797, 0.6721, 0.4378]), size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) -tensor([0.2553, 0.4766, 0.2217, ..., 0.4056, 0.3500, 0.9553]) +tensor([0.8009, 0.9874, 0.1682, ..., 0.8612, 0.3697, 0.0752]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -69,13 +69,13 @@ Rows: 5000 Size: 25000000 NNZ: 1250 Density: 5e-05 -Time: 10.619585275650024 seconds +Time: 10.621034145355225 seconds -[20.44, 20.36, 20.28, 20.16, 20.04, 20.16, 20.28, 20.32, 20.56, 20.56] -[20.72, 20.76, 20.8, 24.32, 26.28, 28.48, 29.36, 29.52, 26.16, 23.92, 23.8, 23.64, 23.64, 23.56] -14.234519243240356 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 151147, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.619585275650024, 'TIME_S_1KI': 0.07025998051995755, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 328.34527337074286, 'W': 23.06683265939357} -[20.44, 20.36, 20.28, 20.16, 20.04, 20.16, 20.28, 20.32, 20.56, 20.56, 20.24, 20.2, 20.36, 20.68, 20.96, 20.8, 20.68, 20.4, 20.44, 20.36] -367.48 -18.374000000000002 -{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 151147, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.619585275650024, 'TIME_S_1KI': 0.07025998051995755, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 328.34527337074286, 'W': 23.06683265939357, 'J_1KI': 2.1723571977660345, 'W_1KI': 0.15261191197571614, 'W_D': 4.6928326593935665, 'J_D': 66.80021679544454, 'W_D_1KI': 0.031048136313612352, 'J_D_1KI': 0.00020541682146263144} +[20.4, 20.68, 20.44, 20.16, 20.16, 20.48, 20.44, 20.68, 20.64, 20.88] +[20.92, 20.96, 21.52, 22.88, 25.2, 25.52, 26.2, 26.2, 25.6, 24.92, 23.32, 23.36, 23.56, 23.44] +14.213500261306763 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 154432, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.621034145355225, 'TIME_S_1KI': 0.06877482740206191, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 316.4244461250305, 'W': 22.262246477486542} +[20.4, 20.68, 20.44, 20.16, 20.16, 20.48, 20.44, 20.68, 20.64, 20.88, 20.72, 20.64, 20.68, 20.52, 20.64, 20.8, 20.76, 20.76, 20.68, 20.6] +370.46 +18.523 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 154432, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.621034145355225, 'TIME_S_1KI': 0.06877482740206191, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 316.4244461250305, 'W': 22.262246477486542, 'J_1KI': 2.0489564735613763, 'W_1KI': 0.144155657360434, 'W_D': 3.7392464774865424, 'J_D': 53.14778078484536, 'W_D_1KI': 0.024212899382812774, 'J_D_1KI': 0.00015678680184685024} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.0001.json index f73c7ea..a438e21 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.0001.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.0001.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 63031, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.264819622039795, "TIME_S_1KI": 0.16285351052719765, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1907.2002365589144, "W": 143.8, "J_1KI": 30.25813070646054, "W_1KI": 2.2814170804842067, "W_D": 106.65425000000002, "J_D": 1414.5411045202616, "W_D_1KI": 1.6920919864828419, "J_D_1KI": 0.026845393322061237} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 65446, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.748796463012695, "TIME_S_1KI": 0.16423916607604278, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1866.1015530323982, "W": 143.13, "J_1KI": 28.51360744785622, "W_1KI": 2.1869938575314, "W_D": 106.99974999999999, "J_D": 1395.0422668139338, "W_D_1KI": 1.634931852214039, "J_D_1KI": 0.024981386978792274} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.0001.output index b2fc454..7f0e014 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.0001.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.0001.output @@ -1,14 +1,54 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.0001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.20868682861328125} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '100000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.060246944427490234} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 11, 23, ..., 999975, +tensor(crow_indices=tensor([ 0, 16, 25, ..., 999980, + 999989, 1000000]), + col_indices=tensor([ 4573, 4595, 4948, ..., 71788, 92544, 99741]), + values=tensor([0.3512, 0.1040, 0.2729, ..., 0.2513, 0.9554, 0.9408]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.1257, 0.5794, 0.5612, ..., 0.8235, 0.1474, 0.3975]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 0.060246944427490234 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '17428', '-ss', '100000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 2.7960927486419678} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 17, ..., 999980, + 999989, 1000000]), + col_indices=tensor([11836, 34889, 39226, ..., 79566, 86668, 94364]), + values=tensor([0.7886, 0.3777, 0.4340, ..., 0.5250, 0.8836, 0.4934]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.9435, 0.7532, 0.3829, ..., 0.0561, 0.6547, 0.0145]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 2.7960927486419678 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '65446', '-ss', '100000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.748796463012695} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 17, ..., 999978, 999990, 1000000]), - col_indices=tensor([ 1102, 1885, 5689, ..., 70464, 82505, 82637]), - values=tensor([0.9145, 0.6563, 0.0210, ..., 0.3467, 0.9517, 0.4307]), + col_indices=tensor([ 6624, 6694, 37331, ..., 71444, 97628, 99166]), + values=tensor([0.8094, 0.0427, 0.0622, ..., 0.4502, 0.4633, 0.1157]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.3954, 0.8531, 0.4592, ..., 0.1653, 0.9288, 0.8508]) +tensor([0.2357, 0.1643, 0.3206, ..., 0.7759, 0.8620, 0.1771]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,39 +56,16 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 0.20868682861328125 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '50314', '-ss', '100000', '-sd', '0.0001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 8.38151502609253} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 9, 15, ..., 999976, - 999987, 1000000]), - col_indices=tensor([ 9326, 16949, 19479, ..., 70135, 76689, 93251]), - values=tensor([0.2491, 0.4486, 0.5526, ..., 0.3620, 0.8491, 0.1510]), - size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.1294, 0.2549, 0.0676, ..., 0.6377, 0.6452, 0.0657]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([100000, 100000]) -Rows: 100000 -Size: 10000000000 -NNZ: 1000000 -Density: 0.0001 -Time: 8.38151502609253 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '63031', '-ss', '100000', '-sd', '0.0001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.264819622039795} +Time: 10.748796463012695 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 8, 17, ..., 999978, - 999986, 1000000]), - col_indices=tensor([ 1906, 11602, 20474, ..., 94634, 95193, 99629]), - values=tensor([0.7595, 0.5479, 0.3671, ..., 0.3196, 0.4186, 0.5082]), + 999990, 1000000]), + col_indices=tensor([ 6624, 6694, 37331, ..., 71444, 97628, 99166]), + values=tensor([0.8094, 0.0427, 0.0622, ..., 0.4502, 0.4633, 0.1157]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.5397, 0.2720, 0.7091, ..., 0.7919, 0.2241, 0.5973]) +tensor([0.2357, 0.1643, 0.3206, ..., 0.7759, 0.8620, 0.1771]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -56,30 +73,13 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 10.264819622039795 seconds +Time: 10.748796463012695 seconds -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 8, 17, ..., 999978, - 999986, 1000000]), - col_indices=tensor([ 1906, 11602, 20474, ..., 94634, 95193, 99629]), - values=tensor([0.7595, 0.5479, 0.3671, ..., 0.3196, 0.4186, 0.5082]), - size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.5397, 0.2720, 0.7091, ..., 0.7919, 0.2241, 0.5973]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([100000, 100000]) -Rows: 100000 -Size: 10000000000 -NNZ: 1000000 -Density: 0.0001 -Time: 10.264819622039795 seconds - -[40.75, 39.66, 39.67, 39.19, 39.32, 45.15, 39.35, 39.19, 39.95, 39.54] -[143.8] -13.262866735458374 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 63031, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.264819622039795, 'TIME_S_1KI': 0.16285351052719765, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1907.2002365589144, 'W': 143.8} -[40.75, 39.66, 39.67, 39.19, 39.32, 45.15, 39.35, 39.19, 39.95, 39.54, 40.42, 44.44, 57.71, 39.25, 40.02, 40.75, 39.74, 39.58, 39.68, 39.82] -742.915 -37.14575 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 63031, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.264819622039795, 'TIME_S_1KI': 0.16285351052719765, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1907.2002365589144, 'W': 143.8, 'J_1KI': 30.25813070646054, 'W_1KI': 2.2814170804842067, 'W_D': 106.65425000000002, 'J_D': 1414.5411045202616, 'W_D_1KI': 1.6920919864828419, 'J_D_1KI': 0.026845393322061237} +[40.51, 40.31, 40.08, 39.71, 39.8, 39.59, 39.58, 41.48, 39.56, 40.06] +[143.13] +13.037808656692505 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 65446, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.748796463012695, 'TIME_S_1KI': 0.16423916607604278, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1866.1015530323982, 'W': 143.13} +[40.51, 40.31, 40.08, 39.71, 39.8, 39.59, 39.58, 41.48, 39.56, 40.06, 41.48, 39.67, 40.17, 39.98, 41.44, 39.98, 40.5, 40.23, 39.59, 39.82] +722.605 +36.130250000000004 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 65446, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.748796463012695, 'TIME_S_1KI': 0.16423916607604278, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1866.1015530323982, 'W': 143.13, 'J_1KI': 28.51360744785622, 'W_1KI': 2.1869938575314, 'W_D': 106.99974999999999, 'J_D': 1395.0422668139338, 'W_D_1KI': 1.634931852214039, 'J_D_1KI': 0.024981386978792274} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.001.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.001.json index 47e1eaa..d0be3f6 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.001.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.001.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 4290, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.725477457046509, "TIME_S_1KI": 2.500111295348837, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2014.465433692932, "W": 126.69, "J_1KI": 469.57236216618463, "W_1KI": 29.53146853146853, "W_D": 91.17699999999999, "J_D": 1449.7822625923156, "W_D_1KI": 21.25337995337995, "J_D_1KI": 4.954167821300688} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 4693, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 12.009309530258179, "TIME_S_1KI": 2.558983492490556, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2204.305100774765, "W": 128.95, "J_1KI": 469.7006394150362, "W_1KI": 27.477093543575535, "W_D": 92.7465, "J_D": 1585.4329820008277, "W_D_1KI": 19.76273172810569, "J_D_1KI": 4.211108401471487} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.001.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.001.output index 2b06cc0..561971c 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.001.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 2.4475483894348145} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '100000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.27472805976867676} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 108, 211, ..., 9999795, - 9999912, 10000000]), - col_indices=tensor([ 147, 1138, 2699, ..., 95915, 96101, 99505]), - values=tensor([0.5370, 0.7637, 0.8320, ..., 0.1671, 0.6910, 0.1145]), +tensor(crow_indices=tensor([ 0, 103, 224, ..., 9999788, + 9999890, 10000000]), + col_indices=tensor([ 311, 3365, 5161, ..., 98602, 99530, 99576]), + values=tensor([0.9917, 0.0583, 0.3712, ..., 0.9136, 0.4986, 0.7909]), size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.0022, 0.6683, 0.3307, ..., 0.4747, 0.3475, 0.4636]) +tensor([0.4323, 0.4083, 0.9080, ..., 0.7530, 0.1922, 0.7136]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,19 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 10000000 Density: 0.001 -Time: 2.4475483894348145 seconds +Time: 0.27472805976867676 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '4290', '-ss', '100000', '-sd', '0.001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.725477457046509} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '3821', '-ss', '100000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 8.548935651779175} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 113, 209, ..., 9999816, - 9999914, 10000000]), - col_indices=tensor([ 524, 3053, 3097, ..., 98248, 99944, 99996]), - values=tensor([0.2951, 0.6504, 0.4617, ..., 0.6241, 0.9747, 0.0943]), +tensor(crow_indices=tensor([ 0, 86, 193, ..., 9999790, + 9999889, 10000000]), + col_indices=tensor([ 598, 3163, 6325, ..., 93333, 94869, 95502]), + values=tensor([0.3479, 0.2007, 0.7107, ..., 0.5121, 0.1193, 0.0296]), size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.1529, 0.0141, 0.4287, ..., 0.1937, 0.2308, 0.9820]) +tensor([0.9967, 0.6546, 0.0107, ..., 0.1473, 0.4856, 0.1261]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -36,16 +36,19 @@ Rows: 100000 Size: 10000000000 NNZ: 10000000 Density: 0.001 -Time: 10.725477457046509 seconds +Time: 8.548935651779175 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '4693', '-ss', '100000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 12.009309530258179} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 113, 209, ..., 9999816, - 9999914, 10000000]), - col_indices=tensor([ 524, 3053, 3097, ..., 98248, 99944, 99996]), - values=tensor([0.2951, 0.6504, 0.4617, ..., 0.6241, 0.9747, 0.0943]), +tensor(crow_indices=tensor([ 0, 80, 177, ..., 9999782, + 9999890, 10000000]), + col_indices=tensor([ 1894, 3295, 3747, ..., 98404, 98823, 99018]), + values=tensor([0.1540, 0.7163, 0.3077, ..., 0.3211, 0.5255, 0.5012]), size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.1529, 0.0141, 0.4287, ..., 0.1937, 0.2308, 0.9820]) +tensor([0.8104, 0.7178, 0.6885, ..., 0.8661, 0.7147, 0.1559]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -53,13 +56,30 @@ Rows: 100000 Size: 10000000000 NNZ: 10000000 Density: 0.001 -Time: 10.725477457046509 seconds +Time: 12.009309530258179 seconds -[39.92, 39.19, 39.59, 39.28, 39.81, 39.63, 39.63, 39.45, 39.41, 39.18] -[126.69] -15.900745391845703 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4290, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.725477457046509, 'TIME_S_1KI': 2.500111295348837, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2014.465433692932, 'W': 126.69} -[39.92, 39.19, 39.59, 39.28, 39.81, 39.63, 39.63, 39.45, 39.41, 39.18, 40.85, 39.15, 39.3, 39.24, 39.74, 39.48, 39.55, 39.09, 39.1, 39.29] -710.26 -35.513 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4290, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.725477457046509, 'TIME_S_1KI': 2.500111295348837, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2014.465433692932, 'W': 126.69, 'J_1KI': 469.57236216618463, 'W_1KI': 29.53146853146853, 'W_D': 91.17699999999999, 'J_D': 1449.7822625923156, 'W_D_1KI': 21.25337995337995, 'J_D_1KI': 4.954167821300688} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 80, 177, ..., 9999782, + 9999890, 10000000]), + col_indices=tensor([ 1894, 3295, 3747, ..., 98404, 98823, 99018]), + values=tensor([0.1540, 0.7163, 0.3077, ..., 0.3211, 0.5255, 0.5012]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.8104, 0.7178, 0.6885, ..., 0.8661, 0.7147, 0.1559]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 12.009309530258179 seconds + +[41.32, 39.94, 39.97, 39.81, 39.83, 40.24, 40.5, 40.22, 40.21, 41.33] +[128.95] +17.09426212310791 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4693, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 12.009309530258179, 'TIME_S_1KI': 2.558983492490556, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2204.305100774765, 'W': 128.95} +[41.32, 39.94, 39.97, 39.81, 39.83, 40.24, 40.5, 40.22, 40.21, 41.33, 40.63, 40.93, 40.28, 39.66, 39.87, 41.7, 39.67, 40.03, 39.68, 39.78] +724.0699999999999 +36.2035 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4693, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 12.009309530258179, 'TIME_S_1KI': 2.558983492490556, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2204.305100774765, 'W': 128.95, 'J_1KI': 469.7006394150362, 'W_1KI': 27.477093543575535, 'W_D': 92.7465, 'J_D': 1585.4329820008277, 'W_D_1KI': 19.76273172810569, 'J_D_1KI': 4.211108401471487} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_1e-05.json index 7f413fc..5f6b7ac 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_1e-05.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_1e-05.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 102924, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.60866904258728, "TIME_S_1KI": 0.103072840567674, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1542.0244372987747, "W": 115.47, "J_1KI": 14.982165843717448, "W_1KI": 1.121895767750962, "W_D": 79.97325000000001, "J_D": 1067.989138565898, "W_D_1KI": 0.7770126501107615, "J_D_1KI": 0.00754938255519375} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 99857, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.432250738143921, "TIME_S_1KI": 0.10447190220158749, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1536.9044136524199, "W": 115.09999999999998, "J_1KI": 15.391053342804408, "W_1KI": 1.152648287050482, "W_D": 79.15799999999997, "J_D": 1056.9789711198803, "W_D_1KI": 0.7927135804200004, "J_D_1KI": 0.007938487841813797} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_1e-05.output index fb29049..5aa8a41 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_1e-05.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_1e-05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.12978029251098633} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '100000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.043670654296875} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 4, ..., 99999, 100000, +tensor(crow_indices=tensor([ 0, 1, 1, ..., 99996, 99998, 100000]), - col_indices=tensor([21616, 77637, 85619, ..., 53732, 81470, 6094]), - values=tensor([0.4857, 0.1991, 0.9153, ..., 0.9203, 0.8308, 0.8562]), + col_indices=tensor([ 6609, 19255, 81333, ..., 81128, 51531, 76130]), + values=tensor([0.9876, 0.0139, 0.8085, ..., 0.3685, 0.4758, 0.0266]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.0197, 0.8164, 0.2872, ..., 0.9903, 0.3891, 0.9778]) +tensor([0.1735, 0.8240, 0.8190, ..., 0.4288, 0.7745, 0.1715]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,19 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 0.12978029251098633 seconds +Time: 0.043670654296875 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '80905', '-ss', '100000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 8.253613233566284} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '24043', '-ss', '100000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 2.5281074047088623} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 3, ..., 99999, 99999, +tensor(crow_indices=tensor([ 0, 0, 0, ..., 99997, 99999, 100000]), - col_indices=tensor([18950, 61338, 17160, ..., 57514, 79997, 96494]), - values=tensor([0.7220, 0.1840, 0.6067, ..., 0.9597, 0.4652, 0.5228]), + col_indices=tensor([69039, 75318, 84133, ..., 16483, 23976, 47642]), + values=tensor([0.3961, 0.2517, 0.3876, ..., 0.3761, 0.7912, 0.1675]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.0221, 0.6414, 0.1516, ..., 0.3018, 0.8902, 0.3461]) +tensor([0.9918, 0.3750, 0.7737, ..., 0.5214, 0.0832, 0.2225]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -36,19 +36,19 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 8.253613233566284 seconds +Time: 2.5281074047088623 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '102924', '-ss', '100000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.60866904258728} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '99857', '-ss', '100000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.432250738143921} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99999, 99999, +tensor(crow_indices=tensor([ 0, 1, 1, ..., 99998, 100000, 100000]), - col_indices=tensor([ 4611, 80501, 8771, ..., 95435, 27789, 45343]), - values=tensor([0.8274, 0.0201, 0.6109, ..., 0.4116, 0.6491, 0.0785]), + col_indices=tensor([18969, 38131, 43029, ..., 81495, 1519, 27704]), + values=tensor([0.3850, 0.3770, 0.8820, ..., 0.3865, 0.0804, 0.8829]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.0461, 0.3256, 0.3375, ..., 0.6234, 0.9526, 0.7301]) +tensor([0.4374, 0.1348, 0.8967, ..., 0.5157, 0.0353, 0.0014]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -56,16 +56,16 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 10.60866904258728 seconds +Time: 10.432250738143921 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 99999, 99999, +tensor(crow_indices=tensor([ 0, 1, 1, ..., 99998, 100000, 100000]), - col_indices=tensor([ 4611, 80501, 8771, ..., 95435, 27789, 45343]), - values=tensor([0.8274, 0.0201, 0.6109, ..., 0.4116, 0.6491, 0.0785]), + col_indices=tensor([18969, 38131, 43029, ..., 81495, 1519, 27704]), + values=tensor([0.3850, 0.3770, 0.8820, ..., 0.3865, 0.0804, 0.8829]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.0461, 0.3256, 0.3375, ..., 0.6234, 0.9526, 0.7301]) +tensor([0.4374, 0.1348, 0.8967, ..., 0.5157, 0.0353, 0.0014]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -73,13 +73,13 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 10.60866904258728 seconds +Time: 10.432250738143921 seconds -[39.93, 39.22, 39.43, 40.14, 39.51, 39.36, 39.3, 39.3, 39.26, 39.1] -[115.47] -13.354329586029053 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 102924, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.60866904258728, 'TIME_S_1KI': 0.103072840567674, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1542.0244372987747, 'W': 115.47} -[39.93, 39.22, 39.43, 40.14, 39.51, 39.36, 39.3, 39.3, 39.26, 39.1, 41.76, 39.08, 39.78, 39.45, 39.66, 39.16, 39.27, 39.06, 39.08, 38.96] -709.935 -35.49675 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 102924, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.60866904258728, 'TIME_S_1KI': 0.103072840567674, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1542.0244372987747, 'W': 115.47, 'J_1KI': 14.982165843717448, 'W_1KI': 1.121895767750962, 'W_D': 79.97325000000001, 'J_D': 1067.989138565898, 'W_D_1KI': 0.7770126501107615, 'J_D_1KI': 0.00754938255519375} +[40.36, 39.67, 39.74, 39.69, 39.75, 39.62, 40.16, 41.41, 40.17, 40.09] +[115.1] +13.35277509689331 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 99857, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.432250738143921, 'TIME_S_1KI': 0.10447190220158749, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1536.9044136524199, 'W': 115.09999999999998} +[40.36, 39.67, 39.74, 39.69, 39.75, 39.62, 40.16, 41.41, 40.17, 40.09, 40.33, 39.61, 39.56, 41.58, 39.51, 39.51, 39.84, 39.34, 39.38, 39.82] +718.8400000000001 +35.94200000000001 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 99857, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.432250738143921, 'TIME_S_1KI': 0.10447190220158749, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1536.9044136524199, 'W': 115.09999999999998, 'J_1KI': 15.391053342804408, 'W_1KI': 1.152648287050482, 'W_D': 79.15799999999997, 'J_D': 1056.9789711198803, 'W_D_1KI': 0.7927135804200004, 'J_D_1KI': 0.007938487841813797} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_5e-05.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_5e-05.json index 4188099..80ab5da 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_5e-05.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_5e-05.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 85448, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.79839825630188, "TIME_S_1KI": 0.12637391461826936, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1847.2158340501787, "W": 132.18, "J_1KI": 21.618011352520583, "W_1KI": 1.5469057204381613, "W_D": 96.35400000000001, "J_D": 1346.5473935093883, "W_D_1KI": 1.127633180413819, "J_D_1KI": 0.013196718242835633} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 81276, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.078009605407715, "TIME_S_1KI": 0.12399736214144047, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1722.4750410318375, "W": 132.75, "J_1KI": 21.192911081153568, "W_1KI": 1.6333234903292484, "W_D": 96.411, "J_D": 1250.9645286698342, "W_D_1KI": 1.1862173335301935, "J_D_1KI": 0.014594927574317062} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_5e-05.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_5e-05.output index be89160..0f8dc83 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_5e-05.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_5e-05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '5e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.157515287399292} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '100000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.04085874557495117} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 8, ..., 499988, 499996, +tensor(crow_indices=tensor([ 0, 4, 9, ..., 499987, 499993, 500000]), - col_indices=tensor([50162, 75153, 30191, ..., 32389, 47580, 60210]), - values=tensor([0.9007, 0.9447, 0.0410, ..., 0.6472, 0.2952, 0.4267]), + col_indices=tensor([ 4658, 51132, 55767, ..., 77897, 84680, 91168]), + values=tensor([0.8716, 0.7460, 0.9968, ..., 0.7762, 0.8585, 0.9878]), size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) -tensor([0.3259, 0.8902, 0.7186, ..., 0.8330, 0.5312, 0.8917]) +tensor([0.7678, 0.5187, 0.4774, ..., 0.8664, 0.3724, 0.0254]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,19 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 500000 Density: 5e-05 -Time: 0.157515287399292 seconds +Time: 0.04085874557495117 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '66660', '-ss', '100000', '-sd', '5e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 8.191283702850342} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '25698', '-ss', '100000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 3.3198819160461426} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 8, ..., 499990, 499997, +tensor(crow_indices=tensor([ 0, 4, 4, ..., 499992, 499998, 500000]), - col_indices=tensor([ 3937, 41482, 51345, ..., 57028, 62776, 96568]), - values=tensor([0.3669, 0.7790, 0.6636, ..., 0.0088, 0.3191, 0.1015]), + col_indices=tensor([33478, 35089, 63624, ..., 93258, 3464, 77760]), + values=tensor([0.8303, 0.5286, 0.9064, ..., 0.8655, 0.5788, 0.5903]), size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) -tensor([0.1888, 0.6317, 0.9833, ..., 0.5078, 0.6417, 0.5906]) +tensor([0.0892, 0.6340, 0.1475, ..., 0.5230, 0.0009, 0.8265]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -36,19 +36,19 @@ Rows: 100000 Size: 10000000000 NNZ: 500000 Density: 5e-05 -Time: 8.191283702850342 seconds +Time: 3.3198819160461426 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '85448', '-ss', '100000', '-sd', '5e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.79839825630188} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '81276', '-ss', '100000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.078009605407715} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 8, 13, ..., 499988, 499995, +tensor(crow_indices=tensor([ 0, 3, 9, ..., 499997, 500000, 500000]), - col_indices=tensor([ 3698, 26087, 35796, ..., 95832, 96289, 98226]), - values=tensor([0.4478, 0.6896, 0.5878, ..., 0.3885, 0.0788, 0.0500]), + col_indices=tensor([38450, 44227, 69625, ..., 8507, 39094, 82179]), + values=tensor([0.2677, 0.9845, 0.1042, ..., 0.9974, 0.0756, 0.3422]), size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) -tensor([0.6913, 0.6407, 0.8664, ..., 0.8625, 0.1823, 0.9429]) +tensor([0.8400, 0.1962, 0.3075, ..., 0.6034, 0.5737, 0.0994]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -56,16 +56,16 @@ Rows: 100000 Size: 10000000000 NNZ: 500000 Density: 5e-05 -Time: 10.79839825630188 seconds +Time: 10.078009605407715 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 8, 13, ..., 499988, 499995, +tensor(crow_indices=tensor([ 0, 3, 9, ..., 499997, 500000, 500000]), - col_indices=tensor([ 3698, 26087, 35796, ..., 95832, 96289, 98226]), - values=tensor([0.4478, 0.6896, 0.5878, ..., 0.3885, 0.0788, 0.0500]), + col_indices=tensor([38450, 44227, 69625, ..., 8507, 39094, 82179]), + values=tensor([0.2677, 0.9845, 0.1042, ..., 0.9974, 0.0756, 0.3422]), size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) -tensor([0.6913, 0.6407, 0.8664, ..., 0.8625, 0.1823, 0.9429]) +tensor([0.8400, 0.1962, 0.3075, ..., 0.6034, 0.5737, 0.0994]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -73,13 +73,13 @@ Rows: 100000 Size: 10000000000 NNZ: 500000 Density: 5e-05 -Time: 10.79839825630188 seconds +Time: 10.078009605407715 seconds -[40.27, 39.58, 39.76, 40.26, 40.31, 39.92, 40.36, 39.5, 39.65, 39.54] -[132.18] -13.975002527236938 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 85448, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.79839825630188, 'TIME_S_1KI': 0.12637391461826936, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1847.2158340501787, 'W': 132.18} -[40.27, 39.58, 39.76, 40.26, 40.31, 39.92, 40.36, 39.5, 39.65, 39.54, 40.41, 39.45, 40.31, 39.36, 39.58, 39.39, 39.62, 39.75, 39.86, 39.5] -716.52 -35.826 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 85448, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.79839825630188, 'TIME_S_1KI': 0.12637391461826936, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1847.2158340501787, 'W': 132.18, 'J_1KI': 21.618011352520583, 'W_1KI': 1.5469057204381613, 'W_D': 96.35400000000001, 'J_D': 1346.5473935093883, 'W_D_1KI': 1.127633180413819, 'J_D_1KI': 0.013196718242835633} +[41.19, 39.74, 39.62, 40.23, 39.69, 39.5, 44.76, 39.57, 39.56, 39.98] +[132.75] +12.975329875946045 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 81276, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.078009605407715, 'TIME_S_1KI': 0.12399736214144047, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1722.4750410318375, 'W': 132.75} +[41.19, 39.74, 39.62, 40.23, 39.69, 39.5, 44.76, 39.57, 39.56, 39.98, 40.29, 39.57, 39.62, 45.06, 39.69, 39.48, 40.04, 39.95, 40.05, 39.84] +726.78 +36.339 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 81276, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.078009605407715, 'TIME_S_1KI': 0.12399736214144047, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1722.4750410318375, 'W': 132.75, 'J_1KI': 21.192911081153568, 'W_1KI': 1.6333234903292484, 'W_D': 96.411, 'J_D': 1250.9645286698342, 'W_D_1KI': 1.1862173335301935, 'J_D_1KI': 0.014594927574317062} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.0001.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.0001.json index cb11125..0d37837 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.0001.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.0001.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 278690, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.3841392993927, "TIME_S_1KI": 0.0372605378714439, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1292.3170569992064, "W": 98.52, "J_1KI": 4.63711312569237, "W_1KI": 0.3535110696472783, "W_D": 63.16824999999999, "J_D": 828.5973095390796, "W_D_1KI": 0.2266613441458251, "J_D_1KI": 0.0008133099291177477} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 280711, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.449347734451294, "TIME_S_1KI": 0.03722457521953644, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1289.5745413303375, "W": 98.5, "J_1KI": 4.593957989998032, "W_1KI": 0.35089469240606885, "W_D": 62.83475, "J_D": 822.6405473183394, "W_D_1KI": 0.22384142409809377, "J_D_1KI": 0.0007974088086968226} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.0001.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.0001.output index 26aaa7d..d302c45 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.0001.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.0001.output @@ -1,13 +1,13 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.0001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.05305743217468262} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.019724130630493164} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 9999, 9999, 10000]), - col_indices=tensor([2207, 830, 7633, ..., 2513, 8541, 2972]), - values=tensor([0.9417, 0.1071, 0.2127, ..., 0.2034, 0.4535, 0.3737]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 9997, 9999, 10000]), + col_indices=tensor([ 730, 4220, 7544, ..., 4458, 7562, 5619]), + values=tensor([0.0181, 0.7832, 0.5914, ..., 0.2469, 0.2734, 0.2796]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.2095, 0.5712, 0.5435, ..., 0.2564, 0.5818, 0.1577]) +tensor([0.6994, 0.7339, 0.7582, ..., 0.9456, 0.1186, 0.3856]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -15,18 +15,18 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 0.05305743217468262 seconds +Time: 0.019724130630493164 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '197898', '-ss', '10000', '-sd', '0.0001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 7.456049680709839} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '53234', '-ss', '10000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 1.991217851638794} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 2, ..., 10000, 10000, 10000]), - col_indices=tensor([7930, 9951, 4041, ..., 9045, 6420, 8503]), - values=tensor([0.2418, 0.2435, 0.4116, ..., 0.5201, 0.9725, 0.0713]), +tensor(crow_indices=tensor([ 0, 5, 5, ..., 9999, 9999, 10000]), + col_indices=tensor([2031, 5960, 7493, ..., 3747, 8534, 6060]), + values=tensor([0.1847, 0.1000, 0.1920, ..., 0.9911, 0.4392, 0.2330]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.5895, 0.0291, 0.5304, ..., 0.4324, 0.9976, 0.6205]) +tensor([0.7239, 0.0636, 0.4781, ..., 0.2276, 0.2279, 0.8613]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -34,18 +34,18 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 7.456049680709839 seconds +Time: 1.991217851638794 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '278690', '-ss', '10000', '-sd', '0.0001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.3841392993927} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '280711', '-ss', '10000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.449347734451294} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 9996, 9998, 10000]), - col_indices=tensor([9574, 4944, 2003, ..., 2641, 7523, 8416]), - values=tensor([0.4157, 0.2537, 0.8916, ..., 0.3966, 0.1591, 0.0732]), +tensor(crow_indices=tensor([ 0, 0, 1, ..., 9997, 9999, 10000]), + col_indices=tensor([8732, 42, 2512, ..., 1373, 9550, 9690]), + values=tensor([0.4706, 0.1126, 0.6045, ..., 0.0102, 0.1178, 0.6557]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.4368, 0.0363, 0.2687, ..., 0.3029, 0.2331, 0.6830]) +tensor([0.4976, 0.6299, 0.3127, ..., 0.9623, 0.9434, 0.7070]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -53,15 +53,15 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 10.3841392993927 seconds +Time: 10.449347734451294 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 9996, 9998, 10000]), - col_indices=tensor([9574, 4944, 2003, ..., 2641, 7523, 8416]), - values=tensor([0.4157, 0.2537, 0.8916, ..., 0.3966, 0.1591, 0.0732]), +tensor(crow_indices=tensor([ 0, 0, 1, ..., 9997, 9999, 10000]), + col_indices=tensor([8732, 42, 2512, ..., 1373, 9550, 9690]), + values=tensor([0.4706, 0.1126, 0.6045, ..., 0.0102, 0.1178, 0.6557]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.4368, 0.0363, 0.2687, ..., 0.3029, 0.2331, 0.6830]) +tensor([0.4976, 0.6299, 0.3127, ..., 0.9623, 0.9434, 0.7070]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -69,13 +69,13 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 10.3841392993927 seconds +Time: 10.449347734451294 seconds -[40.74, 38.88, 38.93, 39.04, 38.99, 38.97, 39.42, 39.32, 39.26, 38.71] -[98.52] -13.11730670928955 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 278690, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.3841392993927, 'TIME_S_1KI': 0.0372605378714439, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1292.3170569992064, 'W': 98.52} -[40.74, 38.88, 38.93, 39.04, 38.99, 38.97, 39.42, 39.32, 39.26, 38.71, 39.37, 39.1, 39.73, 39.04, 39.15, 38.73, 39.2, 38.61, 38.78, 44.95] -707.0350000000001 -35.35175 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 278690, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.3841392993927, 'TIME_S_1KI': 0.0372605378714439, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1292.3170569992064, 'W': 98.52, 'J_1KI': 4.63711312569237, 'W_1KI': 0.3535110696472783, 'W_D': 63.16824999999999, 'J_D': 828.5973095390796, 'W_D_1KI': 0.2266613441458251, 'J_D_1KI': 0.0008133099291177477} +[40.09, 39.2, 39.41, 39.39, 39.38, 42.02, 40.51, 39.25, 39.25, 39.51] +[98.5] +13.092127323150635 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 280711, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.449347734451294, 'TIME_S_1KI': 0.03722457521953644, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1289.5745413303375, 'W': 98.5} +[40.09, 39.2, 39.41, 39.39, 39.38, 42.02, 40.51, 39.25, 39.25, 39.51, 40.09, 39.17, 39.95, 40.04, 39.24, 39.23, 39.51, 39.16, 39.2, 39.1] +713.3050000000001 +35.66525 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 280711, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.449347734451294, 'TIME_S_1KI': 0.03722457521953644, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1289.5745413303375, 'W': 98.5, 'J_1KI': 4.593957989998032, 'W_1KI': 0.35089469240606885, 'W_D': 62.83475, 'J_D': 822.6405473183394, 'W_D_1KI': 0.22384142409809377, 'J_D_1KI': 0.0007974088086968226} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.001.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.001.json index 9de9eeb..9665b3b 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.001.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.001.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 181643, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.058825254440308, "TIME_S_1KI": 0.05537689453730839, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1334.3994569778442, "W": 108.0, "J_1KI": 7.346275149484671, "W_1KI": 0.5945728709611711, "W_D": 72.86524999999999, "J_D": 900.2902780792116, "W_D_1KI": 0.4011453785722543, "J_D_1KI": 0.002208427401949177} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 193546, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.657205820083618, "TIME_S_1KI": 0.05506290917964524, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1424.268603067398, "W": 108.67, "J_1KI": 7.358811874528009, "W_1KI": 0.5614685914459612, "W_D": 72.91375, "J_D": 955.6341663467883, "W_D_1KI": 0.3767256879501513, "J_D_1KI": 0.001946440060503195} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.001.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.001.output index 62ff1c2..77b5a62 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.001.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.07387351989746094} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.025844097137451172} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 11, 20, ..., 99983, 99988, +tensor(crow_indices=tensor([ 0, 12, 28, ..., 99969, 99983, 100000]), - col_indices=tensor([2080, 2520, 2867, ..., 8307, 8901, 9286]), - values=tensor([0.8261, 0.1055, 0.9939, ..., 0.1447, 0.1951, 0.2617]), + col_indices=tensor([1079, 2122, 3254, ..., 9373, 9823, 9958]), + values=tensor([0.1589, 0.8596, 0.7837, ..., 0.1493, 0.1272, 0.2084]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.7373, 0.8108, 0.8070, ..., 0.3032, 0.8916, 0.0356]) +tensor([0.0719, 0.4122, 0.7875, ..., 0.0407, 0.8322, 0.6511]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,20 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 0.07387351989746094 seconds +Time: 0.025844097137451172 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '142134', '-ss', '10000', '-sd', '0.001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 8.216149806976318} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '40628', '-ss', '10000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 2.4707634449005127} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 8, 16, ..., 99977, 99988, +tensor(crow_indices=tensor([ 0, 12, 18, ..., 99974, 99987, 100000]), - col_indices=tensor([ 929, 1145, 1167, ..., 7253, 9439, 9881]), - values=tensor([3.5267e-01, 8.9746e-01, 4.0379e-01, ..., - 8.5718e-04, 5.6681e-01, 4.6851e-01]), + col_indices=tensor([ 792, 1032, 1238, ..., 8561, 8731, 9370]), + values=tensor([0.4488, 0.9659, 0.1268, ..., 0.7863, 0.6709, 0.3638]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.4055, 0.0658, 0.7904, ..., 0.2959, 0.0826, 0.7426]) +tensor([0.8213, 0.7389, 0.9585, ..., 0.8858, 0.0787, 0.3979]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -37,19 +36,19 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 8.216149806976318 seconds +Time: 2.4707634449005127 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '181643', '-ss', '10000', '-sd', '0.001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.058825254440308} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '172656', '-ss', '10000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 9.366683721542358} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 10, 23, ..., 99984, 99996, +tensor(crow_indices=tensor([ 0, 10, 24, ..., 99973, 99986, 100000]), - col_indices=tensor([2026, 2065, 2399, ..., 4623, 7297, 9355]), - values=tensor([0.4157, 0.6883, 0.2119, ..., 0.3441, 0.2622, 0.5721]), + col_indices=tensor([ 684, 3301, 3344, ..., 8499, 8709, 9229]), + values=tensor([0.0104, 0.6771, 0.5927, ..., 0.6883, 0.2524, 0.4550]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.4888, 0.3451, 0.6891, ..., 0.9797, 0.8702, 0.1612]) +tensor([0.4786, 0.6837, 0.1379, ..., 0.3005, 0.2266, 0.1673]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -57,16 +56,19 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 10.058825254440308 seconds +Time: 9.366683721542358 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '193546', '-ss', '10000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.657205820083618} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 10, 23, ..., 99984, 99996, +tensor(crow_indices=tensor([ 0, 13, 24, ..., 99982, 99990, 100000]), - col_indices=tensor([2026, 2065, 2399, ..., 4623, 7297, 9355]), - values=tensor([0.4157, 0.6883, 0.2119, ..., 0.3441, 0.2622, 0.5721]), + col_indices=tensor([ 667, 823, 2535, ..., 7218, 8112, 8309]), + values=tensor([0.9044, 0.9079, 0.6825, ..., 0.1587, 0.6143, 0.0618]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.4888, 0.3451, 0.6891, ..., 0.9797, 0.8702, 0.1612]) +tensor([0.5914, 0.6686, 0.5823, ..., 0.5362, 0.3609, 0.2297]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -74,13 +76,30 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 10.058825254440308 seconds +Time: 10.657205820083618 seconds -[40.01, 39.91, 39.26, 39.32, 39.03, 38.69, 39.03, 38.68, 38.9, 38.67] -[108.0] -12.355550527572632 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 181643, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.058825254440308, 'TIME_S_1KI': 0.05537689453730839, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1334.3994569778442, 'W': 108.0} -[40.01, 39.91, 39.26, 39.32, 39.03, 38.69, 39.03, 38.68, 38.9, 38.67, 40.03, 39.23, 39.15, 39.23, 38.85, 38.69, 38.72, 38.72, 38.62, 38.62] -702.6950000000002 -35.13475000000001 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 181643, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.058825254440308, 'TIME_S_1KI': 0.05537689453730839, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1334.3994569778442, 'W': 108.0, 'J_1KI': 7.346275149484671, 'W_1KI': 0.5945728709611711, 'W_D': 72.86524999999999, 'J_D': 900.2902780792116, 'W_D_1KI': 0.4011453785722543, 'J_D_1KI': 0.002208427401949177} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 13, 24, ..., 99982, 99990, + 100000]), + col_indices=tensor([ 667, 823, 2535, ..., 7218, 8112, 8309]), + values=tensor([0.9044, 0.9079, 0.6825, ..., 0.1587, 0.6143, 0.0618]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.5914, 0.6686, 0.5823, ..., 0.5362, 0.3609, 0.2297]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.657205820083618 seconds + +[40.9, 39.63, 39.53, 39.38, 39.44, 39.45, 39.92, 39.64, 39.85, 39.99] +[108.67] +13.106364250183105 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 193546, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.657205820083618, 'TIME_S_1KI': 0.05506290917964524, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1424.268603067398, 'W': 108.67} +[40.9, 39.63, 39.53, 39.38, 39.44, 39.45, 39.92, 39.64, 39.85, 39.99, 39.96, 39.48, 39.45, 39.41, 39.63, 39.38, 40.94, 39.79, 39.91, 39.74] +715.125 +35.75625 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 193546, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.657205820083618, 'TIME_S_1KI': 0.05506290917964524, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1424.268603067398, 'W': 108.67, 'J_1KI': 7.358811874528009, 'W_1KI': 0.5614685914459612, 'W_D': 72.91375, 'J_D': 955.6341663467883, 'W_D_1KI': 0.3767256879501513, 'J_D_1KI': 0.001946440060503195} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.01.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.01.json index 37875a8..4c6ec73 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.01.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.01.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 104114, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.469164609909058, "TIME_S_1KI": 0.10055482077250953, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1774.261237783432, "W": 135.86, "J_1KI": 17.041524077294426, "W_1KI": 1.304915765410992, "W_D": 100.35275000000001, "J_D": 1310.5549420725108, "W_D_1KI": 0.9638737345601938, "J_D_1KI": 0.009257868630157269} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 102691, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.217256307601929, "TIME_S_1KI": 0.09949514862648069, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1713.9247414016722, "W": 132.92, "J_1KI": 16.690116382172462, "W_1KI": 1.294368542520766, "W_D": 96.75025, "J_D": 1247.5372194688318, "W_D_1KI": 0.9421492633239523, "J_D_1KI": 0.009174604038561825} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.01.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.01.output index 0c99b95..7818ee2 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.01.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.01.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.01', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.14159297943115234} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.027860403060913086} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 124, 236, ..., 999773, - 999882, 1000000]), - col_indices=tensor([ 35, 69, 144, ..., 9773, 9862, 9873]), - values=tensor([0.1838, 0.7773, 0.5109, ..., 0.8192, 0.8376, 0.6812]), +tensor(crow_indices=tensor([ 0, 86, 184, ..., 999787, + 999901, 1000000]), + col_indices=tensor([ 81, 93, 211, ..., 9891, 9936, 9983]), + values=tensor([0.0273, 0.9948, 0.2764, ..., 0.0318, 0.5538, 0.8532]), size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.0358, 0.2032, 0.7087, ..., 0.4931, 0.1706, 0.1726]) +tensor([0.8459, 0.7440, 0.9932, ..., 0.5464, 0.7654, 0.2266]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,19 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 1000000 Density: 0.01 -Time: 0.14159297943115234 seconds +Time: 0.027860403060913086 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '74156', '-ss', '10000', '-sd', '0.01', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 7.9134438037872314} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '37687', '-ss', '10000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 3.853411912918091} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 93, 199, ..., 999798, - 999892, 1000000]), - col_indices=tensor([ 57, 323, 325, ..., 9719, 9779, 9889]), - values=tensor([0.3339, 0.1610, 0.8675, ..., 0.7107, 0.3615, 0.1870]), +tensor(crow_indices=tensor([ 0, 90, 178, ..., 999807, + 999899, 1000000]), + col_indices=tensor([ 9, 87, 435, ..., 9776, 9821, 9947]), + values=tensor([0.6051, 0.3509, 0.6551, ..., 0.3060, 0.1178, 0.2325]), size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.9536, 0.3002, 0.1616, ..., 0.3121, 0.8413, 0.9505]) +tensor([0.6802, 0.0969, 0.8232, ..., 0.8757, 0.6573, 0.4893]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -36,19 +36,19 @@ Rows: 10000 Size: 100000000 NNZ: 1000000 Density: 0.01 -Time: 7.9134438037872314 seconds +Time: 3.853411912918091 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '98394', '-ss', '10000', '-sd', '0.01', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 9.923112392425537} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '102691', '-ss', '10000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.217256307601929} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 97, 191, ..., 999779, - 999891, 1000000]), - col_indices=tensor([ 18, 52, 269, ..., 9883, 9995, 9999]), - values=tensor([0.5511, 0.2767, 0.8168, ..., 0.6887, 0.5827, 0.0686]), +tensor(crow_indices=tensor([ 0, 98, 191, ..., 999800, + 999904, 1000000]), + col_indices=tensor([ 18, 19, 89, ..., 9675, 9719, 9959]), + values=tensor([0.5811, 0.2000, 0.4195, ..., 0.8918, 0.7545, 0.5786]), size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.2767, 0.4380, 0.7945, ..., 0.2102, 0.5547, 0.8740]) +tensor([0.3032, 0.6522, 0.8844, ..., 0.7793, 0.6874, 0.5546]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -56,19 +56,16 @@ Rows: 10000 Size: 100000000 NNZ: 1000000 Density: 0.01 -Time: 9.923112392425537 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '104114', '-ss', '10000', '-sd', '0.01', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.469164609909058} +Time: 10.217256307601929 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 112, 221, ..., 999805, - 999915, 1000000]), - col_indices=tensor([ 402, 501, 665, ..., 9291, 9326, 9607]), - values=tensor([0.0486, 0.5637, 0.4384, ..., 0.7973, 0.3634, 0.8351]), +tensor(crow_indices=tensor([ 0, 98, 191, ..., 999800, + 999904, 1000000]), + col_indices=tensor([ 18, 19, 89, ..., 9675, 9719, 9959]), + values=tensor([0.5811, 0.2000, 0.4195, ..., 0.8918, 0.7545, 0.5786]), size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.7936, 0.9785, 0.9590, ..., 0.6005, 0.0137, 0.6516]) +tensor([0.3032, 0.6522, 0.8844, ..., 0.7793, 0.6874, 0.5546]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -76,30 +73,13 @@ Rows: 10000 Size: 100000000 NNZ: 1000000 Density: 0.01 -Time: 10.469164609909058 seconds +Time: 10.217256307601929 seconds -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 112, 221, ..., 999805, - 999915, 1000000]), - col_indices=tensor([ 402, 501, 665, ..., 9291, 9326, 9607]), - values=tensor([0.0486, 0.5637, 0.4384, ..., 0.7973, 0.3634, 0.8351]), - size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.7936, 0.9785, 0.9590, ..., 0.6005, 0.0137, 0.6516]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([10000, 10000]) -Rows: 10000 -Size: 100000000 -NNZ: 1000000 -Density: 0.01 -Time: 10.469164609909058 seconds - -[42.04, 39.8, 39.79, 39.52, 39.3, 39.73, 39.12, 39.49, 39.14, 38.98] -[135.86] -13.059482097625732 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 104114, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.469164609909058, 'TIME_S_1KI': 0.10055482077250953, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1774.261237783432, 'W': 135.86} -[42.04, 39.8, 39.79, 39.52, 39.3, 39.73, 39.12, 39.49, 39.14, 38.98, 39.91, 39.55, 39.06, 39.42, 39.43, 39.34, 38.96, 39.36, 38.94, 39.46] -710.145 -35.50725 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 104114, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.469164609909058, 'TIME_S_1KI': 0.10055482077250953, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1774.261237783432, 'W': 135.86, 'J_1KI': 17.041524077294426, 'W_1KI': 1.304915765410992, 'W_D': 100.35275000000001, 'J_D': 1310.5549420725108, 'W_D_1KI': 0.9638737345601938, 'J_D_1KI': 0.009257868630157269} +[40.93, 39.91, 40.43, 39.4, 39.51, 40.07, 39.51, 39.35, 39.39, 44.7] +[132.92] +12.894408226013184 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 102691, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.217256307601929, 'TIME_S_1KI': 0.09949514862648069, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1713.9247414016722, 'W': 132.92} +[40.93, 39.91, 40.43, 39.4, 39.51, 40.07, 39.51, 39.35, 39.39, 44.7, 40.04, 39.9, 39.44, 39.42, 39.81, 39.87, 45.14, 39.82, 39.78, 39.62] +723.395 +36.16975 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 102691, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.217256307601929, 'TIME_S_1KI': 0.09949514862648069, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1713.9247414016722, 'W': 132.92, 'J_1KI': 16.690116382172462, 'W_1KI': 1.294368542520766, 'W_D': 96.75025, 'J_D': 1247.5372194688318, 'W_D_1KI': 0.9421492633239523, 'J_D_1KI': 0.009174604038561825} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.05.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.05.json index 5302269..52cad91 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.05.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.05.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 27894, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.822905540466309, "TIME_S_1KI": 0.3880012024258374, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2101.6757108688353, "W": 151.95, "J_1KI": 75.34508176915593, "W_1KI": 5.447408044740804, "W_D": 116.03349999999999, "J_D": 1604.90153732872, "W_D_1KI": 4.159801390980138, "J_D_1KI": 0.14912889477952743} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 27775, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.346900463104248, "TIME_S_1KI": 0.3725256692386768, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2138.1740951538086, "W": 151.25, "J_1KI": 76.98196562209931, "W_1KI": 5.445544554455445, "W_D": 115.164, "J_D": 1628.037563598633, "W_D_1KI": 4.146318631863187, "J_D_1KI": 0.1492823989869734} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.05.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.05.output index 3e6dd10..19caf4c 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.05.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 0.4579291343688965} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 0.07912850379943848} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 485, 1001, ..., 4998993, - 4999541, 5000000]), - col_indices=tensor([ 5, 20, 61, ..., 9897, 9942, 9998]), - values=tensor([0.7241, 0.0945, 0.6836, ..., 0.9220, 0.2796, 0.2745]), +tensor(crow_indices=tensor([ 0, 485, 973, ..., 4998984, + 4999512, 5000000]), + col_indices=tensor([ 23, 33, 35, ..., 9878, 9920, 9946]), + values=tensor([0.8956, 0.5440, 0.5650, ..., 0.6571, 0.0981, 0.4530]), size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.6528, 0.9454, 0.7224, ..., 0.5670, 0.2826, 0.8750]) +tensor([0.3320, 0.0557, 0.6993, ..., 0.8374, 0.3528, 0.6849]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,19 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 5000000 Density: 0.05 -Time: 0.4579291343688965 seconds +Time: 0.07912850379943848 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '22929', '-ss', '10000', '-sd', '0.05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 8.630967855453491} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '13269', '-ss', '10000', '-sd', '0.05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 5.016182899475098} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 483, 987, ..., 4998961, - 4999465, 5000000]), - col_indices=tensor([ 47, 67, 96, ..., 9993, 9994, 9997]), - values=tensor([0.9705, 0.3882, 0.2458, ..., 0.5796, 0.8899, 0.6056]), +tensor(crow_indices=tensor([ 0, 490, 975, ..., 4999017, + 4999511, 5000000]), + col_indices=tensor([ 5, 7, 17, ..., 9925, 9927, 9956]), + values=tensor([0.3061, 0.0982, 0.7519, ..., 0.4711, 0.1343, 0.2753]), size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.2409, 0.7584, 0.7571, ..., 0.5444, 0.5564, 0.6333]) +tensor([0.4300, 0.5593, 0.7816, ..., 0.7590, 0.1985, 0.5681]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -36,19 +36,19 @@ Rows: 10000 Size: 100000000 NNZ: 5000000 Density: 0.05 -Time: 8.630967855453491 seconds +Time: 5.016182899475098 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '27894', '-ss', '10000', '-sd', '0.05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.822905540466309} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '27775', '-ss', '10000', '-sd', '0.05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.346900463104248} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 505, 994, ..., 4999000, - 4999548, 5000000]), - col_indices=tensor([ 26, 89, 94, ..., 9963, 9967, 9969]), - values=tensor([0.5738, 0.3729, 0.9664, ..., 0.7914, 0.9130, 0.5932]), +tensor(crow_indices=tensor([ 0, 516, 985, ..., 4998986, + 4999503, 5000000]), + col_indices=tensor([ 0, 38, 62, ..., 9969, 9984, 9993]), + values=tensor([0.4538, 0.1922, 0.3497, ..., 0.8541, 0.7038, 0.0561]), size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.2560, 0.0745, 0.3692, ..., 0.2024, 0.4618, 0.6540]) +tensor([0.3516, 0.9610, 0.6827, ..., 0.5287, 0.4040, 0.0575]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -56,16 +56,16 @@ Rows: 10000 Size: 100000000 NNZ: 5000000 Density: 0.05 -Time: 10.822905540466309 seconds +Time: 10.346900463104248 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 505, 994, ..., 4999000, - 4999548, 5000000]), - col_indices=tensor([ 26, 89, 94, ..., 9963, 9967, 9969]), - values=tensor([0.5738, 0.3729, 0.9664, ..., 0.7914, 0.9130, 0.5932]), +tensor(crow_indices=tensor([ 0, 516, 985, ..., 4998986, + 4999503, 5000000]), + col_indices=tensor([ 0, 38, 62, ..., 9969, 9984, 9993]), + values=tensor([0.4538, 0.1922, 0.3497, ..., 0.8541, 0.7038, 0.0561]), size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.2560, 0.0745, 0.3692, ..., 0.2024, 0.4618, 0.6540]) +tensor([0.3516, 0.9610, 0.6827, ..., 0.5287, 0.4040, 0.0575]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -73,13 +73,13 @@ Rows: 10000 Size: 100000000 NNZ: 5000000 Density: 0.05 -Time: 10.822905540466309 seconds +Time: 10.346900463104248 seconds -[41.38, 40.1, 39.88, 40.17, 39.72, 39.62, 39.69, 39.64, 39.9, 39.73] -[151.95] -13.831363677978516 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 27894, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.822905540466309, 'TIME_S_1KI': 0.3880012024258374, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2101.6757108688353, 'W': 151.95} -[41.38, 40.1, 39.88, 40.17, 39.72, 39.62, 39.69, 39.64, 39.9, 39.73, 40.26, 39.63, 39.55, 39.93, 41.22, 40.33, 39.48, 39.56, 39.48, 39.49] -718.3299999999999 -35.9165 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 27894, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.822905540466309, 'TIME_S_1KI': 0.3880012024258374, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2101.6757108688353, 'W': 151.95, 'J_1KI': 75.34508176915593, 'W_1KI': 5.447408044740804, 'W_D': 116.03349999999999, 'J_D': 1604.90153732872, 'W_D_1KI': 4.159801390980138, 'J_D_1KI': 0.14912889477952743} +[41.25, 39.91, 39.68, 39.83, 39.58, 41.43, 40.59, 39.78, 40.26, 39.69] +[151.25] +14.136688232421875 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 27775, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.346900463104248, 'TIME_S_1KI': 0.3725256692386768, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2138.1740951538086, 'W': 151.25} +[41.25, 39.91, 39.68, 39.83, 39.58, 41.43, 40.59, 39.78, 40.26, 39.69, 40.82, 40.72, 40.11, 39.71, 39.6, 39.85, 39.65, 39.99, 39.77, 40.76] +721.72 +36.086 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 27775, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.346900463104248, 'TIME_S_1KI': 0.3725256692386768, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2138.1740951538086, 'W': 151.25, 'J_1KI': 76.98196562209931, 'W_1KI': 5.445544554455445, 'W_D': 115.164, 'J_D': 1628.037563598633, 'W_D_1KI': 4.146318631863187, 'J_D_1KI': 0.1492823989869734} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.1.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.1.json index a6d8fa4..6336d4d 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.1.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.1.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 4679, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 11.427535057067871, "TIME_S_1KI": 2.4423028546843066, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1873.982270450592, "W": 124.72, "J_1KI": 400.5091409383612, "W_1KI": 26.655268219705064, "W_D": 88.71, "J_D": 1332.9134638524054, "W_D_1KI": 18.959179311818765, "J_D_1KI": 4.051972496648593} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 4427, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.78234076499939, "TIME_S_1KI": 2.4355863485428935, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1855.6078462219239, "W": 121.94, "J_1KI": 419.15695645401485, "W_1KI": 27.544612604472555, "W_D": 85.48649999999999, "J_D": 1300.8809262428283, "W_D_1KI": 19.310255251863563, "J_D_1KI": 4.361927999065633} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.1.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.1.output index a87f9d5..68c803b 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.1.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.1.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.1', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 2.382111072540283} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.1', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 0.23713254928588867} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1024, 2032, ..., 9997994, +tensor(crow_indices=tensor([ 0, 967, 1927, ..., 9997983, 9998974, 10000000]), - col_indices=tensor([ 25, 59, 80, ..., 9969, 9975, 9986]), - values=tensor([0.6759, 0.5147, 0.7066, ..., 0.5276, 0.4088, 0.2550]), + col_indices=tensor([ 2, 7, 17, ..., 9977, 9981, 9986]), + values=tensor([0.0113, 0.4578, 0.3712, ..., 0.8300, 0.4518, 0.5288]), size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.6863, 0.6243, 0.0191, ..., 0.9166, 0.1487, 0.8503]) +tensor([0.6464, 0.5946, 0.9135, ..., 0.7384, 0.8851, 0.3138]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,19 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 10000000 Density: 0.1 -Time: 2.382111072540283 seconds +Time: 0.23713254928588867 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '4407', '-ss', '10000', '-sd', '0.1', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 9.887728929519653} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '4427', '-ss', '10000', '-sd', '0.1', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.78234076499939} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 980, 2002, ..., 9998027, - 9998983, 10000000]), - col_indices=tensor([ 0, 5, 25, ..., 9979, 9984, 9986]), - values=tensor([0.6732, 0.9055, 0.4649, ..., 0.1468, 0.7629, 0.6148]), +tensor(crow_indices=tensor([ 0, 1000, 1968, ..., 9997976, + 9998957, 10000000]), + col_indices=tensor([ 18, 35, 37, ..., 9972, 9974, 9993]), + values=tensor([0.5495, 0.5155, 0.6909, ..., 0.5748, 0.2988, 0.6189]), size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.4732, 0.0327, 0.4956, ..., 0.7189, 0.9869, 0.4026]) +tensor([0.2327, 0.3005, 0.5005, ..., 0.5867, 0.2890, 0.0524]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -36,19 +36,16 @@ Rows: 10000 Size: 100000000 NNZ: 10000000 Density: 0.1 -Time: 9.887728929519653 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '4679', '-ss', '10000', '-sd', '0.1', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 11.427535057067871} +Time: 10.78234076499939 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1053, 2097, ..., 9998095, - 9999109, 10000000]), - col_indices=tensor([ 10, 15, 24, ..., 9977, 9991, 9995]), - values=tensor([0.4155, 0.1468, 0.0149, ..., 0.0226, 0.9383, 0.4708]), +tensor(crow_indices=tensor([ 0, 1000, 1968, ..., 9997976, + 9998957, 10000000]), + col_indices=tensor([ 18, 35, 37, ..., 9972, 9974, 9993]), + values=tensor([0.5495, 0.5155, 0.6909, ..., 0.5748, 0.2988, 0.6189]), size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.3975, 0.8045, 0.4645, ..., 0.1781, 0.4097, 0.1046]) +tensor([0.2327, 0.3005, 0.5005, ..., 0.5867, 0.2890, 0.0524]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -56,30 +53,13 @@ Rows: 10000 Size: 100000000 NNZ: 10000000 Density: 0.1 -Time: 11.427535057067871 seconds +Time: 10.78234076499939 seconds -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1053, 2097, ..., 9998095, - 9999109, 10000000]), - col_indices=tensor([ 10, 15, 24, ..., 9977, 9991, 9995]), - values=tensor([0.4155, 0.1468, 0.0149, ..., 0.0226, 0.9383, 0.4708]), - size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.3975, 0.8045, 0.4645, ..., 0.1781, 0.4097, 0.1046]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([10000, 10000]) -Rows: 10000 -Size: 100000000 -NNZ: 10000000 -Density: 0.1 -Time: 11.427535057067871 seconds - -[40.62, 41.67, 40.6, 39.62, 39.77, 39.59, 39.62, 40.85, 40.24, 40.01] -[124.72] -15.02551531791687 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4679, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 11.427535057067871, 'TIME_S_1KI': 2.4423028546843066, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1873.982270450592, 'W': 124.72} -[40.62, 41.67, 40.6, 39.62, 39.77, 39.59, 39.62, 40.85, 40.24, 40.01, 40.22, 39.64, 40.11, 39.47, 39.58, 39.84, 39.97, 39.93, 39.51, 39.53] -720.2 -36.010000000000005 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4679, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 11.427535057067871, 'TIME_S_1KI': 2.4423028546843066, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1873.982270450592, 'W': 124.72, 'J_1KI': 400.5091409383612, 'W_1KI': 26.655268219705064, 'W_D': 88.71, 'J_D': 1332.9134638524054, 'W_D_1KI': 18.959179311818765, 'J_D_1KI': 4.051972496648593} +[40.15, 39.73, 39.55, 39.93, 39.94, 39.96, 44.96, 39.82, 40.15, 39.43] +[121.94] +15.217384338378906 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4427, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.78234076499939, 'TIME_S_1KI': 2.4355863485428935, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1855.6078462219239, 'W': 121.94} +[40.15, 39.73, 39.55, 39.93, 39.94, 39.96, 44.96, 39.82, 40.15, 39.43, 40.99, 45.07, 39.68, 40.13, 40.01, 39.56, 39.72, 40.75, 40.01, 39.63] +729.07 +36.453500000000005 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4427, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.78234076499939, 'TIME_S_1KI': 2.4355863485428935, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1855.6078462219239, 'W': 121.94, 'J_1KI': 419.15695645401485, 'W_1KI': 27.544612604472555, 'W_D': 85.48649999999999, 'J_D': 1300.8809262428283, 'W_D_1KI': 19.310255251863563, 'J_D_1KI': 4.361927999065633} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.2.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.2.json index 4f270a6..3673122 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.2.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.2.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 2251, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.887785911560059, "TIME_S_1KI": 4.83686624236342, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2027.23151884079, "W": 120.43, "J_1KI": 900.591523252239, "W_1KI": 53.500666370501996, "W_D": 84.27900000000001, "J_D": 1418.6917311000825, "W_D_1KI": 37.44069302532208, "J_D_1KI": 16.632915604319006} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 2210, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.475984573364258, "TIME_S_1KI": 4.740264512834506, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2065.6901198005676, "W": 119.44, "J_1KI": 934.701411674465, "W_1KI": 54.04524886877828, "W_D": 83.048, "J_D": 1436.2979995746614, "W_D_1KI": 37.57828054298643, "J_D_1KI": 17.00374685203006} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.2.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.2.output index c0dab55..5e9953a 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.2.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.2.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.2', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 4.959461212158203} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.2', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 0.5103092193603516} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1995, 4040, ..., 19996024, - 19998015, 20000000]), - col_indices=tensor([ 0, 11, 12, ..., 9985, 9992, 9995]), - values=tensor([0.1207, 0.1695, 0.9340, ..., 0.6555, 0.7804, 0.2569]), +tensor(crow_indices=tensor([ 0, 2001, 3993, ..., 19996027, + 19997998, 20000000]), + col_indices=tensor([ 4, 8, 12, ..., 9988, 9991, 9998]), + values=tensor([0.1397, 0.5991, 0.8904, ..., 0.1163, 0.3047, 0.7503]), size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) -tensor([0.9596, 0.9534, 0.3471, ..., 0.1162, 0.8421, 0.0589]) +tensor([0.7325, 0.0863, 0.4494, ..., 0.5445, 0.3494, 0.7015]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,19 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 20000000 Density: 0.2 -Time: 4.959461212158203 seconds +Time: 0.5103092193603516 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '2117', '-ss', '10000', '-sd', '0.2', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 9.870691061019897} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '2057', '-ss', '10000', '-sd', '0.2', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 9.769307136535645} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2060, 4088, ..., 19995982, - 19997996, 20000000]), - col_indices=tensor([ 3, 8, 18, ..., 9972, 9995, 9999]), - values=tensor([0.9088, 0.2769, 0.7723, ..., 0.9463, 0.8275, 0.8743]), +tensor(crow_indices=tensor([ 0, 1965, 3996, ..., 19995929, + 19997992, 20000000]), + col_indices=tensor([ 4, 9, 15, ..., 9975, 9986, 9992]), + values=tensor([0.0708, 0.7889, 0.9973, ..., 0.4384, 0.2830, 0.3299]), size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) -tensor([0.1663, 0.5238, 0.4734, ..., 0.4751, 0.9551, 0.4862]) +tensor([0.8359, 0.1884, 0.2769, ..., 0.8252, 0.8191, 0.5472]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -36,19 +36,19 @@ Rows: 10000 Size: 100000000 NNZ: 20000000 Density: 0.2 -Time: 9.870691061019897 seconds +Time: 9.769307136535645 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '2251', '-ss', '10000', '-sd', '0.2', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.887785911560059} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '2210', '-ss', '10000', '-sd', '0.2', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.475984573364258} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1987, 4056, ..., 19996028, - 19998022, 20000000]), - col_indices=tensor([ 5, 19, 20, ..., 9991, 9993, 9995]), - values=tensor([0.9673, 0.5215, 0.1097, ..., 0.0767, 0.9506, 0.8361]), +tensor(crow_indices=tensor([ 0, 2066, 4070, ..., 19995990, + 19998002, 20000000]), + col_indices=tensor([ 1, 2, 8, ..., 9986, 9990, 9993]), + values=tensor([0.6258, 0.8376, 0.0180, ..., 0.7990, 0.4511, 0.0511]), size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) -tensor([0.1308, 0.6150, 0.9184, ..., 0.0574, 0.4962, 0.6674]) +tensor([0.7373, 0.4078, 0.5568, ..., 0.6016, 0.2858, 0.4434]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -56,16 +56,16 @@ Rows: 10000 Size: 100000000 NNZ: 20000000 Density: 0.2 -Time: 10.887785911560059 seconds +Time: 10.475984573364258 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1987, 4056, ..., 19996028, - 19998022, 20000000]), - col_indices=tensor([ 5, 19, 20, ..., 9991, 9993, 9995]), - values=tensor([0.9673, 0.5215, 0.1097, ..., 0.0767, 0.9506, 0.8361]), +tensor(crow_indices=tensor([ 0, 2066, 4070, ..., 19995990, + 19998002, 20000000]), + col_indices=tensor([ 1, 2, 8, ..., 9986, 9990, 9993]), + values=tensor([0.6258, 0.8376, 0.0180, ..., 0.7990, 0.4511, 0.0511]), size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) -tensor([0.1308, 0.6150, 0.9184, ..., 0.0574, 0.4962, 0.6674]) +tensor([0.7373, 0.4078, 0.5568, ..., 0.6016, 0.2858, 0.4434]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -73,13 +73,13 @@ Rows: 10000 Size: 100000000 NNZ: 20000000 Density: 0.2 -Time: 10.887785911560059 seconds +Time: 10.475984573364258 seconds -[40.74, 39.87, 40.58, 40.31, 40.56, 40.27, 40.45, 40.39, 39.9, 40.0] -[120.43] -16.833276748657227 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 2251, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.887785911560059, 'TIME_S_1KI': 4.83686624236342, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2027.23151884079, 'W': 120.43} -[40.74, 39.87, 40.58, 40.31, 40.56, 40.27, 40.45, 40.39, 39.9, 40.0, 40.84, 39.74, 40.34, 40.47, 40.2, 40.2, 39.72, 39.73, 39.66, 39.68] -723.02 -36.150999999999996 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 2251, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.887785911560059, 'TIME_S_1KI': 4.83686624236342, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2027.23151884079, 'W': 120.43, 'J_1KI': 900.591523252239, 'W_1KI': 53.500666370501996, 'W_D': 84.27900000000001, 'J_D': 1418.6917311000825, 'W_D_1KI': 37.44069302532208, 'J_D_1KI': 16.632915604319006} +[40.41, 45.21, 40.37, 40.41, 40.26, 39.65, 40.47, 41.87, 39.92, 39.65] +[119.44] +17.294793367385864 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 2210, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.475984573364258, 'TIME_S_1KI': 4.740264512834506, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2065.6901198005676, 'W': 119.44} +[40.41, 45.21, 40.37, 40.41, 40.26, 39.65, 40.47, 41.87, 39.92, 39.65, 40.39, 39.85, 39.69, 40.06, 40.15, 39.58, 40.59, 39.58, 39.95, 40.01] +727.8399999999999 +36.391999999999996 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 2210, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.475984573364258, 'TIME_S_1KI': 4.740264512834506, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2065.6901198005676, 'W': 119.44, 'J_1KI': 934.701411674465, 'W_1KI': 54.04524886877828, 'W_D': 83.048, 'J_D': 1436.2979995746614, 'W_D_1KI': 37.57828054298643, 'J_D_1KI': 17.00374685203006} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.3.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.3.json index 0f6b467..21b0219 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.3.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.3.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 1475, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.550647735595703, "TIME_S_1KI": 7.152981515658104, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2246.3171599555017, "W": 116.09, "J_1KI": 1522.9268881054247, "W_1KI": 78.7050847457627, "W_D": 80.02975, "J_D": 1548.5588830385805, "W_D_1KI": 54.25745762711865, "J_D_1KI": 36.78471703533467} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 1434, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.430570602416992, "TIME_S_1KI": 7.273759136971403, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2171.006755914688, "W": 115.95999999999998, "J_1KI": 1513.9517126322787, "W_1KI": 80.8647140864714, "W_D": 79.27299999999998, "J_D": 1484.1515915973182, "W_D_1KI": 55.281032078103195, "J_D_1KI": 38.55023157468842} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.3.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.3.output index d7eb761..29bb118 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.3.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.3.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.3', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 7.117977619171143} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.3', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 0.7320935726165771} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2996, 5947, ..., 29993941, - 29997016, 30000000]), - col_indices=tensor([ 2, 4, 5, ..., 9994, 9995, 9997]), - values=tensor([0.7643, 0.7440, 0.4862, ..., 0.6436, 0.3641, 0.9418]), +tensor(crow_indices=tensor([ 0, 2976, 5887, ..., 29993981, + 29996974, 30000000]), + col_indices=tensor([ 2, 12, 13, ..., 9995, 9997, 9999]), + values=tensor([0.2872, 0.6919, 0.0045, ..., 0.7234, 0.8152, 0.1470]), size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) -tensor([0.8566, 0.8595, 0.2293, ..., 0.0057, 0.7338, 0.0583]) +tensor([0.3759, 0.5048, 0.7452, ..., 0.9323, 0.0206, 0.6020]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,19 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 30000000 Density: 0.3 -Time: 7.117977619171143 seconds +Time: 0.7320935726165771 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1475', '-ss', '10000', '-sd', '0.3', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.550647735595703} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1434', '-ss', '10000', '-sd', '0.3', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.430570602416992} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2975, 5983, ..., 29994011, - 29997029, 30000000]), - col_indices=tensor([ 7, 9, 13, ..., 9994, 9995, 9998]), - values=tensor([0.9780, 0.9139, 0.8008, ..., 0.7340, 0.6785, 0.0713]), +tensor(crow_indices=tensor([ 0, 2946, 5856, ..., 29993956, + 29997054, 30000000]), + col_indices=tensor([ 1, 3, 10, ..., 9992, 9994, 9995]), + values=tensor([0.6658, 0.8893, 0.2640, ..., 0.2436, 0.9944, 0.7745]), size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) -tensor([0.9158, 0.5873, 0.3730, ..., 0.5358, 0.1305, 0.5051]) +tensor([0.7478, 0.4417, 0.0487, ..., 0.7713, 0.8445, 0.5646]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -36,16 +36,16 @@ Rows: 10000 Size: 100000000 NNZ: 30000000 Density: 0.3 -Time: 10.550647735595703 seconds +Time: 10.430570602416992 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2975, 5983, ..., 29994011, - 29997029, 30000000]), - col_indices=tensor([ 7, 9, 13, ..., 9994, 9995, 9998]), - values=tensor([0.9780, 0.9139, 0.8008, ..., 0.7340, 0.6785, 0.0713]), +tensor(crow_indices=tensor([ 0, 2946, 5856, ..., 29993956, + 29997054, 30000000]), + col_indices=tensor([ 1, 3, 10, ..., 9992, 9994, 9995]), + values=tensor([0.6658, 0.8893, 0.2640, ..., 0.2436, 0.9944, 0.7745]), size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) -tensor([0.9158, 0.5873, 0.3730, ..., 0.5358, 0.1305, 0.5051]) +tensor([0.7478, 0.4417, 0.0487, ..., 0.7713, 0.8445, 0.5646]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -53,13 +53,13 @@ Rows: 10000 Size: 100000000 NNZ: 30000000 Density: 0.3 -Time: 10.550647735595703 seconds +Time: 10.430570602416992 seconds -[41.39, 39.87, 39.86, 40.02, 39.88, 39.87, 40.22, 40.42, 40.2, 40.31] -[116.09] -19.349790334701538 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 1475, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.550647735595703, 'TIME_S_1KI': 7.152981515658104, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2246.3171599555017, 'W': 116.09} -[41.39, 39.87, 39.86, 40.02, 39.88, 39.87, 40.22, 40.42, 40.2, 40.31, 41.51, 39.76, 39.79, 39.7, 39.79, 40.38, 40.29, 39.67, 39.96, 39.84] -721.2049999999999 -36.060249999999996 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 1475, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.550647735595703, 'TIME_S_1KI': 7.152981515658104, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2246.3171599555017, 'W': 116.09, 'J_1KI': 1522.9268881054247, 'W_1KI': 78.7050847457627, 'W_D': 80.02975, 'J_D': 1548.5588830385805, 'W_D_1KI': 54.25745762711865, 'J_D_1KI': 36.78471703533467} +[40.39, 40.27, 40.31, 40.01, 39.78, 40.12, 45.36, 39.94, 40.02, 52.21] +[115.96] +18.722031354904175 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 1434, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.430570602416992, 'TIME_S_1KI': 7.273759136971403, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2171.006755914688, 'W': 115.95999999999998} +[40.39, 40.27, 40.31, 40.01, 39.78, 40.12, 45.36, 39.94, 40.02, 52.21, 41.63, 40.16, 40.0, 40.35, 41.93, 39.55, 39.78, 39.55, 39.63, 39.73] +733.74 +36.687 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 1434, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.430570602416992, 'TIME_S_1KI': 7.273759136971403, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2171.006755914688, 'W': 115.95999999999998, 'J_1KI': 1513.9517126322787, 'W_1KI': 80.8647140864714, 'W_D': 79.27299999999998, 'J_D': 1484.1515915973182, 'W_D_1KI': 55.281032078103195, 'J_D_1KI': 38.55023157468842} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_1e-05.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_1e-05.json index 6beae0d..7eea71b 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_1e-05.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_1e-05.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 355068, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.454679489135742, "TIME_S_1KI": 0.029444161369472165, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1283.4049695920944, "W": 97.06, "J_1KI": 3.614532905224054, "W_1KI": 0.27335608953777873, "W_D": 61.48125, "J_D": 812.9542735084892, "W_D_1KI": 0.17315345229646154, "J_D_1KI": 0.0004876627921875853} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 349456, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 11.173964023590088, "TIME_S_1KI": 0.03197531026392475, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1252.9686733055114, "W": 97.63, "J_1KI": 3.585483360724988, "W_1KI": 0.2793770889611282, "W_D": 61.798, "J_D": 793.1061976127625, "W_D_1KI": 0.17684057506524428, "J_D_1KI": 0.0005060453249200021} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_1e-05.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_1e-05.output index f912c9b..518e71c 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_1e-05.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_1e-05.output @@ -1,266 +1,373 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.1263408660888672} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.018783092498779297} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), - col_indices=tensor([6511, 7342, 6569, 9549, 4200, 6366, 6222, 7592, 169, - 4880, 5467, 9729, 3186, 7579, 7366, 6461, 1569, 540, - 4760, 8910, 3523, 1918, 8918, 3090, 6190, 499, 9266, - 7460, 2296, 3773, 5490, 884, 9714, 1811, 1020, 9037, - 8808, 4866, 6500, 7251, 3472, 4368, 6660, 7858, 2942, - 5413, 1404, 5690, 9364, 8617, 6277, 1831, 560, 3190, - 1663, 819, 9507, 4286, 7801, 2558, 3419, 9656, 3132, - 7435, 3025, 8945, 7422, 9343, 1144, 3849, 1843, 8839, - 6036, 1338, 5977, 5948, 8060, 2140, 9438, 3733, 4406, - 5939, 9926, 2756, 7803, 4028, 4889, 5230, 7472, 8834, - 3528, 4118, 8239, 1176, 9979, 731, 8697, 6303, 596, - 6780, 2484, 641, 8003, 4632, 6436, 9612, 7360, 8016, - 621, 8128, 463, 4301, 2226, 5312, 7004, 6810, 3999, - 4752, 5969, 34, 4043, 3161, 9457, 286, 6473, 2546, - 2948, 1709, 8722, 220, 6967, 9215, 550, 2682, 1046, - 1411, 5120, 1681, 795, 7027, 1138, 7720, 5262, 9156, - 6114, 3094, 5529, 9897, 5383, 2658, 5925, 4585, 1891, - 5947, 1641, 3669, 2374, 4271, 1873, 3950, 8634, 9898, - 2804, 4238, 6088, 7480, 3866, 2931, 158, 762, 7315, - 3431, 9534, 8813, 8729, 7588, 5653, 2233, 8886, 2117, - 5788, 7121, 687, 4736, 1055, 4450, 4608, 65, 8244, - 2012, 6731, 5872, 7793, 1928, 6136, 4684, 8489, 8964, - 3740, 2505, 3086, 567, 7565, 6980, 8106, 6069, 7130, - 6970, 9760, 2913, 3403, 1406, 7675, 386, 5541, 6017, - 9133, 5436, 8960, 7368, 6345, 3739, 2407, 5067, 8091, - 3266, 3124, 5929, 6713, 6112, 8945, 2328, 7728, 4986, - 8539, 2814, 6319, 705, 1165, 9519, 3981, 5584, 6598, - 2738, 5532, 5237, 6331, 6207, 8710, 995, 1064, 3408, - 6852, 23, 6885, 9749, 2209, 7966, 1743, 7553, 7522, - 7688, 3322, 2692, 4077, 524, 1297, 4398, 4096, 1166, - 5811, 9504, 9733, 2814, 8085, 4424, 3816, 2029, 7548, - 8169, 3026, 1340, 5158, 5626, 7898, 9054, 3947, 2974, - 8879, 2439, 4906, 5376, 7674, 5565, 4834, 1951, 8992, - 2602, 4891, 1422, 7414, 4875, 8525, 5441, 9284, 999, - 7732, 4808, 2724, 1701, 1389, 3674, 4863, 3129, 2538, - 6570, 3018, 4218, 7797, 9608, 1867, 6688, 2972, 1313, - 6883, 6461, 1346, 4019, 3075, 3279, 8085, 7848, 9504, - 3827, 2046, 5854, 837, 9356, 3800, 7458, 9224, 1721, - 4056, 5289, 942, 2304, 5616, 3284, 4339, 5079, 870, - 9407, 2635, 5239, 2058, 2138, 7880, 4585, 3515, 9934, - 866, 9761, 8919, 2186, 800, 572, 8912, 8785, 4800, - 5094, 6357, 8393, 6810, 1477, 5566, 9893, 349, 3779, - 8545, 1987, 7795, 9938, 6031, 9207, 8810, 6010, 4262, - 5989, 7188, 9196, 6390, 7391, 9696, 2839, 9975, 2181, - 2674, 1526, 8229, 3221, 2082, 4838, 7371, 86, 8603, - 1062, 8643, 4915, 5544, 7520, 8254, 9621, 153, 2491, - 8229, 4372, 2665, 4480, 3338, 4223, 3871, 8012, 4932, - 8756, 3433, 2881, 6190, 3712, 7183, 4288, 7905, 7231, - 8297, 6210, 5179, 8257, 6157, 3488, 6273, 9080, 4379, - 5031, 8844, 157, 4802, 414, 188, 6362, 490, 9145, - 8499, 4374, 6930, 3177, 8307, 8277, 6077, 290, 2856, - 6353, 3841, 363, 9590, 8189, 5238, 5239, 3246, 7783, - 5125, 1355, 7133, 8323, 9928, 5054, 1300, 7618, 7017, - 20, 6323, 9040, 4476, 3660, 9493, 2606, 5099, 8989, - 4686, 4749, 8776, 7509, 5402, 8359, 4880, 1488, 5157, - 230, 5242, 2209, 1343, 2485, 558, 5693, 1249, 4396, - 2349, 6899, 7592, 9403, 4311, 564, 7436, 7000, 380, - 9168, 6194, 2637, 2512, 3205, 2559, 7975, 9819, 6809, - 3325, 1840, 4305, 5238, 9210, 2227, 6924, 8354, 3045, - 3286, 3664, 6276, 8603, 6294, 1616, 3859, 5674, 2042, - 4316, 8399, 3534, 2694, 6067, 6420, 9170, 8993, 3488, - 8272, 5531, 4465, 9064, 8332, 990, 5946, 5090, 3858, - 8019, 8546, 3535, 1789, 3116, 6602, 8289, 9270, 3315, - 3607, 5332, 5665, 4255, 9462, 3870, 5110, 7175, 59, - 8950, 4474, 898, 3887, 9586, 3479, 624, 2157, 8013, - 5204, 446, 1227, 6497, 4047, 2825, 4969, 207, 9153, - 3558, 2821, 5665, 1108, 8779, 8273, 3826, 1024, 2831, - 8755, 975, 6214, 8135, 9347, 2576, 7238, 260, 9515, - 4303, 1860, 3449, 78, 2060, 4646, 1178, 3266, 5040, - 6785, 4432, 9084, 9287, 1308, 6562, 2916, 5846, 4040, - 6006, 6431, 2614, 6680, 3035, 7241, 3980, 3829, 4911, - 4244, 8881, 3409, 5409, 2501, 2137, 7118, 7535, 5989, - 4552, 6736, 6133, 8836, 5682, 7420, 4597, 727, 7253, - 9952, 4260, 141, 3937, 6286, 8262, 9299, 9258, 6831, - 1516, 2229, 9027, 1604, 2300, 5677, 7863, 2419, 2434, - 9276, 3042, 9104, 1277, 9737, 4965, 2010, 6398, 1957, - 4962, 6889, 9183, 5585, 4081, 3764, 4701, 887, 3733, - 6586, 1585, 2197, 3497, 4488, 5454, 6304, 4370, 7000, - 1732, 5777, 1564, 182, 7312, 843, 2073, 2825, 5082, - 2427, 5637, 5250, 785, 6753, 8646, 5170, 7589, 4599, - 6101, 5880, 4216, 4352, 6075, 8934, 4178, 4278, 9476, - 891, 1828, 2805, 9509, 7190, 8284, 7824, 2775, 8561, - 5451, 4644, 949, 2504, 4485, 5019, 3536, 9441, 2681, - 8020, 7135, 6954, 6223, 583, 5238, 9792, 400, 4350, - 4042, 5751, 5273, 2704, 4637, 9449, 3036, 8020, 1070, - 6190, 1221, 7658, 4998, 4039, 1857, 1515, 8470, 2112, - 1220, 6720, 3909, 7827, 2681, 8993, 1851, 8559, 9233, - 8270, 6492, 8370, 3880, 4016, 9974, 5286, 5908, 7345, - 3932, 9971, 7065, 5706, 2639, 3132, 0, 8702, 3654, - 8031, 308, 9810, 4042, 1066, 5288, 9302, 4605, 7758, - 7079, 7715, 7788, 4493, 9273, 652, 1168, 8880, 764, - 2023, 3145, 561, 9693, 6664, 9707, 2412, 9229, 3856, - 5206, 6758, 7833, 2140, 552, 4704, 8527, 9171, 931, - 1092, 2464, 730, 5373, 8715, 2647, 248, 317, 8578, - 5853, 5045, 2023, 2493, 9990, 4722, 4406, 672, 5484, - 6323, 4636, 760, 2773, 5211, 9856, 7135, 8638, 5261, - 9754, 8020, 9297, 4374, 1483, 4463, 9669, 822, 6952, - 4495, 4359, 4772, 3852, 6538, 3023, 7911, 7905, 474, - 649, 7884, 7257, 1371, 4902, 8997, 1667, 7606, 6008, - 8525, 7525, 4626, 8980, 102, 385, 9820, 3167, 1481, - 6318, 5842, 3074, 2300, 4285, 2257, 8773, 3591, 8972, - 60, 9528, 3412, 3530, 7559, 1661, 6470, 9349, 6549, - 5932, 5012, 7259, 9868, 1051, 7359, 5205, 6204, 4945, - 9902, 3225, 241, 2345, 7259, 6271, 4175, 1082, 8824, - 1547, 6383, 7680, 9555, 9178, 8067, 7267, 8856, 7869, - 3762, 119, 911, 8077, 4179, 3785, 853, 5695, 7309, - 7532, 7067, 1393, 4072, 5209, 5182, 3120, 4904, 2492, - 1193, 2101, 6396, 91, 3022, 9202, 3980, 6136, 770, - 2588, 5106, 4044, 935, 4047, 659, 7690, 8988, 3826, - 2975, 8835, 4878, 2590, 451, 8796, 2172, 2353, 4221, - 2312, 3478, 3018, 8148, 35, 1239, 3737, 276, 1484, - 5891]), - values=tensor([0.0306, 0.2996, 0.3526, 0.5136, 0.1960, 0.0494, 0.4248, - 0.9003, 0.3088, 0.8066, 0.0284, 0.9628, 0.6970, 0.3929, - 0.9036, 0.7489, 0.7075, 0.5515, 0.0416, 0.3000, 0.2939, - 0.4662, 0.0532, 0.2066, 0.1559, 0.5483, 0.1194, 0.6794, - 0.0379, 0.2707, 0.3144, 0.3029, 0.5991, 0.1291, 0.8872, - 0.0571, 0.4748, 0.2201, 0.3840, 0.3049, 0.2970, 0.9700, - 0.8529, 0.1435, 0.5565, 0.5637, 0.9930, 0.1648, 0.4519, - 0.4565, 0.0369, 0.8511, 0.6180, 0.7898, 0.5871, 0.6839, - 0.8964, 0.3177, 0.0872, 0.3846, 0.9044, 0.4366, 0.0388, - 0.1350, 0.2187, 0.1852, 0.7787, 0.4795, 0.4954, 0.8048, - 0.2045, 0.8960, 0.4052, 0.7941, 0.0725, 0.2621, 0.1305, - 0.0902, 0.6241, 0.3014, 0.2140, 0.6118, 0.6453, 0.1158, - 0.4621, 0.4834, 0.0720, 0.4786, 0.0461, 0.4857, 0.9225, - 0.9337, 0.8788, 0.7328, 0.6734, 0.8209, 0.0647, 0.5804, - 0.9201, 0.3337, 0.6402, 0.5754, 0.8922, 0.7688, 0.9684, - 0.5926, 0.4561, 0.5474, 0.5628, 0.6181, 0.1490, 0.7242, - 0.4347, 0.6384, 0.2571, 0.2733, 0.0772, 0.6448, 0.1181, - 0.8618, 0.7749, 0.1412, 0.3808, 0.4841, 0.8504, 0.2451, - 0.7311, 0.5086, 0.5760, 0.3132, 0.1736, 0.1022, 0.0208, - 0.2411, 0.1662, 0.6587, 0.2256, 0.4538, 0.6212, 0.5927, - 0.7335, 0.3971, 0.7881, 0.9087, 0.8888, 0.5215, 0.0362, - 0.2192, 0.6024, 0.3066, 0.5152, 0.7761, 0.6246, 0.5107, - 0.7204, 0.0928, 0.2938, 0.2239, 0.8240, 0.8958, 0.7616, - 0.6198, 0.8798, 0.1372, 0.8344, 0.7621, 0.6427, 0.7246, - 0.1530, 0.8750, 0.0458, 0.4190, 0.4886, 0.3299, 0.9645, - 0.3283, 0.9267, 0.2549, 0.8204, 0.8857, 0.4233, 0.5398, - 0.8946, 0.3813, 0.9383, 0.3632, 0.7251, 0.4935, 0.4827, - 0.2048, 0.0825, 0.0035, 0.9126, 0.1871, 0.9901, 0.9622, - 0.7775, 0.0560, 0.9785, 0.3158, 0.2838, 0.7572, 0.3187, - 0.9800, 0.2588, 0.4971, 0.2998, 0.0798, 0.3656, 0.8817, - 0.7570, 0.9729, 0.9450, 0.3333, 0.6794, 0.8595, 0.0825, - 0.5629, 0.1961, 0.2346, 0.7490, 0.4658, 0.0661, 0.7833, - 0.9724, 0.8115, 0.6330, 0.9629, 0.6885, 0.2121, 0.4325, - 0.7806, 0.0604, 0.5040, 0.6010, 0.3542, 0.7338, 0.6247, - 0.5156, 0.0422, 0.2923, 0.7305, 0.0072, 0.0523, 0.0874, - 0.3459, 0.6271, 0.2483, 0.5689, 0.5708, 0.6442, 0.9101, - 0.1929, 0.8536, 0.1759, 0.7602, 0.2479, 0.8308, 0.1534, - 0.8999, 0.5372, 0.4067, 0.1885, 0.6555, 0.8109, 0.1402, - 0.4547, 0.0892, 0.0917, 0.4601, 0.4577, 0.0414, 0.4292, - 0.7770, 0.6217, 0.1772, 0.7251, 0.2974, 0.3561, 0.1741, - 0.9519, 0.1043, 0.1386, 0.2005, 0.3308, 0.6261, 0.5583, - 0.6958, 0.9562, 0.1163, 0.7202, 0.0189, 0.6769, 0.8101, - 0.2518, 0.0598, 0.0523, 0.9468, 0.5857, 0.4039, 0.1540, - 0.6184, 0.6548, 0.6415, 0.1325, 0.2674, 0.2857, 0.1560, - 0.2794, 0.1789, 0.4609, 0.4847, 0.0643, 0.2217, 0.1603, - 0.9383, 0.8847, 0.1370, 0.6934, 0.7808, 0.4786, 0.2836, - 0.2882, 0.3049, 0.8279, 0.1760, 0.4565, 0.6898, 0.4354, - 0.2369, 0.0678, 0.5112, 0.3915, 0.2665, 0.0071, 0.3329, - 0.7702, 0.5882, 0.2246, 0.8406, 0.4273, 0.5306, 0.5471, - 0.0205, 0.2945, 0.3046, 0.8992, 0.5360, 0.5760, 0.5236, - 0.8603, 0.1486, 0.5646, 0.8488, 0.1589, 0.4986, 0.7975, - 0.6924, 0.8408, 0.1090, 0.6127, 0.7986, 0.1942, 0.7795, - 0.6241, 0.8583, 0.0902, 0.4669, 0.0031, 0.7487, 0.2235, - 0.8146, 0.4574, 0.3400, 0.3504, 0.0333, 0.4419, 0.8370, - 0.0392, 0.2485, 0.1795, 0.7482, 0.2109, 0.0408, 0.7418, - 0.9292, 0.6846, 0.3690, 0.4878, 0.6072, 0.6460, 0.4085, - 0.6894, 0.9867, 0.4649, 0.1809, 0.1338, 0.6634, 0.7284, - 0.8447, 0.2901, 0.8729, 0.3228, 0.7217, 0.0421, 0.3467, - 0.3500, 0.0319, 0.6448, 0.0298, 0.7700, 0.7140, 0.6676, - 0.7898, 0.8129, 0.6835, 0.3724, 0.9770, 0.8145, 0.9149, - 0.6854, 0.0386, 0.9383, 0.7113, 0.0544, 0.2496, 0.4624, - 0.2901, 0.2225, 0.8862, 0.3230, 0.0831, 0.5192, 0.8215, - 0.8609, 0.5748, 0.2582, 0.5818, 0.6447, 0.9069, 0.4974, - 0.5823, 0.5074, 0.7554, 0.2160, 0.6916, 0.9777, 0.0044, - 0.7248, 0.6742, 0.4187, 0.4874, 0.0607, 0.8419, 0.6519, - 0.7998, 0.5744, 0.6496, 0.7756, 0.5558, 0.0928, 0.3968, - 0.1019, 0.3508, 0.3882, 0.9473, 0.6436, 0.8376, 0.5488, - 0.6926, 0.5539, 0.1858, 0.0264, 0.5272, 0.2740, 0.8661, - 0.5169, 0.0795, 0.0521, 0.9982, 0.2502, 0.8618, 0.6245, - 0.7443, 0.7449, 0.2283, 0.4514, 0.6829, 0.0254, 0.4974, - 0.3757, 0.0356, 0.0300, 0.0553, 0.2861, 0.3189, 0.8406, - 0.1083, 0.9209, 0.6242, 0.1608, 0.0338, 0.3084, 0.9249, - 0.8197, 0.5299, 0.9741, 0.7855, 0.8666, 0.4031, 0.7025, - 0.5839, 0.0050, 0.7304, 0.3322, 0.1087, 0.2762, 0.7511, - 0.7594, 0.0724, 0.5264, 0.0240, 0.0994, 0.3068, 0.4204, - 0.7297, 0.3932, 0.5193, 0.2475, 0.7232, 0.8687, 0.3627, - 0.8627, 0.7280, 0.1720, 0.7801, 0.8422, 0.2665, 0.3902, - 0.9385, 0.1567, 0.6750, 0.0872, 0.6728, 0.7000, 0.6708, - 0.1144, 0.5964, 0.2046, 0.0215, 0.1444, 0.1121, 0.3866, - 0.0141, 0.0182, 0.0820, 0.4020, 0.2046, 0.0760, 0.7010, - 0.8371, 0.6363, 0.1601, 0.8386, 0.4834, 0.6240, 0.7109, - 0.5248, 0.1620, 0.2978, 0.5724, 0.7957, 0.5286, 0.9592, - 0.1891, 0.3098, 0.1183, 0.8406, 0.4345, 0.2746, 0.2381, - 0.9283, 0.9912, 0.1328, 0.9612, 0.5342, 0.7093, 0.7239, - 0.5647, 0.8151, 0.7272, 0.5546, 0.5172, 0.9452, 0.9265, - 0.5730, 0.6891, 0.8507, 0.0152, 0.3641, 0.6091, 0.0281, - 0.8430, 0.4602, 0.4083, 0.2670, 0.4846, 0.8166, 0.6608, - 0.4757, 0.2061, 0.0230, 0.3786, 0.0203, 0.3579, 0.1856, - 0.9697, 0.6122, 0.1104, 0.4051, 0.6621, 0.7210, 0.4887, - 0.7662, 0.4987, 0.3552, 0.8317, 0.6462, 0.2954, 0.8946, - 0.6938, 0.8724, 0.8605, 0.5661, 0.2432, 0.6532, 0.7869, - 0.5082, 0.1430, 0.1744, 0.4959, 0.2427, 0.6615, 0.1468, - 0.6222, 0.5168, 0.1504, 0.6478, 0.0760, 0.6906, 0.5515, - 0.6555, 0.1942, 0.5614, 0.9788, 0.0980, 0.0822, 0.0901, - 0.3375, 0.1551, 0.9099, 0.1875, 0.4951, 0.8701, 0.2417, - 0.3607, 0.9100, 0.2254, 0.8664, 0.4507, 0.7583, 0.3452, - 0.1628, 0.8842, 0.4641, 0.8382, 0.1592, 0.1465, 0.7834, - 0.1113, 0.8527, 0.7883, 0.0078, 0.7042, 0.5069, 0.0265, - 0.4437, 0.7457, 0.3947, 0.2779, 0.1135, 0.0400, 0.7033, - 0.6583, 0.9688, 0.5398, 0.0529, 0.7115, 0.4981, 0.4662, - 0.1089, 0.2302, 0.4077, 0.1243, 0.1202, 0.6002, 0.2944, - 0.5434, 0.8171, 0.2524, 0.1311, 0.2229, 0.6672, 0.7868, - 0.3712, 0.2741, 0.2983, 0.0211, 0.9064, 0.2443, 0.2039, - 0.1587, 0.0714, 0.1602, 0.5244, 0.6179, 0.1098, 0.8545, - 0.4409, 0.8691, 0.7805, 0.7046, 0.1708, 0.2781, 0.9514, - 0.9829, 0.8609, 0.8372, 0.7281, 0.1977, 0.5304, 0.8741, - 0.9262, 0.4102, 0.3512, 0.1301, 0.6785, 0.7435, 0.8077, - 0.0054, 0.4434, 0.2501, 0.4500, 0.1285, 0.3015, 0.7139, - 0.3419, 0.9442, 0.0252, 0.9060, 0.2412, 0.9194, 0.6338, - 0.9581, 0.4535, 0.9501, 0.2388, 0.0183, 0.7894, 0.8822, - 0.2473, 0.1064, 0.3979, 0.4847, 0.1764, 0.6258, 0.6423, - 0.3027, 0.0291, 0.5673, 0.6365, 0.2921, 0.8467, 0.9302, - 0.1491, 0.4870, 0.1244, 0.1446, 0.6191, 0.4937, 0.4839, - 0.1760, 0.6423, 0.3785, 0.0507, 0.0136, 0.9314, 0.0413, - 0.3361, 0.4356, 0.5253, 0.6406, 0.4027, 0.9081, 0.1976, - 0.3900, 0.0793, 0.7130, 0.8448, 0.5262, 0.7891, 0.7115, - 0.6106, 0.6129, 0.7191, 0.5413, 0.0599, 0.7188, 0.5771, - 0.0563, 0.3318, 0.9427, 0.2488, 0.9866, 0.3747, 0.0846, - 0.0192, 0.4736, 0.2442, 0.1761, 0.6562, 0.5303, 0.6790, - 0.1108, 0.2154, 0.1110, 0.8123, 0.5187, 0.6447, 0.0812, - 0.9661, 0.6681, 0.7909, 0.7698, 0.3579, 0.0744, 0.7481, - 0.7668, 0.1431, 0.3334, 0.7738, 0.6145, 0.1853, 0.3382, - 0.9412, 0.2181, 0.4791, 0.9681, 0.4770, 0.7934, 0.5690, - 0.8437, 0.3696, 0.3543, 0.2772, 0.9915, 0.2554, 0.9890, - 0.8207, 0.6499, 0.3341, 0.5876, 0.3016, 0.6988, 0.6689, - 0.3669, 0.6637, 0.1413, 0.9395, 0.0606, 0.9514, 0.3260, - 0.5061, 0.3513, 0.7068, 0.0974, 0.3633, 0.4546, 0.4583, - 0.7655, 0.9906, 0.2955, 0.9989, 0.3375, 0.3790, 0.8979, - 0.7939, 0.5902, 0.8694, 0.1432, 0.9009, 0.8808, 0.4242, - 0.5135, 0.6896, 0.0119, 0.4685, 0.6706, 0.4189, 0.9546, - 0.3617, 0.0920, 0.5116, 0.4792, 0.7116, 0.0251, 0.0758, - 0.8562, 0.6360, 0.7029, 0.1478, 0.9535, 0.5155, 0.1408, - 0.0802, 0.2040, 0.4593, 0.1577, 0.2618, 0.9670, 0.0535, - 0.4637, 0.0191, 0.9906, 0.0035, 0.4768, 0.3059, 0.5236, - 0.8961, 0.9634, 0.9692, 0.1734, 0.8440, 0.6503, 0.5804, - 0.0330, 0.2159, 0.9849, 0.0927, 0.0050, 0.5841, 0.8372, - 0.4469, 0.6234, 0.3858, 0.3558, 0.2944, 0.5086, 0.3990, - 0.0024, 0.2265, 0.9175, 0.2927, 0.9591, 0.5760, 0.7312, - 0.8004, 0.8632, 0.6707, 0.3346, 0.8718, 0.4368, 0.8040, - 0.7086, 0.4515, 0.4407, 0.9257, 0.9829, 0.8739, 0.9325, - 0.3778, 0.1118, 0.7555, 0.1293, 0.6795, 0.0619, 0.8626, - 0.7469, 0.8528, 0.2420, 0.3647, 0.2182, 0.8272, 0.9530, - 0.5556, 0.3834, 0.2160, 0.8095, 0.1449, 0.1013]), + col_indices=tensor([7710, 770, 4407, 1870, 7174, 5318, 1450, 1184, 2850, + 4403, 2123, 255, 810, 7400, 565, 3550, 9613, 7496, + 6015, 975, 9271, 7248, 4063, 4805, 7196, 7869, 4589, + 3665, 14, 7810, 5136, 5919, 2466, 4173, 9881, 3733, + 1870, 1230, 6453, 5008, 3988, 9434, 1211, 7162, 7902, + 9745, 4411, 5286, 1509, 4833, 7496, 1798, 4, 3586, + 7060, 2811, 8112, 4764, 9435, 3836, 5882, 3125, 9850, + 2118, 4178, 9802, 8785, 5451, 5614, 8254, 6937, 7688, + 7331, 3332, 6913, 3221, 6350, 4032, 1334, 7216, 129, + 9945, 7932, 9294, 1550, 7754, 4771, 5013, 294, 9524, + 9420, 8530, 7837, 2039, 9838, 1792, 5287, 5887, 573, + 7513, 5802, 9931, 5757, 4848, 2498, 9852, 172, 7356, + 7917, 1181, 539, 4514, 1534, 8369, 4234, 9382, 7442, + 6827, 9408, 9891, 2006, 5444, 9700, 4515, 5848, 7202, + 8465, 8202, 7227, 5428, 6226, 7163, 1915, 9424, 7937, + 3286, 7876, 401, 9372, 5269, 534, 8486, 5070, 2186, + 2780, 8211, 5164, 9491, 8801, 2669, 4834, 6041, 906, + 6304, 6419, 5278, 8990, 5734, 1221, 935, 3464, 2356, + 7735, 7209, 5212, 1318, 8268, 9084, 3729, 231, 1156, + 1335, 6818, 8619, 6611, 8933, 2141, 101, 2488, 1604, + 1138, 1432, 2355, 1314, 1098, 1619, 4109, 4763, 1605, + 2774, 7361, 843, 6381, 1534, 9790, 4775, 7164, 7105, + 6239, 3980, 382, 411, 7505, 7659, 3367, 1766, 3195, + 9470, 2528, 9322, 6959, 2216, 491, 8725, 2371, 4382, + 5718, 5217, 7058, 4457, 5435, 1249, 9086, 4957, 5280, + 7131, 4958, 8168, 4939, 4037, 3075, 3367, 7266, 6066, + 5464, 2058, 4013, 2658, 7499, 9138, 8214, 6222, 4674, + 6822, 9675, 5801, 8254, 8831, 8871, 6911, 8523, 885, + 5318, 2866, 8999, 8361, 5772, 5641, 171, 8207, 6823, + 1799, 2385, 3933, 8099, 9437, 4173, 4273, 4399, 7947, + 538, 8128, 6522, 1001, 6458, 9133, 842, 3215, 3937, + 8256, 4826, 8778, 6085, 7131, 1758, 1134, 7002, 8167, + 700, 4064, 7323, 8384, 4717, 7001, 6775, 3204, 701, + 2756, 9559, 5146, 8344, 1565, 2384, 9287, 6270, 6517, + 9569, 3605, 1309, 1171, 4748, 2704, 3906, 6066, 1315, + 4722, 9012, 2854, 9405, 9514, 7715, 2699, 2312, 9518, + 1435, 2191, 85, 1881, 1234, 2331, 4237, 5757, 7932, + 9712, 3332, 7705, 1404, 8567, 6763, 9879, 1736, 3894, + 5687, 8039, 1164, 621, 2677, 2713, 7254, 2093, 2442, + 8214, 7080, 8260, 2130, 5394, 902, 5406, 5871, 8131, + 8425, 1840, 8258, 10, 3515, 7795, 4351, 23, 2317, + 4596, 1004, 626, 9911, 3655, 1067, 5724, 9150, 3004, + 1248, 7595, 4785, 5244, 8336, 4341, 9387, 1506, 8501, + 2147, 1566, 6495, 4554, 7326, 6889, 8027, 651, 2541, + 5072, 7045, 8106, 4631, 6832, 1063, 4955, 3837, 5979, + 5449, 2272, 9439, 522, 2753, 9349, 9909, 7912, 2140, + 3823, 565, 5366, 4263, 9476, 8456, 9778, 4716, 8861, + 3068, 7529, 8311, 2167, 8097, 9726, 5963, 8961, 8951, + 8141, 2407, 5529, 1677, 2350, 6893, 7197, 3753, 5887, + 8876, 4491, 4643, 8990, 596, 8161, 7846, 2289, 9180, + 7037, 5854, 6062, 8432, 824, 4812, 3129, 8178, 4110, + 9628, 3692, 997, 3675, 9501, 8580, 8343, 4389, 3215, + 2282, 3336, 4379, 5429, 3859, 5531, 1391, 1842, 9054, + 3059, 3924, 4109, 4585, 1402, 5590, 2428, 5822, 4347, + 9652, 4937, 8518, 2936, 4541, 4664, 7316, 3628, 1576, + 100, 6717, 6869, 5782, 4769, 6381, 420, 7325, 9706, + 5457, 6444, 6589, 843, 7648, 9948, 200, 1616, 3739, + 1287, 4261, 1655, 8236, 7002, 480, 4835, 8836, 2589, + 7842, 2577, 3714, 9973, 9407, 6133, 4479, 8904, 166, + 7918, 5703, 6259, 4920, 9996, 9898, 9260, 9581, 5155, + 2417, 2267, 2847, 3259, 4611, 7016, 3338, 8196, 6441, + 9820, 9477, 466, 5776, 9899, 731, 9644, 9431, 476, + 9327, 5566, 7989, 3039, 9320, 1202, 381, 1915, 2369, + 3818, 8016, 6121, 6692, 1702, 1859, 3194, 8553, 3794, + 1815, 8135, 7504, 9443, 5902, 8225, 1819, 3757, 9067, + 7582, 7642, 3549, 7259, 1959, 3004, 6866, 1165, 2517, + 9690, 7905, 3279, 6036, 7950, 6116, 3751, 5294, 4615, + 9314, 6307, 3673, 1490, 4111, 1240, 8263, 4110, 4571, + 2905, 2774, 1985, 3126, 6084, 5700, 1229, 5879, 8154, + 2148, 4874, 2092, 9170, 3482, 664, 5554, 1113, 9484, + 3978, 7225, 3749, 8894, 8534, 5256, 5887, 8419, 5698, + 8427, 8697, 7604, 2812, 2806, 1845, 6003, 3130, 760, + 2497, 2541, 9127, 1210, 1651, 530, 1994, 1040, 8645, + 8666, 9304, 4335, 8289, 1101, 6332, 1007, 8169, 9969, + 943, 4525, 8690, 4159, 1817, 6073, 4957, 596, 6283, + 3051, 4485, 7766, 8516, 526, 7053, 8582, 7056, 943, + 6579, 9174, 2254, 8501, 1773, 956, 877, 7705, 4613, + 5648, 4661, 1809, 2688, 8514, 8802, 4722, 545, 4747, + 6633, 3814, 8935, 7588, 1678, 8488, 5607, 673, 2681, + 8017, 6281, 3685, 3530, 8546, 4879, 7593, 4273, 2876, + 3735, 2848, 836, 940, 4597, 1074, 1122, 8693, 963, + 3887, 7554, 930, 4424, 9656, 8086, 135, 4899, 5218, + 8994, 418, 969, 6615, 8605, 1505, 6523, 1169, 6709, + 5427, 5511, 3558, 5322, 8458, 850, 2892, 4597, 5142, + 8980, 9053, 5609, 1077, 5309, 1757, 306, 460, 2458, + 4048, 8475, 4050, 6980, 4499, 6977, 1259, 1464, 3611, + 8751, 6728, 7071, 9544, 9297, 512, 4042, 6462, 2944, + 5752, 9601, 679, 9648, 7279, 2893, 973, 4996, 1919, + 5484, 6026, 3293, 7948, 7029, 8673, 3172, 2794, 8323, + 821, 1937, 6356, 4283, 5725, 2893, 1377, 9981, 7003, + 5977, 8646, 3216, 6885, 4725, 8141, 3585, 6384, 9261, + 9676, 1311, 3308, 6435, 8132, 8525, 2917, 7023, 2344, + 7600, 4383, 4886, 6233, 7280, 8202, 1726, 1918, 3206, + 8062, 434, 361, 124, 6241, 4326, 7134, 295, 2286, + 4397, 3630, 485, 8219, 5832, 5393, 8505, 8369, 461, + 8188, 4054, 8534, 5850, 8902, 4999, 6423, 3476, 6192, + 6572, 6196, 5040, 4242, 7067, 7952, 3299, 5653, 1326, + 858, 1204, 3430, 462, 9954, 4911, 2910, 3563, 4861, + 4090, 3934, 3405, 8602, 1698, 9993, 6680, 3885, 6072, + 4399, 7396, 8831, 6459, 8768, 6290, 6186, 7949, 3125, + 1261, 9770, 5246, 3605, 357, 7933, 8926, 5531, 3614, + 3729, 5340, 883, 1173, 7534, 8589, 6681, 4108, 8234, + 2703, 7749, 2006, 4313, 509, 3164, 3554, 5906, 4437, + 7829, 1278, 3055, 4732, 6488, 1268, 6449, 6632, 7614, + 45, 1360, 9281, 7504, 2281, 4706, 4960, 4576, 206, + 6864, 5459, 1834, 4347, 1803, 929, 7593, 5081, 9952, + 4949, 323, 8662, 2381, 5486, 2263, 306, 3850, 8532, + 8650, 6620, 5629, 3893, 7949, 275, 3546, 8768, 8253, + 9465, 120, 747, 2625, 603, 4903, 2906, 4444, 8192, + 5259, 2313, 293, 2063, 856, 8668, 8628, 7481, 5244, + 9114, 8455, 3952, 4502, 7495, 3074, 8209, 6343, 4118, + 8429]), + values=tensor([1.0187e-01, 9.3060e-02, 7.1844e-01, 6.0591e-01, + 1.7420e-01, 4.7341e-01, 4.6521e-01, 2.2759e-01, + 8.5069e-01, 3.6280e-01, 9.4888e-01, 6.2180e-01, + 8.8663e-01, 8.0888e-01, 1.3511e-01, 8.9212e-01, + 4.9632e-01, 7.1062e-02, 8.8913e-01, 3.6555e-01, + 5.7802e-01, 9.5902e-01, 6.7906e-01, 5.7533e-03, + 9.6566e-01, 6.2483e-01, 5.0879e-01, 6.7668e-01, + 9.1177e-01, 4.3629e-01, 2.3313e-01, 8.4588e-01, + 4.5185e-01, 2.4600e-01, 8.2141e-01, 2.8976e-01, + 9.1767e-01, 3.5967e-01, 1.4506e-01, 7.2241e-01, + 6.2974e-01, 6.3780e-01, 8.8090e-01, 2.9092e-01, + 1.6965e-01, 3.6359e-01, 7.3928e-01, 8.5548e-01, + 5.7369e-01, 3.7085e-01, 5.3463e-01, 1.7885e-02, + 8.9381e-01, 5.2509e-01, 7.4178e-01, 4.7149e-01, + 8.9602e-01, 8.5585e-01, 4.7822e-01, 9.9631e-01, + 1.3915e-01, 5.7821e-01, 7.0603e-02, 7.6275e-01, + 3.7581e-01, 4.5089e-01, 1.0040e-01, 2.8821e-01, + 4.0836e-02, 8.7711e-01, 2.5635e-01, 4.7419e-01, + 3.1472e-01, 4.7404e-01, 6.0210e-01, 1.7740e-01, + 3.7222e-01, 1.8530e-02, 6.6757e-01, 7.5811e-02, + 1.3391e-01, 9.8196e-01, 3.7396e-01, 5.2924e-02, + 5.7431e-01, 4.5457e-03, 6.3555e-01, 6.9843e-01, + 8.9610e-01, 8.6400e-01, 8.8516e-01, 3.9290e-01, + 7.0320e-01, 6.1583e-01, 8.4624e-01, 7.7953e-01, + 9.0684e-01, 4.3665e-01, 8.3774e-01, 1.8001e-01, + 4.1709e-01, 3.5144e-01, 3.1082e-02, 5.4723e-01, + 8.2229e-01, 4.0371e-01, 4.8804e-01, 8.0640e-01, + 7.9319e-01, 3.0761e-01, 3.5246e-01, 6.6259e-01, + 7.5795e-01, 3.3689e-03, 2.9805e-01, 4.4254e-01, + 7.3029e-01, 1.1907e-01, 4.1236e-01, 3.9221e-01, + 2.1364e-01, 6.5107e-01, 1.3201e-01, 6.9985e-01, + 2.8995e-01, 6.0845e-01, 7.6109e-01, 5.2480e-01, + 4.7204e-01, 1.9708e-01, 7.3808e-02, 8.5301e-01, + 5.7930e-02, 5.6419e-03, 6.5604e-01, 1.1150e-01, + 2.7579e-01, 5.0248e-01, 8.6125e-01, 5.2749e-01, + 4.8346e-01, 5.3141e-01, 9.3706e-01, 4.5452e-01, + 9.6538e-02, 5.6358e-01, 1.0907e-01, 2.9151e-02, + 2.9892e-01, 8.9018e-01, 6.1924e-02, 4.5372e-02, + 4.1819e-01, 4.4428e-01, 3.8712e-01, 2.9124e-01, + 6.8060e-02, 4.4495e-01, 8.6639e-01, 1.2161e-01, + 1.9770e-01, 8.9914e-01, 7.8519e-01, 7.4160e-01, + 6.3062e-01, 9.6251e-01, 6.3046e-01, 5.4702e-01, + 3.9281e-02, 6.5735e-01, 1.2776e-01, 4.1871e-01, + 9.6472e-01, 8.5551e-01, 3.7850e-01, 2.9965e-01, + 8.3225e-01, 2.3553e-02, 8.0975e-01, 9.3845e-02, + 9.4994e-01, 4.7182e-01, 6.9838e-01, 2.9612e-01, + 5.5496e-01, 6.5603e-01, 4.6633e-01, 4.0017e-01, + 5.0322e-01, 7.8427e-01, 4.3211e-01, 2.4713e-01, + 6.8107e-01, 7.3829e-01, 7.4132e-01, 8.6413e-01, + 9.8284e-01, 4.1509e-01, 4.1459e-01, 5.9436e-01, + 7.1965e-01, 3.9605e-01, 7.9076e-01, 1.5670e-01, + 7.7054e-01, 8.0907e-01, 5.7976e-01, 8.4957e-01, + 7.5938e-01, 2.6316e-01, 3.6742e-01, 6.7139e-01, + 6.2663e-01, 2.8545e-01, 8.4638e-01, 3.3650e-01, + 1.9393e-01, 8.2539e-01, 8.7496e-01, 4.5566e-01, + 3.5352e-01, 6.8968e-01, 9.7918e-01, 8.4556e-01, + 9.0911e-01, 5.3111e-01, 4.9952e-01, 3.4829e-01, + 9.9674e-01, 9.1414e-01, 9.0159e-01, 7.1385e-01, + 4.0399e-01, 1.9201e-02, 6.1073e-02, 9.3500e-01, + 7.7952e-01, 6.8003e-01, 7.1526e-03, 2.5124e-01, + 8.2126e-02, 2.2497e-01, 8.0977e-01, 1.9978e-01, + 9.0065e-01, 6.1026e-01, 1.6002e-01, 9.5304e-01, + 6.4606e-01, 8.9434e-01, 6.6189e-01, 8.8742e-01, + 7.8087e-01, 9.0584e-01, 7.2847e-01, 5.8028e-01, + 6.0780e-01, 4.9432e-01, 9.2651e-01, 9.0691e-01, + 4.3390e-01, 1.2290e-01, 8.1558e-02, 4.9520e-01, + 2.3303e-01, 6.8030e-01, 8.5078e-02, 5.9635e-01, + 4.9854e-01, 3.5607e-01, 2.3071e-02, 2.0342e-01, + 3.3403e-01, 4.7020e-01, 1.1812e-01, 1.9543e-01, + 2.3376e-01, 3.8392e-01, 8.7559e-02, 3.5012e-01, + 3.1852e-01, 4.5980e-01, 3.7863e-01, 4.7870e-01, + 8.9047e-01, 9.6861e-01, 1.7266e-01, 8.3507e-01, + 4.3536e-02, 5.5165e-01, 3.4361e-01, 8.9113e-01, + 2.0902e-01, 8.3518e-01, 6.6187e-01, 3.8314e-01, + 8.0300e-01, 6.5042e-01, 6.9120e-01, 6.0188e-01, + 4.8010e-01, 2.7651e-01, 9.0978e-01, 7.1078e-01, + 5.9103e-01, 6.3327e-01, 5.3087e-01, 2.9399e-01, + 7.3804e-01, 4.2389e-01, 1.6557e-01, 8.5186e-01, + 2.3146e-01, 6.6881e-01, 2.2386e-01, 1.5332e-01, + 2.7304e-01, 1.0240e-01, 4.3476e-01, 7.8105e-01, + 5.8972e-02, 7.5568e-01, 7.1605e-01, 8.5101e-01, + 8.7931e-01, 4.0044e-01, 2.4097e-01, 8.2776e-01, + 6.5361e-01, 4.0509e-01, 5.9794e-01, 7.8265e-01, + 3.4318e-01, 5.8254e-01, 2.8341e-01, 6.9728e-01, + 6.3303e-01, 7.0794e-01, 6.7661e-01, 8.4756e-01, + 9.3971e-01, 2.7594e-01, 3.4066e-01, 8.1946e-01, + 5.6985e-01, 2.8557e-01, 3.6155e-01, 9.1018e-01, + 4.4262e-01, 9.1349e-01, 6.9133e-01, 1.1543e-01, + 8.8510e-01, 2.8478e-01, 5.3501e-01, 9.5937e-01, + 3.1066e-01, 2.5479e-01, 6.5123e-01, 2.6004e-01, + 3.6510e-01, 3.3774e-01, 1.0742e-01, 1.6244e-01, + 9.6209e-01, 7.8917e-01, 5.9193e-01, 1.4050e-01, + 4.6784e-01, 1.3862e-01, 6.8783e-01, 3.8758e-01, + 3.8488e-01, 4.5045e-01, 9.8813e-01, 3.1351e-02, + 9.9879e-01, 3.6004e-01, 2.5033e-01, 4.8943e-01, + 9.7100e-01, 8.4453e-01, 6.6768e-01, 8.8569e-02, + 7.1994e-01, 9.2108e-01, 3.8162e-01, 2.4625e-01, + 3.0837e-01, 1.7831e-01, 1.5312e-01, 6.7478e-01, + 3.7105e-01, 2.7460e-01, 5.6371e-01, 7.5959e-01, + 3.7224e-01, 2.1087e-01, 6.5640e-01, 1.1956e-01, + 1.8089e-01, 3.5428e-01, 1.1136e-02, 7.2999e-01, + 4.7290e-02, 3.2416e-01, 9.4583e-01, 2.1888e-01, + 6.7653e-01, 6.1755e-01, 7.2680e-01, 9.9049e-01, + 2.7798e-02, 1.3499e-01, 2.4043e-01, 8.1927e-01, + 6.0770e-01, 9.3564e-01, 4.0376e-01, 6.0613e-01, + 4.2311e-01, 2.4050e-01, 4.2569e-01, 3.2700e-01, + 6.6681e-01, 9.1598e-01, 2.4610e-02, 3.1564e-01, + 7.7390e-01, 5.8683e-01, 2.3132e-01, 2.3585e-01, + 4.6167e-01, 2.3949e-01, 2.4135e-01, 3.5397e-01, + 9.1516e-01, 4.1043e-01, 7.7809e-01, 7.3179e-02, + 5.8349e-01, 2.8828e-01, 6.1494e-01, 2.4378e-01, + 8.2912e-01, 7.3234e-01, 6.8131e-01, 3.3134e-02, + 7.6679e-02, 5.6862e-01, 5.4287e-01, 7.6513e-01, + 6.2055e-01, 5.7089e-01, 7.2783e-01, 2.7541e-01, + 9.3864e-01, 5.8064e-01, 9.2294e-01, 5.6055e-01, + 7.2024e-01, 2.5839e-01, 8.3608e-02, 7.3547e-01, + 7.6127e-02, 3.2870e-01, 7.7548e-02, 6.2544e-01, + 3.8702e-01, 7.9350e-01, 4.0659e-01, 2.4674e-01, + 2.7607e-01, 5.0202e-01, 9.5886e-01, 9.5818e-01, + 3.3974e-02, 9.7595e-01, 7.9134e-01, 9.5878e-01, + 1.0231e-01, 7.7522e-01, 7.3580e-01, 9.2291e-01, + 9.1663e-01, 4.4586e-01, 4.6182e-01, 7.2430e-01, + 9.2178e-04, 8.5347e-01, 5.4921e-01, 4.5417e-01, + 2.2747e-02, 2.5915e-01, 4.5402e-01, 3.1192e-01, + 8.2311e-01, 9.7335e-01, 2.7230e-01, 5.4272e-01, + 8.7519e-01, 9.1728e-01, 2.9016e-01, 1.6495e-01, + 4.2395e-01, 8.5072e-01, 1.9714e-03, 2.7308e-01, + 9.7770e-01, 9.1682e-01, 9.9182e-01, 3.7958e-01, + 7.9282e-01, 1.7761e-01, 6.2555e-01, 6.8101e-01, + 6.7394e-01, 8.8343e-01, 3.4308e-01, 8.5129e-01, + 4.1297e-01, 7.1079e-01, 5.1222e-02, 5.7159e-01, + 6.0001e-01, 5.4284e-01, 5.7793e-01, 3.1507e-01, + 9.8278e-01, 8.2539e-01, 4.6261e-01, 7.3225e-02, + 8.8612e-01, 6.5413e-01, 3.0173e-01, 2.1194e-02, + 3.2441e-01, 3.9085e-01, 8.6803e-01, 7.0461e-01, + 7.6602e-01, 1.9908e-01, 2.9866e-01, 9.3469e-01, + 9.5369e-02, 2.5631e-01, 9.0341e-01, 5.0032e-01, + 6.7851e-01, 9.1421e-01, 5.2777e-01, 2.0974e-01, + 6.0356e-01, 7.4990e-01, 2.5120e-01, 7.3056e-01, + 5.7654e-01, 8.6192e-01, 4.5282e-01, 4.8927e-01, + 1.0209e-01, 1.4365e-01, 1.0649e-01, 1.5559e-01, + 3.7894e-02, 6.8080e-01, 3.9419e-01, 1.0516e-02, + 2.1907e-01, 7.3503e-01, 4.9516e-01, 9.0746e-01, + 4.9746e-01, 9.1123e-01, 4.1414e-01, 8.3851e-02, + 1.0745e-01, 9.4031e-01, 6.3535e-01, 8.9329e-02, + 7.6318e-01, 5.4906e-01, 3.5425e-01, 2.6120e-01, + 8.3019e-01, 8.3127e-01, 2.5971e-02, 7.0373e-01, + 4.5245e-01, 1.0757e-02, 1.2942e-01, 8.2025e-01, + 7.7421e-01, 1.9773e-01, 2.3885e-01, 9.0482e-01, + 2.8218e-01, 7.5291e-01, 7.6466e-01, 5.2751e-01, + 3.9001e-02, 3.3145e-01, 7.2533e-01, 3.6741e-01, + 9.0607e-01, 7.0040e-01, 4.2489e-01, 4.9042e-01, + 2.3157e-01, 2.5353e-01, 4.2850e-01, 1.3589e-01, + 2.8043e-01, 5.4906e-01, 9.4282e-01, 8.9276e-02, + 1.1162e-01, 8.5177e-01, 7.7036e-01, 7.0436e-02, + 5.3515e-01, 9.3477e-01, 5.8106e-01, 9.6481e-01, + 9.4024e-01, 7.2166e-01, 2.4153e-01, 4.2523e-01, + 3.5659e-01, 6.0512e-01, 2.9269e-01, 8.0189e-01, + 4.4130e-01, 3.9543e-01, 6.0493e-01, 6.3652e-01, + 6.5235e-02, 2.5942e-01, 6.6071e-01, 2.2841e-01, + 3.8493e-02, 3.4606e-01, 6.8945e-01, 3.6160e-01, + 4.8673e-01, 8.7753e-01, 6.6910e-01, 8.8066e-01, + 7.5074e-01, 7.3308e-01, 2.4525e-01, 1.5114e-01, + 2.3688e-01, 6.3304e-01, 1.9778e-01, 6.5651e-01, + 2.9999e-01, 6.9139e-01, 9.5397e-01, 9.8093e-01, + 3.1673e-01, 1.1094e-02, 8.6636e-01, 7.6271e-01, + 4.9755e-02, 3.7028e-01, 7.5132e-01, 1.0659e-01, + 7.1971e-02, 4.3799e-01, 3.8666e-01, 8.3342e-01, + 6.1201e-01, 8.8591e-01, 9.8481e-01, 6.1100e-01, + 2.3665e-01, 8.8731e-01, 3.7244e-01, 9.9093e-01, + 1.0523e-01, 4.3914e-01, 6.7271e-01, 7.1795e-02, + 4.5039e-01, 8.5481e-01, 6.8785e-01, 1.2909e-01, + 5.7161e-01, 4.2390e-01, 7.6292e-01, 7.7430e-01, + 3.4998e-01, 8.0385e-01, 2.4192e-01, 1.8999e-01, + 3.6927e-02, 6.7924e-01, 3.3984e-01, 4.8839e-01, + 5.0435e-01, 9.1106e-01, 8.7183e-01, 9.3404e-01, + 7.4605e-01, 1.5313e-01, 9.5520e-01, 2.0581e-01, + 8.7214e-01, 1.4978e-01, 9.4661e-02, 7.5151e-01, + 5.6273e-01, 4.2754e-01, 2.4315e-03, 1.1371e-02, + 8.0237e-01, 5.4754e-01, 2.6562e-01, 6.4585e-01, + 2.4939e-01, 5.2355e-01, 7.6659e-01, 1.1318e-01, + 6.1209e-01, 3.7856e-01, 7.3262e-01, 5.2861e-01, + 6.9979e-01, 3.6198e-01, 8.5596e-01, 9.1891e-01, + 7.8492e-01, 6.1844e-01, 8.1427e-01, 3.6322e-01, + 7.6290e-02, 3.5808e-01, 5.2445e-02, 9.3998e-01, + 8.7392e-01, 3.5312e-01, 5.3949e-01, 6.0424e-01, + 1.2667e-01, 5.7768e-01, 8.0920e-02, 5.9784e-01, + 1.6667e-01, 5.3329e-01, 7.7051e-01, 2.4444e-01, + 5.4399e-01, 1.7330e-01, 9.2604e-01, 7.7836e-01, + 7.0428e-01, 9.4967e-01, 6.7980e-01, 6.7804e-01, + 3.5864e-02, 2.5274e-01, 9.2254e-01, 7.9618e-01, + 4.4765e-01, 7.0517e-01, 9.5345e-01, 8.4152e-01, + 1.7730e-01, 8.2868e-01, 9.0518e-01, 6.7487e-02, + 9.0151e-01, 1.0078e-02, 1.8471e-01, 7.8913e-01, + 4.7998e-01, 7.7939e-01, 1.8432e-01, 6.7453e-01, + 4.6409e-01, 3.5097e-01, 5.1731e-01, 6.5674e-01, + 5.7423e-01, 9.0521e-01, 7.9832e-01, 5.1312e-01, + 7.4221e-01, 6.1487e-01, 7.2648e-01, 5.1655e-01, + 8.6038e-01, 4.0014e-01, 7.3141e-01, 1.9754e-01, + 6.2998e-02, 1.4990e-01, 6.3575e-01, 4.4178e-01, + 9.7002e-01, 4.0844e-01, 8.9150e-01, 9.0679e-01, + 1.1578e-01, 6.5042e-02, 6.7489e-01, 6.4330e-01, + 4.7278e-01, 4.3936e-02, 1.5943e-01, 1.6540e-01, + 6.8697e-01, 8.3274e-01, 6.2265e-01, 6.5555e-01, + 7.5682e-04, 9.0246e-01, 7.4646e-02, 1.0355e-01, + 4.0761e-01, 7.4609e-01, 2.0902e-01, 3.1042e-01, + 1.7561e-01, 6.6688e-02, 6.0252e-01, 1.8240e-01, + 2.0381e-02, 6.2593e-02, 6.0495e-01, 1.1569e-01, + 7.6802e-02, 7.6070e-01, 8.1046e-01, 6.4437e-01, + 3.0459e-01, 8.7910e-01, 3.7994e-01, 2.7927e-01, + 6.6902e-02, 4.4550e-01, 8.7868e-01, 5.1148e-02, + 3.7950e-01, 7.1735e-01, 7.3888e-01, 9.8846e-01, + 9.4200e-01, 3.9824e-01, 2.8120e-01, 6.0547e-01, + 7.3369e-01, 3.7128e-01, 2.6315e-01, 2.1216e-01, + 5.2662e-01, 1.2747e-02, 6.0734e-02, 9.7093e-01, + 5.7339e-01, 8.1099e-01, 2.1891e-01, 9.8452e-01, + 8.1244e-01, 5.1478e-01, 8.6700e-01, 4.3527e-01, + 1.5690e-01, 5.7105e-01, 2.3991e-01, 2.5589e-01, + 1.2496e-01, 2.7035e-01, 9.8064e-02, 4.6583e-01, + 6.9609e-01, 6.3492e-01, 6.7879e-01, 2.9228e-01, + 3.7713e-01, 8.8354e-01, 7.9828e-01, 2.7429e-01, + 3.2010e-01, 3.4870e-01, 7.3549e-01, 9.9698e-01, + 8.0784e-01, 2.8592e-01, 4.7241e-01, 7.1215e-01, + 9.8854e-01, 9.2548e-01, 3.7415e-01, 6.5025e-01, + 5.6132e-01, 5.7550e-01, 1.9049e-01, 9.3661e-02, + 7.0370e-01, 2.4399e-01, 8.8730e-01, 3.4681e-01, + 8.1782e-01, 7.0824e-01, 4.1793e-01, 4.9273e-01, + 1.5299e-01, 9.9841e-01, 4.9900e-01, 4.2334e-01, + 7.8859e-01, 3.3689e-01, 1.3827e-01, 5.2274e-01, + 8.2524e-01, 4.7324e-01, 1.6809e-01, 8.3103e-01, + 2.3078e-01, 2.4739e-02, 3.6660e-01, 2.9660e-01, + 8.3582e-01, 6.6770e-01, 5.1626e-01, 1.7800e-02, + 4.9796e-01, 5.8092e-01, 3.3015e-01, 7.0134e-01, + 3.7040e-01, 3.8461e-01, 6.1818e-01, 3.8031e-01, + 7.7129e-01, 1.1370e-02, 4.1709e-01, 3.1538e-01, + 4.6468e-01, 2.7931e-01, 7.6062e-01, 9.2389e-01, + 1.6115e-01, 5.9450e-01, 7.3925e-01, 5.6612e-01, + 8.8551e-01, 3.5357e-01, 5.2400e-02, 2.6849e-01, + 9.4801e-01, 5.3116e-01, 3.0980e-01, 4.0228e-01, + 6.9226e-01, 4.7104e-01, 1.8029e-01, 6.9745e-01, + 4.2109e-01, 5.1660e-01, 8.5430e-01, 5.8448e-01, + 2.6279e-01, 3.2066e-01, 1.2135e-01, 1.3921e-01, + 8.6237e-01, 7.7077e-01, 5.2734e-01, 6.8075e-01, + 4.5462e-01, 9.2154e-02, 4.7049e-01, 6.0273e-01, + 8.9532e-01, 7.8371e-01, 1.1158e-01, 4.5607e-01, + 4.3482e-01, 2.9216e-01, 5.6974e-01, 5.3652e-01, + 4.7961e-01, 5.8789e-01, 7.9824e-02, 8.6520e-01, + 5.4582e-01, 4.2012e-01, 6.6184e-01, 5.0529e-01, + 4.4942e-01, 7.7487e-01, 1.9653e-01, 1.0956e-01, + 5.8909e-01, 6.1073e-01, 5.5245e-01, 6.0942e-01]), size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.7754, 0.7775, 0.1646, ..., 0.9136, 0.8074, 0.4658]) +tensor([0.4323, 0.3291, 0.3785, ..., 0.2185, 0.3372, 0.4003]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -268,378 +375,378 @@ Rows: 10000 Size: 100000000 NNZ: 1000 Density: 1e-05 -Time: 0.1263408660888672 seconds +Time: 0.018783092498779297 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '83108', '-ss', '10000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 2.457648515701294} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '55901', '-ss', '10000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 1.679638147354126} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), - col_indices=tensor([4728, 8270, 5747, 4190, 8816, 3485, 4267, 3845, 4253, - 2618, 2135, 6577, 5998, 3566, 6668, 6250, 1667, 8462, - 7617, 2323, 1453, 8003, 978, 8366, 6285, 648, 5463, - 899, 962, 5301, 3365, 7884, 106, 876, 6897, 4624, - 3877, 5749, 885, 9596, 3094, 5238, 2047, 6203, 1988, - 6479, 5863, 8063, 9929, 1527, 7334, 5835, 7266, 1117, - 88, 7369, 187, 9919, 4908, 7345, 2216, 1390, 4360, - 1957, 6131, 5807, 1391, 6755, 403, 7788, 1046, 7242, - 8970, 3414, 2560, 3707, 1132, 5998, 2036, 626, 2206, - 662, 803, 355, 8106, 9004, 6769, 794, 1420, 1896, - 164, 6812, 8998, 3729, 4484, 9825, 9211, 80, 6244, - 171, 4461, 8160, 1174, 8528, 3606, 3793, 2231, 4130, - 8667, 3710, 7197, 8752, 5434, 288, 6181, 7067, 2653, - 6236, 4202, 2795, 9441, 988, 6792, 6650, 3693, 8141, - 633, 4796, 5947, 1017, 4612, 8207, 7600, 8820, 4805, - 5145, 5635, 7409, 2070, 2726, 9324, 4538, 4774, 6228, - 6405, 6664, 101, 8899, 9017, 2316, 5471, 6613, 9928, - 3154, 3872, 1358, 6338, 598, 6342, 2583, 372, 2809, - 8751, 6740, 414, 5987, 811, 4894, 8831, 2958, 849, - 4717, 5526, 5955, 4799, 9595, 2203, 2336, 2864, 900, - 517, 3162, 9187, 5832, 79, 1363, 8975, 4939, 4776, - 3026, 126, 7583, 1393, 3238, 9223, 4283, 6288, 4095, - 9555, 5898, 7504, 294, 2051, 3299, 7802, 1236, 8275, - 9057, 482, 5171, 9240, 610, 9718, 1315, 6804, 5988, - 9836, 8876, 3060, 6067, 5389, 9613, 7797, 1833, 8290, - 3253, 9124, 772, 905, 2464, 1648, 1802, 9539, 1938, - 9314, 5521, 1856, 9872, 7296, 4233, 1675, 4423, 3765, - 530, 1445, 7731, 8494, 7965, 0, 4426, 2768, 1429, - 5780, 4619, 4566, 5778, 8756, 5631, 6012, 3678, 195, - 4299, 8811, 827, 4862, 5158, 779, 257, 9859, 496, - 8123, 4212, 8989, 7565, 832, 2190, 6349, 8903, 8585, - 9454, 7152, 2491, 2068, 3034, 6396, 4013, 4079, 2129, - 1057, 3425, 7658, 3901, 323, 2106, 7522, 8996, 214, - 6051, 521, 8387, 8594, 951, 7288, 1886, 798, 8073, - 5756, 962, 648, 2200, 6621, 2408, 8644, 820, 5897, - 1302, 7386, 5499, 7248, 4268, 9998, 8174, 48, 1222, - 911, 5368, 7298, 3994, 9752, 5709, 9631, 2037, 4076, - 147, 8400, 9031, 6673, 7864, 3772, 4943, 2120, 7990, - 749, 8147, 9103, 6842, 7112, 347, 6916, 2387, 1033, - 8333, 137, 9028, 8664, 609, 4033, 9225, 9988, 7227, - 6350, 2396, 5202, 959, 3458, 7981, 2845, 7704, 7620, - 2366, 3506, 5248, 1328, 5219, 1396, 8032, 5060, 9027, - 6404, 4256, 13, 7415, 492, 5018, 9275, 7320, 8740, - 1212, 8342, 203, 7700, 1872, 8033, 3202, 5665, 5618, - 5243, 1992, 1313, 9776, 4244, 4659, 8572, 8384, 1900, - 2452, 309, 8732, 9325, 6127, 3754, 5287, 2908, 9968, - 1564, 8645, 1458, 5251, 2397, 6743, 2787, 1107, 8412, - 1912, 1868, 5064, 2697, 6044, 9958, 9120, 3637, 752, - 2395, 4893, 8307, 3191, 2132, 6579, 7573, 678, 1757, - 934, 7799, 8651, 9099, 1608, 6252, 2496, 1751, 964, - 3799, 7058, 8019, 6968, 2001, 8981, 8280, 2655, 1332, - 5288, 3116, 5327, 9741, 2200, 7246, 4826, 6568, 941, - 4296, 424, 9268, 5983, 6867, 5616, 615, 6917, 2807, - 4522, 4363, 9180, 2468, 5136, 5360, 1996, 9623, 8213, - 1353, 4959, 5038, 9143, 8657, 3806, 4254, 3978, 8856, - 9028, 9345, 7894, 9103, 8376, 2325, 4728, 3288, 5244, - 817, 1115, 8090, 8514, 7061, 1694, 9988, 3140, 4508, - 8374, 3717, 6894, 5623, 3924, 8919, 2712, 1905, 7855, - 101, 603, 6800, 6088, 9794, 902, 5124, 2720, 194, - 4409, 9393, 5764, 382, 5189, 9606, 8711, 3326, 2054, - 2346, 8955, 8304, 4253, 857, 871, 877, 7772, 6261, - 5351, 3769, 1919, 1190, 4603, 6432, 4804, 8328, 6405, - 6260, 8139, 3784, 4728, 3745, 6229, 4272, 3048, 3739, - 391, 1317, 2263, 1528, 4045, 6698, 2408, 7600, 1641, - 5468, 5010, 6595, 9797, 4417, 4678, 5642, 3473, 6802, - 7679, 6581, 1250, 3250, 7679, 9306, 9173, 8943, 1361, - 5871, 6491, 8139, 2569, 8640, 6095, 3558, 9320, 5441, - 4058, 8414, 8001, 5789, 1378, 236, 3166, 7474, 9358, - 1872, 9802, 1836, 9444, 4942, 2817, 2221, 1498, 3015, - 9081, 6724, 3663, 9949, 8181, 7882, 5444, 4451, 5151, - 2938, 8122, 7057, 760, 6565, 522, 3456, 114, 2176, - 1409, 3297, 6255, 382, 6867, 4469, 6249, 9488, 6695, - 4525, 1513, 1456, 4932, 5896, 5431, 6658, 618, 7608, - 7059, 4493, 5078, 9747, 1254, 8432, 2209, 6437, 287, - 7845, 6774, 1536, 5778, 8752, 9981, 3357, 7627, 8514, - 9749, 5745, 709, 9181, 7127, 7219, 9135, 8960, 7086, - 8500, 3343, 4421, 2198, 9137, 7200, 9677, 758, 4403, - 1663, 263, 5301, 2340, 2528, 3341, 9896, 754, 303, - 4338, 6663, 4676, 8299, 8165, 4111, 6099, 6910, 9133, - 149, 7699, 7265, 3192, 12, 4893, 4274, 3845, 5434, - 4857, 6744, 6474, 8679, 8435, 64, 1372, 8713, 2383, - 5222, 1429, 227, 9064, 3808, 7218, 4259, 6870, 4121, - 964, 3758, 6339, 5151, 5529, 1206, 7793, 3379, 5407, - 2115, 621, 3265, 5029, 6979, 6753, 3468, 1953, 973, - 3884, 4597, 2650, 5951, 3194, 6637, 9203, 775, 3106, - 6543, 7319, 8082, 4365, 4317, 9668, 5644, 4484, 9470, - 9345, 6258, 5267, 258, 8022, 2268, 7033, 9730, 1344, - 2632, 3400, 8195, 7331, 308, 940, 6777, 6684, 955, - 1662, 1609, 1001, 7894, 4010, 8682, 5171, 3529, 2249, - 6606, 7341, 7061, 2498, 7431, 3350, 4368, 187, 2790, - 6143, 1806, 2057, 948, 2664, 2863, 5457, 9485, 166, - 7599, 2042, 6286, 6956, 2830, 3383, 521, 3429, 1612, - 2530, 8834, 7882, 6081, 9589, 4022, 3337, 896, 9604, - 1379, 2096, 2994, 3646, 4656, 6269, 9000, 9623, 4417, - 2530, 1580, 3685, 9445, 4234, 6915, 2366, 1795, 5960, - 9972, 9148, 2563, 677, 6974, 8126, 4242, 3908, 709, - 812, 9816, 5895, 9741, 6441, 4207, 9611, 2366, 9999, - 3859, 28, 2022, 5040, 3596, 9298, 4397, 8833, 1782, - 2546, 4531, 8457, 4288, 9450, 751, 1368, 4486, 3134, - 820, 1634, 3781, 6687, 5351, 2267, 5285, 4353, 2826, - 842, 5552, 3176, 6735, 7289, 5790, 1641, 2185, 3872, - 6922, 1185, 539, 4195, 7745, 5818, 1148, 5206, 406, - 2739, 2292, 4567, 307, 5392, 2594, 6093, 6301, 2671, - 5525, 3581, 9253, 8828, 120, 8598, 9352, 8586, 9282, - 6935, 2049, 4984, 2928, 237, 1648, 1531, 4395, 163, - 9717, 2686, 7274, 9365, 2344, 691, 207, 9076, 9804, - 3773, 763, 3434, 6002, 9369, 3942, 9958, 6602, 6695, - 3089, 1216, 9129, 5343, 878, 277, 9132, 9713, 7572, - 6990, 6272, 8328, 9531, 6351, 6810, 943, 9876, 2301, - 1427, 3214, 7959, 636, 7815, 6985, 7948, 4, 2286, - 4963, 2772, 2512, 140, 6356, 3274, 6636, 7009, 3163, - 3441]), - values=tensor([5.7349e-02, 6.0520e-01, 7.4610e-01, 4.9648e-01, - 6.6084e-01, 8.4281e-01, 9.8351e-01, 1.1932e-01, - 7.9624e-01, 3.1631e-02, 4.8731e-01, 2.7670e-01, - 1.4398e-01, 5.7083e-01, 6.6021e-01, 9.3176e-01, - 8.4064e-01, 2.6199e-01, 8.0614e-01, 7.1364e-01, - 3.8717e-01, 8.7973e-01, 2.2513e-01, 7.5757e-01, - 7.1990e-01, 7.4262e-01, 1.6723e-01, 2.6194e-01, - 1.6880e-01, 1.5329e-01, 9.5630e-01, 9.0724e-01, - 5.7985e-01, 3.6528e-01, 1.4746e-01, 2.3785e-01, - 5.7477e-01, 9.9097e-01, 7.3309e-01, 4.9341e-01, - 7.5995e-01, 5.2460e-01, 1.1234e-01, 7.6582e-01, - 1.9802e-01, 5.0065e-01, 9.0415e-01, 9.0624e-01, - 2.7270e-01, 8.7014e-01, 8.7173e-01, 8.4816e-01, - 3.7082e-01, 2.3076e-01, 6.3971e-01, 9.6196e-01, - 7.6304e-01, 4.5946e-01, 6.8993e-01, 1.8872e-01, - 8.5552e-02, 6.7591e-01, 3.1363e-01, 7.4996e-01, - 6.1732e-01, 2.0616e-01, 8.1042e-01, 1.5502e-01, - 7.4401e-01, 5.6555e-01, 2.3709e-01, 1.6243e-03, - 4.0712e-01, 8.2553e-01, 6.8817e-01, 8.8626e-01, - 1.9201e-01, 8.9392e-01, 3.7456e-01, 1.5467e-01, - 4.6341e-01, 8.7956e-01, 8.7951e-01, 8.1808e-01, - 6.2855e-01, 2.0562e-01, 8.4727e-01, 2.3024e-01, - 9.8194e-01, 1.3180e-01, 9.4571e-01, 5.5181e-01, - 2.5577e-01, 6.3354e-02, 5.6363e-01, 5.7728e-01, - 8.6215e-01, 3.6134e-01, 1.0993e-01, 6.9147e-01, - 7.0548e-01, 2.0109e-01, 8.0350e-01, 9.1127e-02, - 8.8324e-01, 8.5007e-01, 9.7385e-01, 3.2630e-01, - 9.1510e-02, 6.2704e-01, 9.6498e-01, 4.3122e-01, - 1.8876e-01, 1.8546e-01, 1.5921e-01, 6.0448e-01, - 2.6401e-02, 7.6600e-01, 7.7403e-01, 6.8782e-01, - 2.2167e-01, 6.9738e-01, 6.9051e-01, 4.0731e-01, - 9.5390e-01, 8.2240e-01, 2.5268e-01, 6.1971e-01, - 2.2285e-01, 3.5261e-01, 6.1576e-01, 3.8103e-01, - 1.7878e-01, 6.9825e-01, 7.4642e-01, 1.3243e-01, - 7.6438e-01, 5.2666e-01, 3.5198e-01, 3.9390e-01, - 3.4830e-01, 4.2415e-01, 6.7425e-01, 5.0800e-01, - 6.9370e-01, 1.3284e-01, 8.2518e-01, 5.5404e-01, - 1.9060e-01, 5.3190e-01, 7.7345e-01, 4.7333e-01, - 5.5131e-01, 5.6819e-01, 1.9312e-01, 1.9793e-01, - 8.0842e-01, 9.1269e-01, 4.3852e-01, 8.2275e-01, - 5.9302e-01, 4.8414e-01, 7.0946e-01, 6.3678e-01, - 3.0012e-01, 1.3387e-01, 1.0296e-01, 3.8371e-01, - 3.1823e-02, 1.3170e-01, 5.5641e-01, 2.4509e-01, - 2.8726e-01, 5.6142e-01, 3.5921e-01, 6.3419e-01, - 4.5296e-01, 3.9137e-01, 8.7153e-01, 6.4410e-01, - 3.4242e-01, 5.8550e-02, 8.3537e-01, 6.9325e-03, - 2.1655e-01, 2.0812e-01, 5.8923e-01, 6.2286e-01, - 6.0295e-01, 4.3688e-01, 3.0794e-01, 8.1413e-01, - 9.1541e-01, 5.0398e-01, 7.6450e-01, 9.3853e-01, - 2.1574e-01, 9.5748e-01, 5.0510e-02, 6.5968e-01, - 3.6976e-02, 1.3826e-01, 3.5605e-02, 8.1983e-01, - 2.9555e-01, 8.9177e-01, 2.7546e-01, 9.0976e-01, - 2.4686e-01, 6.5916e-01, 1.7223e-01, 6.4443e-01, - 4.2233e-01, 7.4591e-01, 4.9411e-01, 7.3164e-03, - 6.4142e-01, 1.8610e-01, 8.3657e-02, 9.4015e-01, - 6.3847e-01, 3.6196e-01, 7.9346e-02, 1.4634e-01, - 2.2837e-01, 7.4911e-01, 4.2836e-01, 1.3955e-01, - 6.8993e-01, 1.1877e-01, 8.1097e-01, 9.2462e-01, - 7.2318e-01, 5.8865e-01, 2.8308e-01, 7.7808e-01, - 7.0938e-02, 6.9274e-01, 2.6040e-01, 2.8821e-01, - 6.2277e-01, 3.3750e-01, 9.5916e-02, 5.6025e-01, - 1.8587e-01, 1.3430e-01, 8.1898e-01, 2.6743e-02, - 6.4900e-01, 5.8362e-01, 4.0559e-01, 2.9547e-01, - 6.7433e-01, 5.2823e-01, 4.7262e-01, 9.3995e-01, - 8.9339e-02, 1.6943e-01, 5.8800e-01, 4.4367e-05, - 2.2097e-01, 3.7423e-01, 2.2539e-01, 4.4003e-01, - 9.8915e-01, 4.4091e-01, 1.0656e-01, 1.5344e-01, - 7.2519e-01, 5.9699e-01, 7.1965e-02, 4.0052e-01, - 2.7171e-01, 4.7895e-01, 9.1613e-01, 4.6335e-01, - 4.5974e-01, 1.2335e-01, 4.4615e-01, 3.5254e-01, - 4.5704e-01, 4.1470e-01, 1.5857e-01, 7.0657e-01, - 9.5276e-01, 3.0298e-01, 3.9274e-01, 7.8468e-01, - 8.8958e-01, 1.9448e-01, 7.1879e-01, 4.1030e-02, - 9.0238e-01, 6.3671e-01, 9.5405e-02, 1.0168e-01, - 4.1058e-01, 9.0160e-01, 6.4259e-01, 5.0151e-01, - 2.6655e-01, 7.4902e-03, 7.2363e-02, 8.7077e-01, - 5.8534e-01, 7.2233e-01, 8.6421e-01, 3.8163e-01, - 9.6462e-01, 3.3331e-01, 5.8701e-01, 5.4928e-02, - 8.2445e-01, 9.2590e-01, 3.6658e-01, 8.8588e-02, - 7.3756e-01, 9.0145e-01, 4.9996e-02, 1.5543e-01, - 9.8218e-01, 2.2848e-02, 8.4637e-01, 6.8505e-01, - 1.2738e-01, 6.5202e-01, 4.3422e-01, 3.4103e-01, - 9.1012e-01, 2.6009e-01, 6.6379e-01, 3.7802e-01, - 8.9283e-01, 1.3918e-01, 2.3091e-01, 6.8330e-01, - 2.3452e-01, 1.6740e-01, 2.1514e-01, 7.5849e-03, - 2.0830e-01, 8.2586e-02, 5.3533e-01, 2.5587e-01, - 9.5023e-02, 3.7023e-01, 8.7677e-01, 4.8681e-01, - 5.3719e-01, 4.3967e-01, 8.1698e-02, 7.3267e-01, - 5.7365e-01, 3.3573e-02, 2.2364e-01, 2.5862e-01, - 9.2231e-01, 5.1216e-02, 7.3406e-01, 8.4074e-01, - 4.5638e-01, 7.2777e-02, 1.4137e-01, 3.8913e-01, - 8.1923e-01, 1.7828e-01, 9.2424e-02, 7.2027e-01, - 2.0692e-01, 2.7893e-01, 8.8651e-01, 7.4276e-01, - 4.1232e-01, 8.8395e-01, 4.0159e-01, 5.2647e-02, - 1.9717e-01, 8.8898e-02, 3.1357e-01, 7.5650e-02, - 9.4360e-01, 7.7138e-01, 2.5687e-01, 1.0858e-01, - 9.6672e-01, 8.5342e-01, 9.8925e-01, 5.5603e-01, - 5.3944e-01, 9.9116e-01, 6.8455e-01, 7.3095e-01, - 1.9429e-01, 8.9368e-01, 3.9650e-01, 4.0964e-01, - 2.9362e-01, 6.9302e-01, 3.7717e-01, 1.2692e-01, - 1.2605e-01, 9.5997e-01, 8.7540e-01, 2.8375e-01, - 8.5874e-01, 1.4864e-01, 2.6346e-01, 6.0958e-01, - 5.7458e-01, 6.7394e-01, 6.0050e-01, 2.3763e-01, - 6.6314e-01, 3.3365e-01, 6.1765e-01, 4.0620e-01, - 8.7438e-01, 9.8532e-01, 5.9766e-01, 6.7120e-01, - 1.7506e-02, 5.4051e-01, 4.9830e-01, 6.5003e-02, - 7.8513e-01, 3.9005e-01, 9.8076e-01, 3.3505e-02, - 9.6726e-01, 9.1984e-01, 3.9086e-01, 1.7735e-01, - 1.6361e-01, 6.1098e-01, 9.0407e-01, 5.5329e-01, - 8.2079e-01, 1.0082e-01, 3.4522e-01, 9.9419e-01, - 6.2236e-01, 1.9698e-01, 9.9778e-01, 1.7484e-01, - 5.3118e-02, 5.1942e-01, 2.2343e-01, 6.0286e-01, - 7.0850e-01, 2.4440e-02, 9.6202e-01, 8.4690e-01, - 6.2085e-01, 8.2319e-01, 5.1762e-01, 1.5657e-01, - 1.7979e-01, 3.6044e-01, 2.1564e-01, 4.1937e-01, - 7.9791e-01, 9.2225e-02, 5.0107e-01, 1.9959e-02, - 7.0551e-01, 9.0273e-01, 4.2007e-01, 6.4904e-01, - 2.5778e-01, 3.0008e-01, 3.0499e-01, 1.2697e-01, - 7.6639e-01, 8.6367e-01, 1.6151e-01, 7.9701e-01, - 7.5332e-01, 7.4266e-01, 8.8710e-01, 7.2489e-01, - 4.5146e-02, 8.1022e-02, 5.1179e-01, 7.7185e-01, - 8.8204e-01, 4.5546e-01, 1.4545e-01, 2.3573e-01, - 5.2241e-01, 4.8154e-01, 4.6868e-01, 1.8867e-01, - 9.4973e-01, 4.1278e-01, 5.4941e-01, 8.8122e-01, - 6.2457e-01, 8.8240e-01, 8.5057e-01, 8.0378e-01, - 7.0767e-01, 5.8087e-02, 2.2950e-01, 6.0973e-01, - 2.8229e-01, 6.0527e-01, 8.2599e-01, 6.3028e-01, - 7.4384e-01, 3.7934e-02, 4.6792e-02, 9.4567e-01, - 1.8478e-02, 1.9046e-01, 3.5354e-01, 7.0889e-01, - 8.0807e-01, 7.8863e-01, 4.0104e-02, 9.9163e-01, - 1.0451e-01, 9.8761e-01, 3.8392e-01, 7.1545e-01, - 6.4733e-02, 7.6189e-01, 6.4056e-01, 5.3299e-01, - 2.5434e-01, 1.6542e-01, 6.6668e-01, 7.0847e-01, - 6.5601e-01, 3.2315e-01, 6.8014e-01, 4.3103e-01, - 8.1626e-01, 4.3562e-01, 2.8644e-01, 1.1637e-01, - 5.0225e-01, 1.0793e-01, 6.6681e-01, 5.5534e-01, - 9.7527e-01, 2.1960e-01, 5.8603e-01, 7.2856e-01, - 1.3710e-01, 9.0989e-01, 7.7713e-01, 1.0524e-01, - 9.3601e-01, 3.8951e-01, 3.7576e-01, 7.8278e-01, - 2.4394e-01, 9.4350e-02, 8.1028e-01, 3.9615e-01, - 2.4646e-01, 5.8460e-01, 6.2453e-01, 4.7787e-01, - 9.6104e-01, 8.6966e-01, 9.2255e-01, 5.1309e-01, - 3.4540e-01, 8.6788e-01, 9.6635e-01, 3.5763e-01, - 6.3967e-01, 4.3588e-01, 6.5554e-01, 9.3966e-01, - 8.0961e-01, 4.6060e-01, 3.5694e-01, 6.5838e-01, - 7.2948e-01, 9.2952e-01, 8.8462e-01, 9.8863e-01, - 2.7250e-01, 3.8098e-01, 4.2554e-01, 6.4624e-01, - 3.3367e-01, 4.5869e-01, 2.0218e-01, 4.8516e-01, - 9.1256e-01, 8.1345e-01, 3.4407e-02, 3.8499e-01, - 4.7365e-01, 9.8248e-01, 2.4915e-01, 7.9528e-01, - 9.3202e-01, 4.4084e-01, 8.0428e-01, 9.8393e-01, - 7.2865e-01, 3.9531e-01, 1.3198e-01, 8.7497e-01, - 7.3354e-01, 4.7996e-01, 7.4129e-01, 8.9665e-01, - 6.5044e-01, 9.2218e-01, 1.3893e-01, 1.5238e-01, - 9.1674e-01, 6.4542e-01, 6.5605e-01, 9.1138e-01, - 6.7099e-01, 1.4650e-01, 6.7595e-01, 9.1416e-01, - 5.8905e-01, 7.4013e-01, 3.2994e-01, 7.1220e-01, - 2.2133e-01, 7.4522e-01, 2.8559e-01, 6.9445e-01, - 4.3987e-01, 5.6830e-01, 2.1607e-01, 5.5145e-01, - 6.3936e-01, 6.6648e-01, 5.1068e-01, 7.8827e-01, - 4.5319e-01, 4.9099e-01, 4.3654e-01, 1.7597e-01, - 7.3977e-01, 6.5678e-01, 3.5071e-01, 1.7823e-01, - 1.9225e-03, 2.3355e-01, 7.5460e-01, 8.5149e-01, - 5.0014e-01, 7.4755e-01, 7.8464e-01, 5.6952e-01, - 3.8927e-01, 1.6926e-01, 9.4110e-01, 1.4769e-01, - 4.9230e-01, 2.2608e-01, 9.5321e-01, 3.1963e-01, - 7.3129e-01, 8.8107e-01, 7.8814e-01, 1.3253e-01, - 3.5124e-01, 6.1196e-01, 2.3859e-02, 5.7859e-01, - 5.2680e-01, 9.4944e-01, 6.6865e-01, 1.7788e-02, - 9.7777e-02, 8.4559e-01, 4.6765e-01, 9.7345e-01, - 3.5074e-01, 4.2051e-01, 5.1999e-01, 5.5933e-02, - 8.9492e-01, 6.0676e-01, 7.5846e-01, 6.9766e-01, - 8.4243e-02, 3.6752e-01, 6.4419e-01, 7.2871e-01, - 5.2863e-01, 4.7718e-01, 6.2234e-01, 7.5486e-01, - 8.2678e-01, 2.6559e-01, 3.7937e-01, 6.2271e-01, - 6.1191e-01, 2.2419e-01, 1.1080e-01, 8.5299e-01, - 2.1380e-01, 5.0685e-01, 1.7212e-01, 7.9519e-01, - 3.0855e-01, 5.6472e-01, 2.4490e-01, 5.7116e-01, - 2.1887e-01, 8.7629e-01, 2.2446e-01, 7.5860e-01, - 1.1173e-01, 9.9116e-01, 4.0299e-01, 2.4565e-02, - 4.6394e-01, 8.2716e-01, 3.1623e-01, 9.6053e-01, - 4.2343e-01, 7.5982e-01, 7.1614e-01, 8.9924e-01, - 5.9298e-01, 2.7547e-01, 1.3911e-02, 4.9724e-02, - 7.8454e-01, 5.4003e-01, 2.6747e-01, 2.8900e-01, - 6.0666e-01, 8.2443e-01, 1.7262e-01, 1.9843e-01, - 6.7698e-01, 2.2390e-01, 3.3380e-01, 8.8920e-01, - 1.8312e-01, 4.9051e-01, 5.5171e-01, 4.6751e-01, - 1.6009e-01, 1.7873e-01, 2.7351e-01, 8.2085e-01, - 4.3688e-01, 2.9450e-01, 1.5102e-01, 9.0274e-01, - 5.8125e-01, 3.3812e-01, 7.1143e-02, 4.9248e-02, - 6.7488e-01, 8.4185e-01, 6.7579e-01, 3.0722e-01, - 8.1113e-01, 1.3143e-01, 3.4878e-02, 8.7344e-01, - 5.2302e-01, 2.0611e-01, 1.1065e-01, 3.1310e-01, - 9.7115e-01, 1.7777e-01, 6.8523e-01, 4.0319e-02, - 2.5683e-01, 9.1754e-01, 5.2761e-01, 2.3040e-01, - 1.4104e-01, 4.3748e-01, 1.7774e-01, 7.8482e-01, - 6.3153e-01, 6.8113e-01, 1.1915e-01, 8.8419e-01, - 7.0372e-02, 5.8728e-02, 1.3189e-01, 3.7442e-01, - 3.4836e-01, 1.6173e-01, 7.1367e-01, 5.7775e-01, - 8.4291e-02, 9.1419e-01, 3.8721e-01, 7.2911e-01, - 3.6578e-01, 8.4340e-02, 6.7193e-01, 6.4038e-01, - 6.6484e-01, 6.7190e-01, 3.3007e-01, 6.8112e-01, - 6.6154e-01, 4.0065e-01, 9.2030e-01, 2.9421e-01, - 7.1666e-01, 7.6127e-01, 4.4054e-01, 4.6397e-02, - 3.9147e-01, 9.5775e-01, 9.4039e-01, 9.2082e-01, - 7.7141e-01, 4.9383e-01, 5.5952e-01, 4.2341e-01, - 1.2114e-01, 3.4486e-01, 3.0565e-01, 7.3858e-01, - 3.2649e-01, 2.1871e-01, 5.1476e-02, 1.2585e-01, - 6.7879e-01, 2.2109e-01, 5.7336e-02, 1.0944e-01, - 4.5828e-01, 9.5739e-01, 8.8833e-01, 2.6773e-01, - 4.2673e-01, 9.7341e-01, 6.5900e-01, 9.1656e-01, - 1.9783e-01, 9.3794e-01, 4.7842e-01, 2.3651e-01, - 2.0630e-01, 1.7482e-01, 4.8137e-01, 9.4729e-01, - 5.9278e-01, 2.0579e-01, 5.7233e-01, 5.8067e-01, - 7.1405e-01, 2.8675e-01, 1.4210e-01, 3.3760e-01, - 9.5835e-01, 4.1999e-01, 9.5016e-01, 4.9618e-01, - 2.0561e-01, 5.5421e-01, 7.9957e-01, 2.9215e-01, - 8.8780e-02, 7.2738e-01, 2.8825e-01, 8.3364e-01, - 8.1758e-01, 8.1613e-01, 5.7465e-01, 3.4749e-01, - 2.6068e-01, 5.0085e-02, 4.0493e-02, 4.0561e-01, - 9.9517e-01, 4.5374e-01, 5.6224e-01, 5.8467e-01, - 3.3923e-01, 8.5094e-01, 5.8962e-01, 9.0608e-01, - 8.1241e-01, 4.1188e-01, 4.4184e-01, 4.8829e-01, - 2.0133e-01, 3.0879e-01, 7.5869e-01, 3.6173e-01, - 8.2590e-01, 9.7541e-01, 5.9211e-02, 7.2655e-01, - 8.4075e-01, 4.1180e-01, 8.2284e-01, 4.3276e-01, - 9.1362e-01, 6.3286e-01, 4.8679e-01, 5.2383e-01, - 3.0250e-01, 3.1090e-01, 7.1126e-01, 1.1967e-01, - 2.8672e-01, 9.4853e-01, 7.6572e-01, 9.9962e-01, - 8.0372e-01, 5.2288e-02, 7.3023e-01, 3.8461e-02, - 6.7985e-01, 7.0171e-01, 3.4371e-01, 5.5361e-01, - 2.1542e-01, 5.2181e-01, 4.7751e-02, 4.6895e-01, - 9.3919e-01, 6.5012e-02, 9.1724e-01, 4.2956e-01, - 9.7120e-01, 8.3026e-01, 8.2377e-01, 3.5846e-01, - 2.5343e-01, 7.3931e-01, 6.9367e-01, 5.4053e-01, - 5.3158e-01, 9.9439e-01, 2.2552e-01, 6.7537e-01, - 2.7969e-02, 6.2516e-01, 6.7665e-04, 9.6077e-01, - 1.8786e-02, 4.7861e-01, 5.1413e-01, 3.7258e-02, - 8.7413e-01, 7.4163e-01, 4.3697e-01, 4.5234e-01, - 9.3942e-01, 6.8835e-01, 6.8624e-01, 2.9234e-01, - 4.5552e-01, 8.5784e-01, 3.4883e-02, 6.1283e-01, - 5.9439e-01, 6.0411e-01, 5.3983e-01, 3.1071e-01, - 6.3268e-01, 3.8947e-01, 4.3129e-01, 2.2361e-01, - 7.1195e-01, 5.3228e-01, 5.4826e-01, 7.8709e-02, - 8.6637e-01, 2.1416e-01, 8.5027e-01, 9.4266e-01, - 7.0691e-01, 3.1370e-01, 6.6442e-01, 4.7991e-01, - 2.8416e-01, 5.1812e-01, 6.1281e-01, 2.3190e-01, - 2.7740e-01, 2.0817e-01, 4.0091e-01, 2.2402e-01, - 6.0020e-01, 5.5782e-01, 7.3112e-01, 8.1508e-01, - 7.3674e-01, 5.8085e-01, 3.4811e-01, 4.7061e-01]), + col_indices=tensor([7474, 402, 4271, 3233, 8082, 7229, 4634, 7787, 4139, + 3184, 8224, 1171, 3944, 602, 9794, 2437, 4751, 9537, + 8646, 3618, 186, 1642, 8812, 1242, 6520, 4714, 2375, + 2593, 5999, 3487, 2542, 2298, 7454, 1919, 5592, 9881, + 6340, 6606, 1382, 7859, 8424, 8722, 1593, 4453, 3038, + 9025, 3357, 7978, 9937, 4294, 2449, 9575, 6564, 6276, + 883, 9180, 2863, 9885, 8632, 9035, 8425, 5850, 610, + 1914, 1347, 7858, 6976, 4743, 6956, 1699, 1661, 6170, + 336, 195, 1588, 176, 1410, 3810, 8376, 7753, 8420, + 5111, 9143, 2252, 3445, 968, 2649, 4802, 4386, 4390, + 3856, 5946, 9251, 5561, 7673, 4626, 6108, 802, 2218, + 8978, 5078, 9764, 5448, 4147, 233, 4734, 7018, 8424, + 5226, 2598, 3429, 28, 4519, 7944, 9855, 3672, 3809, + 5753, 8466, 4146, 6093, 810, 8061, 4052, 9601, 4604, + 818, 6420, 4798, 7209, 3129, 9918, 6820, 1159, 4560, + 3413, 3996, 900, 8498, 4167, 8888, 5552, 1503, 8624, + 8190, 8742, 253, 6403, 2361, 9538, 7803, 9212, 3306, + 561, 4066, 1545, 8624, 9070, 817, 9505, 5304, 9902, + 9588, 4190, 4564, 1941, 5789, 4881, 7808, 2742, 9896, + 9814, 8308, 9966, 306, 3204, 483, 7727, 7743, 781, + 1084, 1996, 9435, 2002, 1910, 9365, 9283, 1276, 9833, + 2109, 8937, 8736, 1298, 9466, 2942, 4000, 6727, 6715, + 5783, 3492, 4474, 2726, 7300, 8062, 8665, 182, 4401, + 2159, 8816, 1208, 122, 1779, 9734, 1941, 8593, 4497, + 8591, 2043, 7547, 200, 3582, 5291, 5588, 8296, 7784, + 5573, 53, 5585, 6863, 7705, 8912, 113, 6393, 7106, + 1899, 4638, 1767, 509, 5809, 3099, 2012, 4241, 3965, + 6050, 4378, 8158, 2543, 8935, 2526, 8040, 7916, 1251, + 8490, 1561, 7903, 7690, 3879, 5358, 4429, 5514, 1218, + 3181, 2273, 5271, 1374, 6798, 3010, 1069, 7396, 4595, + 4108, 3810, 5708, 259, 495, 452, 9294, 2754, 9327, + 5207, 2007, 7593, 8569, 4568, 4691, 8679, 4288, 2957, + 7944, 5890, 6915, 2899, 6454, 4798, 8719, 7914, 697, + 5029, 6407, 1105, 1480, 7252, 9894, 4850, 778, 1134, + 7817, 1564, 3689, 9871, 7592, 7381, 1205, 2768, 1398, + 2224, 3669, 4966, 2550, 6171, 4076, 569, 837, 1810, + 1565, 4292, 9588, 8580, 4720, 6023, 3245, 902, 3324, + 2882, 6953, 3218, 1304, 2699, 534, 9799, 9291, 5836, + 2609, 4360, 3972, 550, 3300, 9664, 5239, 7619, 5234, + 3913, 9667, 3284, 8888, 6535, 1525, 8741, 9815, 3428, + 6435, 7905, 5354, 8689, 2951, 4126, 6289, 8090, 8264, + 7102, 591, 6806, 9220, 9527, 6407, 2999, 4388, 5788, + 7840, 8653, 7644, 5096, 2704, 5155, 7094, 8131, 964, + 2988, 6101, 3237, 6695, 2278, 2679, 1832, 9266, 822, + 413, 20, 1159, 2063, 1047, 13, 4951, 4358, 2145, + 3079, 4853, 5128, 3539, 379, 4698, 535, 2243, 9366, + 2957, 8548, 2180, 957, 8760, 3114, 6528, 8576, 740, + 2977, 9372, 7207, 5125, 7766, 9898, 1447, 7912, 2688, + 8526, 7536, 9880, 7461, 314, 3118, 4813, 9877, 2664, + 6841, 1277, 4285, 3049, 3052, 6605, 7912, 1719, 1547, + 1830, 754, 4077, 8603, 2931, 1461, 7307, 7420, 5528, + 7680, 3465, 9981, 3600, 2391, 5835, 5280, 2395, 7655, + 3823, 4572, 4401, 9732, 8071, 8770, 9859, 6200, 7651, + 7986, 4568, 3522, 7352, 4261, 14, 2749, 8122, 4595, + 4871, 4534, 8033, 6163, 9675, 4652, 9505, 5908, 2354, + 4770, 696, 8663, 201, 9616, 2877, 726, 9392, 4651, + 1284, 7500, 1237, 7136, 9476, 1417, 4564, 5733, 1714, + 2018, 4023, 8645, 1744, 8472, 4682, 3125, 1339, 5985, + 8156, 7481, 3542, 4239, 5035, 4828, 295, 9246, 919, + 1946, 7126, 8957, 1335, 1854, 4461, 2038, 4656, 9164, + 6688, 4854, 2201, 2533, 6427, 5659, 6924, 9837, 9889, + 896, 1352, 2294, 2913, 9291, 8315, 7856, 6541, 1652, + 5978, 6806, 4867, 7270, 6309, 878, 6658, 3440, 7761, + 8300, 363, 3538, 3015, 6228, 677, 6171, 2029, 7473, + 8711, 6599, 5750, 7300, 1942, 5038, 4232, 8403, 9898, + 2781, 8752, 6564, 9145, 7463, 7228, 6378, 7276, 760, + 6688, 4993, 7962, 1680, 6992, 5243, 8266, 7625, 3992, + 1426, 3102, 8691, 6168, 4229, 3244, 1791, 752, 2816, + 7848, 8662, 1165, 8574, 678, 5737, 5869, 4196, 8060, + 2226, 3670, 2019, 1405, 2650, 1175, 5521, 886, 8428, + 8384, 9876, 6357, 7281, 7347, 2948, 3477, 9159, 4891, + 9619, 7188, 1356, 4593, 9718, 829, 6537, 9136, 1319, + 9881, 1493, 3880, 4611, 904, 1159, 6772, 947, 9108, + 3713, 6279, 5568, 6957, 9320, 8603, 3315, 7261, 1083, + 7955, 6619, 1533, 4035, 1644, 6380, 3159, 7664, 6635, + 7010, 4484, 7555, 4741, 2029, 9507, 9463, 7724, 3939, + 6630, 3148, 5513, 6818, 5349, 9426, 2527, 9088, 5175, + 3398, 3562, 3698, 5546, 9677, 9645, 1089, 4987, 1588, + 5400, 997, 8204, 7080, 1581, 6450, 5721, 2570, 8985, + 9655, 7207, 384, 487, 9982, 884, 3779, 2760, 5096, + 1349, 1888, 4225, 3395, 3970, 4646, 7583, 9619, 3024, + 226, 9037, 2697, 4047, 9011, 9620, 6892, 9658, 8405, + 9974, 4082, 2185, 8401, 6453, 4955, 9910, 2090, 7872, + 2973, 4384, 4551, 5019, 2072, 3985, 5566, 5818, 2739, + 7315, 3918, 7030, 2407, 1085, 759, 7595, 1724, 8345, + 4101, 915, 233, 8369, 8491, 6816, 6359, 2000, 6105, + 5328, 7003, 1174, 3746, 9600, 4454, 8912, 6274, 812, + 5016, 7930, 3968, 4977, 2233, 9247, 632, 534, 6275, + 4526, 9112, 1607, 6533, 7979, 5590, 6773, 2615, 6613, + 2449, 8635, 4735, 3037, 3616, 5594, 7556, 815, 9178, + 233, 966, 8555, 5895, 3211, 3489, 4949, 4399, 2015, + 4444, 9117, 1201, 1746, 5340, 7041, 9002, 4285, 8899, + 8799, 4926, 9759, 4966, 2564, 7672, 3383, 5379, 1321, + 488, 8135, 4402, 2898, 8060, 6845, 910, 9794, 2420, + 2773, 5897, 4123, 2035, 1978, 7074, 626, 2443, 5219, + 4190, 1817, 5925, 2603, 27, 5888, 5141, 5613, 7485, + 3221, 2555, 2781, 2440, 1444, 2932, 9889, 3263, 8142, + 1522, 8477, 736, 6138, 5110, 1155, 1226, 4897, 782, + 1576, 5524, 7332, 4653, 896, 1859, 1494, 8755, 1068, + 2329, 8628, 6988, 8155, 2169, 8370, 9504, 6113, 7726, + 1798, 1231, 4601, 1532, 8271, 5057, 5133, 1550, 8115, + 4603, 9258, 4758, 4981, 6773, 6250, 2595, 6963, 7362, + 8398, 4742, 9289, 5866, 7042, 2952, 9132, 5059, 5200, + 1236, 5265, 6298, 8382, 9486, 7607, 2, 1189, 6527, + 9288, 783, 3711, 4547, 589, 3935, 7821, 5344, 7939, + 2620, 4710, 7997, 3225, 3819, 3494, 762, 1601, 6882, + 1087, 4501, 3360, 7246, 4102, 4591, 331, 2833, 4244, + 7334, 7150, 2705, 1786, 1120, 7881, 1701, 7739, 6367, + 3566, 8207, 3982, 7649, 4077, 4547, 3041, 7716, 2492, + 1787, 4571, 2117, 777, 4970, 7293, 9061, 999, 9637, + 6539, 4905, 3402, 2942, 3746, 2946, 453, 9138, 9033, + 52]), + values=tensor([6.5468e-01, 1.4127e-01, 9.2428e-02, 5.9432e-01, + 6.5125e-01, 1.7186e-02, 9.5240e-01, 7.4522e-01, + 6.1665e-01, 9.7634e-01, 8.0519e-01, 2.5245e-01, + 5.9150e-01, 2.5213e-02, 1.2295e-01, 5.0980e-01, + 9.3599e-01, 9.5879e-02, 6.2288e-01, 7.3794e-01, + 4.6483e-01, 2.7344e-01, 7.8522e-01, 4.5768e-01, + 5.0021e-01, 2.1527e-01, 4.8710e-01, 7.8890e-01, + 9.6876e-01, 2.1589e-01, 6.7212e-01, 5.0782e-02, + 6.5297e-01, 9.2223e-01, 6.4293e-01, 7.3252e-01, + 5.7216e-01, 8.1965e-01, 6.4715e-01, 5.7331e-01, + 3.4892e-01, 7.1783e-01, 5.9625e-01, 5.2807e-01, + 3.2411e-01, 4.1204e-03, 4.2174e-01, 2.6368e-01, + 9.3583e-01, 3.2853e-01, 7.7884e-01, 9.3648e-01, + 2.4406e-01, 8.3021e-01, 8.9553e-01, 9.5575e-01, + 8.2181e-01, 8.3678e-01, 6.6541e-01, 7.9095e-01, + 2.7910e-01, 1.3023e-02, 8.3080e-01, 1.8069e-01, + 8.4296e-02, 9.0477e-01, 9.2088e-01, 7.8766e-01, + 6.7970e-01, 6.3044e-01, 6.4393e-01, 2.5343e-02, + 9.4176e-01, 7.7297e-03, 2.9408e-03, 1.1966e-02, + 4.5537e-01, 8.5939e-01, 2.1291e-01, 7.3170e-01, + 1.3142e-01, 2.3822e-01, 3.6079e-01, 2.1476e-01, + 2.2288e-01, 5.3629e-01, 1.9466e-01, 2.2744e-01, + 4.9497e-01, 4.2304e-01, 2.2479e-01, 2.5827e-01, + 6.0850e-01, 7.9026e-01, 9.2549e-01, 4.4427e-01, + 7.3695e-01, 1.4928e-01, 8.5298e-01, 6.8729e-01, + 8.7128e-01, 1.9788e-01, 1.6850e-01, 2.3224e-01, + 7.3516e-01, 7.9172e-01, 5.9172e-01, 4.2299e-01, + 1.9668e-01, 2.9149e-01, 9.2247e-01, 3.6969e-01, + 3.5744e-01, 8.0301e-01, 4.5058e-01, 4.3867e-01, + 7.2633e-01, 2.0703e-01, 8.1141e-01, 5.6927e-01, + 4.2970e-01, 8.9740e-01, 4.4980e-03, 1.4946e-01, + 6.6063e-01, 9.5086e-01, 5.4202e-01, 4.5991e-01, + 6.1559e-01, 1.1459e-01, 1.1966e-01, 1.5409e-01, + 9.1550e-02, 8.1800e-01, 6.5368e-01, 6.6150e-01, + 8.3864e-01, 8.0492e-01, 3.1258e-01, 7.2768e-01, + 2.5795e-01, 9.0517e-01, 3.9278e-02, 1.2073e-01, + 7.4348e-01, 2.4786e-01, 7.9648e-01, 9.1521e-01, + 9.3120e-01, 6.7637e-01, 8.2965e-01, 5.5535e-01, + 4.5810e-01, 8.7278e-01, 8.9360e-01, 7.2430e-01, + 8.7103e-01, 8.9370e-01, 4.6244e-01, 6.2316e-01, + 1.7015e-02, 7.8933e-01, 8.3526e-01, 2.4711e-01, + 4.4930e-02, 1.8375e-01, 1.0750e-02, 5.6333e-01, + 2.6142e-01, 7.2245e-01, 7.2771e-01, 5.8421e-01, + 8.8772e-01, 9.9297e-01, 5.0362e-01, 5.6718e-01, + 3.7669e-01, 7.6483e-01, 1.1379e-03, 5.6667e-02, + 3.8279e-01, 8.1423e-01, 7.2754e-01, 7.7699e-01, + 8.6811e-01, 5.1382e-01, 6.3474e-01, 4.6463e-01, + 2.1111e-01, 4.6935e-01, 3.3339e-01, 5.6516e-01, + 5.4652e-01, 7.4076e-01, 6.7244e-01, 7.7735e-01, + 3.9087e-01, 4.5901e-01, 5.5385e-01, 6.8343e-01, + 3.5511e-01, 9.7234e-01, 2.6306e-01, 3.0582e-01, + 4.3505e-01, 7.9083e-01, 1.3138e-01, 9.8500e-01, + 6.1727e-01, 5.7070e-01, 2.6766e-01, 9.8175e-01, + 7.4367e-01, 6.4888e-01, 7.9271e-01, 4.5871e-01, + 6.5195e-01, 5.1494e-01, 2.4723e-01, 2.2316e-01, + 1.6363e-02, 3.2662e-01, 8.4102e-01, 7.5499e-01, + 5.1587e-01, 2.0677e-01, 8.1494e-02, 3.6295e-01, + 9.9312e-01, 7.7645e-02, 4.9895e-01, 7.0330e-01, + 2.0760e-02, 2.9267e-01, 7.2543e-01, 4.0653e-01, + 9.5142e-01, 4.4437e-01, 6.7606e-01, 2.5093e-01, + 8.6923e-01, 4.3498e-01, 6.2468e-01, 8.8420e-01, + 8.7101e-01, 2.9757e-01, 8.0408e-01, 3.1026e-01, + 9.8217e-01, 2.5237e-01, 9.8783e-02, 1.7549e-02, + 3.4025e-01, 5.4986e-01, 9.8266e-02, 9.7562e-01, + 8.5991e-01, 3.8755e-01, 6.8829e-01, 3.8024e-01, + 6.3418e-02, 4.0307e-01, 8.2416e-01, 6.7926e-01, + 1.4744e-01, 3.7698e-01, 1.5581e-01, 1.0774e-02, + 1.7693e-01, 8.6081e-01, 7.4972e-01, 3.3748e-01, + 8.1871e-01, 8.4121e-01, 8.1049e-02, 9.2583e-02, + 7.8722e-01, 6.8745e-01, 2.7982e-01, 9.7242e-01, + 7.2433e-01, 8.4648e-01, 3.6121e-01, 5.7503e-01, + 6.4006e-01, 3.0470e-01, 6.4213e-01, 6.6883e-01, + 4.9966e-01, 8.0032e-01, 2.8840e-01, 4.9434e-01, + 9.0461e-01, 4.8427e-01, 9.6448e-01, 8.4693e-02, + 5.4306e-01, 4.0319e-01, 7.6967e-02, 6.6348e-01, + 6.9692e-01, 3.7373e-01, 2.0746e-01, 5.5117e-01, + 5.0787e-01, 9.7123e-03, 1.9341e-01, 7.6638e-01, + 9.0915e-01, 4.8971e-01, 1.5754e-01, 4.0329e-01, + 7.0863e-01, 5.7428e-01, 3.2445e-01, 3.7045e-02, + 7.6333e-01, 3.2380e-01, 4.3436e-01, 4.3863e-01, + 6.6006e-01, 8.8965e-01, 6.4759e-01, 6.8022e-01, + 5.0229e-01, 5.7813e-01, 1.6286e-02, 6.7272e-01, + 7.8948e-01, 7.6149e-01, 3.7736e-01, 6.5737e-01, + 2.7235e-01, 5.4383e-01, 3.2413e-01, 1.7815e-02, + 8.4094e-01, 7.8613e-01, 7.6281e-01, 8.9462e-01, + 8.3942e-01, 4.8247e-01, 6.2688e-01, 6.4393e-01, + 4.4888e-01, 3.6597e-01, 7.3200e-01, 5.3547e-01, + 1.1008e-01, 3.6434e-01, 2.5069e-01, 7.4258e-01, + 4.9019e-01, 8.4201e-01, 8.0305e-01, 7.7847e-01, + 7.8059e-01, 3.7616e-01, 8.1493e-01, 5.1010e-01, + 4.5501e-01, 5.5581e-01, 4.4741e-02, 9.9913e-02, + 3.7803e-01, 3.9358e-01, 1.5395e-01, 3.4878e-01, + 9.0430e-01, 6.0733e-02, 5.7344e-01, 2.5730e-01, + 7.7168e-01, 3.6176e-02, 9.4183e-01, 9.1086e-01, + 6.4821e-01, 4.9507e-01, 7.2036e-01, 1.4739e-01, + 6.3503e-01, 1.9288e-01, 4.2898e-02, 5.6821e-01, + 8.8470e-01, 4.5399e-01, 8.8041e-03, 1.5915e-01, + 7.0359e-01, 5.7698e-01, 8.8443e-01, 3.4394e-01, + 3.0485e-01, 4.4242e-01, 3.4913e-01, 7.9540e-01, + 5.5193e-02, 4.3887e-02, 6.1585e-01, 7.0753e-01, + 5.1805e-01, 6.1761e-01, 6.8989e-01, 2.1920e-02, + 3.8471e-01, 4.0989e-01, 5.5155e-01, 6.9767e-01, + 5.2420e-01, 3.7373e-01, 3.2347e-01, 9.1508e-01, + 3.6032e-01, 7.9389e-01, 6.6820e-01, 8.6269e-01, + 6.7740e-01, 6.3416e-01, 4.8768e-01, 4.0602e-01, + 4.9812e-01, 8.4111e-01, 8.4279e-01, 5.5415e-02, + 8.1731e-01, 1.4413e-01, 6.5361e-01, 1.7266e-01, + 4.1468e-01, 2.0062e-01, 7.2803e-01, 6.2329e-01, + 1.0537e-01, 5.5486e-01, 3.2931e-01, 7.7181e-01, + 3.4008e-01, 7.8573e-02, 8.1483e-02, 3.2319e-01, + 5.5933e-01, 4.0264e-01, 2.3848e-01, 7.8816e-01, + 9.0911e-01, 6.3020e-01, 3.6047e-01, 3.6079e-01, + 2.2380e-01, 4.8150e-01, 4.9177e-01, 8.1853e-01, + 4.0528e-01, 2.9267e-01, 8.7137e-01, 4.4712e-01, + 7.8846e-01, 4.5490e-01, 3.4711e-01, 4.8177e-01, + 3.4496e-01, 6.1416e-01, 7.6675e-01, 6.6943e-01, + 2.9519e-01, 6.5316e-01, 8.7975e-01, 7.8729e-01, + 9.1207e-01, 8.4710e-01, 2.7400e-01, 3.1100e-01, + 8.2089e-02, 9.4351e-02, 2.4426e-01, 5.9016e-02, + 4.9262e-01, 6.9916e-02, 2.2964e-02, 5.0292e-01, + 9.1043e-01, 9.4623e-01, 4.6797e-01, 3.9579e-01, + 8.6736e-01, 7.6480e-01, 7.9036e-01, 3.2983e-01, + 4.2598e-01, 5.3954e-01, 9.9338e-01, 1.5591e-03, + 5.1260e-01, 7.1729e-01, 7.0432e-01, 6.4879e-01, + 2.0475e-01, 1.3935e-01, 4.2309e-01, 3.2121e-01, + 5.5416e-01, 5.8721e-01, 2.1480e-01, 6.1175e-01, + 3.9361e-01, 3.6750e-01, 8.0177e-01, 4.1339e-01, + 6.9380e-01, 7.5490e-01, 8.6979e-01, 9.3450e-01, + 4.8427e-01, 6.5258e-01, 2.2409e-01, 2.6382e-01, + 7.1099e-01, 2.0483e-01, 5.7935e-01, 2.2667e-01, + 4.0693e-01, 3.4867e-01, 6.5637e-01, 6.6115e-01, + 9.7780e-01, 1.8873e-01, 2.5250e-01, 9.0736e-01, + 8.1793e-01, 5.3495e-01, 8.8298e-01, 3.0053e-02, + 7.0905e-01, 3.5784e-01, 4.0520e-01, 8.0837e-01, + 7.7093e-01, 7.3130e-01, 5.7167e-01, 2.3679e-01, + 9.2100e-01, 3.3596e-01, 9.3138e-02, 4.5639e-01, + 1.1073e-01, 7.1548e-01, 5.4077e-01, 4.3521e-01, + 6.9792e-01, 7.3280e-02, 9.4501e-01, 5.6171e-01, + 9.2932e-01, 6.2774e-01, 8.4495e-01, 6.6811e-01, + 3.4443e-01, 2.0575e-01, 1.2763e-01, 2.8694e-01, + 4.9355e-01, 4.7717e-01, 2.1047e-01, 6.0261e-01, + 3.7883e-01, 7.5454e-01, 8.2122e-01, 5.7723e-01, + 7.7142e-01, 5.5063e-02, 6.0631e-01, 8.2983e-01, + 7.4182e-02, 3.3580e-01, 8.5823e-01, 5.3831e-01, + 4.5795e-01, 8.3477e-01, 5.1350e-01, 9.3417e-01, + 5.4356e-01, 2.5336e-01, 6.1465e-01, 3.4845e-01, + 1.8660e-01, 6.6369e-01, 1.3363e-01, 2.2671e-02, + 5.3456e-02, 1.7256e-01, 6.1136e-01, 2.5285e-01, + 7.5915e-01, 9.3478e-01, 4.1491e-01, 2.6218e-02, + 3.5023e-01, 2.1390e-01, 6.4510e-01, 9.6921e-01, + 5.8877e-01, 4.9975e-01, 2.1645e-01, 3.8917e-01, + 7.1814e-01, 4.7198e-01, 7.4306e-01, 4.1652e-01, + 8.0271e-01, 4.2433e-01, 8.8599e-01, 7.2558e-01, + 3.0764e-01, 9.3710e-01, 5.6792e-01, 6.9030e-01, + 9.3938e-01, 8.8332e-01, 4.5213e-01, 6.4834e-01, + 1.9065e-01, 2.9216e-01, 7.9948e-01, 9.8870e-01, + 2.6744e-01, 8.7429e-02, 1.6926e-01, 9.8162e-01, + 3.1604e-01, 2.8905e-01, 6.9247e-01, 7.0212e-01, + 6.2858e-01, 2.5725e-01, 4.1328e-01, 3.9903e-01, + 1.7692e-01, 6.0405e-01, 9.0258e-01, 1.6863e-01, + 2.1314e-01, 7.8599e-01, 7.8953e-01, 9.3110e-01, + 3.4957e-01, 8.0046e-01, 1.6543e-01, 3.2844e-01, + 5.9632e-03, 6.5679e-01, 9.2040e-02, 3.3725e-01, + 6.7726e-01, 7.1442e-01, 1.8081e-01, 4.4483e-01, + 7.0590e-01, 1.0540e-01, 8.2332e-01, 1.9922e-01, + 1.3106e-01, 1.4727e-01, 1.7056e-01, 2.2487e-01, + 8.1177e-01, 4.5516e-01, 3.6043e-01, 8.3065e-01, + 8.9321e-02, 6.4483e-01, 9.4118e-01, 7.2658e-01, + 6.0324e-01, 3.2634e-02, 4.9464e-01, 2.9326e-01, + 1.4061e-01, 5.4972e-01, 3.8987e-01, 1.5617e-02, + 7.2013e-01, 2.5322e-01, 6.2362e-01, 8.6245e-01, + 7.2103e-01, 7.2221e-02, 8.1671e-01, 5.6625e-01, + 6.9137e-01, 9.5519e-01, 7.0531e-01, 7.9257e-02, + 4.0152e-02, 6.3328e-01, 8.7228e-01, 4.2235e-02, + 5.5240e-01, 1.8645e-01, 4.4119e-01, 5.1872e-01, + 3.0241e-01, 4.6970e-02, 3.3567e-01, 7.3336e-01, + 4.3809e-01, 6.0532e-01, 9.1692e-01, 2.7482e-01, + 3.3255e-01, 5.6474e-01, 5.1644e-01, 1.5826e-01, + 1.7806e-01, 4.3779e-01, 8.8205e-01, 4.6870e-01, + 9.3173e-01, 7.9373e-01, 4.0371e-01, 7.6367e-01, + 7.7558e-01, 8.4337e-01, 7.3356e-01, 2.5059e-01, + 4.3406e-01, 7.9969e-01, 3.2800e-01, 8.2351e-01, + 9.8393e-01, 4.2720e-01, 6.4308e-01, 4.1650e-01, + 4.5876e-01, 6.0922e-01, 6.6100e-01, 2.6225e-01, + 7.5511e-01, 7.4482e-01, 8.5879e-01, 1.5262e-01, + 5.5190e-01, 9.3653e-02, 2.4859e-01, 1.2244e-01, + 7.2058e-01, 6.8568e-01, 2.9328e-01, 3.0763e-02, + 7.3235e-01, 1.0132e-01, 1.3963e-02, 1.3632e-01, + 3.2207e-01, 2.5190e-01, 3.2095e-01, 9.5220e-01, + 2.2414e-01, 9.5574e-01, 6.6512e-01, 2.1393e-01, + 4.3569e-01, 6.5079e-01, 6.1620e-01, 4.8482e-01, + 2.7463e-01, 4.2786e-01, 3.6777e-01, 8.0895e-01, + 5.0708e-01, 5.4724e-02, 8.9217e-01, 5.0493e-01, + 7.4006e-01, 4.3982e-01, 1.3634e-01, 4.0648e-01, + 3.1583e-01, 2.9091e-01, 6.8608e-01, 8.8614e-01, + 5.0014e-01, 1.9714e-01, 9.0919e-01, 1.0143e-01, + 3.3742e-01, 7.9946e-01, 1.6835e-01, 9.3829e-01, + 3.9281e-01, 1.0649e-01, 2.5096e-01, 9.3147e-01, + 9.6402e-01, 6.3148e-01, 7.3458e-01, 1.6974e-01, + 4.7950e-01, 5.1505e-01, 8.8022e-01, 8.7978e-01, + 1.9932e-01, 5.8288e-01, 2.8453e-01, 7.0267e-01, + 1.3926e-01, 5.5163e-01, 9.0355e-01, 1.9504e-01, + 6.1798e-01, 1.4056e-01, 5.6601e-03, 9.6328e-01, + 9.0382e-01, 5.4381e-01, 9.7316e-01, 1.1029e-01, + 4.5424e-01, 5.9510e-01, 6.7831e-01, 7.2744e-01, + 8.0666e-01, 8.5186e-01, 3.0594e-01, 1.2956e-01, + 5.1455e-01, 5.0766e-01, 4.8751e-01, 9.1844e-01, + 4.6636e-01, 5.6813e-02, 3.7275e-01, 9.0117e-01, + 3.4902e-01, 2.3409e-01, 2.4325e-02, 6.8071e-01, + 6.3166e-01, 7.4586e-01, 3.5234e-01, 4.3537e-03, + 7.3571e-01, 3.9115e-01, 9.1061e-01, 5.0277e-02, + 6.2925e-01, 4.1784e-01, 7.3323e-02, 7.3164e-01, + 4.8462e-01, 7.6654e-01, 4.4826e-01, 3.9398e-02, + 6.9417e-01, 7.4395e-01, 6.1366e-01, 4.9977e-01, + 4.1028e-01, 6.6273e-01, 8.3655e-01, 6.0125e-01, + 4.6044e-01, 9.2920e-01, 2.1166e-01, 7.5961e-01, + 9.6397e-01, 6.7286e-02, 2.6344e-01, 2.0692e-01, + 1.1673e-01, 4.3703e-02, 5.2607e-01, 1.0118e-01, + 2.2023e-01, 9.8295e-01, 7.7590e-01, 6.2933e-01, + 7.0037e-01, 1.6284e-01, 3.1877e-01, 7.7901e-01, + 2.1463e-01, 8.4394e-01, 7.3672e-02, 5.4399e-01, + 6.9698e-01, 2.5617e-01, 4.5407e-01, 5.6064e-01, + 8.1694e-01, 3.4660e-01, 7.0410e-01, 6.7050e-01, + 2.3489e-01, 1.8168e-01, 7.9661e-01, 8.3635e-01, + 5.8756e-01, 8.8388e-01, 4.7640e-01, 9.5453e-01, + 5.4838e-01, 1.0417e-01, 3.4849e-01, 1.8089e-01, + 7.5269e-01, 6.1014e-01, 4.0905e-01, 6.2377e-01, + 4.3600e-01, 5.8630e-01, 7.4917e-01, 4.4090e-01, + 8.8014e-01, 8.0938e-01, 7.9802e-01, 2.1206e-01, + 2.7673e-01, 1.0645e-01, 6.0725e-01, 3.0038e-01, + 6.4655e-01, 8.6462e-01, 9.6500e-01, 1.8784e-01, + 1.7909e-01, 5.6496e-01, 5.1067e-01, 3.3174e-01, + 1.8409e-01, 3.6191e-02, 8.8537e-01, 3.4596e-02, + 5.4171e-01, 8.8436e-01, 3.4009e-02, 7.4543e-02, + 7.6922e-01, 6.0467e-02, 5.3161e-02, 5.1383e-02, + 1.3021e-01, 6.6623e-01, 3.3683e-01, 8.7086e-01, + 3.4739e-01, 9.4711e-03, 4.9679e-01, 9.8853e-01, + 5.0873e-01, 2.8727e-01, 8.4395e-01, 5.7766e-02, + 4.5070e-01, 4.5636e-01, 8.9634e-01, 3.9843e-01, + 7.8137e-01, 9.3941e-01, 9.5578e-01, 9.2556e-02, + 8.1074e-02, 1.1447e-01, 6.3234e-01, 9.5197e-01, + 4.1311e-01, 1.8941e-01, 8.9359e-01, 6.9563e-01, + 8.1728e-01, 1.2234e-02, 2.1731e-01, 7.6004e-01, + 6.1252e-01, 5.0718e-01, 1.6782e-01, 4.0585e-01, + 7.8919e-01, 5.1338e-01, 8.9386e-01, 7.3014e-02, + 3.4906e-01, 4.2267e-02, 9.2989e-01, 9.1272e-04, + 7.8198e-01, 3.0679e-01, 4.8281e-02, 2.7044e-01, + 1.2871e-01, 4.4472e-02, 4.7767e-01, 6.8016e-01, + 8.0017e-01, 2.1361e-02, 3.1301e-01, 4.8972e-01, + 4.0420e-01, 7.3745e-01, 2.3749e-01, 2.0239e-01]), size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.8610, 0.2031, 0.4276, ..., 0.7862, 0.1485, 0.1233]) +tensor([0.3431, 0.4493, 0.0337, ..., 0.1419, 0.4440, 0.1516]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -647,378 +754,271 @@ Rows: 10000 Size: 100000000 NNZ: 1000 Density: 1e-05 -Time: 2.457648515701294 seconds +Time: 1.679638147354126 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '355068', '-ss', '10000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.454679489135742} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '349456', '-ss', '10000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 11.173964023590088} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), - col_indices=tensor([ 992, 6197, 9017, 9363, 9552, 813, 7391, 7914, 9771, - 3659, 3074, 9783, 1812, 3296, 6743, 6738, 702, 3841, - 3424, 7401, 8317, 3607, 6860, 362, 9639, 2551, 6043, - 7518, 3032, 3130, 3636, 7660, 8439, 4568, 5092, 2436, - 3187, 8837, 3544, 4899, 7429, 2524, 4785, 2134, 2572, - 6350, 9886, 256, 2298, 8028, 70, 8411, 4974, 7198, - 862, 3332, 6593, 8182, 7945, 9825, 6160, 4988, 2031, - 6068, 6614, 9084, 2004, 1721, 3147, 3182, 3118, 5709, - 8746, 4710, 9620, 9376, 140, 8642, 3065, 3887, 1723, - 6936, 4731, 2055, 6480, 1766, 8773, 4579, 5639, 2215, - 5779, 5381, 4350, 7435, 8765, 6377, 799, 8953, 5360, - 9549, 3017, 8743, 487, 1241, 3723, 8122, 2611, 4227, - 6659, 2898, 5722, 11, 7624, 8169, 4785, 7800, 4631, - 3130, 4863, 9634, 5871, 800, 3594, 8741, 4205, 3101, - 403, 2763, 6841, 5270, 2637, 4779, 7008, 3042, 8955, - 2132, 3726, 4189, 3779, 5125, 687, 8127, 1804, 800, - 4029, 5445, 9633, 4529, 3236, 8927, 7147, 154, 8438, - 5636, 8527, 2578, 3718, 5040, 103, 1957, 7063, 2451, - 2886, 8775, 5823, 4409, 7988, 4492, 8452, 3536, 6016, - 1726, 2580, 5789, 8639, 54, 8903, 8623, 9065, 418, - 1054, 6406, 6818, 9993, 9619, 1884, 7180, 8499, 5628, - 4305, 3227, 510, 9047, 1678, 8341, 5598, 4299, 1692, - 8734, 8635, 2110, 8248, 9893, 1356, 6575, 7421, 6363, - 4297, 3484, 1169, 1241, 1425, 4649, 5883, 6180, 8669, - 4201, 788, 1097, 4297, 6034, 8866, 2786, 645, 1246, - 167, 6015, 4888, 6451, 9244, 1083, 9764, 2561, 5089, - 8184, 4035, 1167, 3589, 3443, 7780, 2766, 3560, 6969, - 8333, 8748, 9457, 3481, 2796, 4766, 3738, 4973, 1369, - 9893, 5697, 1546, 5501, 8115, 5773, 2637, 7430, 7145, - 9082, 312, 559, 9552, 9655, 1249, 329, 3273, 2053, - 2825, 1961, 5469, 2719, 2587, 9942, 8019, 2559, 124, - 6716, 2095, 5210, 2684, 8843, 6904, 8672, 3894, 1387, - 9061, 9272, 6124, 2456, 8493, 1887, 9266, 3449, 7919, - 6211, 5260, 5307, 416, 9086, 9227, 2089, 7248, 8083, - 736, 7718, 2907, 6348, 379, 6932, 4292, 5415, 9040, - 6461, 7684, 161, 2395, 2926, 8759, 4212, 7577, 2170, - 2842, 7996, 7763, 7275, 6393, 6387, 7037, 6038, 3200, - 9689, 5174, 7963, 922, 2697, 4385, 7305, 2388, 2882, - 7902, 8391, 9072, 465, 842, 8275, 3927, 402, 6723, - 4395, 7064, 1153, 6667, 4093, 515, 9382, 8872, 80, - 6685, 107, 2838, 695, 5247, 6095, 4724, 4280, 7476, - 2216, 2653, 7304, 8752, 7937, 4352, 5517, 6003, 2890, - 5868, 3874, 1071, 5868, 504, 8200, 5663, 2083, 8059, - 5885, 2704, 6554, 3795, 8168, 5707, 1435, 5436, 547, - 4674, 6558, 8024, 9883, 2937, 8276, 708, 3652, 9117, - 6415, 1746, 4168, 7306, 1890, 7445, 8049, 4043, 6422, - 8028, 4753, 279, 552, 1928, 7780, 3761, 9126, 5063, - 8243, 8819, 9608, 8907, 7215, 3984, 3222, 232, 6482, - 5518, 1304, 2970, 6697, 8420, 6280, 3556, 2455, 4432, - 7836, 2142, 8294, 4706, 2188, 3414, 4993, 2971, 749, - 8344, 4214, 7934, 8210, 701, 4237, 5917, 8563, 1985, - 2163, 1461, 3724, 4049, 4376, 5458, 6579, 1327, 2486, - 8667, 105, 2470, 425, 8314, 425, 9772, 4139, 6257, - 1691, 5611, 9904, 7172, 4768, 7051, 311, 7563, 2588, - 4556, 1076, 5750, 9387, 6607, 3505, 7299, 5162, 3677, - 6232, 3623, 8118, 4209, 6379, 2137, 7114, 2750, 727, - 1150, 9020, 6095, 8781, 964, 3401, 4498, 8869, 8433, - 4064, 657, 9799, 1100, 900, 968, 103, 252, 4771, - 8818, 5131, 9850, 7676, 9736, 7043, 6168, 1582, 4069, - 6126, 658, 3236, 5817, 4964, 9455, 1229, 1018, 2768, - 8936, 2667, 5314, 9838, 2738, 7500, 5606, 5093, 8502, - 6298, 1310, 4420, 1366, 445, 8350, 1331, 9081, 6878, - 6716, 5203, 9542, 600, 2635, 5221, 473, 3212, 9608, - 6118, 6306, 2169, 4202, 1311, 65, 4991, 1280, 9130, - 4214, 4841, 4766, 9189, 9111, 831, 6351, 3710, 7914, - 8990, 6031, 2495, 4023, 664, 4119, 8829, 3665, 7182, - 834, 5668, 3157, 6886, 7474, 7456, 7457, 5700, 5968, - 8752, 8280, 3581, 3363, 1028, 7420, 7605, 8189, 121, - 6923, 5205, 8333, 1027, 9553, 996, 9473, 6716, 3807, - 6199, 1329, 9080, 5266, 9046, 7133, 2644, 4177, 1736, - 5969, 6489, 8323, 8156, 4535, 3154, 6753, 2311, 1301, - 9560, 5364, 1311, 5827, 817, 1581, 9851, 6340, 4555, - 4149, 2665, 4030, 4378, 9486, 2986, 7488, 8663, 1098, - 8643, 9528, 5753, 3076, 1923, 6655, 4701, 2564, 2759, - 2614, 8312, 5369, 8644, 4278, 1089, 5880, 7934, 5654, - 9290, 529, 8307, 6094, 8613, 9753, 1317, 8719, 190, - 7897, 5396, 3284, 1788, 5467, 3357, 9704, 5015, 9457, - 9250, 4832, 8383, 5572, 6280, 1996, 88, 956, 9998, - 1522, 9106, 5381, 3536, 8254, 7345, 5671, 8230, 5557, - 7077, 4918, 3339, 425, 2028, 3163, 2588, 2424, 8060, - 4231, 8290, 1425, 1292, 1812, 7720, 2121, 440, 4305, - 3592, 3508, 6973, 1918, 3252, 1660, 7498, 5382, 4944, - 5506, 9328, 4854, 3012, 7765, 3368, 8118, 2049, 2553, - 9755, 5902, 6417, 1245, 6475, 5125, 6931, 355, 9409, - 765, 4975, 1840, 7347, 9096, 357, 2097, 7182, 9205, - 7495, 5566, 9152, 8183, 4955, 5578, 7022, 5514, 5444, - 6267, 8614, 5088, 3022, 6603, 9398, 7901, 9286, 3676, - 22, 1556, 106, 2739, 2806, 5294, 1354, 758, 8713, - 7422, 9061, 3417, 6963, 6041, 7734, 6184, 3868, 9643, - 5902, 6482, 1297, 4950, 9725, 9931, 7629, 8271, 9486, - 27, 9302, 9426, 8838, 7517, 2974, 1849, 2435, 6414, - 9829, 5071, 1041, 7434, 2451, 9172, 1803, 6122, 7707, - 6607, 6135, 3951, 3504, 6516, 4155, 1980, 6024, 8612, - 5327, 6044, 2155, 1648, 2058, 6766, 6976, 7736, 467, - 6836, 6292, 7090, 356, 9671, 9450, 5630, 9326, 3917, - 2056, 2251, 5784, 7410, 5124, 2541, 5740, 6770, 416, - 5387, 4977, 7567, 7754, 3358, 3577, 5938, 8258, 7308, - 6329, 4625, 8734, 2615, 2718, 5600, 116, 3518, 1951, - 5520, 8934, 148, 8573, 4159, 3406, 6214, 3760, 6900, - 1693, 2034, 3016, 9088, 8300, 9059, 2264, 3846, 3681, - 4154, 8527, 1029, 1780, 2482, 6046, 4466, 99, 4992, - 2888, 7277, 8577, 3498, 7469, 3793, 8496, 7986, 601, - 3094, 7023, 7883, 7345, 1271, 9517, 1909, 7362, 9121, - 1135, 7623, 2399, 4704, 7096, 5341, 4961, 5464, 2648, - 4405, 2528, 6055, 2121, 4870, 9037, 1532, 2739, 7180, - 3297, 9018, 4479, 7484, 2676, 2125, 5337, 1610, 4725, - 3239, 3524, 1732, 4592, 9536, 2480, 9753, 9282, 5967, - 7240, 8320, 8032, 3929, 2959, 4292, 8204, 2208, 6636, - 1874, 3136, 5027, 385, 4087, 9579, 4067, 3660, 1477, - 4241, 5719, 9858, 422, 1706, 8163, 1620, 4996, 2023, - 1900, 6432, 6172, 184, 1375, 9699, 1668, 252, 7117, - 5147]), - values=tensor([4.3537e-01, 3.9981e-01, 3.9884e-01, 6.8960e-01, - 4.8973e-01, 1.4335e-01, 5.3666e-01, 3.0947e-01, - 5.1729e-01, 5.7026e-01, 7.4978e-01, 2.6557e-01, - 2.1578e-01, 9.6159e-01, 3.3602e-02, 1.9291e-01, - 3.4528e-01, 7.2294e-01, 8.8444e-01, 7.8295e-01, - 2.1309e-01, 6.4920e-01, 1.7645e-01, 1.5566e-01, - 6.3153e-01, 3.7064e-01, 6.8757e-01, 1.3889e-01, - 8.4305e-01, 2.6216e-01, 4.0551e-01, 7.0589e-01, - 9.3137e-01, 4.2583e-01, 4.6336e-01, 2.6140e-01, - 7.3049e-01, 6.7786e-01, 1.8448e-01, 1.6195e-01, - 2.9220e-01, 3.2207e-01, 1.0179e-01, 8.4428e-01, - 5.1327e-01, 2.5118e-01, 4.7234e-01, 9.2641e-01, - 9.1870e-01, 7.5642e-01, 6.0164e-01, 8.1116e-01, - 4.0225e-01, 6.1931e-01, 9.5682e-01, 7.2107e-01, - 3.5447e-01, 8.2000e-01, 6.7449e-01, 7.6617e-01, - 6.7468e-01, 3.9826e-02, 1.8946e-01, 8.3726e-02, - 8.4893e-01, 5.4004e-01, 5.3572e-03, 1.5513e-01, - 3.2889e-01, 6.7577e-01, 4.1663e-01, 1.3433e-01, - 2.1308e-01, 4.0621e-01, 1.7773e-01, 4.6669e-01, - 7.0394e-01, 9.5283e-01, 9.6965e-01, 3.5330e-01, - 7.8285e-01, 9.6208e-01, 8.1898e-01, 3.8443e-01, - 7.3563e-01, 1.5837e-01, 4.3445e-01, 2.2030e-01, - 1.1584e-01, 2.8973e-01, 4.9374e-01, 1.8947e-01, - 2.0179e-01, 4.4464e-01, 2.9576e-02, 8.4870e-01, - 9.1479e-01, 1.2898e-01, 3.7882e-01, 9.1046e-01, - 9.8325e-01, 2.1736e-01, 8.3977e-01, 2.4636e-02, - 5.9983e-01, 4.8508e-01, 1.0133e-01, 9.2427e-01, - 3.8742e-01, 9.1992e-01, 2.1236e-01, 3.7146e-02, - 4.4093e-01, 1.4010e-01, 5.5600e-01, 9.8858e-01, - 3.9218e-01, 5.6724e-01, 4.2599e-01, 5.8652e-01, - 9.5954e-01, 2.4908e-01, 6.9651e-01, 1.5425e-01, - 3.0458e-01, 9.4539e-01, 2.6284e-01, 1.7345e-02, - 7.5959e-01, 8.9099e-01, 3.1513e-01, 4.9067e-01, - 2.5794e-01, 8.9944e-01, 6.1980e-02, 9.2183e-01, - 4.6175e-01, 9.7935e-01, 1.7864e-01, 6.2861e-01, - 1.1111e-01, 1.0233e-01, 2.3174e-02, 3.6532e-01, - 7.6410e-01, 9.0695e-01, 3.9577e-01, 6.8919e-01, - 9.8700e-01, 3.1611e-01, 8.0436e-02, 1.9359e-01, - 5.1339e-01, 5.3702e-01, 7.5160e-01, 8.1859e-01, - 5.0804e-02, 3.9069e-01, 2.6045e-01, 7.6514e-01, - 2.5050e-01, 9.1500e-01, 5.6797e-01, 5.5091e-01, - 4.2969e-01, 4.9864e-01, 8.4568e-01, 8.8357e-01, - 2.4968e-01, 7.3277e-02, 2.8443e-01, 7.5808e-01, - 9.4787e-01, 7.9605e-01, 8.9312e-01, 9.9357e-01, - 9.0836e-01, 3.4784e-01, 7.5111e-01, 7.1483e-01, - 2.9800e-01, 1.6662e-01, 7.0094e-01, 3.6745e-01, - 1.2262e-01, 7.3403e-01, 9.2937e-01, 3.8392e-01, - 5.4464e-01, 5.1342e-01, 8.9046e-01, 9.8258e-01, - 5.2964e-01, 6.4014e-01, 8.1913e-01, 6.2432e-01, - 9.6651e-01, 4.7961e-01, 5.0049e-01, 7.8570e-01, - 1.7991e-01, 3.4938e-01, 2.3127e-01, 7.4863e-01, - 2.9275e-01, 6.4424e-04, 4.4849e-01, 5.8097e-01, - 7.3619e-01, 7.2211e-01, 2.5817e-01, 4.3577e-01, - 7.5637e-01, 2.9790e-01, 5.4852e-01, 8.1898e-02, - 4.6703e-01, 9.8959e-01, 5.2950e-01, 6.1777e-01, - 1.1500e-01, 7.0529e-01, 3.6459e-01, 9.7895e-01, - 3.2305e-01, 2.5527e-01, 8.7675e-01, 1.0971e-01, - 5.0946e-01, 3.9227e-01, 9.7367e-01, 6.3673e-01, - 9.5168e-02, 7.2298e-01, 1.3574e-01, 5.7008e-01, - 9.6100e-01, 5.5062e-01, 8.5493e-01, 2.6996e-01, - 7.2852e-01, 5.0724e-03, 7.0486e-01, 3.7174e-01, - 4.6905e-01, 1.6221e-01, 6.1008e-01, 1.7684e-01, - 7.1183e-01, 5.0400e-01, 2.9966e-01, 7.0806e-01, - 1.9128e-01, 1.0265e-01, 2.0013e-01, 9.0258e-01, - 4.2371e-01, 3.9347e-01, 3.4903e-01, 4.3909e-01, - 7.1615e-01, 8.3353e-02, 8.2383e-01, 1.3046e-01, - 1.6372e-02, 5.4070e-01, 8.6800e-01, 5.0743e-01, - 9.6013e-01, 3.3358e-01, 4.5913e-01, 6.2492e-01, - 1.7392e-01, 8.0187e-01, 9.5935e-01, 8.0293e-01, - 7.3448e-01, 9.6838e-01, 4.6566e-01, 7.5415e-01, - 1.7773e-01, 4.6671e-01, 1.9277e-01, 1.9528e-01, - 3.7586e-01, 9.7197e-01, 7.1717e-01, 7.5047e-01, - 2.4187e-01, 1.9655e-01, 9.9432e-01, 9.7618e-01, - 2.8431e-01, 6.9296e-01, 1.9736e-01, 9.6645e-01, - 1.6096e-02, 3.4791e-01, 4.1191e-01, 2.0523e-01, - 6.2665e-01, 4.2102e-01, 2.3025e-02, 1.6970e-01, - 9.9316e-01, 7.6355e-01, 2.0605e-02, 1.2488e-01, - 4.0790e-01, 5.6708e-01, 8.2480e-01, 7.9370e-01, - 9.2119e-01, 8.2742e-01, 7.5665e-01, 2.5768e-01, - 4.3114e-01, 6.6583e-01, 7.7116e-01, 7.6309e-01, - 7.1228e-01, 8.7464e-01, 8.7019e-01, 9.3966e-01, - 4.2135e-01, 5.7594e-01, 6.2870e-01, 9.1797e-01, - 9.6945e-01, 7.2933e-01, 8.8178e-01, 1.8302e-01, - 2.9607e-01, 4.6905e-02, 8.6133e-01, 6.0869e-02, - 1.5112e-02, 3.4687e-01, 5.7238e-01, 2.9485e-01, - 9.3423e-01, 7.1957e-01, 1.0934e-01, 7.9192e-01, - 6.5331e-01, 4.3923e-01, 6.0516e-01, 5.7033e-01, - 6.0523e-01, 8.7734e-01, 9.9250e-01, 4.1305e-01, - 7.8645e-01, 5.1140e-01, 4.3184e-01, 4.2612e-01, - 2.3541e-01, 6.0161e-01, 2.3674e-01, 6.7388e-01, - 8.0508e-01, 6.7986e-01, 8.2585e-01, 8.4326e-01, - 5.9880e-01, 2.6417e-01, 2.6762e-01, 1.7359e-01, - 3.0395e-01, 6.5434e-02, 8.1628e-01, 9.8237e-01, - 3.0332e-01, 8.1081e-01, 9.1721e-01, 5.4623e-04, - 7.0012e-01, 5.1769e-01, 6.0702e-01, 3.4591e-01, - 2.2090e-01, 4.2492e-01, 7.1125e-01, 9.1429e-03, - 3.3527e-01, 8.6846e-01, 6.7073e-01, 7.9698e-01, - 5.3968e-01, 7.8654e-01, 4.4203e-03, 3.3520e-01, - 3.0764e-01, 7.6575e-01, 2.1197e-02, 5.3096e-01, - 3.9667e-01, 7.2879e-03, 2.9349e-01, 4.5592e-01, - 1.5381e-01, 9.7142e-01, 6.6952e-01, 3.8729e-01, - 8.1140e-01, 6.7995e-01, 7.1422e-01, 2.4486e-01, - 7.5636e-01, 2.3310e-01, 9.5289e-01, 4.8022e-01, - 8.5813e-01, 5.9732e-01, 5.3636e-01, 3.9112e-01, - 1.2996e-01, 3.2122e-01, 4.8399e-01, 2.6184e-01, - 2.1104e-01, 4.9276e-01, 3.8299e-01, 7.5953e-01, - 3.4044e-01, 3.1825e-02, 1.5820e-01, 8.7087e-01, - 4.3387e-02, 6.2383e-01, 4.5976e-01, 4.9470e-01, - 1.0368e-01, 9.6785e-01, 7.1734e-01, 2.4049e-01, - 8.7258e-02, 7.1240e-01, 8.6015e-01, 1.8576e-01, - 5.0698e-01, 6.5363e-01, 3.8025e-01, 8.7343e-01, - 5.1193e-01, 5.3928e-01, 1.8814e-01, 2.6343e-02, - 7.7821e-01, 1.7044e-01, 4.0618e-02, 4.1934e-01, - 6.3190e-01, 9.4536e-01, 6.1824e-01, 9.8729e-01, - 2.7125e-01, 2.6378e-03, 1.0222e-01, 2.1086e-01, - 6.0947e-01, 3.0901e-01, 5.5343e-01, 8.9244e-01, - 8.2691e-01, 3.0989e-01, 8.3851e-02, 8.8393e-01, - 7.4166e-01, 8.8516e-01, 7.3579e-01, 2.6421e-01, - 3.2478e-01, 9.1496e-02, 8.1097e-01, 4.7135e-01, - 6.3379e-01, 3.0775e-01, 2.7515e-01, 5.6137e-01, - 3.0909e-02, 5.1584e-01, 7.5795e-01, 2.7899e-01, - 8.0581e-01, 6.4873e-01, 7.2416e-01, 7.1340e-01, - 2.0196e-01, 3.9555e-01, 2.0446e-01, 2.4934e-01, - 1.5430e-01, 7.4440e-01, 8.0057e-01, 6.0388e-01, - 7.1343e-01, 3.5035e-01, 4.2040e-01, 8.6602e-01, - 9.4478e-02, 5.4928e-01, 4.0094e-01, 7.7335e-01, - 3.0423e-01, 1.3574e-02, 2.3620e-01, 7.1720e-01, - 9.1173e-01, 2.1903e-01, 8.9596e-01, 4.5128e-01, - 3.5343e-01, 2.1663e-01, 6.2211e-01, 4.7255e-01, - 3.7282e-01, 6.8342e-01, 9.0827e-01, 4.2800e-01, - 1.9686e-01, 3.0599e-01, 1.4444e-01, 8.8002e-01, - 4.9084e-01, 8.8924e-01, 6.3872e-01, 8.2477e-01, - 9.7932e-02, 4.9532e-01, 1.8488e-01, 2.9399e-01, - 8.4609e-01, 4.2726e-01, 7.2259e-01, 1.8113e-01, - 5.6825e-01, 6.8508e-02, 6.4229e-01, 2.9274e-01, - 2.6580e-01, 4.9086e-01, 7.3508e-01, 6.2433e-02, - 6.8630e-01, 6.1930e-01, 5.2008e-01, 2.3177e-01, - 9.0737e-01, 5.2188e-02, 8.9481e-01, 9.4065e-01, - 7.5609e-01, 5.2533e-01, 7.8363e-01, 2.1739e-01, - 7.1809e-01, 5.5801e-01, 2.6908e-01, 2.2939e-03, - 5.4688e-01, 4.5970e-01, 3.0997e-01, 1.0388e-01, - 3.7488e-03, 1.3490e-01, 7.4331e-01, 6.6803e-01, - 2.2280e-01, 8.7632e-01, 7.6913e-01, 8.4630e-01, - 6.0233e-01, 5.3270e-01, 3.2736e-01, 9.5029e-01, - 4.2112e-02, 1.4441e-01, 5.9972e-01, 6.4757e-01, - 7.4805e-01, 6.0193e-01, 1.2325e-01, 8.1393e-01, - 6.0128e-01, 9.4638e-01, 7.9005e-02, 2.7930e-01, - 5.6736e-01, 8.5472e-01, 8.2769e-01, 7.6410e-01, - 1.2565e-02, 4.7651e-01, 9.0884e-02, 4.3338e-01, - 3.5385e-01, 2.3199e-01, 8.4134e-01, 6.4207e-01, - 9.5298e-01, 9.7793e-01, 2.2580e-01, 9.9070e-01, - 6.2713e-01, 6.2690e-01, 7.4899e-01, 1.3724e-01, - 1.4670e-01, 9.2675e-01, 5.3520e-01, 1.8449e-01, - 2.0527e-01, 2.8306e-01, 3.1045e-01, 5.8558e-01, - 3.1540e-01, 1.1982e-01, 8.8444e-01, 7.3545e-01, - 4.2022e-01, 8.1509e-03, 3.1302e-01, 8.7632e-01, - 7.9319e-01, 1.7007e-01, 1.1811e-01, 8.2777e-01, - 5.1290e-02, 3.3333e-02, 3.9343e-01, 8.2624e-01, - 8.3659e-01, 9.0654e-01, 5.0174e-01, 8.3985e-01, - 3.9016e-01, 8.3937e-01, 2.7243e-01, 5.7402e-01, - 9.3932e-01, 8.4938e-01, 7.6935e-01, 1.0589e-01, - 6.0844e-01, 1.3969e-01, 4.8714e-01, 2.3100e-01, - 1.6273e-01, 1.8331e-01, 6.7573e-01, 3.2264e-01, - 4.1490e-01, 1.0348e-01, 8.0008e-01, 2.9827e-01, - 9.1387e-01, 1.0812e-01, 4.5369e-01, 4.3080e-01, - 8.4733e-01, 1.7047e-01, 7.7975e-01, 2.8628e-01, - 5.4017e-01, 2.9737e-01, 6.4224e-01, 8.3954e-01, - 4.7604e-01, 4.3814e-02, 6.9739e-01, 4.8277e-01, - 7.6740e-01, 9.8853e-01, 6.9194e-01, 3.4640e-01, - 3.0884e-01, 9.5212e-01, 3.2579e-01, 6.1841e-01, - 4.0543e-01, 9.3466e-01, 4.8328e-02, 7.5863e-01, - 9.6793e-01, 9.2495e-01, 2.8997e-01, 2.9497e-01, - 1.9820e-02, 2.5772e-01, 2.8827e-01, 8.1536e-01, - 4.1273e-01, 9.0435e-01, 3.4102e-01, 2.8340e-01, - 5.2361e-01, 8.9342e-01, 9.9789e-01, 9.4787e-01, - 4.5467e-02, 4.3271e-01, 6.5239e-01, 5.8289e-01, - 8.7290e-01, 6.7020e-01, 6.4508e-01, 4.1572e-01, - 6.3199e-01, 1.3701e-01, 4.8627e-01, 5.3563e-01, - 9.9708e-01, 3.9874e-01, 8.7427e-01, 3.5048e-01, - 5.0099e-01, 6.8373e-02, 8.5572e-02, 9.7413e-01, - 9.1182e-01, 3.6097e-01, 1.5867e-01, 1.1895e-02, - 6.6486e-01, 7.5586e-01, 3.0038e-01, 7.0781e-01, - 7.0691e-01, 9.3527e-01, 8.7719e-01, 6.8604e-01, - 5.9175e-02, 1.8325e-01, 3.0814e-01, 2.1317e-01, - 1.4056e-01, 3.1655e-02, 2.9670e-01, 3.2601e-01, - 3.5245e-01, 1.1448e-01, 7.1016e-01, 5.8561e-01, - 7.2949e-01, 4.6438e-02, 9.4722e-01, 8.1716e-01, - 8.3412e-01, 8.6405e-01, 7.0565e-01, 2.2713e-01, - 3.2024e-01, 8.6006e-01, 9.1130e-01, 7.1546e-01, - 1.1726e-01, 2.6812e-01, 7.0313e-01, 9.0525e-01, - 6.6813e-01, 6.0951e-01, 4.2406e-01, 6.6197e-01, - 3.4051e-01, 5.0594e-01, 5.6568e-01, 6.5500e-01, - 3.9133e-02, 6.8784e-02, 1.6962e-01, 1.9637e-01, - 3.6856e-01, 8.2962e-01, 7.4094e-01, 2.4617e-01, - 9.3733e-01, 3.7437e-01, 3.0715e-01, 2.8827e-02, - 9.9026e-01, 9.8403e-01, 8.8298e-01, 6.6462e-03, - 5.4973e-01, 6.3904e-01, 6.8939e-01, 7.5675e-01, - 6.4261e-01, 1.9556e-01, 3.6342e-01, 9.3446e-02, - 5.8282e-01, 9.4687e-01, 8.8520e-01, 2.8238e-01, - 7.1927e-01, 5.7538e-01, 1.2304e-01, 4.4104e-01, - 5.8638e-01, 4.4160e-01, 7.9530e-01, 4.3712e-01, - 8.3982e-01, 3.7432e-01, 4.7695e-01, 4.5874e-01, - 8.8004e-01, 7.2230e-01, 1.1009e-01, 6.5993e-01, - 9.8603e-01, 3.2649e-01, 4.1843e-01, 9.7294e-01, - 2.0848e-01, 9.6740e-01, 4.9238e-01, 6.1925e-01, - 5.1499e-01, 5.4071e-01, 9.9466e-01, 8.4870e-01, - 2.2469e-01, 7.3287e-02, 1.1009e-01, 9.8605e-01, - 1.3893e-01, 5.6160e-01, 9.1012e-01, 1.6216e-01, - 5.4134e-01, 6.9990e-02, 4.5429e-01, 8.4017e-02, - 9.5044e-02, 8.9018e-01, 4.5031e-01, 5.0410e-01, - 9.2543e-01, 5.2699e-01, 3.1440e-01, 9.0484e-01, - 3.5531e-01, 6.7819e-03, 4.4191e-01, 7.3541e-01, - 1.3631e-01, 6.0004e-01, 1.8558e-01, 5.0108e-01, - 1.6921e-01, 7.4587e-01, 5.7250e-01, 9.1504e-01, - 5.2848e-01, 4.3565e-01, 5.2381e-01, 3.2068e-01, - 4.2602e-01, 1.7899e-01, 1.6693e-01, 4.4754e-01, - 8.0900e-01, 7.0461e-01, 2.9947e-01, 2.6865e-01, - 7.7782e-01, 5.2593e-01, 3.3560e-01, 2.9390e-01, - 1.0731e-01, 5.9751e-01, 3.5259e-01, 8.0940e-01, - 5.4338e-02, 6.2392e-01, 9.8973e-01, 7.3598e-01, - 5.6690e-01, 9.7288e-01, 4.5821e-02, 6.3232e-01, - 6.6311e-01, 5.3438e-01, 1.0203e-01, 9.2045e-01, - 4.1039e-01, 6.9228e-01, 4.8738e-01, 8.0095e-01, - 8.7185e-01, 8.3497e-01, 6.7328e-02, 7.6656e-01, - 2.6182e-01, 4.5312e-01, 5.0198e-01, 2.1211e-02, - 3.8491e-01, 9.4217e-01, 5.0357e-01, 8.3401e-02, - 7.1052e-01, 4.2509e-01, 7.7683e-01, 3.7078e-01, - 5.1501e-01, 2.7444e-01, 9.1630e-01, 7.4677e-01, - 7.2155e-01, 4.0998e-01, 6.4794e-02, 1.7857e-01, - 3.9293e-01, 9.5205e-01, 9.1388e-01, 6.5620e-01, - 5.1912e-01, 1.6899e-01, 8.5856e-01, 4.4368e-01, - 1.5869e-01, 2.2263e-01, 7.5465e-01, 3.6280e-01, - 4.7400e-02, 9.5410e-01, 4.2697e-02, 6.7796e-01, - 9.8275e-01, 2.7874e-01, 2.6106e-01, 3.9901e-01, - 5.5379e-01, 9.3950e-02, 4.9186e-01, 1.1764e-03, - 7.2495e-01, 5.8979e-01, 6.2882e-01, 1.1772e-01, - 5.5400e-01, 3.5765e-01, 7.8510e-01, 3.2378e-01, - 8.8910e-01, 1.5997e-02, 5.5679e-02, 8.9152e-01, - 3.8640e-01, 3.8910e-01, 2.3145e-01, 3.6510e-02, - 9.5621e-01, 1.5088e-01, 4.7550e-02, 6.2587e-01, - 2.8134e-01, 4.9615e-01, 4.5673e-01, 6.4038e-01, - 9.8951e-01, 3.9053e-01, 7.4142e-02, 7.8090e-01, - 2.9839e-01, 2.9025e-01, 9.5796e-01, 1.8690e-01, - 8.4195e-01, 6.6466e-01, 1.0805e-01, 7.5828e-01, - 6.7259e-01, 5.1823e-01, 8.8034e-01, 7.2995e-02, - 5.6715e-01, 5.7986e-01, 1.6088e-01, 1.6596e-02, - 9.6255e-02, 5.8882e-01, 1.3704e-01, 1.8041e-02, - 7.3056e-01, 6.9725e-01, 3.9527e-01, 4.4598e-01, - 9.7556e-01, 3.1195e-01, 1.4884e-01, 1.9870e-01, - 1.2136e-01, 2.2091e-01, 6.2259e-01, 8.8417e-01]), +tensor(crow_indices=tensor([ 0, 1, 1, ..., 1000, 1000, 1000]), + col_indices=tensor([1074, 7022, 4087, 4354, 1115, 9252, 2574, 3979, 915, + 3835, 8518, 2769, 112, 3623, 1291, 615, 191, 66, + 1214, 5633, 6476, 7907, 7161, 7265, 5563, 2980, 7771, + 8906, 5431, 4607, 4770, 626, 9524, 3730, 3866, 8666, + 6423, 5296, 979, 1727, 6975, 9285, 7075, 7134, 6667, + 7325, 5220, 9414, 9490, 8118, 9426, 4227, 7390, 7605, + 9168, 8384, 6401, 6035, 7830, 9972, 5870, 7420, 9935, + 3091, 834, 8862, 5740, 3062, 5112, 2908, 639, 6091, + 436, 2916, 4734, 7108, 513, 2302, 7905, 4519, 3497, + 5454, 9753, 2744, 5180, 8794, 3393, 8207, 4827, 280, + 5568, 3468, 6511, 9773, 2254, 47, 1155, 342, 995, + 9068, 3240, 1324, 1365, 6342, 2285, 1870, 8660, 4106, + 1186, 2521, 7988, 2968, 4045, 8137, 1538, 2198, 760, + 50, 2598, 195, 7444, 4957, 6809, 4374, 6456, 7197, + 9552, 1863, 5023, 3277, 4323, 9903, 7260, 7125, 6873, + 513, 9772, 5373, 7137, 4122, 7749, 5169, 1971, 6272, + 9111, 6015, 736, 3176, 6128, 5202, 6847, 7163, 5150, + 4610, 4581, 9646, 6385, 4193, 8418, 6616, 2414, 1755, + 8625, 575, 1748, 6885, 2435, 2666, 6742, 5614, 244, + 879, 6562, 1359, 3194, 5727, 3551, 7083, 1842, 9514, + 4863, 8479, 941, 2601, 7999, 6494, 5141, 4403, 7993, + 1185, 1573, 5845, 2439, 1922, 1733, 8393, 7228, 6830, + 5908, 6228, 9466, 2785, 4515, 6730, 3151, 3419, 3419, + 776, 3574, 2419, 4836, 3293, 8124, 1875, 7572, 2958, + 4651, 9262, 660, 8285, 6455, 653, 672, 0, 5228, + 9450, 3945, 8974, 8121, 9650, 2145, 4773, 7437, 4493, + 2675, 1190, 9285, 6100, 4192, 7922, 232, 671, 1102, + 7639, 9274, 9775, 7093, 5205, 6899, 4017, 9239, 5474, + 4012, 2403, 7759, 1283, 4106, 9062, 6550, 1753, 6450, + 8863, 2663, 1355, 6905, 1092, 2895, 2727, 2867, 1269, + 6117, 7865, 2347, 1781, 2367, 3514, 5957, 7481, 9656, + 4374, 661, 4235, 5018, 7284, 6968, 9032, 5003, 1196, + 3640, 4689, 1986, 9599, 2163, 9857, 2986, 6217, 1124, + 3869, 6932, 9440, 839, 1387, 3226, 4043, 7157, 7379, + 8428, 8483, 4369, 6851, 8809, 7897, 703, 2976, 3699, + 3438, 2355, 6736, 7238, 176, 7739, 889, 2831, 6969, + 8789, 5800, 3110, 6498, 4705, 6469, 9448, 7282, 2134, + 3678, 5467, 1622, 3274, 5066, 5127, 8447, 100, 2983, + 4463, 3099, 8883, 2393, 5221, 5531, 6706, 7577, 5800, + 8450, 3440, 6855, 944, 6894, 3303, 1082, 5849, 737, + 1687, 3315, 15, 7406, 3990, 2259, 7989, 8348, 7160, + 9351, 3002, 3148, 9126, 6367, 8090, 2998, 8051, 9049, + 2364, 8211, 5174, 5618, 94, 3866, 7923, 9652, 3819, + 3703, 4529, 1291, 2502, 976, 2602, 9342, 2433, 3989, + 7743, 4041, 7702, 1609, 486, 6429, 3042, 7286, 1452, + 35, 1305, 4754, 7796, 3723, 7653, 6695, 5085, 8985, + 3829, 2905, 9438, 2209, 6382, 4736, 9664, 3410, 9780, + 7415, 5568, 4279, 7830, 7106, 4004, 4722, 8650, 6975, + 2172, 2395, 8553, 3340, 3045, 7146, 5817, 3873, 8869, + 6247, 1175, 2122, 3744, 5725, 6888, 1097, 33, 3388, + 835, 6001, 1599, 2732, 8805, 8439, 7209, 2690, 5523, + 678, 764, 9297, 4921, 6303, 5169, 995, 8534, 8061, + 778, 3083, 4497, 1526, 7166, 9518, 9740, 5623, 1874, + 4112, 6650, 4724, 3864, 1864, 8807, 4615, 8323, 2087, + 3311, 7066, 3549, 9226, 6333, 9414, 1630, 6645, 4844, + 115, 7748, 2922, 9690, 9811, 2934, 356, 3565, 7527, + 5670, 3614, 2851, 2629, 3790, 7609, 2460, 7042, 9397, + 5659, 2806, 8290, 2345, 2448, 7257, 2879, 1633, 6514, + 6562, 6696, 7140, 2633, 5425, 7796, 6662, 1393, 2046, + 8374, 7261, 3390, 3981, 7552, 254, 5767, 2429, 5613, + 4296, 4489, 6937, 299, 9296, 2149, 2092, 8555, 8603, + 3237, 1398, 9762, 2121, 3314, 6752, 4047, 3531, 2282, + 9126, 155, 6181, 9517, 318, 9471, 241, 3861, 4693, + 7187, 8904, 9238, 3275, 8438, 9069, 1864, 9231, 9667, + 4009, 9288, 4307, 8620, 7353, 7065, 3457, 9361, 7063, + 4553, 4913, 406, 2735, 5848, 6549, 3893, 4278, 1320, + 8124, 6472, 1508, 6416, 9674, 982, 6780, 7269, 2117, + 4160, 2842, 7527, 8109, 2175, 6435, 756, 2829, 4551, + 1101, 5613, 2799, 6159, 3030, 9674, 3371, 4668, 2685, + 9264, 9477, 5536, 5293, 9200, 7997, 9530, 5953, 890, + 5904, 2629, 8659, 5653, 9317, 4267, 9976, 2511, 6842, + 90, 512, 2068, 6073, 7386, 8238, 8424, 3409, 3193, + 1239, 1431, 3902, 4600, 1601, 3567, 9765, 5150, 8916, + 2840, 3297, 5983, 970, 249, 369, 3172, 7109, 7253, + 6112, 1285, 9881, 3414, 9391, 3724, 571, 8346, 8358, + 4162, 7136, 6172, 8809, 6689, 815, 5048, 3642, 959, + 6179, 9525, 7319, 8094, 4231, 3522, 6081, 9527, 8667, + 4007, 6492, 5206, 2671, 131, 2593, 293, 1464, 8045, + 2173, 608, 8313, 546, 7335, 3665, 2688, 8988, 3584, + 6303, 4955, 3386, 1723, 7105, 4572, 2844, 5600, 6702, + 5410, 4316, 2976, 4686, 3464, 2186, 1556, 2021, 8745, + 13, 3322, 1670, 708, 3608, 2776, 8220, 2918, 692, + 5296, 5873, 4095, 1083, 1521, 7223, 7591, 5664, 4154, + 6765, 3312, 7008, 4212, 7168, 7463, 2544, 4892, 8746, + 7430, 8621, 2945, 8225, 1113, 3741, 6687, 6930, 3774, + 7211, 1927, 7164, 9820, 2083, 2916, 9934, 6793, 5105, + 4835, 3112, 3094, 1326, 7804, 7578, 4182, 739, 1123, + 1767, 8724, 9857, 2143, 6971, 6801, 376, 4107, 954, + 5018, 8170, 7753, 3368, 2333, 1, 2240, 2793, 1283, + 7038, 8646, 9694, 359, 2258, 5039, 1080, 5544, 9098, + 4490, 5886, 352, 1011, 1449, 531, 9355, 9342, 2004, + 9274, 7734, 8205, 2292, 9551, 5966, 9837, 1814, 4079, + 8382, 4410, 2600, 7625, 9363, 1842, 2879, 1253, 809, + 7014, 5812, 209, 5239, 2093, 1770, 314, 8424, 2510, + 8571, 9426, 7724, 9614, 5503, 3753, 2866, 1758, 9962, + 6, 7364, 8977, 2787, 766, 2450, 2844, 7089, 3871, + 3747, 9673, 87, 5211, 3728, 3843, 1425, 9293, 1646, + 8032, 5484, 3610, 2890, 6677, 6468, 1558, 3598, 3915, + 1993, 1609, 8274, 966, 8311, 8117, 5411, 9792, 5362, + 4456, 6051, 3532, 1282, 4790, 4302, 1110, 1051, 5344, + 197, 7166, 3635, 796, 2322, 8834, 7592, 9685, 6175, + 1580, 7579, 7995, 5470, 7573, 5255, 5134, 8199, 4635, + 6559, 7004, 535, 234, 482, 8638, 109, 9961, 4999, + 7801, 2361, 4476, 9026, 8063, 7010, 7559, 3651, 6179, + 1451, 928, 8960, 630, 76, 1209, 5158, 5630, 9966, + 5033, 8228, 9559, 9213, 1023, 7495, 1852, 4508, 8270, + 1627, 1030, 4994, 541, 3130, 827, 3601, 8830, 6755, + 4725, 6005, 7586, 3820, 5409, 4677, 5963, 549, 7869, + 8701, 7230, 9014, 1899, 4054, 7192, 5440, 4348, 1719, + 2600, 6431, 2356, 4202, 427, 9630, 7862, 4930, 8419, + 7485, 2384, 6304, 9889, 7541, 9723, 7193, 9094, 6906, + 3017]), + values=tensor([0.9304, 0.0325, 0.3106, 0.4781, 0.2864, 0.4721, 0.3382, + 0.8821, 0.2738, 0.6632, 0.0397, 0.5410, 0.8129, 0.5302, + 0.8584, 0.6728, 0.7839, 0.2842, 0.6220, 0.2198, 0.9853, + 0.4195, 0.8925, 0.9780, 0.4936, 0.9314, 0.4002, 0.0589, + 0.0362, 0.6841, 0.4069, 0.9644, 0.1471, 0.1097, 0.7122, + 0.6469, 0.7726, 0.7037, 0.8236, 0.5724, 0.6757, 0.0210, + 0.7908, 0.1342, 0.5146, 0.6874, 0.0836, 0.6105, 0.6489, + 0.7550, 0.2489, 0.2644, 0.8196, 0.5567, 0.9361, 0.0192, + 0.7166, 0.4988, 0.6757, 0.6719, 0.0246, 0.9112, 0.3677, + 0.3643, 0.2678, 0.8468, 0.3772, 0.5807, 0.7059, 0.0144, + 0.4017, 0.2251, 0.1445, 0.5897, 0.5839, 0.8811, 0.5419, + 0.1899, 0.6807, 0.8358, 0.3278, 0.1587, 0.4733, 0.8342, + 0.8985, 0.6485, 0.7474, 0.6612, 0.0844, 0.3828, 0.0157, + 0.7714, 0.6608, 0.1525, 0.9463, 0.3394, 0.3867, 0.0432, + 0.8090, 0.3213, 0.9897, 0.9084, 0.9424, 0.2045, 0.4579, + 0.7852, 0.4647, 0.4513, 0.6407, 0.5200, 0.9790, 0.1694, + 0.8201, 0.7817, 0.9650, 0.1348, 0.2654, 0.0726, 0.6476, + 0.9696, 0.1144, 0.2269, 0.5974, 0.7825, 0.6712, 0.1593, + 0.9034, 0.9204, 0.3969, 0.4522, 0.3790, 0.7055, 0.0019, + 0.1878, 0.4210, 0.9245, 0.3068, 0.7871, 0.0815, 0.1037, + 0.9467, 0.2547, 0.9280, 0.3139, 0.5680, 0.6516, 0.6068, + 0.5981, 0.3913, 0.0407, 0.0947, 0.2105, 0.0303, 0.5718, + 0.2321, 0.5689, 0.9476, 0.1321, 0.0247, 0.4729, 0.7661, + 0.8935, 0.9971, 0.2980, 0.9100, 0.1945, 0.7887, 0.3662, + 0.6700, 0.4029, 0.0956, 0.0108, 0.3242, 0.1912, 0.0388, + 0.8159, 0.1239, 0.6482, 0.0548, 0.7241, 0.4628, 0.1188, + 0.3048, 0.7968, 0.6538, 0.0308, 0.2637, 0.2733, 0.6327, + 0.6480, 0.2813, 0.5175, 0.6726, 0.0450, 0.6176, 0.2589, + 0.7109, 0.0980, 0.7310, 0.5738, 0.9989, 0.1733, 0.0559, + 0.0624, 0.6747, 0.0930, 0.2298, 0.6306, 0.1193, 0.8276, + 0.2679, 0.3372, 0.0565, 0.5821, 0.6562, 0.4518, 0.8406, + 0.7838, 0.3267, 0.0377, 0.0535, 0.4407, 0.8150, 0.3303, + 0.6133, 0.4116, 0.9870, 0.8925, 0.8368, 0.9237, 0.9331, + 0.5461, 0.4353, 0.9658, 0.0052, 0.5013, 0.8249, 0.8077, + 0.8369, 0.9914, 0.7366, 0.6685, 0.5210, 0.7940, 0.8071, + 0.1086, 0.3441, 0.1479, 0.3668, 0.5370, 0.5706, 0.8571, + 0.3522, 0.2921, 0.1107, 0.4358, 0.9740, 0.6370, 0.7121, + 0.3797, 0.6431, 0.6432, 0.8570, 0.3341, 0.8876, 0.4912, + 0.3012, 0.2244, 0.8304, 0.8708, 0.6993, 0.6415, 0.1354, + 0.4973, 0.6766, 0.5583, 0.8158, 0.1846, 0.7576, 0.3301, + 0.2284, 0.7380, 0.2497, 0.8663, 0.4244, 0.8319, 0.8766, + 0.3127, 0.9083, 0.6717, 0.2607, 0.9060, 0.3022, 0.6929, + 0.7216, 0.1864, 0.9103, 0.0908, 0.8280, 0.6772, 0.9170, + 0.1666, 0.0432, 0.9895, 0.8882, 0.4445, 0.2577, 0.6991, + 0.0134, 0.7908, 0.1595, 0.2586, 0.1384, 0.8815, 0.9964, + 0.6719, 0.3849, 0.3745, 0.5578, 0.6641, 0.8020, 0.8256, + 0.8774, 0.1735, 0.0160, 0.3321, 0.9095, 0.6863, 0.8819, + 0.2760, 0.0176, 0.9191, 0.2224, 0.5883, 0.6735, 0.2168, + 0.8084, 0.2051, 0.7731, 0.7349, 0.4183, 0.4549, 0.7852, + 0.1645, 0.2619, 0.7500, 0.6211, 0.9320, 0.1410, 0.8013, + 0.3936, 0.8135, 0.1711, 0.7508, 0.1565, 0.5072, 0.4150, + 0.0222, 0.7654, 0.2057, 0.7224, 0.5103, 0.0219, 0.2565, + 0.1947, 0.2598, 0.2876, 0.9465, 0.1945, 0.3773, 0.5036, + 0.9181, 0.1480, 0.8127, 0.9489, 0.5086, 0.2695, 0.5627, + 0.6161, 0.4583, 0.0870, 0.7396, 0.9559, 0.7672, 0.7594, + 0.2165, 0.4330, 0.5886, 0.0477, 0.3072, 0.0691, 0.3499, + 0.5368, 0.0098, 0.1604, 0.5787, 0.5961, 0.6748, 0.5240, + 0.6174, 0.6377, 0.0557, 0.8169, 0.1661, 0.8698, 0.1999, + 0.5072, 0.0521, 0.7366, 0.9190, 0.1330, 0.7979, 0.2571, + 0.8104, 0.6892, 0.6507, 0.8704, 0.6904, 0.5395, 0.5915, + 0.1731, 0.6768, 0.9334, 0.5447, 0.3147, 0.7565, 0.2840, + 0.8455, 0.7829, 0.1389, 0.9161, 0.9734, 0.2521, 0.5519, + 0.3612, 0.4687, 0.1449, 0.2398, 0.6605, 0.8039, 0.8419, + 0.6954, 0.8245, 0.4611, 0.7124, 0.8750, 0.0816, 0.7331, + 0.2216, 0.8005, 0.9334, 0.8519, 0.5866, 0.8732, 0.9519, + 0.4971, 0.6068, 0.1175, 0.8603, 0.6101, 0.3972, 0.0193, + 0.1596, 0.3517, 0.7516, 0.7870, 0.6434, 0.0362, 0.2214, + 0.6042, 0.3964, 0.6328, 0.2889, 0.2855, 0.8849, 0.5080, + 0.7797, 0.4322, 0.0814, 0.3647, 0.2061, 0.6314, 0.3193, + 0.1895, 0.3658, 0.6642, 0.1466, 0.1805, 0.6190, 0.9850, + 0.3325, 0.8191, 0.3665, 0.4316, 0.4284, 0.3112, 0.9226, + 0.5944, 0.0376, 0.1741, 0.8903, 0.0662, 0.9770, 0.9188, + 0.9310, 0.5606, 0.4272, 0.1108, 0.4718, 0.4460, 0.6248, + 0.5358, 0.2156, 0.0885, 0.3174, 0.8396, 0.1886, 0.2096, + 0.3417, 0.8097, 0.5694, 0.1045, 0.8763, 0.1113, 0.1353, + 0.0123, 0.9512, 0.5017, 0.3234, 0.1403, 0.0730, 0.8981, + 0.2740, 0.4134, 0.2135, 0.9805, 0.0445, 0.9458, 0.7869, + 0.3360, 0.7234, 0.2980, 0.1314, 0.3499, 0.6698, 0.4526, + 0.6499, 0.4686, 0.7291, 0.1916, 0.4110, 0.7064, 0.0622, + 0.1843, 0.1217, 0.1311, 0.8602, 0.9506, 0.1258, 0.9113, + 0.9310, 0.4848, 0.0104, 0.0267, 0.5186, 0.0305, 0.5081, + 0.5501, 0.3248, 0.8113, 0.3173, 0.7019, 0.0515, 0.0562, + 0.1638, 0.4617, 0.6547, 0.3705, 0.4788, 0.0628, 0.4462, + 0.3249, 0.8781, 0.7038, 0.4954, 0.3617, 0.8045, 0.1896, + 0.8468, 0.7628, 0.4651, 0.3750, 0.9370, 0.8226, 0.5039, + 0.7669, 0.5888, 0.7467, 0.1323, 0.9814, 0.9275, 0.4832, + 0.2850, 0.4635, 0.1488, 0.7094, 0.2071, 0.4950, 0.1863, + 0.2851, 0.7798, 0.3730, 0.3994, 0.2529, 0.5052, 0.4832, + 0.3839, 0.7730, 0.1994, 0.8801, 0.9634, 0.1279, 0.5202, + 0.4480, 0.2752, 0.8425, 0.2605, 0.6678, 0.0019, 0.1146, + 0.5118, 0.8404, 0.4252, 0.8911, 0.6844, 0.6707, 0.4919, + 0.4044, 0.9689, 0.9549, 0.5260, 0.2040, 0.3758, 0.8436, + 0.0719, 0.9238, 0.4595, 0.7501, 0.7038, 0.0842, 0.8019, + 0.5135, 0.4312, 0.0042, 0.3774, 0.0300, 0.3045, 0.1310, + 0.9498, 0.2047, 0.0065, 0.4750, 0.7205, 0.8268, 0.2414, + 0.5067, 0.3174, 0.7835, 0.1750, 0.2497, 0.8182, 0.4410, + 0.4937, 0.0668, 0.7211, 0.3732, 0.1165, 0.5206, 0.1429, + 0.5890, 0.1326, 0.1841, 0.2299, 0.6975, 0.0815, 0.8063, + 0.7601, 0.5190, 0.4973, 0.7820, 0.2718, 0.3645, 0.2388, + 0.6349, 0.4919, 0.5469, 0.5835, 0.1693, 0.2555, 0.6997, + 0.0080, 0.8024, 0.8773, 0.4755, 0.9793, 0.3227, 0.7826, + 0.4776, 0.5918, 0.9313, 0.3366, 0.3665, 0.6137, 0.6442, + 0.7228, 0.1110, 0.6812, 0.4938, 0.1352, 0.2780, 0.6843, + 0.3593, 0.6866, 0.5996, 0.6977, 0.2843, 0.3178, 0.7528, + 0.8342, 0.5386, 0.6190, 0.0664, 0.9083, 0.4500, 0.1762, + 0.6839, 0.7444, 0.6654, 0.5698, 0.6462, 0.6689, 0.6885, + 0.6494, 0.1899, 0.7462, 0.4931, 0.7785, 0.4078, 0.0875, + 0.6143, 0.8570, 0.9888, 0.3955, 0.6640, 0.6587, 0.7544, + 0.9891, 0.6031, 0.0927, 0.6392, 0.0282, 0.2897, 0.0799, + 0.3039, 0.7537, 0.0064, 0.0830, 0.2575, 0.1555, 0.1809, + 0.6300, 0.6627, 0.5442, 0.5686, 0.4545, 0.6247, 0.0230, + 0.1211, 0.9727, 0.2738, 0.3745, 0.1564, 0.8676, 0.3949, + 0.4342, 0.6528, 0.7121, 0.9790, 0.6180, 0.8497, 0.6934, + 0.8114, 0.4502, 0.2751, 0.7561, 0.6667, 0.0282, 0.9822, + 0.8863, 0.6138, 0.1747, 0.4926, 0.0927, 0.1322, 0.4515, + 0.6778, 0.3334, 0.7750, 0.2319, 0.6137, 0.2868, 0.8848, + 0.0267, 0.5097, 0.9541, 0.4569, 0.9397, 0.3945, 0.3763, + 0.9350, 0.7996, 0.5528, 0.9459, 0.6150, 0.5344, 0.9224, + 0.4343, 0.2583, 0.5743, 0.1810, 0.4732, 0.1012, 0.2292, + 0.5431, 0.6259, 0.8319, 0.9927, 0.5847, 0.8053, 0.0391, + 0.3854, 0.8999, 0.7842, 0.4838, 0.5113, 0.9715, 0.1757, + 0.7568, 0.4008, 0.5341, 0.1516, 0.0878, 0.5977, 0.5872, + 0.7439, 0.8081, 0.9535, 0.6902, 0.8931, 0.9586, 0.7881, + 0.0686, 0.4547, 0.0160, 0.3146, 0.6264, 0.2480, 0.7559, + 0.5560, 0.9085, 0.3908, 0.0424, 0.3481, 0.0393, 0.1234, + 0.5520, 0.5796, 0.8048, 0.0202, 0.8271, 0.9243, 0.6015, + 0.0508, 0.8893, 0.9673, 0.3880, 0.3853, 0.1352, 0.4800, + 0.1939, 0.7035, 0.2054, 0.1146, 0.2407, 0.4234, 0.9640, + 0.4558, 0.8502, 0.7625, 0.3075, 0.9902, 0.1845, 0.0707, + 0.8518, 0.7267, 0.6494, 0.4761, 0.1632, 0.1248, 0.8200, + 0.2043, 0.6022, 0.7800, 0.0537, 0.1505, 0.0646, 0.9228, + 0.0966, 0.8036, 0.2431, 0.5992, 0.1858, 0.5672, 0.8294, + 0.0135, 0.2238, 0.0068, 0.8473, 0.0323, 0.2138, 0.3134, + 0.2674, 0.4860, 0.8071, 0.7400, 0.9168, 0.0701, 0.7855, + 0.7080, 0.5714, 0.5288, 0.1187, 0.1954, 0.0067, 0.7680, + 0.5930, 0.8250, 0.6028, 0.2144, 0.0255, 0.2917, 0.4790, + 0.3892, 0.3563, 0.0423, 0.3253, 0.0092, 0.8956, 0.2515, + 0.1414, 0.9761, 0.8159, 0.7089, 0.4956, 0.0026, 0.1488, + 0.2902, 0.9089, 0.4432, 0.7989, 0.9160, 0.2680, 0.3317, + 0.6128, 0.6111, 0.3647, 0.4016, 0.8650, 0.7226, 0.2642, + 0.4868, 0.9208, 0.7252, 0.5230, 0.1652, 0.0793, 0.9874, + 0.5129, 0.3412, 0.3833, 0.8354, 0.9507, 0.1921, 0.2168, + 0.6983, 0.4500, 0.7444, 0.9235, 0.5009, 0.2575]), size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.1885, 0.9110, 0.8668, ..., 0.5988, 0.5354, 0.4490]) +tensor([0.5348, 0.7986, 0.2200, ..., 0.0453, 0.2085, 0.0080]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -1026,375 +1026,268 @@ Rows: 10000 Size: 100000000 NNZ: 1000 Density: 1e-05 -Time: 10.454679489135742 seconds +Time: 11.173964023590088 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), - col_indices=tensor([ 992, 6197, 9017, 9363, 9552, 813, 7391, 7914, 9771, - 3659, 3074, 9783, 1812, 3296, 6743, 6738, 702, 3841, - 3424, 7401, 8317, 3607, 6860, 362, 9639, 2551, 6043, - 7518, 3032, 3130, 3636, 7660, 8439, 4568, 5092, 2436, - 3187, 8837, 3544, 4899, 7429, 2524, 4785, 2134, 2572, - 6350, 9886, 256, 2298, 8028, 70, 8411, 4974, 7198, - 862, 3332, 6593, 8182, 7945, 9825, 6160, 4988, 2031, - 6068, 6614, 9084, 2004, 1721, 3147, 3182, 3118, 5709, - 8746, 4710, 9620, 9376, 140, 8642, 3065, 3887, 1723, - 6936, 4731, 2055, 6480, 1766, 8773, 4579, 5639, 2215, - 5779, 5381, 4350, 7435, 8765, 6377, 799, 8953, 5360, - 9549, 3017, 8743, 487, 1241, 3723, 8122, 2611, 4227, - 6659, 2898, 5722, 11, 7624, 8169, 4785, 7800, 4631, - 3130, 4863, 9634, 5871, 800, 3594, 8741, 4205, 3101, - 403, 2763, 6841, 5270, 2637, 4779, 7008, 3042, 8955, - 2132, 3726, 4189, 3779, 5125, 687, 8127, 1804, 800, - 4029, 5445, 9633, 4529, 3236, 8927, 7147, 154, 8438, - 5636, 8527, 2578, 3718, 5040, 103, 1957, 7063, 2451, - 2886, 8775, 5823, 4409, 7988, 4492, 8452, 3536, 6016, - 1726, 2580, 5789, 8639, 54, 8903, 8623, 9065, 418, - 1054, 6406, 6818, 9993, 9619, 1884, 7180, 8499, 5628, - 4305, 3227, 510, 9047, 1678, 8341, 5598, 4299, 1692, - 8734, 8635, 2110, 8248, 9893, 1356, 6575, 7421, 6363, - 4297, 3484, 1169, 1241, 1425, 4649, 5883, 6180, 8669, - 4201, 788, 1097, 4297, 6034, 8866, 2786, 645, 1246, - 167, 6015, 4888, 6451, 9244, 1083, 9764, 2561, 5089, - 8184, 4035, 1167, 3589, 3443, 7780, 2766, 3560, 6969, - 8333, 8748, 9457, 3481, 2796, 4766, 3738, 4973, 1369, - 9893, 5697, 1546, 5501, 8115, 5773, 2637, 7430, 7145, - 9082, 312, 559, 9552, 9655, 1249, 329, 3273, 2053, - 2825, 1961, 5469, 2719, 2587, 9942, 8019, 2559, 124, - 6716, 2095, 5210, 2684, 8843, 6904, 8672, 3894, 1387, - 9061, 9272, 6124, 2456, 8493, 1887, 9266, 3449, 7919, - 6211, 5260, 5307, 416, 9086, 9227, 2089, 7248, 8083, - 736, 7718, 2907, 6348, 379, 6932, 4292, 5415, 9040, - 6461, 7684, 161, 2395, 2926, 8759, 4212, 7577, 2170, - 2842, 7996, 7763, 7275, 6393, 6387, 7037, 6038, 3200, - 9689, 5174, 7963, 922, 2697, 4385, 7305, 2388, 2882, - 7902, 8391, 9072, 465, 842, 8275, 3927, 402, 6723, - 4395, 7064, 1153, 6667, 4093, 515, 9382, 8872, 80, - 6685, 107, 2838, 695, 5247, 6095, 4724, 4280, 7476, - 2216, 2653, 7304, 8752, 7937, 4352, 5517, 6003, 2890, - 5868, 3874, 1071, 5868, 504, 8200, 5663, 2083, 8059, - 5885, 2704, 6554, 3795, 8168, 5707, 1435, 5436, 547, - 4674, 6558, 8024, 9883, 2937, 8276, 708, 3652, 9117, - 6415, 1746, 4168, 7306, 1890, 7445, 8049, 4043, 6422, - 8028, 4753, 279, 552, 1928, 7780, 3761, 9126, 5063, - 8243, 8819, 9608, 8907, 7215, 3984, 3222, 232, 6482, - 5518, 1304, 2970, 6697, 8420, 6280, 3556, 2455, 4432, - 7836, 2142, 8294, 4706, 2188, 3414, 4993, 2971, 749, - 8344, 4214, 7934, 8210, 701, 4237, 5917, 8563, 1985, - 2163, 1461, 3724, 4049, 4376, 5458, 6579, 1327, 2486, - 8667, 105, 2470, 425, 8314, 425, 9772, 4139, 6257, - 1691, 5611, 9904, 7172, 4768, 7051, 311, 7563, 2588, - 4556, 1076, 5750, 9387, 6607, 3505, 7299, 5162, 3677, - 6232, 3623, 8118, 4209, 6379, 2137, 7114, 2750, 727, - 1150, 9020, 6095, 8781, 964, 3401, 4498, 8869, 8433, - 4064, 657, 9799, 1100, 900, 968, 103, 252, 4771, - 8818, 5131, 9850, 7676, 9736, 7043, 6168, 1582, 4069, - 6126, 658, 3236, 5817, 4964, 9455, 1229, 1018, 2768, - 8936, 2667, 5314, 9838, 2738, 7500, 5606, 5093, 8502, - 6298, 1310, 4420, 1366, 445, 8350, 1331, 9081, 6878, - 6716, 5203, 9542, 600, 2635, 5221, 473, 3212, 9608, - 6118, 6306, 2169, 4202, 1311, 65, 4991, 1280, 9130, - 4214, 4841, 4766, 9189, 9111, 831, 6351, 3710, 7914, - 8990, 6031, 2495, 4023, 664, 4119, 8829, 3665, 7182, - 834, 5668, 3157, 6886, 7474, 7456, 7457, 5700, 5968, - 8752, 8280, 3581, 3363, 1028, 7420, 7605, 8189, 121, - 6923, 5205, 8333, 1027, 9553, 996, 9473, 6716, 3807, - 6199, 1329, 9080, 5266, 9046, 7133, 2644, 4177, 1736, - 5969, 6489, 8323, 8156, 4535, 3154, 6753, 2311, 1301, - 9560, 5364, 1311, 5827, 817, 1581, 9851, 6340, 4555, - 4149, 2665, 4030, 4378, 9486, 2986, 7488, 8663, 1098, - 8643, 9528, 5753, 3076, 1923, 6655, 4701, 2564, 2759, - 2614, 8312, 5369, 8644, 4278, 1089, 5880, 7934, 5654, - 9290, 529, 8307, 6094, 8613, 9753, 1317, 8719, 190, - 7897, 5396, 3284, 1788, 5467, 3357, 9704, 5015, 9457, - 9250, 4832, 8383, 5572, 6280, 1996, 88, 956, 9998, - 1522, 9106, 5381, 3536, 8254, 7345, 5671, 8230, 5557, - 7077, 4918, 3339, 425, 2028, 3163, 2588, 2424, 8060, - 4231, 8290, 1425, 1292, 1812, 7720, 2121, 440, 4305, - 3592, 3508, 6973, 1918, 3252, 1660, 7498, 5382, 4944, - 5506, 9328, 4854, 3012, 7765, 3368, 8118, 2049, 2553, - 9755, 5902, 6417, 1245, 6475, 5125, 6931, 355, 9409, - 765, 4975, 1840, 7347, 9096, 357, 2097, 7182, 9205, - 7495, 5566, 9152, 8183, 4955, 5578, 7022, 5514, 5444, - 6267, 8614, 5088, 3022, 6603, 9398, 7901, 9286, 3676, - 22, 1556, 106, 2739, 2806, 5294, 1354, 758, 8713, - 7422, 9061, 3417, 6963, 6041, 7734, 6184, 3868, 9643, - 5902, 6482, 1297, 4950, 9725, 9931, 7629, 8271, 9486, - 27, 9302, 9426, 8838, 7517, 2974, 1849, 2435, 6414, - 9829, 5071, 1041, 7434, 2451, 9172, 1803, 6122, 7707, - 6607, 6135, 3951, 3504, 6516, 4155, 1980, 6024, 8612, - 5327, 6044, 2155, 1648, 2058, 6766, 6976, 7736, 467, - 6836, 6292, 7090, 356, 9671, 9450, 5630, 9326, 3917, - 2056, 2251, 5784, 7410, 5124, 2541, 5740, 6770, 416, - 5387, 4977, 7567, 7754, 3358, 3577, 5938, 8258, 7308, - 6329, 4625, 8734, 2615, 2718, 5600, 116, 3518, 1951, - 5520, 8934, 148, 8573, 4159, 3406, 6214, 3760, 6900, - 1693, 2034, 3016, 9088, 8300, 9059, 2264, 3846, 3681, - 4154, 8527, 1029, 1780, 2482, 6046, 4466, 99, 4992, - 2888, 7277, 8577, 3498, 7469, 3793, 8496, 7986, 601, - 3094, 7023, 7883, 7345, 1271, 9517, 1909, 7362, 9121, - 1135, 7623, 2399, 4704, 7096, 5341, 4961, 5464, 2648, - 4405, 2528, 6055, 2121, 4870, 9037, 1532, 2739, 7180, - 3297, 9018, 4479, 7484, 2676, 2125, 5337, 1610, 4725, - 3239, 3524, 1732, 4592, 9536, 2480, 9753, 9282, 5967, - 7240, 8320, 8032, 3929, 2959, 4292, 8204, 2208, 6636, - 1874, 3136, 5027, 385, 4087, 9579, 4067, 3660, 1477, - 4241, 5719, 9858, 422, 1706, 8163, 1620, 4996, 2023, - 1900, 6432, 6172, 184, 1375, 9699, 1668, 252, 7117, - 5147]), - values=tensor([4.3537e-01, 3.9981e-01, 3.9884e-01, 6.8960e-01, - 4.8973e-01, 1.4335e-01, 5.3666e-01, 3.0947e-01, - 5.1729e-01, 5.7026e-01, 7.4978e-01, 2.6557e-01, - 2.1578e-01, 9.6159e-01, 3.3602e-02, 1.9291e-01, - 3.4528e-01, 7.2294e-01, 8.8444e-01, 7.8295e-01, - 2.1309e-01, 6.4920e-01, 1.7645e-01, 1.5566e-01, - 6.3153e-01, 3.7064e-01, 6.8757e-01, 1.3889e-01, - 8.4305e-01, 2.6216e-01, 4.0551e-01, 7.0589e-01, - 9.3137e-01, 4.2583e-01, 4.6336e-01, 2.6140e-01, - 7.3049e-01, 6.7786e-01, 1.8448e-01, 1.6195e-01, - 2.9220e-01, 3.2207e-01, 1.0179e-01, 8.4428e-01, - 5.1327e-01, 2.5118e-01, 4.7234e-01, 9.2641e-01, - 9.1870e-01, 7.5642e-01, 6.0164e-01, 8.1116e-01, - 4.0225e-01, 6.1931e-01, 9.5682e-01, 7.2107e-01, - 3.5447e-01, 8.2000e-01, 6.7449e-01, 7.6617e-01, - 6.7468e-01, 3.9826e-02, 1.8946e-01, 8.3726e-02, - 8.4893e-01, 5.4004e-01, 5.3572e-03, 1.5513e-01, - 3.2889e-01, 6.7577e-01, 4.1663e-01, 1.3433e-01, - 2.1308e-01, 4.0621e-01, 1.7773e-01, 4.6669e-01, - 7.0394e-01, 9.5283e-01, 9.6965e-01, 3.5330e-01, - 7.8285e-01, 9.6208e-01, 8.1898e-01, 3.8443e-01, - 7.3563e-01, 1.5837e-01, 4.3445e-01, 2.2030e-01, - 1.1584e-01, 2.8973e-01, 4.9374e-01, 1.8947e-01, - 2.0179e-01, 4.4464e-01, 2.9576e-02, 8.4870e-01, - 9.1479e-01, 1.2898e-01, 3.7882e-01, 9.1046e-01, - 9.8325e-01, 2.1736e-01, 8.3977e-01, 2.4636e-02, - 5.9983e-01, 4.8508e-01, 1.0133e-01, 9.2427e-01, - 3.8742e-01, 9.1992e-01, 2.1236e-01, 3.7146e-02, - 4.4093e-01, 1.4010e-01, 5.5600e-01, 9.8858e-01, - 3.9218e-01, 5.6724e-01, 4.2599e-01, 5.8652e-01, - 9.5954e-01, 2.4908e-01, 6.9651e-01, 1.5425e-01, - 3.0458e-01, 9.4539e-01, 2.6284e-01, 1.7345e-02, - 7.5959e-01, 8.9099e-01, 3.1513e-01, 4.9067e-01, - 2.5794e-01, 8.9944e-01, 6.1980e-02, 9.2183e-01, - 4.6175e-01, 9.7935e-01, 1.7864e-01, 6.2861e-01, - 1.1111e-01, 1.0233e-01, 2.3174e-02, 3.6532e-01, - 7.6410e-01, 9.0695e-01, 3.9577e-01, 6.8919e-01, - 9.8700e-01, 3.1611e-01, 8.0436e-02, 1.9359e-01, - 5.1339e-01, 5.3702e-01, 7.5160e-01, 8.1859e-01, - 5.0804e-02, 3.9069e-01, 2.6045e-01, 7.6514e-01, - 2.5050e-01, 9.1500e-01, 5.6797e-01, 5.5091e-01, - 4.2969e-01, 4.9864e-01, 8.4568e-01, 8.8357e-01, - 2.4968e-01, 7.3277e-02, 2.8443e-01, 7.5808e-01, - 9.4787e-01, 7.9605e-01, 8.9312e-01, 9.9357e-01, - 9.0836e-01, 3.4784e-01, 7.5111e-01, 7.1483e-01, - 2.9800e-01, 1.6662e-01, 7.0094e-01, 3.6745e-01, - 1.2262e-01, 7.3403e-01, 9.2937e-01, 3.8392e-01, - 5.4464e-01, 5.1342e-01, 8.9046e-01, 9.8258e-01, - 5.2964e-01, 6.4014e-01, 8.1913e-01, 6.2432e-01, - 9.6651e-01, 4.7961e-01, 5.0049e-01, 7.8570e-01, - 1.7991e-01, 3.4938e-01, 2.3127e-01, 7.4863e-01, - 2.9275e-01, 6.4424e-04, 4.4849e-01, 5.8097e-01, - 7.3619e-01, 7.2211e-01, 2.5817e-01, 4.3577e-01, - 7.5637e-01, 2.9790e-01, 5.4852e-01, 8.1898e-02, - 4.6703e-01, 9.8959e-01, 5.2950e-01, 6.1777e-01, - 1.1500e-01, 7.0529e-01, 3.6459e-01, 9.7895e-01, - 3.2305e-01, 2.5527e-01, 8.7675e-01, 1.0971e-01, - 5.0946e-01, 3.9227e-01, 9.7367e-01, 6.3673e-01, - 9.5168e-02, 7.2298e-01, 1.3574e-01, 5.7008e-01, - 9.6100e-01, 5.5062e-01, 8.5493e-01, 2.6996e-01, - 7.2852e-01, 5.0724e-03, 7.0486e-01, 3.7174e-01, - 4.6905e-01, 1.6221e-01, 6.1008e-01, 1.7684e-01, - 7.1183e-01, 5.0400e-01, 2.9966e-01, 7.0806e-01, - 1.9128e-01, 1.0265e-01, 2.0013e-01, 9.0258e-01, - 4.2371e-01, 3.9347e-01, 3.4903e-01, 4.3909e-01, - 7.1615e-01, 8.3353e-02, 8.2383e-01, 1.3046e-01, - 1.6372e-02, 5.4070e-01, 8.6800e-01, 5.0743e-01, - 9.6013e-01, 3.3358e-01, 4.5913e-01, 6.2492e-01, - 1.7392e-01, 8.0187e-01, 9.5935e-01, 8.0293e-01, - 7.3448e-01, 9.6838e-01, 4.6566e-01, 7.5415e-01, - 1.7773e-01, 4.6671e-01, 1.9277e-01, 1.9528e-01, - 3.7586e-01, 9.7197e-01, 7.1717e-01, 7.5047e-01, - 2.4187e-01, 1.9655e-01, 9.9432e-01, 9.7618e-01, - 2.8431e-01, 6.9296e-01, 1.9736e-01, 9.6645e-01, - 1.6096e-02, 3.4791e-01, 4.1191e-01, 2.0523e-01, - 6.2665e-01, 4.2102e-01, 2.3025e-02, 1.6970e-01, - 9.9316e-01, 7.6355e-01, 2.0605e-02, 1.2488e-01, - 4.0790e-01, 5.6708e-01, 8.2480e-01, 7.9370e-01, - 9.2119e-01, 8.2742e-01, 7.5665e-01, 2.5768e-01, - 4.3114e-01, 6.6583e-01, 7.7116e-01, 7.6309e-01, - 7.1228e-01, 8.7464e-01, 8.7019e-01, 9.3966e-01, - 4.2135e-01, 5.7594e-01, 6.2870e-01, 9.1797e-01, - 9.6945e-01, 7.2933e-01, 8.8178e-01, 1.8302e-01, - 2.9607e-01, 4.6905e-02, 8.6133e-01, 6.0869e-02, - 1.5112e-02, 3.4687e-01, 5.7238e-01, 2.9485e-01, - 9.3423e-01, 7.1957e-01, 1.0934e-01, 7.9192e-01, - 6.5331e-01, 4.3923e-01, 6.0516e-01, 5.7033e-01, - 6.0523e-01, 8.7734e-01, 9.9250e-01, 4.1305e-01, - 7.8645e-01, 5.1140e-01, 4.3184e-01, 4.2612e-01, - 2.3541e-01, 6.0161e-01, 2.3674e-01, 6.7388e-01, - 8.0508e-01, 6.7986e-01, 8.2585e-01, 8.4326e-01, - 5.9880e-01, 2.6417e-01, 2.6762e-01, 1.7359e-01, - 3.0395e-01, 6.5434e-02, 8.1628e-01, 9.8237e-01, - 3.0332e-01, 8.1081e-01, 9.1721e-01, 5.4623e-04, - 7.0012e-01, 5.1769e-01, 6.0702e-01, 3.4591e-01, - 2.2090e-01, 4.2492e-01, 7.1125e-01, 9.1429e-03, - 3.3527e-01, 8.6846e-01, 6.7073e-01, 7.9698e-01, - 5.3968e-01, 7.8654e-01, 4.4203e-03, 3.3520e-01, - 3.0764e-01, 7.6575e-01, 2.1197e-02, 5.3096e-01, - 3.9667e-01, 7.2879e-03, 2.9349e-01, 4.5592e-01, - 1.5381e-01, 9.7142e-01, 6.6952e-01, 3.8729e-01, - 8.1140e-01, 6.7995e-01, 7.1422e-01, 2.4486e-01, - 7.5636e-01, 2.3310e-01, 9.5289e-01, 4.8022e-01, - 8.5813e-01, 5.9732e-01, 5.3636e-01, 3.9112e-01, - 1.2996e-01, 3.2122e-01, 4.8399e-01, 2.6184e-01, - 2.1104e-01, 4.9276e-01, 3.8299e-01, 7.5953e-01, - 3.4044e-01, 3.1825e-02, 1.5820e-01, 8.7087e-01, - 4.3387e-02, 6.2383e-01, 4.5976e-01, 4.9470e-01, - 1.0368e-01, 9.6785e-01, 7.1734e-01, 2.4049e-01, - 8.7258e-02, 7.1240e-01, 8.6015e-01, 1.8576e-01, - 5.0698e-01, 6.5363e-01, 3.8025e-01, 8.7343e-01, - 5.1193e-01, 5.3928e-01, 1.8814e-01, 2.6343e-02, - 7.7821e-01, 1.7044e-01, 4.0618e-02, 4.1934e-01, - 6.3190e-01, 9.4536e-01, 6.1824e-01, 9.8729e-01, - 2.7125e-01, 2.6378e-03, 1.0222e-01, 2.1086e-01, - 6.0947e-01, 3.0901e-01, 5.5343e-01, 8.9244e-01, - 8.2691e-01, 3.0989e-01, 8.3851e-02, 8.8393e-01, - 7.4166e-01, 8.8516e-01, 7.3579e-01, 2.6421e-01, - 3.2478e-01, 9.1496e-02, 8.1097e-01, 4.7135e-01, - 6.3379e-01, 3.0775e-01, 2.7515e-01, 5.6137e-01, - 3.0909e-02, 5.1584e-01, 7.5795e-01, 2.7899e-01, - 8.0581e-01, 6.4873e-01, 7.2416e-01, 7.1340e-01, - 2.0196e-01, 3.9555e-01, 2.0446e-01, 2.4934e-01, - 1.5430e-01, 7.4440e-01, 8.0057e-01, 6.0388e-01, - 7.1343e-01, 3.5035e-01, 4.2040e-01, 8.6602e-01, - 9.4478e-02, 5.4928e-01, 4.0094e-01, 7.7335e-01, - 3.0423e-01, 1.3574e-02, 2.3620e-01, 7.1720e-01, - 9.1173e-01, 2.1903e-01, 8.9596e-01, 4.5128e-01, - 3.5343e-01, 2.1663e-01, 6.2211e-01, 4.7255e-01, - 3.7282e-01, 6.8342e-01, 9.0827e-01, 4.2800e-01, - 1.9686e-01, 3.0599e-01, 1.4444e-01, 8.8002e-01, - 4.9084e-01, 8.8924e-01, 6.3872e-01, 8.2477e-01, - 9.7932e-02, 4.9532e-01, 1.8488e-01, 2.9399e-01, - 8.4609e-01, 4.2726e-01, 7.2259e-01, 1.8113e-01, - 5.6825e-01, 6.8508e-02, 6.4229e-01, 2.9274e-01, - 2.6580e-01, 4.9086e-01, 7.3508e-01, 6.2433e-02, - 6.8630e-01, 6.1930e-01, 5.2008e-01, 2.3177e-01, - 9.0737e-01, 5.2188e-02, 8.9481e-01, 9.4065e-01, - 7.5609e-01, 5.2533e-01, 7.8363e-01, 2.1739e-01, - 7.1809e-01, 5.5801e-01, 2.6908e-01, 2.2939e-03, - 5.4688e-01, 4.5970e-01, 3.0997e-01, 1.0388e-01, - 3.7488e-03, 1.3490e-01, 7.4331e-01, 6.6803e-01, - 2.2280e-01, 8.7632e-01, 7.6913e-01, 8.4630e-01, - 6.0233e-01, 5.3270e-01, 3.2736e-01, 9.5029e-01, - 4.2112e-02, 1.4441e-01, 5.9972e-01, 6.4757e-01, - 7.4805e-01, 6.0193e-01, 1.2325e-01, 8.1393e-01, - 6.0128e-01, 9.4638e-01, 7.9005e-02, 2.7930e-01, - 5.6736e-01, 8.5472e-01, 8.2769e-01, 7.6410e-01, - 1.2565e-02, 4.7651e-01, 9.0884e-02, 4.3338e-01, - 3.5385e-01, 2.3199e-01, 8.4134e-01, 6.4207e-01, - 9.5298e-01, 9.7793e-01, 2.2580e-01, 9.9070e-01, - 6.2713e-01, 6.2690e-01, 7.4899e-01, 1.3724e-01, - 1.4670e-01, 9.2675e-01, 5.3520e-01, 1.8449e-01, - 2.0527e-01, 2.8306e-01, 3.1045e-01, 5.8558e-01, - 3.1540e-01, 1.1982e-01, 8.8444e-01, 7.3545e-01, - 4.2022e-01, 8.1509e-03, 3.1302e-01, 8.7632e-01, - 7.9319e-01, 1.7007e-01, 1.1811e-01, 8.2777e-01, - 5.1290e-02, 3.3333e-02, 3.9343e-01, 8.2624e-01, - 8.3659e-01, 9.0654e-01, 5.0174e-01, 8.3985e-01, - 3.9016e-01, 8.3937e-01, 2.7243e-01, 5.7402e-01, - 9.3932e-01, 8.4938e-01, 7.6935e-01, 1.0589e-01, - 6.0844e-01, 1.3969e-01, 4.8714e-01, 2.3100e-01, - 1.6273e-01, 1.8331e-01, 6.7573e-01, 3.2264e-01, - 4.1490e-01, 1.0348e-01, 8.0008e-01, 2.9827e-01, - 9.1387e-01, 1.0812e-01, 4.5369e-01, 4.3080e-01, - 8.4733e-01, 1.7047e-01, 7.7975e-01, 2.8628e-01, - 5.4017e-01, 2.9737e-01, 6.4224e-01, 8.3954e-01, - 4.7604e-01, 4.3814e-02, 6.9739e-01, 4.8277e-01, - 7.6740e-01, 9.8853e-01, 6.9194e-01, 3.4640e-01, - 3.0884e-01, 9.5212e-01, 3.2579e-01, 6.1841e-01, - 4.0543e-01, 9.3466e-01, 4.8328e-02, 7.5863e-01, - 9.6793e-01, 9.2495e-01, 2.8997e-01, 2.9497e-01, - 1.9820e-02, 2.5772e-01, 2.8827e-01, 8.1536e-01, - 4.1273e-01, 9.0435e-01, 3.4102e-01, 2.8340e-01, - 5.2361e-01, 8.9342e-01, 9.9789e-01, 9.4787e-01, - 4.5467e-02, 4.3271e-01, 6.5239e-01, 5.8289e-01, - 8.7290e-01, 6.7020e-01, 6.4508e-01, 4.1572e-01, - 6.3199e-01, 1.3701e-01, 4.8627e-01, 5.3563e-01, - 9.9708e-01, 3.9874e-01, 8.7427e-01, 3.5048e-01, - 5.0099e-01, 6.8373e-02, 8.5572e-02, 9.7413e-01, - 9.1182e-01, 3.6097e-01, 1.5867e-01, 1.1895e-02, - 6.6486e-01, 7.5586e-01, 3.0038e-01, 7.0781e-01, - 7.0691e-01, 9.3527e-01, 8.7719e-01, 6.8604e-01, - 5.9175e-02, 1.8325e-01, 3.0814e-01, 2.1317e-01, - 1.4056e-01, 3.1655e-02, 2.9670e-01, 3.2601e-01, - 3.5245e-01, 1.1448e-01, 7.1016e-01, 5.8561e-01, - 7.2949e-01, 4.6438e-02, 9.4722e-01, 8.1716e-01, - 8.3412e-01, 8.6405e-01, 7.0565e-01, 2.2713e-01, - 3.2024e-01, 8.6006e-01, 9.1130e-01, 7.1546e-01, - 1.1726e-01, 2.6812e-01, 7.0313e-01, 9.0525e-01, - 6.6813e-01, 6.0951e-01, 4.2406e-01, 6.6197e-01, - 3.4051e-01, 5.0594e-01, 5.6568e-01, 6.5500e-01, - 3.9133e-02, 6.8784e-02, 1.6962e-01, 1.9637e-01, - 3.6856e-01, 8.2962e-01, 7.4094e-01, 2.4617e-01, - 9.3733e-01, 3.7437e-01, 3.0715e-01, 2.8827e-02, - 9.9026e-01, 9.8403e-01, 8.8298e-01, 6.6462e-03, - 5.4973e-01, 6.3904e-01, 6.8939e-01, 7.5675e-01, - 6.4261e-01, 1.9556e-01, 3.6342e-01, 9.3446e-02, - 5.8282e-01, 9.4687e-01, 8.8520e-01, 2.8238e-01, - 7.1927e-01, 5.7538e-01, 1.2304e-01, 4.4104e-01, - 5.8638e-01, 4.4160e-01, 7.9530e-01, 4.3712e-01, - 8.3982e-01, 3.7432e-01, 4.7695e-01, 4.5874e-01, - 8.8004e-01, 7.2230e-01, 1.1009e-01, 6.5993e-01, - 9.8603e-01, 3.2649e-01, 4.1843e-01, 9.7294e-01, - 2.0848e-01, 9.6740e-01, 4.9238e-01, 6.1925e-01, - 5.1499e-01, 5.4071e-01, 9.9466e-01, 8.4870e-01, - 2.2469e-01, 7.3287e-02, 1.1009e-01, 9.8605e-01, - 1.3893e-01, 5.6160e-01, 9.1012e-01, 1.6216e-01, - 5.4134e-01, 6.9990e-02, 4.5429e-01, 8.4017e-02, - 9.5044e-02, 8.9018e-01, 4.5031e-01, 5.0410e-01, - 9.2543e-01, 5.2699e-01, 3.1440e-01, 9.0484e-01, - 3.5531e-01, 6.7819e-03, 4.4191e-01, 7.3541e-01, - 1.3631e-01, 6.0004e-01, 1.8558e-01, 5.0108e-01, - 1.6921e-01, 7.4587e-01, 5.7250e-01, 9.1504e-01, - 5.2848e-01, 4.3565e-01, 5.2381e-01, 3.2068e-01, - 4.2602e-01, 1.7899e-01, 1.6693e-01, 4.4754e-01, - 8.0900e-01, 7.0461e-01, 2.9947e-01, 2.6865e-01, - 7.7782e-01, 5.2593e-01, 3.3560e-01, 2.9390e-01, - 1.0731e-01, 5.9751e-01, 3.5259e-01, 8.0940e-01, - 5.4338e-02, 6.2392e-01, 9.8973e-01, 7.3598e-01, - 5.6690e-01, 9.7288e-01, 4.5821e-02, 6.3232e-01, - 6.6311e-01, 5.3438e-01, 1.0203e-01, 9.2045e-01, - 4.1039e-01, 6.9228e-01, 4.8738e-01, 8.0095e-01, - 8.7185e-01, 8.3497e-01, 6.7328e-02, 7.6656e-01, - 2.6182e-01, 4.5312e-01, 5.0198e-01, 2.1211e-02, - 3.8491e-01, 9.4217e-01, 5.0357e-01, 8.3401e-02, - 7.1052e-01, 4.2509e-01, 7.7683e-01, 3.7078e-01, - 5.1501e-01, 2.7444e-01, 9.1630e-01, 7.4677e-01, - 7.2155e-01, 4.0998e-01, 6.4794e-02, 1.7857e-01, - 3.9293e-01, 9.5205e-01, 9.1388e-01, 6.5620e-01, - 5.1912e-01, 1.6899e-01, 8.5856e-01, 4.4368e-01, - 1.5869e-01, 2.2263e-01, 7.5465e-01, 3.6280e-01, - 4.7400e-02, 9.5410e-01, 4.2697e-02, 6.7796e-01, - 9.8275e-01, 2.7874e-01, 2.6106e-01, 3.9901e-01, - 5.5379e-01, 9.3950e-02, 4.9186e-01, 1.1764e-03, - 7.2495e-01, 5.8979e-01, 6.2882e-01, 1.1772e-01, - 5.5400e-01, 3.5765e-01, 7.8510e-01, 3.2378e-01, - 8.8910e-01, 1.5997e-02, 5.5679e-02, 8.9152e-01, - 3.8640e-01, 3.8910e-01, 2.3145e-01, 3.6510e-02, - 9.5621e-01, 1.5088e-01, 4.7550e-02, 6.2587e-01, - 2.8134e-01, 4.9615e-01, 4.5673e-01, 6.4038e-01, - 9.8951e-01, 3.9053e-01, 7.4142e-02, 7.8090e-01, - 2.9839e-01, 2.9025e-01, 9.5796e-01, 1.8690e-01, - 8.4195e-01, 6.6466e-01, 1.0805e-01, 7.5828e-01, - 6.7259e-01, 5.1823e-01, 8.8034e-01, 7.2995e-02, - 5.6715e-01, 5.7986e-01, 1.6088e-01, 1.6596e-02, - 9.6255e-02, 5.8882e-01, 1.3704e-01, 1.8041e-02, - 7.3056e-01, 6.9725e-01, 3.9527e-01, 4.4598e-01, - 9.7556e-01, 3.1195e-01, 1.4884e-01, 1.9870e-01, - 1.2136e-01, 2.2091e-01, 6.2259e-01, 8.8417e-01]), +tensor(crow_indices=tensor([ 0, 1, 1, ..., 1000, 1000, 1000]), + col_indices=tensor([1074, 7022, 4087, 4354, 1115, 9252, 2574, 3979, 915, + 3835, 8518, 2769, 112, 3623, 1291, 615, 191, 66, + 1214, 5633, 6476, 7907, 7161, 7265, 5563, 2980, 7771, + 8906, 5431, 4607, 4770, 626, 9524, 3730, 3866, 8666, + 6423, 5296, 979, 1727, 6975, 9285, 7075, 7134, 6667, + 7325, 5220, 9414, 9490, 8118, 9426, 4227, 7390, 7605, + 9168, 8384, 6401, 6035, 7830, 9972, 5870, 7420, 9935, + 3091, 834, 8862, 5740, 3062, 5112, 2908, 639, 6091, + 436, 2916, 4734, 7108, 513, 2302, 7905, 4519, 3497, + 5454, 9753, 2744, 5180, 8794, 3393, 8207, 4827, 280, + 5568, 3468, 6511, 9773, 2254, 47, 1155, 342, 995, + 9068, 3240, 1324, 1365, 6342, 2285, 1870, 8660, 4106, + 1186, 2521, 7988, 2968, 4045, 8137, 1538, 2198, 760, + 50, 2598, 195, 7444, 4957, 6809, 4374, 6456, 7197, + 9552, 1863, 5023, 3277, 4323, 9903, 7260, 7125, 6873, + 513, 9772, 5373, 7137, 4122, 7749, 5169, 1971, 6272, + 9111, 6015, 736, 3176, 6128, 5202, 6847, 7163, 5150, + 4610, 4581, 9646, 6385, 4193, 8418, 6616, 2414, 1755, + 8625, 575, 1748, 6885, 2435, 2666, 6742, 5614, 244, + 879, 6562, 1359, 3194, 5727, 3551, 7083, 1842, 9514, + 4863, 8479, 941, 2601, 7999, 6494, 5141, 4403, 7993, + 1185, 1573, 5845, 2439, 1922, 1733, 8393, 7228, 6830, + 5908, 6228, 9466, 2785, 4515, 6730, 3151, 3419, 3419, + 776, 3574, 2419, 4836, 3293, 8124, 1875, 7572, 2958, + 4651, 9262, 660, 8285, 6455, 653, 672, 0, 5228, + 9450, 3945, 8974, 8121, 9650, 2145, 4773, 7437, 4493, + 2675, 1190, 9285, 6100, 4192, 7922, 232, 671, 1102, + 7639, 9274, 9775, 7093, 5205, 6899, 4017, 9239, 5474, + 4012, 2403, 7759, 1283, 4106, 9062, 6550, 1753, 6450, + 8863, 2663, 1355, 6905, 1092, 2895, 2727, 2867, 1269, + 6117, 7865, 2347, 1781, 2367, 3514, 5957, 7481, 9656, + 4374, 661, 4235, 5018, 7284, 6968, 9032, 5003, 1196, + 3640, 4689, 1986, 9599, 2163, 9857, 2986, 6217, 1124, + 3869, 6932, 9440, 839, 1387, 3226, 4043, 7157, 7379, + 8428, 8483, 4369, 6851, 8809, 7897, 703, 2976, 3699, + 3438, 2355, 6736, 7238, 176, 7739, 889, 2831, 6969, + 8789, 5800, 3110, 6498, 4705, 6469, 9448, 7282, 2134, + 3678, 5467, 1622, 3274, 5066, 5127, 8447, 100, 2983, + 4463, 3099, 8883, 2393, 5221, 5531, 6706, 7577, 5800, + 8450, 3440, 6855, 944, 6894, 3303, 1082, 5849, 737, + 1687, 3315, 15, 7406, 3990, 2259, 7989, 8348, 7160, + 9351, 3002, 3148, 9126, 6367, 8090, 2998, 8051, 9049, + 2364, 8211, 5174, 5618, 94, 3866, 7923, 9652, 3819, + 3703, 4529, 1291, 2502, 976, 2602, 9342, 2433, 3989, + 7743, 4041, 7702, 1609, 486, 6429, 3042, 7286, 1452, + 35, 1305, 4754, 7796, 3723, 7653, 6695, 5085, 8985, + 3829, 2905, 9438, 2209, 6382, 4736, 9664, 3410, 9780, + 7415, 5568, 4279, 7830, 7106, 4004, 4722, 8650, 6975, + 2172, 2395, 8553, 3340, 3045, 7146, 5817, 3873, 8869, + 6247, 1175, 2122, 3744, 5725, 6888, 1097, 33, 3388, + 835, 6001, 1599, 2732, 8805, 8439, 7209, 2690, 5523, + 678, 764, 9297, 4921, 6303, 5169, 995, 8534, 8061, + 778, 3083, 4497, 1526, 7166, 9518, 9740, 5623, 1874, + 4112, 6650, 4724, 3864, 1864, 8807, 4615, 8323, 2087, + 3311, 7066, 3549, 9226, 6333, 9414, 1630, 6645, 4844, + 115, 7748, 2922, 9690, 9811, 2934, 356, 3565, 7527, + 5670, 3614, 2851, 2629, 3790, 7609, 2460, 7042, 9397, + 5659, 2806, 8290, 2345, 2448, 7257, 2879, 1633, 6514, + 6562, 6696, 7140, 2633, 5425, 7796, 6662, 1393, 2046, + 8374, 7261, 3390, 3981, 7552, 254, 5767, 2429, 5613, + 4296, 4489, 6937, 299, 9296, 2149, 2092, 8555, 8603, + 3237, 1398, 9762, 2121, 3314, 6752, 4047, 3531, 2282, + 9126, 155, 6181, 9517, 318, 9471, 241, 3861, 4693, + 7187, 8904, 9238, 3275, 8438, 9069, 1864, 9231, 9667, + 4009, 9288, 4307, 8620, 7353, 7065, 3457, 9361, 7063, + 4553, 4913, 406, 2735, 5848, 6549, 3893, 4278, 1320, + 8124, 6472, 1508, 6416, 9674, 982, 6780, 7269, 2117, + 4160, 2842, 7527, 8109, 2175, 6435, 756, 2829, 4551, + 1101, 5613, 2799, 6159, 3030, 9674, 3371, 4668, 2685, + 9264, 9477, 5536, 5293, 9200, 7997, 9530, 5953, 890, + 5904, 2629, 8659, 5653, 9317, 4267, 9976, 2511, 6842, + 90, 512, 2068, 6073, 7386, 8238, 8424, 3409, 3193, + 1239, 1431, 3902, 4600, 1601, 3567, 9765, 5150, 8916, + 2840, 3297, 5983, 970, 249, 369, 3172, 7109, 7253, + 6112, 1285, 9881, 3414, 9391, 3724, 571, 8346, 8358, + 4162, 7136, 6172, 8809, 6689, 815, 5048, 3642, 959, + 6179, 9525, 7319, 8094, 4231, 3522, 6081, 9527, 8667, + 4007, 6492, 5206, 2671, 131, 2593, 293, 1464, 8045, + 2173, 608, 8313, 546, 7335, 3665, 2688, 8988, 3584, + 6303, 4955, 3386, 1723, 7105, 4572, 2844, 5600, 6702, + 5410, 4316, 2976, 4686, 3464, 2186, 1556, 2021, 8745, + 13, 3322, 1670, 708, 3608, 2776, 8220, 2918, 692, + 5296, 5873, 4095, 1083, 1521, 7223, 7591, 5664, 4154, + 6765, 3312, 7008, 4212, 7168, 7463, 2544, 4892, 8746, + 7430, 8621, 2945, 8225, 1113, 3741, 6687, 6930, 3774, + 7211, 1927, 7164, 9820, 2083, 2916, 9934, 6793, 5105, + 4835, 3112, 3094, 1326, 7804, 7578, 4182, 739, 1123, + 1767, 8724, 9857, 2143, 6971, 6801, 376, 4107, 954, + 5018, 8170, 7753, 3368, 2333, 1, 2240, 2793, 1283, + 7038, 8646, 9694, 359, 2258, 5039, 1080, 5544, 9098, + 4490, 5886, 352, 1011, 1449, 531, 9355, 9342, 2004, + 9274, 7734, 8205, 2292, 9551, 5966, 9837, 1814, 4079, + 8382, 4410, 2600, 7625, 9363, 1842, 2879, 1253, 809, + 7014, 5812, 209, 5239, 2093, 1770, 314, 8424, 2510, + 8571, 9426, 7724, 9614, 5503, 3753, 2866, 1758, 9962, + 6, 7364, 8977, 2787, 766, 2450, 2844, 7089, 3871, + 3747, 9673, 87, 5211, 3728, 3843, 1425, 9293, 1646, + 8032, 5484, 3610, 2890, 6677, 6468, 1558, 3598, 3915, + 1993, 1609, 8274, 966, 8311, 8117, 5411, 9792, 5362, + 4456, 6051, 3532, 1282, 4790, 4302, 1110, 1051, 5344, + 197, 7166, 3635, 796, 2322, 8834, 7592, 9685, 6175, + 1580, 7579, 7995, 5470, 7573, 5255, 5134, 8199, 4635, + 6559, 7004, 535, 234, 482, 8638, 109, 9961, 4999, + 7801, 2361, 4476, 9026, 8063, 7010, 7559, 3651, 6179, + 1451, 928, 8960, 630, 76, 1209, 5158, 5630, 9966, + 5033, 8228, 9559, 9213, 1023, 7495, 1852, 4508, 8270, + 1627, 1030, 4994, 541, 3130, 827, 3601, 8830, 6755, + 4725, 6005, 7586, 3820, 5409, 4677, 5963, 549, 7869, + 8701, 7230, 9014, 1899, 4054, 7192, 5440, 4348, 1719, + 2600, 6431, 2356, 4202, 427, 9630, 7862, 4930, 8419, + 7485, 2384, 6304, 9889, 7541, 9723, 7193, 9094, 6906, + 3017]), + values=tensor([0.9304, 0.0325, 0.3106, 0.4781, 0.2864, 0.4721, 0.3382, + 0.8821, 0.2738, 0.6632, 0.0397, 0.5410, 0.8129, 0.5302, + 0.8584, 0.6728, 0.7839, 0.2842, 0.6220, 0.2198, 0.9853, + 0.4195, 0.8925, 0.9780, 0.4936, 0.9314, 0.4002, 0.0589, + 0.0362, 0.6841, 0.4069, 0.9644, 0.1471, 0.1097, 0.7122, + 0.6469, 0.7726, 0.7037, 0.8236, 0.5724, 0.6757, 0.0210, + 0.7908, 0.1342, 0.5146, 0.6874, 0.0836, 0.6105, 0.6489, + 0.7550, 0.2489, 0.2644, 0.8196, 0.5567, 0.9361, 0.0192, + 0.7166, 0.4988, 0.6757, 0.6719, 0.0246, 0.9112, 0.3677, + 0.3643, 0.2678, 0.8468, 0.3772, 0.5807, 0.7059, 0.0144, + 0.4017, 0.2251, 0.1445, 0.5897, 0.5839, 0.8811, 0.5419, + 0.1899, 0.6807, 0.8358, 0.3278, 0.1587, 0.4733, 0.8342, + 0.8985, 0.6485, 0.7474, 0.6612, 0.0844, 0.3828, 0.0157, + 0.7714, 0.6608, 0.1525, 0.9463, 0.3394, 0.3867, 0.0432, + 0.8090, 0.3213, 0.9897, 0.9084, 0.9424, 0.2045, 0.4579, + 0.7852, 0.4647, 0.4513, 0.6407, 0.5200, 0.9790, 0.1694, + 0.8201, 0.7817, 0.9650, 0.1348, 0.2654, 0.0726, 0.6476, + 0.9696, 0.1144, 0.2269, 0.5974, 0.7825, 0.6712, 0.1593, + 0.9034, 0.9204, 0.3969, 0.4522, 0.3790, 0.7055, 0.0019, + 0.1878, 0.4210, 0.9245, 0.3068, 0.7871, 0.0815, 0.1037, + 0.9467, 0.2547, 0.9280, 0.3139, 0.5680, 0.6516, 0.6068, + 0.5981, 0.3913, 0.0407, 0.0947, 0.2105, 0.0303, 0.5718, + 0.2321, 0.5689, 0.9476, 0.1321, 0.0247, 0.4729, 0.7661, + 0.8935, 0.9971, 0.2980, 0.9100, 0.1945, 0.7887, 0.3662, + 0.6700, 0.4029, 0.0956, 0.0108, 0.3242, 0.1912, 0.0388, + 0.8159, 0.1239, 0.6482, 0.0548, 0.7241, 0.4628, 0.1188, + 0.3048, 0.7968, 0.6538, 0.0308, 0.2637, 0.2733, 0.6327, + 0.6480, 0.2813, 0.5175, 0.6726, 0.0450, 0.6176, 0.2589, + 0.7109, 0.0980, 0.7310, 0.5738, 0.9989, 0.1733, 0.0559, + 0.0624, 0.6747, 0.0930, 0.2298, 0.6306, 0.1193, 0.8276, + 0.2679, 0.3372, 0.0565, 0.5821, 0.6562, 0.4518, 0.8406, + 0.7838, 0.3267, 0.0377, 0.0535, 0.4407, 0.8150, 0.3303, + 0.6133, 0.4116, 0.9870, 0.8925, 0.8368, 0.9237, 0.9331, + 0.5461, 0.4353, 0.9658, 0.0052, 0.5013, 0.8249, 0.8077, + 0.8369, 0.9914, 0.7366, 0.6685, 0.5210, 0.7940, 0.8071, + 0.1086, 0.3441, 0.1479, 0.3668, 0.5370, 0.5706, 0.8571, + 0.3522, 0.2921, 0.1107, 0.4358, 0.9740, 0.6370, 0.7121, + 0.3797, 0.6431, 0.6432, 0.8570, 0.3341, 0.8876, 0.4912, + 0.3012, 0.2244, 0.8304, 0.8708, 0.6993, 0.6415, 0.1354, + 0.4973, 0.6766, 0.5583, 0.8158, 0.1846, 0.7576, 0.3301, + 0.2284, 0.7380, 0.2497, 0.8663, 0.4244, 0.8319, 0.8766, + 0.3127, 0.9083, 0.6717, 0.2607, 0.9060, 0.3022, 0.6929, + 0.7216, 0.1864, 0.9103, 0.0908, 0.8280, 0.6772, 0.9170, + 0.1666, 0.0432, 0.9895, 0.8882, 0.4445, 0.2577, 0.6991, + 0.0134, 0.7908, 0.1595, 0.2586, 0.1384, 0.8815, 0.9964, + 0.6719, 0.3849, 0.3745, 0.5578, 0.6641, 0.8020, 0.8256, + 0.8774, 0.1735, 0.0160, 0.3321, 0.9095, 0.6863, 0.8819, + 0.2760, 0.0176, 0.9191, 0.2224, 0.5883, 0.6735, 0.2168, + 0.8084, 0.2051, 0.7731, 0.7349, 0.4183, 0.4549, 0.7852, + 0.1645, 0.2619, 0.7500, 0.6211, 0.9320, 0.1410, 0.8013, + 0.3936, 0.8135, 0.1711, 0.7508, 0.1565, 0.5072, 0.4150, + 0.0222, 0.7654, 0.2057, 0.7224, 0.5103, 0.0219, 0.2565, + 0.1947, 0.2598, 0.2876, 0.9465, 0.1945, 0.3773, 0.5036, + 0.9181, 0.1480, 0.8127, 0.9489, 0.5086, 0.2695, 0.5627, + 0.6161, 0.4583, 0.0870, 0.7396, 0.9559, 0.7672, 0.7594, + 0.2165, 0.4330, 0.5886, 0.0477, 0.3072, 0.0691, 0.3499, + 0.5368, 0.0098, 0.1604, 0.5787, 0.5961, 0.6748, 0.5240, + 0.6174, 0.6377, 0.0557, 0.8169, 0.1661, 0.8698, 0.1999, + 0.5072, 0.0521, 0.7366, 0.9190, 0.1330, 0.7979, 0.2571, + 0.8104, 0.6892, 0.6507, 0.8704, 0.6904, 0.5395, 0.5915, + 0.1731, 0.6768, 0.9334, 0.5447, 0.3147, 0.7565, 0.2840, + 0.8455, 0.7829, 0.1389, 0.9161, 0.9734, 0.2521, 0.5519, + 0.3612, 0.4687, 0.1449, 0.2398, 0.6605, 0.8039, 0.8419, + 0.6954, 0.8245, 0.4611, 0.7124, 0.8750, 0.0816, 0.7331, + 0.2216, 0.8005, 0.9334, 0.8519, 0.5866, 0.8732, 0.9519, + 0.4971, 0.6068, 0.1175, 0.8603, 0.6101, 0.3972, 0.0193, + 0.1596, 0.3517, 0.7516, 0.7870, 0.6434, 0.0362, 0.2214, + 0.6042, 0.3964, 0.6328, 0.2889, 0.2855, 0.8849, 0.5080, + 0.7797, 0.4322, 0.0814, 0.3647, 0.2061, 0.6314, 0.3193, + 0.1895, 0.3658, 0.6642, 0.1466, 0.1805, 0.6190, 0.9850, + 0.3325, 0.8191, 0.3665, 0.4316, 0.4284, 0.3112, 0.9226, + 0.5944, 0.0376, 0.1741, 0.8903, 0.0662, 0.9770, 0.9188, + 0.9310, 0.5606, 0.4272, 0.1108, 0.4718, 0.4460, 0.6248, + 0.5358, 0.2156, 0.0885, 0.3174, 0.8396, 0.1886, 0.2096, + 0.3417, 0.8097, 0.5694, 0.1045, 0.8763, 0.1113, 0.1353, + 0.0123, 0.9512, 0.5017, 0.3234, 0.1403, 0.0730, 0.8981, + 0.2740, 0.4134, 0.2135, 0.9805, 0.0445, 0.9458, 0.7869, + 0.3360, 0.7234, 0.2980, 0.1314, 0.3499, 0.6698, 0.4526, + 0.6499, 0.4686, 0.7291, 0.1916, 0.4110, 0.7064, 0.0622, + 0.1843, 0.1217, 0.1311, 0.8602, 0.9506, 0.1258, 0.9113, + 0.9310, 0.4848, 0.0104, 0.0267, 0.5186, 0.0305, 0.5081, + 0.5501, 0.3248, 0.8113, 0.3173, 0.7019, 0.0515, 0.0562, + 0.1638, 0.4617, 0.6547, 0.3705, 0.4788, 0.0628, 0.4462, + 0.3249, 0.8781, 0.7038, 0.4954, 0.3617, 0.8045, 0.1896, + 0.8468, 0.7628, 0.4651, 0.3750, 0.9370, 0.8226, 0.5039, + 0.7669, 0.5888, 0.7467, 0.1323, 0.9814, 0.9275, 0.4832, + 0.2850, 0.4635, 0.1488, 0.7094, 0.2071, 0.4950, 0.1863, + 0.2851, 0.7798, 0.3730, 0.3994, 0.2529, 0.5052, 0.4832, + 0.3839, 0.7730, 0.1994, 0.8801, 0.9634, 0.1279, 0.5202, + 0.4480, 0.2752, 0.8425, 0.2605, 0.6678, 0.0019, 0.1146, + 0.5118, 0.8404, 0.4252, 0.8911, 0.6844, 0.6707, 0.4919, + 0.4044, 0.9689, 0.9549, 0.5260, 0.2040, 0.3758, 0.8436, + 0.0719, 0.9238, 0.4595, 0.7501, 0.7038, 0.0842, 0.8019, + 0.5135, 0.4312, 0.0042, 0.3774, 0.0300, 0.3045, 0.1310, + 0.9498, 0.2047, 0.0065, 0.4750, 0.7205, 0.8268, 0.2414, + 0.5067, 0.3174, 0.7835, 0.1750, 0.2497, 0.8182, 0.4410, + 0.4937, 0.0668, 0.7211, 0.3732, 0.1165, 0.5206, 0.1429, + 0.5890, 0.1326, 0.1841, 0.2299, 0.6975, 0.0815, 0.8063, + 0.7601, 0.5190, 0.4973, 0.7820, 0.2718, 0.3645, 0.2388, + 0.6349, 0.4919, 0.5469, 0.5835, 0.1693, 0.2555, 0.6997, + 0.0080, 0.8024, 0.8773, 0.4755, 0.9793, 0.3227, 0.7826, + 0.4776, 0.5918, 0.9313, 0.3366, 0.3665, 0.6137, 0.6442, + 0.7228, 0.1110, 0.6812, 0.4938, 0.1352, 0.2780, 0.6843, + 0.3593, 0.6866, 0.5996, 0.6977, 0.2843, 0.3178, 0.7528, + 0.8342, 0.5386, 0.6190, 0.0664, 0.9083, 0.4500, 0.1762, + 0.6839, 0.7444, 0.6654, 0.5698, 0.6462, 0.6689, 0.6885, + 0.6494, 0.1899, 0.7462, 0.4931, 0.7785, 0.4078, 0.0875, + 0.6143, 0.8570, 0.9888, 0.3955, 0.6640, 0.6587, 0.7544, + 0.9891, 0.6031, 0.0927, 0.6392, 0.0282, 0.2897, 0.0799, + 0.3039, 0.7537, 0.0064, 0.0830, 0.2575, 0.1555, 0.1809, + 0.6300, 0.6627, 0.5442, 0.5686, 0.4545, 0.6247, 0.0230, + 0.1211, 0.9727, 0.2738, 0.3745, 0.1564, 0.8676, 0.3949, + 0.4342, 0.6528, 0.7121, 0.9790, 0.6180, 0.8497, 0.6934, + 0.8114, 0.4502, 0.2751, 0.7561, 0.6667, 0.0282, 0.9822, + 0.8863, 0.6138, 0.1747, 0.4926, 0.0927, 0.1322, 0.4515, + 0.6778, 0.3334, 0.7750, 0.2319, 0.6137, 0.2868, 0.8848, + 0.0267, 0.5097, 0.9541, 0.4569, 0.9397, 0.3945, 0.3763, + 0.9350, 0.7996, 0.5528, 0.9459, 0.6150, 0.5344, 0.9224, + 0.4343, 0.2583, 0.5743, 0.1810, 0.4732, 0.1012, 0.2292, + 0.5431, 0.6259, 0.8319, 0.9927, 0.5847, 0.8053, 0.0391, + 0.3854, 0.8999, 0.7842, 0.4838, 0.5113, 0.9715, 0.1757, + 0.7568, 0.4008, 0.5341, 0.1516, 0.0878, 0.5977, 0.5872, + 0.7439, 0.8081, 0.9535, 0.6902, 0.8931, 0.9586, 0.7881, + 0.0686, 0.4547, 0.0160, 0.3146, 0.6264, 0.2480, 0.7559, + 0.5560, 0.9085, 0.3908, 0.0424, 0.3481, 0.0393, 0.1234, + 0.5520, 0.5796, 0.8048, 0.0202, 0.8271, 0.9243, 0.6015, + 0.0508, 0.8893, 0.9673, 0.3880, 0.3853, 0.1352, 0.4800, + 0.1939, 0.7035, 0.2054, 0.1146, 0.2407, 0.4234, 0.9640, + 0.4558, 0.8502, 0.7625, 0.3075, 0.9902, 0.1845, 0.0707, + 0.8518, 0.7267, 0.6494, 0.4761, 0.1632, 0.1248, 0.8200, + 0.2043, 0.6022, 0.7800, 0.0537, 0.1505, 0.0646, 0.9228, + 0.0966, 0.8036, 0.2431, 0.5992, 0.1858, 0.5672, 0.8294, + 0.0135, 0.2238, 0.0068, 0.8473, 0.0323, 0.2138, 0.3134, + 0.2674, 0.4860, 0.8071, 0.7400, 0.9168, 0.0701, 0.7855, + 0.7080, 0.5714, 0.5288, 0.1187, 0.1954, 0.0067, 0.7680, + 0.5930, 0.8250, 0.6028, 0.2144, 0.0255, 0.2917, 0.4790, + 0.3892, 0.3563, 0.0423, 0.3253, 0.0092, 0.8956, 0.2515, + 0.1414, 0.9761, 0.8159, 0.7089, 0.4956, 0.0026, 0.1488, + 0.2902, 0.9089, 0.4432, 0.7989, 0.9160, 0.2680, 0.3317, + 0.6128, 0.6111, 0.3647, 0.4016, 0.8650, 0.7226, 0.2642, + 0.4868, 0.9208, 0.7252, 0.5230, 0.1652, 0.0793, 0.9874, + 0.5129, 0.3412, 0.3833, 0.8354, 0.9507, 0.1921, 0.2168, + 0.6983, 0.4500, 0.7444, 0.9235, 0.5009, 0.2575]), size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.1885, 0.9110, 0.8668, ..., 0.5988, 0.5354, 0.4490]) +tensor([0.5348, 0.7986, 0.2200, ..., 0.0453, 0.2085, 0.0080]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -1402,13 +1295,13 @@ Rows: 10000 Size: 100000000 NNZ: 1000 Density: 1e-05 -Time: 10.454679489135742 seconds +Time: 11.173964023590088 seconds -[39.64, 44.74, 39.71, 38.92, 39.06, 38.91, 39.09, 38.87, 39.14, 39.48] -[97.06] -13.222800016403198 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 355068, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.454679489135742, 'TIME_S_1KI': 0.029444161369472165, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1283.4049695920944, 'W': 97.06} -[39.64, 44.74, 39.71, 38.92, 39.06, 38.91, 39.09, 38.87, 39.14, 39.48, 40.2, 40.78, 38.95, 38.87, 38.88, 38.91, 39.42, 39.12, 39.01, 39.07] -711.575 -35.57875 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 355068, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.454679489135742, 'TIME_S_1KI': 0.029444161369472165, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1283.4049695920944, 'W': 97.06, 'J_1KI': 3.614532905224054, 'W_1KI': 0.27335608953777873, 'W_D': 61.48125, 'J_D': 812.9542735084892, 'W_D_1KI': 0.17315345229646154, 'J_D_1KI': 0.0004876627921875853} +[40.48, 41.2, 39.7, 39.62, 39.96, 39.55, 39.84, 39.41, 40.04, 39.52] +[97.63] +12.83384895324707 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 349456, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 11.173964023590088, 'TIME_S_1KI': 0.03197531026392475, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1252.9686733055114, 'W': 97.63} +[40.48, 41.2, 39.7, 39.62, 39.96, 39.55, 39.84, 39.41, 40.04, 39.52, 40.24, 39.6, 39.87, 39.86, 39.87, 39.92, 39.37, 39.31, 39.74, 39.32] +716.6399999999999 +35.831999999999994 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 349456, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 11.173964023590088, 'TIME_S_1KI': 0.03197531026392475, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1252.9686733055114, 'W': 97.63, 'J_1KI': 3.585483360724988, 'W_1KI': 0.2793770889611282, 'W_D': 61.798, 'J_D': 793.1061976127625, 'W_D_1KI': 0.17684057506524428, 'J_D_1KI': 0.0005060453249200021} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_5e-05.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_5e-05.json index b4ec291..6ded063 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_5e-05.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_5e-05.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 307566, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.194913387298584, "TIME_S_1KI": 0.033147075383165185, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1254.457565395832, "W": 97.91, "J_1KI": 4.078661378032136, "W_1KI": 0.3183381778219959, "W_D": 62.19175, "J_D": 796.8227075141073, "W_D_1KI": 0.2022061931422849, "J_D_1KI": 0.0006574400068352317} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 308023, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.28289532661438, "TIME_S_1KI": 0.03338353086170311, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1226.4741826629638, "W": 98.08, "J_1KI": 3.9817616952726382, "W_1KI": 0.3184177804904179, "W_D": 61.967, "J_D": 774.8870888772011, "W_D_1KI": 0.20117653551845155, "J_D_1KI": 0.0006531217977828004} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_5e-05.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_5e-05.output index 037a253..df70699 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_5e-05.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_5e-05.output @@ -1,13 +1,13 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '5e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.04550504684448242} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.019933462142944336} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 4998, 5000, 5000]), - col_indices=tensor([9281, 526, 5110, ..., 4172, 680, 4833]), - values=tensor([0.9710, 0.4177, 0.1273, ..., 0.7621, 0.2431, 0.8030]), +tensor(crow_indices=tensor([ 0, 2, 5, ..., 4999, 5000, 5000]), + col_indices=tensor([4080, 6557, 3158, ..., 4357, 6307, 2550]), + values=tensor([0.9910, 0.3414, 0.4855, ..., 0.2598, 0.6108, 0.2815]), size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) -tensor([0.6244, 0.3231, 0.3638, ..., 0.2586, 0.1943, 0.4038]) +tensor([0.2787, 0.7388, 0.8319, ..., 0.5413, 0.0496, 0.2437]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -15,18 +15,18 @@ Rows: 10000 Size: 100000000 NNZ: 5000 Density: 5e-05 -Time: 0.04550504684448242 seconds +Time: 0.019933462142944336 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '230743', '-ss', '10000', '-sd', '5e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 7.877320289611816} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '52675', '-ss', '10000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 1.7956035137176514} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 4996, 4999, 5000]), - col_indices=tensor([5149, 830, 3827, ..., 6947, 7825, 8143]), - values=tensor([0.7974, 0.8672, 0.6352, ..., 0.0945, 0.9729, 0.8206]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 5000, 5000, 5000]), + col_indices=tensor([ 408, 476, 3837, ..., 3097, 8388, 8856]), + values=tensor([0.3698, 0.9808, 0.6496, ..., 0.7839, 0.4021, 0.3346]), size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) -tensor([0.8724, 0.1762, 0.3345, ..., 0.8958, 0.7321, 0.5036]) +tensor([0.1775, 0.8809, 0.7204, ..., 0.4994, 0.6943, 0.3851]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -34,18 +34,18 @@ Rows: 10000 Size: 100000000 NNZ: 5000 Density: 5e-05 -Time: 7.877320289611816 seconds +Time: 1.7956035137176514 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '307566', '-ss', '10000', '-sd', '5e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.194913387298584} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '308023', '-ss', '10000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.28289532661438} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 1, ..., 5000, 5000, 5000]), - col_indices=tensor([6013, 2562, 3841, ..., 8262, 3270, 1424]), - values=tensor([0.2685, 0.3885, 0.6243, ..., 0.1198, 0.9466, 0.9233]), +tensor(crow_indices=tensor([ 0, 0, 2, ..., 4999, 5000, 5000]), + col_indices=tensor([2483, 6584, 3017, ..., 870, 3138, 2052]), + values=tensor([0.7385, 0.7043, 0.9061, ..., 0.4377, 0.8515, 0.3180]), size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) -tensor([0.2690, 0.9597, 0.8597, ..., 0.6996, 0.9887, 0.3737]) +tensor([0.1916, 0.9837, 0.2990, ..., 0.4110, 0.2807, 0.4933]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -53,15 +53,15 @@ Rows: 10000 Size: 100000000 NNZ: 5000 Density: 5e-05 -Time: 10.194913387298584 seconds +Time: 10.28289532661438 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 1, ..., 5000, 5000, 5000]), - col_indices=tensor([6013, 2562, 3841, ..., 8262, 3270, 1424]), - values=tensor([0.2685, 0.3885, 0.6243, ..., 0.1198, 0.9466, 0.9233]), +tensor(crow_indices=tensor([ 0, 0, 2, ..., 4999, 5000, 5000]), + col_indices=tensor([2483, 6584, 3017, ..., 870, 3138, 2052]), + values=tensor([0.7385, 0.7043, 0.9061, ..., 0.4377, 0.8515, 0.3180]), size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) -tensor([0.2690, 0.9597, 0.8597, ..., 0.6996, 0.9887, 0.3737]) +tensor([0.1916, 0.9837, 0.2990, ..., 0.4110, 0.2807, 0.4933]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -69,13 +69,13 @@ Rows: 10000 Size: 100000000 NNZ: 5000 Density: 5e-05 -Time: 10.194913387298584 seconds +Time: 10.28289532661438 seconds -[40.9, 39.57, 39.65, 39.48, 39.52, 39.37, 39.42, 39.88, 40.21, 39.84] -[97.91] -12.81235384941101 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 307566, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.194913387298584, 'TIME_S_1KI': 0.033147075383165185, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1254.457565395832, 'W': 97.91} -[40.9, 39.57, 39.65, 39.48, 39.52, 39.37, 39.42, 39.88, 40.21, 39.84, 41.61, 39.93, 39.26, 40.39, 39.17, 39.17, 39.39, 39.38, 39.35, 40.1] -714.365 -35.71825 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 307566, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.194913387298584, 'TIME_S_1KI': 0.033147075383165185, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1254.457565395832, 'W': 97.91, 'J_1KI': 4.078661378032136, 'W_1KI': 0.3183381778219959, 'W_D': 62.19175, 'J_D': 796.8227075141073, 'W_D_1KI': 0.2022061931422849, 'J_D_1KI': 0.0006574400068352317} +[40.25, 39.88, 39.44, 44.89, 40.01, 39.55, 39.45, 39.48, 39.91, 41.29] +[98.08] +12.504834651947021 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 308023, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.28289532661438, 'TIME_S_1KI': 0.03338353086170311, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1226.4741826629638, 'W': 98.08} +[40.25, 39.88, 39.44, 44.89, 40.01, 39.55, 39.45, 39.48, 39.91, 41.29, 44.96, 39.78, 39.79, 40.18, 39.36, 39.46, 39.39, 39.37, 39.43, 39.28] +722.26 +36.113 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 308023, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.28289532661438, 'TIME_S_1KI': 0.03338353086170311, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1226.4741826629638, 'W': 98.08, 'J_1KI': 3.9817616952726382, 'W_1KI': 0.3184177804904179, 'W_D': 61.967, 'J_D': 774.8870888772011, 'W_D_1KI': 0.20117653551845155, 'J_D_1KI': 0.0006531217977828004} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_0.0001.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_0.0001.json index f4ead28..f68b6b9 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_0.0001.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_0.0001.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 1316, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.480877876281738, "TIME_S_1KI": 7.964192915107703, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2349.371359462738, "W": 119.72, "J_1KI": 1785.2365953364272, "W_1KI": 90.9726443768997, "W_D": 83.6515, "J_D": 1641.5673093559742, "W_D_1KI": 63.564969604863215, "J_D_1KI": 48.3016486359143} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 1275, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.370937824249268, "TIME_S_1KI": 8.134068881764131, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2317.954887828827, "W": 118.94, "J_1KI": 1818.0038335912368, "W_1KI": 93.28627450980392, "W_D": 82.976, "J_D": 1617.072681793213, "W_D_1KI": 65.07921568627451, "J_D_1KI": 51.04252210688197} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_0.0001.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_0.0001.output index a121e20..8fe4739 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_0.0001.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_0.0001.output @@ -1,15 +1,15 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '0.0001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 8.476217031478882} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '500000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.8229217529296875} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 58, 110, ..., 24999904, - 24999948, 25000000]), - col_indices=tensor([ 6107, 36475, 44542, ..., 455197, 482838, - 484709]), - values=tensor([0.8741, 0.1087, 0.7265, ..., 0.9387, 0.2139, 0.8984]), +tensor(crow_indices=tensor([ 0, 48, 92, ..., 24999906, + 24999954, 25000000]), + col_indices=tensor([ 13687, 16103, 22085, ..., 466250, 497468, + 498839]), + values=tensor([0.1763, 0.0612, 0.1831, ..., 0.7206, 0.9735, 0.4201]), size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) -tensor([0.2008, 0.1464, 0.5363, ..., 0.5258, 0.1478, 0.0153]) +tensor([0.0392, 0.3068, 0.8540, ..., 0.0771, 0.2433, 0.8939]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -17,20 +17,20 @@ Rows: 500000 Size: 250000000000 NNZ: 25000000 Density: 0.0001 -Time: 8.476217031478882 seconds +Time: 0.8229217529296875 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1238', '-ss', '500000', '-sd', '0.0001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.872223138809204} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1275', '-ss', '500000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.370937824249268} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 42, 103, ..., 24999895, - 24999951, 25000000]), - col_indices=tensor([ 1782, 32597, 35292, ..., 490788, 494408, - 495086]), - values=tensor([0.7532, 0.4055, 0.7849, ..., 0.0826, 0.2837, 0.9366]), +tensor(crow_indices=tensor([ 0, 45, 89, ..., 24999893, + 24999957, 25000000]), + col_indices=tensor([ 25264, 35882, 38786, ..., 487781, 491680, + 492236]), + values=tensor([0.0901, 0.4292, 0.0295, ..., 0.7641, 0.5758, 0.3435]), size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) -tensor([0.6389, 0.8135, 0.6286, ..., 0.0387, 0.4513, 0.2151]) +tensor([0.7878, 0.6485, 0.9023, ..., 0.5055, 0.2764, 0.4227]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -38,20 +38,17 @@ Rows: 500000 Size: 250000000000 NNZ: 25000000 Density: 0.0001 -Time: 9.872223138809204 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1316', '-ss', '500000', '-sd', '0.0001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.480877876281738} +Time: 10.370937824249268 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 49, 93, ..., 24999907, - 24999956, 25000000]), - col_indices=tensor([ 1315, 9605, 36829, ..., 467295, 483577, - 490282]), - values=tensor([0.4504, 0.6377, 0.8962, ..., 0.8735, 0.2973, 0.1824]), +tensor(crow_indices=tensor([ 0, 45, 89, ..., 24999893, + 24999957, 25000000]), + col_indices=tensor([ 25264, 35882, 38786, ..., 487781, 491680, + 492236]), + values=tensor([0.0901, 0.4292, 0.0295, ..., 0.7641, 0.5758, 0.3435]), size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) -tensor([0.1673, 0.3950, 0.6065, ..., 0.2020, 0.8580, 0.9739]) +tensor([0.7878, 0.6485, 0.9023, ..., 0.5055, 0.2764, 0.4227]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -59,31 +56,13 @@ Rows: 500000 Size: 250000000000 NNZ: 25000000 Density: 0.0001 -Time: 10.480877876281738 seconds +Time: 10.370937824249268 seconds -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 49, 93, ..., 24999907, - 24999956, 25000000]), - col_indices=tensor([ 1315, 9605, 36829, ..., 467295, 483577, - 490282]), - values=tensor([0.4504, 0.6377, 0.8962, ..., 0.8735, 0.2973, 0.1824]), - size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) -tensor([0.1673, 0.3950, 0.6065, ..., 0.2020, 0.8580, 0.9739]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([500000, 500000]) -Rows: 500000 -Size: 250000000000 -NNZ: 25000000 -Density: 0.0001 -Time: 10.480877876281738 seconds - -[40.78, 40.23, 40.39, 40.14, 40.33, 40.17, 39.83, 39.85, 39.79, 39.68] -[119.72] -19.623883724212646 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 1316, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.480877876281738, 'TIME_S_1KI': 7.964192915107703, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2349.371359462738, 'W': 119.72} -[40.78, 40.23, 40.39, 40.14, 40.33, 40.17, 39.83, 39.85, 39.79, 39.68, 41.19, 39.75, 40.31, 41.27, 39.67, 39.76, 39.72, 39.58, 39.67, 40.17] -721.3699999999999 -36.06849999999999 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 1316, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.480877876281738, 'TIME_S_1KI': 7.964192915107703, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2349.371359462738, 'W': 119.72, 'J_1KI': 1785.2365953364272, 'W_1KI': 90.9726443768997, 'W_D': 83.6515, 'J_D': 1641.5673093559742, 'W_D_1KI': 63.564969604863215, 'J_D_1KI': 48.3016486359143} +[40.75, 40.02, 39.59, 39.62, 39.74, 39.84, 39.97, 39.74, 40.73, 39.5] +[118.94] +19.488438606262207 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 1275, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.370937824249268, 'TIME_S_1KI': 8.134068881764131, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2317.954887828827, 'W': 118.94} +[40.75, 40.02, 39.59, 39.62, 39.74, 39.84, 39.97, 39.74, 40.73, 39.5, 41.45, 40.23, 40.12, 39.57, 39.77, 39.94, 39.75, 39.69, 40.29, 39.64] +719.28 +35.964 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 1275, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.370937824249268, 'TIME_S_1KI': 8.134068881764131, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2317.954887828827, 'W': 118.94, 'J_1KI': 1818.0038335912368, 'W_1KI': 93.28627450980392, 'W_D': 82.976, 'J_D': 1617.072681793213, 'W_D_1KI': 65.07921568627451, 'J_D_1KI': 51.04252210688197} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_1e-05.json index 98c0109..24823a1 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_1e-05.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_1e-05.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 21497, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.492619514465332, "TIME_S_1KI": 0.488096921173435, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2075.744820713997, "W": 155.25, "J_1KI": 96.55974418356035, "W_1KI": 7.221937944829511, "W_D": 119.6075, "J_D": 1599.1925838553905, "W_D_1KI": 5.5639158952411965, "J_D_1KI": 0.25882290064851826} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 20602, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.051029920578003, "TIME_S_1KI": 0.4878667081146492, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2012.3513662075998, "W": 152.11, "J_1KI": 97.67747627451702, "W_1KI": 7.383263760799923, "W_D": 115.75800000000001, "J_D": 1531.429685421467, "W_D_1KI": 5.61877487622561, "J_D_1KI": 0.272729583352374} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_1e-05.output index 4dbd4ff..60d167b 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_1e-05.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_1e-05.output @@ -1,15 +1,15 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.5443899631500244} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '500000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.08110809326171875} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 7, 13, ..., 2499984, - 2499993, 2500000]), - col_indices=tensor([ 29642, 73796, 205405, ..., 362365, 387524, - 440531]), - values=tensor([0.6565, 0.4150, 0.8341, ..., 0.7997, 0.8212, 0.8706]), +tensor(crow_indices=tensor([ 0, 6, 8, ..., 2499988, + 2499994, 2500000]), + col_indices=tensor([ 61750, 191731, 192878, ..., 292292, 347392, + 413452]), + values=tensor([0.4333, 0.7749, 0.6975, ..., 0.5571, 0.2303, 0.6423]), size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.3188, 0.4041, 0.2486, ..., 0.5189, 0.6175, 0.2446]) +tensor([0.7573, 0.7811, 0.2609, ..., 0.7028, 0.0683, 0.1077]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -17,20 +17,41 @@ Rows: 500000 Size: 250000000000 NNZ: 2500000 Density: 1e-05 -Time: 0.5443899631500244 seconds +Time: 0.08110809326171875 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '19287', '-ss', '500000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.420541286468506} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '12945', '-ss', '500000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 6.597289562225342} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 12, ..., 2499994, +tensor(crow_indices=tensor([ 0, 4, 9, ..., 2499996, + 2499997, 2500000]), + col_indices=tensor([304373, 374974, 396567, ..., 161828, 243938, + 306700]), + values=tensor([0.0234, 0.0111, 0.7752, ..., 0.4123, 0.0911, 0.7333]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.2563, 0.2400, 0.1997, ..., 0.9331, 0.1838, 0.9541]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 6.597289562225342 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '20602', '-ss', '500000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.051029920578003} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 7, ..., 2499995, 2499998, 2500000]), - col_indices=tensor([131466, 192610, 285983, ..., 398857, 7127, - 216070]), - values=tensor([0.3766, 0.1095, 0.0818, ..., 0.7673, 0.9998, 0.7256]), + col_indices=tensor([ 84683, 221772, 250792, ..., 457280, 123381, + 490345]), + values=tensor([0.6671, 0.6498, 0.8275, ..., 0.5282, 0.6912, 0.3058]), size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.6672, 0.9862, 0.6354, ..., 0.4943, 0.9100, 0.2548]) +tensor([0.8099, 0.6830, 0.6662, ..., 0.4435, 0.6731, 0.4595]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -38,20 +59,17 @@ Rows: 500000 Size: 250000000000 NNZ: 2500000 Density: 1e-05 -Time: 9.420541286468506 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '21497', '-ss', '500000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.492619514465332} +Time: 10.051029920578003 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 10, 12, ..., 2499992, - 2499996, 2500000]), - col_indices=tensor([124091, 157764, 160136, ..., 120950, 171105, - 490445]), - values=tensor([0.1739, 0.8424, 0.0842, ..., 0.2028, 0.9911, 0.7243]), +tensor(crow_indices=tensor([ 0, 4, 7, ..., 2499995, + 2499998, 2500000]), + col_indices=tensor([ 84683, 221772, 250792, ..., 457280, 123381, + 490345]), + values=tensor([0.6671, 0.6498, 0.8275, ..., 0.5282, 0.6912, 0.3058]), size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.9645, 0.6044, 0.9036, ..., 0.9779, 0.7664, 0.8298]) +tensor([0.8099, 0.6830, 0.6662, ..., 0.4435, 0.6731, 0.4595]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -59,31 +77,13 @@ Rows: 500000 Size: 250000000000 NNZ: 2500000 Density: 1e-05 -Time: 10.492619514465332 seconds +Time: 10.051029920578003 seconds -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 10, 12, ..., 2499992, - 2499996, 2500000]), - col_indices=tensor([124091, 157764, 160136, ..., 120950, 171105, - 490445]), - values=tensor([0.1739, 0.8424, 0.0842, ..., 0.2028, 0.9911, 0.7243]), - size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.9645, 0.6044, 0.9036, ..., 0.9779, 0.7664, 0.8298]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([500000, 500000]) -Rows: 500000 -Size: 250000000000 -NNZ: 2500000 -Density: 1e-05 -Time: 10.492619514465332 seconds - -[41.35, 39.34, 39.96, 39.31, 39.6, 39.93, 39.84, 39.39, 39.3, 39.31] -[155.25] -13.370337009429932 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 21497, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.492619514465332, 'TIME_S_1KI': 0.488096921173435, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2075.744820713997, 'W': 155.25} -[41.35, 39.34, 39.96, 39.31, 39.6, 39.93, 39.84, 39.39, 39.3, 39.31, 40.05, 40.08, 39.33, 39.83, 39.32, 39.88, 39.28, 39.25, 39.29, 39.13] -712.85 -35.6425 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 21497, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.492619514465332, 'TIME_S_1KI': 0.488096921173435, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2075.744820713997, 'W': 155.25, 'J_1KI': 96.55974418356035, 'W_1KI': 7.221937944829511, 'W_D': 119.6075, 'J_D': 1599.1925838553905, 'W_D_1KI': 5.5639158952411965, 'J_D_1KI': 0.25882290064851826} +[40.55, 45.24, 39.91, 39.85, 39.84, 39.77, 40.43, 40.43, 42.0, 39.73] +[152.11] +13.22957968711853 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 20602, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.051029920578003, 'TIME_S_1KI': 0.4878667081146492, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2012.3513662075998, 'W': 152.11} +[40.55, 45.24, 39.91, 39.85, 39.84, 39.77, 40.43, 40.43, 42.0, 39.73, 40.67, 40.21, 39.79, 39.83, 39.69, 40.04, 39.86, 39.69, 40.08, 39.81] +727.04 +36.352 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 20602, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.051029920578003, 'TIME_S_1KI': 0.4878667081146492, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2012.3513662075998, 'W': 152.11, 'J_1KI': 97.67747627451702, 'W_1KI': 7.383263760799923, 'W_D': 115.75800000000001, 'J_D': 1531.429685421467, 'W_D_1KI': 5.61877487622561, 'J_D_1KI': 0.272729583352374} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_5e-05.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_5e-05.json index 340d1c5..ac74c89 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_5e-05.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_5e-05.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 2443, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 11.091211557388306, "TIME_S_1KI": 4.5399965441622205, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2093.1614422798157, "W": 125.74, "J_1KI": 856.7996079737272, "W_1KI": 51.469504707327054, "W_D": 89.3905, "J_D": 1488.0606641173363, "W_D_1KI": 36.59046254604994, "J_D_1KI": 14.977676031948402} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 2268, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.338330507278442, "TIME_S_1KI": 4.558346784514304, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1929.4526886749268, "W": 124.72, "J_1KI": 850.7286987102852, "W_1KI": 54.99118165784832, "W_D": 88.6155, "J_D": 1370.9061476368904, "W_D_1KI": 39.07208994708994, "J_D_1KI": 17.227552886723963} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_5e-05.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_5e-05.output index 6a66c91..4f74cbe 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_5e-05.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_5e-05.output @@ -1,15 +1,15 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '5e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 4.620434761047363} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '500000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.46280455589294434} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 28, 55, ..., 12499942, - 12499972, 12500000]), - col_indices=tensor([ 19855, 24177, 33309, ..., 430292, 468270, - 470726]), - values=tensor([0.1735, 0.2720, 0.9086, ..., 0.2697, 0.0473, 0.0416]), +tensor(crow_indices=tensor([ 0, 21, 39, ..., 12499960, + 12499981, 12500000]), + col_indices=tensor([ 5530, 18658, 36900, ..., 388989, 426254, + 497258]), + values=tensor([0.8053, 0.3880, 0.4779, ..., 0.4773, 0.4279, 0.6817]), size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) -tensor([0.2844, 0.4487, 0.9137, ..., 0.5004, 0.3000, 0.1233]) +tensor([0.5886, 0.4606, 0.7255, ..., 0.1606, 0.2608, 0.5232]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -17,20 +17,20 @@ Rows: 500000 Size: 250000000000 NNZ: 12500000 Density: 5e-05 -Time: 4.620434761047363 seconds +Time: 0.46280455589294434 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '2272', '-ss', '500000', '-sd', '5e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 9.761992931365967} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '2268', '-ss', '500000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.338330507278442} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 25, 50, ..., 12499939, - 12499968, 12500000]), - col_indices=tensor([ 35309, 102593, 109410, ..., 438712, 452154, - 489935]), - values=tensor([0.4991, 0.7582, 0.4985, ..., 0.8355, 0.6986, 0.3665]), +tensor(crow_indices=tensor([ 0, 30, 63, ..., 12499957, + 12499979, 12500000]), + col_indices=tensor([ 14790, 16334, 55074, ..., 466420, 486794, + 499923]), + values=tensor([0.8543, 0.1686, 0.8292, ..., 0.6567, 0.2357, 0.6950]), size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) -tensor([0.1755, 0.5499, 0.0031, ..., 0.2944, 0.6143, 0.3232]) +tensor([0.8639, 0.3423, 0.4800, ..., 0.1443, 0.7816, 0.0060]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -38,20 +38,17 @@ Rows: 500000 Size: 250000000000 NNZ: 12500000 Density: 5e-05 -Time: 9.761992931365967 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '2443', '-ss', '500000', '-sd', '5e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 11.091211557388306} +Time: 10.338330507278442 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 29, 54, ..., 12499940, - 12499966, 12500000]), - col_indices=tensor([ 15104, 53699, 66016, ..., 451008, 478949, - 498027]), - values=tensor([0.3834, 0.0166, 0.8269, ..., 0.7083, 0.6634, 0.5753]), +tensor(crow_indices=tensor([ 0, 30, 63, ..., 12499957, + 12499979, 12500000]), + col_indices=tensor([ 14790, 16334, 55074, ..., 466420, 486794, + 499923]), + values=tensor([0.8543, 0.1686, 0.8292, ..., 0.6567, 0.2357, 0.6950]), size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) -tensor([0.3028, 0.2567, 0.4384, ..., 0.4923, 0.2329, 0.9462]) +tensor([0.8639, 0.3423, 0.4800, ..., 0.1443, 0.7816, 0.0060]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -59,31 +56,13 @@ Rows: 500000 Size: 250000000000 NNZ: 12500000 Density: 5e-05 -Time: 11.091211557388306 seconds +Time: 10.338330507278442 seconds -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 29, 54, ..., 12499940, - 12499966, 12500000]), - col_indices=tensor([ 15104, 53699, 66016, ..., 451008, 478949, - 498027]), - values=tensor([0.3834, 0.0166, 0.8269, ..., 0.7083, 0.6634, 0.5753]), - size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) -tensor([0.3028, 0.2567, 0.4384, ..., 0.4923, 0.2329, 0.9462]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([500000, 500000]) -Rows: 500000 -Size: 250000000000 -NNZ: 12500000 -Density: 5e-05 -Time: 11.091211557388306 seconds - -[41.47, 41.03, 39.87, 40.83, 39.9, 40.09, 40.23, 40.2, 39.74, 39.65] -[125.74] -16.646742820739746 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 2443, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 11.091211557388306, 'TIME_S_1KI': 4.5399965441622205, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2093.1614422798157, 'W': 125.74} -[41.47, 41.03, 39.87, 40.83, 39.9, 40.09, 40.23, 40.2, 39.74, 39.65, 40.36, 39.88, 39.75, 39.86, 39.72, 40.13, 40.1, 39.56, 45.29, 40.14] -726.99 -36.3495 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 2443, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 11.091211557388306, 'TIME_S_1KI': 4.5399965441622205, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2093.1614422798157, 'W': 125.74, 'J_1KI': 856.7996079737272, 'W_1KI': 51.469504707327054, 'W_D': 89.3905, 'J_D': 1488.0606641173363, 'W_D_1KI': 36.59046254604994, 'J_D_1KI': 14.977676031948402} +[40.4, 42.56, 40.55, 40.15, 39.72, 40.38, 39.75, 39.66, 39.85, 39.57] +[124.72] +15.470274925231934 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 2268, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.338330507278442, 'TIME_S_1KI': 4.558346784514304, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1929.4526886749268, 'W': 124.72} +[40.4, 42.56, 40.55, 40.15, 39.72, 40.38, 39.75, 39.66, 39.85, 39.57, 40.6, 40.35, 40.27, 40.13, 39.75, 39.68, 39.73, 39.6, 39.89, 39.57] +722.09 +36.1045 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 2268, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.338330507278442, 'TIME_S_1KI': 4.558346784514304, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1929.4526886749268, 'W': 124.72, 'J_1KI': 850.7286987102852, 'W_1KI': 54.99118165784832, 'W_D': 88.6155, 'J_D': 1370.9061476368904, 'W_D_1KI': 39.07208994708994, 'J_D_1KI': 17.227552886723963} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.0001.json index c71ff3b..366bd80 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.0001.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.0001.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 91834, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.82576298713684, "TIME_S_1KI": 0.11788404062914433, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1647.9860616016388, "W": 116.97, "J_1KI": 17.945271485524305, "W_1KI": 1.273711261624235, "W_D": 80.83175, "J_D": 1138.8355760867596, "W_D_1KI": 0.8801941546703835, "J_D_1KI": 0.009584621759592129} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 89538, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.289806604385376, "TIME_S_1KI": 0.11492111287258344, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1521.4007213592529, "W": 116.96, "J_1KI": 16.991676398392332, "W_1KI": 1.3062610288369183, "W_D": 80.71074999999999, "J_D": 1049.8751134699583, "W_D_1KI": 0.9014133663919228, "J_D_1KI": 0.010067383305322017} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.0001.output index 504044c..aedb6df 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.0001.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.0001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.0001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.14647722244262695} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.049301862716674805} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 6, 8, ..., 249988, 249995, +tensor(crow_indices=tensor([ 0, 5, 13, ..., 249993, 249996, 250000]), - col_indices=tensor([ 544, 6056, 19594, ..., 16208, 31107, 37035]), - values=tensor([0.8576, 0.5005, 0.2810, ..., 0.0063, 0.7171, 0.8258]), + col_indices=tensor([ 1709, 19790, 28830, ..., 3831, 22257, 48856]), + values=tensor([0.9244, 0.7522, 0.6687, ..., 0.7540, 0.7318, 0.7260]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.4318, 0.7107, 0.2576, ..., 0.8496, 0.3705, 0.3608]) +tensor([0.0785, 0.8938, 0.5541, ..., 0.5935, 0.2052, 0.2232]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -16,19 +16,19 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 0.14647722244262695 seconds +Time: 0.049301862716674805 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '71683', '-ss', '50000', '-sd', '0.0001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.233005046844482} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '21297', '-ss', '50000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 2.7824935913085938} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 7, 10, ..., 249988, 249994, +tensor(crow_indices=tensor([ 0, 4, 8, ..., 249989, 249993, 250000]), - col_indices=tensor([ 4979, 12449, 23825, ..., 32585, 40358, 48594]), - values=tensor([0.7825, 0.8569, 0.5029, ..., 0.3250, 0.4106, 0.3303]), + col_indices=tensor([16415, 16632, 32449, ..., 45169, 45288, 48610]), + values=tensor([0.0101, 0.6954, 0.6241, ..., 0.3711, 0.7246, 0.3748]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.8033, 0.4755, 0.5204, ..., 0.8611, 0.9528, 0.0172]) +tensor([0.6515, 0.7514, 0.0204, ..., 0.8861, 0.6124, 0.4798]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -36,19 +36,19 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 9.233005046844482 seconds +Time: 2.7824935913085938 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '81519', '-ss', '50000', '-sd', '0.0001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.805182695388794} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '80366', '-ss', '50000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.42440915107727} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 6, 11, ..., 249983, 249992, +tensor(crow_indices=tensor([ 0, 7, 10, ..., 249987, 249993, 250000]), - col_indices=tensor([ 7422, 17911, 31055, ..., 30707, 32021, 38558]), - values=tensor([0.7718, 0.8036, 0.8293, ..., 0.2159, 0.0251, 0.0647]), + col_indices=tensor([ 2445, 24855, 26173, ..., 23560, 26333, 46130]), + values=tensor([0.2012, 0.2713, 0.8391, ..., 0.5844, 0.7972, 0.4463]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.3183, 0.3041, 0.1046, ..., 0.2603, 0.8118, 0.2097]) +tensor([0.5580, 0.1767, 0.6905, ..., 0.9860, 0.6709, 0.2165]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -56,19 +56,19 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 9.805182695388794 seconds +Time: 9.42440915107727 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '87295', '-ss', '50000', '-sd', '0.0001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.980920553207397} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '89538', '-ss', '50000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.289806604385376} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 5, ..., 249989, 249993, +tensor(crow_indices=tensor([ 0, 2, 7, ..., 249988, 249996, 250000]), - col_indices=tensor([19530, 21432, 40127, ..., 33319, 45642, 48654]), - values=tensor([0.8438, 0.0330, 0.2387, ..., 0.6115, 0.5796, 0.5067]), + col_indices=tensor([ 2244, 34732, 7243, ..., 9132, 13610, 19520]), + values=tensor([0.6983, 0.0446, 0.9216, ..., 0.0232, 0.0374, 0.6300]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.1992, 0.5617, 0.3460, ..., 0.4818, 0.9372, 0.6597]) +tensor([0.8539, 0.6321, 0.4259, ..., 0.2899, 0.6274, 0.3350]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -76,19 +76,16 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 9.980920553207397 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '91834', '-ss', '50000', '-sd', '0.0001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.82576298713684} +Time: 10.289806604385376 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 7, 12, ..., 249987, 249995, +tensor(crow_indices=tensor([ 0, 2, 7, ..., 249988, 249996, 250000]), - col_indices=tensor([ 2714, 5631, 18387, ..., 39061, 48792, 49070]), - values=tensor([0.1970, 0.9435, 0.9859, ..., 0.7944, 0.6863, 0.0587]), + col_indices=tensor([ 2244, 34732, 7243, ..., 9132, 13610, 19520]), + values=tensor([0.6983, 0.0446, 0.9216, ..., 0.0232, 0.0374, 0.6300]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.5128, 0.8861, 0.8900, ..., 0.3721, 0.4809, 0.7353]) +tensor([0.8539, 0.6321, 0.4259, ..., 0.2899, 0.6274, 0.3350]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -96,30 +93,13 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 10.82576298713684 seconds +Time: 10.289806604385376 seconds -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 7, 12, ..., 249987, 249995, - 250000]), - col_indices=tensor([ 2714, 5631, 18387, ..., 39061, 48792, 49070]), - values=tensor([0.1970, 0.9435, 0.9859, ..., 0.7944, 0.6863, 0.0587]), - size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.5128, 0.8861, 0.8900, ..., 0.3721, 0.4809, 0.7353]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 250000 -Density: 0.0001 -Time: 10.82576298713684 seconds - -[40.37, 39.3, 39.3, 39.19, 39.7, 39.15, 40.14, 44.33, 39.43, 39.81] -[116.97] -14.088963508605957 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 91834, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.82576298713684, 'TIME_S_1KI': 0.11788404062914433, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1647.9860616016388, 'W': 116.97} -[40.37, 39.3, 39.3, 39.19, 39.7, 39.15, 40.14, 44.33, 39.43, 39.81, 40.26, 39.09, 41.97, 44.11, 39.87, 39.01, 40.55, 38.99, 38.97, 38.89] -722.7650000000001 -36.138250000000006 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 91834, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.82576298713684, 'TIME_S_1KI': 0.11788404062914433, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1647.9860616016388, 'W': 116.97, 'J_1KI': 17.945271485524305, 'W_1KI': 1.273711261624235, 'W_D': 80.83175, 'J_D': 1138.8355760867596, 'W_D_1KI': 0.8801941546703835, 'J_D_1KI': 0.009584621759592129} +[40.27, 39.54, 39.5, 39.65, 39.93, 39.44, 40.01, 39.51, 45.05, 39.37] +[116.96] +13.007872104644775 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 89538, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.289806604385376, 'TIME_S_1KI': 0.11492111287258344, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1521.4007213592529, 'W': 116.96} +[40.27, 39.54, 39.5, 39.65, 39.93, 39.44, 40.01, 39.51, 45.05, 39.37, 40.45, 39.41, 39.86, 39.36, 39.91, 44.54, 39.53, 39.97, 39.84, 39.78] +724.985 +36.24925 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 89538, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.289806604385376, 'TIME_S_1KI': 0.11492111287258344, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1521.4007213592529, 'W': 116.96, 'J_1KI': 16.991676398392332, 'W_1KI': 1.3062610288369183, 'W_D': 80.71074999999999, 'J_D': 1049.8751134699583, 'W_D_1KI': 0.9014133663919228, 'J_D_1KI': 0.010067383305322017} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.001.json index 3676d30..16ebf8c 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.001.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.001.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 46775, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.762548208236694, "TIME_S_1KI": 0.2300918911434889, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2033.0924378275872, "W": 149.27, "J_1KI": 43.46536478519695, "W_1KI": 3.1912346338856232, "W_D": 113.87475, "J_D": 1551.0008245763183, "W_D_1KI": 2.434521646178514, "J_D_1KI": 0.052047496444222636} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 45908, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.364075660705566, "TIME_S_1KI": 0.22575750763931268, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1982.6904290771486, "W": 146.58, "J_1KI": 43.18834253457238, "W_1KI": 3.192907554238913, "W_D": 110.64150000000001, "J_D": 1496.5741786651613, "W_D_1KI": 2.410070140280561, "J_D_1KI": 0.05249782478610615} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.001.output index 3112aac..f9b44d5 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.001.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.29659008979797363} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.0605926513671875} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 46, 83, ..., 2499888, - 2499946, 2500000]), - col_indices=tensor([ 2168, 2264, 3614, ..., 46868, 47216, 48811]), - values=tensor([0.2788, 0.0512, 0.3475, ..., 0.9281, 0.1898, 0.0144]), +tensor(crow_indices=tensor([ 0, 42, 99, ..., 2499902, + 2499955, 2500000]), + col_indices=tensor([ 1009, 1628, 5292, ..., 43455, 47256, 47946]), + values=tensor([0.2339, 0.7843, 0.8407, ..., 0.0388, 0.2390, 0.6904]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.5080, 0.1629, 0.0847, ..., 0.6599, 0.4582, 0.2341]) +tensor([0.3494, 0.3893, 0.8826, ..., 0.0693, 0.0070, 0.7582]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -16,19 +16,19 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 0.29659008979797363 seconds +Time: 0.0605926513671875 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '35402', '-ss', '50000', '-sd', '0.001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 7.946921348571777} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '17328', '-ss', '50000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 3.963207721710205} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 54, 117, ..., 2499905, - 2499953, 2500000]), - col_indices=tensor([ 1300, 1442, 2491, ..., 47415, 49147, 49910]), - values=tensor([0.1149, 0.9707, 0.0968, ..., 0.7933, 0.6392, 0.9343]), +tensor(crow_indices=tensor([ 0, 45, 85, ..., 2499905, + 2499952, 2500000]), + col_indices=tensor([ 2138, 2192, 2629, ..., 48532, 49646, 49876]), + values=tensor([0.7824, 0.0061, 0.7967, ..., 0.1635, 0.4732, 0.5157]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.2903, 0.7408, 0.0968, ..., 0.3344, 0.5691, 0.3821]) +tensor([0.8165, 0.7580, 0.0903, ..., 0.6290, 0.7559, 0.6116]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -36,19 +36,19 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 7.946921348571777 seconds +Time: 3.963207721710205 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '46775', '-ss', '50000', '-sd', '0.001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.762548208236694} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '45908', '-ss', '50000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.364075660705566} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 65, 117, ..., 2499903, - 2499954, 2500000]), - col_indices=tensor([ 2232, 2981, 3015, ..., 49447, 49836, 49877]), - values=tensor([0.3281, 0.9452, 0.1004, ..., 0.4282, 0.2346, 0.1167]), +tensor(crow_indices=tensor([ 0, 48, 99, ..., 2499901, + 2499955, 2500000]), + col_indices=tensor([ 2242, 2630, 4307, ..., 47333, 48170, 49131]), + values=tensor([0.3970, 0.2919, 0.1690, ..., 0.5693, 0.6652, 0.4283]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.5238, 0.6081, 0.9163, ..., 0.2866, 0.2457, 0.9117]) +tensor([0.7545, 0.7866, 0.4331, ..., 0.1722, 0.5406, 0.9467]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -56,16 +56,16 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 10.762548208236694 seconds +Time: 10.364075660705566 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 65, 117, ..., 2499903, - 2499954, 2500000]), - col_indices=tensor([ 2232, 2981, 3015, ..., 49447, 49836, 49877]), - values=tensor([0.3281, 0.9452, 0.1004, ..., 0.4282, 0.2346, 0.1167]), +tensor(crow_indices=tensor([ 0, 48, 99, ..., 2499901, + 2499955, 2500000]), + col_indices=tensor([ 2242, 2630, 4307, ..., 47333, 48170, 49131]), + values=tensor([0.3970, 0.2919, 0.1690, ..., 0.5693, 0.6652, 0.4283]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.5238, 0.6081, 0.9163, ..., 0.2866, 0.2457, 0.9117]) +tensor([0.7545, 0.7866, 0.4331, ..., 0.1722, 0.5406, 0.9467]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -73,13 +73,13 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 10.762548208236694 seconds +Time: 10.364075660705566 seconds -[41.04, 39.15, 39.26, 39.11, 39.17, 39.29, 39.32, 39.24, 39.56, 39.01] -[149.27] -13.620234727859497 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 46775, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.762548208236694, 'TIME_S_1KI': 0.2300918911434889, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2033.0924378275872, 'W': 149.27} -[41.04, 39.15, 39.26, 39.11, 39.17, 39.29, 39.32, 39.24, 39.56, 39.01, 39.97, 39.18, 39.31, 39.08, 39.46, 39.32, 39.13, 39.45, 39.15, 39.43] -707.905 -35.39525 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 46775, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.762548208236694, 'TIME_S_1KI': 0.2300918911434889, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2033.0924378275872, 'W': 149.27, 'J_1KI': 43.46536478519695, 'W_1KI': 3.1912346338856232, 'W_D': 113.87475, 'J_D': 1551.0008245763183, 'W_D_1KI': 2.434521646178514, 'J_D_1KI': 0.052047496444222636} +[40.59, 39.91, 39.52, 39.54, 39.7, 39.41, 39.47, 40.95, 40.05, 39.39] +[146.58] +13.526336669921875 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 45908, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.364075660705566, 'TIME_S_1KI': 0.22575750763931268, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1982.6904290771486, 'W': 146.58} +[40.59, 39.91, 39.52, 39.54, 39.7, 39.41, 39.47, 40.95, 40.05, 39.39, 40.78, 39.79, 39.69, 41.93, 40.24, 39.57, 39.58, 39.7, 39.52, 39.64] +718.77 +35.9385 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 45908, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.364075660705566, 'TIME_S_1KI': 0.22575750763931268, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1982.6904290771486, 'W': 146.58, 'J_1KI': 43.18834253457238, 'W_1KI': 3.192907554238913, 'W_D': 110.64150000000001, 'J_D': 1496.5741786651613, 'W_D_1KI': 2.410070140280561, 'J_D_1KI': 0.05249782478610615} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.01.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.01.json index 032b229..20ca6ca 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.01.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.01.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 1728, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.847445249557495, "TIME_S_1KI": 6.277456741642069, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2262.675802116394, "W": 116.47, "J_1KI": 1309.418866965506, "W_1KI": 67.40162037037037, "W_D": 80.83224999999999, "J_D": 1570.3372207918164, "W_D_1KI": 46.7779224537037, "J_D_1KI": 27.070556975522976} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 1726, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.692668676376343, "TIME_S_1KI": 6.1950571705540805, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2256.2120828294755, "W": 117.97000000000001, "J_1KI": 1307.1912415002755, "W_1KI": 68.34878331402086, "W_D": 81.57950000000002, "J_D": 1560.2327168872362, "W_D_1KI": 47.26506373117035, "J_D_1KI": 27.384162069044237} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.01.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.01.output index 44057a0..939a7fb 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.01.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.01.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.01', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 6.073575019836426} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.6629180908203125} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 511, 999, ..., 24998996, - 24999515, 25000000]), - col_indices=tensor([ 50, 140, 163, ..., 49849, 49891, 49909]), - values=tensor([0.6896, 0.4241, 0.6835, ..., 0.3809, 0.0330, 0.1679]), +tensor(crow_indices=tensor([ 0, 514, 996, ..., 24998956, + 24999472, 25000000]), + col_indices=tensor([ 1, 94, 348, ..., 49850, 49922, 49959]), + values=tensor([0.7408, 0.6252, 0.3689, ..., 0.4667, 0.9642, 0.0582]), size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) -tensor([0.8743, 0.1159, 0.4633, ..., 0.1043, 0.2471, 0.3798]) +tensor([0.9247, 0.2733, 0.8266, ..., 0.5422, 0.1520, 0.6812]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -16,19 +16,19 @@ Rows: 50000 Size: 2500000000 NNZ: 25000000 Density: 0.01 -Time: 6.073575019836426 seconds +Time: 0.6629180908203125 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1728', '-ss', '50000', '-sd', '0.01', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.847445249557495} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1583', '-ss', '50000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 9.627561807632446} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 553, 1047, ..., 24998955, - 24999507, 25000000]), - col_indices=tensor([ 47, 133, 262, ..., 49731, 49773, 49776]), - values=tensor([0.8665, 0.6889, 0.7366, ..., 0.8541, 0.3572, 0.3739]), +tensor(crow_indices=tensor([ 0, 562, 1043, ..., 24999032, + 24999504, 25000000]), + col_indices=tensor([ 4, 50, 78, ..., 49916, 49920, 49965]), + values=tensor([0.0759, 0.2514, 0.9400, ..., 0.2240, 0.9432, 0.3438]), size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) -tensor([0.0392, 0.1826, 0.6698, ..., 0.4937, 0.5808, 0.8286]) +tensor([0.3732, 0.6785, 0.5695, ..., 0.6003, 0.8169, 0.4003]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -36,16 +36,19 @@ Rows: 50000 Size: 2500000000 NNZ: 25000000 Density: 0.01 -Time: 10.847445249557495 seconds +Time: 9.627561807632446 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1726', '-ss', '50000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.692668676376343} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 553, 1047, ..., 24998955, - 24999507, 25000000]), - col_indices=tensor([ 47, 133, 262, ..., 49731, 49773, 49776]), - values=tensor([0.8665, 0.6889, 0.7366, ..., 0.8541, 0.3572, 0.3739]), +tensor(crow_indices=tensor([ 0, 457, 970, ..., 24999002, + 24999486, 25000000]), + col_indices=tensor([ 100, 360, 480, ..., 49859, 49889, 49953]), + values=tensor([0.3856, 0.6378, 0.2660, ..., 0.6784, 0.6537, 0.7029]), size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) -tensor([0.0392, 0.1826, 0.6698, ..., 0.4937, 0.5808, 0.8286]) +tensor([0.4800, 0.0280, 0.3242, ..., 0.3544, 0.6298, 0.7207]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -53,13 +56,30 @@ Rows: 50000 Size: 2500000000 NNZ: 25000000 Density: 0.01 -Time: 10.847445249557495 seconds +Time: 10.692668676376343 seconds -[40.17, 39.47, 39.62, 39.58, 39.57, 39.35, 40.27, 39.27, 39.48, 39.51] -[116.47] -19.427112579345703 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 1728, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.847445249557495, 'TIME_S_1KI': 6.277456741642069, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2262.675802116394, 'W': 116.47} -[40.17, 39.47, 39.62, 39.58, 39.57, 39.35, 40.27, 39.27, 39.48, 39.51, 40.76, 39.62, 39.66, 39.43, 39.52, 39.33, 39.97, 39.4, 39.29, 39.41] -712.7550000000001 -35.637750000000004 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 1728, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.847445249557495, 'TIME_S_1KI': 6.277456741642069, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2262.675802116394, 'W': 116.47, 'J_1KI': 1309.418866965506, 'W_1KI': 67.40162037037037, 'W_D': 80.83224999999999, 'J_D': 1570.3372207918164, 'W_D_1KI': 46.7779224537037, 'J_D_1KI': 27.070556975522976} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 457, 970, ..., 24999002, + 24999486, 25000000]), + col_indices=tensor([ 100, 360, 480, ..., 49859, 49889, 49953]), + values=tensor([0.3856, 0.6378, 0.2660, ..., 0.6784, 0.6537, 0.7029]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.4800, 0.0280, 0.3242, ..., 0.3544, 0.6298, 0.7207]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 10.692668676376343 seconds + +[41.47, 39.7, 39.74, 40.1, 40.28, 40.05, 40.37, 39.58, 39.73, 40.01] +[117.97] +19.125303745269775 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 1726, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.692668676376343, 'TIME_S_1KI': 6.1950571705540805, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2256.2120828294755, 'W': 117.97000000000001} +[41.47, 39.7, 39.74, 40.1, 40.28, 40.05, 40.37, 39.58, 39.73, 40.01, 41.18, 40.13, 45.73, 39.77, 39.88, 40.17, 39.76, 40.02, 41.27, 40.4] +727.81 +36.390499999999996 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 1726, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.692668676376343, 'TIME_S_1KI': 6.1950571705540805, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2256.2120828294755, 'W': 117.97000000000001, 'J_1KI': 1307.1912415002755, 'W_1KI': 68.34878331402086, 'W_D': 81.57950000000002, 'J_D': 1560.2327168872362, 'W_D_1KI': 47.26506373117035, 'J_D_1KI': 27.384162069044237} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_1e-05.json index efee96e..53cb9a4 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_1e-05.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_1e-05.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 128043, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.502545356750488, "TIME_S_1KI": 0.08202358080293722, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1345.7720102190972, "W": 103.43, "J_1KI": 10.510313021556017, "W_1KI": 0.8077755129136307, "W_D": 68.14325000000001, "J_D": 886.6409990850092, "W_D_1KI": 0.532190357926634, "J_D_1KI": 0.004156340900530557} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 125418, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.786596775054932, "TIME_S_1KI": 0.0860051729022543, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1353.9629184293747, "W": 103.38, "J_1KI": 10.795602851499583, "W_1KI": 0.8242835956561259, "W_D": 67.61375, "J_D": 885.5340518084168, "W_D_1KI": 0.5391072254381349, "J_D_1KI": 0.004298483674098893} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_1e-05.output index 1baca85..b030af9 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_1e-05.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_1e-05.output @@ -1,13 +1,13 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.1170039176940918} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.05780529975891113} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 2, ..., 25000, 25000, 25000]), - col_indices=tensor([20669, 48572, 15521, ..., 4942, 37440, 49163]), - values=tensor([0.4805, 0.0794, 0.3246, ..., 0.3038, 0.8605, 0.6038]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 24999, 25000, 25000]), + col_indices=tensor([26335, 27290, 38418, ..., 19756, 20120, 4010]), + values=tensor([0.3389, 0.0656, 0.4529, ..., 0.8287, 0.8944, 0.8355]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.4235, 0.9189, 0.0697, ..., 0.8234, 0.9093, 0.0251]) +tensor([0.6330, 0.8862, 0.5805, ..., 0.8180, 0.2124, 0.8337]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -15,18 +15,18 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 0.1170039176940918 seconds +Time: 0.05780529975891113 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '89740', '-ss', '50000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.3589677810668945} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '18164', '-ss', '50000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 1.5206849575042725} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 24998, 24999, 25000]), - col_indices=tensor([42797, 39277, 20964, ..., 31232, 43143, 42518]), - values=tensor([0.7162, 0.4091, 0.9127, ..., 0.7828, 0.7816, 0.8353]), +tensor(crow_indices=tensor([ 0, 1, 1, ..., 24999, 24999, 25000]), + col_indices=tensor([47070, 16594, 28343, ..., 43440, 28747, 28655]), + values=tensor([0.5955, 0.4100, 0.8378, ..., 0.8449, 0.3361, 0.6219]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.2017, 0.4349, 0.5577, ..., 0.2868, 0.8229, 0.7966]) +tensor([0.0973, 0.1697, 0.0749, ..., 0.0145, 0.6554, 0.2719]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -34,18 +34,18 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 7.3589677810668945 seconds +Time: 1.5206849575042725 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '128043', '-ss', '50000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.502545356750488} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '125418', '-ss', '50000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.786596775054932} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 24999, 24999, 25000]), - col_indices=tensor([18076, 25567, 40242, ..., 19386, 42443, 43843]), - values=tensor([0.1613, 0.4932, 0.9378, ..., 0.7394, 0.5576, 0.1832]), +tensor(crow_indices=tensor([ 0, 0, 1, ..., 25000, 25000, 25000]), + col_indices=tensor([27120, 12941, 15664, ..., 3161, 41560, 29450]), + values=tensor([0.4509, 0.2974, 0.8733, ..., 0.8770, 0.0483, 0.7990]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.1994, 0.9899, 0.9038, ..., 0.7869, 0.4416, 0.9952]) +tensor([0.0817, 0.8974, 0.0414, ..., 0.9825, 0.3309, 0.2047]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -53,15 +53,15 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 10.502545356750488 seconds +Time: 10.786596775054932 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 24999, 24999, 25000]), - col_indices=tensor([18076, 25567, 40242, ..., 19386, 42443, 43843]), - values=tensor([0.1613, 0.4932, 0.9378, ..., 0.7394, 0.5576, 0.1832]), +tensor(crow_indices=tensor([ 0, 0, 1, ..., 25000, 25000, 25000]), + col_indices=tensor([27120, 12941, 15664, ..., 3161, 41560, 29450]), + values=tensor([0.4509, 0.2974, 0.8733, ..., 0.8770, 0.0483, 0.7990]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.1994, 0.9899, 0.9038, ..., 0.7869, 0.4416, 0.9952]) +tensor([0.0817, 0.8974, 0.0414, ..., 0.9825, 0.3309, 0.2047]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -69,13 +69,13 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 10.502545356750488 seconds +Time: 10.786596775054932 seconds -[40.3, 39.43, 39.29, 39.36, 38.95, 39.04, 39.78, 38.84, 39.12, 39.2] -[103.43] -13.011428117752075 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 128043, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.502545356750488, 'TIME_S_1KI': 0.08202358080293722, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1345.7720102190972, 'W': 103.43} -[40.3, 39.43, 39.29, 39.36, 38.95, 39.04, 39.78, 38.84, 39.12, 39.2, 40.2, 39.28, 39.13, 39.22, 38.89, 38.97, 38.85, 39.3, 39.03, 38.81] -705.7349999999999 -35.28675 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 128043, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.502545356750488, 'TIME_S_1KI': 0.08202358080293722, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1345.7720102190972, 'W': 103.43, 'J_1KI': 10.510313021556017, 'W_1KI': 0.8077755129136307, 'W_D': 68.14325000000001, 'J_D': 886.6409990850092, 'W_D_1KI': 0.532190357926634, 'J_D_1KI': 0.004156340900530557} +[40.88, 40.06, 39.87, 40.02, 39.61, 39.65, 39.87, 39.87, 39.51, 39.91] +[103.38] +13.096952199935913 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 125418, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.786596775054932, 'TIME_S_1KI': 0.0860051729022543, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1353.9629184293747, 'W': 103.38} +[40.88, 40.06, 39.87, 40.02, 39.61, 39.65, 39.87, 39.87, 39.51, 39.91, 40.56, 39.51, 39.82, 39.66, 39.34, 39.38, 39.55, 39.32, 39.66, 39.9] +715.325 +35.76625 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 125418, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.786596775054932, 'TIME_S_1KI': 0.0860051729022543, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1353.9629184293747, 'W': 103.38, 'J_1KI': 10.795602851499583, 'W_1KI': 0.8242835956561259, 'W_D': 67.61375, 'J_D': 885.5340518084168, 'W_D_1KI': 0.5391072254381349, 'J_D_1KI': 0.004298483674098893} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_5e-05.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_5e-05.json index e2a64dc..d831091 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_5e-05.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_5e-05.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 110048, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.860910654067993, "TIME_S_1KI": 0.09869248558872486, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1513.3099088716508, "W": 110.42, "J_1KI": 13.751362213503661, "W_1KI": 1.0033803431230008, "W_D": 74.49324999999999, "J_D": 1020.9325608499645, "W_D_1KI": 0.6769159821168944, "J_D_1KI": 0.006151097540317811} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 106823, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.303539752960205, "TIME_S_1KI": 0.09645431932224527, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1429.2441740632057, "W": 111.25, "J_1KI": 13.379554721953191, "W_1KI": 1.0414423860030144, "W_D": 75.065, "J_D": 964.37046225667, "W_D_1KI": 0.7027044737556518, "J_D_1KI": 0.006578213247668122} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_5e-05.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_5e-05.output index 99bfaff..a27a2d5 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_5e-05.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_5e-05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '5e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.1521902084350586} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.05483698844909668} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 4, ..., 124998, 124999, +tensor(crow_indices=tensor([ 0, 2, 7, ..., 124996, 124998, 125000]), - col_indices=tensor([28568, 23377, 33207, ..., 35070, 20237, 35086]), - values=tensor([0.0970, 0.0746, 0.1789, ..., 0.4665, 0.3762, 0.5874]), + col_indices=tensor([28119, 29640, 21715, ..., 29199, 13516, 45728]), + values=tensor([0.3782, 0.4368, 0.3959, ..., 0.8630, 0.5532, 0.4165]), size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) -tensor([0.5202, 0.5834, 0.5039, ..., 0.2581, 0.4110, 0.2043]) +tensor([0.8607, 0.2103, 0.4385, ..., 0.0263, 0.3906, 0.3161]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -16,19 +16,19 @@ Rows: 50000 Size: 2500000000 NNZ: 125000 Density: 5e-05 -Time: 0.1521902084350586 seconds +Time: 0.05483698844909668 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '68992', '-ss', '50000', '-sd', '5e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 6.582725286483765} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '19147', '-ss', '50000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 1.8820090293884277} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 4, ..., 124994, 124996, +tensor(crow_indices=tensor([ 0, 2, 6, ..., 124991, 124992, 125000]), - col_indices=tensor([13407, 30849, 37582, ..., 4235, 7510, 16049]), - values=tensor([0.4132, 0.1824, 0.9780, ..., 0.4864, 0.4697, 0.1823]), + col_indices=tensor([32530, 36762, 311, ..., 24158, 32618, 44758]), + values=tensor([0.9615, 0.3318, 0.5732, ..., 0.8773, 0.1422, 0.4683]), size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) -tensor([0.9509, 0.2372, 0.8108, ..., 0.6237, 0.0261, 0.7128]) +tensor([0.1372, 0.3779, 0.3457, ..., 0.7036, 0.6193, 0.2501]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -36,19 +36,19 @@ Rows: 50000 Size: 2500000000 NNZ: 125000 Density: 5e-05 -Time: 6.582725286483765 seconds +Time: 1.8820090293884277 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '110048', '-ss', '50000', '-sd', '5e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.860910654067993} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '106823', '-ss', '50000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.303539752960205} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 6, ..., 124995, 124996, +tensor(crow_indices=tensor([ 0, 2, 5, ..., 124996, 124998, 125000]), - col_indices=tensor([ 8770, 24657, 47529, ..., 37234, 42798, 47480]), - values=tensor([0.5915, 0.6574, 0.6205, ..., 0.3170, 0.3438, 0.3659]), + col_indices=tensor([16502, 37527, 11294, ..., 28497, 8084, 35661]), + values=tensor([0.2823, 0.8232, 0.0849, ..., 0.6885, 0.2665, 0.0851]), size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) -tensor([0.7258, 0.6385, 0.7203, ..., 0.8359, 0.3176, 0.3735]) +tensor([0.8734, 0.5898, 0.3749, ..., 0.2817, 0.4056, 0.3872]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -56,16 +56,16 @@ Rows: 50000 Size: 2500000000 NNZ: 125000 Density: 5e-05 -Time: 10.860910654067993 seconds +Time: 10.303539752960205 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3, 6, ..., 124995, 124996, +tensor(crow_indices=tensor([ 0, 2, 5, ..., 124996, 124998, 125000]), - col_indices=tensor([ 8770, 24657, 47529, ..., 37234, 42798, 47480]), - values=tensor([0.5915, 0.6574, 0.6205, ..., 0.3170, 0.3438, 0.3659]), + col_indices=tensor([16502, 37527, 11294, ..., 28497, 8084, 35661]), + values=tensor([0.2823, 0.8232, 0.0849, ..., 0.6885, 0.2665, 0.0851]), size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) -tensor([0.7258, 0.6385, 0.7203, ..., 0.8359, 0.3176, 0.3735]) +tensor([0.8734, 0.5898, 0.3749, ..., 0.2817, 0.4056, 0.3872]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -73,13 +73,13 @@ Rows: 50000 Size: 2500000000 NNZ: 125000 Density: 5e-05 -Time: 10.860910654067993 seconds +Time: 10.303539752960205 seconds -[40.58, 39.41, 39.64, 39.39, 39.67, 39.83, 39.65, 39.43, 39.45, 39.8] -[110.42] -13.705034494400024 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 110048, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.860910654067993, 'TIME_S_1KI': 0.09869248558872486, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1513.3099088716508, 'W': 110.42} -[40.58, 39.41, 39.64, 39.39, 39.67, 39.83, 39.65, 39.43, 39.45, 39.8, 40.29, 39.44, 40.08, 39.34, 39.59, 39.49, 39.42, 44.77, 39.96, 39.28] -718.5350000000001 -35.926750000000006 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 110048, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.860910654067993, 'TIME_S_1KI': 0.09869248558872486, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1513.3099088716508, 'W': 110.42, 'J_1KI': 13.751362213503661, 'W_1KI': 1.0033803431230008, 'W_D': 74.49324999999999, 'J_D': 1020.9325608499645, 'W_D_1KI': 0.6769159821168944, 'J_D_1KI': 0.006151097540317811} +[40.0, 39.65, 39.5, 39.28, 44.73, 39.57, 39.57, 39.75, 39.32, 39.43] +[111.25] +12.84713864326477 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 106823, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.303539752960205, 'TIME_S_1KI': 0.09645431932224527, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1429.2441740632057, 'W': 111.25} +[40.0, 39.65, 39.5, 39.28, 44.73, 39.57, 39.57, 39.75, 39.32, 39.43, 41.22, 44.93, 39.95, 39.46, 39.81, 39.42, 39.55, 39.68, 39.52, 39.37] +723.7 +36.185 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 106823, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.303539752960205, 'TIME_S_1KI': 0.09645431932224527, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1429.2441740632057, 'W': 111.25, 'J_1KI': 13.379554721953191, 'W_1KI': 1.0414423860030144, 'W_D': 75.065, 'J_D': 964.37046225667, 'W_D_1KI': 0.7027044737556518, 'J_D_1KI': 0.006578213247668122} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.0001.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.0001.json index 4891577..59bfbf5 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.0001.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.0001.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 435807, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.511547565460205, "TIME_S_1KI": 0.024119730902578906, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1232.545183532238, "W": 96.09, "J_1KI": 2.828190422669296, "W_1KI": 0.2204875093791518, "W_D": 60.76, "J_D": 779.3677318286896, "W_D_1KI": 0.1394195136838096, "J_D_1KI": 0.0003199111388385446} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 423606, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.169308185577393, "TIME_S_1KI": 0.024006525369275677, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1199.050221145153, "W": 95.75, "J_1KI": 2.8305789369016328, "W_1KI": 0.2260355141334164, "W_D": 60.24975, "J_D": 754.4906116077303, "W_D_1KI": 0.14223063412699538, "J_D_1KI": 0.0003357616136858198} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.0001.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.0001.output index 0251f49..ae86751 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.0001.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.0001.output @@ -1,13 +1,13 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.0001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.040769100189208984} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.018892288208007812} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 1, ..., 2499, 2500, 2500]), - col_indices=tensor([4125, 1116, 4300, ..., 690, 2880, 3382]), - values=tensor([0.0653, 0.6541, 0.1575, ..., 0.5764, 0.0907, 0.6553]), +tensor(crow_indices=tensor([ 0, 0, 4, ..., 2500, 2500, 2500]), + col_indices=tensor([1108, 1116, 4456, ..., 2396, 548, 1385]), + values=tensor([0.8638, 0.8794, 0.8595, ..., 0.2787, 0.2270, 0.2436]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.7803, 0.2089, 0.7573, ..., 0.7596, 0.3125, 0.6078]) +tensor([0.1028, 0.3454, 0.0668, ..., 0.0203, 0.1099, 0.2752]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -15,18 +15,18 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 0.040769100189208984 seconds +Time: 0.018892288208007812 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '257547', '-ss', '5000', '-sd', '0.0001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 6.205128908157349} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '55578', '-ss', '5000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 1.3776216506958008} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 2500, 2500, 2500]), - col_indices=tensor([1273, 2247, 4850, ..., 2520, 1394, 3793]), - values=tensor([0.8733, 0.7089, 0.0515, ..., 0.3445, 0.4099, 0.0495]), +tensor(crow_indices=tensor([ 0, 0, 2, ..., 2499, 2500, 2500]), + col_indices=tensor([1067, 4726, 2617, ..., 4515, 4937, 207]), + values=tensor([0.7749, 0.8447, 0.6931, ..., 0.5698, 0.5658, 0.7624]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.0086, 0.7636, 0.4685, ..., 0.9955, 0.7657, 0.7966]) +tensor([0.8259, 0.6183, 0.2744, ..., 0.6644, 0.1716, 0.4385]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -34,18 +34,18 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 6.205128908157349 seconds +Time: 1.3776216506958008 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '435807', '-ss', '5000', '-sd', '0.0001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.511547565460205} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '423606', '-ss', '5000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.169308185577393} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 1, ..., 2499, 2499, 2500]), - col_indices=tensor([4068, 4690, 1058, ..., 2571, 4364, 3391]), - values=tensor([0.9209, 0.6933, 0.9201, ..., 0.0738, 0.0357, 0.7845]), +tensor(crow_indices=tensor([ 0, 1, 1, ..., 2497, 2498, 2500]), + col_indices=tensor([ 723, 3357, 4021, ..., 1038, 2195, 2669]), + values=tensor([0.5380, 0.6250, 0.5522, ..., 0.2239, 0.7354, 0.7870]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.3918, 0.7384, 0.9927, ..., 0.9998, 0.6009, 0.1634]) +tensor([0.8647, 0.0404, 0.2214, ..., 0.2716, 0.6887, 0.8481]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,15 +53,15 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 10.511547565460205 seconds +Time: 10.169308185577393 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 1, ..., 2499, 2499, 2500]), - col_indices=tensor([4068, 4690, 1058, ..., 2571, 4364, 3391]), - values=tensor([0.9209, 0.6933, 0.9201, ..., 0.0738, 0.0357, 0.7845]), +tensor(crow_indices=tensor([ 0, 1, 1, ..., 2497, 2498, 2500]), + col_indices=tensor([ 723, 3357, 4021, ..., 1038, 2195, 2669]), + values=tensor([0.5380, 0.6250, 0.5522, ..., 0.2239, 0.7354, 0.7870]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.3918, 0.7384, 0.9927, ..., 0.9998, 0.6009, 0.1634]) +tensor([0.8647, 0.0404, 0.2214, ..., 0.2716, 0.6887, 0.8481]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -69,13 +69,13 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 10.511547565460205 seconds +Time: 10.169308185577393 seconds -[39.78, 39.82, 44.51, 38.6, 40.39, 38.56, 38.63, 38.62, 38.67, 38.55] -[96.09] -12.826987028121948 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 435807, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.511547565460205, 'TIME_S_1KI': 0.024119730902578906, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1232.545183532238, 'W': 96.09} -[39.78, 39.82, 44.51, 38.6, 40.39, 38.56, 38.63, 38.62, 38.67, 38.55, 39.31, 38.89, 38.76, 38.73, 39.09, 38.53, 38.74, 39.13, 38.76, 38.7] -706.6000000000001 -35.330000000000005 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 435807, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.511547565460205, 'TIME_S_1KI': 0.024119730902578906, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1232.545183532238, 'W': 96.09, 'J_1KI': 2.828190422669296, 'W_1KI': 0.2204875093791518, 'W_D': 60.76, 'J_D': 779.3677318286896, 'W_D_1KI': 0.1394195136838096, 'J_D_1KI': 0.0003199111388385446} +[40.09, 39.04, 39.2, 39.28, 39.5, 39.12, 39.02, 39.36, 39.0, 39.1] +[95.75] +12.522717714309692 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 423606, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.169308185577393, 'TIME_S_1KI': 0.024006525369275677, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1199.050221145153, 'W': 95.75} +[40.09, 39.04, 39.2, 39.28, 39.5, 39.12, 39.02, 39.36, 39.0, 39.1, 39.76, 39.19, 39.37, 38.99, 39.74, 39.45, 39.52, 39.05, 39.58, 44.24] +710.005 +35.50025 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 423606, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.169308185577393, 'TIME_S_1KI': 0.024006525369275677, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1199.050221145153, 'W': 95.75, 'J_1KI': 2.8305789369016328, 'W_1KI': 0.2260355141334164, 'W_D': 60.24975, 'J_D': 754.4906116077303, 'W_D_1KI': 0.14223063412699538, 'J_D_1KI': 0.0003357616136858198} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.001.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.001.json index fe8abca..1eeb5de 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.001.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.001.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 245735, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.373013734817505, "TIME_S_1KI": 0.042212194985726516, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1260.703432407379, "W": 98.11, "J_1KI": 5.130337283689255, "W_1KI": 0.39925122591409445, "W_D": 62.99425, "J_D": 809.4696483225822, "W_D_1KI": 0.2563503367448674, "J_D_1KI": 0.0010431983101506395} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 247437, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.32590627670288, "TIME_S_1KI": 0.04173145599365851, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1233.848487944603, "W": 98.03, "J_1KI": 4.986515710846005, "W_1KI": 0.39618165432008956, "W_D": 62.5795, "J_D": 787.6529781835079, "W_D_1KI": 0.2529108419516887, "J_D_1KI": 0.001022122164234487} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.001.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.001.output index 79cf966..f512a45 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.001.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.001.output @@ -1,13 +1,13 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.05801510810852051} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.016702651977539062} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 5, 14, ..., 24987, 24992, 25000]), - col_indices=tensor([2155, 3530, 3567, ..., 2695, 4305, 4878]), - values=tensor([0.7077, 0.9384, 0.0254, ..., 0.2116, 0.4863, 0.3277]), +tensor(crow_indices=tensor([ 0, 4, 10, ..., 24993, 24996, 25000]), + col_indices=tensor([ 203, 3164, 3874, ..., 1660, 2575, 4898]), + values=tensor([0.2509, 0.0733, 0.7857, ..., 0.9782, 0.1584, 0.7182]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.5025, 0.8306, 0.5455, ..., 0.1180, 0.7485, 0.4884]) +tensor([0.6754, 0.2035, 0.5445, ..., 0.8964, 0.5875, 0.7630]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -15,18 +15,18 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 0.05801510810852051 seconds +Time: 0.016702651977539062 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '180987', '-ss', '5000', '-sd', '0.001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 7.7333667278289795} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '62864', '-ss', '5000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 2.6676299571990967} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 9, ..., 24993, 24997, 25000]), - col_indices=tensor([ 162, 480, 815, ..., 2232, 2732, 2847]), - values=tensor([0.8302, 0.2791, 0.7518, ..., 0.7674, 0.4968, 0.3066]), +tensor(crow_indices=tensor([ 0, 4, 7, ..., 24992, 24998, 25000]), + col_indices=tensor([1528, 1565, 2407, ..., 4843, 196, 1526]), + values=tensor([0.9615, 0.4377, 0.6921, ..., 0.0433, 0.3280, 0.0962]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.5831, 0.9483, 0.7910, ..., 0.0226, 0.1378, 0.9053]) +tensor([0.1897, 0.1898, 0.6419, ..., 0.9248, 0.4513, 0.5147]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -34,18 +34,18 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 7.7333667278289795 seconds +Time: 2.6676299571990967 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '245735', '-ss', '5000', '-sd', '0.001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.373013734817505} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '247437', '-ss', '5000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.32590627670288} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 5, 13, ..., 24990, 24995, 25000]), - col_indices=tensor([1389, 1769, 1783, ..., 2323, 3077, 3881]), - values=tensor([0.3893, 0.4927, 0.3928, ..., 0.2440, 0.9871, 0.0384]), +tensor(crow_indices=tensor([ 0, 9, 13, ..., 24992, 24996, 25000]), + col_indices=tensor([ 429, 548, 735, ..., 2923, 3331, 3611]), + values=tensor([0.1470, 0.7094, 0.7244, ..., 0.3013, 0.3840, 0.1701]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.3455, 0.7497, 0.7321, ..., 0.5403, 0.0178, 0.6295]) +tensor([0.0349, 0.9280, 0.8549, ..., 0.2131, 0.1223, 0.0130]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,15 +53,15 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 10.373013734817505 seconds +Time: 10.32590627670288 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 5, 13, ..., 24990, 24995, 25000]), - col_indices=tensor([1389, 1769, 1783, ..., 2323, 3077, 3881]), - values=tensor([0.3893, 0.4927, 0.3928, ..., 0.2440, 0.9871, 0.0384]), +tensor(crow_indices=tensor([ 0, 9, 13, ..., 24992, 24996, 25000]), + col_indices=tensor([ 429, 548, 735, ..., 2923, 3331, 3611]), + values=tensor([0.1470, 0.7094, 0.7244, ..., 0.3013, 0.3840, 0.1701]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.3455, 0.7497, 0.7321, ..., 0.5403, 0.0178, 0.6295]) +tensor([0.0349, 0.9280, 0.8549, ..., 0.2131, 0.1223, 0.0130]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -69,13 +69,13 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 10.373013734817505 seconds +Time: 10.32590627670288 seconds -[40.07, 38.96, 38.85, 38.93, 38.85, 39.21, 39.52, 38.55, 38.74, 38.71] -[98.11] -12.849897384643555 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 245735, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.373013734817505, 'TIME_S_1KI': 0.042212194985726516, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1260.703432407379, 'W': 98.11} -[40.07, 38.96, 38.85, 38.93, 38.85, 39.21, 39.52, 38.55, 38.74, 38.71, 40.05, 38.72, 38.65, 39.11, 38.9, 39.03, 39.06, 38.96, 38.91, 39.9] -702.3149999999999 -35.11575 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 245735, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.373013734817505, 'TIME_S_1KI': 0.042212194985726516, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1260.703432407379, 'W': 98.11, 'J_1KI': 5.130337283689255, 'W_1KI': 0.39925122591409445, 'W_D': 62.99425, 'J_D': 809.4696483225822, 'W_D_1KI': 0.2563503367448674, 'J_D_1KI': 0.0010431983101506395} +[40.5, 39.52, 39.15, 39.13, 39.57, 40.5, 39.17, 39.06, 39.52, 39.1] +[98.03] +12.586437702178955 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 247437, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.32590627670288, 'TIME_S_1KI': 0.04173145599365851, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1233.848487944603, 'W': 98.03} +[40.5, 39.52, 39.15, 39.13, 39.57, 40.5, 39.17, 39.06, 39.52, 39.1, 40.17, 39.6, 39.6, 39.15, 39.15, 39.05, 39.05, 39.08, 39.25, 39.15] +709.01 +35.4505 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 247437, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.32590627670288, 'TIME_S_1KI': 0.04173145599365851, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1233.848487944603, 'W': 98.03, 'J_1KI': 4.986515710846005, 'W_1KI': 0.39618165432008956, 'W_D': 62.5795, 'J_D': 787.6529781835079, 'W_D_1KI': 0.2529108419516887, 'J_D_1KI': 0.001022122164234487} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.01.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.01.json index 65befab..685c3bf 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.01.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.01.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 145666, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.058181524276733, "TIME_S_1KI": 0.06904961709854553, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1397.6345458984374, "W": 116.8, "J_1KI": 9.594789078428992, "W_1KI": 0.80183433333791, "W_D": 81.52975, "J_D": 975.5889993019105, "W_D_1KI": 0.5597033624867849, "J_D_1KI": 0.0038423747647823438} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 163068, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 11.72166895866394, "TIME_S_1KI": 0.07188209187985345, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1665.769057817459, "W": 116.82, "J_1KI": 10.215180524796153, "W_1KI": 0.7163882552064169, "W_D": 81.24949999999998, "J_D": 1158.5593482549189, "W_D_1KI": 0.4982553290651751, "J_D_1KI": 0.0030555064700933054} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.01.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.01.output index 930f25a..bc4d2ed 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.01.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.01.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.01', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.10852384567260742} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.02829742431640625} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 51, 93, ..., 249898, 249945, +tensor(crow_indices=tensor([ 0, 58, 108, ..., 249919, 249959, 250000]), - col_indices=tensor([ 121, 263, 268, ..., 4347, 4657, 4780]), - values=tensor([0.9155, 0.4457, 0.5767, ..., 0.8561, 0.2482, 0.9078]), + col_indices=tensor([ 73, 104, 551, ..., 4719, 4888, 4958]), + values=tensor([0.4939, 0.4915, 0.0888, ..., 0.3493, 0.1552, 0.1459]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.9909, 0.5337, 0.2877, ..., 0.9413, 0.4687, 0.7116]) +tensor([0.1377, 0.0837, 0.3150, ..., 0.5794, 0.8670, 0.3865]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,19 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 0.10852384567260742 seconds +Time: 0.02829742431640625 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '96752', '-ss', '5000', '-sd', '0.01', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 6.974123954772949} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '37105', '-ss', '5000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 2.3891899585723877} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 54, 108, ..., 249899, 249958, +tensor(crow_indices=tensor([ 0, 55, 99, ..., 249890, 249937, 250000]), - col_indices=tensor([ 30, 44, 230, ..., 4553, 4620, 4987]), - values=tensor([0.7207, 0.9659, 0.8009, ..., 0.1897, 0.2795, 0.9074]), + col_indices=tensor([ 6, 32, 44, ..., 4844, 4921, 4988]), + values=tensor([0.1281, 0.2469, 0.7745, ..., 0.0638, 0.9042, 0.9189]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.9275, 0.8053, 0.7107, ..., 0.1305, 0.9789, 0.9894]) +tensor([0.6302, 0.1474, 0.6987, ..., 0.1092, 0.0062, 0.2645]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -36,19 +36,19 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 6.974123954772949 seconds +Time: 2.3891899585723877 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '145666', '-ss', '5000', '-sd', '0.01', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.058181524276733} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '163068', '-ss', '5000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 11.72166895866394} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 49, 108, ..., 249901, 249948, +tensor(crow_indices=tensor([ 0, 45, 94, ..., 249900, 249951, 250000]), - col_indices=tensor([ 207, 226, 430, ..., 4797, 4906, 4947]), - values=tensor([0.9242, 0.6665, 0.8223, ..., 0.0998, 0.8618, 0.4766]), + col_indices=tensor([ 17, 114, 188, ..., 4806, 4921, 4968]), + values=tensor([0.1229, 0.8785, 0.6808, ..., 0.9268, 0.7326, 0.7148]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.6439, 0.4458, 0.8465, ..., 0.5021, 0.5940, 0.7614]) +tensor([0.4545, 0.7872, 0.8321, ..., 0.0206, 0.6423, 0.1627]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -56,16 +56,16 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 10.058181524276733 seconds +Time: 11.72166895866394 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 49, 108, ..., 249901, 249948, +tensor(crow_indices=tensor([ 0, 45, 94, ..., 249900, 249951, 250000]), - col_indices=tensor([ 207, 226, 430, ..., 4797, 4906, 4947]), - values=tensor([0.9242, 0.6665, 0.8223, ..., 0.0998, 0.8618, 0.4766]), + col_indices=tensor([ 17, 114, 188, ..., 4806, 4921, 4968]), + values=tensor([0.1229, 0.8785, 0.6808, ..., 0.9268, 0.7326, 0.7148]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.6439, 0.4458, 0.8465, ..., 0.5021, 0.5940, 0.7614]) +tensor([0.4545, 0.7872, 0.8321, ..., 0.0206, 0.6423, 0.1627]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -73,13 +73,13 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 10.058181524276733 seconds +Time: 11.72166895866394 seconds -[39.46, 38.8, 39.74, 39.98, 38.95, 39.2, 39.78, 38.76, 39.24, 38.86] -[116.8] -11.966049194335938 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 145666, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.058181524276733, 'TIME_S_1KI': 0.06904961709854553, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1397.6345458984374, 'W': 116.8} -[39.46, 38.8, 39.74, 39.98, 38.95, 39.2, 39.78, 38.76, 39.24, 38.86, 39.39, 39.72, 39.13, 38.67, 39.47, 39.2, 39.27, 38.58, 38.78, 38.56] -705.405 -35.27025 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 145666, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.058181524276733, 'TIME_S_1KI': 0.06904961709854553, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1397.6345458984374, 'W': 116.8, 'J_1KI': 9.594789078428992, 'W_1KI': 0.80183433333791, 'W_D': 81.52975, 'J_D': 975.5889993019105, 'W_D_1KI': 0.5597033624867849, 'J_D_1KI': 0.0038423747647823438} +[40.87, 39.29, 39.18, 39.72, 39.08, 39.54, 39.6, 39.54, 39.86, 39.27] +[116.82] +14.259279727935791 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 163068, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 11.72166895866394, 'TIME_S_1KI': 0.07188209187985345, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1665.769057817459, 'W': 116.82} +[40.87, 39.29, 39.18, 39.72, 39.08, 39.54, 39.6, 39.54, 39.86, 39.27, 40.71, 39.19, 39.43, 39.27, 39.46, 39.83, 39.54, 39.53, 39.37, 39.11] +711.4100000000001 +35.5705 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 163068, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 11.72166895866394, 'TIME_S_1KI': 0.07188209187985345, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1665.769057817459, 'W': 116.82, 'J_1KI': 10.215180524796153, 'W_1KI': 0.7163882552064169, 'W_D': 81.24949999999998, 'J_D': 1158.5593482549189, 'W_D_1KI': 0.4982553290651751, 'J_D_1KI': 0.0030555064700933054} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.05.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.05.json index 11bcfb3..022fbf8 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.05.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.05.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 92460, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.897745609283447, "TIME_S_1KI": 0.1178644344503942, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1737.196626586914, "W": 132.16, "J_1KI": 18.788628883700127, "W_1KI": 1.4293748648064026, "W_D": 96.69825, "J_D": 1271.0644196190835, "W_D_1KI": 1.0458387410772227, "J_D_1KI": 0.011311256122401284} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 90395, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.401180028915405, "TIME_S_1KI": 0.11506366534559882, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1713.355565071106, "W": 132.0, "J_1KI": 18.954096632237466, "W_1KI": 1.4602577576193374, "W_D": 96.25175, "J_D": 1249.344481138885, "W_D_1KI": 1.0647906410752808, "J_D_1KI": 0.011779309044474592} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.05.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.05.output index f6c9fdd..6ede2ab 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.05.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.05.output @@ -1,34 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 0.15929031372070312} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 0.03801298141479492} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 260, 503, ..., 1249486, - 1249755, 1250000]), - col_indices=tensor([ 4, 17, 88, ..., 4971, 4985, 4987]), - values=tensor([0.6362, 0.8148, 0.9153, ..., 0.4566, 0.5649, 0.0413]), - size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.3069, 0.3781, 0.2833, ..., 0.0090, 0.7599, 0.7166]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([5000, 5000]) -Rows: 5000 -Size: 25000000 -NNZ: 1250000 -Density: 0.05 -Time: 0.15929031372070312 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '65917', '-ss', '5000', '-sd', '0.05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 7.485628128051758} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 243, 508, ..., 1249492, +tensor(crow_indices=tensor([ 0, 279, 546, ..., 1249528, 1249760, 1250000]), - col_indices=tensor([ 22, 30, 57, ..., 4895, 4917, 4934]), - values=tensor([0.3367, 0.7320, 0.6215, ..., 0.3721, 0.4144, 0.7665]), + col_indices=tensor([ 17, 21, 26, ..., 4944, 4980, 4991]), + values=tensor([0.9138, 0.1459, 0.7159, ..., 0.0773, 0.4834, 0.3377]), size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.8371, 0.0930, 0.7011, ..., 0.7680, 0.1649, 0.0938]) +tensor([0.0568, 0.1587, 0.8688, ..., 0.8476, 0.8640, 0.6593]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -36,19 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 1250000 Density: 0.05 -Time: 7.485628128051758 seconds +Time: 0.03801298141479492 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '92460', '-ss', '5000', '-sd', '0.05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.897745609283447} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '27622', '-ss', '5000', '-sd', '0.05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 3.2084648609161377} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 258, 501, ..., 1249501, - 1249766, 1250000]), - col_indices=tensor([ 3, 26, 36, ..., 4973, 4974, 4975]), - values=tensor([0.1574, 0.4230, 0.3584, ..., 0.2058, 0.0488, 0.1761]), +tensor(crow_indices=tensor([ 0, 251, 530, ..., 1249473, + 1249739, 1250000]), + col_indices=tensor([ 53, 63, 72, ..., 4941, 4984, 4995]), + values=tensor([0.4190, 0.6332, 0.1682, ..., 0.1102, 0.0295, 0.1696]), size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.1704, 0.2409, 0.1947, ..., 0.5321, 0.6051, 0.5827]) +tensor([0.4081, 0.8253, 0.9060, ..., 0.4379, 0.8960, 0.7193]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -56,16 +36,19 @@ Rows: 5000 Size: 25000000 NNZ: 1250000 Density: 0.05 -Time: 10.897745609283447 seconds +Time: 3.2084648609161377 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '90395', '-ss', '5000', '-sd', '0.05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.401180028915405} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 258, 501, ..., 1249501, - 1249766, 1250000]), - col_indices=tensor([ 3, 26, 36, ..., 4973, 4974, 4975]), - values=tensor([0.1574, 0.4230, 0.3584, ..., 0.2058, 0.0488, 0.1761]), +tensor(crow_indices=tensor([ 0, 225, 477, ..., 1249532, + 1249754, 1250000]), + col_indices=tensor([ 0, 4, 16, ..., 4911, 4963, 4980]), + values=tensor([0.5027, 0.8615, 0.8405, ..., 0.5051, 0.1395, 0.2376]), size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.1704, 0.2409, 0.1947, ..., 0.5321, 0.6051, 0.5827]) +tensor([0.7929, 0.2058, 0.1103, ..., 0.0989, 0.8674, 0.8642]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -73,13 +56,30 @@ Rows: 5000 Size: 25000000 NNZ: 1250000 Density: 0.05 -Time: 10.897745609283447 seconds +Time: 10.401180028915405 seconds -[39.99, 38.92, 38.9, 38.99, 39.15, 39.51, 39.42, 41.37, 39.31, 39.41] -[132.16] -13.144647598266602 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 92460, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.897745609283447, 'TIME_S_1KI': 0.1178644344503942, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1737.196626586914, 'W': 132.16} -[39.99, 38.92, 38.9, 38.99, 39.15, 39.51, 39.42, 41.37, 39.31, 39.41, 40.8, 39.06, 39.17, 39.04, 39.15, 39.09, 39.05, 39.4, 39.89, 39.43] -709.2349999999999 -35.461749999999995 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 92460, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.897745609283447, 'TIME_S_1KI': 0.1178644344503942, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1737.196626586914, 'W': 132.16, 'J_1KI': 18.788628883700127, 'W_1KI': 1.4293748648064026, 'W_D': 96.69825, 'J_D': 1271.0644196190835, 'W_D_1KI': 1.0458387410772227, 'J_D_1KI': 0.011311256122401284} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 225, 477, ..., 1249532, + 1249754, 1250000]), + col_indices=tensor([ 0, 4, 16, ..., 4911, 4963, 4980]), + values=tensor([0.5027, 0.8615, 0.8405, ..., 0.5051, 0.1395, 0.2376]), + size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.7929, 0.2058, 0.1103, ..., 0.0989, 0.8674, 0.8642]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 1250000 +Density: 0.05 +Time: 10.401180028915405 seconds + +[40.46, 40.0, 39.58, 39.65, 39.39, 39.96, 39.38, 39.29, 39.31, 39.34] +[132.0] +12.979966402053833 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 90395, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.401180028915405, 'TIME_S_1KI': 0.11506366534559882, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1713.355565071106, 'W': 132.0} +[40.46, 40.0, 39.58, 39.65, 39.39, 39.96, 39.38, 39.29, 39.31, 39.34, 40.66, 39.72, 41.06, 39.66, 39.37, 39.71, 39.69, 39.36, 39.44, 40.33] +714.9649999999999 +35.74825 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 90395, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.401180028915405, 'TIME_S_1KI': 0.11506366534559882, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1713.355565071106, 'W': 132.0, 'J_1KI': 18.954096632237466, 'W_1KI': 1.4602577576193374, 'W_D': 96.25175, 'J_D': 1249.344481138885, 'W_D_1KI': 1.0647906410752808, 'J_D_1KI': 0.011779309044474592} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.1.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.1.json index 0b5b4c3..28b4bfb 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.1.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.1.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 53552, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.574474811553955, "TIME_S_1KI": 0.19746180929851276, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1844.3806961250305, "W": 137.23, "J_1KI": 34.44093023836702, "W_1KI": 2.562556020316701, "W_D": 101.71924999999999, "J_D": 1367.113758830547, "W_D_1KI": 1.8994481998804897, "J_D_1KI": 0.03546922990514808} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 52843, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.472357749938965, "TIME_S_1KI": 0.19817871335728413, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1834.1895242333412, "W": 138.65, "J_1KI": 34.710170206713116, "W_1KI": 2.623810154608936, "W_D": 102.62450000000001, "J_D": 1357.611127513051, "W_D_1KI": 1.9420642279961398, "J_D_1KI": 0.036751589198117815} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.1.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.1.output index ab97b45..05a194a 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.1.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.1.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.1', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 0.24988102912902832} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.1', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 0.05003714561462402} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 499, 1048, ..., 2499022, - 2499519, 2500000]), - col_indices=tensor([ 0, 10, 32, ..., 4963, 4977, 4991]), - values=tensor([0.6726, 0.1161, 0.9278, ..., 0.2840, 0.7697, 0.2554]), +tensor(crow_indices=tensor([ 0, 498, 977, ..., 2499006, + 2499489, 2500000]), + col_indices=tensor([ 2, 20, 22, ..., 4935, 4945, 4946]), + values=tensor([0.7520, 0.3359, 0.1395, ..., 0.8155, 0.8337, 0.5892]), size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.1233, 0.5107, 0.9675, ..., 0.9055, 0.5032, 0.4140]) +tensor([0.3287, 0.7670, 0.4633, ..., 0.8662, 0.8996, 0.4236]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,19 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 2500000 Density: 0.1 -Time: 0.24988102912902832 seconds +Time: 0.05003714561462402 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '42019', '-ss', '5000', '-sd', '0.1', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 8.238577604293823} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '20984', '-ss', '5000', '-sd', '0.1', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 4.169527769088745} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 520, 1002, ..., 2498984, - 2499504, 2500000]), - col_indices=tensor([ 4, 20, 21, ..., 4945, 4966, 4991]), - values=tensor([0.6805, 0.1607, 0.7488, ..., 0.5436, 0.2045, 0.6809]), +tensor(crow_indices=tensor([ 0, 527, 1017, ..., 2498957, + 2499469, 2500000]), + col_indices=tensor([ 0, 2, 46, ..., 4971, 4981, 4983]), + values=tensor([0.4264, 0.7891, 0.1289, ..., 0.9402, 0.9265, 0.8274]), size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.8501, 0.5629, 0.1238, ..., 0.7287, 0.6927, 0.0708]) +tensor([0.1592, 0.0229, 0.7345, ..., 0.9022, 0.9396, 0.4003]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -36,19 +36,19 @@ Rows: 5000 Size: 25000000 NNZ: 2500000 Density: 0.1 -Time: 8.238577604293823 seconds +Time: 4.169527769088745 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '53552', '-ss', '5000', '-sd', '0.1', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.574474811553955} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '52843', '-ss', '5000', '-sd', '0.1', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.472357749938965} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 495, 1006, ..., 2499053, - 2499503, 2500000]), - col_indices=tensor([ 5, 23, 39, ..., 4985, 4986, 4988]), - values=tensor([0.9333, 0.4318, 0.5588, ..., 0.9224, 0.9203, 0.9677]), +tensor(crow_indices=tensor([ 0, 536, 1043, ..., 2499033, + 2499531, 2500000]), + col_indices=tensor([ 2, 4, 9, ..., 4990, 4992, 4998]), + values=tensor([0.3950, 0.1857, 0.2386, ..., 0.4312, 0.4990, 0.5416]), size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.4521, 0.6662, 0.5969, ..., 0.4716, 0.4029, 0.2909]) +tensor([0.5233, 0.3838, 0.2090, ..., 0.9440, 0.1891, 0.8384]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -56,16 +56,16 @@ Rows: 5000 Size: 25000000 NNZ: 2500000 Density: 0.1 -Time: 10.574474811553955 seconds +Time: 10.472357749938965 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 495, 1006, ..., 2499053, - 2499503, 2500000]), - col_indices=tensor([ 5, 23, 39, ..., 4985, 4986, 4988]), - values=tensor([0.9333, 0.4318, 0.5588, ..., 0.9224, 0.9203, 0.9677]), +tensor(crow_indices=tensor([ 0, 536, 1043, ..., 2499033, + 2499531, 2500000]), + col_indices=tensor([ 2, 4, 9, ..., 4990, 4992, 4998]), + values=tensor([0.3950, 0.1857, 0.2386, ..., 0.4312, 0.4990, 0.5416]), size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.4521, 0.6662, 0.5969, ..., 0.4716, 0.4029, 0.2909]) +tensor([0.5233, 0.3838, 0.2090, ..., 0.9440, 0.1891, 0.8384]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -73,13 +73,13 @@ Rows: 5000 Size: 25000000 NNZ: 2500000 Density: 0.1 -Time: 10.574474811553955 seconds +Time: 10.472357749938965 seconds -[40.03, 39.26, 39.99, 39.12, 39.6, 39.27, 39.21, 40.1, 39.2, 39.55] -[137.23] -13.440069198608398 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 53552, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.574474811553955, 'TIME_S_1KI': 0.19746180929851276, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1844.3806961250305, 'W': 137.23} -[40.03, 39.26, 39.99, 39.12, 39.6, 39.27, 39.21, 40.1, 39.2, 39.55, 39.94, 39.28, 39.24, 39.36, 39.26, 39.73, 39.25, 39.64, 39.4, 39.09] -710.2149999999999 -35.510749999999994 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 53552, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.574474811553955, 'TIME_S_1KI': 0.19746180929851276, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1844.3806961250305, 'W': 137.23, 'J_1KI': 34.44093023836702, 'W_1KI': 2.562556020316701, 'W_D': 101.71924999999999, 'J_D': 1367.113758830547, 'W_D_1KI': 1.8994481998804897, 'J_D_1KI': 0.03546922990514808} +[40.4, 39.54, 40.0, 39.38, 39.54, 39.86, 39.47, 40.22, 39.37, 39.4] +[138.65] +13.228918313980103 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 52843, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.472357749938965, 'TIME_S_1KI': 0.19817871335728413, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1834.1895242333412, 'W': 138.65} +[40.4, 39.54, 40.0, 39.38, 39.54, 39.86, 39.47, 40.22, 39.37, 39.4, 41.49, 40.09, 39.59, 39.6, 39.65, 39.39, 39.42, 39.69, 45.2, 39.71] +720.51 +36.0255 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 52843, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.472357749938965, 'TIME_S_1KI': 0.19817871335728413, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1834.1895242333412, 'W': 138.65, 'J_1KI': 34.710170206713116, 'W_1KI': 2.623810154608936, 'W_D': 102.62450000000001, 'J_D': 1357.611127513051, 'W_D_1KI': 1.9420642279961398, 'J_D_1KI': 0.036751589198117815} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.2.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.2.json index 3628bb4..3a471cf 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.2.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.2.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 28750, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.407469034194946, "TIME_S_1KI": 0.3619989229285199, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1928.9614020395277, "W": 139.14, "J_1KI": 67.09430963615748, "W_1KI": 4.839652173913042, "W_D": 103.18299999999998, "J_D": 1430.47307996726, "W_D_1KI": 3.588973913043478, "J_D_1KI": 0.12483387523629487} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 28798, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.444172620773315, "TIME_S_1KI": 0.36267006808713503, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1937.146224603653, "W": 139.06, "J_1KI": 67.26669298575086, "W_1KI": 4.8288075560802834, "W_D": 102.9745, "J_D": 1434.4647195847035, "W_D_1KI": 3.5757517883186334, "J_D_1KI": 0.12416667089098664} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.2.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.2.output index de85415..fd0984f 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.2.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.2.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.2', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 0.43890881538391113} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.2', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 0.06763482093811035} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1013, 1983, ..., 4997973, - 4999012, 5000000]), - col_indices=tensor([ 4, 12, 14, ..., 4994, 4995, 4999]), - values=tensor([0.7248, 0.5151, 0.3464, ..., 0.0289, 0.6444, 0.6982]), +tensor(crow_indices=tensor([ 0, 956, 1961, ..., 4997943, + 4998975, 5000000]), + col_indices=tensor([ 6, 18, 19, ..., 4986, 4993, 4998]), + values=tensor([0.4638, 0.8169, 0.7421, ..., 0.5926, 0.1207, 0.0279]), size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.8578, 0.9750, 0.0786, ..., 0.8483, 0.5183, 0.1076]) +tensor([0.1902, 0.8341, 0.1608, ..., 0.1172, 0.3175, 0.0262]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,19 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 5000000 Density: 0.2 -Time: 0.43890881538391113 seconds +Time: 0.06763482093811035 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '23922', '-ss', '5000', '-sd', '0.2', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 8.73651671409607} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '15524', '-ss', '5000', '-sd', '0.2', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 5.659992933273315} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1001, 1993, ..., 4997975, - 4998974, 5000000]), - col_indices=tensor([ 0, 6, 7, ..., 4986, 4993, 4997]), - values=tensor([0.9981, 0.9465, 0.8571, ..., 0.5801, 0.6800, 0.5830]), +tensor(crow_indices=tensor([ 0, 987, 2000, ..., 4998018, + 4999001, 5000000]), + col_indices=tensor([ 4, 16, 17, ..., 4983, 4988, 4998]), + values=tensor([0.3168, 0.3066, 0.1113, ..., 0.0328, 0.5136, 0.1275]), size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.7841, 0.9192, 0.6592, ..., 0.6410, 0.6781, 0.3236]) +tensor([0.9704, 0.5285, 0.3815, ..., 0.6149, 0.3291, 0.1983]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -36,19 +36,19 @@ Rows: 5000 Size: 25000000 NNZ: 5000000 Density: 0.2 -Time: 8.73651671409607 seconds +Time: 5.659992933273315 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '28750', '-ss', '5000', '-sd', '0.2', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.407469034194946} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '28798', '-ss', '5000', '-sd', '0.2', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.444172620773315} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 962, 2002, ..., 4997962, - 4998964, 5000000]), - col_indices=tensor([ 3, 4, 7, ..., 4990, 4997, 4999]), - values=tensor([0.7874, 0.2567, 0.8616, ..., 0.3490, 0.8581, 0.1320]), +tensor(crow_indices=tensor([ 0, 1005, 2014, ..., 4998103, + 4999056, 5000000]), + col_indices=tensor([ 4, 9, 14, ..., 4980, 4983, 4993]), + values=tensor([0.7293, 0.3445, 0.3834, ..., 0.7374, 0.4715, 0.7945]), size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.5757, 0.3666, 0.5675, ..., 0.4574, 0.0199, 0.8861]) +tensor([0.9531, 0.9906, 0.0327, ..., 0.2819, 0.9884, 0.0185]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -56,16 +56,16 @@ Rows: 5000 Size: 25000000 NNZ: 5000000 Density: 0.2 -Time: 10.407469034194946 seconds +Time: 10.444172620773315 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 962, 2002, ..., 4997962, - 4998964, 5000000]), - col_indices=tensor([ 3, 4, 7, ..., 4990, 4997, 4999]), - values=tensor([0.7874, 0.2567, 0.8616, ..., 0.3490, 0.8581, 0.1320]), +tensor(crow_indices=tensor([ 0, 1005, 2014, ..., 4998103, + 4999056, 5000000]), + col_indices=tensor([ 4, 9, 14, ..., 4980, 4983, 4993]), + values=tensor([0.7293, 0.3445, 0.3834, ..., 0.7374, 0.4715, 0.7945]), size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.5757, 0.3666, 0.5675, ..., 0.4574, 0.0199, 0.8861]) +tensor([0.9531, 0.9906, 0.0327, ..., 0.2819, 0.9884, 0.0185]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -73,13 +73,13 @@ Rows: 5000 Size: 25000000 NNZ: 5000000 Density: 0.2 -Time: 10.407469034194946 seconds +Time: 10.444172620773315 seconds -[40.02, 39.78, 39.89, 39.91, 39.49, 39.87, 40.34, 39.56, 39.63, 39.54] -[139.14] -13.863456964492798 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 28750, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.407469034194946, 'TIME_S_1KI': 0.3619989229285199, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1928.9614020395277, 'W': 139.14} -[40.02, 39.78, 39.89, 39.91, 39.49, 39.87, 40.34, 39.56, 39.63, 39.54, 42.22, 40.02, 39.42, 39.79, 40.33, 39.7, 39.95, 40.8, 39.86, 39.82] -719.1400000000001 -35.95700000000001 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 28750, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.407469034194946, 'TIME_S_1KI': 0.3619989229285199, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1928.9614020395277, 'W': 139.14, 'J_1KI': 67.09430963615748, 'W_1KI': 4.839652173913042, 'W_D': 103.18299999999998, 'J_D': 1430.47307996726, 'W_D_1KI': 3.588973913043478, 'J_D_1KI': 0.12483387523629487} +[40.89, 39.68, 39.94, 39.87, 39.8, 39.94, 40.85, 40.96, 39.65, 40.01] +[139.06] +13.930290699005127 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 28798, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.444172620773315, 'TIME_S_1KI': 0.36267006808713503, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1937.146224603653, 'W': 139.06} +[40.89, 39.68, 39.94, 39.87, 39.8, 39.94, 40.85, 40.96, 39.65, 40.01, 41.32, 40.08, 40.09, 40.7, 40.16, 39.61, 39.76, 39.88, 39.81, 39.64] +721.71 +36.0855 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 28798, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.444172620773315, 'TIME_S_1KI': 0.36267006808713503, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1937.146224603653, 'W': 139.06, 'J_1KI': 67.26669298575086, 'W_1KI': 4.8288075560802834, 'W_D': 102.9745, 'J_D': 1434.4647195847035, 'W_D_1KI': 3.5757517883186334, 'J_D_1KI': 0.12416667089098664} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.3.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.3.json index b67d5e2..6f0dd43 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.3.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.3.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 18993, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.31110143661499, "TIME_S_1KI": 0.5428895612391402, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1973.4541555023193, "W": 138.56, "J_1KI": 103.90428871175271, "W_1KI": 7.295319328173537, "W_D": 102.64975000000001, "J_D": 1461.9989585650565, "W_D_1KI": 5.404609593007951, "J_D_1KI": 0.2845579736222793} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 18401, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.148674011230469, "TIME_S_1KI": 0.5515283958062317, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1912.232966468334, "W": 137.63, "J_1KI": 103.92005687018825, "W_1KI": 7.479484810608119, "W_D": 101.70774999999999, "J_D": 1413.1287691296934, "W_D_1KI": 5.5272947122439, "J_D_1KI": 0.3003801267454975} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.3.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.3.output index 95ac928..60a702d 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.3.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.3.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.3', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 0.6186671257019043} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.3', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 0.093505859375} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1447, 2956, ..., 7496936, - 7498490, 7500000]), - col_indices=tensor([ 4, 5, 6, ..., 4990, 4991, 4998]), - values=tensor([0.3748, 0.3720, 0.6580, ..., 0.1069, 0.0058, 0.6452]), +tensor(crow_indices=tensor([ 0, 1476, 2946, ..., 7497092, + 7498499, 7500000]), + col_indices=tensor([ 3, 4, 9, ..., 4993, 4995, 4998]), + values=tensor([0.7692, 0.9577, 0.6421, ..., 0.4974, 0.8037, 0.4799]), size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) -tensor([0.1517, 0.2007, 0.5208, ..., 0.9824, 0.7905, 0.4002]) +tensor([0.8552, 0.1634, 0.3191, ..., 0.0243, 0.9305, 0.7580]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,19 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 7500000 Density: 0.3 -Time: 0.6186671257019043 seconds +Time: 0.093505859375 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '16971', '-ss', '5000', '-sd', '0.3', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 9.381728649139404} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '11229', '-ss', '5000', '-sd', '0.3', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 6.407301664352417} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1500, 3040, ..., 7497021, - 7498445, 7500000]), - col_indices=tensor([ 1, 5, 9, ..., 4989, 4995, 4997]), - values=tensor([0.5527, 0.4050, 0.9810, ..., 0.2200, 0.7595, 0.4370]), +tensor(crow_indices=tensor([ 0, 1491, 2991, ..., 7496987, + 7498491, 7500000]), + col_indices=tensor([ 6, 7, 10, ..., 4987, 4988, 4999]), + values=tensor([0.9932, 0.6823, 0.0941, ..., 0.3170, 0.1700, 0.5277]), size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) -tensor([0.0260, 0.1554, 0.7193, ..., 0.7760, 0.7155, 0.7186]) +tensor([0.7857, 0.3541, 0.7153, ..., 0.0858, 0.7918, 0.2952]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -36,19 +36,19 @@ Rows: 5000 Size: 25000000 NNZ: 7500000 Density: 0.3 -Time: 9.381728649139404 seconds +Time: 6.407301664352417 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '18993', '-ss', '5000', '-sd', '0.3', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.31110143661499} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '18401', '-ss', '5000', '-sd', '0.3', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.148674011230469} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1505, 3034, ..., 7497030, - 7498523, 7500000]), - col_indices=tensor([ 3, 4, 6, ..., 4987, 4992, 4993]), - values=tensor([0.4621, 0.5996, 0.9420, ..., 0.5197, 0.1170, 0.3387]), +tensor(crow_indices=tensor([ 0, 1524, 2999, ..., 7496978, + 7498500, 7500000]), + col_indices=tensor([ 0, 1, 3, ..., 4975, 4979, 4999]), + values=tensor([0.7847, 0.2112, 0.1435, ..., 0.9949, 0.2225, 0.8434]), size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) -tensor([0.7133, 0.0520, 0.6752, ..., 0.8724, 0.9726, 0.0718]) +tensor([0.9436, 0.7820, 0.2976, ..., 0.7279, 0.8012, 0.5089]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -56,16 +56,16 @@ Rows: 5000 Size: 25000000 NNZ: 7500000 Density: 0.3 -Time: 10.31110143661499 seconds +Time: 10.148674011230469 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1505, 3034, ..., 7497030, - 7498523, 7500000]), - col_indices=tensor([ 3, 4, 6, ..., 4987, 4992, 4993]), - values=tensor([0.4621, 0.5996, 0.9420, ..., 0.5197, 0.1170, 0.3387]), +tensor(crow_indices=tensor([ 0, 1524, 2999, ..., 7496978, + 7498500, 7500000]), + col_indices=tensor([ 0, 1, 3, ..., 4975, 4979, 4999]), + values=tensor([0.7847, 0.2112, 0.1435, ..., 0.9949, 0.2225, 0.8434]), size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) -tensor([0.7133, 0.0520, 0.6752, ..., 0.8724, 0.9726, 0.0718]) +tensor([0.9436, 0.7820, 0.2976, ..., 0.7279, 0.8012, 0.5089]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -73,13 +73,13 @@ Rows: 5000 Size: 25000000 NNZ: 7500000 Density: 0.3 -Time: 10.31110143661499 seconds +Time: 10.148674011230469 seconds -[41.45, 39.54, 41.3, 40.23, 39.52, 39.85, 39.55, 39.54, 39.68, 39.47] -[138.56] -14.24259638786316 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 18993, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.31110143661499, 'TIME_S_1KI': 0.5428895612391402, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1973.4541555023193, 'W': 138.56} -[41.45, 39.54, 41.3, 40.23, 39.52, 39.85, 39.55, 39.54, 39.68, 39.47, 40.91, 39.98, 39.59, 39.45, 39.99, 39.93, 40.26, 39.5, 39.6, 39.56] -718.2049999999999 -35.91025 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 18993, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.31110143661499, 'TIME_S_1KI': 0.5428895612391402, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1973.4541555023193, 'W': 138.56, 'J_1KI': 103.90428871175271, 'W_1KI': 7.295319328173537, 'W_D': 102.64975000000001, 'J_D': 1461.9989585650565, 'W_D_1KI': 5.404609593007951, 'J_D_1KI': 0.2845579736222793} +[40.88, 40.15, 40.48, 39.7, 39.9, 39.72, 39.73, 39.77, 39.68, 39.5] +[137.63] +13.894012689590454 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 18401, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.148674011230469, 'TIME_S_1KI': 0.5515283958062317, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1912.232966468334, 'W': 137.63} +[40.88, 40.15, 40.48, 39.7, 39.9, 39.72, 39.73, 39.77, 39.68, 39.5, 40.73, 39.74, 41.44, 39.63, 39.52, 39.59, 39.98, 39.43, 39.67, 39.52] +718.445 +35.922250000000005 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 18401, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.148674011230469, 'TIME_S_1KI': 0.5515283958062317, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1912.232966468334, 'W': 137.63, 'J_1KI': 103.92005687018825, 'W_1KI': 7.479484810608119, 'W_D': 101.70774999999999, 'J_D': 1413.1287691296934, 'W_D_1KI': 5.5272947122439, 'J_D_1KI': 0.3003801267454975} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.4.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.4.json new file mode 100644 index 0000000..b33500c --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.4.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 4623, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.4, "TIME_S": 10.869210720062256, "TIME_S_1KI": 2.3511163140952314, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1715.391318473816, "W": 123.94000000000001, "J_1KI": 371.0558768059303, "W_1KI": 26.809431105342853, "W_D": 87.73350000000002, "J_D": 1214.2753287019732, "W_D_1KI": 18.977611940298512, "J_D_1KI": 4.105042600107833} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.4.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.4.output new file mode 100644 index 0000000..915d5a7 --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.4.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.4', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.4, "TIME_S": 0.2556135654449463} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2026, 4021, ..., 9995990, + 9997978, 10000000]), + col_indices=tensor([ 1, 6, 9, ..., 4991, 4993, 4997]), + values=tensor([0.3323, 0.6585, 0.3485, ..., 0.6316, 0.2886, 0.7495]), + size=(5000, 5000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.3914, 0.7431, 0.0627, ..., 0.4218, 0.6007, 0.5832]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 10000000 +Density: 0.4 +Time: 0.2556135654449463 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '4107', '-ss', '5000', '-sd', '0.4', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.4, "TIME_S": 9.327423810958862} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2032, 4046, ..., 9995943, + 9997941, 10000000]), + col_indices=tensor([ 1, 2, 4, ..., 4988, 4990, 4991]), + values=tensor([0.7887, 0.1218, 0.0752, ..., 0.7697, 0.6176, 0.4928]), + size=(5000, 5000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.3655, 0.9637, 0.0803, ..., 0.0942, 0.4831, 0.3974]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 10000000 +Density: 0.4 +Time: 9.327423810958862 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '4623', '-ss', '5000', '-sd', '0.4', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.4, "TIME_S": 10.869210720062256} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2080, 4074, ..., 9996120, + 9998055, 10000000]), + col_indices=tensor([ 0, 1, 3, ..., 4988, 4989, 4998]), + values=tensor([0.8721, 0.2802, 0.5674, ..., 0.7807, 0.4474, 0.7441]), + size=(5000, 5000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.9197, 0.0161, 0.2580, ..., 0.5344, 0.2373, 0.6957]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 10000000 +Density: 0.4 +Time: 10.869210720062256 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2080, 4074, ..., 9996120, + 9998055, 10000000]), + col_indices=tensor([ 0, 1, 3, ..., 4988, 4989, 4998]), + values=tensor([0.8721, 0.2802, 0.5674, ..., 0.7807, 0.4474, 0.7441]), + size=(5000, 5000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.9197, 0.0161, 0.2580, ..., 0.5344, 0.2373, 0.6957]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 10000000 +Density: 0.4 +Time: 10.869210720062256 seconds + +[40.45, 40.3, 45.54, 40.13, 39.83, 39.68, 39.66, 40.04, 39.63, 41.25] +[123.94] +13.840497970581055 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4623, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.4, 'TIME_S': 10.869210720062256, 'TIME_S_1KI': 2.3511163140952314, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1715.391318473816, 'W': 123.94000000000001} +[40.45, 40.3, 45.54, 40.13, 39.83, 39.68, 39.66, 40.04, 39.63, 41.25, 41.52, 40.34, 39.67, 39.9, 39.74, 39.58, 39.63, 39.49, 39.57, 39.58] +724.1299999999999 +36.20649999999999 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 4623, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.4, 'TIME_S': 10.869210720062256, 'TIME_S_1KI': 2.3511163140952314, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1715.391318473816, 'W': 123.94000000000001, 'J_1KI': 371.0558768059303, 'W_1KI': 26.809431105342853, 'W_D': 87.73350000000002, 'J_D': 1214.2753287019732, 'W_D_1KI': 18.977611940298512, 'J_D_1KI': 4.105042600107833} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.5.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.5.json new file mode 100644 index 0000000..ef8b561 --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.5.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 3775, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 11.108771324157715, "TIME_S_1KI": 2.94272088057158, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1948.3000312638283, "W": 122.57, "J_1KI": 516.1059685467094, "W_1KI": 32.46887417218543, "W_D": 86.1335, "J_D": 1369.1270355132817, "W_D_1KI": 22.816821192052977, "J_D_1KI": 6.044191044252445} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.5.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.5.output new file mode 100644 index 0000000..05d0f73 --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_0.5.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.5', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 0.2961087226867676} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2490, 4975, ..., 12494955, + 12497491, 12500000]), + col_indices=tensor([ 0, 1, 2, ..., 4994, 4996, 4998]), + values=tensor([0.9230, 0.7404, 0.0716, ..., 0.8209, 0.3183, 0.8676]), + size=(5000, 5000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.4086, 0.9880, 0.1016, ..., 0.8907, 0.8066, 0.6446]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 12500000 +Density: 0.5 +Time: 0.2961087226867676 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '3545', '-ss', '5000', '-sd', '0.5', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 9.858964443206787} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2500, 5017, ..., 12494975, + 12497542, 12500000]), + col_indices=tensor([ 0, 1, 2, ..., 4994, 4997, 4999]), + values=tensor([0.5138, 0.3202, 0.6371, ..., 0.0572, 0.7854, 0.0609]), + size=(5000, 5000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.5537, 0.0044, 0.4461, ..., 0.4637, 0.2205, 0.0434]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 12500000 +Density: 0.5 +Time: 9.858964443206787 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '3775', '-ss', '5000', '-sd', '0.5', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 11.108771324157715} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2457, 4970, ..., 12495118, + 12497586, 12500000]), + col_indices=tensor([ 0, 5, 6, ..., 4996, 4997, 4999]), + values=tensor([0.5982, 0.0244, 0.5821, ..., 0.2791, 0.2569, 0.9852]), + size=(5000, 5000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.1130, 0.4034, 0.5297, ..., 0.0598, 0.7079, 0.8853]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 12500000 +Density: 0.5 +Time: 11.108771324157715 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2457, 4970, ..., 12495118, + 12497586, 12500000]), + col_indices=tensor([ 0, 5, 6, ..., 4996, 4997, 4999]), + values=tensor([0.5982, 0.0244, 0.5821, ..., 0.2791, 0.2569, 0.9852]), + size=(5000, 5000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.1130, 0.4034, 0.5297, ..., 0.0598, 0.7079, 0.8853]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 12500000 +Density: 0.5 +Time: 11.108771324157715 seconds + +[40.6, 40.02, 45.54, 40.47, 40.31, 40.18, 40.34, 40.25, 40.23, 39.68] +[122.57] +15.89540696144104 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3775, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.5, 'TIME_S': 11.108771324157715, 'TIME_S_1KI': 2.94272088057158, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1948.3000312638283, 'W': 122.57} +[40.6, 40.02, 45.54, 40.47, 40.31, 40.18, 40.34, 40.25, 40.23, 39.68, 40.3, 40.16, 40.89, 40.3, 40.11, 40.08, 40.03, 39.96, 39.79, 39.56] +728.73 +36.4365 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 3775, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.5, 'TIME_S': 11.108771324157715, 'TIME_S_1KI': 2.94272088057158, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1948.3000312638283, 'W': 122.57, 'J_1KI': 516.1059685467094, 'W_1KI': 32.46887417218543, 'W_D': 86.1335, 'J_D': 1369.1270355132817, 'W_D_1KI': 22.816821192052977, 'J_D_1KI': 6.044191044252445} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_1e-05.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_1e-05.json index f4429df..aad5720 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_1e-05.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_1e-05.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 491380, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.363765478134155, "TIME_S_1KI": 0.021091142248634776, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1327.781383190155, "W": 95.12, "J_1KI": 2.7021477943549903, "W_1KI": 0.1935772721722496, "W_D": 60.282000000000004, "J_D": 841.4772638926506, "W_D_1KI": 0.12267898571370427, "J_D_1KI": 0.00024966214683891136} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 475914, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.308423519134521, "TIME_S_1KI": 0.021660265340239036, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1189.9414702892302, "W": 94.85, "J_1KI": 2.5003287784961783, "W_1KI": 0.19930071399454524, "W_D": 59.248999999999995, "J_D": 743.3088262853622, "W_D_1KI": 0.12449518190261265, "J_D_1KI": 0.000261591762172604} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_1e-05.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_1e-05.output index 5c32150..c0883dc 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_1e-05.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_1e-05.output @@ -1,75 +1,75 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.0375218391418457} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.04127812385559082} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([4395, 1896, 1016, 4725, 4287, 4964, 4709, 2475, 4723, - 2193, 4334, 4011, 1534, 947, 2980, 1276, 2745, 2145, - 4595, 3295, 1907, 4436, 575, 2869, 2437, 1774, 103, - 4181, 1510, 1361, 4237, 4144, 4620, 1378, 4923, 2023, - 170, 2835, 1311, 2663, 3014, 105, 2833, 4415, 2179, - 2930, 693, 1558, 1071, 3383, 2339, 3436, 478, 4648, - 3106, 1411, 4257, 307, 1671, 1884, 1213, 4984, 642, - 1762, 3957, 2642, 3601, 1788, 779, 952, 1165, 4886, - 1883, 1290, 3845, 617, 3725, 3513, 4081, 2223, 1340, - 3232, 3261, 4162, 1911, 3991, 2182, 2166, 4202, 2629, - 1539, 1110, 990, 1798, 3362, 92, 4378, 3447, 4318, - 1039, 2930, 1879, 4375, 2295, 3990, 746, 3339, 2924, - 1503, 2112, 2677, 3879, 2287, 1293, 3194, 3630, 2849, - 3363, 1715, 457, 1006, 888, 2409, 2177, 4389, 4129, - 1812, 2617, 4717, 2316, 4949, 4158, 4435, 1917, 1201, - 1815, 715, 270, 923, 1913, 3452, 2985, 4782, 1099, - 4541, 1002, 2896, 4712, 4267, 2282, 628, 3973, 2938, - 376, 3252, 94, 2656, 4853, 4987, 1689, 1656, 463, - 3165, 992, 2823, 3447, 1273, 2259, 3674, 3345, 2191, - 1553, 3931, 925, 4111, 4050, 2652, 4860, 4434, 4407, - 4679, 4167, 4708, 2520, 3526, 2887, 3132, 3816, 2503, - 1957, 3455, 1933, 2402, 1540, 2844, 1178, 2305, 1831, - 1888, 1548, 3851, 4681, 615, 1793, 720, 2902, 503, - 2399, 4452, 2482, 1672, 109, 4558, 522, 4488, 4193, - 4882, 4297, 3385, 3297, 4242, 2939, 945, 273, 1189, - 1168, 4866, 495, 4965, 2390, 1391, 2738, 4804, 1124, - 3476, 3768, 384, 2163, 1378, 1422, 3827, 12, 4549, - 4524, 1374, 4468, 1024, 3152, 985, 3013]), - values=tensor([0.3589, 0.1660, 0.5969, 0.5688, 0.7752, 0.6324, 0.0921, - 0.8083, 0.2140, 0.4448, 0.7196, 0.7942, 0.0476, 0.7765, - 0.8012, 0.3506, 0.5836, 0.4105, 0.9051, 0.1137, 0.9336, - 0.6799, 0.2082, 0.3357, 0.2380, 0.0294, 0.3136, 0.6271, - 0.0480, 0.8189, 0.3762, 0.4307, 0.7550, 0.2975, 0.8129, - 0.6595, 0.2962, 0.6547, 0.2906, 0.5665, 0.2166, 0.0083, - 0.8507, 0.4177, 0.3111, 0.7802, 0.8212, 0.9638, 0.3557, - 0.0980, 0.2482, 0.5366, 0.7901, 0.2480, 0.2830, 0.7633, - 0.5347, 0.7196, 0.5079, 0.6330, 0.0116, 0.5729, 0.0163, - 0.3271, 0.1166, 0.7494, 0.8340, 0.1356, 0.0263, 0.4976, - 0.5250, 0.2124, 0.2063, 0.9876, 0.3997, 0.7903, 0.7881, - 0.3414, 0.4348, 0.0748, 0.0069, 0.4733, 0.7388, 0.7424, - 0.3306, 0.5022, 0.7748, 0.6669, 0.3713, 0.6478, 0.6388, - 0.2317, 0.6064, 0.6536, 0.7202, 0.1361, 0.2493, 0.4139, - 0.3712, 0.5295, 0.2695, 0.1631, 0.6452, 0.1880, 0.6974, - 0.2683, 0.9017, 0.1561, 0.7046, 0.4239, 0.3874, 0.9700, - 0.0969, 0.1337, 0.7109, 0.6092, 0.5278, 0.2182, 0.9419, - 0.1230, 0.0570, 0.8053, 0.7324, 0.3831, 0.6385, 0.6323, - 0.1642, 0.2573, 0.2933, 0.0240, 0.6775, 0.2145, 0.7747, - 0.7540, 0.1746, 0.4005, 0.6380, 0.0383, 0.0075, 0.4765, - 0.6191, 0.5223, 0.3245, 0.6164, 0.9290, 0.7803, 0.7819, - 0.8932, 0.7100, 0.6960, 0.3784, 0.1869, 0.3217, 0.0764, - 0.2134, 0.0336, 0.4501, 0.8327, 0.9741, 0.2640, 0.8758, - 0.2835, 0.3411, 0.2947, 0.0888, 0.7701, 0.5229, 0.9266, - 0.0848, 0.6607, 0.1111, 0.4010, 0.5304, 0.7457, 0.6466, - 0.5183, 0.6236, 0.8001, 0.5880, 0.2006, 0.1409, 0.4395, - 0.5142, 0.7264, 0.5640, 0.9227, 0.8507, 0.0543, 0.7639, - 0.4626, 0.9840, 0.9821, 0.7239, 0.8139, 0.7906, 0.7453, - 0.9443, 0.9108, 0.4282, 0.6493, 0.3251, 0.2113, 0.5069, - 0.2668, 0.6773, 0.2164, 0.4803, 0.1428, 0.5884, 0.9624, - 0.2800, 0.1414, 0.8042, 0.8031, 0.1028, 0.1173, 0.0795, - 0.0760, 0.4125, 0.2705, 0.8781, 0.8291, 0.9000, 0.5426, - 0.0626, 0.4498, 0.1347, 0.0120, 0.0110, 0.1303, 0.5281, - 0.8963, 0.0447, 0.5862, 0.0936, 0.4003, 0.0188, 0.9347, - 0.9400, 0.0108, 0.8998, 0.5855, 0.1393, 0.5266, 0.4851, - 0.4774, 0.1186, 0.4945, 0.1561, 0.6695]), + col_indices=tensor([ 980, 1760, 2093, 785, 4671, 1948, 723, 1459, 1601, + 3059, 3354, 3009, 3506, 1670, 2673, 2868, 3157, 4447, + 1531, 659, 4281, 2627, 1377, 2950, 2583, 1810, 1775, + 4655, 1859, 3752, 2371, 1562, 678, 1349, 716, 1427, + 4744, 619, 1269, 399, 1864, 2208, 1480, 456, 208, + 1221, 4437, 899, 3205, 761, 3187, 2953, 2815, 148, + 2514, 1056, 1872, 3736, 1283, 2888, 2704, 2532, 4106, + 3966, 441, 2333, 946, 4406, 4968, 4149, 1833, 4307, + 4337, 2109, 4989, 3863, 2823, 4489, 3013, 4755, 4523, + 3606, 244, 568, 1109, 1740, 4991, 4457, 3089, 4428, + 4324, 4720, 4209, 3750, 3625, 450, 2141, 1794, 3260, + 4714, 3864, 2541, 1784, 2782, 3268, 3685, 3828, 1583, + 1640, 2421, 3816, 1055, 144, 4272, 260, 1691, 1506, + 1638, 1666, 89, 0, 4364, 3266, 7, 888, 1591, + 2436, 524, 4077, 4995, 1729, 2451, 3127, 2410, 3894, + 4663, 2351, 1158, 1336, 2596, 2075, 768, 1048, 2564, + 3613, 2403, 1235, 967, 1065, 2176, 1047, 2886, 1645, + 3823, 3916, 3782, 98, 2899, 2287, 3273, 4032, 4889, + 1097, 3448, 4328, 2582, 4575, 4148, 3284, 2665, 249, + 1314, 3187, 3430, 4704, 97, 1632, 931, 382, 3849, + 3930, 2162, 1791, 4253, 2474, 3110, 4678, 4692, 474, + 3715, 235, 3222, 4417, 4989, 3151, 1089, 1264, 3742, + 4431, 906, 341, 4151, 340, 1004, 4160, 1654, 1155, + 188, 4818, 2576, 447, 1886, 1055, 2211, 1261, 3706, + 4104, 4081, 2022, 1659, 4405, 105, 257, 1519, 1573, + 2647, 334, 3953, 2722, 2554, 628, 1350, 4587, 1239, + 3896, 49, 2034, 3369, 750, 1198, 743, 3025, 4827, + 4181, 3975, 2556, 3695, 4820, 3552, 3237]), + values=tensor([0.9726, 0.4932, 0.3912, 0.9738, 0.2382, 0.2194, 0.1583, + 0.5409, 0.3403, 0.0032, 0.6572, 0.0849, 0.3926, 0.9886, + 0.6424, 0.9153, 0.1836, 0.7579, 0.8401, 0.5061, 0.5178, + 0.6259, 0.6574, 0.6207, 0.6672, 0.0690, 0.9817, 0.7086, + 0.9781, 0.5592, 0.4518, 0.3448, 0.6644, 0.1469, 0.4823, + 0.3431, 0.4389, 0.7337, 0.3527, 0.9829, 0.5078, 0.8332, + 0.7767, 0.9645, 0.7365, 0.4985, 0.9411, 0.0544, 0.1772, + 0.3375, 0.9957, 0.2067, 0.3235, 0.4169, 0.2185, 0.9745, + 0.4024, 0.1951, 0.5401, 0.1889, 0.4891, 0.1494, 0.3864, + 0.9968, 0.5170, 0.5194, 0.2311, 0.7378, 0.0181, 0.8480, + 0.8709, 0.1149, 0.7166, 0.5193, 0.8973, 0.0220, 0.9337, + 0.7205, 0.2663, 0.4873, 0.6865, 0.7454, 0.1670, 0.6733, + 0.5028, 0.8469, 0.5015, 0.0183, 0.9101, 0.5044, 0.6164, + 0.0686, 0.2021, 0.0101, 0.2356, 0.6960, 0.5089, 0.6651, + 0.9123, 0.3294, 0.9018, 0.9354, 0.4913, 0.5484, 0.4661, + 0.9948, 0.4189, 0.4723, 0.9512, 0.6341, 0.6798, 0.5802, + 0.6623, 0.0188, 0.0129, 0.1565, 0.2382, 0.5939, 0.9749, + 0.6008, 0.1917, 0.4414, 0.2563, 0.1692, 0.9585, 0.0472, + 0.8804, 0.5964, 0.2177, 0.3908, 0.2373, 0.0395, 0.7888, + 0.2774, 0.1837, 0.8164, 0.9307, 0.6092, 0.7632, 0.0856, + 0.4941, 0.2709, 0.6765, 0.8735, 0.4097, 0.3394, 0.4724, + 0.7144, 0.5758, 0.2577, 0.2371, 0.8221, 0.9059, 0.5592, + 0.3289, 0.0171, 0.1330, 0.9826, 0.1215, 0.7990, 0.5552, + 0.1342, 0.7031, 0.1802, 0.8204, 0.3147, 0.1663, 0.8508, + 0.4793, 0.5702, 0.1389, 0.1455, 0.9150, 0.8457, 0.2787, + 0.6364, 0.0265, 0.9823, 0.1357, 0.7315, 0.5366, 0.2059, + 0.1967, 0.4234, 0.3059, 0.0470, 0.8504, 0.4796, 0.2864, + 0.4369, 0.4481, 0.7929, 0.8452, 0.0958, 0.5059, 0.6459, + 0.8388, 0.7761, 0.1938, 0.8212, 0.1919, 0.8336, 0.3582, + 0.0664, 0.5404, 0.5179, 0.4249, 0.9245, 0.0841, 0.7587, + 0.7759, 0.0382, 0.0647, 0.6744, 0.6055, 0.1518, 0.6047, + 0.4888, 0.3468, 0.0096, 0.8517, 0.8972, 0.6357, 0.5150, + 0.0879, 0.9902, 0.5975, 0.0921, 0.1553, 0.8301, 0.3740, + 0.3374, 0.9082, 0.3028, 0.9956, 0.7728, 0.1467, 0.8331, + 0.1315, 0.6195, 0.4346, 0.3339, 0.9836, 0.5643, 0.7400, + 0.8152, 0.3695, 0.3467, 0.0410, 0.0075]), size=(5000, 5000), nnz=250, layout=torch.sparse_csr) -tensor([0.1727, 0.0592, 0.5429, ..., 0.7822, 0.3152, 0.8983]) +tensor([0.4444, 0.7904, 0.6664, ..., 0.7984, 0.5487, 0.5407]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -77,80 +77,80 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 0.0375218391418457 seconds +Time: 0.04127812385559082 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '279837', '-ss', '5000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 6.313635349273682} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '25437', '-ss', '5000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.5612115859985352} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([1000, 776, 2038, 1918, 4703, 1006, 4783, 345, 4138, - 3890, 4809, 2179, 2654, 39, 3277, 4397, 222, 2644, - 2751, 2925, 4735, 3220, 3118, 2167, 634, 4745, 1720, - 1787, 1820, 1926, 473, 4992, 3200, 1675, 2855, 1802, - 1163, 3602, 1443, 3413, 1710, 3667, 710, 2344, 517, - 391, 713, 190, 1392, 2043, 4585, 625, 4376, 675, - 2895, 3693, 1220, 3427, 1249, 2791, 1410, 4832, 399, - 4671, 1556, 854, 3021, 1498, 4986, 3565, 408, 836, - 665, 2782, 351, 4429, 75, 2826, 2951, 2393, 4532, - 3245, 2288, 2902, 2022, 286, 18, 633, 1739, 1345, - 793, 3242, 1720, 741, 64, 3142, 2934, 4827, 3950, - 3991, 4310, 1432, 1925, 3941, 4723, 3084, 4330, 746, - 137, 294, 384, 3827, 745, 1424, 1461, 4954, 1830, - 44, 2741, 256, 4697, 1693, 4846, 724, 3317, 1459, - 3982, 3106, 1079, 1976, 1040, 1694, 3341, 1005, 3602, - 4265, 468, 3692, 3883, 2013, 2499, 2240, 197, 333, - 4890, 1103, 1367, 971, 9, 2617, 23, 2576, 3485, - 3475, 1094, 2503, 3587, 3228, 2141, 4874, 4780, 4139, - 1118, 4510, 2959, 1803, 1379, 4711, 1070, 1400, 798, - 3550, 1131, 4486, 1422, 239, 651, 4998, 1567, 1515, - 4080, 2218, 4949, 747, 3327, 4701, 733, 1212, 419, - 63, 3878, 2875, 4861, 4483, 644, 592, 3560, 3073, - 4937, 789, 208, 3509, 3077, 4039, 4563, 1839, 362, - 2824, 2672, 4373, 1492, 1152, 3845, 328, 2405, 4091, - 2931, 2541, 2530, 3217, 4233, 1852, 2606, 3892, 380, - 2119, 1221, 1290, 592, 3077, 4909, 282, 3215, 863, - 1452, 3214, 1592, 795, 193, 4254, 3986, 1847, 2461, - 4353, 1361, 3013, 1482, 4277, 3046, 277]), - values=tensor([0.1993, 0.0335, 0.2936, 0.2778, 0.6825, 0.6252, 0.3746, - 0.6011, 0.3211, 0.0488, 0.6153, 0.4477, 0.3116, 0.5339, - 0.8158, 0.9445, 0.2638, 0.2848, 0.0424, 0.7741, 0.0547, - 0.0033, 0.5605, 0.2034, 0.9731, 0.4334, 0.6773, 0.7018, - 0.1534, 0.3665, 0.8519, 0.3002, 0.6885, 0.4688, 0.2572, - 0.6610, 0.5022, 0.8309, 0.6908, 0.4905, 0.2911, 0.9203, - 0.1018, 0.0930, 0.0540, 0.4357, 0.3509, 0.7870, 0.0358, - 0.8075, 0.3342, 0.2290, 0.0496, 0.3593, 0.2995, 0.8746, - 0.4914, 0.4993, 0.3891, 0.1546, 0.8356, 0.6696, 0.4824, - 0.2231, 0.1034, 0.1057, 0.9353, 0.7565, 0.0205, 0.6134, - 0.2384, 0.3674, 0.3962, 0.9296, 0.6846, 0.4976, 0.1741, - 0.5769, 0.7161, 0.8852, 0.4021, 0.6679, 0.8123, 0.7585, - 0.4922, 0.4006, 0.7864, 0.5428, 0.2744, 0.6398, 0.5713, - 0.5059, 0.5864, 0.9374, 0.2614, 0.5042, 0.9384, 0.6001, - 0.6641, 0.9381, 0.7652, 0.8431, 0.3189, 0.3689, 0.1936, - 0.2802, 0.9156, 0.2338, 0.8578, 0.8112, 0.0258, 0.5958, - 0.3193, 0.8350, 0.4442, 0.6220, 0.0680, 0.3877, 0.0287, - 0.0452, 0.0470, 0.9809, 0.1556, 0.9905, 0.7569, 0.6043, - 0.3024, 0.2231, 0.5911, 0.7279, 0.1875, 0.4016, 0.8539, - 0.8317, 0.9058, 0.9818, 0.9295, 0.7640, 0.2727, 0.6203, - 0.1544, 0.4062, 0.9584, 0.7373, 0.5273, 0.9229, 0.0078, - 0.4057, 0.6887, 0.2597, 0.9070, 0.0464, 0.2160, 0.1271, - 0.9922, 0.5976, 0.8143, 0.2235, 0.4892, 0.2001, 0.4528, - 0.1225, 0.4565, 0.8621, 0.9634, 0.9838, 0.1175, 0.1191, - 0.3323, 0.5146, 0.3230, 0.2640, 0.7803, 0.1440, 0.3733, - 0.5784, 0.4250, 0.8408, 0.1600, 0.2238, 0.8622, 0.6312, - 0.1334, 0.8781, 0.5698, 0.6408, 0.9350, 0.2941, 0.4688, - 0.7220, 0.4646, 0.9861, 0.0500, 0.4193, 0.0556, 0.5709, - 0.7646, 0.4955, 0.8941, 0.2442, 0.8406, 0.6412, 0.9435, - 0.4433, 0.6774, 0.7909, 0.0668, 0.2898, 0.6302, 0.4354, - 0.5554, 0.1307, 0.3038, 0.5817, 0.3553, 0.0957, 0.1830, - 0.0409, 0.7005, 0.4236, 0.5500, 0.1534, 0.6689, 0.3917, - 0.6300, 0.3524, 0.5544, 0.7816, 0.9821, 0.6097, 0.7965, - 0.4709, 0.7898, 0.8168, 0.4400, 0.9718, 0.6481, 0.1531, - 0.2683, 0.6283, 0.0070, 0.5412, 0.3329, 0.0354, 0.8301, - 0.9730, 0.0239, 0.4507, 0.6650, 0.1805]), + col_indices=tensor([4513, 4874, 3027, 172, 3763, 1079, 239, 4529, 4955, + 608, 1066, 2737, 4445, 4271, 3658, 687, 3210, 2517, + 2807, 1524, 3953, 1461, 3621, 1960, 4173, 4521, 4104, + 3884, 561, 4646, 4065, 4845, 1534, 1821, 1059, 2352, + 1896, 3528, 4564, 4230, 603, 1565, 2747, 4968, 3463, + 2434, 4028, 3145, 1082, 2478, 4336, 3976, 44, 4019, + 3984, 3758, 2982, 3832, 4392, 3709, 4379, 1452, 4965, + 778, 3505, 1776, 1029, 1733, 4085, 16, 3544, 611, + 487, 4244, 3327, 1553, 300, 454, 615, 1019, 1638, + 2606, 4708, 2838, 1644, 2517, 3419, 4512, 1409, 4514, + 98, 975, 2304, 4532, 578, 3866, 4888, 1913, 1427, + 2350, 3190, 471, 3972, 3754, 1263, 2752, 1137, 2063, + 1340, 4788, 4731, 1452, 253, 4150, 2425, 3321, 2705, + 2043, 4482, 3426, 39, 1965, 4794, 2137, 4312, 4929, + 4149, 4158, 2375, 1520, 2947, 1537, 114, 3706, 3423, + 2525, 3424, 2121, 1841, 2281, 281, 582, 587, 2819, + 1328, 2949, 349, 1435, 37, 2197, 94, 1382, 1590, + 4694, 734, 27, 2763, 3346, 997, 4500, 432, 3423, + 1345, 2417, 4661, 2561, 4893, 2705, 322, 3467, 246, + 371, 460, 4416, 3517, 2533, 3314, 4727, 4068, 2071, + 89, 3259, 446, 2255, 4308, 1260, 2389, 3030, 3160, + 928, 1241, 1770, 729, 2255, 2572, 3942, 459, 250, + 4351, 2164, 642, 3643, 4211, 2537, 3823, 703, 3549, + 2055, 653, 1366, 4832, 1570, 1682, 1477, 4511, 1980, + 2756, 1220, 4509, 2420, 623, 993, 3225, 1492, 4751, + 3238, 2111, 484, 1439, 2447, 2514, 4082, 4164, 1688, + 2786, 558, 866, 946, 3251, 3488, 4976, 3700, 3363, + 3272, 1906, 4483, 1350, 885, 3495, 1900]), + values=tensor([0.7997, 0.6693, 0.9766, 0.8132, 0.4494, 0.7325, 0.7457, + 0.7556, 0.9866, 0.9047, 0.1758, 0.6478, 0.3725, 0.9918, + 0.9691, 0.3899, 0.4189, 0.2206, 0.4455, 0.8056, 0.8850, + 0.7612, 0.3869, 0.5377, 0.9465, 0.2694, 0.7714, 0.3970, + 0.0074, 0.7396, 0.6772, 0.0796, 0.1408, 0.9831, 0.1256, + 0.1621, 0.7601, 0.7241, 0.4318, 0.4425, 0.2980, 0.3108, + 0.6562, 0.1074, 0.6925, 0.0813, 0.3905, 0.9992, 0.5983, + 0.9779, 0.9273, 0.2532, 0.6041, 0.4773, 0.3669, 0.1258, + 0.1311, 0.3773, 0.8821, 0.3058, 0.0597, 0.9674, 0.6666, + 0.7396, 0.6305, 0.7148, 0.8106, 0.4078, 0.2370, 0.3958, + 0.1089, 0.2905, 0.3401, 0.3586, 0.4906, 0.7927, 0.7147, + 0.3090, 0.2058, 0.2236, 0.1502, 0.7530, 0.1376, 0.7384, + 0.1472, 0.7286, 0.2760, 0.2427, 0.0512, 0.9512, 0.6082, + 0.0272, 0.0487, 0.6103, 0.0226, 0.4108, 0.7461, 0.2695, + 0.7017, 0.7638, 0.0407, 0.0211, 0.7975, 0.8394, 0.7173, + 0.8557, 0.1529, 0.3846, 0.8527, 0.7100, 0.7245, 0.3654, + 0.7311, 0.7142, 0.9375, 0.5321, 0.1856, 0.8364, 0.4430, + 0.4779, 0.6050, 0.4883, 0.1682, 0.5943, 0.1945, 0.2069, + 0.1270, 0.4728, 0.3645, 0.8206, 0.5488, 0.4640, 0.7881, + 0.3157, 0.0026, 0.7089, 0.5313, 0.9513, 0.9856, 0.8065, + 0.3755, 0.7881, 0.5548, 0.8650, 0.7960, 0.2190, 0.4494, + 0.4403, 0.9214, 0.6868, 0.3061, 0.1264, 0.0552, 0.0018, + 0.0148, 0.0640, 0.2837, 0.7551, 0.1142, 0.0916, 0.0958, + 0.1039, 0.5333, 0.1734, 0.0796, 0.6961, 0.6442, 0.5756, + 0.9631, 0.0278, 0.9861, 0.3260, 0.4440, 0.2476, 0.8157, + 0.9861, 0.8239, 0.5108, 0.1860, 0.3033, 0.0741, 0.8427, + 0.8545, 0.2806, 0.0718, 0.7219, 0.2946, 0.3868, 0.6450, + 0.1470, 0.4273, 0.0373, 0.4562, 0.7872, 0.0251, 0.8634, + 0.3919, 0.4240, 0.0414, 0.7931, 0.4445, 0.1790, 0.3828, + 0.7421, 0.3011, 0.1605, 0.1136, 0.9314, 0.3920, 0.9924, + 0.0352, 0.6870, 0.4156, 0.4859, 0.8722, 0.6951, 0.2675, + 0.8061, 0.5063, 0.5828, 0.5303, 0.7965, 0.2479, 0.8340, + 0.3931, 0.9858, 0.1292, 0.6472, 0.7465, 0.0833, 0.0197, + 0.8484, 0.0914, 0.1498, 0.8894, 0.1548, 0.5990, 0.0393, + 0.7324, 0.7542, 0.7672, 0.8989, 0.1970, 0.1932, 0.9622, + 0.5932, 0.9630, 0.7336, 0.7453, 0.9290]), size=(5000, 5000), nnz=250, layout=torch.sparse_csr) -tensor([0.7126, 0.1651, 0.2523, ..., 0.5242, 0.8574, 0.9519]) +tensor([0.8285, 0.4420, 0.7749, ..., 0.7287, 0.4578, 0.9435]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -158,80 +158,80 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 6.313635349273682 seconds +Time: 0.5612115859985352 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '465387', '-ss', '5000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.944559097290039} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '475914', '-ss', '5000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.308423519134521} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([3699, 186, 998, 2786, 4646, 2125, 3758, 4753, 3164, - 2363, 875, 4485, 3467, 1146, 3713, 40, 3541, 4449, - 4355, 2987, 2483, 619, 973, 1036, 3097, 3292, 1211, - 2063, 4539, 4771, 731, 3646, 2815, 768, 3249, 2575, - 2960, 363, 3877, 2937, 63, 415, 487, 1370, 4864, - 2020, 2769, 2052, 1779, 3036, 1442, 3834, 769, 3436, - 2189, 3115, 684, 1261, 3554, 1491, 3600, 1655, 2428, - 3514, 792, 3919, 634, 3347, 2785, 3599, 785, 1340, - 4938, 4142, 605, 2442, 1836, 454, 2921, 2205, 4312, - 181, 1216, 3787, 581, 4008, 4443, 54, 218, 289, - 3888, 1643, 1803, 2145, 3434, 2861, 1581, 1923, 2613, - 1349, 2463, 1604, 2867, 1095, 4657, 931, 3380, 929, - 4999, 4668, 111, 3182, 838, 3317, 3428, 2012, 269, - 2099, 3052, 2433, 4600, 3901, 797, 3047, 2694, 392, - 612, 4059, 890, 2451, 1440, 3830, 4505, 1010, 683, - 4379, 1969, 1059, 4043, 1700, 4918, 4169, 4943, 4644, - 344, 3773, 2125, 3043, 2084, 4564, 3622, 4125, 3605, - 3620, 3969, 1469, 3232, 2350, 1746, 3483, 4665, 442, - 2281, 432, 3712, 4513, 1703, 4987, 1609, 4799, 4974, - 2930, 777, 1513, 2040, 3501, 924, 1312, 2761, 948, - 3882, 1800, 3270, 2810, 2360, 431, 325, 629, 2700, - 2385, 3741, 1991, 4920, 4732, 1712, 3784, 2538, 4236, - 4704, 1653, 472, 3253, 3463, 2914, 2140, 436, 935, - 765, 4469, 3079, 4283, 3904, 4286, 3503, 727, 4200, - 1701, 2666, 1961, 3779, 4941, 2916, 3776, 4130, 4512, - 1476, 2724, 2096, 1261, 329, 2574, 2829, 4425, 2766, - 1392, 2849, 4694, 1310, 3819, 2271, 220, 1555, 4415, - 4380, 4811, 1487, 4371, 1280, 1276, 2851]), - values=tensor([0.3089, 0.4336, 0.4888, 0.1926, 0.0728, 0.0243, 0.5274, - 0.6630, 0.9150, 0.7137, 0.4027, 0.4542, 0.9097, 0.1648, - 0.5277, 0.5028, 0.4187, 0.4809, 0.9495, 0.9227, 0.8070, - 0.4872, 0.3446, 0.8684, 0.3301, 0.9325, 0.3317, 0.0577, - 0.4077, 0.7212, 0.2245, 0.3196, 0.4084, 0.0026, 0.5069, - 0.0203, 0.9024, 0.9005, 0.2265, 0.0366, 0.5914, 0.1735, - 0.1170, 0.5798, 0.1354, 0.6739, 0.4242, 0.7100, 0.8828, - 0.2350, 0.1061, 0.7739, 0.9333, 0.1778, 0.6243, 0.7262, - 0.1337, 0.7381, 0.8993, 0.7142, 0.5462, 0.6796, 0.8532, - 0.3021, 0.1257, 0.1108, 0.2909, 0.1187, 0.8439, 0.5066, - 0.4898, 0.1147, 0.6201, 0.7106, 0.4508, 0.8557, 0.4904, - 0.5557, 0.3419, 0.5877, 0.9547, 0.2594, 0.1852, 0.0350, - 0.3573, 0.0073, 0.2921, 0.3868, 0.0717, 0.2638, 0.7715, - 0.2654, 0.7597, 0.8902, 0.4843, 0.0265, 0.2605, 0.7290, - 0.5883, 0.0284, 0.5260, 0.4294, 0.5088, 0.0923, 0.3560, - 0.9787, 0.3363, 0.6477, 0.5162, 0.2371, 0.5050, 0.3174, - 0.6755, 0.9371, 0.4029, 0.6291, 0.5378, 0.6016, 0.3741, - 0.4575, 0.7950, 0.1548, 0.4512, 0.4784, 0.3947, 0.6917, - 0.4337, 0.8695, 0.5511, 0.7730, 0.3604, 0.8313, 0.8321, - 0.1678, 0.2050, 0.7939, 0.9473, 0.7778, 0.3518, 0.5993, - 0.4048, 0.8949, 0.5428, 0.1845, 0.0665, 0.1550, 0.8858, - 0.8184, 0.3209, 0.1943, 0.3738, 0.7342, 0.8776, 0.4150, - 0.0843, 0.7937, 0.3737, 0.5068, 0.0092, 0.7933, 0.9316, - 0.9604, 0.9872, 0.9223, 0.4179, 0.0277, 0.0332, 0.3930, - 0.4059, 0.1792, 0.0113, 0.6697, 0.8110, 0.8809, 0.1653, - 0.5665, 0.2395, 0.2295, 0.0506, 0.8476, 0.6881, 0.7949, - 0.4503, 0.4586, 0.0727, 0.7405, 0.5349, 0.7008, 0.6280, - 0.8345, 0.3285, 0.7596, 0.7892, 0.6309, 0.7345, 0.5322, - 0.7826, 0.1455, 0.8185, 0.8804, 0.2134, 0.6699, 0.6927, - 0.7560, 0.1842, 0.8768, 0.4998, 0.8685, 0.7312, 0.6282, - 0.6567, 0.7052, 0.6029, 0.4550, 0.8792, 0.8789, 0.0886, - 0.4430, 0.3115, 0.8372, 0.3892, 0.9008, 0.8514, 0.6428, - 0.8764, 0.6919, 0.7104, 0.8790, 0.0593, 0.9565, 0.4781, - 0.3394, 0.5834, 0.8882, 0.5458, 0.1550, 0.9061, 0.0203, - 0.0355, 0.9846, 0.3746, 0.1614, 0.6948, 0.0117, 0.0137, - 0.0383, 0.7353, 0.3583, 0.0622, 0.0459]), + col_indices=tensor([ 698, 3054, 4592, 1629, 4601, 3886, 4804, 318, 1415, + 433, 1872, 1429, 1550, 3511, 4304, 3637, 1101, 2710, + 4079, 541, 1194, 97, 2807, 2811, 3206, 3991, 2286, + 2681, 4835, 38, 1361, 1702, 1987, 1831, 485, 140, + 4362, 3450, 2222, 295, 3370, 591, 1718, 4950, 1639, + 3575, 1461, 4389, 3994, 2356, 1105, 1104, 1761, 4007, + 4669, 3008, 4553, 4279, 1484, 3371, 4533, 863, 587, + 1360, 4727, 3879, 832, 240, 2132, 2582, 1372, 4190, + 3588, 2592, 4310, 2614, 1567, 1660, 604, 4488, 1313, + 3610, 3188, 2899, 3261, 1055, 1112, 4180, 1426, 3909, + 3409, 4510, 3025, 703, 1794, 225, 659, 2212, 1407, + 4739, 1542, 2238, 2858, 4535, 4405, 3841, 3716, 4156, + 4416, 2641, 4372, 1051, 980, 3180, 2782, 497, 394, + 605, 971, 455, 3831, 523, 3209, 733, 4726, 2765, + 226, 3470, 1720, 2299, 2372, 1447, 3202, 1153, 3498, + 4698, 2998, 1466, 363, 4324, 2506, 2090, 2285, 2204, + 303, 4406, 1500, 1826, 4080, 1378, 1816, 980, 66, + 4392, 4266, 2875, 275, 1828, 3108, 989, 3152, 2508, + 1550, 2008, 1066, 529, 18, 1, 3369, 4893, 2556, + 1068, 1671, 1086, 2667, 3511, 2891, 1749, 4140, 3150, + 43, 1921, 1837, 980, 1293, 1802, 2390, 249, 768, + 4105, 1721, 1435, 4658, 2745, 4338, 2320, 3879, 2641, + 3097, 1585, 3887, 4913, 4556, 2794, 2705, 299, 61, + 2384, 1270, 740, 2129, 3392, 3774, 4644, 4192, 4506, + 149, 4748, 3571, 1159, 4587, 1920, 982, 2347, 1650, + 1882, 1955, 3910, 197, 4484, 3655, 4387, 968, 3452, + 181, 2166, 1855, 2452, 189, 3074, 2522, 3426, 135, + 1267, 666, 4928, 2908, 4053, 4593, 448]), + values=tensor([0.8620, 0.7365, 0.7531, 0.5477, 0.5295, 0.4268, 0.2903, + 0.3296, 0.4852, 0.0295, 0.6605, 0.4770, 0.1707, 0.4638, + 0.1229, 0.6813, 0.2237, 0.9317, 0.9546, 0.4741, 0.7915, + 0.3909, 0.2549, 0.7853, 0.8207, 0.9924, 0.8328, 0.0293, + 0.3281, 0.4028, 0.9335, 0.8141, 0.3687, 0.4243, 0.5386, + 0.2123, 0.0695, 0.2792, 0.2453, 0.4935, 0.1675, 0.4387, + 0.5777, 0.6384, 0.5870, 0.2050, 0.9519, 0.0161, 0.0462, + 0.8312, 0.5114, 0.5703, 0.5170, 0.0110, 0.6229, 0.7339, + 0.2337, 0.7709, 0.7844, 0.2062, 0.2004, 0.9990, 0.4625, + 0.4209, 0.7064, 0.0680, 0.6043, 0.0073, 0.1383, 0.5359, + 0.1641, 0.0316, 0.0479, 0.9788, 0.0764, 0.0936, 0.1603, + 0.1581, 0.8855, 0.4285, 0.9101, 0.6054, 0.5164, 0.1839, + 0.2783, 0.0513, 0.4451, 0.7375, 0.3333, 0.1348, 0.3539, + 0.0102, 0.1620, 0.4960, 0.1201, 0.8615, 0.2151, 0.0085, + 0.8133, 0.8439, 0.5713, 0.6595, 0.6728, 0.2738, 0.1487, + 0.3205, 0.6933, 0.0963, 0.6731, 0.6903, 0.0043, 0.7900, + 0.7911, 0.9496, 0.4295, 0.5758, 0.2659, 0.3025, 0.6145, + 0.1511, 0.7265, 0.9480, 0.6751, 0.8138, 0.6361, 0.4149, + 0.8899, 0.3218, 0.3413, 0.2054, 0.1555, 0.4398, 0.9946, + 0.6820, 0.1566, 0.7238, 0.9562, 0.1023, 0.0696, 0.9724, + 0.8182, 0.0031, 0.0289, 0.5187, 0.0063, 0.5262, 0.9232, + 0.3694, 0.0136, 0.3019, 0.9633, 0.8770, 0.0826, 0.1792, + 0.6372, 0.5719, 0.7979, 0.1369, 0.9923, 0.7514, 0.0627, + 0.3337, 0.0132, 0.9026, 0.1169, 0.4065, 0.7302, 0.3087, + 0.4276, 0.6874, 0.0705, 0.4727, 0.3286, 0.7188, 0.3727, + 0.5310, 0.1979, 0.9773, 0.3076, 0.3372, 0.2546, 0.3340, + 0.4532, 0.0609, 0.2279, 0.8651, 0.8162, 0.8251, 0.1216, + 0.3049, 0.0805, 0.1284, 0.1859, 0.3690, 0.3435, 0.7762, + 0.7083, 0.6529, 0.8556, 0.1421, 0.4528, 0.4045, 0.9221, + 0.6914, 0.6437, 0.8815, 0.0609, 0.9680, 0.2115, 0.5295, + 0.5418, 0.8646, 0.6735, 0.1927, 0.2578, 0.4564, 0.0603, + 0.1414, 0.3382, 0.0772, 0.6503, 0.3586, 0.8775, 0.8840, + 0.9215, 0.4825, 0.2733, 0.0423, 0.6825, 0.8144, 0.0837, + 0.2758, 0.6188, 0.3276, 0.0762, 0.7932, 0.5621, 0.9067, + 0.7339, 0.1976, 0.8462, 0.5736, 0.2659, 0.7486, 0.3053, + 0.7429, 0.4272, 0.8072, 0.5183, 0.4677]), size=(5000, 5000), nnz=250, layout=torch.sparse_csr) -tensor([0.5720, 0.9223, 0.3340, ..., 0.6697, 0.2837, 0.3607]) +tensor([0.4130, 0.3379, 0.7498, ..., 0.0848, 0.9618, 0.5893]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -239,107 +239,77 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 9.944559097290039 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '491380', '-ss', '5000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.363765478134155} +Time: 10.308423519134521 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([1815, 573, 313, 4753, 4998, 3650, 708, 3756, 4632, - 3171, 1063, 2555, 1629, 3246, 3070, 2176, 3197, 2451, - 4183, 1276, 3956, 2941, 590, 310, 901, 582, 3400, - 3816, 854, 431, 4240, 4381, 4138, 3465, 1098, 4568, - 1899, 575, 4191, 2652, 1753, 2563, 2759, 4705, 3778, - 3664, 3914, 746, 477, 1085, 3621, 200, 1606, 1735, - 567, 4327, 4532, 959, 1950, 219, 1019, 4655, 3231, - 739, 2806, 3755, 920, 3178, 1203, 2773, 3742, 4216, - 3040, 3288, 1862, 3988, 3055, 2380, 386, 4811, 4992, - 2551, 454, 3476, 3586, 1425, 4793, 4634, 4563, 197, - 1634, 1276, 3200, 3036, 1449, 923, 3741, 1238, 917, - 13, 4497, 485, 2520, 1891, 1907, 2355, 3849, 1705, - 4617, 3918, 387, 152, 370, 3166, 1980, 3215, 2459, - 4636, 960, 2987, 498, 3413, 4946, 1982, 2382, 4484, - 67, 2842, 3291, 3435, 4345, 3653, 4720, 2468, 2052, - 1025, 1841, 1304, 2057, 4424, 4112, 134, 4127, 448, - 2737, 3483, 1455, 2363, 189, 1811, 740, 3821, 2568, - 4923, 4229, 447, 1138, 4148, 2122, 232, 3305, 3147, - 1717, 408, 644, 2055, 527, 3062, 248, 4109, 399, - 1356, 4770, 2528, 2684, 4997, 3795, 4694, 440, 3426, - 1710, 4340, 1612, 56, 646, 771, 1729, 765, 1920, - 4681, 3827, 3045, 4987, 598, 406, 2175, 1659, 4617, - 1246, 2976, 4027, 4995, 1783, 4600, 3838, 4759, 1930, - 3732, 234, 3852, 2906, 2962, 686, 832, 3809, 994, - 87, 19, 2535, 4315, 3169, 3549, 2170, 3920, 3910, - 2128, 3451, 3492, 42, 369, 863, 4827, 2245, 672, - 3029, 4444, 3612, 4409, 2915, 1931, 518, 3028, 4272, - 2556, 3052, 1905, 3640, 2925, 2354, 3707]), - values=tensor([1.9637e-01, 9.6917e-01, 6.9012e-01, 6.5144e-02, - 6.9969e-01, 6.0735e-01, 9.8413e-01, 5.5329e-01, - 4.9977e-01, 8.2849e-02, 6.0922e-01, 9.8307e-01, - 7.2683e-01, 6.2751e-01, 2.5140e-01, 6.5370e-01, - 9.8048e-01, 8.3008e-01, 9.4034e-01, 5.6135e-01, - 4.5053e-04, 8.4765e-01, 6.7162e-01, 6.6604e-01, - 7.6374e-01, 3.7730e-01, 7.9733e-01, 5.1905e-01, - 1.1698e-01, 6.2411e-01, 4.1882e-01, 9.2515e-01, - 7.1296e-01, 7.6621e-01, 9.1292e-01, 2.3384e-01, - 9.5049e-01, 2.9472e-01, 4.8881e-01, 7.8866e-01, - 3.0122e-01, 3.0501e-01, 9.5326e-02, 6.3170e-01, - 1.3931e-01, 8.2970e-01, 2.2371e-01, 7.9744e-01, - 4.4607e-01, 1.5447e-02, 1.0137e-01, 3.8368e-01, - 8.2513e-01, 8.9986e-01, 2.3061e-01, 9.8290e-01, - 4.3469e-01, 7.3495e-01, 1.5216e-01, 3.9507e-01, - 7.1334e-01, 7.7117e-01, 9.9550e-01, 9.2278e-01, - 3.0890e-01, 6.6914e-01, 1.2145e-01, 9.1632e-01, - 5.0784e-01, 6.2243e-01, 6.5077e-01, 6.2687e-01, - 2.0114e-01, 7.5097e-01, 2.0777e-01, 4.2757e-01, - 2.2520e-01, 5.5414e-01, 9.1256e-01, 1.3031e-01, - 1.5351e-01, 4.1244e-01, 2.4735e-01, 9.5465e-01, - 3.7976e-01, 3.1882e-01, 2.8598e-02, 8.3393e-01, - 7.4047e-01, 7.3298e-01, 9.7843e-01, 4.0729e-01, - 9.2998e-02, 4.3465e-01, 3.2636e-01, 9.5106e-02, - 4.8367e-02, 3.1339e-01, 4.7275e-01, 6.9317e-01, - 6.7922e-01, 7.2355e-01, 6.1366e-01, 7.6219e-01, - 2.1995e-01, 3.9216e-01, 8.5252e-01, 7.1761e-01, - 4.5198e-01, 9.8165e-01, 7.6941e-01, 8.2823e-01, - 7.6982e-01, 4.3963e-01, 2.2626e-01, 2.9003e-01, - 7.3718e-01, 8.0941e-01, 4.5213e-01, 1.9323e-01, - 3.6014e-01, 6.7950e-02, 2.6777e-01, 7.5770e-01, - 8.8988e-01, 1.1815e-01, 1.1244e-01, 9.2625e-01, - 7.6156e-01, 9.7142e-01, 2.3564e-01, 3.8882e-01, - 5.9567e-01, 4.8258e-01, 5.5462e-01, 2.7503e-01, - 2.0411e-01, 3.1168e-01, 7.6951e-01, 7.2732e-01, - 4.6023e-02, 4.7740e-01, 9.9557e-01, 7.3789e-02, - 6.2383e-02, 3.5543e-01, 1.8242e-01, 3.6846e-01, - 5.3628e-02, 5.3874e-01, 3.0038e-01, 9.6174e-01, - 9.6554e-01, 4.7430e-01, 2.2738e-01, 8.6557e-01, - 5.4122e-02, 8.5019e-01, 5.0852e-01, 5.3410e-01, - 1.7285e-01, 5.4149e-01, 8.0869e-01, 6.5103e-01, - 2.7217e-01, 7.0732e-01, 5.5532e-01, 9.9150e-01, - 7.5543e-01, 2.6834e-01, 2.8447e-01, 3.5912e-01, - 4.5601e-01, 7.0765e-01, 6.6949e-01, 5.9725e-01, - 4.8923e-01, 9.9235e-01, 7.6412e-02, 4.1164e-02, - 4.3938e-01, 9.1861e-01, 8.8739e-01, 9.4972e-01, - 4.9408e-01, 4.9347e-01, 3.4149e-01, 5.0322e-01, - 3.1901e-02, 5.2875e-01, 3.3499e-01, 9.5821e-01, - 5.2956e-01, 4.7216e-01, 2.0353e-01, 3.0726e-02, - 5.1848e-01, 2.6131e-01, 8.5289e-02, 4.9542e-01, - 1.5835e-01, 6.7945e-01, 7.8119e-01, 3.4856e-01, - 7.3888e-01, 4.3503e-01, 4.8394e-01, 1.0914e-01, - 5.9027e-01, 7.1288e-01, 9.8329e-01, 5.5542e-02, - 1.2536e-01, 1.9606e-01, 5.4455e-01, 4.3811e-01, - 5.8744e-01, 3.2588e-01, 6.3981e-02, 1.1337e-01, - 5.4324e-01, 8.4644e-01, 5.6165e-02, 5.0125e-01, - 1.5973e-01, 1.8614e-01, 7.8747e-01, 9.1964e-01, - 9.1086e-01, 5.6162e-01, 9.8390e-01, 1.9761e-01, - 4.5863e-01, 7.9353e-01, 3.8658e-02, 1.4135e-01, - 8.1843e-01, 3.0910e-01, 1.5630e-01, 6.8785e-01, - 4.2323e-01, 9.6230e-02, 7.4216e-01, 2.9855e-02, - 3.1890e-01, 2.8569e-01, 1.1579e-01, 7.3771e-01, - 8.3701e-01, 7.5848e-01]), size=(5000, 5000), nnz=250, - layout=torch.sparse_csr) -tensor([0.7970, 0.8043, 0.6125, ..., 0.7108, 0.2175, 0.0136]) + col_indices=tensor([ 698, 3054, 4592, 1629, 4601, 3886, 4804, 318, 1415, + 433, 1872, 1429, 1550, 3511, 4304, 3637, 1101, 2710, + 4079, 541, 1194, 97, 2807, 2811, 3206, 3991, 2286, + 2681, 4835, 38, 1361, 1702, 1987, 1831, 485, 140, + 4362, 3450, 2222, 295, 3370, 591, 1718, 4950, 1639, + 3575, 1461, 4389, 3994, 2356, 1105, 1104, 1761, 4007, + 4669, 3008, 4553, 4279, 1484, 3371, 4533, 863, 587, + 1360, 4727, 3879, 832, 240, 2132, 2582, 1372, 4190, + 3588, 2592, 4310, 2614, 1567, 1660, 604, 4488, 1313, + 3610, 3188, 2899, 3261, 1055, 1112, 4180, 1426, 3909, + 3409, 4510, 3025, 703, 1794, 225, 659, 2212, 1407, + 4739, 1542, 2238, 2858, 4535, 4405, 3841, 3716, 4156, + 4416, 2641, 4372, 1051, 980, 3180, 2782, 497, 394, + 605, 971, 455, 3831, 523, 3209, 733, 4726, 2765, + 226, 3470, 1720, 2299, 2372, 1447, 3202, 1153, 3498, + 4698, 2998, 1466, 363, 4324, 2506, 2090, 2285, 2204, + 303, 4406, 1500, 1826, 4080, 1378, 1816, 980, 66, + 4392, 4266, 2875, 275, 1828, 3108, 989, 3152, 2508, + 1550, 2008, 1066, 529, 18, 1, 3369, 4893, 2556, + 1068, 1671, 1086, 2667, 3511, 2891, 1749, 4140, 3150, + 43, 1921, 1837, 980, 1293, 1802, 2390, 249, 768, + 4105, 1721, 1435, 4658, 2745, 4338, 2320, 3879, 2641, + 3097, 1585, 3887, 4913, 4556, 2794, 2705, 299, 61, + 2384, 1270, 740, 2129, 3392, 3774, 4644, 4192, 4506, + 149, 4748, 3571, 1159, 4587, 1920, 982, 2347, 1650, + 1882, 1955, 3910, 197, 4484, 3655, 4387, 968, 3452, + 181, 2166, 1855, 2452, 189, 3074, 2522, 3426, 135, + 1267, 666, 4928, 2908, 4053, 4593, 448]), + values=tensor([0.8620, 0.7365, 0.7531, 0.5477, 0.5295, 0.4268, 0.2903, + 0.3296, 0.4852, 0.0295, 0.6605, 0.4770, 0.1707, 0.4638, + 0.1229, 0.6813, 0.2237, 0.9317, 0.9546, 0.4741, 0.7915, + 0.3909, 0.2549, 0.7853, 0.8207, 0.9924, 0.8328, 0.0293, + 0.3281, 0.4028, 0.9335, 0.8141, 0.3687, 0.4243, 0.5386, + 0.2123, 0.0695, 0.2792, 0.2453, 0.4935, 0.1675, 0.4387, + 0.5777, 0.6384, 0.5870, 0.2050, 0.9519, 0.0161, 0.0462, + 0.8312, 0.5114, 0.5703, 0.5170, 0.0110, 0.6229, 0.7339, + 0.2337, 0.7709, 0.7844, 0.2062, 0.2004, 0.9990, 0.4625, + 0.4209, 0.7064, 0.0680, 0.6043, 0.0073, 0.1383, 0.5359, + 0.1641, 0.0316, 0.0479, 0.9788, 0.0764, 0.0936, 0.1603, + 0.1581, 0.8855, 0.4285, 0.9101, 0.6054, 0.5164, 0.1839, + 0.2783, 0.0513, 0.4451, 0.7375, 0.3333, 0.1348, 0.3539, + 0.0102, 0.1620, 0.4960, 0.1201, 0.8615, 0.2151, 0.0085, + 0.8133, 0.8439, 0.5713, 0.6595, 0.6728, 0.2738, 0.1487, + 0.3205, 0.6933, 0.0963, 0.6731, 0.6903, 0.0043, 0.7900, + 0.7911, 0.9496, 0.4295, 0.5758, 0.2659, 0.3025, 0.6145, + 0.1511, 0.7265, 0.9480, 0.6751, 0.8138, 0.6361, 0.4149, + 0.8899, 0.3218, 0.3413, 0.2054, 0.1555, 0.4398, 0.9946, + 0.6820, 0.1566, 0.7238, 0.9562, 0.1023, 0.0696, 0.9724, + 0.8182, 0.0031, 0.0289, 0.5187, 0.0063, 0.5262, 0.9232, + 0.3694, 0.0136, 0.3019, 0.9633, 0.8770, 0.0826, 0.1792, + 0.6372, 0.5719, 0.7979, 0.1369, 0.9923, 0.7514, 0.0627, + 0.3337, 0.0132, 0.9026, 0.1169, 0.4065, 0.7302, 0.3087, + 0.4276, 0.6874, 0.0705, 0.4727, 0.3286, 0.7188, 0.3727, + 0.5310, 0.1979, 0.9773, 0.3076, 0.3372, 0.2546, 0.3340, + 0.4532, 0.0609, 0.2279, 0.8651, 0.8162, 0.8251, 0.1216, + 0.3049, 0.0805, 0.1284, 0.1859, 0.3690, 0.3435, 0.7762, + 0.7083, 0.6529, 0.8556, 0.1421, 0.4528, 0.4045, 0.9221, + 0.6914, 0.6437, 0.8815, 0.0609, 0.9680, 0.2115, 0.5295, + 0.5418, 0.8646, 0.6735, 0.1927, 0.2578, 0.4564, 0.0603, + 0.1414, 0.3382, 0.0772, 0.6503, 0.3586, 0.8775, 0.8840, + 0.9215, 0.4825, 0.2733, 0.0423, 0.6825, 0.8144, 0.0837, + 0.2758, 0.6188, 0.3276, 0.0762, 0.7932, 0.5621, 0.9067, + 0.7339, 0.1976, 0.8462, 0.5736, 0.2659, 0.7486, 0.3053, + 0.7429, 0.4272, 0.8072, 0.5183, 0.4677]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.4130, 0.3379, 0.7498, ..., 0.0848, 0.9618, 0.5893]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -347,118 +317,13 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 10.363765478134155 seconds +Time: 10.308423519134521 seconds -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([1815, 573, 313, 4753, 4998, 3650, 708, 3756, 4632, - 3171, 1063, 2555, 1629, 3246, 3070, 2176, 3197, 2451, - 4183, 1276, 3956, 2941, 590, 310, 901, 582, 3400, - 3816, 854, 431, 4240, 4381, 4138, 3465, 1098, 4568, - 1899, 575, 4191, 2652, 1753, 2563, 2759, 4705, 3778, - 3664, 3914, 746, 477, 1085, 3621, 200, 1606, 1735, - 567, 4327, 4532, 959, 1950, 219, 1019, 4655, 3231, - 739, 2806, 3755, 920, 3178, 1203, 2773, 3742, 4216, - 3040, 3288, 1862, 3988, 3055, 2380, 386, 4811, 4992, - 2551, 454, 3476, 3586, 1425, 4793, 4634, 4563, 197, - 1634, 1276, 3200, 3036, 1449, 923, 3741, 1238, 917, - 13, 4497, 485, 2520, 1891, 1907, 2355, 3849, 1705, - 4617, 3918, 387, 152, 370, 3166, 1980, 3215, 2459, - 4636, 960, 2987, 498, 3413, 4946, 1982, 2382, 4484, - 67, 2842, 3291, 3435, 4345, 3653, 4720, 2468, 2052, - 1025, 1841, 1304, 2057, 4424, 4112, 134, 4127, 448, - 2737, 3483, 1455, 2363, 189, 1811, 740, 3821, 2568, - 4923, 4229, 447, 1138, 4148, 2122, 232, 3305, 3147, - 1717, 408, 644, 2055, 527, 3062, 248, 4109, 399, - 1356, 4770, 2528, 2684, 4997, 3795, 4694, 440, 3426, - 1710, 4340, 1612, 56, 646, 771, 1729, 765, 1920, - 4681, 3827, 3045, 4987, 598, 406, 2175, 1659, 4617, - 1246, 2976, 4027, 4995, 1783, 4600, 3838, 4759, 1930, - 3732, 234, 3852, 2906, 2962, 686, 832, 3809, 994, - 87, 19, 2535, 4315, 3169, 3549, 2170, 3920, 3910, - 2128, 3451, 3492, 42, 369, 863, 4827, 2245, 672, - 3029, 4444, 3612, 4409, 2915, 1931, 518, 3028, 4272, - 2556, 3052, 1905, 3640, 2925, 2354, 3707]), - values=tensor([1.9637e-01, 9.6917e-01, 6.9012e-01, 6.5144e-02, - 6.9969e-01, 6.0735e-01, 9.8413e-01, 5.5329e-01, - 4.9977e-01, 8.2849e-02, 6.0922e-01, 9.8307e-01, - 7.2683e-01, 6.2751e-01, 2.5140e-01, 6.5370e-01, - 9.8048e-01, 8.3008e-01, 9.4034e-01, 5.6135e-01, - 4.5053e-04, 8.4765e-01, 6.7162e-01, 6.6604e-01, - 7.6374e-01, 3.7730e-01, 7.9733e-01, 5.1905e-01, - 1.1698e-01, 6.2411e-01, 4.1882e-01, 9.2515e-01, - 7.1296e-01, 7.6621e-01, 9.1292e-01, 2.3384e-01, - 9.5049e-01, 2.9472e-01, 4.8881e-01, 7.8866e-01, - 3.0122e-01, 3.0501e-01, 9.5326e-02, 6.3170e-01, - 1.3931e-01, 8.2970e-01, 2.2371e-01, 7.9744e-01, - 4.4607e-01, 1.5447e-02, 1.0137e-01, 3.8368e-01, - 8.2513e-01, 8.9986e-01, 2.3061e-01, 9.8290e-01, - 4.3469e-01, 7.3495e-01, 1.5216e-01, 3.9507e-01, - 7.1334e-01, 7.7117e-01, 9.9550e-01, 9.2278e-01, - 3.0890e-01, 6.6914e-01, 1.2145e-01, 9.1632e-01, - 5.0784e-01, 6.2243e-01, 6.5077e-01, 6.2687e-01, - 2.0114e-01, 7.5097e-01, 2.0777e-01, 4.2757e-01, - 2.2520e-01, 5.5414e-01, 9.1256e-01, 1.3031e-01, - 1.5351e-01, 4.1244e-01, 2.4735e-01, 9.5465e-01, - 3.7976e-01, 3.1882e-01, 2.8598e-02, 8.3393e-01, - 7.4047e-01, 7.3298e-01, 9.7843e-01, 4.0729e-01, - 9.2998e-02, 4.3465e-01, 3.2636e-01, 9.5106e-02, - 4.8367e-02, 3.1339e-01, 4.7275e-01, 6.9317e-01, - 6.7922e-01, 7.2355e-01, 6.1366e-01, 7.6219e-01, - 2.1995e-01, 3.9216e-01, 8.5252e-01, 7.1761e-01, - 4.5198e-01, 9.8165e-01, 7.6941e-01, 8.2823e-01, - 7.6982e-01, 4.3963e-01, 2.2626e-01, 2.9003e-01, - 7.3718e-01, 8.0941e-01, 4.5213e-01, 1.9323e-01, - 3.6014e-01, 6.7950e-02, 2.6777e-01, 7.5770e-01, - 8.8988e-01, 1.1815e-01, 1.1244e-01, 9.2625e-01, - 7.6156e-01, 9.7142e-01, 2.3564e-01, 3.8882e-01, - 5.9567e-01, 4.8258e-01, 5.5462e-01, 2.7503e-01, - 2.0411e-01, 3.1168e-01, 7.6951e-01, 7.2732e-01, - 4.6023e-02, 4.7740e-01, 9.9557e-01, 7.3789e-02, - 6.2383e-02, 3.5543e-01, 1.8242e-01, 3.6846e-01, - 5.3628e-02, 5.3874e-01, 3.0038e-01, 9.6174e-01, - 9.6554e-01, 4.7430e-01, 2.2738e-01, 8.6557e-01, - 5.4122e-02, 8.5019e-01, 5.0852e-01, 5.3410e-01, - 1.7285e-01, 5.4149e-01, 8.0869e-01, 6.5103e-01, - 2.7217e-01, 7.0732e-01, 5.5532e-01, 9.9150e-01, - 7.5543e-01, 2.6834e-01, 2.8447e-01, 3.5912e-01, - 4.5601e-01, 7.0765e-01, 6.6949e-01, 5.9725e-01, - 4.8923e-01, 9.9235e-01, 7.6412e-02, 4.1164e-02, - 4.3938e-01, 9.1861e-01, 8.8739e-01, 9.4972e-01, - 4.9408e-01, 4.9347e-01, 3.4149e-01, 5.0322e-01, - 3.1901e-02, 5.2875e-01, 3.3499e-01, 9.5821e-01, - 5.2956e-01, 4.7216e-01, 2.0353e-01, 3.0726e-02, - 5.1848e-01, 2.6131e-01, 8.5289e-02, 4.9542e-01, - 1.5835e-01, 6.7945e-01, 7.8119e-01, 3.4856e-01, - 7.3888e-01, 4.3503e-01, 4.8394e-01, 1.0914e-01, - 5.9027e-01, 7.1288e-01, 9.8329e-01, 5.5542e-02, - 1.2536e-01, 1.9606e-01, 5.4455e-01, 4.3811e-01, - 5.8744e-01, 3.2588e-01, 6.3981e-02, 1.1337e-01, - 5.4324e-01, 8.4644e-01, 5.6165e-02, 5.0125e-01, - 1.5973e-01, 1.8614e-01, 7.8747e-01, 9.1964e-01, - 9.1086e-01, 5.6162e-01, 9.8390e-01, 1.9761e-01, - 4.5863e-01, 7.9353e-01, 3.8658e-02, 1.4135e-01, - 8.1843e-01, 3.0910e-01, 1.5630e-01, 6.8785e-01, - 4.2323e-01, 9.6230e-02, 7.4216e-01, 2.9855e-02, - 3.1890e-01, 2.8569e-01, 1.1579e-01, 7.3771e-01, - 8.3701e-01, 7.5848e-01]), size=(5000, 5000), nnz=250, - layout=torch.sparse_csr) -tensor([0.7970, 0.8043, 0.6125, ..., 0.7108, 0.2175, 0.0136]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([5000, 5000]) -Rows: 5000 -Size: 25000000 -NNZ: 250 -Density: 1e-05 -Time: 10.363765478134155 seconds - -[39.35, 38.55, 38.58, 38.65, 38.55, 38.56, 38.58, 38.95, 38.97, 38.84] -[95.12] -13.95901370048523 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 491380, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.363765478134155, 'TIME_S_1KI': 0.021091142248634776, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1327.781383190155, 'W': 95.12} -[39.35, 38.55, 38.58, 38.65, 38.55, 38.56, 38.58, 38.95, 38.97, 38.84, 39.11, 38.56, 38.47, 38.42, 38.44, 38.49, 38.99, 38.76, 39.03, 39.12] -696.76 -34.838 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 491380, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.363765478134155, 'TIME_S_1KI': 0.021091142248634776, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1327.781383190155, 'W': 95.12, 'J_1KI': 2.7021477943549903, 'W_1KI': 0.1935772721722496, 'W_D': 60.282000000000004, 'J_D': 841.4772638926506, 'W_D_1KI': 0.12267898571370427, 'J_D_1KI': 0.00024966214683891136} +[39.69, 38.64, 38.76, 38.66, 38.74, 43.79, 39.13, 39.04, 39.27, 38.98] +[94.85] +12.54550838470459 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 475914, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.308423519134521, 'TIME_S_1KI': 0.021660265340239036, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1189.9414702892302, 'W': 94.85} +[39.69, 38.64, 38.76, 38.66, 38.74, 43.79, 39.13, 39.04, 39.27, 38.98, 39.59, 39.06, 44.18, 38.71, 38.85, 39.28, 38.92, 38.81, 38.79, 40.52] +712.02 +35.601 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 475914, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.308423519134521, 'TIME_S_1KI': 0.021660265340239036, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1189.9414702892302, 'W': 94.85, 'J_1KI': 2.5003287784961783, 'W_1KI': 0.19930071399454524, 'W_D': 59.248999999999995, 'J_D': 743.3088262853622, 'W_D_1KI': 0.12449518190261265, 'J_D_1KI': 0.000261591762172604} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_5e-05.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_5e-05.json index b474ab7..ae25247 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_5e-05.json +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_5e-05.json @@ -1 +1 @@ -{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 471062, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.751366138458252, "TIME_S_1KI": 0.022823675309106343, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1247.6856990122794, "W": 95.07, "J_1KI": 2.6486655663421788, "W_1KI": 0.20182056714402774, "W_D": 59.887249999999995, "J_D": 785.9520919130443, "W_D_1KI": 0.12713241569050357, "J_D_1KI": 0.0002698846769438069} +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 463602, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.329545974731445, "TIME_S_1KI": 0.02228106430673605, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1198.2176897239685, "W": 95.11, "J_1KI": 2.5845826586683587, "W_1KI": 0.20515442124926123, "W_D": 59.724, "J_D": 752.4167101364135, "W_D_1KI": 0.12882601886963388, "J_D_1KI": 0.00027788063655815524} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_5e-05.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_5e-05.output index b89ee01..3c48d35 100644 --- a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_5e-05.output +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_5000_5e-05.output @@ -1,13 +1,13 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '5e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.06770849227905273} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.01933002471923828} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 1249, 1249, 1250]), - col_indices=tensor([ 631, 2604, 2210, ..., 3865, 405, 4638]), - values=tensor([0.5383, 0.4516, 0.3480, ..., 0.7821, 0.4439, 0.3322]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1250, 1250, 1250]), + col_indices=tensor([ 393, 4092, 1605, ..., 4543, 205, 1898]), + values=tensor([0.0363, 0.1593, 0.8850, ..., 0.0884, 0.4054, 0.0261]), size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) -tensor([0.7026, 0.4971, 0.6548, ..., 0.0098, 0.8140, 0.3691]) +tensor([0.7170, 0.2316, 0.8921, ..., 0.0306, 0.1187, 0.4918]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -15,18 +15,18 @@ Rows: 5000 Size: 25000000 NNZ: 1250 Density: 5e-05 -Time: 0.06770849227905273 seconds +Time: 0.01933002471923828 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '155076', '-ss', '5000', '-sd', '5e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 3.4566495418548584} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '54319', '-ss', '5000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 1.230255126953125} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 1249, 1249, 1250]), - col_indices=tensor([2690, 1150, 3956, ..., 712, 3582, 778]), - values=tensor([0.8228, 0.9297, 0.1263, ..., 0.8170, 0.9056, 0.4551]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1250, 1250, 1250]), + col_indices=tensor([4735, 1903, 2985, ..., 3889, 4420, 4686]), + values=tensor([0.8501, 0.7899, 0.6223, ..., 0.9437, 0.2014, 0.9727]), size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) -tensor([0.8564, 0.8640, 0.2790, ..., 0.6413, 0.1958, 0.4583]) +tensor([0.5741, 0.3449, 0.6519, ..., 0.7953, 0.3519, 0.0286]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -34,18 +34,18 @@ Rows: 5000 Size: 25000000 NNZ: 1250 Density: 5e-05 -Time: 3.4566495418548584 seconds +Time: 1.230255126953125 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '471062', '-ss', '5000', '-sd', '5e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.751366138458252} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '463602', '-ss', '5000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.329545974731445} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 1, ..., 1249, 1249, 1250]), - col_indices=tensor([1001, 2591, 823, ..., 591, 3447, 2958]), - values=tensor([0.9383, 0.1843, 0.8614, ..., 0.3843, 0.5733, 0.2218]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1248, 1249, 1250]), + col_indices=tensor([1727, 4803, 1040, ..., 3710, 1053, 4648]), + values=tensor([0.0640, 0.8338, 0.2393, ..., 0.0278, 0.9877, 0.3687]), size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) -tensor([0.8666, 0.6997, 0.8565, ..., 0.1580, 0.8946, 0.5984]) +tensor([0.8593, 0.3881, 0.7226, ..., 0.2122, 0.1433, 0.4534]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,15 +53,15 @@ Rows: 5000 Size: 25000000 NNZ: 1250 Density: 5e-05 -Time: 10.751366138458252 seconds +Time: 10.329545974731445 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 1, ..., 1249, 1249, 1250]), - col_indices=tensor([1001, 2591, 823, ..., 591, 3447, 2958]), - values=tensor([0.9383, 0.1843, 0.8614, ..., 0.3843, 0.5733, 0.2218]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1248, 1249, 1250]), + col_indices=tensor([1727, 4803, 1040, ..., 3710, 1053, 4648]), + values=tensor([0.0640, 0.8338, 0.2393, ..., 0.0278, 0.9877, 0.3687]), size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) -tensor([0.8666, 0.6997, 0.8565, ..., 0.1580, 0.8946, 0.5984]) +tensor([0.8593, 0.3881, 0.7226, ..., 0.2122, 0.1433, 0.4534]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -69,13 +69,13 @@ Rows: 5000 Size: 25000000 NNZ: 1250 Density: 5e-05 -Time: 10.751366138458252 seconds +Time: 10.329545974731445 seconds -[39.99, 39.18, 38.82, 38.83, 39.11, 38.71, 39.17, 38.68, 38.75, 38.85] -[95.07] -13.123863458633423 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 471062, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.751366138458252, 'TIME_S_1KI': 0.022823675309106343, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1247.6856990122794, 'W': 95.07} -[39.99, 39.18, 38.82, 38.83, 39.11, 38.71, 39.17, 38.68, 38.75, 38.85, 39.95, 39.47, 39.27, 39.32, 39.37, 38.76, 39.37, 39.0, 39.09, 38.72] -703.655 -35.18275 -{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 471062, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.751366138458252, 'TIME_S_1KI': 0.022823675309106343, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1247.6856990122794, 'W': 95.07, 'J_1KI': 2.6486655663421788, 'W_1KI': 0.20182056714402774, 'W_D': 59.887249999999995, 'J_D': 785.9520919130443, 'W_D_1KI': 0.12713241569050357, 'J_D_1KI': 0.0002698846769438069} +[40.79, 39.42, 39.16, 38.83, 39.21, 39.28, 39.68, 38.8, 39.35, 39.35] +[95.11] +12.598230361938477 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 463602, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.329545974731445, 'TIME_S_1KI': 0.02228106430673605, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1198.2176897239685, 'W': 95.11} +[40.79, 39.42, 39.16, 38.83, 39.21, 39.28, 39.68, 38.8, 39.35, 39.35, 40.35, 38.9, 38.98, 39.04, 38.98, 40.01, 39.46, 39.09, 39.7, 39.17] +707.72 +35.386 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 463602, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.329545974731445, 'TIME_S_1KI': 0.02228106430673605, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1198.2176897239685, 'W': 95.11, 'J_1KI': 2.5845826586683587, 'W_1KI': 0.20515442124926123, 'W_D': 59.724, 'J_D': 752.4167101364135, 'W_D_1KI': 0.12882601886963388, 'J_D_1KI': 0.00027788063655815524} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_0.0001.json index 174f326..c7b5a2b 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_0.0001.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_0.0001.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 32214, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.624319791793823, "TIME_S_1KI": 0.3298044263920601, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1308.5074545145035, "W": 90.38, "J_1KI": 40.619216940290045, "W_1KI": 2.8056124666294155, "W_D": 74.09325, "J_D": 1072.7104442819953, "W_D_1KI": 2.30003259452412, "J_D_1KI": 0.07139854083703111} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 33105, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.270436525344849, "TIME_S_1KI": 0.31023822761953934, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1243.494291753769, "W": 88.28, "J_1KI": 37.56212933858236, "W_1KI": 2.6666666666666665, "W_D": 71.58725, "J_D": 1008.3635788100362, "W_D_1KI": 2.1624301465035494, "J_D_1KI": 0.0653203487842788} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_0.0001.output index 48c062d..31fde2c 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_0.0001.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_0.0001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.0001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.3259446620941162} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '100000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.047393798828125} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 11, 22, ..., 999982, - 999991, 1000000]), - col_indices=tensor([10285, 14477, 16251, ..., 79839, 98536, 99886]), - values=tensor([0.0755, 0.8469, 0.4749, ..., 0.2250, 0.2555, 0.2499]), +tensor(crow_indices=tensor([ 0, 11, 25, ..., 999973, + 999987, 1000000]), + col_indices=tensor([ 2538, 10020, 11588, ..., 84720, 92719, 95287]), + values=tensor([0.8172, 0.5815, 0.2513, ..., 0.2819, 0.8178, 0.1271]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.5289, 0.3805, 0.4649, ..., 0.7570, 0.9550, 0.1372]) +tensor([0.9323, 0.3660, 0.2073, ..., 0.7127, 0.8566, 0.0523]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,19 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 0.3259446620941162 seconds +Time: 0.047393798828125 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '32214', '-ss', '100000', '-sd', '0.0001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.624319791793823} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '22154', '-ss', '100000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 7.0265889167785645} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 9, 15, ..., 999974, - 999991, 1000000]), - col_indices=tensor([ 27, 9769, 50112, ..., 53126, 61224, 82066]), - values=tensor([0.2467, 0.4042, 0.1080, ..., 0.3359, 0.4921, 0.7955]), +tensor(crow_indices=tensor([ 0, 11, 20, ..., 999976, + 999985, 1000000]), + col_indices=tensor([10428, 14843, 15503, ..., 86013, 91025, 96391]), + values=tensor([0.0148, 0.3731, 0.6426, ..., 0.4125, 0.5086, 0.3848]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.8754, 0.9877, 0.9510, ..., 0.4555, 0.1143, 0.3690]) +tensor([0.0982, 0.0147, 0.0440, ..., 0.9267, 0.0489, 0.6248]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -36,16 +36,19 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 10.624319791793823 seconds +Time: 7.0265889167785645 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '33105', '-ss', '100000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.270436525344849} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 9, 15, ..., 999974, - 999991, 1000000]), - col_indices=tensor([ 27, 9769, 50112, ..., 53126, 61224, 82066]), - values=tensor([0.2467, 0.4042, 0.1080, ..., 0.3359, 0.4921, 0.7955]), +tensor(crow_indices=tensor([ 0, 12, 18, ..., 999974, + 999988, 1000000]), + col_indices=tensor([ 697, 33076, 59577, ..., 88840, 91058, 94574]), + values=tensor([0.8969, 0.3012, 0.5025, ..., 0.5812, 0.6517, 0.5598]), size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.8754, 0.9877, 0.9510, ..., 0.4555, 0.1143, 0.3690]) +tensor([0.0089, 0.5150, 0.8606, ..., 0.9603, 0.9290, 0.1786]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -53,13 +56,30 @@ Rows: 100000 Size: 10000000000 NNZ: 1000000 Density: 0.0001 -Time: 10.624319791793823 seconds +Time: 10.270436525344849 seconds -[18.22, 17.55, 18.1, 17.52, 17.64, 17.6, 18.51, 17.5, 17.7, 17.75] -[90.38] -14.477843046188354 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 32214, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.624319791793823, 'TIME_S_1KI': 0.3298044263920601, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1308.5074545145035, 'W': 90.38} -[18.22, 17.55, 18.1, 17.52, 17.64, 17.6, 18.51, 17.5, 17.7, 17.75, 18.28, 17.75, 17.59, 17.7, 17.88, 17.82, 18.16, 18.33, 22.4, 17.72] -325.735 -16.28675 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 32214, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.624319791793823, 'TIME_S_1KI': 0.3298044263920601, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1308.5074545145035, 'W': 90.38, 'J_1KI': 40.619216940290045, 'W_1KI': 2.8056124666294155, 'W_D': 74.09325, 'J_D': 1072.7104442819953, 'W_D_1KI': 2.30003259452412, 'J_D_1KI': 0.07139854083703111} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 12, 18, ..., 999974, + 999988, 1000000]), + col_indices=tensor([ 697, 33076, 59577, ..., 88840, 91058, 94574]), + values=tensor([0.8969, 0.3012, 0.5025, ..., 0.5812, 0.6517, 0.5598]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.0089, 0.5150, 0.8606, ..., 0.9603, 0.9290, 0.1786]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 10.270436525344849 seconds + +[18.44, 17.49, 17.8, 17.92, 17.7, 20.94, 18.06, 17.75, 21.44, 18.07] +[88.28] +14.085798501968384 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 33105, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.270436525344849, 'TIME_S_1KI': 0.31023822761953934, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1243.494291753769, 'W': 88.28} +[18.44, 17.49, 17.8, 17.92, 17.7, 20.94, 18.06, 17.75, 21.44, 18.07, 18.18, 18.15, 17.95, 18.02, 21.88, 18.26, 18.15, 17.92, 17.92, 18.32] +333.855 +16.69275 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 33105, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.270436525344849, 'TIME_S_1KI': 0.31023822761953934, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1243.494291753769, 'W': 88.28, 'J_1KI': 37.56212933858236, 'W_1KI': 2.6666666666666665, 'W_D': 71.58725, 'J_D': 1008.3635788100362, 'W_D_1KI': 2.1624301465035494, 'J_D_1KI': 0.0653203487842788} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_0.001.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_0.001.json index be7a2cb..8d42109 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_0.001.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_0.001.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 2697, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.332640647888184, "TIME_S_1KI": 3.8311607889833827, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1417.5436856460572, "W": 83.44, "J_1KI": 525.6001800689867, "W_1KI": 30.938079347423063, "W_D": 67.3325, "J_D": 1143.8969344890118, "W_D_1KI": 24.965702632554688, "J_D_1KI": 9.25684191047634} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 2748, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.477163553237915, "TIME_S_1KI": 3.8126504924446563, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1424.6626942634582, "W": 81.1, "J_1KI": 518.4362060638495, "W_1KI": 29.512372634643373, "W_D": 64.67649999999999, "J_D": 1136.1553236193656, "W_D_1KI": 23.535844250363898, "J_D_1KI": 8.564717703916994} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_0.001.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_0.001.output index d59582d..280d994 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_0.001.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_0.001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 3.892810106277466} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '100000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.4098339080810547} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 92, 187, ..., 9999795, - 9999888, 10000000]), - col_indices=tensor([ 1843, 1850, 4412, ..., 98725, 98752, 98846]), - values=tensor([0.9343, 0.4740, 0.0577, ..., 0.9099, 0.1721, 0.4592]), +tensor(crow_indices=tensor([ 0, 105, 217, ..., 9999774, + 9999878, 10000000]), + col_indices=tensor([ 2925, 3045, 3251, ..., 98848, 99298, 99703]), + values=tensor([0.4813, 0.4380, 0.0490, ..., 0.5758, 0.0326, 0.9259]), size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.5874, 0.0844, 0.8298, ..., 0.9009, 0.0712, 0.0168]) +tensor([0.0648, 0.1204, 0.6207, ..., 0.1724, 0.6764, 0.4459]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,19 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 10000000 Density: 0.001 -Time: 3.892810106277466 seconds +Time: 0.4098339080810547 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '2697', '-ss', '100000', '-sd', '0.001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.332640647888184} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '2562', '-ss', '100000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 9.787212610244751} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 99, 214, ..., 9999796, - 9999890, 10000000]), - col_indices=tensor([ 133, 206, 762, ..., 95508, 95519, 98505]), - values=tensor([0.7799, 0.5247, 0.9444, ..., 0.2262, 0.0403, 0.9029]), +tensor(crow_indices=tensor([ 0, 90, 201, ..., 9999780, + 9999895, 10000000]), + col_indices=tensor([ 1242, 4056, 4707, ..., 96589, 97728, 98727]), + values=tensor([0.8897, 0.2716, 0.4760, ..., 0.6356, 0.3047, 0.7796]), size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.3536, 0.8501, 0.0907, ..., 0.0431, 0.6064, 0.5575]) +tensor([0.4134, 0.7359, 0.5031, ..., 0.9568, 0.9528, 0.4063]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -36,16 +36,19 @@ Rows: 100000 Size: 10000000000 NNZ: 10000000 Density: 0.001 -Time: 10.332640647888184 seconds +Time: 9.787212610244751 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '2748', '-ss', '100000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.477163553237915} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 99, 214, ..., 9999796, - 9999890, 10000000]), - col_indices=tensor([ 133, 206, 762, ..., 95508, 95519, 98505]), - values=tensor([0.7799, 0.5247, 0.9444, ..., 0.2262, 0.0403, 0.9029]), +tensor(crow_indices=tensor([ 0, 82, 171, ..., 9999801, + 9999897, 10000000]), + col_indices=tensor([ 1661, 2279, 2856, ..., 99449, 99691, 99739]), + values=tensor([0.1663, 0.0376, 0.1009, ..., 0.7118, 0.9261, 0.1836]), size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.3536, 0.8501, 0.0907, ..., 0.0431, 0.6064, 0.5575]) +tensor([0.7724, 0.0559, 0.5235, ..., 0.7708, 0.2517, 0.0642]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -53,13 +56,30 @@ Rows: 100000 Size: 10000000000 NNZ: 10000000 Density: 0.001 -Time: 10.332640647888184 seconds +Time: 10.477163553237915 seconds -[18.26, 17.98, 17.82, 17.72, 17.76, 17.93, 17.75, 17.95, 17.83, 18.05] -[83.44] -16.988778591156006 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2697, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.332640647888184, 'TIME_S_1KI': 3.8311607889833827, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1417.5436856460572, 'W': 83.44} -[18.26, 17.98, 17.82, 17.72, 17.76, 17.93, 17.75, 17.95, 17.83, 18.05, 18.55, 18.9, 17.56, 17.66, 17.87, 17.73, 17.82, 17.88, 17.78, 17.56] -322.15 -16.107499999999998 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2697, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.332640647888184, 'TIME_S_1KI': 3.8311607889833827, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1417.5436856460572, 'W': 83.44, 'J_1KI': 525.6001800689867, 'W_1KI': 30.938079347423063, 'W_D': 67.3325, 'J_D': 1143.8969344890118, 'W_D_1KI': 24.965702632554688, 'J_D_1KI': 9.25684191047634} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 82, 171, ..., 9999801, + 9999897, 10000000]), + col_indices=tensor([ 1661, 2279, 2856, ..., 99449, 99691, 99739]), + values=tensor([0.1663, 0.0376, 0.1009, ..., 0.7118, 0.9261, 0.1836]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.7724, 0.0559, 0.5235, ..., 0.7708, 0.2517, 0.0642]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 10.477163553237915 seconds + +[18.37, 17.8, 17.96, 17.86, 22.53, 18.03, 17.75, 18.1, 18.23, 17.82] +[81.1] +17.56674098968506 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2748, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.477163553237915, 'TIME_S_1KI': 3.8126504924446563, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1424.6626942634582, 'W': 81.1} +[18.37, 17.8, 17.96, 17.86, 22.53, 18.03, 17.75, 18.1, 18.23, 17.82, 18.37, 17.83, 17.94, 18.39, 17.8, 17.92, 17.99, 17.94, 18.19, 17.86] +328.47 +16.4235 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2748, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.477163553237915, 'TIME_S_1KI': 3.8126504924446563, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1424.6626942634582, 'W': 81.1, 'J_1KI': 518.4362060638495, 'W_1KI': 29.512372634643373, 'W_D': 64.67649999999999, 'J_D': 1136.1553236193656, 'W_D_1KI': 23.535844250363898, 'J_D_1KI': 8.564717703916994} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_1e-05.json index 60a31fb..d39bedd 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_1e-05.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_1e-05.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 63032, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.23182988166809, "TIME_S_1KI": 0.1623275460348409, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1227.4584797358514, "W": 89.17, "J_1KI": 19.473576591824017, "W_1KI": 1.4146782586622668, "W_D": 73.15375, "J_D": 1006.9887940111756, "W_D_1KI": 1.1605811333925626, "J_D_1KI": 0.018412570335584508} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 65044, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.857811450958252, "TIME_S_1KI": 0.1669302541503944, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1160.4457891416548, "W": 82.65999999999998, "J_1KI": 17.840935199890147, "W_1KI": 1.2708320521493142, "W_D": 66.37149999999998, "J_D": 931.7750749336478, "W_D_1KI": 1.0204092614230365, "J_D_1KI": 0.015687984463179334} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_1e-05.output index 14be47f..a139e8c 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_1e-05.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_1e-05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.17937397956848145} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '100000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.03411436080932617} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 4, ..., 99996, 100000, +tensor(crow_indices=tensor([ 0, 1, 1, ..., 99997, 99998, 100000]), - col_indices=tensor([ 6463, 19403, 32975, ..., 50312, 73566, 75866]), - values=tensor([0.6504, 0.4570, 0.8704, ..., 0.7277, 0.1675, 0.6048]), + col_indices=tensor([61814, 31861, 93735, ..., 37976, 26709, 88923]), + values=tensor([0.4964, 0.9275, 0.0463, ..., 0.6388, 0.5613, 0.1901]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.7096, 0.4020, 0.6001, ..., 0.3911, 0.2531, 0.2591]) +tensor([0.9466, 0.9805, 0.4146, ..., 0.4981, 0.9805, 0.0095]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,19 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 0.17937397956848145 seconds +Time: 0.03411436080932617 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '58536', '-ss', '100000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.751020431518555} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '30778', '-ss', '100000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 4.968464136123657} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 99998, 99998, +tensor(crow_indices=tensor([ 0, 0, 2, ..., 99993, 99997, 100000]), - col_indices=tensor([64186, 21974, 57698, ..., 75952, 18460, 38945]), - values=tensor([0.5668, 0.1226, 0.0967, ..., 0.2541, 0.6343, 0.4356]), + col_indices=tensor([86302, 87189, 44148, ..., 4090, 44893, 91495]), + values=tensor([0.5947, 0.5243, 0.4325, ..., 0.8552, 0.8488, 0.7980]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.9872, 0.9595, 0.0420, ..., 0.0153, 0.9518, 0.5571]) +tensor([0.2800, 0.7786, 0.6115, ..., 0.5946, 0.9897, 0.5537]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -36,19 +36,19 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 9.751020431518555 seconds +Time: 4.968464136123657 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '63032', '-ss', '100000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.23182988166809} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '65044', '-ss', '100000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.857811450958252} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 99998, 100000, +tensor(crow_indices=tensor([ 0, 2, 2, ..., 99999, 99999, 100000]), - col_indices=tensor([35835, 88904, 80345, ..., 79801, 8127, 81515]), - values=tensor([0.8153, 0.8474, 0.9328, ..., 0.8046, 0.4857, 0.5161]), + col_indices=tensor([27172, 43192, 23755, ..., 52370, 88374, 3897]), + values=tensor([0.0211, 0.7600, 0.3262, ..., 0.1220, 0.7210, 0.9662]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.1493, 0.1613, 0.9905, ..., 0.3209, 0.7704, 0.3686]) +tensor([0.8254, 0.5550, 0.3634, ..., 0.5298, 0.8710, 0.0274]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -56,16 +56,16 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 10.23182988166809 seconds +Time: 10.857811450958252 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 99998, 100000, +tensor(crow_indices=tensor([ 0, 2, 2, ..., 99999, 99999, 100000]), - col_indices=tensor([35835, 88904, 80345, ..., 79801, 8127, 81515]), - values=tensor([0.8153, 0.8474, 0.9328, ..., 0.8046, 0.4857, 0.5161]), + col_indices=tensor([27172, 43192, 23755, ..., 52370, 88374, 3897]), + values=tensor([0.0211, 0.7600, 0.3262, ..., 0.1220, 0.7210, 0.9662]), size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) -tensor([0.1493, 0.1613, 0.9905, ..., 0.3209, 0.7704, 0.3686]) +tensor([0.8254, 0.5550, 0.3634, ..., 0.5298, 0.8710, 0.0274]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -73,13 +73,13 @@ Rows: 100000 Size: 10000000000 NNZ: 100000 Density: 1e-05 -Time: 10.23182988166809 seconds +Time: 10.857811450958252 seconds -[18.1, 17.83, 17.83, 17.64, 17.89, 17.76, 17.87, 17.83, 17.97, 17.52] -[89.17] -13.765374898910522 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 63032, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.23182988166809, 'TIME_S_1KI': 0.1623275460348409, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1227.4584797358514, 'W': 89.17} -[18.1, 17.83, 17.83, 17.64, 17.89, 17.76, 17.87, 17.83, 17.97, 17.52, 18.59, 17.72, 17.71, 17.51, 17.74, 17.62, 17.64, 18.03, 17.89, 17.48] -320.32500000000005 -16.016250000000003 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 63032, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.23182988166809, 'TIME_S_1KI': 0.1623275460348409, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1227.4584797358514, 'W': 89.17, 'J_1KI': 19.473576591824017, 'W_1KI': 1.4146782586622668, 'W_D': 73.15375, 'J_D': 1006.9887940111756, 'W_D_1KI': 1.1605811333925626, 'J_D_1KI': 0.018412570335584508} +[18.23, 17.9, 18.0, 17.99, 18.15, 18.02, 18.22, 19.12, 18.05, 18.53] +[82.66] +14.038782835006714 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 65044, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.857811450958252, 'TIME_S_1KI': 0.1669302541503944, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1160.4457891416548, 'W': 82.65999999999998} +[18.23, 17.9, 18.0, 17.99, 18.15, 18.02, 18.22, 19.12, 18.05, 18.53, 18.28, 17.9, 18.17, 17.79, 18.21, 17.83, 17.84, 17.79, 18.22, 18.1] +325.77 +16.2885 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 65044, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.857811450958252, 'TIME_S_1KI': 0.1669302541503944, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1160.4457891416548, 'W': 82.65999999999998, 'J_1KI': 17.840935199890147, 'W_1KI': 1.2708320521493142, 'W_D': 66.37149999999998, 'J_D': 931.7750749336478, 'W_D_1KI': 1.0204092614230365, 'J_D_1KI': 0.015687984463179334} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_5e-05.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_5e-05.json index b14656f..4c80d3b 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_5e-05.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_5e-05.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 43635, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.050816535949707, "TIME_S_1KI": 0.23033841035750444, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1224.4814233660697, "W": 89.55, "J_1KI": 28.06190955347931, "W_1KI": 2.052251632863527, "W_D": 73.275, "J_D": 1001.9416671931745, "W_D_1KI": 1.679271227225851, "J_D_1KI": 0.03848450159793402} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 45510, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.42077898979187, "TIME_S_1KI": 0.22897778487787013, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1214.5695349788666, "W": 87.39, "J_1KI": 26.687970445591443, "W_1KI": 1.920237310481213, "W_D": 71.04925, "J_D": 987.4614318926334, "W_D_1KI": 1.561178861788618, "J_D_1KI": 0.03430408397689778} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_5e-05.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_5e-05.output index fe4dfe5..d883b1c 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_5e-05.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_5e-05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '5e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.24062752723693848} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '100000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.039800167083740234} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 8, ..., 499990, 499993, +tensor(crow_indices=tensor([ 0, 3, 10, ..., 499993, 499997, 500000]), - col_indices=tensor([25845, 82264, 90566, ..., 92820, 97145, 99590]), - values=tensor([0.6382, 0.4794, 0.9065, ..., 0.0565, 0.2096, 0.7456]), + col_indices=tensor([ 4828, 48889, 52503, ..., 31911, 36084, 76746]), + values=tensor([0.4793, 0.0828, 0.1169, ..., 0.5530, 0.3033, 0.0718]), size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) -tensor([0.3202, 0.7109, 0.9868, ..., 0.4243, 0.8639, 0.9226]) +tensor([0.5059, 0.6298, 0.1664, ..., 0.1879, 0.5431, 0.8952]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -16,19 +16,19 @@ Rows: 100000 Size: 10000000000 NNZ: 500000 Density: 5e-05 -Time: 0.24062752723693848 seconds +Time: 0.039800167083740234 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '43635', '-ss', '100000', '-sd', '5e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.050816535949707} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '26381', '-ss', '100000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 6.086489200592041} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 6, 11, ..., 499985, 499991, +tensor(crow_indices=tensor([ 0, 4, 7, ..., 499989, 499994, 500000]), - col_indices=tensor([ 2943, 35530, 40183, ..., 77324, 82017, 92181]), - values=tensor([0.7176, 0.7408, 0.8709, ..., 0.2236, 0.1509, 0.6788]), + col_indices=tensor([14519, 22983, 80951, ..., 84187, 95762, 97051]), + values=tensor([0.1542, 0.8524, 0.3039, ..., 0.4189, 0.6409, 0.4295]), size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) -tensor([0.0661, 0.4747, 0.8915, ..., 0.6458, 0.7762, 0.4694]) +tensor([0.0352, 0.2725, 0.4170, ..., 0.1491, 0.4370, 0.8032]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -36,16 +36,19 @@ Rows: 100000 Size: 10000000000 NNZ: 500000 Density: 5e-05 -Time: 10.050816535949707 seconds +Time: 6.086489200592041 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '45510', '-ss', '100000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.42077898979187} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 6, 11, ..., 499985, 499991, +tensor(crow_indices=tensor([ 0, 8, 19, ..., 499990, 499995, 500000]), - col_indices=tensor([ 2943, 35530, 40183, ..., 77324, 82017, 92181]), - values=tensor([0.7176, 0.7408, 0.8709, ..., 0.2236, 0.1509, 0.6788]), + col_indices=tensor([14786, 31808, 59751, ..., 39791, 89593, 95677]), + values=tensor([0.6756, 0.3891, 0.0863, ..., 0.6881, 0.4209, 0.2818]), size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) -tensor([0.0661, 0.4747, 0.8915, ..., 0.6458, 0.7762, 0.4694]) +tensor([0.4948, 0.2234, 0.2049, ..., 0.0447, 0.7948, 0.3022]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([100000, 100000]) @@ -53,13 +56,30 @@ Rows: 100000 Size: 10000000000 NNZ: 500000 Density: 5e-05 -Time: 10.050816535949707 seconds +Time: 10.42077898979187 seconds -[18.28, 18.77, 17.89, 17.54, 18.06, 17.6, 17.83, 17.74, 18.0, 17.55] -[89.55] -13.673717737197876 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 43635, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.050816535949707, 'TIME_S_1KI': 0.23033841035750444, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1224.4814233660697, 'W': 89.55} -[18.28, 18.77, 17.89, 17.54, 18.06, 17.6, 17.83, 17.74, 18.0, 17.55, 18.31, 17.61, 17.7, 17.7, 17.86, 17.61, 17.69, 21.85, 18.07, 17.82] -325.5 -16.275 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 43635, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.050816535949707, 'TIME_S_1KI': 0.23033841035750444, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1224.4814233660697, 'W': 89.55, 'J_1KI': 28.06190955347931, 'W_1KI': 2.052251632863527, 'W_D': 73.275, 'J_D': 1001.9416671931745, 'W_D_1KI': 1.679271227225851, 'J_D_1KI': 0.03848450159793402} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 19, ..., 499990, 499995, + 500000]), + col_indices=tensor([14786, 31808, 59751, ..., 39791, 89593, 95677]), + values=tensor([0.6756, 0.3891, 0.0863, ..., 0.6881, 0.4209, 0.2818]), + size=(100000, 100000), nnz=500000, layout=torch.sparse_csr) +tensor([0.4948, 0.2234, 0.2049, ..., 0.0447, 0.7948, 0.3022]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 500000 +Density: 5e-05 +Time: 10.42077898979187 seconds + +[19.52, 19.27, 18.28, 17.93, 17.92, 18.18, 17.97, 18.17, 18.27, 18.17] +[87.39] +13.898266792297363 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 45510, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.42077898979187, 'TIME_S_1KI': 0.22897778487787013, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1214.5695349788666, 'W': 87.39} +[19.52, 19.27, 18.28, 17.93, 17.92, 18.18, 17.97, 18.17, 18.27, 18.17, 18.18, 17.95, 17.9, 18.1, 18.19, 18.03, 17.88, 17.96, 18.05, 17.66] +326.815 +16.34075 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 45510, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.42077898979187, 'TIME_S_1KI': 0.22897778487787013, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1214.5695349788666, 'W': 87.39, 'J_1KI': 26.687970445591443, 'W_1KI': 1.920237310481213, 'W_D': 71.04925, 'J_D': 987.4614318926334, 'W_D_1KI': 1.561178861788618, 'J_D_1KI': 0.03430408397689778} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.0001.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.0001.json index 05a227c..df907c2 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.0001.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.0001.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 253876, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.530851364135742, "TIME_S_1KI": 0.041480294963429955, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1171.4377240467072, "W": 80.68, "J_1KI": 4.614212150997759, "W_1KI": 0.317792938284832, "W_D": 64.302, "J_D": 933.636446847439, "W_D_1KI": 0.2532811293702437, "J_D_1KI": 0.0009976568457445514} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 251263, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.831458568572998, "TIME_S_1KI": 0.04310805239359952, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1035.0438996100424, "W": 74.32999999999998, "J_1KI": 4.119364568639403, "W_1KI": 0.2958254896264073, "W_D": 58.06174999999998, "J_D": 808.5088139134047, "W_D_1KI": 0.2310795859318721, "J_D_1KI": 0.0009196721599752933} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.0001.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.0001.output index 04a16aa..bb6d734 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.0001.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.0001.output @@ -1,13 +1,13 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.0001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.05977439880371094} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.019912242889404297} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 2, ..., 9999, 9999, 10000]), - col_indices=tensor([6615, 8991, 2810, ..., 6295, 8510, 7610]), - values=tensor([0.3885, 0.8426, 0.7862, ..., 0.5955, 0.1672, 0.2063]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 9999, 9999, 10000]), + col_indices=tensor([1836, 4826, 4334, ..., 9720, 1658, 3253]), + values=tensor([0.6220, 0.1290, 0.9015, ..., 0.3260, 0.3650, 0.7979]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.1595, 0.0624, 0.6993, ..., 0.5987, 0.7271, 0.9533]) +tensor([0.5720, 0.7293, 0.6280, ..., 0.0388, 0.6575, 0.1842]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -15,18 +15,18 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 0.05977439880371094 seconds +Time: 0.019912242889404297 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '175660', '-ss', '10000', '-sd', '0.0001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 7.265056371688843} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '52731', '-ss', '10000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 2.203561544418335} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 9997, 9998, 10000]), - col_indices=tensor([6157, 6465, 6955, ..., 9189, 5553, 9168]), - values=tensor([0.9492, 0.4977, 0.7776, ..., 0.2833, 0.2034, 0.6430]), +tensor(crow_indices=tensor([ 0, 4, 5, ..., 9999, 9999, 10000]), + col_indices=tensor([1066, 3027, 5018, ..., 516, 4404, 8191]), + values=tensor([0.9408, 0.5840, 0.0232, ..., 0.8231, 0.8506, 0.7636]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.2429, 0.7570, 0.9101, ..., 0.6676, 0.5300, 0.9328]) +tensor([0.2181, 0.5672, 0.6634, ..., 0.2110, 0.3174, 0.6218]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -34,18 +34,18 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 7.265056371688843 seconds +Time: 2.203561544418335 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '253876', '-ss', '10000', '-sd', '0.0001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.530851364135742} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '251263', '-ss', '10000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.831458568572998} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 9998, 9999, 10000]), - col_indices=tensor([ 868, 4014, 6169, ..., 4688, 7367, 6538]), - values=tensor([0.9131, 0.0133, 0.5134, ..., 0.5757, 0.9187, 0.1463]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 9997, 9999, 10000]), + col_indices=tensor([6180, 2035, 3071, ..., 490, 6496, 2315]), + values=tensor([0.2073, 0.5439, 0.2551, ..., 0.7953, 0.4550, 0.0057]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.7710, 0.0750, 0.1717, ..., 0.8123, 0.4992, 0.1144]) +tensor([0.4967, 0.8117, 0.4603, ..., 0.8210, 0.9832, 0.0501]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -53,15 +53,15 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 10.530851364135742 seconds +Time: 10.831458568572998 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 9998, 9999, 10000]), - col_indices=tensor([ 868, 4014, 6169, ..., 4688, 7367, 6538]), - values=tensor([0.9131, 0.0133, 0.5134, ..., 0.5757, 0.9187, 0.1463]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 9997, 9999, 10000]), + col_indices=tensor([6180, 2035, 3071, ..., 490, 6496, 2315]), + values=tensor([0.2073, 0.5439, 0.2551, ..., 0.7953, 0.4550, 0.0057]), size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) -tensor([0.7710, 0.0750, 0.1717, ..., 0.8123, 0.4992, 0.1144]) +tensor([0.4967, 0.8117, 0.4603, ..., 0.8210, 0.9832, 0.0501]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -69,13 +69,13 @@ Rows: 10000 Size: 100000000 NNZ: 10000 Density: 0.0001 -Time: 10.530851364135742 seconds +Time: 10.831458568572998 seconds -[18.32, 17.72, 17.73, 18.28, 18.02, 18.18, 17.93, 18.12, 17.89, 21.22] -[80.68] -14.51955533027649 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 253876, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.530851364135742, 'TIME_S_1KI': 0.041480294963429955, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1171.4377240467072, 'W': 80.68} -[18.32, 17.72, 17.73, 18.28, 18.02, 18.18, 17.93, 18.12, 17.89, 21.22, 18.16, 17.68, 17.59, 17.54, 18.03, 22.12, 17.56, 17.65, 17.87, 17.6] -327.56000000000006 -16.378000000000004 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 253876, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.530851364135742, 'TIME_S_1KI': 0.041480294963429955, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1171.4377240467072, 'W': 80.68, 'J_1KI': 4.614212150997759, 'W_1KI': 0.317792938284832, 'W_D': 64.302, 'J_D': 933.636446847439, 'W_D_1KI': 0.2532811293702437, 'J_D_1KI': 0.0009976568457445514} +[18.25, 18.21, 18.06, 17.61, 18.2, 17.92, 18.19, 17.85, 18.22, 17.78] +[74.33] +13.924981832504272 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 251263, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.831458568572998, 'TIME_S_1KI': 0.04310805239359952, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1035.0438996100424, 'W': 74.32999999999998} +[18.25, 18.21, 18.06, 17.61, 18.2, 17.92, 18.19, 17.85, 18.22, 17.78, 19.64, 17.79, 18.1, 18.15, 18.23, 17.78, 18.02, 18.14, 18.11, 17.9] +325.365 +16.268250000000002 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 251263, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.831458568572998, 'TIME_S_1KI': 0.04310805239359952, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1035.0438996100424, 'W': 74.32999999999998, 'J_1KI': 4.119364568639403, 'W_1KI': 0.2958254896264073, 'W_D': 58.06174999999998, 'J_D': 808.5088139134047, 'W_D_1KI': 0.2310795859318721, 'J_D_1KI': 0.0009196721599752933} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.001.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.001.json index fdd9d92..610ea48 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.001.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.001.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 195071, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.382015228271484, "TIME_S_1KI": 0.05322172556798029, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1196.0013425803186, "W": 86.31, "J_1KI": 6.131107866265712, "W_1KI": 0.4424542858753992, "W_D": 70.10050000000001, "J_D": 971.3856113492252, "W_D_1KI": 0.35935890009278676, "J_D_1KI": 0.0018421954062509895} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 195195, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.530660390853882, "TIME_S_1KI": 0.05394943718258092, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1115.5897302937508, "W": 79.81, "J_1KI": 5.7152577181472415, "W_1KI": 0.40887317810394735, "W_D": 63.323, "J_D": 885.1332977244854, "W_D_1KI": 0.3244089244089244, "J_D_1KI": 0.0016619735362531027} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.001.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.001.output index 5d9701a..d29559f 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.001.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.06870174407958984} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.02070331573486328} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 10, 25, ..., 99981, 99995, +tensor(crow_indices=tensor([ 0, 12, 18, ..., 99984, 99988, 100000]), - col_indices=tensor([ 3, 150, 370, ..., 2691, 9535, 9749]), - values=tensor([0.2561, 0.9230, 0.8831, ..., 0.2203, 0.7623, 0.4185]), + col_indices=tensor([ 729, 732, 881, ..., 6002, 8211, 9107]), + values=tensor([0.1473, 0.0535, 0.1985, ..., 0.7529, 0.2592, 0.5040]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.1427, 0.1860, 0.4972, ..., 0.5058, 0.8744, 0.6551]) +tensor([0.7970, 0.9066, 0.2901, ..., 0.5249, 0.8444, 0.0204]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,19 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 0.06870174407958984 seconds +Time: 0.02070331573486328 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '152834', '-ss', '10000', '-sd', '0.001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 8.226486682891846} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '50716', '-ss', '10000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 2.728132724761963} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 9, 17, ..., 99982, 99990, +tensor(crow_indices=tensor([ 0, 15, 22, ..., 99985, 99992, 100000]), - col_indices=tensor([ 560, 3215, 3961, ..., 6911, 7414, 7504]), - values=tensor([0.0904, 0.0706, 0.8224, ..., 0.0963, 0.3127, 0.0052]), + col_indices=tensor([ 992, 2241, 2699, ..., 7485, 9702, 9755]), + values=tensor([0.1587, 0.3354, 0.8907, ..., 0.7458, 0.3952, 0.4445]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.8141, 0.4563, 0.6350, ..., 0.0924, 0.8861, 0.1694]) +tensor([0.7531, 0.7793, 0.1410, ..., 0.7186, 0.3031, 0.2892]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -36,19 +36,19 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 8.226486682891846 seconds +Time: 2.728132724761963 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '195071', '-ss', '10000', '-sd', '0.001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.382015228271484} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '195195', '-ss', '10000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.530660390853882} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 10, ..., 99988, 99994, +tensor(crow_indices=tensor([ 0, 6, 11, ..., 99979, 99991, 100000]), - col_indices=tensor([1742, 3653, 4110, ..., 7414, 9186, 9217]), - values=tensor([0.4393, 0.0633, 0.6988, ..., 0.9636, 0.3600, 0.6461]), + col_indices=tensor([ 74, 913, 1678, ..., 8042, 8094, 8596]), + values=tensor([0.3009, 0.6152, 0.9919, ..., 0.0065, 0.7111, 0.2350]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.5362, 0.5145, 0.3988, ..., 0.1543, 0.7121, 0.2032]) +tensor([0.1186, 0.1112, 0.0471, ..., 0.5653, 0.6270, 0.7376]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -56,16 +56,16 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 10.382015228271484 seconds +Time: 10.530660390853882 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 10, ..., 99988, 99994, +tensor(crow_indices=tensor([ 0, 6, 11, ..., 99979, 99991, 100000]), - col_indices=tensor([1742, 3653, 4110, ..., 7414, 9186, 9217]), - values=tensor([0.4393, 0.0633, 0.6988, ..., 0.9636, 0.3600, 0.6461]), + col_indices=tensor([ 74, 913, 1678, ..., 8042, 8094, 8596]), + values=tensor([0.3009, 0.6152, 0.9919, ..., 0.0065, 0.7111, 0.2350]), size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) -tensor([0.5362, 0.5145, 0.3988, ..., 0.1543, 0.7121, 0.2032]) +tensor([0.1186, 0.1112, 0.0471, ..., 0.5653, 0.6270, 0.7376]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -73,13 +73,13 @@ Rows: 10000 Size: 100000000 NNZ: 100000 Density: 0.001 -Time: 10.382015228271484 seconds +Time: 10.530660390853882 seconds -[18.32, 18.17, 18.0, 18.26, 17.83, 17.86, 19.18, 17.87, 17.68, 18.06] -[86.31] -13.85704255104065 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 195071, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.382015228271484, 'TIME_S_1KI': 0.05322172556798029, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1196.0013425803186, 'W': 86.31} -[18.32, 18.17, 18.0, 18.26, 17.83, 17.86, 19.18, 17.87, 17.68, 18.06, 18.29, 17.98, 17.81, 17.75, 18.0, 18.2, 17.75, 17.66, 17.87, 17.97] -324.18999999999994 -16.2095 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 195071, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.382015228271484, 'TIME_S_1KI': 0.05322172556798029, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1196.0013425803186, 'W': 86.31, 'J_1KI': 6.131107866265712, 'W_1KI': 0.4424542858753992, 'W_D': 70.10050000000001, 'J_D': 971.3856113492252, 'W_D_1KI': 0.35935890009278676, 'J_D_1KI': 0.0018421954062509895} +[18.85, 21.66, 18.61, 18.04, 18.26, 18.19, 18.11, 17.83, 18.59, 17.86] +[79.81] +13.978069543838501 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 195195, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.530660390853882, 'TIME_S_1KI': 0.05394943718258092, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1115.5897302937508, 'W': 79.81} +[18.85, 21.66, 18.61, 18.04, 18.26, 18.19, 18.11, 17.83, 18.59, 17.86, 18.27, 17.86, 18.11, 17.94, 18.2, 17.78, 18.07, 17.82, 17.85, 18.66] +329.74 +16.487000000000002 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 195195, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.530660390853882, 'TIME_S_1KI': 0.05394943718258092, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1115.5897302937508, 'W': 79.81, 'J_1KI': 5.7152577181472415, 'W_1KI': 0.40887317810394735, 'W_D': 63.323, 'J_D': 885.1332977244854, 'W_D_1KI': 0.3244089244089244, 'J_D_1KI': 0.0016619735362531027} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.01.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.01.json index 5933eb4..9a2b891 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.01.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.01.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 53507, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.015070676803589, "TIME_S_1KI": 0.18717309280661576, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1202.573525466919, "W": 88.64, "J_1KI": 22.47506915855718, "W_1KI": 1.6566056777617881, "W_D": 72.22725, "J_D": 979.9027376723885, "W_D_1KI": 1.3498654381669688, "J_D_1KI": 0.02522782884794455} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 58200, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.524534702301025, "TIME_S_1KI": 0.18083392959280112, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1230.7857535743713, "W": 87.63, "J_1KI": 21.147521539078543, "W_1KI": 1.5056701030927835, "W_D": 71.18625, "J_D": 999.8290807986259, "W_D_1KI": 1.223131443298969, "J_D_1KI": 0.02101600418039466} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.01.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.01.output index d725fe1..b0a27e2 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.01.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.01.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.01', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.19623374938964844} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.032953500747680664} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 102, 197, ..., 999814, - 999918, 1000000]), - col_indices=tensor([ 21, 221, 266, ..., 9711, 9962, 9983]), - values=tensor([0.8240, 0.1342, 0.9347, ..., 0.9531, 0.8710, 0.7315]), +tensor(crow_indices=tensor([ 0, 87, 187, ..., 999811, + 999895, 1000000]), + col_indices=tensor([ 60, 162, 170, ..., 9440, 9828, 9931]), + values=tensor([0.9691, 0.2545, 0.9233, ..., 0.5616, 0.3084, 0.5234]), size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.2953, 0.0740, 0.7231, ..., 0.2507, 0.0704, 0.5422]) +tensor([0.0498, 0.1923, 0.6628, ..., 0.9993, 0.6267, 0.7810]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,19 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 1000000 Density: 0.01 -Time: 0.19623374938964844 seconds +Time: 0.032953500747680664 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '53507', '-ss', '10000', '-sd', '0.01', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.015070676803589} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '31863', '-ss', '10000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 5.748403549194336} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 117, 202, ..., 999813, - 999911, 1000000]), - col_indices=tensor([ 101, 231, 245, ..., 9677, 9872, 9873]), - values=tensor([0.6066, 0.1771, 0.9671, ..., 0.7083, 0.4630, 0.7862]), +tensor(crow_indices=tensor([ 0, 110, 213, ..., 999801, + 999901, 1000000]), + col_indices=tensor([ 77, 119, 129, ..., 9737, 9950, 9990]), + values=tensor([0.4475, 0.9311, 0.1906, ..., 0.1630, 0.9417, 0.6731]), size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.1666, 0.0462, 0.0015, ..., 0.3047, 0.2438, 0.6174]) +tensor([0.2219, 0.3377, 0.8817, ..., 0.6372, 0.3631, 0.6898]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -36,16 +36,19 @@ Rows: 10000 Size: 100000000 NNZ: 1000000 Density: 0.01 -Time: 10.015070676803589 seconds +Time: 5.748403549194336 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '58200', '-ss', '10000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.524534702301025} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 117, 202, ..., 999813, - 999911, 1000000]), - col_indices=tensor([ 101, 231, 245, ..., 9677, 9872, 9873]), - values=tensor([0.6066, 0.1771, 0.9671, ..., 0.7083, 0.4630, 0.7862]), +tensor(crow_indices=tensor([ 0, 116, 213, ..., 999804, + 999907, 1000000]), + col_indices=tensor([ 96, 100, 135, ..., 9713, 9783, 9969]), + values=tensor([0.2374, 0.5111, 0.2281, ..., 0.8006, 0.1634, 0.0785]), size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) -tensor([0.1666, 0.0462, 0.0015, ..., 0.3047, 0.2438, 0.6174]) +tensor([0.4187, 0.6286, 0.6485, ..., 0.1996, 0.5955, 0.8769]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -53,13 +56,30 @@ Rows: 10000 Size: 100000000 NNZ: 1000000 Density: 0.01 -Time: 10.015070676803589 seconds +Time: 10.524534702301025 seconds -[18.69, 17.91, 17.85, 17.85, 22.65, 17.8, 18.01, 17.72, 17.94, 17.78] -[88.64] -13.56693959236145 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 53507, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.015070676803589, 'TIME_S_1KI': 0.18717309280661576, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1202.573525466919, 'W': 88.64} -[18.69, 17.91, 17.85, 17.85, 22.65, 17.8, 18.01, 17.72, 17.94, 17.78, 20.07, 19.06, 18.03, 17.54, 17.79, 18.03, 17.73, 17.66, 17.6, 17.63] -328.255 -16.41275 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 53507, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.015070676803589, 'TIME_S_1KI': 0.18717309280661576, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1202.573525466919, 'W': 88.64, 'J_1KI': 22.47506915855718, 'W_1KI': 1.6566056777617881, 'W_D': 72.22725, 'J_D': 979.9027376723885, 'W_D_1KI': 1.3498654381669688, 'J_D_1KI': 0.02522782884794455} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 116, 213, ..., 999804, + 999907, 1000000]), + col_indices=tensor([ 96, 100, 135, ..., 9713, 9783, 9969]), + values=tensor([0.2374, 0.5111, 0.2281, ..., 0.8006, 0.1634, 0.0785]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.4187, 0.6286, 0.6485, ..., 0.1996, 0.5955, 0.8769]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.524534702301025 seconds + +[18.15, 17.92, 18.14, 18.3, 18.24, 17.98, 17.94, 18.28, 17.96, 17.99] +[87.63] +14.045255661010742 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 58200, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.524534702301025, 'TIME_S_1KI': 0.18083392959280112, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1230.7857535743713, 'W': 87.63} +[18.15, 17.92, 18.14, 18.3, 18.24, 17.98, 17.94, 18.28, 17.96, 17.99, 18.28, 18.07, 17.88, 17.88, 17.9, 18.02, 21.74, 18.02, 18.41, 17.97] +328.875 +16.44375 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 58200, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.524534702301025, 'TIME_S_1KI': 0.18083392959280112, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1230.7857535743713, 'W': 87.63, 'J_1KI': 21.147521539078543, 'W_1KI': 1.5056701030927835, 'W_D': 71.18625, 'J_D': 999.8290807986259, 'W_D_1KI': 1.223131443298969, 'J_D_1KI': 0.02101600418039466} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.05.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.05.json index 91f897d..6f3f4c5 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.05.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.05.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 8596, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.36475419998169, "TIME_S_1KI": 1.2057647975781398, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1373.4265056419372, "W": 84.46, "J_1KI": 159.77507045625143, "W_1KI": 9.825500232666355, "W_D": 68.352, "J_D": 1111.4900368652345, "W_D_1KI": 7.95160539785947, "J_D_1KI": 0.9250355279036144} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 8756, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.44620156288147, "TIME_S_1KI": 1.193033527053617, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1333.577045211792, "W": 83.47, "J_1KI": 152.30436788622566, "W_1KI": 9.532891731384193, "W_D": 66.97425, "J_D": 1070.0290214481354, "W_D_1KI": 7.648955002284148, "J_D_1KI": 0.8735672684198433} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.05.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.05.output index a70ca9f..e9fd20d 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.05.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 1.2214851379394531} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 0.14447855949401855} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 508, 1039, ..., 4998996, - 4999496, 5000000]), - col_indices=tensor([ 26, 30, 52, ..., 9932, 9973, 9998]), - values=tensor([0.9442, 0.4994, 0.3456, ..., 0.3930, 0.0474, 0.1408]), +tensor(crow_indices=tensor([ 0, 507, 1042, ..., 4998981, + 4999514, 5000000]), + col_indices=tensor([ 8, 38, 72, ..., 9951, 9971, 9980]), + values=tensor([0.6058, 0.5976, 0.8000, ..., 0.1658, 0.6430, 0.8003]), size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.1466, 0.3658, 0.5068, ..., 0.5229, 0.0306, 0.8484]) +tensor([0.9071, 0.4156, 0.9536, ..., 0.8291, 0.1377, 0.0392]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,19 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 5000000 Density: 0.05 -Time: 1.2214851379394531 seconds +Time: 0.14447855949401855 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '8596', '-ss', '10000', '-sd', '0.05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.36475419998169} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '7267', '-ss', '10000', '-sd', '0.05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 8.714413404464722} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 466, 997, ..., 4998966, - 4999476, 5000000]), - col_indices=tensor([ 0, 1, 5, ..., 9962, 9965, 9989]), - values=tensor([0.4765, 0.8415, 0.0752, ..., 0.8745, 0.5765, 0.8508]), +tensor(crow_indices=tensor([ 0, 473, 945, ..., 4999048, + 4999511, 5000000]), + col_indices=tensor([ 4, 25, 47, ..., 9937, 9967, 9993]), + values=tensor([0.2180, 0.8351, 0.6646, ..., 0.1409, 0.2302, 0.7325]), size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.2258, 0.4418, 0.4951, ..., 0.4808, 0.0990, 0.6508]) +tensor([0.9797, 0.6380, 0.6196, ..., 0.0914, 0.5364, 0.9534]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -36,16 +36,19 @@ Rows: 10000 Size: 100000000 NNZ: 5000000 Density: 0.05 -Time: 10.36475419998169 seconds +Time: 8.714413404464722 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '8756', '-ss', '10000', '-sd', '0.05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.44620156288147} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 466, 997, ..., 4998966, - 4999476, 5000000]), - col_indices=tensor([ 0, 1, 5, ..., 9962, 9965, 9989]), - values=tensor([0.4765, 0.8415, 0.0752, ..., 0.8745, 0.5765, 0.8508]), +tensor(crow_indices=tensor([ 0, 484, 1014, ..., 4998952, + 4999472, 5000000]), + col_indices=tensor([ 28, 62, 89, ..., 9928, 9935, 9940]), + values=tensor([0.3908, 0.2484, 0.4500, ..., 0.3668, 0.3711, 0.8718]), size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.2258, 0.4418, 0.4951, ..., 0.4808, 0.0990, 0.6508]) +tensor([0.8601, 0.7620, 0.0732, ..., 0.0545, 0.3750, 0.1934]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -53,13 +56,30 @@ Rows: 10000 Size: 100000000 NNZ: 5000000 Density: 0.05 -Time: 10.36475419998169 seconds +Time: 10.44620156288147 seconds -[18.03, 17.93, 17.79, 17.69, 17.86, 17.92, 18.02, 17.88, 17.82, 18.11] -[84.46] -16.261265754699707 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 8596, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.36475419998169, 'TIME_S_1KI': 1.2057647975781398, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1373.4265056419372, 'W': 84.46} -[18.03, 17.93, 17.79, 17.69, 17.86, 17.92, 18.02, 17.88, 17.82, 18.11, 18.58, 18.42, 17.91, 17.71, 17.91, 17.76, 17.61, 17.59, 17.81, 18.34] -322.15999999999997 -16.107999999999997 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 8596, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.36475419998169, 'TIME_S_1KI': 1.2057647975781398, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1373.4265056419372, 'W': 84.46, 'J_1KI': 159.77507045625143, 'W_1KI': 9.825500232666355, 'W_D': 68.352, 'J_D': 1111.4900368652345, 'W_D_1KI': 7.95160539785947, 'J_D_1KI': 0.9250355279036144} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 484, 1014, ..., 4998952, + 4999472, 5000000]), + col_indices=tensor([ 28, 62, 89, ..., 9928, 9935, 9940]), + values=tensor([0.3908, 0.2484, 0.4500, ..., 0.3668, 0.3711, 0.8718]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.8601, 0.7620, 0.0732, ..., 0.0545, 0.3750, 0.1934]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 10.44620156288147 seconds + +[18.13, 18.04, 18.48, 17.86, 18.0, 18.3, 18.04, 17.84, 17.94, 18.14] +[83.47] +15.976722717285156 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 8756, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.44620156288147, 'TIME_S_1KI': 1.193033527053617, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1333.577045211792, 'W': 83.47} +[18.13, 18.04, 18.48, 17.86, 18.0, 18.3, 18.04, 17.84, 17.94, 18.14, 18.29, 18.21, 17.99, 18.15, 21.9, 18.49, 18.31, 17.94, 18.08, 18.13] +329.91499999999996 +16.495749999999997 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 8756, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.44620156288147, 'TIME_S_1KI': 1.193033527053617, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1333.577045211792, 'W': 83.47, 'J_1KI': 152.30436788622566, 'W_1KI': 9.532891731384193, 'W_D': 66.97425, 'J_D': 1070.0290214481354, 'W_D_1KI': 7.648955002284148, 'J_D_1KI': 0.8735672684198433} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.1.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.1.json index 06b2e69..646ac12 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.1.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.1.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 2682, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.339906692504883, "TIME_S_1KI": 3.855297051642387, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1411.3430524110793, "W": 81.1, "J_1KI": 526.227834605175, "W_1KI": 30.2386278896346, "W_D": 64.94024999999999, "J_D": 1130.1229427785277, "W_D_1KI": 24.21336689038031, "J_D_1KI": 9.02810100312465} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 2958, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.525683641433716, "TIME_S_1KI": 3.558378512993143, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1502.5020074129104, "W": 79.35, "J_1KI": 507.94523577177495, "W_1KI": 26.825557809330626, "W_D": 62.803999999999995, "J_D": 1189.2014628047941, "W_D_1KI": 21.231913455037187, "J_D_1KI": 7.177793595347258} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.1.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.1.output index fee56d8..cd10b80 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.1.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.1.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.1', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 3.9144444465637207} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.1', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 0.38048672676086426} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1047, 2059, ..., 9998021, - 9999010, 10000000]), - col_indices=tensor([ 5, 8, 10, ..., 9982, 9985, 9996]), - values=tensor([0.6280, 0.3451, 0.1654, ..., 0.9055, 0.0155, 0.3514]), +tensor(crow_indices=tensor([ 0, 978, 2001, ..., 9997917, + 9998993, 10000000]), + col_indices=tensor([ 10, 12, 31, ..., 9968, 9976, 9993]), + values=tensor([0.1521, 0.7718, 0.5784, ..., 0.3138, 0.0420, 0.0283]), size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.4839, 0.5284, 0.4128, ..., 0.3450, 0.9191, 0.1662]) +tensor([0.8445, 0.5776, 0.6277, ..., 0.5230, 0.9454, 0.0151]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,19 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 10000000 Density: 0.1 -Time: 3.9144444465637207 seconds +Time: 0.38048672676086426 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '2682', '-ss', '10000', '-sd', '0.1', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.339906692504883} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '2759', '-ss', '10000', '-sd', '0.1', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 9.790999174118042} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1046, 1985, ..., 9998014, - 9998990, 10000000]), - col_indices=tensor([ 17, 31, 38, ..., 9973, 9978, 9985]), - values=tensor([0.0174, 0.0178, 0.9247, ..., 0.4423, 0.5021, 0.4230]), +tensor(crow_indices=tensor([ 0, 961, 1957, ..., 9997943, + 9998964, 10000000]), + col_indices=tensor([ 0, 2, 15, ..., 9987, 9990, 9997]), + values=tensor([0.8878, 0.8149, 0.0468, ..., 0.0944, 0.2051, 0.2941]), size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.8246, 0.4652, 0.0479, ..., 0.0955, 0.8235, 0.1184]) +tensor([0.8720, 0.1434, 0.3774, ..., 0.9472, 0.6076, 0.2537]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -36,16 +36,19 @@ Rows: 10000 Size: 100000000 NNZ: 10000000 Density: 0.1 -Time: 10.339906692504883 seconds +Time: 9.790999174118042 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '2958', '-ss', '10000', '-sd', '0.1', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.525683641433716} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1046, 1985, ..., 9998014, - 9998990, 10000000]), - col_indices=tensor([ 17, 31, 38, ..., 9973, 9978, 9985]), - values=tensor([0.0174, 0.0178, 0.9247, ..., 0.4423, 0.5021, 0.4230]), +tensor(crow_indices=tensor([ 0, 1002, 2060, ..., 9998101, + 9999084, 10000000]), + col_indices=tensor([ 6, 12, 22, ..., 9993, 9996, 9999]), + values=tensor([0.4647, 0.6377, 0.7581, ..., 0.1422, 0.4549, 0.7257]), size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) -tensor([0.8246, 0.4652, 0.0479, ..., 0.0955, 0.8235, 0.1184]) +tensor([0.2726, 0.9874, 0.6365, ..., 0.6635, 0.0461, 0.2273]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -53,13 +56,30 @@ Rows: 10000 Size: 100000000 NNZ: 10000000 Density: 0.1 -Time: 10.339906692504883 seconds +Time: 10.525683641433716 seconds -[18.32, 17.68, 17.65, 18.12, 17.79, 17.54, 17.66, 17.93, 19.1, 17.92] -[81.1] -17.402503728866577 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2682, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.339906692504883, 'TIME_S_1KI': 3.855297051642387, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1411.3430524110793, 'W': 81.1} -[18.32, 17.68, 17.65, 18.12, 17.79, 17.54, 17.66, 17.93, 19.1, 17.92, 18.28, 17.68, 17.82, 17.91, 18.12, 17.75, 18.95, 17.54, 17.87, 17.65] -323.195 -16.15975 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2682, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.339906692504883, 'TIME_S_1KI': 3.855297051642387, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1411.3430524110793, 'W': 81.1, 'J_1KI': 526.227834605175, 'W_1KI': 30.2386278896346, 'W_D': 64.94024999999999, 'J_D': 1130.1229427785277, 'W_D_1KI': 24.21336689038031, 'J_D_1KI': 9.02810100312465} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1002, 2060, ..., 9998101, + 9999084, 10000000]), + col_indices=tensor([ 6, 12, 22, ..., 9993, 9996, 9999]), + values=tensor([0.4647, 0.6377, 0.7581, ..., 0.1422, 0.4549, 0.7257]), + size=(10000, 10000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.2726, 0.9874, 0.6365, ..., 0.6635, 0.0461, 0.2273]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000000 +Density: 0.1 +Time: 10.525683641433716 seconds + +[18.46, 22.29, 18.08, 17.85, 18.08, 18.14, 17.95, 17.97, 18.17, 18.1] +[79.35] +18.935122966766357 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2958, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.525683641433716, 'TIME_S_1KI': 3.558378512993143, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1502.5020074129104, 'W': 79.35} +[18.46, 22.29, 18.08, 17.85, 18.08, 18.14, 17.95, 17.97, 18.17, 18.1, 18.4, 17.86, 18.25, 18.05, 17.97, 17.82, 20.01, 18.07, 17.96, 17.84] +330.91999999999996 +16.546 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2958, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.525683641433716, 'TIME_S_1KI': 3.558378512993143, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1502.5020074129104, 'W': 79.35, 'J_1KI': 507.94523577177495, 'W_1KI': 26.825557809330626, 'W_D': 62.803999999999995, 'J_D': 1189.2014628047941, 'W_D_1KI': 21.231913455037187, 'J_D_1KI': 7.177793595347258} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.2.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.2.json index bd7f556..600b3de 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.2.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.2.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 1445, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.100359916687012, "TIME_S_1KI": 6.98986845445468, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2160.905471148491, "W": 62.46, "J_1KI": 1495.4363122134887, "W_1KI": 43.22491349480969, "W_D": 46.34675, "J_D": 1603.4413327721954, "W_D_1KI": 32.07387543252595, "J_D_1KI": 22.196453586523152} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 1431, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.125213623046875, "TIME_S_1KI": 7.07562098046602, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1986.3526240086555, "W": 63.01, "J_1KI": 1388.087088755175, "W_1KI": 44.032145352900066, "W_D": 46.759, "J_D": 1474.0495531823635, "W_D_1KI": 32.67575122292103, "J_D_1KI": 22.83420770294971} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.2.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.2.output index 345e6fc..b3d4b08 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.2.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.2.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.2', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 7.263561964035034} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.2', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 0.7335808277130127} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1926, 3961, ..., 19995971, - 19997972, 20000000]), - col_indices=tensor([ 0, 6, 15, ..., 9987, 9993, 9997]), - values=tensor([0.0314, 0.6999, 0.8853, ..., 0.3076, 0.0508, 0.1862]), +tensor(crow_indices=tensor([ 0, 1938, 3929, ..., 19996007, + 19998018, 20000000]), + col_indices=tensor([ 10, 23, 25, ..., 9992, 9994, 9995]), + values=tensor([0.0730, 0.5628, 0.7699, ..., 0.2806, 0.9097, 0.3889]), size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) -tensor([0.4423, 0.2673, 0.1161, ..., 0.1117, 0.7670, 0.7166]) +tensor([0.2309, 0.6404, 0.8370, ..., 0.6670, 0.0943, 0.6898]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,19 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 20000000 Density: 0.2 -Time: 7.263561964035034 seconds +Time: 0.7335808277130127 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1445', '-ss', '10000', '-sd', '0.2', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.100359916687012} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1431', '-ss', '10000', '-sd', '0.2', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 20000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.125213623046875} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2031, 4064, ..., 19995881, - 19997886, 20000000]), - col_indices=tensor([ 6, 7, 12, ..., 9992, 9994, 9996]), - values=tensor([0.1267, 0.2771, 0.5074, ..., 0.4122, 0.4435, 0.1814]), +tensor(crow_indices=tensor([ 0, 2012, 4019, ..., 19995967, + 19998000, 20000000]), + col_indices=tensor([ 4, 7, 8, ..., 9979, 9980, 9988]), + values=tensor([0.3444, 0.9651, 0.7506, ..., 0.6074, 0.5252, 0.1862]), size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) -tensor([0.2940, 0.6612, 0.2260, ..., 0.5354, 0.3344, 0.1796]) +tensor([0.7493, 0.9404, 0.6976, ..., 0.3307, 0.3774, 0.7329]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -36,16 +36,16 @@ Rows: 10000 Size: 100000000 NNZ: 20000000 Density: 0.2 -Time: 10.100359916687012 seconds +Time: 10.125213623046875 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2031, 4064, ..., 19995881, - 19997886, 20000000]), - col_indices=tensor([ 6, 7, 12, ..., 9992, 9994, 9996]), - values=tensor([0.1267, 0.2771, 0.5074, ..., 0.4122, 0.4435, 0.1814]), +tensor(crow_indices=tensor([ 0, 2012, 4019, ..., 19995967, + 19998000, 20000000]), + col_indices=tensor([ 4, 7, 8, ..., 9979, 9980, 9988]), + values=tensor([0.3444, 0.9651, 0.7506, ..., 0.6074, 0.5252, 0.1862]), size=(10000, 10000), nnz=20000000, layout=torch.sparse_csr) -tensor([0.2940, 0.6612, 0.2260, ..., 0.5354, 0.3344, 0.1796]) +tensor([0.7493, 0.9404, 0.6976, ..., 0.3307, 0.3774, 0.7329]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -53,13 +53,13 @@ Rows: 10000 Size: 100000000 NNZ: 20000000 Density: 0.2 -Time: 10.100359916687012 seconds +Time: 10.125213623046875 seconds -[18.37, 18.02, 17.98, 17.77, 18.08, 17.81, 18.57, 18.23, 17.73, 17.95] -[62.46] -34.59662938117981 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1445, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.100359916687012, 'TIME_S_1KI': 6.98986845445468, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2160.905471148491, 'W': 62.46} -[18.37, 18.02, 17.98, 17.77, 18.08, 17.81, 18.57, 18.23, 17.73, 17.95, 18.39, 17.61, 17.65, 17.9, 17.98, 17.61, 17.59, 17.93, 17.63, 17.64] -322.265 -16.11325 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1445, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.100359916687012, 'TIME_S_1KI': 6.98986845445468, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2160.905471148491, 'W': 62.46, 'J_1KI': 1495.4363122134887, 'W_1KI': 43.22491349480969, 'W_D': 46.34675, 'J_D': 1603.4413327721954, 'W_D_1KI': 32.07387543252595, 'J_D_1KI': 22.196453586523152} +[18.03, 17.87, 18.44, 17.79, 18.02, 17.71, 17.95, 17.85, 17.83, 17.74] +[63.01] +31.524402856826782 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1431, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.125213623046875, 'TIME_S_1KI': 7.07562098046602, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1986.3526240086555, 'W': 63.01} +[18.03, 17.87, 18.44, 17.79, 18.02, 17.71, 17.95, 17.85, 17.83, 17.74, 18.68, 17.68, 18.59, 19.66, 17.91, 17.67, 18.09, 18.04, 17.79, 17.81] +325.02 +16.250999999999998 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1431, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 20000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.125213623046875, 'TIME_S_1KI': 7.07562098046602, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1986.3526240086555, 'W': 63.01, 'J_1KI': 1388.087088755175, 'W_1KI': 44.032145352900066, 'W_D': 46.759, 'J_D': 1474.0495531823635, 'W_D_1KI': 32.67575122292103, 'J_D_1KI': 22.83420770294971} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.3.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.3.json index a3c7052..913ab31 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.3.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.3.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 11.531069993972778, "TIME_S_1KI": 11.531069993972778, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 4119.280698208809, "W": 53.23, "J_1KI": 4119.280698208809, "W_1KI": 53.23, "W_D": 37.1785, "J_D": 2877.1121066758633, "W_D_1KI": 37.1785, "J_D_1KI": 37.1785} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 887, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.198672533035278, "TIME_S_1KI": 11.497939721573031, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 3521.5318365383146, "W": 51.94, "J_1KI": 3970.1599059056534, "W_1KI": 58.55693348365276, "W_D": 35.649249999999995, "J_D": 2417.019037807345, "W_D_1KI": 40.19081172491544, "J_D_1KI": 45.31094895706363} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.3.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.3.output index b999f8b..697edf6 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.3.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.3.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.3', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 11.531069993972778} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '0.3', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 1.9959039688110352} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3017, 6060, ..., 29994067, - 29997064, 30000000]), - col_indices=tensor([ 8, 9, 10, ..., 9986, 9991, 9993]), - values=tensor([0.4919, 0.2111, 0.3595, ..., 0.1115, 0.4648, 0.4893]), +tensor(crow_indices=tensor([ 0, 2964, 5964, ..., 29994054, + 29997049, 30000000]), + col_indices=tensor([ 0, 6, 7, ..., 9989, 9993, 9996]), + values=tensor([0.3352, 0.3012, 0.1376, ..., 0.4634, 0.9038, 0.2157]), size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) -tensor([0.2808, 0.4380, 0.4720, ..., 0.7949, 0.9847, 0.6708]) +tensor([0.3407, 0.2089, 0.1462, ..., 0.7488, 0.0030, 0.5159]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -16,16 +16,19 @@ Rows: 10000 Size: 100000000 NNZ: 30000000 Density: 0.3 -Time: 11.531069993972778 seconds +Time: 1.9959039688110352 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '526', '-ss', '10000', '-sd', '0.3', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 7.3105573654174805} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 3017, 6060, ..., 29994067, - 29997064, 30000000]), - col_indices=tensor([ 8, 9, 10, ..., 9986, 9991, 9993]), - values=tensor([0.4919, 0.2111, 0.3595, ..., 0.1115, 0.4648, 0.4893]), +tensor(crow_indices=tensor([ 0, 2980, 5935, ..., 29993957, + 29996987, 30000000]), + col_indices=tensor([ 2, 4, 5, ..., 9985, 9987, 9990]), + values=tensor([0.7275, 0.2529, 0.2202, ..., 0.8048, 0.1786, 0.5578]), size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) -tensor([0.2808, 0.4380, 0.4720, ..., 0.7949, 0.9847, 0.6708]) +tensor([0.3722, 0.8340, 0.1775, ..., 0.2787, 0.3419, 0.3614]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -33,13 +36,70 @@ Rows: 10000 Size: 100000000 NNZ: 30000000 Density: 0.3 -Time: 11.531069993972778 seconds +Time: 7.3105573654174805 seconds -[18.81, 17.57, 18.39, 17.6, 17.66, 17.56, 18.03, 17.8, 17.96, 17.55] -[53.23] -77.38644933700562 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 11.531069993972778, 'TIME_S_1KI': 11.531069993972778, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 4119.280698208809, 'W': 53.23} -[18.81, 17.57, 18.39, 17.6, 17.66, 17.56, 18.03, 17.8, 17.96, 17.55, 18.93, 17.87, 17.97, 17.66, 17.7, 17.69, 17.69, 17.51, 17.83, 17.79] -321.03 -16.051499999999997 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 11.531069993972778, 'TIME_S_1KI': 11.531069993972778, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 4119.280698208809, 'W': 53.23, 'J_1KI': 4119.280698208809, 'W_1KI': 53.23, 'W_D': 37.1785, 'J_D': 2877.1121066758633, 'W_D_1KI': 37.1785, 'J_D_1KI': 37.1785} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '755', '-ss', '10000', '-sd', '0.3', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 8.937042713165283} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3082, 6089, ..., 29994069, + 29996991, 30000000]), + col_indices=tensor([ 3, 5, 7, ..., 9989, 9990, 9999]), + values=tensor([0.1400, 0.4959, 0.3565, ..., 0.5786, 0.8662, 0.8079]), + size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) +tensor([0.3795, 0.0549, 0.6386, ..., 0.9156, 0.7490, 0.5099]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 30000000 +Density: 0.3 +Time: 8.937042713165283 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '887', '-ss', '10000', '-sd', '0.3', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 30000000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.198672533035278} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3035, 5994, ..., 29994113, + 29997092, 30000000]), + col_indices=tensor([ 5, 10, 14, ..., 9987, 9996, 9999]), + values=tensor([0.8098, 0.4554, 0.6671, ..., 0.4349, 0.8044, 0.2223]), + size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) +tensor([0.3423, 0.6279, 0.0055, ..., 0.7400, 0.5417, 0.1422]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 30000000 +Density: 0.3 +Time: 10.198672533035278 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3035, 5994, ..., 29994113, + 29997092, 30000000]), + col_indices=tensor([ 5, 10, 14, ..., 9987, 9996, 9999]), + values=tensor([0.8098, 0.4554, 0.6671, ..., 0.4349, 0.8044, 0.2223]), + size=(10000, 10000), nnz=30000000, layout=torch.sparse_csr) +tensor([0.3423, 0.6279, 0.0055, ..., 0.7400, 0.5417, 0.1422]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 30000000 +Density: 0.3 +Time: 10.198672533035278 seconds + +[18.62, 17.81, 18.39, 18.03, 17.98, 18.26, 18.01, 18.0, 17.9, 17.68] +[51.94] +67.79999685287476 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 887, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.198672533035278, 'TIME_S_1KI': 11.497939721573031, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3521.5318365383146, 'W': 51.94} +[18.62, 17.81, 18.39, 18.03, 17.98, 18.26, 18.01, 18.0, 17.9, 17.68, 18.52, 17.91, 18.3, 18.31, 18.44, 18.04, 17.96, 18.17, 17.99, 17.81] +325.815 +16.29075 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 887, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 30000000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.198672533035278, 'TIME_S_1KI': 11.497939721573031, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3521.5318365383146, 'W': 51.94, 'J_1KI': 3970.1599059056534, 'W_1KI': 58.55693348365276, 'W_D': 35.649249999999995, 'J_D': 2417.019037807345, 'W_D_1KI': 40.19081172491544, 'J_D_1KI': 45.31094895706363} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_1e-05.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_1e-05.json index a7f50f8..4a5c029 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_1e-05.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_1e-05.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 286739, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.441989183425903, "TIME_S_1KI": 0.036416354885194915, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1103.374533557892, "W": 79.9, "J_1KI": 3.8480099796605693, "W_1KI": 0.27865061955297327, "W_D": 63.605500000000006, "J_D": 878.3565568737985, "W_D_1KI": 0.22182367937392544, "J_D_1KI": 0.0007736083315277149} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 285101, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.263301372528076, "TIME_S_1KI": 0.03599882628446788, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1023.6102543663977, "W": 73.21, "J_1KI": 3.5903425605886956, "W_1KI": 0.2567861915601839, "W_D": 56.916999999999994, "J_D": 795.8041913368701, "W_D_1KI": 0.1996380230164047, "J_D_1KI": 0.0007002361374264022} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_1e-05.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_1e-05.output index 03249c3..aea26a1 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_1e-05.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_1e-05.output @@ -1,373 +1,752 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.05496048927307129} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.019815444946289062} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 1000, 1000, 1000]), + col_indices=tensor([ 147, 628, 1125, 5287, 8823, 6934, 2121, 9045, 1741, + 1008, 777, 1781, 8765, 5338, 5590, 4011, 9135, 3712, + 8048, 6348, 8740, 9035, 822, 3133, 9984, 8122, 9554, + 3712, 3272, 5515, 8959, 6829, 83, 3899, 7199, 7801, + 5285, 8079, 5441, 7100, 7667, 5056, 6862, 2526, 7349, + 1728, 3499, 3354, 7526, 5044, 3630, 6886, 4310, 5869, + 2649, 6497, 3797, 8787, 1590, 3717, 600, 9128, 9514, + 219, 9480, 7496, 7514, 5942, 3564, 2833, 1156, 3271, + 9892, 8323, 4817, 8727, 4029, 1225, 635, 3756, 3854, + 1580, 9309, 2348, 2287, 6728, 2416, 8735, 1996, 9982, + 2260, 9743, 6241, 6259, 3363, 2128, 9721, 8593, 9287, + 6303, 6167, 7208, 4450, 1275, 2370, 2881, 3104, 7161, + 9133, 226, 5026, 8446, 4133, 9547, 9259, 5653, 4323, + 9414, 5933, 1536, 7990, 6794, 7612, 5173, 6568, 8498, + 2655, 2146, 8320, 4457, 6510, 276, 9447, 6969, 2617, + 7175, 1400, 1929, 524, 929, 472, 5246, 4656, 4620, + 489, 4946, 342, 261, 5266, 9154, 4961, 841, 6798, + 6887, 9276, 203, 2231, 9861, 5260, 5410, 4989, 3777, + 5518, 2156, 807, 5251, 7532, 8301, 8516, 2536, 7883, + 4202, 2101, 5422, 6588, 505, 5736, 1011, 9457, 514, + 9520, 284, 2054, 2592, 5274, 6220, 4951, 8010, 3966, + 4007, 1997, 1966, 7251, 3207, 5838, 9132, 4982, 4877, + 8655, 8284, 876, 5569, 757, 2680, 1245, 1459, 64, + 365, 4927, 7024, 7351, 643, 3222, 4840, 6222, 7194, + 1143, 9570, 6110, 514, 6176, 3515, 236, 14, 9751, + 3159, 5832, 1147, 6202, 9999, 7112, 2023, 1940, 2795, + 6251, 8906, 5208, 3243, 7604, 6854, 2354, 2890, 2740, + 454, 4997, 9488, 8203, 5802, 49, 4850, 8249, 7823, + 1150, 8721, 9200, 1431, 3413, 5962, 300, 7898, 4190, + 1359, 832, 9165, 8870, 2860, 5248, 4896, 4884, 9315, + 6156, 4153, 5251, 9843, 5642, 7880, 3504, 3324, 7744, + 7101, 8647, 7753, 6224, 4352, 1703, 8312, 455, 3521, + 536, 6524, 6799, 7876, 7371, 8323, 7238, 5827, 4495, + 6175, 5872, 9038, 7184, 3438, 9862, 9699, 746, 3390, + 8840, 1555, 6503, 5323, 281, 1915, 41, 9952, 630, + 2524, 81, 7205, 5517, 7630, 9980, 8564, 2454, 5345, + 6893, 2025, 7310, 6297, 7720, 9244, 9072, 6121, 526, + 8438, 6441, 784, 8517, 5423, 2370, 1040, 9954, 5590, + 9371, 3627, 9962, 8967, 738, 9590, 2685, 5587, 8151, + 98, 9310, 2936, 529, 1987, 5122, 8678, 5271, 6797, + 8491, 7804, 9346, 6958, 1197, 3159, 3495, 4161, 7372, + 2305, 7596, 9495, 2623, 4621, 1213, 574, 4322, 5020, + 8442, 5191, 8488, 8804, 3945, 8995, 9875, 8614, 9285, + 5845, 4077, 4304, 1222, 7152, 3293, 357, 9313, 2693, + 5120, 942, 8204, 3155, 4829, 2464, 4701, 3688, 607, + 5172, 151, 3028, 4014, 1336, 976, 4925, 5627, 1156, + 9625, 5767, 8183, 5688, 8528, 9294, 4747, 8880, 7735, + 5253, 9274, 6989, 3528, 8002, 6326, 509, 3423, 8496, + 9738, 8213, 8077, 7550, 7738, 8069, 93, 3909, 5783, + 9543, 120, 9437, 6763, 7953, 9131, 7685, 7049, 6280, + 5195, 6701, 8174, 8541, 1693, 1873, 1258, 8665, 484, + 4711, 8704, 5880, 6139, 5452, 3962, 584, 5287, 6792, + 2514, 4003, 9542, 4836, 1519, 4148, 4206, 2568, 4631, + 2566, 3432, 2366, 2787, 6206, 7242, 5947, 1135, 3254, + 2113, 6329, 5453, 9815, 5777, 9459, 1217, 265, 3194, + 4738, 1004, 6119, 7621, 718, 5091, 7111, 8995, 5329, + 9627, 9467, 2122, 4961, 1162, 6369, 2607, 1279, 7314, + 4043, 9227, 6168, 4214, 1156, 6289, 4153, 2703, 9977, + 4203, 4485, 2363, 2942, 2937, 7682, 1361, 3609, 9757, + 8109, 4417, 1482, 5111, 1389, 2296, 737, 5089, 1163, + 4190, 4070, 610, 4301, 95, 453, 2406, 4010, 8161, + 762, 2233, 5838, 5351, 8383, 1707, 4709, 6703, 5945, + 4949, 1124, 3676, 9285, 7158, 3499, 7227, 1568, 2973, + 1428, 2316, 6991, 9226, 8007, 735, 3310, 6820, 9505, + 7011, 4908, 3243, 2472, 1968, 5864, 7326, 9622, 2967, + 5217, 8990, 3943, 387, 5835, 3583, 1763, 7032, 3775, + 4192, 6405, 7533, 1351, 805, 4502, 8291, 5499, 4398, + 7000, 8794, 1522, 2359, 7891, 6226, 7994, 1689, 6323, + 3184, 7685, 4860, 6403, 9802, 6255, 1821, 7732, 4494, + 8136, 7965, 2804, 7520, 2384, 6618, 7928, 6910, 9527, + 5014, 9950, 9409, 3928, 7865, 282, 2164, 9709, 3423, + 4150, 8746, 2581, 6098, 4292, 1480, 5919, 9694, 5887, + 6173, 9603, 4877, 6138, 1293, 3703, 2957, 2971, 131, + 2304, 7972, 1723, 1558, 5610, 5607, 4064, 6099, 1287, + 6409, 1303, 2598, 7669, 21, 1272, 118, 8324, 1938, + 2731, 4676, 7652, 6310, 6662, 2345, 232, 4946, 4044, + 5562, 4317, 383, 7955, 1674, 2856, 3908, 692, 9659, + 2014, 9423, 4192, 7578, 2859, 1638, 9429, 4145, 8698, + 9380, 7375, 7178, 5811, 1590, 199, 2988, 8205, 9471, + 7617, 1811, 5995, 2386, 2786, 4693, 6295, 485, 8968, + 3066, 5805, 3154, 3848, 1759, 3221, 5904, 1069, 3533, + 309, 7347, 7846, 6274, 7652, 6373, 3481, 6353, 9650, + 1516, 8787, 7982, 5148, 4709, 8309, 4232, 9115, 1418, + 5274, 395, 5709, 3174, 68, 3804, 7295, 9536, 3414, + 9104, 924, 3572, 6817, 8563, 561, 9344, 3220, 2063, + 7444, 7018, 707, 7026, 2578, 179, 5410, 8966, 9805, + 9112, 5656, 3110, 3676, 1235, 9544, 1495, 5008, 7289, + 727, 5468, 5698, 8696, 3288, 2439, 2448, 7548, 1409, + 3012, 7997, 4416, 7301, 2138, 3939, 8274, 9381, 88, + 583, 8683, 9292, 6899, 6134, 1702, 4060, 3625, 8216, + 7762, 6579, 8766, 6500, 9863, 474, 5904, 1723, 5347, + 8855, 8569, 5341, 7635, 8364, 1259, 7057, 2725, 6056, + 7618, 8691, 7207, 2875, 7923, 4624, 1246, 7177, 9717, + 3416, 2221, 2213, 5331, 7348, 4898, 7801, 7311, 6564, + 8018, 3122, 3971, 2426, 7210, 2126, 5178, 5966, 4092, + 1656, 7574, 6717, 1713, 5351, 7205, 1072, 1567, 4916, + 3143, 3039, 494, 5212, 2734, 8298, 5666, 1616, 991, + 5392, 219, 4095, 7599, 4336, 3201, 4103, 4232, 7641, + 6901, 3161, 911, 2271, 3833, 2362, 450, 702, 4414, + 1985, 9874, 7045, 303, 2861, 6503, 8031, 6998, 981, + 6383, 3804, 2132, 7446, 3522, 8554, 7230, 7247, 6842, + 8740, 6185, 4789, 9401, 7169, 4828, 5223, 2972, 315, + 9277, 5159, 6582, 3209, 3738, 2614, 6186, 7932, 8653, + 8758, 7882, 7681, 6252, 7053, 4207, 5682, 8498, 8562, + 9350, 9645, 4139, 5790, 9077, 5393, 6059, 4141, 5770, + 4443, 1642, 3655, 1526, 4326, 4199, 2823, 9283, 4707, + 4922, 7330, 7654, 5307, 5122, 5645, 5858, 9038, 8521, + 4752, 9830, 517, 6062, 7448, 3954, 8600, 4313, 3222, + 3628, 5629, 9654, 6445, 4277, 9969, 3299, 6212, 4242, + 5088, 3231, 2968, 3697, 4789, 7868, 6625, 5588, 531, + 6783, 3545, 9416, 3488, 5893, 600, 2516, 5328, 2390, + 6963]), + values=tensor([5.2560e-01, 4.5182e-01, 2.3298e-01, 1.2745e-01, + 6.7432e-01, 1.6305e-01, 6.7850e-01, 4.8297e-02, + 4.2986e-02, 4.6503e-01, 5.1950e-01, 9.2514e-01, + 3.0211e-02, 5.8682e-01, 1.6128e-01, 9.9806e-01, + 6.5284e-01, 4.7123e-01, 9.0892e-01, 7.2129e-01, + 1.4353e-01, 7.5709e-01, 6.9051e-01, 2.2834e-01, + 3.7105e-01, 5.2802e-01, 6.8136e-01, 5.9089e-01, + 3.2433e-01, 6.7476e-01, 6.9094e-01, 4.2556e-01, + 1.5749e-01, 7.8965e-01, 5.0067e-01, 9.5478e-01, + 7.8984e-01, 3.4707e-01, 4.1861e-02, 9.5964e-01, + 7.4705e-02, 6.3404e-01, 6.7261e-01, 1.7905e-01, + 8.5368e-01, 1.8088e-01, 7.0364e-01, 1.3954e-01, + 6.4433e-01, 2.6339e-01, 5.1852e-01, 1.7690e-01, + 3.6218e-01, 8.9644e-01, 9.8381e-01, 4.4953e-01, + 5.3938e-02, 8.2339e-01, 4.5796e-01, 9.4213e-02, + 3.3168e-02, 3.7108e-01, 8.3725e-01, 1.4729e-01, + 5.8007e-01, 6.0673e-01, 9.9643e-01, 7.2226e-01, + 7.1339e-01, 8.4565e-01, 4.7404e-01, 6.2064e-01, + 5.8324e-02, 2.8401e-01, 5.6260e-01, 8.1231e-01, + 5.0034e-01, 4.1114e-01, 4.3338e-01, 9.7312e-01, + 6.0643e-01, 4.1709e-01, 6.0714e-02, 7.0392e-01, + 3.0608e-01, 9.7941e-01, 3.7985e-01, 5.9718e-01, + 7.0541e-01, 6.7003e-01, 8.0980e-01, 1.1730e-02, + 5.2983e-01, 1.1390e-01, 9.7596e-01, 4.4723e-01, + 1.4768e-01, 6.1947e-01, 9.3278e-01, 6.5142e-02, + 3.7915e-01, 8.5646e-01, 4.6630e-01, 1.1336e-01, + 5.5405e-01, 6.7251e-01, 2.2618e-01, 5.7297e-02, + 8.3920e-01, 6.4694e-01, 2.9986e-01, 7.2391e-01, + 3.8923e-01, 8.9915e-02, 1.7642e-01, 1.2665e-01, + 1.1954e-01, 1.2088e-01, 1.4362e-01, 9.5926e-01, + 9.6244e-01, 8.2548e-01, 6.8499e-01, 7.3075e-01, + 5.3887e-01, 9.8974e-01, 3.7081e-01, 1.6977e-01, + 7.0021e-02, 8.2089e-01, 2.9793e-01, 4.7021e-02, + 7.1563e-01, 1.4888e-01, 3.8166e-01, 8.0958e-01, + 5.9825e-01, 4.8717e-02, 9.7864e-02, 4.0284e-01, + 9.2565e-01, 5.9953e-01, 5.3686e-01, 3.4093e-01, + 2.5458e-01, 6.5661e-01, 1.5050e-01, 1.0070e-01, + 9.2754e-01, 2.6429e-02, 8.6963e-01, 3.9150e-01, + 3.0459e-01, 9.0345e-01, 8.7288e-01, 1.4733e-01, + 5.5407e-01, 4.2790e-01, 3.4163e-01, 8.7761e-01, + 8.6974e-01, 9.4480e-01, 8.5739e-01, 3.5148e-01, + 7.1780e-01, 5.6444e-01, 3.1054e-01, 2.7980e-01, + 7.6360e-01, 2.0659e-01, 8.7043e-01, 8.6826e-01, + 6.1911e-01, 2.4894e-01, 1.7003e-01, 9.8128e-01, + 1.0649e-01, 4.0739e-01, 1.6335e-01, 5.4390e-01, + 5.5668e-01, 7.5228e-03, 5.5173e-01, 4.2472e-01, + 6.3659e-01, 1.2333e-02, 1.6682e-01, 7.0490e-01, + 1.7784e-01, 2.4643e-01, 9.9365e-01, 5.7578e-01, + 1.4710e-01, 7.3059e-01, 1.0914e-01, 1.5979e-02, + 8.4679e-01, 8.8970e-02, 4.2280e-01, 3.2340e-01, + 9.5658e-01, 1.8028e-01, 7.6493e-02, 9.1788e-01, + 3.5415e-01, 8.1832e-01, 9.8353e-01, 6.2593e-01, + 5.0861e-01, 6.5047e-01, 9.9291e-01, 2.6001e-01, + 5.3761e-01, 3.3600e-02, 1.8506e-01, 2.9837e-01, + 4.7576e-01, 3.3503e-01, 1.7338e-02, 1.0681e-02, + 4.8168e-01, 3.3971e-01, 3.0402e-01, 3.5616e-01, + 6.9091e-02, 4.0202e-01, 7.9475e-01, 9.6864e-01, + 5.8040e-01, 5.7299e-01, 8.5674e-01, 6.6006e-01, + 2.7936e-01, 1.3390e-01, 1.8119e-01, 7.3696e-01, + 2.1656e-02, 5.0719e-01, 7.9270e-01, 7.9608e-01, + 4.6938e-02, 6.4955e-01, 1.1024e-01, 3.3072e-01, + 7.0495e-01, 7.9866e-01, 2.9836e-01, 5.3080e-02, + 4.5780e-01, 3.2462e-01, 2.3343e-01, 3.4916e-01, + 4.9296e-01, 2.0091e-01, 7.6547e-01, 1.3016e-01, + 6.0404e-02, 8.2176e-01, 8.6472e-01, 1.0995e-01, + 3.7648e-01, 7.3952e-01, 9.6968e-01, 6.3923e-01, + 7.2826e-01, 7.1776e-01, 6.8745e-01, 2.7331e-01, + 1.2680e-01, 3.7805e-02, 4.0262e-01, 8.2898e-01, + 3.9871e-01, 5.1570e-01, 9.1900e-01, 4.6037e-01, + 6.9803e-01, 3.7678e-01, 6.0374e-01, 8.0866e-01, + 1.2782e-01, 1.3656e-01, 6.7064e-01, 9.7129e-01, + 9.1569e-01, 8.7380e-01, 6.8149e-01, 7.9829e-01, + 9.4074e-01, 4.9967e-01, 7.6367e-01, 4.1375e-01, + 3.3762e-01, 8.4138e-01, 5.7388e-01, 1.0199e-02, + 6.1160e-01, 2.7149e-01, 7.9430e-01, 6.0606e-01, + 3.8213e-01, 6.9915e-01, 7.9717e-01, 6.4264e-01, + 1.2570e-01, 4.2091e-01, 7.7556e-03, 4.2787e-01, + 2.4645e-01, 7.0922e-01, 9.7475e-01, 1.7749e-01, + 7.7920e-01, 8.8611e-01, 7.3655e-01, 2.6627e-02, + 4.3960e-01, 7.0921e-01, 1.2495e-01, 7.9556e-01, + 2.4612e-01, 2.1105e-01, 1.3608e-01, 2.6228e-01, + 5.4161e-01, 9.6676e-01, 7.1936e-01, 5.0925e-01, + 3.3548e-01, 4.0907e-01, 2.5859e-01, 7.8072e-01, + 5.3413e-01, 6.4004e-01, 4.0338e-01, 4.6080e-01, + 2.2626e-01, 6.6418e-02, 4.6412e-01, 3.7270e-01, + 4.9191e-01, 1.9996e-01, 7.9189e-01, 1.1419e-01, + 3.0279e-01, 5.9447e-01, 1.0009e-01, 3.9196e-01, + 8.7322e-02, 3.6585e-01, 5.0558e-01, 5.9756e-01, + 5.1223e-01, 7.7059e-01, 5.6411e-01, 8.6785e-01, + 4.9763e-01, 2.7060e-01, 4.6230e-01, 2.8485e-01, + 5.6333e-01, 6.4385e-01, 2.4189e-01, 4.3952e-01, + 9.1360e-01, 6.8688e-01, 2.3180e-01, 3.6477e-01, + 1.8153e-01, 7.8891e-01, 9.7111e-01, 5.2860e-01, + 7.2300e-01, 8.4822e-02, 6.4799e-01, 7.4738e-01, + 9.3333e-01, 3.0742e-01, 2.0477e-01, 7.5682e-01, + 3.8206e-01, 7.5470e-01, 1.5177e-01, 4.5879e-01, + 2.0623e-01, 2.9029e-01, 6.1429e-01, 8.4124e-01, + 3.1046e-01, 6.1053e-01, 5.9478e-01, 7.4185e-01, + 8.5712e-01, 1.5446e-01, 6.2325e-01, 1.5679e-01, + 8.9475e-02, 5.3521e-01, 5.0307e-02, 4.9942e-01, + 1.6993e-01, 9.1214e-01, 1.0981e-01, 5.4953e-01, + 1.3202e-04, 2.0668e-02, 2.6934e-02, 2.8142e-02, + 5.9963e-01, 6.2907e-01, 1.9020e-01, 8.4416e-01, + 4.7828e-01, 6.2037e-02, 8.4804e-01, 2.8713e-01, + 8.7914e-01, 5.2289e-02, 8.8096e-01, 7.7464e-02, + 1.8152e-01, 4.5361e-01, 9.2307e-02, 7.7685e-01, + 4.8882e-01, 3.8849e-02, 2.4650e-01, 9.4929e-01, + 4.8155e-01, 2.3940e-01, 6.0404e-01, 2.8524e-01, + 3.1995e-01, 1.7781e-01, 3.6728e-01, 9.4366e-01, + 6.2074e-01, 6.7714e-01, 9.4887e-01, 9.6136e-01, + 6.5217e-01, 4.4854e-01, 3.6396e-01, 2.0775e-01, + 9.0861e-01, 1.7247e-01, 2.0122e-01, 3.1052e-01, + 9.7944e-01, 4.6799e-01, 5.9893e-01, 1.8430e-01, + 6.1849e-01, 6.7723e-01, 8.1238e-01, 8.5110e-01, + 7.7606e-01, 4.8711e-01, 3.1304e-01, 7.0698e-01, + 6.6410e-01, 1.2702e-01, 6.6704e-01, 9.5507e-01, + 8.2579e-01, 9.9875e-01, 2.2652e-01, 7.2346e-01, + 5.4255e-01, 7.3418e-01, 5.4150e-02, 7.6473e-01, + 8.4496e-01, 2.7827e-02, 3.1883e-01, 6.2547e-01, + 3.3673e-01, 7.0332e-01, 7.4524e-01, 1.7202e-01, + 4.7220e-01, 2.5484e-01, 6.3754e-01, 2.6972e-01, + 5.7555e-01, 2.5729e-02, 8.9240e-01, 9.3243e-02, + 2.0048e-01, 3.9184e-01, 7.9079e-01, 7.6417e-01, + 3.6297e-01, 1.0701e-01, 7.3829e-01, 5.7379e-01, + 7.8135e-01, 5.9905e-01, 1.7596e-02, 2.0084e-01, + 2.6002e-01, 5.7793e-01, 1.1292e-01, 5.5716e-01, + 1.2785e-01, 3.4844e-01, 2.6200e-01, 9.5494e-01, + 8.4409e-01, 8.8543e-01, 8.3785e-01, 2.5559e-01, + 3.7511e-01, 8.7394e-02, 3.0524e-01, 1.7522e-01, + 7.9539e-01, 3.3646e-02, 5.2387e-01, 3.7442e-01, + 1.3978e-02, 1.8117e-01, 5.3870e-02, 9.4073e-01, + 9.3325e-01, 1.3931e-01, 9.5806e-03, 2.1513e-01, + 7.5372e-01, 8.8366e-01, 7.3370e-02, 3.8591e-01, + 4.2813e-01, 6.9476e-01, 8.6124e-01, 4.2190e-01, + 5.7470e-01, 3.1136e-01, 8.5208e-01, 7.0394e-01, + 1.8636e-01, 5.9006e-01, 5.1801e-01, 5.2659e-01, + 5.0269e-01, 7.7233e-01, 7.8972e-01, 8.3201e-01, + 4.3437e-01, 6.4845e-01, 5.5414e-01, 4.4734e-01, + 5.1213e-01, 1.6050e-01, 7.1213e-01, 1.6252e-01, + 8.9777e-01, 6.6440e-01, 4.4346e-02, 7.4956e-01, + 5.2652e-01, 8.8268e-02, 2.4019e-01, 1.9801e-01, + 8.9331e-01, 7.6786e-01, 1.5987e-01, 2.2736e-01, + 7.3131e-01, 6.1032e-01, 3.1343e-01, 4.4597e-02, + 5.9683e-01, 1.9413e-01, 1.9830e-01, 1.4040e-01, + 1.3606e-01, 6.0248e-02, 7.0841e-02, 8.1665e-01, + 1.6396e-01, 1.9495e-01, 7.9996e-01, 3.2143e-01, + 8.0826e-01, 7.2033e-01, 6.2158e-01, 2.8202e-01, + 8.5930e-01, 8.9293e-01, 4.3542e-01, 5.5467e-01, + 6.4518e-01, 6.6044e-01, 2.4172e-01, 6.8673e-01, + 2.6429e-01, 6.5201e-01, 7.9924e-01, 9.2253e-01, + 9.3220e-01, 3.3890e-01, 4.3856e-01, 4.7886e-01, + 2.4920e-01, 1.1320e-01, 8.1552e-01, 4.8103e-01, + 9.9413e-01, 1.2151e-01, 7.3907e-01, 5.9053e-01, + 3.2489e-01, 7.0052e-01, 1.4705e-01, 2.5163e-01, + 6.2341e-01, 2.4832e-01, 1.0102e-01, 6.1087e-01, + 4.9169e-01, 6.3088e-01, 6.5857e-02, 1.2103e-01, + 5.3802e-01, 4.3476e-01, 8.5162e-02, 9.5909e-02, + 2.7539e-01, 6.3053e-01, 8.2462e-01, 6.8849e-01, + 6.8116e-01, 4.4265e-01, 2.5334e-01, 5.7535e-01, + 7.3906e-01, 2.6868e-01, 8.2246e-01, 7.5326e-01, + 2.3140e-01, 6.7734e-01, 1.5208e-01, 4.3675e-01, + 8.5422e-01, 1.3327e-01, 2.9050e-01, 4.6933e-02, + 2.8711e-01, 6.4456e-01, 6.6952e-01, 9.7136e-01, + 8.7064e-01, 4.4199e-01, 9.0821e-01, 2.2048e-01, + 6.2945e-02, 6.9894e-01, 4.6657e-01, 4.9677e-01, + 5.3803e-01, 1.6106e-01, 1.9190e-01, 9.6721e-01, + 8.6755e-01, 6.7380e-01, 6.3082e-01, 6.2585e-01, + 9.8280e-01, 3.2073e-01, 7.9868e-01, 5.3679e-01, + 2.3558e-01, 7.8221e-01, 9.6604e-01, 1.5512e-01, + 2.7020e-01, 5.4598e-01, 7.2565e-01, 9.0695e-01, + 7.1888e-01, 5.5173e-01, 2.1659e-01, 7.2627e-01, + 1.6656e-02, 2.4187e-01, 2.0943e-01, 7.3096e-01, + 5.3434e-01, 5.8941e-01, 7.8362e-01, 3.0880e-01, + 5.8657e-01, 5.3713e-01, 1.5416e-01, 7.7206e-01, + 7.7405e-01, 2.2208e-01, 2.7616e-02, 4.1381e-02, + 3.6096e-01, 2.9990e-01, 7.2871e-01, 4.6144e-01, + 2.6081e-01, 1.1160e-01, 4.6879e-02, 9.6260e-01, + 6.3027e-02, 9.2736e-01, 5.1303e-01, 7.8810e-01, + 9.4326e-01, 8.3384e-01, 5.2389e-01, 3.7333e-01, + 7.0704e-01, 2.0490e-02, 9.7841e-01, 4.6449e-01, + 2.0052e-01, 1.6703e-01, 2.3432e-02, 8.7757e-01, + 4.3288e-01, 9.0692e-01, 8.0465e-01, 6.8254e-01, + 7.1185e-01, 6.0360e-01, 3.0568e-01, 3.3586e-01, + 8.0849e-01, 9.2920e-01, 1.8771e-01, 1.6081e-01, + 6.2577e-01, 8.0494e-01, 2.5995e-01, 6.9688e-01, + 8.1340e-01, 7.6095e-01, 4.3346e-01, 9.4688e-01, + 7.6554e-02, 3.0534e-01, 1.9986e-02, 6.3233e-01, + 7.6106e-01, 4.6982e-01, 6.3199e-01, 3.8163e-01, + 4.8463e-01, 8.4737e-01, 9.7787e-01, 6.8558e-02, + 8.4902e-01, 8.4066e-02, 9.5446e-01, 9.5276e-01, + 1.1721e-01, 6.6180e-01, 1.7366e-01, 5.8689e-01, + 3.5482e-01, 9.7331e-01, 3.4294e-01, 2.8538e-01, + 5.1595e-01, 3.1709e-01, 5.5250e-01, 5.6823e-01, + 8.1852e-01, 7.0949e-01, 8.0023e-01, 1.9327e-01, + 6.3159e-01, 8.3741e-01, 4.2915e-01, 4.5280e-01, + 3.6497e-02, 4.6729e-01, 1.7655e-01, 9.0173e-01, + 8.8293e-01, 3.8356e-01, 3.7646e-01, 7.9430e-01, + 6.1564e-01, 8.3823e-01, 6.4739e-01, 2.5501e-01, + 1.7745e-02, 2.0888e-01, 1.6213e-01, 1.4289e-01, + 4.3243e-01, 8.9590e-02, 6.2675e-01, 1.6139e-01, + 4.9212e-02, 7.8304e-01, 3.4728e-01, 1.1716e-01, + 6.6748e-01, 6.8148e-01, 6.0697e-01, 9.6199e-01, + 2.0651e-01, 7.4950e-01, 1.2579e-01, 8.0246e-01, + 1.6417e-01, 7.2462e-01, 2.5278e-02, 4.6134e-02, + 6.2831e-01, 5.8610e-01, 2.5098e-01, 3.0610e-01, + 5.9318e-01, 7.4726e-01, 6.9463e-01, 9.1050e-01, + 5.1888e-01, 7.0514e-01, 7.0205e-01, 7.2207e-01, + 8.0443e-01, 8.7596e-02, 4.7888e-01, 8.3782e-01, + 2.4008e-01, 8.0627e-01, 8.5026e-01, 9.1172e-01, + 8.6693e-01, 5.8864e-01, 7.3220e-01, 9.5311e-01, + 2.3545e-01, 5.9781e-01, 4.2475e-01, 5.7120e-01, + 7.9825e-01, 1.1148e-01, 9.6872e-01, 1.8660e-01, + 1.2651e-01, 6.4452e-01, 6.0136e-01, 4.0304e-01, + 3.2066e-01, 9.6919e-01, 8.9438e-01, 1.9197e-01, + 6.2802e-01, 1.2447e-01, 9.2235e-01, 5.3612e-01, + 7.6692e-01, 6.0437e-01, 3.9696e-01, 2.4947e-01, + 4.7984e-01, 2.4304e-01, 8.7832e-01, 4.4963e-01, + 1.4427e-01, 5.7088e-01, 7.6046e-01, 6.8213e-01, + 8.0719e-01, 4.0864e-01, 5.2984e-01, 6.0712e-01, + 9.0793e-01, 7.5984e-01, 6.8009e-01, 9.3405e-03, + 9.6069e-02, 1.2806e-01, 3.5111e-01, 6.9311e-01, + 8.2085e-01, 8.2835e-01, 9.1010e-01, 6.9786e-01, + 8.9484e-01, 6.1428e-01, 5.8339e-01, 7.7197e-01, + 9.0580e-01, 9.3461e-01, 5.1191e-01, 6.0450e-01, + 1.1201e-01, 9.4214e-01, 1.2487e-01, 9.0601e-01, + 2.9108e-01, 6.7647e-01, 9.4078e-01, 2.8280e-01, + 1.9018e-01, 8.2373e-01, 1.9392e-01, 2.5619e-01, + 4.7560e-01, 9.5113e-02, 7.0953e-01, 1.8132e-01, + 7.8736e-01, 2.9743e-01, 6.6220e-01, 7.0073e-01, + 4.2373e-01, 8.5630e-02, 1.5746e-01, 2.2218e-01, + 7.1860e-01, 7.1300e-01, 2.1873e-01, 5.3912e-01, + 3.1159e-01, 4.0946e-01, 3.6675e-01, 1.7526e-01, + 3.9314e-01, 6.8523e-01, 8.9266e-01, 2.6076e-01, + 1.9742e-01, 7.1643e-01, 5.7968e-02, 2.9522e-01, + 2.6531e-01, 9.4045e-01, 2.8546e-01, 5.0832e-01, + 2.7122e-01, 9.1348e-02, 4.6177e-01, 5.4269e-01, + 9.6392e-01, 5.7908e-01, 4.4952e-02, 4.4291e-01, + 1.9518e-01, 5.7031e-01, 4.6612e-01, 6.5682e-01, + 7.5169e-01, 7.1827e-01, 6.9783e-01, 8.7240e-01, + 9.7588e-01, 4.6460e-01, 4.9550e-01, 1.1087e-01, + 4.9333e-01, 4.5081e-01, 5.3065e-02, 1.0936e-01, + 2.3607e-01, 3.1568e-01, 4.5569e-02, 3.3065e-01, + 6.3115e-01, 3.4755e-01, 4.1582e-01, 6.8376e-01, + 7.2990e-02, 4.2965e-01, 9.9497e-01, 2.6721e-01, + 7.7370e-02, 9.9769e-01, 8.7087e-01, 8.0430e-01, + 2.4436e-01, 8.4694e-02, 2.4607e-01, 3.7822e-01, + 4.9074e-01, 2.9051e-01, 4.6776e-01, 9.0178e-01, + 1.2981e-01, 3.4897e-01, 4.9289e-01, 4.9671e-01, + 4.4983e-01, 5.6051e-01, 9.3221e-01, 5.3076e-01, + 3.0281e-01, 7.1212e-01, 7.5584e-01, 8.5415e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.7030, 0.4856, 0.8302, ..., 0.1030, 0.0064, 0.5187]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 0.019815444946289062 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '52988', '-ss', '10000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 1.9514954090118408} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), - col_indices=tensor([9138, 88, 9925, 6110, 2605, 340, 5956, 3778, 8300, - 2766, 2415, 356, 3329, 6854, 5455, 793, 5522, 4476, - 5241, 1294, 7569, 8127, 9283, 6072, 8826, 6207, 2260, - 3124, 306, 7010, 7771, 4682, 3624, 7319, 82, 8448, - 4521, 4810, 3870, 1662, 7314, 1288, 1304, 5554, 9567, - 9579, 9692, 6033, 1049, 3607, 5801, 3226, 2607, 6224, - 5048, 5599, 9933, 3657, 199, 3603, 6580, 5494, 6052, - 8972, 727, 7003, 7712, 1465, 3313, 5370, 8225, 506, - 2132, 9159, 9298, 7883, 9321, 6558, 6192, 8563, 3021, - 5097, 6402, 3516, 4725, 3323, 5925, 7736, 934, 2152, - 415, 9779, 2459, 2032, 1017, 8577, 4353, 2307, 3707, - 7696, 2489, 6071, 6443, 6704, 9904, 2685, 4669, 5544, - 3959, 2983, 9040, 2033, 7320, 2161, 4481, 6668, 6026, - 7153, 9823, 4697, 1527, 5589, 6975, 8837, 3195, 644, - 7715, 2983, 8912, 5117, 1412, 537, 9828, 4072, 6000, - 2149, 554, 4346, 8996, 6426, 1022, 2966, 9384, 8537, - 9416, 5887, 6269, 5258, 4819, 9322, 4229, 6389, 6260, - 1541, 4070, 4003, 6524, 298, 6252, 7806, 4466, 5030, - 3423, 1169, 4895, 2782, 3384, 5163, 1707, 2179, 8192, - 4856, 4416, 8541, 1726, 6556, 5525, 641, 7685, 381, - 2461, 9802, 6078, 9726, 9306, 2118, 8753, 8575, 72, - 4711, 4403, 970, 5051, 2468, 8252, 3531, 859, 5120, - 2455, 4223, 8979, 470, 4221, 2490, 6986, 4019, 7557, - 9215, 798, 8794, 2097, 6389, 9800, 6503, 7889, 2311, - 3799, 8462, 8357, 7718, 7346, 188, 621, 2023, 2539, - 5495, 5438, 2018, 3425, 902, 3405, 3334, 1814, 7524, - 3720, 174, 5885, 5109, 7606, 980, 7935, 5490, 6670, - 4801, 67, 4661, 4738, 8527, 7468, 7340, 1660, 3760, - 1635, 4034, 8280, 4301, 5427, 4797, 8120, 1904, 3428, - 1341, 5108, 1943, 1285, 6206, 6232, 43, 320, 4474, - 1535, 6118, 6953, 9965, 80, 271, 3088, 5551, 6872, - 6949, 7239, 301, 1456, 8199, 8711, 3036, 5996, 958, - 2825, 1772, 1957, 5020, 487, 6842, 4166, 2955, 6492, - 17, 9760, 9135, 1765, 8481, 7530, 9891, 8597, 8556, - 5786, 1228, 1351, 1248, 8804, 1017, 7515, 2278, 5157, - 7588, 2633, 1729, 9878, 9927, 5939, 2378, 2550, 7075, - 4737, 7187, 5641, 3536, 3422, 4800, 9633, 813, 4145, - 9491, 5345, 6430, 9042, 887, 7605, 8283, 655, 5757, - 2626, 8734, 7264, 9682, 1062, 2309, 539, 2604, 5173, - 3568, 2970, 3578, 9495, 7355, 2235, 6445, 8654, 6372, - 608, 5409, 3440, 9396, 4059, 3336, 8176, 4379, 8456, - 1419, 7167, 6685, 2068, 4062, 4242, 7347, 4971, 6977, - 7281, 1182, 2411, 2287, 8877, 3821, 7978, 189, 6921, - 1884, 7608, 9661, 3998, 1182, 9277, 1249, 6224, 968, - 6355, 5060, 7903, 1166, 7823, 1212, 2431, 8400, 1271, - 9520, 6242, 9971, 4349, 938, 8969, 4270, 822, 5741, - 9394, 8293, 6301, 6981, 9908, 8255, 102, 7831, 5694, - 9414, 2284, 2590, 7248, 1466, 9859, 2377, 2143, 4535, - 4396, 5994, 2705, 2889, 5015, 3580, 8953, 2889, 4447, - 8786, 4942, 8218, 3896, 303, 2525, 247, 5833, 8258, - 2868, 2360, 9399, 9670, 3993, 9504, 1915, 919, 9928, - 1803, 4809, 1358, 7489, 9688, 7456, 4687, 7541, 3474, - 9779, 3007, 1683, 8615, 915, 2781, 8504, 9018, 3643, - 2290, 4220, 5519, 536, 6768, 24, 1161, 7604, 5855, - 39, 1761, 9899, 6103, 58, 6751, 2360, 8656, 3618, - 3212, 9556, 6123, 4185, 4460, 1357, 6925, 2551, 6573, - 4677, 154, 3766, 9863, 6079, 4532, 3616, 3110, 8315, - 4801, 2108, 8553, 3164, 9378, 6464, 595, 84, 474, - 2425, 9930, 399, 7869, 9698, 604, 5368, 9064, 4589, - 7633, 6312, 2970, 6489, 354, 773, 4003, 9913, 275, - 2849, 63, 7808, 7372, 9770, 9513, 4525, 4580, 3235, - 8544, 3833, 1302, 2568, 1970, 3174, 5901, 9943, 9832, - 235, 6570, 2725, 9042, 7813, 8730, 8969, 5958, 8913, - 5966, 6304, 8362, 9055, 4424, 4142, 5279, 7030, 5904, - 844, 8697, 734, 4613, 2966, 3356, 8238, 8366, 436, - 65, 984, 2844, 1847, 8328, 7443, 1253, 3985, 4330, - 9195, 2307, 2527, 1543, 2864, 5197, 4679, 328, 1120, - 6619, 4598, 1932, 6006, 6685, 3164, 9876, 7906, 8431, - 5737, 7724, 811, 2068, 8401, 4190, 4778, 9707, 3849, - 9387, 3280, 6050, 9898, 7004, 705, 6207, 6146, 9110, - 4514, 1880, 5102, 2440, 9719, 163, 9086, 9370, 9656, - 1567, 6024, 5289, 2489, 6082, 7211, 3889, 6975, 5002, - 6557, 375, 5863, 3640, 1925, 9842, 3159, 4914, 2750, - 7209, 9838, 4360, 3173, 9524, 2237, 1815, 5953, 43, - 3649, 9095, 774, 2795, 7, 6114, 6654, 440, 2827, - 761, 1411, 6825, 3090, 8856, 8355, 4804, 7164, 4684, - 4241, 810, 7302, 2782, 8059, 9235, 2523, 7832, 6608, - 9632, 2760, 2828, 9495, 9834, 6545, 257, 6386, 2900, - 9289, 3279, 2210, 7391, 2679, 4619, 8714, 550, 7613, - 4604, 4404, 6853, 3981, 6965, 7077, 1130, 5879, 2687, - 5429, 2819, 9333, 6926, 8259, 9706, 6593, 5588, 528, - 7685, 652, 9498, 3661, 4957, 7462, 9469, 2874, 8044, - 4397, 3011, 727, 1559, 7390, 2900, 5580, 8066, 9798, - 6182, 1555, 3257, 60, 8190, 8254, 597, 1516, 5695, - 8535, 1465, 9400, 7666, 1975, 6884, 287, 629, 1437, - 8969, 3725, 9466, 2595, 4269, 7965, 2948, 5212, 5251, - 4253, 7232, 3122, 9553, 9702, 6587, 9629, 1611, 4119, - 5654, 2677, 740, 2227, 9630, 4116, 4617, 8149, 2722, - 7825, 4599, 9413, 8923, 8264, 3267, 1948, 1366, 4183, - 1125, 434, 4634, 1781, 9113, 7808, 1594, 9332, 8888, - 8244, 8529, 8839, 5656, 2946, 9157, 5742, 2795, 5890, - 7056, 8353, 1065, 6737, 4715, 5752, 5285, 9265, 4485, - 357, 6187, 6936, 4388, 1372, 3404, 3737, 609, 1220, - 4090, 4155, 6031, 8841, 4568, 3455, 6307, 7126, 8160, - 4114, 1931, 6166, 9773, 4630, 1375, 8551, 7521, 5487, - 7930, 7327, 672, 6993, 5913, 2567, 3784, 5855, 526, - 9200, 9781, 1540, 7841, 4155, 4047, 9676, 1433, 3617, - 6628, 3109, 5877, 9679, 520, 5329, 6105, 9669, 1669, - 8437, 1775, 5363, 470, 404, 4948, 3208, 729, 6222, - 4480, 7058, 8542, 230, 5224, 7845, 4217, 6763, 4420, - 9187, 9965, 8691, 9222, 1176, 7124, 8517, 5433, 1730, - 2115, 9671, 8642, 6271, 5061, 1542, 4097, 866, 2675, - 6711, 2453, 1324, 7866, 7526, 8903, 2474, 9461, 4304, - 3845, 789, 4233, 8884, 2141, 6175, 6927, 3155, 5810, - 1369, 2205, 423, 7115, 506, 1652, 9547, 4630, 1558, - 1723, 4961, 397, 6480, 1563, 6211, 9295, 541, 6686, - 695, 4697, 6824, 7280, 5991, 8302, 4418, 6999, 6926, - 5960, 8158, 4528, 2341, 8197, 9543, 4560, 4949, 8473, - 3682, 6495, 6706, 5826, 2087, 2357, 4047, 2394, 3902, - 8306, 1129, 516, 8348, 4846, 9528, 9137, 6552, 3081, - 3850, 8060, 8811, 1105, 2938, 5556, 6295, 7391, 7753, - 5601]), - values=tensor([3.0546e-01, 5.0292e-01, 2.3257e-01, 7.6163e-01, - 1.3214e-01, 6.9043e-01, 1.2924e-01, 2.2895e-01, - 7.5991e-01, 4.5296e-01, 7.8851e-02, 8.0757e-01, - 8.4762e-01, 5.7022e-01, 9.7492e-01, 3.7199e-01, - 4.7085e-01, 3.6444e-01, 1.4732e-01, 8.5390e-01, - 7.6210e-01, 3.7304e-01, 6.6372e-01, 8.3452e-02, - 9.7907e-02, 7.9441e-01, 5.0442e-01, 5.3476e-01, - 2.5460e-01, 2.0463e-01, 5.2276e-02, 2.3757e-01, - 9.9098e-01, 2.4339e-02, 2.6705e-01, 2.7554e-01, - 5.2617e-01, 7.6818e-02, 4.1524e-01, 2.2617e-01, - 6.9888e-01, 5.1982e-01, 3.4986e-02, 8.2621e-01, - 6.4897e-01, 3.2938e-01, 6.1865e-01, 4.6707e-01, - 4.8730e-01, 5.9909e-01, 5.1563e-01, 6.1362e-01, - 9.9062e-01, 9.2120e-02, 1.7623e-01, 7.1483e-01, - 8.5852e-01, 4.3511e-01, 8.2575e-02, 3.5430e-01, - 3.9193e-01, 6.7349e-01, 6.9654e-01, 2.4910e-01, - 9.7526e-01, 9.2904e-02, 1.5211e-01, 2.2833e-01, - 2.7533e-03, 4.0291e-01, 6.8445e-01, 7.3628e-03, - 4.2183e-01, 7.4697e-01, 6.5569e-01, 8.1926e-01, - 2.9564e-01, 4.0009e-01, 6.3533e-01, 9.1378e-01, - 4.9246e-01, 1.1889e-01, 6.5282e-01, 7.5628e-01, - 3.3088e-01, 1.0018e-01, 5.2631e-01, 2.5813e-01, - 4.9862e-01, 2.0196e-02, 6.0420e-01, 9.1465e-01, - 3.0075e-01, 7.8392e-01, 8.4779e-01, 8.9399e-01, - 7.2792e-01, 5.9261e-02, 8.3345e-01, 4.8578e-01, - 5.5253e-01, 7.6723e-01, 9.4488e-01, 1.7353e-01, - 5.9492e-01, 9.6929e-01, 1.7141e-01, 4.1890e-01, - 5.2798e-01, 1.3193e-01, 9.9533e-01, 6.6182e-01, - 2.5471e-01, 6.5305e-01, 6.2762e-02, 8.6707e-01, - 7.1419e-01, 1.2133e-01, 4.3177e-01, 9.3699e-01, - 1.8417e-03, 7.5425e-01, 4.1020e-02, 9.4920e-02, - 1.3473e-02, 8.7261e-01, 7.1847e-01, 5.0429e-01, - 5.8822e-01, 6.9089e-01, 8.3394e-01, 4.9615e-01, - 6.0785e-01, 9.7205e-01, 8.1361e-01, 6.2625e-01, - 6.4523e-01, 8.2243e-01, 9.4970e-01, 2.6450e-01, - 3.8783e-01, 3.3954e-01, 2.2550e-01, 4.6048e-01, - 4.6912e-01, 6.6507e-02, 9.7823e-01, 9.6171e-01, - 3.6260e-01, 5.2658e-01, 5.2584e-01, 1.1201e-01, - 2.6101e-01, 7.8232e-01, 2.1812e-01, 9.1694e-01, - 4.0002e-01, 4.4305e-01, 9.7012e-01, 4.4321e-01, - 9.4755e-01, 7.2948e-01, 2.5811e-02, 3.3866e-01, - 4.2151e-01, 9.6390e-01, 9.4710e-01, 6.6181e-01, - 5.4910e-01, 4.8388e-01, 6.7655e-01, 8.2547e-01, - 4.2407e-01, 7.9124e-01, 2.9745e-01, 9.9058e-01, - 5.4692e-01, 2.1420e-01, 4.3865e-01, 4.6584e-01, - 6.6910e-01, 5.7028e-01, 9.4804e-01, 8.6551e-01, - 3.7726e-01, 2.7189e-01, 1.1550e-01, 8.0677e-01, - 6.0652e-01, 8.8394e-01, 7.8356e-01, 8.6341e-01, - 3.4722e-01, 8.4132e-01, 3.7332e-02, 1.0818e-01, - 7.4932e-01, 7.6341e-01, 5.0551e-01, 7.5321e-03, - 5.2469e-01, 3.6502e-01, 7.8288e-01, 4.7653e-01, - 4.6680e-01, 2.0783e-01, 9.7493e-01, 7.0423e-01, - 5.9691e-01, 3.5689e-01, 5.3460e-01, 4.1212e-01, - 5.2642e-01, 3.8752e-01, 7.1660e-01, 5.4532e-01, - 8.8719e-01, 1.8120e-01, 9.6824e-03, 7.5474e-01, - 1.7381e-01, 3.8886e-01, 1.4673e-01, 6.2935e-01, - 1.7229e-01, 9.5232e-01, 1.8018e-01, 8.2887e-01, - 6.1846e-01, 2.1702e-01, 9.0999e-01, 3.9455e-01, - 7.9801e-01, 9.7367e-01, 7.8526e-01, 4.4372e-01, - 2.2059e-01, 3.7747e-01, 5.0166e-01, 7.8276e-01, - 6.6970e-01, 6.5626e-01, 8.3801e-01, 1.5675e-01, - 1.1548e-01, 5.2576e-01, 7.5340e-01, 6.2927e-01, - 9.3639e-01, 5.7182e-01, 5.8135e-01, 6.3740e-01, - 1.5886e-01, 6.4819e-02, 8.5413e-01, 7.7295e-01, - 8.5744e-01, 4.5221e-01, 6.9424e-01, 1.7890e-02, - 6.1964e-01, 9.0600e-01, 2.3291e-01, 3.7068e-01, - 2.5649e-01, 2.3410e-01, 8.4699e-01, 8.1302e-01, - 8.4736e-01, 1.6048e-01, 6.7759e-01, 7.6442e-01, - 8.6527e-01, 9.7970e-01, 3.7073e-01, 3.3940e-01, - 7.6938e-01, 4.9124e-01, 8.5065e-01, 5.1735e-01, - 5.2195e-01, 1.4736e-01, 1.9850e-01, 4.9312e-01, - 4.8179e-01, 7.6481e-01, 6.5438e-01, 8.2282e-01, - 6.0339e-01, 8.0579e-01, 6.6200e-01, 1.9481e-01, - 9.8772e-01, 1.9110e-01, 3.2207e-01, 8.7963e-01, - 5.8877e-01, 2.4161e-01, 6.6151e-01, 2.9623e-01, - 3.4971e-01, 2.6078e-01, 3.3537e-01, 9.2709e-01, - 2.4880e-02, 4.4089e-01, 7.4854e-01, 5.3790e-01, - 5.2436e-01, 3.7063e-01, 5.7623e-01, 4.5259e-01, - 2.8959e-01, 9.0455e-01, 5.3153e-01, 8.5544e-01, - 8.6470e-01, 7.4891e-01, 9.4642e-01, 2.3182e-01, - 6.7584e-01, 7.1975e-01, 5.9854e-01, 7.6235e-01, - 8.9544e-01, 9.4037e-01, 9.0569e-01, 3.0626e-01, - 4.8516e-01, 3.7153e-01, 8.5329e-02, 7.5608e-02, - 6.3110e-01, 9.1665e-01, 7.6085e-02, 3.9318e-01, - 1.0273e-01, 3.4263e-01, 1.6887e-01, 2.9854e-01, - 8.9570e-01, 9.1980e-01, 4.6029e-01, 7.5297e-01, - 3.1607e-01, 9.6482e-01, 4.1780e-01, 5.3075e-01, - 6.3925e-01, 3.7261e-02, 6.5730e-01, 9.0225e-01, - 5.4019e-01, 3.3430e-01, 5.1348e-01, 2.5604e-01, - 2.8889e-01, 5.3161e-01, 7.9824e-01, 3.5820e-01, - 5.9880e-01, 8.8347e-01, 7.1055e-01, 1.8794e-01, - 9.1582e-01, 7.0727e-01, 1.6723e-01, 8.6642e-01, - 1.5342e-02, 5.4726e-02, 5.0492e-01, 5.5728e-01, - 2.5658e-01, 1.3191e-01, 4.2065e-01, 8.3828e-02, - 1.3786e-01, 5.8316e-01, 4.8969e-01, 9.7892e-01, - 5.2277e-02, 8.8689e-01, 9.1829e-01, 3.6404e-01, - 1.9245e-02, 4.5749e-01, 7.7959e-01, 4.6119e-01, - 4.2486e-01, 1.0301e-01, 2.2097e-01, 4.8645e-02, - 5.0412e-01, 6.5140e-01, 2.1781e-01, 1.7752e-01, - 7.4109e-01, 5.5933e-01, 7.8991e-01, 4.3416e-01, - 4.1863e-01, 1.0879e-01, 6.5186e-01, 5.2892e-01, - 3.9743e-01, 8.9794e-01, 3.4442e-01, 8.2869e-01, - 4.4873e-01, 2.7925e-04, 5.8907e-01, 1.5124e-02, - 1.3479e-01, 9.4760e-01, 7.6317e-01, 3.7230e-01, - 4.2500e-01, 1.1376e-01, 2.7854e-01, 7.8506e-01, - 9.3394e-01, 5.4152e-01, 6.3631e-01, 3.5839e-02, - 5.9531e-01, 2.9784e-01, 1.0418e-02, 7.6810e-03, - 1.1241e-01, 7.6110e-02, 6.9197e-02, 4.5353e-01, - 6.7057e-01, 5.2603e-01, 4.1057e-02, 7.7773e-01, - 4.3768e-01, 8.3132e-01, 2.8259e-01, 7.7937e-01, - 1.5139e-01, 9.9813e-01, 1.2777e-01, 2.5225e-01, - 6.3330e-01, 8.5029e-01, 4.4191e-01, 4.2503e-01, - 1.4328e-01, 1.4602e-01, 9.7526e-01, 1.5013e-01, - 7.7272e-01, 7.8392e-01, 1.1762e-01, 4.9639e-01, - 6.7972e-01, 5.5378e-01, 8.4642e-01, 3.9361e-02, - 5.7818e-01, 8.0488e-02, 8.9848e-01, 3.3267e-01, - 1.1292e-02, 5.9089e-01, 9.5134e-02, 8.4936e-01, - 3.4085e-01, 8.0495e-01, 2.6454e-01, 1.2924e-01, - 3.7618e-01, 4.0725e-01, 4.4484e-01, 5.2448e-01, - 4.2630e-01, 6.9288e-01, 4.2431e-01, 3.1540e-01, - 9.0537e-01, 4.3955e-01, 1.7328e-01, 5.8077e-01, - 1.3874e-01, 9.5254e-01, 4.8416e-01, 6.6566e-01, - 7.8665e-01, 6.1754e-01, 4.3441e-01, 8.8073e-01, - 5.3310e-01, 6.9216e-03, 1.7584e-01, 1.7340e-01, - 8.7511e-01, 6.6250e-01, 6.8190e-01, 8.4722e-01, - 9.0703e-01, 8.5408e-01, 6.3090e-01, 6.8000e-01, - 6.6170e-01, 2.0455e-03, 3.2688e-01, 8.2333e-01, - 1.2752e-01, 9.8958e-01, 2.7237e-01, 3.6839e-01, - 6.5476e-01, 5.2482e-01, 6.1125e-01, 3.1249e-01, - 8.4482e-01, 3.1180e-01, 5.8043e-01, 9.7963e-01, - 7.2669e-01, 8.9581e-01, 8.0359e-01, 2.6152e-01, - 2.1352e-01, 3.6305e-01, 5.7651e-01, 4.8231e-01, - 3.0981e-01, 3.8468e-01, 7.8548e-01, 7.9081e-01, - 9.8035e-01, 3.4162e-02, 7.6869e-01, 2.7208e-01, - 4.5993e-01, 7.4269e-01, 2.8992e-01, 5.3495e-01, - 7.9295e-01, 5.1936e-01, 7.6730e-01, 6.3963e-01, - 1.0063e-01, 7.9415e-01, 4.3675e-01, 1.3617e-01, - 8.6223e-02, 8.2227e-01, 4.8016e-01, 4.1606e-02, - 1.0678e-01, 1.4438e-01, 4.4704e-01, 9.4627e-01, - 1.2886e-01, 9.1496e-01, 3.4026e-01, 8.1768e-01, - 2.7796e-01, 7.0696e-01, 3.2645e-01, 6.5903e-01, - 6.5081e-01, 9.7303e-01, 6.1049e-01, 4.9549e-01, - 6.5319e-01, 6.3608e-01, 7.2694e-01, 9.2547e-01, - 5.3528e-01, 1.3038e-01, 6.3509e-01, 1.1397e-01, - 8.1481e-01, 3.5817e-01, 3.6134e-01, 5.3784e-01, - 5.3827e-01, 3.6388e-02, 7.9766e-01, 7.4626e-01, - 8.6300e-01, 3.9584e-01, 3.1814e-01, 2.9897e-01, - 2.5172e-01, 4.6373e-01, 2.8063e-01, 7.9467e-01, - 7.1274e-01, 4.5342e-01, 1.1660e-01, 1.7201e-01, - 2.8508e-01, 3.6230e-01, 1.2143e-01, 8.1280e-01, - 5.3614e-01, 2.2370e-01, 3.9702e-03, 8.1861e-01, - 3.2803e-01, 4.5384e-01, 7.4509e-02, 2.9656e-02, - 1.4092e-01, 8.1178e-01, 8.9354e-01, 9.5920e-01, - 6.9431e-01, 1.7812e-01, 2.6253e-01, 7.5330e-01, - 4.0264e-01, 4.7890e-01, 9.2839e-02, 7.5094e-01, - 8.4477e-01, 3.2959e-01, 2.3553e-01, 3.2271e-01, - 6.9121e-01, 1.2597e-01, 4.5588e-02, 4.9056e-01, - 5.3107e-01, 6.7603e-01, 3.9695e-01, 4.7252e-01, - 7.7230e-01, 1.9025e-01, 4.6398e-02, 7.3184e-02, - 4.1823e-01, 4.5858e-01, 1.3925e-01, 2.7749e-01, - 3.1086e-01, 7.3769e-01, 2.8863e-01, 1.6350e-01, - 5.8249e-01, 3.2862e-01, 8.6658e-01, 3.7424e-01, - 6.4688e-01, 8.8144e-01, 8.3387e-01, 2.4043e-01, - 3.0604e-01, 7.2186e-01, 9.8668e-01, 6.4301e-01, - 2.1333e-01, 2.1739e-01, 8.0956e-01, 8.4726e-01, - 5.4902e-01, 5.1985e-01, 4.3590e-01, 5.9178e-01, - 3.2764e-02, 8.0291e-01, 7.7345e-01, 8.8043e-01, - 6.8865e-01, 3.3215e-01, 5.7762e-01, 6.9598e-01, - 4.9078e-01, 8.2298e-01, 9.9004e-01, 2.2068e-02, - 2.8306e-01, 8.5364e-01, 4.1046e-02, 2.9296e-01, - 3.3647e-01, 2.1041e-01, 9.7390e-01, 3.9248e-01, - 2.9236e-01, 6.9974e-02, 4.4419e-01, 5.9413e-01, - 9.8070e-01, 6.2882e-01, 6.4546e-01, 7.3828e-01, - 3.5652e-01, 5.1730e-01, 9.6296e-02, 5.8745e-01, - 6.8194e-01, 8.4842e-01, 7.7397e-01, 6.8432e-01, - 4.9849e-01, 6.2490e-01, 1.3079e-01, 6.5648e-01, - 9.2427e-01, 1.3640e-01, 3.1600e-01, 2.3137e-01, - 1.7158e-01, 7.1635e-02, 6.5475e-01, 5.4606e-01, - 1.3754e-02, 5.3487e-01, 2.3732e-02, 3.5133e-01, - 2.8187e-01, 7.3303e-01, 5.2073e-01, 4.4826e-01, - 8.1048e-01, 6.7449e-01, 9.0832e-01, 4.1805e-01, - 8.0305e-01, 6.8775e-01, 3.7820e-01, 2.8105e-01, - 1.9347e-01, 2.9248e-03, 4.2067e-01, 5.6898e-01, - 5.5573e-01, 1.0322e-01, 6.8127e-02, 1.6413e-02, - 1.2364e-02, 6.8063e-01, 1.4124e-01, 6.6213e-01, - 4.5276e-01, 7.1009e-01, 2.9506e-01, 9.9728e-01, - 3.1321e-01, 5.2084e-02, 6.5518e-01, 5.7027e-01, - 5.5342e-01, 4.5039e-01, 8.3082e-01, 8.4419e-02, - 6.9061e-01, 1.4910e-01, 3.7919e-01, 6.9904e-01, - 2.7073e-01, 6.6293e-01, 6.3300e-01, 2.6337e-01, - 3.1362e-02, 3.2107e-03, 8.5961e-01, 7.4186e-01, - 8.9251e-01, 3.8121e-01, 2.8557e-02, 7.5863e-01, - 4.2271e-01, 7.7304e-01, 5.1314e-01, 3.3596e-01, - 1.5878e-02, 2.2314e-01, 8.6545e-01, 8.6219e-01, - 3.5144e-02, 7.3275e-01, 7.7644e-01, 6.9327e-02, - 2.8412e-01, 6.3838e-01, 5.2461e-02, 1.5141e-01, - 8.3297e-01, 8.3531e-01, 8.2986e-01, 2.8791e-01, - 4.3772e-01, 6.3906e-01, 7.3058e-01, 2.8604e-01, - 5.5652e-01, 4.1917e-01, 7.8109e-02, 8.7364e-01, - 3.2508e-01, 9.7158e-02, 7.0644e-01, 3.4530e-01, - 8.6102e-01, 7.0810e-01, 5.7266e-01, 1.7812e-01, - 2.4554e-01, 8.2889e-01, 8.9194e-01, 1.1344e-01, - 2.4368e-01, 7.7560e-02, 4.4172e-02, 8.8359e-01, - 8.2482e-01, 1.0655e-01, 8.7708e-01, 1.2792e-01, - 9.8616e-01, 4.6696e-01, 1.0845e-01, 1.3437e-01, - 2.1846e-02, 1.0611e-01, 9.9102e-02, 9.5604e-01, - 3.1153e-01, 4.8692e-01, 2.0342e-01, 1.2685e-01, - 9.5654e-01, 1.1792e-01, 5.1575e-01, 8.2682e-01, - 1.6512e-02, 3.1644e-01, 4.2779e-01, 8.7755e-01, - 5.2214e-01, 2.9411e-01, 1.6687e-01, 1.3020e-01, - 3.5626e-01, 6.3969e-01, 9.1821e-01, 6.3832e-01, - 5.5944e-02, 1.2907e-03, 3.3494e-01, 6.8836e-01, - 2.2071e-01, 1.3219e-02, 5.0061e-01, 3.6384e-01, - 1.8954e-01, 2.7547e-01, 1.5864e-01, 3.5372e-01, - 8.1700e-01, 3.6113e-01, 4.7142e-02, 5.4031e-02, - 6.9238e-02, 7.9583e-01, 7.9571e-02, 8.3656e-01, - 7.0337e-01, 4.2937e-01, 2.3133e-01, 1.1464e-01, - 3.0281e-01, 1.4357e-01, 5.9047e-01, 6.4976e-01, - 8.3026e-01, 6.6673e-01, 2.1384e-01, 2.3718e-01, - 5.5574e-02, 8.9535e-01, 5.1336e-01, 8.1470e-01, - 1.9989e-01, 7.3222e-01, 8.5078e-01, 8.6226e-01, - 2.6360e-01, 5.7030e-01, 4.2663e-01, 2.0116e-01, - 1.6326e-01, 2.2602e-02, 4.5302e-02, 5.7226e-01, - 1.3045e-01, 1.9958e-02, 7.3527e-02, 4.1662e-02, - 1.8889e-01, 8.5688e-01, 8.0053e-01, 4.1512e-01, - 7.1902e-01, 2.3940e-01, 3.0387e-01, 7.6819e-01, - 4.4629e-01, 1.5787e-01, 2.8335e-01, 9.7723e-01, - 5.6857e-02, 2.2885e-01, 6.2058e-02, 9.0482e-01, - 8.0187e-01, 5.2777e-01, 8.4498e-01, 4.7418e-01, - 6.9321e-01, 8.9847e-01, 2.5302e-01, 8.5480e-01, - 3.4442e-01, 3.0393e-01, 9.9281e-01, 2.9216e-01, - 7.4385e-03, 3.7192e-01, 5.0246e-01, 8.4051e-01, - 6.7121e-01, 9.1350e-01, 7.5249e-01, 7.3097e-02, - 4.3081e-01, 7.2258e-01, 3.9585e-01, 5.2846e-01, - 8.9372e-02, 1.5014e-02, 2.4111e-01, 6.7969e-03, - 7.4773e-01, 6.7682e-01, 8.9317e-01, 3.0863e-01, - 9.9853e-02, 1.3593e-01, 9.8550e-01, 7.6921e-01, - 1.7322e-01, 8.3813e-01, 6.3372e-01, 2.8917e-01, - 5.5668e-01, 1.0735e-01, 5.2302e-01, 1.1063e-01, - 6.7549e-01, 4.4770e-01, 1.4057e-02, 5.9494e-01, - 8.8817e-02, 8.4445e-01, 1.8611e-01, 2.3052e-01, - 6.1311e-01, 1.8401e-01, 1.9584e-01, 5.7546e-01, - 6.1910e-01, 2.9298e-01, 8.8160e-01, 1.5241e-01, - 9.1198e-01, 1.1290e-01, 6.5689e-02, 4.7480e-01, - 5.1616e-02, 1.8578e-01, 8.3774e-01, 9.4238e-01, - 3.5891e-01, 4.5842e-02, 1.2587e-01, 9.9257e-01, - 8.8057e-01, 1.8738e-01, 2.1821e-01, 2.5914e-01, - 7.3710e-03, 1.1278e-01, 9.4587e-01, 8.0280e-01, - 4.3127e-01, 7.8958e-01, 1.5023e-01, 5.9266e-01, - 4.6489e-01, 3.7186e-01, 4.7115e-01, 3.1902e-01]), + col_indices=tensor([1913, 7654, 2578, 7438, 161, 1784, 4399, 9342, 5973, + 9317, 2386, 5390, 6826, 8246, 3533, 5774, 7850, 3210, + 5098, 9081, 1419, 9854, 4633, 4094, 2460, 1982, 5224, + 7488, 9470, 9542, 7636, 1813, 3516, 6772, 9387, 3527, + 2143, 2579, 3758, 6675, 2400, 6857, 5478, 3695, 3795, + 3756, 3719, 3404, 9547, 8983, 7175, 4037, 9581, 7185, + 929, 5259, 781, 9068, 9465, 4965, 5893, 2696, 2105, + 4213, 4999, 2582, 8142, 1368, 9056, 5530, 8794, 3411, + 8012, 2760, 7505, 2582, 7967, 1442, 5100, 4547, 8139, + 4597, 3901, 8732, 616, 6824, 2406, 5427, 99, 1530, + 6480, 9734, 2031, 8017, 9192, 5440, 6935, 2243, 5699, + 2761, 4735, 1992, 3936, 8939, 2912, 3975, 1293, 2526, + 1242, 1543, 6007, 2170, 8914, 4313, 7065, 1733, 3488, + 4650, 2435, 7570, 6849, 1021, 3506, 2267, 4325, 8183, + 4797, 2128, 7956, 4452, 1357, 2467, 9292, 7529, 2665, + 6939, 4926, 53, 3719, 2716, 4371, 322, 8247, 6141, + 3643, 4161, 1218, 4631, 45, 5094, 2416, 6978, 9777, + 8969, 1493, 6000, 920, 357, 7359, 4419, 5789, 2824, + 9510, 2214, 2666, 6941, 5654, 5280, 2914, 7629, 6757, + 5329, 6096, 4785, 7842, 272, 553, 1821, 2930, 6978, + 9552, 3585, 2668, 4929, 8592, 9008, 3436, 6246, 2869, + 9508, 6305, 674, 5548, 2178, 4623, 2766, 9426, 6636, + 2734, 5700, 6697, 4397, 1950, 4820, 2898, 9874, 4309, + 7607, 72, 4311, 993, 3186, 2078, 2317, 7450, 1239, + 2314, 5387, 5556, 1929, 9624, 7824, 8662, 8410, 6503, + 1443, 483, 7970, 4732, 6257, 7787, 3330, 448, 9261, + 4951, 1319, 3950, 7599, 1261, 2621, 8652, 8132, 3731, + 4079, 251, 4113, 1307, 6290, 2770, 662, 6841, 6792, + 6294, 900, 5110, 4306, 6618, 9974, 8342, 9695, 3143, + 349, 8326, 9528, 3464, 1504, 8313, 3204, 7429, 1054, + 9404, 1518, 4565, 6436, 3850, 3090, 1967, 9212, 1515, + 5737, 4332, 1307, 7812, 5169, 7957, 9263, 7549, 8305, + 2285, 6467, 7071, 9999, 316, 9584, 950, 4240, 3058, + 1871, 7709, 7377, 8353, 8543, 8976, 4692, 7226, 6989, + 5913, 9913, 4304, 5467, 6510, 8272, 6971, 8286, 4630, + 2781, 8362, 8692, 4774, 6297, 7725, 1668, 6756, 7100, + 1790, 4362, 6628, 6041, 4431, 2206, 3651, 7414, 1881, + 4217, 723, 6273, 1887, 8487, 8200, 432, 2818, 2742, + 7506, 5950, 5296, 9718, 1865, 3321, 5712, 5309, 379, + 7907, 5022, 6883, 7634, 8109, 8581, 2524, 5363, 4385, + 9481, 7050, 3722, 6905, 4123, 1193, 980, 1309, 149, + 1486, 4890, 4713, 1439, 1191, 9691, 6210, 5838, 8904, + 3708, 9438, 9896, 5287, 3948, 1147, 1698, 4269, 5066, + 6607, 1091, 9583, 1892, 4545, 7581, 5502, 5593, 3633, + 8334, 7742, 989, 5454, 5419, 8285, 7032, 5460, 8123, + 7047, 9497, 2742, 7941, 4354, 2115, 2169, 3579, 2975, + 9962, 9131, 790, 9536, 934, 6531, 4130, 6559, 8852, + 1912, 4091, 5108, 4143, 2911, 8718, 7157, 9474, 440, + 4893, 2348, 2435, 3348, 2896, 5362, 2471, 3557, 3045, + 5520, 967, 2083, 6596, 2972, 3187, 3743, 3692, 5305, + 3194, 8270, 1499, 3112, 1629, 7988, 1569, 6475, 4212, + 9528, 5004, 1871, 4699, 4105, 275, 5746, 4518, 8991, + 612, 6367, 1921, 7216, 7507, 1384, 2081, 8222, 1925, + 7535, 1383, 9622, 5576, 8183, 8495, 5340, 2634, 2966, + 1601, 3637, 3327, 1226, 7790, 4507, 184, 2680, 4609, + 3145, 7485, 1595, 8527, 372, 8745, 5290, 9948, 6519, + 4807, 6324, 2180, 9833, 1872, 4100, 7766, 6247, 620, + 5081, 2716, 5159, 2362, 801, 9878, 6460, 9085, 7887, + 3582, 5814, 6271, 8162, 1564, 2970, 6301, 6686, 5968, + 1206, 5937, 9353, 9579, 7815, 8300, 2535, 8236, 8452, + 3825, 4328, 576, 4303, 7075, 155, 3636, 8510, 2678, + 5217, 3095, 9634, 4084, 3672, 3215, 5812, 8839, 9347, + 309, 7836, 94, 6329, 4746, 3609, 9296, 317, 2851, + 46, 1020, 3989, 3035, 3996, 5929, 1518, 5537, 6352, + 4863, 4746, 9733, 302, 4341, 4989, 4874, 7046, 5778, + 5478, 7701, 7095, 9882, 3225, 2841, 7350, 9700, 4660, + 1226, 2708, 7505, 6041, 8700, 5831, 1161, 7332, 1204, + 9006, 5168, 5623, 3352, 6653, 1866, 2464, 4026, 7957, + 3439, 5787, 6667, 6239, 4086, 1384, 5108, 9156, 1458, + 2719, 6125, 3779, 1062, 9282, 1403, 7331, 1773, 6329, + 9804, 5498, 6916, 3918, 4475, 3365, 6047, 5222, 3317, + 6537, 509, 4180, 521, 4580, 4289, 5484, 7623, 3868, + 4419, 5070, 6414, 6858, 2146, 7503, 7930, 3541, 7363, + 8451, 3603, 8358, 1634, 6410, 6234, 8188, 7703, 3620, + 2497, 3571, 3652, 8113, 179, 7177, 3202, 9610, 1271, + 7092, 4329, 9137, 5792, 7968, 9987, 4895, 24, 7376, + 4933, 4134, 7890, 2095, 8514, 3695, 7529, 3931, 9993, + 6758, 9985, 2616, 3644, 5578, 7035, 179, 108, 2456, + 5883, 9468, 4254, 1026, 9434, 5692, 8912, 5618, 8685, + 7416, 7309, 9289, 2276, 7230, 1611, 6179, 8849, 4226, + 9492, 2313, 5622, 5323, 5301, 5407, 5574, 1863, 9491, + 8356, 8284, 7695, 2173, 8063, 7848, 2350, 8642, 9823, + 4277, 9963, 1573, 8018, 1052, 830, 8774, 1018, 172, + 1853, 1423, 6245, 8795, 9938, 6596, 9610, 862, 6125, + 2315, 4519, 6858, 5217, 8716, 1961, 2531, 1268, 7387, + 6952, 7916, 7660, 6607, 736, 3473, 3680, 805, 4228, + 6961, 6256, 8564, 3586, 5472, 6691, 3409, 2877, 3014, + 1535, 4145, 4790, 81, 5553, 8859, 301, 6125, 1877, + 154, 4300, 2111, 1019, 1624, 3701, 9220, 8623, 2362, + 829, 739, 7388, 915, 693, 7458, 9852, 8907, 5923, + 5956, 4414, 5133, 4520, 6933, 1176, 2370, 2636, 3929, + 4820, 9022, 540, 5654, 5463, 6385, 2215, 1288, 212, + 1094, 7155, 4886, 3573, 3936, 9921, 639, 1616, 3331, + 4763, 9667, 7478, 1120, 5091, 8732, 148, 6718, 9795, + 7275, 5297, 2632, 6832, 1603, 2702, 4697, 9374, 3919, + 6930, 8975, 1858, 1630, 4399, 4416, 2167, 8305, 3364, + 9978, 4771, 8200, 8150, 408, 9331, 1152, 4518, 4395, + 6258, 7579, 7384, 2197, 8376, 1280, 5621, 5003, 9089, + 7213, 8905, 4272, 872, 6014, 5018, 3312, 2473, 8110, + 2480, 4059, 1406, 2485, 4649, 4024, 1652, 5673, 1179, + 7991, 1865, 5736, 2314, 6696, 5611, 1890, 165, 7210, + 251, 3129, 8459, 6624, 5937, 9617, 3100, 1031, 2156, + 7215, 1201, 3895, 8947, 3151, 6187, 5537, 5189, 1415, + 2673, 3741, 3405, 3568, 1498, 8041, 8172, 9828, 2910, + 6307, 2704, 3112, 4789, 5911, 386, 6854, 7793, 6204, + 9467, 5350, 6683, 8303, 7420, 9997, 6967, 7155, 6481, + 8863, 6132, 9098, 3951, 6636, 6217, 281, 2164, 3250, + 1107, 2597, 8420, 140, 9581, 4141, 400, 4846, 3527, + 491, 8715, 153, 7242, 9297, 5207, 161, 4132, 8004, + 200, 9190, 3169, 6815, 3771, 6417, 8492, 4422, 9154, + 9220, 4572, 4257, 9842, 7045, 319, 3874, 3294, 9153, + 8782]), + values=tensor([3.8610e-01, 8.5377e-01, 1.8511e-02, 7.1095e-01, + 8.1683e-01, 1.2439e-01, 3.5277e-01, 4.2816e-01, + 7.4779e-01, 1.4578e-01, 3.9159e-01, 7.8942e-02, + 5.3719e-01, 6.3787e-01, 5.1539e-01, 9.1352e-01, + 9.8974e-01, 5.5580e-01, 9.2020e-01, 5.8107e-01, + 8.2675e-01, 8.9227e-01, 2.6957e-01, 4.1450e-01, + 6.4995e-01, 1.4668e-01, 8.5365e-01, 5.6586e-02, + 6.0310e-01, 1.6855e-01, 7.1945e-01, 4.5680e-01, + 6.4410e-01, 8.7497e-01, 2.0513e-01, 8.1387e-01, + 4.2941e-01, 9.2609e-02, 5.4848e-01, 6.0317e-01, + 4.9057e-02, 7.6647e-01, 8.1898e-01, 3.6237e-01, + 2.6095e-01, 8.1706e-01, 1.8677e-01, 6.6214e-01, + 3.4065e-02, 6.2301e-03, 8.1049e-01, 6.6202e-01, + 9.2002e-01, 9.4613e-01, 4.2801e-01, 2.5149e-01, + 3.7474e-01, 4.6613e-02, 7.6286e-01, 9.5591e-01, + 5.6819e-01, 7.2473e-01, 4.5420e-01, 1.5093e-02, + 7.5841e-01, 8.6923e-01, 8.2963e-01, 9.1618e-01, + 6.3268e-01, 3.7006e-01, 2.3403e-01, 3.7409e-01, + 9.4862e-01, 3.9135e-01, 3.1036e-01, 4.5561e-01, + 7.5923e-01, 4.9378e-01, 2.4860e-01, 2.0726e-02, + 9.3079e-01, 5.3296e-01, 8.8197e-01, 7.4151e-01, + 1.9571e-01, 6.5860e-01, 4.6394e-01, 1.0891e-02, + 7.8440e-01, 2.8027e-01, 7.0002e-01, 4.8993e-01, + 6.0351e-01, 3.4450e-01, 2.4156e-01, 9.3632e-01, + 4.7883e-01, 5.3698e-01, 6.6794e-01, 6.3277e-01, + 1.6690e-01, 9.6142e-01, 8.1668e-01, 7.2409e-01, + 9.5039e-01, 4.1018e-01, 7.6718e-02, 1.1277e-01, + 7.6653e-01, 5.7939e-02, 8.8132e-01, 2.3071e-01, + 1.1627e-01, 4.4793e-01, 1.8370e-01, 5.1300e-01, + 9.5201e-01, 8.6851e-01, 4.2478e-01, 4.8308e-01, + 3.7728e-01, 8.5856e-01, 4.4730e-01, 3.2080e-01, + 5.4767e-02, 9.7707e-01, 2.2574e-01, 5.5285e-01, + 5.6905e-01, 3.6943e-01, 7.5952e-03, 3.3257e-01, + 7.2686e-01, 4.2285e-01, 6.9822e-01, 4.3587e-01, + 7.2988e-01, 6.7748e-01, 1.8964e-01, 8.7304e-01, + 6.2990e-01, 5.3509e-01, 1.3803e-01, 8.4206e-01, + 4.7388e-01, 9.0321e-02, 3.6124e-01, 6.9940e-01, + 3.5166e-01, 6.4487e-02, 6.4762e-01, 8.7857e-01, + 8.1881e-01, 5.3164e-02, 2.4895e-01, 3.6164e-01, + 1.3464e-01, 2.9827e-01, 7.3571e-01, 3.0674e-01, + 6.0528e-01, 6.7903e-01, 3.1282e-01, 7.3350e-01, + 2.3174e-01, 3.6415e-01, 9.6921e-01, 5.4876e-01, + 5.4685e-01, 2.5853e-01, 9.7955e-01, 9.8906e-01, + 2.3474e-01, 7.2967e-01, 9.9754e-01, 4.1724e-01, + 6.2470e-01, 1.6830e-01, 9.6734e-01, 3.9468e-01, + 8.9653e-01, 4.4589e-01, 3.6177e-01, 3.5755e-01, + 4.1151e-01, 5.2403e-04, 8.0776e-01, 2.9056e-01, + 2.7543e-01, 9.3152e-01, 7.3236e-01, 6.5313e-01, + 1.0061e-01, 6.2182e-01, 6.9045e-01, 5.5055e-01, + 1.5520e-02, 1.7346e-02, 3.4910e-03, 6.4128e-01, + 7.5031e-01, 7.5949e-01, 9.3468e-02, 7.6496e-01, + 4.8529e-01, 6.2334e-01, 9.4296e-01, 3.5853e-01, + 7.2756e-01, 8.7206e-01, 5.2816e-01, 4.4438e-02, + 5.6329e-01, 2.2828e-01, 8.4849e-01, 9.4579e-01, + 8.4626e-01, 6.7086e-01, 2.8491e-01, 6.4624e-01, + 8.7513e-01, 2.6528e-02, 4.4953e-01, 9.1746e-01, + 7.8027e-01, 2.2730e-01, 7.9321e-01, 9.8797e-01, + 2.2814e-02, 8.7637e-01, 3.8994e-01, 3.2441e-01, + 6.8336e-01, 7.9926e-01, 3.8718e-01, 3.4786e-03, + 1.1534e-01, 7.4916e-01, 2.7534e-01, 9.8439e-02, + 9.1131e-02, 9.1836e-01, 6.1330e-01, 1.3102e-01, + 5.4847e-03, 8.6561e-01, 5.7958e-01, 8.0518e-01, + 2.8465e-01, 7.7917e-01, 4.3560e-01, 5.6084e-01, + 7.5286e-01, 6.3866e-01, 7.2910e-01, 3.0899e-01, + 9.1412e-01, 2.6555e-03, 2.3826e-01, 5.6212e-01, + 9.9504e-01, 5.0756e-01, 9.6585e-01, 8.8996e-01, + 4.2407e-01, 7.6316e-01, 5.6013e-01, 6.6055e-01, + 8.3748e-01, 6.2385e-01, 1.5983e-01, 9.3548e-01, + 6.6605e-01, 9.8112e-01, 5.8093e-01, 5.0434e-02, + 4.9205e-01, 5.1871e-01, 1.2512e-01, 5.0351e-01, + 1.8898e-01, 9.4631e-01, 4.2293e-02, 3.1088e-01, + 3.4520e-01, 5.0879e-01, 3.5372e-01, 7.2930e-01, + 5.2299e-01, 7.0660e-01, 7.7671e-01, 8.5673e-01, + 5.0209e-01, 7.6491e-01, 1.9923e-01, 1.5535e-01, + 8.8992e-01, 6.8837e-01, 2.4943e-02, 3.0610e-01, + 4.3221e-01, 4.6599e-01, 1.3047e-01, 4.3773e-01, + 3.6251e-01, 4.6205e-01, 1.0793e-01, 3.0838e-01, + 6.4493e-02, 5.2499e-01, 2.5719e-01, 7.0242e-01, + 2.3217e-01, 2.9568e-01, 8.8686e-01, 6.9929e-01, + 5.0218e-01, 6.2510e-01, 5.9748e-01, 8.6062e-01, + 9.3881e-01, 5.5598e-01, 8.9438e-01, 2.0280e-01, + 8.2777e-01, 9.5075e-01, 4.8198e-01, 6.2637e-01, + 6.3249e-01, 8.9193e-01, 9.1039e-01, 6.4972e-02, + 8.9820e-01, 5.2690e-01, 5.8321e-01, 7.9388e-01, + 7.0610e-01, 2.6038e-01, 2.6840e-01, 7.2624e-01, + 7.5041e-01, 4.5002e-01, 8.1630e-01, 5.7319e-02, + 9.1830e-01, 5.0848e-01, 8.3542e-01, 7.1332e-01, + 7.1294e-01, 9.2191e-01, 5.1896e-01, 1.2938e-01, + 9.5730e-01, 3.2242e-02, 6.5653e-01, 8.2194e-02, + 8.7798e-01, 8.3940e-01, 2.2781e-01, 5.9478e-01, + 7.2513e-01, 5.8600e-01, 5.5875e-01, 5.7178e-01, + 3.3916e-01, 9.8096e-01, 7.7440e-01, 8.1663e-01, + 4.5610e-01, 6.9842e-01, 8.7732e-01, 6.5963e-01, + 4.5872e-01, 1.5583e-01, 6.3053e-01, 8.6648e-01, + 3.9767e-01, 7.5734e-01, 7.1577e-01, 1.4568e-01, + 4.0268e-02, 7.2023e-01, 4.8936e-01, 9.0829e-01, + 5.9611e-01, 6.9061e-01, 8.1805e-01, 8.9041e-01, + 3.1423e-01, 1.5868e-01, 6.1366e-01, 9.2687e-01, + 8.9448e-01, 1.4864e-01, 7.1271e-01, 4.6104e-01, + 7.6188e-03, 2.2407e-01, 9.2907e-01, 1.1651e-01, + 6.1987e-01, 2.4907e-01, 9.6456e-01, 8.0986e-01, + 6.9956e-01, 9.0349e-01, 1.2001e-01, 3.6328e-01, + 1.6739e-01, 7.2792e-01, 8.4913e-01, 1.3978e-01, + 3.6502e-01, 8.3758e-03, 8.5686e-01, 1.3986e-01, + 8.7100e-01, 4.5934e-01, 7.1594e-01, 6.7867e-01, + 8.6897e-01, 6.6908e-01, 8.4732e-01, 6.6558e-01, + 5.1856e-01, 4.0954e-01, 6.9826e-01, 4.7976e-01, + 5.2070e-01, 1.3197e-01, 1.4248e-01, 7.8979e-01, + 3.8558e-01, 1.1534e-01, 7.6786e-01, 4.1531e-01, + 9.6341e-01, 3.9001e-01, 8.2289e-02, 8.0837e-01, + 7.1545e-01, 2.5727e-01, 7.6374e-01, 8.4542e-01, + 8.5587e-02, 5.2770e-01, 6.5768e-01, 8.0251e-01, + 2.2113e-01, 9.9737e-01, 6.1830e-01, 3.1632e-01, + 1.2613e-01, 4.1147e-01, 2.1405e-01, 1.2762e-01, + 1.1111e-01, 5.4527e-01, 1.6500e-01, 4.2444e-01, + 5.8801e-01, 1.6257e-01, 6.6900e-01, 7.6794e-01, + 4.0036e-01, 5.3006e-02, 3.5051e-02, 9.5344e-01, + 4.8371e-01, 4.9565e-01, 9.0943e-01, 2.3101e-01, + 2.0090e-01, 4.8225e-01, 3.0712e-02, 7.5834e-01, + 6.7334e-01, 1.1353e-01, 3.9036e-02, 6.9230e-01, + 9.0893e-02, 7.5872e-01, 8.7894e-01, 5.9393e-01, + 2.6585e-01, 1.6676e-01, 4.8532e-01, 5.9465e-01, + 4.4222e-01, 2.0170e-01, 9.2328e-01, 6.8154e-01, + 8.4402e-01, 7.0562e-01, 2.6520e-01, 8.8657e-01, + 5.4459e-01, 7.8087e-01, 2.0055e-01, 8.1105e-01, + 3.4705e-01, 7.8759e-01, 8.9155e-01, 6.5331e-01, + 6.7577e-01, 1.4852e-01, 9.2796e-01, 9.0692e-01, + 6.3434e-01, 3.1111e-01, 5.7140e-01, 9.0780e-01, + 4.6895e-01, 2.0287e-01, 3.3299e-01, 7.6187e-01, + 5.7104e-01, 2.4415e-01, 7.6380e-01, 1.7908e-01, + 8.0681e-01, 1.2670e-02, 1.6363e-01, 2.2970e-01, + 6.1572e-01, 5.6717e-01, 4.6578e-01, 8.6430e-01, + 2.4153e-01, 9.1603e-01, 5.3253e-01, 5.0666e-03, + 9.1421e-02, 5.1296e-02, 1.0304e-01, 9.9405e-01, + 9.5872e-01, 1.3353e-01, 3.5694e-01, 5.4543e-01, + 6.2537e-01, 2.8650e-01, 7.9959e-01, 8.2562e-01, + 2.7264e-01, 5.2583e-01, 6.3161e-01, 1.9397e-02, + 6.9587e-01, 3.3762e-01, 4.4200e-01, 1.8451e-01, + 3.6916e-01, 2.8108e-02, 7.7783e-02, 2.3773e-01, + 9.0051e-01, 2.8460e-01, 8.1089e-01, 9.4479e-01, + 9.7155e-01, 4.0098e-01, 6.8592e-01, 7.5205e-01, + 2.9211e-02, 5.6538e-02, 9.3352e-01, 7.7910e-03, + 8.0618e-01, 4.0845e-01, 2.0409e-02, 3.5837e-01, + 1.8328e-01, 3.9909e-01, 4.1918e-01, 4.8170e-01, + 9.9960e-01, 5.9804e-01, 2.0861e-01, 1.0751e-02, + 8.0381e-01, 5.3288e-01, 1.3326e-01, 8.6459e-01, + 5.5114e-01, 2.9667e-01, 7.3363e-01, 3.0714e-01, + 9.1825e-01, 7.6928e-02, 2.7699e-01, 6.2910e-01, + 3.6845e-01, 3.7640e-01, 6.0170e-01, 9.6457e-01, + 4.3097e-02, 6.8313e-01, 1.2273e-01, 5.5638e-01, + 9.3322e-01, 2.6998e-02, 6.8256e-01, 2.8860e-01, + 3.2874e-01, 6.0891e-02, 4.4244e-02, 5.2327e-01, + 7.6976e-02, 6.1998e-02, 3.1748e-01, 4.9074e-01, + 3.2159e-01, 1.1840e-01, 3.3449e-01, 9.8168e-01, + 2.0415e-01, 5.4059e-01, 6.0272e-01, 5.1307e-01, + 1.8527e-01, 4.1767e-01, 7.1985e-01, 5.0042e-01, + 8.5363e-01, 4.6183e-01, 7.7202e-01, 7.8648e-01, + 6.9129e-01, 9.0911e-01, 3.2770e-01, 5.1269e-01, + 6.9536e-01, 3.6706e-01, 9.1723e-01, 3.9701e-01, + 6.7993e-01, 3.2314e-01, 6.8715e-02, 8.2246e-02, + 2.8073e-01, 1.1831e-01, 6.2561e-01, 3.6529e-01, + 3.3884e-01, 3.6135e-01, 5.4802e-01, 6.7573e-01, + 5.0165e-01, 8.1397e-01, 8.5096e-01, 1.1027e-01, + 6.5757e-01, 6.0696e-01, 7.2836e-01, 5.8805e-01, + 9.2758e-01, 2.4110e-01, 3.3509e-01, 7.7407e-01, + 9.2691e-01, 5.3329e-01, 8.2629e-01, 7.0255e-01, + 7.7681e-01, 6.8983e-01, 2.5614e-02, 6.3758e-01, + 7.2682e-01, 8.5240e-01, 5.2949e-01, 7.1705e-01, + 8.5069e-01, 4.2186e-01, 3.0347e-01, 9.0121e-01, + 8.2273e-01, 4.1961e-01, 5.9519e-01, 7.2062e-01, + 5.8577e-01, 8.5471e-01, 4.2713e-01, 6.4293e-02, + 6.3663e-01, 6.6423e-01, 2.2498e-01, 5.1988e-01, + 6.5365e-01, 9.3245e-01, 1.7852e-01, 8.1156e-01, + 6.7345e-02, 2.4846e-01, 9.9602e-01, 9.1934e-02, + 4.1853e-01, 3.7241e-01, 9.4301e-01, 1.7991e-01, + 5.9621e-01, 6.9136e-01, 5.2793e-01, 1.9118e-01, + 1.9793e-01, 6.0317e-01, 9.6882e-01, 1.9873e-01, + 8.3014e-01, 7.9369e-01, 2.1870e-01, 1.9086e-01, + 6.9388e-01, 7.9719e-01, 4.1397e-01, 5.7192e-01, + 4.9351e-01, 2.4139e-01, 5.9855e-01, 7.0341e-01, + 1.4905e-02, 2.4436e-01, 9.2685e-01, 4.5334e-01, + 7.4665e-01, 5.1727e-01, 8.2996e-01, 2.0033e-01, + 9.2888e-01, 5.0175e-01, 5.4601e-01, 6.1251e-01, + 5.4993e-01, 9.6161e-01, 1.2794e-01, 3.2116e-01, + 8.4421e-01, 7.0886e-01, 3.5791e-01, 6.6184e-01, + 1.8923e-02, 2.5903e-01, 8.1313e-01, 4.1493e-01, + 8.8826e-01, 5.0309e-01, 5.5726e-01, 7.3682e-01, + 1.2897e-01, 2.6581e-01, 4.6832e-01, 7.7950e-01, + 2.3775e-01, 6.2503e-01, 2.5789e-01, 4.4719e-01, + 3.2605e-01, 1.6738e-01, 1.3471e-01, 5.8312e-01, + 2.6249e-01, 9.6756e-01, 4.5744e-01, 2.1122e-01, + 5.6749e-01, 1.6200e-01, 2.4114e-01, 3.4166e-01, + 3.6612e-01, 1.0509e-02, 5.1611e-01, 9.0580e-01, + 3.3763e-01, 9.2852e-01, 1.7939e-02, 8.7145e-01, + 8.8206e-01, 5.6772e-01, 3.3696e-01, 3.5279e-01, + 5.1465e-01, 6.8700e-01, 3.4390e-01, 6.7643e-01, + 6.6427e-01, 3.5840e-01, 1.5537e-02, 1.8473e-01, + 4.9930e-01, 3.1875e-01, 4.9058e-01, 9.2293e-01, + 5.6647e-01, 8.1066e-01, 5.2922e-01, 6.1174e-01, + 9.4076e-01, 4.0053e-01, 5.6874e-01, 9.8550e-01, + 7.6898e-01, 4.4491e-01, 9.4084e-01, 7.9641e-01, + 1.9048e-01, 6.7339e-01, 2.7576e-01, 3.5103e-01, + 8.8099e-01, 2.7326e-01, 8.0563e-01, 9.3555e-01, + 3.1474e-01, 4.7528e-01, 2.1165e-01, 5.4853e-01, + 6.8904e-01, 6.7265e-01, 1.7309e-02, 1.6399e-01, + 7.6108e-01, 2.3543e-01, 2.6175e-02, 9.0095e-01, + 6.2691e-01, 2.8392e-01, 7.7971e-01, 8.3351e-01, + 4.8417e-01, 5.2438e-01, 8.9569e-01, 3.2099e-01, + 1.8007e-01, 6.4459e-01, 3.2528e-02, 8.0234e-01, + 4.2430e-01, 2.4034e-01, 6.8400e-01, 6.6685e-01, + 8.1383e-01, 3.3149e-01, 3.7153e-01, 4.3221e-01, + 5.1683e-01, 4.8905e-01, 5.5635e-01, 4.2207e-01, + 8.0436e-01, 1.6030e-01, 4.4301e-01, 8.0845e-01, + 8.7237e-01, 2.8558e-01, 6.1831e-01, 7.4397e-01, + 6.6461e-01, 7.2410e-01, 9.6853e-01, 3.9492e-01, + 3.8188e-01, 5.0831e-01, 2.1636e-01, 3.5060e-01, + 2.3646e-01, 5.6253e-01, 6.9733e-01, 2.7720e-01, + 5.3757e-01, 8.8048e-01, 7.1650e-01, 9.6798e-01, + 7.7762e-01, 5.5153e-01, 6.1393e-01, 4.9133e-01, + 6.8381e-01, 6.6995e-02, 2.2135e-01, 5.2027e-01, + 2.3479e-01, 9.4917e-01, 4.1574e-01, 8.1023e-01, + 2.7657e-01, 4.8275e-01, 6.6333e-01, 6.5800e-01, + 9.8084e-01, 7.7307e-01, 2.9222e-02, 7.2481e-01, + 1.9828e-02, 2.7554e-01, 9.6906e-01, 1.0409e-01, + 6.4309e-01, 9.2824e-01, 7.2999e-01, 5.6517e-01, + 5.0434e-01, 4.7459e-01, 7.8320e-01, 3.3435e-01, + 2.4506e-01, 9.0578e-01, 5.1393e-01, 6.3417e-01, + 9.1206e-01, 1.7725e-01, 7.9767e-01, 8.8333e-01, + 7.5073e-01, 5.1574e-01, 5.4984e-01, 7.6118e-01, + 2.1850e-01, 1.6803e-01, 4.0066e-01, 8.0536e-02, + 8.9116e-01, 5.0132e-01, 9.0927e-01, 8.7983e-01, + 1.8210e-01, 9.5577e-01, 5.7504e-01, 6.1325e-01, + 5.4429e-01, 2.3767e-01, 3.5357e-01, 7.5911e-01, + 8.6730e-01, 4.9418e-02, 1.7969e-01, 8.5584e-01, + 3.1254e-01, 9.5390e-01, 3.9608e-01, 7.2622e-01, + 3.6906e-01, 5.6365e-01, 4.7089e-01, 9.1569e-02, + 7.5723e-01, 6.6632e-01, 1.8609e-01, 1.0110e-01, + 5.6893e-01, 9.3812e-01, 9.0428e-01, 1.8241e-01, + 1.4446e-01, 5.7043e-01, 8.7504e-03, 9.7478e-01, + 5.0913e-01, 2.0822e-01, 1.6866e-01, 8.7459e-01, + 7.2484e-02, 2.6479e-01, 6.7042e-01, 7.2394e-01, + 1.3267e-01, 5.8664e-01, 6.4844e-01, 1.5520e-01, + 4.8434e-01, 9.0714e-02, 9.9916e-02, 4.3195e-02, + 4.7733e-01, 6.8749e-01, 8.3543e-01, 4.4062e-01, + 5.9982e-01, 2.5620e-01, 3.7227e-01, 6.7200e-01, + 7.5098e-01, 9.3886e-01, 8.9364e-01, 7.4407e-02, + 1.5111e-01, 3.7773e-01, 3.3716e-01, 8.3074e-01, + 6.6617e-01, 1.1146e-01, 5.2723e-02, 8.9229e-01, + 9.9407e-01, 7.6735e-01, 1.3311e-01, 5.2952e-01, + 7.5053e-02, 7.9242e-01, 2.9142e-01, 5.4645e-01]), size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.0435, 0.9300, 0.8297, ..., 0.3222, 0.7823, 0.3267]) +tensor([0.6534, 0.1395, 0.5723, ..., 0.2846, 0.6527, 0.4839]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -375,378 +754,271 @@ Rows: 10000 Size: 100000000 NNZ: 1000 Density: 1e-05 -Time: 0.05496048927307129 seconds +Time: 1.9514954090118408 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '191046', '-ss', '10000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 6.995845317840576} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '285101', '-ss', '10000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.263301372528076} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 2, ..., 1000, 1000, 1000]), - col_indices=tensor([7403, 728, 1285, 8550, 1815, 156, 5673, 7884, 804, - 2274, 8632, 558, 593, 2434, 9484, 9362, 4876, 1365, - 8726, 4434, 7468, 8388, 1142, 5354, 3450, 5015, 2167, - 5863, 8494, 4015, 1075, 3076, 5203, 7805, 8587, 6340, - 4721, 5410, 6601, 5936, 2358, 786, 8416, 3722, 7224, - 5416, 6954, 7430, 2080, 7410, 3608, 9068, 233, 5759, - 9777, 2647, 2414, 3959, 5249, 6789, 8618, 545, 1533, - 3253, 2595, 8333, 2258, 4520, 1162, 285, 8409, 3028, - 5291, 4349, 1073, 8045, 5220, 7737, 4880, 2756, 5810, - 1259, 3893, 4273, 4890, 7182, 1907, 6000, 4343, 5076, - 4585, 4488, 8537, 7870, 7713, 9502, 5846, 7896, 3564, - 1579, 5446, 9588, 1830, 3737, 9049, 4660, 8300, 3088, - 9875, 2180, 3118, 4817, 2026, 2159, 2896, 6145, 7437, - 5006, 2765, 5574, 6343, 9722, 9852, 1689, 5076, 1311, - 9122, 1883, 4106, 1720, 9328, 5882, 9768, 4762, 3098, - 5130, 8552, 3503, 7292, 5924, 4696, 6054, 3816, 9981, - 5211, 4445, 3287, 194, 5968, 675, 7691, 559, 8734, - 3360, 4551, 5634, 3143, 1346, 4016, 1356, 6510, 4609, - 9546, 8442, 654, 944, 2423, 2281, 267, 8782, 5027, - 2592, 3276, 9548, 425, 881, 5796, 3050, 1670, 1962, - 1441, 6040, 8321, 927, 1987, 6095, 3353, 3854, 9573, - 673, 1348, 8396, 7031, 9197, 7168, 3320, 8897, 1033, - 2188, 6451, 3907, 644, 5749, 6758, 8893, 959, 5264, - 1997, 5491, 2449, 7266, 4728, 7980, 3825, 198, 8545, - 6026, 6662, 5245, 4840, 448, 6283, 3877, 8879, 8978, - 9269, 8485, 231, 6825, 9514, 2279, 6392, 4293, 2300, - 5117, 8532, 5136, 9416, 4722, 3455, 5613, 1163, 1805, - 2844, 3695, 2372, 9138, 80, 4122, 3082, 5314, 5880, - 9027, 4915, 1798, 377, 7474, 6544, 6556, 7207, 1280, - 3832, 1703, 2970, 3046, 7797, 8443, 9061, 6639, 8642, - 7917, 6296, 2818, 8341, 4646, 8902, 7207, 4999, 7966, - 1512, 9785, 8126, 3762, 9839, 9481, 481, 5466, 4085, - 914, 7522, 5870, 8325, 3356, 9469, 3727, 9370, 1587, - 7291, 1660, 9622, 8806, 2694, 7061, 5895, 3123, 4575, - 5395, 5297, 8036, 3927, 8359, 9380, 1043, 7046, 942, - 5919, 6170, 9464, 1312, 8123, 8575, 6667, 713, 7311, - 9591, 3179, 2195, 7600, 1820, 4178, 6841, 6777, 6716, - 3925, 5310, 6497, 5108, 275, 563, 4119, 1120, 3800, - 2537, 6500, 4994, 7759, 9479, 6053, 613, 7128, 4781, - 7291, 5867, 6218, 8794, 4491, 4906, 4348, 45, 8652, - 3191, 3300, 9097, 4344, 928, 3139, 5368, 8972, 651, - 1667, 9007, 7260, 8298, 6067, 656, 930, 3773, 5706, - 8963, 6118, 3315, 7007, 3253, 1639, 5512, 7286, 2536, - 2949, 5825, 5608, 350, 4033, 5936, 4115, 4624, 4447, - 7819, 1222, 3789, 3404, 8968, 9433, 9983, 3532, 2350, - 3320, 5635, 9348, 3604, 4025, 158, 5249, 9966, 3682, - 4294, 6007, 621, 450, 9352, 3171, 8900, 2312, 5730, - 5756, 5828, 6209, 9360, 7909, 122, 6717, 8522, 367, - 6924, 9649, 8741, 6447, 4365, 117, 3939, 166, 4581, - 6628, 1635, 6595, 6205, 7942, 1530, 6926, 8307, 9018, - 518, 4477, 4186, 890, 8167, 3134, 5612, 1008, 1237, - 9767, 301, 8872, 3234, 1655, 9767, 7066, 6720, 646, - 3778, 7969, 7072, 2982, 8154, 5780, 7017, 9442, 3916, - 7338, 6654, 9506, 9386, 7911, 3439, 4488, 1318, 9278, - 2120, 5692, 8007, 8932, 1067, 3563, 406, 9736, 6429, - 2469, 5157, 8439, 6713, 2665, 4496, 2630, 5610, 1357, - 2167, 6597, 4229, 3422, 6037, 9839, 3006, 1669, 5295, - 1896, 8950, 897, 7260, 8424, 3342, 6261, 8823, 9847, - 81, 7207, 7928, 8508, 1180, 4322, 9610, 2700, 9270, - 2253, 4999, 2822, 799, 8895, 8943, 2494, 4665, 7481, - 6553, 6494, 4778, 9771, 8738, 6613, 3169, 7123, 7868, - 486, 6235, 4147, 9830, 2867, 4733, 9315, 2500, 5486, - 9660, 9562, 4813, 2022, 9928, 8445, 7193, 5662, 3995, - 4638, 9807, 3751, 3528, 5012, 7705, 7963, 8409, 9899, - 7720, 339, 6763, 6339, 4744, 4962, 9340, 662, 9729, - 9207, 2723, 2532, 358, 6880, 2101, 8578, 1727, 6383, - 684, 808, 3964, 526, 7427, 6064, 6196, 6614, 5677, - 7706, 3918, 1106, 8276, 5962, 2480, 1667, 2273, 1290, - 8432, 5456, 849, 206, 2265, 2455, 734, 2993, 2441, - 8922, 1369, 757, 9869, 9279, 5526, 7648, 6493, 7379, - 8031, 5455, 2619, 7722, 9544, 4602, 4835, 1730, 2276, - 8830, 7963, 390, 1845, 7449, 5996, 5864, 1101, 8071, - 2681, 7691, 9555, 7066, 9770, 3552, 8958, 8142, 1022, - 210, 9415, 4589, 5075, 9486, 1951, 4813, 5364, 7959, - 1651, 1539, 5573, 7617, 7645, 8080, 9190, 9014, 5227, - 6359, 8375, 1721, 452, 277, 572, 3324, 9266, 8706, - 2911, 4313, 108, 8824, 986, 2571, 9837, 7326, 9412, - 3860, 925, 4237, 8420, 483, 402, 3236, 9079, 3816, - 4506, 6161, 3338, 5889, 7859, 5541, 6135, 489, 8990, - 3725, 4563, 3462, 3303, 8536, 9548, 4181, 5827, 3982, - 3269, 3646, 297, 9534, 2316, 1541, 3523, 5814, 2238, - 1584, 5832, 4612, 136, 7639, 5518, 7889, 9816, 7827, - 7912, 3747, 8532, 2254, 9524, 9555, 8623, 9744, 1867, - 5645, 4826, 6467, 9779, 9419, 154, 1806, 2228, 8593, - 192, 1306, 5122, 2641, 5602, 275, 3868, 9202, 2138, - 352, 1080, 1620, 4867, 102, 4851, 2631, 7769, 1348, - 8068, 7624, 1115, 3211, 1976, 6103, 2512, 4767, 5585, - 6552, 253, 7092, 1637, 2359, 2280, 1944, 1937, 7161, - 5097, 7097, 6917, 1412, 3131, 923, 5544, 1044, 9853, - 2130, 422, 9618, 7896, 8489, 9926, 2957, 6244, 4986, - 3717, 9223, 6475, 1900, 7868, 7809, 7302, 1579, 9055, - 3280, 3718, 2669, 4188, 3507, 7928, 9427, 1259, 9928, - 561, 8471, 8745, 3811, 5135, 6274, 1078, 1056, 1275, - 8455, 9560, 5227, 8436, 4541, 2430, 7909, 6484, 3828, - 7217, 1558, 3143, 184, 4219, 4694, 1819, 4789, 8533, - 9749, 4639, 265, 4775, 8549, 3232, 3548, 4978, 8021, - 118, 9082, 6271, 5190, 7737, 7332, 4997, 2689, 4762, - 4116, 2253, 7100, 5906, 7437, 3678, 1299, 5659, 603, - 3513, 5385, 8361, 3560, 6174, 6509, 2095, 9081, 7288, - 3060, 5449, 1563, 9540, 5648, 2099, 4640, 4469, 9213, - 3458, 4363, 4687, 9325, 7205, 5051, 1383, 9720, 4880, - 6265, 759, 4202, 4331, 9088, 42, 4579, 3079, 2953, - 2367, 6110, 1228, 2187, 3983, 6551, 7849, 7307, 1087, - 6624, 4350, 9778, 4489, 1042, 518, 226, 4820, 5363, - 2688, 1416, 9167, 4319, 9005, 7753, 1017, 3305, 1055, - 172, 2840, 5680, 8252, 9837, 6305, 7483, 9510, 2281, - 6415, 8172, 9150, 1181, 9628, 6365, 8239, 6434, 1331, - 8292, 7326, 1890, 5694, 6982, 2358, 9428, 5946, 8542, - 3337, 9207, 5890, 4096, 7231, 2856, 5176, 8775, 5969, - 9243, 5152, 6215, 6321, 8749, 1753, 5522, 6434, 8223, - 5777, 8166, 536, 6813, 9761, 7396, 3652, 4437, 8870, - 2375]), - values=tensor([2.8230e-01, 5.3787e-01, 9.0316e-01, 8.6899e-01, - 3.5142e-01, 9.2070e-01, 6.6080e-01, 9.6886e-01, - 4.5757e-01, 9.8160e-01, 9.5205e-02, 2.5031e-01, - 3.5486e-01, 8.6237e-01, 6.0378e-01, 6.7704e-01, - 8.7432e-01, 1.7854e-02, 1.5057e-01, 9.1952e-01, - 5.5237e-01, 5.0374e-01, 8.2169e-01, 1.9191e-01, - 2.6186e-01, 7.3238e-01, 2.5831e-01, 2.2768e-01, - 8.9577e-01, 1.3629e-01, 7.4935e-01, 8.1262e-01, - 8.4277e-01, 8.0760e-01, 6.7226e-01, 3.5348e-01, - 2.2222e-01, 3.6301e-01, 8.2281e-01, 1.1419e-01, - 9.3289e-01, 2.9408e-01, 7.8503e-01, 6.7179e-01, - 5.3035e-02, 4.3059e-01, 3.9032e-01, 2.6405e-01, - 4.3534e-01, 6.6193e-01, 1.8458e-01, 9.3321e-01, - 3.9369e-01, 1.5642e-01, 5.6697e-01, 9.8146e-01, - 8.1174e-02, 8.3591e-01, 5.0625e-01, 6.2091e-01, - 3.4875e-01, 5.1572e-01, 8.5861e-01, 4.5264e-01, - 3.0169e-01, 2.4860e-01, 8.7848e-01, 2.1704e-01, - 2.3174e-01, 1.5844e-01, 6.4903e-01, 2.1421e-01, - 5.2656e-01, 4.5672e-01, 7.0355e-02, 4.9095e-01, - 5.5133e-01, 4.7274e-01, 9.2417e-01, 2.9473e-01, - 6.4978e-01, 9.4875e-01, 9.7030e-01, 1.8165e-01, - 9.5328e-01, 3.8524e-02, 4.4916e-02, 5.5294e-01, - 3.9613e-01, 4.3059e-01, 3.3924e-01, 2.7627e-02, - 3.2193e-01, 7.5578e-01, 5.1703e-01, 7.5168e-01, - 9.9840e-01, 9.8701e-01, 2.9976e-01, 4.1402e-02, - 4.1349e-01, 3.6650e-01, 3.6695e-01, 9.6976e-01, - 9.0391e-01, 9.9162e-01, 5.5791e-01, 9.1984e-02, - 6.2346e-01, 9.6193e-02, 6.6046e-01, 4.8892e-01, - 7.1733e-01, 4.4533e-01, 3.9615e-01, 1.8797e-01, - 4.1221e-01, 4.4789e-01, 1.9018e-01, 5.0749e-01, - 3.4543e-01, 1.1522e-01, 7.8096e-01, 5.1845e-01, - 9.0160e-01, 4.1666e-01, 1.8129e-01, 3.5302e-01, - 6.7895e-01, 6.2769e-01, 7.7233e-01, 5.2982e-01, - 6.1232e-01, 8.2022e-02, 4.7431e-01, 5.3530e-01, - 1.7521e-01, 3.8454e-01, 5.7823e-01, 3.2537e-01, - 5.4954e-01, 8.9358e-01, 8.1797e-01, 9.4123e-01, - 6.9884e-01, 1.7844e-01, 7.9125e-01, 8.2798e-01, - 5.6551e-01, 7.8310e-01, 8.4228e-01, 5.8557e-01, - 7.3096e-01, 5.3757e-01, 8.0687e-01, 5.3608e-01, - 9.7137e-01, 1.0411e-02, 4.1560e-01, 3.5703e-02, - 4.2274e-01, 3.2965e-03, 5.2300e-01, 1.8598e-01, - 8.4425e-01, 5.4561e-01, 6.6692e-01, 3.8831e-01, - 9.4335e-01, 5.0401e-01, 9.9745e-01, 4.4442e-01, - 6.9199e-01, 5.7018e-01, 5.8003e-01, 5.8966e-01, - 2.0870e-01, 6.8900e-01, 9.2247e-01, 9.5798e-01, - 7.7262e-01, 3.8366e-01, 2.4881e-01, 9.3450e-01, - 5.5886e-01, 1.9613e-01, 6.2664e-02, 9.9533e-01, - 8.5273e-02, 7.6192e-01, 9.8689e-01, 7.3898e-01, - 4.9975e-01, 5.8939e-01, 3.9308e-01, 9.4351e-02, - 1.9198e-01, 4.8111e-02, 7.6000e-01, 2.0746e-01, - 9.9383e-01, 5.0317e-01, 5.2760e-01, 3.0536e-01, - 9.6720e-01, 3.9620e-01, 1.0823e-01, 9.4807e-01, - 3.0499e-01, 4.4501e-01, 3.5625e-01, 1.2773e-01, - 4.7482e-02, 1.9498e-01, 4.5680e-01, 7.5560e-01, - 5.4493e-01, 3.1086e-01, 6.4490e-01, 9.3187e-01, - 3.5438e-01, 1.7700e-02, 1.5739e-02, 9.6099e-01, - 4.6738e-01, 5.5612e-01, 7.9348e-01, 9.7367e-01, - 3.9865e-01, 1.1288e-01, 2.2219e-02, 2.5582e-01, - 1.8013e-01, 8.8072e-01, 6.1261e-01, 4.2158e-01, - 3.6448e-01, 1.0854e-01, 3.4330e-01, 1.5254e-01, - 5.6236e-01, 6.1449e-02, 1.4463e-01, 9.9347e-01, - 8.9589e-01, 1.4066e-01, 8.4065e-01, 5.6322e-01, - 8.9380e-01, 1.8797e-02, 6.1893e-01, 9.1150e-01, - 5.5936e-01, 3.0968e-01, 3.0256e-01, 6.2585e-02, - 5.4710e-01, 5.6933e-01, 2.5988e-01, 6.2867e-01, - 6.1272e-01, 7.5780e-01, 4.6284e-01, 5.5982e-01, - 4.0855e-01, 3.3224e-01, 7.2796e-01, 8.2324e-01, - 4.7149e-01, 5.0106e-02, 5.3570e-01, 8.8603e-01, - 5.7756e-01, 2.4354e-01, 1.4955e-01, 9.2280e-01, - 8.8139e-01, 7.6525e-01, 9.1790e-01, 4.7411e-01, - 6.4076e-01, 1.8729e-01, 1.1207e-01, 6.1511e-01, - 4.4770e-01, 7.2418e-01, 2.3461e-01, 4.1290e-01, - 5.5197e-01, 8.6823e-01, 1.1988e-01, 8.1257e-01, - 3.2221e-01, 2.7063e-01, 8.2704e-01, 3.1990e-01, - 9.5619e-01, 8.0722e-01, 5.1394e-01, 8.0698e-01, - 5.5227e-01, 3.9684e-01, 7.4638e-01, 7.5519e-01, - 4.2651e-01, 3.7672e-01, 6.4270e-01, 3.5998e-01, - 6.6092e-01, 2.0814e-01, 1.1224e-01, 3.9653e-01, - 6.6199e-01, 4.9716e-01, 8.1779e-01, 7.1834e-01, - 9.4318e-01, 3.1778e-01, 7.4694e-01, 2.6639e-01, - 6.0868e-01, 7.9287e-01, 1.5927e-01, 4.0712e-01, - 5.3988e-01, 9.1454e-01, 8.9379e-02, 3.1543e-01, - 4.4029e-01, 3.6020e-01, 8.0943e-01, 2.4580e-01, - 3.0897e-01, 9.3469e-01, 8.1059e-01, 3.9868e-01, - 2.3106e-01, 5.3848e-01, 8.3832e-01, 8.3923e-01, - 5.2809e-01, 2.6115e-01, 7.4186e-02, 2.3872e-01, - 5.7522e-02, 4.8517e-01, 9.9668e-01, 5.6349e-01, - 4.2618e-01, 1.1280e-01, 4.1809e-01, 5.5704e-01, - 3.3944e-01, 2.4860e-01, 6.6615e-01, 1.0812e-01, - 7.6450e-01, 3.4114e-01, 8.2429e-01, 9.2346e-02, - 1.3097e-01, 5.6234e-01, 9.9781e-01, 6.8699e-02, - 4.3439e-01, 6.3050e-01, 2.7271e-01, 4.5312e-01, - 4.9182e-01, 8.9503e-01, 6.4194e-01, 2.9709e-01, - 8.7021e-01, 7.1784e-01, 6.8270e-01, 3.6942e-01, - 1.6561e-01, 6.6240e-01, 3.2360e-01, 8.2240e-01, - 6.8870e-01, 6.0278e-01, 9.9211e-01, 4.3589e-01, - 3.2636e-01, 8.1724e-01, 4.4169e-01, 1.0203e-01, - 3.6168e-01, 8.7661e-02, 4.0507e-01, 2.9383e-01, - 2.7115e-01, 4.6973e-01, 1.7735e-03, 9.6612e-01, - 4.4312e-01, 7.6621e-01, 1.8218e-01, 8.3507e-01, - 3.5109e-01, 2.6459e-01, 2.4844e-01, 2.4963e-01, - 3.0153e-01, 6.7972e-02, 6.4155e-01, 7.8728e-01, - 5.4841e-01, 8.3758e-01, 2.3422e-01, 8.1590e-01, - 9.2227e-01, 9.1343e-02, 8.8321e-01, 2.4270e-01, - 1.7708e-01, 1.1087e-01, 6.8447e-01, 3.0248e-01, - 5.3146e-01, 4.7859e-01, 1.1236e-01, 6.5350e-01, - 1.8996e-02, 6.1835e-01, 7.7411e-02, 2.4942e-01, - 3.3719e-01, 8.6763e-01, 5.2279e-01, 4.3488e-02, - 3.9154e-01, 4.6067e-01, 6.2581e-01, 8.6864e-01, - 7.0929e-01, 4.6582e-01, 2.9985e-01, 7.0105e-01, - 1.3644e-02, 1.2340e-01, 6.6567e-01, 9.8114e-01, - 2.1346e-01, 9.8781e-02, 7.3241e-01, 7.9594e-01, - 9.3850e-01, 4.5723e-01, 7.5320e-01, 8.0652e-01, - 4.9280e-01, 7.3869e-01, 9.4460e-01, 1.9219e-01, - 9.1108e-04, 8.2062e-01, 6.4154e-01, 5.8060e-01, - 2.6802e-01, 5.6534e-01, 1.3629e-02, 8.0096e-01, - 4.4681e-03, 1.3432e-01, 8.6326e-01, 3.5229e-01, - 4.1922e-01, 2.3116e-01, 4.8907e-01, 9.4010e-01, - 3.8584e-01, 3.9344e-01, 1.6084e-01, 8.2381e-01, - 4.3376e-01, 9.9305e-01, 9.5764e-02, 3.9798e-01, - 6.4945e-01, 4.5568e-02, 2.1547e-01, 8.6132e-01, - 5.5624e-01, 3.2310e-01, 1.6069e-01, 3.8394e-01, - 5.6633e-01, 4.6912e-01, 5.8230e-01, 7.0527e-01, - 5.1867e-01, 9.7576e-01, 2.9398e-01, 2.7352e-01, - 6.9329e-01, 1.6240e-01, 3.5226e-01, 6.1122e-01, - 3.0150e-01, 7.5510e-01, 5.8117e-01, 9.0081e-01, - 4.9601e-01, 5.6211e-02, 4.3973e-01, 1.2046e-01, - 9.6100e-01, 9.1511e-01, 3.6355e-01, 4.2499e-01, - 7.0139e-01, 9.2485e-03, 2.1730e-02, 5.5428e-01, - 7.7130e-01, 2.9907e-01, 9.4664e-02, 5.4725e-01, - 2.5707e-02, 6.3126e-01, 9.4471e-01, 4.3875e-01, - 8.7226e-01, 4.8046e-01, 4.2020e-01, 9.7338e-01, - 4.5294e-01, 7.2621e-01, 6.5641e-03, 2.0013e-01, - 5.0054e-01, 1.4999e-01, 4.5844e-01, 2.1320e-01, - 7.3521e-01, 5.5234e-01, 4.3196e-01, 4.5955e-01, - 7.4944e-01, 3.4281e-01, 2.4950e-01, 3.3971e-01, - 6.5536e-01, 4.9970e-01, 8.9743e-01, 5.7443e-01, - 9.8910e-01, 4.0661e-01, 5.0543e-01, 4.9067e-01, - 3.3417e-01, 7.1662e-01, 6.4197e-01, 3.9892e-01, - 7.1719e-01, 7.8083e-01, 5.8823e-01, 4.3577e-01, - 8.8006e-01, 6.9598e-01, 4.0056e-01, 1.2933e-01, - 5.8358e-01, 5.3340e-01, 6.9614e-01, 4.9337e-01, - 6.5904e-01, 9.5696e-01, 3.5189e-01, 8.2683e-01, - 2.5731e-01, 1.1868e-01, 1.0479e-01, 7.5226e-01, - 3.0903e-01, 7.3456e-01, 8.1586e-01, 1.6992e-01, - 6.4461e-02, 9.1855e-01, 1.9972e-01, 1.2567e-01, - 5.6581e-01, 9.4292e-01, 5.6080e-01, 8.3073e-01, - 6.2586e-01, 1.1142e-01, 4.1909e-01, 7.6041e-01, - 4.6996e-01, 5.8129e-01, 4.4302e-01, 8.7156e-01, - 1.6762e-01, 2.3036e-01, 8.3237e-02, 7.6133e-01, - 4.0479e-01, 7.7797e-01, 5.9596e-01, 3.2395e-01, - 5.0087e-01, 8.3374e-01, 9.5530e-01, 4.1306e-01, - 9.0357e-02, 1.2805e-01, 3.9607e-01, 7.3553e-01, - 5.7467e-01, 4.8834e-01, 6.6934e-02, 2.8103e-01, - 9.9274e-01, 4.5349e-01, 8.9209e-01, 2.8255e-01, - 2.6769e-01, 4.5655e-01, 4.3381e-01, 3.3164e-01, - 2.2435e-01, 7.1825e-01, 7.6762e-01, 5.8633e-01, - 4.4990e-01, 6.8736e-02, 6.4086e-01, 3.6746e-01, - 8.6449e-01, 4.1226e-02, 9.4499e-01, 6.1931e-01, - 6.5809e-01, 6.1511e-02, 3.9817e-01, 5.8898e-01, - 1.1640e-01, 1.8444e-01, 1.7129e-01, 1.3957e-01, - 5.0497e-01, 3.5269e-02, 8.3287e-01, 2.7613e-01, - 6.2228e-01, 3.9473e-01, 2.0126e-01, 2.8374e-01, - 8.8439e-01, 9.7131e-01, 6.2843e-01, 4.7693e-01, - 9.1883e-01, 5.0908e-01, 6.6146e-01, 8.6673e-01, - 2.6898e-01, 1.3334e-01, 6.1520e-01, 7.0400e-01, - 7.5991e-01, 1.3996e-01, 2.3457e-01, 3.8396e-02, - 9.4791e-01, 7.3823e-01, 4.9123e-02, 8.6286e-01, - 7.9549e-01, 3.0765e-01, 9.4513e-01, 5.8890e-01, - 3.4894e-01, 5.4304e-01, 2.5156e-01, 9.0338e-01, - 2.4495e-01, 6.8472e-01, 8.1935e-01, 2.3381e-01, - 4.9483e-01, 6.2551e-01, 3.7234e-01, 7.0448e-01, - 6.2310e-01, 2.8344e-01, 4.7395e-01, 5.9037e-01, - 2.4310e-01, 3.6817e-01, 9.0152e-01, 6.5760e-01, - 3.7778e-01, 8.5052e-01, 2.0082e-01, 7.5372e-01, - 4.9302e-01, 1.5876e-01, 5.7760e-01, 7.1324e-01, - 5.9721e-01, 8.6822e-01, 7.6822e-01, 2.0250e-01, - 4.7581e-02, 5.5039e-01, 3.2489e-01, 2.2342e-02, - 4.5940e-01, 5.6577e-01, 7.4127e-01, 7.7169e-01, - 3.6968e-01, 3.0514e-01, 3.3937e-01, 2.9788e-01, - 8.0180e-01, 5.4228e-01, 4.8803e-01, 6.8684e-01, - 2.7383e-02, 6.7660e-01, 5.9048e-01, 3.3204e-01, - 7.5358e-01, 6.8371e-01, 5.7914e-01, 4.9514e-03, - 9.5130e-01, 8.2896e-01, 1.4739e-01, 9.2714e-01, - 5.1794e-01, 8.3512e-01, 7.0925e-01, 5.6234e-02, - 3.2403e-02, 2.2621e-01, 2.5006e-01, 5.8868e-01, - 4.9311e-02, 7.5541e-01, 3.0749e-01, 2.6245e-01, - 6.6155e-01, 6.0573e-01, 4.6378e-01, 5.6330e-01, - 4.5337e-01, 3.2361e-01, 9.4007e-01, 6.7036e-01, - 9.8068e-01, 4.0231e-01, 3.2488e-02, 3.7037e-01, - 9.0509e-01, 4.0238e-01, 6.7454e-01, 7.3130e-01, - 8.6524e-02, 6.5598e-01, 1.6404e-01, 7.6128e-01, - 9.4613e-01, 5.8073e-01, 1.9589e-01, 6.8791e-01, - 8.4198e-01, 5.0929e-01, 4.7670e-02, 9.1999e-01, - 1.8910e-01, 8.0174e-01, 7.9824e-01, 1.4558e-01, - 1.2823e-01, 3.8654e-01, 7.4780e-01, 5.6556e-01, - 5.5206e-01, 8.0684e-01, 6.8299e-01, 3.2546e-01, - 7.2945e-01, 6.6192e-01, 3.2329e-01, 4.2399e-01, - 3.3985e-01, 9.9272e-01, 5.5675e-02, 8.7261e-01, - 6.3694e-03, 9.7629e-01, 2.0111e-01, 7.5176e-01, - 3.8167e-01, 1.2672e-01, 7.7416e-01, 1.7070e-01, - 2.0644e-01, 7.8767e-01, 8.9218e-01, 6.0558e-01, - 5.3327e-01, 5.6641e-01, 9.4370e-01, 1.6267e-01, - 1.9252e-01, 8.7195e-01, 6.1521e-01, 1.1721e-01, - 8.5444e-01, 2.7187e-01, 7.6550e-02, 7.4474e-01, - 7.2445e-01, 1.0476e-02, 8.0988e-01, 5.0372e-01, - 4.3200e-01, 6.2759e-01, 7.5095e-01, 2.7937e-02, - 7.4638e-01, 2.9933e-01, 9.7530e-01, 2.2081e-01, - 7.9240e-01, 1.6352e-01, 4.4792e-01, 2.4352e-01, - 7.4311e-01, 6.7548e-01, 4.5632e-01, 9.7318e-01, - 3.3698e-02, 6.5762e-01, 2.0938e-01, 2.4995e-01, - 4.9119e-01, 9.2264e-01, 8.9031e-01, 5.9815e-01, - 4.2057e-01, 2.3023e-01, 1.8825e-01, 1.3192e-01, - 3.9288e-01, 1.5796e-01, 7.5823e-01, 1.1544e-01, - 2.5045e-01, 7.2301e-01, 6.9550e-01, 5.5401e-01, - 1.8873e-01, 2.9939e-01, 3.9601e-02, 5.7007e-01, - 9.0702e-03, 4.0882e-01, 1.5415e-01, 5.8912e-01, - 1.7288e-02, 7.1645e-02, 6.1525e-01, 4.2975e-02, - 5.9958e-01, 5.8504e-01, 2.4112e-01, 9.1323e-01, - 4.5606e-01, 6.7429e-01, 9.8745e-01, 8.6021e-01, - 1.8142e-01, 1.7174e-01, 3.0004e-01, 4.1361e-01, - 8.4676e-01, 1.0392e-01, 8.1012e-01, 8.3536e-02, - 8.2639e-01, 3.7316e-01, 6.5078e-01, 3.9350e-01, - 6.8163e-02, 7.4110e-01, 3.7869e-01, 1.1714e-01, - 5.3909e-01, 7.1830e-01, 5.3985e-02, 9.0620e-02, - 1.1016e-01, 6.4977e-01, 4.2502e-01, 2.1501e-02, - 7.8835e-01, 3.7073e-01, 3.3476e-01, 9.8666e-01, - 6.2218e-01, 7.2765e-01, 5.9957e-01, 4.9871e-01, - 6.6661e-01, 4.0665e-01, 9.1455e-01, 2.7465e-01, - 2.4553e-01, 9.3303e-03, 6.8705e-01, 3.1716e-01, - 2.0975e-01, 4.1840e-01, 3.3576e-01, 3.4692e-01, - 9.1191e-01, 1.4705e-01, 7.5314e-01, 5.0550e-01, - 5.3977e-01, 9.1846e-01, 2.8283e-01, 6.9907e-02, - 2.1317e-02, 1.4722e-01, 9.6499e-01, 1.5081e-01, - 8.1423e-01, 7.4182e-01, 7.1844e-01, 3.9476e-02, - 7.8664e-02, 8.1219e-01, 8.8342e-01, 6.2100e-01, - 6.7191e-01, 4.7368e-01, 2.6861e-01, 9.3677e-02, - 3.2513e-01, 1.8817e-01, 5.7608e-01, 7.8823e-01, - 9.1581e-01, 7.6436e-01, 6.4218e-01, 5.8300e-01, - 5.9685e-01, 6.5916e-01, 7.8265e-01, 2.2609e-01, - 5.7788e-02, 6.1309e-01, 7.2349e-01, 6.1700e-01, - 7.9288e-01, 4.4908e-01, 6.2231e-01, 3.1993e-01, - 6.0491e-01, 3.5342e-01, 4.1608e-01, 5.1282e-01, - 4.7201e-01, 7.9027e-02, 9.3144e-01, 1.1720e-01, - 1.0942e-01, 5.6490e-01, 3.1483e-01, 3.4504e-01, - 2.1509e-01, 1.9644e-01, 8.9826e-01, 5.2693e-01, - 7.2234e-01, 4.5613e-01, 2.0993e-01, 3.8888e-01, - 3.4362e-01, 2.8391e-01, 4.7760e-01, 1.3578e-01, - 4.1355e-01, 5.4012e-01, 8.5277e-01, 2.8268e-01, - 2.1746e-01, 6.6617e-01, 3.8200e-01, 6.7181e-01]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([7666, 3284, 1699, 7007, 1865, 642, 2301, 7889, 3112, + 4841, 4554, 2643, 3511, 9405, 9949, 4868, 7053, 8979, + 7155, 3080, 3345, 5376, 5682, 4591, 5457, 4012, 9907, + 4608, 8275, 6785, 214, 8256, 6706, 6096, 396, 213, + 9694, 8210, 4776, 4951, 9163, 2885, 6391, 5210, 5362, + 2964, 8727, 2087, 6653, 557, 2807, 404, 7235, 7348, + 5591, 9937, 5151, 9696, 3619, 4512, 6156, 4095, 5236, + 6999, 8669, 5309, 6087, 4118, 2455, 1780, 9742, 3315, + 7998, 8891, 4943, 9849, 3316, 2894, 3974, 2248, 8409, + 9978, 2602, 229, 3004, 5173, 479, 6004, 6080, 4963, + 6862, 9389, 8433, 2783, 2848, 968, 8951, 3760, 8407, + 7534, 2609, 3709, 9648, 2412, 7425, 8619, 7347, 9064, + 4963, 1354, 5818, 7386, 7369, 2381, 5800, 6012, 3532, + 214, 9362, 4731, 8238, 4276, 2221, 3400, 540, 4177, + 2164, 1191, 3257, 9047, 364, 2899, 2221, 8232, 4361, + 1480, 3950, 9412, 570, 6740, 5525, 7995, 856, 1549, + 3242, 5640, 6435, 1568, 3375, 4060, 6793, 1686, 9865, + 9598, 3307, 6572, 3171, 2008, 7637, 4922, 386, 6366, + 7528, 2850, 6318, 2345, 368, 5786, 9710, 7772, 1761, + 6140, 301, 570, 8828, 8741, 9119, 4206, 3780, 4780, + 707, 3068, 8924, 3477, 4065, 1036, 560, 3678, 9660, + 4487, 8282, 6249, 7109, 3781, 7458, 2555, 3159, 5856, + 7260, 2615, 6118, 4364, 9114, 9280, 8926, 3395, 7988, + 2698, 8725, 6447, 7235, 3203, 5300, 4394, 3058, 7417, + 5517, 1817, 6921, 9211, 8306, 7080, 8460, 7810, 7848, + 4752, 270, 8368, 8576, 7374, 8967, 2824, 9004, 8383, + 4024, 4694, 919, 6859, 4607, 3536, 5606, 5137, 6430, + 1226, 8149, 7263, 7513, 1278, 5694, 380, 1738, 433, + 9251, 916, 5723, 4516, 8117, 800, 5078, 9205, 3076, + 2156, 1929, 248, 8896, 6899, 3847, 2048, 8775, 3158, + 9717, 4304, 9305, 9027, 8444, 7211, 3882, 2571, 7542, + 1042, 2864, 4697, 4933, 9597, 2106, 1874, 1663, 8974, + 5845, 9264, 40, 4452, 2566, 3363, 7670, 7586, 7479, + 5981, 1928, 2498, 8107, 6502, 5725, 1280, 4382, 7811, + 4150, 2407, 5646, 7384, 6368, 9330, 4277, 4360, 9293, + 8848, 3141, 3719, 4630, 418, 68, 3077, 304, 5534, + 3069, 4046, 9645, 797, 7332, 2456, 818, 6040, 233, + 1356, 6755, 4249, 1643, 5939, 6192, 5023, 2182, 3038, + 615, 962, 6584, 6465, 4700, 5188, 378, 2580, 7736, + 8469, 7964, 4215, 5350, 5035, 723, 2366, 9255, 3296, + 2487, 9749, 9356, 2120, 2719, 1534, 5352, 4142, 2840, + 3874, 3309, 2282, 4165, 8221, 3151, 7532, 9093, 1914, + 875, 3267, 7484, 5334, 246, 69, 1760, 3158, 9485, + 2968, 8655, 8484, 1925, 6269, 8467, 4053, 8242, 2491, + 9174, 9141, 8207, 3765, 7176, 8536, 4547, 5155, 9600, + 59, 7491, 3224, 3860, 3405, 5155, 5872, 5087, 1030, + 5823, 67, 9402, 2052, 3137, 8203, 5381, 5014, 2445, + 2598, 6064, 583, 6264, 8514, 2132, 8834, 5724, 5040, + 3049, 7546, 5472, 9227, 9155, 4856, 8701, 9805, 8423, + 5471, 9572, 1489, 1146, 2738, 6131, 4467, 3775, 7623, + 3128, 1626, 4245, 5851, 8311, 5249, 9163, 5646, 9700, + 5912, 1064, 3427, 9742, 4822, 1609, 1247, 3225, 1349, + 1112, 7136, 4620, 9398, 180, 852, 8483, 99, 5880, + 6936, 3985, 7199, 43, 619, 1433, 378, 5613, 8778, + 9714, 6327, 2214, 4270, 2616, 7836, 6036, 4038, 1349, + 3609, 500, 8725, 5242, 3213, 7450, 9547, 6518, 3900, + 9820, 6085, 3210, 7810, 5855, 7609, 1890, 2354, 6091, + 8514, 7897, 3931, 2880, 6281, 3385, 5921, 9952, 5094, + 8855, 172, 3302, 3010, 4642, 2734, 9166, 8421, 2234, + 8565, 528, 8176, 6482, 994, 3099, 9724, 6379, 405, + 8321, 239, 6594, 996, 3440, 8976, 435, 2375, 6431, + 3253, 1630, 7853, 2956, 8895, 986, 6476, 1010, 8489, + 8021, 872, 1473, 1100, 5352, 9179, 2417, 9244, 9167, + 7160, 3376, 6327, 3920, 5098, 7118, 4103, 8332, 3090, + 9060, 6774, 7505, 4316, 2580, 8806, 3234, 5576, 1591, + 9446, 2876, 3861, 9007, 4047, 9387, 1828, 9480, 300, + 5810, 1681, 7603, 9696, 3967, 205, 4720, 6724, 1706, + 1179, 7731, 9912, 9119, 3539, 3641, 2691, 1738, 2069, + 64, 5901, 6907, 7329, 5038, 8087, 2346, 1417, 9802, + 2245, 9442, 3124, 6856, 7605, 3350, 9096, 9607, 6580, + 7026, 4159, 2283, 388, 6926, 8970, 9000, 5902, 3616, + 8251, 2022, 1387, 2040, 3499, 7352, 9723, 4720, 4072, + 3030, 8642, 1561, 3550, 728, 3483, 9957, 2852, 9769, + 530, 8950, 8791, 1868, 3201, 4039, 7668, 6271, 5458, + 8517, 9781, 4046, 3225, 9954, 206, 6894, 7597, 7497, + 6306, 3298, 6872, 2066, 7591, 1890, 8097, 1280, 7096, + 8226, 1359, 216, 3321, 8096, 7997, 7290, 8655, 8538, + 5466, 3483, 6990, 5527, 3778, 5009, 8586, 5007, 7530, + 2615, 6501, 9092, 3603, 3220, 7154, 9702, 5045, 8352, + 2617, 771, 5086, 2751, 4678, 9150, 7949, 9854, 737, + 4795, 2071, 9389, 7313, 9799, 3943, 6232, 1410, 8989, + 7328, 6562, 7366, 5222, 441, 8345, 6712, 3926, 515, + 5956, 5254, 6129, 5268, 1272, 9590, 5597, 1532, 744, + 7243, 1823, 6966, 9821, 5101, 1854, 836, 8195, 8533, + 9772, 6888, 999, 42, 8452, 7406, 756, 2186, 7921, + 7527, 6586, 9178, 9190, 6661, 1985, 2124, 5708, 2885, + 5344, 8420, 6388, 4916, 5751, 5447, 1612, 7115, 4012, + 4211, 4491, 2685, 8469, 3264, 3933, 8307, 2069, 5721, + 6785, 7552, 3662, 9294, 3272, 4972, 4038, 8502, 7978, + 730, 6090, 2443, 3573, 9783, 6945, 8456, 7714, 2278, + 1207, 9072, 1346, 555, 8623, 6821, 2442, 455, 1202, + 8844, 3296, 1101, 8043, 8852, 2122, 3173, 1731, 9938, + 5593, 93, 8956, 6237, 8545, 5229, 9239, 8804, 3713, + 4281, 5382, 8333, 8801, 93, 2212, 5217, 7239, 9312, + 2195, 1969, 8659, 674, 2456, 1219, 684, 5633, 7633, + 1822, 5479, 5138, 2448, 4428, 1533, 6135, 585, 2626, + 1535, 2390, 2292, 3199, 9797, 3083, 7782, 3749, 5972, + 5041, 873, 1762, 6907, 2439, 176, 7886, 8698, 5610, + 4063, 7434, 7641, 5504, 8492, 8226, 4607, 3891, 971, + 446, 5185, 8037, 5578, 2205, 6200, 5210, 7918, 8694, + 8369, 5656, 8140, 720, 6980, 4361, 6048, 5637, 1525, + 3287, 4786, 6431, 419, 584, 7972, 6800, 6611, 3925, + 1361, 345, 5934, 221, 3976, 5263, 273, 1124, 6638, + 9587, 1234, 7547, 9811, 1651, 2418, 9523, 5719, 2357, + 9754, 4924, 9608, 7139, 1769, 2001, 6705, 554, 4744, + 2302, 8692, 6947, 8654, 8683, 9773, 4469, 8661, 3479, + 222, 2813, 8116, 1105, 4667, 9744, 3524, 7923, 7688, + 5748, 4643, 3806, 589, 8275, 7300, 9905, 8566, 3005, + 8277, 3362, 9117, 4507, 4746, 196, 1702, 5992, 1090, + 7587, 5382, 7431, 8949, 1611, 5830, 5183, 8125, 3201, + 6255, 9408, 1748, 1554, 1906, 729, 8466, 4725, 4398, + 3941]), + values=tensor([0.6959, 0.7960, 0.0781, 0.6007, 0.3460, 0.7293, 0.2445, + 0.3377, 0.4176, 0.3625, 0.7235, 0.1442, 0.0335, 0.4983, + 0.5500, 0.1056, 0.9940, 0.8727, 0.8069, 0.4130, 0.1455, + 0.6420, 0.2494, 0.3495, 0.7133, 0.4395, 0.2694, 0.2841, + 0.5549, 0.0490, 0.7986, 0.5242, 0.3692, 0.2460, 0.8859, + 0.0105, 0.6123, 0.7972, 0.2878, 0.9495, 0.0416, 0.7368, + 0.5235, 0.2640, 0.4232, 0.7400, 0.4660, 0.1817, 0.7149, + 0.8459, 0.3355, 0.5095, 0.8904, 0.2582, 0.0507, 0.5007, + 0.7876, 0.1015, 0.4881, 0.3695, 0.9348, 0.8654, 0.8541, + 0.1701, 0.5411, 0.8559, 0.0858, 0.6724, 0.4755, 0.9937, + 0.3688, 0.4551, 0.1705, 0.5343, 0.7652, 0.5023, 0.4761, + 0.8553, 0.5042, 0.1378, 0.3402, 0.0214, 0.3317, 0.7760, + 0.6136, 0.0754, 0.7266, 0.3108, 0.1557, 0.5342, 0.2368, + 0.6255, 0.6338, 0.2103, 0.3547, 0.7898, 0.3532, 0.6879, + 0.5756, 0.5446, 0.6549, 0.1833, 0.3545, 0.3075, 0.8999, + 0.0866, 0.3178, 0.1771, 0.9904, 0.5584, 0.7474, 0.3985, + 0.7736, 0.7195, 0.1836, 0.1731, 0.6012, 0.6546, 0.5119, + 0.7668, 0.7804, 0.2026, 0.4119, 0.1043, 0.5762, 0.3249, + 0.0350, 0.9469, 0.9597, 0.3663, 0.4396, 0.3526, 0.6112, + 0.2028, 0.6398, 0.7385, 0.7867, 0.3703, 0.9189, 0.5053, + 0.2346, 0.3574, 0.9106, 0.6490, 0.0571, 0.7581, 0.0037, + 0.2000, 0.0078, 0.3345, 0.5987, 0.1644, 0.3401, 0.1628, + 0.6190, 0.0170, 0.3230, 0.7145, 0.0065, 0.2218, 0.4568, + 0.5352, 0.7506, 0.8970, 0.0769, 0.7770, 0.0375, 0.5961, + 0.1851, 0.1482, 0.0403, 0.1972, 0.9194, 0.1678, 0.8901, + 0.8766, 0.0092, 0.2714, 0.5465, 0.2373, 0.1403, 0.0755, + 0.7137, 0.4544, 0.3006, 0.0421, 0.8286, 0.0333, 0.4192, + 0.1514, 0.5585, 0.9974, 0.8611, 0.3646, 0.5144, 0.1233, + 0.0881, 0.9866, 0.2420, 0.9365, 0.3756, 0.2095, 0.4280, + 0.2119, 0.0313, 0.7899, 0.6265, 0.8099, 0.3894, 0.1829, + 0.4932, 0.0535, 0.2941, 0.7543, 0.3779, 0.6784, 0.2573, + 0.6186, 0.1475, 0.2682, 0.6713, 0.2567, 0.7592, 0.7252, + 0.8305, 0.0652, 0.2366, 0.0143, 0.5795, 0.7446, 0.7182, + 0.2430, 0.3788, 0.2324, 0.6863, 0.2975, 0.5231, 0.1994, + 0.6772, 0.0117, 0.2661, 0.4983, 0.2255, 0.1217, 0.5970, + 0.4181, 0.1888, 0.5662, 0.8459, 0.4818, 0.5664, 0.7551, + 0.3425, 0.7495, 0.5635, 0.3037, 0.9253, 0.1746, 0.0949, + 0.1444, 0.1382, 0.6207, 0.2484, 0.6872, 0.6011, 0.8909, + 0.5037, 0.7646, 0.8169, 0.6714, 0.6011, 0.0228, 0.7584, + 0.5712, 0.9573, 0.5293, 0.0187, 0.0769, 0.3750, 0.5318, + 0.5469, 0.0475, 0.6832, 0.1012, 0.3177, 0.3205, 0.9912, + 0.7967, 0.3297, 0.8600, 0.8649, 0.1408, 0.1008, 0.6301, + 0.4827, 0.2363, 0.4056, 0.0155, 0.7202, 0.0029, 0.5561, + 0.7290, 0.5676, 0.5965, 0.5363, 0.0921, 0.1850, 0.8448, + 0.7451, 0.5778, 0.2613, 0.9353, 0.9780, 0.5328, 0.8762, + 0.7506, 0.6058, 0.6343, 0.8670, 0.6461, 0.0050, 0.0322, + 0.7176, 0.9509, 0.0141, 0.2849, 0.4851, 0.7572, 0.2430, + 0.0132, 0.9420, 0.2551, 0.1494, 0.1934, 0.9914, 0.0389, + 0.5433, 0.7196, 0.7758, 0.0818, 0.2780, 0.1470, 0.9575, + 0.0039, 0.7218, 0.1816, 0.4767, 0.9657, 0.5165, 0.5374, + 0.9692, 0.8055, 0.2454, 0.3490, 0.9352, 0.0487, 0.6894, + 0.9618, 0.0152, 0.3404, 0.6613, 0.6038, 0.4468, 0.2839, + 0.1984, 0.0949, 0.4107, 0.3440, 0.6650, 0.9782, 0.7647, + 0.3472, 0.8008, 0.6515, 0.2253, 0.1516, 0.0721, 0.0532, + 0.1489, 0.2701, 0.4286, 0.6556, 0.2800, 0.4837, 0.1700, + 0.4031, 0.7582, 0.2764, 0.1452, 0.4317, 0.8870, 0.8904, + 0.2127, 0.1224, 0.0877, 0.6062, 0.7479, 0.8289, 0.8979, + 0.5176, 0.3928, 0.1454, 0.7837, 0.1713, 0.5346, 0.7913, + 0.1056, 0.5996, 0.7813, 0.5215, 0.9208, 0.9514, 0.2525, + 0.4305, 0.2552, 0.7349, 0.3762, 0.7076, 0.1290, 0.1830, + 0.8907, 0.4787, 0.2419, 0.4726, 0.6765, 0.2643, 0.8126, + 0.8757, 0.7952, 0.1205, 0.1298, 0.3806, 0.3136, 0.8469, + 0.0054, 0.5516, 0.9247, 0.4707, 0.9515, 0.8050, 0.4300, + 0.7760, 0.9682, 0.9549, 0.3683, 0.9720, 0.3750, 0.1016, + 0.1056, 0.6301, 0.1820, 0.6373, 0.4706, 0.8360, 0.8820, + 0.8684, 0.5608, 0.4950, 0.7219, 0.7477, 0.3138, 0.4091, + 0.3672, 0.6820, 0.1598, 0.4262, 0.8790, 0.5580, 0.7601, + 0.6733, 0.7879, 0.3866, 0.8117, 0.6549, 0.4184, 0.9377, + 0.0728, 0.7220, 0.5621, 0.8045, 0.9104, 0.1723, 0.5263, + 0.7555, 0.7751, 0.2045, 0.2067, 0.3395, 0.0619, 0.6870, + 0.6295, 0.5145, 0.4071, 0.2642, 0.1755, 0.1193, 0.9114, + 0.5765, 0.1704, 0.3481, 0.6444, 0.1809, 0.0182, 0.0117, + 0.5466, 0.1851, 0.8523, 0.0951, 0.8918, 0.4279, 0.3555, + 0.1480, 0.9159, 0.1610, 0.2426, 0.6025, 0.7344, 0.3367, + 0.2722, 0.6946, 0.3251, 0.3742, 0.1985, 0.3410, 0.7549, + 0.7152, 0.6307, 0.2442, 0.6188, 0.4939, 0.3315, 0.6606, + 0.3168, 0.5301, 0.3465, 0.9986, 0.1887, 0.1622, 0.9650, + 0.5986, 0.8953, 0.8288, 0.8866, 0.2675, 0.7017, 0.2466, + 0.8798, 0.3267, 0.8028, 0.3919, 0.3126, 0.5504, 0.3778, + 0.7414, 0.0821, 0.0301, 0.4972, 0.4197, 0.6222, 0.4811, + 0.0587, 0.6802, 0.1914, 0.3226, 0.5795, 0.4956, 0.3432, + 0.0689, 0.7911, 0.3203, 0.5275, 0.7748, 0.2775, 0.7469, + 0.8369, 0.2113, 0.0507, 0.9763, 0.3517, 0.6939, 0.7093, + 0.5765, 0.2753, 0.5658, 0.3861, 0.2320, 0.5725, 0.7333, + 0.9639, 0.9626, 0.9957, 0.2482, 0.2599, 0.2589, 0.0011, + 0.5195, 0.4786, 0.6863, 0.9629, 0.0159, 0.8498, 0.9892, + 0.4985, 0.5712, 0.8487, 0.3862, 0.6221, 0.2142, 0.4490, + 0.8922, 0.7035, 0.5839, 0.3975, 0.4180, 0.6609, 0.9340, + 0.0330, 0.6173, 0.9389, 0.6227, 0.3648, 0.5424, 0.3871, + 0.5239, 0.6250, 0.8573, 0.0643, 0.3775, 0.5397, 0.5294, + 0.8842, 0.4971, 0.4772, 0.0587, 0.4167, 0.3990, 0.8149, + 0.3392, 0.7700, 0.3194, 0.6137, 0.4234, 0.6017, 0.1367, + 0.5706, 0.9656, 0.6379, 0.8556, 0.0899, 0.6243, 0.0430, + 0.0444, 0.2529, 0.6988, 0.6018, 0.0937, 0.9108, 0.0874, + 0.8000, 0.6934, 0.6987, 0.3747, 0.5361, 0.5595, 0.4715, + 0.8963, 0.2831, 0.7115, 0.8126, 0.3770, 0.9565, 0.0805, + 0.5965, 0.4760, 0.3946, 0.5740, 0.5718, 0.8089, 0.3195, + 0.6564, 0.2940, 0.1074, 0.1914, 0.3616, 0.2781, 0.5799, + 0.2506, 0.9786, 0.8031, 0.2290, 0.7132, 0.8597, 0.1502, + 0.5501, 0.8473, 0.0961, 0.3091, 0.2671, 0.6716, 0.2749, + 0.8922, 0.9331, 0.7831, 0.3662, 0.4411, 0.0261, 0.1996, + 0.1425, 0.1518, 0.1002, 0.5879, 0.8248, 0.4447, 0.4024, + 0.2709, 0.9656, 0.2968, 0.8687, 0.7429, 0.2038, 0.6212, + 0.5590, 0.3980, 0.6056, 0.7683, 0.9384, 0.6645, 0.3018, + 0.9914, 0.4717, 0.9312, 0.2458, 0.6373, 0.3662, 0.7338, + 0.8539, 0.2373, 0.8468, 0.9313, 0.9985, 0.9108, 0.2928, + 0.5675, 0.4918, 0.6788, 0.6532, 0.8578, 0.9756, 0.7977, + 0.7426, 0.3820, 0.0559, 0.7421, 0.6276, 0.5143, 0.1295, + 0.1380, 0.3699, 0.7837, 0.8925, 0.0521, 0.7792, 0.8213, + 0.9725, 0.3183, 0.1008, 0.4133, 0.0178, 0.2000, 0.5122, + 0.9307, 0.7232, 0.2629, 0.4049, 0.1523, 0.9357, 0.6589, + 0.3894, 0.5017, 0.4405, 0.3895, 0.3989, 0.4152, 0.3842, + 0.2309, 0.0256, 0.1505, 0.6988, 0.2384, 0.4692, 0.2583, + 0.3660, 0.9101, 0.3800, 0.5037, 0.1464, 0.3283, 0.7269, + 0.8936, 0.2059, 0.3661, 0.4488, 0.0114, 0.3810, 0.0566, + 0.9065, 0.6607, 0.4611, 0.6537, 0.1070, 0.8951, 0.1591, + 0.3640, 0.0681, 0.1975, 0.8229, 0.3451, 0.9813, 0.1129, + 0.2130, 0.1791, 0.6985, 0.3325, 0.8236, 0.5894, 0.8602, + 0.7245, 0.8692, 0.0849, 0.3757, 0.4767, 0.2866, 0.8776, + 0.1222, 0.4554, 0.1437, 0.8286, 0.4194, 0.9171, 0.1793, + 0.4714, 0.7967, 0.3271, 0.9508, 0.9596, 0.9553, 0.2671, + 0.5226, 0.2545, 0.2904, 0.3931, 0.1604, 0.9966, 0.9778, + 0.1750, 0.2027, 0.1076, 0.4041, 0.9413, 0.1702, 0.9720, + 0.8515, 0.2862, 0.5026, 0.1329, 0.7104, 0.6485, 0.6173, + 0.1418, 0.0456, 0.2708, 0.2491, 0.4879, 0.6711, 0.3460, + 0.2430, 0.0081, 0.6377, 0.4017, 0.6538, 0.0909, 0.0154, + 0.6563, 0.2168, 0.7672, 0.2347, 0.2597, 0.5759, 0.0490, + 0.0102, 0.2013, 0.8005, 0.6998, 0.2945, 0.4318, 0.5007, + 0.1644, 0.7497, 0.5000, 0.5912, 0.9818, 0.5953, 0.9114, + 0.1285, 0.8707, 0.3809, 0.7743, 0.4282, 0.7606, 0.5688, + 0.3152, 0.8989, 0.1583, 0.8766, 0.6326, 0.8886, 0.2620, + 0.3086, 0.3602, 0.7866, 0.9547, 0.2244, 0.2724, 0.9583, + 0.7470, 0.9623, 0.1429, 0.8508, 0.5799, 0.9955, 0.6647, + 0.1399, 0.1801, 0.9233, 0.2772, 0.2445, 0.0531, 0.7452, + 0.0969, 0.7391, 0.2375, 0.8335, 0.2274, 0.5999, 0.0299, + 0.1018, 0.7622, 0.6825, 0.5068, 0.5262, 0.2390, 0.3450, + 0.7486, 0.6337, 0.3874, 0.1886, 0.2751, 0.8412, 0.0794, + 0.2398, 0.8937, 0.9405, 0.8703, 0.2503, 0.9532, 0.7538, + 0.3676, 0.7234, 0.4557, 0.9672, 0.5687, 0.6227, 0.7700, + 0.6581, 0.6226, 0.6058, 0.8459, 0.4844, 0.8195, 0.3510, + 0.5321, 0.7146, 0.4273, 0.4330, 0.8640, 0.8088, 0.5159, + 0.8375, 0.9589, 0.0615, 0.2675, 0.6890, 0.9951, 0.0718, + 0.5084, 0.2519, 0.6662, 0.9841, 0.4845, 0.3961]), size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.7926, 0.8036, 0.9264, ..., 0.8315, 0.2335, 0.7753]) +tensor([0.4905, 0.9858, 0.4305, ..., 0.2183, 0.4525, 0.0992]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -754,378 +1026,268 @@ Rows: 10000 Size: 100000000 NNZ: 1000 Density: 1e-05 -Time: 6.995845317840576 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '286739', '-ss', '10000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.441989183425903} +Time: 10.263301372528076 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 999, 1000, 1000]), - col_indices=tensor([6994, 9622, 3726, 4663, 3213, 8774, 6907, 1710, 9507, - 9063, 1177, 307, 2649, 3020, 5730, 348, 5131, 6359, - 8504, 4801, 4568, 6837, 9016, 8482, 4653, 2975, 3080, - 4702, 1162, 2867, 9079, 2978, 6909, 7908, 6001, 669, - 6371, 3485, 6275, 4253, 4720, 5707, 6535, 1953, 4011, - 2661, 8932, 9981, 7530, 1720, 6368, 6848, 4567, 8841, - 2627, 1161, 5134, 5413, 7960, 4391, 665, 2396, 6608, - 5733, 3484, 4971, 6121, 2312, 3666, 4281, 9424, 1980, - 9643, 9373, 7415, 1900, 9019, 8546, 7553, 8417, 4373, - 8130, 306, 3044, 8544, 6070, 624, 7124, 3983, 3400, - 4627, 4287, 7616, 3298, 7343, 5990, 9821, 2523, 7048, - 5830, 1403, 6233, 8985, 3175, 9364, 5853, 4072, 6366, - 4753, 1727, 9435, 1851, 44, 3040, 1326, 7076, 9651, - 4066, 4865, 6453, 1996, 8040, 329, 9927, 9673, 8524, - 1244, 8553, 442, 5027, 3135, 8060, 9329, 7526, 9796, - 5659, 4377, 3292, 2834, 6136, 3061, 7456, 161, 5999, - 3353, 8111, 5290, 5483, 5811, 5230, 1150, 3704, 746, - 3442, 1238, 6471, 9072, 1057, 739, 7167, 4646, 8968, - 2988, 7699, 3204, 5157, 9948, 7623, 3878, 8967, 4047, - 5067, 7682, 6449, 902, 8157, 5855, 2999, 277, 1240, - 5282, 8712, 210, 3306, 9191, 7693, 9401, 5920, 9695, - 4565, 3107, 3028, 8501, 4399, 270, 1536, 2767, 5311, - 4430, 3474, 7404, 5813, 4610, 264, 84, 3863, 8109, - 628, 315, 7160, 1931, 6079, 150, 1187, 9113, 9881, - 3157, 2458, 7923, 8536, 6368, 1416, 2818, 8122, 3131, - 6956, 9736, 5972, 2516, 3886, 1336, 3782, 3144, 145, - 6154, 3374, 5726, 2019, 5176, 3029, 1833, 512, 805, - 7854, 2374, 6926, 5039, 7581, 1084, 6788, 3567, 9085, - 5115, 8344, 1282, 694, 1416, 4928, 6205, 5066, 6172, - 4951, 2342, 9823, 4409, 453, 2737, 5221, 1182, 1349, - 6104, 1153, 4341, 155, 1744, 6045, 3402, 4537, 6425, - 7377, 9353, 2622, 6364, 5568, 8412, 5977, 8154, 5352, - 1014, 1489, 2546, 9921, 4972, 1344, 4570, 7259, 5658, - 9551, 1403, 4427, 7144, 9461, 8515, 8419, 8672, 8531, - 7797, 6642, 675, 2679, 7615, 8705, 7384, 8267, 6149, - 4211, 8074, 1628, 358, 1640, 228, 5022, 8976, 3921, - 9469, 3778, 3398, 8456, 5802, 1958, 2520, 2489, 1881, - 8614, 3680, 4323, 377, 8462, 5871, 306, 3186, 5351, - 7352, 2219, 9782, 6546, 2214, 3533, 4538, 9746, 3606, - 1981, 5289, 895, 4170, 5822, 348, 6276, 6640, 9900, - 1987, 7527, 3484, 1950, 3683, 214, 8776, 6746, 5717, - 9072, 9171, 1569, 7598, 3877, 3876, 2138, 2024, 1416, - 7752, 4390, 80, 5006, 5274, 9896, 1501, 9077, 5280, - 9121, 9705, 3846, 4311, 7818, 2418, 5744, 70, 755, - 8481, 65, 9496, 8688, 8913, 4086, 4497, 9328, 649, - 7040, 1646, 7888, 6578, 8377, 9319, 9462, 8922, 351, - 4888, 4474, 5081, 3249, 9700, 1729, 5652, 3555, 8733, - 3993, 2648, 2157, 3316, 7194, 4864, 2759, 5666, 9313, - 646, 1058, 9286, 107, 8347, 4296, 5597, 1128, 2987, - 8269, 5363, 8830, 1937, 8083, 6124, 9818, 4872, 1172, - 1916, 9823, 8685, 968, 7144, 4173, 2638, 7667, 2255, - 5893, 145, 2804, 9830, 3730, 2378, 5965, 8443, 924, - 7520, 4001, 8030, 3655, 8642, 637, 4875, 9776, 3422, - 3864, 669, 3034, 7460, 9790, 914, 5157, 7812, 6653, - 5620, 1888, 8250, 4575, 2821, 7519, 5789, 7492, 3910, - 9516, 2254, 109, 3644, 4900, 8347, 1943, 4680, 1973, - 8435, 1113, 456, 1927, 7879, 8357, 9307, 9711, 2787, - 3889, 7117, 5810, 4599, 3798, 3588, 9982, 2090, 9372, - 5907, 2625, 4618, 1365, 7855, 3966, 6642, 2806, 3282, - 1538, 1603, 9281, 6130, 9122, 5424, 4039, 1685, 7585, - 463, 1054, 377, 4412, 670, 3953, 829, 8297, 5284, - 8072, 8388, 5978, 2905, 5528, 8606, 9760, 3824, 3381, - 3569, 8800, 1093, 8598, 5326, 5098, 3325, 3476, 3574, - 5831, 6739, 3709, 3431, 8854, 5412, 1395, 8493, 8413, - 723, 7482, 7437, 8192, 4561, 3563, 7930, 3095, 1395, - 1702, 4680, 4164, 7646, 3073, 2135, 8064, 9233, 8734, - 8891, 1412, 4297, 327, 9444, 6261, 4124, 7080, 3150, - 499, 7634, 5504, 2709, 2323, 6259, 7701, 1590, 782, - 9214, 1434, 7842, 7154, 3406, 6314, 2490, 1995, 2869, - 9300, 7244, 2058, 4782, 9191, 7843, 9366, 3161, 5867, - 7670, 79, 8654, 4679, 6862, 6457, 3396, 3040, 8585, - 3782, 1459, 9368, 4901, 2433, 6705, 8973, 6929, 2667, - 7169, 1587, 5204, 8532, 6578, 9598, 8213, 9081, 6214, - 7437, 7012, 2856, 7632, 7138, 445, 7701, 4052, 6739, - 3480, 3311, 3082, 7805, 6404, 5363, 2870, 9509, 6167, - 7565, 8554, 8204, 832, 9129, 7469, 2782, 5167, 5838, - 3078, 7487, 3680, 6742, 2359, 4016, 7521, 9001, 6405, - 684, 4253, 806, 2076, 1259, 8434, 8503, 8586, 7923, - 4800, 1701, 4338, 6559, 6339, 6352, 1277, 9721, 8278, - 3394, 1222, 9331, 2813, 1759, 1393, 329, 3229, 5728, - 8721, 5742, 6894, 4045, 4303, 9790, 1095, 8299, 5200, - 5067, 4411, 7646, 150, 1925, 981, 1650, 729, 4988, - 39, 6418, 4585, 6285, 3017, 2737, 9097, 1945, 3287, - 5687, 1268, 2568, 5063, 1464, 1353, 8458, 2802, 7424, - 7900, 573, 4279, 1282, 9304, 8048, 5196, 4207, 1316, - 2021, 4121, 7278, 4538, 1620, 3410, 1337, 26, 1524, - 7522, 8145, 4092, 6346, 2473, 5819, 1406, 7284, 7069, - 8477, 7361, 3903, 7212, 8344, 4533, 1123, 5383, 6628, - 5346, 4870, 8614, 6605, 5113, 8241, 2239, 2169, 4658, - 3492, 2436, 6670, 5784, 3502, 9896, 2954, 1899, 1155, - 4148, 2121, 2395, 1045, 4965, 9274, 9110, 6156, 801, - 2656, 5820, 6227, 6325, 135, 209, 4673, 9324, 9454, - 260, 8365, 2431, 2800, 6755, 2430, 7387, 1961, 7463, - 9402, 3000, 2768, 757, 5088, 1602, 9085, 3251, 3315, - 4349, 8652, 5989, 3177, 1166, 3583, 3161, 7236, 4641, - 1623, 3315, 5326, 8408, 4234, 2598, 7670, 1383, 3904, - 372, 9975, 9339, 5246, 7358, 228, 845, 6253, 9078, - 8969, 941, 5589, 812, 3206, 9576, 7426, 9564, 250, - 5639, 2420, 4119, 3196, 3078, 9183, 2554, 867, 5100, - 1465, 9987, 2915, 5151, 9058, 273, 5338, 4182, 802, - 5524, 4895, 3055, 3478, 4538, 8413, 1383, 9768, 9291, - 7392, 8171, 2516, 6216, 7200, 1324, 9549, 2831, 6274, - 7046, 7793, 8156, 8922, 1536, 4903, 8438, 7980, 8795, - 3692, 1865, 2467, 2873, 1023, 8165, 4606, 9922, 7937, - 1789, 1830, 8242, 6979, 7067, 360, 8686, 4259, 417, - 1071, 8219, 513, 1913, 750, 2857, 4490, 9807, 4091, - 2519, 3644, 392, 5240, 341, 5422, 1252, 3012, 4481, - 2472, 8199, 5103, 2599, 3525, 5909, 78, 2754, 5345, - 3013, 6272, 5946, 3907, 4155, 8832, 5606, 7682, 1172, - 192, 7276, 8882, 698, 7468, 1013, 2117, 3917, 4641, - 4529, 2993, 5, 3925, 8235, 5401, 1760, 7427, 3417, - 1077]), - values=tensor([4.8059e-01, 2.6068e-01, 3.7083e-01, 5.4455e-01, - 5.5087e-01, 9.1571e-01, 3.0550e-01, 8.8604e-01, - 5.5442e-01, 3.9848e-01, 4.1127e-01, 2.3695e-01, - 8.8779e-01, 9.7368e-01, 3.7378e-01, 3.5178e-01, - 1.3697e-01, 7.5506e-01, 4.8064e-01, 3.7498e-03, - 7.9736e-01, 8.1659e-01, 6.1290e-01, 4.5901e-01, - 8.9740e-01, 2.9042e-01, 4.4829e-01, 7.0372e-01, - 3.3279e-01, 7.6293e-01, 6.6927e-02, 4.8552e-01, - 9.9505e-01, 7.0259e-02, 3.6985e-01, 1.1795e-01, - 6.8194e-01, 3.0421e-01, 4.1789e-01, 7.9479e-01, - 8.3575e-01, 6.1092e-01, 5.0699e-02, 2.0850e-01, - 2.8512e-01, 2.1458e-01, 1.9815e-01, 1.8111e-01, - 2.1230e-01, 8.7346e-01, 9.3908e-01, 5.0252e-02, - 5.9668e-01, 1.4455e-01, 1.3858e-01, 6.3809e-02, - 4.3928e-01, 3.1486e-02, 2.7234e-02, 7.4906e-02, - 3.5749e-01, 5.7851e-01, 5.2036e-01, 2.5703e-01, - 6.0030e-01, 1.7537e-01, 5.9778e-01, 1.5196e-01, - 3.6708e-01, 9.8464e-01, 5.9912e-01, 2.2195e-01, - 4.6650e-01, 9.6754e-01, 9.5639e-01, 1.5470e-01, - 1.5256e-01, 3.0298e-01, 2.4096e-02, 5.9170e-01, - 1.9686e-01, 1.1759e-01, 1.0457e-01, 5.9024e-01, - 7.4080e-01, 4.1405e-01, 1.2789e-01, 3.8225e-02, - 3.8505e-02, 4.8747e-01, 6.4712e-01, 5.4537e-01, - 7.2839e-01, 6.5434e-01, 4.7429e-01, 2.8609e-02, - 6.9941e-01, 5.0746e-01, 2.0928e-01, 4.3227e-01, - 5.0692e-01, 4.3792e-01, 4.9812e-01, 6.6989e-01, - 9.6967e-01, 9.7297e-01, 1.8827e-01, 7.4347e-01, - 1.5631e-01, 5.8115e-01, 8.2606e-01, 6.1017e-01, - 4.5324e-01, 6.1732e-01, 4.3508e-01, 2.7436e-01, - 8.6329e-01, 6.4097e-01, 1.0318e-01, 4.0200e-01, - 8.6444e-01, 4.3614e-01, 5.2110e-01, 7.7002e-01, - 7.8091e-01, 2.6182e-01, 9.3631e-01, 6.5569e-01, - 7.5455e-01, 1.1819e-01, 8.7432e-02, 8.5494e-01, - 7.9642e-01, 2.4008e-01, 9.6818e-01, 3.1184e-01, - 5.5783e-02, 1.7763e-01, 3.4710e-01, 3.1949e-01, - 1.1640e-01, 2.3357e-01, 7.4482e-01, 6.5708e-01, - 7.8686e-01, 5.7169e-01, 1.9176e-01, 7.4776e-01, - 8.8674e-01, 1.1710e-01, 8.7365e-02, 5.8070e-01, - 4.5757e-01, 2.3275e-01, 1.4821e-02, 5.4216e-01, - 4.2147e-01, 5.6869e-01, 6.9741e-01, 9.5911e-01, - 4.6716e-01, 7.6178e-01, 3.4794e-02, 9.5093e-01, - 5.1131e-01, 5.6037e-01, 7.2508e-01, 1.7181e-01, - 5.9834e-01, 2.8725e-01, 1.4470e-01, 8.5043e-01, - 3.4409e-01, 2.9904e-01, 2.4931e-01, 5.5706e-01, - 1.5667e-01, 2.9028e-01, 4.6574e-01, 7.5432e-01, - 1.1361e-01, 4.5574e-01, 1.8736e-01, 6.5302e-03, - 8.6205e-01, 8.7909e-01, 7.1674e-01, 7.1278e-01, - 9.9996e-01, 6.9678e-01, 9.3855e-01, 2.5683e-01, - 5.9314e-01, 2.0634e-01, 1.9915e-01, 1.7218e-01, - 3.0449e-01, 3.7677e-02, 9.2688e-01, 2.1308e-01, - 1.5730e-01, 9.2634e-01, 8.2956e-02, 6.1692e-01, - 5.1919e-01, 3.2704e-01, 4.0703e-01, 5.0143e-01, - 6.7723e-01, 8.1753e-01, 2.6635e-01, 1.3191e-02, - 8.9840e-01, 9.9355e-01, 8.7904e-01, 7.1659e-01, - 2.9610e-01, 4.5606e-01, 5.9045e-01, 8.9510e-02, - 8.4238e-01, 2.1662e-01, 7.1281e-01, 4.2497e-01, - 4.5220e-01, 6.1156e-02, 5.2940e-01, 5.8593e-01, - 2.5460e-01, 9.4797e-01, 6.6812e-01, 3.2547e-01, - 7.3813e-01, 7.9380e-01, 3.1305e-01, 5.2360e-01, - 5.7839e-01, 3.4606e-01, 7.0736e-01, 6.4167e-01, - 1.1426e-01, 7.1442e-01, 9.5551e-01, 3.4859e-01, - 6.8092e-04, 6.6756e-01, 2.2472e-01, 3.6603e-02, - 6.4753e-01, 4.6649e-01, 4.2337e-01, 5.1645e-02, - 6.0180e-02, 8.3215e-01, 2.8754e-02, 4.1647e-02, - 2.4904e-01, 4.0011e-01, 5.8432e-01, 5.0926e-01, - 8.2460e-01, 2.7598e-01, 4.5140e-01, 1.8915e-01, - 1.0612e-01, 4.0020e-01, 9.0858e-02, 4.2965e-01, - 3.1573e-01, 1.0305e-02, 9.4588e-01, 8.5378e-01, - 4.7280e-01, 9.4753e-01, 5.0855e-01, 6.0263e-01, - 5.3343e-02, 8.1332e-01, 1.6241e-01, 8.2746e-01, - 2.4580e-01, 6.0980e-02, 3.6788e-01, 9.0945e-02, - 5.2880e-01, 5.8751e-01, 3.6803e-01, 9.8383e-01, - 8.0574e-01, 2.9759e-01, 5.9896e-01, 5.5146e-01, - 9.8346e-02, 7.5541e-01, 9.0311e-01, 7.1468e-02, - 2.2938e-01, 7.1939e-01, 6.3102e-01, 9.3064e-01, - 9.9349e-01, 9.3896e-01, 2.8836e-01, 7.8170e-01, - 4.6400e-01, 1.4346e-01, 7.8384e-02, 5.9983e-01, - 6.5895e-01, 4.6100e-01, 4.6900e-01, 2.1629e-01, - 9.6051e-01, 6.5077e-01, 5.2054e-01, 4.7614e-01, - 7.6397e-02, 5.1015e-01, 7.9634e-01, 4.6907e-01, - 9.6766e-01, 8.1380e-01, 7.4731e-01, 9.8854e-01, - 3.5440e-02, 9.6596e-01, 5.3848e-01, 2.9996e-01, - 4.0293e-02, 6.8423e-01, 6.1380e-01, 3.3767e-01, - 9.1466e-01, 3.8488e-01, 5.0871e-01, 9.9911e-01, - 5.5936e-02, 5.3818e-01, 8.4011e-01, 4.9164e-01, - 9.0611e-01, 2.9127e-01, 7.7511e-02, 6.8092e-01, - 4.4948e-01, 8.0411e-01, 8.0856e-01, 1.7749e-01, - 6.0065e-01, 1.2962e-01, 5.3925e-01, 8.6809e-01, - 3.1247e-01, 5.4289e-01, 5.0400e-01, 8.6523e-01, - 6.1521e-01, 1.8618e-01, 6.4956e-01, 6.7938e-01, - 4.8913e-03, 8.8041e-01, 2.2916e-01, 2.9907e-01, - 2.4663e-01, 7.4980e-01, 7.8897e-01, 2.2230e-02, - 4.0795e-01, 6.5666e-02, 5.0611e-03, 8.6068e-01, - 9.0253e-01, 3.9248e-02, 9.1534e-01, 7.2456e-01, - 6.7679e-01, 3.8350e-01, 3.6286e-01, 8.5937e-01, - 1.8495e-01, 3.0385e-01, 5.7674e-01, 5.5443e-01, - 6.7577e-01, 3.2599e-01, 6.4667e-01, 7.7571e-01, - 5.4077e-01, 3.4173e-02, 6.6062e-01, 5.5497e-01, - 3.2429e-01, 2.3905e-01, 9.2743e-01, 8.2636e-01, - 6.2779e-01, 2.0618e-01, 6.5440e-01, 4.8835e-02, - 6.1570e-02, 7.9004e-01, 8.5253e-01, 6.4570e-01, - 4.3657e-01, 5.6724e-01, 6.6125e-01, 2.1790e-01, - 9.0854e-01, 1.0131e-02, 8.3074e-01, 8.0931e-02, - 1.2273e-01, 9.1632e-01, 7.5735e-01, 6.1709e-01, - 4.5239e-01, 7.6859e-01, 4.5898e-01, 7.7444e-01, - 2.2262e-01, 4.2228e-01, 6.4247e-04, 6.8685e-01, - 4.5280e-01, 9.8831e-01, 6.3551e-01, 2.4349e-01, - 6.3998e-01, 2.4863e-01, 7.4978e-01, 9.6525e-02, - 8.5432e-01, 2.8565e-01, 8.6400e-03, 6.9887e-01, - 9.8123e-01, 5.5568e-01, 6.5677e-02, 2.1300e-01, - 3.8626e-01, 1.7121e-01, 6.2299e-01, 8.5313e-01, - 9.7331e-01, 4.4678e-01, 6.2567e-01, 3.4985e-01, - 3.7997e-02, 1.7816e-01, 4.6951e-01, 2.5928e-01, - 8.1800e-01, 9.8585e-01, 9.9241e-01, 9.4591e-01, - 6.4886e-01, 6.6587e-01, 3.0200e-01, 1.9709e-01, - 6.9655e-01, 7.7186e-01, 4.6370e-01, 2.0512e-01, - 2.9187e-01, 6.5662e-01, 1.9881e-01, 1.8878e-01, - 8.3759e-01, 8.1497e-01, 3.8474e-01, 9.3922e-01, - 1.1980e-01, 7.9274e-01, 2.4139e-03, 4.0606e-01, - 9.4741e-01, 3.5579e-01, 7.3689e-01, 7.4013e-01, - 1.6341e-01, 4.0976e-01, 1.2106e-02, 6.9624e-01, - 3.4058e-01, 9.2252e-01, 5.7347e-01, 1.7341e-01, - 4.7453e-01, 5.3293e-01, 7.2677e-01, 7.6843e-01, - 5.5980e-01, 9.1006e-01, 6.5609e-01, 2.0080e-01, - 7.6444e-01, 7.5927e-01, 3.7025e-01, 2.2248e-01, - 2.7530e-01, 7.3119e-01, 4.2414e-01, 2.5233e-01, - 7.8818e-01, 2.3316e-01, 4.3970e-01, 9.2583e-02, - 1.2232e-01, 5.7076e-01, 5.1912e-01, 9.8308e-01, - 7.4081e-01, 1.3379e-01, 9.3796e-01, 9.1761e-01, - 5.4932e-01, 5.4914e-01, 6.8584e-01, 6.1119e-01, - 2.9282e-01, 8.8707e-01, 9.8210e-02, 7.5203e-01, - 5.7105e-02, 8.3390e-01, 4.3245e-01, 6.0756e-01, - 9.5487e-01, 1.4073e-01, 9.3377e-01, 5.3720e-01, - 2.9851e-01, 2.3323e-01, 5.7038e-01, 1.7177e-01, - 4.2263e-01, 3.6571e-01, 2.4465e-01, 2.3924e-01, - 7.4506e-01, 3.7908e-01, 1.0900e-01, 3.7748e-01, - 5.8194e-01, 1.9196e-01, 9.6828e-01, 6.5906e-01, - 5.4583e-01, 6.8981e-01, 3.3761e-01, 3.0262e-01, - 1.4093e-01, 8.9661e-01, 8.8664e-01, 3.6191e-01, - 7.2603e-01, 1.8928e-01, 1.5570e-01, 4.7355e-01, - 5.0235e-01, 7.0181e-01, 1.5485e-01, 6.3084e-01, - 6.8009e-01, 1.9700e-01, 5.5915e-01, 7.1118e-01, - 8.4480e-01, 8.8653e-01, 9.3805e-02, 8.1394e-01, - 7.6043e-01, 2.2537e-01, 3.5050e-01, 9.4824e-01, - 6.4804e-02, 8.9447e-02, 2.5136e-01, 8.4746e-01, - 4.4124e-01, 5.3570e-01, 7.2660e-01, 9.9153e-01, - 5.5409e-01, 5.7607e-01, 6.9001e-01, 6.8634e-01, - 6.5678e-01, 8.7622e-01, 6.9088e-01, 4.1804e-01, - 4.2696e-01, 7.1106e-01, 7.7869e-01, 9.0423e-01, - 5.0743e-01, 6.4079e-01, 3.9395e-01, 8.6100e-02, - 7.4019e-01, 4.5245e-01, 3.2098e-01, 7.4052e-01, - 5.5819e-03, 9.6355e-01, 4.3721e-01, 6.7750e-01, - 6.2113e-01, 4.9398e-01, 1.7439e-01, 1.9619e-01, - 6.3345e-01, 7.7621e-02, 5.8501e-01, 3.1614e-01, - 9.1062e-01, 2.9312e-01, 6.2033e-01, 7.4267e-01, - 8.8925e-01, 7.8148e-01, 6.9515e-01, 5.1877e-01, - 6.7792e-01, 8.1468e-01, 9.2343e-01, 9.2067e-01, - 5.8445e-01, 7.1713e-01, 7.6645e-01, 9.5688e-01, - 2.2005e-01, 5.8916e-02, 6.8496e-01, 2.7123e-01, - 5.3625e-01, 2.2256e-01, 1.1104e-01, 4.1722e-03, - 7.7575e-01, 3.4159e-01, 6.4283e-01, 9.6679e-01, - 1.7163e-01, 2.4263e-01, 6.1465e-01, 5.1415e-01, - 8.7361e-01, 6.0521e-01, 7.6585e-01, 3.6699e-01, - 4.6723e-01, 7.0614e-01, 5.9241e-01, 5.2480e-01, - 2.3362e-01, 2.8520e-01, 2.4362e-01, 1.8558e-01, - 7.9483e-01, 6.5965e-01, 4.1345e-01, 1.2104e-01, - 7.5543e-01, 9.2465e-01, 4.8631e-01, 1.8207e-01, - 7.4888e-01, 3.0846e-01, 9.4452e-01, 8.2471e-01, - 2.2609e-01, 8.6210e-01, 1.5446e-01, 5.2700e-01, - 1.4129e-01, 6.8153e-02, 7.1222e-01, 5.4379e-02, - 8.2369e-01, 6.7305e-02, 6.9326e-01, 9.5006e-01, - 7.8894e-01, 5.0686e-01, 1.0844e-02, 8.8476e-01, - 3.4081e-01, 7.1386e-01, 5.8332e-01, 8.0538e-02, - 1.2881e-01, 6.6073e-01, 6.6982e-01, 9.4311e-01, - 5.7920e-01, 3.4038e-01, 5.1929e-01, 6.6344e-01, - 3.6283e-01, 8.4071e-01, 8.3032e-02, 3.7224e-01, - 2.8825e-01, 2.1346e-01, 6.6572e-01, 9.1219e-01, - 7.5086e-01, 5.9660e-01, 6.4939e-01, 8.3636e-02, - 2.1276e-01, 8.1840e-01, 9.1241e-01, 4.1267e-01, - 1.2384e-01, 3.2306e-01, 1.8222e-01, 1.6973e-01, - 2.4016e-01, 5.0092e-02, 6.0148e-01, 2.9363e-01, - 7.7028e-01, 6.2133e-01, 4.0709e-01, 4.9819e-01, - 1.9079e-01, 8.4728e-01, 5.7285e-01, 4.6834e-01, - 2.6392e-01, 8.2958e-01, 9.0930e-01, 7.7450e-01, - 4.9029e-01, 6.0270e-02, 9.5693e-01, 2.5910e-01, - 4.3595e-01, 3.2220e-01, 7.7687e-02, 8.6974e-01, - 4.2140e-01, 9.3963e-01, 1.5046e-02, 1.9120e-01, - 6.3065e-01, 5.0110e-02, 8.6206e-01, 1.5593e-01, - 3.8009e-01, 9.0525e-01, 3.1360e-01, 2.8014e-01, - 8.6922e-01, 8.0054e-02, 1.5774e-01, 7.8264e-01, - 5.5830e-01, 8.2156e-01, 5.4363e-02, 6.1422e-01, - 6.4211e-01, 1.8056e-01, 4.8874e-01, 2.7600e-01, - 7.3967e-01, 6.3099e-01, 9.2851e-01, 2.9826e-01, - 7.2043e-02, 1.9501e-01, 2.0723e-01, 4.8988e-01, - 1.1743e-01, 6.0389e-01, 2.4019e-01, 5.3080e-01, - 2.4116e-01, 6.4832e-01, 1.3206e-01, 5.7881e-01, - 2.4751e-01, 2.5004e-01, 1.0644e-01, 6.4024e-02, - 8.1402e-01, 4.5228e-01, 6.7548e-01, 9.3771e-01, - 2.0818e-01, 4.7722e-01, 2.0221e-01, 6.3364e-01, - 2.8929e-01, 5.9029e-01, 4.2652e-01, 9.1620e-01, - 2.2454e-01, 6.7134e-01, 7.9748e-02, 3.2710e-01, - 8.1974e-01, 1.5549e-02, 4.9868e-01, 5.7492e-01, - 7.2008e-02, 7.9730e-01, 1.5602e-01, 2.0940e-01, - 5.3816e-01, 1.9379e-01, 2.7025e-02, 4.9766e-01, - 6.0189e-01, 3.2022e-01, 8.5769e-01, 6.5720e-01, - 3.0809e-01, 1.1742e-01, 9.2720e-01, 1.9132e-01, - 3.9789e-01, 3.7697e-02, 6.0352e-01, 3.9733e-01, - 4.4928e-01, 1.5419e-01, 9.8145e-01, 4.1892e-01, - 7.0064e-01, 3.8871e-01, 6.2793e-01, 7.7207e-01, - 4.4089e-01, 3.6800e-01, 4.9602e-01, 7.8104e-01, - 1.0657e-02, 8.0591e-01, 9.9727e-01, 1.3379e-01, - 5.4798e-01, 7.6658e-01, 6.3649e-01, 2.8939e-01, - 8.1990e-01, 7.9348e-01, 8.2543e-01, 6.7492e-01, - 6.7563e-02, 9.7314e-01, 2.2021e-01, 2.0069e-01, - 8.7506e-01, 7.2409e-01, 3.6865e-01, 1.9488e-01, - 7.4566e-01, 9.7425e-01, 9.4802e-01, 3.3832e-01, - 8.4433e-01, 4.1426e-02, 2.6255e-01, 1.7428e-01, - 1.8207e-01, 1.8488e-01, 8.2856e-03, 1.1348e-01, - 9.2197e-01, 9.2179e-01, 6.1482e-01, 1.7686e-01, - 6.5075e-02, 1.5011e-01, 7.1724e-01, 1.9623e-01, - 7.7691e-01, 8.8594e-01, 5.6303e-01, 7.3530e-01, - 9.8857e-01, 7.4483e-01, 8.5336e-01, 7.1468e-01, - 3.4586e-01, 6.2753e-01, 3.4994e-01, 9.4314e-01, - 5.9523e-01, 2.4831e-01, 6.7030e-01, 7.2279e-01, - 7.4167e-01, 3.7774e-01, 9.7774e-01, 2.7848e-01, - 5.9253e-01, 2.2646e-01, 7.3907e-02, 1.8840e-01, - 1.6017e-01, 9.0665e-01, 7.6825e-01, 1.7432e-01, - 5.2899e-02, 4.0457e-01, 9.7040e-01, 9.0688e-02, - 5.8056e-01, 2.6439e-01, 8.2605e-01, 9.1309e-01, - 6.8101e-01, 8.0757e-01, 6.2304e-01, 9.9518e-01, - 4.7896e-01, 3.1904e-01, 7.0082e-01, 4.5077e-01, - 1.7951e-01, 3.2747e-02, 1.3088e-01, 9.1100e-01, - 2.8097e-01, 7.7241e-01, 2.7702e-01, 8.9268e-01, - 7.4964e-02, 4.5346e-01, 3.5535e-01, 7.4730e-01, - 1.0795e-01, 9.2068e-01, 2.5310e-01, 9.3425e-01, - 8.6243e-03, 3.4566e-01, 1.2041e-01, 8.5141e-02, - 6.8159e-01, 6.3087e-01, 4.5251e-02, 3.5864e-01, - 2.6782e-01, 7.8826e-02, 8.7299e-01, 6.6518e-01, - 7.0044e-01, 1.8992e-01, 8.0560e-01, 7.7462e-01, - 3.8679e-01, 6.1189e-01, 1.5892e-01, 6.3252e-01, - 6.9613e-01, 3.5041e-01, 8.1632e-01, 4.0743e-01, - 7.7173e-01, 4.3097e-01, 4.1902e-01, 7.2770e-01, - 8.4816e-01, 2.2977e-01, 7.1589e-01, 9.0275e-01, - 9.9999e-01, 4.1852e-01, 2.2491e-02, 7.9153e-01, - 9.7639e-01, 3.3819e-01, 7.4342e-01, 8.5250e-01, - 9.9385e-01, 6.3891e-02, 9.7464e-01, 3.0992e-01, - 9.9006e-01, 1.1081e-01, 7.5155e-01, 8.4844e-01, - 7.0384e-01, 4.6698e-01, 1.6751e-01, 6.1651e-01, - 4.3979e-01, 6.1587e-01, 3.4869e-01, 4.9449e-01, - 9.1105e-02, 9.8166e-01, 3.3675e-02, 3.1123e-01]), +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([7666, 3284, 1699, 7007, 1865, 642, 2301, 7889, 3112, + 4841, 4554, 2643, 3511, 9405, 9949, 4868, 7053, 8979, + 7155, 3080, 3345, 5376, 5682, 4591, 5457, 4012, 9907, + 4608, 8275, 6785, 214, 8256, 6706, 6096, 396, 213, + 9694, 8210, 4776, 4951, 9163, 2885, 6391, 5210, 5362, + 2964, 8727, 2087, 6653, 557, 2807, 404, 7235, 7348, + 5591, 9937, 5151, 9696, 3619, 4512, 6156, 4095, 5236, + 6999, 8669, 5309, 6087, 4118, 2455, 1780, 9742, 3315, + 7998, 8891, 4943, 9849, 3316, 2894, 3974, 2248, 8409, + 9978, 2602, 229, 3004, 5173, 479, 6004, 6080, 4963, + 6862, 9389, 8433, 2783, 2848, 968, 8951, 3760, 8407, + 7534, 2609, 3709, 9648, 2412, 7425, 8619, 7347, 9064, + 4963, 1354, 5818, 7386, 7369, 2381, 5800, 6012, 3532, + 214, 9362, 4731, 8238, 4276, 2221, 3400, 540, 4177, + 2164, 1191, 3257, 9047, 364, 2899, 2221, 8232, 4361, + 1480, 3950, 9412, 570, 6740, 5525, 7995, 856, 1549, + 3242, 5640, 6435, 1568, 3375, 4060, 6793, 1686, 9865, + 9598, 3307, 6572, 3171, 2008, 7637, 4922, 386, 6366, + 7528, 2850, 6318, 2345, 368, 5786, 9710, 7772, 1761, + 6140, 301, 570, 8828, 8741, 9119, 4206, 3780, 4780, + 707, 3068, 8924, 3477, 4065, 1036, 560, 3678, 9660, + 4487, 8282, 6249, 7109, 3781, 7458, 2555, 3159, 5856, + 7260, 2615, 6118, 4364, 9114, 9280, 8926, 3395, 7988, + 2698, 8725, 6447, 7235, 3203, 5300, 4394, 3058, 7417, + 5517, 1817, 6921, 9211, 8306, 7080, 8460, 7810, 7848, + 4752, 270, 8368, 8576, 7374, 8967, 2824, 9004, 8383, + 4024, 4694, 919, 6859, 4607, 3536, 5606, 5137, 6430, + 1226, 8149, 7263, 7513, 1278, 5694, 380, 1738, 433, + 9251, 916, 5723, 4516, 8117, 800, 5078, 9205, 3076, + 2156, 1929, 248, 8896, 6899, 3847, 2048, 8775, 3158, + 9717, 4304, 9305, 9027, 8444, 7211, 3882, 2571, 7542, + 1042, 2864, 4697, 4933, 9597, 2106, 1874, 1663, 8974, + 5845, 9264, 40, 4452, 2566, 3363, 7670, 7586, 7479, + 5981, 1928, 2498, 8107, 6502, 5725, 1280, 4382, 7811, + 4150, 2407, 5646, 7384, 6368, 9330, 4277, 4360, 9293, + 8848, 3141, 3719, 4630, 418, 68, 3077, 304, 5534, + 3069, 4046, 9645, 797, 7332, 2456, 818, 6040, 233, + 1356, 6755, 4249, 1643, 5939, 6192, 5023, 2182, 3038, + 615, 962, 6584, 6465, 4700, 5188, 378, 2580, 7736, + 8469, 7964, 4215, 5350, 5035, 723, 2366, 9255, 3296, + 2487, 9749, 9356, 2120, 2719, 1534, 5352, 4142, 2840, + 3874, 3309, 2282, 4165, 8221, 3151, 7532, 9093, 1914, + 875, 3267, 7484, 5334, 246, 69, 1760, 3158, 9485, + 2968, 8655, 8484, 1925, 6269, 8467, 4053, 8242, 2491, + 9174, 9141, 8207, 3765, 7176, 8536, 4547, 5155, 9600, + 59, 7491, 3224, 3860, 3405, 5155, 5872, 5087, 1030, + 5823, 67, 9402, 2052, 3137, 8203, 5381, 5014, 2445, + 2598, 6064, 583, 6264, 8514, 2132, 8834, 5724, 5040, + 3049, 7546, 5472, 9227, 9155, 4856, 8701, 9805, 8423, + 5471, 9572, 1489, 1146, 2738, 6131, 4467, 3775, 7623, + 3128, 1626, 4245, 5851, 8311, 5249, 9163, 5646, 9700, + 5912, 1064, 3427, 9742, 4822, 1609, 1247, 3225, 1349, + 1112, 7136, 4620, 9398, 180, 852, 8483, 99, 5880, + 6936, 3985, 7199, 43, 619, 1433, 378, 5613, 8778, + 9714, 6327, 2214, 4270, 2616, 7836, 6036, 4038, 1349, + 3609, 500, 8725, 5242, 3213, 7450, 9547, 6518, 3900, + 9820, 6085, 3210, 7810, 5855, 7609, 1890, 2354, 6091, + 8514, 7897, 3931, 2880, 6281, 3385, 5921, 9952, 5094, + 8855, 172, 3302, 3010, 4642, 2734, 9166, 8421, 2234, + 8565, 528, 8176, 6482, 994, 3099, 9724, 6379, 405, + 8321, 239, 6594, 996, 3440, 8976, 435, 2375, 6431, + 3253, 1630, 7853, 2956, 8895, 986, 6476, 1010, 8489, + 8021, 872, 1473, 1100, 5352, 9179, 2417, 9244, 9167, + 7160, 3376, 6327, 3920, 5098, 7118, 4103, 8332, 3090, + 9060, 6774, 7505, 4316, 2580, 8806, 3234, 5576, 1591, + 9446, 2876, 3861, 9007, 4047, 9387, 1828, 9480, 300, + 5810, 1681, 7603, 9696, 3967, 205, 4720, 6724, 1706, + 1179, 7731, 9912, 9119, 3539, 3641, 2691, 1738, 2069, + 64, 5901, 6907, 7329, 5038, 8087, 2346, 1417, 9802, + 2245, 9442, 3124, 6856, 7605, 3350, 9096, 9607, 6580, + 7026, 4159, 2283, 388, 6926, 8970, 9000, 5902, 3616, + 8251, 2022, 1387, 2040, 3499, 7352, 9723, 4720, 4072, + 3030, 8642, 1561, 3550, 728, 3483, 9957, 2852, 9769, + 530, 8950, 8791, 1868, 3201, 4039, 7668, 6271, 5458, + 8517, 9781, 4046, 3225, 9954, 206, 6894, 7597, 7497, + 6306, 3298, 6872, 2066, 7591, 1890, 8097, 1280, 7096, + 8226, 1359, 216, 3321, 8096, 7997, 7290, 8655, 8538, + 5466, 3483, 6990, 5527, 3778, 5009, 8586, 5007, 7530, + 2615, 6501, 9092, 3603, 3220, 7154, 9702, 5045, 8352, + 2617, 771, 5086, 2751, 4678, 9150, 7949, 9854, 737, + 4795, 2071, 9389, 7313, 9799, 3943, 6232, 1410, 8989, + 7328, 6562, 7366, 5222, 441, 8345, 6712, 3926, 515, + 5956, 5254, 6129, 5268, 1272, 9590, 5597, 1532, 744, + 7243, 1823, 6966, 9821, 5101, 1854, 836, 8195, 8533, + 9772, 6888, 999, 42, 8452, 7406, 756, 2186, 7921, + 7527, 6586, 9178, 9190, 6661, 1985, 2124, 5708, 2885, + 5344, 8420, 6388, 4916, 5751, 5447, 1612, 7115, 4012, + 4211, 4491, 2685, 8469, 3264, 3933, 8307, 2069, 5721, + 6785, 7552, 3662, 9294, 3272, 4972, 4038, 8502, 7978, + 730, 6090, 2443, 3573, 9783, 6945, 8456, 7714, 2278, + 1207, 9072, 1346, 555, 8623, 6821, 2442, 455, 1202, + 8844, 3296, 1101, 8043, 8852, 2122, 3173, 1731, 9938, + 5593, 93, 8956, 6237, 8545, 5229, 9239, 8804, 3713, + 4281, 5382, 8333, 8801, 93, 2212, 5217, 7239, 9312, + 2195, 1969, 8659, 674, 2456, 1219, 684, 5633, 7633, + 1822, 5479, 5138, 2448, 4428, 1533, 6135, 585, 2626, + 1535, 2390, 2292, 3199, 9797, 3083, 7782, 3749, 5972, + 5041, 873, 1762, 6907, 2439, 176, 7886, 8698, 5610, + 4063, 7434, 7641, 5504, 8492, 8226, 4607, 3891, 971, + 446, 5185, 8037, 5578, 2205, 6200, 5210, 7918, 8694, + 8369, 5656, 8140, 720, 6980, 4361, 6048, 5637, 1525, + 3287, 4786, 6431, 419, 584, 7972, 6800, 6611, 3925, + 1361, 345, 5934, 221, 3976, 5263, 273, 1124, 6638, + 9587, 1234, 7547, 9811, 1651, 2418, 9523, 5719, 2357, + 9754, 4924, 9608, 7139, 1769, 2001, 6705, 554, 4744, + 2302, 8692, 6947, 8654, 8683, 9773, 4469, 8661, 3479, + 222, 2813, 8116, 1105, 4667, 9744, 3524, 7923, 7688, + 5748, 4643, 3806, 589, 8275, 7300, 9905, 8566, 3005, + 8277, 3362, 9117, 4507, 4746, 196, 1702, 5992, 1090, + 7587, 5382, 7431, 8949, 1611, 5830, 5183, 8125, 3201, + 6255, 9408, 1748, 1554, 1906, 729, 8466, 4725, 4398, + 3941]), + values=tensor([0.6959, 0.7960, 0.0781, 0.6007, 0.3460, 0.7293, 0.2445, + 0.3377, 0.4176, 0.3625, 0.7235, 0.1442, 0.0335, 0.4983, + 0.5500, 0.1056, 0.9940, 0.8727, 0.8069, 0.4130, 0.1455, + 0.6420, 0.2494, 0.3495, 0.7133, 0.4395, 0.2694, 0.2841, + 0.5549, 0.0490, 0.7986, 0.5242, 0.3692, 0.2460, 0.8859, + 0.0105, 0.6123, 0.7972, 0.2878, 0.9495, 0.0416, 0.7368, + 0.5235, 0.2640, 0.4232, 0.7400, 0.4660, 0.1817, 0.7149, + 0.8459, 0.3355, 0.5095, 0.8904, 0.2582, 0.0507, 0.5007, + 0.7876, 0.1015, 0.4881, 0.3695, 0.9348, 0.8654, 0.8541, + 0.1701, 0.5411, 0.8559, 0.0858, 0.6724, 0.4755, 0.9937, + 0.3688, 0.4551, 0.1705, 0.5343, 0.7652, 0.5023, 0.4761, + 0.8553, 0.5042, 0.1378, 0.3402, 0.0214, 0.3317, 0.7760, + 0.6136, 0.0754, 0.7266, 0.3108, 0.1557, 0.5342, 0.2368, + 0.6255, 0.6338, 0.2103, 0.3547, 0.7898, 0.3532, 0.6879, + 0.5756, 0.5446, 0.6549, 0.1833, 0.3545, 0.3075, 0.8999, + 0.0866, 0.3178, 0.1771, 0.9904, 0.5584, 0.7474, 0.3985, + 0.7736, 0.7195, 0.1836, 0.1731, 0.6012, 0.6546, 0.5119, + 0.7668, 0.7804, 0.2026, 0.4119, 0.1043, 0.5762, 0.3249, + 0.0350, 0.9469, 0.9597, 0.3663, 0.4396, 0.3526, 0.6112, + 0.2028, 0.6398, 0.7385, 0.7867, 0.3703, 0.9189, 0.5053, + 0.2346, 0.3574, 0.9106, 0.6490, 0.0571, 0.7581, 0.0037, + 0.2000, 0.0078, 0.3345, 0.5987, 0.1644, 0.3401, 0.1628, + 0.6190, 0.0170, 0.3230, 0.7145, 0.0065, 0.2218, 0.4568, + 0.5352, 0.7506, 0.8970, 0.0769, 0.7770, 0.0375, 0.5961, + 0.1851, 0.1482, 0.0403, 0.1972, 0.9194, 0.1678, 0.8901, + 0.8766, 0.0092, 0.2714, 0.5465, 0.2373, 0.1403, 0.0755, + 0.7137, 0.4544, 0.3006, 0.0421, 0.8286, 0.0333, 0.4192, + 0.1514, 0.5585, 0.9974, 0.8611, 0.3646, 0.5144, 0.1233, + 0.0881, 0.9866, 0.2420, 0.9365, 0.3756, 0.2095, 0.4280, + 0.2119, 0.0313, 0.7899, 0.6265, 0.8099, 0.3894, 0.1829, + 0.4932, 0.0535, 0.2941, 0.7543, 0.3779, 0.6784, 0.2573, + 0.6186, 0.1475, 0.2682, 0.6713, 0.2567, 0.7592, 0.7252, + 0.8305, 0.0652, 0.2366, 0.0143, 0.5795, 0.7446, 0.7182, + 0.2430, 0.3788, 0.2324, 0.6863, 0.2975, 0.5231, 0.1994, + 0.6772, 0.0117, 0.2661, 0.4983, 0.2255, 0.1217, 0.5970, + 0.4181, 0.1888, 0.5662, 0.8459, 0.4818, 0.5664, 0.7551, + 0.3425, 0.7495, 0.5635, 0.3037, 0.9253, 0.1746, 0.0949, + 0.1444, 0.1382, 0.6207, 0.2484, 0.6872, 0.6011, 0.8909, + 0.5037, 0.7646, 0.8169, 0.6714, 0.6011, 0.0228, 0.7584, + 0.5712, 0.9573, 0.5293, 0.0187, 0.0769, 0.3750, 0.5318, + 0.5469, 0.0475, 0.6832, 0.1012, 0.3177, 0.3205, 0.9912, + 0.7967, 0.3297, 0.8600, 0.8649, 0.1408, 0.1008, 0.6301, + 0.4827, 0.2363, 0.4056, 0.0155, 0.7202, 0.0029, 0.5561, + 0.7290, 0.5676, 0.5965, 0.5363, 0.0921, 0.1850, 0.8448, + 0.7451, 0.5778, 0.2613, 0.9353, 0.9780, 0.5328, 0.8762, + 0.7506, 0.6058, 0.6343, 0.8670, 0.6461, 0.0050, 0.0322, + 0.7176, 0.9509, 0.0141, 0.2849, 0.4851, 0.7572, 0.2430, + 0.0132, 0.9420, 0.2551, 0.1494, 0.1934, 0.9914, 0.0389, + 0.5433, 0.7196, 0.7758, 0.0818, 0.2780, 0.1470, 0.9575, + 0.0039, 0.7218, 0.1816, 0.4767, 0.9657, 0.5165, 0.5374, + 0.9692, 0.8055, 0.2454, 0.3490, 0.9352, 0.0487, 0.6894, + 0.9618, 0.0152, 0.3404, 0.6613, 0.6038, 0.4468, 0.2839, + 0.1984, 0.0949, 0.4107, 0.3440, 0.6650, 0.9782, 0.7647, + 0.3472, 0.8008, 0.6515, 0.2253, 0.1516, 0.0721, 0.0532, + 0.1489, 0.2701, 0.4286, 0.6556, 0.2800, 0.4837, 0.1700, + 0.4031, 0.7582, 0.2764, 0.1452, 0.4317, 0.8870, 0.8904, + 0.2127, 0.1224, 0.0877, 0.6062, 0.7479, 0.8289, 0.8979, + 0.5176, 0.3928, 0.1454, 0.7837, 0.1713, 0.5346, 0.7913, + 0.1056, 0.5996, 0.7813, 0.5215, 0.9208, 0.9514, 0.2525, + 0.4305, 0.2552, 0.7349, 0.3762, 0.7076, 0.1290, 0.1830, + 0.8907, 0.4787, 0.2419, 0.4726, 0.6765, 0.2643, 0.8126, + 0.8757, 0.7952, 0.1205, 0.1298, 0.3806, 0.3136, 0.8469, + 0.0054, 0.5516, 0.9247, 0.4707, 0.9515, 0.8050, 0.4300, + 0.7760, 0.9682, 0.9549, 0.3683, 0.9720, 0.3750, 0.1016, + 0.1056, 0.6301, 0.1820, 0.6373, 0.4706, 0.8360, 0.8820, + 0.8684, 0.5608, 0.4950, 0.7219, 0.7477, 0.3138, 0.4091, + 0.3672, 0.6820, 0.1598, 0.4262, 0.8790, 0.5580, 0.7601, + 0.6733, 0.7879, 0.3866, 0.8117, 0.6549, 0.4184, 0.9377, + 0.0728, 0.7220, 0.5621, 0.8045, 0.9104, 0.1723, 0.5263, + 0.7555, 0.7751, 0.2045, 0.2067, 0.3395, 0.0619, 0.6870, + 0.6295, 0.5145, 0.4071, 0.2642, 0.1755, 0.1193, 0.9114, + 0.5765, 0.1704, 0.3481, 0.6444, 0.1809, 0.0182, 0.0117, + 0.5466, 0.1851, 0.8523, 0.0951, 0.8918, 0.4279, 0.3555, + 0.1480, 0.9159, 0.1610, 0.2426, 0.6025, 0.7344, 0.3367, + 0.2722, 0.6946, 0.3251, 0.3742, 0.1985, 0.3410, 0.7549, + 0.7152, 0.6307, 0.2442, 0.6188, 0.4939, 0.3315, 0.6606, + 0.3168, 0.5301, 0.3465, 0.9986, 0.1887, 0.1622, 0.9650, + 0.5986, 0.8953, 0.8288, 0.8866, 0.2675, 0.7017, 0.2466, + 0.8798, 0.3267, 0.8028, 0.3919, 0.3126, 0.5504, 0.3778, + 0.7414, 0.0821, 0.0301, 0.4972, 0.4197, 0.6222, 0.4811, + 0.0587, 0.6802, 0.1914, 0.3226, 0.5795, 0.4956, 0.3432, + 0.0689, 0.7911, 0.3203, 0.5275, 0.7748, 0.2775, 0.7469, + 0.8369, 0.2113, 0.0507, 0.9763, 0.3517, 0.6939, 0.7093, + 0.5765, 0.2753, 0.5658, 0.3861, 0.2320, 0.5725, 0.7333, + 0.9639, 0.9626, 0.9957, 0.2482, 0.2599, 0.2589, 0.0011, + 0.5195, 0.4786, 0.6863, 0.9629, 0.0159, 0.8498, 0.9892, + 0.4985, 0.5712, 0.8487, 0.3862, 0.6221, 0.2142, 0.4490, + 0.8922, 0.7035, 0.5839, 0.3975, 0.4180, 0.6609, 0.9340, + 0.0330, 0.6173, 0.9389, 0.6227, 0.3648, 0.5424, 0.3871, + 0.5239, 0.6250, 0.8573, 0.0643, 0.3775, 0.5397, 0.5294, + 0.8842, 0.4971, 0.4772, 0.0587, 0.4167, 0.3990, 0.8149, + 0.3392, 0.7700, 0.3194, 0.6137, 0.4234, 0.6017, 0.1367, + 0.5706, 0.9656, 0.6379, 0.8556, 0.0899, 0.6243, 0.0430, + 0.0444, 0.2529, 0.6988, 0.6018, 0.0937, 0.9108, 0.0874, + 0.8000, 0.6934, 0.6987, 0.3747, 0.5361, 0.5595, 0.4715, + 0.8963, 0.2831, 0.7115, 0.8126, 0.3770, 0.9565, 0.0805, + 0.5965, 0.4760, 0.3946, 0.5740, 0.5718, 0.8089, 0.3195, + 0.6564, 0.2940, 0.1074, 0.1914, 0.3616, 0.2781, 0.5799, + 0.2506, 0.9786, 0.8031, 0.2290, 0.7132, 0.8597, 0.1502, + 0.5501, 0.8473, 0.0961, 0.3091, 0.2671, 0.6716, 0.2749, + 0.8922, 0.9331, 0.7831, 0.3662, 0.4411, 0.0261, 0.1996, + 0.1425, 0.1518, 0.1002, 0.5879, 0.8248, 0.4447, 0.4024, + 0.2709, 0.9656, 0.2968, 0.8687, 0.7429, 0.2038, 0.6212, + 0.5590, 0.3980, 0.6056, 0.7683, 0.9384, 0.6645, 0.3018, + 0.9914, 0.4717, 0.9312, 0.2458, 0.6373, 0.3662, 0.7338, + 0.8539, 0.2373, 0.8468, 0.9313, 0.9985, 0.9108, 0.2928, + 0.5675, 0.4918, 0.6788, 0.6532, 0.8578, 0.9756, 0.7977, + 0.7426, 0.3820, 0.0559, 0.7421, 0.6276, 0.5143, 0.1295, + 0.1380, 0.3699, 0.7837, 0.8925, 0.0521, 0.7792, 0.8213, + 0.9725, 0.3183, 0.1008, 0.4133, 0.0178, 0.2000, 0.5122, + 0.9307, 0.7232, 0.2629, 0.4049, 0.1523, 0.9357, 0.6589, + 0.3894, 0.5017, 0.4405, 0.3895, 0.3989, 0.4152, 0.3842, + 0.2309, 0.0256, 0.1505, 0.6988, 0.2384, 0.4692, 0.2583, + 0.3660, 0.9101, 0.3800, 0.5037, 0.1464, 0.3283, 0.7269, + 0.8936, 0.2059, 0.3661, 0.4488, 0.0114, 0.3810, 0.0566, + 0.9065, 0.6607, 0.4611, 0.6537, 0.1070, 0.8951, 0.1591, + 0.3640, 0.0681, 0.1975, 0.8229, 0.3451, 0.9813, 0.1129, + 0.2130, 0.1791, 0.6985, 0.3325, 0.8236, 0.5894, 0.8602, + 0.7245, 0.8692, 0.0849, 0.3757, 0.4767, 0.2866, 0.8776, + 0.1222, 0.4554, 0.1437, 0.8286, 0.4194, 0.9171, 0.1793, + 0.4714, 0.7967, 0.3271, 0.9508, 0.9596, 0.9553, 0.2671, + 0.5226, 0.2545, 0.2904, 0.3931, 0.1604, 0.9966, 0.9778, + 0.1750, 0.2027, 0.1076, 0.4041, 0.9413, 0.1702, 0.9720, + 0.8515, 0.2862, 0.5026, 0.1329, 0.7104, 0.6485, 0.6173, + 0.1418, 0.0456, 0.2708, 0.2491, 0.4879, 0.6711, 0.3460, + 0.2430, 0.0081, 0.6377, 0.4017, 0.6538, 0.0909, 0.0154, + 0.6563, 0.2168, 0.7672, 0.2347, 0.2597, 0.5759, 0.0490, + 0.0102, 0.2013, 0.8005, 0.6998, 0.2945, 0.4318, 0.5007, + 0.1644, 0.7497, 0.5000, 0.5912, 0.9818, 0.5953, 0.9114, + 0.1285, 0.8707, 0.3809, 0.7743, 0.4282, 0.7606, 0.5688, + 0.3152, 0.8989, 0.1583, 0.8766, 0.6326, 0.8886, 0.2620, + 0.3086, 0.3602, 0.7866, 0.9547, 0.2244, 0.2724, 0.9583, + 0.7470, 0.9623, 0.1429, 0.8508, 0.5799, 0.9955, 0.6647, + 0.1399, 0.1801, 0.9233, 0.2772, 0.2445, 0.0531, 0.7452, + 0.0969, 0.7391, 0.2375, 0.8335, 0.2274, 0.5999, 0.0299, + 0.1018, 0.7622, 0.6825, 0.5068, 0.5262, 0.2390, 0.3450, + 0.7486, 0.6337, 0.3874, 0.1886, 0.2751, 0.8412, 0.0794, + 0.2398, 0.8937, 0.9405, 0.8703, 0.2503, 0.9532, 0.7538, + 0.3676, 0.7234, 0.4557, 0.9672, 0.5687, 0.6227, 0.7700, + 0.6581, 0.6226, 0.6058, 0.8459, 0.4844, 0.8195, 0.3510, + 0.5321, 0.7146, 0.4273, 0.4330, 0.8640, 0.8088, 0.5159, + 0.8375, 0.9589, 0.0615, 0.2675, 0.6890, 0.9951, 0.0718, + 0.5084, 0.2519, 0.6662, 0.9841, 0.4845, 0.3961]), size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.1121, 0.3867, 0.9452, ..., 0.7986, 0.0788, 0.8344]) +tensor([0.4905, 0.9858, 0.4305, ..., 0.2183, 0.4525, 0.0992]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -1133,389 +1295,13 @@ Rows: 10000 Size: 100000000 NNZ: 1000 Density: 1e-05 -Time: 10.441989183425903 seconds +Time: 10.263301372528076 seconds -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 999, 1000, 1000]), - col_indices=tensor([6994, 9622, 3726, 4663, 3213, 8774, 6907, 1710, 9507, - 9063, 1177, 307, 2649, 3020, 5730, 348, 5131, 6359, - 8504, 4801, 4568, 6837, 9016, 8482, 4653, 2975, 3080, - 4702, 1162, 2867, 9079, 2978, 6909, 7908, 6001, 669, - 6371, 3485, 6275, 4253, 4720, 5707, 6535, 1953, 4011, - 2661, 8932, 9981, 7530, 1720, 6368, 6848, 4567, 8841, - 2627, 1161, 5134, 5413, 7960, 4391, 665, 2396, 6608, - 5733, 3484, 4971, 6121, 2312, 3666, 4281, 9424, 1980, - 9643, 9373, 7415, 1900, 9019, 8546, 7553, 8417, 4373, - 8130, 306, 3044, 8544, 6070, 624, 7124, 3983, 3400, - 4627, 4287, 7616, 3298, 7343, 5990, 9821, 2523, 7048, - 5830, 1403, 6233, 8985, 3175, 9364, 5853, 4072, 6366, - 4753, 1727, 9435, 1851, 44, 3040, 1326, 7076, 9651, - 4066, 4865, 6453, 1996, 8040, 329, 9927, 9673, 8524, - 1244, 8553, 442, 5027, 3135, 8060, 9329, 7526, 9796, - 5659, 4377, 3292, 2834, 6136, 3061, 7456, 161, 5999, - 3353, 8111, 5290, 5483, 5811, 5230, 1150, 3704, 746, - 3442, 1238, 6471, 9072, 1057, 739, 7167, 4646, 8968, - 2988, 7699, 3204, 5157, 9948, 7623, 3878, 8967, 4047, - 5067, 7682, 6449, 902, 8157, 5855, 2999, 277, 1240, - 5282, 8712, 210, 3306, 9191, 7693, 9401, 5920, 9695, - 4565, 3107, 3028, 8501, 4399, 270, 1536, 2767, 5311, - 4430, 3474, 7404, 5813, 4610, 264, 84, 3863, 8109, - 628, 315, 7160, 1931, 6079, 150, 1187, 9113, 9881, - 3157, 2458, 7923, 8536, 6368, 1416, 2818, 8122, 3131, - 6956, 9736, 5972, 2516, 3886, 1336, 3782, 3144, 145, - 6154, 3374, 5726, 2019, 5176, 3029, 1833, 512, 805, - 7854, 2374, 6926, 5039, 7581, 1084, 6788, 3567, 9085, - 5115, 8344, 1282, 694, 1416, 4928, 6205, 5066, 6172, - 4951, 2342, 9823, 4409, 453, 2737, 5221, 1182, 1349, - 6104, 1153, 4341, 155, 1744, 6045, 3402, 4537, 6425, - 7377, 9353, 2622, 6364, 5568, 8412, 5977, 8154, 5352, - 1014, 1489, 2546, 9921, 4972, 1344, 4570, 7259, 5658, - 9551, 1403, 4427, 7144, 9461, 8515, 8419, 8672, 8531, - 7797, 6642, 675, 2679, 7615, 8705, 7384, 8267, 6149, - 4211, 8074, 1628, 358, 1640, 228, 5022, 8976, 3921, - 9469, 3778, 3398, 8456, 5802, 1958, 2520, 2489, 1881, - 8614, 3680, 4323, 377, 8462, 5871, 306, 3186, 5351, - 7352, 2219, 9782, 6546, 2214, 3533, 4538, 9746, 3606, - 1981, 5289, 895, 4170, 5822, 348, 6276, 6640, 9900, - 1987, 7527, 3484, 1950, 3683, 214, 8776, 6746, 5717, - 9072, 9171, 1569, 7598, 3877, 3876, 2138, 2024, 1416, - 7752, 4390, 80, 5006, 5274, 9896, 1501, 9077, 5280, - 9121, 9705, 3846, 4311, 7818, 2418, 5744, 70, 755, - 8481, 65, 9496, 8688, 8913, 4086, 4497, 9328, 649, - 7040, 1646, 7888, 6578, 8377, 9319, 9462, 8922, 351, - 4888, 4474, 5081, 3249, 9700, 1729, 5652, 3555, 8733, - 3993, 2648, 2157, 3316, 7194, 4864, 2759, 5666, 9313, - 646, 1058, 9286, 107, 8347, 4296, 5597, 1128, 2987, - 8269, 5363, 8830, 1937, 8083, 6124, 9818, 4872, 1172, - 1916, 9823, 8685, 968, 7144, 4173, 2638, 7667, 2255, - 5893, 145, 2804, 9830, 3730, 2378, 5965, 8443, 924, - 7520, 4001, 8030, 3655, 8642, 637, 4875, 9776, 3422, - 3864, 669, 3034, 7460, 9790, 914, 5157, 7812, 6653, - 5620, 1888, 8250, 4575, 2821, 7519, 5789, 7492, 3910, - 9516, 2254, 109, 3644, 4900, 8347, 1943, 4680, 1973, - 8435, 1113, 456, 1927, 7879, 8357, 9307, 9711, 2787, - 3889, 7117, 5810, 4599, 3798, 3588, 9982, 2090, 9372, - 5907, 2625, 4618, 1365, 7855, 3966, 6642, 2806, 3282, - 1538, 1603, 9281, 6130, 9122, 5424, 4039, 1685, 7585, - 463, 1054, 377, 4412, 670, 3953, 829, 8297, 5284, - 8072, 8388, 5978, 2905, 5528, 8606, 9760, 3824, 3381, - 3569, 8800, 1093, 8598, 5326, 5098, 3325, 3476, 3574, - 5831, 6739, 3709, 3431, 8854, 5412, 1395, 8493, 8413, - 723, 7482, 7437, 8192, 4561, 3563, 7930, 3095, 1395, - 1702, 4680, 4164, 7646, 3073, 2135, 8064, 9233, 8734, - 8891, 1412, 4297, 327, 9444, 6261, 4124, 7080, 3150, - 499, 7634, 5504, 2709, 2323, 6259, 7701, 1590, 782, - 9214, 1434, 7842, 7154, 3406, 6314, 2490, 1995, 2869, - 9300, 7244, 2058, 4782, 9191, 7843, 9366, 3161, 5867, - 7670, 79, 8654, 4679, 6862, 6457, 3396, 3040, 8585, - 3782, 1459, 9368, 4901, 2433, 6705, 8973, 6929, 2667, - 7169, 1587, 5204, 8532, 6578, 9598, 8213, 9081, 6214, - 7437, 7012, 2856, 7632, 7138, 445, 7701, 4052, 6739, - 3480, 3311, 3082, 7805, 6404, 5363, 2870, 9509, 6167, - 7565, 8554, 8204, 832, 9129, 7469, 2782, 5167, 5838, - 3078, 7487, 3680, 6742, 2359, 4016, 7521, 9001, 6405, - 684, 4253, 806, 2076, 1259, 8434, 8503, 8586, 7923, - 4800, 1701, 4338, 6559, 6339, 6352, 1277, 9721, 8278, - 3394, 1222, 9331, 2813, 1759, 1393, 329, 3229, 5728, - 8721, 5742, 6894, 4045, 4303, 9790, 1095, 8299, 5200, - 5067, 4411, 7646, 150, 1925, 981, 1650, 729, 4988, - 39, 6418, 4585, 6285, 3017, 2737, 9097, 1945, 3287, - 5687, 1268, 2568, 5063, 1464, 1353, 8458, 2802, 7424, - 7900, 573, 4279, 1282, 9304, 8048, 5196, 4207, 1316, - 2021, 4121, 7278, 4538, 1620, 3410, 1337, 26, 1524, - 7522, 8145, 4092, 6346, 2473, 5819, 1406, 7284, 7069, - 8477, 7361, 3903, 7212, 8344, 4533, 1123, 5383, 6628, - 5346, 4870, 8614, 6605, 5113, 8241, 2239, 2169, 4658, - 3492, 2436, 6670, 5784, 3502, 9896, 2954, 1899, 1155, - 4148, 2121, 2395, 1045, 4965, 9274, 9110, 6156, 801, - 2656, 5820, 6227, 6325, 135, 209, 4673, 9324, 9454, - 260, 8365, 2431, 2800, 6755, 2430, 7387, 1961, 7463, - 9402, 3000, 2768, 757, 5088, 1602, 9085, 3251, 3315, - 4349, 8652, 5989, 3177, 1166, 3583, 3161, 7236, 4641, - 1623, 3315, 5326, 8408, 4234, 2598, 7670, 1383, 3904, - 372, 9975, 9339, 5246, 7358, 228, 845, 6253, 9078, - 8969, 941, 5589, 812, 3206, 9576, 7426, 9564, 250, - 5639, 2420, 4119, 3196, 3078, 9183, 2554, 867, 5100, - 1465, 9987, 2915, 5151, 9058, 273, 5338, 4182, 802, - 5524, 4895, 3055, 3478, 4538, 8413, 1383, 9768, 9291, - 7392, 8171, 2516, 6216, 7200, 1324, 9549, 2831, 6274, - 7046, 7793, 8156, 8922, 1536, 4903, 8438, 7980, 8795, - 3692, 1865, 2467, 2873, 1023, 8165, 4606, 9922, 7937, - 1789, 1830, 8242, 6979, 7067, 360, 8686, 4259, 417, - 1071, 8219, 513, 1913, 750, 2857, 4490, 9807, 4091, - 2519, 3644, 392, 5240, 341, 5422, 1252, 3012, 4481, - 2472, 8199, 5103, 2599, 3525, 5909, 78, 2754, 5345, - 3013, 6272, 5946, 3907, 4155, 8832, 5606, 7682, 1172, - 192, 7276, 8882, 698, 7468, 1013, 2117, 3917, 4641, - 4529, 2993, 5, 3925, 8235, 5401, 1760, 7427, 3417, - 1077]), - values=tensor([4.8059e-01, 2.6068e-01, 3.7083e-01, 5.4455e-01, - 5.5087e-01, 9.1571e-01, 3.0550e-01, 8.8604e-01, - 5.5442e-01, 3.9848e-01, 4.1127e-01, 2.3695e-01, - 8.8779e-01, 9.7368e-01, 3.7378e-01, 3.5178e-01, - 1.3697e-01, 7.5506e-01, 4.8064e-01, 3.7498e-03, - 7.9736e-01, 8.1659e-01, 6.1290e-01, 4.5901e-01, - 8.9740e-01, 2.9042e-01, 4.4829e-01, 7.0372e-01, - 3.3279e-01, 7.6293e-01, 6.6927e-02, 4.8552e-01, - 9.9505e-01, 7.0259e-02, 3.6985e-01, 1.1795e-01, - 6.8194e-01, 3.0421e-01, 4.1789e-01, 7.9479e-01, - 8.3575e-01, 6.1092e-01, 5.0699e-02, 2.0850e-01, - 2.8512e-01, 2.1458e-01, 1.9815e-01, 1.8111e-01, - 2.1230e-01, 8.7346e-01, 9.3908e-01, 5.0252e-02, - 5.9668e-01, 1.4455e-01, 1.3858e-01, 6.3809e-02, - 4.3928e-01, 3.1486e-02, 2.7234e-02, 7.4906e-02, - 3.5749e-01, 5.7851e-01, 5.2036e-01, 2.5703e-01, - 6.0030e-01, 1.7537e-01, 5.9778e-01, 1.5196e-01, - 3.6708e-01, 9.8464e-01, 5.9912e-01, 2.2195e-01, - 4.6650e-01, 9.6754e-01, 9.5639e-01, 1.5470e-01, - 1.5256e-01, 3.0298e-01, 2.4096e-02, 5.9170e-01, - 1.9686e-01, 1.1759e-01, 1.0457e-01, 5.9024e-01, - 7.4080e-01, 4.1405e-01, 1.2789e-01, 3.8225e-02, - 3.8505e-02, 4.8747e-01, 6.4712e-01, 5.4537e-01, - 7.2839e-01, 6.5434e-01, 4.7429e-01, 2.8609e-02, - 6.9941e-01, 5.0746e-01, 2.0928e-01, 4.3227e-01, - 5.0692e-01, 4.3792e-01, 4.9812e-01, 6.6989e-01, - 9.6967e-01, 9.7297e-01, 1.8827e-01, 7.4347e-01, - 1.5631e-01, 5.8115e-01, 8.2606e-01, 6.1017e-01, - 4.5324e-01, 6.1732e-01, 4.3508e-01, 2.7436e-01, - 8.6329e-01, 6.4097e-01, 1.0318e-01, 4.0200e-01, - 8.6444e-01, 4.3614e-01, 5.2110e-01, 7.7002e-01, - 7.8091e-01, 2.6182e-01, 9.3631e-01, 6.5569e-01, - 7.5455e-01, 1.1819e-01, 8.7432e-02, 8.5494e-01, - 7.9642e-01, 2.4008e-01, 9.6818e-01, 3.1184e-01, - 5.5783e-02, 1.7763e-01, 3.4710e-01, 3.1949e-01, - 1.1640e-01, 2.3357e-01, 7.4482e-01, 6.5708e-01, - 7.8686e-01, 5.7169e-01, 1.9176e-01, 7.4776e-01, - 8.8674e-01, 1.1710e-01, 8.7365e-02, 5.8070e-01, - 4.5757e-01, 2.3275e-01, 1.4821e-02, 5.4216e-01, - 4.2147e-01, 5.6869e-01, 6.9741e-01, 9.5911e-01, - 4.6716e-01, 7.6178e-01, 3.4794e-02, 9.5093e-01, - 5.1131e-01, 5.6037e-01, 7.2508e-01, 1.7181e-01, - 5.9834e-01, 2.8725e-01, 1.4470e-01, 8.5043e-01, - 3.4409e-01, 2.9904e-01, 2.4931e-01, 5.5706e-01, - 1.5667e-01, 2.9028e-01, 4.6574e-01, 7.5432e-01, - 1.1361e-01, 4.5574e-01, 1.8736e-01, 6.5302e-03, - 8.6205e-01, 8.7909e-01, 7.1674e-01, 7.1278e-01, - 9.9996e-01, 6.9678e-01, 9.3855e-01, 2.5683e-01, - 5.9314e-01, 2.0634e-01, 1.9915e-01, 1.7218e-01, - 3.0449e-01, 3.7677e-02, 9.2688e-01, 2.1308e-01, - 1.5730e-01, 9.2634e-01, 8.2956e-02, 6.1692e-01, - 5.1919e-01, 3.2704e-01, 4.0703e-01, 5.0143e-01, - 6.7723e-01, 8.1753e-01, 2.6635e-01, 1.3191e-02, - 8.9840e-01, 9.9355e-01, 8.7904e-01, 7.1659e-01, - 2.9610e-01, 4.5606e-01, 5.9045e-01, 8.9510e-02, - 8.4238e-01, 2.1662e-01, 7.1281e-01, 4.2497e-01, - 4.5220e-01, 6.1156e-02, 5.2940e-01, 5.8593e-01, - 2.5460e-01, 9.4797e-01, 6.6812e-01, 3.2547e-01, - 7.3813e-01, 7.9380e-01, 3.1305e-01, 5.2360e-01, - 5.7839e-01, 3.4606e-01, 7.0736e-01, 6.4167e-01, - 1.1426e-01, 7.1442e-01, 9.5551e-01, 3.4859e-01, - 6.8092e-04, 6.6756e-01, 2.2472e-01, 3.6603e-02, - 6.4753e-01, 4.6649e-01, 4.2337e-01, 5.1645e-02, - 6.0180e-02, 8.3215e-01, 2.8754e-02, 4.1647e-02, - 2.4904e-01, 4.0011e-01, 5.8432e-01, 5.0926e-01, - 8.2460e-01, 2.7598e-01, 4.5140e-01, 1.8915e-01, - 1.0612e-01, 4.0020e-01, 9.0858e-02, 4.2965e-01, - 3.1573e-01, 1.0305e-02, 9.4588e-01, 8.5378e-01, - 4.7280e-01, 9.4753e-01, 5.0855e-01, 6.0263e-01, - 5.3343e-02, 8.1332e-01, 1.6241e-01, 8.2746e-01, - 2.4580e-01, 6.0980e-02, 3.6788e-01, 9.0945e-02, - 5.2880e-01, 5.8751e-01, 3.6803e-01, 9.8383e-01, - 8.0574e-01, 2.9759e-01, 5.9896e-01, 5.5146e-01, - 9.8346e-02, 7.5541e-01, 9.0311e-01, 7.1468e-02, - 2.2938e-01, 7.1939e-01, 6.3102e-01, 9.3064e-01, - 9.9349e-01, 9.3896e-01, 2.8836e-01, 7.8170e-01, - 4.6400e-01, 1.4346e-01, 7.8384e-02, 5.9983e-01, - 6.5895e-01, 4.6100e-01, 4.6900e-01, 2.1629e-01, - 9.6051e-01, 6.5077e-01, 5.2054e-01, 4.7614e-01, - 7.6397e-02, 5.1015e-01, 7.9634e-01, 4.6907e-01, - 9.6766e-01, 8.1380e-01, 7.4731e-01, 9.8854e-01, - 3.5440e-02, 9.6596e-01, 5.3848e-01, 2.9996e-01, - 4.0293e-02, 6.8423e-01, 6.1380e-01, 3.3767e-01, - 9.1466e-01, 3.8488e-01, 5.0871e-01, 9.9911e-01, - 5.5936e-02, 5.3818e-01, 8.4011e-01, 4.9164e-01, - 9.0611e-01, 2.9127e-01, 7.7511e-02, 6.8092e-01, - 4.4948e-01, 8.0411e-01, 8.0856e-01, 1.7749e-01, - 6.0065e-01, 1.2962e-01, 5.3925e-01, 8.6809e-01, - 3.1247e-01, 5.4289e-01, 5.0400e-01, 8.6523e-01, - 6.1521e-01, 1.8618e-01, 6.4956e-01, 6.7938e-01, - 4.8913e-03, 8.8041e-01, 2.2916e-01, 2.9907e-01, - 2.4663e-01, 7.4980e-01, 7.8897e-01, 2.2230e-02, - 4.0795e-01, 6.5666e-02, 5.0611e-03, 8.6068e-01, - 9.0253e-01, 3.9248e-02, 9.1534e-01, 7.2456e-01, - 6.7679e-01, 3.8350e-01, 3.6286e-01, 8.5937e-01, - 1.8495e-01, 3.0385e-01, 5.7674e-01, 5.5443e-01, - 6.7577e-01, 3.2599e-01, 6.4667e-01, 7.7571e-01, - 5.4077e-01, 3.4173e-02, 6.6062e-01, 5.5497e-01, - 3.2429e-01, 2.3905e-01, 9.2743e-01, 8.2636e-01, - 6.2779e-01, 2.0618e-01, 6.5440e-01, 4.8835e-02, - 6.1570e-02, 7.9004e-01, 8.5253e-01, 6.4570e-01, - 4.3657e-01, 5.6724e-01, 6.6125e-01, 2.1790e-01, - 9.0854e-01, 1.0131e-02, 8.3074e-01, 8.0931e-02, - 1.2273e-01, 9.1632e-01, 7.5735e-01, 6.1709e-01, - 4.5239e-01, 7.6859e-01, 4.5898e-01, 7.7444e-01, - 2.2262e-01, 4.2228e-01, 6.4247e-04, 6.8685e-01, - 4.5280e-01, 9.8831e-01, 6.3551e-01, 2.4349e-01, - 6.3998e-01, 2.4863e-01, 7.4978e-01, 9.6525e-02, - 8.5432e-01, 2.8565e-01, 8.6400e-03, 6.9887e-01, - 9.8123e-01, 5.5568e-01, 6.5677e-02, 2.1300e-01, - 3.8626e-01, 1.7121e-01, 6.2299e-01, 8.5313e-01, - 9.7331e-01, 4.4678e-01, 6.2567e-01, 3.4985e-01, - 3.7997e-02, 1.7816e-01, 4.6951e-01, 2.5928e-01, - 8.1800e-01, 9.8585e-01, 9.9241e-01, 9.4591e-01, - 6.4886e-01, 6.6587e-01, 3.0200e-01, 1.9709e-01, - 6.9655e-01, 7.7186e-01, 4.6370e-01, 2.0512e-01, - 2.9187e-01, 6.5662e-01, 1.9881e-01, 1.8878e-01, - 8.3759e-01, 8.1497e-01, 3.8474e-01, 9.3922e-01, - 1.1980e-01, 7.9274e-01, 2.4139e-03, 4.0606e-01, - 9.4741e-01, 3.5579e-01, 7.3689e-01, 7.4013e-01, - 1.6341e-01, 4.0976e-01, 1.2106e-02, 6.9624e-01, - 3.4058e-01, 9.2252e-01, 5.7347e-01, 1.7341e-01, - 4.7453e-01, 5.3293e-01, 7.2677e-01, 7.6843e-01, - 5.5980e-01, 9.1006e-01, 6.5609e-01, 2.0080e-01, - 7.6444e-01, 7.5927e-01, 3.7025e-01, 2.2248e-01, - 2.7530e-01, 7.3119e-01, 4.2414e-01, 2.5233e-01, - 7.8818e-01, 2.3316e-01, 4.3970e-01, 9.2583e-02, - 1.2232e-01, 5.7076e-01, 5.1912e-01, 9.8308e-01, - 7.4081e-01, 1.3379e-01, 9.3796e-01, 9.1761e-01, - 5.4932e-01, 5.4914e-01, 6.8584e-01, 6.1119e-01, - 2.9282e-01, 8.8707e-01, 9.8210e-02, 7.5203e-01, - 5.7105e-02, 8.3390e-01, 4.3245e-01, 6.0756e-01, - 9.5487e-01, 1.4073e-01, 9.3377e-01, 5.3720e-01, - 2.9851e-01, 2.3323e-01, 5.7038e-01, 1.7177e-01, - 4.2263e-01, 3.6571e-01, 2.4465e-01, 2.3924e-01, - 7.4506e-01, 3.7908e-01, 1.0900e-01, 3.7748e-01, - 5.8194e-01, 1.9196e-01, 9.6828e-01, 6.5906e-01, - 5.4583e-01, 6.8981e-01, 3.3761e-01, 3.0262e-01, - 1.4093e-01, 8.9661e-01, 8.8664e-01, 3.6191e-01, - 7.2603e-01, 1.8928e-01, 1.5570e-01, 4.7355e-01, - 5.0235e-01, 7.0181e-01, 1.5485e-01, 6.3084e-01, - 6.8009e-01, 1.9700e-01, 5.5915e-01, 7.1118e-01, - 8.4480e-01, 8.8653e-01, 9.3805e-02, 8.1394e-01, - 7.6043e-01, 2.2537e-01, 3.5050e-01, 9.4824e-01, - 6.4804e-02, 8.9447e-02, 2.5136e-01, 8.4746e-01, - 4.4124e-01, 5.3570e-01, 7.2660e-01, 9.9153e-01, - 5.5409e-01, 5.7607e-01, 6.9001e-01, 6.8634e-01, - 6.5678e-01, 8.7622e-01, 6.9088e-01, 4.1804e-01, - 4.2696e-01, 7.1106e-01, 7.7869e-01, 9.0423e-01, - 5.0743e-01, 6.4079e-01, 3.9395e-01, 8.6100e-02, - 7.4019e-01, 4.5245e-01, 3.2098e-01, 7.4052e-01, - 5.5819e-03, 9.6355e-01, 4.3721e-01, 6.7750e-01, - 6.2113e-01, 4.9398e-01, 1.7439e-01, 1.9619e-01, - 6.3345e-01, 7.7621e-02, 5.8501e-01, 3.1614e-01, - 9.1062e-01, 2.9312e-01, 6.2033e-01, 7.4267e-01, - 8.8925e-01, 7.8148e-01, 6.9515e-01, 5.1877e-01, - 6.7792e-01, 8.1468e-01, 9.2343e-01, 9.2067e-01, - 5.8445e-01, 7.1713e-01, 7.6645e-01, 9.5688e-01, - 2.2005e-01, 5.8916e-02, 6.8496e-01, 2.7123e-01, - 5.3625e-01, 2.2256e-01, 1.1104e-01, 4.1722e-03, - 7.7575e-01, 3.4159e-01, 6.4283e-01, 9.6679e-01, - 1.7163e-01, 2.4263e-01, 6.1465e-01, 5.1415e-01, - 8.7361e-01, 6.0521e-01, 7.6585e-01, 3.6699e-01, - 4.6723e-01, 7.0614e-01, 5.9241e-01, 5.2480e-01, - 2.3362e-01, 2.8520e-01, 2.4362e-01, 1.8558e-01, - 7.9483e-01, 6.5965e-01, 4.1345e-01, 1.2104e-01, - 7.5543e-01, 9.2465e-01, 4.8631e-01, 1.8207e-01, - 7.4888e-01, 3.0846e-01, 9.4452e-01, 8.2471e-01, - 2.2609e-01, 8.6210e-01, 1.5446e-01, 5.2700e-01, - 1.4129e-01, 6.8153e-02, 7.1222e-01, 5.4379e-02, - 8.2369e-01, 6.7305e-02, 6.9326e-01, 9.5006e-01, - 7.8894e-01, 5.0686e-01, 1.0844e-02, 8.8476e-01, - 3.4081e-01, 7.1386e-01, 5.8332e-01, 8.0538e-02, - 1.2881e-01, 6.6073e-01, 6.6982e-01, 9.4311e-01, - 5.7920e-01, 3.4038e-01, 5.1929e-01, 6.6344e-01, - 3.6283e-01, 8.4071e-01, 8.3032e-02, 3.7224e-01, - 2.8825e-01, 2.1346e-01, 6.6572e-01, 9.1219e-01, - 7.5086e-01, 5.9660e-01, 6.4939e-01, 8.3636e-02, - 2.1276e-01, 8.1840e-01, 9.1241e-01, 4.1267e-01, - 1.2384e-01, 3.2306e-01, 1.8222e-01, 1.6973e-01, - 2.4016e-01, 5.0092e-02, 6.0148e-01, 2.9363e-01, - 7.7028e-01, 6.2133e-01, 4.0709e-01, 4.9819e-01, - 1.9079e-01, 8.4728e-01, 5.7285e-01, 4.6834e-01, - 2.6392e-01, 8.2958e-01, 9.0930e-01, 7.7450e-01, - 4.9029e-01, 6.0270e-02, 9.5693e-01, 2.5910e-01, - 4.3595e-01, 3.2220e-01, 7.7687e-02, 8.6974e-01, - 4.2140e-01, 9.3963e-01, 1.5046e-02, 1.9120e-01, - 6.3065e-01, 5.0110e-02, 8.6206e-01, 1.5593e-01, - 3.8009e-01, 9.0525e-01, 3.1360e-01, 2.8014e-01, - 8.6922e-01, 8.0054e-02, 1.5774e-01, 7.8264e-01, - 5.5830e-01, 8.2156e-01, 5.4363e-02, 6.1422e-01, - 6.4211e-01, 1.8056e-01, 4.8874e-01, 2.7600e-01, - 7.3967e-01, 6.3099e-01, 9.2851e-01, 2.9826e-01, - 7.2043e-02, 1.9501e-01, 2.0723e-01, 4.8988e-01, - 1.1743e-01, 6.0389e-01, 2.4019e-01, 5.3080e-01, - 2.4116e-01, 6.4832e-01, 1.3206e-01, 5.7881e-01, - 2.4751e-01, 2.5004e-01, 1.0644e-01, 6.4024e-02, - 8.1402e-01, 4.5228e-01, 6.7548e-01, 9.3771e-01, - 2.0818e-01, 4.7722e-01, 2.0221e-01, 6.3364e-01, - 2.8929e-01, 5.9029e-01, 4.2652e-01, 9.1620e-01, - 2.2454e-01, 6.7134e-01, 7.9748e-02, 3.2710e-01, - 8.1974e-01, 1.5549e-02, 4.9868e-01, 5.7492e-01, - 7.2008e-02, 7.9730e-01, 1.5602e-01, 2.0940e-01, - 5.3816e-01, 1.9379e-01, 2.7025e-02, 4.9766e-01, - 6.0189e-01, 3.2022e-01, 8.5769e-01, 6.5720e-01, - 3.0809e-01, 1.1742e-01, 9.2720e-01, 1.9132e-01, - 3.9789e-01, 3.7697e-02, 6.0352e-01, 3.9733e-01, - 4.4928e-01, 1.5419e-01, 9.8145e-01, 4.1892e-01, - 7.0064e-01, 3.8871e-01, 6.2793e-01, 7.7207e-01, - 4.4089e-01, 3.6800e-01, 4.9602e-01, 7.8104e-01, - 1.0657e-02, 8.0591e-01, 9.9727e-01, 1.3379e-01, - 5.4798e-01, 7.6658e-01, 6.3649e-01, 2.8939e-01, - 8.1990e-01, 7.9348e-01, 8.2543e-01, 6.7492e-01, - 6.7563e-02, 9.7314e-01, 2.2021e-01, 2.0069e-01, - 8.7506e-01, 7.2409e-01, 3.6865e-01, 1.9488e-01, - 7.4566e-01, 9.7425e-01, 9.4802e-01, 3.3832e-01, - 8.4433e-01, 4.1426e-02, 2.6255e-01, 1.7428e-01, - 1.8207e-01, 1.8488e-01, 8.2856e-03, 1.1348e-01, - 9.2197e-01, 9.2179e-01, 6.1482e-01, 1.7686e-01, - 6.5075e-02, 1.5011e-01, 7.1724e-01, 1.9623e-01, - 7.7691e-01, 8.8594e-01, 5.6303e-01, 7.3530e-01, - 9.8857e-01, 7.4483e-01, 8.5336e-01, 7.1468e-01, - 3.4586e-01, 6.2753e-01, 3.4994e-01, 9.4314e-01, - 5.9523e-01, 2.4831e-01, 6.7030e-01, 7.2279e-01, - 7.4167e-01, 3.7774e-01, 9.7774e-01, 2.7848e-01, - 5.9253e-01, 2.2646e-01, 7.3907e-02, 1.8840e-01, - 1.6017e-01, 9.0665e-01, 7.6825e-01, 1.7432e-01, - 5.2899e-02, 4.0457e-01, 9.7040e-01, 9.0688e-02, - 5.8056e-01, 2.6439e-01, 8.2605e-01, 9.1309e-01, - 6.8101e-01, 8.0757e-01, 6.2304e-01, 9.9518e-01, - 4.7896e-01, 3.1904e-01, 7.0082e-01, 4.5077e-01, - 1.7951e-01, 3.2747e-02, 1.3088e-01, 9.1100e-01, - 2.8097e-01, 7.7241e-01, 2.7702e-01, 8.9268e-01, - 7.4964e-02, 4.5346e-01, 3.5535e-01, 7.4730e-01, - 1.0795e-01, 9.2068e-01, 2.5310e-01, 9.3425e-01, - 8.6243e-03, 3.4566e-01, 1.2041e-01, 8.5141e-02, - 6.8159e-01, 6.3087e-01, 4.5251e-02, 3.5864e-01, - 2.6782e-01, 7.8826e-02, 8.7299e-01, 6.6518e-01, - 7.0044e-01, 1.8992e-01, 8.0560e-01, 7.7462e-01, - 3.8679e-01, 6.1189e-01, 1.5892e-01, 6.3252e-01, - 6.9613e-01, 3.5041e-01, 8.1632e-01, 4.0743e-01, - 7.7173e-01, 4.3097e-01, 4.1902e-01, 7.2770e-01, - 8.4816e-01, 2.2977e-01, 7.1589e-01, 9.0275e-01, - 9.9999e-01, 4.1852e-01, 2.2491e-02, 7.9153e-01, - 9.7639e-01, 3.3819e-01, 7.4342e-01, 8.5250e-01, - 9.9385e-01, 6.3891e-02, 9.7464e-01, 3.0992e-01, - 9.9006e-01, 1.1081e-01, 7.5155e-01, 8.4844e-01, - 7.0384e-01, 4.6698e-01, 1.6751e-01, 6.1651e-01, - 4.3979e-01, 6.1587e-01, 3.4869e-01, 4.9449e-01, - 9.1105e-02, 9.8166e-01, 3.3675e-02, 3.1123e-01]), - size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) -tensor([0.1121, 0.3867, 0.9452, ..., 0.7986, 0.0788, 0.8344]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([10000, 10000]) -Rows: 10000 -Size: 100000000 -NNZ: 1000 -Density: 1e-05 -Time: 10.441989183425903 seconds - -[18.13, 22.04, 18.79, 17.71, 17.77, 17.9, 17.83, 17.54, 17.97, 17.85] -[79.9] -13.809443473815918 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 286739, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.441989183425903, 'TIME_S_1KI': 0.036416354885194915, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1103.374533557892, 'W': 79.9} -[18.13, 22.04, 18.79, 17.71, 17.77, 17.9, 17.83, 17.54, 17.97, 17.85, 18.13, 17.63, 18.09, 17.81, 17.93, 17.7, 17.59, 17.82, 17.87, 17.69] -325.89 -16.2945 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 286739, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.441989183425903, 'TIME_S_1KI': 0.036416354885194915, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1103.374533557892, 'W': 79.9, 'J_1KI': 3.8480099796605693, 'W_1KI': 0.27865061955297327, 'W_D': 63.605500000000006, 'J_D': 878.3565568737985, 'W_D_1KI': 0.22182367937392544, 'J_D_1KI': 0.0007736083315277149} +[18.52, 17.73, 17.82, 17.87, 17.98, 18.03, 17.91, 19.05, 18.64, 18.02] +[73.21] +13.981836557388306 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 285101, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.263301372528076, 'TIME_S_1KI': 0.03599882628446788, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1023.6102543663977, 'W': 73.21} +[18.52, 17.73, 17.82, 17.87, 17.98, 18.03, 17.91, 19.05, 18.64, 18.02, 18.85, 18.33, 18.07, 17.99, 17.95, 17.9, 17.98, 18.04, 17.93, 17.89] +325.86 +16.293 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 285101, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.263301372528076, 'TIME_S_1KI': 0.03599882628446788, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1023.6102543663977, 'W': 73.21, 'J_1KI': 3.5903425605886956, 'W_1KI': 0.2567861915601839, 'W_D': 56.916999999999994, 'J_D': 795.8041913368701, 'W_D_1KI': 0.1996380230164047, 'J_D_1KI': 0.0007002361374264022} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_5e-05.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_5e-05.json index 91b8311..0ec114e 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_5e-05.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_5e-05.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 269593, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.567216634750366, "TIME_S_1KI": 0.03919692512324269, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1116.8250253772735, "W": 79.97999999999999, "J_1KI": 4.142633619482974, "W_1KI": 0.29666942390937445, "W_D": 63.59324999999999, "J_D": 888.003663979411, "W_D_1KI": 0.23588613205832493, "J_D_1KI": 0.0008749712791442097} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 259324, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.257395267486572, "TIME_S_1KI": 0.03955436159972302, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1007.3763615226745, "W": 73.52, "J_1KI": 3.8846244910716883, "W_1KI": 0.28350634727213836, "W_D": 56.727999999999994, "J_D": 777.2911620845794, "W_D_1KI": 0.21875337415742466, "J_D_1KI": 0.000843552367530289} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_5e-05.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_5e-05.output index 271dd36..838ccfc 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_5e-05.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_5e-05.output @@ -1,13 +1,13 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '5e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.056284427642822266} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '10000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.021072864532470703} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 5000, 5000, 5000]), - col_indices=tensor([8618, 2157, 180, ..., 6301, 3776, 9276]), - values=tensor([0.6370, 0.4514, 0.1911, ..., 0.9917, 0.3039, 0.3760]), +tensor(crow_indices=tensor([ 0, 0, 1, ..., 4999, 4999, 5000]), + col_indices=tensor([6834, 1931, 4346, ..., 6725, 2972, 1681]), + values=tensor([0.7465, 0.7749, 0.3553, ..., 0.3449, 0.2710, 0.4644]), size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) -tensor([0.3110, 0.1501, 0.3783, ..., 0.1317, 0.1435, 0.1761]) +tensor([0.4472, 0.0239, 0.4773, ..., 0.7523, 0.1836, 0.2389]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -15,18 +15,18 @@ Rows: 10000 Size: 100000000 NNZ: 5000 Density: 5e-05 -Time: 0.056284427642822266 seconds +Time: 0.021072864532470703 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '186552', '-ss', '10000', '-sd', '5e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 7.265737533569336} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '49827', '-ss', '10000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 2.0174834728240967} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 4998, 4999, 5000]), - col_indices=tensor([3104, 929, 8564, ..., 6717, 8359, 928]), - values=tensor([0.4370, 0.1053, 0.0742, ..., 0.7004, 0.4944, 0.4492]), +tensor(crow_indices=tensor([ 0, 0, 1, ..., 4999, 5000, 5000]), + col_indices=tensor([6306, 9296, 8522, ..., 5641, 7164, 5943]), + values=tensor([0.9605, 0.0866, 0.1892, ..., 0.4816, 0.2836, 0.0365]), size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) -tensor([0.3493, 0.4826, 0.4715, ..., 0.3349, 0.2581, 0.7669]) +tensor([0.7120, 0.8205, 0.0862, ..., 0.5109, 0.7192, 0.7608]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -34,18 +34,18 @@ Rows: 10000 Size: 100000000 NNZ: 5000 Density: 5e-05 -Time: 7.265737533569336 seconds +Time: 2.0174834728240967 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '269593', '-ss', '10000', '-sd', '5e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.567216634750366} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '259324', '-ss', '10000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.257395267486572} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 4999, 5000, 5000]), - col_indices=tensor([2457, 434, 2201, ..., 5356, 91, 9583]), - values=tensor([0.6200, 0.7893, 0.7607, ..., 0.6419, 0.6044, 0.8766]), + col_indices=tensor([2130, 3883, 5256, ..., 7000, 8219, 5132]), + values=tensor([0.8393, 0.8650, 0.4056, ..., 0.4895, 0.0562, 0.7603]), size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) -tensor([0.5913, 0.4546, 0.3506, ..., 0.4687, 0.7353, 0.8006]) +tensor([0.9495, 0.1374, 0.1837, ..., 0.6231, 0.7099, 0.0387]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -53,15 +53,15 @@ Rows: 10000 Size: 100000000 NNZ: 5000 Density: 5e-05 -Time: 10.567216634750366 seconds +Time: 10.257395267486572 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 4999, 5000, 5000]), - col_indices=tensor([2457, 434, 2201, ..., 5356, 91, 9583]), - values=tensor([0.6200, 0.7893, 0.7607, ..., 0.6419, 0.6044, 0.8766]), + col_indices=tensor([2130, 3883, 5256, ..., 7000, 8219, 5132]), + values=tensor([0.8393, 0.8650, 0.4056, ..., 0.4895, 0.0562, 0.7603]), size=(10000, 10000), nnz=5000, layout=torch.sparse_csr) -tensor([0.5913, 0.4546, 0.3506, ..., 0.4687, 0.7353, 0.8006]) +tensor([0.9495, 0.1374, 0.1837, ..., 0.6231, 0.7099, 0.0387]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([10000, 10000]) @@ -69,13 +69,13 @@ Rows: 10000 Size: 100000000 NNZ: 5000 Density: 5e-05 -Time: 10.567216634750366 seconds +Time: 10.257395267486572 seconds -[17.89, 17.35, 17.61, 17.72, 17.83, 17.6, 17.61, 17.87, 22.45, 17.59] -[79.98] -13.963803768157959 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 269593, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.567216634750366, 'TIME_S_1KI': 0.03919692512324269, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1116.8250253772735, 'W': 79.97999999999999} -[17.89, 17.35, 17.61, 17.72, 17.83, 17.6, 17.61, 17.87, 22.45, 17.59, 18.03, 17.7, 17.74, 17.72, 21.48, 17.84, 17.81, 17.57, 18.13, 17.9] -327.735 -16.38675 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 269593, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.567216634750366, 'TIME_S_1KI': 0.03919692512324269, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1116.8250253772735, 'W': 79.97999999999999, 'J_1KI': 4.142633619482974, 'W_1KI': 0.29666942390937445, 'W_D': 63.59324999999999, 'J_D': 888.003663979411, 'W_D_1KI': 0.23588613205832493, 'J_D_1KI': 0.0008749712791442097} +[18.17, 18.06, 17.92, 18.22, 18.12, 18.42, 22.11, 19.11, 18.46, 18.0] +[73.52] +13.702072381973267 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 259324, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.257395267486572, 'TIME_S_1KI': 0.03955436159972302, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1007.3763615226745, 'W': 73.52} +[18.17, 18.06, 17.92, 18.22, 18.12, 18.42, 22.11, 19.11, 18.46, 18.0, 18.1, 18.11, 18.16, 22.77, 18.06, 18.3, 17.88, 17.93, 18.0, 18.15] +335.84000000000003 +16.792 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 259324, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.257395267486572, 'TIME_S_1KI': 0.03955436159972302, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1007.3763615226745, 'W': 73.52, 'J_1KI': 3.8846244910716883, 'W_1KI': 0.28350634727213836, 'W_D': 56.727999999999994, 'J_D': 777.2911620845794, 'W_D_1KI': 0.21875337415742466, 'J_D_1KI': 0.000843552367530289} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_0.0001.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_0.0001.json index 250b22c..da0856a 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_0.0001.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_0.0001.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 15.963828563690186, "TIME_S_1KI": 15.963828563690184, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 3837.0465870952603, "W": 57.08, "J_1KI": 3837.0465870952603, "W_1KI": 57.08, "W_D": 41.032999999999994, "J_D": 2758.3309847280975, "W_D_1KI": 41.032999999999994, "J_D_1KI": 41.032999999999994} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 665, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.126577615737915, "TIME_S_1KI": 15.22793626426754, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 3144.6024104833605, "W": 46.7, "J_1KI": 4728.725429298286, "W_1KI": 70.22556390977444, "W_D": 20.655250000000002, "J_D": 1390.846872358382, "W_D_1KI": 31.060526315789478, "J_D_1KI": 46.707558369608236} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_0.0001.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_0.0001.output index 8f6ef0a..4beed36 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_0.0001.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_0.0001.output @@ -1,15 +1,15 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '0.0001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 15.963828563690186} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '500000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 2.0304152965545654} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 49, 110, ..., 24999910, - 24999948, 25000000]), - col_indices=tensor([ 6869, 7642, 11671, ..., 455502, 470939, - 478512]), - values=tensor([0.8757, 0.6946, 0.8023, ..., 0.8472, 0.7183, 0.5606]), +tensor(crow_indices=tensor([ 0, 59, 94, ..., 24999900, + 24999951, 25000000]), + col_indices=tensor([ 1276, 15885, 34398, ..., 446460, 484343, + 488114]), + values=tensor([0.3408, 0.7505, 0.4683, ..., 0.6426, 0.2990, 0.1628]), size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) -tensor([0.4126, 0.9616, 0.6093, ..., 0.3863, 0.8636, 0.0433]) +tensor([0.4984, 0.2348, 0.7546, ..., 0.4897, 0.9555, 0.5266]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -17,17 +17,20 @@ Rows: 500000 Size: 250000000000 NNZ: 25000000 Density: 0.0001 -Time: 15.963828563690186 seconds +Time: 2.0304152965545654 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '517', '-ss', '500000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 8.159608364105225} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 49, 110, ..., 24999910, - 24999948, 25000000]), - col_indices=tensor([ 6869, 7642, 11671, ..., 455502, 470939, - 478512]), - values=tensor([0.8757, 0.6946, 0.8023, ..., 0.8472, 0.7183, 0.5606]), +tensor(crow_indices=tensor([ 0, 46, 98, ..., 24999895, + 24999952, 25000000]), + col_indices=tensor([ 1859, 10480, 11583, ..., 471819, 483100, + 486034]), + values=tensor([0.5566, 0.4872, 0.1210, ..., 0.2476, 0.9480, 0.3070]), size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) -tensor([0.4126, 0.9616, 0.6093, ..., 0.3863, 0.8636, 0.0433]) +tensor([0.1091, 0.0853, 0.9295, ..., 0.2076, 0.8766, 0.1664]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -35,13 +38,52 @@ Rows: 500000 Size: 250000000000 NNZ: 25000000 Density: 0.0001 -Time: 15.963828563690186 seconds +Time: 8.159608364105225 seconds -[18.28, 17.95, 18.0, 17.55, 17.82, 17.7, 17.82, 17.54, 17.77, 17.59] -[57.08] -67.22225975990295 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 15.963828563690186, 'TIME_S_1KI': 15.963828563690184, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3837.0465870952603, 'W': 57.08} -[18.28, 17.95, 18.0, 17.55, 17.82, 17.7, 17.82, 17.54, 17.77, 17.59, 18.37, 17.79, 17.89, 17.88, 18.0, 17.73, 17.87, 17.96, 17.67, 17.76] -320.94000000000005 -16.047000000000004 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 15.963828563690186, 'TIME_S_1KI': 15.963828563690184, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3837.0465870952603, 'W': 57.08, 'J_1KI': 3837.0465870952603, 'W_1KI': 57.08, 'W_D': 41.032999999999994, 'J_D': 2758.3309847280975, 'W_D_1KI': 41.032999999999994, 'J_D_1KI': 41.032999999999994} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '665', '-ss', '500000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.126577615737915} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 66, 119, ..., 24999902, + 24999949, 25000000]), + col_indices=tensor([ 3829, 12709, 24306, ..., 491038, 494248, + 495364]), + values=tensor([0.8354, 0.9747, 0.5569, ..., 0.5257, 0.7884, 0.2877]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.8209, 0.7651, 0.4978, ..., 0.6892, 0.4643, 0.4864]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 10.126577615737915 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 66, 119, ..., 24999902, + 24999949, 25000000]), + col_indices=tensor([ 3829, 12709, 24306, ..., 491038, 494248, + 495364]), + values=tensor([0.8354, 0.9747, 0.5569, ..., 0.5257, 0.7884, 0.2877]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.8209, 0.7651, 0.4978, ..., 0.6892, 0.4643, 0.4864]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 10.126577615737915 seconds + +[18.36, 18.09, 18.07, 17.97, 17.94, 18.13, 18.13, 17.77, 17.92, 18.01] +[46.7] +67.33624005317688 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 665, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.126577615737915, 'TIME_S_1KI': 15.22793626426754, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3144.6024104833605, 'W': 46.7} +[18.36, 18.09, 18.07, 17.97, 17.94, 18.13, 18.13, 17.77, 17.92, 18.01, 39.86, 40.69, 39.54, 40.28, 39.05, 39.85, 39.62, 39.36, 40.17, 40.4] +520.895 +26.04475 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 665, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.126577615737915, 'TIME_S_1KI': 15.22793626426754, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3144.6024104833605, 'W': 46.7, 'J_1KI': 4728.725429298286, 'W_1KI': 70.22556390977444, 'W_D': 20.655250000000002, 'J_D': 1390.846872358382, 'W_D_1KI': 31.060526315789478, 'J_D_1KI': 46.707558369608236} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_1e-05.json index d6eca5a..ac8e083 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_1e-05.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_1e-05.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 7939, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.723366260528564, "TIME_S_1KI": 1.350720022739459, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1313.216650083065, "W": 88.63, "J_1KI": 165.41335811601778, "W_1KI": 11.163874543393375, "W_D": 72.31174999999999, "J_D": 1071.4317284964918, "W_D_1KI": 9.108420455976821, "J_D_1KI": 1.1473007250254217} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 8088, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.521591186523438, "TIME_S_1KI": 1.30088911801724, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1272.5733924508095, "W": 87.25, "J_1KI": 157.34092389352244, "W_1KI": 10.787586547972305, "W_D": 70.764, "J_D": 1032.1190090932846, "W_D_1KI": 8.749258160237389, "J_D_1KI": 1.0817579327692124} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_1e-05.output index 2715834..a65a620 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_1e-05.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_1e-05.output @@ -1,15 +1,15 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 1.3224358558654785} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '500000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.14249539375305176} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 5, 7, ..., 2499992, - 2499995, 2500000]), - col_indices=tensor([ 81446, 111347, 262323, ..., 95785, 329641, - 405148]), - values=tensor([0.7472, 0.0566, 0.1215, ..., 0.1323, 0.4741, 0.2377]), +tensor(crow_indices=tensor([ 0, 5, 6, ..., 2499988, + 2499994, 2500000]), + col_indices=tensor([159074, 199303, 338786, ..., 336877, 376694, + 404714]), + values=tensor([0.7251, 0.9700, 0.9965, ..., 0.4798, 0.8363, 0.5285]), size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.0977, 0.7761, 0.5514, ..., 0.9913, 0.3768, 0.8332]) +tensor([0.5063, 0.7490, 0.8579, ..., 0.3117, 0.7674, 0.7165]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -17,20 +17,20 @@ Rows: 500000 Size: 250000000000 NNZ: 2500000 Density: 1e-05 -Time: 1.3224358558654785 seconds +Time: 0.14249539375305176 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '7939', '-ss', '500000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.723366260528564} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '7368', '-ss', '500000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.564131021499634} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 9, ..., 2499990, - 2499995, 2500000]), - col_indices=tensor([185711, 60363, 105088, ..., 318731, 319175, - 323232]), - values=tensor([0.5920, 0.0659, 0.0171, ..., 0.3410, 0.9352, 0.3450]), +tensor(crow_indices=tensor([ 0, 7, 11, ..., 2499988, + 2499994, 2500000]), + col_indices=tensor([ 45977, 46883, 132654, ..., 283974, 337716, + 438050]), + values=tensor([0.6941, 0.4659, 0.2903, ..., 0.1328, 0.8033, 0.9427]), size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.5701, 0.8906, 0.4066, ..., 0.2438, 0.9359, 0.5479]) +tensor([0.8274, 0.6187, 0.7071, ..., 0.9433, 0.5745, 0.3570]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -38,17 +38,20 @@ Rows: 500000 Size: 250000000000 NNZ: 2500000 Density: 1e-05 -Time: 10.723366260528564 seconds +Time: 9.564131021499634 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '8088', '-ss', '500000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.521591186523438} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 9, ..., 2499990, +tensor(crow_indices=tensor([ 0, 6, 11, ..., 2499988, 2499995, 2500000]), - col_indices=tensor([185711, 60363, 105088, ..., 318731, 319175, - 323232]), - values=tensor([0.5920, 0.0659, 0.0171, ..., 0.3410, 0.9352, 0.3450]), + col_indices=tensor([ 55151, 55855, 262240, ..., 129037, 280325, + 497898]), + values=tensor([0.5548, 0.3291, 0.4545, ..., 0.6191, 0.2200, 0.6842]), size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.5701, 0.8906, 0.4066, ..., 0.2438, 0.9359, 0.5479]) +tensor([0.8740, 0.8697, 0.8262, ..., 0.4420, 0.1114, 0.8177]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -56,13 +59,31 @@ Rows: 500000 Size: 250000000000 NNZ: 2500000 Density: 1e-05 -Time: 10.723366260528564 seconds +Time: 10.521591186523438 seconds -[18.35, 18.0, 17.81, 18.15, 20.9, 17.73, 17.87, 17.99, 18.01, 17.97] -[88.63] -14.81684136390686 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 7939, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.723366260528564, 'TIME_S_1KI': 1.350720022739459, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1313.216650083065, 'W': 88.63} -[18.35, 18.0, 17.81, 18.15, 20.9, 17.73, 17.87, 17.99, 18.01, 17.97, 18.83, 17.84, 18.13, 18.11, 17.94, 17.77, 17.81, 17.81, 18.09, 17.66] -326.365 -16.31825 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 7939, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.723366260528564, 'TIME_S_1KI': 1.350720022739459, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1313.216650083065, 'W': 88.63, 'J_1KI': 165.41335811601778, 'W_1KI': 11.163874543393375, 'W_D': 72.31174999999999, 'J_D': 1071.4317284964918, 'W_D_1KI': 9.108420455976821, 'J_D_1KI': 1.1473007250254217} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 11, ..., 2499988, + 2499995, 2500000]), + col_indices=tensor([ 55151, 55855, 262240, ..., 129037, 280325, + 497898]), + values=tensor([0.5548, 0.3291, 0.4545, ..., 0.6191, 0.2200, 0.6842]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.8740, 0.8697, 0.8262, ..., 0.4420, 0.1114, 0.8177]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 10.521591186523438 seconds + +[19.45, 17.88, 18.22, 21.5, 18.64, 18.15, 18.16, 17.8, 17.97, 17.95] +[87.25] +14.585368394851685 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 8088, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.521591186523438, 'TIME_S_1KI': 1.30088911801724, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1272.5733924508095, 'W': 87.25} +[19.45, 17.88, 18.22, 21.5, 18.64, 18.15, 18.16, 17.8, 17.97, 17.95, 18.5, 17.88, 17.95, 18.22, 18.0, 18.18, 18.21, 18.1, 18.01, 17.8] +329.72 +16.486 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 8088, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.521591186523438, 'TIME_S_1KI': 1.30088911801724, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1272.5733924508095, 'W': 87.25, 'J_1KI': 157.34092389352244, 'W_1KI': 10.787586547972305, 'W_D': 70.764, 'J_D': 1032.1190090932846, 'W_D_1KI': 8.749258160237389, 'J_D_1KI': 1.0817579327692124} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_5e-05.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_5e-05.json index 3709697..17825c9 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_5e-05.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_5e-05.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 1325, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.266479253768921, "TIME_S_1KI": 7.748286229259563, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1511.6237173461914, "W": 78.72, "J_1KI": 1140.8480885631634, "W_1KI": 59.41132075471698, "W_D": 51.030249999999995, "J_D": 979.9102667950391, "W_D_1KI": 38.5133962264151, "J_D_1KI": 29.06671413314347} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 1356, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.575294256210327, "TIME_S_1KI": 7.798889569476643, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1502.6908141350748, "W": 76.43, "J_1KI": 1108.179066471294, "W_1KI": 56.36430678466077, "W_D": 60.11625000000001, "J_D": 1181.9460507032277, "W_D_1KI": 44.333517699115056, "J_D_1KI": 32.694334586368036} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_5e-05.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_5e-05.output index 4090da6..b27b9d0 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_5e-05.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_5e-05.output @@ -1,15 +1,15 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '5e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 7.920783042907715} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '500000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.7741575241088867} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 27, 58, ..., 12499955, - 12499976, 12500000]), - col_indices=tensor([ 1130, 30184, 52843, ..., 432238, 460389, - 464098]), - values=tensor([0.9711, 0.9391, 0.1931, ..., 0.2077, 0.5139, 0.7168]), +tensor(crow_indices=tensor([ 0, 27, 54, ..., 12499941, + 12499975, 12500000]), + col_indices=tensor([ 19879, 19996, 22547, ..., 457855, 459779, + 462945]), + values=tensor([0.0262, 0.3741, 0.0922, ..., 0.5524, 0.1014, 0.8276]), size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) -tensor([0.7084, 0.4119, 0.9069, ..., 0.7058, 0.3504, 0.1364]) +tensor([0.7209, 0.9008, 0.7814, ..., 0.2206, 0.4926, 0.1534]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -17,20 +17,20 @@ Rows: 500000 Size: 250000000000 NNZ: 12500000 Density: 5e-05 -Time: 7.920783042907715 seconds +Time: 0.7741575241088867 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1325', '-ss', '500000', '-sd', '5e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.266479253768921} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1356', '-ss', '500000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.575294256210327} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 28, 47, ..., 12499960, - 12499984, 12500000]), - col_indices=tensor([105223, 111339, 112839, ..., 478264, 484121, - 494514]), - values=tensor([0.5455, 0.8774, 0.0623, ..., 0.6447, 0.0740, 0.9564]), +tensor(crow_indices=tensor([ 0, 30, 59, ..., 12499949, + 12499973, 12500000]), + col_indices=tensor([ 13892, 45461, 46784, ..., 469557, 488276, + 489508]), + values=tensor([0.8469, 0.7554, 0.2394, ..., 0.6309, 0.5261, 0.2516]), size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) -tensor([0.8058, 0.5348, 0.2222, ..., 0.5938, 0.1996, 0.3404]) +tensor([0.9763, 0.3043, 0.0965, ..., 0.1822, 0.5455, 0.4604]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -38,17 +38,17 @@ Rows: 500000 Size: 250000000000 NNZ: 12500000 Density: 5e-05 -Time: 10.266479253768921 seconds +Time: 10.575294256210327 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 28, 47, ..., 12499960, - 12499984, 12500000]), - col_indices=tensor([105223, 111339, 112839, ..., 478264, 484121, - 494514]), - values=tensor([0.5455, 0.8774, 0.0623, ..., 0.6447, 0.0740, 0.9564]), +tensor(crow_indices=tensor([ 0, 30, 59, ..., 12499949, + 12499973, 12500000]), + col_indices=tensor([ 13892, 45461, 46784, ..., 469557, 488276, + 489508]), + values=tensor([0.8469, 0.7554, 0.2394, ..., 0.6309, 0.5261, 0.2516]), size=(500000, 500000), nnz=12500000, layout=torch.sparse_csr) -tensor([0.8058, 0.5348, 0.2222, ..., 0.5938, 0.1996, 0.3404]) +tensor([0.9763, 0.3043, 0.0965, ..., 0.1822, 0.5455, 0.4604]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([500000, 500000]) @@ -56,13 +56,13 @@ Rows: 500000 Size: 250000000000 NNZ: 12500000 Density: 5e-05 -Time: 10.266479253768921 seconds +Time: 10.575294256210327 seconds -[18.04, 18.12, 17.82, 17.66, 17.96, 17.84, 17.85, 17.56, 17.9, 17.9] -[78.72] -19.202537059783936 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1325, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.266479253768921, 'TIME_S_1KI': 7.748286229259563, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1511.6237173461914, 'W': 78.72} -[18.04, 18.12, 17.82, 17.66, 17.96, 17.84, 17.85, 17.56, 17.9, 17.9, 42.26, 43.36, 45.35, 45.57, 48.14, 42.56, 42.0, 41.9, 42.22, 41.77] -553.7950000000001 -27.689750000000004 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1325, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.266479253768921, 'TIME_S_1KI': 7.748286229259563, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1511.6237173461914, 'W': 78.72, 'J_1KI': 1140.8480885631634, 'W_1KI': 59.41132075471698, 'W_D': 51.030249999999995, 'J_D': 979.9102667950391, 'W_D_1KI': 38.5133962264151, 'J_D_1KI': 29.06671413314347} +[18.28, 17.9, 18.0, 17.69, 18.19, 17.78, 17.99, 17.71, 17.86, 17.72] +[76.43] +19.66100764274597 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1356, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.575294256210327, 'TIME_S_1KI': 7.798889569476643, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1502.6908141350748, 'W': 76.43} +[18.28, 17.9, 18.0, 17.69, 18.19, 17.78, 17.99, 17.71, 17.86, 17.72, 22.73, 18.23, 18.33, 18.05, 18.19, 17.82, 18.25, 18.16, 17.83, 17.86] +326.275 +16.31375 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1356, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.575294256210327, 'TIME_S_1KI': 7.798889569476643, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1502.6908141350748, 'W': 76.43, 'J_1KI': 1108.179066471294, 'W_1KI': 56.36430678466077, 'W_D': 60.11625000000001, 'J_D': 1181.9460507032277, 'W_D_1KI': 44.333517699115056, 'J_D_1KI': 32.694334586368036} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.0001.json index c8d8a61..8609bc2 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.0001.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.0001.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 78314, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.500975370407104, "TIME_S_1KI": 0.1340880988125636, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1246.381588702202, "W": 89.06, "J_1KI": 15.91518232630439, "W_1KI": 1.1372168450085551, "W_D": 72.72325000000001, "J_D": 1017.7511775273682, "W_D_1KI": 0.9286111040171617, "J_D_1KI": 0.0118575363794106} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 80207, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.527606010437012, "TIME_S_1KI": 0.13125545164932004, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1181.3196375966072, "W": 83.35, "J_1KI": 14.728385771773127, "W_1KI": 1.039186105950852, "W_D": 67.15325, "J_D": 951.7630828246474, "W_D_1KI": 0.8372492425848118, "J_D_1KI": 0.010438605640216089} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.0001.output index e0ea23e..381203d 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.0001.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.0001.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.0001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.14957594871520996} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.03568005561828613} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 8, 15, ..., 249987, 249991, +tensor(crow_indices=tensor([ 0, 3, 9, ..., 249987, 249994, 250000]), - col_indices=tensor([ 3249, 11393, 14942, ..., 33826, 38027, 48849]), - values=tensor([0.4435, 0.3887, 0.6766, ..., 0.7020, 0.9117, 0.7998]), + col_indices=tensor([ 1312, 19953, 25282, ..., 26652, 33001, 38879]), + values=tensor([0.3658, 0.9367, 0.4335, ..., 0.7027, 0.8564, 0.9906]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.4072, 0.0290, 0.9610, ..., 0.4695, 0.4913, 0.1254]) +tensor([0.4942, 0.6881, 0.2872, ..., 0.3001, 0.6556, 0.7300]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -16,19 +16,19 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 0.14957594871520996 seconds +Time: 0.03568005561828613 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '70198', '-ss', '50000', '-sd', '0.0001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.41176462173462} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '29428', '-ss', '50000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 3.8524389266967773} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 7, 12, ..., 249984, 249993, +tensor(crow_indices=tensor([ 0, 6, 8, ..., 249998, 250000, 250000]), - col_indices=tensor([ 257, 837, 13772, ..., 26625, 34572, 42693]), - values=tensor([0.6771, 0.0630, 0.4952, ..., 0.2009, 0.3453, 0.0186]), + col_indices=tensor([ 4346, 9215, 13661, ..., 37674, 16332, 22572]), + values=tensor([0.5552, 0.4398, 0.7001, ..., 0.6234, 0.7005, 0.0878]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.1005, 0.4396, 0.3760, ..., 0.8175, 0.2613, 0.1136]) +tensor([0.5304, 0.8900, 0.0447, ..., 0.3418, 0.1958, 0.2486]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -36,19 +36,19 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 9.41176462173462 seconds +Time: 3.8524389266967773 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '78314', '-ss', '50000', '-sd', '0.0001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.500975370407104} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '80207', '-ss', '50000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.527606010437012} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 13, ..., 249994, 249998, +tensor(crow_indices=tensor([ 0, 9, 19, ..., 249993, 249998, 250000]), - col_indices=tensor([ 417, 3050, 28352, ..., 48782, 1625, 48386]), - values=tensor([0.9216, 0.4652, 0.6011, ..., 0.6170, 0.6564, 0.4691]), + col_indices=tensor([ 8045, 12111, 14477, ..., 47402, 12160, 19361]), + values=tensor([0.9649, 0.3819, 0.5636, ..., 0.2633, 0.1370, 0.0196]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.8482, 0.9835, 0.6846, ..., 0.7970, 0.3559, 0.9710]) +tensor([0.0927, 0.4142, 0.0895, ..., 0.8219, 0.5339, 0.8064]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -56,16 +56,16 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 10.500975370407104 seconds +Time: 10.527606010437012 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 13, ..., 249994, 249998, +tensor(crow_indices=tensor([ 0, 9, 19, ..., 249993, 249998, 250000]), - col_indices=tensor([ 417, 3050, 28352, ..., 48782, 1625, 48386]), - values=tensor([0.9216, 0.4652, 0.6011, ..., 0.6170, 0.6564, 0.4691]), + col_indices=tensor([ 8045, 12111, 14477, ..., 47402, 12160, 19361]), + values=tensor([0.9649, 0.3819, 0.5636, ..., 0.2633, 0.1370, 0.0196]), size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) -tensor([0.8482, 0.9835, 0.6846, ..., 0.7970, 0.3559, 0.9710]) +tensor([0.0927, 0.4142, 0.0895, ..., 0.8219, 0.5339, 0.8064]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -73,13 +73,13 @@ Rows: 50000 Size: 2500000000 NNZ: 250000 Density: 0.0001 -Time: 10.500975370407104 seconds +Time: 10.527606010437012 seconds -[18.34, 17.82, 17.88, 21.83, 18.66, 17.91, 17.8, 17.7, 17.85, 17.95] -[89.06] -13.994852781295776 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 78314, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.500975370407104, 'TIME_S_1KI': 0.1340880988125636, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1246.381588702202, 'W': 89.06} -[18.34, 17.82, 17.88, 21.83, 18.66, 17.91, 17.8, 17.7, 17.85, 17.95, 18.61, 18.02, 17.66, 18.02, 17.94, 17.65, 17.89, 18.0, 17.71, 17.89] -326.735 -16.336750000000002 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 78314, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.500975370407104, 'TIME_S_1KI': 0.1340880988125636, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1246.381588702202, 'W': 89.06, 'J_1KI': 15.91518232630439, 'W_1KI': 1.1372168450085551, 'W_D': 72.72325000000001, 'J_D': 1017.7511775273682, 'W_D_1KI': 0.9286111040171617, 'J_D_1KI': 0.0118575363794106} +[18.32, 17.98, 17.86, 18.86, 18.68, 17.81, 17.68, 18.11, 17.76, 17.85] +[83.35] +14.173001050949097 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 80207, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.527606010437012, 'TIME_S_1KI': 0.13125545164932004, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1181.3196375966072, 'W': 83.35} +[18.32, 17.98, 17.86, 18.86, 18.68, 17.81, 17.68, 18.11, 17.76, 17.85, 18.01, 18.02, 17.88, 17.81, 17.97, 17.93, 17.96, 17.74, 17.82, 17.95] +323.93499999999995 +16.196749999999998 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 80207, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.527606010437012, 'TIME_S_1KI': 0.13125545164932004, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1181.3196375966072, 'W': 83.35, 'J_1KI': 14.728385771773127, 'W_1KI': 1.039186105950852, 'W_D': 67.15325, 'J_D': 951.7630828246474, 'W_D_1KI': 0.8372492425848118, 'J_D_1KI': 0.010438605640216089} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.001.json index 2dcd593..1ef0389 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.001.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.001.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 16503, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.453594446182251, "TIME_S_1KI": 0.6334360083731595, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1283.8258463859559, "W": 88.2, "J_1KI": 77.7934827840972, "W_1KI": 5.344482821305218, "W_D": 72.15925, "J_D": 1050.3391179798841, "W_D_1KI": 4.372492880082409, "J_D_1KI": 0.2649513955088414} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 17086, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.693793773651123, "TIME_S_1KI": 0.6258804737007564, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1274.9557392597198, "W": 87.4, "J_1KI": 74.61990748330328, "W_1KI": 5.1152990752663, "W_D": 70.92850000000001, "J_D": 1034.6761802297833, "W_D_1KI": 4.151264192906474, "J_D_1KI": 0.24296290488742092} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.001.output index eb8fa27..168fd00 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.001.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.001.output @@ -1,14 +1,15 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.6362464427947998} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.07488131523132324} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 51, 104, ..., 2499889, - 2499946, 2500000]), - col_indices=tensor([ 554, 2346, 3623, ..., 48601, 49342, 49458]), - values=tensor([0.6346, 0.6039, 0.4681, ..., 0.0926, 0.5934, 0.5905]), +tensor(crow_indices=tensor([ 0, 64, 108, ..., 2499910, + 2499955, 2500000]), + col_indices=tensor([ 984, 1625, 1972, ..., 46651, 48149, 48861]), + values=tensor([5.1121e-01, 5.6272e-01, 1.1145e-04, ..., + 9.0355e-01, 4.1789e-01, 4.2355e-01]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.3504, 0.0589, 0.7648, ..., 0.3104, 0.5013, 0.0863]) +tensor([0.3839, 0.9792, 0.8841, ..., 0.7211, 0.2437, 0.3590]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -16,19 +17,19 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 0.6362464427947998 seconds +Time: 0.07488131523132324 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '16503', '-ss', '50000', '-sd', '0.001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.453594446182251} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '14022', '-ss', '50000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 8.616644144058228} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 44, 95, ..., 2499888, - 2499946, 2500000]), - col_indices=tensor([ 29, 59, 1099, ..., 49158, 49549, 49729]), - values=tensor([0.6925, 0.1264, 0.7717, ..., 0.9011, 0.2629, 0.2267]), +tensor(crow_indices=tensor([ 0, 54, 105, ..., 2499907, + 2499960, 2500000]), + col_indices=tensor([ 369, 1157, 3425, ..., 45077, 46820, 49764]), + values=tensor([0.6429, 0.4063, 0.5775, ..., 0.7664, 0.6925, 0.8507]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.0922, 0.7073, 0.7429, ..., 0.1285, 0.2485, 0.0697]) +tensor([0.4381, 0.1550, 0.0791, ..., 0.0177, 0.9903, 0.0608]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -36,16 +37,19 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 10.453594446182251 seconds +Time: 8.616644144058228 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '17086', '-ss', '50000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.693793773651123} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 44, 95, ..., 2499888, - 2499946, 2500000]), - col_indices=tensor([ 29, 59, 1099, ..., 49158, 49549, 49729]), - values=tensor([0.6925, 0.1264, 0.7717, ..., 0.9011, 0.2629, 0.2267]), +tensor(crow_indices=tensor([ 0, 52, 91, ..., 2499883, + 2499936, 2500000]), + col_indices=tensor([ 188, 2361, 2646, ..., 48274, 48923, 49377]), + values=tensor([0.2734, 0.1056, 0.9298, ..., 0.4005, 0.9270, 0.9473]), size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.0922, 0.7073, 0.7429, ..., 0.1285, 0.2485, 0.0697]) +tensor([0.1965, 0.7813, 0.8576, ..., 0.6695, 0.1581, 0.1443]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -53,13 +57,30 @@ Rows: 50000 Size: 2500000000 NNZ: 2500000 Density: 0.001 -Time: 10.453594446182251 seconds +Time: 10.693793773651123 seconds -[18.19, 17.67, 17.57, 17.63, 17.67, 17.54, 18.18, 18.16, 17.63, 17.67] -[88.2] -14.555848598480225 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 16503, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.453594446182251, 'TIME_S_1KI': 0.6334360083731595, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1283.8258463859559, 'W': 88.2} -[18.19, 17.67, 17.57, 17.63, 17.67, 17.54, 18.18, 18.16, 17.63, 17.67, 18.06, 18.43, 18.51, 17.47, 17.4, 17.92, 17.64, 17.73, 17.72, 17.97] -320.81500000000005 -16.040750000000003 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 16503, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.453594446182251, 'TIME_S_1KI': 0.6334360083731595, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1283.8258463859559, 'W': 88.2, 'J_1KI': 77.7934827840972, 'W_1KI': 5.344482821305218, 'W_D': 72.15925, 'J_D': 1050.3391179798841, 'W_D_1KI': 4.372492880082409, 'J_D_1KI': 0.2649513955088414} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 52, 91, ..., 2499883, + 2499936, 2500000]), + col_indices=tensor([ 188, 2361, 2646, ..., 48274, 48923, 49377]), + values=tensor([0.2734, 0.1056, 0.9298, ..., 0.4005, 0.9270, 0.9473]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.1965, 0.7813, 0.8576, ..., 0.6695, 0.1581, 0.1443]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 10.693793773651123 seconds + +[18.43, 18.16, 17.96, 18.08, 18.33, 18.04, 18.36, 18.18, 18.22, 18.06] +[87.4] +14.587594270706177 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 17086, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.693793773651123, 'TIME_S_1KI': 0.6258804737007564, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1274.9557392597198, 'W': 87.4} +[18.43, 18.16, 17.96, 18.08, 18.33, 18.04, 18.36, 18.18, 18.22, 18.06, 18.48, 17.93, 19.19, 18.85, 18.16, 18.04, 18.63, 18.25, 18.43, 18.27] +329.43 +16.4715 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 17086, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.693793773651123, 'TIME_S_1KI': 0.6258804737007564, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1274.9557392597198, 'W': 87.4, 'J_1KI': 74.61990748330328, 'W_1KI': 5.1152990752663, 'W_D': 70.92850000000001, 'J_D': 1034.6761802297833, 'W_D_1KI': 4.151264192906474, 'J_D_1KI': 0.24296290488742092} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.01.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.01.json index aff89af..6f4838a 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.01.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.01.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.122996807098389, "TIME_S_1KI": 10.122996807098389, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 3257.7272432255745, "W": 53.79, "J_1KI": 3257.7272432255745, "W_1KI": 53.79, "W_D": 37.451750000000004, "J_D": 2268.2206038571003, "W_D_1KI": 37.451750000000004, "J_D_1KI": 37.451750000000004} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 1159, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.524485111236572, "TIME_S_1KI": 9.080660147745101, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2883.053437728882, "W": 54.72, "J_1KI": 2487.5353215952387, "W_1KI": 47.21311475409836, "W_D": 38.2975, "J_D": 2017.7949384397268, "W_D_1KI": 33.043572044866266, "J_D_1KI": 28.51041591446615} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.01.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.01.output index bbe283a..c966aa4 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.01.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.01.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.01', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.122996807098389} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 1.2965989112854004} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 509, 1001, ..., 24999037, - 24999516, 25000000]), - col_indices=tensor([ 11, 136, 275, ..., 49665, 49739, 49958]), - values=tensor([0.3161, 0.2173, 0.0956, ..., 0.2198, 0.0588, 0.5951]), +tensor(crow_indices=tensor([ 0, 462, 963, ..., 24999009, + 24999507, 25000000]), + col_indices=tensor([ 19, 54, 59, ..., 49770, 49789, 49840]), + values=tensor([0.0062, 0.3047, 0.0339, ..., 0.6533, 0.8264, 0.4065]), size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) -tensor([0.4562, 0.2414, 0.7128, ..., 0.4854, 0.8312, 0.1880]) +tensor([0.0572, 0.3375, 0.5398, ..., 0.2388, 0.0349, 0.7555]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -16,16 +16,19 @@ Rows: 50000 Size: 2500000000 NNZ: 25000000 Density: 0.01 -Time: 10.122996807098389 seconds +Time: 1.2965989112854004 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '809', '-ss', '50000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 7.848743677139282} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 509, 1001, ..., 24999037, - 24999516, 25000000]), - col_indices=tensor([ 11, 136, 275, ..., 49665, 49739, 49958]), - values=tensor([0.3161, 0.2173, 0.0956, ..., 0.2198, 0.0588, 0.5951]), +tensor(crow_indices=tensor([ 0, 486, 980, ..., 24998984, + 24999490, 25000000]), + col_indices=tensor([ 15, 197, 386, ..., 49782, 49793, 49889]), + values=tensor([0.3923, 0.3887, 0.8681, ..., 0.2288, 0.1762, 0.4981]), size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) -tensor([0.4562, 0.2414, 0.7128, ..., 0.4854, 0.8312, 0.1880]) +tensor([0.2965, 0.2935, 0.4053, ..., 0.9117, 0.1428, 0.4127]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -33,13 +36,70 @@ Rows: 50000 Size: 2500000000 NNZ: 25000000 Density: 0.01 -Time: 10.122996807098389 seconds +Time: 7.848743677139282 seconds -[18.4, 17.81, 22.08, 19.0, 18.1, 17.63, 17.8, 17.68, 17.76, 17.81] -[53.79] -60.56380820274353 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.122996807098389, 'TIME_S_1KI': 10.122996807098389, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3257.7272432255745, 'W': 53.79} -[18.4, 17.81, 22.08, 19.0, 18.1, 17.63, 17.8, 17.68, 17.76, 17.81, 18.18, 18.11, 17.85, 17.68, 17.63, 17.92, 17.78, 17.67, 18.05, 18.04] -326.765 -16.33825 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.122996807098389, 'TIME_S_1KI': 10.122996807098389, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3257.7272432255745, 'W': 53.79, 'J_1KI': 3257.7272432255745, 'W_1KI': 53.79, 'W_D': 37.451750000000004, 'J_D': 2268.2206038571003, 'W_D_1KI': 37.451750000000004, 'J_D_1KI': 37.451750000000004} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1082', '-ss', '50000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 9.800410747528076} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 497, 982, ..., 24999036, + 24999517, 25000000]), + col_indices=tensor([ 46, 129, 426, ..., 49653, 49766, 49830]), + values=tensor([0.6195, 0.6207, 0.9497, ..., 0.4637, 0.0557, 0.5508]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.1589, 0.3084, 0.3696, ..., 0.3780, 0.7461, 0.4084]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 9.800410747528076 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1159', '-ss', '50000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.524485111236572} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 513, 1013, ..., 24998968, + 24999473, 25000000]), + col_indices=tensor([ 48, 124, 131, ..., 49410, 49843, 49893]), + values=tensor([0.3835, 0.3241, 0.0409, ..., 0.5767, 0.7491, 0.8402]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.3332, 0.0589, 0.5895, ..., 0.7200, 0.0490, 0.9504]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 10.524485111236572 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 513, 1013, ..., 24998968, + 24999473, 25000000]), + col_indices=tensor([ 48, 124, 131, ..., 49410, 49843, 49893]), + values=tensor([0.3835, 0.3241, 0.0409, ..., 0.5767, 0.7491, 0.8402]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.3332, 0.0589, 0.5895, ..., 0.7200, 0.0490, 0.9504]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 10.524485111236572 seconds + +[18.54, 17.98, 18.07, 17.85, 18.22, 17.93, 18.48, 18.6, 18.31, 18.9] +[54.72] +52.68738007545471 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1159, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.524485111236572, 'TIME_S_1KI': 9.080660147745101, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2883.053437728882, 'W': 54.72} +[18.54, 17.98, 18.07, 17.85, 18.22, 17.93, 18.48, 18.6, 18.31, 18.9, 18.48, 18.15, 18.06, 18.06, 17.98, 17.84, 18.37, 17.81, 17.96, 21.64] +328.45 +16.4225 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 1159, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.524485111236572, 'TIME_S_1KI': 9.080660147745101, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2883.053437728882, 'W': 54.72, 'J_1KI': 2487.5353215952387, 'W_1KI': 47.21311475409836, 'W_D': 38.2975, 'J_D': 2017.7949384397268, 'W_D_1KI': 33.043572044866266, 'J_D_1KI': 28.51041591446615} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_1e-05.json index 774716c..be4ba65 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_1e-05.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_1e-05.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 111170, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.608571290969849, "TIME_S_1KI": 0.09542656553899297, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1151.6899712467193, "W": 82.52, "J_1KI": 10.35971909010272, "W_1KI": 0.7422865881083026, "W_D": 66.40424999999999, "J_D": 926.7705861992239, "W_D_1KI": 0.5973216695151569, "J_D_1KI": 0.005373047310561814} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 113077, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.7483811378479, "TIME_S_1KI": 0.09505364608052831, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1073.5031987619402, "W": 76.43000000000002, "J_1KI": 9.49355924513332, "W_1KI": 0.6759111048223778, "W_D": 60.05525000000002, "J_D": 843.5104406312707, "W_D_1KI": 0.5311004890472866, "J_D_1KI": 0.004696803850891751} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_1e-05.output index 05a9200..8dbecc1 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_1e-05.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_1e-05.output @@ -1,13 +1,13 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.11198759078979492} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.02812027931213379} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1, 3, ..., 24999, 25000, 25000]), - col_indices=tensor([42990, 31865, 45603, ..., 32, 31145, 42502]), - values=tensor([0.2680, 0.8494, 0.1049, ..., 0.3912, 0.0276, 0.1741]), +tensor(crow_indices=tensor([ 0, 1, 1, ..., 25000, 25000, 25000]), + col_indices=tensor([42362, 37248, 40868, ..., 37764, 10134, 17711]), + values=tensor([0.4763, 0.9715, 0.1475, ..., 0.3126, 0.8815, 0.0115]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.9789, 0.0522, 0.6759, ..., 0.0240, 0.3185, 0.8367]) +tensor([0.9973, 0.6491, 0.6388, ..., 0.7622, 0.1974, 0.5505]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -15,37 +15,18 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 0.11198759078979492 seconds +Time: 0.02812027931213379 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '93760', '-ss', '50000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 8.855576515197754} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 1, ..., 25000, 25000, 25000]), - col_indices=tensor([ 213, 39463, 2534, ..., 21769, 20293, 48702]), - values=tensor([0.6944, 0.6922, 0.1012, ..., 0.1071, 0.8204, 0.4025]), - size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.8784, 0.5968, 0.0083, ..., 0.0039, 0.6938, 0.6481]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 25000 -Density: 1e-05 -Time: 8.855576515197754 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '111170', '-ss', '50000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.608571290969849} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '37339', '-ss', '50000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 3.4671623706817627} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 1, ..., 24999, 24999, 25000]), - col_indices=tensor([37263, 14810, 49193, ..., 22299, 19031, 40338]), - values=tensor([0.7995, 0.8033, 0.3510, ..., 0.6585, 0.0621, 0.7519]), + col_indices=tensor([ 629, 39590, 3531, ..., 29068, 27842, 31077]), + values=tensor([0.8879, 0.6863, 0.1252, ..., 0.4874, 0.7763, 0.0925]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.9318, 0.0252, 0.9296, ..., 0.2820, 0.1820, 0.1630]) +tensor([0.1798, 0.4085, 0.6464, ..., 0.4512, 0.1603, 0.8018]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -53,15 +34,18 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 10.608571290969849 seconds +Time: 3.4671623706817627 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '113077', '-ss', '50000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.7483811378479} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 1, ..., 24999, 24999, 25000]), - col_indices=tensor([37263, 14810, 49193, ..., 22299, 19031, 40338]), - values=tensor([0.7995, 0.8033, 0.3510, ..., 0.6585, 0.0621, 0.7519]), +tensor(crow_indices=tensor([ 0, 2, 3, ..., 24998, 24999, 25000]), + col_indices=tensor([ 3755, 45041, 41651, ..., 28239, 26624, 23506]), + values=tensor([0.7255, 0.9443, 0.1927, ..., 0.4549, 0.6422, 0.3790]), size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) -tensor([0.9318, 0.0252, 0.9296, ..., 0.2820, 0.1820, 0.1630]) +tensor([0.1750, 0.3712, 0.8832, ..., 0.2728, 0.8510, 0.3193]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -69,13 +53,29 @@ Rows: 50000 Size: 2500000000 NNZ: 25000 Density: 1e-05 -Time: 10.608571290969849 seconds +Time: 10.7483811378479 seconds -[18.42, 17.72, 18.1, 17.98, 17.9, 18.19, 17.99, 17.99, 17.89, 17.81] -[82.52] -13.9564950466156 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 111170, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.608571290969849, 'TIME_S_1KI': 0.09542656553899297, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1151.6899712467193, 'W': 82.52} -[18.42, 17.72, 18.1, 17.98, 17.9, 18.19, 17.99, 17.99, 17.89, 17.81, 18.18, 17.91, 17.74, 18.05, 17.74, 17.64, 17.73, 17.76, 17.96, 17.64] -322.315 -16.11575 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 111170, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.608571290969849, 'TIME_S_1KI': 0.09542656553899297, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1151.6899712467193, 'W': 82.52, 'J_1KI': 10.35971909010272, 'W_1KI': 0.7422865881083026, 'W_D': 66.40424999999999, 'J_D': 926.7705861992239, 'W_D_1KI': 0.5973216695151569, 'J_D_1KI': 0.005373047310561814} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 3, ..., 24998, 24999, 25000]), + col_indices=tensor([ 3755, 45041, 41651, ..., 28239, 26624, 23506]), + values=tensor([0.7255, 0.9443, 0.1927, ..., 0.4549, 0.6422, 0.3790]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.1750, 0.3712, 0.8832, ..., 0.2728, 0.8510, 0.3193]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.7483811378479 seconds + +[18.23, 17.8, 18.68, 17.79, 18.26, 17.97, 18.22, 17.87, 18.18, 18.24] +[76.43] +14.045573711395264 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 113077, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.7483811378479, 'TIME_S_1KI': 0.09505364608052831, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1073.5031987619402, 'W': 76.43000000000002} +[18.23, 17.8, 18.68, 17.79, 18.26, 17.97, 18.22, 17.87, 18.18, 18.24, 18.73, 17.83, 18.03, 17.81, 18.07, 18.07, 17.89, 17.96, 20.53, 17.87] +327.495 +16.37475 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 113077, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.7483811378479, 'TIME_S_1KI': 0.09505364608052831, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1073.5031987619402, 'W': 76.43000000000002, 'J_1KI': 9.49355924513332, 'W_1KI': 0.6759111048223778, 'W_D': 60.05525000000002, 'J_D': 843.5104406312707, 'W_D_1KI': 0.5311004890472866, 'J_D_1KI': 0.004696803850891751} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_5e-05.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_5e-05.json index cda8c88..e084c9d 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_5e-05.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_5e-05.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 87647, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.566825151443481, "TIME_S_1KI": 0.12056117324544459, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1221.4293744707109, "W": 86.61000000000001, "J_1KI": 13.935780739451559, "W_1KI": 0.9881684484352005, "W_D": 70.62725000000002, "J_D": 996.0304559298756, "W_D_1KI": 0.8058148025602704, "J_D_1KI": 0.009193866333819417} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 88156, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.868364572525024, "TIME_S_1KI": 0.12328559113985461, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1132.9122091054917, "W": 79.86, "J_1KI": 12.851220666834834, "W_1KI": 0.9058940968283498, "W_D": 63.193749999999994, "J_D": 896.4809781387447, "W_D_1KI": 0.716840033576841, "J_D_1KI": 0.00813149455030674} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_5e-05.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_5e-05.output index 97cfaa9..a0c02dc 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_5e-05.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_5e-05.output @@ -1,54 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '5e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.14960765838623047} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 124995, 124998, - 125000]), - col_indices=tensor([ 5328, 5758, 21245, ..., 40217, 2052, 16010]), - values=tensor([0.8699, 0.1385, 0.5605, ..., 0.3914, 0.4912, 0.7839]), - size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) -tensor([0.1699, 0.5973, 0.2081, ..., 0.0281, 0.7559, 0.8178]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 125000 -Density: 5e-05 -Time: 0.14960765838623047 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '70183', '-ss', '50000', '-sd', '5e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 8.40775990486145} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 8, ..., 124997, 124999, - 125000]), - col_indices=tensor([ 5449, 14906, 26173, ..., 30325, 48181, 9186]), - values=tensor([0.5897, 0.0944, 0.5204, ..., 0.1014, 0.9614, 0.5057]), - size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) -tensor([0.5323, 0.2435, 0.2265, ..., 0.3258, 0.3469, 0.7874]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([50000, 50000]) -Rows: 50000 -Size: 2500000000 -NNZ: 125000 -Density: 5e-05 -Time: 8.40775990486145 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '87647', '-ss', '50000', '-sd', '5e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.566825151443481} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '50000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.028945207595825195} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 2, 5, ..., 124995, 124996, 125000]), - col_indices=tensor([14301, 36836, 2496, ..., 26599, 44389, 45216]), - values=tensor([0.0827, 0.6231, 0.3315, ..., 0.4386, 0.5843, 0.2734]), + col_indices=tensor([ 6853, 13029, 2913, ..., 16543, 38720, 48018]), + values=tensor([0.0310, 0.8074, 0.8860, ..., 0.7640, 0.7803, 0.3703]), size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) -tensor([0.3713, 0.0426, 0.5176, ..., 0.5970, 0.6758, 0.3745]) +tensor([0.5471, 0.4507, 0.3833, ..., 0.1733, 0.0716, 0.3889]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -56,16 +16,19 @@ Rows: 50000 Size: 2500000000 NNZ: 125000 Density: 5e-05 -Time: 10.566825151443481 seconds +Time: 0.028945207595825195 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '36275', '-ss', '50000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 4.320595741271973} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 2, 5, ..., 124995, 124996, +tensor(crow_indices=tensor([ 0, 1, 6, ..., 124997, 124999, 125000]), - col_indices=tensor([14301, 36836, 2496, ..., 26599, 44389, 45216]), - values=tensor([0.0827, 0.6231, 0.3315, ..., 0.4386, 0.5843, 0.2734]), + col_indices=tensor([26872, 2155, 12844, ..., 14460, 31839, 14088]), + values=tensor([0.4897, 0.3509, 0.0171, ..., 0.2036, 0.0300, 0.0283]), size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) -tensor([0.3713, 0.0426, 0.5176, ..., 0.5970, 0.6758, 0.3745]) +tensor([0.1984, 0.6261, 0.3986, ..., 0.2975, 0.8868, 0.2739]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([50000, 50000]) @@ -73,13 +36,50 @@ Rows: 50000 Size: 2500000000 NNZ: 125000 Density: 5e-05 -Time: 10.566825151443481 seconds +Time: 4.320595741271973 seconds -[18.15, 17.58, 18.01, 17.67, 17.78, 17.59, 17.99, 17.46, 17.88, 17.7] -[86.61] -14.102636814117432 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 87647, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.566825151443481, 'TIME_S_1KI': 0.12056117324544459, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1221.4293744707109, 'W': 86.61000000000001} -[18.15, 17.58, 18.01, 17.67, 17.78, 17.59, 17.99, 17.46, 17.88, 17.7, 18.22, 17.6, 17.52, 17.68, 18.1, 17.84, 17.59, 17.63, 17.89, 17.62] -319.655 -15.98275 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 87647, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.566825151443481, 'TIME_S_1KI': 0.12056117324544459, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1221.4293744707109, 'W': 86.61000000000001, 'J_1KI': 13.935780739451559, 'W_1KI': 0.9881684484352005, 'W_D': 70.62725000000002, 'J_D': 996.0304559298756, 'W_D_1KI': 0.8058148025602704, 'J_D_1KI': 0.009193866333819417} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '88156', '-ss', '50000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 125000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.868364572525024} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 6, ..., 124997, 124998, + 125000]), + col_indices=tensor([17427, 27540, 29335, ..., 48451, 4975, 32778]), + values=tensor([0.3820, 0.7973, 0.1142, ..., 0.5863, 0.3733, 0.5873]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.7507, 0.0731, 0.4946, ..., 0.5316, 0.6298, 0.9971]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 10.868364572525024 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 6, ..., 124997, 124998, + 125000]), + col_indices=tensor([17427, 27540, 29335, ..., 48451, 4975, 32778]), + values=tensor([0.3820, 0.7973, 0.1142, ..., 0.5863, 0.3733, 0.5873]), + size=(50000, 50000), nnz=125000, layout=torch.sparse_csr) +tensor([0.7507, 0.0731, 0.4946, ..., 0.5316, 0.6298, 0.9971]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 125000 +Density: 5e-05 +Time: 10.868364572525024 seconds + +[18.49, 17.88, 18.37, 17.92, 18.86, 17.84, 18.14, 20.87, 18.57, 18.13] +[79.86] +14.186228513717651 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 88156, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.868364572525024, 'TIME_S_1KI': 0.12328559113985461, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1132.9122091054917, 'W': 79.86} +[18.49, 17.88, 18.37, 17.92, 18.86, 17.84, 18.14, 20.87, 18.57, 18.13, 18.45, 17.94, 18.01, 21.62, 18.32, 18.14, 18.03, 18.0, 18.36, 17.84] +333.32500000000005 +16.66625 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 88156, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 125000, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.868364572525024, 'TIME_S_1KI': 0.12328559113985461, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1132.9122091054917, 'W': 79.86, 'J_1KI': 12.851220666834834, 'W_1KI': 0.9058940968283498, 'W_D': 63.193749999999994, 'J_D': 896.4809781387447, 'W_D_1KI': 0.716840033576841, 'J_D_1KI': 0.00813149455030674} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.0001.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.0001.json index 0ba39e0..63a6b21 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.0001.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.0001.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 323751, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.660384178161621, "TIME_S_1KI": 0.03292772587007182, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1091.8019851422312, "W": 79.43, "J_1KI": 3.3723509275407064, "W_1KI": 0.24534287152781, "W_D": 62.86500000000001, "J_D": 864.1084199416639, "W_D_1KI": 0.19417700640306904, "J_D_1KI": 0.0005997726845726161} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 339415, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.661308526992798, "TIME_S_1KI": 0.031410834898259646, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1042.263754928112, "W": 73.63, "J_1KI": 3.0707651545397576, "W_1KI": 0.2169320743043177, "W_D": 56.882, "J_D": 805.1887397503853, "W_D_1KI": 0.1675883505443189, "J_D_1KI": 0.0004937564649303033} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.0001.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.0001.output index 9a09fc6..4acadea 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.0001.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.0001.output @@ -1,13 +1,33 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.0001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.04866957664489746} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.02093958854675293} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 2500, 2500, 2500]), + col_indices=tensor([ 145, 181, 299, ..., 1340, 4416, 166]), + values=tensor([0.2713, 0.7441, 0.5681, ..., 0.3863, 0.3329, 0.3299]), + size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) +tensor([6.8436e-01, 7.7662e-01, 5.3826e-02, ..., 2.4557e-01, 1.4818e-01, + 6.5619e-04]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500 +Density: 0.0001 +Time: 0.02093958854675293 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '50144', '-ss', '5000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 1.5512330532073975} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 2500, 2500, 2500]), - col_indices=tensor([2014, 2333, 4073, ..., 1117, 3505, 2207]), - values=tensor([0.1339, 0.9980, 0.7024, ..., 0.3782, 0.0544, 0.2308]), + col_indices=tensor([ 261, 2124, 2825, ..., 2342, 1684, 3815]), + values=tensor([0.1132, 0.9807, 0.3410, ..., 0.0783, 0.3569, 0.0713]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.2751, 0.2895, 0.5101, ..., 0.3933, 0.2935, 0.0678]) +tensor([0.8182, 0.0907, 0.1359, ..., 0.4059, 0.0754, 0.0727]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -15,18 +35,18 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 0.04866957664489746 seconds +Time: 1.5512330532073975 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '215740', '-ss', '5000', '-sd', '0.0001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 6.996948957443237} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '339415', '-ss', '5000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.661308526992798} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 1, 1, ..., 2497, 2498, 2500]), - col_indices=tensor([3059, 3492, 4969, ..., 3863, 1265, 1575]), - values=tensor([0.7839, 0.7068, 0.1359, ..., 0.6765, 0.7179, 0.7182]), + col_indices=tensor([ 91, 2131, 2855, ..., 2446, 470, 1581]), + values=tensor([0.9229, 0.3729, 0.6792, ..., 0.1416, 0.2267, 0.3921]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.2637, 0.1133, 0.2354, ..., 0.5397, 0.9545, 0.7707]) +tensor([0.5750, 0.0749, 0.6665, ..., 0.8045, 0.0578, 0.3106]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -34,18 +54,15 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 6.996948957443237 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '323751', '-ss', '5000', '-sd', '0.0001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.660384178161621} +Time: 10.661308526992798 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 1, ..., 2500, 2500, 2500]), - col_indices=tensor([4531, 3967, 1182, ..., 4005, 3234, 3449]), - values=tensor([0.1835, 0.1001, 0.2805, ..., 0.8615, 0.2040, 0.1828]), +tensor(crow_indices=tensor([ 0, 1, 1, ..., 2497, 2498, 2500]), + col_indices=tensor([ 91, 2131, 2855, ..., 2446, 470, 1581]), + values=tensor([0.9229, 0.3729, 0.6792, ..., 0.1416, 0.2267, 0.3921]), size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.2085, 0.7612, 0.9816, ..., 0.7337, 0.6921, 0.5494]) +tensor([0.5750, 0.0749, 0.6665, ..., 0.8045, 0.0578, 0.3106]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,29 +70,13 @@ Rows: 5000 Size: 25000000 NNZ: 2500 Density: 0.0001 -Time: 10.660384178161621 seconds +Time: 10.661308526992798 seconds -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 1, ..., 2500, 2500, 2500]), - col_indices=tensor([4531, 3967, 1182, ..., 4005, 3234, 3449]), - values=tensor([0.1835, 0.1001, 0.2805, ..., 0.8615, 0.2040, 0.1828]), - size=(5000, 5000), nnz=2500, layout=torch.sparse_csr) -tensor([0.2085, 0.7612, 0.9816, ..., 0.7337, 0.6921, 0.5494]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([5000, 5000]) -Rows: 5000 -Size: 25000000 -NNZ: 2500 -Density: 0.0001 -Time: 10.660384178161621 seconds - -[18.46, 17.59, 17.71, 17.79, 18.06, 17.81, 22.16, 18.13, 17.88, 17.67] -[79.43] -13.745461225509644 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 323751, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.660384178161621, 'TIME_S_1KI': 0.03292772587007182, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1091.8019851422312, 'W': 79.43} -[18.46, 17.59, 17.71, 17.79, 18.06, 17.81, 22.16, 18.13, 17.88, 17.67, 18.24, 17.78, 22.87, 17.85, 17.88, 17.75, 18.09, 17.86, 17.93, 17.95] -331.3 -16.565 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 323751, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.660384178161621, 'TIME_S_1KI': 0.03292772587007182, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1091.8019851422312, 'W': 79.43, 'J_1KI': 3.3723509275407064, 'W_1KI': 0.24534287152781, 'W_D': 62.86500000000001, 'J_D': 864.1084199416639, 'W_D_1KI': 0.19417700640306904, 'J_D_1KI': 0.0005997726845726161} +[18.68, 17.92, 18.02, 18.26, 18.14, 18.26, 18.3, 17.84, 18.15, 17.87] +[73.63] +14.155422449111938 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 339415, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.661308526992798, 'TIME_S_1KI': 0.031410834898259646, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1042.263754928112, 'W': 73.63} +[18.68, 17.92, 18.02, 18.26, 18.14, 18.26, 18.3, 17.84, 18.15, 17.87, 18.33, 18.37, 18.02, 18.02, 22.34, 18.22, 18.25, 22.38, 17.9, 18.26] +334.9599999999999 +16.747999999999998 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 339415, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.661308526992798, 'TIME_S_1KI': 0.031410834898259646, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1042.263754928112, 'W': 73.63, 'J_1KI': 3.0707651545397576, 'W_1KI': 0.2169320743043177, 'W_D': 56.882, 'J_D': 805.1887397503853, 'W_D_1KI': 0.1675883505443189, 'J_D_1KI': 0.0004937564649303033} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.001.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.001.json index 9b486c5..4f7c98c 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.001.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.001.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 244536, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.47565221786499, "TIME_S_1KI": 0.04283889577757463, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1122.3107054543495, "W": 80.61, "J_1KI": 4.589552071900863, "W_1KI": 0.32964471488860536, "W_D": 64.2855, "J_D": 895.0292129448652, "W_D_1KI": 0.2628876729806654, "J_D_1KI": 0.0010750469173482246} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 242735, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.6920804977417, "TIME_S_1KI": 0.044048367552028754, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1022.2163880014419, "W": 74.91, "J_1KI": 4.211244311703883, "W_1KI": 0.30860815292397054, "W_D": 58.500499999999995, "J_D": 798.2935496766567, "W_D_1KI": 0.241005623416483, "J_D_1KI": 0.000992875454369922} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.001.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.001.output index a34514c..6818997 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.001.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.001.output @@ -1,13 +1,13 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.05913829803466797} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.019707918167114258} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 4, 10, ..., 24990, 24996, 25000]), - col_indices=tensor([ 91, 1225, 4183, ..., 1260, 1498, 1816]), - values=tensor([0.4538, 0.5289, 0.0869, ..., 0.3885, 0.0043, 0.2412]), +tensor(crow_indices=tensor([ 0, 4, 9, ..., 24992, 24998, 25000]), + col_indices=tensor([2443, 3271, 4233, ..., 3520, 3792, 4350]), + values=tensor([0.8426, 0.5824, 0.3389, ..., 0.9840, 0.1147, 0.8239]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.3917, 0.0968, 0.9015, ..., 0.9180, 0.2586, 0.0822]) +tensor([0.5471, 0.6226, 0.3278, ..., 0.2451, 0.7959, 0.6112]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -15,18 +15,18 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 0.05913829803466797 seconds +Time: 0.019707918167114258 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '177549', '-ss', '5000', '-sd', '0.001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 7.6236653327941895} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '53278', '-ss', '5000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 2.304640293121338} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 5, 10, ..., 24989, 24994, 25000]), - col_indices=tensor([ 412, 1102, 1155, ..., 695, 1250, 1499]), - values=tensor([0.5017, 0.7691, 0.1146, ..., 0.5300, 0.6967, 0.6559]), +tensor(crow_indices=tensor([ 0, 9, 13, ..., 24990, 24994, 25000]), + col_indices=tensor([ 876, 897, 2274, ..., 2103, 3712, 4740]), + values=tensor([0.9508, 0.2626, 0.2379, ..., 0.2341, 0.9066, 0.6182]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.7930, 0.9227, 0.2342, ..., 0.4335, 0.3949, 0.6803]) +tensor([0.8511, 0.0306, 0.7639, ..., 0.5025, 0.8599, 0.9690]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -34,18 +34,18 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 7.6236653327941895 seconds +Time: 2.304640293121338 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '244536', '-ss', '5000', '-sd', '0.001', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.47565221786499} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '242735', '-ss', '5000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.6920804977417} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 5, 8, ..., 24986, 24994, 25000]), - col_indices=tensor([ 194, 369, 2258, ..., 1755, 2835, 2987]), - values=tensor([0.8194, 0.2005, 0.5023, ..., 0.6221, 0.3751, 0.8448]), +tensor(crow_indices=tensor([ 0, 6, 10, ..., 24991, 24997, 25000]), + col_indices=tensor([1152, 1177, 2929, ..., 1264, 2609, 4571]), + values=tensor([0.4587, 0.9835, 0.0653, ..., 0.8655, 0.2110, 0.7343]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.5474, 0.2694, 0.2646, ..., 0.5254, 0.5763, 0.9998]) +tensor([0.5612, 0.6517, 0.4101, ..., 0.1691, 0.2414, 0.3717]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,15 +53,15 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 10.47565221786499 seconds +Time: 10.6920804977417 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 5, 8, ..., 24986, 24994, 25000]), - col_indices=tensor([ 194, 369, 2258, ..., 1755, 2835, 2987]), - values=tensor([0.8194, 0.2005, 0.5023, ..., 0.6221, 0.3751, 0.8448]), +tensor(crow_indices=tensor([ 0, 6, 10, ..., 24991, 24997, 25000]), + col_indices=tensor([1152, 1177, 2929, ..., 1264, 2609, 4571]), + values=tensor([0.4587, 0.9835, 0.0653, ..., 0.8655, 0.2110, 0.7343]), size=(5000, 5000), nnz=25000, layout=torch.sparse_csr) -tensor([0.5474, 0.2694, 0.2646, ..., 0.5254, 0.5763, 0.9998]) +tensor([0.5612, 0.6517, 0.4101, ..., 0.1691, 0.2414, 0.3717]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -69,13 +69,13 @@ Rows: 5000 Size: 25000000 NNZ: 25000 Density: 0.001 -Time: 10.47565221786499 seconds +Time: 10.6920804977417 seconds -[18.33, 18.0, 17.95, 18.79, 18.11, 18.49, 17.87, 17.96, 17.71, 17.91] -[80.61] -13.922723054885864 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 244536, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.47565221786499, 'TIME_S_1KI': 0.04283889577757463, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1122.3107054543495, 'W': 80.61} -[18.33, 18.0, 17.95, 18.79, 18.11, 18.49, 17.87, 17.96, 17.71, 17.91, 18.2, 17.81, 17.83, 18.46, 18.26, 17.74, 18.1, 18.0, 17.87, 20.64] -326.49 -16.3245 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 244536, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.47565221786499, 'TIME_S_1KI': 0.04283889577757463, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1122.3107054543495, 'W': 80.61, 'J_1KI': 4.589552071900863, 'W_1KI': 0.32964471488860536, 'W_D': 64.2855, 'J_D': 895.0292129448652, 'W_D_1KI': 0.2628876729806654, 'J_D_1KI': 0.0010750469173482246} +[18.79, 17.83, 18.25, 17.86, 18.02, 18.39, 18.09, 17.82, 18.07, 17.75] +[74.91] +13.64592695236206 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 242735, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.6920804977417, 'TIME_S_1KI': 0.044048367552028754, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1022.2163880014419, 'W': 74.91} +[18.79, 17.83, 18.25, 17.86, 18.02, 18.39, 18.09, 17.82, 18.07, 17.75, 18.54, 18.01, 18.05, 19.12, 19.51, 18.12, 18.41, 17.83, 18.29, 17.96] +328.19 +16.4095 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 242735, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.6920804977417, 'TIME_S_1KI': 0.044048367552028754, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1022.2163880014419, 'W': 74.91, 'J_1KI': 4.211244311703883, 'W_1KI': 0.30860815292397054, 'W_D': 58.500499999999995, 'J_D': 798.2935496766567, 'W_D_1KI': 0.241005623416483, 'J_D_1KI': 0.000992875454369922} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.01.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.01.json index 6d5d9d5..64ab37a 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.01.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.01.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 162920, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.414216756820679, "TIME_S_1KI": 0.06392227324343652, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1267.1163623809814, "W": 89.2, "J_1KI": 7.7775372107843195, "W_1KI": 0.5475079793763811, "W_D": 72.96625, "J_D": 1036.5104178988934, "W_D_1KI": 0.44786551681807024, "J_D_1KI": 0.0027489904052177155} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 161950, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.493181943893433, "TIME_S_1KI": 0.06479272580360255, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1161.5640621185303, "W": 84.0, "J_1KI": 7.172362223640199, "W_1KI": 0.5186786045075641, "W_D": 67.18725, "J_D": 929.0749408639671, "W_D_1KI": 0.41486415560358136, "J_D_1KI": 0.0025616804915318393} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.01.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.01.output index 548b49c..f4d043e 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.01.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.01.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.01', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.08090949058532715} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.022989749908447266} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 56, 99, ..., 249898, 249957, +tensor(crow_indices=tensor([ 0, 53, 112, ..., 249913, 249957, 250000]), - col_indices=tensor([ 27, 423, 607, ..., 4371, 4379, 4963]), - values=tensor([0.2630, 0.0898, 0.5767, ..., 0.9425, 0.5823, 0.3558]), + col_indices=tensor([ 48, 54, 234, ..., 4368, 4853, 4864]), + values=tensor([0.3452, 0.1008, 0.0125, ..., 0.4983, 0.8936, 0.7126]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.9446, 0.5109, 0.8342, ..., 0.1182, 0.7217, 0.5335]) +tensor([0.5619, 0.6285, 0.8433, ..., 0.7149, 0.5039, 0.6932]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,19 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 0.08090949058532715 seconds +Time: 0.022989749908447266 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '129774', '-ss', '5000', '-sd', '0.01', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 8.36373782157898} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '45672', '-ss', '5000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 2.961124897003174} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 58, 109, ..., 249903, 249955, +tensor(crow_indices=tensor([ 0, 53, 98, ..., 249913, 249948, 250000]), - col_indices=tensor([ 168, 371, 372, ..., 4708, 4876, 4879]), - values=tensor([0.3469, 0.2972, 0.5901, ..., 0.0640, 0.2331, 0.9267]), + col_indices=tensor([ 202, 295, 369, ..., 4836, 4929, 4943]), + values=tensor([0.0950, 0.5576, 0.0327, ..., 0.3192, 0.9052, 0.1110]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.6978, 0.0250, 0.3323, ..., 0.6356, 0.0847, 0.1678]) +tensor([0.6070, 0.1874, 0.1819, ..., 0.4756, 0.1999, 0.3064]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -36,19 +36,19 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 8.36373782157898 seconds +Time: 2.961124897003174 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '162920', '-ss', '5000', '-sd', '0.01', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.414216756820679} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '161950', '-ss', '5000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.493181943893433} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 50, 103, ..., 249909, 249962, +tensor(crow_indices=tensor([ 0, 48, 111, ..., 249911, 249964, 250000]), - col_indices=tensor([ 86, 107, 119, ..., 4571, 4629, 4973]), - values=tensor([0.3206, 0.5923, 0.4852, ..., 0.3807, 0.1641, 0.9581]), + col_indices=tensor([ 19, 43, 144, ..., 4843, 4924, 4947]), + values=tensor([0.0652, 0.5238, 0.9360, ..., 0.5118, 0.2782, 0.1343]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.7369, 0.6267, 0.7979, ..., 0.0231, 0.0899, 0.6643]) +tensor([0.4213, 0.5109, 0.7737, ..., 0.0670, 0.5810, 0.9899]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -56,16 +56,16 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 10.414216756820679 seconds +Time: 10.493181943893433 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 50, 103, ..., 249909, 249962, +tensor(crow_indices=tensor([ 0, 48, 111, ..., 249911, 249964, 250000]), - col_indices=tensor([ 86, 107, 119, ..., 4571, 4629, 4973]), - values=tensor([0.3206, 0.5923, 0.4852, ..., 0.3807, 0.1641, 0.9581]), + col_indices=tensor([ 19, 43, 144, ..., 4843, 4924, 4947]), + values=tensor([0.0652, 0.5238, 0.9360, ..., 0.5118, 0.2782, 0.1343]), size=(5000, 5000), nnz=250000, layout=torch.sparse_csr) -tensor([0.7369, 0.6267, 0.7979, ..., 0.0231, 0.0899, 0.6643]) +tensor([0.4213, 0.5109, 0.7737, ..., 0.0670, 0.5810, 0.9899]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -73,13 +73,13 @@ Rows: 5000 Size: 25000000 NNZ: 250000 Density: 0.01 -Time: 10.414216756820679 seconds +Time: 10.493181943893433 seconds -[18.27, 17.91, 18.14, 17.62, 17.8, 17.9, 19.35, 17.84, 17.83, 17.75] -[89.2] -14.205340385437012 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 162920, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.414216756820679, 'TIME_S_1KI': 0.06392227324343652, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1267.1163623809814, 'W': 89.2} -[18.27, 17.91, 18.14, 17.62, 17.8, 17.9, 19.35, 17.84, 17.83, 17.75, 18.16, 17.99, 17.94, 17.95, 17.67, 17.72, 18.79, 18.01, 18.17, 17.91] -324.675 -16.23375 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 162920, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.414216756820679, 'TIME_S_1KI': 0.06392227324343652, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1267.1163623809814, 'W': 89.2, 'J_1KI': 7.7775372107843195, 'W_1KI': 0.5475079793763811, 'W_D': 72.96625, 'J_D': 1036.5104178988934, 'W_D_1KI': 0.44786551681807024, 'J_D_1KI': 0.0027489904052177155} +[18.86, 18.02, 19.18, 18.0, 18.43, 21.89, 19.39, 17.96, 18.27, 17.81] +[84.0] +13.82814359664917 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 161950, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.493181943893433, 'TIME_S_1KI': 0.06479272580360255, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1161.5640621185303, 'W': 84.0} +[18.86, 18.02, 19.18, 18.0, 18.43, 21.89, 19.39, 17.96, 18.27, 17.81, 18.1, 20.23, 20.02, 18.19, 17.98, 17.88, 18.2, 17.87, 18.32, 18.08] +336.255 +16.81275 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 161950, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.493181943893433, 'TIME_S_1KI': 0.06479272580360255, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1161.5640621185303, 'W': 84.0, 'J_1KI': 7.172362223640199, 'W_1KI': 0.5186786045075641, 'W_D': 67.18725, 'J_D': 929.0749408639671, 'W_D_1KI': 0.41486415560358136, 'J_D_1KI': 0.0025616804915318393} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.05.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.05.json index 373bd0d..c0ca085 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.05.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.05.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 44182, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.514305114746094, "TIME_S_1KI": 0.2379771199752409, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1269.0750387310982, "W": 89.25, "J_1KI": 28.723802424767964, "W_1KI": 2.020053415418044, "W_D": 73.10575, "J_D": 1039.51465000242, "W_D_1KI": 1.6546500837445115, "J_D_1KI": 0.03745077370296753} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 46969, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.723698854446411, "TIME_S_1KI": 0.22831439575989293, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1262.0827813720703, "W": 87.97, "J_1KI": 26.87054826315379, "W_1KI": 1.8729374693947072, "W_D": 71.6635, "J_D": 1028.1376537780761, "W_D_1KI": 1.5257616725925611, "J_D_1KI": 0.03248444021785776} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.05.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.05.output index f73f661..62668bd 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.05.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.05.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 0.25171899795532227} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 0.03811240196228027} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 257, 510, ..., 1249508, - 1249742, 1250000]), - col_indices=tensor([ 10, 14, 18, ..., 4971, 4976, 4993]), - values=tensor([0.7215, 0.2673, 0.1887, ..., 0.2021, 0.2524, 0.6553]), +tensor(crow_indices=tensor([ 0, 252, 486, ..., 1249499, + 1249768, 1250000]), + col_indices=tensor([ 15, 65, 81, ..., 4947, 4948, 4952]), + values=tensor([0.2497, 0.0794, 0.3182, ..., 0.5399, 0.7483, 0.2341]), size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.6580, 0.5682, 0.5133, ..., 0.8598, 0.8673, 0.3117]) +tensor([0.6929, 0.1024, 0.7145, ..., 0.7803, 0.6014, 0.5585]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,19 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 1250000 Density: 0.05 -Time: 0.25171899795532227 seconds +Time: 0.03811240196228027 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '41713', '-ss', '5000', '-sd', '0.05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 9.913089752197266} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '27550', '-ss', '5000', '-sd', '0.05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 6.158770799636841} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 230, 476, ..., 1249535, - 1249754, 1250000]), - col_indices=tensor([ 26, 32, 49, ..., 4901, 4965, 4968]), - values=tensor([0.6798, 0.0159, 0.6379, ..., 0.7230, 0.8415, 0.2703]), +tensor(crow_indices=tensor([ 0, 250, 496, ..., 1249504, + 1249751, 1250000]), + col_indices=tensor([ 13, 88, 93, ..., 4888, 4919, 4936]), + values=tensor([0.3293, 0.4307, 0.3782, ..., 0.2045, 0.2965, 0.3765]), size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.9905, 0.3660, 0.2565, ..., 0.2843, 0.2598, 0.4388]) +tensor([0.2742, 0.5184, 0.9225, ..., 0.0830, 0.2762, 0.4744]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -36,19 +36,19 @@ Rows: 5000 Size: 25000000 NNZ: 1250000 Density: 0.05 -Time: 9.913089752197266 seconds +Time: 6.158770799636841 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '44182', '-ss', '5000', '-sd', '0.05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.514305114746094} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '46969', '-ss', '5000', '-sd', '0.05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.723698854446411} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 234, 486, ..., 1249518, - 1249775, 1250000]), - col_indices=tensor([ 2, 39, 64, ..., 4915, 4964, 4987]), - values=tensor([0.0513, 0.5642, 0.6511, ..., 0.0332, 0.5293, 0.6294]), +tensor(crow_indices=tensor([ 0, 267, 518, ..., 1249533, + 1249757, 1250000]), + col_indices=tensor([ 4, 12, 26, ..., 4948, 4976, 4977]), + values=tensor([0.8262, 0.2304, 0.8718, ..., 0.9371, 0.9418, 0.0811]), size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.8655, 0.6659, 0.2976, ..., 0.0599, 0.2467, 0.0329]) +tensor([0.8290, 0.5732, 0.0178, ..., 0.9134, 0.7238, 0.4621]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -56,16 +56,16 @@ Rows: 5000 Size: 25000000 NNZ: 1250000 Density: 0.05 -Time: 10.514305114746094 seconds +Time: 10.723698854446411 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 234, 486, ..., 1249518, - 1249775, 1250000]), - col_indices=tensor([ 2, 39, 64, ..., 4915, 4964, 4987]), - values=tensor([0.0513, 0.5642, 0.6511, ..., 0.0332, 0.5293, 0.6294]), +tensor(crow_indices=tensor([ 0, 267, 518, ..., 1249533, + 1249757, 1250000]), + col_indices=tensor([ 4, 12, 26, ..., 4948, 4976, 4977]), + values=tensor([0.8262, 0.2304, 0.8718, ..., 0.9371, 0.9418, 0.0811]), size=(5000, 5000), nnz=1250000, layout=torch.sparse_csr) -tensor([0.8655, 0.6659, 0.2976, ..., 0.0599, 0.2467, 0.0329]) +tensor([0.8290, 0.5732, 0.0178, ..., 0.9134, 0.7238, 0.4621]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -73,13 +73,13 @@ Rows: 5000 Size: 25000000 NNZ: 1250000 Density: 0.05 -Time: 10.514305114746094 seconds +Time: 10.723698854446411 seconds -[18.16, 17.71, 17.62, 17.44, 17.74, 17.67, 17.83, 17.6, 17.55, 17.84] -[89.25] -14.219328165054321 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 44182, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.514305114746094, 'TIME_S_1KI': 0.2379771199752409, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1269.0750387310982, 'W': 89.25} -[18.16, 17.71, 17.62, 17.44, 17.74, 17.67, 17.83, 17.6, 17.55, 17.84, 18.13, 17.61, 17.91, 17.95, 20.68, 17.51, 17.88, 18.51, 17.79, 17.64] -322.885 -16.14425 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 44182, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.514305114746094, 'TIME_S_1KI': 0.2379771199752409, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1269.0750387310982, 'W': 89.25, 'J_1KI': 28.723802424767964, 'W_1KI': 2.020053415418044, 'W_D': 73.10575, 'J_D': 1039.51465000242, 'W_D_1KI': 1.6546500837445115, 'J_D_1KI': 0.03745077370296753} +[18.22, 17.77, 18.1, 17.81, 18.08, 18.08, 18.29, 17.93, 18.14, 17.97] +[87.97] +14.34674072265625 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 46969, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.723698854446411, 'TIME_S_1KI': 0.22831439575989293, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1262.0827813720703, 'W': 87.97} +[18.22, 17.77, 18.1, 17.81, 18.08, 18.08, 18.29, 17.93, 18.14, 17.97, 18.49, 18.0, 18.1, 18.25, 18.1, 17.98, 17.87, 18.07, 17.92, 20.6] +326.13 +16.3065 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 46969, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.723698854446411, 'TIME_S_1KI': 0.22831439575989293, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1262.0827813720703, 'W': 87.97, 'J_1KI': 26.87054826315379, 'W_1KI': 1.8729374693947072, 'W_D': 71.6635, 'J_D': 1028.1376537780761, 'W_D_1KI': 1.5257616725925611, 'J_D_1KI': 0.03248444021785776} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.1.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.1.json index 6e5c014..fe585f9 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.1.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.1.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 19098, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.554213762283325, "TIME_S_1KI": 0.552634504256117, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1299.880751209259, "W": 88.77, "J_1KI": 68.06371092309452, "W_1KI": 4.64813069431354, "W_D": 72.8915, "J_D": 1067.3680046949385, "W_D_1KI": 3.8167085558697242, "J_D_1KI": 0.19984859963712034} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 19220, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.306657314300537, "TIME_S_1KI": 0.536246478371516, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1258.2980075454711, "W": 87.22999999999999, "J_1KI": 65.46815856115875, "W_1KI": 4.538501560874089, "W_D": 70.87349999999999, "J_D": 1022.354509202957, "W_D_1KI": 3.6874869927159204, "J_D_1KI": 0.19185676340873678} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.1.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.1.output index a64ec1d..2db63b3 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.1.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.1.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.1', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 0.5497848987579346} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.1', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 0.06937050819396973} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 487, 1016, ..., 2499032, - 2499521, 2500000]), - col_indices=tensor([ 8, 18, 46, ..., 4955, 4960, 4970]), - values=tensor([0.9231, 0.4693, 0.9835, ..., 0.3329, 0.5539, 0.9296]), +tensor(crow_indices=tensor([ 0, 517, 1013, ..., 2498965, + 2499518, 2500000]), + col_indices=tensor([ 16, 31, 39, ..., 4973, 4987, 4996]), + values=tensor([0.8092, 0.6907, 0.1859, ..., 0.6156, 0.1820, 0.0827]), size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.7808, 0.5215, 0.8582, ..., 0.9627, 0.6165, 0.7692]) +tensor([0.0341, 0.1297, 0.9553, ..., 0.9560, 0.1422, 0.0438]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,19 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 2500000 Density: 0.1 -Time: 0.5497848987579346 seconds +Time: 0.06937050819396973 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '19098', '-ss', '5000', '-sd', '0.1', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.554213762283325} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '15136', '-ss', '5000', '-sd', '0.1', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 8.268742084503174} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 480, 948, ..., 2499011, - 2499537, 2500000]), - col_indices=tensor([ 1, 8, 11, ..., 4950, 4969, 4990]), - values=tensor([0.1158, 0.8497, 0.7920, ..., 0.6315, 0.2224, 0.2676]), +tensor(crow_indices=tensor([ 0, 498, 1015, ..., 2498995, + 2499510, 2500000]), + col_indices=tensor([ 1, 5, 12, ..., 4987, 4992, 4994]), + values=tensor([0.2706, 0.5291, 0.0606, ..., 0.9998, 0.6766, 0.8077]), size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.4700, 0.1718, 0.6444, ..., 0.1980, 0.7458, 0.7705]) +tensor([0.5238, 0.3873, 0.9372, ..., 0.7751, 0.3587, 0.1743]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -36,16 +36,19 @@ Rows: 5000 Size: 25000000 NNZ: 2500000 Density: 0.1 -Time: 10.554213762283325 seconds +Time: 8.268742084503174 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '19220', '-ss', '5000', '-sd', '0.1', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.1, "TIME_S": 10.306657314300537} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 480, 948, ..., 2499011, - 2499537, 2500000]), - col_indices=tensor([ 1, 8, 11, ..., 4950, 4969, 4990]), - values=tensor([0.1158, 0.8497, 0.7920, ..., 0.6315, 0.2224, 0.2676]), +tensor(crow_indices=tensor([ 0, 478, 976, ..., 2498986, + 2499483, 2500000]), + col_indices=tensor([ 0, 15, 20, ..., 4988, 4995, 4997]), + values=tensor([0.9696, 0.2544, 0.3304, ..., 0.5139, 0.4686, 0.4850]), size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) -tensor([0.4700, 0.1718, 0.6444, ..., 0.1980, 0.7458, 0.7705]) +tensor([0.8873, 0.6521, 0.3260, ..., 0.9177, 0.3863, 0.5956]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,13 +56,30 @@ Rows: 5000 Size: 25000000 NNZ: 2500000 Density: 0.1 -Time: 10.554213762283325 seconds +Time: 10.306657314300537 seconds -[18.14, 17.83, 17.44, 17.66, 17.78, 17.6, 17.85, 17.79, 17.38, 17.41] -[88.77] -14.643243789672852 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 19098, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.554213762283325, 'TIME_S_1KI': 0.552634504256117, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1299.880751209259, 'W': 88.77} -[18.14, 17.83, 17.44, 17.66, 17.78, 17.6, 17.85, 17.79, 17.38, 17.41, 18.1, 17.72, 17.57, 17.35, 17.6, 17.54, 17.53, 17.37, 18.02, 17.43] -317.57000000000005 -15.878500000000003 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 19098, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.554213762283325, 'TIME_S_1KI': 0.552634504256117, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1299.880751209259, 'W': 88.77, 'J_1KI': 68.06371092309452, 'W_1KI': 4.64813069431354, 'W_D': 72.8915, 'J_D': 1067.3680046949385, 'W_D_1KI': 3.8167085558697242, 'J_D_1KI': 0.19984859963712034} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 478, 976, ..., 2498986, + 2499483, 2500000]), + col_indices=tensor([ 0, 15, 20, ..., 4988, 4995, 4997]), + values=tensor([0.9696, 0.2544, 0.3304, ..., 0.5139, 0.4686, 0.4850]), + size=(5000, 5000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.8873, 0.6521, 0.3260, ..., 0.9177, 0.3863, 0.5956]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 2500000 +Density: 0.1 +Time: 10.306657314300537 seconds + +[18.67, 18.15, 17.98, 18.09, 18.08, 18.12, 18.09, 17.98, 17.86, 18.03] +[87.23] +14.425060272216797 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 19220, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.306657314300537, 'TIME_S_1KI': 0.536246478371516, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1258.2980075454711, 'W': 87.22999999999999} +[18.67, 18.15, 17.98, 18.09, 18.08, 18.12, 18.09, 17.98, 17.86, 18.03, 18.76, 17.96, 18.22, 17.88, 18.31, 18.19, 18.22, 17.8, 18.27, 20.4] +327.13 +16.3565 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 19220, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 10.306657314300537, 'TIME_S_1KI': 0.536246478371516, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1258.2980075454711, 'W': 87.22999999999999, 'J_1KI': 65.46815856115875, 'W_1KI': 4.538501560874089, 'W_D': 70.87349999999999, 'J_D': 1022.354509202957, 'W_D_1KI': 3.6874869927159204, 'J_D_1KI': 0.19185676340873678} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.2.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.2.json index ae3e053..5da43df 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.2.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.2.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 9068, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.657127857208252, "TIME_S_1KI": 1.175245683415114, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1354.9685973644257, "W": 87.3, "J_1KI": 149.42309190167904, "W_1KI": 9.62726069695633, "W_D": 71.26675, "J_D": 1106.11922435534, "W_D_1KI": 7.859147551830612, "J_D_1KI": 0.8666902902327539} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 9074, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.487424612045288, "TIME_S_1KI": 1.1557664328901573, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1301.6191907930374, "W": 85.83, "J_1KI": 143.44491853571054, "W_1KI": 9.458893541988099, "W_D": 69.53375, "J_D": 1054.4851847583054, "W_D_1KI": 7.662965616045845, "J_D_1KI": 0.8444969821518454} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.2.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.2.output index 5903d4b..4c63e35 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.2.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.2.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.2', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 1.157815933227539} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.2', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 0.12977051734924316} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 951, 1952, ..., 4997990, - 4999010, 5000000]), - col_indices=tensor([ 1, 2, 7, ..., 4975, 4984, 4994]), - values=tensor([0.2978, 0.3383, 0.4211, ..., 0.6173, 0.3619, 0.1875]), +tensor(crow_indices=tensor([ 0, 1037, 2033, ..., 4997947, + 4998969, 5000000]), + col_indices=tensor([ 0, 3, 11, ..., 4985, 4988, 4990]), + values=tensor([0.1539, 0.2882, 0.0917, ..., 0.8336, 0.9260, 0.3814]), size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) -tensor([0.3712, 0.9173, 0.1615, ..., 0.0466, 0.6664, 0.8295]) +tensor([0.9778, 0.3097, 0.5480, ..., 0.9590, 0.3024, 0.0294]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,20 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 5000000 Density: 0.2 -Time: 1.157815933227539 seconds +Time: 0.12977051734924316 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '9068', '-ss', '5000', '-sd', '0.2', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.657127857208252} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '8091', '-ss', '5000', '-sd', '0.2', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 9.36232042312622} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1038, 2022, ..., 4998028, - 4999030, 5000000]), - col_indices=tensor([ 5, 8, 18, ..., 4988, 4996, 4999]), - values=tensor([0.3556, 0.0118, 0.2581, ..., 0.9541, 0.9641, 0.1138]), +tensor(crow_indices=tensor([ 0, 972, 1989, ..., 4997978, + 4998985, 5000000]), + col_indices=tensor([ 0, 9, 19, ..., 4989, 4992, 4995]), + values=tensor([0.2585, 0.0110, 0.4823, ..., 0.4314, 0.8099, 0.9487]), size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) -tensor([2.9156e-01, 7.5281e-01, 6.6249e-01, ..., 5.6286e-01, 2.5839e-04, - 4.1914e-01]) +tensor([0.7513, 0.6352, 0.8184, ..., 0.0273, 0.2479, 0.5631]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -37,17 +36,19 @@ Rows: 5000 Size: 25000000 NNZ: 5000000 Density: 0.2 -Time: 10.657127857208252 seconds +Time: 9.36232042312622 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '9074', '-ss', '5000', '-sd', '0.2', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.2, "TIME_S": 10.487424612045288} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1038, 2022, ..., 4998028, - 4999030, 5000000]), - col_indices=tensor([ 5, 8, 18, ..., 4988, 4996, 4999]), - values=tensor([0.3556, 0.0118, 0.2581, ..., 0.9541, 0.9641, 0.1138]), +tensor(crow_indices=tensor([ 0, 1061, 2118, ..., 4997993, + 4998997, 5000000]), + col_indices=tensor([ 3, 6, 10, ..., 4996, 4998, 4999]), + values=tensor([0.5066, 0.7039, 0.5374, ..., 0.1064, 0.9581, 0.5937]), size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) -tensor([2.9156e-01, 7.5281e-01, 6.6249e-01, ..., 5.6286e-01, 2.5839e-04, - 4.1914e-01]) +tensor([0.1982, 0.1257, 0.6934, ..., 0.0401, 0.8872, 0.0311]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -55,13 +56,30 @@ Rows: 5000 Size: 25000000 NNZ: 5000000 Density: 0.2 -Time: 10.657127857208252 seconds +Time: 10.487424612045288 seconds -[18.19, 17.62, 17.78, 17.94, 17.96, 17.76, 17.78, 17.85, 17.63, 17.71] -[87.3] -15.52083158493042 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 9068, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.657127857208252, 'TIME_S_1KI': 1.175245683415114, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1354.9685973644257, 'W': 87.3} -[18.19, 17.62, 17.78, 17.94, 17.96, 17.76, 17.78, 17.85, 17.63, 17.71, 18.05, 17.78, 17.91, 17.54, 18.13, 17.46, 18.2, 17.86, 17.68, 17.62] -320.6650000000001 -16.033250000000002 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 9068, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.657127857208252, 'TIME_S_1KI': 1.175245683415114, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1354.9685973644257, 'W': 87.3, 'J_1KI': 149.42309190167904, 'W_1KI': 9.62726069695633, 'W_D': 71.26675, 'J_D': 1106.11922435534, 'W_D_1KI': 7.859147551830612, 'J_D_1KI': 0.8666902902327539} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1061, 2118, ..., 4997993, + 4998997, 5000000]), + col_indices=tensor([ 3, 6, 10, ..., 4996, 4998, 4999]), + values=tensor([0.5066, 0.7039, 0.5374, ..., 0.1064, 0.9581, 0.5937]), + size=(5000, 5000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.1982, 0.1257, 0.6934, ..., 0.0401, 0.8872, 0.0311]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 5000000 +Density: 0.2 +Time: 10.487424612045288 seconds + +[18.43, 18.11, 17.89, 18.52, 18.92, 18.0, 18.0, 17.79, 18.16, 17.76] +[85.83] +15.16508436203003 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 9074, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.487424612045288, 'TIME_S_1KI': 1.1557664328901573, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1301.6191907930374, 'W': 85.83} +[18.43, 18.11, 17.89, 18.52, 18.92, 18.0, 18.0, 17.79, 18.16, 17.76, 18.23, 17.97, 18.42, 17.87, 17.92, 18.08, 18.11, 17.82, 17.87, 18.53] +325.925 +16.29625 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 9074, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.2, 'TIME_S': 10.487424612045288, 'TIME_S_1KI': 1.1557664328901573, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1301.6191907930374, 'W': 85.83, 'J_1KI': 143.44491853571054, 'W_1KI': 9.458893541988099, 'W_D': 69.53375, 'J_D': 1054.4851847583054, 'W_D_1KI': 7.662965616045845, 'J_D_1KI': 0.8444969821518454} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.3.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.3.json index fca72d3..c0e5e12 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.3.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.3.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 5664, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.680659770965576, "TIME_S_1KI": 1.8857097053258434, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1382.186832485199, "W": 86.06, "J_1KI": 244.0301611026128, "W_1KI": 15.194209039548022, "W_D": 70.05975000000001, "J_D": 1125.2110613200666, "W_D_1KI": 12.369306144067798, "J_D_1KI": 2.1838464237407833} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 5607, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.746073484420776, "TIME_S_1KI": 1.9165460111326513, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1333.0484231472017, "W": 84.51, "J_1KI": 237.7471773046552, "W_1KI": 15.07223113964687, "W_D": 68.30000000000001, "J_D": 1077.3542456626894, "W_D_1KI": 12.18120206884252, "J_D_1KI": 2.1724990313612484} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.3.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.3.output index e9cfac6..4501c06 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.3.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.3.output @@ -1,14 +1,14 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '0.3', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 1.8537497520446777} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.3', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 0.20109891891479492} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1463, 2978, ..., 7496989, - 7498439, 7500000]), - col_indices=tensor([ 1, 2, 10, ..., 4991, 4992, 4997]), - values=tensor([0.5985, 0.8707, 0.1470, ..., 0.1515, 0.9789, 0.5190]), +tensor(crow_indices=tensor([ 0, 1526, 3035, ..., 7496941, + 7498453, 7500000]), + col_indices=tensor([ 2, 6, 10, ..., 4993, 4994, 4996]), + values=tensor([0.3579, 0.5981, 0.5931, ..., 0.3837, 0.5123, 0.1240]), size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) -tensor([0.7595, 0.9851, 0.8459, ..., 0.8698, 0.1337, 0.7899]) +tensor([0.0391, 0.3406, 0.5361, ..., 0.5039, 0.0205, 0.2852]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -16,19 +16,19 @@ Rows: 5000 Size: 25000000 NNZ: 7500000 Density: 0.3 -Time: 1.8537497520446777 seconds +Time: 0.20109891891479492 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '5664', '-ss', '5000', '-sd', '0.3', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.680659770965576} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '5221', '-ss', '5000', '-sd', '0.3', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 9.77708387374878} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1531, 3042, ..., 7497046, - 7498567, 7500000]), - col_indices=tensor([ 0, 1, 2, ..., 4993, 4996, 4997]), - values=tensor([0.2133, 0.5634, 0.4796, ..., 0.0244, 0.1739, 0.8367]), +tensor(crow_indices=tensor([ 0, 1505, 2964, ..., 7496939, + 7498442, 7500000]), + col_indices=tensor([ 2, 4, 5, ..., 4996, 4997, 4999]), + values=tensor([0.1729, 0.9195, 0.5163, ..., 0.0436, 0.1803, 0.9350]), size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) -tensor([0.6801, 0.4978, 0.3141, ..., 0.6717, 0.6784, 0.5569]) +tensor([0.3955, 0.7196, 0.4505, ..., 0.8904, 0.4770, 0.0844]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -36,16 +36,19 @@ Rows: 5000 Size: 25000000 NNZ: 7500000 Density: 0.3 -Time: 10.680659770965576 seconds +Time: 9.77708387374878 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '5607', '-ss', '5000', '-sd', '0.3', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 7500000, "MATRIX_DENSITY": 0.3, "TIME_S": 10.746073484420776} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 1531, 3042, ..., 7497046, - 7498567, 7500000]), - col_indices=tensor([ 0, 1, 2, ..., 4993, 4996, 4997]), - values=tensor([0.2133, 0.5634, 0.4796, ..., 0.0244, 0.1739, 0.8367]), +tensor(crow_indices=tensor([ 0, 1451, 2905, ..., 7497061, + 7498533, 7500000]), + col_indices=tensor([ 4, 9, 12, ..., 4994, 4998, 4999]), + values=tensor([0.3703, 0.3823, 0.6108, ..., 0.0984, 0.8524, 0.0373]), size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) -tensor([0.6801, 0.4978, 0.3141, ..., 0.6717, 0.6784, 0.5569]) +tensor([0.6688, 0.5149, 0.3458, ..., 0.1151, 0.9310, 0.8037]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,13 +56,30 @@ Rows: 5000 Size: 25000000 NNZ: 7500000 Density: 0.3 -Time: 10.680659770965576 seconds +Time: 10.746073484420776 seconds -[18.09, 17.53, 17.63, 17.45, 17.68, 17.68, 17.63, 17.31, 17.79, 17.45] -[86.06] -16.060734748840332 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 5664, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.680659770965576, 'TIME_S_1KI': 1.8857097053258434, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1382.186832485199, 'W': 86.06} -[18.09, 17.53, 17.63, 17.45, 17.68, 17.68, 17.63, 17.31, 17.79, 17.45, 18.18, 17.48, 18.72, 17.88, 18.28, 17.87, 17.95, 17.58, 17.89, 17.59] -320.00500000000005 -16.00025 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 5664, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.680659770965576, 'TIME_S_1KI': 1.8857097053258434, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1382.186832485199, 'W': 86.06, 'J_1KI': 244.0301611026128, 'W_1KI': 15.194209039548022, 'W_D': 70.05975000000001, 'J_D': 1125.2110613200666, 'W_D_1KI': 12.369306144067798, 'J_D_1KI': 2.1838464237407833} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1451, 2905, ..., 7497061, + 7498533, 7500000]), + col_indices=tensor([ 4, 9, 12, ..., 4994, 4998, 4999]), + values=tensor([0.3703, 0.3823, 0.6108, ..., 0.0984, 0.8524, 0.0373]), + size=(5000, 5000), nnz=7500000, layout=torch.sparse_csr) +tensor([0.6688, 0.5149, 0.3458, ..., 0.1151, 0.9310, 0.8037]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 7500000 +Density: 0.3 +Time: 10.746073484420776 seconds + +[18.36, 17.95, 18.08, 17.67, 18.17, 17.84, 18.12, 17.84, 18.09, 18.06] +[84.51] +15.77385425567627 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 5607, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.746073484420776, 'TIME_S_1KI': 1.9165460111326513, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1333.0484231472017, 'W': 84.51} +[18.36, 17.95, 18.08, 17.67, 18.17, 17.84, 18.12, 17.84, 18.09, 18.06, 18.35, 17.89, 17.87, 18.07, 18.23, 17.83, 18.12, 17.92, 18.19, 17.87] +324.20000000000005 +16.21 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 5607, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 7500000, 'MATRIX_DENSITY': 0.3, 'TIME_S': 10.746073484420776, 'TIME_S_1KI': 1.9165460111326513, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1333.0484231472017, 'W': 84.51, 'J_1KI': 237.7471773046552, 'W_1KI': 15.07223113964687, 'W_D': 68.30000000000001, 'J_D': 1077.3542456626894, 'W_D_1KI': 12.18120206884252, 'J_D_1KI': 2.1724990313612484} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.4.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.4.json new file mode 100644 index 0000000..363edc0 --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.4.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 2843, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.4, "TIME_S": 10.510854721069336, "TIME_S_1KI": 3.6970997963662806, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1362.9070807647706, "W": 82.31, "J_1KI": 479.39046104986653, "W_1KI": 28.951811466760464, "W_D": 66.04650000000001, "J_D": 1093.6124712638857, "W_D_1KI": 23.23126978543792, "J_D_1KI": 8.171392819359099} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.4.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.4.output new file mode 100644 index 0000000..26353c7 --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.4.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.4', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.4, "TIME_S": 0.3692905902862549} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1942, 3937, ..., 9996021, + 9998014, 10000000]), + col_indices=tensor([ 1, 6, 11, ..., 4995, 4996, 4997]), + values=tensor([0.9006, 0.6515, 0.7177, ..., 0.3221, 0.1090, 0.6573]), + size=(5000, 5000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.3731, 0.3806, 0.5183, ..., 0.1665, 0.0476, 0.3514]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 10000000 +Density: 0.4 +Time: 0.3692905902862549 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '2843', '-ss', '5000', '-sd', '0.4', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.4, "TIME_S": 10.510854721069336} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2016, 4009, ..., 9996028, + 9998016, 10000000]), + col_indices=tensor([ 0, 3, 5, ..., 4991, 4992, 4997]), + values=tensor([0.1122, 0.1212, 0.4120, ..., 0.9869, 0.5095, 0.1756]), + size=(5000, 5000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.1243, 0.0753, 0.2426, ..., 0.5390, 0.1485, 0.6469]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 10000000 +Density: 0.4 +Time: 10.510854721069336 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2016, 4009, ..., 9996028, + 9998016, 10000000]), + col_indices=tensor([ 0, 3, 5, ..., 4991, 4992, 4997]), + values=tensor([0.1122, 0.1212, 0.4120, ..., 0.9869, 0.5095, 0.1756]), + size=(5000, 5000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.1243, 0.0753, 0.2426, ..., 0.5390, 0.1485, 0.6469]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 10000000 +Density: 0.4 +Time: 10.510854721069336 seconds + +[18.34, 18.07, 17.87, 17.95, 18.1, 18.25, 18.13, 17.86, 18.35, 17.99] +[82.31] +16.55821990966797 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2843, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.4, 'TIME_S': 10.510854721069336, 'TIME_S_1KI': 3.6970997963662806, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1362.9070807647706, 'W': 82.31} +[18.34, 18.07, 17.87, 17.95, 18.1, 18.25, 18.13, 17.86, 18.35, 17.99, 18.23, 18.01, 18.07, 17.94, 18.3, 17.93, 18.17, 17.9, 18.02, 18.14] +325.2699999999999 +16.263499999999997 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2843, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.4, 'TIME_S': 10.510854721069336, 'TIME_S_1KI': 3.6970997963662806, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1362.9070807647706, 'W': 82.31, 'J_1KI': 479.39046104986653, 'W_1KI': 28.951811466760464, 'W_D': 66.04650000000001, 'J_D': 1093.6124712638857, 'W_D_1KI': 23.23126978543792, 'J_D_1KI': 8.171392819359099} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.5.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.5.json new file mode 100644 index 0000000..5cc798d --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.5.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 2367, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 10.31517243385315, "TIME_S_1KI": 4.35790977349098, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1435.467025976181, "W": 77.42, "J_1KI": 606.4499476029494, "W_1KI": 32.708069286016055, "W_D": 60.97375, "J_D": 1130.5322600764036, "W_D_1KI": 25.7599281791297, "J_D_1KI": 10.882943886408832} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.5.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.5.output new file mode 100644 index 0000000..9c08cbf --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_0.5.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '0.5', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 0.4716074466705322} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2514, 4962, ..., 12495038, + 12497495, 12500000]), + col_indices=tensor([ 0, 2, 3, ..., 4994, 4998, 4999]), + values=tensor([0.6154, 0.9669, 0.2665, ..., 0.0694, 0.4098, 0.1560]), + size=(5000, 5000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.5763, 0.6030, 0.9940, ..., 0.2125, 0.0764, 0.1654]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 12500000 +Density: 0.5 +Time: 0.4716074466705322 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '2226', '-ss', '5000', '-sd', '0.5', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 9.872556447982788} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2494, 5060, ..., 12495015, + 12497540, 12500000]), + col_indices=tensor([ 0, 1, 3, ..., 4996, 4997, 4998]), + values=tensor([0.6641, 0.1400, 0.8724, ..., 0.1588, 0.2497, 0.0435]), + size=(5000, 5000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.4856, 0.9202, 0.9997, ..., 0.6539, 0.7245, 0.6538]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 12500000 +Density: 0.5 +Time: 9.872556447982788 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '2367', '-ss', '5000', '-sd', '0.5', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.5, "TIME_S": 10.31517243385315} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2524, 5066, ..., 12495116, + 12497547, 12500000]), + col_indices=tensor([ 0, 3, 4, ..., 4997, 4998, 4999]), + values=tensor([0.7920, 0.5049, 0.7981, ..., 0.7837, 0.6861, 0.6359]), + size=(5000, 5000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.9717, 0.2840, 0.2667, ..., 0.4259, 0.7903, 0.5279]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 12500000 +Density: 0.5 +Time: 10.31517243385315 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2524, 5066, ..., 12495116, + 12497547, 12500000]), + col_indices=tensor([ 0, 3, 4, ..., 4997, 4998, 4999]), + values=tensor([0.7920, 0.5049, 0.7981, ..., 0.7837, 0.6861, 0.6359]), + size=(5000, 5000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.9717, 0.2840, 0.2667, ..., 0.4259, 0.7903, 0.5279]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 12500000 +Density: 0.5 +Time: 10.31517243385315 seconds + +[18.22, 18.01, 18.1, 18.03, 17.97, 17.83, 18.06, 17.94, 17.8, 18.08] +[77.42] +18.54129457473755 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2367, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.5, 'TIME_S': 10.31517243385315, 'TIME_S_1KI': 4.35790977349098, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1435.467025976181, 'W': 77.42} +[18.22, 18.01, 18.1, 18.03, 17.97, 17.83, 18.06, 17.94, 17.8, 18.08, 18.25, 18.11, 18.19, 18.18, 17.9, 17.94, 21.89, 18.55, 18.24, 17.82] +328.925 +16.44625 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 2367, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.5, 'TIME_S': 10.31517243385315, 'TIME_S_1KI': 4.35790977349098, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1435.467025976181, 'W': 77.42, 'J_1KI': 606.4499476029494, 'W_1KI': 32.708069286016055, 'W_D': 60.97375, 'J_D': 1130.5322600764036, 'W_D_1KI': 25.7599281791297, 'J_D_1KI': 10.882943886408832} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_1e-05.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_1e-05.json index 5c599da..f03b074 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_1e-05.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_1e-05.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 353197, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.226954936981201, "TIME_S_1KI": 0.0289553844935863, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1121.6130926513672, "W": 79.36, "J_1KI": 3.1756019803434548, "W_1KI": 0.22469047019085664, "W_D": 63.1995, "J_D": 893.2130374120474, "W_D_1KI": 0.1789355515477198, "J_D_1KI": 0.0005066168499384757} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 352628, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.273355960845947, "TIME_S_1KI": 0.029133693186150694, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 997.6947084188461, "W": 73.02, "J_1KI": 2.8293122168938547, "W_1KI": 0.20707374343500798, "W_D": 56.76349999999999, "J_D": 775.5771512097119, "W_D_1KI": 0.16097275315630066, "J_D_1KI": 0.00045649453008921774} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_1e-05.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_1e-05.output index bd4d211..a48462c 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_1e-05.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_1e-05.output @@ -1,75 +1,102 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.04602789878845215} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.03506755828857422} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([ 578, 489, 2035, 2602, 4011, 1806, 4187, 4466, 1701, - 3439, 1855, 2207, 4634, 4913, 4351, 2699, 4950, 1482, - 1630, 4011, 847, 262, 526, 120, 2856, 4636, 1597, - 3213, 516, 2941, 2174, 769, 2517, 499, 1934, 2295, - 4580, 2315, 3877, 4302, 1055, 1440, 1706, 4670, 429, - 2051, 2186, 1313, 1143, 3111, 4634, 2695, 4779, 4363, - 1595, 4655, 1338, 4420, 4067, 1526, 282, 2445, 369, - 1772, 4270, 1668, 3875, 412, 4249, 1643, 914, 856, - 3381, 2292, 4030, 3967, 3653, 1168, 3730, 661, 3997, - 1557, 2874, 4414, 241, 2576, 1853, 4254, 862, 608, - 4068, 2069, 967, 859, 1460, 3895, 2418, 1568, 1236, - 2469, 4377, 1881, 774, 3150, 4962, 4438, 3334, 3370, - 3850, 469, 1930, 1600, 4349, 1435, 2755, 2777, 2752, - 1750, 2319, 2825, 2053, 4982, 3998, 1031, 158, 2744, - 1843, 2266, 4999, 4122, 250, 2042, 4015, 3394, 4312, - 559, 3260, 296, 3827, 4372, 2993, 1918, 3134, 621, - 557, 2314, 3437, 2519, 4868, 4567, 645, 1366, 3758, - 4230, 810, 851, 1555, 4001, 1607, 876, 3143, 3677, - 620, 2976, 4865, 2725, 1890, 514, 1960, 1749, 2271, - 3746, 3959, 4437, 4381, 2386, 2843, 3407, 4429, 2460, - 1759, 3731, 4851, 3169, 994, 1771, 4332, 2376, 2120, - 69, 919, 3516, 57, 1846, 3363, 4747, 3055, 4318, - 1028, 4163, 4665, 4823, 505, 247, 4342, 3354, 2982, - 3367, 3474, 1671, 2141, 1806, 254, 2129, 187, 1832, - 3940, 4918, 419, 4670, 303, 921, 39, 4798, 1396, - 2176, 2156, 2536, 266, 4518, 4967, 4630, 2593, 1182, - 2488, 2445, 979, 1019, 4241, 1675, 1170, 2324, 2271, - 3633, 2309, 4715, 1380, 4338, 2573, 2764]), - values=tensor([0.6984, 0.1478, 0.0323, 0.8260, 0.6827, 0.1000, 0.4915, - 0.6587, 0.0376, 0.3470, 0.7142, 0.7494, 0.0897, 0.2827, - 0.6630, 0.3710, 0.5106, 0.3028, 0.3002, 0.0863, 0.1240, - 0.1798, 0.6305, 0.3002, 0.5649, 0.4551, 0.6642, 0.1708, - 0.5500, 0.6807, 0.3124, 0.4343, 0.1155, 0.5562, 0.7660, - 0.5677, 0.3794, 0.3402, 0.7695, 0.1890, 0.5328, 0.3628, - 0.6604, 0.2382, 0.4320, 0.8974, 0.3878, 0.2382, 0.2066, - 0.8734, 0.7091, 0.8197, 0.8175, 0.2812, 0.4902, 0.1894, - 0.3966, 0.5276, 0.7667, 0.0175, 0.7037, 0.7601, 0.1810, - 0.4741, 0.3863, 0.8670, 0.4845, 0.6586, 0.0648, 0.8124, - 0.7536, 0.0293, 0.5547, 0.4571, 0.0817, 0.7764, 0.3555, - 0.5853, 0.3952, 0.4216, 0.4013, 0.1391, 0.8172, 0.9389, - 0.3613, 0.8906, 0.6121, 0.5615, 0.7545, 0.1340, 0.0792, - 0.8924, 0.1038, 0.5565, 0.0169, 0.8812, 0.4265, 0.0727, - 0.1083, 0.5669, 0.5957, 0.1631, 0.9558, 0.7748, 0.9411, - 0.7256, 0.5800, 0.4846, 0.9970, 0.8586, 0.7723, 0.4078, - 0.6823, 0.7466, 0.9258, 0.1331, 0.3558, 0.7864, 0.4232, - 0.6710, 0.9708, 0.0475, 0.1393, 0.7271, 0.7770, 0.3222, - 0.4988, 0.2948, 0.5044, 0.9371, 0.0161, 0.2536, 0.5990, - 0.3689, 0.2194, 0.9840, 0.0757, 0.2181, 0.9674, 0.1702, - 0.3378, 0.9217, 0.7196, 0.9431, 0.0238, 0.2739, 0.4274, - 0.2266, 0.8166, 0.3636, 0.1711, 0.9816, 0.7731, 0.9314, - 0.1464, 0.5983, 0.5403, 0.2869, 0.9912, 0.8860, 0.2927, - 0.0879, 0.5830, 0.5619, 0.8287, 0.6664, 0.8686, 0.3651, - 0.4784, 0.5559, 0.8167, 0.6136, 0.5106, 0.0184, 0.8321, - 0.7988, 0.2100, 0.3066, 0.2554, 0.2412, 0.6610, 0.3077, - 0.2061, 0.0284, 0.0567, 0.7554, 0.1226, 0.1847, 0.1023, - 0.5889, 0.1845, 0.3455, 0.6453, 0.2221, 0.4719, 0.2134, - 0.3242, 0.6794, 0.0360, 0.6922, 0.2624, 0.4100, 0.5084, - 0.0818, 0.0375, 0.1527, 0.6806, 0.3748, 0.6249, 0.4817, - 0.9505, 0.0887, 0.9942, 0.1910, 0.6323, 0.8143, 0.9940, - 0.2187, 0.9553, 0.7841, 0.3921, 0.6046, 0.0750, 0.3392, - 0.4333, 0.0760, 0.7016, 0.3358, 0.0964, 0.7961, 0.8524, - 0.6531, 0.3470, 0.9589, 0.2215, 0.3106, 0.8796, 0.7441, - 0.0627, 0.6404, 0.0703, 0.8970, 0.3227, 0.0864, 0.1787, - 0.7479, 0.4857, 0.1928, 0.9739, 0.1023]), - size=(5000, 5000), nnz=250, layout=torch.sparse_csr) -tensor([0.6347, 0.6451, 0.4713, ..., 0.2060, 0.2664, 0.4890]) + col_indices=tensor([2913, 1648, 2644, 3381, 1372, 3923, 4637, 4740, 3605, + 3437, 243, 589, 1110, 3938, 3652, 4390, 556, 1399, + 147, 3692, 103, 2333, 953, 1384, 659, 1993, 868, + 614, 4322, 4844, 1783, 3862, 2228, 274, 4521, 1878, + 2924, 2109, 11, 387, 2654, 1288, 3264, 2715, 783, + 864, 4478, 4578, 483, 3494, 1607, 265, 2566, 3626, + 4895, 3427, 3874, 3738, 1296, 657, 640, 614, 787, + 1550, 2439, 4660, 269, 3982, 4338, 3845, 315, 2485, + 3306, 2923, 3930, 969, 1457, 1460, 4340, 2708, 47, + 565, 464, 4753, 1236, 577, 1132, 636, 2214, 288, + 1601, 2014, 3937, 1117, 3005, 646, 3874, 3732, 3404, + 1250, 1263, 2388, 4327, 3524, 3464, 3950, 1309, 1452, + 2645, 1166, 3908, 4608, 3126, 3808, 84, 3605, 3573, + 3190, 4563, 3165, 2986, 3344, 1519, 2294, 4187, 3643, + 4112, 3606, 2436, 2384, 625, 3600, 188, 4651, 2237, + 3672, 1930, 392, 4612, 4270, 771, 4369, 1789, 974, + 1168, 2614, 2307, 3695, 2412, 1459, 1895, 4730, 4451, + 4843, 4273, 1205, 3679, 3774, 564, 1427, 336, 3203, + 3958, 2398, 726, 4337, 2127, 409, 1972, 1019, 1933, + 580, 2862, 277, 4275, 3026, 969, 4172, 2441, 3256, + 2388, 1358, 3834, 3780, 4305, 2776, 2801, 3127, 4359, + 3593, 1929, 1465, 4820, 2245, 3253, 2958, 788, 2326, + 4311, 1014, 3630, 3362, 3298, 1282, 4253, 3492, 4064, + 3984, 424, 3900, 4395, 2947, 1349, 3432, 2872, 1837, + 3566, 2145, 4347, 1140, 404, 290, 1225, 228, 177, + 2040, 2532, 4933, 2387, 3999, 2398, 1862, 25, 1623, + 3988, 4385, 855, 1469, 4176, 2016, 3588, 1388, 4820, + 138, 2359, 3521, 918, 3462, 3885, 3534]), + values=tensor([8.7230e-01, 2.2609e-01, 1.4440e-01, 9.6081e-01, + 3.3014e-01, 2.6737e-01, 1.3690e-01, 4.9883e-01, + 1.9471e-01, 7.1750e-01, 8.2877e-01, 7.8140e-02, + 4.1936e-01, 2.9344e-01, 1.7249e-01, 6.6013e-03, + 2.1956e-01, 3.1653e-02, 5.7945e-01, 7.5527e-01, + 7.0478e-02, 1.5299e-01, 2.9192e-01, 9.5876e-01, + 1.5930e-01, 5.3970e-01, 2.0450e-01, 6.3456e-01, + 2.1730e-01, 5.0751e-01, 5.7632e-01, 6.8165e-01, + 4.1461e-01, 3.3339e-01, 2.7547e-01, 9.8206e-02, + 2.4585e-02, 5.1512e-01, 1.4352e-01, 1.0422e-01, + 9.9198e-01, 6.0170e-01, 1.7000e-01, 2.2028e-01, + 8.5709e-01, 1.0687e-01, 5.2938e-02, 2.0130e-01, + 4.0830e-01, 6.9702e-01, 7.4460e-02, 5.4586e-03, + 2.2453e-01, 8.8854e-02, 9.3819e-01, 3.1406e-01, + 4.2855e-01, 5.9846e-01, 4.2003e-01, 5.0858e-01, + 7.3609e-01, 6.1148e-01, 7.1703e-01, 6.0561e-01, + 4.5768e-01, 1.2397e-01, 3.5627e-01, 8.0143e-01, + 6.1472e-01, 2.3014e-01, 6.6661e-01, 2.9043e-01, + 6.4900e-01, 1.0069e-01, 1.8357e-01, 7.5440e-01, + 8.4145e-01, 9.4584e-01, 6.2814e-01, 7.3938e-01, + 4.9410e-01, 3.8555e-01, 8.5109e-01, 9.4921e-01, + 2.4875e-01, 7.9168e-02, 8.0965e-02, 6.7150e-01, + 4.1002e-01, 8.0019e-01, 7.4899e-01, 3.7086e-01, + 2.2021e-01, 2.3499e-01, 1.8010e-01, 6.8475e-01, + 7.1328e-01, 6.7819e-01, 9.7254e-01, 9.5271e-01, + 3.5404e-01, 5.3603e-01, 8.9419e-01, 6.8372e-02, + 1.6953e-01, 6.5824e-01, 7.6890e-01, 9.3812e-02, + 3.8563e-01, 4.0621e-01, 9.1471e-01, 1.9823e-01, + 4.3999e-01, 3.0395e-01, 7.1340e-01, 2.5131e-01, + 8.7557e-01, 1.5075e-01, 9.8650e-01, 5.3651e-01, + 5.0817e-01, 5.9476e-01, 1.9720e-01, 9.0115e-01, + 9.2163e-01, 9.8019e-01, 7.8150e-01, 5.5400e-01, + 1.5169e-01, 3.9261e-01, 9.8313e-01, 2.7392e-01, + 9.8061e-01, 8.9033e-01, 1.7201e-01, 1.4114e-01, + 8.8501e-01, 9.2742e-01, 1.7757e-01, 4.1985e-01, + 6.1529e-01, 7.8249e-01, 3.0982e-01, 1.9173e-01, + 4.3381e-01, 8.0061e-01, 4.6306e-01, 2.6376e-03, + 9.0015e-01, 8.6386e-01, 2.7373e-04, 8.2181e-01, + 1.7497e-01, 8.6446e-01, 3.8278e-02, 9.3738e-01, + 1.4478e-01, 3.6074e-01, 4.9870e-01, 4.1068e-01, + 2.2159e-02, 9.1232e-01, 4.8533e-01, 3.4753e-01, + 1.7253e-01, 7.5020e-01, 9.1742e-01, 5.3659e-01, + 1.8035e-01, 2.3939e-01, 4.1854e-01, 7.0508e-01, + 2.9775e-01, 6.8891e-01, 5.7259e-01, 2.1233e-01, + 2.8848e-02, 5.9922e-01, 1.3774e-01, 9.7988e-02, + 2.9594e-02, 9.9852e-01, 6.2377e-01, 1.2506e-01, + 6.2903e-01, 2.4709e-01, 7.9481e-01, 2.8351e-01, + 7.5214e-01, 8.0716e-01, 4.7242e-01, 4.4288e-02, + 1.8578e-02, 9.9935e-01, 2.7602e-01, 1.0075e-01, + 6.3752e-01, 2.7320e-01, 1.0876e-01, 8.9150e-01, + 5.5601e-01, 4.9492e-01, 5.2617e-01, 3.1376e-01, + 6.2485e-02, 6.1369e-01, 8.9174e-01, 2.5796e-01, + 3.3213e-01, 2.3179e-01, 9.8658e-01, 2.3060e-01, + 9.3135e-01, 5.2215e-02, 9.7039e-01, 5.8413e-01, + 1.2826e-01, 4.7981e-01, 9.6357e-01, 3.2682e-02, + 1.6298e-02, 1.5945e-01, 9.8437e-01, 2.0032e-01, + 9.5029e-01, 6.2119e-01, 2.5447e-01, 3.9302e-01, + 7.6479e-01, 4.3998e-01, 4.2741e-02, 8.0712e-01, + 7.5958e-01, 9.4342e-01, 6.1220e-02, 8.5277e-01, + 8.0569e-01, 8.5113e-02, 3.3815e-01, 2.2293e-01, + 7.4069e-01, 9.6487e-01, 9.2541e-01, 4.0658e-01, + 7.8100e-01, 1.8005e-01, 7.5104e-01, 2.0211e-01, + 1.3360e-01, 5.3522e-01]), size=(5000, 5000), nnz=250, + layout=torch.sparse_csr) +tensor([0.6988, 0.9907, 0.6239, ..., 0.8127, 0.8805, 0.8314]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -77,161 +104,80 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 0.04602789878845215 seconds +Time: 0.03506755828857422 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '228122', '-ss', '5000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 6.781703472137451} - -/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) - matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 0, ..., 249, 249, 250]), - col_indices=tensor([4412, 3431, 2377, 4102, 3105, 469, 2716, 4410, 2733, - 2349, 109, 3862, 716, 2870, 2405, 4409, 3017, 152, - 1291, 2012, 2518, 1601, 808, 1197, 1818, 4054, 1727, - 338, 2366, 2141, 4163, 602, 909, 1404, 3638, 4853, - 4334, 3774, 2454, 2125, 993, 2793, 20, 3340, 493, - 3838, 1420, 1159, 1629, 2170, 2030, 2643, 3042, 750, - 3505, 1065, 53, 1925, 4323, 314, 2351, 3881, 3378, - 516, 4610, 4522, 2030, 1297, 4803, 2768, 1424, 2842, - 4885, 268, 4021, 4648, 2523, 1919, 3169, 805, 738, - 2589, 45, 1444, 1957, 223, 2481, 4394, 386, 2449, - 63, 2942, 4865, 2949, 3856, 1911, 4197, 1693, 1675, - 4639, 4564, 233, 3973, 3759, 1045, 484, 4027, 3720, - 1180, 3869, 701, 796, 3406, 3536, 4421, 2555, 3123, - 2911, 213, 4454, 3508, 1549, 2383, 1068, 4187, 1933, - 1065, 1293, 2519, 2363, 3252, 3060, 1708, 1125, 1222, - 792, 2489, 2625, 4980, 3534, 4557, 2587, 1504, 2523, - 4865, 3799, 697, 2081, 3495, 3792, 447, 3562, 1341, - 4862, 3634, 3761, 4281, 363, 243, 4562, 286, 2825, - 3913, 2972, 2700, 1419, 1430, 3352, 3317, 563, 848, - 2244, 1261, 353, 3757, 649, 2753, 1341, 974, 197, - 2980, 1854, 432, 2396, 3616, 49, 1220, 2936, 3180, - 1438, 2052, 3219, 4512, 4166, 642, 4875, 934, 3770, - 3666, 2272, 4170, 4061, 4308, 2711, 1697, 3362, 1307, - 1394, 3062, 4568, 1642, 2190, 3138, 2, 977, 97, - 4543, 198, 2355, 2473, 2444, 381, 2793, 3795, 82, - 621, 1709, 2950, 2181, 896, 3658, 1597, 3087, 77, - 4639, 116, 1322, 3984, 4640, 1253, 1197, 4103, 4814, - 4947, 1925, 1050, 735, 66, 1794, 677]), - values=tensor([0.8584, 0.2940, 0.8361, 0.6545, 0.0599, 0.3888, 0.5851, - 0.6940, 0.8362, 0.8362, 0.9462, 0.2506, 0.0683, 0.7589, - 0.7588, 0.1215, 0.5075, 0.0715, 0.7309, 0.7006, 0.3393, - 0.6062, 0.5675, 0.0991, 0.6421, 0.8285, 0.2411, 0.6192, - 0.7606, 0.0570, 0.3224, 0.8569, 0.9310, 0.1626, 0.5654, - 0.9357, 0.1546, 0.1781, 0.6544, 0.6109, 0.7147, 0.0506, - 0.5901, 0.5614, 0.8122, 0.3694, 0.6076, 0.1018, 0.7603, - 0.4975, 0.8669, 0.5965, 0.4565, 0.6649, 0.6463, 0.7871, - 0.1496, 0.1997, 0.4029, 0.6148, 0.0954, 0.9115, 0.5070, - 0.1492, 0.5094, 0.8294, 0.3206, 0.4740, 0.8681, 0.4774, - 0.4284, 0.5390, 0.3012, 0.1084, 0.4943, 0.6244, 0.2177, - 0.7785, 0.0851, 0.4084, 0.4411, 0.4278, 0.1858, 0.2899, - 0.9883, 0.8319, 0.3029, 0.9928, 0.0011, 0.8219, 0.6450, - 0.9238, 0.2393, 0.7397, 0.9537, 0.1430, 0.9063, 0.8994, - 0.7356, 0.5662, 0.3795, 0.1296, 0.3682, 0.9644, 0.9991, - 0.3763, 0.9169, 0.8616, 0.9415, 0.2403, 0.4748, 0.5073, - 0.7745, 0.4686, 0.2383, 0.8867, 0.7226, 0.4254, 0.8763, - 0.5133, 0.8457, 0.4420, 0.3749, 0.5921, 0.2344, 0.4320, - 0.7194, 0.0469, 0.9783, 0.0970, 0.8022, 0.9309, 0.8787, - 0.3357, 0.7904, 0.8963, 0.4849, 0.1787, 0.5132, 0.4628, - 0.5414, 0.9554, 0.3271, 0.3169, 0.2442, 0.2757, 0.5089, - 0.3495, 0.4214, 0.3725, 0.8627, 0.8227, 0.6433, 0.8876, - 0.3830, 0.5849, 0.0981, 0.0978, 0.2785, 0.4140, 0.2048, - 0.1636, 0.0621, 0.1099, 0.4695, 0.1663, 0.9375, 0.7340, - 0.9932, 0.1563, 0.6681, 0.4036, 0.6962, 0.7990, 0.9004, - 0.2559, 0.4308, 0.5817, 0.7744, 0.5854, 0.2835, 0.0025, - 0.6549, 0.6423, 0.7235, 0.2989, 0.5604, 0.4228, 0.9786, - 0.9508, 0.7948, 0.6501, 0.6846, 0.8831, 0.1362, 0.6745, - 0.3634, 0.1194, 0.7865, 0.3274, 0.6153, 0.1243, 0.8629, - 0.7042, 0.7027, 0.1577, 0.8610, 0.0174, 0.4922, 0.3920, - 0.9174, 0.0231, 0.0128, 0.8149, 0.0929, 0.1162, 0.7130, - 0.4659, 0.5103, 0.1249, 0.5040, 0.7310, 0.9342, 0.2365, - 0.3416, 0.1041, 0.7717, 0.6249, 0.9648, 0.2441, 0.8921, - 0.8343, 0.6811, 0.2402, 0.4086, 0.3764, 0.9013, 0.2993, - 0.8767, 0.3813, 0.1437, 0.1242, 0.1512, 0.2907, 0.4614, - 0.4486, 0.2404, 0.7355, 0.7961, 0.7130]), - size=(5000, 5000), nnz=250, layout=torch.sparse_csr) -tensor([0.8182, 0.2605, 0.1489, ..., 0.1484, 0.3699, 0.6778]) -Matrix Type: synthetic -Matrix Format: csr -Shape: torch.Size([5000, 5000]) -Rows: 5000 -Size: 25000000 -NNZ: 250 -Density: 1e-05 -Time: 6.781703472137451 seconds - -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '353197', '-ss', '5000', '-sd', '1e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.226954936981201} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '29942', '-ss', '5000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.8915646076202393} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([1961, 1566, 179, 628, 4168, 3230, 47, 1058, 848, - 1307, 863, 3163, 497, 3237, 3835, 4225, 1765, 2385, - 2578, 3624, 2513, 1168, 2630, 3631, 1864, 568, 4361, - 4779, 4022, 399, 4958, 2227, 3685, 929, 3248, 4399, - 3742, 2634, 1997, 92, 422, 3204, 3122, 339, 265, - 3708, 478, 2565, 4710, 4857, 937, 3612, 4449, 1275, - 3883, 720, 2924, 2672, 816, 3571, 2100, 2481, 4778, - 4274, 2449, 1483, 3559, 3509, 2069, 4491, 301, 3501, - 3355, 3144, 2461, 4209, 4595, 3120, 42, 339, 2378, - 677, 812, 4696, 2299, 2787, 3449, 4225, 795, 357, - 3876, 3155, 630, 1217, 467, 4920, 2116, 1865, 509, - 2607, 505, 639, 4966, 3789, 4209, 698, 4136, 4750, - 2065, 2749, 4384, 509, 3499, 4937, 4796, 3051, 552, - 774, 3789, 1722, 767, 2957, 1237, 2321, 4698, 2045, - 4243, 3205, 4990, 779, 4074, 4440, 1390, 3840, 4194, - 3980, 3010, 577, 724, 889, 4234, 2698, 2212, 2964, - 4694, 1090, 4209, 4557, 847, 1631, 4530, 2407, 4787, - 789, 927, 3820, 3586, 723, 3734, 3635, 4071, 1476, - 3647, 2541, 4116, 2412, 1162, 883, 651, 4351, 3454, - 4637, 602, 3838, 3759, 4938, 3880, 1311, 3214, 3977, - 4877, 2037, 1676, 3561, 2013, 1782, 2279, 1713, 2273, - 4556, 10, 2998, 564, 2394, 4714, 4432, 152, 1276, - 2893, 1660, 4751, 3614, 3802, 3684, 4922, 4957, 354, - 4042, 3162, 2717, 2866, 4789, 3665, 2555, 3305, 1695, - 647, 3279, 2845, 2963, 2699, 4805, 4132, 3345, 427, - 3911, 132, 4865, 27, 3182, 674, 856, 3414, 836, - 2173, 3550, 3891, 1058, 4695, 4487, 1810, 3555, 3979, - 4408, 2688, 366, 1825, 2362, 2165, 528]), - values=tensor([0.4900, 0.1519, 0.0910, 0.3336, 0.1203, 0.0899, 0.6181, - 0.4862, 0.1318, 0.9250, 0.1441, 0.0670, 0.4525, 0.3839, - 0.8394, 0.7346, 0.5373, 0.5064, 0.9776, 0.6275, 0.4349, - 0.6891, 0.1229, 0.7614, 0.8176, 0.5621, 0.6156, 0.1536, - 0.6722, 0.6064, 0.2625, 0.9808, 0.5748, 0.9150, 0.4568, - 0.6909, 0.1190, 0.8592, 0.4831, 0.2786, 0.9355, 0.9047, - 0.2710, 0.9935, 0.6258, 0.0847, 0.2480, 0.4761, 0.4988, - 0.5869, 0.3880, 0.6275, 0.2775, 0.2227, 0.6139, 0.7839, - 0.7203, 0.4507, 0.9394, 0.2396, 0.5645, 0.0507, 0.3048, - 0.2385, 0.6518, 0.7404, 0.0325, 0.8256, 0.0527, 0.3542, - 0.1592, 0.5500, 0.2905, 0.8845, 0.4741, 0.2973, 0.0174, - 0.5234, 0.2314, 0.9813, 0.0451, 0.4561, 0.7036, 0.8049, - 0.7589, 0.9746, 0.1814, 0.0845, 0.1329, 0.7672, 0.6622, - 0.7941, 0.1831, 0.9526, 0.7283, 0.6676, 0.5133, 0.1222, - 0.9044, 0.9700, 0.2020, 0.9254, 0.3948, 0.8395, 0.6783, - 0.0135, 0.0908, 0.7106, 0.9979, 0.7791, 0.6211, 0.9269, - 0.0715, 0.4671, 0.4465, 0.5092, 0.0890, 0.6377, 0.1978, - 0.5935, 0.9471, 0.6538, 0.5919, 0.8443, 0.4530, 0.0807, - 0.9258, 0.4523, 0.4554, 0.2932, 0.8921, 0.0589, 0.3042, - 0.4416, 0.9399, 0.0639, 0.1672, 0.2592, 0.9334, 0.7784, - 0.2523, 0.4009, 0.3271, 0.4901, 0.0985, 0.6126, 0.3137, - 0.5938, 0.4894, 0.3721, 0.8337, 0.3234, 0.9788, 0.2330, - 0.2625, 0.8031, 0.0536, 0.2237, 0.3051, 0.9123, 0.3222, - 0.8402, 0.3156, 0.2969, 0.2334, 0.9665, 0.7377, 0.6395, - 0.4451, 0.7617, 0.6622, 0.5325, 0.4459, 0.0092, 0.7370, - 0.4452, 0.8857, 0.5499, 0.2713, 0.3315, 0.9736, 0.3753, - 0.9983, 0.8451, 0.4842, 0.0958, 0.3583, 0.1831, 0.1567, - 0.8604, 0.6328, 0.2541, 0.3850, 0.8555, 0.4146, 0.1263, - 0.1834, 0.2208, 0.6295, 0.4250, 0.5900, 0.7980, 0.5475, - 0.9764, 0.2051, 0.6760, 0.3076, 0.0382, 0.6317, 0.2634, - 0.3634, 0.2930, 0.9653, 0.5672, 0.1508, 0.6672, 0.4422, - 0.7693, 0.8897, 0.4264, 0.4859, 0.4197, 0.0661, 0.6678, - 0.0402, 0.8927, 0.4292, 0.2572, 0.1798, 0.3259, 0.6416, - 0.0733, 0.9193, 0.7059, 0.2676, 0.4781, 0.7963, 0.9337, - 0.7706, 0.7962, 0.5827, 0.3612, 0.1219, 0.5026, 0.1788, - 0.6829, 0.9316, 0.0223, 0.3259, 0.0955]), + col_indices=tensor([3138, 4671, 1014, 2355, 4387, 3668, 1195, 4247, 491, + 1252, 2094, 1714, 1299, 3079, 802, 3268, 2381, 2379, + 4459, 4147, 1428, 4131, 184, 2357, 1540, 3877, 1899, + 1523, 3927, 3281, 842, 2521, 2709, 1317, 126, 4208, + 1524, 1551, 2327, 636, 2832, 4733, 2849, 2855, 4835, + 772, 892, 1005, 3131, 4981, 1907, 3534, 4774, 4049, + 1270, 2687, 3294, 2436, 4012, 573, 1486, 3183, 4324, + 4017, 2252, 3315, 416, 1701, 4054, 3869, 3901, 4397, + 823, 3663, 4776, 1010, 4393, 780, 1327, 4090, 2288, + 2171, 4207, 3745, 3322, 1764, 3400, 1657, 1112, 3388, + 2470, 1470, 3180, 2688, 2946, 2902, 1005, 2105, 1503, + 2575, 2457, 2786, 3986, 3537, 3241, 1529, 183, 137, + 1518, 3278, 1251, 4619, 3661, 1392, 2046, 4296, 1832, + 956, 2052, 4152, 1659, 837, 4363, 3579, 287, 2170, + 416, 3532, 4324, 1141, 3724, 3599, 1673, 3014, 4249, + 3374, 3935, 2108, 3990, 1261, 1792, 2644, 1713, 4760, + 4851, 2651, 534, 3407, 667, 503, 11, 3298, 4145, + 866, 1624, 2824, 3873, 374, 2059, 1354, 4922, 4948, + 4789, 3518, 4827, 1892, 755, 1448, 1250, 4481, 4595, + 1189, 4206, 1769, 3228, 4907, 1812, 3137, 28, 3706, + 4874, 758, 3184, 4721, 3431, 1443, 4896, 2475, 3238, + 2981, 3892, 1841, 3186, 3895, 4298, 4039, 2742, 396, + 3291, 3897, 2330, 4741, 2415, 80, 1815, 1491, 991, + 2013, 2616, 1000, 1578, 818, 4909, 1615, 1781, 539, + 3952, 4002, 1509, 2715, 4070, 3688, 3477, 3166, 2780, + 265, 1338, 4642, 4409, 4565, 4567, 435, 4855, 4082, + 1256, 4264, 2072, 151, 2943, 1612, 2224, 2929, 923, + 3069, 3516, 3474, 16, 4892, 1006, 3067]), + values=tensor([0.1423, 0.3764, 0.8726, 0.6883, 0.7846, 0.4459, 0.0452, + 0.1595, 0.8993, 0.6993, 0.8582, 0.8926, 0.6386, 0.2255, + 0.1989, 0.6924, 0.6856, 0.9311, 0.6401, 0.4844, 0.1827, + 0.6094, 0.0844, 0.8088, 0.7780, 0.4677, 0.5210, 0.2681, + 0.6746, 0.2234, 0.2579, 0.1990, 0.4883, 0.0424, 0.2782, + 0.3929, 0.1674, 0.3710, 0.6509, 0.3822, 0.8632, 0.4975, + 0.5252, 0.8601, 0.4531, 0.6836, 0.5476, 0.3247, 0.1133, + 0.1630, 0.8905, 0.4050, 0.0529, 0.3709, 0.6633, 0.0041, + 0.8263, 0.2824, 0.9484, 0.9316, 0.1253, 0.0387, 0.8159, + 0.2554, 0.3130, 0.0737, 0.4738, 0.5116, 0.7090, 0.2759, + 0.6768, 0.9020, 0.6712, 0.8917, 0.8115, 0.3531, 0.4688, + 0.4566, 0.9670, 0.6423, 0.7005, 0.5390, 0.9066, 0.6596, + 0.7123, 0.3209, 0.0601, 0.3019, 0.6328, 0.0158, 0.7210, + 0.6919, 0.8834, 0.4854, 0.1747, 0.7990, 0.5800, 0.5557, + 0.1228, 0.3669, 0.1142, 0.1249, 0.9221, 0.7233, 0.8693, + 0.8032, 0.3909, 0.5535, 0.3233, 0.2959, 0.5645, 0.9214, + 0.1205, 0.5140, 0.3231, 0.3354, 0.2668, 0.9663, 0.9554, + 0.5077, 0.0968, 0.7096, 0.1594, 0.4013, 0.3294, 0.5998, + 0.4436, 0.2240, 0.9058, 0.0648, 0.8462, 0.2153, 0.7426, + 0.6462, 0.4532, 0.1398, 0.7161, 0.9030, 0.7302, 0.9922, + 0.7361, 0.0549, 0.7258, 0.7856, 0.3469, 0.7982, 0.7709, + 0.2339, 0.9960, 0.4194, 0.7112, 0.5143, 0.2695, 0.8909, + 0.6861, 0.0216, 0.5087, 0.4296, 0.4732, 0.2124, 0.0993, + 0.1882, 0.5905, 0.6824, 0.3641, 0.2671, 0.8679, 0.5636, + 0.0946, 0.2765, 0.6901, 0.1089, 0.9019, 0.8860, 0.2216, + 0.8984, 0.5901, 0.3288, 0.4042, 0.3888, 0.6821, 0.5168, + 0.1585, 0.6704, 0.7681, 0.8172, 0.4528, 0.4017, 0.4631, + 0.8088, 0.1020, 0.1485, 0.7270, 0.4608, 0.5168, 0.6847, + 0.9585, 0.6296, 0.5947, 0.3092, 0.4016, 0.0159, 0.5160, + 0.0621, 0.9856, 0.0778, 0.2539, 0.3235, 0.9242, 0.1079, + 0.9852, 0.7752, 0.1954, 0.3552, 0.8036, 0.4824, 0.2198, + 0.6211, 0.1556, 0.7647, 0.6061, 0.7231, 0.7227, 0.4738, + 0.4499, 0.9377, 0.6610, 0.2220, 0.5305, 0.8038, 0.7592, + 0.9215, 0.9933, 0.6030, 0.5785, 0.4115, 0.6221, 0.6776, + 0.4489, 0.6315, 0.2327, 0.4513, 0.7262, 0.7754, 0.6206, + 0.4823, 0.8933, 0.7206, 0.5757, 0.6875]), size=(5000, 5000), nnz=250, layout=torch.sparse_csr) -tensor([0.8734, 0.8080, 0.1055, ..., 0.8475, 0.7666, 0.2333]) +tensor([0.4051, 0.4452, 0.8286, ..., 0.6416, 0.7748, 0.9825]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -239,77 +185,80 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 10.226954936981201 seconds +Time: 0.8915646076202393 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '352628', '-ss', '5000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 250, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.273355960845947} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), - col_indices=tensor([1961, 1566, 179, 628, 4168, 3230, 47, 1058, 848, - 1307, 863, 3163, 497, 3237, 3835, 4225, 1765, 2385, - 2578, 3624, 2513, 1168, 2630, 3631, 1864, 568, 4361, - 4779, 4022, 399, 4958, 2227, 3685, 929, 3248, 4399, - 3742, 2634, 1997, 92, 422, 3204, 3122, 339, 265, - 3708, 478, 2565, 4710, 4857, 937, 3612, 4449, 1275, - 3883, 720, 2924, 2672, 816, 3571, 2100, 2481, 4778, - 4274, 2449, 1483, 3559, 3509, 2069, 4491, 301, 3501, - 3355, 3144, 2461, 4209, 4595, 3120, 42, 339, 2378, - 677, 812, 4696, 2299, 2787, 3449, 4225, 795, 357, - 3876, 3155, 630, 1217, 467, 4920, 2116, 1865, 509, - 2607, 505, 639, 4966, 3789, 4209, 698, 4136, 4750, - 2065, 2749, 4384, 509, 3499, 4937, 4796, 3051, 552, - 774, 3789, 1722, 767, 2957, 1237, 2321, 4698, 2045, - 4243, 3205, 4990, 779, 4074, 4440, 1390, 3840, 4194, - 3980, 3010, 577, 724, 889, 4234, 2698, 2212, 2964, - 4694, 1090, 4209, 4557, 847, 1631, 4530, 2407, 4787, - 789, 927, 3820, 3586, 723, 3734, 3635, 4071, 1476, - 3647, 2541, 4116, 2412, 1162, 883, 651, 4351, 3454, - 4637, 602, 3838, 3759, 4938, 3880, 1311, 3214, 3977, - 4877, 2037, 1676, 3561, 2013, 1782, 2279, 1713, 2273, - 4556, 10, 2998, 564, 2394, 4714, 4432, 152, 1276, - 2893, 1660, 4751, 3614, 3802, 3684, 4922, 4957, 354, - 4042, 3162, 2717, 2866, 4789, 3665, 2555, 3305, 1695, - 647, 3279, 2845, 2963, 2699, 4805, 4132, 3345, 427, - 3911, 132, 4865, 27, 3182, 674, 856, 3414, 836, - 2173, 3550, 3891, 1058, 4695, 4487, 1810, 3555, 3979, - 4408, 2688, 366, 1825, 2362, 2165, 528]), - values=tensor([0.4900, 0.1519, 0.0910, 0.3336, 0.1203, 0.0899, 0.6181, - 0.4862, 0.1318, 0.9250, 0.1441, 0.0670, 0.4525, 0.3839, - 0.8394, 0.7346, 0.5373, 0.5064, 0.9776, 0.6275, 0.4349, - 0.6891, 0.1229, 0.7614, 0.8176, 0.5621, 0.6156, 0.1536, - 0.6722, 0.6064, 0.2625, 0.9808, 0.5748, 0.9150, 0.4568, - 0.6909, 0.1190, 0.8592, 0.4831, 0.2786, 0.9355, 0.9047, - 0.2710, 0.9935, 0.6258, 0.0847, 0.2480, 0.4761, 0.4988, - 0.5869, 0.3880, 0.6275, 0.2775, 0.2227, 0.6139, 0.7839, - 0.7203, 0.4507, 0.9394, 0.2396, 0.5645, 0.0507, 0.3048, - 0.2385, 0.6518, 0.7404, 0.0325, 0.8256, 0.0527, 0.3542, - 0.1592, 0.5500, 0.2905, 0.8845, 0.4741, 0.2973, 0.0174, - 0.5234, 0.2314, 0.9813, 0.0451, 0.4561, 0.7036, 0.8049, - 0.7589, 0.9746, 0.1814, 0.0845, 0.1329, 0.7672, 0.6622, - 0.7941, 0.1831, 0.9526, 0.7283, 0.6676, 0.5133, 0.1222, - 0.9044, 0.9700, 0.2020, 0.9254, 0.3948, 0.8395, 0.6783, - 0.0135, 0.0908, 0.7106, 0.9979, 0.7791, 0.6211, 0.9269, - 0.0715, 0.4671, 0.4465, 0.5092, 0.0890, 0.6377, 0.1978, - 0.5935, 0.9471, 0.6538, 0.5919, 0.8443, 0.4530, 0.0807, - 0.9258, 0.4523, 0.4554, 0.2932, 0.8921, 0.0589, 0.3042, - 0.4416, 0.9399, 0.0639, 0.1672, 0.2592, 0.9334, 0.7784, - 0.2523, 0.4009, 0.3271, 0.4901, 0.0985, 0.6126, 0.3137, - 0.5938, 0.4894, 0.3721, 0.8337, 0.3234, 0.9788, 0.2330, - 0.2625, 0.8031, 0.0536, 0.2237, 0.3051, 0.9123, 0.3222, - 0.8402, 0.3156, 0.2969, 0.2334, 0.9665, 0.7377, 0.6395, - 0.4451, 0.7617, 0.6622, 0.5325, 0.4459, 0.0092, 0.7370, - 0.4452, 0.8857, 0.5499, 0.2713, 0.3315, 0.9736, 0.3753, - 0.9983, 0.8451, 0.4842, 0.0958, 0.3583, 0.1831, 0.1567, - 0.8604, 0.6328, 0.2541, 0.3850, 0.8555, 0.4146, 0.1263, - 0.1834, 0.2208, 0.6295, 0.4250, 0.5900, 0.7980, 0.5475, - 0.9764, 0.2051, 0.6760, 0.3076, 0.0382, 0.6317, 0.2634, - 0.3634, 0.2930, 0.9653, 0.5672, 0.1508, 0.6672, 0.4422, - 0.7693, 0.8897, 0.4264, 0.4859, 0.4197, 0.0661, 0.6678, - 0.0402, 0.8927, 0.4292, 0.2572, 0.1798, 0.3259, 0.6416, - 0.0733, 0.9193, 0.7059, 0.2676, 0.4781, 0.7963, 0.9337, - 0.7706, 0.7962, 0.5827, 0.3612, 0.1219, 0.5026, 0.1788, - 0.6829, 0.9316, 0.0223, 0.3259, 0.0955]), + col_indices=tensor([1604, 4, 806, 370, 4659, 2266, 385, 4480, 1740, + 2477, 1011, 4368, 1436, 1511, 582, 2881, 3146, 679, + 1335, 340, 2368, 3531, 2793, 4894, 1704, 800, 4449, + 2819, 3830, 944, 715, 291, 1651, 2756, 3425, 4366, + 1387, 4461, 4123, 3059, 45, 97, 307, 3123, 2010, + 4861, 3262, 819, 2940, 4148, 3668, 1416, 2946, 250, + 2020, 1865, 1972, 4176, 4993, 3807, 275, 1852, 2676, + 3641, 2214, 2133, 3702, 1587, 40, 2796, 4522, 2611, + 2391, 408, 3928, 2051, 4768, 4967, 847, 3011, 916, + 2658, 2737, 3985, 653, 1850, 4982, 4426, 3558, 4287, + 1078, 1321, 2196, 3153, 3474, 1886, 4386, 4813, 4479, + 1247, 1097, 4368, 3496, 4390, 2441, 28, 3845, 3018, + 574, 3154, 4908, 4477, 1259, 4186, 1078, 3130, 3163, + 3314, 3378, 1369, 3074, 965, 3176, 3034, 4337, 2593, + 2468, 3576, 1728, 3670, 4022, 4287, 319, 2341, 1420, + 3431, 3473, 1919, 368, 2943, 1836, 2897, 4091, 4055, + 2042, 694, 518, 3464, 437, 2319, 2327, 4527, 3332, + 286, 2756, 1769, 821, 2234, 2362, 3901, 2835, 3532, + 56, 1262, 1926, 2816, 573, 4537, 612, 849, 3556, + 1060, 4100, 3259, 4604, 1644, 551, 216, 1429, 4706, + 4000, 2046, 67, 4772, 4808, 2103, 2457, 770, 19, + 3752, 4627, 3183, 2351, 2290, 676, 4693, 3832, 2391, + 2085, 4458, 4110, 3726, 941, 4345, 4377, 4491, 3791, + 4120, 2339, 4337, 3728, 1293, 1315, 3558, 3212, 1812, + 4592, 3120, 1244, 3477, 1623, 73, 4441, 1447, 3927, + 4954, 4072, 1985, 625, 3210, 3147, 4908, 2800, 1924, + 230, 2107, 2981, 3816, 1923, 3645, 3133, 4236, 4114, + 2851, 2177, 1793, 4717, 666, 1768, 4852]), + values=tensor([0.8340, 0.7919, 0.0199, 0.7955, 0.8390, 0.2112, 0.2062, + 0.2416, 0.0078, 0.1110, 0.8766, 0.2461, 0.5766, 0.2522, + 0.8938, 0.7197, 0.9623, 0.5758, 0.3379, 0.5611, 0.1986, + 0.0227, 0.4551, 0.8241, 0.0932, 0.4545, 0.5055, 0.7378, + 0.9811, 0.7838, 0.9261, 0.3312, 0.1662, 0.7114, 0.8864, + 0.9809, 0.1390, 0.6532, 0.2965, 0.0298, 0.8840, 0.9398, + 0.6219, 0.4181, 0.3747, 0.5146, 0.8402, 0.0806, 0.9003, + 0.4097, 0.4861, 0.8634, 0.8848, 0.4692, 0.4523, 0.5039, + 0.7094, 0.3166, 0.2806, 0.4769, 0.9739, 0.8634, 0.3699, + 0.8453, 0.0189, 0.8787, 0.8196, 0.8724, 0.2325, 0.0224, + 0.5326, 0.1429, 0.6605, 0.4303, 0.9331, 0.8262, 0.4714, + 0.3810, 0.9149, 0.4305, 0.2891, 0.7127, 0.3828, 0.4241, + 0.9483, 0.5644, 0.3167, 0.4464, 0.4110, 0.1906, 0.8227, + 0.3284, 0.6812, 0.4592, 0.8170, 0.4218, 0.2545, 0.2861, + 0.1807, 0.3784, 0.2316, 0.6484, 0.4370, 0.4606, 0.6060, + 0.1427, 0.6182, 0.8321, 0.4963, 0.9467, 0.6222, 0.0087, + 0.8644, 0.1970, 0.6141, 0.5044, 0.8825, 0.7629, 0.0116, + 0.7947, 0.1399, 0.5336, 0.5972, 0.1395, 0.9791, 0.9029, + 0.5148, 0.1269, 0.3422, 0.7435, 0.2942, 0.7550, 0.2954, + 0.5429, 0.3946, 0.1495, 0.9295, 0.4788, 0.3075, 0.4290, + 0.1023, 0.3547, 0.2906, 0.5885, 0.8529, 0.0126, 0.2314, + 0.8888, 0.5984, 0.0063, 0.0122, 0.5164, 0.6866, 0.4135, + 0.9434, 0.8529, 0.4727, 0.6175, 0.7220, 0.1600, 0.7729, + 0.7553, 0.8476, 0.2583, 0.1648, 0.3383, 0.1827, 0.5841, + 0.8183, 0.2678, 0.2397, 0.1691, 0.8089, 0.7103, 0.0096, + 0.5130, 0.0577, 0.3835, 0.4322, 0.8199, 0.2829, 0.8244, + 0.4148, 0.6484, 0.7719, 0.3598, 0.6003, 0.6391, 0.8970, + 0.2186, 0.5556, 0.9770, 0.6002, 0.0280, 0.6160, 0.1589, + 0.7241, 0.2905, 0.4033, 0.4301, 0.8521, 0.8618, 0.5604, + 0.1077, 0.2810, 0.1105, 0.5637, 0.8228, 0.0305, 0.7660, + 0.3373, 0.7652, 0.7287, 0.6077, 0.2858, 0.4001, 0.8614, + 0.8105, 0.5021, 0.3182, 0.2015, 0.3600, 0.7160, 0.9874, + 0.0572, 0.8754, 0.4725, 0.5233, 0.0364, 0.1500, 0.2431, + 0.3915, 0.8270, 0.2064, 0.5104, 0.9129, 0.4413, 0.8801, + 0.9179, 0.9739, 0.2250, 0.5404, 0.9261, 0.5735, 0.2090, + 0.7470, 0.4131, 0.1494, 0.0532, 0.6628]), size=(5000, 5000), nnz=250, layout=torch.sparse_csr) -tensor([0.8734, 0.8080, 0.1055, ..., 0.8475, 0.7666, 0.2333]) +tensor([0.3633, 0.6430, 0.8109, ..., 0.6589, 0.7112, 0.9999]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -317,13 +266,91 @@ Rows: 5000 Size: 25000000 NNZ: 250 Density: 1e-05 -Time: 10.226954936981201 seconds +Time: 10.273355960845947 seconds -[18.35, 17.76, 18.03, 17.72, 17.87, 18.0, 18.15, 17.7, 17.8, 17.85] -[79.36] -14.133229494094849 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 353197, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.226954936981201, 'TIME_S_1KI': 0.0289553844935863, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1121.6130926513672, 'W': 79.36} -[18.35, 17.76, 18.03, 17.72, 17.87, 18.0, 18.15, 17.7, 17.8, 17.85, 18.33, 17.94, 18.05, 17.86, 17.95, 18.18, 18.05, 17.92, 18.13, 17.67] -323.21 -16.1605 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 353197, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.226954936981201, 'TIME_S_1KI': 0.0289553844935863, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1121.6130926513672, 'W': 79.36, 'J_1KI': 3.1756019803434548, 'W_1KI': 0.22469047019085664, 'W_D': 63.1995, 'J_D': 893.2130374120474, 'W_D_1KI': 0.1789355515477198, 'J_D_1KI': 0.0005066168499384757} +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 250, 250, 250]), + col_indices=tensor([1604, 4, 806, 370, 4659, 2266, 385, 4480, 1740, + 2477, 1011, 4368, 1436, 1511, 582, 2881, 3146, 679, + 1335, 340, 2368, 3531, 2793, 4894, 1704, 800, 4449, + 2819, 3830, 944, 715, 291, 1651, 2756, 3425, 4366, + 1387, 4461, 4123, 3059, 45, 97, 307, 3123, 2010, + 4861, 3262, 819, 2940, 4148, 3668, 1416, 2946, 250, + 2020, 1865, 1972, 4176, 4993, 3807, 275, 1852, 2676, + 3641, 2214, 2133, 3702, 1587, 40, 2796, 4522, 2611, + 2391, 408, 3928, 2051, 4768, 4967, 847, 3011, 916, + 2658, 2737, 3985, 653, 1850, 4982, 4426, 3558, 4287, + 1078, 1321, 2196, 3153, 3474, 1886, 4386, 4813, 4479, + 1247, 1097, 4368, 3496, 4390, 2441, 28, 3845, 3018, + 574, 3154, 4908, 4477, 1259, 4186, 1078, 3130, 3163, + 3314, 3378, 1369, 3074, 965, 3176, 3034, 4337, 2593, + 2468, 3576, 1728, 3670, 4022, 4287, 319, 2341, 1420, + 3431, 3473, 1919, 368, 2943, 1836, 2897, 4091, 4055, + 2042, 694, 518, 3464, 437, 2319, 2327, 4527, 3332, + 286, 2756, 1769, 821, 2234, 2362, 3901, 2835, 3532, + 56, 1262, 1926, 2816, 573, 4537, 612, 849, 3556, + 1060, 4100, 3259, 4604, 1644, 551, 216, 1429, 4706, + 4000, 2046, 67, 4772, 4808, 2103, 2457, 770, 19, + 3752, 4627, 3183, 2351, 2290, 676, 4693, 3832, 2391, + 2085, 4458, 4110, 3726, 941, 4345, 4377, 4491, 3791, + 4120, 2339, 4337, 3728, 1293, 1315, 3558, 3212, 1812, + 4592, 3120, 1244, 3477, 1623, 73, 4441, 1447, 3927, + 4954, 4072, 1985, 625, 3210, 3147, 4908, 2800, 1924, + 230, 2107, 2981, 3816, 1923, 3645, 3133, 4236, 4114, + 2851, 2177, 1793, 4717, 666, 1768, 4852]), + values=tensor([0.8340, 0.7919, 0.0199, 0.7955, 0.8390, 0.2112, 0.2062, + 0.2416, 0.0078, 0.1110, 0.8766, 0.2461, 0.5766, 0.2522, + 0.8938, 0.7197, 0.9623, 0.5758, 0.3379, 0.5611, 0.1986, + 0.0227, 0.4551, 0.8241, 0.0932, 0.4545, 0.5055, 0.7378, + 0.9811, 0.7838, 0.9261, 0.3312, 0.1662, 0.7114, 0.8864, + 0.9809, 0.1390, 0.6532, 0.2965, 0.0298, 0.8840, 0.9398, + 0.6219, 0.4181, 0.3747, 0.5146, 0.8402, 0.0806, 0.9003, + 0.4097, 0.4861, 0.8634, 0.8848, 0.4692, 0.4523, 0.5039, + 0.7094, 0.3166, 0.2806, 0.4769, 0.9739, 0.8634, 0.3699, + 0.8453, 0.0189, 0.8787, 0.8196, 0.8724, 0.2325, 0.0224, + 0.5326, 0.1429, 0.6605, 0.4303, 0.9331, 0.8262, 0.4714, + 0.3810, 0.9149, 0.4305, 0.2891, 0.7127, 0.3828, 0.4241, + 0.9483, 0.5644, 0.3167, 0.4464, 0.4110, 0.1906, 0.8227, + 0.3284, 0.6812, 0.4592, 0.8170, 0.4218, 0.2545, 0.2861, + 0.1807, 0.3784, 0.2316, 0.6484, 0.4370, 0.4606, 0.6060, + 0.1427, 0.6182, 0.8321, 0.4963, 0.9467, 0.6222, 0.0087, + 0.8644, 0.1970, 0.6141, 0.5044, 0.8825, 0.7629, 0.0116, + 0.7947, 0.1399, 0.5336, 0.5972, 0.1395, 0.9791, 0.9029, + 0.5148, 0.1269, 0.3422, 0.7435, 0.2942, 0.7550, 0.2954, + 0.5429, 0.3946, 0.1495, 0.9295, 0.4788, 0.3075, 0.4290, + 0.1023, 0.3547, 0.2906, 0.5885, 0.8529, 0.0126, 0.2314, + 0.8888, 0.5984, 0.0063, 0.0122, 0.5164, 0.6866, 0.4135, + 0.9434, 0.8529, 0.4727, 0.6175, 0.7220, 0.1600, 0.7729, + 0.7553, 0.8476, 0.2583, 0.1648, 0.3383, 0.1827, 0.5841, + 0.8183, 0.2678, 0.2397, 0.1691, 0.8089, 0.7103, 0.0096, + 0.5130, 0.0577, 0.3835, 0.4322, 0.8199, 0.2829, 0.8244, + 0.4148, 0.6484, 0.7719, 0.3598, 0.6003, 0.6391, 0.8970, + 0.2186, 0.5556, 0.9770, 0.6002, 0.0280, 0.6160, 0.1589, + 0.7241, 0.2905, 0.4033, 0.4301, 0.8521, 0.8618, 0.5604, + 0.1077, 0.2810, 0.1105, 0.5637, 0.8228, 0.0305, 0.7660, + 0.3373, 0.7652, 0.7287, 0.6077, 0.2858, 0.4001, 0.8614, + 0.8105, 0.5021, 0.3182, 0.2015, 0.3600, 0.7160, 0.9874, + 0.0572, 0.8754, 0.4725, 0.5233, 0.0364, 0.1500, 0.2431, + 0.3915, 0.8270, 0.2064, 0.5104, 0.9129, 0.4413, 0.8801, + 0.9179, 0.9739, 0.2250, 0.5404, 0.9261, 0.5735, 0.2090, + 0.7470, 0.4131, 0.1494, 0.0532, 0.6628]), + size=(5000, 5000), nnz=250, layout=torch.sparse_csr) +tensor([0.3633, 0.6430, 0.8109, ..., 0.6589, 0.7112, 0.9999]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([5000, 5000]) +Rows: 5000 +Size: 25000000 +NNZ: 250 +Density: 1e-05 +Time: 10.273355960845947 seconds + +[18.62, 17.97, 17.77, 17.77, 18.2, 18.07, 17.98, 17.9, 18.36, 17.75] +[73.02] +13.663307428359985 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 352628, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.273355960845947, 'TIME_S_1KI': 0.029133693186150694, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 997.6947084188461, 'W': 73.02} +[18.62, 17.97, 17.77, 17.77, 18.2, 18.07, 17.98, 17.9, 18.36, 17.75, 18.68, 18.07, 18.34, 18.06, 18.18, 17.85, 18.03, 18.15, 17.94, 17.93] +325.13 +16.2565 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 352628, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 250, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.273355960845947, 'TIME_S_1KI': 0.029133693186150694, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 997.6947084188461, 'W': 73.02, 'J_1KI': 2.8293122168938547, 'W_1KI': 0.20707374343500798, 'W_D': 56.76349999999999, 'J_D': 775.5771512097119, 'W_D_1KI': 0.16097275315630066, 'J_D_1KI': 0.00045649453008921774} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_5e-05.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_5e-05.json index 4385053..f8ae472 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_5e-05.json +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_5e-05.json @@ -1 +1 @@ -{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 355197, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.57451844215393, "TIME_S_1KI": 0.029770855165313703, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1141.788979816437, "W": 79.9, "J_1KI": 3.214523151424243, "W_1KI": 0.2249455935720178, "W_D": 63.777750000000005, "J_D": 911.3983993427754, "W_D_1KI": 0.17955599287156143, "J_D_1KI": 0.000505511006206588} +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 348362, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.331048488616943, "TIME_S_1KI": 0.029656071812129176, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1019.3632760500908, "W": 73.39, "J_1KI": 2.9261609361815895, "W_1KI": 0.2106716576434858, "W_D": 57.056, "J_D": 792.4893184127807, "W_D_1KI": 0.1637836503407375, "J_D_1KI": 0.0004701536055618509} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_5e-05.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_5e-05.output index 5fcc662..7fb17e1 100644 --- a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_5e-05.output +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_5000_5e-05.output @@ -1,13 +1,13 @@ -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '5000', '-sd', '5e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.04642629623413086} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '100', '-ss', '5000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 0.01948690414428711} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 1, ..., 1249, 1249, 1250]), - col_indices=tensor([1959, 1786, 16, ..., 4660, 524, 2490]), - values=tensor([0.5665, 0.4844, 0.2984, ..., 0.5218, 0.3017, 0.5058]), +tensor(crow_indices=tensor([ 0, 1, 1, ..., 1250, 1250, 1250]), + col_indices=tensor([3543, 2601, 4811, ..., 3171, 1181, 2171]), + values=tensor([0.9467, 0.6961, 0.1720, ..., 0.4974, 0.2968, 0.3956]), size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) -tensor([0.6773, 0.1820, 0.1692, ..., 0.1637, 0.2279, 0.2140]) +tensor([0.9876, 0.5815, 0.6649, ..., 0.6796, 0.2344, 0.7286]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -15,18 +15,18 @@ Rows: 5000 Size: 25000000 NNZ: 1250 Density: 5e-05 -Time: 0.04642629623413086 seconds +Time: 0.01948690414428711 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '226164', '-ss', '5000', '-sd', '5e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 6.685633659362793} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '53882', '-ss', '5000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 1.6240589618682861} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) -tensor(crow_indices=tensor([ 0, 0, 1, ..., 1250, 1250, 1250]), - col_indices=tensor([4154, 3836, 1179, ..., 2527, 1259, 153]), - values=tensor([0.7262, 0.5127, 0.2351, ..., 0.4025, 0.3877, 0.1384]), +tensor(crow_indices=tensor([ 0, 1, 1, ..., 1250, 1250, 1250]), + col_indices=tensor([ 267, 783, 3915, ..., 3618, 4520, 1464]), + values=tensor([0.2837, 0.8920, 0.5250, ..., 0.9331, 0.1091, 0.1041]), size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) -tensor([0.5042, 0.5821, 0.3979, ..., 0.3479, 0.7780, 0.3728]) +tensor([0.6941, 0.6065, 0.9857, ..., 0.4180, 0.3910, 0.2569]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -34,18 +34,18 @@ Rows: 5000 Size: 25000000 NNZ: 1250 Density: 5e-05 -Time: 6.685633659362793 seconds +Time: 1.6240589618682861 seconds -['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '355197', '-ss', '5000', '-sd', '5e-05', '-c', '16'] -{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.57451844215393} +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '348362', '-ss', '5000', '-sd', '5e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [5000, 5000], "MATRIX_ROWS": 5000, "MATRIX_SIZE": 25000000, "MATRIX_NNZ": 1250, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.331048488616943} /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 1250, 1250, 1250]), - col_indices=tensor([2741, 2960, 2565, ..., 976, 304, 1232]), - values=tensor([0.5180, 0.1270, 0.6648, ..., 0.3095, 0.3853, 0.9447]), + col_indices=tensor([2866, 1356, 2436, ..., 421, 1796, 3666]), + values=tensor([0.0261, 0.5356, 0.3907, ..., 0.0828, 0.6288, 0.2100]), size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) -tensor([0.1571, 0.5465, 0.3582, ..., 0.1118, 0.4116, 0.5757]) +tensor([0.2739, 0.9422, 0.5483, ..., 0.7719, 0.1377, 0.3851]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -53,15 +53,15 @@ Rows: 5000 Size: 25000000 NNZ: 1250 Density: 5e-05 -Time: 10.57451844215393 seconds +Time: 10.331048488616943 seconds /nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) matrix = matrix.to_sparse_csr().type(torch.float32) tensor(crow_indices=tensor([ 0, 0, 0, ..., 1250, 1250, 1250]), - col_indices=tensor([2741, 2960, 2565, ..., 976, 304, 1232]), - values=tensor([0.5180, 0.1270, 0.6648, ..., 0.3095, 0.3853, 0.9447]), + col_indices=tensor([2866, 1356, 2436, ..., 421, 1796, 3666]), + values=tensor([0.0261, 0.5356, 0.3907, ..., 0.0828, 0.6288, 0.2100]), size=(5000, 5000), nnz=1250, layout=torch.sparse_csr) -tensor([0.1571, 0.5465, 0.3582, ..., 0.1118, 0.4116, 0.5757]) +tensor([0.2739, 0.9422, 0.5483, ..., 0.7719, 0.1377, 0.3851]) Matrix Type: synthetic Matrix Format: csr Shape: torch.Size([5000, 5000]) @@ -69,13 +69,13 @@ Rows: 5000 Size: 25000000 NNZ: 1250 Density: 5e-05 -Time: 10.57451844215393 seconds +Time: 10.331048488616943 seconds -[17.86, 17.95, 18.35, 17.84, 17.76, 17.65, 18.09, 17.61, 17.89, 17.57] -[79.9] -14.2902250289917 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 355197, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.57451844215393, 'TIME_S_1KI': 0.029770855165313703, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1141.788979816437, 'W': 79.9} -[17.86, 17.95, 18.35, 17.84, 17.76, 17.65, 18.09, 17.61, 17.89, 17.57, 18.28, 17.96, 17.74, 18.66, 18.09, 17.53, 17.73, 17.6, 18.05, 18.18] -322.44500000000005 -16.12225 -{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 355197, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.57451844215393, 'TIME_S_1KI': 0.029770855165313703, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1141.788979816437, 'W': 79.9, 'J_1KI': 3.214523151424243, 'W_1KI': 0.2249455935720178, 'W_D': 63.777750000000005, 'J_D': 911.3983993427754, 'W_D_1KI': 0.17955599287156143, 'J_D_1KI': 0.000505511006206588} +[18.79, 18.13, 18.25, 18.09, 18.59, 17.94, 18.05, 18.04, 18.23, 18.09] +[73.39] +13.889675378799438 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 348362, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.331048488616943, 'TIME_S_1KI': 0.029656071812129176, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1019.3632760500908, 'W': 73.39} +[18.79, 18.13, 18.25, 18.09, 18.59, 17.94, 18.05, 18.04, 18.23, 18.09, 18.49, 18.19, 18.09, 17.88, 18.04, 18.12, 18.21, 18.0, 18.16, 17.97] +326.68 +16.334 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 348362, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [5000, 5000], 'MATRIX_ROWS': 5000, 'MATRIX_SIZE': 25000000, 'MATRIX_NNZ': 1250, 'MATRIX_DENSITY': 5e-05, 'TIME_S': 10.331048488616943, 'TIME_S_1KI': 0.029656071812129176, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1019.3632760500908, 'W': 73.39, 'J_1KI': 2.9261609361815895, 'W_1KI': 0.2106716576434858, 'W_D': 57.056, 'J_D': 792.4893184127807, 'W_D_1KI': 0.1637836503407375, 'J_D_1KI': 0.0004701536055618509} diff --git a/pytorch/synthetic_densities b/pytorch/synthetic_densities index 4b46d53..45681ce 100644 --- a/pytorch/synthetic_densities +++ b/pytorch/synthetic_densities @@ -7,3 +7,5 @@ 0.1 0.2 0.3 +0.4 +0.5