This commit is contained in:
cephi 2024-12-14 15:57:07 -05:00
parent 644a6c9954
commit abd4b43a58
180 changed files with 2604 additions and 0 deletions

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 64501, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 999950, "MATRIX_DENSITY": 9.9995e-05, "TIME_S": 10.937983274459839, "TIME_S_1KI": 0.1695785069139988, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 567.2887351226807, "W": 49.70430804561819, "J_1KI": 8.795037830772868, "W_1KI": 0.7705974798160989, "W_D": 31.653308045618193, "J_D": 361.2677811985016, "W_D_1KI": 0.49074135355449056, "J_D_1KI": 0.0076082751206103865}

View File

@ -0,0 +1,17 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 9, 18, ..., 999932, 999938,
999950]),
col_indices=tensor([10110, 12605, 40786, ..., 88927, 91184, 94573]),
values=tensor([-0.7796, -0.9685, -0.0839, ..., 1.2711, 1.5132,
0.5683]), size=(100000, 100000), nnz=999950,
layout=torch.sparse_csr)
tensor([0.0946, 0.2595, 0.2568, ..., 0.3660, 0.5904, 0.0609])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([100000, 100000])
Size: 10000000000
NNZ: 999950
Density: 9.9995e-05
Time: 10.937983274459839 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 197739, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.723783731460571, "TIME_S_1KI": 0.054232011547851317, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 372.3051293182373, "W": 34.472008609034624, "J_1KI": 1.8828108229445748, "W_1KI": 0.17433085334220677, "W_D": 16.914008609034624, "J_D": 182.67494168663018, "W_D_1KI": 0.08553703927416759, "J_D_1KI": 0.0004325754619683906}

View File

@ -0,0 +1,17 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 0, 2, ..., 99996, 99997,
100000]),
col_indices=tensor([12284, 56642, 64630, ..., 1486, 59934, 63229]),
values=tensor([ 0.6311, 0.7508, -2.1343, ..., -0.1643, 1.0472,
-3.0903]), size=(100000, 100000), nnz=100000,
layout=torch.sparse_csr)
tensor([0.1984, 0.2622, 0.0158, ..., 0.0124, 0.6459, 0.0911])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([100000, 100000])
Size: 10000000000
NNZ: 100000
Density: 1e-05
Time: 10.723783731460571 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 144710, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 199999, "MATRIX_DENSITY": 1.99999e-05, "TIME_S": 10.811187505722046, "TIME_S_1KI": 0.07470933249756095, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 419.1660452079773, "W": 40.553841840438906, "J_1KI": 2.8965934987767072, "W_1KI": 0.28024215216943477, "W_D": 23.028841840438908, "J_D": 238.02698146224026, "W_D_1KI": 0.1591378746488764, "J_D_1KI": 0.0010997019877608764}

View File

@ -0,0 +1,17 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 2, 6, ..., 199997, 199999,
199999]),
col_indices=tensor([87835, 91834, 24596, ..., 49690, 54987, 72343]),
values=tensor([-1.1614e+00, -2.8700e-01, 1.5706e-03, ...,
-1.8033e+00, 1.7581e+00, 1.0572e+00]),
size=(100000, 100000), nnz=199999, layout=torch.sparse_csr)
tensor([0.5278, 0.3226, 0.2774, ..., 0.7173, 0.7485, 0.1274])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([100000, 100000])
Size: 10000000000
NNZ: 199999
Density: 1.99999e-05
Time: 10.811187505722046 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 94737, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 499994, "MATRIX_DENSITY": 4.99994e-05, "TIME_S": 10.580386400222778, "TIME_S_1KI": 0.11168167031067881, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 443.9495148086548, "W": 42.52685400360466, "J_1KI": 4.68612595721476, "W_1KI": 0.4488938218816794, "W_D": 24.877854003604664, "J_D": 259.7067540769577, "W_D_1KI": 0.2625991323728286, "J_D_1KI": 0.002771875110810228}

View File

@ -0,0 +1,17 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 3, 9, ..., 499986, 499989,
499994]),
col_indices=tensor([14307, 59019, 64362, ..., 53395, 62334, 74450]),
values=tensor([ 0.6303, -1.3333, -0.6531, ..., -0.2267, 0.7450,
0.1175]), size=(100000, 100000), nnz=499994,
layout=torch.sparse_csr)
tensor([0.6980, 0.0737, 0.9763, ..., 0.2302, 0.7366, 0.2229])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([100000, 100000])
Size: 10000000000
NNZ: 499994
Density: 4.99994e-05
Time: 10.580386400222778 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 71869, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 799970, "MATRIX_DENSITY": 7.9997e-05, "TIME_S": 11.103689193725586, "TIME_S_1KI": 0.15449900782987916, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 506.19529326438897, "W": 48.64164968545682, "J_1KI": 7.043305086537853, "W_1KI": 0.6768098858403041, "W_D": 30.76664968545682, "J_D": 320.1769134271144, "W_D_1KI": 0.4280934712526516, "J_D_1KI": 0.005956580323263878}

View File

@ -0,0 +1,17 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 4, 11, ..., 799957, 799963,
799970]),
col_indices=tensor([ 9707, 28118, 30919, ..., 82276, 92061, 92663]),
values=tensor([ 1.2052, -1.5644, -1.5667, ..., 0.5565, -0.5405,
-0.2631]), size=(100000, 100000), nnz=799970,
layout=torch.sparse_csr)
tensor([0.5347, 0.9755, 0.4755, ..., 0.3062, 0.5404, 0.3654])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([100000, 100000])
Size: 10000000000
NNZ: 799970
Density: 7.9997e-05
Time: 11.103689193725586 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 745672, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.792332410812378, "TIME_S_1KI": 0.01447329712100277, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 441.4402393722534, "W": 39.33484127375969, "J_1KI": 0.5920032391886156, "W_1KI": 0.052750862676565154, "W_D": 21.838841273759694, "J_D": 245.0891628723145, "W_D_1KI": 0.029287463219431188, "J_D_1KI": 3.927660314378331e-05}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 2, 2, ..., 9997, 10000, 10000]),
col_indices=tensor([ 208, 3210, 3280, ..., 2267, 6277, 9749]),
values=tensor([-0.1715, -0.0528, -1.1977, ..., 0.8885, 1.1928,
0.4887]), size=(10000, 10000), nnz=10000,
layout=torch.sparse_csr)
tensor([0.4199, 0.9096, 0.7063, ..., 0.1703, 0.6234, 0.8225])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([10000, 10000])
Size: 100000000
NNZ: 10000
Density: 0.0001
Time: 10.792332410812378 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 746211, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.773172378540039, "TIME_S_1KI": 0.014437166402719926, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 373.8277773666382, "W": 37.833531501635065, "J_1KI": 0.5009679264532929, "W_1KI": 0.050700849359812526, "W_D": 20.80053150163506, "J_D": 205.5271118152141, "W_D_1KI": 0.027874865824324566, "J_D_1KI": 3.735520626783117e-05}

View File

@ -0,0 +1,375 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 0, 0, ..., 999, 999, 1000]),
col_indices=tensor([9902, 7111, 5421, 8317, 2274, 6510, 3368, 8326, 8666,
4378, 835, 969, 134, 7273, 5432, 882, 2682, 9181,
2436, 162, 5466, 2267, 2378, 8682, 4925, 6470, 3561,
8797, 7800, 1487, 5058, 6873, 6105, 2868, 697, 2588,
4704, 7636, 4395, 8053, 6435, 2478, 4332, 3225, 1152,
9872, 4463, 9547, 9210, 2098, 2358, 6315, 606, 3503,
3308, 3293, 324, 7139, 3295, 2979, 2986, 253, 6525,
2903, 6368, 968, 6911, 4898, 6976, 4805, 7710, 9392,
3109, 2952, 253, 7810, 5011, 8956, 6103, 6828, 8288,
7626, 8831, 7668, 8813, 1776, 2842, 3870, 7192, 681,
107, 2994, 2651, 4184, 8595, 5092, 6800, 3268, 4112,
7523, 7482, 1183, 6437, 1740, 1412, 3809, 8142, 5330,
1831, 4066, 14, 127, 7302, 4921, 1449, 3806, 3675,
4943, 5096, 4847, 6093, 5202, 8383, 9639, 5323, 5692,
9691, 1853, 4180, 2692, 9911, 4775, 152, 270, 3176,
3592, 3029, 2820, 1321, 4126, 9183, 8476, 2975, 5220,
1371, 7556, 5442, 5654, 8184, 6604, 6111, 6942, 1303,
9230, 5902, 1463, 442, 2962, 1085, 2870, 3900, 8920,
4009, 5148, 5632, 5801, 5638, 3832, 8100, 9778, 4664,
5922, 15, 1702, 6506, 3833, 2542, 2249, 1410, 8878,
2665, 2122, 2098, 1237, 9018, 6805, 5943, 2856, 6264,
2451, 97, 4784, 6355, 9969, 5191, 2992, 4591, 6745,
3971, 2985, 9745, 4024, 9036, 2610, 6545, 1989, 8434,
1373, 5434, 9236, 4484, 6865, 5629, 469, 2603, 1363,
471, 4235, 8138, 5322, 9445, 2578, 650, 8357, 4040,
285, 8450, 7788, 5368, 9834, 4254, 5431, 1122, 4290,
8291, 7275, 7530, 3305, 7187, 276, 409, 3598, 11,
8083, 4325, 1811, 156, 2491, 1205, 7921, 7975, 6,
1973, 4343, 9788, 2790, 3760, 2772, 7555, 4716, 9422,
6595, 7265, 687, 2740, 6332, 6832, 855, 8027, 5857,
1870, 7943, 3435, 5697, 7475, 4491, 27, 3035, 5461,
7996, 6610, 8340, 5657, 8071, 9346, 8159, 6030, 6067,
5711, 1925, 7881, 3043, 8702, 983, 8887, 8584, 4580,
200, 2502, 7775, 2795, 952, 875, 4203, 6414, 6296,
3468, 2393, 3311, 4776, 8615, 3090, 592, 3125, 8757,
6578, 1309, 8906, 5027, 6604, 2526, 4731, 6507, 3989,
7485, 5724, 2532, 8826, 2304, 7047, 4790, 496, 4353,
709, 9348, 1512, 805, 4514, 2643, 9305, 5846, 2733,
3182, 801, 5116, 4400, 7637, 3566, 8575, 7209, 5783,
2127, 2132, 2326, 9406, 9175, 7165, 7843, 8931, 5169,
382, 5734, 6825, 5729, 3892, 3188, 1724, 6522, 2727,
7793, 2000, 2181, 6411, 9626, 7314, 8653, 376, 8649,
8803, 9139, 5739, 6333, 87, 8514, 9407, 7002, 8769,
7754, 7868, 6742, 3312, 8218, 712, 2429, 316, 6509,
114, 7778, 6778, 253, 595, 6151, 910, 5968, 1899,
5149, 7366, 37, 3015, 6703, 4858, 1003, 3149, 6007,
7848, 3185, 6583, 8408, 8456, 6151, 6228, 9524, 2113,
1949, 2216, 8995, 8240, 5045, 5332, 9902, 7030, 4686,
4577, 1479, 4451, 3696, 9679, 4446, 3594, 1024, 2924,
4649, 3853, 9276, 489, 5834, 8544, 2021, 8454, 470,
8028, 4906, 2945, 9983, 8213, 6032, 3406, 7, 9488,
1278, 7792, 3459, 6530, 2673, 5038, 3044, 4439, 6632,
3501, 345, 9989, 2851, 4158, 3181, 7447, 3529, 2918,
4104, 7689, 687, 2618, 9999, 2138, 9378, 4322, 7087,
7489, 4239, 2832, 8912, 6961, 3592, 1954, 6943, 9830,
3532, 9579, 3130, 5717, 8898, 4000, 7571, 5274, 5784,
7881, 1973, 800, 7474, 2747, 8079, 5077, 1049, 5279,
7254, 9845, 1365, 5075, 3429, 2922, 6878, 8843, 2833,
4230, 8148, 4304, 4981, 6454, 2870, 4496, 7356, 5416,
7789, 7443, 2192, 3488, 3505, 3197, 8718, 6709, 7439,
2374, 5285, 8680, 1737, 7778, 3781, 5956, 7817, 3651,
2746, 9092, 793, 5373, 2148, 4348, 6678, 1545, 9349,
3845, 5179, 7019, 7583, 2631, 7088, 8218, 5039, 3455,
6605, 7812, 8496, 5549, 9722, 9973, 834, 9375, 9431,
8862, 9100, 3174, 2942, 130, 599, 9418, 2563, 8309,
4578, 6197, 9333, 1934, 6906, 4726, 9237, 2862, 9245,
1337, 2763, 2168, 4672, 4468, 9404, 4897, 52, 6643,
8115, 4538, 7480, 6622, 340, 1435, 1756, 3175, 619,
2205, 5450, 6444, 9458, 1505, 2171, 1407, 6580, 8554,
3085, 5068, 8991, 6039, 8079, 4778, 8, 3605, 9885,
2570, 5996, 7128, 5640, 5755, 4492, 3822, 9959, 3228,
4802, 7443, 8783, 4647, 4790, 5392, 1061, 7664, 561,
1393, 8250, 7281, 6258, 2442, 8159, 3515, 2051, 4147,
7038, 8373, 3152, 1699, 2979, 5395, 8545, 3863, 3898,
7152, 2978, 266, 1325, 5404, 2084, 9625, 5720, 1970,
3553, 2956, 5560, 5019, 916, 2526, 2046, 4111, 1226,
8133, 5379, 1986, 2277, 4977, 2839, 2225, 3682, 2855,
1890, 9407, 1756, 149, 671, 3166, 8329, 4974, 1299,
598, 5503, 5036, 4227, 1459, 4855, 1846, 8591, 2874,
660, 7834, 6102, 8760, 9834, 9019, 4319, 8815, 4976,
2860, 7064, 3489, 9154, 2545, 9113, 6171, 5545, 4169,
33, 6255, 5113, 910, 9688, 1351, 1383, 4302, 9746,
6184, 4065, 336, 6909, 7445, 6477, 6981, 1518, 3290,
8351, 9399, 8320, 6828, 3438, 9968, 8548, 1360, 1760,
4192, 7729, 2181, 372, 4843, 2664, 8487, 6430, 6912,
3195, 2859, 165, 6289, 8746, 9055, 6566, 6325, 1578,
3313, 2919, 2292, 6071, 4940, 9121, 7113, 1923, 3182,
4597, 4745, 3232, 5313, 4123, 7476, 7277, 9778, 4656,
6953, 1564, 3228, 4041, 9262, 5196, 1719, 4833, 4906,
6757, 5679, 5143, 6499, 771, 5418, 8937, 5094, 3067,
8384, 4273, 4434, 4383, 7900, 7320, 5230, 5781, 6289,
3413, 5911, 9989, 4306, 4501, 9251, 5335, 7187, 6637,
4088, 43, 1441, 2982, 6928, 4204, 4600, 4546, 4515,
2547, 7433, 4878, 5959, 6885, 1856, 3346, 1417, 9229,
7187, 5728, 8153, 9882, 9791, 8615, 7096, 2928, 778,
611, 168, 2261, 4069, 298, 6993, 7030, 2257, 4977,
5760, 9939, 1834, 3392, 6006, 5162, 4467, 9720, 6175,
5106, 4438, 3972, 5647, 6077, 7423, 9939, 4237, 7373,
6790, 6190, 9805, 2848, 3637, 2942, 5385, 1114, 7280,
7178, 4639, 6460, 9997, 3848, 4390, 6556, 5440, 6382,
5780, 1193, 1168, 2592, 9532, 4420, 6666, 8916, 2664,
4607, 4897, 3435, 1578, 7471, 2465, 5888, 2656, 8240,
9668, 807, 1476, 402, 4898, 2237, 7866, 4293, 3327,
731, 2310, 3361, 9759, 9873, 9124, 4421, 4197, 3961,
9715, 2950, 2256, 5714, 6560, 5421, 4243, 5310, 9539,
230, 4636, 6244, 6029, 1508, 4777, 4786, 2894, 1053,
3912, 9716, 6289, 8714, 3677, 7123, 6906, 158, 1353,
8014, 4227, 3425, 4213, 7265, 6603, 4898, 1584, 8440,
9521, 6637, 7824, 6409, 6330, 5100, 5169, 2276, 6829,
6830, 6432, 374, 4914, 5966, 473, 2051, 2472, 419,
114, 9962, 1050, 3120, 3287, 9215, 667, 1640, 4910,
1906]),
values=tensor([ 9.4927e-01, -1.3105e+00, -3.0778e-01, 2.5358e-01,
-1.0148e+00, -3.6090e-01, -6.6424e-01, -5.7000e-01,
9.8568e-01, -2.1541e-01, -2.7268e+00, -8.8219e-01,
1.4028e+00, 3.2485e-02, -9.6487e-01, 2.4757e-01,
-8.7735e-01, -5.3890e-01, -2.3642e+00, -2.2807e+00,
2.1475e-01, -7.0205e-01, 8.4054e-01, -1.0942e+00,
1.6579e+00, -2.3954e+00, 2.4465e+00, -2.5463e-01,
-1.3087e+00, -1.4368e+00, -4.9311e-01, 7.5912e-01,
1.6779e-01, 1.8307e-01, 1.4511e+00, -6.0259e-01,
-1.4437e+00, 1.1785e+00, 5.3913e-01, 4.9208e-01,
6.5855e-02, -9.6151e-01, -1.0171e+00, 9.6790e-02,
1.1721e+00, -3.9103e-01, 3.4218e-01, 1.4723e+00,
-6.2982e-01, 3.0239e-01, -8.4172e-01, 1.0159e-01,
-6.9617e-01, 3.0111e-01, 5.8848e-01, 7.5822e-01,
6.0971e-01, -5.4947e-01, 3.1413e-01, 2.3744e-01,
8.6707e-01, -2.2226e-01, 1.6166e+00, 1.5185e+00,
1.9568e-01, 3.6636e-01, 9.0095e-01, -7.8878e-01,
-1.9857e+00, 1.2060e+00, 7.8132e-01, 2.9662e-01,
-1.3921e+00, 2.1517e-01, -8.1203e-01, 5.7981e-01,
-1.0713e+00, 1.1966e+00, -3.9098e-01, 2.7006e-01,
2.1176e-02, 6.1066e-01, -1.6701e-01, -2.6319e+00,
2.7301e+00, 8.3648e-02, 1.7556e-01, 1.7614e-01,
1.0069e+00, 8.5605e-01, 6.3183e-01, 7.0738e-01,
-6.8416e-01, -1.8916e-01, 1.0076e+00, -2.0711e+00,
-1.2124e+00, -1.4699e-01, -7.3056e-01, -6.5542e-01,
-8.8743e-01, -2.5969e-01, -8.8164e-01, -8.0334e-03,
9.2056e-02, -2.1134e-01, 1.9726e+00, -2.2589e+00,
-2.4648e+00, -9.0406e-01, -8.2465e-01, -4.6313e-01,
3.8058e-01, -2.3310e+00, -3.1147e-01, 3.4807e-01,
6.1095e-01, 6.8098e-01, 9.9547e-01, -1.3193e+00,
1.1178e+00, 1.1271e+00, -3.0290e-01, -1.0841e-01,
1.2295e+00, 9.9194e-01, 1.3188e-01, 5.9323e-01,
-1.5735e-01, 3.6282e-01, 1.0602e+00, -5.1265e-01,
1.7904e+00, 5.9786e-01, 7.5464e-02, 1.1235e+00,
3.5025e-01, -4.3254e-01, 1.0341e+00, 1.9868e+00,
-1.6359e-01, 1.4540e+00, 7.7016e-01, -1.8144e+00,
-3.6026e-01, -9.5666e-01, 2.9339e-02, 1.5632e+00,
-1.8883e-01, 1.6681e+00, 1.2421e+00, 1.5599e+00,
-6.1787e-01, 1.1619e+00, -2.0298e-01, -4.5312e-01,
2.3104e-01, -1.1426e+00, -1.2096e+00, -2.9020e-01,
-6.4929e-01, 7.1516e-01, 2.5368e+00, -1.0240e-01,
6.8541e-02, 6.3239e-01, 4.0433e-01, -3.7887e-01,
-2.4268e-01, -1.4375e+00, 2.0539e+00, 1.0679e+00,
-1.8795e+00, -2.6034e-01, 1.3236e+00, -1.2129e+00,
-2.1629e-01, 7.5933e-01, -4.2506e-01, -1.4567e-01,
-1.3882e+00, -1.0391e+00, -8.2503e-01, -7.2772e-02,
1.1320e-02, -9.7945e-01, -9.6952e-01, -2.1740e+00,
-4.6113e-01, -4.2033e-01, -1.0362e+00, 3.9630e-01,
5.9472e-01, -3.4281e-01, -6.0403e-01, 8.2881e-01,
3.1838e-01, 2.2509e+00, 5.0457e-02, -4.1459e-01,
-9.7383e-02, 5.6725e-02, 8.6349e-02, -1.5425e+00,
-9.6447e-01, -2.2787e-01, -7.2077e-05, 5.7673e-01,
-1.5107e+00, -2.3533e-01, -5.4502e-01, -1.3160e+00,
1.7032e-01, 2.1499e-01, -1.1498e+00, -2.8530e-01,
-1.2371e+00, 5.9897e-01, -1.0037e-01, 5.1664e-01,
1.9774e+00, 1.0479e+00, 6.7479e-01, 1.6538e+00,
-3.6429e-01, 1.1694e+00, 1.6880e-01, 2.1886e-01,
2.8151e-01, -1.7397e+00, 8.4500e-02, -7.4788e-01,
-6.7986e-01, -5.7553e-01, 1.3100e+00, -1.9677e+00,
5.4686e-01, 1.6917e-01, 6.4850e-01, -1.6421e+00,
1.6312e-01, -6.6197e-01, 8.8074e-01, 8.1338e-01,
5.0299e-01, 1.6072e+00, 9.7816e-01, 1.3300e-01,
7.1864e-01, 1.0274e-01, -9.0090e-01, -1.4061e-01,
-1.0052e+00, -1.3122e+00, -4.4539e-01, 8.9432e-01,
-9.9761e-02, 5.9765e-01, 2.8142e-01, 5.0951e-02,
9.2994e-01, -1.0116e+00, -9.1142e-02, 1.4107e+00,
-5.7668e-01, -3.2898e+00, 8.6314e-01, 8.6586e-01,
1.1192e+00, 1.3049e-01, 2.2545e-01, -1.4020e+00,
-7.8268e-01, 1.4096e+00, 1.0649e+00, 2.6393e-01,
-3.5887e-01, -8.1507e-01, -6.6042e-01, 1.2619e+00,
1.5721e+00, -1.8653e+00, -1.3138e+00, -1.9386e+00,
8.7540e-01, -3.0099e+00, 1.0744e+00, -1.3454e+00,
1.4397e+00, -1.2610e+00, 1.5616e+00, -1.2883e+00,
7.3279e-01, -2.9947e-01, -3.8835e-01, -3.3333e-01,
2.8705e-01, -1.5041e+00, 5.2032e-01, -6.8822e-01,
-7.5828e-01, -5.4274e-01, -1.0561e+00, -1.4271e-01,
-7.9667e-02, -4.5342e-01, 1.3507e-01, -6.7869e-01,
7.4157e-01, 1.6755e+00, -8.2184e-01, 6.3386e-02,
-1.9950e+00, -5.8330e-01, -1.9825e+00, -7.9293e-01,
1.8674e+00, 1.6829e-01, 5.8176e-01, 1.0276e+00,
1.7590e+00, 6.0495e-01, 4.1479e-01, 1.0414e+00,
1.0689e+00, 4.7152e-01, -1.7312e+00, 1.0232e+00,
-9.6553e-02, -7.1781e-01, 1.5275e-01, -2.8024e-01,
-5.2400e-01, 2.5874e-01, 1.7688e-01, 2.4510e-01,
1.6436e+00, 3.1624e-01, 5.5169e-01, 4.1834e-01,
-1.1118e+00, 1.7276e-01, 1.5940e-01, -1.3449e+00,
8.0179e-01, -7.1176e-02, 5.1467e-01, -4.5657e-01,
2.2189e-01, 2.4571e-02, -8.4428e-01, -1.1615e+00,
1.6746e+00, 4.3531e-02, -1.0557e-01, 1.3958e+00,
-1.7189e+00, 1.7773e+00, 1.9746e+00, -2.9490e-02,
9.7211e-01, 5.9220e-01, 1.2409e-01, -7.0777e-01,
-2.2031e-01, 7.6529e-01, -1.2453e+00, -2.8002e-01,
8.4962e-01, -1.9505e-01, 8.1791e-01, -7.8928e-01,
-1.2302e-01, -1.5712e+00, 1.4593e+00, -7.4577e-01,
8.3127e-01, 1.0869e+00, -2.3060e-01, 1.7602e-01,
-6.6245e-01, -9.9978e-01, -7.4463e-01, -5.6937e-01,
-1.1531e+00, 5.9066e-01, -1.4746e+00, 1.9264e-01,
-1.5117e+00, -1.1919e+00, -4.2581e-01, -2.2627e+00,
-1.7824e+00, -1.2814e+00, -1.5389e-01, 6.2339e-01,
1.3814e+00, -1.6565e+00, -5.1897e-01, 5.7006e-01,
3.4688e-01, 2.1731e-01, 9.8060e-01, 3.9140e-01,
9.8311e-01, -3.8219e-01, -1.1236e+00, -5.9773e-01,
3.3411e-01, 1.2869e+00, 4.3322e-01, -1.1320e+00,
-5.5237e-01, 1.1470e+00, -1.4637e+00, -1.9544e+00,
4.9280e-01, -8.4978e-01, 6.5580e-01, 1.1345e+00,
-3.7684e-01, -2.5295e+00, -2.7747e-01, 8.2486e-01,
1.4948e+00, -2.8054e-01, 6.1415e-01, -1.3570e+00,
1.0225e+00, -6.1335e-02, -2.4066e-01, -4.2078e-01,
7.1637e-02, 1.5225e+00, 8.0337e-01, 4.1810e+00,
-7.7300e-01, 2.0193e+00, -1.8159e+00, -4.5190e-02,
7.8836e-02, -8.6682e-01, -2.1662e+00, -1.6962e+00,
-4.2626e-01, -1.5512e-01, -9.5581e-01, 1.0719e+00,
-1.2534e-01, -6.8911e-01, 6.6797e-01, 5.8651e-01,
-6.8652e-01, 4.7187e-01, -1.2095e+00, 2.8368e-01,
3.1516e-01, 7.7460e-01, -1.7050e+00, -5.8736e-01,
7.7618e-01, -1.0978e+00, 1.1897e+00, 2.8764e-01,
4.8055e-01, 7.3252e-01, 1.0119e-01, 9.2754e-01,
2.0905e+00, -1.6547e+00, 1.3285e-01, -7.0197e-01,
-1.4785e-01, -3.8038e-03, 2.5411e-01, 1.0712e+00,
1.0350e+00, -1.3457e+00, -1.8659e-02, 7.0691e-01,
4.5157e-01, -7.0611e-01, 3.0675e-01, 1.4202e-01,
-1.0730e+00, -2.8382e-01, -1.1837e-01, -2.3491e+00,
6.3523e-01, -1.5672e+00, 1.2868e+00, 1.7373e+00,
-9.7745e-01, 2.2609e-01, -4.7015e-01, -3.3058e-01,
2.9632e-01, -2.0101e+00, -4.1890e-01, 9.7709e-01,
5.5071e-01, 1.1813e+00, 8.4917e-01, -1.6252e-01,
-1.0176e+00, 9.8493e-02, 9.3083e-01, -5.7846e-01,
7.0168e-01, 7.7043e-01, -1.6819e+00, 3.7710e-01,
1.0220e+00, -1.6271e-01, -6.0383e-01, -9.5623e-01,
1.5555e-02, -6.0785e-01, -1.3537e-01, 3.5732e-01,
-7.6046e-01, -1.0697e+00, 4.3853e-01, 8.5543e-01,
1.2830e+00, -1.4130e+00, 5.6902e-01, -7.1162e-01,
1.2450e+00, -1.0522e+00, -7.8051e-02, -9.2158e-01,
6.1461e-02, 6.6625e-01, -2.0733e+00, -3.5853e-01,
-2.4155e+00, -1.5933e+00, 6.0250e-01, 5.8961e-01,
-1.3077e+00, -5.4753e-01, -2.5433e-01, -5.8773e-02,
1.2622e+00, -9.2021e-02, -4.4203e-02, -2.9499e-02,
1.0569e+00, -5.9760e-02, 1.5215e-01, -1.9431e+00,
-4.2513e-02, 1.5309e-02, -3.4608e-01, 3.2851e-01,
6.5859e-01, -1.9410e+00, 1.6845e+00, 9.2689e-01,
8.1847e-01, -5.7950e-02, 1.1376e+00, -1.0531e-01,
1.8877e+00, 2.1929e-01, -8.2356e-01, -2.9661e+00,
1.4249e-01, -2.4520e+00, 7.7344e-01, -3.5364e-01,
-6.9495e-01, -3.5958e+00, -5.1461e-01, 6.0841e-01,
2.2737e-01, 4.0384e-02, 4.3196e-01, 4.2711e-01,
-3.9794e-01, -1.4401e+00, -1.0272e+00, -1.4180e+00,
1.9028e-01, 8.2906e-01, 6.9813e-02, 1.1251e+00,
2.0161e+00, -1.1625e+00, -3.1210e-01, -6.2059e-01,
-1.9591e-01, 4.6087e-01, -9.3072e-01, -1.2404e-02,
-7.1357e-01, -1.4488e+00, 1.4537e-01, -8.3838e-01,
6.5307e-01, -3.8432e-01, -5.3171e-01, -8.7569e-01,
1.0981e+00, -1.9827e+00, -1.2084e+00, -4.4552e-01,
-2.4687e-01, 4.5098e-01, 3.9690e-01, 1.4014e+00,
3.5225e-01, 4.9578e-01, 4.0795e-01, -1.7516e+00,
2.1205e+00, -8.4144e-02, 1.3651e+00, -1.3674e+00,
5.4554e-01, -1.5938e+00, 9.3831e-02, 6.1617e-01,
1.3456e+00, 4.8794e-01, -1.1585e-01, 1.9008e+00,
-1.9966e-01, -2.2497e-01, 5.1971e-01, 2.9993e-01,
-2.5095e-01, -1.1762e+00, -7.0283e-01, -8.9088e-01,
2.5632e+00, -3.1504e-01, 1.7678e+00, 2.1691e+00,
9.0295e-01, 7.7568e-02, 1.1019e+00, 1.3370e-01,
1.0936e+00, -1.2537e+00, 1.5400e+00, -6.4831e-01,
1.5697e+00, 1.9279e+00, -5.2110e-01, 9.0183e-01,
9.5332e-02, 8.3925e-01, -5.8802e-01, -1.0245e-01,
1.0264e+00, 5.7479e-01, -3.0976e-02, 6.8063e-01,
3.3720e+00, 4.7758e-01, -7.6489e-01, -5.6107e-01,
7.7106e-01, -4.9103e-01, 1.9004e-01, 1.9811e-01,
2.6586e-01, 5.6374e-01, -4.6335e-01, -1.6984e+00,
-9.3731e-01, 8.7844e-01, -9.4570e-01, -9.4994e-01,
1.1084e+00, 6.5030e-01, -1.2681e+00, -2.6324e+00,
1.6353e+00, -2.0462e+00, 6.1041e-01, -1.0832e+00,
7.6871e-01, 2.4853e-01, -7.8863e-01, -1.5383e+00,
-1.9261e+00, 1.9601e-01, 4.5063e-02, 5.4805e-01,
-2.7903e-01, 1.4102e+00, 1.0083e+00, -5.4879e-01,
-8.2619e-01, -1.1340e-01, -6.3769e-01, -3.2163e-01,
-1.5094e+00, 9.6149e-01, -6.7023e-01, -8.6428e-03,
8.1720e-02, 4.3083e-01, 8.7154e-01, -1.3947e-01,
1.4256e+00, -2.4634e-01, -5.6142e-01, -9.0485e-01,
2.0376e+00, -8.5790e-01, -7.5729e-02, -4.9221e-01,
-1.3902e+00, 3.8467e-01, -1.1083e+00, 1.7236e-01,
-3.2382e-01, -3.6237e-01, 5.5391e-02, -1.2178e+00,
1.4306e+00, 9.0024e-01, 1.0464e+00, -5.7662e-01,
1.0823e+00, -3.6675e-02, 1.2462e+00, 1.5178e+00,
1.0333e+00, -1.2248e+00, -6.5453e-01, -8.4253e-01,
1.3533e-01, -2.8400e-01, -8.2799e-01, 6.6498e-01,
-9.6453e-01, -6.0299e-01, -6.8649e-01, -3.4035e-01,
3.7820e-02, -1.0568e+00, 1.8589e+00, 6.6014e-01,
5.4026e-01, 1.6618e+00, -2.1687e+00, -7.7555e-01,
-2.7112e-01, -6.2483e-01, 3.7571e-01, -9.2481e-01,
-1.5764e+00, 4.1374e-01, -1.6102e-02, -8.8745e-01,
4.2491e-01, -5.6111e-01, -1.7934e-01, 3.7652e-01,
-6.0891e-01, -5.7963e-01, 6.4838e-01, -5.8971e-01,
1.7305e+00, 4.1239e-01, 8.0674e-01, -1.5224e+00,
8.9801e-01, -3.5830e-01, 1.5592e+00, 1.0858e+00,
-6.3675e-01, 8.9290e-01, 2.4652e+00, -8.2037e-01,
-7.4935e-01, -4.6308e-01, 3.1664e-01, 4.8797e-01,
-1.7748e+00, -1.3847e-01, 3.7024e-01, -2.1020e+00,
-3.7245e-02, 7.6084e-01, -2.1542e+00, 1.3146e+00,
-1.0223e+00, -1.0226e+00, 2.3235e+00, 8.1876e-01,
6.8552e-01, 4.0148e-01, -2.2347e-01, 6.8546e-01,
8.1487e-01, 2.7309e-01, -6.2936e-01, -1.5456e+00,
2.6888e-01, -1.0866e+00, -1.5147e+00, -1.5454e+00,
5.0791e-02, 1.5796e+00, -1.3313e+00, -2.8741e-01,
-7.6875e-01, 2.7969e-01, -1.9207e-01, -2.4059e-02,
-3.7798e-01, -3.4250e-01, 2.5707e-01, 5.0661e-01,
-3.7837e-01, -1.6037e+00, 6.1219e-02, -1.3095e+00,
1.5453e+00, -8.0399e-01, 1.0607e+00, 2.0284e+00,
-9.2736e-02, -1.2409e+00, 1.0214e+00, 4.5950e-01,
-1.1492e-01, 1.6546e+00, 5.2218e-01, -1.1018e+00,
-2.5175e-01, -3.4767e-01, -7.8958e-01, 4.6130e-02,
4.5035e-01, -2.0187e+00, -1.4135e-01, -2.4337e+00,
4.0577e-01, -4.9868e-01, 6.4249e-01, -3.9688e-01,
1.4686e-01, 6.7567e-01, -7.6352e-01, 7.9793e-01,
2.7489e-01, -3.6758e-01, 9.2322e-01, -1.0371e+00,
2.0741e-02, 5.3035e-01, -7.2210e-01, 2.2111e-01,
1.0097e+00, -2.9736e-01, -1.9925e+00, -7.2255e-01,
1.6513e-01, 2.1724e+00, -3.8656e-01, 1.5487e-01,
-1.3038e-01, 4.5452e-01, 1.3381e+00, 4.4693e-01,
8.9215e-01, -5.9730e-01, 3.1544e-01, 1.2532e+00,
-1.2573e+00, -1.3667e+00, -4.0537e-01, 1.3699e+00,
5.4408e-01, -2.4284e+00, -1.3419e+00, 1.1173e+00,
-2.1260e-01, -1.1310e+00, -2.6927e-01, -2.2867e+00,
2.2088e-01, -9.0828e-01, 8.3454e-01, -6.8916e-01,
1.2451e+00, 1.0026e+00, 7.8363e-01, 1.2505e+00,
-1.5998e+00, 3.6065e-02, 1.8816e-01, 2.3556e-01,
5.7585e-01, -1.1490e+00, 1.4799e+00, 8.8461e-01,
6.0465e-01, -2.0673e-01, -4.9836e-01, -2.2241e-01,
-6.6821e-01, 1.1181e+00, 4.1180e-01, -9.3116e-02,
9.6447e-01, 8.2906e-01, -1.4702e+00, 6.0443e-01,
-6.4991e-01, 7.6962e-01, 5.0307e-01, 2.5799e-01,
1.1587e-01, -1.4561e+00, -4.9434e-01, -1.5741e+00,
3.8481e-01, -2.0851e+00, -5.7887e-01, 7.2650e-01,
1.2102e+00, -3.4302e-01, -9.5161e-01, -9.8638e-01,
2.1792e-01, -4.9377e-01, 5.6926e-01, 4.2480e-02,
1.7975e+00, 1.8717e-01, 1.2940e+00, 2.1273e-01,
9.8182e-01, -1.5887e-02, -3.3377e-01, -7.9186e-01,
1.8293e+00, -1.5921e+00, -5.1951e-01, 2.2561e-01,
1.0687e+00, 9.9938e-01, 1.9822e+00, -9.5610e-01,
-5.6567e-01, -2.9933e+00, 8.7872e-01, -1.4525e+00,
1.1245e-01, -1.5902e+00, 1.6391e+00, 1.7929e-01,
1.0651e-01, 7.6336e-01, 1.0244e-01, -6.6332e-01,
1.2278e+00, -3.1900e-01, -1.7483e-01, -9.2148e-01,
1.6418e+00, -9.3906e-01, 9.2628e-01, 6.5782e-01,
1.5584e-01, 4.7491e-01, -7.8563e-01, 2.6464e-01,
-1.7181e+00, -1.0182e+00, -5.2716e-01, -9.9400e-01,
-1.2774e+00, 2.8527e-01, 1.6023e+00, 1.0741e-01,
-1.4114e+00, -9.0080e-02, -3.7297e-01, -1.7671e+00,
-2.4728e-01, -7.0179e-01, 3.1971e-01, -5.7137e-01,
-6.7749e-01, 1.1123e+00, -4.3141e-02, -1.1673e+00,
3.0165e-01, 3.4161e-01, 2.5661e-01, -8.0741e-01]),
size=(10000, 10000), nnz=1000, layout=torch.sparse_csr)
tensor([0.9444, 0.3415, 0.7652, ..., 0.4554, 0.6701, 0.1187])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([10000, 10000])
Size: 100000000
NNZ: 1000
Density: 1e-05
Time: 10.773172378540039 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 757288, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 2000, "MATRIX_DENSITY": 2e-05, "TIME_S": 10.095738172531128, "TIME_S_1KI": 0.013331438201227444, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 350.73304656982424, "W": 34.69019436640105, "J_1KI": 0.463143541915129, "W_1KI": 0.045808456447746504, "W_D": 17.258194366401053, "J_D": 174.48789777565008, "W_D_1KI": 0.022789472917042197, "J_D_1KI": 3.0093534978822057e-05}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 1, 1, ..., 1999, 1999, 2000]),
col_indices=tensor([4621, 3443, 1190, ..., 5062, 8400, 6357]),
values=tensor([-0.6728, -0.4536, -1.5291, ..., -1.1841, 0.2333,
0.5602]), size=(10000, 10000), nnz=2000,
layout=torch.sparse_csr)
tensor([0.1655, 0.4850, 0.2231, ..., 0.6018, 0.5416, 0.6623])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([10000, 10000])
Size: 100000000
NNZ: 2000
Density: 2e-05
Time: 10.095738172531128 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 759365, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.492435455322266, "TIME_S_1KI": 0.013817380910790286, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 382.43073294639584, "W": 36.54782584182964, "J_1KI": 0.503619119851976, "W_1KI": 0.04812945795741131, "W_D": 19.20582584182964, "J_D": 200.96675751161567, "W_D_1KI": 0.0252919555705486, "J_D_1KI": 3.330671754762018e-05}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 0, 1, ..., 4998, 4999, 5000]),
col_indices=tensor([7940, 1966, 9278, ..., 5521, 4680, 2043]),
values=tensor([-0.5302, -0.9728, 0.9241, ..., 0.4617, 1.3190,
-0.4573]), size=(10000, 10000), nnz=5000,
layout=torch.sparse_csr)
tensor([0.3509, 0.1998, 0.1131, ..., 0.8293, 0.9176, 0.2351])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([10000, 10000])
Size: 100000000
NNZ: 5000
Density: 5e-05
Time: 10.492435455322266 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 705493, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 8000, "MATRIX_DENSITY": 8e-05, "TIME_S": 10.68189811706543, "TIME_S_1KI": 0.015141040544789855, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 367.0330882072449, "W": 38.23569326717513, "J_1KI": 0.520250503133617, "W_1KI": 0.0541971263601129, "W_D": 20.893693267175127, "J_D": 200.56329854726792, "W_D_1KI": 0.029615734340631483, "J_D_1KI": 4.197877844377121e-05}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 0, 1, ..., 7996, 7997, 8000]),
col_indices=tensor([6513, 2704, 2290, ..., 7941, 7991, 9199]),
values=tensor([-2.1062, 0.2411, -0.6009, ..., -0.4068, 0.8394,
-1.3141]), size=(10000, 10000), nnz=8000,
layout=torch.sparse_csr)
tensor([0.6508, 0.6178, 0.0529, ..., 0.1197, 0.0890, 0.8968])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([10000, 10000])
Size: 100000000
NNZ: 8000
Density: 8e-05
Time: 10.68189811706543 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 28667, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [150000, 150000], "MATRIX_SIZE": 22500000000, "MATRIX_NNZ": 2249892, "MATRIX_DENSITY": 9.99952e-05, "TIME_S": 10.37232518196106, "TIME_S_1KI": 0.3618210898231785, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 519.7199160766602, "W": 50.88957099176079, "J_1KI": 18.129553705538083, "W_1KI": 1.775196950910831, "W_D": 33.03557099176079, "J_D": 337.38237223815923, "W_D_1KI": 1.1523902393609653, "J_D_1KI": 0.04019919208012576}

View File

@ -0,0 +1,18 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 15, 28, ..., 2249858,
2249875, 2249892]),
col_indices=tensor([ 14880, 20962, 21272, ..., 117708, 127946,
149457]),
values=tensor([ 1.3883, -0.8537, 0.3620, ..., -0.4221, 1.7007,
-0.2153]), size=(150000, 150000), nnz=2249892,
layout=torch.sparse_csr)
tensor([0.0054, 0.0896, 0.3223, ..., 0.7227, 0.0527, 0.4309])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([150000, 150000])
Size: 22500000000
NNZ: 2249892
Density: 9.99952e-05
Time: 10.37232518196106 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 100980, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [150000, 150000], "MATRIX_SIZE": 22500000000, "MATRIX_NNZ": 224999, "MATRIX_DENSITY": 9.999955555555555e-06, "TIME_S": 10.421836137771606, "TIME_S_1KI": 0.10320693343010108, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 437.94505512237555, "W": 40.87157984460665, "J_1KI": 4.336948456351511, "W_1KI": 0.4047492557398163, "W_D": 22.93957984460665, "J_D": 245.80100886058815, "W_D_1KI": 0.22716953698362696, "J_D_1KI": 0.002249648811483729}

View File

@ -0,0 +1,18 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 1, 2, ..., 224998, 224999,
224999]),
col_indices=tensor([ 54569, 101050, 20988, ..., 82049, 110775,
48410]),
values=tensor([-0.8716, 0.8544, -1.2720, ..., 0.2452, 0.7228,
0.1621]), size=(150000, 150000), nnz=224999,
layout=torch.sparse_csr)
tensor([0.2422, 0.3715, 0.5419, ..., 0.6661, 0.8156, 0.9122])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([150000, 150000])
Size: 22500000000
NNZ: 224999
Density: 9.999955555555555e-06
Time: 10.421836137771606 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 72827, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [150000, 150000], "MATRIX_SIZE": 22500000000, "MATRIX_NNZ": 449998, "MATRIX_DENSITY": 1.999991111111111e-05, "TIME_S": 10.586020708084106, "TIME_S_1KI": 0.1453584619452141, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 442.4028211212158, "W": 43.31909206142047, "J_1KI": 6.074708845911761, "W_1KI": 0.5948218663602849, "W_D": 25.733092061420468, "J_D": 262.80311941909787, "W_D_1KI": 0.3533454908402168, "J_D_1KI": 0.004851847403301205}

View File

@ -0,0 +1,18 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 1, 1, ..., 449993, 449994,
449998]),
col_indices=tensor([ 66827, 13180, 62321, ..., 29562, 45238,
134599]),
values=tensor([ 0.1032, 0.0320, 1.2243, ..., 0.9533, -1.1891,
1.2580]), size=(150000, 150000), nnz=449998,
layout=torch.sparse_csr)
tensor([0.3606, 0.8590, 0.6142, ..., 0.3221, 0.1513, 0.9214])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([150000, 150000])
Size: 22500000000
NNZ: 449998
Density: 1.999991111111111e-05
Time: 10.586020708084106 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 42029, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [150000, 150000], "MATRIX_SIZE": 22500000000, "MATRIX_NNZ": 1124964, "MATRIX_DENSITY": 4.99984e-05, "TIME_S": 10.425989151000977, "TIME_S_1KI": 0.24806655288017743, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 544.9276902675628, "W": 49.506354437696494, "J_1KI": 12.965516435498412, "W_1KI": 1.1779094063074662, "W_D": 31.889354437696497, "J_D": 351.01336899542804, "W_D_1KI": 0.7587464473981417, "J_D_1KI": 0.01805292648880872}

View File

@ -0,0 +1,18 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 8, 16, ..., 1124945,
1124952, 1124964]),
col_indices=tensor([ 21251, 34723, 46174, ..., 81420, 118474,
136795]),
values=tensor([ 0.3066, 0.1728, 0.0401, ..., -0.7916, 0.6291,
2.5231]), size=(150000, 150000), nnz=1124964,
layout=torch.sparse_csr)
tensor([0.3979, 0.8931, 0.8055, ..., 0.6413, 0.6433, 0.6850])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([150000, 150000])
Size: 22500000000
NNZ: 1124964
Density: 4.99984e-05
Time: 10.425989151000977 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 33948, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [150000, 150000], "MATRIX_SIZE": 22500000000, "MATRIX_NNZ": 1799946, "MATRIX_DENSITY": 7.99976e-05, "TIME_S": 10.878687620162964, "TIME_S_1KI": 0.32045150289156843, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 536.6147994422912, "W": 51.36202170411531, "J_1KI": 15.80696357494672, "W_1KI": 1.512961638509347, "W_D": 33.50802170411531, "J_D": 350.08163132762905, "W_D_1KI": 0.9870396401589285, "J_D_1KI": 0.02907504536817864}

View File

@ -0,0 +1,18 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 10, 21, ..., 1799926,
1799935, 1799946]),
col_indices=tensor([ 4632, 7112, 14212, ..., 124633, 140187,
147683]),
values=tensor([-1.8172, 0.7734, 0.9656, ..., 0.4938, 0.9281,
0.7013]), size=(150000, 150000), nnz=1799946,
layout=torch.sparse_csr)
tensor([0.2540, 0.9127, 0.1735, ..., 0.5861, 0.6699, 0.8095])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([150000, 150000])
Size: 22500000000
NNZ: 1799946
Density: 7.99976e-05
Time: 10.878687620162964 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 9139, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [200000, 200000], "MATRIX_SIZE": 40000000000, "MATRIX_NNZ": 3999800, "MATRIX_DENSITY": 9.9995e-05, "TIME_S": 10.467170715332031, "TIME_S_1KI": 1.1453299830760513, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 498.041587638855, "W": 46.344394921195324, "J_1KI": 54.49628927003556, "W_1KI": 5.0710575469083405, "W_D": 29.150394921195325, "J_D": 313.26569246482853, "W_D_1KI": 3.189670086573512, "J_D_1KI": 0.3490174074377407}

View File

@ -0,0 +1,18 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 22, 47, ..., 3999759,
3999781, 3999800]),
col_indices=tensor([ 1299, 3744, 6987, ..., 188420, 195819,
198823]),
values=tensor([-0.2786, -0.1175, -0.4360, ..., -1.3931, 0.0258,
-0.4577]), size=(200000, 200000), nnz=3999800,
layout=torch.sparse_csr)
tensor([0.2287, 0.5622, 0.5229, ..., 0.2820, 0.0596, 0.0899])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([200000, 200000])
Size: 40000000000
NNZ: 3999800
Density: 9.9995e-05
Time: 10.467170715332031 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 58540, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [200000, 200000], "MATRIX_SIZE": 40000000000, "MATRIX_NNZ": 399997, "MATRIX_DENSITY": 9.999925e-06, "TIME_S": 10.480172872543335, "TIME_S_1KI": 0.17902584339841704, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 440.6894346141815, "W": 43.66832447332347, "J_1KI": 7.5280053743454305, "W_1KI": 0.745957028925922, "W_D": 26.138324473323472, "J_D": 263.78120921373363, "W_D_1KI": 0.44650366370555983, "J_D_1KI": 0.007627325994286981}

View File

@ -0,0 +1,18 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 4, 7, ..., 399991, 399996,
399997]),
col_indices=tensor([160082, 160307, 162363, ..., 190956, 198013,
161884]),
values=tensor([-0.6975, 1.2342, 1.1846, ..., 0.1218, 1.0676,
0.7007]), size=(200000, 200000), nnz=399997,
layout=torch.sparse_csr)
tensor([0.5762, 0.6340, 0.7876, ..., 0.1377, 0.2839, 0.7957])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([200000, 200000])
Size: 40000000000
NNZ: 399997
Density: 9.999925e-06
Time: 10.480172872543335 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 44540, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [200000, 200000], "MATRIX_SIZE": 40000000000, "MATRIX_NNZ": 799989, "MATRIX_DENSITY": 1.9999725e-05, "TIME_S": 10.084713459014893, "TIME_S_1KI": 0.226419251437245, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 495.6630394935608, "W": 45.56414063287463, "J_1KI": 11.12849213052449, "W_1KI": 1.0229937277250702, "W_D": 28.07714063287463, "J_D": 305.4331909496784, "W_D_1KI": 0.6303803464947155, "J_D_1KI": 0.014153128569706231}

View File

@ -0,0 +1,18 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 4, 8, ..., 799983, 799985,
799989]),
col_indices=tensor([ 27664, 33238, 44014, ..., 124946, 138710,
170817]),
values=tensor([-0.8725, -0.7108, 0.7697, ..., -1.4556, 1.0518,
0.8270]), size=(200000, 200000), nnz=799989,
layout=torch.sparse_csr)
tensor([0.0240, 0.7234, 0.7805, ..., 0.9779, 0.3691, 0.0024])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([200000, 200000])
Size: 40000000000
NNZ: 799989
Density: 1.9999725e-05
Time: 10.084713459014893 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 24847, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [200000, 200000], "MATRIX_SIZE": 40000000000, "MATRIX_NNZ": 1999945, "MATRIX_DENSITY": 4.9998625e-05, "TIME_S": 10.208934545516968, "TIME_S_1KI": 0.4108719179585853, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 502.7416627597809, "W": 49.780366353890884, "J_1KI": 20.23349550286879, "W_1KI": 2.003475926827822, "W_D": 32.31436635389089, "J_D": 326.349110335827, "W_D_1KI": 1.3005339217567873, "J_D_1KI": 0.05234168800083661}

View File

@ -0,0 +1,18 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 5, 19, ..., 1999921,
1999935, 1999945]),
col_indices=tensor([ 3824, 96425, 103457, ..., 173104, 181406,
194614]),
values=tensor([ 0.0349, -0.0525, -0.3643, ..., 1.0650, 0.0714,
0.7456]), size=(200000, 200000), nnz=1999945,
layout=torch.sparse_csr)
tensor([0.4906, 0.6274, 0.6737, ..., 0.6970, 0.2171, 0.8266])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([200000, 200000])
Size: 40000000000
NNZ: 1999945
Density: 4.9998625e-05
Time: 10.208934545516968 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 13587, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [200000, 200000], "MATRIX_SIZE": 40000000000, "MATRIX_NNZ": 3199867, "MATRIX_DENSITY": 7.9996675e-05, "TIME_S": 10.251005172729492, "TIME_S_1KI": 0.7544715664038781, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 476.3702043151855, "W": 47.48744469039588, "J_1KI": 35.06073484324616, "W_1KI": 3.4950647450059527, "W_D": 28.960444690395885, "J_D": 290.51664169692987, "W_D_1KI": 2.13148190847103, "J_D_1KI": 0.15687656645845513}

View File

@ -0,0 +1,18 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 18, 36, ..., 3199838,
3199856, 3199867]),
col_indices=tensor([ 14010, 33286, 34826, ..., 171960, 177566,
181420]),
values=tensor([ 0.4827, 1.1570, -0.1634, ..., -1.2927, -0.3453,
-0.1386]), size=(200000, 200000), nnz=3199867,
layout=torch.sparse_csr)
tensor([0.5598, 0.1350, 0.8221, ..., 0.1901, 0.1582, 0.7521])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([200000, 200000])
Size: 40000000000
NNZ: 3199867
Density: 7.9996675e-05
Time: 10.251005172729492 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 567731, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [20000, 20000], "MATRIX_SIZE": 400000000, "MATRIX_NNZ": 39998, "MATRIX_DENSITY": 9.9995e-05, "TIME_S": 10.283060550689697, "TIME_S_1KI": 0.018112557797072375, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 355.2048466873169, "W": 33.56132319147934, "J_1KI": 0.6256569514212134, "W_1KI": 0.05911483289001189, "W_D": 16.472323191479337, "J_D": 174.3390449903011, "W_D_1KI": 0.029014309931075344, "J_D_1KI": 5.110573481292257e-05}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 2, 3, ..., 39994, 39995, 39998]),
col_indices=tensor([ 1674, 5478, 7295, ..., 5282, 9148, 19746]),
values=tensor([ 1.0454, -0.2042, -0.9908, ..., -0.4352, 1.3976,
-0.2792]), size=(20000, 20000), nnz=39998,
layout=torch.sparse_csr)
tensor([0.5891, 0.6809, 0.8267, ..., 0.3289, 0.5314, 0.8509])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([20000, 20000])
Size: 400000000
NNZ: 39998
Density: 9.9995e-05
Time: 10.283060550689697 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 742526, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [20000, 20000], "MATRIX_SIZE": 400000000, "MATRIX_NNZ": 4000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.885217666625977, "TIME_S_1KI": 0.014659712476904481, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 385.8624301719666, "W": 35.598855722519104, "J_1KI": 0.519661843722599, "W_1KI": 0.0479429080227751, "W_D": 18.531855722519108, "J_D": 200.87013302969942, "W_D_1KI": 0.024957854300750554, "J_D_1KI": 3.361209479634458e-05}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 0, 2, ..., 4000, 4000, 4000]),
col_indices=tensor([ 7067, 11731, 3926, ..., 19119, 620, 6588]),
values=tensor([ 1.0868, -0.8958, -0.4960, ..., 1.4149, 1.0552,
-0.7229]), size=(20000, 20000), nnz=4000,
layout=torch.sparse_csr)
tensor([0.3996, 0.2483, 0.8086, ..., 0.3640, 0.6840, 0.9715])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([20000, 20000])
Size: 400000000
NNZ: 4000
Density: 1e-05
Time: 10.885217666625977 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 725562, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [20000, 20000], "MATRIX_SIZE": 400000000, "MATRIX_NNZ": 8000, "MATRIX_DENSITY": 2e-05, "TIME_S": 10.872642755508423, "TIME_S_1KI": 0.014985132566904584, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 450.6815788841247, "W": 39.35287649094676, "J_1KI": 0.6211482669766673, "W_1KI": 0.054237786007187205, "W_D": 22.100876490946764, "J_D": 253.10622246265407, "W_D_1KI": 0.030460355546385785, "J_D_1KI": 4.198174042519562e-05}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 1, 2, ..., 7999, 8000, 8000]),
col_indices=tensor([16956, 3068, 14321, ..., 16428, 14864, 8672]),
values=tensor([ 0.6797, 0.5462, -0.0183, ..., -0.4996, 1.2405,
3.8311]), size=(20000, 20000), nnz=8000,
layout=torch.sparse_csr)
tensor([0.9619, 0.9404, 0.0252, ..., 0.6566, 0.1906, 0.7994])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([20000, 20000])
Size: 400000000
NNZ: 8000
Density: 2e-05
Time: 10.872642755508423 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 639751, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [20000, 20000], "MATRIX_SIZE": 400000000, "MATRIX_NNZ": 19999, "MATRIX_DENSITY": 4.99975e-05, "TIME_S": 10.804665803909302, "TIME_S_1KI": 0.01688886114114601, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 374.2699551010132, "W": 36.07346397818204, "J_1KI": 0.585024415907147, "W_1KI": 0.0563867254262706, "W_D": 18.95946397818204, "J_D": 196.70852059412005, "W_D_1KI": 0.029635692602562623, "J_D_1KI": 4.632379254203999e-05}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 0, 1, ..., 19997, 19998, 19999]),
col_indices=tensor([ 8271, 7022, 133, ..., 16237, 2122, 4630]),
values=tensor([ 1.1453, -0.0767, 0.5090, ..., -0.5285, 0.4972,
1.3006]), size=(20000, 20000), nnz=19999,
layout=torch.sparse_csr)
tensor([0.8942, 0.9806, 0.8705, ..., 0.0714, 0.6754, 0.5950])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([20000, 20000])
Size: 400000000
NNZ: 19999
Density: 4.99975e-05
Time: 10.804665803909302 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 606932, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [20000, 20000], "MATRIX_SIZE": 400000000, "MATRIX_NNZ": 31998, "MATRIX_DENSITY": 7.9995e-05, "TIME_S": 10.414053440093994, "TIME_S_1KI": 0.017158517659464315, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 353.62409350395205, "W": 34.2116997670769, "J_1KI": 0.5826420315685316, "W_1KI": 0.056368258333844484, "W_D": 16.485699767076902, "J_D": 170.40195826578145, "W_D_1KI": 0.02716235058800146, "J_D_1KI": 4.4753531842119806e-05}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 1, 4, ..., 31996, 31997, 31998]),
col_indices=tensor([12913, 3728, 7950, ..., 936, 12780, 2993]),
values=tensor([ 1.4614, -2.3542, -0.3627, ..., -1.4645, 0.4434,
-0.9357]), size=(20000, 20000), nnz=31998,
layout=torch.sparse_csr)
tensor([0.0649, 0.7612, 0.4354, ..., 0.9877, 0.3768, 0.8444])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([20000, 20000])
Size: 400000000
NNZ: 31998
Density: 7.9995e-05
Time: 10.414053440093994 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 227433, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 249985, "MATRIX_DENSITY": 9.9994e-05, "TIME_S": 10.572213649749756, "TIME_S_1KI": 0.046484958865906686, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 509.1497803020477, "W": 43.42214042283746, "J_1KI": 2.238680315970188, "W_1KI": 0.19092277911665176, "W_D": 26.133140422837457, "J_D": 306.4262280790805, "W_D_1KI": 0.1149047870046891, "J_D_1KI": 0.00050522477830697}

View File

@ -0,0 +1,17 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 7, 13, ..., 249980, 249982,
249985]),
col_indices=tensor([ 1700, 11150, 13215, ..., 20054, 23403, 31752]),
values=tensor([ 1.2136, -0.7249, 0.7742, ..., -0.8923, -0.7123,
0.2359]), size=(50000, 50000), nnz=249985,
layout=torch.sparse_csr)
tensor([0.8666, 0.4330, 0.6051, ..., 0.7413, 0.9082, 0.0999])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([50000, 50000])
Size: 2500000000
NNZ: 249985
Density: 9.9994e-05
Time: 10.572213649749756 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 482951, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.677425146102905, "TIME_S_1KI": 0.02210871319471935, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 379.57143712997436, "W": 34.71486620028037, "J_1KI": 0.7859419219133501, "W_1KI": 0.07188072123316935, "W_D": 17.25286620028037, "J_D": 188.64238682270047, "W_D_1KI": 0.035723844034447325, "J_D_1KI": 7.396991420340225e-05}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 2, 3, ..., 25000, 25000, 25000]),
col_indices=tensor([ 1673, 3858, 25004, ..., 30267, 19651, 6711]),
values=tensor([-0.6027, -0.6575, -0.2557, ..., -1.5398, 0.1707,
-0.6771]), size=(50000, 50000), nnz=25000,
layout=torch.sparse_csr)
tensor([0.1612, 0.8476, 0.5546, ..., 0.2757, 0.8411, 0.1929])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([50000, 50000])
Size: 2500000000
NNZ: 25000
Density: 1e-05
Time: 10.677425146102905 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 375882, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 50000, "MATRIX_DENSITY": 2e-05, "TIME_S": 11.363938331604004, "TIME_S_1KI": 0.03023272817427811, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 343.57937900543214, "W": 34.8864729090874, "J_1KI": 0.9140618039848467, "W_1KI": 0.09281229989488031, "W_D": 17.3774729090874, "J_D": 171.14201731848715, "W_D_1KI": 0.04623119199399652, "J_D_1KI": 0.00012299389700490184}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 0, 1, ..., 50000, 50000, 50000]),
col_indices=tensor([20193, 2603, 22907, ..., 39448, 46130, 37169]),
values=tensor([-0.0912, 0.5738, -1.6784, ..., 0.2528, -1.8292,
0.9168]), size=(50000, 50000), nnz=50000,
layout=torch.sparse_csr)
tensor([0.8671, 0.8813, 0.4085, ..., 0.9714, 0.5561, 0.6401])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([50000, 50000])
Size: 2500000000
NNZ: 50000
Density: 2e-05
Time: 11.363938331604004 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 290131, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 124996, "MATRIX_DENSITY": 4.99984e-05, "TIME_S": 10.922548770904541, "TIME_S_1KI": 0.0376469552405794, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 375.18905561447144, "W": 34.68174199802756, "J_1KI": 1.2931712075389097, "W_1KI": 0.11953821548896036, "W_D": 17.293741998027564, "J_D": 187.0846835966111, "W_D_1KI": 0.05960666732623389, "J_D_1KI": 0.00020544742659775716}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 2, 3, ..., 124994, 124994,
124996]),
col_indices=tensor([13998, 32736, 41097, ..., 22742, 7968, 9054]),
values=tensor([0.6512, 0.4983, 2.0227, ..., 0.2925, 0.1402, 1.7352]),
size=(50000, 50000), nnz=124996, layout=torch.sparse_csr)
tensor([0.2986, 0.6337, 0.9352, ..., 0.9360, 0.6645, 0.9075])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([50000, 50000])
Size: 2500000000
NNZ: 124996
Density: 4.99984e-05
Time: 10.922548770904541 seconds

View File

@ -0,0 +1 @@
{"CPU": "Altra", "ITERATIONS": 242304, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 199986, "MATRIX_DENSITY": 7.99944e-05, "TIME_S": 10.34809398651123, "TIME_S_1KI": 0.042707070401277865, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 370.049839553833, "W": 35.47238359008601, "J_1KI": 1.527213085850143, "W_1KI": 0.14639619482173638, "W_D": 17.97238359008601, "J_D": 187.48888545989993, "W_D_1KI": 0.0741728720536434, "J_D_1KI": 0.0003061149302266714}

View File

@ -0,0 +1,17 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 7, 10, ..., 199981, 199982,
199986]),
col_indices=tensor([ 1840, 12534, 16220, ..., 13556, 41718, 49099]),
values=tensor([ 0.3522, -0.6832, -0.4871, ..., 0.5234, -0.4343,
1.6842]), size=(50000, 50000), nnz=199986,
layout=torch.sparse_csr)
tensor([0.5177, 0.9782, 0.1581, ..., 0.4536, 0.4967, 0.9151])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([50000, 50000])
Size: 2500000000
NNZ: 199986
Density: 7.99944e-05
Time: 10.34809398651123 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 97450, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 999942, "MATRIX_DENSITY": 9.99942e-05, "TIME_S": 10.576393604278564, "TIME_S_1KI": 0.10853148901260712, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1525.2442362952233, "W": 146.27, "J_1KI": 15.651557068191105, "W_1KI": 1.500974858902001, "W_D": 110.24725000000001, "J_D": 1149.613609283507, "W_D_1KI": 1.1313211903540277, "J_D_1KI": 0.01160924772041075}

View File

@ -0,0 +1,17 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 11, 18, ..., 999917, 999929,
999942]),
col_indices=tensor([ 1892, 9410, 16896, ..., 95042, 98559, 99925]),
values=tensor([ 6.8886e-04, 2.2999e+00, -7.2309e-01, ...,
1.2011e-01, -3.2614e-01, 2.3038e+00]),
size=(100000, 100000), nnz=999942, layout=torch.sparse_csr)
tensor([0.1643, 0.6304, 0.0977, ..., 0.5343, 0.9179, 0.3813])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([100000, 100000])
Size: 10000000000
NNZ: 999942
Density: 9.99942e-05
Time: 10.576393604278564 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 149990, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.76275634765625, "TIME_S_1KI": 0.07175649275055837, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1218.5091412353515, "W": 117.11999999999999, "J_1KI": 8.123935870627053, "W_1KI": 0.7808520568037869, "W_D": 81.863, "J_D": 851.6975224466324, "W_D_1KI": 0.545789719314621, "J_D_1KI": 0.0036388407181453496}

View File

@ -0,0 +1,17 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 4, 7, ..., 100000, 100000,
100000]),
col_indices=tensor([ 6887, 13446, 39563, ..., 66177, 81567, 22565]),
values=tensor([ 1.5183, 0.2136, -1.3397, ..., -0.8325, 0.6394,
-0.8776]), size=(100000, 100000), nnz=100000,
layout=torch.sparse_csr)
tensor([0.4787, 0.6498, 0.7941, ..., 0.9578, 0.9373, 0.9290])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([100000, 100000])
Size: 10000000000
NNZ: 100000
Density: 1e-05
Time: 10.76275634765625 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 124803, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 199997, "MATRIX_DENSITY": 1.99997e-05, "TIME_S": 10.25207233428955, "TIME_S_1KI": 0.08214604083467185, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1312.704617705345, "W": 126.02, "J_1KI": 10.518213646349407, "W_1KI": 1.0097513681562142, "W_D": 90.04275, "J_D": 937.9426576407551, "W_D_1KI": 0.7214790509843513, "J_D_1KI": 0.0057809431743175346}

View File

@ -0,0 +1,17 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 4, 5, ..., 199993, 199995,
199997]),
col_indices=tensor([15473, 40399, 66570, ..., 49105, 11119, 13122]),
values=tensor([-0.2163, 1.4513, 0.2678, ..., -1.0774, 1.7715,
-0.9998]), size=(100000, 100000), nnz=199997,
layout=torch.sparse_csr)
tensor([0.4636, 0.9972, 0.6979, ..., 0.4218, 0.8637, 0.4224])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([100000, 100000])
Size: 10000000000
NNZ: 199997
Density: 1.99997e-05
Time: 10.25207233428955 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 131904, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 499990, "MATRIX_DENSITY": 4.9999e-05, "TIME_S": 10.4083731174469, "TIME_S_1KI": 0.0789086996410033, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1520.4457294797899, "W": 147.62, "J_1KI": 11.52691146197075, "W_1KI": 1.1191472586123241, "W_D": 112.009, "J_D": 1153.6621441085338, "W_D_1KI": 0.849170608927705, "J_D_1KI": 0.006437792704752737}

View File

@ -0,0 +1,17 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 2, 8, ..., 499980, 499982,
499990]),
col_indices=tensor([39304, 58830, 2565, ..., 78956, 94237, 96571]),
values=tensor([ 0.3416, -1.0238, -2.6750, ..., 0.9475, -1.7082,
1.1162]), size=(100000, 100000), nnz=499990,
layout=torch.sparse_csr)
tensor([0.2472, 0.9751, 0.5124, ..., 0.1633, 0.7065, 0.9039])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([100000, 100000])
Size: 10000000000
NNZ: 499990
Density: 4.9999e-05
Time: 10.4083731174469 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 111056, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 799965, "MATRIX_DENSITY": 7.99965e-05, "TIME_S": 10.777923822402954, "TIME_S_1KI": 0.09704945092928752, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1669.2134556055069, "W": 152.94, "J_1KI": 15.030376167028408, "W_1KI": 1.3771430629592278, "W_D": 117.34675, "J_D": 1280.7426054111122, "W_D_1KI": 1.0566448458435385, "J_D_1KI": 0.009514522815908538}

View File

@ -0,0 +1,17 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 5, 10, ..., 799943, 799953,
799965]),
col_indices=tensor([22485, 40332, 73808, ..., 86131, 87836, 93692]),
values=tensor([ 0.5614, 0.8180, -0.1837, ..., -1.4660, -0.5348,
-0.9075]), size=(100000, 100000), nnz=799965,
layout=torch.sparse_csr)
tensor([0.7081, 0.2887, 0.0123, ..., 0.7844, 0.3920, 0.0991])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([100000, 100000])
Size: 10000000000
NNZ: 799965
Density: 7.99965e-05
Time: 10.777923822402954 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 395708, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 9998, "MATRIX_DENSITY": 9.998e-05, "TIME_S": 17.949547052383423, "TIME_S_1KI": 0.04536058672653427, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1049.098508644104, "W": 98.08, "J_1KI": 2.651193578709816, "W_1KI": 0.24785953278680237, "W_D": 62.85875, "J_D": 672.3595114216208, "W_D_1KI": 0.15885134998534273, "J_D_1KI": 0.00040143578089233155}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 1, 2, ..., 9995, 9997, 9998]),
col_indices=tensor([2642, 4658, 4879, ..., 272, 3607, 1334]),
values=tensor([-0.2834, 1.1792, 0.0754, ..., 0.1847, 0.9832,
2.2685]), size=(10000, 10000), nnz=9998,
layout=torch.sparse_csr)
tensor([0.4716, 0.6890, 0.7469, ..., 0.5460, 0.8993, 0.3038])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([10000, 10000])
Size: 100000000
NNZ: 9998
Density: 9.998e-05
Time: 17.949547052383423 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 506768, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.661507368087769, "TIME_S_1KI": 0.02103824110458389, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1001.9527449011803, "W": 95.75, "J_1KI": 1.9771428837282155, "W_1KI": 0.18894247466296213, "W_D": 60.63199999999999, "J_D": 634.4689172725676, "W_D_1KI": 0.11964449215420071, "J_D_1KI": 0.00023609322639590643}

View File

@ -0,0 +1,292 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 1, 1, ..., 1000, 1000, 1000]),
col_indices=tensor([4994, 5090, 9262, 1673, 3489, 8361, 3981, 7152, 7935,
9359, 1676, 6154, 3546, 3749, 9584, 6196, 9090, 9844,
2058, 1732, 685, 4661, 3525, 4505, 9726, 6717, 7573,
4278, 2888, 8180, 6068, 9146, 100, 5234, 6345, 96,
4151, 766, 4028, 1493, 1539, 54, 8661, 7198, 4599,
7599, 8751, 2928, 6104, 9619, 5323, 3978, 3624, 4124,
6084, 8986, 9232, 9211, 9966, 3077, 5972, 1065, 9588,
8145, 8053, 7626, 2008, 634, 3618, 7156, 6292, 8087,
3639, 2557, 6251, 2782, 9366, 9693, 520, 2077, 4250,
6870, 3557, 4135, 6941, 8536, 9165, 9028, 2345, 224,
978, 4900, 4521, 7772, 1755, 5686, 9321, 8466, 792,
6315, 2096, 6260, 6204, 5940, 9121, 7473, 656, 9001,
5020, 5116, 8177, 5730, 6528, 2924, 8891, 7839, 4517,
3755, 6338, 7132, 6324, 5881, 8542, 181, 4231, 2882,
7981, 1316, 6635, 2776, 3799, 3940, 2735, 5087, 8734,
6633, 6777, 3159, 8622, 5874, 6397, 1143, 9079, 9417,
6432, 7820, 887, 2289, 6875, 6661, 4700, 3301, 9116,
1503, 3041, 4813, 9213, 7, 6172, 8435, 9003, 5277,
9341, 541, 585, 7710, 6979, 7448, 5583, 4140, 6931,
2510, 8977, 113, 572, 7586, 5371, 4612, 3240, 1907,
6414, 8960, 9811, 483, 7304, 2487, 4552, 8099, 329,
1904, 289, 4388, 2781, 1355, 7320, 2855, 9664, 9767,
5034, 9028, 2637, 2116, 4777, 4908, 5946, 5532, 4568,
6740, 4277, 2250, 3557, 4812, 1812, 5942, 7772, 7455,
282, 7635, 3915, 9500, 1494, 3904, 6094, 9031, 8689,
5318, 1683, 4785, 1108, 4097, 9333, 2750, 8118, 7545,
4034, 211, 6616, 4379, 5276, 7038, 2648, 7216, 7942,
5490, 3697, 6268, 5392, 7728, 2039, 6139, 8001, 2057,
4421, 1843, 3191, 7708, 9510, 9341, 2441, 291, 7532,
5312, 7952, 1844, 5395, 5440, 5550, 8450, 7498, 4967,
3147, 5240, 6212, 61, 3330, 6479, 1456, 8369, 9936,
4638, 2475, 6378, 9476, 9361, 6819, 9486, 938, 4855,
6739, 3995, 5163, 9511, 7502, 7729, 9711, 5855, 3048,
2746, 4669, 6963, 7509, 709, 7543, 4816, 6991, 9405,
1837, 7069, 1711, 601, 4582, 4363, 1890, 3766, 1636,
4778, 166, 6271, 6849, 6971, 2135, 7323, 1560, 1316,
196, 1931, 1330, 5729, 9369, 2145, 2734, 301, 1248,
166, 6411, 2224, 113, 5944, 8115, 2034, 6935, 2671,
7411, 1703, 1534, 4133, 2752, 576, 606, 708, 244,
1155, 9755, 8617, 9861, 1090, 8038, 2456, 2389, 1645,
6335, 8763, 7694, 6839, 7439, 682, 9938, 3099, 2903,
6449, 6228, 3849, 9095, 1671, 7805, 3421, 324, 387,
2817, 9983, 2897, 8309, 84, 5553, 8572, 2703, 7755,
1008, 4561, 2978, 5864, 4816, 6002, 9220, 9282, 4736,
2918, 2007, 2700, 1752, 4800, 1824, 4773, 8348, 4840,
8428, 1807, 1625, 3813, 5693, 1560, 4730, 7529, 2806,
8919, 3058, 1567, 4334, 1244, 4758, 2253, 3346, 1027,
6598, 5716, 5063, 4697, 7306, 4888, 299, 7028, 9878,
6105, 6761, 4676, 1847, 8979, 1718, 4714, 5734, 6773,
2212, 5898, 819, 272, 766, 8247, 4118, 6178, 2252,
7031, 8547, 7399, 9379, 3101, 3183, 239, 4746, 8222,
4005, 1505, 6682, 4476, 6526, 3926, 7273, 2788, 4326,
7254, 957, 3037, 651, 6157, 1129, 4260, 459, 2701,
3175, 4849, 5541, 1580, 562, 9056, 387, 7417, 5953,
92, 281, 9102, 8239, 2297, 6233, 5339, 157, 2621,
5769, 3987, 6936, 6768, 9070, 6864, 6086, 5287, 4187,
5616, 5211, 9235, 4950, 965, 7183, 7613, 6755, 461,
6344, 3357, 9746, 2324, 9544, 4211, 4244, 9143, 1910,
867, 4220, 246, 91, 5858, 5417, 3084, 3416, 3515,
9444, 2845, 9379, 6519, 7575, 3222, 4336, 5582, 9845,
3575, 3894, 9404, 5179, 9715, 758, 1945, 599, 3781,
8068, 4873, 672, 4970, 2334, 41, 7767, 6877, 2658,
8892, 506, 6216, 7973, 1784, 9808, 976, 7345, 8360,
3026, 513, 205, 4162, 7222, 2530, 8147, 4461, 9409,
8287, 6725, 7455, 7092, 6995, 1941, 3512, 4650, 7549,
1040, 5599, 8816, 3996, 3855, 4444, 9511, 9800, 9635,
2031, 4548, 6749, 2782, 5534, 527, 623, 3502, 3936,
3367, 4676, 3644, 6270, 5134, 6225, 6612, 8992, 2783,
746, 1399, 9531, 1375, 1616, 1764, 5729, 8129, 9297,
6228, 3515, 7862, 1346, 4613, 9111, 4407, 62, 938,
6699, 8569, 5171, 5660, 2528, 4269, 8655, 922, 2165,
7723, 1290, 7244, 4354, 3849, 3563, 7480, 9360, 6393,
8576, 7284, 7725, 4281, 9512, 1292, 712, 9786, 3398,
3381, 8137, 2111, 6858, 9427, 5591, 3182, 489, 661,
2253, 1315, 4104, 2051, 2167, 1158, 968, 7438, 5883,
3859, 3725, 113, 2843, 8761, 4046, 3531, 7868, 902,
4922, 6042, 6846, 3098, 5559, 3945, 691, 6407, 405,
6867, 7863, 7143, 2042, 6539, 9323, 9858, 757, 9277,
1525, 2623, 7514, 3202, 3194, 4462, 2803, 3477, 5937,
9304, 4522, 6242, 6480, 5088, 3461, 8772, 3917, 5894,
4423, 4409, 8147, 5690, 8332, 4356, 4669, 9031, 2111,
2597, 4185, 2060, 6571, 8862, 7468, 6208, 1928, 565,
2045, 9620, 2783, 5211, 9184, 7620, 1235, 5883, 9794,
5139, 6497, 5633, 748, 8167, 3827, 9860, 9262, 4798,
5474, 196, 3535, 524, 756, 8914, 3895, 8417, 1962,
7625, 4521, 9588, 173, 4619, 8835, 6246, 7026, 8648,
9006, 2547, 9331, 8578, 7048, 8724, 5229, 1266, 1898,
2633, 8611, 5571, 8633, 4623, 4548, 9177, 841, 3451,
6606, 2503, 4656, 5660, 9238, 5909, 2970, 6668, 4497,
1975, 5878, 7690, 8215, 9705, 2508, 9083, 7590, 7214,
7467, 3622, 2901, 5227, 9091, 4525, 8537, 7638, 1004,
4848, 5203, 8285, 7597, 2036, 1381, 1223, 5013, 2279,
9721, 9138, 4246, 6019, 6929, 529, 8727, 4380, 1902,
5590, 2408, 8756, 1008, 5992, 2536, 5670, 1575, 1545,
1082, 5208, 4683, 2558, 4664, 3165, 5392, 3978, 7120,
1782, 9619, 7390, 4160, 5214, 2747, 1975, 7855, 9068,
6063, 6349, 9765, 5017, 5992, 9537, 1007, 3719, 8378,
5237, 4127, 1995, 4133, 898, 6521, 7815, 9108, 7484,
8097, 4347, 3847, 9501, 3091, 9474, 3263, 6541, 9198,
9286, 6772, 7953, 4322, 2553, 3599, 6161, 467, 3225,
7954, 2136, 6835, 2841, 8284, 7295, 4625, 7398, 3501,
7592, 4915, 723, 2249, 2477, 8276, 3224, 2104, 5412,
9719, 7946, 1965, 7530, 5435, 3057, 4441, 702, 6038,
7803, 8841, 5247, 1771, 3461, 3670, 4300, 8089, 1533,
4842, 7728, 9598, 56, 8402, 9959, 8554, 58, 3580,
4468, 5280, 8022, 3845, 2404, 9769, 9834, 8231, 9795,
8729, 6886, 7043, 5549, 354, 8055, 2824, 3116, 4530,
1877, 2417, 5292, 5641, 6289, 0, 2306, 3123, 8581,
1112, 6316, 4740, 680, 269, 8580, 9409, 1758, 2260,
4370, 7952, 5566, 5108, 6810, 946, 1373, 4513, 6838,
9531, 1173, 5002, 6022, 6847, 504, 6278, 4722, 2441,
7591]),
values=tensor([-0.0267, -0.2389, -0.3145, -1.1313, -1.1066, -1.1488,
1.1335, -0.1736, -1.0491, 0.9011, -0.4585, 0.1362,
0.1446, -1.3925, 1.4604, 1.1005, 0.1862, -0.8871,
0.0318, 1.1977, -1.5646, -0.0832, 1.3811, -0.5293,
2.4406, -0.0231, -0.4685, -0.4924, -0.3824, -1.7245,
0.5110, 0.1844, 0.2982, 2.3510, -0.6958, 1.6988,
1.6055, -0.2206, 3.1158, -0.3898, -0.6657, 0.0826,
-1.5159, 0.9797, -1.3703, -0.8286, -2.0717, 0.5335,
-0.2072, 1.9562, 0.2679, -1.0256, 0.4908, 0.3474,
-1.5333, -0.3968, 2.3468, 1.7111, 0.2325, -1.0232,
1.4252, 0.9464, 0.8572, 1.0943, -0.3087, 0.6085,
-0.0186, -1.9785, 0.6099, -0.0276, 2.0087, 0.3228,
0.6442, -1.2587, 1.5451, 0.8973, -1.3434, -0.5285,
1.2690, 0.0334, -0.2197, 0.4439, -0.1692, -0.0503,
0.8064, 0.4194, -0.7962, 1.2278, 0.6086, 0.4686,
0.0511, -1.1288, 0.1429, 1.3888, 0.6058, -0.6637,
-0.4622, 1.9158, -0.6983, 2.3134, -1.8457, 0.0061,
-0.9898, 0.7459, -1.9007, 0.4638, 0.1228, -1.2109,
-0.5894, -1.2093, -0.2561, -1.9510, 0.9049, 0.9958,
-0.4870, -0.5709, 0.3942, 0.2994, -1.0067, 0.9263,
1.3867, -0.3134, 0.9066, -0.8708, -1.0645, -1.6967,
0.4614, 0.3160, -0.5856, 0.2434, 0.8462, -2.6830,
-1.5699, 0.6872, 0.6127, -0.1802, -0.7713, 1.3857,
0.1237, 0.1562, -0.2432, -0.2582, 0.3668, 0.2408,
-0.2944, -0.5862, -0.8317, 1.9818, 0.7267, -1.0552,
-0.6635, 0.1162, 0.9315, -0.3958, 0.0872, -0.0515,
0.3460, -0.4908, 0.5550, -0.3654, -0.5384, -1.3533,
0.3879, 1.2652, 0.0239, 2.1218, -0.1094, -0.8063,
1.8092, 0.6271, 0.7305, -1.1372, -1.1852, 0.4365,
-0.5343, 0.5862, -0.2743, 0.8271, 0.1967, -0.1050,
0.1013, -0.6114, -2.2068, 0.5666, -0.6319, 0.4868,
0.2578, 0.8704, 0.0422, 0.5526, -1.0795, 0.6379,
1.1056, -0.5848, -0.2404, -0.9473, 1.4935, -0.2746,
-1.4087, -0.2074, -0.8373, -0.0866, 0.4354, 0.8376,
-2.0177, -0.8560, -1.8851, -0.4542, 0.1360, -0.1186,
1.3940, -0.0663, 0.0748, 0.5988, -1.0586, -0.0813,
0.1274, 0.8418, -0.0437, 0.0615, 0.6459, -0.9559,
-0.5090, 0.2809, 0.8169, 1.3568, 1.1543, 0.8008,
-0.1947, -0.8292, 0.4925, 1.1033, 1.2309, -0.5011,
0.4952, -0.4029, -0.6817, 0.1930, -1.6636, -0.0580,
-1.3025, -1.5604, 1.2532, 0.3598, 0.4944, -1.9869,
-0.3586, -0.1425, 0.2412, -1.2503, -0.2559, -0.0580,
-0.2063, 0.7277, 0.4829, -0.3006, -0.7233, -1.0393,
-0.1730, 2.2593, 0.9006, -0.4280, -1.5922, -0.1613,
1.0255, 1.2159, 0.6786, -0.8408, 0.4366, -0.7205,
-0.3995, 0.8784, -1.1974, 1.2355, -0.1164, 1.2210,
-0.3361, -2.1216, 0.2863, 0.2948, -0.3627, -0.2563,
-0.4762, 0.8528, -0.4196, 2.0972, 0.5868, -0.2492,
2.0909, -0.2550, 0.3641, -0.1081, -0.8507, 0.7919,
-0.5663, -1.9313, -0.2250, -0.2296, -1.7851, 0.4624,
-1.1218, 0.3821, -1.2513, 0.7979, -1.6267, 1.6502,
2.4126, -0.1623, 0.1037, 1.0342, -0.4652, 0.1193,
-0.6889, 0.6578, -0.1974, -0.5007, -1.2902, -1.5190,
0.7280, -0.6827, 1.2296, 0.3715, -0.2151, -0.4095,
-0.0126, -0.1911, 1.2026, -1.3073, -1.9696, -0.2976,
0.7380, 1.4308, 0.4844, 0.2621, -0.1964, -0.0335,
0.0658, -1.1161, -1.1105, 1.9896, -0.0501, 0.9399,
-0.1954, 1.0039, -1.3013, -0.9763, 0.2862, 0.2326,
0.3277, -0.1439, -1.3902, 0.8866, 0.5873, -0.4976,
0.5802, 0.6070, 0.6101, 1.8408, 0.9986, 0.7278,
0.6789, 0.6927, -0.3299, -0.0774, -1.2450, 0.2905,
0.9217, 2.2969, 0.3375, 0.0314, 0.1723, 1.5156,
0.0753, -0.3454, -0.3444, 0.6080, 0.1630, 0.0640,
-1.1399, 0.7892, 0.3570, 0.2670, 0.6397, -1.2178,
0.3281, 0.0232, -0.0628, -0.5171, 1.4965, -1.1782,
0.8858, -0.9083, -0.5267, -1.8475, -0.2543, -0.6375,
1.1501, 1.2092, 2.0741, -0.6971, -1.6908, 0.8704,
-1.1076, 0.9016, 0.7831, 1.5688, 3.1838, -0.3371,
-0.5895, 1.4556, -0.4834, 0.4320, 0.5010, -0.3782,
-1.0145, 0.9908, -0.6285, -1.6628, -1.0122, -0.9294,
0.0821, 1.0443, -0.0087, -1.1548, 0.3731, -0.1616,
0.1786, 1.7337, -1.4693, 0.3530, 0.3829, 0.3860,
-0.5306, -0.0262, -0.4819, 0.0732, -1.9707, 1.4978,
-1.1757, 0.4559, 1.4177, -0.4014, 0.1741, -0.6063,
0.9506, -1.9217, 1.0561, 2.4652, -0.3516, 0.6156,
-0.9916, 0.4992, 0.5046, -0.8594, -0.1735, -0.3118,
1.2098, 0.1984, 0.7728, 0.5236, -1.4970, 0.8705,
-0.3399, 0.8248, -1.5766, 1.4556, 1.6869, -0.4134,
-1.0833, 0.3151, 1.0679, -0.1095, -1.3220, 0.4591,
0.2319, -1.2585, -0.5168, -0.3959, 0.0401, 0.5580,
-0.4403, 0.2980, 0.4626, -0.4315, 0.5844, 0.2475,
1.2741, -0.3257, -1.8999, 0.2692, -0.1993, -0.3281,
-0.5749, 0.8194, 0.4250, 0.1201, 0.7121, -0.5722,
-0.3437, -2.0816, -0.4541, 0.3010, -0.4096, 0.0301,
-1.5886, -2.1812, -0.8278, -0.9482, -0.7352, 1.7845,
0.7574, -1.7697, -0.5459, 0.7268, 1.2760, -0.2188,
-2.4573, 0.0480, -0.3230, -0.3825, -1.4151, 1.4991,
1.8186, -1.0192, -0.0097, -0.9126, -0.1702, 0.5128,
1.0517, 1.3431, 0.7762, -1.1105, 0.0967, -0.9906,
-0.0754, 0.8895, -0.7523, 0.1761, 1.6865, 0.0822,
0.0397, 0.4943, -0.4412, 1.9401, -0.6964, 0.1485,
-0.7000, -1.8563, -0.4621, 1.2089, 0.6777, 1.7286,
-0.5007, -2.2824, -0.2915, -0.1208, -0.3907, -0.0502,
-1.3763, -0.8280, -0.0687, 1.0743, 1.4480, -0.6017,
1.4948, -0.9914, -2.3305, 0.1502, 0.5244, -0.0997,
0.2795, -0.5875, 0.8041, 0.0976, -0.1171, -1.0942,
-1.1745, -0.3822, 0.2299, 0.2099, 0.4283, -1.0907,
2.0887, 1.4116, -0.1133, 1.5377, -1.4785, 0.8306,
-0.2743, 1.2564, -0.6109, 0.0889, 0.3903, 0.0693,
-0.3515, -0.2963, 0.2359, 0.0741, -0.2999, -0.0442,
-0.0626, -1.0081, 0.1463, 0.7021, -0.7303, -0.3551,
0.1223, -1.8631, 1.7109, -1.1782, 0.2411, 0.8312,
0.7687, -1.1692, -0.7770, -0.4128, -0.8375, -0.7402,
-0.0654, 0.6358, 0.1156, 1.5017, 0.5071, 0.1799,
0.6721, 0.6848, 0.2589, 1.9868, -0.6657, 0.7893,
-1.2064, -1.9548, 0.8013, 0.5506, 0.2133, 1.2048,
-0.8547, -0.1608, 0.6886, -1.1669, -0.7294, 0.3483,
0.1907, -0.8305, 2.1042, -0.3027, -0.3655, -0.9315,
0.0442, -0.7404, -0.1082, 1.3677, -0.4131, 0.1107,
0.6654, 0.8411, -0.3069, 2.5223, 0.6902, -1.0077,
0.7979, 0.0820, -0.5148, -0.0886, -1.8424, -0.0346,
1.5815, -0.0891, 0.8155, 0.3698, -1.0258, -0.9739,
-1.3503, -0.3858, 1.1106, 0.6071, -2.0166, 0.0967,
0.7345, -0.7066, -0.3412, -0.2297, 1.2156, -0.4338,
-1.3785, 0.5903, 0.8192, -0.1420, 2.2538, 0.1693,
0.3802, -1.3981, 1.5153, 1.3215, 1.4643, 1.5318,
-1.1768, -2.3995, -1.1396, 0.6904, 0.4748, 0.8024,
-0.1419, -0.3682, 1.6368, 0.6820, -1.1626, -0.5715,
-1.4702, -0.3799, -0.1298, -0.7211, -0.4429, 0.0159,
-0.5445, 1.6554, 1.2365, -0.9573, 0.2511, -1.0906,
-1.0230, -2.5856, -1.1009, 0.4219, 1.0617, -0.1329,
0.3802, 1.0295, -0.0261, -1.1958, 0.5664, 0.5888,
0.5739, 1.7503, -0.5988, 2.1912, 1.7426, 0.1416,
0.7404, 1.4662, 1.7057, 0.4449, -0.2445, -0.7994,
-1.0181, 2.0593, -1.0302, -1.4691, -0.2613, -0.6549,
0.5875, 1.9389, 1.1243, 1.4860, 0.3539, -1.4155,
-0.1546, -0.1810, 0.8023, -0.3861, -1.4537, -0.6751,
1.0661, -1.3688, 0.2143, -1.5940, -0.2924, 0.5587,
0.8726, 0.1085, -0.5896, 2.7738, 0.8302, -1.3584,
0.9636, 0.3235, 0.5301, -1.9130, -0.3614, 1.8134,
-0.9239, -0.1629, -0.2706, -0.9246, 0.9744, -2.1350,
0.1895, -0.7986, 1.5076, -0.7943, -0.6727, 2.3508,
0.9152, 0.8520, -1.4375, -0.5582, -1.0974, -0.9530,
0.0621, -0.7985, 0.2679, -1.4482, 0.9225, -0.5079,
-1.1224, -0.1167, 0.7720, 0.3119, -0.0467, 1.7350,
-1.9652, 1.8374, 0.5275, 1.2560, 0.2871, -1.3520,
-0.6480, -0.4730, 1.4174, -0.1773, 0.3263, -0.5049,
-0.5640, 1.1708, 0.9376, 2.2789, -1.9598, -0.6524,
-1.0872, 0.2394, -2.0969, -1.9634, 0.6191, 0.3163,
-2.0131, 1.6756, -0.3477, 1.2589, -0.0346, -1.0866,
-1.0636, 0.3550, -1.6067, 1.1690, -0.3135, -0.4842,
-0.7954, 1.3035, 1.0165, -0.2522, -0.7031, -1.3034,
-1.2737, -0.1443, -1.1063, 0.5431, 0.8969, -0.1536,
-0.4439, -0.4034, -0.2747, -0.6345, 0.9821, 0.9165,
1.1003, 0.5275, 1.1640, -1.5508, -1.4370, -2.1482,
1.8668, -1.4282, 0.0299, -0.6494, 0.9844, -0.0034,
-0.3253, 0.1231, 0.6187, 1.8383, 1.1282, 0.4169,
1.4041, 0.7253, -0.7755, 0.3812, 0.4313, 1.5160,
-1.6740, -0.3158, 0.5493, 0.4855, -2.7935, -1.6469,
-0.5548, 1.5774, -0.7380, 0.6807, -0.9138, -0.6096,
1.3010, 0.1938, 0.6724, 1.3313, -1.8387, -0.1588,
-1.2146, -0.5766, -0.3733, -1.4720, -0.7333, -0.0575,
-0.9559, 1.2385, 1.0133, 0.5962, -0.3695, 0.5932,
-0.5992, -0.8768, 2.1454, -1.6534, -2.9523, -0.4266,
-0.1154, 2.0081, 0.7199, -1.1684, 0.0314, 0.2562,
0.1735, -0.3136, 0.5335, 2.0061, -0.7430, -1.8939,
-0.6525, 0.1513, 1.0993, -0.5240, -0.3800, 0.7972,
0.7462, 2.7353, -0.4767, 1.8810, -1.7828, -0.2444,
-0.2011, 1.3517, -0.9291, -0.5321, -1.2729, -0.8988,
-1.4944, 0.1154, 0.6708, 0.3671, -1.5025, -0.4245,
0.1937, -0.0846, -2.1852, -1.4147, 0.1792, -0.9300,
-0.8868, 0.6235, 1.0124, -1.7197, 1.0672, -1.0430,
0.1350, -0.1736, -0.2287, -0.7210, -1.0080, -0.3862,
-0.3239, 1.2885, -0.9175, 1.2984, -0.7469, 1.3529,
-0.7165, -0.9149, 0.0267, 1.1415, -0.9439, 0.3702,
0.5798, -0.1694, 0.3363, 0.5269, -0.5810, -1.0424,
0.5957, 2.2236, -0.6639, 0.6112]),
size=(10000, 10000), nnz=1000, layout=torch.sparse_csr)
tensor([0.0858, 0.7811, 0.9823, ..., 0.3526, 0.9436, 0.0176])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([10000, 10000])
Size: 100000000
NNZ: 1000
Density: 1e-05
Time: 10.661507368087769 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 463202, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 2000, "MATRIX_DENSITY": 2e-05, "TIME_S": 10.264344692230225, "TIME_S_1KI": 0.02215954311991361, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 985.5935904884338, "W": 96.19, "J_1KI": 2.1277835382585435, "W_1KI": 0.2076631793472394, "W_D": 60.73975, "J_D": 622.3589592251777, "W_D_1KI": 0.13113015487843316, "J_D_1KI": 0.0002830949669440831}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 0, 0, ..., 1999, 1999, 2000]),
col_indices=tensor([8577, 5335, 9363, ..., 493, 9156, 619]),
values=tensor([-0.1709, -0.4161, -1.7005, ..., -1.2204, 0.3457,
0.2974]), size=(10000, 10000), nnz=2000,
layout=torch.sparse_csr)
tensor([0.4540, 0.9054, 0.6007, ..., 0.1570, 0.9375, 0.1255])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([10000, 10000])
Size: 100000000
NNZ: 2000
Density: 2e-05
Time: 10.264344692230225 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 421140, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000, "MATRIX_DENSITY": 5e-05, "TIME_S": 10.421851396560669, "TIME_S_1KI": 0.024746762113692998, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 988.9332138633728, "W": 96.86, "J_1KI": 2.3482291253819936, "W_1KI": 0.22999477608396257, "W_D": 61.95675, "J_D": 632.5736929385662, "W_D_1KI": 0.1471167545234364, "J_D_1KI": 0.0003493298060584043}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 1, 1, ..., 5000, 5000, 5000]),
col_indices=tensor([ 158, 2525, 1382, ..., 2114, 444, 4507]),
values=tensor([ 2.0070, 1.0507, 0.6574, ..., 0.5865, 1.2696,
-0.7873]), size=(10000, 10000), nnz=5000,
layout=torch.sparse_csr)
tensor([0.2973, 0.1452, 0.7931, ..., 0.5079, 0.5321, 0.0471])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([10000, 10000])
Size: 100000000
NNZ: 5000
Density: 5e-05
Time: 10.421851396560669 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 391437, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 8000, "MATRIX_DENSITY": 8e-05, "TIME_S": 10.263977527618408, "TIME_S_1KI": 0.026221275780313073, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 952.8949096679687, "W": 97.6, "J_1KI": 2.434350635397187, "W_1KI": 0.2493376967430263, "W_D": 61.95824999999999, "J_D": 604.9149696407318, "W_D_1KI": 0.15828409169291607, "J_D_1KI": 0.0004043667095673533}

View File

@ -0,0 +1,16 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 1, 2, ..., 7998, 8000, 8000]),
col_indices=tensor([7114, 497, 7750, ..., 3944, 456, 7448]),
values=tensor([ 0.4943, 2.6522, -0.5457, ..., 0.8590, -0.1148,
2.1282]), size=(10000, 10000), nnz=8000,
layout=torch.sparse_csr)
tensor([0.4457, 0.6463, 0.4549, ..., 0.7645, 0.7943, 0.2305])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([10000, 10000])
Size: 100000000
NNZ: 8000
Density: 8e-05
Time: 10.263977527618408 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 49707, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [150000, 150000], "MATRIX_SIZE": 22500000000, "MATRIX_NNZ": 2249888, "MATRIX_DENSITY": 9.999502222222223e-05, "TIME_S": 10.143399477005005, "TIME_S_1KI": 0.20406380342818928, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1627.3860547471047, "W": 161.13, "J_1KI": 32.73957500446828, "W_1KI": 3.241595751101454, "W_D": 124.94174999999998, "J_D": 1261.8907813920378, "W_D_1KI": 2.5135644878990884, "J_D_1KI": 0.050567615987669505}

View File

@ -0,0 +1,18 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 15, 35, ..., 2249850,
2249868, 2249888]),
col_indices=tensor([ 12425, 19703, 20683, ..., 137244, 148113,
149331]),
values=tensor([-0.4641, -0.4936, -0.3021, ..., 1.3227, -0.6800,
-1.8534]), size=(150000, 150000), nnz=2249888,
layout=torch.sparse_csr)
tensor([0.1935, 0.6757, 0.3773, ..., 0.0853, 0.8759, 0.6154])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([150000, 150000])
Size: 22500000000
NNZ: 2249888
Density: 9.999502222222223e-05
Time: 10.143399477005005 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 103207, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [150000, 150000], "MATRIX_SIZE": 22500000000, "MATRIX_NNZ": 224997, "MATRIX_DENSITY": 9.999866666666667e-06, "TIME_S": 10.442121028900146, "TIME_S_1KI": 0.10117648055752175, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1320.9493335485458, "W": 127.7, "J_1KI": 12.799028491754878, "W_1KI": 1.237319174087029, "W_D": 92.3135, "J_D": 954.9056875687838, "W_D_1KI": 0.8944499888573451, "J_D_1KI": 0.008666563206539723}

View File

@ -0,0 +1,18 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 2, 3, ..., 224997, 224997,
224997]),
col_indices=tensor([ 17535, 49936, 15919, ..., 120467, 18748,
140421]),
values=tensor([ 0.2086, -0.2135, 0.8987, ..., 0.0070, -1.1373,
-1.3024]), size=(150000, 150000), nnz=224997,
layout=torch.sparse_csr)
tensor([0.9820, 0.9824, 0.4146, ..., 0.0878, 0.0275, 0.3574])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([150000, 150000])
Size: 22500000000
NNZ: 224997
Density: 9.999866666666667e-06
Time: 10.442121028900146 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 80059, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [150000, 150000], "MATRIX_SIZE": 22500000000, "MATRIX_NNZ": 449996, "MATRIX_DENSITY": 1.9999822222222222e-05, "TIME_S": 11.024610042572021, "TIME_S_1KI": 0.137706067307511, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1478.8713603067397, "W": 137.29, "J_1KI": 18.47226870566382, "W_1KI": 1.7148602905357297, "W_D": 101.51749999999998, "J_D": 1093.5342947041986, "W_D_1KI": 1.2680335752382614, "J_D_1KI": 0.015838738620745467}

View File

@ -0,0 +1,18 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 5, 7, ..., 449987, 449992,
449996]),
col_indices=tensor([ 26830, 38805, 39964, ..., 35924, 100960,
149008]),
values=tensor([-1.6227, 0.6078, 0.1377, ..., -0.4547, -0.3313,
1.8573]), size=(150000, 150000), nnz=449996,
layout=torch.sparse_csr)
tensor([0.6636, 0.3846, 0.0412, ..., 0.1798, 0.6708, 0.5140])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([150000, 150000])
Size: 22500000000
NNZ: 449996
Density: 1.9999822222222222e-05
Time: 11.024610042572021 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 76302, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [150000, 150000], "MATRIX_SIZE": 22500000000, "MATRIX_NNZ": 1124967, "MATRIX_DENSITY": 4.999853333333333e-05, "TIME_S": 10.245508193969727, "TIME_S_1KI": 0.13427574891837338, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1582.9392757558821, "W": 158.07, "J_1KI": 20.745711459147625, "W_1KI": 2.071636392230872, "W_D": 121.98974999999999, "J_D": 1221.6256501210926, "W_D_1KI": 1.5987752614610362, "J_D_1KI": 0.020953254979699566}

View File

@ -0,0 +1,18 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 6, 14, ..., 1124950,
1124960, 1124967]),
col_indices=tensor([ 30457, 53538, 58099, ..., 43595, 68704,
127802]),
values=tensor([ 0.9993, 1.3551, -0.8257, ..., -0.5831, -0.3575,
0.8935]), size=(150000, 150000), nnz=1124967,
layout=torch.sparse_csr)
tensor([0.3516, 0.5198, 0.0988, ..., 0.3923, 0.0390, 0.6416])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([150000, 150000])
Size: 22500000000
NNZ: 1124967
Density: 4.999853333333333e-05
Time: 10.245508193969727 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 61488, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [150000, 150000], "MATRIX_SIZE": 22500000000, "MATRIX_NNZ": 1799911, "MATRIX_DENSITY": 7.999604444444445e-05, "TIME_S": 10.417873620986938, "TIME_S_1KI": 0.16942937843135147, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1688.2730289936067, "W": 160.55, "J_1KI": 27.456951421311583, "W_1KI": 2.61107858443924, "W_D": 125.08400000000002, "J_D": 1315.3282065315248, "W_D_1KI": 2.034283112151965, "J_D_1KI": 0.03308422964077486}

View File

@ -0,0 +1,18 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 13, 22, ..., 1799885,
1799902, 1799911]),
col_indices=tensor([ 8148, 18288, 20984, ..., 90221, 145590,
147539]),
values=tensor([ 1.1715, -0.3998, -1.8516, ..., 0.6898, -0.1280,
-0.8730]), size=(150000, 150000), nnz=1799911,
layout=torch.sparse_csr)
tensor([0.6125, 0.0901, 0.3657, ..., 0.4636, 0.0050, 0.1440])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([150000, 150000])
Size: 22500000000
NNZ: 1799911
Density: 7.999604444444445e-05
Time: 10.417873620986938 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 32983, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [200000, 200000], "MATRIX_SIZE": 40000000000, "MATRIX_NNZ": 3999807, "MATRIX_DENSITY": 9.9995175e-05, "TIME_S": 10.48969292640686, "TIME_S_1KI": 0.3180333179640075, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1717.8176005411146, "W": 159.42, "J_1KI": 52.08190887854697, "W_1KI": 4.833399023739502, "W_D": 124.50374999999998, "J_D": 1341.580310396254, "W_D_1KI": 3.7747854955583175, "J_D_1KI": 0.11444639649390043}

View File

@ -0,0 +1,18 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 25, 44, ..., 3999753,
3999777, 3999807]),
col_indices=tensor([ 11440, 17199, 18924, ..., 189529, 194020,
195373]),
values=tensor([ 2.0210, -0.2315, -1.7881, ..., -0.7783, 1.1984,
-1.3241]), size=(200000, 200000), nnz=3999807,
layout=torch.sparse_csr)
tensor([0.2301, 0.8723, 0.5820, ..., 0.6894, 0.3744, 0.2923])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([200000, 200000])
Size: 40000000000
NNZ: 3999807
Density: 9.9995175e-05
Time: 10.48969292640686 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 77881, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [200000, 200000], "MATRIX_SIZE": 40000000000, "MATRIX_NNZ": 400000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.578283071517944, "TIME_S_1KI": 0.13582623581512748, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1463.2235719990729, "W": 136.67, "J_1KI": 18.78794021647222, "W_1KI": 1.7548567686598784, "W_D": 101.13924999999999, "J_D": 1082.82237985152, "W_D_1KI": 1.2986383071609249, "J_D_1KI": 0.016674648594149084}

View File

@ -0,0 +1,18 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 1, 1, ..., 399999, 400000,
400000]),
col_indices=tensor([ 34673, 146068, 158534, ..., 145873, 173490,
70375]),
values=tensor([ 1.0796, -0.5052, 1.4130, ..., 1.5574, 0.2912,
1.0338]), size=(200000, 200000), nnz=400000,
layout=torch.sparse_csr)
tensor([0.3430, 0.0135, 0.1563, ..., 0.0368, 0.8801, 0.7194])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([200000, 200000])
Size: 40000000000
NNZ: 400000
Density: 1e-05
Time: 10.578283071517944 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 73404, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [200000, 200000], "MATRIX_SIZE": 40000000000, "MATRIX_NNZ": 799992, "MATRIX_DENSITY": 1.99998e-05, "TIME_S": 10.732025861740112, "TIME_S_1KI": 0.14620491882922065, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1703.6127026557924, "W": 159.46, "J_1KI": 23.208717544763125, "W_1KI": 2.1723611792272903, "W_D": 123.84325000000001, "J_D": 1323.096286455393, "W_D_1KI": 1.6871457958694351, "J_D_1KI": 0.022984384990864738}

View File

@ -0,0 +1,18 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 3, 7, ..., 799981, 799987,
799992]),
col_indices=tensor([ 27009, 174256, 194418, ..., 140709, 156996,
173843]),
values=tensor([ 0.0935, 1.3801, -0.5551, ..., 0.6888, 0.8476,
-0.0900]), size=(200000, 200000), nnz=799992,
layout=torch.sparse_csr)
tensor([0.8622, 0.0079, 0.1360, ..., 0.5227, 0.4709, 0.3275])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([200000, 200000])
Size: 40000000000
NNZ: 799992
Density: 1.99998e-05
Time: 10.732025861740112 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 48787, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [200000, 200000], "MATRIX_SIZE": 40000000000, "MATRIX_NNZ": 1999955, "MATRIX_DENSITY": 4.9998875e-05, "TIME_S": 10.624053478240967, "TIME_S_1KI": 0.21776402480662815, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1748.5560211658478, "W": 162.38, "J_1KI": 35.84061371196933, "W_1KI": 3.3283456658536084, "W_D": 126.24249999999999, "J_D": 1359.4166984975336, "W_D_1KI": 2.5876258019554386, "J_D_1KI": 0.053039248200451736}

View File

@ -0,0 +1,18 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 17, 32, ..., 1999929,
1999945, 1999955]),
col_indices=tensor([ 10339, 23771, 43985, ..., 142873, 182508,
198479]),
values=tensor([ 0.9127, -1.4974, 0.0924, ..., 1.0221, -2.4782,
-0.5277]), size=(200000, 200000), nnz=1999955,
layout=torch.sparse_csr)
tensor([0.9521, 0.4634, 0.1847, ..., 0.7016, 0.1879, 0.0658])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([200000, 200000])
Size: 40000000000
NNZ: 1999955
Density: 4.9998875e-05
Time: 10.624053478240967 seconds

View File

@ -0,0 +1 @@
{"CPU": "Epyc 7313P", "ITERATIONS": 36618, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [200000, 200000], "MATRIX_SIZE": 40000000000, "MATRIX_NNZ": 3199867, "MATRIX_DENSITY": 7.9996675e-05, "TIME_S": 10.282621145248413, "TIME_S_1KI": 0.2808078307184558, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1651.7103869795799, "W": 160.09, "J_1KI": 45.10651556555737, "W_1KI": 4.371893604238353, "W_D": 124.06425, "J_D": 1280.0188042840362, "W_D_1KI": 3.3880673439292153, "J_D_1KI": 0.09252464208665725}

View File

@ -0,0 +1,18 @@
/nfshomes/vut/ampere_research/pytorch/spmv.py:59: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.)
matrix = matrix.to_sparse_csr().type(torch.float32)
tensor(crow_indices=tensor([ 0, 15, 31, ..., 3199841,
3199852, 3199867]),
col_indices=tensor([ 3804, 8724, 12172, ..., 120964, 148272,
152836]),
values=tensor([-0.6224, -0.8097, 1.2416, ..., -1.2954, -0.4499,
-0.0195]), size=(200000, 200000), nnz=3199867,
layout=torch.sparse_csr)
tensor([0.5490, 0.9304, 0.8028, ..., 0.1619, 0.9607, 0.8253])
Matrix: synthetic
Matrix: csr
Shape: torch.Size([200000, 200000])
Size: 40000000000
NNZ: 3199867
Density: 7.9996675e-05
Time: 10.282621145248413 seconds

Some files were not shown because too many files have changed in this diff Show More