389000+ coo
This commit is contained in:
parent
7569920be0
commit
b5ccf071e9
@ -0,0 +1 @@
|
||||
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 113, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "amazon0312", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400727, 400727], "MATRIX_ROWS": 400727, "MATRIX_SIZE": 160582128529, "MATRIX_NNZ": 3200440, "MATRIX_DENSITY": 1.9930237750099465e-05, "TIME_S": 10.044164180755615, "TIME_S_1KI": 88.88640867925324, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 399.0583483409882, "W": 27.463802555817157, "J_1KI": 3531.4898083273292, "W_1KI": 243.04250049395714, "W_D": 11.900802555817158, "J_D": 172.92268986439706, "W_D_1KI": 105.31683677714298, "J_D_1KI": 932.00740510746}
|
@ -0,0 +1,59 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 10 -m matrices/389000+_cols/amazon0312.mtx -c 16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "amazon0312", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400727, 400727], "MATRIX_ROWS": 400727, "MATRIX_SIZE": 160582128529, "MATRIX_NNZ": 3200440, "MATRIX_DENSITY": 1.9930237750099465e-05, "TIME_S": 0.9289438724517822}
|
||||
|
||||
tensor(indices=tensor([[ 1, 2, 0, ..., 400725, 400724, 400707],
|
||||
[ 0, 0, 1, ..., 400724, 400725, 400726]]),
|
||||
values=tensor([1., 1., 1., ..., 1., 1., 1.]),
|
||||
size=(400727, 400727), nnz=3200440, layout=torch.sparse_coo)
|
||||
tensor([0.3618, 0.1403, 0.4609, ..., 0.6433, 0.7116, 0.4571])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: amazon0312
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400727, 400727])
|
||||
Rows: 400727
|
||||
Size: 160582128529
|
||||
NNZ: 3200440
|
||||
Density: 1.9930237750099465e-05
|
||||
Time: 0.9289438724517822 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 113 -m matrices/389000+_cols/amazon0312.mtx -c 16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "amazon0312", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400727, 400727], "MATRIX_ROWS": 400727, "MATRIX_SIZE": 160582128529, "MATRIX_NNZ": 3200440, "MATRIX_DENSITY": 1.9930237750099465e-05, "TIME_S": 10.044164180755615}
|
||||
|
||||
tensor(indices=tensor([[ 1, 2, 0, ..., 400725, 400724, 400707],
|
||||
[ 0, 0, 1, ..., 400724, 400725, 400726]]),
|
||||
values=tensor([1., 1., 1., ..., 1., 1., 1.]),
|
||||
size=(400727, 400727), nnz=3200440, layout=torch.sparse_coo)
|
||||
tensor([0.8763, 0.0482, 0.2785, ..., 0.8044, 0.9404, 0.7022])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: amazon0312
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400727, 400727])
|
||||
Rows: 400727
|
||||
Size: 160582128529
|
||||
NNZ: 3200440
|
||||
Density: 1.9930237750099465e-05
|
||||
Time: 10.044164180755615 seconds
|
||||
|
||||
tensor(indices=tensor([[ 1, 2, 0, ..., 400725, 400724, 400707],
|
||||
[ 0, 0, 1, ..., 400724, 400725, 400726]]),
|
||||
values=tensor([1., 1., 1., ..., 1., 1., 1.]),
|
||||
size=(400727, 400727), nnz=3200440, layout=torch.sparse_coo)
|
||||
tensor([0.8763, 0.0482, 0.2785, ..., 0.8044, 0.9404, 0.7022])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: amazon0312
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400727, 400727])
|
||||
Rows: 400727
|
||||
Size: 160582128529
|
||||
NNZ: 3200440
|
||||
Density: 1.9930237750099465e-05
|
||||
Time: 10.044164180755615 seconds
|
||||
|
||||
[16.52, 16.76, 16.8, 16.72, 17.04, 16.92, 16.72, 16.88, 16.88, 16.76]
|
||||
[16.56, 16.68, 16.76, 18.68, 19.36, 24.52, 29.16, 33.8, 36.48, 38.88, 38.88, 38.68, 38.88, 38.84]
|
||||
14.530338525772095
|
||||
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 113, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'amazon0312', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400727, 400727], 'MATRIX_ROWS': 400727, 'MATRIX_SIZE': 160582128529, 'MATRIX_NNZ': 3200440, 'MATRIX_DENSITY': 1.9930237750099465e-05, 'TIME_S': 10.044164180755615, 'TIME_S_1KI': 88.88640867925324, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 399.0583483409882, 'W': 27.463802555817157}
|
||||
[16.52, 16.76, 16.8, 16.72, 17.04, 16.92, 16.72, 16.88, 16.88, 16.76, 16.92, 16.76, 16.76, 16.88, 17.24, 17.72, 18.96, 18.92, 18.88, 18.64]
|
||||
311.26
|
||||
15.562999999999999
|
||||
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 113, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'amazon0312', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400727, 400727], 'MATRIX_ROWS': 400727, 'MATRIX_SIZE': 160582128529, 'MATRIX_NNZ': 3200440, 'MATRIX_DENSITY': 1.9930237750099465e-05, 'TIME_S': 10.044164180755615, 'TIME_S_1KI': 88.88640867925324, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 399.0583483409882, 'W': 27.463802555817157, 'J_1KI': 3531.4898083273292, 'W_1KI': 243.04250049395714, 'W_D': 11.900802555817158, 'J_D': 172.92268986439706, 'W_D_1KI': 105.31683677714298, 'J_D_1KI': 932.00740510746}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 182, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "helm2d03", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392257, 392257], "MATRIX_ROWS": 392257, "MATRIX_SIZE": 153865554049, "MATRIX_NNZ": 2741935, "MATRIX_DENSITY": 1.7820330332848923e-05, "TIME_S": 10.577990770339966, "TIME_S_1KI": 58.12082840846135, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 405.2002028274536, "W": 27.830491908156272, "J_1KI": 2226.3747408101844, "W_1KI": 152.91479070415534, "W_D": 12.904491908156274, "J_D": 187.8839495840073, "W_D_1KI": 70.90380169316634, "J_D_1KI": 389.58132798443046}
|
@ -0,0 +1,81 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 10 -m matrices/389000+_cols/helm2d03.mtx -c 16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "helm2d03", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392257, 392257], "MATRIX_ROWS": 392257, "MATRIX_SIZE": 153865554049, "MATRIX_NNZ": 2741935, "MATRIX_DENSITY": 1.7820330332848923e-05, "TIME_S": 0.7667891979217529}
|
||||
|
||||
tensor(indices=tensor([[ 0, 98273, 133833, ..., 392252, 392253, 392254],
|
||||
[ 0, 0, 0, ..., 392256, 392255, 392256]]),
|
||||
values=tensor([ 3.4808, -0.6217, -0.5806, ..., -0.6940, -0.7602,
|
||||
-0.7602]),
|
||||
size=(392257, 392257), nnz=2741935, layout=torch.sparse_coo)
|
||||
tensor([0.8101, 0.0565, 0.3715, ..., 0.3044, 0.3984, 0.4752])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: helm2d03
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392257, 392257])
|
||||
Rows: 392257
|
||||
Size: 153865554049
|
||||
NNZ: 2741935
|
||||
Density: 1.7820330332848923e-05
|
||||
Time: 0.7667891979217529 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 136 -m matrices/389000+_cols/helm2d03.mtx -c 16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "helm2d03", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392257, 392257], "MATRIX_ROWS": 392257, "MATRIX_SIZE": 153865554049, "MATRIX_NNZ": 2741935, "MATRIX_DENSITY": 1.7820330332848923e-05, "TIME_S": 7.835829734802246}
|
||||
|
||||
tensor(indices=tensor([[ 0, 98273, 133833, ..., 392252, 392253, 392254],
|
||||
[ 0, 0, 0, ..., 392256, 392255, 392256]]),
|
||||
values=tensor([ 3.4808, -0.6217, -0.5806, ..., -0.6940, -0.7602,
|
||||
-0.7602]),
|
||||
size=(392257, 392257), nnz=2741935, layout=torch.sparse_coo)
|
||||
tensor([0.6143, 0.6941, 0.3080, ..., 0.2687, 0.1392, 0.4472])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: helm2d03
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392257, 392257])
|
||||
Rows: 392257
|
||||
Size: 153865554049
|
||||
NNZ: 2741935
|
||||
Density: 1.7820330332848923e-05
|
||||
Time: 7.835829734802246 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 182 -m matrices/389000+_cols/helm2d03.mtx -c 16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "helm2d03", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392257, 392257], "MATRIX_ROWS": 392257, "MATRIX_SIZE": 153865554049, "MATRIX_NNZ": 2741935, "MATRIX_DENSITY": 1.7820330332848923e-05, "TIME_S": 10.577990770339966}
|
||||
|
||||
tensor(indices=tensor([[ 0, 98273, 133833, ..., 392252, 392253, 392254],
|
||||
[ 0, 0, 0, ..., 392256, 392255, 392256]]),
|
||||
values=tensor([ 3.4808, -0.6217, -0.5806, ..., -0.6940, -0.7602,
|
||||
-0.7602]),
|
||||
size=(392257, 392257), nnz=2741935, layout=torch.sparse_coo)
|
||||
tensor([0.4534, 0.9614, 0.4347, ..., 0.7492, 0.4190, 0.3129])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: helm2d03
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392257, 392257])
|
||||
Rows: 392257
|
||||
Size: 153865554049
|
||||
NNZ: 2741935
|
||||
Density: 1.7820330332848923e-05
|
||||
Time: 10.577990770339966 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 98273, 133833, ..., 392252, 392253, 392254],
|
||||
[ 0, 0, 0, ..., 392256, 392255, 392256]]),
|
||||
values=tensor([ 3.4808, -0.6217, -0.5806, ..., -0.6940, -0.7602,
|
||||
-0.7602]),
|
||||
size=(392257, 392257), nnz=2741935, layout=torch.sparse_coo)
|
||||
tensor([0.4534, 0.9614, 0.4347, ..., 0.7492, 0.4190, 0.3129])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: helm2d03
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392257, 392257])
|
||||
Rows: 392257
|
||||
Size: 153865554049
|
||||
NNZ: 2741935
|
||||
Density: 1.7820330332848923e-05
|
||||
Time: 10.577990770339966 seconds
|
||||
|
||||
[16.76, 16.52, 16.88, 16.96, 16.68, 16.68, 16.6, 16.12, 15.96, 15.96]
|
||||
[16.2, 16.36, 16.56, 20.4, 21.44, 25.84, 30.32, 32.76, 35.8, 38.96, 39.04, 39.0, 39.0, 39.28]
|
||||
14.559577465057373
|
||||
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 182, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'helm2d03', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [392257, 392257], 'MATRIX_ROWS': 392257, 'MATRIX_SIZE': 153865554049, 'MATRIX_NNZ': 2741935, 'MATRIX_DENSITY': 1.7820330332848923e-05, 'TIME_S': 10.577990770339966, 'TIME_S_1KI': 58.12082840846135, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 405.2002028274536, 'W': 27.830491908156272}
|
||||
[16.76, 16.52, 16.88, 16.96, 16.68, 16.68, 16.6, 16.12, 15.96, 15.96, 16.36, 16.32, 16.48, 16.48, 16.6, 16.8, 16.92, 16.88, 16.76, 16.68]
|
||||
298.52
|
||||
14.925999999999998
|
||||
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 182, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'helm2d03', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [392257, 392257], 'MATRIX_ROWS': 392257, 'MATRIX_SIZE': 153865554049, 'MATRIX_NNZ': 2741935, 'MATRIX_DENSITY': 1.7820330332848923e-05, 'TIME_S': 10.577990770339966, 'TIME_S_1KI': 58.12082840846135, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 405.2002028274536, 'W': 27.830491908156272, 'J_1KI': 2226.3747408101844, 'W_1KI': 152.91479070415534, 'W_D': 12.904491908156274, 'J_D': 187.8839495840073, 'W_D_1KI': 70.90380169316634, 'J_D_1KI': 389.58132798443046}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 373, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "language", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [399130, 399130], "MATRIX_ROWS": 399130, "MATRIX_SIZE": 159304756900, "MATRIX_NNZ": 1216334, "MATRIX_DENSITY": 7.635264782228233e-06, "TIME_S": 10.37615156173706, "TIME_S_1KI": 27.818100701707937, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 403.1560953426361, "W": 27.703453693461576, "J_1KI": 1080.8474405968796, "W_1KI": 74.27199381625087, "W_D": 12.822453693461576, "J_D": 186.59949120306968, "W_D_1KI": 34.37655145700155, "J_D_1KI": 92.16233634584866}
|
@ -0,0 +1,77 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 10 -m matrices/389000+_cols/language.mtx -c 16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "language", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [399130, 399130], "MATRIX_ROWS": 399130, "MATRIX_SIZE": 159304756900, "MATRIX_NNZ": 1216334, "MATRIX_DENSITY": 7.635264782228233e-06, "TIME_S": 0.3676939010620117}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 1, ..., 399128, 398241, 399129],
|
||||
[ 0, 0, 1, ..., 399128, 399129, 399129]]),
|
||||
values=tensor([ 1., -1., 1., ..., 1., -1., 1.]),
|
||||
size=(399130, 399130), nnz=1216334, layout=torch.sparse_coo)
|
||||
tensor([0.2195, 0.2966, 0.0612, ..., 0.9691, 0.9520, 0.8459])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: language
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([399130, 399130])
|
||||
Rows: 399130
|
||||
Size: 159304756900
|
||||
NNZ: 1216334
|
||||
Density: 7.635264782228233e-06
|
||||
Time: 0.3676939010620117 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 285 -m matrices/389000+_cols/language.mtx -c 16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "language", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [399130, 399130], "MATRIX_ROWS": 399130, "MATRIX_SIZE": 159304756900, "MATRIX_NNZ": 1216334, "MATRIX_DENSITY": 7.635264782228233e-06, "TIME_S": 8.002167224884033}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 1, ..., 399128, 398241, 399129],
|
||||
[ 0, 0, 1, ..., 399128, 399129, 399129]]),
|
||||
values=tensor([ 1., -1., 1., ..., 1., -1., 1.]),
|
||||
size=(399130, 399130), nnz=1216334, layout=torch.sparse_coo)
|
||||
tensor([0.5703, 0.5551, 0.8897, ..., 0.2083, 0.9973, 0.5202])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: language
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([399130, 399130])
|
||||
Rows: 399130
|
||||
Size: 159304756900
|
||||
NNZ: 1216334
|
||||
Density: 7.635264782228233e-06
|
||||
Time: 8.002167224884033 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 373 -m matrices/389000+_cols/language.mtx -c 16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "language", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [399130, 399130], "MATRIX_ROWS": 399130, "MATRIX_SIZE": 159304756900, "MATRIX_NNZ": 1216334, "MATRIX_DENSITY": 7.635264782228233e-06, "TIME_S": 10.37615156173706}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 1, ..., 399128, 398241, 399129],
|
||||
[ 0, 0, 1, ..., 399128, 399129, 399129]]),
|
||||
values=tensor([ 1., -1., 1., ..., 1., -1., 1.]),
|
||||
size=(399130, 399130), nnz=1216334, layout=torch.sparse_coo)
|
||||
tensor([0.5564, 0.2657, 0.4233, ..., 0.6118, 0.8985, 0.4407])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: language
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([399130, 399130])
|
||||
Rows: 399130
|
||||
Size: 159304756900
|
||||
NNZ: 1216334
|
||||
Density: 7.635264782228233e-06
|
||||
Time: 10.37615156173706 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 1, ..., 399128, 398241, 399129],
|
||||
[ 0, 0, 1, ..., 399128, 399129, 399129]]),
|
||||
values=tensor([ 1., -1., 1., ..., 1., -1., 1.]),
|
||||
size=(399130, 399130), nnz=1216334, layout=torch.sparse_coo)
|
||||
tensor([0.5564, 0.2657, 0.4233, ..., 0.6118, 0.8985, 0.4407])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: language
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([399130, 399130])
|
||||
Rows: 399130
|
||||
Size: 159304756900
|
||||
NNZ: 1216334
|
||||
Density: 7.635264782228233e-06
|
||||
Time: 10.37615156173706 seconds
|
||||
|
||||
[16.36, 16.48, 16.52, 16.52, 16.64, 16.64, 16.68, 16.6, 16.76, 17.04]
|
||||
[17.08, 16.96, 17.6, 18.68, 20.08, 25.16, 29.72, 34.04, 37.16, 38.8, 38.8, 38.68, 38.56, 38.36]
|
||||
14.552557229995728
|
||||
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 373, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'language', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [399130, 399130], 'MATRIX_ROWS': 399130, 'MATRIX_SIZE': 159304756900, 'MATRIX_NNZ': 1216334, 'MATRIX_DENSITY': 7.635264782228233e-06, 'TIME_S': 10.37615156173706, 'TIME_S_1KI': 27.818100701707937, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 403.1560953426361, 'W': 27.703453693461576}
|
||||
[16.36, 16.48, 16.52, 16.52, 16.64, 16.64, 16.68, 16.6, 16.76, 17.04, 16.64, 16.56, 16.44, 16.36, 16.2, 16.36, 16.52, 16.52, 16.52, 16.56]
|
||||
297.62
|
||||
14.881
|
||||
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 373, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'language', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [399130, 399130], 'MATRIX_ROWS': 399130, 'MATRIX_SIZE': 159304756900, 'MATRIX_NNZ': 1216334, 'MATRIX_DENSITY': 7.635264782228233e-06, 'TIME_S': 10.37615156173706, 'TIME_S_1KI': 27.818100701707937, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 403.1560953426361, 'W': 27.703453693461576, 'J_1KI': 1080.8474405968796, 'W_1KI': 74.27199381625087, 'W_D': 12.822453693461576, 'J_D': 186.59949120306968, 'W_D_1KI': 34.37655145700155, 'J_D_1KI': 92.16233634584866}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 80, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "marine1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400320, 400320], "MATRIX_ROWS": 400320, "MATRIX_SIZE": 160256102400, "MATRIX_NNZ": 6226538, "MATRIX_DENSITY": 3.885367175883594e-05, "TIME_S": 10.39077091217041, "TIME_S_1KI": 129.88463640213013, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 436.0807608318329, "W": 27.958502634936625, "J_1KI": 5451.009510397911, "W_1KI": 349.4812829367078, "W_D": 12.850502634936625, "J_D": 200.43480293941496, "W_D_1KI": 160.6312829367078, "J_D_1KI": 2007.8910367088474}
|
@ -0,0 +1,62 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 10 -m matrices/389000+_cols/marine1.mtx -c 16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "marine1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400320, 400320], "MATRIX_ROWS": 400320, "MATRIX_SIZE": 160256102400, "MATRIX_NNZ": 6226538, "MATRIX_DENSITY": 3.885367175883594e-05, "TIME_S": 1.303558588027954}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 10383, ..., 400315, 400318, 400319],
|
||||
[ 0, 0, 0, ..., 400319, 400319, 400319]]),
|
||||
values=tensor([ 6.2373e+03, 3.4166e-01, -6.5085e+00, ...,
|
||||
-9.6129e-01, -6.8118e-01, 1.7595e+01]),
|
||||
size=(400320, 400320), nnz=6226538, layout=torch.sparse_coo)
|
||||
tensor([0.6645, 0.1791, 0.7371, ..., 0.0295, 0.0962, 0.0984])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: marine1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400320, 400320])
|
||||
Rows: 400320
|
||||
Size: 160256102400
|
||||
NNZ: 6226538
|
||||
Density: 3.885367175883594e-05
|
||||
Time: 1.303558588027954 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 80 -m matrices/389000+_cols/marine1.mtx -c 16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "marine1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400320, 400320], "MATRIX_ROWS": 400320, "MATRIX_SIZE": 160256102400, "MATRIX_NNZ": 6226538, "MATRIX_DENSITY": 3.885367175883594e-05, "TIME_S": 10.39077091217041}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 10383, ..., 400315, 400318, 400319],
|
||||
[ 0, 0, 0, ..., 400319, 400319, 400319]]),
|
||||
values=tensor([ 6.2373e+03, 3.4166e-01, -6.5085e+00, ...,
|
||||
-9.6129e-01, -6.8118e-01, 1.7595e+01]),
|
||||
size=(400320, 400320), nnz=6226538, layout=torch.sparse_coo)
|
||||
tensor([0.4439, 0.0248, 0.1672, ..., 0.5097, 0.8471, 0.8016])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: marine1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400320, 400320])
|
||||
Rows: 400320
|
||||
Size: 160256102400
|
||||
NNZ: 6226538
|
||||
Density: 3.885367175883594e-05
|
||||
Time: 10.39077091217041 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 10383, ..., 400315, 400318, 400319],
|
||||
[ 0, 0, 0, ..., 400319, 400319, 400319]]),
|
||||
values=tensor([ 6.2373e+03, 3.4166e-01, -6.5085e+00, ...,
|
||||
-9.6129e-01, -6.8118e-01, 1.7595e+01]),
|
||||
size=(400320, 400320), nnz=6226538, layout=torch.sparse_coo)
|
||||
tensor([0.4439, 0.0248, 0.1672, ..., 0.5097, 0.8471, 0.8016])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: marine1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400320, 400320])
|
||||
Rows: 400320
|
||||
Size: 160256102400
|
||||
NNZ: 6226538
|
||||
Density: 3.885367175883594e-05
|
||||
Time: 10.39077091217041 seconds
|
||||
|
||||
[16.6, 16.88, 16.92, 16.76, 16.76, 16.56, 16.56, 16.56, 16.6, 16.36]
|
||||
[16.32, 16.4, 16.8, 17.84, 20.24, 23.84, 28.8, 32.4, 36.48, 38.68, 38.4, 38.56, 38.56, 38.56, 38.6]
|
||||
15.597429037094116
|
||||
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 80, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'marine1', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400320, 400320], 'MATRIX_ROWS': 400320, 'MATRIX_SIZE': 160256102400, 'MATRIX_NNZ': 6226538, 'MATRIX_DENSITY': 3.885367175883594e-05, 'TIME_S': 10.39077091217041, 'TIME_S_1KI': 129.88463640213013, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 436.0807608318329, 'W': 27.958502634936625}
|
||||
[16.6, 16.88, 16.92, 16.76, 16.76, 16.56, 16.56, 16.56, 16.6, 16.36, 16.88, 16.92, 16.84, 16.96, 16.92, 17.2, 17.04, 16.72, 16.76, 16.56]
|
||||
302.16
|
||||
15.108
|
||||
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 80, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'marine1', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400320, 400320], 'MATRIX_ROWS': 400320, 'MATRIX_SIZE': 160256102400, 'MATRIX_NNZ': 6226538, 'MATRIX_DENSITY': 3.885367175883594e-05, 'TIME_S': 10.39077091217041, 'TIME_S_1KI': 129.88463640213013, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 436.0807608318329, 'W': 27.958502634936625, 'J_1KI': 5451.009510397911, 'W_1KI': 349.4812829367078, 'W_D': 12.850502634936625, 'J_D': 200.43480293941496, 'W_D_1KI': 160.6312829367078, 'J_D_1KI': 2007.8910367088474}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 212, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "mario002", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [389874, 389874], "MATRIX_ROWS": 389874, "MATRIX_SIZE": 152001735876, "MATRIX_NNZ": 2101242, "MATRIX_DENSITY": 1.3823802655215408e-05, "TIME_S": 10.325457572937012, "TIME_S_1KI": 48.70498855158968, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 398.62124523162845, "W": 27.453193435135873, "J_1KI": 1880.288892602021, "W_1KI": 129.49619544875412, "W_D": 12.278193435135872, "J_D": 178.2797607088089, "W_D_1KI": 57.91600676950883, "J_D_1KI": 273.18871117692845}
|
@ -0,0 +1,59 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 10 -m matrices/389000+_cols/mario002.mtx -c 16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "mario002", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [389874, 389874], "MATRIX_ROWS": 389874, "MATRIX_SIZE": 152001735876, "MATRIX_NNZ": 2101242, "MATRIX_DENSITY": 1.3823802655215408e-05, "TIME_S": 0.494342565536499}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1027, 1028, ..., 234126, 234127, 234127],
|
||||
[ 0, 0, 0, ..., 389703, 389823, 389873]]),
|
||||
values=tensor([ 1., 0., 0., ..., -1., 1., -1.]),
|
||||
size=(389874, 389874), nnz=2101242, layout=torch.sparse_coo)
|
||||
tensor([0.5569, 0.7798, 0.9004, ..., 0.9998, 0.9126, 0.0675])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: mario002
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([389874, 389874])
|
||||
Rows: 389874
|
||||
Size: 152001735876
|
||||
NNZ: 2101242
|
||||
Density: 1.3823802655215408e-05
|
||||
Time: 0.494342565536499 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 212 -m matrices/389000+_cols/mario002.mtx -c 16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "mario002", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [389874, 389874], "MATRIX_ROWS": 389874, "MATRIX_SIZE": 152001735876, "MATRIX_NNZ": 2101242, "MATRIX_DENSITY": 1.3823802655215408e-05, "TIME_S": 10.325457572937012}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1027, 1028, ..., 234126, 234127, 234127],
|
||||
[ 0, 0, 0, ..., 389703, 389823, 389873]]),
|
||||
values=tensor([ 1., 0., 0., ..., -1., 1., -1.]),
|
||||
size=(389874, 389874), nnz=2101242, layout=torch.sparse_coo)
|
||||
tensor([0.0146, 0.8011, 0.0938, ..., 0.9319, 0.8634, 0.7309])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: mario002
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([389874, 389874])
|
||||
Rows: 389874
|
||||
Size: 152001735876
|
||||
NNZ: 2101242
|
||||
Density: 1.3823802655215408e-05
|
||||
Time: 10.325457572937012 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1027, 1028, ..., 234126, 234127, 234127],
|
||||
[ 0, 0, 0, ..., 389703, 389823, 389873]]),
|
||||
values=tensor([ 1., 0., 0., ..., -1., 1., -1.]),
|
||||
size=(389874, 389874), nnz=2101242, layout=torch.sparse_coo)
|
||||
tensor([0.0146, 0.8011, 0.0938, ..., 0.9319, 0.8634, 0.7309])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: mario002
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([389874, 389874])
|
||||
Rows: 389874
|
||||
Size: 152001735876
|
||||
NNZ: 2101242
|
||||
Density: 1.3823802655215408e-05
|
||||
Time: 10.325457572937012 seconds
|
||||
|
||||
[16.32, 16.56, 16.64, 16.88, 17.2, 17.16, 17.04, 17.04, 17.04, 17.04]
|
||||
[16.88, 16.8, 16.84, 18.84, 19.64, 24.36, 28.92, 33.4, 36.08, 38.8, 38.88, 39.04, 38.8, 39.0]
|
||||
14.520031929016113
|
||||
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 212, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'mario002', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [389874, 389874], 'MATRIX_ROWS': 389874, 'MATRIX_SIZE': 152001735876, 'MATRIX_NNZ': 2101242, 'MATRIX_DENSITY': 1.3823802655215408e-05, 'TIME_S': 10.325457572937012, 'TIME_S_1KI': 48.70498855158968, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 398.62124523162845, 'W': 27.453193435135873}
|
||||
[16.32, 16.56, 16.64, 16.88, 17.2, 17.16, 17.04, 17.04, 17.04, 17.04, 16.8, 16.52, 16.52, 16.44, 16.92, 16.68, 16.84, 17.12, 17.2, 17.24]
|
||||
303.5
|
||||
15.175
|
||||
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 212, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'mario002', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [389874, 389874], 'MATRIX_ROWS': 389874, 'MATRIX_SIZE': 152001735876, 'MATRIX_NNZ': 2101242, 'MATRIX_DENSITY': 1.3823802655215408e-05, 'TIME_S': 10.325457572937012, 'TIME_S_1KI': 48.70498855158968, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 398.62124523162845, 'W': 27.453193435135873, 'J_1KI': 1880.288892602021, 'W_1KI': 129.49619544875412, 'W_D': 12.278193435135872, 'J_D': 178.2797607088089, 'W_D_1KI': 57.91600676950883, 'J_D_1KI': 273.18871117692845}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 23, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 10.135860443115234, "TIME_S_1KI": 440.68958448327106, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 398.50457602500916, "W": 24.202014645160418, "J_1KI": 17326.285914130833, "W_1KI": 1052.2615063113226, "W_D": 9.021014645160417, "J_D": 148.53786633849143, "W_D_1KI": 392.2180280504529, "J_D_1KI": 17052.95774132404}
|
@ -0,0 +1,62 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 10 -m matrices/389000+_cols/msdoor.mtx -c 16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 4.422544717788696}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.9166, 0.9706, 0.4570, ..., 0.6253, 0.2257, 0.3666])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 4.422544717788696 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 23 -m matrices/389000+_cols/msdoor.mtx -c 16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 10.135860443115234}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.4048, 0.1108, 0.3428, ..., 0.0325, 0.2921, 0.4433])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 10.135860443115234 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.4048, 0.1108, 0.3428, ..., 0.0325, 0.2921, 0.4433])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 10.135860443115234 seconds
|
||||
|
||||
[16.88, 16.84, 16.84, 16.84, 17.2, 17.2, 16.84, 16.8, 16.72, 16.52]
|
||||
[16.72, 16.68, 17.12, 20.72, 22.56, 26.36, 29.6, 28.48, 30.44, 30.2, 28.48, 28.48, 28.44, 28.12, 28.08, 27.32]
|
||||
16.465760469436646
|
||||
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 23, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'msdoor', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [415863, 415863], 'MATRIX_ROWS': 415863, 'MATRIX_SIZE': 172942034769, 'MATRIX_NNZ': 20240935, 'MATRIX_DENSITY': 0.00011703883921012015, 'TIME_S': 10.135860443115234, 'TIME_S_1KI': 440.68958448327106, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 398.50457602500916, 'W': 24.202014645160418}
|
||||
[16.88, 16.84, 16.84, 16.84, 17.2, 17.2, 16.84, 16.8, 16.72, 16.52, 16.6, 16.64, 16.68, 16.76, 16.76, 16.76, 17.12, 17.0, 17.08, 17.08]
|
||||
303.62
|
||||
15.181000000000001
|
||||
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 23, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'msdoor', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [415863, 415863], 'MATRIX_ROWS': 415863, 'MATRIX_SIZE': 172942034769, 'MATRIX_NNZ': 20240935, 'MATRIX_DENSITY': 0.00011703883921012015, 'TIME_S': 10.135860443115234, 'TIME_S_1KI': 440.68958448327106, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 398.50457602500916, 'W': 24.202014645160418, 'J_1KI': 17326.285914130833, 'W_1KI': 1052.2615063113226, 'W_D': 9.021014645160417, 'J_D': 148.53786633849143, 'W_D_1KI': 392.2180280504529, 'J_D_1KI': 17052.95774132404}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Altra", "CORES": 16, "ITERATIONS": 38, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "test1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392908, 392908], "MATRIX_ROWS": 392908, "MATRIX_SIZE": 154376696464, "MATRIX_NNZ": 12968200, "MATRIX_DENSITY": 8.400361127706946e-05, "TIME_S": 10.248776912689209, "TIME_S_1KI": 269.70465559708447, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 416.651335029602, "W": 26.76242276322637, "J_1KI": 10964.508816568474, "W_1KI": 704.2742832427991, "W_D": 11.665422763226369, "J_D": 181.61337674784656, "W_D_1KI": 306.98480955858867, "J_D_1KI": 8078.54761996286}
|
@ -0,0 +1,62 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 10 -m matrices/389000+_cols/test1.mtx -c 16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "test1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392908, 392908], "MATRIX_ROWS": 392908, "MATRIX_SIZE": 154376696464, "MATRIX_NNZ": 12968200, "MATRIX_DENSITY": 8.400361127706946e-05, "TIME_S": 2.7536518573760986}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 8, ..., 392905, 392906, 392907],
|
||||
[ 0, 0, 0, ..., 392907, 392907, 392907]]),
|
||||
values=tensor([1.0000e+00, 0.0000e+00, 0.0000e+00, ...,
|
||||
0.0000e+00, 0.0000e+00, 2.1156e-17]),
|
||||
size=(392908, 392908), nnz=12968200, layout=torch.sparse_coo)
|
||||
tensor([0.7393, 0.0550, 0.6192, ..., 0.4571, 0.5565, 0.6848])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: test1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392908, 392908])
|
||||
Rows: 392908
|
||||
Size: 154376696464
|
||||
NNZ: 12968200
|
||||
Density: 8.400361127706946e-05
|
||||
Time: 2.7536518573760986 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 38 -m matrices/389000+_cols/test1.mtx -c 16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "test1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392908, 392908], "MATRIX_ROWS": 392908, "MATRIX_SIZE": 154376696464, "MATRIX_NNZ": 12968200, "MATRIX_DENSITY": 8.400361127706946e-05, "TIME_S": 10.248776912689209}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 8, ..., 392905, 392906, 392907],
|
||||
[ 0, 0, 0, ..., 392907, 392907, 392907]]),
|
||||
values=tensor([1.0000e+00, 0.0000e+00, 0.0000e+00, ...,
|
||||
0.0000e+00, 0.0000e+00, 2.1156e-17]),
|
||||
size=(392908, 392908), nnz=12968200, layout=torch.sparse_coo)
|
||||
tensor([0.5704, 0.2557, 0.8650, ..., 0.6085, 0.9225, 0.5985])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: test1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392908, 392908])
|
||||
Rows: 392908
|
||||
Size: 154376696464
|
||||
NNZ: 12968200
|
||||
Density: 8.400361127706946e-05
|
||||
Time: 10.248776912689209 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 8, ..., 392905, 392906, 392907],
|
||||
[ 0, 0, 0, ..., 392907, 392907, 392907]]),
|
||||
values=tensor([1.0000e+00, 0.0000e+00, 0.0000e+00, ...,
|
||||
0.0000e+00, 0.0000e+00, 2.1156e-17]),
|
||||
size=(392908, 392908), nnz=12968200, layout=torch.sparse_coo)
|
||||
tensor([0.5704, 0.2557, 0.8650, ..., 0.6085, 0.9225, 0.5985])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: test1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392908, 392908])
|
||||
Rows: 392908
|
||||
Size: 154376696464
|
||||
NNZ: 12968200
|
||||
Density: 8.400361127706946e-05
|
||||
Time: 10.248776912689209 seconds
|
||||
|
||||
[16.56, 16.72, 16.72, 16.64, 16.84, 16.88, 16.44, 16.76, 16.96, 16.8]
|
||||
[16.96, 16.76, 19.36, 21.6, 24.24, 28.08, 28.08, 31.8, 32.16, 34.6, 33.48, 34.56, 33.88, 33.84, 33.44]
|
||||
15.568520784378052
|
||||
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 38, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'test1', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [392908, 392908], 'MATRIX_ROWS': 392908, 'MATRIX_SIZE': 154376696464, 'MATRIX_NNZ': 12968200, 'MATRIX_DENSITY': 8.400361127706946e-05, 'TIME_S': 10.248776912689209, 'TIME_S_1KI': 269.70465559708447, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 416.651335029602, 'W': 26.76242276322637}
|
||||
[16.56, 16.72, 16.72, 16.64, 16.84, 16.88, 16.44, 16.76, 16.96, 16.8, 17.24, 17.0, 17.08, 17.04, 16.8, 16.56, 16.68, 16.6, 16.6, 16.64]
|
||||
301.94
|
||||
15.097
|
||||
{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 38, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'test1', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [392908, 392908], 'MATRIX_ROWS': 392908, 'MATRIX_SIZE': 154376696464, 'MATRIX_NNZ': 12968200, 'MATRIX_DENSITY': 8.400361127706946e-05, 'TIME_S': 10.248776912689209, 'TIME_S_1KI': 269.70465559708447, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 416.651335029602, 'W': 26.76242276322637, 'J_1KI': 10964.508816568474, 'W_1KI': 704.2742832427991, 'W_D': 11.665422763226369, 'J_D': 181.61337674784656, 'W_D_1KI': 306.98480955858867, 'J_D_1KI': 8078.54761996286}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 109, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "amazon0312", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400727, 400727], "MATRIX_ROWS": 400727, "MATRIX_SIZE": 160582128529, "MATRIX_NNZ": 3200440, "MATRIX_DENSITY": 1.9930237750099465e-05, "TIME_S": 10.09192419052124, "TIME_S_1KI": 92.58646046349762, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 926.4655077195168, "W": 72.37, "J_1KI": 8499.683557059787, "W_1KI": 663.9449541284405, "W_D": 36.63100000000001, "J_D": 468.94235198664677, "W_D_1KI": 336.0642201834863, "J_D_1KI": 3083.1579833347373}
|
@ -0,0 +1,59 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '10', '-m', 'matrices/389000+_cols/amazon0312.mtx', '-c', '16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "amazon0312", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400727, 400727], "MATRIX_ROWS": 400727, "MATRIX_SIZE": 160582128529, "MATRIX_NNZ": 3200440, "MATRIX_DENSITY": 1.9930237750099465e-05, "TIME_S": 0.9576153755187988}
|
||||
|
||||
tensor(indices=tensor([[ 1, 2, 0, ..., 400725, 400724, 400707],
|
||||
[ 0, 0, 1, ..., 400724, 400725, 400726]]),
|
||||
values=tensor([1., 1., 1., ..., 1., 1., 1.]),
|
||||
size=(400727, 400727), nnz=3200440, layout=torch.sparse_coo)
|
||||
tensor([0.8582, 0.0335, 0.3781, ..., 0.4604, 0.7075, 0.2246])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: amazon0312
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400727, 400727])
|
||||
Rows: 400727
|
||||
Size: 160582128529
|
||||
NNZ: 3200440
|
||||
Density: 1.9930237750099465e-05
|
||||
Time: 0.9576153755187988 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '109', '-m', 'matrices/389000+_cols/amazon0312.mtx', '-c', '16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "amazon0312", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400727, 400727], "MATRIX_ROWS": 400727, "MATRIX_SIZE": 160582128529, "MATRIX_NNZ": 3200440, "MATRIX_DENSITY": 1.9930237750099465e-05, "TIME_S": 10.09192419052124}
|
||||
|
||||
tensor(indices=tensor([[ 1, 2, 0, ..., 400725, 400724, 400707],
|
||||
[ 0, 0, 1, ..., 400724, 400725, 400726]]),
|
||||
values=tensor([1., 1., 1., ..., 1., 1., 1.]),
|
||||
size=(400727, 400727), nnz=3200440, layout=torch.sparse_coo)
|
||||
tensor([0.8590, 0.3599, 0.3245, ..., 0.4552, 0.4593, 0.9347])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: amazon0312
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400727, 400727])
|
||||
Rows: 400727
|
||||
Size: 160582128529
|
||||
NNZ: 3200440
|
||||
Density: 1.9930237750099465e-05
|
||||
Time: 10.09192419052124 seconds
|
||||
|
||||
tensor(indices=tensor([[ 1, 2, 0, ..., 400725, 400724, 400707],
|
||||
[ 0, 0, 1, ..., 400724, 400725, 400726]]),
|
||||
values=tensor([1., 1., 1., ..., 1., 1., 1.]),
|
||||
size=(400727, 400727), nnz=3200440, layout=torch.sparse_coo)
|
||||
tensor([0.8590, 0.3599, 0.3245, ..., 0.4552, 0.4593, 0.9347])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: amazon0312
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400727, 400727])
|
||||
Rows: 400727
|
||||
Size: 160582128529
|
||||
NNZ: 3200440
|
||||
Density: 1.9930237750099465e-05
|
||||
Time: 10.09192419052124 seconds
|
||||
|
||||
[39.76, 40.28, 38.64, 39.25, 38.69, 44.83, 38.88, 40.23, 38.56, 39.39]
|
||||
[72.37]
|
||||
12.80178952217102
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 109, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'amazon0312', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400727, 400727], 'MATRIX_ROWS': 400727, 'MATRIX_SIZE': 160582128529, 'MATRIX_NNZ': 3200440, 'MATRIX_DENSITY': 1.9930237750099465e-05, 'TIME_S': 10.09192419052124, 'TIME_S_1KI': 92.58646046349762, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 926.4655077195168, 'W': 72.37}
|
||||
[39.76, 40.28, 38.64, 39.25, 38.69, 44.83, 38.88, 40.23, 38.56, 39.39, 39.23, 39.52, 43.66, 39.53, 39.23, 38.82, 38.54, 38.52, 38.81, 39.2]
|
||||
714.78
|
||||
35.739
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 109, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'amazon0312', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400727, 400727], 'MATRIX_ROWS': 400727, 'MATRIX_SIZE': 160582128529, 'MATRIX_NNZ': 3200440, 'MATRIX_DENSITY': 1.9930237750099465e-05, 'TIME_S': 10.09192419052124, 'TIME_S_1KI': 92.58646046349762, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 926.4655077195168, 'W': 72.37, 'J_1KI': 8499.683557059787, 'W_1KI': 663.9449541284405, 'W_D': 36.63100000000001, 'J_D': 468.94235198664677, 'W_D_1KI': 336.0642201834863, 'J_D_1KI': 3083.1579833347373}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 129, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "helm2d03", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392257, 392257], "MATRIX_ROWS": 392257, "MATRIX_SIZE": 153865554049, "MATRIX_NNZ": 2741935, "MATRIX_DENSITY": 1.7820330332848923e-05, "TIME_S": 10.266744375228882, "TIME_S_1KI": 79.58716569944869, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 946.7289336967468, "W": 73.64, "J_1KI": 7338.983982145324, "W_1KI": 570.8527131782946, "W_D": 38.252, "J_D": 491.7745134677887, "W_D_1KI": 296.5271317829458, "J_D_1KI": 2298.659936301905}
|
@ -0,0 +1,62 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '10', '-m', 'matrices/389000+_cols/helm2d03.mtx', '-c', '16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "helm2d03", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392257, 392257], "MATRIX_ROWS": 392257, "MATRIX_SIZE": 153865554049, "MATRIX_NNZ": 2741935, "MATRIX_DENSITY": 1.7820330332848923e-05, "TIME_S": 0.8112735748291016}
|
||||
|
||||
tensor(indices=tensor([[ 0, 98273, 133833, ..., 392252, 392253, 392254],
|
||||
[ 0, 0, 0, ..., 392256, 392255, 392256]]),
|
||||
values=tensor([ 3.4808, -0.6217, -0.5806, ..., -0.6940, -0.7602,
|
||||
-0.7602]),
|
||||
size=(392257, 392257), nnz=2741935, layout=torch.sparse_coo)
|
||||
tensor([0.7623, 0.4886, 0.9990, ..., 0.1681, 0.1016, 0.8749])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: helm2d03
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392257, 392257])
|
||||
Rows: 392257
|
||||
Size: 153865554049
|
||||
NNZ: 2741935
|
||||
Density: 1.7820330332848923e-05
|
||||
Time: 0.8112735748291016 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '129', '-m', 'matrices/389000+_cols/helm2d03.mtx', '-c', '16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "helm2d03", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392257, 392257], "MATRIX_ROWS": 392257, "MATRIX_SIZE": 153865554049, "MATRIX_NNZ": 2741935, "MATRIX_DENSITY": 1.7820330332848923e-05, "TIME_S": 10.266744375228882}
|
||||
|
||||
tensor(indices=tensor([[ 0, 98273, 133833, ..., 392252, 392253, 392254],
|
||||
[ 0, 0, 0, ..., 392256, 392255, 392256]]),
|
||||
values=tensor([ 3.4808, -0.6217, -0.5806, ..., -0.6940, -0.7602,
|
||||
-0.7602]),
|
||||
size=(392257, 392257), nnz=2741935, layout=torch.sparse_coo)
|
||||
tensor([0.4954, 0.9146, 0.5987, ..., 0.8110, 0.0171, 0.3763])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: helm2d03
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392257, 392257])
|
||||
Rows: 392257
|
||||
Size: 153865554049
|
||||
NNZ: 2741935
|
||||
Density: 1.7820330332848923e-05
|
||||
Time: 10.266744375228882 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 98273, 133833, ..., 392252, 392253, 392254],
|
||||
[ 0, 0, 0, ..., 392256, 392255, 392256]]),
|
||||
values=tensor([ 3.4808, -0.6217, -0.5806, ..., -0.6940, -0.7602,
|
||||
-0.7602]),
|
||||
size=(392257, 392257), nnz=2741935, layout=torch.sparse_coo)
|
||||
tensor([0.4954, 0.9146, 0.5987, ..., 0.8110, 0.0171, 0.3763])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: helm2d03
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392257, 392257])
|
||||
Rows: 392257
|
||||
Size: 153865554049
|
||||
NNZ: 2741935
|
||||
Density: 1.7820330332848923e-05
|
||||
Time: 10.266744375228882 seconds
|
||||
|
||||
[39.86, 39.07, 39.17, 38.7, 39.66, 38.62, 38.53, 38.35, 39.16, 38.98]
|
||||
[73.64]
|
||||
12.856177806854248
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 129, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'helm2d03', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [392257, 392257], 'MATRIX_ROWS': 392257, 'MATRIX_SIZE': 153865554049, 'MATRIX_NNZ': 2741935, 'MATRIX_DENSITY': 1.7820330332848923e-05, 'TIME_S': 10.266744375228882, 'TIME_S_1KI': 79.58716569944869, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 946.7289336967468, 'W': 73.64}
|
||||
[39.86, 39.07, 39.17, 38.7, 39.66, 38.62, 38.53, 38.35, 39.16, 38.98, 40.21, 38.44, 39.63, 39.54, 39.29, 38.26, 38.55, 43.81, 39.63, 39.65]
|
||||
707.76
|
||||
35.388
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 129, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'helm2d03', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [392257, 392257], 'MATRIX_ROWS': 392257, 'MATRIX_SIZE': 153865554049, 'MATRIX_NNZ': 2741935, 'MATRIX_DENSITY': 1.7820330332848923e-05, 'TIME_S': 10.266744375228882, 'TIME_S_1KI': 79.58716569944869, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 946.7289336967468, 'W': 73.64, 'J_1KI': 7338.983982145324, 'W_1KI': 570.8527131782946, 'W_D': 38.252, 'J_D': 491.7745134677887, 'W_D_1KI': 296.5271317829458, 'J_D_1KI': 2298.659936301905}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 283, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "language", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [399130, 399130], "MATRIX_ROWS": 399130, "MATRIX_SIZE": 159304756900, "MATRIX_NNZ": 1216334, "MATRIX_DENSITY": 7.635264782228233e-06, "TIME_S": 10.11699652671814, "TIME_S_1KI": 35.74910433469307, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 981.2804313087463, "W": 78.16, "J_1KI": 3467.4220187588207, "W_1KI": 276.1837455830389, "W_D": 43.09949999999999, "J_D": 541.1040935157537, "W_D_1KI": 152.29505300353355, "J_D_1KI": 538.1450636167264}
|
@ -0,0 +1,59 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '10', '-m', 'matrices/389000+_cols/language.mtx', '-c', '16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "language", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [399130, 399130], "MATRIX_ROWS": 399130, "MATRIX_SIZE": 159304756900, "MATRIX_NNZ": 1216334, "MATRIX_DENSITY": 7.635264782228233e-06, "TIME_S": 0.3706076145172119}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 1, ..., 399128, 398241, 399129],
|
||||
[ 0, 0, 1, ..., 399128, 399129, 399129]]),
|
||||
values=tensor([ 1., -1., 1., ..., 1., -1., 1.]),
|
||||
size=(399130, 399130), nnz=1216334, layout=torch.sparse_coo)
|
||||
tensor([0.3756, 0.2751, 0.7481, ..., 0.7667, 0.3191, 0.0169])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: language
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([399130, 399130])
|
||||
Rows: 399130
|
||||
Size: 159304756900
|
||||
NNZ: 1216334
|
||||
Density: 7.635264782228233e-06
|
||||
Time: 0.3706076145172119 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '283', '-m', 'matrices/389000+_cols/language.mtx', '-c', '16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "language", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [399130, 399130], "MATRIX_ROWS": 399130, "MATRIX_SIZE": 159304756900, "MATRIX_NNZ": 1216334, "MATRIX_DENSITY": 7.635264782228233e-06, "TIME_S": 10.11699652671814}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 1, ..., 399128, 398241, 399129],
|
||||
[ 0, 0, 1, ..., 399128, 399129, 399129]]),
|
||||
values=tensor([ 1., -1., 1., ..., 1., -1., 1.]),
|
||||
size=(399130, 399130), nnz=1216334, layout=torch.sparse_coo)
|
||||
tensor([0.7403, 0.2941, 0.3666, ..., 0.1304, 0.7725, 0.2717])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: language
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([399130, 399130])
|
||||
Rows: 399130
|
||||
Size: 159304756900
|
||||
NNZ: 1216334
|
||||
Density: 7.635264782228233e-06
|
||||
Time: 10.11699652671814 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 1, ..., 399128, 398241, 399129],
|
||||
[ 0, 0, 1, ..., 399128, 399129, 399129]]),
|
||||
values=tensor([ 1., -1., 1., ..., 1., -1., 1.]),
|
||||
size=(399130, 399130), nnz=1216334, layout=torch.sparse_coo)
|
||||
tensor([0.7403, 0.2941, 0.3666, ..., 0.1304, 0.7725, 0.2717])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: language
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([399130, 399130])
|
||||
Rows: 399130
|
||||
Size: 159304756900
|
||||
NNZ: 1216334
|
||||
Density: 7.635264782228233e-06
|
||||
Time: 10.11699652671814 seconds
|
||||
|
||||
[39.98, 38.51, 39.32, 38.32, 38.86, 38.39, 39.16, 38.23, 40.42, 38.3]
|
||||
[78.16]
|
||||
12.554764986038208
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 283, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'language', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [399130, 399130], 'MATRIX_ROWS': 399130, 'MATRIX_SIZE': 159304756900, 'MATRIX_NNZ': 1216334, 'MATRIX_DENSITY': 7.635264782228233e-06, 'TIME_S': 10.11699652671814, 'TIME_S_1KI': 35.74910433469307, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 981.2804313087463, 'W': 78.16}
|
||||
[39.98, 38.51, 39.32, 38.32, 38.86, 38.39, 39.16, 38.23, 40.42, 38.3, 39.04, 39.55, 38.37, 38.44, 38.39, 40.53, 38.53, 39.26, 38.58, 39.38]
|
||||
701.21
|
||||
35.060500000000005
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 283, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'language', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [399130, 399130], 'MATRIX_ROWS': 399130, 'MATRIX_SIZE': 159304756900, 'MATRIX_NNZ': 1216334, 'MATRIX_DENSITY': 7.635264782228233e-06, 'TIME_S': 10.11699652671814, 'TIME_S_1KI': 35.74910433469307, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 981.2804313087463, 'W': 78.16, 'J_1KI': 3467.4220187588207, 'W_1KI': 276.1837455830389, 'W_D': 43.09949999999999, 'J_D': 541.1040935157537, 'W_D_1KI': 152.29505300353355, 'J_D_1KI': 538.1450636167264}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 58, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "marine1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400320, 400320], "MATRIX_ROWS": 400320, "MATRIX_SIZE": 160256102400, "MATRIX_NNZ": 6226538, "MATRIX_DENSITY": 3.885367175883594e-05, "TIME_S": 10.230907678604126, "TIME_S_1KI": 176.3949599759332, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 951.5879069662093, "W": 72.74, "J_1KI": 16406.68805114154, "W_1KI": 1254.1379310344828, "W_D": 37.72324999999999, "J_D": 493.49723001736396, "W_D_1KI": 650.4008620689655, "J_D_1KI": 11213.807966706301}
|
@ -0,0 +1,62 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '10', '-m', 'matrices/389000+_cols/marine1.mtx', '-c', '16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "marine1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400320, 400320], "MATRIX_ROWS": 400320, "MATRIX_SIZE": 160256102400, "MATRIX_NNZ": 6226538, "MATRIX_DENSITY": 3.885367175883594e-05, "TIME_S": 1.793755292892456}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 10383, ..., 400315, 400318, 400319],
|
||||
[ 0, 0, 0, ..., 400319, 400319, 400319]]),
|
||||
values=tensor([ 6.2373e+03, 3.4166e-01, -6.5085e+00, ...,
|
||||
-9.6129e-01, -6.8118e-01, 1.7595e+01]),
|
||||
size=(400320, 400320), nnz=6226538, layout=torch.sparse_coo)
|
||||
tensor([0.4589, 0.9913, 0.7859, ..., 0.4970, 0.0192, 0.7518])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: marine1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400320, 400320])
|
||||
Rows: 400320
|
||||
Size: 160256102400
|
||||
NNZ: 6226538
|
||||
Density: 3.885367175883594e-05
|
||||
Time: 1.793755292892456 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '58', '-m', 'matrices/389000+_cols/marine1.mtx', '-c', '16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "marine1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400320, 400320], "MATRIX_ROWS": 400320, "MATRIX_SIZE": 160256102400, "MATRIX_NNZ": 6226538, "MATRIX_DENSITY": 3.885367175883594e-05, "TIME_S": 10.230907678604126}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 10383, ..., 400315, 400318, 400319],
|
||||
[ 0, 0, 0, ..., 400319, 400319, 400319]]),
|
||||
values=tensor([ 6.2373e+03, 3.4166e-01, -6.5085e+00, ...,
|
||||
-9.6129e-01, -6.8118e-01, 1.7595e+01]),
|
||||
size=(400320, 400320), nnz=6226538, layout=torch.sparse_coo)
|
||||
tensor([0.6941, 0.8954, 0.8378, ..., 0.6157, 0.9097, 0.4892])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: marine1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400320, 400320])
|
||||
Rows: 400320
|
||||
Size: 160256102400
|
||||
NNZ: 6226538
|
||||
Density: 3.885367175883594e-05
|
||||
Time: 10.230907678604126 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 10383, ..., 400315, 400318, 400319],
|
||||
[ 0, 0, 0, ..., 400319, 400319, 400319]]),
|
||||
values=tensor([ 6.2373e+03, 3.4166e-01, -6.5085e+00, ...,
|
||||
-9.6129e-01, -6.8118e-01, 1.7595e+01]),
|
||||
size=(400320, 400320), nnz=6226538, layout=torch.sparse_coo)
|
||||
tensor([0.6941, 0.8954, 0.8378, ..., 0.6157, 0.9097, 0.4892])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: marine1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400320, 400320])
|
||||
Rows: 400320
|
||||
Size: 160256102400
|
||||
NNZ: 6226538
|
||||
Density: 3.885367175883594e-05
|
||||
Time: 10.230907678604126 seconds
|
||||
|
||||
[39.15, 38.49, 39.55, 38.34, 39.46, 38.47, 39.32, 38.41, 38.92, 38.4]
|
||||
[72.74]
|
||||
13.08204436302185
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 58, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'marine1', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400320, 400320], 'MATRIX_ROWS': 400320, 'MATRIX_SIZE': 160256102400, 'MATRIX_NNZ': 6226538, 'MATRIX_DENSITY': 3.885367175883594e-05, 'TIME_S': 10.230907678604126, 'TIME_S_1KI': 176.3949599759332, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 951.5879069662093, 'W': 72.74}
|
||||
[39.15, 38.49, 39.55, 38.34, 39.46, 38.47, 39.32, 38.41, 38.92, 38.4, 39.91, 39.4, 38.37, 39.33, 38.55, 39.36, 38.38, 38.83, 38.47, 39.91]
|
||||
700.335
|
||||
35.01675
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 58, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'marine1', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400320, 400320], 'MATRIX_ROWS': 400320, 'MATRIX_SIZE': 160256102400, 'MATRIX_NNZ': 6226538, 'MATRIX_DENSITY': 3.885367175883594e-05, 'TIME_S': 10.230907678604126, 'TIME_S_1KI': 176.3949599759332, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 951.5879069662093, 'W': 72.74, 'J_1KI': 16406.68805114154, 'W_1KI': 1254.1379310344828, 'W_D': 37.72324999999999, 'J_D': 493.49723001736396, 'W_D_1KI': 650.4008620689655, 'J_D_1KI': 11213.807966706301}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 164, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "mario002", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [389874, 389874], "MATRIX_ROWS": 389874, "MATRIX_SIZE": 152001735876, "MATRIX_NNZ": 2101242, "MATRIX_DENSITY": 1.3823802655215408e-05, "TIME_S": 10.193230390548706, "TIME_S_1KI": 62.15384384480918, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 985.1247665071487, "W": 76.66, "J_1KI": 6006.858332360663, "W_1KI": 467.4390243902439, "W_D": 41.51175, "J_D": 533.4496872691512, "W_D_1KI": 253.12042682926827, "J_D_1KI": 1543.4172367638307}
|
@ -0,0 +1,59 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '10', '-m', 'matrices/389000+_cols/mario002.mtx', '-c', '16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "mario002", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [389874, 389874], "MATRIX_ROWS": 389874, "MATRIX_SIZE": 152001735876, "MATRIX_NNZ": 2101242, "MATRIX_DENSITY": 1.3823802655215408e-05, "TIME_S": 0.637404203414917}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1027, 1028, ..., 234126, 234127, 234127],
|
||||
[ 0, 0, 0, ..., 389703, 389823, 389873]]),
|
||||
values=tensor([ 1., 0., 0., ..., -1., 1., -1.]),
|
||||
size=(389874, 389874), nnz=2101242, layout=torch.sparse_coo)
|
||||
tensor([0.8745, 0.2349, 0.8071, ..., 0.8209, 0.9739, 0.5990])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: mario002
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([389874, 389874])
|
||||
Rows: 389874
|
||||
Size: 152001735876
|
||||
NNZ: 2101242
|
||||
Density: 1.3823802655215408e-05
|
||||
Time: 0.637404203414917 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '164', '-m', 'matrices/389000+_cols/mario002.mtx', '-c', '16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "mario002", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [389874, 389874], "MATRIX_ROWS": 389874, "MATRIX_SIZE": 152001735876, "MATRIX_NNZ": 2101242, "MATRIX_DENSITY": 1.3823802655215408e-05, "TIME_S": 10.193230390548706}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1027, 1028, ..., 234126, 234127, 234127],
|
||||
[ 0, 0, 0, ..., 389703, 389823, 389873]]),
|
||||
values=tensor([ 1., 0., 0., ..., -1., 1., -1.]),
|
||||
size=(389874, 389874), nnz=2101242, layout=torch.sparse_coo)
|
||||
tensor([0.9610, 0.5756, 0.1344, ..., 0.3073, 0.5171, 0.6260])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: mario002
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([389874, 389874])
|
||||
Rows: 389874
|
||||
Size: 152001735876
|
||||
NNZ: 2101242
|
||||
Density: 1.3823802655215408e-05
|
||||
Time: 10.193230390548706 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1027, 1028, ..., 234126, 234127, 234127],
|
||||
[ 0, 0, 0, ..., 389703, 389823, 389873]]),
|
||||
values=tensor([ 1., 0., 0., ..., -1., 1., -1.]),
|
||||
size=(389874, 389874), nnz=2101242, layout=torch.sparse_coo)
|
||||
tensor([0.9610, 0.5756, 0.1344, ..., 0.3073, 0.5171, 0.6260])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: mario002
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([389874, 389874])
|
||||
Rows: 389874
|
||||
Size: 152001735876
|
||||
NNZ: 2101242
|
||||
Density: 1.3823802655215408e-05
|
||||
Time: 10.193230390548706 seconds
|
||||
|
||||
[40.12, 39.37, 38.57, 40.04, 38.6, 38.73, 38.73, 39.3, 38.68, 39.47]
|
||||
[76.66]
|
||||
12.850570917129517
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 164, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'mario002', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [389874, 389874], 'MATRIX_ROWS': 389874, 'MATRIX_SIZE': 152001735876, 'MATRIX_NNZ': 2101242, 'MATRIX_DENSITY': 1.3823802655215408e-05, 'TIME_S': 10.193230390548706, 'TIME_S_1KI': 62.15384384480918, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 985.1247665071487, 'W': 76.66}
|
||||
[40.12, 39.37, 38.57, 40.04, 38.6, 38.73, 38.73, 39.3, 38.68, 39.47, 41.18, 38.62, 39.52, 38.69, 38.64, 38.42, 39.67, 38.43, 39.38, 38.38]
|
||||
702.9649999999999
|
||||
35.14825
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 164, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'mario002', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [389874, 389874], 'MATRIX_ROWS': 389874, 'MATRIX_SIZE': 152001735876, 'MATRIX_NNZ': 2101242, 'MATRIX_DENSITY': 1.3823802655215408e-05, 'TIME_S': 10.193230390548706, 'TIME_S_1KI': 62.15384384480918, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 985.1247665071487, 'W': 76.66, 'J_1KI': 6006.858332360663, 'W_1KI': 467.4390243902439, 'W_D': 41.51175, 'J_D': 533.4496872691512, 'W_D_1KI': 253.12042682926827, 'J_D_1KI': 1543.4172367638307}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 18, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 10.329004049301147, "TIME_S_1KI": 573.8335582945082, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 955.633627319336, "W": 68.48, "J_1KI": 53090.757073296445, "W_1KI": 3804.4444444444443, "W_D": 33.47175000000001, "J_D": 467.0959384524823, "W_D_1KI": 1859.5416666666672, "J_D_1KI": 103307.8703703704}
|
@ -0,0 +1,62 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '10', '-m', 'matrices/389000+_cols/msdoor.mtx', '-c', '16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 5.811160326004028}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.6964, 0.8661, 0.3713, ..., 0.0236, 0.8266, 0.1911])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 5.811160326004028 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '18', '-m', 'matrices/389000+_cols/msdoor.mtx', '-c', '16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 10.329004049301147}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.3796, 0.0872, 0.8222, ..., 0.5842, 0.0242, 0.7522])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 10.329004049301147 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.3796, 0.0872, 0.8222, ..., 0.5842, 0.0242, 0.7522])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 10.329004049301147 seconds
|
||||
|
||||
[39.88, 39.68, 38.94, 38.42, 39.2, 38.24, 39.25, 38.35, 39.28, 38.22]
|
||||
[68.48]
|
||||
13.954930305480957
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 18, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'msdoor', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [415863, 415863], 'MATRIX_ROWS': 415863, 'MATRIX_SIZE': 172942034769, 'MATRIX_NNZ': 20240935, 'MATRIX_DENSITY': 0.00011703883921012015, 'TIME_S': 10.329004049301147, 'TIME_S_1KI': 573.8335582945082, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 955.633627319336, 'W': 68.48}
|
||||
[39.88, 39.68, 38.94, 38.42, 39.2, 38.24, 39.25, 38.35, 39.28, 38.22, 40.04, 38.31, 39.24, 38.28, 39.4, 38.43, 39.33, 38.7, 38.79, 38.51]
|
||||
700.165
|
||||
35.00825
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 18, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'msdoor', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [415863, 415863], 'MATRIX_ROWS': 415863, 'MATRIX_SIZE': 172942034769, 'MATRIX_NNZ': 20240935, 'MATRIX_DENSITY': 0.00011703883921012015, 'TIME_S': 10.329004049301147, 'TIME_S_1KI': 573.8335582945082, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 955.633627319336, 'W': 68.48, 'J_1KI': 53090.757073296445, 'W_1KI': 3804.4444444444443, 'W_D': 33.47175000000001, 'J_D': 467.0959384524823, 'W_D_1KI': 1859.5416666666672, 'J_D_1KI': 103307.8703703704}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 28, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "test1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392908, 392908], "MATRIX_ROWS": 392908, "MATRIX_SIZE": 154376696464, "MATRIX_NNZ": 12968200, "MATRIX_DENSITY": 8.400361127706946e-05, "TIME_S": 10.37741208076477, "TIME_S_1KI": 370.62186002731323, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 948.8068805122374, "W": 68.82, "J_1KI": 33885.960018294194, "W_1KI": 2457.8571428571427, "W_D": 33.71999999999999, "J_D": 464.8905552291869, "W_D_1KI": 1204.285714285714, "J_D_1KI": 43010.20408163264}
|
@ -0,0 +1,62 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '10', '-m', 'matrices/389000+_cols/test1.mtx', '-c', '16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "test1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392908, 392908], "MATRIX_ROWS": 392908, "MATRIX_SIZE": 154376696464, "MATRIX_NNZ": 12968200, "MATRIX_DENSITY": 8.400361127706946e-05, "TIME_S": 3.7318027019500732}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 8, ..., 392905, 392906, 392907],
|
||||
[ 0, 0, 0, ..., 392907, 392907, 392907]]),
|
||||
values=tensor([1.0000e+00, 0.0000e+00, 0.0000e+00, ...,
|
||||
0.0000e+00, 0.0000e+00, 2.1156e-17]),
|
||||
size=(392908, 392908), nnz=12968200, layout=torch.sparse_coo)
|
||||
tensor([0.1777, 0.2943, 0.4487, ..., 0.9808, 0.9328, 0.6122])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: test1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392908, 392908])
|
||||
Rows: 392908
|
||||
Size: 154376696464
|
||||
NNZ: 12968200
|
||||
Density: 8.400361127706946e-05
|
||||
Time: 3.7318027019500732 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '28', '-m', 'matrices/389000+_cols/test1.mtx', '-c', '16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "test1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392908, 392908], "MATRIX_ROWS": 392908, "MATRIX_SIZE": 154376696464, "MATRIX_NNZ": 12968200, "MATRIX_DENSITY": 8.400361127706946e-05, "TIME_S": 10.37741208076477}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 8, ..., 392905, 392906, 392907],
|
||||
[ 0, 0, 0, ..., 392907, 392907, 392907]]),
|
||||
values=tensor([1.0000e+00, 0.0000e+00, 0.0000e+00, ...,
|
||||
0.0000e+00, 0.0000e+00, 2.1156e-17]),
|
||||
size=(392908, 392908), nnz=12968200, layout=torch.sparse_coo)
|
||||
tensor([0.9880, 0.2978, 0.6008, ..., 0.3725, 0.1138, 0.2491])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: test1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392908, 392908])
|
||||
Rows: 392908
|
||||
Size: 154376696464
|
||||
NNZ: 12968200
|
||||
Density: 8.400361127706946e-05
|
||||
Time: 10.37741208076477 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 8, ..., 392905, 392906, 392907],
|
||||
[ 0, 0, 0, ..., 392907, 392907, 392907]]),
|
||||
values=tensor([1.0000e+00, 0.0000e+00, 0.0000e+00, ...,
|
||||
0.0000e+00, 0.0000e+00, 2.1156e-17]),
|
||||
size=(392908, 392908), nnz=12968200, layout=torch.sparse_coo)
|
||||
tensor([0.9880, 0.2978, 0.6008, ..., 0.3725, 0.1138, 0.2491])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: test1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392908, 392908])
|
||||
Rows: 392908
|
||||
Size: 154376696464
|
||||
NNZ: 12968200
|
||||
Density: 8.400361127706946e-05
|
||||
Time: 10.37741208076477 seconds
|
||||
|
||||
[40.14, 39.31, 38.5, 38.49, 38.57, 39.63, 38.53, 39.33, 38.44, 39.47]
|
||||
[68.82]
|
||||
13.786789894104004
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 28, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'test1', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [392908, 392908], 'MATRIX_ROWS': 392908, 'MATRIX_SIZE': 154376696464, 'MATRIX_NNZ': 12968200, 'MATRIX_DENSITY': 8.400361127706946e-05, 'TIME_S': 10.37741208076477, 'TIME_S_1KI': 370.62186002731323, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 948.8068805122374, 'W': 68.82}
|
||||
[40.14, 39.31, 38.5, 38.49, 38.57, 39.63, 38.53, 39.33, 38.44, 39.47, 40.16, 38.74, 38.59, 39.33, 38.44, 40.4, 38.7, 39.27, 38.39, 38.91]
|
||||
702.0
|
||||
35.1
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 28, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'test1', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [392908, 392908], 'MATRIX_ROWS': 392908, 'MATRIX_SIZE': 154376696464, 'MATRIX_NNZ': 12968200, 'MATRIX_DENSITY': 8.400361127706946e-05, 'TIME_S': 10.37741208076477, 'TIME_S_1KI': 370.62186002731323, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 948.8068805122374, 'W': 68.82, 'J_1KI': 33885.960018294194, 'W_1KI': 2457.8571428571427, 'W_D': 33.71999999999999, 'J_D': 464.8905552291869, 'W_D_1KI': 1204.285714285714, 'J_D_1KI': 43010.20408163264}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 77, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "amazon0312", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400727, 400727], "MATRIX_ROWS": 400727, "MATRIX_SIZE": 160582128529, "MATRIX_NNZ": 3200440, "MATRIX_DENSITY": 1.9930237750099465e-05, "TIME_S": 10.254347562789917, "TIME_S_1KI": 133.17334497129764, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 760.015820016861, "W": 53.33, "J_1KI": 9870.335324894299, "W_1KI": 692.5974025974025, "W_D": 37.134499999999996, "J_D": 529.2107157025337, "W_D_1KI": 482.2662337662337, "J_D_1KI": 6263.197841119919}
|
@ -0,0 +1,59 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '10', '-m', 'matrices/389000+_cols/amazon0312.mtx', '-c', '16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "amazon0312", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400727, 400727], "MATRIX_ROWS": 400727, "MATRIX_SIZE": 160582128529, "MATRIX_NNZ": 3200440, "MATRIX_DENSITY": 1.9930237750099465e-05, "TIME_S": 1.3474905490875244}
|
||||
|
||||
tensor(indices=tensor([[ 1, 2, 0, ..., 400725, 400724, 400707],
|
||||
[ 0, 0, 1, ..., 400724, 400725, 400726]]),
|
||||
values=tensor([1., 1., 1., ..., 1., 1., 1.]),
|
||||
size=(400727, 400727), nnz=3200440, layout=torch.sparse_coo)
|
||||
tensor([0.7537, 0.2277, 0.2410, ..., 0.4977, 0.3821, 0.0641])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: amazon0312
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400727, 400727])
|
||||
Rows: 400727
|
||||
Size: 160582128529
|
||||
NNZ: 3200440
|
||||
Density: 1.9930237750099465e-05
|
||||
Time: 1.3474905490875244 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '77', '-m', 'matrices/389000+_cols/amazon0312.mtx', '-c', '16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "amazon0312", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400727, 400727], "MATRIX_ROWS": 400727, "MATRIX_SIZE": 160582128529, "MATRIX_NNZ": 3200440, "MATRIX_DENSITY": 1.9930237750099465e-05, "TIME_S": 10.254347562789917}
|
||||
|
||||
tensor(indices=tensor([[ 1, 2, 0, ..., 400725, 400724, 400707],
|
||||
[ 0, 0, 1, ..., 400724, 400725, 400726]]),
|
||||
values=tensor([1., 1., 1., ..., 1., 1., 1.]),
|
||||
size=(400727, 400727), nnz=3200440, layout=torch.sparse_coo)
|
||||
tensor([0.1339, 0.6582, 0.5040, ..., 0.9023, 0.9936, 0.9433])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: amazon0312
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400727, 400727])
|
||||
Rows: 400727
|
||||
Size: 160582128529
|
||||
NNZ: 3200440
|
||||
Density: 1.9930237750099465e-05
|
||||
Time: 10.254347562789917 seconds
|
||||
|
||||
tensor(indices=tensor([[ 1, 2, 0, ..., 400725, 400724, 400707],
|
||||
[ 0, 0, 1, ..., 400724, 400725, 400726]]),
|
||||
values=tensor([1., 1., 1., ..., 1., 1., 1.]),
|
||||
size=(400727, 400727), nnz=3200440, layout=torch.sparse_coo)
|
||||
tensor([0.1339, 0.6582, 0.5040, ..., 0.9023, 0.9936, 0.9433])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: amazon0312
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400727, 400727])
|
||||
Rows: 400727
|
||||
Size: 160582128529
|
||||
NNZ: 3200440
|
||||
Density: 1.9930237750099465e-05
|
||||
Time: 10.254347562789917 seconds
|
||||
|
||||
[18.87, 21.6, 17.84, 17.47, 18.42, 17.58, 17.51, 17.65, 17.83, 17.46]
|
||||
[53.33]
|
||||
14.251187324523926
|
||||
{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 77, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'amazon0312', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400727, 400727], 'MATRIX_ROWS': 400727, 'MATRIX_SIZE': 160582128529, 'MATRIX_NNZ': 3200440, 'MATRIX_DENSITY': 1.9930237750099465e-05, 'TIME_S': 10.254347562789917, 'TIME_S_1KI': 133.17334497129764, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 760.015820016861, 'W': 53.33}
|
||||
[18.87, 21.6, 17.84, 17.47, 18.42, 17.58, 17.51, 17.65, 17.83, 17.46, 18.22, 17.55, 18.12, 17.78, 17.6, 17.5, 18.37, 17.46, 17.6, 17.51]
|
||||
323.91
|
||||
16.195500000000003
|
||||
{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 77, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'amazon0312', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400727, 400727], 'MATRIX_ROWS': 400727, 'MATRIX_SIZE': 160582128529, 'MATRIX_NNZ': 3200440, 'MATRIX_DENSITY': 1.9930237750099465e-05, 'TIME_S': 10.254347562789917, 'TIME_S_1KI': 133.17334497129764, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 760.015820016861, 'W': 53.33, 'J_1KI': 9870.335324894299, 'W_1KI': 692.5974025974025, 'W_D': 37.134499999999996, 'J_D': 529.2107157025337, 'W_D_1KI': 482.2662337662337, 'J_D_1KI': 6263.197841119919}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 105, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "helm2d03", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392257, 392257], "MATRIX_ROWS": 392257, "MATRIX_SIZE": 153865554049, "MATRIX_NNZ": 2741935, "MATRIX_DENSITY": 1.7820330332848923e-05, "TIME_S": 10.336423397064209, "TIME_S_1KI": 98.44212759108771, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 762.420835852623, "W": 54.1, "J_1KI": 7261.150817644028, "W_1KI": 515.2380952380953, "W_D": 37.898, "J_D": 534.0891836810113, "W_D_1KI": 360.9333333333334, "J_D_1KI": 3437.460317460318}
|
@ -0,0 +1,62 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '10', '-m', 'matrices/389000+_cols/helm2d03.mtx', '-c', '16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "helm2d03", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392257, 392257], "MATRIX_ROWS": 392257, "MATRIX_SIZE": 153865554049, "MATRIX_NNZ": 2741935, "MATRIX_DENSITY": 1.7820330332848923e-05, "TIME_S": 0.9949631690979004}
|
||||
|
||||
tensor(indices=tensor([[ 0, 98273, 133833, ..., 392252, 392253, 392254],
|
||||
[ 0, 0, 0, ..., 392256, 392255, 392256]]),
|
||||
values=tensor([ 3.4808, -0.6217, -0.5806, ..., -0.6940, -0.7602,
|
||||
-0.7602]),
|
||||
size=(392257, 392257), nnz=2741935, layout=torch.sparse_coo)
|
||||
tensor([0.9925, 0.4330, 0.1828, ..., 0.8001, 0.4801, 0.2464])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: helm2d03
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392257, 392257])
|
||||
Rows: 392257
|
||||
Size: 153865554049
|
||||
NNZ: 2741935
|
||||
Density: 1.7820330332848923e-05
|
||||
Time: 0.9949631690979004 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '105', '-m', 'matrices/389000+_cols/helm2d03.mtx', '-c', '16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "helm2d03", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392257, 392257], "MATRIX_ROWS": 392257, "MATRIX_SIZE": 153865554049, "MATRIX_NNZ": 2741935, "MATRIX_DENSITY": 1.7820330332848923e-05, "TIME_S": 10.336423397064209}
|
||||
|
||||
tensor(indices=tensor([[ 0, 98273, 133833, ..., 392252, 392253, 392254],
|
||||
[ 0, 0, 0, ..., 392256, 392255, 392256]]),
|
||||
values=tensor([ 3.4808, -0.6217, -0.5806, ..., -0.6940, -0.7602,
|
||||
-0.7602]),
|
||||
size=(392257, 392257), nnz=2741935, layout=torch.sparse_coo)
|
||||
tensor([0.9576, 0.5984, 0.0037, ..., 0.0961, 0.2003, 0.8345])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: helm2d03
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392257, 392257])
|
||||
Rows: 392257
|
||||
Size: 153865554049
|
||||
NNZ: 2741935
|
||||
Density: 1.7820330332848923e-05
|
||||
Time: 10.336423397064209 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 98273, 133833, ..., 392252, 392253, 392254],
|
||||
[ 0, 0, 0, ..., 392256, 392255, 392256]]),
|
||||
values=tensor([ 3.4808, -0.6217, -0.5806, ..., -0.6940, -0.7602,
|
||||
-0.7602]),
|
||||
size=(392257, 392257), nnz=2741935, layout=torch.sparse_coo)
|
||||
tensor([0.9576, 0.5984, 0.0037, ..., 0.0961, 0.2003, 0.8345])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: helm2d03
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392257, 392257])
|
||||
Rows: 392257
|
||||
Size: 153865554049
|
||||
NNZ: 2741935
|
||||
Density: 1.7820330332848923e-05
|
||||
Time: 10.336423397064209 seconds
|
||||
|
||||
[18.25, 17.7, 17.68, 18.22, 18.16, 17.63, 17.72, 17.97, 17.96, 17.86]
|
||||
[54.1]
|
||||
14.092806577682495
|
||||
{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 105, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'helm2d03', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [392257, 392257], 'MATRIX_ROWS': 392257, 'MATRIX_SIZE': 153865554049, 'MATRIX_NNZ': 2741935, 'MATRIX_DENSITY': 1.7820330332848923e-05, 'TIME_S': 10.336423397064209, 'TIME_S_1KI': 98.44212759108771, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 762.420835852623, 'W': 54.1}
|
||||
[18.25, 17.7, 17.68, 18.22, 18.16, 17.63, 17.72, 17.97, 17.96, 17.86, 18.43, 17.95, 17.78, 18.07, 18.85, 18.16, 18.37, 17.77, 17.86, 17.84]
|
||||
324.03999999999996
|
||||
16.201999999999998
|
||||
{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 105, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'helm2d03', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [392257, 392257], 'MATRIX_ROWS': 392257, 'MATRIX_SIZE': 153865554049, 'MATRIX_NNZ': 2741935, 'MATRIX_DENSITY': 1.7820330332848923e-05, 'TIME_S': 10.336423397064209, 'TIME_S_1KI': 98.44212759108771, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 762.420835852623, 'W': 54.1, 'J_1KI': 7261.150817644028, 'W_1KI': 515.2380952380953, 'W_D': 37.898, 'J_D': 534.0891836810113, 'W_D_1KI': 360.9333333333334, 'J_D_1KI': 3437.460317460318}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 215, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "language", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [399130, 399130], "MATRIX_ROWS": 399130, "MATRIX_SIZE": 159304756900, "MATRIX_NNZ": 1216334, "MATRIX_DENSITY": 7.635264782228233e-06, "TIME_S": 10.087749004364014, "TIME_S_1KI": 46.919762810995415, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 763.481853518486, "W": 55.86, "J_1KI": 3551.0783884580746, "W_1KI": 259.81395348837214, "W_D": 39.6545, "J_D": 541.9887425769567, "W_D_1KI": 184.4395348837209, "J_D_1KI": 857.8583017847484}
|
@ -0,0 +1,59 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '10', '-m', 'matrices/389000+_cols/language.mtx', '-c', '16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "language", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [399130, 399130], "MATRIX_ROWS": 399130, "MATRIX_SIZE": 159304756900, "MATRIX_NNZ": 1216334, "MATRIX_DENSITY": 7.635264782228233e-06, "TIME_S": 0.4869344234466553}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 1, ..., 399128, 398241, 399129],
|
||||
[ 0, 0, 1, ..., 399128, 399129, 399129]]),
|
||||
values=tensor([ 1., -1., 1., ..., 1., -1., 1.]),
|
||||
size=(399130, 399130), nnz=1216334, layout=torch.sparse_coo)
|
||||
tensor([0.8840, 0.7061, 0.4568, ..., 0.5397, 0.8562, 0.2748])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: language
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([399130, 399130])
|
||||
Rows: 399130
|
||||
Size: 159304756900
|
||||
NNZ: 1216334
|
||||
Density: 7.635264782228233e-06
|
||||
Time: 0.4869344234466553 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '215', '-m', 'matrices/389000+_cols/language.mtx', '-c', '16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "language", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [399130, 399130], "MATRIX_ROWS": 399130, "MATRIX_SIZE": 159304756900, "MATRIX_NNZ": 1216334, "MATRIX_DENSITY": 7.635264782228233e-06, "TIME_S": 10.087749004364014}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 1, ..., 399128, 398241, 399129],
|
||||
[ 0, 0, 1, ..., 399128, 399129, 399129]]),
|
||||
values=tensor([ 1., -1., 1., ..., 1., -1., 1.]),
|
||||
size=(399130, 399130), nnz=1216334, layout=torch.sparse_coo)
|
||||
tensor([0.9507, 0.2421, 0.7401, ..., 0.9797, 0.0911, 0.9488])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: language
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([399130, 399130])
|
||||
Rows: 399130
|
||||
Size: 159304756900
|
||||
NNZ: 1216334
|
||||
Density: 7.635264782228233e-06
|
||||
Time: 10.087749004364014 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 1, ..., 399128, 398241, 399129],
|
||||
[ 0, 0, 1, ..., 399128, 399129, 399129]]),
|
||||
values=tensor([ 1., -1., 1., ..., 1., -1., 1.]),
|
||||
size=(399130, 399130), nnz=1216334, layout=torch.sparse_coo)
|
||||
tensor([0.9507, 0.2421, 0.7401, ..., 0.9797, 0.0911, 0.9488])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: language
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([399130, 399130])
|
||||
Rows: 399130
|
||||
Size: 159304756900
|
||||
NNZ: 1216334
|
||||
Density: 7.635264782228233e-06
|
||||
Time: 10.087749004364014 seconds
|
||||
|
||||
[22.61, 17.79, 17.77, 17.79, 17.85, 17.67, 17.71, 18.34, 17.94, 17.8]
|
||||
[55.86]
|
||||
13.667773962020874
|
||||
{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 215, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'language', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [399130, 399130], 'MATRIX_ROWS': 399130, 'MATRIX_SIZE': 159304756900, 'MATRIX_NNZ': 1216334, 'MATRIX_DENSITY': 7.635264782228233e-06, 'TIME_S': 10.087749004364014, 'TIME_S_1KI': 46.919762810995415, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 763.481853518486, 'W': 55.86}
|
||||
[22.61, 17.79, 17.77, 17.79, 17.85, 17.67, 17.71, 18.34, 17.94, 17.8, 18.32, 17.91, 18.06, 17.88, 17.72, 17.83, 18.05, 17.65, 17.89, 17.79]
|
||||
324.11
|
||||
16.2055
|
||||
{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 215, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'language', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [399130, 399130], 'MATRIX_ROWS': 399130, 'MATRIX_SIZE': 159304756900, 'MATRIX_NNZ': 1216334, 'MATRIX_DENSITY': 7.635264782228233e-06, 'TIME_S': 10.087749004364014, 'TIME_S_1KI': 46.919762810995415, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 763.481853518486, 'W': 55.86, 'J_1KI': 3551.0783884580746, 'W_1KI': 259.81395348837214, 'W_D': 39.6545, 'J_D': 541.9887425769567, 'W_D_1KI': 184.4395348837209, 'J_D_1KI': 857.8583017847484}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 47, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "marine1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400320, 400320], "MATRIX_ROWS": 400320, "MATRIX_SIZE": 160256102400, "MATRIX_NNZ": 6226538, "MATRIX_DENSITY": 3.885367175883594e-05, "TIME_S": 10.327017784118652, "TIME_S_1KI": 219.7237826408224, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 772.0291032004357, "W": 53.83, "J_1KI": 16426.15113192416, "W_1KI": 1145.3191489361702, "W_D": 37.69475, "J_D": 540.6175745469927, "W_D_1KI": 802.0159574468086, "J_D_1KI": 17064.169307378903}
|
@ -0,0 +1,62 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '10', '-m', 'matrices/389000+_cols/marine1.mtx', '-c', '16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "marine1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400320, 400320], "MATRIX_ROWS": 400320, "MATRIX_SIZE": 160256102400, "MATRIX_NNZ": 6226538, "MATRIX_DENSITY": 3.885367175883594e-05, "TIME_S": 2.1987831592559814}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 10383, ..., 400315, 400318, 400319],
|
||||
[ 0, 0, 0, ..., 400319, 400319, 400319]]),
|
||||
values=tensor([ 6.2373e+03, 3.4166e-01, -6.5085e+00, ...,
|
||||
-9.6129e-01, -6.8118e-01, 1.7595e+01]),
|
||||
size=(400320, 400320), nnz=6226538, layout=torch.sparse_coo)
|
||||
tensor([0.3511, 0.2996, 0.9993, ..., 0.9615, 0.6656, 0.4347])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: marine1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400320, 400320])
|
||||
Rows: 400320
|
||||
Size: 160256102400
|
||||
NNZ: 6226538
|
||||
Density: 3.885367175883594e-05
|
||||
Time: 2.1987831592559814 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '47', '-m', 'matrices/389000+_cols/marine1.mtx', '-c', '16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "marine1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400320, 400320], "MATRIX_ROWS": 400320, "MATRIX_SIZE": 160256102400, "MATRIX_NNZ": 6226538, "MATRIX_DENSITY": 3.885367175883594e-05, "TIME_S": 10.327017784118652}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 10383, ..., 400315, 400318, 400319],
|
||||
[ 0, 0, 0, ..., 400319, 400319, 400319]]),
|
||||
values=tensor([ 6.2373e+03, 3.4166e-01, -6.5085e+00, ...,
|
||||
-9.6129e-01, -6.8118e-01, 1.7595e+01]),
|
||||
size=(400320, 400320), nnz=6226538, layout=torch.sparse_coo)
|
||||
tensor([0.6780, 0.4945, 0.4849, ..., 0.7922, 0.5342, 0.1189])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: marine1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400320, 400320])
|
||||
Rows: 400320
|
||||
Size: 160256102400
|
||||
NNZ: 6226538
|
||||
Density: 3.885367175883594e-05
|
||||
Time: 10.327017784118652 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 10383, ..., 400315, 400318, 400319],
|
||||
[ 0, 0, 0, ..., 400319, 400319, 400319]]),
|
||||
values=tensor([ 6.2373e+03, 3.4166e-01, -6.5085e+00, ...,
|
||||
-9.6129e-01, -6.8118e-01, 1.7595e+01]),
|
||||
size=(400320, 400320), nnz=6226538, layout=torch.sparse_coo)
|
||||
tensor([0.6780, 0.4945, 0.4849, ..., 0.7922, 0.5342, 0.1189])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: marine1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400320, 400320])
|
||||
Rows: 400320
|
||||
Size: 160256102400
|
||||
NNZ: 6226538
|
||||
Density: 3.885367175883594e-05
|
||||
Time: 10.327017784118652 seconds
|
||||
|
||||
[18.25, 18.06, 17.94, 17.78, 17.64, 18.11, 17.56, 17.64, 17.8, 18.2]
|
||||
[53.83]
|
||||
14.341985940933228
|
||||
{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 47, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'marine1', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400320, 400320], 'MATRIX_ROWS': 400320, 'MATRIX_SIZE': 160256102400, 'MATRIX_NNZ': 6226538, 'MATRIX_DENSITY': 3.885367175883594e-05, 'TIME_S': 10.327017784118652, 'TIME_S_1KI': 219.7237826408224, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 772.0291032004357, 'W': 53.83}
|
||||
[18.25, 18.06, 17.94, 17.78, 17.64, 18.11, 17.56, 17.64, 17.8, 18.2, 18.21, 18.52, 18.2, 18.25, 17.92, 17.59, 18.12, 17.62, 17.87, 17.51]
|
||||
322.705
|
||||
16.13525
|
||||
{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 47, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'marine1', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400320, 400320], 'MATRIX_ROWS': 400320, 'MATRIX_SIZE': 160256102400, 'MATRIX_NNZ': 6226538, 'MATRIX_DENSITY': 3.885367175883594e-05, 'TIME_S': 10.327017784118652, 'TIME_S_1KI': 219.7237826408224, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 772.0291032004357, 'W': 53.83, 'J_1KI': 16426.15113192416, 'W_1KI': 1145.3191489361702, 'W_D': 37.69475, 'J_D': 540.6175745469927, 'W_D_1KI': 802.0159574468086, 'J_D_1KI': 17064.169307378903}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 130, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "mario002", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [389874, 389874], "MATRIX_ROWS": 389874, "MATRIX_SIZE": 152001735876, "MATRIX_NNZ": 2101242, "MATRIX_DENSITY": 1.3823802655215408e-05, "TIME_S": 10.277937412261963, "TIME_S_1KI": 79.0610570173997, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 761.6858348536491, "W": 54.33, "J_1KI": 5859.121806566532, "W_1KI": 417.9230769230769, "W_D": 37.87025, "J_D": 530.9264308368563, "W_D_1KI": 291.30961538461537, "J_D_1KI": 2240.843195266272}
|
@ -0,0 +1,59 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '10', '-m', 'matrices/389000+_cols/mario002.mtx', '-c', '16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "mario002", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [389874, 389874], "MATRIX_ROWS": 389874, "MATRIX_SIZE": 152001735876, "MATRIX_NNZ": 2101242, "MATRIX_DENSITY": 1.3823802655215408e-05, "TIME_S": 0.8022470474243164}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1027, 1028, ..., 234126, 234127, 234127],
|
||||
[ 0, 0, 0, ..., 389703, 389823, 389873]]),
|
||||
values=tensor([ 1., 0., 0., ..., -1., 1., -1.]),
|
||||
size=(389874, 389874), nnz=2101242, layout=torch.sparse_coo)
|
||||
tensor([0.9493, 0.2558, 0.7787, ..., 0.1890, 0.8243, 0.0970])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: mario002
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([389874, 389874])
|
||||
Rows: 389874
|
||||
Size: 152001735876
|
||||
NNZ: 2101242
|
||||
Density: 1.3823802655215408e-05
|
||||
Time: 0.8022470474243164 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '130', '-m', 'matrices/389000+_cols/mario002.mtx', '-c', '16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "mario002", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [389874, 389874], "MATRIX_ROWS": 389874, "MATRIX_SIZE": 152001735876, "MATRIX_NNZ": 2101242, "MATRIX_DENSITY": 1.3823802655215408e-05, "TIME_S": 10.277937412261963}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1027, 1028, ..., 234126, 234127, 234127],
|
||||
[ 0, 0, 0, ..., 389703, 389823, 389873]]),
|
||||
values=tensor([ 1., 0., 0., ..., -1., 1., -1.]),
|
||||
size=(389874, 389874), nnz=2101242, layout=torch.sparse_coo)
|
||||
tensor([0.6748, 0.3800, 0.3206, ..., 0.2562, 0.6115, 0.5688])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: mario002
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([389874, 389874])
|
||||
Rows: 389874
|
||||
Size: 152001735876
|
||||
NNZ: 2101242
|
||||
Density: 1.3823802655215408e-05
|
||||
Time: 10.277937412261963 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1027, 1028, ..., 234126, 234127, 234127],
|
||||
[ 0, 0, 0, ..., 389703, 389823, 389873]]),
|
||||
values=tensor([ 1., 0., 0., ..., -1., 1., -1.]),
|
||||
size=(389874, 389874), nnz=2101242, layout=torch.sparse_coo)
|
||||
tensor([0.6748, 0.3800, 0.3206, ..., 0.2562, 0.6115, 0.5688])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: mario002
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([389874, 389874])
|
||||
Rows: 389874
|
||||
Size: 152001735876
|
||||
NNZ: 2101242
|
||||
Density: 1.3823802655215408e-05
|
||||
Time: 10.277937412261963 seconds
|
||||
|
||||
[18.51, 17.91, 17.97, 18.79, 19.0, 18.67, 18.09, 18.11, 17.69, 17.57]
|
||||
[54.33]
|
||||
14.019617795944214
|
||||
{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 130, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'mario002', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [389874, 389874], 'MATRIX_ROWS': 389874, 'MATRIX_SIZE': 152001735876, 'MATRIX_NNZ': 2101242, 'MATRIX_DENSITY': 1.3823802655215408e-05, 'TIME_S': 10.277937412261963, 'TIME_S_1KI': 79.0610570173997, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 761.6858348536491, 'W': 54.33}
|
||||
[18.51, 17.91, 17.97, 18.79, 19.0, 18.67, 18.09, 18.11, 17.69, 17.57, 18.29, 17.81, 17.79, 17.82, 18.11, 21.67, 18.01, 17.8, 18.04, 17.46]
|
||||
329.195
|
||||
16.45975
|
||||
{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 130, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'mario002', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [389874, 389874], 'MATRIX_ROWS': 389874, 'MATRIX_SIZE': 152001735876, 'MATRIX_NNZ': 2101242, 'MATRIX_DENSITY': 1.3823802655215408e-05, 'TIME_S': 10.277937412261963, 'TIME_S_1KI': 79.0610570173997, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 761.6858348536491, 'W': 54.33, 'J_1KI': 5859.121806566532, 'W_1KI': 417.9230769230769, 'W_D': 37.87025, 'J_D': 530.9264308368563, 'W_D_1KI': 291.30961538461537, 'J_D_1KI': 2240.843195266272}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 14, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 10.01833987236023, "TIME_S_1KI": 715.5957051685879, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 812.1177711701393, "W": 54.11, "J_1KI": 58008.41222643852, "W_1KI": 3864.9999999999995, "W_D": 37.522499999999994, "J_D": 563.1618752306699, "W_D_1KI": 2680.1785714285706, "J_D_1KI": 191441.3265306122}
|
@ -0,0 +1,81 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '10', '-m', 'matrices/389000+_cols/msdoor.mtx', '-c', '16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 7.114613771438599}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.0102, 0.2070, 0.2866, ..., 0.0409, 0.9140, 0.2865])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 7.114613771438599 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '14', '-m', 'matrices/389000+_cols/msdoor.mtx', '-c', '16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 9.983821392059326}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.9398, 0.5387, 0.6658, ..., 0.2061, 0.5323, 0.4978])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 9.983821392059326 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '14', '-m', 'matrices/389000+_cols/msdoor.mtx', '-c', '16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 10.01833987236023}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.1104, 0.4017, 0.9613, ..., 0.4739, 0.5251, 0.9828])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 10.01833987236023 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.1104, 0.4017, 0.9613, ..., 0.4739, 0.5251, 0.9828])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 10.01833987236023 seconds
|
||||
|
||||
[18.4, 17.91, 18.96, 19.03, 17.95, 18.08, 18.3, 17.7, 17.86, 22.19]
|
||||
[54.11]
|
||||
15.008644819259644
|
||||
{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 14, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'msdoor', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [415863, 415863], 'MATRIX_ROWS': 415863, 'MATRIX_SIZE': 172942034769, 'MATRIX_NNZ': 20240935, 'MATRIX_DENSITY': 0.00011703883921012015, 'TIME_S': 10.01833987236023, 'TIME_S_1KI': 715.5957051685879, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 812.1177711701393, 'W': 54.11}
|
||||
[18.4, 17.91, 18.96, 19.03, 17.95, 18.08, 18.3, 17.7, 17.86, 22.19, 18.11, 17.86, 18.01, 17.75, 17.85, 17.87, 18.16, 17.66, 22.17, 18.56]
|
||||
331.75000000000006
|
||||
16.587500000000002
|
||||
{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 14, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'msdoor', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [415863, 415863], 'MATRIX_ROWS': 415863, 'MATRIX_SIZE': 172942034769, 'MATRIX_NNZ': 20240935, 'MATRIX_DENSITY': 0.00011703883921012015, 'TIME_S': 10.01833987236023, 'TIME_S_1KI': 715.5957051685879, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 812.1177711701393, 'W': 54.11, 'J_1KI': 58008.41222643852, 'W_1KI': 3864.9999999999995, 'W_D': 37.522499999999994, 'J_D': 563.1618752306699, 'W_D_1KI': 2680.1785714285706, 'J_D_1KI': 191441.3265306122}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 22, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "test1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392908, 392908], "MATRIX_ROWS": 392908, "MATRIX_SIZE": 154376696464, "MATRIX_NNZ": 12968200, "MATRIX_DENSITY": 8.400361127706946e-05, "TIME_S": 10.053152322769165, "TIME_S_1KI": 456.9614692167802, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 803.8054532289505, "W": 53.58, "J_1KI": 36536.61151040684, "W_1KI": 2435.4545454545455, "W_D": 37.50325, "J_D": 562.6225618478657, "W_D_1KI": 1704.6931818181818, "J_D_1KI": 77486.05371900827}
|
@ -0,0 +1,62 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '10', '-m', 'matrices/389000+_cols/test1.mtx', '-c', '16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "test1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392908, 392908], "MATRIX_ROWS": 392908, "MATRIX_SIZE": 154376696464, "MATRIX_NNZ": 12968200, "MATRIX_DENSITY": 8.400361127706946e-05, "TIME_S": 4.575356721878052}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 8, ..., 392905, 392906, 392907],
|
||||
[ 0, 0, 0, ..., 392907, 392907, 392907]]),
|
||||
values=tensor([1.0000e+00, 0.0000e+00, 0.0000e+00, ...,
|
||||
0.0000e+00, 0.0000e+00, 2.1156e-17]),
|
||||
size=(392908, 392908), nnz=12968200, layout=torch.sparse_coo)
|
||||
tensor([0.4990, 0.7914, 0.6861, ..., 0.3990, 0.3110, 0.0256])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: test1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392908, 392908])
|
||||
Rows: 392908
|
||||
Size: 154376696464
|
||||
NNZ: 12968200
|
||||
Density: 8.400361127706946e-05
|
||||
Time: 4.575356721878052 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '22', '-m', 'matrices/389000+_cols/test1.mtx', '-c', '16']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "test1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392908, 392908], "MATRIX_ROWS": 392908, "MATRIX_SIZE": 154376696464, "MATRIX_NNZ": 12968200, "MATRIX_DENSITY": 8.400361127706946e-05, "TIME_S": 10.053152322769165}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 8, ..., 392905, 392906, 392907],
|
||||
[ 0, 0, 0, ..., 392907, 392907, 392907]]),
|
||||
values=tensor([1.0000e+00, 0.0000e+00, 0.0000e+00, ...,
|
||||
0.0000e+00, 0.0000e+00, 2.1156e-17]),
|
||||
size=(392908, 392908), nnz=12968200, layout=torch.sparse_coo)
|
||||
tensor([0.9785, 0.5883, 0.8311, ..., 0.7206, 0.4547, 0.9784])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: test1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392908, 392908])
|
||||
Rows: 392908
|
||||
Size: 154376696464
|
||||
NNZ: 12968200
|
||||
Density: 8.400361127706946e-05
|
||||
Time: 10.053152322769165 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 8, ..., 392905, 392906, 392907],
|
||||
[ 0, 0, 0, ..., 392907, 392907, 392907]]),
|
||||
values=tensor([1.0000e+00, 0.0000e+00, 0.0000e+00, ...,
|
||||
0.0000e+00, 0.0000e+00, 2.1156e-17]),
|
||||
size=(392908, 392908), nnz=12968200, layout=torch.sparse_coo)
|
||||
tensor([0.9785, 0.5883, 0.8311, ..., 0.7206, 0.4547, 0.9784])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: test1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392908, 392908])
|
||||
Rows: 392908
|
||||
Size: 154376696464
|
||||
NNZ: 12968200
|
||||
Density: 8.400361127706946e-05
|
||||
Time: 10.053152322769165 seconds
|
||||
|
||||
[18.51, 17.74, 17.84, 17.63, 17.86, 17.98, 17.78, 17.66, 18.09, 17.63]
|
||||
[53.58]
|
||||
15.001968145370483
|
||||
{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 22, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'test1', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [392908, 392908], 'MATRIX_ROWS': 392908, 'MATRIX_SIZE': 154376696464, 'MATRIX_NNZ': 12968200, 'MATRIX_DENSITY': 8.400361127706946e-05, 'TIME_S': 10.053152322769165, 'TIME_S_1KI': 456.9614692167802, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 803.8054532289505, 'W': 53.58}
|
||||
[18.51, 17.74, 17.84, 17.63, 17.86, 17.98, 17.78, 17.66, 18.09, 17.63, 18.02, 17.96, 18.11, 17.66, 17.95, 17.84, 17.62, 17.85, 17.86, 18.05]
|
||||
321.53499999999997
|
||||
16.076749999999997
|
||||
{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 22, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'test1', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [392908, 392908], 'MATRIX_ROWS': 392908, 'MATRIX_SIZE': 154376696464, 'MATRIX_NNZ': 12968200, 'MATRIX_DENSITY': 8.400361127706946e-05, 'TIME_S': 10.053152322769165, 'TIME_S_1KI': 456.9614692167802, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 803.8054532289505, 'W': 53.58, 'J_1KI': 36536.61151040684, 'W_1KI': 2435.4545454545455, 'W_D': 37.50325, 'J_D': 562.6225618478657, 'W_D_1KI': 1704.6931818181818, 'J_D_1KI': 77486.05371900827}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Altra", "CORES": 1, "ITERATIONS": 118, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "amazon0312", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400727, 400727], "MATRIX_ROWS": 400727, "MATRIX_SIZE": 160582128529, "MATRIX_NNZ": 3200440, "MATRIX_DENSITY": 1.9930237750099465e-05, "TIME_S": 10.42647123336792, "TIME_S_1KI": 88.35992570650781, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 328.8359175777435, "W": 22.428269506583625, "J_1KI": 2786.745064218165, "W_1KI": 190.07008056426798, "W_D": 3.8172695065836244, "J_D": 55.96755115103717, "W_D_1KI": 32.34974158121716, "J_D_1KI": 274.1503523831963}
|
@ -0,0 +1,59 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 10 -m matrices/389000+_cols/amazon0312.mtx -c 1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "amazon0312", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400727, 400727], "MATRIX_ROWS": 400727, "MATRIX_SIZE": 160582128529, "MATRIX_NNZ": 3200440, "MATRIX_DENSITY": 1.9930237750099465e-05, "TIME_S": 0.8844993114471436}
|
||||
|
||||
tensor(indices=tensor([[ 1, 2, 0, ..., 400725, 400724, 400707],
|
||||
[ 0, 0, 1, ..., 400724, 400725, 400726]]),
|
||||
values=tensor([1., 1., 1., ..., 1., 1., 1.]),
|
||||
size=(400727, 400727), nnz=3200440, layout=torch.sparse_coo)
|
||||
tensor([0.8531, 0.9903, 0.1907, ..., 0.6178, 0.5730, 0.1427])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: amazon0312
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400727, 400727])
|
||||
Rows: 400727
|
||||
Size: 160582128529
|
||||
NNZ: 3200440
|
||||
Density: 1.9930237750099465e-05
|
||||
Time: 0.8844993114471436 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 118 -m matrices/389000+_cols/amazon0312.mtx -c 1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "amazon0312", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400727, 400727], "MATRIX_ROWS": 400727, "MATRIX_SIZE": 160582128529, "MATRIX_NNZ": 3200440, "MATRIX_DENSITY": 1.9930237750099465e-05, "TIME_S": 10.42647123336792}
|
||||
|
||||
tensor(indices=tensor([[ 1, 2, 0, ..., 400725, 400724, 400707],
|
||||
[ 0, 0, 1, ..., 400724, 400725, 400726]]),
|
||||
values=tensor([1., 1., 1., ..., 1., 1., 1.]),
|
||||
size=(400727, 400727), nnz=3200440, layout=torch.sparse_coo)
|
||||
tensor([0.7960, 0.3029, 0.2622, ..., 0.1249, 0.6362, 0.8154])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: amazon0312
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400727, 400727])
|
||||
Rows: 400727
|
||||
Size: 160582128529
|
||||
NNZ: 3200440
|
||||
Density: 1.9930237750099465e-05
|
||||
Time: 10.42647123336792 seconds
|
||||
|
||||
tensor(indices=tensor([[ 1, 2, 0, ..., 400725, 400724, 400707],
|
||||
[ 0, 0, 1, ..., 400724, 400725, 400726]]),
|
||||
values=tensor([1., 1., 1., ..., 1., 1., 1.]),
|
||||
size=(400727, 400727), nnz=3200440, layout=torch.sparse_coo)
|
||||
tensor([0.7960, 0.3029, 0.2622, ..., 0.1249, 0.6362, 0.8154])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: amazon0312
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400727, 400727])
|
||||
Rows: 400727
|
||||
Size: 160582128529
|
||||
NNZ: 3200440
|
||||
Density: 1.9930237750099465e-05
|
||||
Time: 10.42647123336792 seconds
|
||||
|
||||
[20.76, 20.72, 20.56, 20.36, 20.48, 20.64, 20.68, 20.76, 20.64, 20.24]
|
||||
[20.04, 19.96, 21.0, 22.32, 22.32, 24.32, 25.52, 26.4, 26.28, 26.6, 25.24, 25.08, 24.92, 24.84]
|
||||
14.66167140007019
|
||||
{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 118, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'amazon0312', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400727, 400727], 'MATRIX_ROWS': 400727, 'MATRIX_SIZE': 160582128529, 'MATRIX_NNZ': 3200440, 'MATRIX_DENSITY': 1.9930237750099465e-05, 'TIME_S': 10.42647123336792, 'TIME_S_1KI': 88.35992570650781, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 328.8359175777435, 'W': 22.428269506583625}
|
||||
[20.76, 20.72, 20.56, 20.36, 20.48, 20.64, 20.68, 20.76, 20.64, 20.24, 20.08, 20.12, 20.2, 20.84, 21.12, 21.08, 21.08, 21.0, 21.0, 20.8]
|
||||
372.22
|
||||
18.611
|
||||
{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 118, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'amazon0312', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400727, 400727], 'MATRIX_ROWS': 400727, 'MATRIX_SIZE': 160582128529, 'MATRIX_NNZ': 3200440, 'MATRIX_DENSITY': 1.9930237750099465e-05, 'TIME_S': 10.42647123336792, 'TIME_S_1KI': 88.35992570650781, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 328.8359175777435, 'W': 22.428269506583625, 'J_1KI': 2786.745064218165, 'W_1KI': 190.07008056426798, 'W_D': 3.8172695065836244, 'J_D': 55.96755115103717, 'W_D_1KI': 32.34974158121716, 'J_D_1KI': 274.1503523831963}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Altra", "CORES": 1, "ITERATIONS": 179, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "helm2d03", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392257, 392257], "MATRIX_ROWS": 392257, "MATRIX_SIZE": 153865554049, "MATRIX_NNZ": 2741935, "MATRIX_DENSITY": 1.7820330332848923e-05, "TIME_S": 10.34884238243103, "TIME_S_1KI": 57.814761913022515, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 341.50949724197386, "W": 23.27814688227516, "J_1KI": 1907.8742862680106, "W_1KI": 130.04551330879977, "W_D": 4.72914688227516, "J_D": 69.38046152544023, "W_D_1KI": 26.419814984777428, "J_D_1KI": 147.5967317585331}
|
@ -0,0 +1,62 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 10 -m matrices/389000+_cols/helm2d03.mtx -c 1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "helm2d03", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392257, 392257], "MATRIX_ROWS": 392257, "MATRIX_SIZE": 153865554049, "MATRIX_NNZ": 2741935, "MATRIX_DENSITY": 1.7820330332848923e-05, "TIME_S": 0.5865864753723145}
|
||||
|
||||
tensor(indices=tensor([[ 0, 98273, 133833, ..., 392252, 392253, 392254],
|
||||
[ 0, 0, 0, ..., 392256, 392255, 392256]]),
|
||||
values=tensor([ 3.4808, -0.6217, -0.5806, ..., -0.6940, -0.7602,
|
||||
-0.7602]),
|
||||
size=(392257, 392257), nnz=2741935, layout=torch.sparse_coo)
|
||||
tensor([0.7242, 0.5518, 0.9315, ..., 0.6424, 0.0724, 0.7341])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: helm2d03
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392257, 392257])
|
||||
Rows: 392257
|
||||
Size: 153865554049
|
||||
NNZ: 2741935
|
||||
Density: 1.7820330332848923e-05
|
||||
Time: 0.5865864753723145 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 179 -m matrices/389000+_cols/helm2d03.mtx -c 1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "helm2d03", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392257, 392257], "MATRIX_ROWS": 392257, "MATRIX_SIZE": 153865554049, "MATRIX_NNZ": 2741935, "MATRIX_DENSITY": 1.7820330332848923e-05, "TIME_S": 10.34884238243103}
|
||||
|
||||
tensor(indices=tensor([[ 0, 98273, 133833, ..., 392252, 392253, 392254],
|
||||
[ 0, 0, 0, ..., 392256, 392255, 392256]]),
|
||||
values=tensor([ 3.4808, -0.6217, -0.5806, ..., -0.6940, -0.7602,
|
||||
-0.7602]),
|
||||
size=(392257, 392257), nnz=2741935, layout=torch.sparse_coo)
|
||||
tensor([0.0973, 0.1404, 0.8769, ..., 0.5073, 0.9593, 0.3478])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: helm2d03
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392257, 392257])
|
||||
Rows: 392257
|
||||
Size: 153865554049
|
||||
NNZ: 2741935
|
||||
Density: 1.7820330332848923e-05
|
||||
Time: 10.34884238243103 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 98273, 133833, ..., 392252, 392253, 392254],
|
||||
[ 0, 0, 0, ..., 392256, 392255, 392256]]),
|
||||
values=tensor([ 3.4808, -0.6217, -0.5806, ..., -0.6940, -0.7602,
|
||||
-0.7602]),
|
||||
size=(392257, 392257), nnz=2741935, layout=torch.sparse_coo)
|
||||
tensor([0.0973, 0.1404, 0.8769, ..., 0.5073, 0.9593, 0.3478])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: helm2d03
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392257, 392257])
|
||||
Rows: 392257
|
||||
Size: 153865554049
|
||||
NNZ: 2741935
|
||||
Density: 1.7820330332848923e-05
|
||||
Time: 10.34884238243103 seconds
|
||||
|
||||
[20.72, 20.72, 20.32, 20.4, 20.36, 20.32, 20.4, 20.4, 20.4, 20.48]
|
||||
[20.48, 20.68, 20.64, 24.16, 26.48, 27.4, 28.6, 26.64, 26.6, 25.44, 25.48, 25.16, 25.0, 24.76]
|
||||
14.670819759368896
|
||||
{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 179, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'helm2d03', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [392257, 392257], 'MATRIX_ROWS': 392257, 'MATRIX_SIZE': 153865554049, 'MATRIX_NNZ': 2741935, 'MATRIX_DENSITY': 1.7820330332848923e-05, 'TIME_S': 10.34884238243103, 'TIME_S_1KI': 57.814761913022515, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 341.50949724197386, 'W': 23.27814688227516}
|
||||
[20.72, 20.72, 20.32, 20.4, 20.36, 20.32, 20.4, 20.4, 20.4, 20.48, 20.4, 20.44, 20.44, 20.88, 20.76, 20.84, 21.16, 20.96, 20.92, 20.92]
|
||||
370.98
|
||||
18.549
|
||||
{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 179, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'helm2d03', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [392257, 392257], 'MATRIX_ROWS': 392257, 'MATRIX_SIZE': 153865554049, 'MATRIX_NNZ': 2741935, 'MATRIX_DENSITY': 1.7820330332848923e-05, 'TIME_S': 10.34884238243103, 'TIME_S_1KI': 57.814761913022515, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 341.50949724197386, 'W': 23.27814688227516, 'J_1KI': 1907.8742862680106, 'W_1KI': 130.04551330879977, 'W_D': 4.72914688227516, 'J_D': 69.38046152544023, 'W_D_1KI': 26.419814984777428, 'J_D_1KI': 147.5967317585331}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Altra", "CORES": 1, "ITERATIONS": 372, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "language", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [399130, 399130], "MATRIX_ROWS": 399130, "MATRIX_SIZE": 159304756900, "MATRIX_NNZ": 1216334, "MATRIX_DENSITY": 7.635264782228233e-06, "TIME_S": 10.207688808441162, "TIME_S_1KI": 27.440023678605275, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 326.7927499103546, "W": 22.33219484534502, "J_1KI": 878.4751341676199, "W_1KI": 60.03278184232532, "W_D": 3.981194845345019, "J_D": 58.257847938776024, "W_D_1KI": 10.702136681034998, "J_D_1KI": 28.769184626438168}
|
@ -0,0 +1,59 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 10 -m matrices/389000+_cols/language.mtx -c 1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "language", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [399130, 399130], "MATRIX_ROWS": 399130, "MATRIX_SIZE": 159304756900, "MATRIX_NNZ": 1216334, "MATRIX_DENSITY": 7.635264782228233e-06, "TIME_S": 0.2821774482727051}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 1, ..., 399128, 398241, 399129],
|
||||
[ 0, 0, 1, ..., 399128, 399129, 399129]]),
|
||||
values=tensor([ 1., -1., 1., ..., 1., -1., 1.]),
|
||||
size=(399130, 399130), nnz=1216334, layout=torch.sparse_coo)
|
||||
tensor([0.3990, 0.5258, 0.6068, ..., 0.4899, 0.7657, 0.0813])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: language
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([399130, 399130])
|
||||
Rows: 399130
|
||||
Size: 159304756900
|
||||
NNZ: 1216334
|
||||
Density: 7.635264782228233e-06
|
||||
Time: 0.2821774482727051 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 372 -m matrices/389000+_cols/language.mtx -c 1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "language", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [399130, 399130], "MATRIX_ROWS": 399130, "MATRIX_SIZE": 159304756900, "MATRIX_NNZ": 1216334, "MATRIX_DENSITY": 7.635264782228233e-06, "TIME_S": 10.207688808441162}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 1, ..., 399128, 398241, 399129],
|
||||
[ 0, 0, 1, ..., 399128, 399129, 399129]]),
|
||||
values=tensor([ 1., -1., 1., ..., 1., -1., 1.]),
|
||||
size=(399130, 399130), nnz=1216334, layout=torch.sparse_coo)
|
||||
tensor([0.2595, 0.1640, 0.9913, ..., 0.6702, 0.2615, 0.2087])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: language
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([399130, 399130])
|
||||
Rows: 399130
|
||||
Size: 159304756900
|
||||
NNZ: 1216334
|
||||
Density: 7.635264782228233e-06
|
||||
Time: 10.207688808441162 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 1, ..., 399128, 398241, 399129],
|
||||
[ 0, 0, 1, ..., 399128, 399129, 399129]]),
|
||||
values=tensor([ 1., -1., 1., ..., 1., -1., 1.]),
|
||||
size=(399130, 399130), nnz=1216334, layout=torch.sparse_coo)
|
||||
tensor([0.2595, 0.1640, 0.9913, ..., 0.6702, 0.2615, 0.2087])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: language
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([399130, 399130])
|
||||
Rows: 399130
|
||||
Size: 159304756900
|
||||
NNZ: 1216334
|
||||
Density: 7.635264782228233e-06
|
||||
Time: 10.207688808441162 seconds
|
||||
|
||||
[20.44, 20.44, 20.52, 20.72, 20.52, 20.4, 20.48, 20.16, 20.28, 20.36]
|
||||
[20.48, 20.52, 20.84, 22.04, 23.4, 24.56, 24.56, 25.84, 25.92, 25.6, 24.84, 24.76, 25.16, 25.16]
|
||||
14.633257150650024
|
||||
{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 372, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'language', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [399130, 399130], 'MATRIX_ROWS': 399130, 'MATRIX_SIZE': 159304756900, 'MATRIX_NNZ': 1216334, 'MATRIX_DENSITY': 7.635264782228233e-06, 'TIME_S': 10.207688808441162, 'TIME_S_1KI': 27.440023678605275, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 326.7927499103546, 'W': 22.33219484534502}
|
||||
[20.44, 20.44, 20.52, 20.72, 20.52, 20.4, 20.48, 20.16, 20.28, 20.36, 20.32, 20.52, 20.44, 20.24, 20.32, 20.44, 20.12, 20.28, 20.4, 20.36]
|
||||
367.02
|
||||
18.351
|
||||
{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 372, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'language', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [399130, 399130], 'MATRIX_ROWS': 399130, 'MATRIX_SIZE': 159304756900, 'MATRIX_NNZ': 1216334, 'MATRIX_DENSITY': 7.635264782228233e-06, 'TIME_S': 10.207688808441162, 'TIME_S_1KI': 27.440023678605275, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 326.7927499103546, 'W': 22.33219484534502, 'J_1KI': 878.4751341676199, 'W_1KI': 60.03278184232532, 'W_D': 3.981194845345019, 'J_D': 58.257847938776024, 'W_D_1KI': 10.702136681034998, 'J_D_1KI': 28.769184626438168}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Altra", "CORES": 1, "ITERATIONS": 79, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "marine1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400320, 400320], "MATRIX_ROWS": 400320, "MATRIX_SIZE": 160256102400, "MATRIX_NNZ": 6226538, "MATRIX_DENSITY": 3.885367175883594e-05, "TIME_S": 10.23322343826294, "TIME_S_1KI": 129.53447390206253, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 335.62979657173156, "W": 20.897730759205288, "J_1KI": 4248.478437616855, "W_1KI": 264.52823745829477, "W_D": 2.311730759205286, "J_D": 37.12775005960458, "W_D_1KI": 29.262414673484635, "J_D_1KI": 370.4103123225903}
|
@ -0,0 +1,62 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 10 -m matrices/389000+_cols/marine1.mtx -c 1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "marine1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400320, 400320], "MATRIX_ROWS": 400320, "MATRIX_SIZE": 160256102400, "MATRIX_NNZ": 6226538, "MATRIX_DENSITY": 3.885367175883594e-05, "TIME_S": 1.3190975189208984}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 10383, ..., 400315, 400318, 400319],
|
||||
[ 0, 0, 0, ..., 400319, 400319, 400319]]),
|
||||
values=tensor([ 6.2373e+03, 3.4166e-01, -6.5085e+00, ...,
|
||||
-9.6129e-01, -6.8118e-01, 1.7595e+01]),
|
||||
size=(400320, 400320), nnz=6226538, layout=torch.sparse_coo)
|
||||
tensor([0.2159, 0.9263, 0.0662, ..., 0.5560, 0.4037, 0.0575])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: marine1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400320, 400320])
|
||||
Rows: 400320
|
||||
Size: 160256102400
|
||||
NNZ: 6226538
|
||||
Density: 3.885367175883594e-05
|
||||
Time: 1.3190975189208984 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 79 -m matrices/389000+_cols/marine1.mtx -c 1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "marine1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400320, 400320], "MATRIX_ROWS": 400320, "MATRIX_SIZE": 160256102400, "MATRIX_NNZ": 6226538, "MATRIX_DENSITY": 3.885367175883594e-05, "TIME_S": 10.23322343826294}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 10383, ..., 400315, 400318, 400319],
|
||||
[ 0, 0, 0, ..., 400319, 400319, 400319]]),
|
||||
values=tensor([ 6.2373e+03, 3.4166e-01, -6.5085e+00, ...,
|
||||
-9.6129e-01, -6.8118e-01, 1.7595e+01]),
|
||||
size=(400320, 400320), nnz=6226538, layout=torch.sparse_coo)
|
||||
tensor([0.0226, 0.2012, 0.8514, ..., 0.6390, 0.7546, 0.2394])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: marine1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400320, 400320])
|
||||
Rows: 400320
|
||||
Size: 160256102400
|
||||
NNZ: 6226538
|
||||
Density: 3.885367175883594e-05
|
||||
Time: 10.23322343826294 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 10383, ..., 400315, 400318, 400319],
|
||||
[ 0, 0, 0, ..., 400319, 400319, 400319]]),
|
||||
values=tensor([ 6.2373e+03, 3.4166e-01, -6.5085e+00, ...,
|
||||
-9.6129e-01, -6.8118e-01, 1.7595e+01]),
|
||||
size=(400320, 400320), nnz=6226538, layout=torch.sparse_coo)
|
||||
tensor([0.0226, 0.2012, 0.8514, ..., 0.6390, 0.7546, 0.2394])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: marine1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400320, 400320])
|
||||
Rows: 400320
|
||||
Size: 160256102400
|
||||
NNZ: 6226538
|
||||
Density: 3.885367175883594e-05
|
||||
Time: 10.23322343826294 seconds
|
||||
|
||||
[20.56, 20.48, 20.44, 20.6, 20.6, 20.64, 20.52, 20.44, 20.6, 20.72]
|
||||
[20.76, 20.72, 21.04, 22.04, 23.44, 24.68, 25.48, 25.52, 25.6, 24.4, 24.48, 24.6, 24.52, 24.76, 24.92]
|
||||
16.060585737228394
|
||||
{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 79, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'marine1', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400320, 400320], 'MATRIX_ROWS': 400320, 'MATRIX_SIZE': 160256102400, 'MATRIX_NNZ': 6226538, 'MATRIX_DENSITY': 3.885367175883594e-05, 'TIME_S': 10.23322343826294, 'TIME_S_1KI': 129.53447390206253, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 335.62979657173156, 'W': 20.897730759205288}
|
||||
[20.56, 20.48, 20.44, 20.6, 20.6, 20.64, 20.52, 20.44, 20.6, 20.72, 20.68, 20.8, 20.84, 20.84, 20.52, 20.6, 20.76, 20.8, 20.84, 20.84]
|
||||
371.72
|
||||
18.586000000000002
|
||||
{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 79, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'marine1', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400320, 400320], 'MATRIX_ROWS': 400320, 'MATRIX_SIZE': 160256102400, 'MATRIX_NNZ': 6226538, 'MATRIX_DENSITY': 3.885367175883594e-05, 'TIME_S': 10.23322343826294, 'TIME_S_1KI': 129.53447390206253, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 335.62979657173156, 'W': 20.897730759205288, 'J_1KI': 4248.478437616855, 'W_1KI': 264.52823745829477, 'W_D': 2.311730759205286, 'J_D': 37.12775005960458, 'W_D_1KI': 29.262414673484635, 'J_D_1KI': 370.4103123225903}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Altra", "CORES": 1, "ITERATIONS": 208, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "mario002", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [389874, 389874], "MATRIX_ROWS": 389874, "MATRIX_SIZE": 152001735876, "MATRIX_NNZ": 2101242, "MATRIX_DENSITY": 1.3823802655215408e-05, "TIME_S": 10.302243709564209, "TIME_S_1KI": 49.53001783444331, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 350.5055000305175, "W": 23.919871959330212, "J_1KI": 1685.122596300565, "W_1KI": 114.99938441985678, "W_D": 5.689871959330212, "J_D": 83.37550550460807, "W_D_1KI": 27.35515365062602, "J_D_1KI": 131.51516178185585}
|
@ -0,0 +1,59 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 10 -m matrices/389000+_cols/mario002.mtx -c 1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "mario002", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [389874, 389874], "MATRIX_ROWS": 389874, "MATRIX_SIZE": 152001735876, "MATRIX_NNZ": 2101242, "MATRIX_DENSITY": 1.3823802655215408e-05, "TIME_S": 0.5031006336212158}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1027, 1028, ..., 234126, 234127, 234127],
|
||||
[ 0, 0, 0, ..., 389703, 389823, 389873]]),
|
||||
values=tensor([ 1., 0., 0., ..., -1., 1., -1.]),
|
||||
size=(389874, 389874), nnz=2101242, layout=torch.sparse_coo)
|
||||
tensor([0.1542, 0.3790, 0.1583, ..., 0.9853, 0.1360, 0.4181])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: mario002
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([389874, 389874])
|
||||
Rows: 389874
|
||||
Size: 152001735876
|
||||
NNZ: 2101242
|
||||
Density: 1.3823802655215408e-05
|
||||
Time: 0.5031006336212158 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 208 -m matrices/389000+_cols/mario002.mtx -c 1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "mario002", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [389874, 389874], "MATRIX_ROWS": 389874, "MATRIX_SIZE": 152001735876, "MATRIX_NNZ": 2101242, "MATRIX_DENSITY": 1.3823802655215408e-05, "TIME_S": 10.302243709564209}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1027, 1028, ..., 234126, 234127, 234127],
|
||||
[ 0, 0, 0, ..., 389703, 389823, 389873]]),
|
||||
values=tensor([ 1., 0., 0., ..., -1., 1., -1.]),
|
||||
size=(389874, 389874), nnz=2101242, layout=torch.sparse_coo)
|
||||
tensor([0.0394, 0.6620, 0.2548, ..., 0.1309, 0.3006, 0.4100])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: mario002
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([389874, 389874])
|
||||
Rows: 389874
|
||||
Size: 152001735876
|
||||
NNZ: 2101242
|
||||
Density: 1.3823802655215408e-05
|
||||
Time: 10.302243709564209 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1027, 1028, ..., 234126, 234127, 234127],
|
||||
[ 0, 0, 0, ..., 389703, 389823, 389873]]),
|
||||
values=tensor([ 1., 0., 0., ..., -1., 1., -1.]),
|
||||
size=(389874, 389874), nnz=2101242, layout=torch.sparse_coo)
|
||||
tensor([0.0394, 0.6620, 0.2548, ..., 0.1309, 0.3006, 0.4100])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: mario002
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([389874, 389874])
|
||||
Rows: 389874
|
||||
Size: 152001735876
|
||||
NNZ: 2101242
|
||||
Density: 1.3823802655215408e-05
|
||||
Time: 10.302243709564209 seconds
|
||||
|
||||
[20.36, 20.12, 20.12, 19.68, 19.68, 19.72, 20.0, 20.04, 20.52, 20.64]
|
||||
[20.84, 20.88, 23.56, 25.44, 27.24, 28.2, 29.48, 27.48, 27.48, 26.52, 25.48, 25.16, 24.84, 24.56]
|
||||
14.653318405151367
|
||||
{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 208, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'mario002', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [389874, 389874], 'MATRIX_ROWS': 389874, 'MATRIX_SIZE': 152001735876, 'MATRIX_NNZ': 2101242, 'MATRIX_DENSITY': 1.3823802655215408e-05, 'TIME_S': 10.302243709564209, 'TIME_S_1KI': 49.53001783444331, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 350.5055000305175, 'W': 23.919871959330212}
|
||||
[20.36, 20.12, 20.12, 19.68, 19.68, 19.72, 20.0, 20.04, 20.52, 20.64, 20.68, 20.56, 20.48, 20.64, 20.24, 20.4, 20.56, 20.36, 20.44, 20.4]
|
||||
364.6
|
||||
18.23
|
||||
{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 208, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'mario002', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [389874, 389874], 'MATRIX_ROWS': 389874, 'MATRIX_SIZE': 152001735876, 'MATRIX_NNZ': 2101242, 'MATRIX_DENSITY': 1.3823802655215408e-05, 'TIME_S': 10.302243709564209, 'TIME_S_1KI': 49.53001783444331, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 350.5055000305175, 'W': 23.919871959330212, 'J_1KI': 1685.122596300565, 'W_1KI': 114.99938441985678, 'W_D': 5.689871959330212, 'J_D': 83.37550550460807, 'W_D_1KI': 27.35515365062602, 'J_D_1KI': 131.51516178185585}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Altra", "CORES": 1, "ITERATIONS": 25, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 10.48160195350647, "TIME_S_1KI": 419.2640781402588, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 390.95131686210624, "W": 22.278588737071036, "J_1KI": 15638.05267448425, "W_1KI": 891.1435494828414, "W_D": 3.8935887370710383, "J_D": 68.32585591673845, "W_D_1KI": 155.74354948284153, "J_D_1KI": 6229.741979313661}
|
@ -0,0 +1,62 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 10 -m matrices/389000+_cols/msdoor.mtx -c 1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 4.196976661682129}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.4118, 0.0766, 0.9896, ..., 0.1976, 0.4777, 0.8870])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 4.196976661682129 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 25 -m matrices/389000+_cols/msdoor.mtx -c 1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 10.48160195350647}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.8535, 0.7550, 0.2820, ..., 0.4483, 0.9345, 0.3205])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 10.48160195350647 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.8535, 0.7550, 0.2820, ..., 0.4483, 0.9345, 0.3205])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 10.48160195350647 seconds
|
||||
|
||||
[20.4, 20.72, 20.44, 20.52, 20.64, 20.28, 20.32, 20.2, 20.44, 20.64]
|
||||
[20.6, 20.6, 23.96, 25.04, 26.52, 28.32, 29.04, 26.16, 25.28, 25.56, 24.8, 24.6, 24.92, 24.88, 24.68, 25.08]
|
||||
17.548298120498657
|
||||
{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 25, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'msdoor', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [415863, 415863], 'MATRIX_ROWS': 415863, 'MATRIX_SIZE': 172942034769, 'MATRIX_NNZ': 20240935, 'MATRIX_DENSITY': 0.00011703883921012015, 'TIME_S': 10.48160195350647, 'TIME_S_1KI': 419.2640781402588, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 390.95131686210624, 'W': 22.278588737071036}
|
||||
[20.4, 20.72, 20.44, 20.52, 20.64, 20.28, 20.32, 20.2, 20.44, 20.64, 20.32, 20.36, 20.44, 20.44, 20.52, 20.24, 20.6, 20.4, 20.24, 20.44]
|
||||
367.69999999999993
|
||||
18.384999999999998
|
||||
{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 25, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'msdoor', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [415863, 415863], 'MATRIX_ROWS': 415863, 'MATRIX_SIZE': 172942034769, 'MATRIX_NNZ': 20240935, 'MATRIX_DENSITY': 0.00011703883921012015, 'TIME_S': 10.48160195350647, 'TIME_S_1KI': 419.2640781402588, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 390.95131686210624, 'W': 22.278588737071036, 'J_1KI': 15638.05267448425, 'W_1KI': 891.1435494828414, 'W_D': 3.8935887370710383, 'J_D': 68.32585591673845, 'W_D_1KI': 155.74354948284153, 'J_D_1KI': 6229.741979313661}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Altra", "CORES": 1, "ITERATIONS": 38, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "test1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392908, 392908], "MATRIX_ROWS": 392908, "MATRIX_SIZE": 154376696464, "MATRIX_NNZ": 12968200, "MATRIX_DENSITY": 8.400361127706946e-05, "TIME_S": 10.370359182357788, "TIME_S_1KI": 272.90418900941546, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 369.71864093780516, "W": 22.28222370880954, "J_1KI": 9729.437919415925, "W_1KI": 586.3743081265668, "W_D": 3.8552237088095396, "J_D": 63.96794542407989, "W_D_1KI": 101.45325549498789, "J_D_1KI": 2669.822513025997}
|
@ -0,0 +1,62 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 10 -m matrices/389000+_cols/test1.mtx -c 1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "test1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392908, 392908], "MATRIX_ROWS": 392908, "MATRIX_SIZE": 154376696464, "MATRIX_NNZ": 12968200, "MATRIX_DENSITY": 8.400361127706946e-05, "TIME_S": 2.733165979385376}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 8, ..., 392905, 392906, 392907],
|
||||
[ 0, 0, 0, ..., 392907, 392907, 392907]]),
|
||||
values=tensor([1.0000e+00, 0.0000e+00, 0.0000e+00, ...,
|
||||
0.0000e+00, 0.0000e+00, 2.1156e-17]),
|
||||
size=(392908, 392908), nnz=12968200, layout=torch.sparse_coo)
|
||||
tensor([0.0428, 0.6726, 0.0165, ..., 0.5617, 0.0517, 0.8990])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: test1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392908, 392908])
|
||||
Rows: 392908
|
||||
Size: 154376696464
|
||||
NNZ: 12968200
|
||||
Density: 8.400361127706946e-05
|
||||
Time: 2.733165979385376 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 38 -m matrices/389000+_cols/test1.mtx -c 1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "test1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392908, 392908], "MATRIX_ROWS": 392908, "MATRIX_SIZE": 154376696464, "MATRIX_NNZ": 12968200, "MATRIX_DENSITY": 8.400361127706946e-05, "TIME_S": 10.370359182357788}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 8, ..., 392905, 392906, 392907],
|
||||
[ 0, 0, 0, ..., 392907, 392907, 392907]]),
|
||||
values=tensor([1.0000e+00, 0.0000e+00, 0.0000e+00, ...,
|
||||
0.0000e+00, 0.0000e+00, 2.1156e-17]),
|
||||
size=(392908, 392908), nnz=12968200, layout=torch.sparse_coo)
|
||||
tensor([0.8359, 0.7992, 0.2566, ..., 0.7668, 0.0927, 0.6220])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: test1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392908, 392908])
|
||||
Rows: 392908
|
||||
Size: 154376696464
|
||||
NNZ: 12968200
|
||||
Density: 8.400361127706946e-05
|
||||
Time: 10.370359182357788 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 8, ..., 392905, 392906, 392907],
|
||||
[ 0, 0, 0, ..., 392907, 392907, 392907]]),
|
||||
values=tensor([1.0000e+00, 0.0000e+00, 0.0000e+00, ...,
|
||||
0.0000e+00, 0.0000e+00, 2.1156e-17]),
|
||||
size=(392908, 392908), nnz=12968200, layout=torch.sparse_coo)
|
||||
tensor([0.8359, 0.7992, 0.2566, ..., 0.7668, 0.0927, 0.6220])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: test1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392908, 392908])
|
||||
Rows: 392908
|
||||
Size: 154376696464
|
||||
NNZ: 12968200
|
||||
Density: 8.400361127706946e-05
|
||||
Time: 10.370359182357788 seconds
|
||||
|
||||
[20.4, 20.24, 20.16, 20.32, 20.48, 20.48, 20.52, 20.48, 20.36, 20.16]
|
||||
[20.2, 20.36, 20.96, 27.88, 28.8, 30.24, 27.44, 26.32, 26.32, 25.16, 24.68, 24.88, 24.72, 24.72, 24.84]
|
||||
16.592537879943848
|
||||
{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 38, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'test1', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [392908, 392908], 'MATRIX_ROWS': 392908, 'MATRIX_SIZE': 154376696464, 'MATRIX_NNZ': 12968200, 'MATRIX_DENSITY': 8.400361127706946e-05, 'TIME_S': 10.370359182357788, 'TIME_S_1KI': 272.90418900941546, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 369.71864093780516, 'W': 22.28222370880954}
|
||||
[20.4, 20.24, 20.16, 20.32, 20.48, 20.48, 20.52, 20.48, 20.36, 20.16, 20.48, 20.56, 20.64, 20.72, 20.6, 20.56, 20.6, 20.6, 20.44, 20.52]
|
||||
368.53999999999996
|
||||
18.427
|
||||
{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 38, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'test1', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [392908, 392908], 'MATRIX_ROWS': 392908, 'MATRIX_SIZE': 154376696464, 'MATRIX_NNZ': 12968200, 'MATRIX_DENSITY': 8.400361127706946e-05, 'TIME_S': 10.370359182357788, 'TIME_S_1KI': 272.90418900941546, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 369.71864093780516, 'W': 22.28222370880954, 'J_1KI': 9729.437919415925, 'W_1KI': 586.3743081265668, 'W_D': 3.8552237088095396, 'J_D': 63.96794542407989, 'W_D_1KI': 101.45325549498789, 'J_D_1KI': 2669.822513025997}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 112, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "amazon0312", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400727, 400727], "MATRIX_ROWS": 400727, "MATRIX_SIZE": 160582128529, "MATRIX_NNZ": 3200440, "MATRIX_DENSITY": 1.9930237750099465e-05, "TIME_S": 10.258270025253296, "TIME_S_1KI": 91.59169665404728, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 863.5131076049804, "W": 65.44, "J_1KI": 7709.938460758754, "W_1KI": 584.2857142857143, "W_D": 30.220749999999995, "J_D": 398.77771617746345, "W_D_1KI": 269.828125, "J_D_1KI": 2409.1796875}
|
@ -0,0 +1,59 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '10', '-m', 'matrices/389000+_cols/amazon0312.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "amazon0312", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400727, 400727], "MATRIX_ROWS": 400727, "MATRIX_SIZE": 160582128529, "MATRIX_NNZ": 3200440, "MATRIX_DENSITY": 1.9930237750099465e-05, "TIME_S": 0.9330589771270752}
|
||||
|
||||
tensor(indices=tensor([[ 1, 2, 0, ..., 400725, 400724, 400707],
|
||||
[ 0, 0, 1, ..., 400724, 400725, 400726]]),
|
||||
values=tensor([1., 1., 1., ..., 1., 1., 1.]),
|
||||
size=(400727, 400727), nnz=3200440, layout=torch.sparse_coo)
|
||||
tensor([0.5874, 0.2343, 0.6606, ..., 0.4897, 0.9784, 0.1786])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: amazon0312
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400727, 400727])
|
||||
Rows: 400727
|
||||
Size: 160582128529
|
||||
NNZ: 3200440
|
||||
Density: 1.9930237750099465e-05
|
||||
Time: 0.9330589771270752 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '112', '-m', 'matrices/389000+_cols/amazon0312.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "amazon0312", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400727, 400727], "MATRIX_ROWS": 400727, "MATRIX_SIZE": 160582128529, "MATRIX_NNZ": 3200440, "MATRIX_DENSITY": 1.9930237750099465e-05, "TIME_S": 10.258270025253296}
|
||||
|
||||
tensor(indices=tensor([[ 1, 2, 0, ..., 400725, 400724, 400707],
|
||||
[ 0, 0, 1, ..., 400724, 400725, 400726]]),
|
||||
values=tensor([1., 1., 1., ..., 1., 1., 1.]),
|
||||
size=(400727, 400727), nnz=3200440, layout=torch.sparse_coo)
|
||||
tensor([0.5028, 0.5163, 0.3573, ..., 0.3849, 0.9903, 0.9560])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: amazon0312
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400727, 400727])
|
||||
Rows: 400727
|
||||
Size: 160582128529
|
||||
NNZ: 3200440
|
||||
Density: 1.9930237750099465e-05
|
||||
Time: 10.258270025253296 seconds
|
||||
|
||||
tensor(indices=tensor([[ 1, 2, 0, ..., 400725, 400724, 400707],
|
||||
[ 0, 0, 1, ..., 400724, 400725, 400726]]),
|
||||
values=tensor([1., 1., 1., ..., 1., 1., 1.]),
|
||||
size=(400727, 400727), nnz=3200440, layout=torch.sparse_coo)
|
||||
tensor([0.5028, 0.5163, 0.3573, ..., 0.3849, 0.9903, 0.9560])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: amazon0312
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400727, 400727])
|
||||
Rows: 400727
|
||||
Size: 160582128529
|
||||
NNZ: 3200440
|
||||
Density: 1.9930237750099465e-05
|
||||
Time: 10.258270025253296 seconds
|
||||
|
||||
[40.11, 38.74, 39.96, 38.89, 39.32, 38.86, 39.18, 39.03, 39.39, 39.1]
|
||||
[65.44]
|
||||
13.195493698120117
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 112, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'amazon0312', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400727, 400727], 'MATRIX_ROWS': 400727, 'MATRIX_SIZE': 160582128529, 'MATRIX_NNZ': 3200440, 'MATRIX_DENSITY': 1.9930237750099465e-05, 'TIME_S': 10.258270025253296, 'TIME_S_1KI': 91.59169665404728, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 863.5131076049804, 'W': 65.44}
|
||||
[40.11, 38.74, 39.96, 38.89, 39.32, 38.86, 39.18, 39.03, 39.39, 39.1, 40.1, 39.08, 38.9, 38.69, 38.72, 38.98, 38.74, 38.75, 38.74, 41.52]
|
||||
704.385
|
||||
35.21925
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 112, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'amazon0312', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400727, 400727], 'MATRIX_ROWS': 400727, 'MATRIX_SIZE': 160582128529, 'MATRIX_NNZ': 3200440, 'MATRIX_DENSITY': 1.9930237750099465e-05, 'TIME_S': 10.258270025253296, 'TIME_S_1KI': 91.59169665404728, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 863.5131076049804, 'W': 65.44, 'J_1KI': 7709.938460758754, 'W_1KI': 584.2857142857143, 'W_D': 30.220749999999995, 'J_D': 398.77771617746345, 'W_D_1KI': 269.828125, 'J_D_1KI': 2409.1796875}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 133, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "helm2d03", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392257, 392257], "MATRIX_ROWS": 392257, "MATRIX_SIZE": 153865554049, "MATRIX_NNZ": 2741935, "MATRIX_DENSITY": 1.7820330332848923e-05, "TIME_S": 10.395626068115234, "TIME_S_1KI": 78.16260201590401, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 865.5650195121766, "W": 64.84, "J_1KI": 6508.007665505088, "W_1KI": 487.5187969924812, "W_D": 29.441000000000003, "J_D": 393.0151101088524, "W_D_1KI": 221.36090225563913, "J_D_1KI": 1664.367686132625}
|
@ -0,0 +1,62 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '10', '-m', 'matrices/389000+_cols/helm2d03.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "helm2d03", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392257, 392257], "MATRIX_ROWS": 392257, "MATRIX_SIZE": 153865554049, "MATRIX_NNZ": 2741935, "MATRIX_DENSITY": 1.7820330332848923e-05, "TIME_S": 0.7890067100524902}
|
||||
|
||||
tensor(indices=tensor([[ 0, 98273, 133833, ..., 392252, 392253, 392254],
|
||||
[ 0, 0, 0, ..., 392256, 392255, 392256]]),
|
||||
values=tensor([ 3.4808, -0.6217, -0.5806, ..., -0.6940, -0.7602,
|
||||
-0.7602]),
|
||||
size=(392257, 392257), nnz=2741935, layout=torch.sparse_coo)
|
||||
tensor([0.6340, 0.6548, 0.6497, ..., 0.4649, 0.5624, 0.0700])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: helm2d03
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392257, 392257])
|
||||
Rows: 392257
|
||||
Size: 153865554049
|
||||
NNZ: 2741935
|
||||
Density: 1.7820330332848923e-05
|
||||
Time: 0.7890067100524902 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '133', '-m', 'matrices/389000+_cols/helm2d03.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "helm2d03", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392257, 392257], "MATRIX_ROWS": 392257, "MATRIX_SIZE": 153865554049, "MATRIX_NNZ": 2741935, "MATRIX_DENSITY": 1.7820330332848923e-05, "TIME_S": 10.395626068115234}
|
||||
|
||||
tensor(indices=tensor([[ 0, 98273, 133833, ..., 392252, 392253, 392254],
|
||||
[ 0, 0, 0, ..., 392256, 392255, 392256]]),
|
||||
values=tensor([ 3.4808, -0.6217, -0.5806, ..., -0.6940, -0.7602,
|
||||
-0.7602]),
|
||||
size=(392257, 392257), nnz=2741935, layout=torch.sparse_coo)
|
||||
tensor([0.3991, 0.2131, 0.1886, ..., 0.5996, 0.9337, 0.0168])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: helm2d03
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392257, 392257])
|
||||
Rows: 392257
|
||||
Size: 153865554049
|
||||
NNZ: 2741935
|
||||
Density: 1.7820330332848923e-05
|
||||
Time: 10.395626068115234 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 98273, 133833, ..., 392252, 392253, 392254],
|
||||
[ 0, 0, 0, ..., 392256, 392255, 392256]]),
|
||||
values=tensor([ 3.4808, -0.6217, -0.5806, ..., -0.6940, -0.7602,
|
||||
-0.7602]),
|
||||
size=(392257, 392257), nnz=2741935, layout=torch.sparse_coo)
|
||||
tensor([0.3991, 0.2131, 0.1886, ..., 0.5996, 0.9337, 0.0168])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: helm2d03
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392257, 392257])
|
||||
Rows: 392257
|
||||
Size: 153865554049
|
||||
NNZ: 2741935
|
||||
Density: 1.7820330332848923e-05
|
||||
Time: 10.395626068115234 seconds
|
||||
|
||||
[39.52, 38.66, 39.73, 43.42, 39.12, 39.17, 39.14, 38.98, 38.91, 39.74]
|
||||
[64.84]
|
||||
13.349244594573975
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 133, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'helm2d03', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [392257, 392257], 'MATRIX_ROWS': 392257, 'MATRIX_SIZE': 153865554049, 'MATRIX_NNZ': 2741935, 'MATRIX_DENSITY': 1.7820330332848923e-05, 'TIME_S': 10.395626068115234, 'TIME_S_1KI': 78.16260201590401, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 865.5650195121766, 'W': 64.84}
|
||||
[39.52, 38.66, 39.73, 43.42, 39.12, 39.17, 39.14, 38.98, 38.91, 39.74, 40.56, 38.62, 38.91, 38.8, 38.85, 39.06, 38.82, 39.27, 39.04, 39.14]
|
||||
707.98
|
||||
35.399
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 133, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'helm2d03', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [392257, 392257], 'MATRIX_ROWS': 392257, 'MATRIX_SIZE': 153865554049, 'MATRIX_NNZ': 2741935, 'MATRIX_DENSITY': 1.7820330332848923e-05, 'TIME_S': 10.395626068115234, 'TIME_S_1KI': 78.16260201590401, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 865.5650195121766, 'W': 64.84, 'J_1KI': 6508.007665505088, 'W_1KI': 487.5187969924812, 'W_D': 29.441000000000003, 'J_D': 393.0151101088524, 'W_D_1KI': 221.36090225563913, 'J_D_1KI': 1664.367686132625}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 293, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "language", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [399130, 399130], "MATRIX_ROWS": 399130, "MATRIX_SIZE": 159304756900, "MATRIX_NNZ": 1216334, "MATRIX_DENSITY": 7.635264782228233e-06, "TIME_S": 10.13910436630249, "TIME_S_1KI": 34.60445176212454, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 841.6717374801636, "W": 64.7, "J_1KI": 2872.599786621719, "W_1KI": 220.81911262798636, "W_D": 29.503999999999998, "J_D": 383.81271936035154, "W_D_1KI": 100.6962457337884, "J_D_1KI": 343.6731936306772}
|
@ -0,0 +1,59 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '10', '-m', 'matrices/389000+_cols/language.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "language", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [399130, 399130], "MATRIX_ROWS": 399130, "MATRIX_SIZE": 159304756900, "MATRIX_NNZ": 1216334, "MATRIX_DENSITY": 7.635264782228233e-06, "TIME_S": 0.35765957832336426}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 1, ..., 399128, 398241, 399129],
|
||||
[ 0, 0, 1, ..., 399128, 399129, 399129]]),
|
||||
values=tensor([ 1., -1., 1., ..., 1., -1., 1.]),
|
||||
size=(399130, 399130), nnz=1216334, layout=torch.sparse_coo)
|
||||
tensor([0.5605, 0.3613, 0.6180, ..., 0.8010, 0.0807, 0.0320])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: language
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([399130, 399130])
|
||||
Rows: 399130
|
||||
Size: 159304756900
|
||||
NNZ: 1216334
|
||||
Density: 7.635264782228233e-06
|
||||
Time: 0.35765957832336426 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '293', '-m', 'matrices/389000+_cols/language.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "language", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [399130, 399130], "MATRIX_ROWS": 399130, "MATRIX_SIZE": 159304756900, "MATRIX_NNZ": 1216334, "MATRIX_DENSITY": 7.635264782228233e-06, "TIME_S": 10.13910436630249}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 1, ..., 399128, 398241, 399129],
|
||||
[ 0, 0, 1, ..., 399128, 399129, 399129]]),
|
||||
values=tensor([ 1., -1., 1., ..., 1., -1., 1.]),
|
||||
size=(399130, 399130), nnz=1216334, layout=torch.sparse_coo)
|
||||
tensor([0.5123, 0.8630, 0.7218, ..., 0.4435, 0.1290, 0.1042])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: language
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([399130, 399130])
|
||||
Rows: 399130
|
||||
Size: 159304756900
|
||||
NNZ: 1216334
|
||||
Density: 7.635264782228233e-06
|
||||
Time: 10.13910436630249 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 1, ..., 399128, 398241, 399129],
|
||||
[ 0, 0, 1, ..., 399128, 399129, 399129]]),
|
||||
values=tensor([ 1., -1., 1., ..., 1., -1., 1.]),
|
||||
size=(399130, 399130), nnz=1216334, layout=torch.sparse_coo)
|
||||
tensor([0.5123, 0.8630, 0.7218, ..., 0.4435, 0.1290, 0.1042])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: language
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([399130, 399130])
|
||||
Rows: 399130
|
||||
Size: 159304756900
|
||||
NNZ: 1216334
|
||||
Density: 7.635264782228233e-06
|
||||
Time: 10.13910436630249 seconds
|
||||
|
||||
[40.2, 38.6, 39.85, 38.63, 39.47, 39.53, 38.79, 38.95, 39.14, 39.0]
|
||||
[64.7]
|
||||
13.00883674621582
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 293, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'language', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [399130, 399130], 'MATRIX_ROWS': 399130, 'MATRIX_SIZE': 159304756900, 'MATRIX_NNZ': 1216334, 'MATRIX_DENSITY': 7.635264782228233e-06, 'TIME_S': 10.13910436630249, 'TIME_S_1KI': 34.60445176212454, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 841.6717374801636, 'W': 64.7}
|
||||
[40.2, 38.6, 39.85, 38.63, 39.47, 39.53, 38.79, 38.95, 39.14, 39.0, 39.33, 39.08, 38.92, 38.72, 39.93, 38.71, 38.64, 39.27, 39.1, 38.65]
|
||||
703.9200000000001
|
||||
35.196000000000005
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 293, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'language', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [399130, 399130], 'MATRIX_ROWS': 399130, 'MATRIX_SIZE': 159304756900, 'MATRIX_NNZ': 1216334, 'MATRIX_DENSITY': 7.635264782228233e-06, 'TIME_S': 10.13910436630249, 'TIME_S_1KI': 34.60445176212454, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 841.6717374801636, 'W': 64.7, 'J_1KI': 2872.599786621719, 'W_1KI': 220.81911262798636, 'W_D': 29.503999999999998, 'J_D': 383.81271936035154, 'W_D_1KI': 100.6962457337884, 'J_D_1KI': 343.6731936306772}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 59, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "marine1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400320, 400320], "MATRIX_ROWS": 400320, "MATRIX_SIZE": 160256102400, "MATRIX_NNZ": 6226538, "MATRIX_DENSITY": 3.885367175883594e-05, "TIME_S": 10.364520788192749, "TIME_S_1KI": 175.6698438676737, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 961.4618274116517, "W": 65.62, "J_1KI": 16295.963176468675, "W_1KI": 1112.2033898305085, "W_D": 30.160250000000005, "J_D": 441.9068741266728, "W_D_1KI": 511.19067796610176, "J_D_1KI": 8664.24877908647}
|
@ -0,0 +1,62 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '10', '-m', 'matrices/389000+_cols/marine1.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "marine1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400320, 400320], "MATRIX_ROWS": 400320, "MATRIX_SIZE": 160256102400, "MATRIX_NNZ": 6226538, "MATRIX_DENSITY": 3.885367175883594e-05, "TIME_S": 1.7657136917114258}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 10383, ..., 400315, 400318, 400319],
|
||||
[ 0, 0, 0, ..., 400319, 400319, 400319]]),
|
||||
values=tensor([ 6.2373e+03, 3.4166e-01, -6.5085e+00, ...,
|
||||
-9.6129e-01, -6.8118e-01, 1.7595e+01]),
|
||||
size=(400320, 400320), nnz=6226538, layout=torch.sparse_coo)
|
||||
tensor([0.6077, 0.2167, 0.6786, ..., 0.1750, 0.5259, 0.2235])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: marine1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400320, 400320])
|
||||
Rows: 400320
|
||||
Size: 160256102400
|
||||
NNZ: 6226538
|
||||
Density: 3.885367175883594e-05
|
||||
Time: 1.7657136917114258 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '59', '-m', 'matrices/389000+_cols/marine1.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "marine1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400320, 400320], "MATRIX_ROWS": 400320, "MATRIX_SIZE": 160256102400, "MATRIX_NNZ": 6226538, "MATRIX_DENSITY": 3.885367175883594e-05, "TIME_S": 10.364520788192749}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 10383, ..., 400315, 400318, 400319],
|
||||
[ 0, 0, 0, ..., 400319, 400319, 400319]]),
|
||||
values=tensor([ 6.2373e+03, 3.4166e-01, -6.5085e+00, ...,
|
||||
-9.6129e-01, -6.8118e-01, 1.7595e+01]),
|
||||
size=(400320, 400320), nnz=6226538, layout=torch.sparse_coo)
|
||||
tensor([0.9822, 0.8834, 0.6037, ..., 0.0197, 0.1253, 0.1122])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: marine1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400320, 400320])
|
||||
Rows: 400320
|
||||
Size: 160256102400
|
||||
NNZ: 6226538
|
||||
Density: 3.885367175883594e-05
|
||||
Time: 10.364520788192749 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 10383, ..., 400315, 400318, 400319],
|
||||
[ 0, 0, 0, ..., 400319, 400319, 400319]]),
|
||||
values=tensor([ 6.2373e+03, 3.4166e-01, -6.5085e+00, ...,
|
||||
-9.6129e-01, -6.8118e-01, 1.7595e+01]),
|
||||
size=(400320, 400320), nnz=6226538, layout=torch.sparse_coo)
|
||||
tensor([0.9822, 0.8834, 0.6037, ..., 0.0197, 0.1253, 0.1122])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: marine1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400320, 400320])
|
||||
Rows: 400320
|
||||
Size: 160256102400
|
||||
NNZ: 6226538
|
||||
Density: 3.885367175883594e-05
|
||||
Time: 10.364520788192749 seconds
|
||||
|
||||
[44.79, 38.85, 39.17, 39.51, 39.35, 39.23, 40.14, 39.49, 39.03, 38.72]
|
||||
[65.62]
|
||||
14.651963233947754
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 59, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'marine1', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400320, 400320], 'MATRIX_ROWS': 400320, 'MATRIX_SIZE': 160256102400, 'MATRIX_NNZ': 6226538, 'MATRIX_DENSITY': 3.885367175883594e-05, 'TIME_S': 10.364520788192749, 'TIME_S_1KI': 175.6698438676737, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 961.4618274116517, 'W': 65.62}
|
||||
[44.79, 38.85, 39.17, 39.51, 39.35, 39.23, 40.14, 39.49, 39.03, 38.72, 40.26, 38.91, 38.83, 39.61, 38.81, 39.13, 39.27, 39.11, 39.23, 39.28]
|
||||
709.1949999999999
|
||||
35.45975
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 59, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'marine1', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400320, 400320], 'MATRIX_ROWS': 400320, 'MATRIX_SIZE': 160256102400, 'MATRIX_NNZ': 6226538, 'MATRIX_DENSITY': 3.885367175883594e-05, 'TIME_S': 10.364520788192749, 'TIME_S_1KI': 175.6698438676737, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 961.4618274116517, 'W': 65.62, 'J_1KI': 16295.963176468675, 'W_1KI': 1112.2033898305085, 'W_D': 30.160250000000005, 'J_D': 441.9068741266728, 'W_D_1KI': 511.19067796610176, 'J_D_1KI': 8664.24877908647}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 174, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "mario002", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [389874, 389874], "MATRIX_ROWS": 389874, "MATRIX_SIZE": 152001735876, "MATRIX_NNZ": 2101242, "MATRIX_DENSITY": 1.3823802655215408e-05, "TIME_S": 10.467077732086182, "TIME_S_1KI": 60.15561914992058, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 869.6706116294861, "W": 65.16, "J_1KI": 4998.1069633878515, "W_1KI": 374.48275862068965, "W_D": 29.853749999999998, "J_D": 398.44888001739974, "W_D_1KI": 171.57327586206895, "J_D_1KI": 986.0533095521205}
|
@ -0,0 +1,77 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '10', '-m', 'matrices/389000+_cols/mario002.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "mario002", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [389874, 389874], "MATRIX_ROWS": 389874, "MATRIX_SIZE": 152001735876, "MATRIX_NNZ": 2101242, "MATRIX_DENSITY": 1.3823802655215408e-05, "TIME_S": 0.8790872097015381}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1027, 1028, ..., 234126, 234127, 234127],
|
||||
[ 0, 0, 0, ..., 389703, 389823, 389873]]),
|
||||
values=tensor([ 1., 0., 0., ..., -1., 1., -1.]),
|
||||
size=(389874, 389874), nnz=2101242, layout=torch.sparse_coo)
|
||||
tensor([0.2950, 0.1591, 0.6398, ..., 0.1379, 0.7657, 0.3578])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: mario002
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([389874, 389874])
|
||||
Rows: 389874
|
||||
Size: 152001735876
|
||||
NNZ: 2101242
|
||||
Density: 1.3823802655215408e-05
|
||||
Time: 0.8790872097015381 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '119', '-m', 'matrices/389000+_cols/mario002.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "mario002", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [389874, 389874], "MATRIX_ROWS": 389874, "MATRIX_SIZE": 152001735876, "MATRIX_NNZ": 2101242, "MATRIX_DENSITY": 1.3823802655215408e-05, "TIME_S": 7.1603169441223145}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1027, 1028, ..., 234126, 234127, 234127],
|
||||
[ 0, 0, 0, ..., 389703, 389823, 389873]]),
|
||||
values=tensor([ 1., 0., 0., ..., -1., 1., -1.]),
|
||||
size=(389874, 389874), nnz=2101242, layout=torch.sparse_coo)
|
||||
tensor([0.6279, 0.8600, 0.4207, ..., 0.8405, 0.2520, 0.5539])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: mario002
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([389874, 389874])
|
||||
Rows: 389874
|
||||
Size: 152001735876
|
||||
NNZ: 2101242
|
||||
Density: 1.3823802655215408e-05
|
||||
Time: 7.1603169441223145 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '174', '-m', 'matrices/389000+_cols/mario002.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "mario002", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [389874, 389874], "MATRIX_ROWS": 389874, "MATRIX_SIZE": 152001735876, "MATRIX_NNZ": 2101242, "MATRIX_DENSITY": 1.3823802655215408e-05, "TIME_S": 10.467077732086182}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1027, 1028, ..., 234126, 234127, 234127],
|
||||
[ 0, 0, 0, ..., 389703, 389823, 389873]]),
|
||||
values=tensor([ 1., 0., 0., ..., -1., 1., -1.]),
|
||||
size=(389874, 389874), nnz=2101242, layout=torch.sparse_coo)
|
||||
tensor([0.4735, 0.7353, 0.2913, ..., 0.6496, 0.0167, 0.8301])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: mario002
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([389874, 389874])
|
||||
Rows: 389874
|
||||
Size: 152001735876
|
||||
NNZ: 2101242
|
||||
Density: 1.3823802655215408e-05
|
||||
Time: 10.467077732086182 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1027, 1028, ..., 234126, 234127, 234127],
|
||||
[ 0, 0, 0, ..., 389703, 389823, 389873]]),
|
||||
values=tensor([ 1., 0., 0., ..., -1., 1., -1.]),
|
||||
size=(389874, 389874), nnz=2101242, layout=torch.sparse_coo)
|
||||
tensor([0.4735, 0.7353, 0.2913, ..., 0.6496, 0.0167, 0.8301])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: mario002
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([389874, 389874])
|
||||
Rows: 389874
|
||||
Size: 152001735876
|
||||
NNZ: 2101242
|
||||
Density: 1.3823802655215408e-05
|
||||
Time: 10.467077732086182 seconds
|
||||
|
||||
[40.09, 39.06, 38.77, 38.73, 38.77, 39.21, 39.33, 38.77, 39.16, 40.13]
|
||||
[65.16]
|
||||
13.346694469451904
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 174, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'mario002', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [389874, 389874], 'MATRIX_ROWS': 389874, 'MATRIX_SIZE': 152001735876, 'MATRIX_NNZ': 2101242, 'MATRIX_DENSITY': 1.3823802655215408e-05, 'TIME_S': 10.467077732086182, 'TIME_S_1KI': 60.15561914992058, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 869.6706116294861, 'W': 65.16}
|
||||
[40.09, 39.06, 38.77, 38.73, 38.77, 39.21, 39.33, 38.77, 39.16, 40.13, 40.11, 39.13, 39.16, 38.94, 38.77, 40.04, 39.77, 38.72, 40.13, 39.0]
|
||||
706.125
|
||||
35.30625
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 174, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'mario002', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [389874, 389874], 'MATRIX_ROWS': 389874, 'MATRIX_SIZE': 152001735876, 'MATRIX_NNZ': 2101242, 'MATRIX_DENSITY': 1.3823802655215408e-05, 'TIME_S': 10.467077732086182, 'TIME_S_1KI': 60.15561914992058, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 869.6706116294861, 'W': 65.16, 'J_1KI': 4998.1069633878515, 'W_1KI': 374.48275862068965, 'W_D': 29.853749999999998, 'J_D': 398.44888001739974, 'W_D_1KI': 171.57327586206895, 'J_D_1KI': 986.0533095521205}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 18, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 10.285197496414185, "TIME_S_1KI": 571.399860911899, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1007.6806288719176, "W": 66.05, "J_1KI": 55982.25715955098, "W_1KI": 3669.4444444444443, "W_D": 30.971749999999993, "J_D": 472.5152538571357, "W_D_1KI": 1720.6527777777774, "J_D_1KI": 95591.8209876543}
|
@ -0,0 +1,62 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '10', '-m', 'matrices/389000+_cols/msdoor.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 5.76108193397522}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.2249, 0.2866, 0.3884, ..., 0.3376, 0.6837, 0.0302])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 5.76108193397522 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '18', '-m', 'matrices/389000+_cols/msdoor.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 10.285197496414185}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.6145, 0.4380, 0.6420, ..., 0.8060, 0.5360, 0.8878])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 10.285197496414185 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.6145, 0.4380, 0.6420, ..., 0.8060, 0.5360, 0.8878])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 10.285197496414185 seconds
|
||||
|
||||
[39.34, 38.54, 39.14, 38.52, 38.62, 38.53, 39.08, 39.07, 39.07, 38.67]
|
||||
[66.05]
|
||||
15.256330490112305
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 18, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'msdoor', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [415863, 415863], 'MATRIX_ROWS': 415863, 'MATRIX_SIZE': 172942034769, 'MATRIX_NNZ': 20240935, 'MATRIX_DENSITY': 0.00011703883921012015, 'TIME_S': 10.285197496414185, 'TIME_S_1KI': 571.399860911899, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1007.6806288719176, 'W': 66.05}
|
||||
[39.34, 38.54, 39.14, 38.52, 38.62, 38.53, 39.08, 39.07, 39.07, 38.67, 39.81, 38.75, 38.91, 38.55, 38.86, 39.09, 38.8, 41.1, 38.75, 38.55]
|
||||
701.565
|
||||
35.078250000000004
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 18, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'msdoor', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [415863, 415863], 'MATRIX_ROWS': 415863, 'MATRIX_SIZE': 172942034769, 'MATRIX_NNZ': 20240935, 'MATRIX_DENSITY': 0.00011703883921012015, 'TIME_S': 10.285197496414185, 'TIME_S_1KI': 571.399860911899, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1007.6806288719176, 'W': 66.05, 'J_1KI': 55982.25715955098, 'W_1KI': 3669.4444444444443, 'W_D': 30.971749999999993, 'J_D': 472.5152538571357, 'W_D_1KI': 1720.6527777777774, 'J_D_1KI': 95591.8209876543}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 28, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "test1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392908, 392908], "MATRIX_ROWS": 392908, "MATRIX_SIZE": 154376696464, "MATRIX_NNZ": 12968200, "MATRIX_DENSITY": 8.400361127706946e-05, "TIME_S": 10.235199689865112, "TIME_S_1KI": 365.54284606661116, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 983.4566511011122, "W": 65.82, "J_1KI": 35123.45182503972, "W_1KI": 2350.7142857142853, "W_D": 30.638249999999992, "J_D": 457.7847271437048, "W_D_1KI": 1094.223214285714, "J_D_1KI": 39079.400510204076}
|
@ -0,0 +1,62 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '10', '-m', 'matrices/389000+_cols/test1.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "test1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392908, 392908], "MATRIX_ROWS": 392908, "MATRIX_SIZE": 154376696464, "MATRIX_NNZ": 12968200, "MATRIX_DENSITY": 8.400361127706946e-05, "TIME_S": 3.700636386871338}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 8, ..., 392905, 392906, 392907],
|
||||
[ 0, 0, 0, ..., 392907, 392907, 392907]]),
|
||||
values=tensor([1.0000e+00, 0.0000e+00, 0.0000e+00, ...,
|
||||
0.0000e+00, 0.0000e+00, 2.1156e-17]),
|
||||
size=(392908, 392908), nnz=12968200, layout=torch.sparse_coo)
|
||||
tensor([0.1321, 0.9082, 0.6338, ..., 0.5624, 0.7605, 0.7399])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: test1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392908, 392908])
|
||||
Rows: 392908
|
||||
Size: 154376696464
|
||||
NNZ: 12968200
|
||||
Density: 8.400361127706946e-05
|
||||
Time: 3.700636386871338 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '28', '-m', 'matrices/389000+_cols/test1.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "test1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392908, 392908], "MATRIX_ROWS": 392908, "MATRIX_SIZE": 154376696464, "MATRIX_NNZ": 12968200, "MATRIX_DENSITY": 8.400361127706946e-05, "TIME_S": 10.235199689865112}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 8, ..., 392905, 392906, 392907],
|
||||
[ 0, 0, 0, ..., 392907, 392907, 392907]]),
|
||||
values=tensor([1.0000e+00, 0.0000e+00, 0.0000e+00, ...,
|
||||
0.0000e+00, 0.0000e+00, 2.1156e-17]),
|
||||
size=(392908, 392908), nnz=12968200, layout=torch.sparse_coo)
|
||||
tensor([0.8475, 0.2021, 0.3393, ..., 0.1129, 0.8066, 0.4919])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: test1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392908, 392908])
|
||||
Rows: 392908
|
||||
Size: 154376696464
|
||||
NNZ: 12968200
|
||||
Density: 8.400361127706946e-05
|
||||
Time: 10.235199689865112 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 8, ..., 392905, 392906, 392907],
|
||||
[ 0, 0, 0, ..., 392907, 392907, 392907]]),
|
||||
values=tensor([1.0000e+00, 0.0000e+00, 0.0000e+00, ...,
|
||||
0.0000e+00, 0.0000e+00, 2.1156e-17]),
|
||||
size=(392908, 392908), nnz=12968200, layout=torch.sparse_coo)
|
||||
tensor([0.8475, 0.2021, 0.3393, ..., 0.1129, 0.8066, 0.4919])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: test1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392908, 392908])
|
||||
Rows: 392908
|
||||
Size: 154376696464
|
||||
NNZ: 12968200
|
||||
Density: 8.400361127706946e-05
|
||||
Time: 10.235199689865112 seconds
|
||||
|
||||
[39.34, 40.0, 39.04, 38.84, 38.72, 38.76, 38.81, 39.11, 39.25, 39.21]
|
||||
[65.82]
|
||||
14.941608190536499
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 28, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'test1', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [392908, 392908], 'MATRIX_ROWS': 392908, 'MATRIX_SIZE': 154376696464, 'MATRIX_NNZ': 12968200, 'MATRIX_DENSITY': 8.400361127706946e-05, 'TIME_S': 10.235199689865112, 'TIME_S_1KI': 365.54284606661116, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 983.4566511011122, 'W': 65.82}
|
||||
[39.34, 40.0, 39.04, 38.84, 38.72, 38.76, 38.81, 39.11, 39.25, 39.21, 40.9, 38.68, 39.21, 38.85, 39.04, 38.67, 39.25, 38.75, 39.48, 38.9]
|
||||
703.635
|
||||
35.18175
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 28, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'test1', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [392908, 392908], 'MATRIX_ROWS': 392908, 'MATRIX_SIZE': 154376696464, 'MATRIX_NNZ': 12968200, 'MATRIX_DENSITY': 8.400361127706946e-05, 'TIME_S': 10.235199689865112, 'TIME_S_1KI': 365.54284606661116, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 983.4566511011122, 'W': 65.82, 'J_1KI': 35123.45182503972, 'W_1KI': 2350.7142857142853, 'W_D': 30.638249999999992, 'J_D': 457.7847271437048, 'W_D_1KI': 1094.223214285714, 'J_D_1KI': 39079.400510204076}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 78, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "amazon0312", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400727, 400727], "MATRIX_ROWS": 400727, "MATRIX_SIZE": 160582128529, "MATRIX_NNZ": 3200440, "MATRIX_DENSITY": 1.9930237750099465e-05, "TIME_S": 10.350221633911133, "TIME_S_1KI": 132.69514915270682, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 787.6715193271638, "W": 52.7, "J_1KI": 10098.352811886714, "W_1KI": 675.6410256410256, "W_D": 35.49875, "J_D": 530.5759838086367, "W_D_1KI": 455.1121794871795, "J_D_1KI": 5834.771531886917}
|
@ -0,0 +1,59 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '10', '-m', 'matrices/389000+_cols/amazon0312.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "amazon0312", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400727, 400727], "MATRIX_ROWS": 400727, "MATRIX_SIZE": 160582128529, "MATRIX_NNZ": 3200440, "MATRIX_DENSITY": 1.9930237750099465e-05, "TIME_S": 1.3456165790557861}
|
||||
|
||||
tensor(indices=tensor([[ 1, 2, 0, ..., 400725, 400724, 400707],
|
||||
[ 0, 0, 1, ..., 400724, 400725, 400726]]),
|
||||
values=tensor([1., 1., 1., ..., 1., 1., 1.]),
|
||||
size=(400727, 400727), nnz=3200440, layout=torch.sparse_coo)
|
||||
tensor([0.7578, 0.8738, 0.7812, ..., 0.1908, 0.2600, 0.1843])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: amazon0312
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400727, 400727])
|
||||
Rows: 400727
|
||||
Size: 160582128529
|
||||
NNZ: 3200440
|
||||
Density: 1.9930237750099465e-05
|
||||
Time: 1.3456165790557861 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '78', '-m', 'matrices/389000+_cols/amazon0312.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "amazon0312", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400727, 400727], "MATRIX_ROWS": 400727, "MATRIX_SIZE": 160582128529, "MATRIX_NNZ": 3200440, "MATRIX_DENSITY": 1.9930237750099465e-05, "TIME_S": 10.350221633911133}
|
||||
|
||||
tensor(indices=tensor([[ 1, 2, 0, ..., 400725, 400724, 400707],
|
||||
[ 0, 0, 1, ..., 400724, 400725, 400726]]),
|
||||
values=tensor([1., 1., 1., ..., 1., 1., 1.]),
|
||||
size=(400727, 400727), nnz=3200440, layout=torch.sparse_coo)
|
||||
tensor([0.9341, 0.7942, 0.5455, ..., 0.8242, 0.0511, 0.9771])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: amazon0312
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400727, 400727])
|
||||
Rows: 400727
|
||||
Size: 160582128529
|
||||
NNZ: 3200440
|
||||
Density: 1.9930237750099465e-05
|
||||
Time: 10.350221633911133 seconds
|
||||
|
||||
tensor(indices=tensor([[ 1, 2, 0, ..., 400725, 400724, 400707],
|
||||
[ 0, 0, 1, ..., 400724, 400725, 400726]]),
|
||||
values=tensor([1., 1., 1., ..., 1., 1., 1.]),
|
||||
size=(400727, 400727), nnz=3200440, layout=torch.sparse_coo)
|
||||
tensor([0.9341, 0.7942, 0.5455, ..., 0.8242, 0.0511, 0.9771])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: amazon0312
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400727, 400727])
|
||||
Rows: 400727
|
||||
Size: 160582128529
|
||||
NNZ: 3200440
|
||||
Density: 1.9930237750099465e-05
|
||||
Time: 10.350221633911133 seconds
|
||||
|
||||
[19.2, 18.65, 18.64, 18.58, 18.9, 22.43, 19.13, 18.44, 19.45, 18.64]
|
||||
[52.7]
|
||||
14.94632863998413
|
||||
{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 78, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'amazon0312', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400727, 400727], 'MATRIX_ROWS': 400727, 'MATRIX_SIZE': 160582128529, 'MATRIX_NNZ': 3200440, 'MATRIX_DENSITY': 1.9930237750099465e-05, 'TIME_S': 10.350221633911133, 'TIME_S_1KI': 132.69514915270682, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 787.6715193271638, 'W': 52.7}
|
||||
[19.2, 18.65, 18.64, 18.58, 18.9, 22.43, 19.13, 18.44, 19.45, 18.64, 22.48, 18.8, 18.56, 19.18, 18.6, 18.69, 18.73, 18.45, 19.06, 19.15]
|
||||
344.025
|
||||
17.201249999999998
|
||||
{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 78, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'amazon0312', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400727, 400727], 'MATRIX_ROWS': 400727, 'MATRIX_SIZE': 160582128529, 'MATRIX_NNZ': 3200440, 'MATRIX_DENSITY': 1.9930237750099465e-05, 'TIME_S': 10.350221633911133, 'TIME_S_1KI': 132.69514915270682, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 787.6715193271638, 'W': 52.7, 'J_1KI': 10098.352811886714, 'W_1KI': 675.6410256410256, 'W_D': 35.49875, 'J_D': 530.5759838086367, 'W_D_1KI': 455.1121794871795, 'J_D_1KI': 5834.771531886917}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 106, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "helm2d03", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392257, 392257], "MATRIX_ROWS": 392257, "MATRIX_SIZE": 153865554049, "MATRIX_NNZ": 2741935, "MATRIX_DENSITY": 1.7820330332848923e-05, "TIME_S": 10.285914182662964, "TIME_S_1KI": 97.0369262515374, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 778.2659219670296, "W": 53.03, "J_1KI": 7342.131339311601, "W_1KI": 500.28301886792457, "W_D": 35.92175, "J_D": 527.1860057027936, "W_D_1KI": 338.8844339622642, "J_D_1KI": 3197.022961908153}
|
@ -0,0 +1,62 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '10', '-m', 'matrices/389000+_cols/helm2d03.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "helm2d03", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392257, 392257], "MATRIX_ROWS": 392257, "MATRIX_SIZE": 153865554049, "MATRIX_NNZ": 2741935, "MATRIX_DENSITY": 1.7820330332848923e-05, "TIME_S": 0.9858012199401855}
|
||||
|
||||
tensor(indices=tensor([[ 0, 98273, 133833, ..., 392252, 392253, 392254],
|
||||
[ 0, 0, 0, ..., 392256, 392255, 392256]]),
|
||||
values=tensor([ 3.4808, -0.6217, -0.5806, ..., -0.6940, -0.7602,
|
||||
-0.7602]),
|
||||
size=(392257, 392257), nnz=2741935, layout=torch.sparse_coo)
|
||||
tensor([0.5787, 0.8820, 0.9111, ..., 0.9416, 0.9789, 0.7593])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: helm2d03
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392257, 392257])
|
||||
Rows: 392257
|
||||
Size: 153865554049
|
||||
NNZ: 2741935
|
||||
Density: 1.7820330332848923e-05
|
||||
Time: 0.9858012199401855 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '106', '-m', 'matrices/389000+_cols/helm2d03.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "helm2d03", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392257, 392257], "MATRIX_ROWS": 392257, "MATRIX_SIZE": 153865554049, "MATRIX_NNZ": 2741935, "MATRIX_DENSITY": 1.7820330332848923e-05, "TIME_S": 10.285914182662964}
|
||||
|
||||
tensor(indices=tensor([[ 0, 98273, 133833, ..., 392252, 392253, 392254],
|
||||
[ 0, 0, 0, ..., 392256, 392255, 392256]]),
|
||||
values=tensor([ 3.4808, -0.6217, -0.5806, ..., -0.6940, -0.7602,
|
||||
-0.7602]),
|
||||
size=(392257, 392257), nnz=2741935, layout=torch.sparse_coo)
|
||||
tensor([0.1615, 0.5061, 0.8321, ..., 0.7824, 0.7226, 0.3625])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: helm2d03
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392257, 392257])
|
||||
Rows: 392257
|
||||
Size: 153865554049
|
||||
NNZ: 2741935
|
||||
Density: 1.7820330332848923e-05
|
||||
Time: 10.285914182662964 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 98273, 133833, ..., 392252, 392253, 392254],
|
||||
[ 0, 0, 0, ..., 392256, 392255, 392256]]),
|
||||
values=tensor([ 3.4808, -0.6217, -0.5806, ..., -0.6940, -0.7602,
|
||||
-0.7602]),
|
||||
size=(392257, 392257), nnz=2741935, layout=torch.sparse_coo)
|
||||
tensor([0.1615, 0.5061, 0.8321, ..., 0.7824, 0.7226, 0.3625])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: helm2d03
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392257, 392257])
|
||||
Rows: 392257
|
||||
Size: 153865554049
|
||||
NNZ: 2741935
|
||||
Density: 1.7820330332848923e-05
|
||||
Time: 10.285914182662964 seconds
|
||||
|
||||
[19.12, 18.9, 18.8, 22.81, 18.83, 18.49, 19.6, 18.61, 18.53, 18.45]
|
||||
[53.03]
|
||||
14.675955533981323
|
||||
{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 106, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'helm2d03', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [392257, 392257], 'MATRIX_ROWS': 392257, 'MATRIX_SIZE': 153865554049, 'MATRIX_NNZ': 2741935, 'MATRIX_DENSITY': 1.7820330332848923e-05, 'TIME_S': 10.285914182662964, 'TIME_S_1KI': 97.0369262515374, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 778.2659219670296, 'W': 53.03}
|
||||
[19.12, 18.9, 18.8, 22.81, 18.83, 18.49, 19.6, 18.61, 18.53, 18.45, 18.79, 19.35, 18.62, 18.67, 18.63, 18.44, 18.54, 19.16, 18.71, 18.59]
|
||||
342.16499999999996
|
||||
17.108249999999998
|
||||
{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 106, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'helm2d03', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [392257, 392257], 'MATRIX_ROWS': 392257, 'MATRIX_SIZE': 153865554049, 'MATRIX_NNZ': 2741935, 'MATRIX_DENSITY': 1.7820330332848923e-05, 'TIME_S': 10.285914182662964, 'TIME_S_1KI': 97.0369262515374, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 778.2659219670296, 'W': 53.03, 'J_1KI': 7342.131339311601, 'W_1KI': 500.28301886792457, 'W_D': 35.92175, 'J_D': 527.1860057027936, 'W_D_1KI': 338.8844339622642, 'J_D_1KI': 3197.022961908153}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 219, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "language", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [399130, 399130], "MATRIX_ROWS": 399130, "MATRIX_SIZE": 159304756900, "MATRIX_NNZ": 1216334, "MATRIX_DENSITY": 7.635264782228233e-06, "TIME_S": 10.081467151641846, "TIME_S_1KI": 46.034096582839474, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 753.2577638244628, "W": 53.12, "J_1KI": 3439.533168148232, "W_1KI": 242.55707762557077, "W_D": 36.251999999999995, "J_D": 514.0643910799026, "W_D_1KI": 165.53424657534242, "J_D_1KI": 755.8641396134357}
|
@ -0,0 +1,59 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '10', '-m', 'matrices/389000+_cols/language.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "language", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [399130, 399130], "MATRIX_ROWS": 399130, "MATRIX_SIZE": 159304756900, "MATRIX_NNZ": 1216334, "MATRIX_DENSITY": 7.635264782228233e-06, "TIME_S": 0.4792313575744629}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 1, ..., 399128, 398241, 399129],
|
||||
[ 0, 0, 1, ..., 399128, 399129, 399129]]),
|
||||
values=tensor([ 1., -1., 1., ..., 1., -1., 1.]),
|
||||
size=(399130, 399130), nnz=1216334, layout=torch.sparse_coo)
|
||||
tensor([0.5325, 0.3541, 0.4678, ..., 0.7358, 0.9635, 0.6558])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: language
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([399130, 399130])
|
||||
Rows: 399130
|
||||
Size: 159304756900
|
||||
NNZ: 1216334
|
||||
Density: 7.635264782228233e-06
|
||||
Time: 0.4792313575744629 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '219', '-m', 'matrices/389000+_cols/language.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "language", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [399130, 399130], "MATRIX_ROWS": 399130, "MATRIX_SIZE": 159304756900, "MATRIX_NNZ": 1216334, "MATRIX_DENSITY": 7.635264782228233e-06, "TIME_S": 10.081467151641846}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 1, ..., 399128, 398241, 399129],
|
||||
[ 0, 0, 1, ..., 399128, 399129, 399129]]),
|
||||
values=tensor([ 1., -1., 1., ..., 1., -1., 1.]),
|
||||
size=(399130, 399130), nnz=1216334, layout=torch.sparse_coo)
|
||||
tensor([0.8318, 0.2147, 0.8221, ..., 0.0090, 0.7154, 0.3050])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: language
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([399130, 399130])
|
||||
Rows: 399130
|
||||
Size: 159304756900
|
||||
NNZ: 1216334
|
||||
Density: 7.635264782228233e-06
|
||||
Time: 10.081467151641846 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 1, ..., 399128, 398241, 399129],
|
||||
[ 0, 0, 1, ..., 399128, 399129, 399129]]),
|
||||
values=tensor([ 1., -1., 1., ..., 1., -1., 1.]),
|
||||
size=(399130, 399130), nnz=1216334, layout=torch.sparse_coo)
|
||||
tensor([0.8318, 0.2147, 0.8221, ..., 0.0090, 0.7154, 0.3050])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: language
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([399130, 399130])
|
||||
Rows: 399130
|
||||
Size: 159304756900
|
||||
NNZ: 1216334
|
||||
Density: 7.635264782228233e-06
|
||||
Time: 10.081467151641846 seconds
|
||||
|
||||
[19.37, 18.43, 18.79, 18.48, 19.21, 18.42, 18.51, 18.77, 18.93, 18.43]
|
||||
[53.12]
|
||||
14.180304288864136
|
||||
{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 219, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'language', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [399130, 399130], 'MATRIX_ROWS': 399130, 'MATRIX_SIZE': 159304756900, 'MATRIX_NNZ': 1216334, 'MATRIX_DENSITY': 7.635264782228233e-06, 'TIME_S': 10.081467151641846, 'TIME_S_1KI': 46.034096582839474, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 753.2577638244628, 'W': 53.12}
|
||||
[19.37, 18.43, 18.79, 18.48, 19.21, 18.42, 18.51, 18.77, 18.93, 18.43, 18.85, 18.82, 18.68, 18.43, 18.68, 18.59, 19.18, 18.54, 18.67, 19.81]
|
||||
337.36
|
||||
16.868000000000002
|
||||
{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 219, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'language', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [399130, 399130], 'MATRIX_ROWS': 399130, 'MATRIX_SIZE': 159304756900, 'MATRIX_NNZ': 1216334, 'MATRIX_DENSITY': 7.635264782228233e-06, 'TIME_S': 10.081467151641846, 'TIME_S_1KI': 46.034096582839474, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 753.2577638244628, 'W': 53.12, 'J_1KI': 3439.533168148232, 'W_1KI': 242.55707762557077, 'W_D': 36.251999999999995, 'J_D': 514.0643910799026, 'W_D_1KI': 165.53424657534242, 'J_D_1KI': 755.8641396134357}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 47, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "marine1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400320, 400320], "MATRIX_ROWS": 400320, "MATRIX_SIZE": 160256102400, "MATRIX_NNZ": 6226538, "MATRIX_DENSITY": 3.885367175883594e-05, "TIME_S": 10.328421354293823, "TIME_S_1KI": 219.7536458360388, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 848.0926424980164, "W": 53.2, "J_1KI": 18044.524308468437, "W_1KI": 1131.9148936170213, "W_D": 36.205000000000005, "J_D": 577.1653030383587, "W_D_1KI": 770.3191489361703, "J_D_1KI": 16389.769126301493}
|
@ -0,0 +1,62 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '10', '-m', 'matrices/389000+_cols/marine1.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "marine1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400320, 400320], "MATRIX_ROWS": 400320, "MATRIX_SIZE": 160256102400, "MATRIX_NNZ": 6226538, "MATRIX_DENSITY": 3.885367175883594e-05, "TIME_S": 2.2054905891418457}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 10383, ..., 400315, 400318, 400319],
|
||||
[ 0, 0, 0, ..., 400319, 400319, 400319]]),
|
||||
values=tensor([ 6.2373e+03, 3.4166e-01, -6.5085e+00, ...,
|
||||
-9.6129e-01, -6.8118e-01, 1.7595e+01]),
|
||||
size=(400320, 400320), nnz=6226538, layout=torch.sparse_coo)
|
||||
tensor([0.9154, 0.1846, 0.9485, ..., 0.4631, 0.0963, 0.4258])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: marine1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400320, 400320])
|
||||
Rows: 400320
|
||||
Size: 160256102400
|
||||
NNZ: 6226538
|
||||
Density: 3.885367175883594e-05
|
||||
Time: 2.2054905891418457 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '47', '-m', 'matrices/389000+_cols/marine1.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "marine1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400320, 400320], "MATRIX_ROWS": 400320, "MATRIX_SIZE": 160256102400, "MATRIX_NNZ": 6226538, "MATRIX_DENSITY": 3.885367175883594e-05, "TIME_S": 10.328421354293823}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 10383, ..., 400315, 400318, 400319],
|
||||
[ 0, 0, 0, ..., 400319, 400319, 400319]]),
|
||||
values=tensor([ 6.2373e+03, 3.4166e-01, -6.5085e+00, ...,
|
||||
-9.6129e-01, -6.8118e-01, 1.7595e+01]),
|
||||
size=(400320, 400320), nnz=6226538, layout=torch.sparse_coo)
|
||||
tensor([0.7453, 0.6480, 0.1736, ..., 0.9772, 0.4216, 0.4950])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: marine1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400320, 400320])
|
||||
Rows: 400320
|
||||
Size: 160256102400
|
||||
NNZ: 6226538
|
||||
Density: 3.885367175883594e-05
|
||||
Time: 10.328421354293823 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 10383, ..., 400315, 400318, 400319],
|
||||
[ 0, 0, 0, ..., 400319, 400319, 400319]]),
|
||||
values=tensor([ 6.2373e+03, 3.4166e-01, -6.5085e+00, ...,
|
||||
-9.6129e-01, -6.8118e-01, 1.7595e+01]),
|
||||
size=(400320, 400320), nnz=6226538, layout=torch.sparse_coo)
|
||||
tensor([0.7453, 0.6480, 0.1736, ..., 0.9772, 0.4216, 0.4950])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: marine1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400320, 400320])
|
||||
Rows: 400320
|
||||
Size: 160256102400
|
||||
NNZ: 6226538
|
||||
Density: 3.885367175883594e-05
|
||||
Time: 10.328421354293823 seconds
|
||||
|
||||
[18.94, 19.02, 18.78, 18.59, 18.75, 18.93, 18.73, 18.66, 18.56, 18.95]
|
||||
[53.2]
|
||||
15.941591024398804
|
||||
{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 47, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'marine1', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400320, 400320], 'MATRIX_ROWS': 400320, 'MATRIX_SIZE': 160256102400, 'MATRIX_NNZ': 6226538, 'MATRIX_DENSITY': 3.885367175883594e-05, 'TIME_S': 10.328421354293823, 'TIME_S_1KI': 219.7536458360388, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 848.0926424980164, 'W': 53.2}
|
||||
[18.94, 19.02, 18.78, 18.59, 18.75, 18.93, 18.73, 18.66, 18.56, 18.95, 19.13, 19.14, 18.57, 19.66, 18.71, 18.74, 18.64, 19.29, 19.21, 18.82]
|
||||
339.9
|
||||
16.994999999999997
|
||||
{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 47, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'marine1', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400320, 400320], 'MATRIX_ROWS': 400320, 'MATRIX_SIZE': 160256102400, 'MATRIX_NNZ': 6226538, 'MATRIX_DENSITY': 3.885367175883594e-05, 'TIME_S': 10.328421354293823, 'TIME_S_1KI': 219.7536458360388, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 848.0926424980164, 'W': 53.2, 'J_1KI': 18044.524308468437, 'W_1KI': 1131.9148936170213, 'W_D': 36.205000000000005, 'J_D': 577.1653030383587, 'W_D_1KI': 770.3191489361703, 'J_D_1KI': 16389.769126301493}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 132, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "mario002", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [389874, 389874], "MATRIX_ROWS": 389874, "MATRIX_SIZE": 152001735876, "MATRIX_NNZ": 2101242, "MATRIX_DENSITY": 1.3823802655215408e-05, "TIME_S": 10.172460079193115, "TIME_S_1KI": 77.06409150903876, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 767.5956591558457, "W": 53.09, "J_1KI": 5815.118629968528, "W_1KI": 402.19696969696975, "W_D": 36.18225, "J_D": 523.1369003294707, "W_D_1KI": 274.10795454545456, "J_D_1KI": 2076.5754132231405}
|
@ -0,0 +1,59 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '10', '-m', 'matrices/389000+_cols/mario002.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "mario002", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [389874, 389874], "MATRIX_ROWS": 389874, "MATRIX_SIZE": 152001735876, "MATRIX_NNZ": 2101242, "MATRIX_DENSITY": 1.3823802655215408e-05, "TIME_S": 0.793898344039917}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1027, 1028, ..., 234126, 234127, 234127],
|
||||
[ 0, 0, 0, ..., 389703, 389823, 389873]]),
|
||||
values=tensor([ 1., 0., 0., ..., -1., 1., -1.]),
|
||||
size=(389874, 389874), nnz=2101242, layout=torch.sparse_coo)
|
||||
tensor([0.8898, 0.1489, 0.9742, ..., 0.4998, 0.5403, 0.0371])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: mario002
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([389874, 389874])
|
||||
Rows: 389874
|
||||
Size: 152001735876
|
||||
NNZ: 2101242
|
||||
Density: 1.3823802655215408e-05
|
||||
Time: 0.793898344039917 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '132', '-m', 'matrices/389000+_cols/mario002.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "mario002", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [389874, 389874], "MATRIX_ROWS": 389874, "MATRIX_SIZE": 152001735876, "MATRIX_NNZ": 2101242, "MATRIX_DENSITY": 1.3823802655215408e-05, "TIME_S": 10.172460079193115}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1027, 1028, ..., 234126, 234127, 234127],
|
||||
[ 0, 0, 0, ..., 389703, 389823, 389873]]),
|
||||
values=tensor([ 1., 0., 0., ..., -1., 1., -1.]),
|
||||
size=(389874, 389874), nnz=2101242, layout=torch.sparse_coo)
|
||||
tensor([0.5137, 0.2358, 0.1035, ..., 0.9637, 0.3715, 0.6203])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: mario002
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([389874, 389874])
|
||||
Rows: 389874
|
||||
Size: 152001735876
|
||||
NNZ: 2101242
|
||||
Density: 1.3823802655215408e-05
|
||||
Time: 10.172460079193115 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1027, 1028, ..., 234126, 234127, 234127],
|
||||
[ 0, 0, 0, ..., 389703, 389823, 389873]]),
|
||||
values=tensor([ 1., 0., 0., ..., -1., 1., -1.]),
|
||||
size=(389874, 389874), nnz=2101242, layout=torch.sparse_coo)
|
||||
tensor([0.5137, 0.2358, 0.1035, ..., 0.9637, 0.3715, 0.6203])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: mario002
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([389874, 389874])
|
||||
Rows: 389874
|
||||
Size: 152001735876
|
||||
NNZ: 2101242
|
||||
Density: 1.3823802655215408e-05
|
||||
Time: 10.172460079193115 seconds
|
||||
|
||||
[19.27, 18.6, 18.6, 18.55, 19.15, 18.64, 18.76, 18.6, 18.82, 18.72]
|
||||
[53.09]
|
||||
14.458384990692139
|
||||
{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 132, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'mario002', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [389874, 389874], 'MATRIX_ROWS': 389874, 'MATRIX_SIZE': 152001735876, 'MATRIX_NNZ': 2101242, 'MATRIX_DENSITY': 1.3823802655215408e-05, 'TIME_S': 10.172460079193115, 'TIME_S_1KI': 77.06409150903876, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 767.5956591558457, 'W': 53.09}
|
||||
[19.27, 18.6, 18.6, 18.55, 19.15, 18.64, 18.76, 18.6, 18.82, 18.72, 19.0, 18.93, 18.7, 18.52, 19.04, 18.69, 18.61, 19.44, 18.55, 18.92]
|
||||
338.15500000000003
|
||||
16.90775
|
||||
{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 132, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'mario002', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [389874, 389874], 'MATRIX_ROWS': 389874, 'MATRIX_SIZE': 152001735876, 'MATRIX_NNZ': 2101242, 'MATRIX_DENSITY': 1.3823802655215408e-05, 'TIME_S': 10.172460079193115, 'TIME_S_1KI': 77.06409150903876, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 767.5956591558457, 'W': 53.09, 'J_1KI': 5815.118629968528, 'W_1KI': 402.19696969696975, 'W_D': 36.18225, 'J_D': 523.1369003294707, 'W_D_1KI': 274.10795454545456, 'J_D_1KI': 2076.5754132231405}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 14, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 10.008709192276001, "TIME_S_1KI": 714.9077994482858, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 955.895040435791, "W": 53.04, "J_1KI": 68278.21717398507, "W_1KI": 3788.571428571429, "W_D": 35.94475, "J_D": 647.8018147568703, "W_D_1KI": 2567.4821428571427, "J_D_1KI": 183391.58163265305}
|
@ -0,0 +1,404 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '10', '-m', 'matrices/389000+_cols/msdoor.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 7.149646043777466}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.4270, 0.9384, 0.2665, ..., 0.7177, 0.4933, 0.4549])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 7.149646043777466 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '14', '-m', 'matrices/389000+_cols/msdoor.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 9.972968816757202}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.5247, 0.1965, 0.7606, ..., 0.5588, 0.4684, 0.1754])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 9.972968816757202 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '14', '-m', 'matrices/389000+_cols/msdoor.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 9.98602557182312}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.0779, 0.3172, 0.6799, ..., 0.9981, 0.3663, 0.1970])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 9.98602557182312 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '14', '-m', 'matrices/389000+_cols/msdoor.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 9.949983835220337}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.2518, 0.3965, 0.5320, ..., 0.4210, 0.1428, 0.7734])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 9.949983835220337 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '14', '-m', 'matrices/389000+_cols/msdoor.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 9.9870445728302}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.7551, 0.4255, 0.7624, ..., 0.4007, 0.7952, 0.2894])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 9.9870445728302 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '14', '-m', 'matrices/389000+_cols/msdoor.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 9.973373651504517}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.9967, 0.1454, 0.2333, ..., 0.9324, 0.0464, 0.2973])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 9.973373651504517 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '14', '-m', 'matrices/389000+_cols/msdoor.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 9.973536491394043}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.6325, 0.0028, 0.6734, ..., 0.0881, 0.4500, 0.5369])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 9.973536491394043 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '14', '-m', 'matrices/389000+_cols/msdoor.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 9.992650032043457}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.9537, 0.2320, 0.7565, ..., 0.7968, 0.5157, 0.3014])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 9.992650032043457 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '14', '-m', 'matrices/389000+_cols/msdoor.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 9.969851970672607}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.3555, 0.6938, 0.5714, ..., 0.2348, 0.2677, 0.2439])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 9.969851970672607 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '14', '-m', 'matrices/389000+_cols/msdoor.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 9.973334789276123}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.7581, 0.3394, 0.7419, ..., 0.7547, 0.6357, 0.7871])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 9.973334789276123 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '14', '-m', 'matrices/389000+_cols/msdoor.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 9.937070846557617}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.5569, 0.0927, 0.2275, ..., 0.5572, 0.9512, 0.1847])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 9.937070846557617 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '14', '-m', 'matrices/389000+_cols/msdoor.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 9.971911668777466}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.6304, 0.5832, 0.2157, ..., 0.9196, 0.6652, 0.7735])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 9.971911668777466 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '14', '-m', 'matrices/389000+_cols/msdoor.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 9.967936277389526}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.2648, 0.7991, 0.5355, ..., 0.4869, 0.7677, 0.9205])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 9.967936277389526 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '14', '-m', 'matrices/389000+_cols/msdoor.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 9.964876651763916}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.0127, 0.9938, 0.5553, ..., 0.5215, 0.7551, 0.5181])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 9.964876651763916 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '14', '-m', 'matrices/389000+_cols/msdoor.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 9.992077589035034}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.0026, 0.2507, 0.3727, ..., 0.6456, 0.2209, 0.4356])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 9.992077589035034 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '14', '-m', 'matrices/389000+_cols/msdoor.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 9.977496862411499}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.3082, 0.6327, 0.0200, ..., 0.5716, 0.7192, 0.6823])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 9.977496862411499 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '14', '-m', 'matrices/389000+_cols/msdoor.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 9.931846380233765}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.3581, 0.9802, 0.8077, ..., 0.7454, 0.5052, 0.9462])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 9.931846380233765 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '14', '-m', 'matrices/389000+_cols/msdoor.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 9.989314556121826}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.3287, 0.3284, 0.4162, ..., 0.4320, 0.8952, 0.1103])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 9.989314556121826 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '14', '-m', 'matrices/389000+_cols/msdoor.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 9.969291925430298}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.2881, 0.6498, 0.9589, ..., 0.8958, 0.1524, 0.8544])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 9.969291925430298 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '14', '-m', 'matrices/389000+_cols/msdoor.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 10.008709192276001}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.6190, 0.5034, 0.4351, ..., 0.0985, 0.6351, 0.4877])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 10.008709192276001 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.6190, 0.5034, 0.4351, ..., 0.0985, 0.6351, 0.4877])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 10.008709192276001 seconds
|
||||
|
||||
[20.25, 18.56, 18.73, 18.71, 22.56, 18.98, 18.96, 19.61, 18.42, 18.67]
|
||||
[53.04]
|
||||
18.022153854370117
|
||||
{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 14, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'msdoor', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [415863, 415863], 'MATRIX_ROWS': 415863, 'MATRIX_SIZE': 172942034769, 'MATRIX_NNZ': 20240935, 'MATRIX_DENSITY': 0.00011703883921012015, 'TIME_S': 10.008709192276001, 'TIME_S_1KI': 714.9077994482858, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 955.895040435791, 'W': 53.04}
|
||||
[20.25, 18.56, 18.73, 18.71, 22.56, 18.98, 18.96, 19.61, 18.42, 18.67, 18.86, 18.82, 18.62, 18.64, 18.59, 18.56, 18.62, 18.75, 18.56, 18.65]
|
||||
341.90500000000003
|
||||
17.09525
|
||||
{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 14, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'msdoor', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [415863, 415863], 'MATRIX_ROWS': 415863, 'MATRIX_SIZE': 172942034769, 'MATRIX_NNZ': 20240935, 'MATRIX_DENSITY': 0.00011703883921012015, 'TIME_S': 10.008709192276001, 'TIME_S_1KI': 714.9077994482858, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 955.895040435791, 'W': 53.04, 'J_1KI': 68278.21717398507, 'W_1KI': 3788.571428571429, 'W_D': 35.94475, 'J_D': 647.8018147568703, 'W_D_1KI': 2567.4821428571427, 'J_D_1KI': 183391.58163265305}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 22, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "test1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392908, 392908], "MATRIX_ROWS": 392908, "MATRIX_SIZE": 154376696464, "MATRIX_NNZ": 12968200, "MATRIX_DENSITY": 8.400361127706946e-05, "TIME_S": 10.045366048812866, "TIME_S_1KI": 456.60754767331207, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 928.9941940283776, "W": 53.27, "J_1KI": 42227.0088194717, "W_1KI": 2421.3636363636365, "W_D": 36.00625000000001, "J_D": 627.925609137118, "W_D_1KI": 1636.6477272727275, "J_D_1KI": 74393.07851239669}
|
@ -0,0 +1,62 @@
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '10', '-m', 'matrices/389000+_cols/test1.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "test1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392908, 392908], "MATRIX_ROWS": 392908, "MATRIX_SIZE": 154376696464, "MATRIX_NNZ": 12968200, "MATRIX_DENSITY": 8.400361127706946e-05, "TIME_S": 4.5700438022613525}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 8, ..., 392905, 392906, 392907],
|
||||
[ 0, 0, 0, ..., 392907, 392907, 392907]]),
|
||||
values=tensor([1.0000e+00, 0.0000e+00, 0.0000e+00, ...,
|
||||
0.0000e+00, 0.0000e+00, 2.1156e-17]),
|
||||
size=(392908, 392908), nnz=12968200, layout=torch.sparse_coo)
|
||||
tensor([0.6505, 0.6654, 0.6056, ..., 0.6609, 0.0170, 0.3740])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: test1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392908, 392908])
|
||||
Rows: 392908
|
||||
Size: 154376696464
|
||||
NNZ: 12968200
|
||||
Density: 8.400361127706946e-05
|
||||
Time: 4.5700438022613525 seconds
|
||||
|
||||
['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'suitesparse', 'coo', '22', '-m', 'matrices/389000+_cols/test1.mtx', '-c', '1']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "test1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392908, 392908], "MATRIX_ROWS": 392908, "MATRIX_SIZE": 154376696464, "MATRIX_NNZ": 12968200, "MATRIX_DENSITY": 8.400361127706946e-05, "TIME_S": 10.045366048812866}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 8, ..., 392905, 392906, 392907],
|
||||
[ 0, 0, 0, ..., 392907, 392907, 392907]]),
|
||||
values=tensor([1.0000e+00, 0.0000e+00, 0.0000e+00, ...,
|
||||
0.0000e+00, 0.0000e+00, 2.1156e-17]),
|
||||
size=(392908, 392908), nnz=12968200, layout=torch.sparse_coo)
|
||||
tensor([0.0459, 0.1339, 0.9347, ..., 0.3071, 0.2663, 0.1014])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: test1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392908, 392908])
|
||||
Rows: 392908
|
||||
Size: 154376696464
|
||||
NNZ: 12968200
|
||||
Density: 8.400361127706946e-05
|
||||
Time: 10.045366048812866 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 8, ..., 392905, 392906, 392907],
|
||||
[ 0, 0, 0, ..., 392907, 392907, 392907]]),
|
||||
values=tensor([1.0000e+00, 0.0000e+00, 0.0000e+00, ...,
|
||||
0.0000e+00, 0.0000e+00, 2.1156e-17]),
|
||||
size=(392908, 392908), nnz=12968200, layout=torch.sparse_coo)
|
||||
tensor([0.0459, 0.1339, 0.9347, ..., 0.3071, 0.2663, 0.1014])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: test1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392908, 392908])
|
||||
Rows: 392908
|
||||
Size: 154376696464
|
||||
NNZ: 12968200
|
||||
Density: 8.400361127706946e-05
|
||||
Time: 10.045366048812866 seconds
|
||||
|
||||
[18.94, 18.73, 18.57, 18.48, 19.58, 18.68, 18.58, 18.52, 23.0, 19.12]
|
||||
[53.27]
|
||||
17.439350366592407
|
||||
{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 22, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'test1', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [392908, 392908], 'MATRIX_ROWS': 392908, 'MATRIX_SIZE': 154376696464, 'MATRIX_NNZ': 12968200, 'MATRIX_DENSITY': 8.400361127706946e-05, 'TIME_S': 10.045366048812866, 'TIME_S_1KI': 456.60754767331207, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 928.9941940283776, 'W': 53.27}
|
||||
[18.94, 18.73, 18.57, 18.48, 19.58, 18.68, 18.58, 18.52, 23.0, 19.12, 22.25, 19.69, 18.98, 19.56, 18.77, 18.68, 18.66, 18.59, 18.71, 18.68]
|
||||
345.275
|
||||
17.263749999999998
|
||||
{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 22, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'test1', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [392908, 392908], 'MATRIX_ROWS': 392908, 'MATRIX_SIZE': 154376696464, 'MATRIX_NNZ': 12968200, 'MATRIX_DENSITY': 8.400361127706946e-05, 'TIME_S': 10.045366048812866, 'TIME_S_1KI': 456.60754767331207, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 928.9941940283776, 'W': 53.27, 'J_1KI': 42227.0088194717, 'W_1KI': 2421.3636363636365, 'W_D': 36.00625000000001, 'J_D': 627.925609137118, 'W_D_1KI': 1636.6477272727275, 'J_D_1KI': 74393.07851239669}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Altra", "CORES": 80, "ITERATIONS": 98, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "amazon0312", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400727, 400727], "MATRIX_ROWS": 400727, "MATRIX_SIZE": 160582128529, "MATRIX_NNZ": 3200440, "MATRIX_DENSITY": 1.9930237750099465e-05, "TIME_S": 12.50285267829895, "TIME_S_1KI": 127.58012937039744, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 761.8362645149232, "W": 56.19937520270966, "J_1KI": 7773.839433825747, "W_1KI": 573.4630122725476, "W_D": 37.23637520270966, "J_D": 504.7746685116292, "W_D_1KI": 379.96301227254753, "J_D_1KI": 3877.173594617832}
|
@ -0,0 +1,59 @@
|
||||
['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 10 -m matrices/389000+_cols/amazon0312.mtx']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "amazon0312", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400727, 400727], "MATRIX_ROWS": 400727, "MATRIX_SIZE": 160582128529, "MATRIX_NNZ": 3200440, "MATRIX_DENSITY": 1.9930237750099465e-05, "TIME_S": 1.0661427974700928}
|
||||
|
||||
tensor(indices=tensor([[ 1, 2, 0, ..., 400725, 400724, 400707],
|
||||
[ 0, 0, 1, ..., 400724, 400725, 400726]]),
|
||||
values=tensor([1., 1., 1., ..., 1., 1., 1.]),
|
||||
size=(400727, 400727), nnz=3200440, layout=torch.sparse_coo)
|
||||
tensor([0.9505, 0.6447, 0.0685, ..., 0.2560, 0.0763, 0.0408])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: amazon0312
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400727, 400727])
|
||||
Rows: 400727
|
||||
Size: 160582128529
|
||||
NNZ: 3200440
|
||||
Density: 1.9930237750099465e-05
|
||||
Time: 1.0661427974700928 seconds
|
||||
|
||||
['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 98 -m matrices/389000+_cols/amazon0312.mtx']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "amazon0312", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400727, 400727], "MATRIX_ROWS": 400727, "MATRIX_SIZE": 160582128529, "MATRIX_NNZ": 3200440, "MATRIX_DENSITY": 1.9930237750099465e-05, "TIME_S": 12.50285267829895}
|
||||
|
||||
tensor(indices=tensor([[ 1, 2, 0, ..., 400725, 400724, 400707],
|
||||
[ 0, 0, 1, ..., 400724, 400725, 400726]]),
|
||||
values=tensor([1., 1., 1., ..., 1., 1., 1.]),
|
||||
size=(400727, 400727), nnz=3200440, layout=torch.sparse_coo)
|
||||
tensor([0.0494, 0.3118, 0.4120, ..., 0.6848, 0.1070, 0.9280])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: amazon0312
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400727, 400727])
|
||||
Rows: 400727
|
||||
Size: 160582128529
|
||||
NNZ: 3200440
|
||||
Density: 1.9930237750099465e-05
|
||||
Time: 12.50285267829895 seconds
|
||||
|
||||
tensor(indices=tensor([[ 1, 2, 0, ..., 400725, 400724, 400707],
|
||||
[ 0, 0, 1, ..., 400724, 400725, 400726]]),
|
||||
values=tensor([1., 1., 1., ..., 1., 1., 1.]),
|
||||
size=(400727, 400727), nnz=3200440, layout=torch.sparse_coo)
|
||||
tensor([0.0494, 0.3118, 0.4120, ..., 0.6848, 0.1070, 0.9280])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: amazon0312
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400727, 400727])
|
||||
Rows: 400727
|
||||
Size: 160582128529
|
||||
NNZ: 3200440
|
||||
Density: 1.9930237750099465e-05
|
||||
Time: 12.50285267829895 seconds
|
||||
|
||||
[20.92, 21.0, 20.96, 20.92, 21.0, 21.08, 21.08, 21.04, 21.28, 21.48]
|
||||
[21.4, 21.48, 21.84, 24.88, 26.6, 42.48, 58.16, 73.52, 88.32, 98.92, 96.68, 96.8, 96.08]
|
||||
13.5559561252594
|
||||
{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 98, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'amazon0312', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400727, 400727], 'MATRIX_ROWS': 400727, 'MATRIX_SIZE': 160582128529, 'MATRIX_NNZ': 3200440, 'MATRIX_DENSITY': 1.9930237750099465e-05, 'TIME_S': 12.50285267829895, 'TIME_S_1KI': 127.58012937039744, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 761.8362645149232, 'W': 56.19937520270966}
|
||||
[20.92, 21.0, 20.96, 20.92, 21.0, 21.08, 21.08, 21.04, 21.28, 21.48, 21.0, 21.0, 21.32, 21.56, 21.28, 21.2, 20.84, 20.68, 20.8, 21.04]
|
||||
379.26
|
||||
18.963
|
||||
{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 98, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'amazon0312', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400727, 400727], 'MATRIX_ROWS': 400727, 'MATRIX_SIZE': 160582128529, 'MATRIX_NNZ': 3200440, 'MATRIX_DENSITY': 1.9930237750099465e-05, 'TIME_S': 12.50285267829895, 'TIME_S_1KI': 127.58012937039744, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 761.8362645149232, 'W': 56.19937520270966, 'J_1KI': 7773.839433825747, 'W_1KI': 573.4630122725476, 'W_D': 37.23637520270966, 'J_D': 504.7746685116292, 'W_D_1KI': 379.96301227254753, 'J_D_1KI': 3877.173594617832}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Altra", "CORES": 80, "ITERATIONS": 116, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "helm2d03", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392257, 392257], "MATRIX_ROWS": 392257, "MATRIX_SIZE": 153865554049, "MATRIX_NNZ": 2741935, "MATRIX_DENSITY": 1.7820330332848923e-05, "TIME_S": 10.264106750488281, "TIME_S_1KI": 88.48367888351967, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 758.778782119751, "W": 52.35927656500255, "J_1KI": 6541.19639758406, "W_1KI": 451.37307383622885, "W_D": 33.57727656500255, "J_D": 486.59429026412954, "W_D_1KI": 289.4592807327806, "J_D_1KI": 2495.3386270067294}
|
@ -0,0 +1,62 @@
|
||||
['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 10 -m matrices/389000+_cols/helm2d03.mtx']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "helm2d03", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392257, 392257], "MATRIX_ROWS": 392257, "MATRIX_SIZE": 153865554049, "MATRIX_NNZ": 2741935, "MATRIX_DENSITY": 1.7820330332848923e-05, "TIME_S": 0.9020431041717529}
|
||||
|
||||
tensor(indices=tensor([[ 0, 98273, 133833, ..., 392252, 392253, 392254],
|
||||
[ 0, 0, 0, ..., 392256, 392255, 392256]]),
|
||||
values=tensor([ 3.4808, -0.6217, -0.5806, ..., -0.6940, -0.7602,
|
||||
-0.7602]),
|
||||
size=(392257, 392257), nnz=2741935, layout=torch.sparse_coo)
|
||||
tensor([0.0879, 0.8018, 0.5457, ..., 0.6785, 0.5012, 0.4748])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: helm2d03
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392257, 392257])
|
||||
Rows: 392257
|
||||
Size: 153865554049
|
||||
NNZ: 2741935
|
||||
Density: 1.7820330332848923e-05
|
||||
Time: 0.9020431041717529 seconds
|
||||
|
||||
['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 116 -m matrices/389000+_cols/helm2d03.mtx']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "helm2d03", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392257, 392257], "MATRIX_ROWS": 392257, "MATRIX_SIZE": 153865554049, "MATRIX_NNZ": 2741935, "MATRIX_DENSITY": 1.7820330332848923e-05, "TIME_S": 10.264106750488281}
|
||||
|
||||
tensor(indices=tensor([[ 0, 98273, 133833, ..., 392252, 392253, 392254],
|
||||
[ 0, 0, 0, ..., 392256, 392255, 392256]]),
|
||||
values=tensor([ 3.4808, -0.6217, -0.5806, ..., -0.6940, -0.7602,
|
||||
-0.7602]),
|
||||
size=(392257, 392257), nnz=2741935, layout=torch.sparse_coo)
|
||||
tensor([0.4816, 0.4208, 0.1106, ..., 0.6357, 0.6404, 0.5046])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: helm2d03
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392257, 392257])
|
||||
Rows: 392257
|
||||
Size: 153865554049
|
||||
NNZ: 2741935
|
||||
Density: 1.7820330332848923e-05
|
||||
Time: 10.264106750488281 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 98273, 133833, ..., 392252, 392253, 392254],
|
||||
[ 0, 0, 0, ..., 392256, 392255, 392256]]),
|
||||
values=tensor([ 3.4808, -0.6217, -0.5806, ..., -0.6940, -0.7602,
|
||||
-0.7602]),
|
||||
size=(392257, 392257), nnz=2741935, layout=torch.sparse_coo)
|
||||
tensor([0.4816, 0.4208, 0.1106, ..., 0.6357, 0.6404, 0.5046])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: helm2d03
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392257, 392257])
|
||||
Rows: 392257
|
||||
Size: 153865554049
|
||||
NNZ: 2741935
|
||||
Density: 1.7820330332848923e-05
|
||||
Time: 10.264106750488281 seconds
|
||||
|
||||
[21.04, 21.04, 21.12, 21.12, 21.08, 20.92, 20.84, 20.8, 20.64, 20.52]
|
||||
[20.24, 20.52, 23.8, 25.88, 30.72, 30.72, 47.16, 61.36, 73.56, 85.92, 89.8, 88.36, 86.32, 85.24]
|
||||
14.49177360534668
|
||||
{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 116, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'helm2d03', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [392257, 392257], 'MATRIX_ROWS': 392257, 'MATRIX_SIZE': 153865554049, 'MATRIX_NNZ': 2741935, 'MATRIX_DENSITY': 1.7820330332848923e-05, 'TIME_S': 10.264106750488281, 'TIME_S_1KI': 88.48367888351967, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 758.778782119751, 'W': 52.35927656500255}
|
||||
[21.04, 21.04, 21.12, 21.12, 21.08, 20.92, 20.84, 20.8, 20.64, 20.52, 21.12, 21.16, 20.96, 20.72, 20.76, 20.76, 20.8, 20.8, 20.52, 20.52]
|
||||
375.64
|
||||
18.782
|
||||
{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 116, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'helm2d03', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [392257, 392257], 'MATRIX_ROWS': 392257, 'MATRIX_SIZE': 153865554049, 'MATRIX_NNZ': 2741935, 'MATRIX_DENSITY': 1.7820330332848923e-05, 'TIME_S': 10.264106750488281, 'TIME_S_1KI': 88.48367888351967, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 758.778782119751, 'W': 52.35927656500255, 'J_1KI': 6541.19639758406, 'W_1KI': 451.37307383622885, 'W_D': 33.57727656500255, 'J_D': 486.59429026412954, 'W_D_1KI': 289.4592807327806, 'J_D_1KI': 2495.3386270067294}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Altra", "CORES": 80, "ITERATIONS": 277, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "language", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [399130, 399130], "MATRIX_ROWS": 399130, "MATRIX_SIZE": 159304756900, "MATRIX_NNZ": 1216334, "MATRIX_DENSITY": 7.635264782228233e-06, "TIME_S": 10.961499452590942, "TIME_S_1KI": 39.572200189859, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 920.4506818199158, "W": 55.830706536789286, "J_1KI": 3322.926649169371, "W_1KI": 201.55489724472667, "W_D": 37.00970653678928, "J_D": 610.1590276901721, "W_D_1KI": 133.60904886927537, "J_D_1KI": 482.3431367121854}
|
@ -0,0 +1,77 @@
|
||||
['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 10 -m matrices/389000+_cols/language.mtx']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "language", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [399130, 399130], "MATRIX_ROWS": 399130, "MATRIX_SIZE": 159304756900, "MATRIX_NNZ": 1216334, "MATRIX_DENSITY": 7.635264782228233e-06, "TIME_S": 0.6067090034484863}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 1, ..., 399128, 398241, 399129],
|
||||
[ 0, 0, 1, ..., 399128, 399129, 399129]]),
|
||||
values=tensor([ 1., -1., 1., ..., 1., -1., 1.]),
|
||||
size=(399130, 399130), nnz=1216334, layout=torch.sparse_coo)
|
||||
tensor([0.0329, 0.4020, 0.6833, ..., 0.1615, 0.4251, 0.6942])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: language
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([399130, 399130])
|
||||
Rows: 399130
|
||||
Size: 159304756900
|
||||
NNZ: 1216334
|
||||
Density: 7.635264782228233e-06
|
||||
Time: 0.6067090034484863 seconds
|
||||
|
||||
['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 173 -m matrices/389000+_cols/language.mtx']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "language", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [399130, 399130], "MATRIX_ROWS": 399130, "MATRIX_SIZE": 159304756900, "MATRIX_NNZ": 1216334, "MATRIX_DENSITY": 7.635264782228233e-06, "TIME_S": 6.540848970413208}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 1, ..., 399128, 398241, 399129],
|
||||
[ 0, 0, 1, ..., 399128, 399129, 399129]]),
|
||||
values=tensor([ 1., -1., 1., ..., 1., -1., 1.]),
|
||||
size=(399130, 399130), nnz=1216334, layout=torch.sparse_coo)
|
||||
tensor([0.4442, 0.4038, 0.0035, ..., 0.9209, 0.3652, 0.4475])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: language
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([399130, 399130])
|
||||
Rows: 399130
|
||||
Size: 159304756900
|
||||
NNZ: 1216334
|
||||
Density: 7.635264782228233e-06
|
||||
Time: 6.540848970413208 seconds
|
||||
|
||||
['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 277 -m matrices/389000+_cols/language.mtx']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "language", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [399130, 399130], "MATRIX_ROWS": 399130, "MATRIX_SIZE": 159304756900, "MATRIX_NNZ": 1216334, "MATRIX_DENSITY": 7.635264782228233e-06, "TIME_S": 10.961499452590942}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 1, ..., 399128, 398241, 399129],
|
||||
[ 0, 0, 1, ..., 399128, 399129, 399129]]),
|
||||
values=tensor([ 1., -1., 1., ..., 1., -1., 1.]),
|
||||
size=(399130, 399130), nnz=1216334, layout=torch.sparse_coo)
|
||||
tensor([0.8618, 0.2877, 0.7105, ..., 0.6617, 0.4024, 0.3293])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: language
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([399130, 399130])
|
||||
Rows: 399130
|
||||
Size: 159304756900
|
||||
NNZ: 1216334
|
||||
Density: 7.635264782228233e-06
|
||||
Time: 10.961499452590942 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 1, ..., 399128, 398241, 399129],
|
||||
[ 0, 0, 1, ..., 399128, 399129, 399129]]),
|
||||
values=tensor([ 1., -1., 1., ..., 1., -1., 1.]),
|
||||
size=(399130, 399130), nnz=1216334, layout=torch.sparse_coo)
|
||||
tensor([0.8618, 0.2877, 0.7105, ..., 0.6617, 0.4024, 0.3293])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: language
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([399130, 399130])
|
||||
Rows: 399130
|
||||
Size: 159304756900
|
||||
NNZ: 1216334
|
||||
Density: 7.635264782228233e-06
|
||||
Time: 10.961499452590942 seconds
|
||||
|
||||
[21.0, 21.0, 20.76, 20.84, 20.84, 20.84, 20.8, 20.92, 20.68, 20.84]
|
||||
[21.04, 21.0, 24.24, 26.32, 33.16, 33.16, 46.48, 60.68, 70.92, 81.84, 86.76, 85.52, 84.88, 85.84, 85.4, 84.88]
|
||||
16.486459493637085
|
||||
{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 277, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'language', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [399130, 399130], 'MATRIX_ROWS': 399130, 'MATRIX_SIZE': 159304756900, 'MATRIX_NNZ': 1216334, 'MATRIX_DENSITY': 7.635264782228233e-06, 'TIME_S': 10.961499452590942, 'TIME_S_1KI': 39.572200189859, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 920.4506818199158, 'W': 55.830706536789286}
|
||||
[21.0, 21.0, 20.76, 20.84, 20.84, 20.84, 20.8, 20.92, 20.68, 20.84, 20.56, 20.52, 20.76, 20.72, 21.0, 21.0, 21.36, 21.2, 21.32, 21.32]
|
||||
376.42
|
||||
18.821
|
||||
{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 277, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'language', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [399130, 399130], 'MATRIX_ROWS': 399130, 'MATRIX_SIZE': 159304756900, 'MATRIX_NNZ': 1216334, 'MATRIX_DENSITY': 7.635264782228233e-06, 'TIME_S': 10.961499452590942, 'TIME_S_1KI': 39.572200189859, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 920.4506818199158, 'W': 55.830706536789286, 'J_1KI': 3322.926649169371, 'W_1KI': 201.55489724472667, 'W_D': 37.00970653678928, 'J_D': 610.1590276901721, 'W_D_1KI': 133.60904886927537, 'J_D_1KI': 482.3431367121854}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Altra", "CORES": 80, "ITERATIONS": 64, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "marine1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400320, 400320], "MATRIX_ROWS": 400320, "MATRIX_SIZE": 160256102400, "MATRIX_NNZ": 6226538, "MATRIX_DENSITY": 3.885367175883594e-05, "TIME_S": 11.195725679397583, "TIME_S_1KI": 174.93321374058723, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 921.011065006256, "W": 55.30532003909826, "J_1KI": 14390.79789072275, "W_1KI": 864.1456256109103, "W_D": 36.42632003909826, "J_D": 606.6151283411979, "W_D_1KI": 569.1612506109103, "J_D_1KI": 8893.144540795474}
|
@ -0,0 +1,62 @@
|
||||
['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 10 -m matrices/389000+_cols/marine1.mtx']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "marine1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400320, 400320], "MATRIX_ROWS": 400320, "MATRIX_SIZE": 160256102400, "MATRIX_NNZ": 6226538, "MATRIX_DENSITY": 3.885367175883594e-05, "TIME_S": 1.6311836242675781}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 10383, ..., 400315, 400318, 400319],
|
||||
[ 0, 0, 0, ..., 400319, 400319, 400319]]),
|
||||
values=tensor([ 6.2373e+03, 3.4166e-01, -6.5085e+00, ...,
|
||||
-9.6129e-01, -6.8118e-01, 1.7595e+01]),
|
||||
size=(400320, 400320), nnz=6226538, layout=torch.sparse_coo)
|
||||
tensor([0.5490, 0.0994, 0.8942, ..., 0.0214, 0.3288, 0.4503])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: marine1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400320, 400320])
|
||||
Rows: 400320
|
||||
Size: 160256102400
|
||||
NNZ: 6226538
|
||||
Density: 3.885367175883594e-05
|
||||
Time: 1.6311836242675781 seconds
|
||||
|
||||
['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 64 -m matrices/389000+_cols/marine1.mtx']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "marine1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400320, 400320], "MATRIX_ROWS": 400320, "MATRIX_SIZE": 160256102400, "MATRIX_NNZ": 6226538, "MATRIX_DENSITY": 3.885367175883594e-05, "TIME_S": 11.195725679397583}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 10383, ..., 400315, 400318, 400319],
|
||||
[ 0, 0, 0, ..., 400319, 400319, 400319]]),
|
||||
values=tensor([ 6.2373e+03, 3.4166e-01, -6.5085e+00, ...,
|
||||
-9.6129e-01, -6.8118e-01, 1.7595e+01]),
|
||||
size=(400320, 400320), nnz=6226538, layout=torch.sparse_coo)
|
||||
tensor([0.7475, 0.1862, 0.4099, ..., 0.2016, 0.7697, 0.2304])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: marine1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400320, 400320])
|
||||
Rows: 400320
|
||||
Size: 160256102400
|
||||
NNZ: 6226538
|
||||
Density: 3.885367175883594e-05
|
||||
Time: 11.195725679397583 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 10383, ..., 400315, 400318, 400319],
|
||||
[ 0, 0, 0, ..., 400319, 400319, 400319]]),
|
||||
values=tensor([ 6.2373e+03, 3.4166e-01, -6.5085e+00, ...,
|
||||
-9.6129e-01, -6.8118e-01, 1.7595e+01]),
|
||||
size=(400320, 400320), nnz=6226538, layout=torch.sparse_coo)
|
||||
tensor([0.7475, 0.1862, 0.4099, ..., 0.2016, 0.7697, 0.2304])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: marine1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400320, 400320])
|
||||
Rows: 400320
|
||||
Size: 160256102400
|
||||
NNZ: 6226538
|
||||
Density: 3.885367175883594e-05
|
||||
Time: 11.195725679397583 seconds
|
||||
|
||||
[20.72, 20.92, 21.12, 21.08, 21.12, 21.08, 21.2, 21.04, 20.96, 20.88]
|
||||
[20.68, 21.04, 21.04, 24.56, 25.8, 36.04, 46.4, 58.76, 66.48, 77.8, 79.12, 81.76, 87.08, 88.0, 91.48, 91.32]
|
||||
16.65320920944214
|
||||
{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 64, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'marine1', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400320, 400320], 'MATRIX_ROWS': 400320, 'MATRIX_SIZE': 160256102400, 'MATRIX_NNZ': 6226538, 'MATRIX_DENSITY': 3.885367175883594e-05, 'TIME_S': 11.195725679397583, 'TIME_S_1KI': 174.93321374058723, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 921.011065006256, 'W': 55.30532003909826}
|
||||
[20.72, 20.92, 21.12, 21.08, 21.12, 21.08, 21.2, 21.04, 20.96, 20.88, 21.28, 21.36, 21.12, 21.08, 20.88, 20.88, 20.76, 20.6, 20.56, 20.76]
|
||||
377.58000000000004
|
||||
18.879
|
||||
{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 64, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'marine1', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400320, 400320], 'MATRIX_ROWS': 400320, 'MATRIX_SIZE': 160256102400, 'MATRIX_NNZ': 6226538, 'MATRIX_DENSITY': 3.885367175883594e-05, 'TIME_S': 11.195725679397583, 'TIME_S_1KI': 174.93321374058723, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 921.011065006256, 'W': 55.30532003909826, 'J_1KI': 14390.79789072275, 'W_1KI': 864.1456256109103, 'W_D': 36.42632003909826, 'J_D': 606.6151283411979, 'W_D_1KI': 569.1612506109103, 'J_D_1KI': 8893.144540795474}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Altra", "CORES": 80, "ITERATIONS": 190, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "mario002", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [389874, 389874], "MATRIX_ROWS": 389874, "MATRIX_SIZE": 152001735876, "MATRIX_NNZ": 2101242, "MATRIX_DENSITY": 1.3823802655215408e-05, "TIME_S": 14.603139877319336, "TIME_S_1KI": 76.85863093325966, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2405.9824257564537, "W": 69.56329259421916, "J_1KI": 12663.065398718178, "W_1KI": 366.1225926011535, "W_D": 50.577292594219166, "J_D": 1749.3145103678696, "W_D_1KI": 266.19627681167987, "J_D_1KI": 1401.0330358509466}
|
@ -0,0 +1,77 @@
|
||||
['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 10 -m matrices/389000+_cols/mario002.mtx']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "mario002", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [389874, 389874], "MATRIX_ROWS": 389874, "MATRIX_SIZE": 152001735876, "MATRIX_NNZ": 2101242, "MATRIX_DENSITY": 1.3823802655215408e-05, "TIME_S": 1.286492109298706}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1027, 1028, ..., 234126, 234127, 234127],
|
||||
[ 0, 0, 0, ..., 389703, 389823, 389873]]),
|
||||
values=tensor([ 1., 0., 0., ..., -1., 1., -1.]),
|
||||
size=(389874, 389874), nnz=2101242, layout=torch.sparse_coo)
|
||||
tensor([0.1392, 0.9430, 0.9762, ..., 0.8832, 0.2899, 0.9813])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: mario002
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([389874, 389874])
|
||||
Rows: 389874
|
||||
Size: 152001735876
|
||||
NNZ: 2101242
|
||||
Density: 1.3823802655215408e-05
|
||||
Time: 1.286492109298706 seconds
|
||||
|
||||
['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 81 -m matrices/389000+_cols/mario002.mtx']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "mario002", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [389874, 389874], "MATRIX_ROWS": 389874, "MATRIX_SIZE": 152001735876, "MATRIX_NNZ": 2101242, "MATRIX_DENSITY": 1.3823802655215408e-05, "TIME_S": 4.456863164901733}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1027, 1028, ..., 234126, 234127, 234127],
|
||||
[ 0, 0, 0, ..., 389703, 389823, 389873]]),
|
||||
values=tensor([ 1., 0., 0., ..., -1., 1., -1.]),
|
||||
size=(389874, 389874), nnz=2101242, layout=torch.sparse_coo)
|
||||
tensor([0.7242, 0.5892, 0.0728, ..., 0.5936, 0.7137, 0.5560])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: mario002
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([389874, 389874])
|
||||
Rows: 389874
|
||||
Size: 152001735876
|
||||
NNZ: 2101242
|
||||
Density: 1.3823802655215408e-05
|
||||
Time: 4.456863164901733 seconds
|
||||
|
||||
['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 190 -m matrices/389000+_cols/mario002.mtx']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "mario002", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [389874, 389874], "MATRIX_ROWS": 389874, "MATRIX_SIZE": 152001735876, "MATRIX_NNZ": 2101242, "MATRIX_DENSITY": 1.3823802655215408e-05, "TIME_S": 14.603139877319336}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1027, 1028, ..., 234126, 234127, 234127],
|
||||
[ 0, 0, 0, ..., 389703, 389823, 389873]]),
|
||||
values=tensor([ 1., 0., 0., ..., -1., 1., -1.]),
|
||||
size=(389874, 389874), nnz=2101242, layout=torch.sparse_coo)
|
||||
tensor([0.7599, 0.2308, 0.1802, ..., 0.4047, 0.3220, 0.6466])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: mario002
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([389874, 389874])
|
||||
Rows: 389874
|
||||
Size: 152001735876
|
||||
NNZ: 2101242
|
||||
Density: 1.3823802655215408e-05
|
||||
Time: 14.603139877319336 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1027, 1028, ..., 234126, 234127, 234127],
|
||||
[ 0, 0, 0, ..., 389703, 389823, 389873]]),
|
||||
values=tensor([ 1., 0., 0., ..., -1., 1., -1.]),
|
||||
size=(389874, 389874), nnz=2101242, layout=torch.sparse_coo)
|
||||
tensor([0.7599, 0.2308, 0.1802, ..., 0.4047, 0.3220, 0.6466])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: mario002
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([389874, 389874])
|
||||
Rows: 389874
|
||||
Size: 152001735876
|
||||
NNZ: 2101242
|
||||
Density: 1.3823802655215408e-05
|
||||
Time: 14.603139877319336 seconds
|
||||
|
||||
[20.84, 20.96, 21.08, 20.96, 21.0, 20.96, 21.0, 21.0, 21.08, 21.32]
|
||||
[21.44, 21.56, 21.88, 25.64, 27.36, 41.28, 55.08, 68.0, 81.88, 91.08, 90.64, 89.88, 88.36, 86.76, 85.6, 85.32, 85.32, 85.52, 85.32, 84.44, 85.2, 84.0, 83.04, 82.12, 82.2, 80.48, 81.04, 83.08, 83.88, 85.44, 86.0, 86.08, 84.44]
|
||||
34.58695435523987
|
||||
{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 190, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'mario002', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [389874, 389874], 'MATRIX_ROWS': 389874, 'MATRIX_SIZE': 152001735876, 'MATRIX_NNZ': 2101242, 'MATRIX_DENSITY': 1.3823802655215408e-05, 'TIME_S': 14.603139877319336, 'TIME_S_1KI': 76.85863093325966, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2405.9824257564537, 'W': 69.56329259421916}
|
||||
[20.84, 20.96, 21.08, 20.96, 21.0, 20.96, 21.0, 21.0, 21.08, 21.32, 21.4, 21.52, 21.32, 21.24, 21.24, 21.0, 21.0, 20.96, 21.08, 21.08]
|
||||
379.7199999999999
|
||||
18.985999999999997
|
||||
{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 190, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'mario002', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [389874, 389874], 'MATRIX_ROWS': 389874, 'MATRIX_SIZE': 152001735876, 'MATRIX_NNZ': 2101242, 'MATRIX_DENSITY': 1.3823802655215408e-05, 'TIME_S': 14.603139877319336, 'TIME_S_1KI': 76.85863093325966, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2405.9824257564537, 'W': 69.56329259421916, 'J_1KI': 12663.065398718178, 'W_1KI': 366.1225926011535, 'W_D': 50.577292594219166, 'J_D': 1749.3145103678696, 'W_D_1KI': 266.19627681167987, 'J_D_1KI': 1401.0330358509466}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Altra", "CORES": 80, "ITERATIONS": 24, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 11.207796812057495, "TIME_S_1KI": 466.99153383572894, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 626.2113814544678, "W": 38.17449578062175, "J_1KI": 26092.140893936157, "W_1KI": 1590.6039908592395, "W_D": 19.62949578062175, "J_D": 322.00068183422087, "W_D_1KI": 817.8956575259062, "J_D_1KI": 34078.985730246095}
|
@ -0,0 +1,81 @@
|
||||
['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 10 -m matrices/389000+_cols/msdoor.mtx']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 5.270718097686768}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.9852, 0.2493, 0.1115, ..., 0.7409, 0.5809, 0.0205])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 5.270718097686768 seconds
|
||||
|
||||
['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 19 -m matrices/389000+_cols/msdoor.mtx']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 8.299206972122192}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.7835, 0.2436, 0.8418, ..., 0.5677, 0.0321, 0.3815])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 8.299206972122192 seconds
|
||||
|
||||
['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 24 -m matrices/389000+_cols/msdoor.mtx']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "msdoor", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [415863, 415863], "MATRIX_ROWS": 415863, "MATRIX_SIZE": 172942034769, "MATRIX_NNZ": 20240935, "MATRIX_DENSITY": 0.00011703883921012015, "TIME_S": 11.207796812057495}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.4055, 0.9965, 0.1099, ..., 0.1105, 0.0618, 0.7541])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 11.207796812057495 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 2, ..., 415860, 415860, 415861],
|
||||
[ 0, 0, 0, ..., 415861, 415862, 415862]]),
|
||||
values=tensor([1732682.0000, 32540.3633, 24619.0176, ...,
|
||||
22251.7324, -97620.4609, -360329.0312]),
|
||||
size=(415863, 415863), nnz=20240935, layout=torch.sparse_coo)
|
||||
tensor([0.4055, 0.9965, 0.1099, ..., 0.1105, 0.0618, 0.7541])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: msdoor
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([415863, 415863])
|
||||
Rows: 415863
|
||||
Size: 172942034769
|
||||
NNZ: 20240935
|
||||
Density: 0.00011703883921012015
|
||||
Time: 11.207796812057495 seconds
|
||||
|
||||
[20.64, 20.52, 20.4, 20.4, 20.56, 21.0, 20.88, 20.84, 20.84, 20.4]
|
||||
[20.32, 20.44, 21.12, 22.84, 27.24, 37.4, 42.72, 42.72, 50.04, 55.8, 51.24, 52.08, 49.48, 50.2, 47.68, 49.84]
|
||||
16.40392017364502
|
||||
{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 24, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'msdoor', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [415863, 415863], 'MATRIX_ROWS': 415863, 'MATRIX_SIZE': 172942034769, 'MATRIX_NNZ': 20240935, 'MATRIX_DENSITY': 0.00011703883921012015, 'TIME_S': 11.207796812057495, 'TIME_S_1KI': 466.99153383572894, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 626.2113814544678, 'W': 38.17449578062175}
|
||||
[20.64, 20.52, 20.4, 20.4, 20.56, 21.0, 20.88, 20.84, 20.84, 20.4, 20.32, 20.32, 20.44, 20.48, 20.44, 20.48, 20.48, 20.8, 20.92, 20.84]
|
||||
370.9
|
||||
18.544999999999998
|
||||
{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 24, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'msdoor', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [415863, 415863], 'MATRIX_ROWS': 415863, 'MATRIX_SIZE': 172942034769, 'MATRIX_NNZ': 20240935, 'MATRIX_DENSITY': 0.00011703883921012015, 'TIME_S': 11.207796812057495, 'TIME_S_1KI': 466.99153383572894, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 626.2113814544678, 'W': 38.17449578062175, 'J_1KI': 26092.140893936157, 'W_1KI': 1590.6039908592395, 'W_D': 19.62949578062175, 'J_D': 322.00068183422087, 'W_D_1KI': 817.8956575259062, 'J_D_1KI': 34078.985730246095}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Altra", "CORES": 80, "ITERATIONS": 35, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "test1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392908, 392908], "MATRIX_ROWS": 392908, "MATRIX_SIZE": 154376696464, "MATRIX_NNZ": 12968200, "MATRIX_DENSITY": 8.400361127706946e-05, "TIME_S": 11.63770079612732, "TIME_S_1KI": 332.50573703220914, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 660.6712235164642, "W": 42.76027469966683, "J_1KI": 18876.32067189898, "W_1KI": 1221.7221342761952, "W_D": 23.82927469966683, "J_D": 368.1762145335674, "W_D_1KI": 680.8364199904809, "J_D_1KI": 19452.46914258517}
|
@ -0,0 +1,81 @@
|
||||
['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 10 -m matrices/389000+_cols/test1.mtx']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "test1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392908, 392908], "MATRIX_ROWS": 392908, "MATRIX_SIZE": 154376696464, "MATRIX_NNZ": 12968200, "MATRIX_DENSITY": 8.400361127706946e-05, "TIME_S": 3.1338207721710205}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 8, ..., 392905, 392906, 392907],
|
||||
[ 0, 0, 0, ..., 392907, 392907, 392907]]),
|
||||
values=tensor([1.0000e+00, 0.0000e+00, 0.0000e+00, ...,
|
||||
0.0000e+00, 0.0000e+00, 2.1156e-17]),
|
||||
size=(392908, 392908), nnz=12968200, layout=torch.sparse_coo)
|
||||
tensor([0.3488, 0.1981, 0.1405, ..., 0.9231, 0.3819, 0.4583])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: test1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392908, 392908])
|
||||
Rows: 392908
|
||||
Size: 154376696464
|
||||
NNZ: 12968200
|
||||
Density: 8.400361127706946e-05
|
||||
Time: 3.1338207721710205 seconds
|
||||
|
||||
['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 33 -m matrices/389000+_cols/test1.mtx']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "test1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392908, 392908], "MATRIX_ROWS": 392908, "MATRIX_SIZE": 154376696464, "MATRIX_NNZ": 12968200, "MATRIX_DENSITY": 8.400361127706946e-05, "TIME_S": 9.847631216049194}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 8, ..., 392905, 392906, 392907],
|
||||
[ 0, 0, 0, ..., 392907, 392907, 392907]]),
|
||||
values=tensor([1.0000e+00, 0.0000e+00, 0.0000e+00, ...,
|
||||
0.0000e+00, 0.0000e+00, 2.1156e-17]),
|
||||
size=(392908, 392908), nnz=12968200, layout=torch.sparse_coo)
|
||||
tensor([0.0441, 0.5206, 0.9715, ..., 0.1738, 0.9140, 0.1638])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: test1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392908, 392908])
|
||||
Rows: 392908
|
||||
Size: 154376696464
|
||||
NNZ: 12968200
|
||||
Density: 8.400361127706946e-05
|
||||
Time: 9.847631216049194 seconds
|
||||
|
||||
['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py suitesparse coo 35 -m matrices/389000+_cols/test1.mtx']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "test1", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [392908, 392908], "MATRIX_ROWS": 392908, "MATRIX_SIZE": 154376696464, "MATRIX_NNZ": 12968200, "MATRIX_DENSITY": 8.400361127706946e-05, "TIME_S": 11.63770079612732}
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 8, ..., 392905, 392906, 392907],
|
||||
[ 0, 0, 0, ..., 392907, 392907, 392907]]),
|
||||
values=tensor([1.0000e+00, 0.0000e+00, 0.0000e+00, ...,
|
||||
0.0000e+00, 0.0000e+00, 2.1156e-17]),
|
||||
size=(392908, 392908), nnz=12968200, layout=torch.sparse_coo)
|
||||
tensor([0.3106, 0.6373, 0.0752, ..., 0.4338, 0.2866, 0.1473])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: test1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392908, 392908])
|
||||
Rows: 392908
|
||||
Size: 154376696464
|
||||
NNZ: 12968200
|
||||
Density: 8.400361127706946e-05
|
||||
Time: 11.63770079612732 seconds
|
||||
|
||||
tensor(indices=tensor([[ 0, 1, 8, ..., 392905, 392906, 392907],
|
||||
[ 0, 0, 0, ..., 392907, 392907, 392907]]),
|
||||
values=tensor([1.0000e+00, 0.0000e+00, 0.0000e+00, ...,
|
||||
0.0000e+00, 0.0000e+00, 2.1156e-17]),
|
||||
size=(392908, 392908), nnz=12968200, layout=torch.sparse_coo)
|
||||
tensor([0.3106, 0.6373, 0.0752, ..., 0.4338, 0.2866, 0.1473])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: test1
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([392908, 392908])
|
||||
Rows: 392908
|
||||
Size: 154376696464
|
||||
NNZ: 12968200
|
||||
Density: 8.400361127706946e-05
|
||||
Time: 11.63770079612732 seconds
|
||||
|
||||
[21.08, 20.84, 20.84, 20.72, 20.8, 21.28, 21.24, 21.12, 21.04, 20.64]
|
||||
[20.2, 20.2, 20.88, 22.48, 25.2, 37.96, 37.96, 45.64, 57.92, 63.84, 65.96, 65.08, 64.64, 62.24, 63.72]
|
||||
15.450584173202515
|
||||
{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 35, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'test1', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [392908, 392908], 'MATRIX_ROWS': 392908, 'MATRIX_SIZE': 154376696464, 'MATRIX_NNZ': 12968200, 'MATRIX_DENSITY': 8.400361127706946e-05, 'TIME_S': 11.63770079612732, 'TIME_S_1KI': 332.50573703220914, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 660.6712235164642, 'W': 42.76027469966683}
|
||||
[21.08, 20.84, 20.84, 20.72, 20.8, 21.28, 21.24, 21.12, 21.04, 20.64, 20.6, 20.68, 20.92, 20.92, 21.12, 21.24, 21.44, 21.44, 21.24, 21.16]
|
||||
378.62
|
||||
18.931
|
||||
{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 35, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'test1', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [392908, 392908], 'MATRIX_ROWS': 392908, 'MATRIX_SIZE': 154376696464, 'MATRIX_NNZ': 12968200, 'MATRIX_DENSITY': 8.400361127706946e-05, 'TIME_S': 11.63770079612732, 'TIME_S_1KI': 332.50573703220914, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 660.6712235164642, 'W': 42.76027469966683, 'J_1KI': 18876.32067189898, 'W_1KI': 1221.7221342761952, 'W_D': 23.82927469966683, 'J_D': 368.1762145335674, 'W_D_1KI': 680.8364199904809, 'J_D_1KI': 19452.46914258517}
|
@ -0,0 +1 @@
|
||||
{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 111, "MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "amazon0312", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400727, 400727], "MATRIX_ROWS": 400727, "MATRIX_SIZE": 160582128529, "MATRIX_NNZ": 3200440, "MATRIX_DENSITY": 1.9930237750099465e-05, "TIME_S": 10.494628429412842, "TIME_S_1KI": 94.54620206678236, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1296.4762573242188, "W": 86.4, "J_1KI": 11679.96628220017, "W_1KI": 778.3783783783784, "W_D": 43.46775000000001, "J_D": 652.2558545637132, "W_D_1KI": 391.6013513513514, "J_D_1KI": 3527.9401022644274}
|
@ -0,0 +1,59 @@
|
||||
['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '10', '-m', 'matrices/389000+_cols/amazon0312.mtx']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "amazon0312", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400727, 400727], "MATRIX_ROWS": 400727, "MATRIX_SIZE": 160582128529, "MATRIX_NNZ": 3200440, "MATRIX_DENSITY": 1.9930237750099465e-05, "TIME_S": 0.9449436664581299}
|
||||
|
||||
tensor(indices=tensor([[ 1, 2, 0, ..., 400725, 400724, 400707],
|
||||
[ 0, 0, 1, ..., 400724, 400725, 400726]]),
|
||||
values=tensor([1., 1., 1., ..., 1., 1., 1.]),
|
||||
size=(400727, 400727), nnz=3200440, layout=torch.sparse_coo)
|
||||
tensor([0.4211, 0.9920, 0.9363, ..., 0.2555, 0.2504, 0.0922])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: amazon0312
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400727, 400727])
|
||||
Rows: 400727
|
||||
Size: 160582128529
|
||||
NNZ: 3200440
|
||||
Density: 1.9930237750099465e-05
|
||||
Time: 0.9449436664581299 seconds
|
||||
|
||||
['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'suitesparse', 'coo', '111', '-m', 'matrices/389000+_cols/amazon0312.mtx']
|
||||
{"MATRIX_TYPE": "SuiteSparse", "MATRIX_FILE": "amazon0312", "MATRIX_FORMAT": "coo", "MATRIX_SHAPE": [400727, 400727], "MATRIX_ROWS": 400727, "MATRIX_SIZE": 160582128529, "MATRIX_NNZ": 3200440, "MATRIX_DENSITY": 1.9930237750099465e-05, "TIME_S": 10.494628429412842}
|
||||
|
||||
tensor(indices=tensor([[ 1, 2, 0, ..., 400725, 400724, 400707],
|
||||
[ 0, 0, 1, ..., 400724, 400725, 400726]]),
|
||||
values=tensor([1., 1., 1., ..., 1., 1., 1.]),
|
||||
size=(400727, 400727), nnz=3200440, layout=torch.sparse_coo)
|
||||
tensor([0.6100, 0.8301, 0.1851, ..., 0.5443, 0.2075, 0.2385])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: amazon0312
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400727, 400727])
|
||||
Rows: 400727
|
||||
Size: 160582128529
|
||||
NNZ: 3200440
|
||||
Density: 1.9930237750099465e-05
|
||||
Time: 10.494628429412842 seconds
|
||||
|
||||
tensor(indices=tensor([[ 1, 2, 0, ..., 400725, 400724, 400707],
|
||||
[ 0, 0, 1, ..., 400724, 400725, 400726]]),
|
||||
values=tensor([1., 1., 1., ..., 1., 1., 1.]),
|
||||
size=(400727, 400727), nnz=3200440, layout=torch.sparse_coo)
|
||||
tensor([0.6100, 0.8301, 0.1851, ..., 0.5443, 0.2075, 0.2385])
|
||||
Matrix Type: SuiteSparse
|
||||
Matrix: amazon0312
|
||||
Matrix Format: coo
|
||||
Shape: torch.Size([400727, 400727])
|
||||
Rows: 400727
|
||||
Size: 160582128529
|
||||
NNZ: 3200440
|
||||
Density: 1.9930237750099465e-05
|
||||
Time: 10.494628429412842 seconds
|
||||
|
||||
[59.18, 53.78, 39.2, 39.37, 39.44, 62.28, 66.02, 67.2, 69.01, 72.0]
|
||||
[86.4]
|
||||
15.005512237548828
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 111, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'amazon0312', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400727, 400727], 'MATRIX_ROWS': 400727, 'MATRIX_SIZE': 160582128529, 'MATRIX_NNZ': 3200440, 'MATRIX_DENSITY': 1.9930237750099465e-05, 'TIME_S': 10.494628429412842, 'TIME_S_1KI': 94.54620206678236, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1296.4762573242188, 'W': 86.4}
|
||||
[59.18, 53.78, 39.2, 39.37, 39.44, 62.28, 66.02, 67.2, 69.01, 72.0, 45.54, 39.78, 39.33, 39.33, 39.24, 39.3, 39.08, 39.12, 39.27, 39.07]
|
||||
858.645
|
||||
42.932249999999996
|
||||
{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 111, 'MATRIX_TYPE': 'SuiteSparse', 'MATRIX_FILE': 'amazon0312', 'MATRIX_FORMAT': 'coo', 'MATRIX_SHAPE': [400727, 400727], 'MATRIX_ROWS': 400727, 'MATRIX_SIZE': 160582128529, 'MATRIX_NNZ': 3200440, 'MATRIX_DENSITY': 1.9930237750099465e-05, 'TIME_S': 10.494628429412842, 'TIME_S_1KI': 94.54620206678236, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1296.4762573242188, 'W': 86.4, 'J_1KI': 11679.96628220017, 'W_1KI': 778.3783783783784, 'W_D': 43.46775000000001, 'J_D': 652.2558545637132, 'W_D_1KI': 391.6013513513514, 'J_D_1KI': 3527.9401022644274}
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user